Sample records for ganglion express histamine

  1. Osthole inhibits histamine-dependent itch via modulating TRPV1 activity.

    PubMed

    Yang, Niu-Niu; Shi, Hao; Yu, Guang; Wang, Chang-Ming; Zhu, Chan; Yang, Yan; Yuan, Xiao-Lin; Tang, Min; Wang, Zhong-Li; Gegen, Tana; He, Qian; Tang, Kehua; Lan, Lei; Wu, Guan-Yi; Tang, Zong-Xiang

    2016-05-10

    Osthole, an active coumarin isolated from Cnidium monnieri (L.) Cusson, has long been used in China as an antipruritic herbal medicine; however, the antipruitic mechanism of osthole is unknown. We studied the molecular mechanism of osthole in histamine-dependent itch by behavioral test, Ca(2+) imaging, and electrophysiological experiments. First, osthole clearly remitted the scratching behaviors of mice induced with histamine, HTMT, and VUF8430. Second, in cultured dorsal root ganglion (DRG) neurons, osthole showed a dose-dependent inhibitory effect to histamine. On the same neurons, osthole also decreased the response to capsaicin and histamine. In further tests, the capsaicin-induced inward currents were inhibited by osthole. These results revealed that osthole inhibited histamine-dependent itch by modulating TRPV1 activity. This study will be helpful in understanding how osthole exerts anti-pruritus effects and suggests that osthole may be a useful treatment medicine for histamine-dependent itch.

  2. Osthole inhibits histamine-dependent itch via modulating TRPV1 activity

    PubMed Central

    Yang, Niu-Niu; Shi, Hao; Yu, Guang; Wang, Chang-Ming; Zhu, Chan; Yang, Yan; Yuan, Xiao-Lin; Tang, Min; Wang, Zhong-li; Gegen, Tana; He, Qian; Tang, Kehua; Lan, Lei; Wu, Guan-Yi; Tang, Zong-Xiang

    2016-01-01

    Osthole, an active coumarin isolated from Cnidium monnieri (L.) Cusson, has long been used in China as an antipruritic herbal medicine; however, the antipruitic mechanism of osthole is unknown. We studied the molecular mechanism of osthole in histamine-dependent itch by behavioral test, Ca2+ imaging, and electrophysiological experiments. First, osthole clearly remitted the scratching behaviors of mice induced with histamine, HTMT, and VUF8430. Second, in cultured dorsal root ganglion (DRG) neurons, osthole showed a dose-dependent inhibitory effect to histamine. On the same neurons, osthole also decreased the response to capsaicin and histamine. In further tests, the capsaicin-induced inward currents were inhibited by osthole. These results revealed that osthole inhibited histamine-dependent itch by modulating TRPV1 activity. This study will be helpful in understanding how osthole exerts anti-pruritus effects and suggests that osthole may be a useful treatment medicine for histamine-dependent itch. PMID:27160770

  3. Characteristics of recombinantly expressed rat and human histamine H3 receptors.

    PubMed

    Wulff, Birgitte S; Hastrup, Sven; Rimvall, Karin

    2002-10-18

    Human and rat histamine H(3) receptors were recombinantly expressed and characterized using receptor binding and a functional cAMP assay. Seven of nine agonists had similar affinities and potencies at the rat and human histamine H(3) receptor. S-alpha-methylhistamine had a significantly higher affinity and potency at the human than rat receptor, and for 4-[(1R*,2R*)-2-(5,5-dimethyl-1-hexynyl)cyclopropyl]-1H-imidazole (Perceptin) the preference was the reverse. Only two of six antagonists had similar affinities and potencies at the human and the rat histamine H(3) receptor. Ciproxifan, thioperamide and (1R*,2R*)-trans-2-imidazol-4 ylcyclopropyl) (cyclohexylmethoxy) carboxamide (GT2394) had significantly higher affinities and potencies at the rat than at the human histamine H(3) receptor, while for N-(4-chlorobenzyl)-N-(7-pyrrolodin-1-ylheptyl)guanidine (JB98064) the preference was the reverse. All antagonists also showed potent inverse agonism properties. Iodoproxyfan, Perceptin, proxyfan and GR175737, compounds previously described as histamine H(3) receptor antagonists, acted as full or partial agonists at both the rat and the human histamine H(3) receptor. Copyright 2002 Elsevier Science B.V.

  4. Changes in gene expression induced by histamine, fexofenadine and osthole: Expression of histamine H1 receptor, COX-2, NF-κB, CCR1, chemokine CCL5/RANTES and interleukin-1β in PBMC allergic and non-allergic patients.

    PubMed

    Kordulewska, Natalia Karolina; Kostyra, Elżbieta; Cieślińska, Anna; Matysiewicz, Michał; Fiedorowicz, Ewa; Sienkiewicz-Szłapka, Edyta

    2017-03-01

    Fexofenadine (FXF) is a third-generation antihistamine drug and osthole is assumed as a natural antihistamine alternative. This paper compares results of histamine, FXF and osthole impact on HRH-1, COX-2, NF-κB-p50, CCR1 mRNA expression. We also measured mRNA expression of IL-1β and CCL5/RANTES in incubated peripheral blood mononuclear cells (PBMC) to compared how histamine, FXF and osthole had influence on expression level and interacts on product secretion. The purpose was to investigate expression pattern in asthma PBMC. The cultures were treated 72h with FXF and osthole. We measured mRNA expression of histamine HRH-1, COX-2, NF-κB-p50, CCR1, IL-1β and CCL5/RANTES with Real-Time PCR (RT-PCR). The present study suggest that osthole may be a potential inhibitor of histamine H 1 receptor activity. We also demonstrated that cells cultured with histamine increase COX-2 mRNA expression and osthole reduce it. Allergy remains one of the most common chronic diseases in Europe and it is rapidly approaching epidemic proportions; with current predictions estimating that the number of allergy-afflicted will equal the healthy population by 2020. It is therefore paramount to find new pharmaceuticals which successfully combat allergic disease. Copyright © 2016 Elsevier GmbH. All rights reserved.

  5. Interaction between histamine and dichloroisoproterenol, hexamethonium, pempidine, and diphenhydramine, in normal and reserpine-treated heart preparations

    PubMed Central

    Mannaioni, P. F.

    1960-01-01

    Histamine stimulated the isolated auricles and heart of the guinea-pig. The effect was best seen in auricles which had been previously depressed by treatment with reserpine. Ganglionic blocking drugs (hexamethonium and pempidine), applied to auricles which had been previously treated with reserpine, abolished the diphasic effect of nicotine, but did not alter the response to histamine. Dichloroisoproterenol did not modify the stimulant action of histamine in isolated auricles, either before or after treatment with reserpine; nor did it alter the response of the isolated heart. Diphenhydramine reduced or blocked the stimulant action of histamine in auricles which had been previously treated with reserpine. The results support the hypothesis that histamine stimulates the myocardium by a direct action on specific receptors. PMID:13766225

  6. Pharmacological characterization of the human histamine H2 receptor stably expressed in Chinese hamster ovary cells.

    PubMed Central

    Leurs, R.; Smit, M. J.; Menge, W. M.; Timmerman, H.

    1994-01-01

    1. The gene for the human histamine H2 receptor was stably expressed in Chinese hamster ovary (CHO) cells and characterized by [125I]-iodoaminopotentidine binding studies. In addition, the coupling of the expressed receptor protein to a variety of signal transduction pathways was investigated. 2. After cotransfection of CHO cells with pCMVhumH2 and pUT626, a phleomycine-resistant clonal cell line (CHOhumH2) was isolated that expressed 565 +/- 35 fmol kg-1 protein binding sites with high affinity (0.21 +/- 0.02 nM) for the H2 antagonist, [125I]-iodoaminopotentidine. 3. Displacement studies with a variety of H2 antagonists indicated that the encoded protein was indistinguishable from the H2 receptor identified in human brain membranes and guinea-pig right atrium. The Ki-values observed in the various preparations correlated very well (r2 = 0.996-0.920). 4. Displacement studies with histamine showed that a limited fraction (32 +/- 6%) of the binding sites showed a high affinity for histamine (2 +/- 1.2 microM); the shallow displacement curves were reflected by a Hill-coefficient significantly different from unity (nH = 0.58 +/- 0.09). The addition of 100 microM Gpp(NH)p resulted in a steepening of the displacement curve (nH = 0.79 +/- 0.02) and a loss of high affinity sites for histamine. 5. Displacement studies with other agonists indicated that the recently developed specific H2 agonists, amthamine and amselamine, showed an approximately 4-5 fold higher affinity for the human H2 receptor than histamine. 6. Stimulation of CHOhumH2 cells with histamine resulted in a rapid rise of the intracellular cyclic AMP levels. After 10 min an approximately 10 fold increase in cyclic AMP could be measured.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 4 PMID:7921611

  7. Central Projections of Melanopsin-Expressing Retinal Ganglion Cells in the Mouse

    PubMed Central

    HATTAR, SAMER; KUMAR, MONICA; PARK, ALEXANDER; TONG, PATRICK; TUNG, JONATHAN; YAU, KING-WAI; BERSON, DAVID M.

    2010-01-01

    A rare type of ganglion cell in mammalian retina is directly photosensitive. These novel retinal photoreceptors express the photopigment melanopsin. They send axons directly to the suprachiasmatic nucleus (SCN), intergeniculate leaflet (IGL), and olivary pretectal nucleus (OPN), thereby contributing to photic synchronization of circadian rhythms and the pupillary light reflex. Here, we sought to characterize more fully the projections of these cells to the brain. By targeting tau-lacZ to the melanopsin gene locus in mice, ganglion cells that would normally express melanopsin were induced to express, instead, the marker enzyme β-galactosidase. Their axons were visualized by X-gal histochemistry or anti-β-galactosidase immunofluorescence. Established targets were confirmed, including the SCN, IGL, OPN, ventral division of the lateral geniculate nucleus (LGv), and preoptic area, but the overall projections were more widespread than previously recognized. Targets included the lateral nucleus, peri-supraoptic nucleus, and subparaventricular zone of the hypothalamus, medial amygdala, margin of the lateral habenula, posterior limitans nucleus, superior colliculus, and periaqueductal gray. There were also weak projections to the margins of the dorsal lateral geniculate nucleus. Co-staining with the cholera toxin B subunit to label all retinal afferents showed that melanopsin ganglion cells provide most of the retinal input to the SCN, IGL, and lateral habenula and much of that to the OPN, but that other ganglion cells do contribute at least some retinal input to these targets. Staining patterns after monocular enucleation revealed that the projections of these cells are overwhelmingly crossed except for the projection to the SCN, which is bilaterally symmetrical. PMID:16736474

  8. Histamine, histamine intoxication and intolerance.

    PubMed

    Kovacova-Hanuskova, E; Buday, T; Gavliakova, S; Plevkova, J

    2015-01-01

    Excessive accumulation of histamine in the body leads to miscellaneous symptoms mediated by its bond to corresponding receptors (H1-H4). Increased concentration of histamine in blood can occur in healthy individuals after ingestion of foods with high contents of histamine, leading to histamine intoxication. In individuals with histamine intolerance (HIT) ingestion of food with normal contents of histamine causes histamine-mediated symptoms. HIT is a pathological process, in which the enzymatic activity of histamine-degrading enzymes is decreased or inhibited and they are insufficient to inactivate histamine from food and to prevent its passage to blood-stream. Diagnosis of HIT is difficult. Multi-faced, non-specific clinical symptoms provoked by certain kinds of foods, beverages and drugs are often attributed to different diseases, such as allergy and food intolerance, mastocytosis, psychosomatic diseases, anorexia nervosa or adverse drug reactions. Correct diagnosis of HIT followed by therapy based on histamine-free diet and supplementation of diamine oxidase can improve patient's quality of life. Copyright © 2015 SEICAP. Published by Elsevier Espana. All rights reserved.

  9. Expression of squid iridescence depends on environmental luminance and peripheral ganglion control.

    PubMed

    Gonzalez-Bellido, P T; Wardill, T J; Buresch, K C; Ulmer, K M; Hanlon, R T

    2014-03-15

    Squid display impressive changes in body coloration that are afforded by two types of dynamic skin elements: structural iridophores (which produce iridescence) and pigmented chromatophores. Both color elements are neurally controlled, but nothing is known about the iridescence circuit, or the environmental cues, that elicit iridescence expression. To tackle this knowledge gap, we performed denervation, electrical stimulation and behavioral experiments using the long-fin squid, Doryteuthis pealeii. We show that while the pigmentary and iridescence circuits originate in the brain, they are wired differently in the periphery: (1) the iridescence signals are routed through a peripheral center called the stellate ganglion and (2) the iridescence motor neurons likely originate within this ganglion (as revealed by nerve fluorescence dye fills). Cutting the inputs to the stellate ganglion that descend from the brain shifts highly reflective iridophores into a transparent state. Taken together, these findings suggest that although brain commands are necessary for expression of iridescence, integration with peripheral information in the stellate ganglion could modulate the final output. We also demonstrate that squid change their iridescence brightness in response to environmental luminance; such changes are robust but slow (minutes to hours). The squid's ability to alter its iridescence levels may improve camouflage under different lighting intensities.

  10. Albizia lebbeck suppresses histamine signaling by the inhibition of histamine H1 receptor and histidine decarboxylase gene transcriptions.

    PubMed

    Nurul, Islam Mohammed; Mizuguchi, Hiroyuki; Shahriar, Masum; Venkatesh, Pichairajan; Maeyama, Kazutaka; Mukherjee, Pulok K; Hattori, Masashi; Choudhuri, Mohamed Sahabuddin Kabir; Takeda, Noriaki; Fukui, Hiroyuki

    2011-11-01

    Histamine plays major roles in allergic diseases and its action is mediated mainly by histamine H(1) receptor (H1R). We have demonstrated that histamine signaling-related H1R and histidine decarboxylase (HDC) genes are allergic diseases sensitive genes and their expression level affects severity of the allergic symptoms. Therefore, compounds that suppress histamine signaling should be promising candidates as anti-allergic drugs. Here, we investigated the effect of the extract from the bark of Albizia lebbeck (AL), one of the ingredients of Ayruvedic medicines, on H1R and HDC gene expression using toluene-2,4-diisocyanate (TDI) sensitized allergy model rats and HeLa cells expressing endogenous H1R. Administration of the AL extract significantly decreased the numbers of sneezing and nasal rubbing. Pretreatment with the AL extract suppressed TDI-induced H1R and HDC mRNA elevations as well as [(3)H]mepyramine binding, HDC activity, and histamine content in the nasal mucosa. AL extract also suppressed TDI-induced up-regulation of IL-4, IL-5, and IL-13 mRNA. In HeLa cells, AL extract suppressed phorbol-12-myristate-13-acetate- or histamine-induced up-regulation of H1R mRNA. Our data suggest that AL alleviated nasal symptoms by inhibiting histamine signaling in TDI-sensitized rats through suppression of H1R and HDC gene transcriptions. Suppression of Th2-cytokine signaling by AL also suggests that it could affect the histamine-cytokine network. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Flavonoids inhibit histamine release and expression of proinflammatory cytokines in mast cells.

    PubMed

    Park, Hyo-Hyun; Lee, Soyoung; Son, Hee-Young; Park, Seung-Bin; Kim, Mi-Sun; Choi, Eun-Ju; Singh, Thoudam S K; Ha, Jeoung-Hee; Lee, Maan-Gee; Kim, Jung-Eun; Hyun, Myung Chul; Kwon, Taeg Kyu; Kim, Yeo Hyang; Kim, Sang-Hyun

    2008-10-01

    Mast cells participate in allergy and inflammation by secreting inflammatory mediators such as histamine and proinflammatory cytokines. Flavonoids are naturally occurring molecules with antioxidant, cytoprotective, and antiinflammatory actions. However, effect of flavonoids on the release of histamine and proinflammatory mediator, and their comparative mechanism of action in mast cells were not well defined. Here, we compared the effect of six flavonoids (astragalin, fisetin, kaempferol, myricetin, quercetin, and rutin) on the mast cell-mediated allergic inflammation. Fisetin, kaempferol, myricetin, quercetin, and rutin inhibited IgE or phorbol-12-myristate 13-acetate and calcium ionophore A23187 (PMACI)-mediated histamine release in RBL-2H3 cells. These five flavonoids also inhibited elevation of intracellular calcium. Gene expressions and secretion of proinflammatory cytokines such as tumor necrosis factor-alpha (TNF-alpha), interleukin (IL)-1beta, IL-6, and IL-8 were assessed in PMACI-stimulated human mast cells (HMC-1). Fisetin, quercetin, and rutin decreased gene expression and production of all the proinflammatory cytokines after PMACI stimulation. Myricetin attenuated TNF-alpha and IL-6 but not IL-1beta and IL-8. Fisetin, myricetin, and rutin suppressed activation of NF-kappaB indicated by inhibition of nuclear translocation of NF-kappaB, NF-kappaB/DNA binding, and NF-kappaB-dependent gene reporter assay. The pharmacological actions of these flavonoids suggest their potential activity for treatment of allergic inflammatory diseases through the down-regulation of mast cell activation.

  12. Functional expression of ionotropic glutamate receptors in the rabbit retinal ganglion cells.

    PubMed

    Chen, Yin-Peng; Chiao, Chuan-Chin

    2012-01-03

    It has been known that retinal ganglion cells (RGCs) with distinct morphologies have different physiological properties. It was hypothesized that different functions of RGCs may in part result from various expressions of N-methyl-d-aspartate (NMDA), α-amino-3-hydroxyl-5-methyl-isoxazole-4-propinoic acid (AMPA), and kainic acid (KA) receptors on their dendrites. In the present study, we aimed to characterize the functional expression of AMPA and NMDA receptors of morphologically identified RGCs in the wholemount rabbit retina. The agmatine (AGB) activation assay was used to reveal functional expression of ionotropic glutamate receptors after the RGCs were targeted by injecting Neurobiotin. To examine the excitability of these glutamate receptors in an agonist specific manner, the lower concentrations of AMPA (2 μM) and NMDA (100 μM) were chosen to examine G7 (ON-OFF direction selective ganglion cells) and G11 (alpha ganglion cells) types of RGCs. We found that less than 40% of G7 type RGCs had salient AGB activation when incubated with 2 μM AMPA or 100 μM NMDA. The G11 type RGCs also showed similar activation frequencies, except that all of the OFF subtype examined had no AGB permeation under the same AMPA concentration. These results suggest that RGCs with large somata (G7 and G11 types) may express various heterogeneous functional ionotropic glutamate receptors, thus in part rendering their functional diversity. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Comparative expression analysis of POU4F1, POU4F2 and ISL1 in developing mouse cochleovestibular ganglion neurons

    PubMed Central

    Deng, Min; Yang, Hua; Xie, Xiaoling; Liang, Guoqing; Gan, Lin

    2014-01-01

    POU-homeodomain and LIM-homeodomain transcription factors are expressed in developing projection neurons within retina, inner ear, dorsal root ganglion, and trigeminal ganglion, and play synergistic roles in their differentiation and survival. Here, using immunohistochemistry, we present a comparative analysis of the spatiotemporal expression pattern of POU4F1, POU4F2, and ISL1 during the development of cochleovestibular ganglion (CVG) neurons in mouse inner ear. At early stages, when otic neurons are first detected in the otic epithelium (OE) and migrate into periotic mesenchyme to form the CVG, POU4F1 and ISL1 are co-expressed in a majority of the delaminated CVG neurons, which are marked by NEUROD1 expression, but POU4F1 is absent in the otic epithelium. The onset of POU4F2 expression starts after that of POU4F1 and ISL1, and is observed in the NEUROD1-negative, post-mitotic CVG neurons. When the CVG neurons innervate the vestibular and cochlear sensory organs, the expression of POU4F1, POU4F2, and ISL1 continues in both vestibular and spiral ganglion cells. Later in development, POU4F1 expression becomes down-regulated in a majority of spiral ganglion (SG) neurons and more neurons express POU4F2 expression while ISL1 expression is maintained. The differential as well as overlapping expression of POU4F1, POU4F2, and ISL1 combined with previous studies suggests possible functional interaction and regulatory relationship of these transcription factors in the development of inner ear neurons. PMID:24709358

  14. Histamine 50-skin-prick test: a tool to diagnose histamine intolerance.

    PubMed

    Kofler, Lukas; Ulmer, Hanno; Kofler, Heinz

    2011-01-01

    Background. Histamine intolerance results from an imbalance between histamine intake and degradation. In healthy persons, dietary histamine can be sufficiently metabolized by amine oxidases, whereas persons with low amine oxidase activity are at risk of histamine toxicity. Diamine oxidase (DAO) is the key enzyme in degradation. Histamine elicits a wide range of effects. Histamine intolerance displays symptoms, such as rhinitis, headache, gastrointestinal symptoms, palpitations, urticaria and pruritus. Objective. Diagnosis of histamine intolerance until now is based on case history; neither a validated questionnaire nor a routine test is available. It was the aim of this trial to evaluate the usefullness of a prick-test for the diagnosis of histamine intolerance. Methods. Prick-testing with 1% histamine solution and wheal size-measurement to assess the relation between the wheal in prick-test, read after 20 to 50 minutes, as sign of slowed histamine degradation as well as history and symptoms of histamine intolerance. Results. Besides a pretest with 17 patients with HIT we investigated 156 persons (81 with HIT, 75 controls): 64 out of 81 with histamine intolerance(HIT), but only 14 out of 75 persons from the control-group presented with a histamine wheal ≥3 mm after 50 minutes (P < .0001). Conclusion and Clinical Relevance. Histamine-50 skin-prickt-test offers a simple tool with relevance.

  15. Histamine 50-Skin-Prick Test: A Tool to Diagnose Histamine Intolerance

    PubMed Central

    Kofler, Lukas; Ulmer, Hanno; Kofler, Heinz

    2011-01-01

    Background. Histamine intolerance results from an imbalance between histamine intake and degradation. In healthy persons, dietary histamine can be sufficiently metabolized by amine oxidases, whereas persons with low amine oxidase activity are at risk of histamine toxicity. Diamine oxidase (DAO) is the key enzyme in degradation. Histamine elicits a wide range of effects. Histamine intolerance displays symptoms, such as rhinitis, headache, gastrointestinal symptoms, palpitations, urticaria and pruritus. Objective. Diagnosis of histamine intolerance until now is based on case history; neither a validated questionnaire nor a routine test is available. It was the aim of this trial to evaluate the usefullness of a prick-test for the diagnosis of histamine intolerance. Methods. Prick-testing with 1% histamine solution and wheal size-measurement to assess the relation between the wheal in prick-test, read after 20 to 50 minutes, as sign of slowed histamine degradation as well as history and symptoms of histamine intolerance. Results. Besides a pretest with 17 patients with HIT we investigated 156 persons (81 with HIT, 75 controls): 64 out of 81 with histamine intolerance(HIT), but only 14 out of 75 persons from the control-group presented with a histamine wheal ≥3 mm after 50 minutes (P < .0001). Conclusion and Clinical Relevance. Histamine-50 skin-prickt-test offers a simple tool with relevance. PMID:23724226

  16. Evaluation of the percentage of ganglion cells in the ganglion cell layer of the rodent retina

    PubMed Central

    Schlamp, Cassandra L.; Montgomery, Angela D.; Mac Nair, Caitlin E.; Schuart, Claudia; Willmer, Daniel J.

    2013-01-01

    Purpose Retinal ganglion cells comprise a percentage of the neurons actually residing in the ganglion cell layer (GCL) of the rodent retina. This estimate is useful to extrapolate ganglion cell loss in models of optic nerve disease, but the values reported in the literature are highly variable depending on the methods used to obtain them. Methods We tested three retrograde labeling methods and two immunostaining methods to calculate ganglion cell number in the mouse retina (C57BL/6). Additionally, a double-stain retrograde staining method was used to label rats (Long-Evans). The number of total neurons was estimated using a nuclear stain and selecting for nuclei that met specific criteria. Cholinergic amacrine cells were identified using transgenic mice expressing Tomato fluorescent protein. Total neurons and total ganglion cell numbers were measured in microscopic fields of 104 µm2 to determine the percentage of neurons comprising ganglion cells in each field. Results Historical estimates of the percentage of ganglion cells in the mouse GCL range from 36.1% to 67.5% depending on the method used. Experimentally, retrograde labeling methods yielded a combined estimate of 50.3% in mice. A retrograde method also yielded a value of 50.21% for rat retinas. Immunolabeling estimates were higher at 64.8%. Immunolabeling may introduce overestimates, however, with non-specific labeling effects, or ectopic expression of antigens in neurons other than ganglion cells. Conclusions Since immunolabeling methods may overestimate ganglion cell numbers, we conclude that 50%, which is consistently derived from retrograde labeling methods, is a reliable estimate of the ganglion cells in the neuronal population of the GCL. PMID:23825918

  17. TRPV1 and PLC Participate in Histamine H4 Receptor-Induced Itch.

    PubMed

    Jian, Tunyu; Yang, Niuniu; Yang, Yan; Zhu, Chan; Yuan, Xiaolin; Yu, Guang; Wang, Changming; Wang, Zhongli; Shi, Hao; Tang, Min; He, Qian; Lan, Lei; Wu, Guanyi; Tang, Zongxiang

    2016-01-01

    Histamine H4 receptor has been confirmed to play a role in evoking peripheral pruritus. However, the ionic and intracellular signaling mechanism of activation of H4 receptor on the dorsal root ganglion (DRG) neurons is still unknown. By using cell culture and calcium imaging, we studied the underlying mechanism of activation of H4 receptor on the DRG neuron. Immepip dihydrobromide (immepip)-a histamine H4 receptor special agonist under cutaneous injection-obviously induced itch behavior of mice. Immepip-induced scratching behavior could be blocked by TRPV1 antagonist AMG9810 and PLC pathway inhibitor U73122. Application of immepip (8.3-50 μM) could also induce a dose-dependent increase in intracellular Ca(2+) ([Ca(2+)]i) of DRG neurons. We found that 77.8% of the immepip-sensitized DRG neurons respond to the TRPV1 selective agonist capsaicin. U73122 could inhibit immepip-induced Ca(2+) responses. In addition, immepip-induced [Ca(2+)]i increase could be blocked by ruthenium red, capsazepine, and AMG9810; however it could not be blocked by TRPA1 antagonist HC-030031. These results indicate that TRPV1 but not TRPA1 is the important ion channel to induce the DRG neurons' responses in the downstream signaling pathway of histamine H4 receptor and suggest that TRPV1 may be involved in the mechanism of histamine-induced itch response by H4 receptor activation.

  18. The effects of ropivacaine hydrochloride on the expression of CaMK II mRNA in the dorsal root ganglion neurons.

    PubMed

    Wen, Xianjie; Lai, Xiaohong; Li, Xiaohong; Zhang, Tao; Liang, Hua

    2016-12-01

    In this study, we identified the subtype of Calcium/calmodulin-dependent protein kinase II (CaMK II) mRNA in dorsal root ganglion neurons and observed the effects of ropivacaine hydrochloride in different concentration and different exposure time on the mRNA expression. Dorsal root ganglion neurons were isolated from the SD rats and cultured in vitro. The mRNA of the CaMK II subtype in dorsal root ganglion neurons were detected by real-time PCR. As well as, the dorsal root ganglion neurons were treated with ropivacaine hydrochloride in different concentration (1mM,2mM, 3mM and 4mM) for the same exposure time of 4h, or different exposure time (0h,2h,3h,4h and 6h) at the same concentration(3mM). The changes of the mRNA expression of the CaMK II subtype were observed with real-time PCR. All subtype mRNA of the CaMK II, CaMK II α , CaMK II β , CaMK II δ , CaMK II γ , can be detected in dorsal root ganglion neurons. With the increased of the concentration and exposure time of the ropivacaine hydrochloride, all the subtype mRNA expression increased. Ropivacaine hydrochloride up-regulate the CaMK II β , CaMK II δ , CaMK II g mRNA expression with the concentration and exposure time increasing. The nerve blocking or the neurotoxicity of the ropivacaine hydrochloride maybe involved with CaMK II. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  19. The Gastric Ganglion of Octopus vulgaris: Preliminary Characterization of Gene- and Putative Neurochemical-Complexity, and the Effect of Aggregata octopiana Digestive Tract Infection on Gene Expression

    PubMed Central

    Baldascino, Elena; Di Cristina, Giulia; Tedesco, Perla; Hobbs, Carl; Shaw, Tanya J.; Ponte, Giovanna; Andrews, Paul L. R.

    2017-01-01

    The gastric ganglion is the largest visceral ganglion in cephalopods. It is connected to the brain and is implicated in regulation of digestive tract functions. Here we have investigated the neurochemical complexity (through in silico gene expression analysis and immunohistochemistry) of the gastric ganglion in Octopus vulgaris and tested whether the expression of a selected number of genes was influenced by the magnitude of digestive tract parasitic infection by Aggregata octopiana. Novel evidence was obtained for putative peptide and non-peptide neurotransmitters in the gastric ganglion: cephalotocin, corticotrophin releasing factor, FMRFamide, gamma amino butyric acid, 5-hydroxytryptamine, molluscan insulin-related peptide 3, peptide PRQFV-amide, and tachykinin–related peptide. Receptors for cholecystokininA and cholecystokininB, and orexin2 were also identified in this context for the first time. We report evidence for acetylcholine, dopamine, noradrenaline, octopamine, small cardioactive peptide related peptide, and receptors for cephalotocin and octopressin, confirming previous publications. The effects of Aggregata observed here extend those previously described by showing effects on the gastric ganglion; in animals with a higher level of infection, genes implicated in inflammation (NFκB, fascin, serpinB10 and the toll-like 3 receptor) increased their relative expression, but TNF-α gene expression was lower as was expression of other genes implicated in oxidative stress (i.e., superoxide dismutase, peroxiredoxin 6, and glutathione peroxidase). Elevated Aggregata levels in the octopuses corresponded to an increase in the expression of the cholecystokininA receptor and the small cardioactive peptide-related peptide. In contrast, we observed decreased relative expression of cephalotocin, dopamine β-hydroxylase, peptide PRQFV-amide, and tachykinin-related peptide genes. A discussion is provided on (i) potential roles of the various molecules in food intake

  20. The histamine-synthesizing enzyme histidine decarboxylase is upregulated by keratinocytes in atopic skin.

    PubMed

    Gutowska-Owsiak, D; Greenwald, L; Watson, C; Selvakumar, T A; Wang, X; Ogg, G S

    2014-10-01

    Histamine is an abundant mediator accumulating in the skin of atopic patients, where it is thought to be derived from immune cells. While keratinocytes express histidine decarboxylase (HDC), levels of the enzyme in normal or diseased epidermis and factors that influence its expression in human keratinocytes are not known. To assess levels of HDC in inflammatory skin diseases and factors influencing its expression. Normal and filaggrin-insufficient human keratinocytes, organotypic epidermal models and skin samples were investigated for the expression of HDC. The effect of cytokines, bacterial and allergen stimuli exposure and functional changes in differentiation were evaluated in vitro. We detected abundant expression of the HDC protein in all models studied; expression was increased in atopic skin samples. Filaggrin-insufficient keratinocytes maintained HDC levels, but exposure of keratinocytes to thymic stromal lymphopoietin, tumour necrosis factor-α, lipopolysaccharide (LPS) and house dust mite (HDM) extract increased HDC expression in vitro. Furthermore, filaggrin expression in cultured keratinocytes increased following histamine depletion. Keratinocytes express abundant HDC protein, and the levels increase in atopic skin. LPS, HDM and cytokines, which are implicated in allergic inflammation, promote the expression of the enzyme and upregulate histamine levels in keratinocytes. Actively produced histamine influences keratinocyte differentiation, suggesting functional relevance of the axis to atopic dermatitis. The findings therefore identify a new point of therapeutic intervention. © 2014 British Association of Dermatologists.

  1. Molecular biology of retinal ganglion cells.

    PubMed Central

    Xiang, M; Zhou, H; Nathans, J

    1996-01-01

    Retinal ganglion cells are the output neurons that encode and transmit information from the eye to the brain. Their diverse physiologic and anatomic properties have been intensively studied and appear to account well for a number of psychophysical phenomena such as lateral inhibition and chromatic opponency. In this paper, we summarize our current view of retinal ganglion cell properties and pose a number of questions regarding underlying molecular mechanisms. As an example of one approach to understanding molecular mechanisms, we describe recent work on several POU domain transcription factors that are expressed in subsets of retinal ganglion cells and that appear to be involved in ganglion cell development. Images Fig. 1 Fig. 2 Fig. 4 Fig. 5 Fig. 6 PMID:8570601

  2. Histamine Induces Bovine Rumen Epithelial Cell Inflammatory Response via NF-κB Pathway.

    PubMed

    Sun, Xudong; Yuan, Xue; Chen, Liang; Wang, Tingting; Wang, Zhe; Sun, Guoquan; Li, Xiaobing; Li, Xinwei; Liu, Guowen

    2017-01-01

    Subacute ruminal acidosis (SARA) is a common disease in high-producing lactating cows. Rumenitis is the initial insult of SARA and is associated with the high concentrations of histamine produced in the rumen of dairy cows during SARA. However, the exact mechanism remains unclear. The objective of the current study is to investigate whether histamine induces inflammation of rumen epithelial cells and the underlying mechanism of this process. Bovine rumen epithelial cells were cultured and treated with different concentrations of histamine and pyrrolidine dithiocarbamate (PDTC, an NF-κB inhibitor) cultured in different pH medium (pH 7.2 or 5.5). qRT-PCR, Western-blotting, ELISA and immunocytofluorescence were used to evaluate whether histamine activated the NF-κB pathway and inflammatory cytokines. The results showed that histamine significantly increased the activity of IKK β and the phosphorylation levels of IκB α, as well as upregulated the mRNA and protein expression levels of NF-κB p65 in the rumen epithelial cells cultured in neutral (pH=7.2) and acidic (pH=5.5) medium. Furthermore, histamine treatment also significantly increased the transcriptional activity of NF-κB p65. High expression and transcriptional activity of NF-κB p65 significantly increased the mRNA expressions and concentrations of inflammatory cytokines, tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6) and interleukin 1 beta (IL-1β), thereby inducing the inflammatory response in bovine rumen epithelial cells. However, inhibition of NF-κB p65 by PDTC significantly decreased the expressions and concentrations of the inflammatory cytokines induced by histamine in the rumen epithelial cells cultured in the neutral and acidic medium. The present data indicate that histamine induces the inflammatory response of bovine rumen epithelial cells through the NF-κB pathway. © 2017 The Author(s). Published by S. Karger AG, Basel.

  3. Histamine fish poisoning revisited.

    PubMed

    Lehane, L; Olley, J

    2000-06-30

    Histamine (or scombroid) fish poisoning (HFP) is reviewed in a risk-assessment framework in an attempt to arrive at an informed characterisation of risk. Histamine is the main toxin involved in HFP, but the disease is not uncomplicated histamine poisoning. Although it is generally associated with high levels of histamine (> or =50 mg/100 g) in bacterially contaminated fish of particular species, the pathogenesis of HFP has not been clearly elucidated. Various hypotheses have been put forward to explain why histamine consumed in spoiled fish is more toxic than pure histamine taken orally, but none has proved totally satisfactory. Urocanic acid, like histamine, an imidazole compound derived from histidine in spoiling fish, may be the "missing factor" in HFP. cis-Urocanic acid has recently been recognised as a mast cell degranulator, and endogenous histamine from mast cell degranulation may augment the exogenous histamine consumed in spoiled fish. HFP is a mild disease, but is important in relation to food safety and international trade. Consumers are becoming more demanding, and litigation following food poisoning incidents is becoming more common. Producers, distributors and restaurants are increasingly held liable for the quality of the products they handle and sell. Many countries have set guidelines for maximum permitted levels of histamine in fish. However, histamine concentrations within a spoiled fish are extremely variable, as is the threshold toxic dose. Until the identity, levels and potency of possible potentiators and/or mast-cell-degranulating factors are elucidated, it is difficult to establish regulatory limits for histamine in foods on the basis of potential health hazard. Histidine decarboxylating bacteria produce histamine from free histidine in spoiling fish. Although some are present in the normal microbial flora of live fish, most seem to be derived from post-catching contamination on board fishing vessels, at the processing plant or in the

  4. Cocoa Enriched Diets Enhance Expression of Phosphatases and Decrease Expression of Inflammatory Molecules in Trigeminal Ganglion Neurons

    PubMed Central

    Cady, Ryan J.; Durham, Paul L.

    2010-01-01

    Activation of trigeminal nerves and release of neuropeptides that promote inflammation are implicated in the underlying pathology of migraine and temporomandibular joint (TMJ) disorders. The overall response of trigeminal nerves to peripheral inflammatory stimuli involves a balance between enzymes that promote inflammation, kinases, and those that restore homeostasis, phosphatases. The goal of this study was to determine the effects of a cocoa-enriched diet on the expression of key inflammatory proteins in trigeminal ganglion neurons under basal and inflammatory conditions. Rats were fed a control diet or an isocaloric diet enriched in cocoa for 14 days prior to an injection of noxious stimuli to cause acute or chronic excitation of trigeminal neurons. In animals fed a cocoa-enriched diet, basal levels of the mitogen-activated kinase (MAP) phosphatases MKP-1 and MKP-3 were elevated in neurons. Importantly, the stimulatory effects of acute or chronic peripheral inflammation on neuronal expression of the MAPK p38 and extracellular signal-regulated kinases (ERK) were significantly repressed in response to cocoa. Similarly, dietary cocoa significantly suppressed basal neuronal expression of calcitonin gene-related peptide (CGRP) as well as stimulated levels of the inducible form of nitric oxide synthase (iNOS), proteins implicated in the underlying pathology of migraine and TMJ disorders. To our knowledge, this is first evidence that a dietary supplement can cause upregulation of MKP, and that cocoa can prevent inflammatory responses in trigeminal ganglion neurons. Furthermore, our data provide evidence that cocoa contains biologically active compounds that would be beneficial in the treatment of migraine and TMJ disorders. PMID:20138852

  5. Tumor necrosis factor-α stimulation of calcitonin gene-related peptide expression and secretion from rat trigeminal ganglion neurons

    PubMed Central

    Bowen, Elizabeth J.; Schmidt, Thomas W.; Firm, Christina S.; Russo, Andrew F.; Durham, Paul L.

    2006-01-01

    Expression of the neuropeptide calcitonin gene-related peptide (CGRP) in trigeminal ganglion is implicated in neurovascular headaches and temporomandibular joint disorders. Elevation of cytokines contributes to the pathology of these diseases. However, a connection between cytokines and CGRP gene expression in trigeminal ganglion nerves has not been established. We have focused on the effects of the cytokine tumor necrosis factorα (TNFα). TNFR1 receptors were found on the majority of CGRP-containing rat trigeminal ganglion neurons. Treatment of cultures with TNFα stimulated CGRP secretion. In addition, the intracellular signaling intermediate from the TNFR1 receptor, ceramide, caused a similar increase in CGRP release. TNFα caused a coordinate increase in CGRP promoter activity. TNFα treatment activated the transcription factor NF-κB, as well as the Jun N-terminal kinase (JNK) and p38 mitogen-activated protein (MAP) kinase pathways. The importance of TNFα induction of MAP kinase pathways was demonstrated by inhibiting MAP kinases with pharmacological reagents and gene transfer with an adenoviral vector encoding MAP kinase phosphatase-1 (MKP-1). We propose that selective and regulated inhibition of MAP kinases in trigeminal neurons may be therapeutically beneficial for inflammatory disorders involving elevated CGRP levels. PMID:16277606

  6. Histamine Promotes the Release of Interleukin-6 via the H1R/p38 and NF-κB Pathways in Nasal Fibroblasts.

    PubMed

    Park, Il-Ho; Um, Ji-Young; Cho, Jung-Sun; Lee, Seung Hoon; Lee, Sang Hag; Lee, Heung-Man

    2014-11-01

    Based on the close relationship between histamine and interleukin 6 (IL-6), we hypothesized that histamine may regulate the production of cytokines, such as IL-6, during allergic inflammation. Here, we examined the role of histamine in IL-6 production and histamine receptor activity in nasal fibroblasts, along with the mechanisms underlying these effects. Experiments were performed using nasal fibroblasts from 8 normal patients. RT-PCR was used to identify the major histamine receptors expressed in nasal fibroblasts. Fibroblasts were then treated with histamine with or without histamine-receptor antagonists, and monitored for IL-6 production using an ELISA. Four potential downstream signaling molecules, p38, extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and NF-κB, were evaluated by Western blot, and a luciferase reporter assay. Elevated expression was seen for all histamine receptors, with IL-6 protein levels increasing significantly following histamine stimulation. Among the histamine-receptor specific antagonists, only the H1R antagonist significantly decreased IL-6 production in histamine-stimulated nasal fibroblasts. Histamine increased the expression level of phosphorylated p38 (pp38), pERK, and pJNK, as well as NF-κB induction. The H1R antagonist actively suppressed pp38 and NF-κB expression in histamine-induced nasal fibroblasts, but not pERK and pJNK. The p38 inhibitor strongly attenuated IL-6 production in histamine-stimulated nasal fibroblasts. The data presented here suggest that antihistamines may be involved in the regulation of cytokines, such as IL-6, due to the role of histamine as an inflammatory mediator in nasal fibroblasts.

  7. The histamine content of oriental foods.

    PubMed

    Chin, K W; Garriga, M M; Metcalfe, D D

    1989-05-01

    Several of the symptoms of scombroid poisoning (i.e. histamine toxicity) resemble those observed in people suffering from Chinese restaurant syndrome. Therefore, the histamine content of representative Chinese cuisine, which included 31 common dishes, 12 condiments and 12 basic ingredients from several sources, was measured using a sensitive and specific radioenzymatic assay. A further enzymatic procedure involving diamine oxidase was used to verify that the substance measured was histamine. A total of 184 assays were performed on 57 samples in the study. High levels of histamine were found in the cheeses, which were used as positive controls (863.6 micrograms histamine/g blue cheese and 107.4 micrograms histamine/g Parmesan cheese), and in some common condiments, including tamari (2392.2 micrograms histamine/g sample) and one brand of soy sauce (220.4 micrograms histamine/g sample). The histamine content of four condiments and three common dishes was over 10 micrograms histamine/g sample, while four condiments and 16 common dishes contained less than 1 microgram histamine/g sample. Calculations involving representative amounts of food that can be consumed at a typical oriental meal suggest that, in some cases, histamine intake may approach toxic levels. The results are discussed with regard to the possible role of histamine in reactions associated with restaurant meals.

  8. Radioprotective potential of histamine on rat small intestine and uterus

    PubMed Central

    Carabajal, E.; Massari, N.; Croci, M.; Martinel Lamas, D.; Prestifilippo, J.P.; Ciraolo, P.; Bergoc, R.M.; Rivera, E.S.; Medina, V.A.

    2012-01-01

    The aim of this study was to improve knowledge about histamine radioprotective potential investigating its effect on reducing ionising radiation-induced injury and genotoxic damage on the rat small intestine and uterus. Forty 10-week-old male and 40 female Sprague-Dawley rats were divided into 4 groups. Histamine and histamine-5Gy groups received a daily subcutaneous histamine injection (0.1 mg/kg) starting 24 h before irradiation. Histamine-5Gy and untreated-5Gy groups were irradiated with a dose of whole-body Cesium-137 irradiation. Three days after irradiation animals were sacrificed and tissues were removed, fixed, and stained with haematoxylin and eosin, and histological characteristics were evaluated. Proliferation, apoptosis and oxidative DNA markers were studied by immunohistochemistry, while micronucleus assay was performed to evaluate chromosomal damage. Histamine treatment reduced radiation-induced mucosal atrophy, oedema and vascular damage produced by ionising radiation, increasing the number of crypts per circumference (239±12 vs 160±10; P<0.01). This effect was associated with a reduction of radiation-induced intestinal crypts apoptosis. Additionally, histamine decreased the frequency of micronuclei formation and also significantly attenuated 8-OHdG immunoreactivity, a marker of DNA oxidative damage. Furthermore, radiation induced flattening of the endometrial surface, depletion of deep glands and reduced mitosis, effects that were completely blocked by histamine treatment. The expression of a proliferation marker in uterine luminal and glandular cells was markedly stimulated in histamine treated and irradiated rats. The obtained evidences indicate that histamine is a potential candidate as a safe radio-protective agent that might increase the therapeutic index of radiotherapy for intra-abdominal and pelvic cancers. However, its efficacy needs to be carefully investigated in prospective clinical trials. PMID:23361244

  9. Evidence that ganglion cells react to retinal detachment.

    PubMed

    Coblentz, Francie E; Radeke, Monte J; Lewis, Geoffrey P; Fisher, Steven K

    2003-03-01

    Growth associated protein 43 (GAP 43) is involved in synapse formation and it is expressed in the retina in a very specific pattern. Although GAP 43 is downregulated at the time of synapse formation, it can be re-expressed following injury such as axotomy or ischemia. Because of this we sought to characterize the expression of GAP 43 after retinal detachment (RD). Immunoblot, immunocytochemical and quantitative polymerase chain reaction (QPCR) techniques were used to assess the level of GAP 43 expression after experimental RD. GAP 43 was localized to three sublaminae of the inner plexiform layer of the normal retina. GAP 43 became upregulated in a subset of retinal ganglion cells following at least 7 days of RD. By immunoblot GAP 43 could be detected by 3 days. QPCR shows the upregulation of GAP 43 message by 6hr of detachment. To further characterize changes in ganglion cells, we used an antibody to neurofilament 70 and 200kDa (NF) proteins. Anti-NF labels horizontal cells, ganglion cell dendrites in the inner plexiform layer, and ganglion cell axons (fasicles) in the normal retina. Following detachment it is upregulated in horizontal cells and ganglion cells. When detached retina was double labelled with anti-GAP 43 and anti-NF, some cells were labelled with both markers, while others labelled with only one. We have previously shown that second order neurons respond to detachment; here we show that third order neurons are responding as well. Cellular remodelling of this type in response to detachment may explain the slow recovery of vision that often occurs after reattachment, or those changes that are often assumed to be permanent.

  10. Histamine and motivation

    PubMed Central

    Torrealba, Fernando; Riveros, Maria E.; Contreras, Marco; Valdes, Jose L.

    2012-01-01

    Brain histamine may affect a variety of different behavioral and physiological functions; however, its role in promoting wakefulness has overshadowed its other important functions. Here, we review evidence indicating that brain histamine plays a central role in motivation and emphasize its differential involvement in the appetitive and consummatory phases of motivated behaviors. We discuss the inputs that control histaminergic neurons of the tuberomamillary nucleus (TMN) of the hypothalamus, which determine the distinct role of these neurons in appetitive behavior, sleep/wake cycles, and food anticipatory responses. Moreover, we review evidence supporting the dysfunction of histaminergic neurons and the cortical input of histamine in regulating specific forms of decreased motivation (apathy). In addition, we discuss the relationship between the histamine system and drug addiction in the context of motivation. PMID:22783171

  11. Tumor necrosis factor-alpha stimulation of calcitonin gene-related peptide expression and secretion from rat trigeminal ganglion neurons.

    PubMed

    Bowen, Elizabeth J; Schmidt, Thomas W; Firm, Christina S; Russo, Andrew F; Durham, Paul L

    2006-01-01

    Expression of the neuropeptide calcitonin gene-related peptide (CGRP) in trigeminal ganglion is implicated in neurovascular headaches and temporomandibular joint disorders. Elevation of cytokines contributes to the pathology of these diseases. However, a connection between cytokines and CGRP gene expression in trigeminal ganglion nerves has not been established. We have focused on the effects of the cytokine tumor necrosis factor-alpha (TNF-alpha). TNFR1 receptors were found on the majority of CGRP-containing rat trigeminal ganglion neurons. Treatment of cultures with TNF-alpha stimulated CGRP secretion. In addition, the intracellular signaling intermediate from the TNFR1 receptor, ceramide, caused a similar increase in CGRP release. TNF-alpha caused a coordinate increase in CGRP promoter activity. TNF-alpha treatment activated the transcription factor NF-kappaB, as well as the Jun N-terminal kinase (JNK) and p38 mitogen-activated protein (MAP) kinase pathways. The importance of TNF-alpha induction of MAP kinase pathways was demonstrated by inhibiting MAP kinases with pharmacological reagents and gene transfer with an adenoviral vector encoding MAP kinase phosphatase-1 (MKP-1). We propose that selective and regulated inhibition of MAP kinases in trigeminal neurons may be therapeutically beneficial for inflammatory disorders involving elevated CGRP levels.

  12. Ganglion Cysts

    MedlinePlus

    ... Ganglion Cysts Find a hand surgeon near you. Videos Ganglion Cysts Close Popup Figures Figure 1 - Ganglion ... or "in." Also, avoid using media types like "video," "article," and "picture." Tip 4: Your results can ...

  13. Enkephalin modulation of neural transmission in the cat stellate ganglion: pharmacological actions of exogenous opiates.

    PubMed

    Prosdocimi, M; Finesso, M; Gorio, A

    1986-11-01

    Neural ganglionic transmission was studied in vivo in the cat, using closed chest anesthetized preparations. The right stellate ganglion and its branches were exposed retropleurally and prepared for electrical stimulation of pre- and postganglionic nerve fibers. The axillary artery was cannulated allowing direct administration of drugs in the arterial blood supplying the ganglion. Stimulation of postjunctional receptors could thus be obtained by local administration of selective agents. Local administration of nicotinic, muscarinic or histaminergic agents increased heart rate and blood pressure. Opiates were given either i.v. or locally through the axillary artery: we tested the effects of morphine, Leu-enkephalin (Leu-enk), Met-enkephalin (Met-enk), [D-ala2]-Met-enkephalinamide (DAME) and etorphine. When given locally, Leu-enk (from 10 micrograms), Met-enk (from 20 micrograms), DAME (from 5 micrograms) and etorphine (from 0.2 micrograms) inhibited tachycardia induced by preganglionic stimulation and reduced the amplitude of the compound action potential recorded from the postganglionic nerve. Morphine (10-200 micrograms) had no effect. On the other hand, tachycardia induced by postganglionic nerve stimulation was unaffected by opiates in the same experimental conditions. Intravenous administration of similar doses of opiates had no effect on ganglionic transmission. When tachycardia was induced by chemical stimulation of nicotinic (DMPP), muscarinic (McN-A-343-11) or histamine receptors in the stellate ganglia, opiates were still active in reducing the effect of these chemicals. These data provide evidence that exogenous opiates exert a depressing action on postsynaptic responses of sympathetic ganglia tested in vivo, although an additional action on presynaptic terminals is not excluded. As endogenous opiates are normally present in various sympathetic ganglia, including the stellate ganglion of the cat, it is possible that they play some modulatory role on

  14. Histamine receptors in human detrusor smooth muscle cells: physiological properties and immunohistochemical representation of subtypes.

    PubMed

    Neuhaus, Jochen; Weimann, Annett; Stolzenburg, Jens-Uwe; Dawood, Waled; Schwalenberg, Thilo; Dorschner, Wolfgang

    2006-06-01

    The potent inflammatory mediator histamine is released from activated mast cells in interstitial cystitis (IC). Here, we report on the histamine receptor subtypes involved in the intracellular calcium response of cultured smooth muscle cells (cSMC). Fura-2 was used to monitor the calcium response in cSMC, cultured from human detrusor biopsies. The distribution of histamine receptor subtypes was addressed by immunocytochemistry in situ and in vitro. Histamine stimulated a maximum of 92% of the cells (n=335), being more effective than carbachol (70%, n=920). HTMT (H1R-agonist), dimaprit (H2R) and MTH (H3R) lead to significant lower numbers of reacting cells (60, 48 and 54%). Histamine receptor immunoreactivity (H1R, H2R, H3R, H4R) was found in situ and in vitro. Histamine-induced calcium increase is mediated by distinct histamine receptors. Thus, pre-therapeutic evaluation of histamine receptor expression in IC patients may help to optimize therapy by using a patient-specific cocktail of subtype-specific histamine receptor antagonists.

  15. Preliminary study of histamine H4 receptor expressed on human CD4+ T cells and its immunomodulatory potency in the IL-17 pathway of psoriasis.

    PubMed

    Han, Song Hee; Hur, Min Seok; Kim, Min Jung; Kim, Bo Mi; Kim, Kyoung Woon; Kim, Hae Rim; Choe, Yong Beom; Ahn, Kyu Joong; Lee, Yang Won

    2017-10-01

    Previous studies have shown the expression of histamine H 4 receptor (H4R) on CD4 + T cells, especially human CD4 + T h 2-polarized T cells. This study aimed to investigate the role of H4R on these effector T cells in psoriasis. We enrolled three patients each with active psoriasis, inactive psoriasis, scalp seborrheic dermatitis, and three normal controls, and compared the basal expression of H4R mRNA in their peripheral blood CD4 + T cells. Then, we identified H4R expression in dermal CD4 + T cells. Furthermore, we investigated H4R expression after stimulating separated peripheral blood CD4 + T cells with several inflammatory cytokines. The results showed higher H4R expression in the active psoriasis group compared to the inactive psoriasis group. It was interesting that interleukin (IL)-23, which is a representative cytokine contributing to T h 17 cell differentiation, stimulated H4R expression significantly. After adding a selective H4R antagonist (JNJ-7777120) while the CD4 + T cells were polarized into T h 17 cells, we observed a tendency toward suppressed IL-17 secretion. Histamine stimulation influences the IL-17 pathway in psoriasis via the fourth histamine receptor subtype, H4R, on CD4 + T cells. The immunomodulatory roles of H4R suggest its potency as a new therapeutic target for obstinate psoriasis. Copyright © 2017 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.

  16. Strychnine, but not PMBA, inhibits neuronal nicotinic acetylcholine receptors expressed by rabbit retinal ganglion cells.

    PubMed

    Renna, J M; Strang, C E; Amthor, F R; Keyser, K T

    2007-01-01

    Strychnine is considered a selective competitive antagonist of glycine gated Cl- channels (Saitoh et al., 1994) and studies have used strychnine at low micromolar concentrations to study the role of glycine in rabbit retina (Linn, 1998; Protti et al., 2005). However, other studies have shown that strychnine, in the concentrations commonly used, is also a potent competitive antagonist of alpha7 nicotinic acetylcholine receptors (nAChRs; Matsubayashi et al., 1998). We tested the effects of low micromolar concentrations of strychnine and 3-[2'-phosphonomethyl[1,1'-biphenyl]-3-yl] alanine (PMBA), a specific glycine receptor blocker (Saitoh et al., 1994; Hosie et al., 1999) on the activation of both alpha7 nAChRs on retinal ganglion cells and on ganglion cell responses to a light flash. Extracellular recordings were obtained from ganglion cells in an isolated retina/choroid preparation and 500 microM choline was used as an alpha7 agonist (Alkondon et al., 1997). We recorded from brisk sustained and brisk transient OFF cells, many of which have been previously shown to have alpha7 receptors (Strang et al., 2005). Further, we tested the effect of strychnine, PMBA and alpha-bungarotoxin on the binding of tetramethylrhodamine alpha-bungarotoxin in the inner plexiform layer. Our data indicates that strychnine, at doses as low as 1.0 microM, can inhibit the alpha7 nAChR-mediated response to choline, but PMBA at concentrations as high as 0.4 microM does not. Binding studies show strychnine and alpha-bungarotoxin inhibit binding of labeled alpha-bungarotoxin in the IPL. Thus, the effects of strychnine application may be to inhibit glycine receptors expressed by ganglion cell or to inhibit amacrine cell alpha7 nAChRs, both of which would result in an increase in the ganglion cell responses. Further research will be required to disentangle the effects of strychnine previously believed to be caused by a single mechanism of glycine receptor inhibition.

  17. TASK Channels on Basal Forebrain Cholinergic Neurons Modulate Electrocortical Signatures of Arousal by Histamine

    PubMed Central

    Vu, Michael T.; Du, Guizhi; Bayliss, Douglas A.

    2015-01-01

    Basal forebrain cholinergic neurons are the main source of cortical acetylcholine, and their activation by histamine elicits cortical arousal. TWIK-like acid-sensitive K+ (TASK) channels modulate neuronal excitability and are expressed on basal forebrain cholinergic neurons, but the role of TASK channels in the histamine-basal forebrain cholinergic arousal circuit is unknown. We first expressed TASK channel subunits and histamine Type 1 receptors in HEK cells. Application of histamine in vitro inhibited the acid-sensitive K+ current, indicating a functionally coupled signaling mechanism. We then studied the role of TASK channels in modulating electrocortical activity in vivo using freely behaving wild-type (n = 12) and ChAT-Cre:TASKf/f mice (n = 12), the latter lacking TASK-1/3 channels on cholinergic neurons. TASK channel deletion on cholinergic neurons significantly altered endogenous electroencephalogram oscillations in multiple frequency bands. We then identified the effect of TASK channel deletion during microperfusion of histamine into the basal forebrain. In non-rapid eye movement sleep, TASK channel deletion on cholinergic neurons significantly attenuated the histamine-induced increase in 30–50 Hz activity, consistent with TASK channels contributing to histamine action on basal forebrain cholinergic neurons. In contrast, during active wakefulness, histamine significantly increased 30–50 Hz activity in ChAT-Cre:TASKf/f mice but not wild-type mice, showing that the histamine response depended upon the prevailing cortical arousal state. In summary, we identify TASK channel modulation in response to histamine receptor activation in vitro, as well as a role of TASK channels on cholinergic neurons in modulating endogenous oscillations in the electroencephalogram and the electrocortical response to histamine at the basal forebrain in vivo. SIGNIFICANCE STATEMENT Attentive states and cognitive function are associated with the generation of γ EEG activity

  18. Expression of polysialylated neural cell adhesion molecules on adult stem cells after neuronal differentiation of inner ear spiral ganglion neurons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Kyoung Ho; Yeo, Sang Won, E-mail: swyeo@catholic.ac.kr; Troy, Frederic A., E-mail: fatroy@ucdavis.edu

    Highlights: • PolySia expressed on neurons primarily during early stages of neuronal development. • PolySia–NCAM is expressed on neural stem cells from adult guinea pig spiral ganglion. • PolySia is a biomarker that modulates neuronal differentiation in inner ear stem cells. - Abstract: During brain development, polysialylated (polySia) neural cell adhesion molecules (polySia–NCAMs) modulate cell–cell adhesive interactions involved in synaptogenesis, neural plasticity, myelination, and neural stem cell (NSC) proliferation and differentiation. Our findings show that polySia–NCAM is expressed on NSC isolated from adult guinea pig spiral ganglion (GPSG), and in neurons and Schwann cells after differentiation of the NSC withmore » epidermal, glia, fibroblast growth factors (GFs) and neurotrophins. These differentiated cells were immunoreactive with mAb’s to polySia, NCAM, β-III tubulin, nestin, S-100 and stained with BrdU. NSC could regenerate and be differentiated into neurons and Schwann cells. We conclude: (1) polySia is expressed on NSC isolated from adult GPSG and on neurons and Schwann cells differentiated from these NSC; (2) polySia is expressed on neurons primarily during the early stage of neuronal development and is expressed on Schwann cells at points of cell–cell contact; (3) polySia is a functional biomarker that modulates neuronal differentiation in inner ear stem cells. These new findings suggest that replacement of defective cells in the inner ear of hearing impaired patients using adult spiral ganglion neurons may offer potential hope to improve the quality of life for patients with auditory dysfunction and impaired hearing disorders.« less

  19. Kv4.2 Mediates Histamine Modulation of Preoptic Neuron Activity and Body Temperature

    PubMed Central

    Sethi, Jasmine; Sanchez-Alavez, Manuel; Tabarean, Iustin V.

    2011-01-01

    Histamine regulates arousal, circadian rhythms, and thermoregulation. Activation of H3 histamine receptors expressed by preoptic GABAergic neurons results in a decrease of their firing rate and hyperthermia. Here we report that an increase in the A-type K+ current in preoptic GABAergic neurons in response to activation of H3 histamine receptors results in decreased firing rate and hyperthermia in mice. The Kv4.2 subunit is required for these actions in spite of the fact that Kv4.2−/− preoptic GABAergic neurons display A-type currents and firing characteristics similar to those of wild-type neurons. This electrical remodeling is achieved by robust upregulation of the expression of the Kv4.1 subunit and of a delayed rectifier current. Dynamic clamp experiments indicate that enhancement of the A-type current by a similar amount to that induced by histamine is sufficient to mimic its robust effect on firing rates. These data indicate a central role played by the Kv4.2 subunit in histamine regulation of body temperature and its interaction with pERK1/2 downstream of the H3 receptor. We also reveal that this pathway provides a mechanism for selective modulation of body temperature at the beginning of the active phase of the circadian cycle. PMID:22220205

  20. Genetic variation within the histamine pathway among patients with asthma

    PubMed Central

    Raje, Nikita; Vyhlidal, Carrie A.; Dai, Hongying; Jones, Bridgette L.

    2015-01-01

    Objective Histamine is an important mediator in the pathophysiology of asthma. We have previously reported that HRH1 is differentially expressed among those with asthma compared to those without asthma. Single histamine related genes have also been associated with asthma. We aimed to evaluate known single nucleotide polymorphisms (SNPs) in genes along the histamine biotransformation and response pathway and determine their association with asthma and HRH1 mRNA expression. Methods We enrolled children and adults (n=93) with/without asthma who met inclusion/exclusion criteria. Genotyping was performed for 9 known SNPs in the HDC, HRH1, HRH4, HNMT, and ABP1 genes. HRH1 mRNA expression was determined on RNA from buccal tissue. General linear model, Fisher's exact test, and Chi-square test were used to determine differences in allele, genotype, and haplotype frequency between subjects with and without asthma and differential HRH1 mRNA expression relative to genotype. Statistical significance was determined by p<0.05. Results No difference was observed in genotype/allele frequency for the 9 SNPs between subjects with and without asthma. The HNMT-1639C/ −464C/ 314C/ 3’UTRA haplotype was more frequently observed in those without asthma than those with asthma (p=0.03). We also observed genetic differences relative to race and gender. HNMT 314 genotype CT was more frequent in males with asthma compared to those without asthma (p=0.04). Conclusions Histamine pathway haplotype was associated with a diagnosis of asthma in our cohort but allele and genotype were not. Subgroup evaluations may also be important. Further studies are needed to determine the potential biological/clinical significance of our findings. PMID:25295384

  1. Fluorometric determination of histamine in cheese.

    PubMed

    Chambers, T L; Staruszkiewicz, W F

    1978-09-01

    Thirty-one samples of cheese obtained from retail outlets were analyzed for histamine, using an official AOAC fluorometric method. The types of cheese analyzed and the ranges of histamine found were: colby, 0.3--2.8; camembert, 0.4--4.2; cheddar, 1.2--5.8; gouda, 1.3--2.4; provolone, 2.0--23.5; roquefort, 1.0--16.8; mozzarella 1.6--5.0; and swiss, 0.4--250 mg histamine/100 g. Ten of the 12 samples of swiss cheese contained less than 16 mg histamine/100 g. The remaining 2 samples which contained 116 and 250 mg histamine/100 g were judged organoleptically to be of poor quality. An investigation of one processing facility showed that the production of histamine in swiss cheese may have been a result of a hydrogen peroxide/low temperature treatment of the milk supply. Recovery of histamine added to methanol extracts of cheese ranged from 93 to 105%. Histamine content was confirmed by high pressure liquid chromatographic analysis of the methanol extracts.

  2. Pharmacological characterization of the new histamine H4 receptor agonist VUF 8430

    PubMed Central

    Lim, Herman D; Adami, Maristella; Guaita, Elena; Werfel, Thomas; Smits, Rogier A; de Esch, Iwan JP; Bakker, Remko A; Gutzmer, Ralf; Coruzzi, Gabriella; Leurs, Rob

    2009-01-01

    Background and purpose: We compare the pharmacological profiles of a new histamine H4 receptor agonist 2-(2-guanidinoethyl)isothiourea (VUF 8430) with that of a previously described H4 receptor agonist, 4-methylhistamine. Experimental approach: Radioligand binding and functional assays were performed using histamine H4 receptors expressed in mammalian cell lines. Compounds were also evaluated ex vivo in monocyte-derived dendritic cells endogenously expressing H4 receptors and in vivo in anaesthetized rats for gastric acid secretion activity. Key results: Both VUF 8430 and 4-methylhistamine were full agonists at human H4 receptors with lower affinity at rat and mouse H4 receptors. Both compounds induced chemotaxis of monocyte-derived dendritic cells. VUF 8430 also showed reasonable affinity and was a full agonist at the H3 receptor. Agmatine is a metabolite of arginine, structurally related to VUF 8430, and was a H4 receptor agonist with micromolar affinity. At histamine H3 receptors, agmatine was a full agonist, whereas 4-methylhistamine was an agonist only at high concentrations. Both VUF 8430 and agmatine were inactive at H1 and H2 receptors, whereas 4-methylhistamine is as active as histamine at H2 receptors. In vivo, VUF 8430 only caused a weak secretion of gastric acid mediated by H2 receptors, whereas 4-methylhistamine, dimaprit, histamine and amthamine, at equimolar doses, induced 2.5- to 6-fold higher output than VUF 8430. Conclusions and implications: Our results suggest complementary use of 4-methylhistamine and VUF 8430 as H4 receptor agonists. Along with H4 receptor antagonists, both agonists can serve as useful pharmacological tools in studies of histamine H4 receptors. PMID:19413569

  3. Histamine prevents radiation-induced mesenchymal changes in breast cancer cells.

    PubMed

    Galarza, Tamara E; Mohamad, Nora A; Táquez Delgado, Mónica A; Vedoya, Guadalupe M; Crescenti, Ernesto J; Bergoc, Rosa M; Martín, Gabriela A; Cricco, Graciela P

    2016-09-01

    Radiotherapy is a prime option for treatment of solid tumors including breast cancer though side effects are usually present. Experimental evidence shows an increase in invasiveness of several neoplastic cell types through conventional tumor irradiation. The induction of epithelial to mesenchymal transition is proposed as an underlying cause of metastasis triggered by gamma irradiation. Experiments were conducted to investigate the role of histamine on the ionizing radiation-induced epithelial to mesenchymal transition events in breast cancer cells with different invasive phenotype. We also evaluated the potential involvement of Src phosphorylation in the migratory capability of irradiated cells upon histamine treatment. MCF-7 and MDA-MB-231 mammary tumor cells were exposed to a single dose of 2Gy of gamma radiation and five days after irradiation mesenchymal-like phenotypic changes were observed by optical microscope. The expression and subcellular localization of E-cadherin, β-catenin, vimentin and Slug were determined by immunoblot and indirect immunofluorescence. There was a decrease in the epithelial marker E-cadherin expression and an increase in the mesenchymal marker vimentin after irradiation. E-cadherin and β-catenin were mainly localized in cytoplasm. Slug positive nuclei, matrix metalloproteinase-2 activity and cell migration and invasion were significantly increased. In addition, a significant enhancement in Src phosphorylation/activation could be determined by immunoblot in irradiated cells. MCF-7 and MDA-MB-231 cells also received 1 or 20μM histamine during 24h previous to be irradiated. Notably, pre-treatment of breast cancer cells with 20μM histamine prevented the mesenchymal changes induced by ionizing radiation and also reduced the migratory behavior of irradiated cells decreasing phospho-Src levels. Collectively, our results suggest that histamine may block events related to epithelial to mesenchymal transition in irradiated mammary cancer

  4. Histamine influences body temperature by acting at H1 and H3 receptors on distinct populations of preoptic neurons

    PubMed Central

    Lundius, Ebba Gregorsson; Sanchez-Alavez, Manuel; Ghochani, Yasmin; Klaus, Joseph; Tabarean, Iustin V.

    2010-01-01

    The preoptic area/anterior hypothalamus (PO/AH), a region that contains neurons that control thermoregulation, is the main locus at which histamine affects body temperature. Here we report that histamine reduced the spontaneous firing rate of GABAergic preoptic neurons by activating H3 subtype histamine receptors. This effect involved a decrease in the level of phosphorylation of the extracellular signal-regulated kinase (ERK) and was not dependent on synaptic activity. Furthermore, a population of nonGABAergic neurons was depolarized and their firing rate was enhanced by histamine acting at H1 subtype receptors. In our experiments, activation of the H1R receptors was linked to the PLC pathway and Ca2+ release from intracellular stores. This depolarization persisted in TTX or when fast synaptic potentials were blocked indicating that it represents a postsynaptic effect. Single-cell reverse transcription –PCR analysis revealed expression of H3 receptors in a population of GABAergic neurons while H1 receptors were expressed in nonGABAergic cells. Histamine applied in the median preoptic nucleus induced a robust, long lasting hyperthermia effect that was mimicked by either H1 or H3 histamine receptor subtype specific agonists. Our data indicate that histamine modulates the core body temperature by acting at two distinct populations of preoptic neurons which express H1 and H3 receptor subtypes, respectively. PMID:20335473

  5. Histamine influences body temperature by acting at H1 and H3 receptors on distinct populations of preoptic neurons.

    PubMed

    Lundius, Ebba Gregorsson; Sanchez-Alavez, Manuel; Ghochani, Yasmin; Klaus, Joseph; Tabarean, Iustin V

    2010-03-24

    The preoptic area/anterior hypothalamus, a region that contains neurons that control thermoregulation, is the main locus at which histamine affects body temperature. Here we report that histamine reduced the spontaneous firing rate of GABAergic preoptic neurons by activating H3 subtype histamine receptors. This effect involved a decrease in the level of phosphorylation of the extracellular signal-regulated kinase and was not dependent on synaptic activity. Furthermore, a population of non-GABAergic neurons was depolarized, and their firing rate was enhanced by histamine acting at H1 subtype receptors. In our experiments, activation of the H1R receptors was linked to the PLC pathway and Ca(2+) release from intracellular stores. This depolarization persisted in TTX or when fast synaptic potentials were blocked, indicating that it represents a postsynaptic effect. Single-cell reverse transcription-PCR analysis revealed expression of H3 receptors in a population of GABAergic neurons, while H1 receptors were expressed in non-GABAergic cells. Histamine applied in the median preoptic nucleus induced a robust, long-lasting hyperthermia effect that was mimicked by either H1 or H3 histamine receptor subtype-specific agonists. Our data indicate that histamine modulates the core body temperature by acting at two distinct populations of preoptic neurons that express H1 and H3 receptor subtypes, respectively.

  6. Muscarinic acetylcholine receptor subtype expression in avian vestibular hair cells, nerve terminals and ganglion cells.

    PubMed

    Li, G Q; Kevetter, G A; Leonard, R B; Prusak, D J; Wood, T G; Correia, M J

    2007-04-25

    Muscarinic acetylcholine receptors (mAChRs) are widely expressed in the CNS and peripheral nervous system and play an important role in modulating the cell activity and function. We have shown that the cholinergic agonist carbachol reduces the pigeon's inwardly rectifying potassium channel (pKir2.1) ionic currents in native vestibular hair cells. We have cloned and sequenced pigeon mAChR subtypes M2-M5 and we have studied the expression of all five mAChR subtypes (M1-M5) in the pigeon vestibular end organs (semicircular canal ampullary cristae and utricular maculae), vestibular nerve fibers and the vestibular (Scarpa's) ganglion using tissue immunohistochemistry (IH), dissociated single cell immunocytochemistry (IC) and Western blotting (WB). We found that vestibular hair cells, nerve fibers and ganglion cells each expressed all five (M1-M5) mAChR subtypes. Two of the three odd-numbered mAChRs (M1, M5) were present on the hair cell cilia, supporting cells and nerve terminals. And all three odd numbered mAChRs (M1, M3 and M5) were expressed on cuticular plates, myelin sheaths and Schwann cells. Even-numbered mAChRs were seen on the nerve terminals. M2 was also shown on the cuticular plates and supporting cells. Vestibular efferent fibers and terminals were not identified in our studies. Results from WB of the dissociated vestibular epithelia, nerve fibers and vestibular ganglia were consistent with the results from IH and IC. Our findings suggest that there is considerable co-expression of the subtypes on the neural elements of the labyrinth. Further electrophysiological and pharmacological studies should delineate the mechanisms of action of muscarinic acetylcholine receptors on structures in the labyrinth.

  7. Histamine in cereal dusts

    PubMed Central

    Nicholls, P. J.

    1970-01-01

    Nicholls, P. J. (1970).Brit. J. industr. Med.,27, 179-180. Histamine in cereal dusts. It has been found that workers exposed to cereal grain dusts may experience acute mild respiratory distress. An attempt has been made to explain this observation by examining the pharmacological activity of aqueous extracts of several cereal dusts from the holds of cargo ships. Histamine, but no other active agent, was found in the samples. It is unlikely that the concentration of histamine in these dusts is sufficient to cause respiratory distress in dockers unloading cereal grain cargoes. PMID:5428638

  8. In vitro study of histamine and histamine receptor ligands influence on the adhesion of purified human eosinophils to endothelium.

    PubMed

    Grosicki, Marek; Wójcik, Tomasz; Chlopicki, Stefan; Kieć-Kononowicz, Katarzyna

    2016-04-15

    It is a well-known fact that histamine is involved in eosinophil-dependent inflammatory responses including cellular chemotaxis and migration. Nevertheless, the relative role of histamine receptors in the mechanisms of eosinophils adhesion to endothelial cells is not known. Therefore the aim of presented study was to examine the effect of selective histamine receptors ligands on eosinophils adhesion to endothelium. For that purpose the highly purified human eosinophils have been isolated from the peripheral blood. The viability and functional integrity of isolated eosinophils have been validated in several tests. Histamine as well as 4-methylhistamine (selective H4 agonist) in concentration-dependent manner significantly increased number of eosinophils that adhere to endothelium. Among the selective histamine receptors antagonist or H1 inverse agonist only JNJ7777120 (histamine H4 antagonist) and thioperamide (dual histamine H3/H4 antagonist) had direct effect on eosinophils adhesion to endothelial cells. Antagonists of H1 (diphenhydramine, mepyramine) H2 (ranitidine and famotidine) and H3 (pitolisant) histamine receptors were ineffective. To the best of our knowledge, this is the first study to demonstrate that histamine receptor H4 plays a dominant role in histamine-induced eosinophils adhesion to endothelium. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. ANTI HISTAMINIC ACTIVITY OF CISSUS QUADRAGULARIS

    PubMed Central

    Begum, V. Hazeena; Sadique, J.

    1999-01-01

    Anti histaminic activity of cissus quadrangularis stem powder was carried out determining the histamine activity and histamine content in carrageenin induced rat paw swelling model and formalin induced peritonitis respectively. The crude powder at the dose of 100mg/1QQ00 gm exerted reduction to the maximum of 44% in the early hisamine phase swelling. Further it significantly reduced the histamine content in the peritoneal fluid. For comparison standard steroidal drug hydrocortisone and avil were used. PMID:22556903

  10. Anti histaminic activity of cissus quadragularis.

    PubMed

    Begum, V H; Sadique, J

    1999-01-01

    Anti histaminic activity of cissus quadrangularis stem powder was carried out determining the histamine activity and histamine content in carrageenin induced rat paw swelling model and formalin induced peritonitis respectively. The crude powder at the dose of 100mg/1QQ00 gm exerted reduction to the maximum of 44% in the early hisamine phase swelling. Further it significantly reduced the histamine content in the peritoneal fluid. For comparison standard steroidal drug hydrocortisone and avil were used.

  11. Agmatine protects retinal ganglion cells from hypoxia-induced apoptosis in transformed rat retinal ganglion cell line

    PubMed Central

    Hong, Samin; Lee, Jong Eun; Kim, Chan Yun; Seong, Gong Je

    2007-01-01

    Background Agmatine is an endogenous polyamine formed by the decarboxylation of L-arginine. We investigated the protective effects of agmatine against hypoxia-induced apoptosis of immortalized rat retinal ganglion cells (RGC-5). RGC-5 cells were cultured in a closed hypoxic chamber (5% O2) with or without agmatine. Cell viability was determined by lactate dehydrogenase (LDH) assay and apoptosis was examined by annexin V and caspase-3 assays. Expression and phosphorylation of mitogen-activated protein kinases (MAPKs; JNK, ERK p44/42, and p38) and nuclear factor-kappa B (NF-κB) were investigated by Western immunoblot analysis. The effects of agmatine were compared to those of brain-derived neurotrophic factor (BDNF), a well-known protective neurotrophin for retinal ganglion cells. Results After 48 hours of hypoxic culture, the LDH assay showed 52.3% cell loss, which was reduced to 25.6% and 30.1% when agmatine and BDNF were administered, respectively. This observed cell loss was due to apoptotic cell death, as established by annexin V and caspase-3 assays. Although total expression of MAPKs and NF-κB was not influenced by hypoxic injury, phosphorylation of these two proteins was increased. Agmatine reduced phosphorylation of JNK and NF-κB, while BDNF suppressed phosphorylation of ERK and p38. Conclusion Our results show that agmatine has neuroprotective effects against hypoxia-induced retinal ganglion cell damage in RGC-5 cells and that its effects may act through the JNK and NF-κB signaling pathways. Our data suggest that agmatine may lead to a novel therapeutic strategy to reduce retinal ganglion cell injury related to hypoxia. PMID:17908330

  12. Generation of cell lines for drug discovery through random activation of gene expression: application to the human histamine H3 receptor.

    PubMed

    Song, J; Doucette, C; Hanniford, D; Hunady, K; Wang, N; Sherf, B; Harrington, J J; Brunden, K R; Stricker-Krongrad, A

    2005-06-01

    Target-based high-throughput screening (HTS) plays an integral role in drug discovery. The implementation of HTS assays generally requires high expression levels of the target protein, and this is typically accomplished using recombinant cDNA methodologies. However, the isolated gene sequences to many drug targets have intellectual property claims that restrict the ability to implement drug discovery programs. The present study describes the pharmacological characterization of the human histamine H3 receptor that was expressed using random activation of gene expression (RAGE), a technology that over-expresses proteins by up-regulating endogenous genes rather than introducing cDNA expression vectors into the cell. Saturation binding analysis using [125I]iodoproxyfan and RAGE-H3 membranes revealed a single class of binding sites with a K(D) value of 0.77 nM and a B(max) equal to 756 fmol/mg of protein. Competition binding studies showed that the rank order of potency for H3 agonists was N(alpha)-methylhistamine approximately (R)-alpha- methylhistamine > histamine and that the rank order of potency for H3 antagonists was clobenpropit > iodophenpropit > thioperamide. The same rank order of potency for H3 agonists and antagonists was observed in the functional assays as in the binding assays. The Fluorometic Imaging Plate Reader assays in RAGE-H3 cells gave high Z' values for agonist and antagonist screening, respectively. These results reveal that the human H3 receptor expressed with the RAGE technology is pharmacologically comparable to that expressed through recombinant methods. Moreover, the level of expression of the H3 receptor in the RAGE-H3 cells is suitable for HTS and secondary assays.

  13. Retinal Astrocytes and GABAergic Wide-Field Amacrine Cells Express PDGFRα: Connection to Retinal Ganglion Cell Neuroprotection by PDGF-AA.

    PubMed

    Takahama, Shokichi; Adetunji, Modupe O; Zhao, Tantai; Chen, Shan; Li, Wei; Tomarev, Stanislav I

    2017-09-01

    Our previous experiments demonstrated that intravitreal injection of platelet-derived growth factor-AA (PDGF-AA) provides retinal ganglion cell (RGC) neuroprotection in a rodent model of glaucoma. Here we used PDGFRα-enhanced green fluorescent protein (EGFP) mice to identify retinal cells that may be essential for RGC protection by PDGF-AA. PDGFRα-EGFP mice expressing nuclear-targeted EGFP under the control of the PDGFRα promoter were used. Localization of PDGFRα in the neural retina was investigated by confocal imaging of EGFP fluorescence and immunofluorescent labeling with a panel of antibodies recognizing different retinal cell types. Primary cultures of mouse RGCs were produced by immunopanning. Neurobiotin injection of amacrine cells in a flat-mounted retina was used for the identification of EGFP-positive amacrine cells in the inner nuclear layer. In the mouse neural retina, PDGFRα was preferentially localized in the ganglion cell and inner nuclear layers. Immunostaining of the retina demonstrated that astrocytes in the ganglion cell layer and a subpopulation of amacrine cells in the inner nuclear layer express PDGFRα, whereas RGCs (in vivo or in vitro) did not. PDGFRα-positive amacrine cells are likely to be Type 45 gamma-aminobutyric acidergic (GABAergic) wide-field amacrine cells. These data indicate that the neuroprotective effect of PDGF-AA in a rodent model of glaucoma could be mediated by astrocytes and/or a subpopulation of amacrine cells. We suggest that after intravitreal injection of PDGF-AA, these cells secrete factors protecting RGCs.

  14. Mechanism of H₂ histamine receptor dependent modulation of body temperature and neuronal activity in the medial preoptic nucleus.

    PubMed

    Tabarean, Iustin V; Sanchez-Alavez, Manuel; Sethi, Jasmine

    2012-08-01

    Histamine is involved in the central control of arousal, circadian rhythms and metabolism. The preoptic area, a region that contains thermoregulatory neurons is the main locus of histamine modulation of body temperature. Here we report that in mice, histamine activates H(2) subtype receptors in the medial preoptic nucleus (MPON) and induces hyperthermia. We also found that a population of glutamatergic MPON neurons express H(2) receptors and are excited by histamine or H(2) specific agonists. The agonists decreased the input resistance of the neuron and increased the depolarizing "sag" observed during hyperpolarizing current injections. Furthermore, at -60 mV holding potential, activation of H(2) receptors induced an inward current that was blocked by ZD7288, a specific blocker of the hyperpolarization activated cationic current (I(h)). Indeed, activation of H(2) receptors resulted in increased I(h) amplitude in response to hyperpolarizing voltage steps and a depolarizing shift in its voltage-dependent activation. The neurons excited by H(2) specific agonism expressed the HCN1 and HCN2 channel subunits. Our data indicate that at the level of the MPON histamine influences thermoregulation by increasing the firing rate of glutamatergic neurons that express H(2) receptors. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. In Vivo Histamine Optical Nanosensors

    PubMed Central

    Cash, Kevin J.; Clark, Heather A.

    2012-01-01

    In this communication we discuss the development of ionophore based nanosensors for the detection and monitoring of histamine levels in vivo. This approach is based on the use of an amine-reactive, broad spectrum ionophore which is capable of recognizing and binding to histamine. We pair this ionophore with our already established nanosensor platform, and demonstrate in vitro and in vivo monitoring of histamine levels. This approach enables capturing rapid kinetics of histamine after injection, which are more difficult to measure with standard approaches such as blood sampling, especially on small research models. The coupling together of in vivo nanosensors with ionophores such as nonactin provide a way to generate nanosensors for novel targets without the difficult process of designing and synthesizing novel ionophores. PMID:23112690

  16. In vivo histamine optical nanosensors.

    PubMed

    Cash, Kevin J; Clark, Heather A

    2012-01-01

    In this communication we discuss the development of ionophore based nanosensors for the detection and monitoring of histamine levels in vivo. This approach is based on the use of an amine-reactive, broad spectrum ionophore which is capable of recognizing and binding to histamine. We pair this ionophore with our already established nanosensor platform, and demonstrate in vitro and in vivo monitoring of histamine levels. This approach enables capturing rapid kinetics of histamine after injection, which are more difficult to measure with standard approaches such as blood sampling, especially on small research models. The coupling together of in vivo nanosensors with ionophores such as nonactin provide a way to generate nanosensors for novel targets without the difficult process of designing and synthesizing novel ionophores.

  17. Histamine H3 receptors aggravate cerebral ischaemic injury by histamine-independent mechanisms

    PubMed Central

    Yan, Haijing; Zhang, Xiangnan; Hu, Weiwei; Ma, Jing; Hou, Weiwei; Zhang, Xingzhou; Wang, Xiaofen; Gao, Jieqiong; Shen, Yao; Lv, Jianxin; Ohtsu, Hiroshi; Han, Feng; Wang, Guanghui; Chen, Zhong

    2014-01-01

    The role of the histamine H3 receptor (H3R) in cerebral ischaemia/reperfusion (I/R) injury remains unknown. Here we show that H3R expression is upregulated after I/R in two mouse models. H3R antagonists and H3R knockout attenuate I/R injury, which is reversed by an H3R-selective agonist. Interestingly, H1R and H2R antagonists, a histidine decarboxylase (HDC) inhibitor and HDC knockout all fail to compromise the protection by H3R blockade. H3R blockade inhibits mTOR phosphorylation and reinforces autophagy. The neuroprotection by H3R antagonism is reversed by 3-methyladenine and siRNA for Atg7, and is diminished in Atg5−/− mouse embryonic fibroblasts. Furthermore, the peptide Tat-H3RCT414-436, which blocks CLIC4 binding with H3Rs, or siRNA for CLIC4, further increases I/R-induced autophagy and protects against I/R injury. Therefore, H3R promotes I/R injury while its antagonism protects against ischaemic injury via histamine-independent mechanisms that involve suppressing H3R/CLIC4 binding-activated autophagy, suggesting that H3R inhibition is a therapeutic target for cerebral ischaemia. PMID:24566390

  18. The Histamine H1 Receptor Participates in the Increased Dorsal Telencephalic Neurogenesis in Embryos from Diabetic Rats.

    PubMed

    Solís, Karina H; Méndez, Laura I; García-López, Guadalupe; Díaz, Néstor F; Portillo, Wendy; De Nova-Ocampo, Mónica; Molina-Hernández, Anayansi

    2017-01-01

    Increased neuron telencephalic differentiation during deep cortical layer formation has been reported in embryos from diabetic mice. Transitory histaminergic neurons within the mesencephalon/rhombencephalon are responsible for fetal histamine synthesis during development, fibers from this system arrives to the frontal and parietal cortex at embryo day (E) 15. Histamine is a neurogenic factor for cortical neural stem cells in vitro through H 1 receptor (H 1 R) which is highly expressed during corticogenesis in rats and mice. Furthermore, in utero administration of an H 1 R antagonist, chlorpheniramine, decreases the neuron markers microtubuline associated protein 2 (MAP2) and forkhead box protein 2. Interestingly, in the diabetic mouse model of diabetes induced with streptozotocin, an increase in fetal neurogenesis in terms of MAP2 expression in the telencephalon is reported at E11.5. Because of the reported effects on cortical neuron differentiation of maternal diabetes in one hand and of histamine in the other, here the participation of histamine and H 1 R on the increased dorsal telencephalic neurogenesis was explored. First, the increased neurogenesis in the dorsal telencephalon at E14 in diabetic rats was corroborated by immunohistochemistry and Western blot. Then, changes during corticogenesis in the level of histamine was analyzed by ELISA and in H 1 R expression by qRT-PCR and Western blot and, finally, we tested H 1 R participation in the increased dorsal telencephalic neurogenesis by the systemic administration of chlorpheniramine. Our results showed a significant increase of histamine at E14 and in the expression of the receptor at E12. The administration of chlorpheniramine to diabetic rats at E12 prevented the increased expression of βIII-tubulin and MAP2 mRNAs (neuron markers) and partially reverted the increased level of MAP2 protein at E14, concluding that H 1 R have an important role in the increased neurogenesis within the dorsal telencephalon of

  19. Tibial periosteal ganglion cyst: The ganglion in disguise.

    PubMed

    Reghunath, Anjuna; Mittal, Mahesh K; Khanna, Geetika; Anil, V

    2017-01-01

    Soft tissue ganglions are commonly encountered cystic lesions around the wrist presumed to arise from myxomatous degeneration of periarticular connective tissue. Lesions with similar pathology in subchondral location close to joints, and often simulating a geode, is the less common entity called intraosseous ganglion. Rarer still is a lesion produced by mucoid degeneration and cyst formation of the periostium of long bones, rightly called the periosteal ganglion. They are mostly found in the lower extremities at the region of pes anserinus, typically limited to the periosteum and outer cortex without any intramedullary component. We report the case of a 62 year-old male who presented with a tender swelling on the mid shaft of the left tibia, which radiologically suggested a juxtacortical lesion extending to the soft tissue or a soft tissue neoplasm eroding the bony cortex of tibia. It was later diagnosed definitively as a periosteal ganglion in an atypical location, on further radiologic work-up and histopathological correlation.

  20. Tibial periosteal ganglion cyst: The ganglion in disguise

    PubMed Central

    Reghunath, Anjuna; Mittal, Mahesh K; Khanna, Geetika; Anil, V

    2017-01-01

    Soft tissue ganglions are commonly encountered cystic lesions around the wrist presumed to arise from myxomatous degeneration of periarticular connective tissue. Lesions with similar pathology in subchondral location close to joints, and often simulating a geode, is the less common entity called intraosseous ganglion. Rarer still is a lesion produced by mucoid degeneration and cyst formation of the periostium of long bones, rightly called the periosteal ganglion. They are mostly found in the lower extremities at the region of pes anserinus, typically limited to the periosteum and outer cortex without any intramedullary component. We report the case of a 62 year-old male who presented with a tender swelling on the mid shaft of the left tibia, which radiologically suggested a juxtacortical lesion extending to the soft tissue or a soft tissue neoplasm eroding the bony cortex of tibia. It was later diagnosed definitively as a periosteal ganglion in an atypical location, on further radiologic work-up and histopathological correlation. PMID:28515597

  1. The histamine content of dried flying fish products in Taiwan and the isolation of halotolerant histamine-forming bacteria.

    PubMed

    Kung, Hsien-Feng; Huang, Chun-Yung; Lin, Chia-Min; Liaw, Lon-Hsiu; Lee, Yi-Chen; Tsai, Yung-Hsiang

    2015-06-01

    Thirty dried flying fish products were purchased from fishing village stores in Taiwan and tested to detect the presence of histamine and histamine-forming bacteria. Except for histamine and cadaverine, the average content of various biogenic amines in the tested samples was less than 3.5 mg/100 g. Eight (26.6%) dried flying fish samples had histamine levels greater than the United States Food and Drug Administration guideline of 5 mg/100 g for scombroid fish and/or scombroid products, whereas four (13.3%) samples contained more than the hazard action level of 50 mg/100 g. One histamine-producing bacterial isolate was identified as Staphylococcus xylosus by 16S rDNA sequencing with polymerase chain reaction amplification. This isolate was capable of producing 507.8 ppm of histamine in trypticase soy broth supplemented with 1.0% l-histidine (TSBH). The S. xylosus isolate was a halotolerant bacterium that had a consistent ability to produce more than 300 ppm of histamine at 3% sodium chloride concentration in TSBH medium after 72 hours. Copyright © 2015. Published by Elsevier B.V.

  2. Mechanism of H2 histamine receptor dependent modulation of body temperature and neuronal activity in the medial preoptic nucleus

    PubMed Central

    Tabarean, Iustin V.; Sanchez-Alavez, Manuel; Sethi, Jasmine

    2012-01-01

    Histamine is involved in the central control of arousal, circadian rhythms and metabolism. The preoptic area, a region that contains thermoregulatory neurons is the main locus of histamine modulation of body temperature. Here we report that in mice histamine activates H2 subtype receptors in the medial preoptic nucleus (MPON) and induces hyperthermia. We also found that a population of glutamatergic MPON neurons express H2 receptors and are excited by histamine or H2 specific agonists. The agonists decreased the input resistance of the neuron and increased the depolarizing “sag” observed during hyperpolarizing current injections. Furthermore, at −60 mV holding potential activation of H2 receptors induced an inward current that was blocked by ZD7288, a specific blocker of the hyperpolarization activated cationic current (Ih). Indeed, activation of H2 receptors resulted in increased Ih amplitude in response to hyperpolarizing voltage steps and a depolarizing shift in its voltage-dependent activation. The neurons excited by H2 specific agonism expressed the HCN1 and HCN2 channel subunits. Our data indicate that at the level of the MPON histamine influences thermoregulation by increasing the firing rate of glutamatergic neurons that express H2 receptors. PMID:22366077

  3. Smoking influences salivary histamine levels in periodontal disease.

    PubMed

    Bertl, K; Haririan, H; Laky, M; Matejka, M; Andrukhov, O; Rausch-Fan, X

    2012-05-01

    Histamine, a potent vasoactive amine, is increased in saliva of periodontitis patients. The present study aimed to further investigate the diagnostic potential of histamine for periodontal disease and assessed smoking, a major risk factor of periodontitis, as a possible influencing factor. Salivary and serum samples of 106 participants (60 periodontitis patients, 46 controls) were collected. Salivary histamine was determined by a commercially available ELISA kit, and serum C-reactive protein was measured by a routine laboratory test. Cigarettes per day and packyears were assessed as smoking exposure parameters. Statistically significantly increased levels of salivary histamine and serum C-reactive protein were detected between the patient and control group (P = 0.022 and P = 0.001). Salivary histamine levels were significantly higher in smoking compared with non-smoking patients (P < 0.001), and salivary histamine as well as serum C-reactive protein correlated significantly positively with smoking exposure parameters (P < 0.05). Smoking, an established and common risk factor of periodontitis, was assessed as a possible influencing factor for salivary histamine. Most interestingly, salivary histamine differed highly significantly between smoking and non-smoking periodontitis patients. Our results suggest a possible involvement of histamine in tobacco-exacerbated periodontal disease, but do not suggest salivary histamine as a reliable diagnostic marker for periodontitis. © 2011 John Wiley & Sons A/S.

  4. Histamine-releasing factor/translationally controlled tumor protein (HRF/TCTP)-induced histamine release is enhanced with SHIP-1 knockdown in cultured human mast cell and basophil models

    PubMed Central

    Langdon, Jacqueline M.; Schroeder, John T.; Vonakis, Becky M.; Bieneman, Anja P.; Chichester, Kristin; MacDonald, Susan M.

    2008-01-01

    Previously, we demonstrated a negative correlation between histamine release to histamine-releasing factor/translationally controlled tumor protein (HRF/TCTP) and protein levels of SHIP-1 in human basophils. The present study was conducted to investigate whether suppressing SHIP-1 using small interfering (si)RNA technology would alter the releasability of culture-derived mast cells and basophils, as determined by HRF/TCTP histamine release. Frozen CD34+ cells were obtained from the Fred Hutchinson Cancer Research Center (Seattle, WA, USA). Cells were grown in StemPro-34 medium containing cytokines: mast cells with IL-6 and stem cell factor (100 ng/ml each) for 6–8 weeks and basophils with IL-3 (6.7 ng/ml) for 2–3 weeks. siRNA transfections were performed during Week 6 for mast cells and Week 2 for basophils with siRNA for SHIP-1 or a negative control siRNA. Changes in SHIP-1 expression were determined by Western blot. The functional knockdown was measured by HRF/TCTP-induced histamine release. siRNA knockdown of SHIP-1 in mast cells ranged from 31% to 82%, mean 65 ± 12%, compared with control (n=4). Histamine release to HRF/TCTP was increased only slightly in two experiments. SHIP-1 knockdown in basophils ranged from 34% to 69%, mean 51.8 ± 7% (n=4). Histamine release to HRF/TCTP in these basophils was dependent on the amount of SHIP knockdown. Mast cells and basophils derived from CD34+ precursor cells represent suitable models for transfection studies. Reducing SHIP-1 protein in cultured mast cells and in cultured basophils increases releasability of the cells. PMID:18625911

  5. Expression and function of system N glutamine transporters (SN1/SN2 or SNAT3/SNAT5) in retinal ganglion cells.

    PubMed

    Umapathy, Nagavedi S; Dun, Ying; Martin, Pamela M; Duplantier, Jennifer N; Roon, Penny; Prasad, Puttur; Smith, Sylvia B; Ganapathy, Vadivel

    2008-11-01

    Glutamine transport is essential for the glutamate-glutamine cycle, which occurs between neurons and glia. System N, consisting of SN1 (SNAT3) and SN2 (SNAT5), is the principal mediator of glutamine transport in retinal Müller cells. Mediators of glutamine transport in retinal ganglion cells were investigated. The relative contributions of various transport systems for glutamine uptake (systems N, A, L, y+L, ASCT, and ATB(0,+)) were examined in RGC-5 cells based on differential features of the individual transport systems. mRNA for the genes encoding members of these transport systems were analyzed by RT-PCR. Based on these data, SN1 and SN2 were analyzed in mouse retina, RGC-5 cells, and primary mouse ganglion cells (GCs) by in situ hybridization (ISH), immunofluorescence (IF), and Western blotting. Three transport systems--N, A, and L--participated in glutamine uptake in RGC-5 cells. System N was the principal contributor; systems A and L contributed considerably less. ISH and IF revealed SN1 and SN2 expression in the ganglion, inner nuclear, and photoreceptor cell layers. SN1 and SN2 colocalized with the ganglion cell marker Thy 1.2 and with the Müller cell marker vimentin, confirming their presence in both retinal cell types. SN1 and SN2 proteins were detected in primary mouse GCs. These findings suggest that in addition to its role in glutamine uptake in retinal glial cells, system N contributes significantly to glutamine uptake in ganglion cells and, hence, contributes to the retinal glutamate-glutamine cycle.

  6. Cultured smooth muscle cells of the human vesical sphincter are more sensitive to histamine than are detrusor smooth muscle cells.

    PubMed

    Neuhaus, Jochen; Oberbach, Andreas; Schwalenberg, Thilo; Stolzenburg, Jens-Uwe

    2006-05-01

    To compare histamine receptor expression in cultured smooth muscle cells from the human detrusor and internal sphincter using receptor-specific agonists. Smooth muscle cells from the bladder dome and internal sphincter were cultured from 5 male patients undergoing cystectomy for bladder cancer therapy. Calcium transients in cells stimulated with carbachol, histamine, histamine receptor 1 (H1R)-specific heptanecarboxamide (HTMT), dimaprit (H2R), and R-(alpha)-methylhistamine (H3R) were measured by calcium imaging. Histamine receptor proteins were detected by Western blot analysis and immunocytochemistry. H1R, H2R, and H3R expression was found in tissue and cultured cells. Carbachol stimulated equal numbers of detrusor and sphincter cells (60% and 51%, respectively). Histamine stimulated significantly more cells than carbachol in detrusor (100%) and sphincter (99.34%) cells. Calcium responses to carbachol in detrusor and sphincter cells were comparable and did not differ from those to histamine in detrusor cells. However, histamine and specific agonists stimulated more sphincter cells than did carbachol (P <0.001), and the calcium increase was greater in sphincter cells than in detrusor cells. Single cell analysis revealed comparable H2R responses in detrusor and sphincter cells, but H1R and H3R-mediated calcium reactions were significantly greater in sphincter cells. Histamine very effectively induces calcium release in smooth muscle cells. In sphincter cells, histamine is even more effective than carbachol regarding the number of reacting cells and the intracellular calcium increase. Some of the variability in the outcome of antihistaminic interstitial cystitis therapies might be caused by the ineffectiveness of the chosen antihistaminic or unintentional weakening of sphincteric function.

  7. The Histamine H1 Receptor Participates in the Increased Dorsal Telencephalic Neurogenesis in Embryos from Diabetic Rats

    PubMed Central

    Solís, Karina H.; Méndez, Laura I.; García-López, Guadalupe; Díaz, Néstor F.; Portillo, Wendy; De Nova-Ocampo, Mónica; Molina-Hernández, Anayansi

    2017-01-01

    Increased neuron telencephalic differentiation during deep cortical layer formation has been reported in embryos from diabetic mice. Transitory histaminergic neurons within the mesencephalon/rhombencephalon are responsible for fetal histamine synthesis during development, fibers from this system arrives to the frontal and parietal cortex at embryo day (E) 15. Histamine is a neurogenic factor for cortical neural stem cells in vitro through H1 receptor (H1R) which is highly expressed during corticogenesis in rats and mice. Furthermore, in utero administration of an H1R antagonist, chlorpheniramine, decreases the neuron markers microtubuline associated protein 2 (MAP2) and forkhead box protein 2. Interestingly, in the diabetic mouse model of diabetes induced with streptozotocin, an increase in fetal neurogenesis in terms of MAP2 expression in the telencephalon is reported at E11.5. Because of the reported effects on cortical neuron differentiation of maternal diabetes in one hand and of histamine in the other, here the participation of histamine and H1R on the increased dorsal telencephalic neurogenesis was explored. First, the increased neurogenesis in the dorsal telencephalon at E14 in diabetic rats was corroborated by immunohistochemistry and Western blot. Then, changes during corticogenesis in the level of histamine was analyzed by ELISA and in H1R expression by qRT-PCR and Western blot and, finally, we tested H1R participation in the increased dorsal telencephalic neurogenesis by the systemic administration of chlorpheniramine. Our results showed a significant increase of histamine at E14 and in the expression of the receptor at E12. The administration of chlorpheniramine to diabetic rats at E12 prevented the increased expression of βIII-tubulin and MAP2 mRNAs (neuron markers) and partially reverted the increased level of MAP2 protein at E14, concluding that H1R have an important role in the increased neurogenesis within the dorsal telencephalon of embryos from

  8. Stimulatory effects of histamine on migration of nasal fibroblasts.

    PubMed

    Hong, Sung-Moon; Park, Il-Ho; Um, Ji-Young; Shin, Jae-Min; Lee, Heung-Man

    2015-10-01

    Fibroblast migration is crucial for normal wound repair after sinonasal surgery. Histamine is known to be involved in wound healing by its effects on cell proliferation and migration. This study aimed to determine whether histamine affects the migration of nasal fibroblasts and to investigate the mechanism of action of histamine on nasal fibroblasts. Primary cultures of nasal fibroblasts were established from inferior turbinate samples. Fibroblast migration was evaluated with scratch assays. Cells were treated with histamine and/or histamine receptor-selective antagonists. U-73122 and pertussis toxin, which are selective inhibitors of the lower signaling pathway of H1R and H4R, were used to confirm the modulation of nasal fibroblast migration by histamine. Fibroblast cytoskeletal structures were visualized with immunocytochemistry. Histamine significantly stimulated the migration of nasal fibroblasts. Antagonists selective for HR1 and HR4 significantly reduced nasal fibroblast migration. In immunocytochemical staining, histamine treatment increased membrane ruffling and pyrilamine, diphenhydramine, fexofenadine, and JNJ7777120 decreased histamine-induced membrane ruffling. U-73122 and pertussis toxin also decreased histamine-induced migration of fibroblasts. Histamine maintains its stimulatory effects on fibroblast migration in the presence of mitomycin C, which blocks proliferation of cells. We showed that histamine stimulates fibroblast migration in nasal fibroblasts. This effect appeared to be mediated by HR1 and HR4. However, because fibroblast migration also can be involved in scaring and fibrosis, more research is necessary to determine the effects of antihistamine on wound healing after sinus surgery. © 2015 ARS-AAOA, LLC.

  9. Histamine poisoning (scombroid fish poisoning): an allergy-like intoxication.

    PubMed

    Taylor, S L; Stratton, J E; Nordlee, J A

    1989-01-01

    Histamine poisoning results from the consumption of foods, typically certain types of fish and cheeses, that contain unusually high levels of histamine. Spoiled fish of the families, Scombridae and Scomberesocidae (e.g. tuna, mackerel, bonito), are commonly implicated in incidents of histamine poisoning, which leads to the common usage of the term, "scombroid fish poisoning", to describe this illness. However, certain non-scombroid fish, most notably mahi-mahi, bluefish, and sardines, when spoiled are also commonly implicated in histamine poisoning. Also, on rare occasions, cheeses especially Swiss cheese, can be implicated in histamine poisoning. The symptoms of histamine poisoning generally resemble the symptoms encountered with IgE-mediated food allergies. The symptoms include nausea, vomiting, diarrhea, an oral burning sensation or peppery taste, hives, itching, red rash, and hypotension. The onset of the symptoms usually occurs within a few minutes after ingestion of the implicated food, and the duration of symptoms ranges from a few hours to 24 h. Antihistamines can be used effectively to treat this intoxication. Histamine is formed in foods by certain bacteria that are able to decarboxylate the amino acid, histidine. However, foods containing unusually high levels of histamine may not appear to be outwardly spoiled. Foods with histamine concentrations exceeding 50 mg per 100 g of food are generally considered to be hazardous. Histamine formation in fish can be prevented by proper handling and refrigerated storage while the control of histamine formation in cheese seems dependent on insuring that histamine-producing bacteria are not present in significant numbers in the raw milk.

  10. Desipramine Inhibits Histamine H1 Receptor-Induced Ca2+ Signaling in Rat Hypothalamic Cells

    PubMed Central

    Lee, Kwang Min; Cho, Sukhee; Seo, Jinsoo; Hur, Eun-Mi; Park, Chul-Seung; Baik, Ja-Hyun; Choi, Se-Young

    2012-01-01

    The hypothalamus in the brain is the main center for appetite control and integrates signals from adipose tissue and the gastrointestinal tract. Antidepressants are known to modulate the activities of hypothalamic neurons and affect food intake, but the cellular and molecular mechanisms by which antidepressants modulate hypothalamic function remain unclear. Here we have investigated how hypothalamic neurons respond to treatment with antidepressants, including desipramine and sibutramine. In primary cultured rat hypothalamic cells, desipramine markedly suppressed the elevation of intracellular Ca2+ evoked by histamine H1 receptor activation. Desipramine also inhibited the histamine-induced Ca2+ increase and the expression of corticotrophin-releasing hormone in hypothalamic GT1-1 cells. The effect of desipramine was not affected by pretreatment with prazosin or propranolol, excluding catecholamine reuptake activity of desipramine as an underlying mechanism. Sibutramine which is also an antidepressant but decreases food intake, had little effect on the histamine-induced Ca2+ increase or AMP-activated protein kinase activity. Our results reveal that desipramine and sibutramine have different effects on histamine H1 receptor signaling in hypothalamic cells and suggest that distinct regulation of hypothalamic histamine signaling might underlie the differential regulation of food intake between antidepressants. PMID:22563449

  11. Complete adult neurogenesis within a Wallerian degenerating nerve expressed as an ectopic ganglion.

    PubMed

    Nakano, Tomonori; Kurimoto, Shigeru; Kato, Shuichi; Asano, Kenichi; Hirata, Takuma; Kiyama, Hiroshi; Hirata, Hitoshi

    2018-06-01

    Neurogenesis in the adult peripheral nervous system remains to be demonstrated. We transplanted embryonic neural stem cells into a Wallerian degenerating nerve graft and observed development of a nodular structure consisting of neurons, glia, and Schwann cells. Histological analysis revealed a structure loosely resembling the spinal cord, including a synaptic network that formed along the neuron. Furthermore, the new axons reinnervated the paralysed muscle, forming both de novo and revived neuromuscular junctions. Reinnervation of the paralysed muscle resulted in significantly greater mean wet muscle weight and muscle fibre cross-sectional area on the cell transplantation side than on the surgical control side (body weight 0.071 ± 0.011% vs. 0.051 ± 0.007%, p = .006; area 355.6 ± 345.2 vs. 114.0 ± 132.0 μm 2 , p < .001). Electrophysiological experiments demonstrated a functional connection between the neurons and muscle; hence, we identified this nodule as an ectopic ganglion. Surprisingly, in green rat experiments, most of these glial cells, but none of the neurons, expressed enhanced green fluorescent protein, suggesting that the cells constituting the ectopic ganglion were derived from both transplanted stem cells and endogenous stem cells. Such adult neurogenesis in a peripheral nerve related to neural stem cell transplantation has not been reported previously, and these results form the basis for a novel regenerative medicine approach in paralysed muscle. Copyright © 2018 John Wiley & Sons, Ltd.

  12. Degradation of Histamine by Lactobacillus plantarum Isolated from Miso Products.

    PubMed

    Kung, Hsien-Feng; Lee, Yi-Chen; Huang, Ya-Ling; Huang, Yu-Ru; Su, Yi-Cheng; Tsai, Yung-Hsiang

    2017-10-01

    Histamine is a toxic chemical and is the causative agent of food poisoning. This foodborne toxin may be degraded by the oxidative deamination activity of certain microorganisms. In this study, we isolated four histamine-degrading Lactobacillus plantarum bacteria from miso products. Among them, L. plantarum D-103 exhibited 100% degradation of histamine in de Man Rogosa Sharpe (MRS) broth containing 50 ppm of histamine after 24 h of incubation at 30°C. The optimal growth, histamine oxidase, and histamine-degrading activity of L. plantarum D-103 were observed in histamine MRS broth at pH 7.0, 3% NaCl, and 30°C. It also exhibited tolerance to broad ranges of pH (4 to 10) and salt concentrations (0 to 12%) in histamine MRS broth. Therefore, the histamine-degrading L. plantarum D-103 might be used as an additive culture to prevent histamine accumulation in miso products during fermentation.

  13. Expression and Function of System N Glutamine Transporters (SN1/SN2 or SNAT3/SNAT5) in Retinal Ganglion Cells

    PubMed Central

    Umapathy, Nagavedi S.; Dun, Ying; Martin, Pamela M.; Duplantier, Jennifer N.; Roon, Penny; Prasad, Puttur; Smith, Sylvia B.; Ganapathy, Vadivel

    2008-01-01

    Purpose Glutamine transport is essential for the glutamate-glutamine cycle, which occurs between neurons and glia. System N, consisting of SN1 (SNAT3) and SN2 (SNAT5), is the principal mediator of glutamine transport in retinal Müller cells. Mediators of glutamine transport in retinal ganglion cells were investigated. Methods The relative contributions of various transport systems for glutamine uptake (systems N, A, L, y+L, ASCT, and ATB0,+) were examined in RGC-5 cells based on differential features of the individual transport systems. mRNA for the genes encoding members of these transport systems were analyzed by RT-PCR. Based on these data, SN1 and SN2 were analyzed in mouse retina, RGC-5 cells, and primary mouse ganglion cells (GCs) by in situ hybridization (ISH), immunofluorescence (IF), and Western blotting. Results Three transport systems—N, A, and L—participated in glutamine uptake in RGC-5 cells. System N was the principal contributor; systems A and L contributed considerably less. ISH and IF revealed SN1 and SN2 expression in the ganglion, inner nuclear, and photoreceptor cell layers. SN1 and SN2 colocalized with the ganglion cell marker Thy 1.2 and with the Müller cell marker vimentin, confirming their presence in both retinal cell types. SN1 and SN2 proteins were detected in primary mouse GCs. Conclusions These findings suggest that in addition to its role in glutamine uptake in retinal glial cells, system N contributes significantly to glutamine uptake in ganglion cells and, hence, contributes to the retinal glutamate-glutamine cycle. PMID:18689705

  14. Enhanced scratching evoked by PAR-2 agonist and 5-HT but not histamine in a mouse model of chronic dry skin itch.

    PubMed

    Akiyama, T; Carstens, M Iodi; Carstens, E

    2010-11-01

    Chronic itch is a symptom of many skin conditions and systemic disease, and it has been hypothesized that the chronic itch may result from sensitization of itch-signaling pathways. We induced experimental chronic dry skin on the rostral back of mice, and observed a significant increase in spontaneous hindlimb scratches directed to the dry skin. Spontaneous scratching was significantly attenuated by a PAR-2 antibody and 5-HT2A receptor antagonist, indicating activation of these receptors by endogenous mediators released under dry skin conditions. We also observed a significant increase in the number of scratch bouts evoked by acute intradermal injections of a protease-activated receptor (PAR)-2 agonist and serotonin (5-HT), but not histamine. We additionally investigated if pruritogen-evoked activity of dorsal root ganglion (DRG) neurons is enhanced in this model. DRG cells from dry skin mice exhibited significantly larger responses to the PAR-2 agonist and 5-HT, but not histamine. Spontaneous scratching may reflect ongoing itch, and enhanced pruritogen-evoked scratching may represent hyperknesis (enhanced itch), both potentially due to sensitization of itch-signaling neurons. The correspondence between enhanced behavioral scratching and DRG cell responses suggest that peripheral pruriceptors that respond to proteases and 5-HT, but not histamine, may be sensitized in dry skin itch. Copyright © 2010 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  15. Adenovector GAD65 gene delivery into the rat trigeminal ganglion produces orofacial analgesia

    PubMed Central

    Vit, Jean-Philippe; Ohara, Peter T; Sundberg, Christopher; Rubi, Blanca; Maechler, Pierre; Liu, Chunyan; Puntel, Mariana; Lowenstein, Pedro; Castro, Maria; Jasmin, Luc

    2009-01-01

    Background Our goal is to use gene therapy to alleviate pain by targeting glial cells. In an animal model of facial pain we tested the effect of transfecting the glutamic acid decarboxylase (GAD) gene into satellite glial cells (SGCs) of the trigeminal ganglion by using a serotype 5 adenovector with high tropisms for glial cells. We postulated that GABA produced from the expression of GAD would reduce pain behavior by acting on GABA receptors on neurons within the ganglion. Results Injection of adenoviral vectors (AdGAD65) directly into the trigeminal ganglion leads to sustained expression of the GAD65 isoform over the 4 weeks observation period. Immunohistochemical analysis showed that adenovirus-mediated GAD65 expression and GABA synthesis were mainly in SGCs. GABAA and GABAB receptors were both seen in sensory neurons, yet only GABAA receptors decorated the neuronal surface. GABA receptors were not found on SGCs. Six days after injection of AdGAD65 into the trigeminal ganglion, there was a statistically significant decrease of pain behavior in the orofacial formalin test, a model of inflammatory pain. Rats injected with control virus (AdGFP or AdLacZ) had no reduction in their pain behavior. AdGAD65-dependent analgesia was blocked by bicuculline, a selective GABAA receptor antagonist, but not by CGP46381, a selective GABAB receptor antagonist. Conclusion Transfection of glial cells in the trigeminal ganglion with the GAD gene blocks pain behavior by acting on GABAA receptors on neuronal perikarya. PMID:19656360

  16. Adenovector GAD65 gene delivery into the rat trigeminal ganglion produces orofacial analgesia.

    PubMed

    Vit, Jean-Philippe; Ohara, Peter T; Sundberg, Christopher; Rubi, Blanca; Maechler, Pierre; Liu, Chunyan; Puntel, Mariana; Lowenstein, Pedro; Castro, Maria; Jasmin, Luc

    2009-08-05

    Our goal is to use gene therapy to alleviate pain by targeting glial cells. In an animal model of facial pain we tested the effect of transfecting the glutamic acid decarboxylase (GAD) gene into satellite glial cells (SGCs) of the trigeminal ganglion by using a serotype 5 adenovector with high tropisms for glial cells. We postulated that GABA produced from the expression of GAD would reduce pain behavior by acting on GABA receptors on neurons within the ganglion. Injection of adenoviral vectors (AdGAD65) directly into the trigeminal ganglion leads to sustained expression of the GAD65 isoform over the 4 weeks observation period. Immunohistochemical analysis showed that adenovirus-mediated GAD65 expression and GABA synthesis were mainly in SGCs. GABAA and GABAB receptors were both seen in sensory neurons, yet only GABAA receptors decorated the neuronal surface. GABA receptors were not found on SGCs. Six days after injection of AdGAD65 into the trigeminal ganglion, there was a statistically significant decrease of pain behavior in the orofacial formalin test, a model of inflammatory pain. Rats injected with control virus (AdGFP or AdLacZ) had no reduction in their pain behavior. AdGAD65-dependent analgesia was blocked by bicuculline, a selective GABAA receptor antagonist, but not by CGP46381, a selective GABAB receptor antagonist. Transfection of glial cells in the trigeminal ganglion with the GAD gene blocks pain behavior by acting on GABAA receptors on neuronal perikarya.

  17. Activation of the canonical beta-catenin pathway by histamine.

    PubMed

    Diks, Sander H; Hardwick, James C; Diab, Remco M; van Santen, Marije M; Versteeg, Henri H; van Deventer, Sander J H; Richel, Dick J; Peppelenbosch, Maikel P

    2003-12-26

    Histamine signaling is a principal regulator in a variety of pathophysiological processes including inflammation, gastric acid secretion, neurotransmission, and tumor growth. We report that histamine stimulation causes transactivation of a T cell factor/beta-catenin-responsive construct in HeLa cells and in the SW-480 colon cell line, whereas histamine did not effect transactivation of a construct containing the mutated response construct FOP. On the protein level, histamine treatment increases phosphorylation of glycogen synthase kinase 3-beta in HeLa cells, murine macrophages, and DLD-1, HT-29, and SW-480 colon cell lines. Furthermore, histamine also decreases the phosphorylated beta-catenin content in HeLa cells and murine macrophages. Finally, pharmacological inhibitors of the histamine H1 receptor counteracted histamine-induced T cell factor/beta-catenin-responsive construct transactivation and the dephosphorylation of beta-catenin in HeLa cells and in macrophages. We conclude that the canonical beta-catenin pathway acts downstream of the histamine receptor H1 in a variety of cell types. The observation that inflammatory molecules, like histamine, activate the beta-catenin pathway may provide a molecular explanation for a possible link between inflammation and cancer.

  18. KYNA analogue SZR72 modifies CFA-induced dural inflammation- regarding expression of pERK1/2 and IL-1β in the rat trigeminal ganglion.

    PubMed

    Lukács, M; Warfvinge, K; Kruse, L S; Tajti, J; Fülöp, F; Toldi, J; Vécsei, L; Edvinsson, L

    2016-12-01

    Neurogenic inflammation has for decades been considered an important part of migraine pathophysiology. In the present study, we asked the question if administration of a novel kynurenic acid analogue (SZR72), precursor of an excitotoxin antagonist and anti-inflammatory substance, can modify the neurogenic inflammatory response in the trigeminal ganglion. Inflammation in the trigeminal ganglion was induced by local dural application of Complete Freunds Adjuvant (CFA). Levels of phosphorylated MAP kinase pERK1/2 and IL-1β expression in V1 region of the trigeminal ganglion were investigated using immunohistochemistry and Western blot. Pretreatment with one dose of SZR72 abolished the CFA-induced pERK1/2 and IL-1β activation in the trigeminal ganglion. No significant change was noted in case of repeated treatment with SZR72 as compared to a single dose. This is the first study that demonstrates that one dose of KYNA analog before application of CFA can give anti-inflammatory response in a model of trigeminal activation, opening a new line for further investigations regarding possible effects of KYNA derivates.

  19. Apolipoprotein E modifies the CNS response to injury via a histamine-mediated pathway.

    PubMed

    Mace, Brian E; Wang, Haichen; Lynch, John R; Moss, Jason; Sullivan, Patrick; Colton, Heidi; Morgan, Kevin; Renauld, Jean-Christophe; Laskowitz, Daniel T

    2007-04-01

    Recent evidence demonstrates that apolipoprotein E (apoE) influences the central nervous system (CNS) response to both acute and chronic injury. To address the mechanisms by which apoE influences neurological disease, we examined differential gene expression in the brains of apoE transgenic mice after closed head injury. Apart from confirming the knockout of apoE, the largest differential gene expression occurred for the interleukin-9 receptor (IL-9R), which was > 100-fold up-regulated in apoE-deficient versus wild-type mice. We observed a similar pattern of posttraumatic IL-9R up-regulation in APOE4 targeted replacement mice as compared with their APOE3 counterparts. This difference in gene expression was associated with increased neuronal protein expression of IL-9R in E4 animals compared with E3 as demonstrated by immunohistochemistry. The consequence of IL-9R binding in mast cells is the induction of proliferation and differentiation. This indirectly favors degranulation and release of histamine and inflammatory mediators, which have previously been demonstrated to exacerbate secondary neuronal injury. We found that apoE-deficient animals had increased levels of systemic histamine after injury and that pre-treatment with antihistamines improved functional outcomes in apoE-deficient but not wild-type animals after head injury. These results suggest that apoE modifies secondary neuronal injury caused by histamine release and are consistent with previous observations that apoE affects the CNS inflammatory response in an isoform-specific manner.

  20. Effect of Different Cooking Methods on Histamine Levels in Selected Foods

    PubMed Central

    Chung, Bo Young; Park, Sook Young; Byun, Yun Sun; Son, Jee Hee; Choi, Yong Won; Cho, Yong Se

    2017-01-01

    Background Histamine in food is known to cause food poisoning and allergic reactions. We usually ingest histamine in cooked food, but there are few studies about the influence of cooking method on the histamine level. Objective The purpose of this study was to determine the influence of cooking methods on the concentration of histamine in foods. Methods The foods chosen were those kinds consumed frequently and cooked by grilling, boiling, and frying. The histamine level of the food was measured using enzyme-linked immunosorbent assay. Results Grilled seafood had higher histamine levels than raw or boiled seafood. For meat, grilling increased the histamine level, whereas boiling decreased it. For eggs, there was not much difference in histamine level according to cooking method. Fried vegetables had higher histamine levels than raw vegetables. And fermented foods didn't show much difference in histamine level after being boiled. Conclusion The histamine level in food has changed according to the cooking method used to prepare it. Frying and grilling increased histamine level in foods, whereas boiling had little influence or even decreased it. The boiling method might be helpful to control the effect of histamine in histamine-sensitive or susceptible patients, compared with frying and grilling. PMID:29200758

  1. Muscarinic Acetylcholine Receptor Localization and Activation Effects on Ganglion Response Properties

    PubMed Central

    Renna, Jordan M.; Amthor, Franklin R.; Keyser, Kent T.

    2010-01-01

    Purpose. The activation and blockade of muscarinic acetylcholine receptors (mAChRs) affects retinal ganglion cell light responses and firing rates. This study was undertaken to identify the full complement of mAChRs expressed in the rabbit retina and to assess mAChR distribution and the functional effects of mAChR activation and blockade on retinal response properties. Methods. RT-PCR, Western blot analysis, and immunohistochemistry were used to identify the complement and distribution of mAChRs in the rabbit retina. Extracellular electrophysiology was used to determine the effects of the activation or blockade of mAChRs on ganglion cell response properties. Results. RT-PCR of whole neural retina resulted in the amplification of mRNA transcripts for the m1 to m5 mAChR subtypes. Western blot and immunohistochemical analyses confirmed that all five mAChR subtypes were expressed by subpopulations of bipolar, amacrine, and ganglion cells in the rabbit retina, including subsets of cells in cholinergic and glycinergic circuits. Nonspecific muscarinic activation and blockade resulted in the class-specific modulation of maintained ganglion cell firing rates and light responses. Conclusions. The expression of mAChR subtypes on subsets of bipolar, amacrine, and ganglion cells provides a substrate for both enhancement and suppression of retinal responses via activation by cholinergic agents. Thus, the muscarinic cholinergic system in the retina may contribute to the modulation of complex stimuli. Understanding the distribution and function of mAChRs in the retina has the potential to provide important insights into the visual changes that are caused by decreased ACh in the retinas of Alzheimer's patients and the potential visual effects of anticholinergic treatments for ocular diseases. PMID:20042645

  2. Histamine food poisonings: A systematic review and meta-analysis.

    PubMed

    Colombo, Fabio M; Cattaneo, Patrizia; Confalonieri, Enrica; Bernardi, Cristian

    2018-05-03

    The aim of this study was to assess the mean of histamine concentration in food poisoning. Systematic review and meta-analysis of reports published between 1959 and 2013. Main criteria for inclusion of studies were: all report types that present outbreaks of "histamine poisoning' or "scombroid syndrome" from food, including histamine content and type of food. Health status of people involved must be nonpathological. Fifty-five (55) reports were included, these studies reported 103 incidents. All pooled analyses were based on random effect model; histamine mean concentration in poisoning samples was 1107.21 mg/kg with confidence interval for the meta-mean of 422.62-2900.78 mg/kg; heterogeneity index (I2) was 100% (P < 0.0001); prediction interval was 24.12-50822.78 mg/kg. Fish involved in histamine poisoning was mainly tuna or Istiophoridae species. No clues of association between concomitant conditions (female sex, alcohol consumption, previous medication, and consumption of histamine releasing food) and histamine poisoning, were highlighted. This is the first systematic review and meta-analysis that analyzes all the available data on histamine poisoning outbreaks evaluating the histamine concentration in food involved. Histamine mean concentration in poisoning samples was fairly high. Our study suffers from some limitations, which are intrinsic of the studies included, for instance the lack of a complete anamnesis of each poisoning episode. Protocol registration: Methods were specified in advance and have been published as a protocol in PROSPERO database (18/07/2012 -CRD42012002566).

  3. Vesicular glutamate transporters, VGluT1 and VGluT2, in the trigeminal ganglion neurons of the rat, with special reference to coexpression.

    PubMed

    Li, Jin-Lian; Xiong, Kang-Hui; Dong, Yu-Lin; Fujiyama, Fumino; Kaneko, Takeshi; Mizuno, Noboru

    2003-08-18

    Vesicular glutamate transporters are responsible for glutamate transport into synaptic vesicles. In the present study, we examined immunohistochemically the expression of vesicular glutamate transporters, VGluT1 and VGluT2, in trigeminal ganglion neurons of the rat. Immunohistochemistry for VGluT1 and VGluT2 indicated that more than 80% of trigeminal ganglion neurons express VGluT1 and/or VGluT2 in their cell bodies. It also indicated that large and small trigeminal ganglion neurons express VGluT2 more frequently than VGluT1. Dual immunofluorescence histochemistry for VGluT1 and VGluT2 indicated that trigeminal ganglion neurons express VGluT2 more frequently than VGluT1 and that more than 80% of VGluT-expressing trigeminal ganglion neurons express VGluT1 and VGluT2. Many axon terminals in the superficial layers of the medullary dorsal horn also showed VGluT1 and VGluT2 immunoreactivities. Some of these axon terminals were confirmed to form the central core of the synaptic glomerulus. These results indicated that VGluT1 and VGluT2 are coexpressed in the cell bodies and axon terminals in most trigeminal ganglion neurons. Copyright 2003 Wiley-Liss, Inc.

  4. Histamine-induced vasodilatation in the human forearm vasculature

    PubMed Central

    Sandilands, Euan A; Crowe, Jane; Cuthbert, Hayley; Jenkins, Paul J; Johnston, Neil R; Eddleston, Michael; Bateman, D Nicholas; Webb, David J

    2013-01-01

    Aim To investigate the mechanism of action of intra-arterial histamine in the human forearm vasculature. Methods Three studies were conducted to assess changes in forearm blood flow (FBF) using venous occlusion plethysmography in response to intra-brachial histamine. First, the dose–response was investigated by assessing FBF throughout a dose-escalating histamine infusion. Next, histamine was infused at a constant dose to assess acute tolerance. Finally, a four way, double-blind, randomized, placebo-controlled crossover study was conducted to assess FBF response to histamine in the presence of H1- and H2-receptor antagonists. Flare and itch were assessed in all studies. Results Histamine caused a dose-dependent increase in FBF, greatest with the highest dose (30 nmol min−1) infused [mean (SEM) infused arm vs. control: 26.8 (5.3) vs. 2.6 ml min−1 100 ml−1; P < 0.0001]. Dose-dependent flare and itch were demonstrated. Acute tolerance was not observed, with an increased FBF persisting throughout the infusion period. H2-receptor antagonism significantly reduced FBF (mean (95% CI) difference from placebo at 30 nmol min−1 histamine: −11.9 ml min−1 100 ml−1 (−4.0, −19.8), P < 0.0001) and flare (mean (95% CI) difference from placebo: −403.7 cm2 (−231.4, 576.0), P < 0.0001). No reduction in FBF or flare was observed in response to the H1-receptor antagonist. Itch was unaffected by the treatments. Histamine did not stimulate vascular release of tissue plasminogen activator or von Willebrand factor. Conclusion Histamine causes dose-dependent vasodilatation, flare and itch in the human forearm. H2-receptors are important in this process. Our results support further exploration of combined H1- and H2-receptor antagonist therapy in acute allergic syndromes. PMID:23488545

  5. Scombroid poisoning--recapitulation on the role of histamine.

    PubMed

    Foo, L Y

    1977-05-25

    The histamine content and the total vagal stimulating activities in various fish samples involved in an outbreak of food poisoning were compared. There was a close correlation between the two levels and there was lack of potentiation between histamine and other non-active fractions. The role of histamine in scombroid poisoning is discussed in the light of these results.

  6. Down-regulation of histamine-induced endothelial cell activation as potential anti-atherosclerotic activity of peptides from Spirulina maxima.

    PubMed

    Vo, Thanh-Sang; Kim, Se-Kwon

    2013-10-09

    Histamine, a potent inflammatory mediator, has been known to cause the pathogenesis of atherosclerosis. In this sense, two bioactive peptides P1 (LDAVNR; 686Da) and P2 (MMLDF; 655Da) purified from gastric enzymatic hydrolysate of Spirulina maxima were examined for their protective effects against early atherosclerotic responses induced by histamine in EA.hy926 endothelial cells. Interestingly, both P1 and P2 exhibited inhibitory activities on the production and expression of IL-6 and MCP-1. Furthermore, P1 and P2 inhibited the production of adhesion molecules including P-selectin and E-selectin, and thus reducing in vitro cell adhesion of monocyte onto endothelial cells. In addition, the production of intracellular reactive oxygen species was observed to reduce in the presence of P1 or P2. Notably, the inhibitory activities of P1 and P2 were found due to down-regulating Egr-1 expression via histamine receptor and PKCδ-dependent MAPKs activation pathway. These results suggest that peptides P1 and P2 from S. maxima are effective to suppress histamine-induced endothelial cell activation that may contribute to the prevention of early atherosclerosis. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Histamine acting on H1 receptor promotes inhibition of proliferation via PLC, RAC, and JNK-dependent pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Notcovich, Cintia; Laboratorio de Farmacologia de Receptores, Catedra de Quimica Medicinal, Departamento de Farmacologia, Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires; Diez, Federico

    2010-02-01

    It is well established that histamine modulates cell proliferation through the activation of the histamine H1 receptor (H1R), a G protein-coupled receptor (GPCR) that is known to couple to phospholipase C (PLC) activation via Gq. In the present study, we aimed to determine whether H1R activation modulates Rho GTPases, well-known effectors of Gq/G{sub 11}-coupled receptors, and whether such modulation influences cell proliferation. Experiments were carried out in CHO cells stably expressing H1R (CHO-H1R). By using pull-down assays, we found that both histamine and a selective H1R agonist activated Rac and RhoA in a time- and dose-dependent manner without significant changesmore » in the activation of Cdc42. Histamine response was abolished by the H1R antagonist mepyramine, RGS2 and the PLC inhibitor U73122, suggesting that Rac and RhoA activation is mediated by H1R via Gq coupling to PLC stimulation. Histamine caused a marked activation of serum response factor activity via the H1R, as determined with a serum-responsive element (SRE) luciferase reporter, and this response was inhibited by RhoA inactivation with C3 toxin. Histamine also caused a significant activation of JNK which was inhibited by expression of the Rac-GAP {beta}2-chimaerin. On the other hand, H1R-induced ERK1/2 activation was inhibited by U73122 but not affected by C3 or {beta}2-chimaerin, suggesting that ERK1/2 activation was dependent on PLC and independent of RhoA or Rac. [{sup 3}H]-Thymidine incorporation assays showed that both histamine and the H1R agonist inhibited cell proliferation in a dose-dependent manner and that the effect was independent of RhoA but partially dependent on JNK and Rac. Our results reveal that functional coupling of the H1R to Gq-PLC leads to the activation of RhoA and Rac small GTPases and suggest distinct roles for Rho GTPases in the control of cell proliferation by histamine.« less

  8. Neuronal and glial expression of inward rectifier potassium channel subunits Kir2.x in rat dorsal root ganglion and spinal cord.

    PubMed

    Murata, Yuzo; Yasaka, Toshiharu; Takano, Makoto; Ishihara, Keiko

    2016-03-23

    Inward rectifier K(+) channels of the Kir2.x subfamily play important roles in controlling the neuronal excitability. Although their cellular localization in the brain has been extensively studied, only a few studies have examined their expression in the spinal cord and peripheral nervous system. In this study, immunohistochemical analyses of Kir2.1, Kir2.2, and Kir2.3 expression were performed in rat dorsal root ganglion (DRG) and spinal cord using bright-field and confocal microscopy. In DRG, most ganglionic neurons expressed Kir2.1, Kir2.2 and Kir2.3, whereas satellite glial cells chiefly expressed Kir2.3. In the spinal cord, Kir2.1, Kir2.2 and Kir2.3 were all expressed highly in the gray matter of dorsal and ventral horns and moderately in the white matter also. Within the gray matter, the expression was especially high in the substantia gelatinosa (lamina II). Confocal images obtained using markers for neuronal cells, NeuN, and astrocytes, Sox9, showed expression of all three Kir2 subunits in both neuronal somata and astrocytes in lamina I-III of the dorsal horn and the lateral spinal nucleus of the dorsolateral funiculus. Immunoreactive signals other than those in neuronal and glial somata were abundant in lamina I and II, which probably located mainly in nerve fibers or nerve terminals. Colocalization of Kir2.1 and 2.3 and that of Kir2.2 and 2.3 were present in neuronal and glial somata. In the ventral horn, motor neurons and interneurons were also immunoreactive with the three Kir2 subunits. Our study suggests that Kir2 channels composed of Kir2.1-2.3 subunits are expressed in neuronal and glial cells in the DRG and spinal cord, contributing to sensory transduction and motor control. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Analysis of Sigma Receptor (σR1) expression in retinal ganglion cells cultured under hyperglycemic conditions and in diabetic mice

    PubMed Central

    Ola, M. Shamsul; Moore, Pamela; Maddox, Dennis; El-Sherbeny, Amira; Huang, Wei; Roon, Penny; Agarwal, Neeraj; Ganapathy, Vadivel; Smith, Sylvia B.

    2013-01-01

    Summary The type 1 sigma receptor (σR1) is a nonopiate and nonphencyclidine binding site that has numerous pharmacological and physiological functions. In some studies, agonists for σR1 have been shown to afford neuroprotective against overstimulation of the NMDA receptor. σR1 expression has been demonstrated recently in retinal ganglion cells (RGC). RGCs undergo apoptosis early in diabetic retinopathy via NMDA receptor overstimulation. In the present study we asked whether RGCs cultured under hyperglycemic conditions and RGCs of diabetic mice continue to express σ1. RGCs were cultured 48 h in RPMI medium containing either 45 mM glucose or 11 mM glucose plus 34 mM mannitol (osmolar control). C57BL/6 mice were made diabetic using streptozotocin. The retina was dissected from normal and streptozotocin-induced diabetic mice 3, 6 and 12 weeks post-onset of diabetes. σR1 was analyzed in cells using semiquantitative RT-PCR and in tissues σR1 by semiquantitative RT-PCR, in situ hybridization, western blot analysis and immunolocalization. The RT-PCR analysis of cultured RGCs showed that σR1 mRNA is expressed under hyperglycemic conditions at levels similar to control cells. Similarly, analysis of retinas of diabetic mice showed no difference in levels of mRNA encoding σR1 compared to retinas of control mice. In situ hybridization analysis showed that expression patterns of σR1 mRNA in the ganglion cell layer were similar between diabetic and control mice. Western blot analysis suggested that levels of σR1 in retina were similar between diabetic and control retinas. Immunohistochemical analysis of σR1 showed a similar pattern of σR1 protein expression between control and diabetic retina. These studies demonstrate that σR1 is expressed under hyperglycemic conditions in vitro and in vivo. PMID:12425939

  10. Analysis of sigma receptor (sigmaR1) expression in retinal ganglion cells cultured under hyperglycemic conditions and in diabetic mice.

    PubMed

    Ola, M Shamsul; Moore, Pamela; Maddox, Dennis; El-Sherbeny, Amira; Huang, Wei; Roon, Penny; Agarwal, Neeraj; Ganapathy, Vadivel; Smith, Sylvia B

    2002-11-15

    The type 1 sigma receptor (sigmaR1) is a nonopiate and nonphencyclidine binding site that has numerous pharmacological and physiological functions. In some studies, agonists for sigmaR1 have been shown to afford neuroprotection against overstimulation of the NMDA receptor. sigmaR1 expression has been demonstrated recently in retinal ganglion cells (RGC). RGCs undergo apoptosis early in diabetic retinopathy via NMDA receptor overstimulation. In the present study we asked whether RGCs cultured under hyperglycemic conditions and RGCs of diabetic mice continue to express sigmaR1. RGCs were cultured 48 h in RPMI medium containing either 45 mM glucose or 11 mM glucose plus 34 mM mannitol (osmolar control). C57BL/6 mice were made diabetic using streptozotocin. The retina was dissected from normal and streptozotocin-induced diabetic mice 3, 6 and 12 weeks post-onset of diabetes. sigmaR1 was analyzed in cells using semiquantitative RT-PCR and in tissues by semiquantitative RT-PCR, in situ hybridization, Western blot analysis and immunolocalization. The RT-PCR analysis of cultured RGCs showed that sigmaR1 mRNA is expressed under hyperglycemic conditions at levels similar to control cells. Similarly, analysis of retinas of diabetic mice showed no difference in levels of mRNA encoding sigmaR1 compared to retinas of control mice. In situ hybridization analysis showed that expression patterns of sigmaR1 mRNA in the ganglion cell layer were similar between diabetic and control mice. Western blot analysis suggested that levels of sigmaR1 in retina were similar between diabetic and control retinas. Immunohistochemical analysis of sigmaR1 showed a similar pattern of sigmaR1 protein expression between control and diabetic retina. These studies demonstrate that sigmaR1 is expressed under hyperglycemic conditions in vitro and in vivo.

  11. Zinc oxide nanoparticles decrease the expression and activity of plasma membrane calcium ATPase, disrupt the intracellular calcium homeostasis in rat retinal ganglion cells.

    PubMed

    Guo, Dadong; Bi, Hongsheng; Wang, Daoguang; Wu, Qiuxin

    2013-08-01

    Zinc oxide nanoparticle is one of the most important materials with diverse applications. However, it has been reported that zinc oxide nanoparticles are toxic to organisms, and that oxidative stress is often hypothesized to be an important factor in cytotoxicity mediated by zinc oxide nanoparticles. Nevertheless, the mechanism of toxicity of zinc oxide nanoparticles has not been completely understood. In this study, we investigated the cytotoxic effect of zinc oxide nanoparticles and the possible molecular mechanism involved in calcium homeostasis mediated by plasma membrane calcium ATPase in rat retinal ganglion cells. Real-time cell electronic sensing assay showed that zinc oxide nanoparticles could exert cytotoxic effect on rat retinal ganglion cells in a concentration-dependent manner; flow cytometric analysis indicated that zinc oxide nanoparticles could lead to cell damage by inducing the overproduction of reactive oxygen species. Furthermore, zinc oxide nanoparticles could also apparently decrease the expression level and their activity of plasma membrane calcium ATPase, which finally disrupt the intracellular calcium homeostasis and result in cell death. Taken together, zinc oxide nanoparticles could apparently decrease the plasma membrane calcium ATPase expression, inhibit their activity, cause the elevated intracellular calcium ion level and disrupt the intracellular calcium homeostasis. Further, the disrupted calcium homeostasis will trigger mitochondrial dysfunction, generate excessive reactive oxygen species, and finally initiate cell death. Thus, the disrupted calcium homeostasis is involved in the zinc oxide nanoparticle-induced rat retinal ganglion cell death. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Fenspiride inhibits histamine-induced responses in a lung epithelial cell line.

    PubMed

    Quartulli, F; Pinelli, E; Broué-Chabbert, A; Gossart, S; Girard, V; Pipy, B

    1998-05-08

    Using the human lung epithelial WI26VA4 cell line, we investigated the capacity of fenspiride, an anti-inflammatory drug with anti-bronchoconstrictor properties, to interfere with histamine-induced intracellular Ca2+ increase and eicosanoid formation. Histamine and a histamine H1 receptor agonist elicited a rapid and transient intracellular Ca2+ increase (0-60 s) in fluo 3-loaded WI26VA4 cells. This response was antagonized by the histamine H1 receptor antagonist, diphenhydramine, the histamine H2 receptor antagonist, cimetidine, having no effect. Fenspiride (10(-7)-10(-5) M) inhibited the histamine H1 receptor-induced Ca2+ increase. In addition, histamine induced a biphasic increase in arachidonic acid release. The initial rise (0-30 s), a rapid and transient arachidonic acid release, was responsible for the histamine-induced intracellular Ca2+ increase. In the second phase release (15-60 min), a sustained arachidonic acid release appeared to be associated with the formation of cyclooxygenase and lipoxygenase metabolites. Fenspiride (10(-5) M) abolished both phases of histamine-induced arachidonic acid release. These results suggest that anti-inflammatory and antibronchoconstrictor properties of fenspiride may result from the inhibition of these effects of histamine.

  13. Potential negative effects of anti-histamines on male reproductive function.

    PubMed

    Mondillo, Carolina; Varela, María Luisa; Abiuso, Adriana María Belén; Vázquez, Ramiro

    2018-05-01

    Histamine (HA) is a pleiotropic biogenic amine synthesized exclusively by histidine decarboxylase (HDC) in most mammalian tissues. The literature on the role of HA within the male gonad has expanded over the last years, attracting attention to potential unexpected side-effects of anti-histamines on testicular function. In this regard, HA receptors (HRH1, HRH2 and HRH4) have been described in Leydig cells of different species, including human. Via these receptors, HA has been reported to trigger positive or negative interactions with the LH/hCG signaling pathway depending upon its concentration, thereby contributing to the local control of testicular androgen levels. It should then be considered that anti-histamines may affect testicular homeostasis by increasing or decreasing steroid production. Additionally, HRH1 and HRH2 receptors are present in peritubular and germ cells, and HRH2 antagonists have been found to negatively affect peritubular cells and reduce sperm viability. The potential negative impact of anti-histamines on male reproduction becomes even more dramatic if we consider that HA has also been associated with human sexual behavior and penile erection. What is more, although testicular mast cells are the major source of locally produced HA, recent studies have described HDC expression in macrophages, Leydig cells and germ cells, revealing the existence of multiple sources of HA within the testis. Undoubtedly, the more we learn about the testicular histaminergic system, the more opportunities there will be for rational design of drugs aimed at treating HA-related pathologies, with minimum or nule negative impact on fertility. © 2018 Society for Reproduction and Fertility.

  14. Nerve growth factor regulates galanin and neuropeptide Y expression in primary cultured superior cervical ganglion neurons.

    PubMed

    Liu, Huaxiang; Liu, Zhen; Xu, Xiaobo; Yang, Xiangdong; Wang, Huaijing; Li, Zhengzhong

    2010-03-01

    Both galanin and neuropeptide Y (NPY) are expressed in superior cervical ganglion (SCG) neurons. Following nerve transection or axotomy galanin is strongly upregulated and NPY is downregulated in SCG neurons because target-derived nerve growth factor (NGF) content decreased. It is not known whether or to what extent NGF affects both galanin and NPY expression in primary cultured SCG neurons. In the present study we examine whether exogenous NGF affects expression of neuropeptides for galanin and NPY in primary cultured SCG neurons. In addition, we explore whether mRNAs for galanin and NPY are affected by administration of exogenous NGF in SCG cultures. The significance of expression of galanin and NPY and their mRNAs was revealed by performing experiments without and with administration of exogenous NGF. Galanin and its mRNA expression was attenuated by administration of exogenous NGF in SCG cultures. The enhancement of NPY and its mRNA expression by administration of exogenous NGF in SCG cultures was dose-dependent. The physiological or pathophysiological mechanisms of the alterations of galanin and NPY expression affected by NGF in primary cultured SCG neurons are still unknown. The present data provide basic knowledge about the expression of galanin and NPY in primary cultured SCG neurons of rats, which may further improve our understanding of the functional significance of galanin and NPY expression affected by NGF.

  15. Histamine (Scombroid) Fish Poisoning: a Comprehensive Review.

    PubMed

    Feng, Charles; Teuber, Suzanne; Gershwin, M Eric

    2016-02-01

    Histamine fish poisoning, also known as scombroid poisoning, is the most common cause of ichythyotoxicosis worldwide and results from the ingestion of histamine-contaminated fish in the Scombroidae and Scomberesocidae families, including mackerel, bonito, albacore, and skipjack. This disease was first described in 1799 in Britain and re-emerged in the medical literature in the 1950s when outbreaks were reported in Japan. The symptoms associated with histamine fish poisoning are similar to that of an allergic reaction. In fact, such histamine-induced reactions are often misdiagnosed as IgE-mediated fish allergy. Indeed, histamine fish poisoning is still an underrecognized disease. In this review, we discuss the epidemiology, pathophysiology, evaluation, and treatment of scombroid disease. Because more than 80% of fish consumed in the USA is now imported from other countries, the disease is intimately linked with the global fish trade (National Marine Fisheries Service, 2012). Preventing future scombroid outbreaks will require that fishermen, public health officials, restaurant workers, and medical professionals work together to devise international safety standards and increase awareness of the disease. The implications of scombroid poisoning go far beyond that of fish and have broader implications for the important issues of food safety.

  16. Enkephalin-like immunoreactive principal ganglion cells and nerve fibres in the inferior mesenteric ganglion of the cat.

    PubMed

    Balayadi, M; Jule, Y; Cupo, A

    1988-10-05

    The occurrence and distribution of methionine-enkephalin (ME), leucine-enkephalin (LE) and methionine-enkephalin-Arg6-Gly7-Leu8 (MERGL)-like (LI) immunoreactive material in the inferior mesenteric ganglion (IMG) of the cat were studied by immunohistochemical techniques using the peroxidase-antiperoxidase method. Numerous ME-Li, LE-Li and MERGL-Li immunoreactive fibres with the same distribution pattern were observed. They were varicose and often surrounded closely neighbouring unlabelled ganglion cell bodies. Sometimes they ran in strands between ganglion cells. ME-Li immunoreactive material was detected in a number of cell bodies, the diameter of which was similar to that of unlabelled principal ganglion cell bodies, and which were probably Enk-Li-containing principal ganglion cells. These immunoreactive cells were often surrounded by ME-Li immunoreactive fibres. No LE-Li or MERGL-Li immunoreactive ganglion cell bodies were observed. The presence of ME-Li immunoreactive principal ganglion cells raises the possibility that the Enk-Li immunoreactive fibres present in the IMG may have a prevertebral ganglionic source. The possibility that the Enk-Li material present in nerve fibres might be derived from preproenkephalin-A was suggested by the occurrence of MERGL-Li immunoreactivity.

  17. [Effect of bee venom injection on TrkA and TRPV1 expression in the dorsal root ganglion of rats with collagen-induced arthritis].

    PubMed

    Xian, Pei-Feng; Chen, Ying; Yang, Lu; Liu, Guo-Tao; Peng, Peng; Wang, Sheng-Xu

    2016-06-01

    To investigate the therapeutic effect of acupoint injection of bee venom on collagen-induced arthritis (CIA) in rats and explore the mechanism of bee venom therapy in the treatment of rheumatoid arthritis. Fifteen male Wistar rats were randomly divided into bee venom treatment group (BV group), CIA model group, and control group. In the former two groups, CIA was induced by injections of collagen II+IFA (0.2 mL) via the tail vein, and in the control group, normal saline was injected instead. The rats in BV group received daily injection of 0.1 mL (3 mg/mL) bee venom for 7 consecutive days. All the rats were assessed for paw thickness and arthritis index from days 14 to 21, and the pain threshold was determined on day 21. The expressions of TRPV1 and TrkA in the dorsal root ganglion at the level of L4-6 were detected using immunohistochemistry and Western blotting, respectively. The rats in CIA model group started to show paw swelling on day 10, and by day 14, all the rats in this group showed typical signs of CIA. In BV group, the rats receiving been venom therapy for 7 days showed a significantly smaller paw thickness and a low arthritis index than those in the model group. The pain threshold was the highest in the control group and the lowest in the model group. TRPV1-positive cells and TrkA expression in the dorsal root ganglion was significantly reduced in BV group as compared with that in the model group. s Injection of bee venom can decrease expression of TRPV1 and TrkA in the dorsal root ganglion to produce anti-inflammatory and analgesic effects, suggesting the potential value of bee venom in the treatment of rheumatoid arthritis.

  18. A novel role for antizyme inhibitor 2 as a regulator of serotonin and histamine biosynthesis and content in mouse mast cells.

    PubMed

    Acosta-Andrade, Carlos; Lambertos, Ana; Urdiales, José L; Sánchez-Jiménez, Francisca; Peñafiel, Rafael; Fajardo, Ignacio

    2016-10-01

    Antizymes and antizyme inhibitors are key regulatory proteins of polyamine levels by affecting ornithine decarboxylase and polyamine uptake. Our previous studies indicated a metabolic interplay among polyamines, histamine and serotonin in mast cells, and demonstrated that polyamines are present in mast cell secretory granules, being important for histamine storage and serotonin levels. Recently, the novel antizyme inhibitor-2 (AZIN2) was proposed as a local regulator of polyamine biosynthesis in association with mast cell serotonin-containing granules. To gain insight into the role of AZIN2 in the biosynthesis and storage of serotonin and histamine, we have generated bone marrow derived mast cells (BMMCs) from both wild-type and transgenic Azin2 hypomorphic mice, and have analyzed polyamines, serotonin and histamine contents, and some elements of their metabolisms. Azin2 hypomorphic BMMCs did not show major mast cell phenotypic alterations as judged by morphology and specific mast cell proteases. However, compared to wild-type controls, these cells showed reduced spermidine and spermine levels, and diminished growth rate. Serotonin levels were also reduced, whereas histamine levels tended to increase. Accordingly, tryptophan hydroxylase-1 (TPH1; the key enzyme for serotonin biosynthesis) mRNA expression and protein levels were reduced, whereas histidine decarboxylase (the enzyme responsible for histamine biosynthesis) enzymatic activity was increased. Furthermore, microphtalmia-associated transcription factor, an element involved in the regulation of Tph1 expression, was reduced. Taken together, our results show, for the first time, an element of polyamine metabolism -AZIN2-, so far described as exclusively devoted to the control of polyamine concentrations, involved in regulating the biosynthesis and content of other amines like serotonin and histamine.

  19. Antigen-specific histamine release in dogs with food hypersensitivity.

    PubMed

    Ishida, Rinei; Masuda, Kenichi; Sakaguchi, Masahiro; Kurata, Keigo; Ohno, Koichi; Tsujimoto, Hajime

    2003-03-01

    An in vitro evidence of IgE-mediated hypersensitivity to food allergens was detected by positive results of antigen-specific histamine release in dogs with food hypersensitivity. Eight dogs were diagnosed to have food hypersensitivity based on identification of offending food allergens with food elimination followed by oral food provocation. The percentages of histamine release against the stimulation of offending food allergens in the cases ranged from 2.1% to 70.9%. Six of the 8 cases showed histamine release higher than those of healthy control dogs. Four dogs showed relatively high histamine release at the percentage beyond 10% that was compatible with a positive value of histamine release in humans with food hypersensitivity. These findings would suggest that IgE-mediated hypersensitivity against food allergens could be involved in canine food hypersensitivity.

  20. Synthesis of Gallic Acid Analogs as Histamine and Pro-Inflammatory Cytokine Inhibitors for Treatment of Mast Cell-Mediated Allergic Inflammation.

    PubMed

    Fei, Xiang; Je, In-Gyu; Shin, Tae-Yong; Kim, Sang-Hyun; Seo, Seung-Yong

    2017-05-29

    Gallic acid (3,4,5-trihydroxybenzoic acid), is a natural product found in various foods and herbs that are well known as powerful antioxidants. Our previous report demonstrated that it inhibits mast cell-derived inflammatory allergic reactions by blocking histamine release and pro-inflammatory cytokine expression. In this report, various amide analogs of gallic acid have been synthesized by introducing different amines through carbodiimide-mediated amide coupling and Pd/C-catalyzed hydrogenation. These compounds showed a modest to high inhibitory effect on histamine release and pro-inflammatory cytokine expression. Among them, the amide bearing ( S )-phenylglycine methyl ester 3d was found to be more active than natural gallic acid. Further optimization yielded several ( S )- and ( R )-phenylglycine analogs that inhibited histamine release in vitro. Our findings suggest that some gallamides could be used as a treatment for allergic inflammatory diseases.

  1. [Effects on survival of shRNA mediated APE/Ref1 gene silencing in rat spiral ganglion cells in oxidative stress].

    PubMed

    Jiang, Zhendong; Zhong, Cheng; Li, Taijun; Xiang, Zhaolan; Zhang, Xueyuan

    2014-02-01

    To investigate the effects of reducing APE/Ref1 expression in the cultures of rat spiral ganglion cells with oxidative damage induced by H(2)O(2). Primary cultured rat spiral ganglion cells were infected with small interfering RNA to APE/Ref1 (Ape1siRNA) for 72 h, followed by treating with H(2)O(2) (0, 10, 25, 50, 100 and 300 µmol/L) for 1 h , and then cultured in normal medium for 24 h. Western blot were used to detect the level of APE/Ref1 protein and phosphorylation of histone protein H2AX in the infected cells. The caspase3 activation was tested by spectrophotometric method . The cell viability was determined by MTT and the apoptosis of spiral ganglion cells was determined by terminal-deoxynucleotidyl transferase mediated nick and labeling (TUNEL). Western blot showed that infection with Ape1siRNA resulted in APE/Ref1 reduced expression in the spiral ganglion cells. Exposing spiral ganglion cultures with reduced expression of APE/Ref1 to H(2)O(2) (50, 100, 300 µmol/L) for 1 h resulted in increasing in the phosphorylation of histone protein H2AX. The reduction in APE/Ref1 significantly reduced cell viability in cultures 24 h after 1 h expression to 50-300 µmol/L H(2)O(2). The apoptosis of cells and caspase 3 activity was detected significantly improved. The induced of APE/Ref1 results in significantly decrease in spiral ganglion cells viability in oxidative stress. The repairing function of APE/Ref1 is necessary for optimal levels of neuronal rat spiral ganglion cells survival.

  2. Histamine Levels in Fish from Markets in Lima, Perú†

    PubMed Central

    Gonzaga, Victor E.; Lescano, Andres G.; Huamán, Alfredo A.; Salmón-Mulanovich, Gabriela; Blazes, David L.

    2014-01-01

    Illnesses associated with seafood are an important public health concern worldwide, particularly considering the steady increase in seafood consumption. However, research about the risks associated with seafood products is scarce in developing countries. Histamine fish poisoning is the most common form of fish intoxication caused by seafood and usually presents as an allergic reaction. This condition occurs when fish are not kept appropriately refrigerated and histamine is formed in the tissues. Histamine levels of >500 ppm usually are associated with clinical illness. We assessed histamine levels in fish from markets in Lima, Peru, with a quantitative competitive enzyme-linked immunosorbent assay. Thirty-eight specimens were purchased from wholesale and retail markets: 17 bonito (Sarda sarda), 16 mackerel (Scomber japonicus peruanus), and 5 mahi-mahi (Coryphaena hippurus). Seven fish (18%) had histamine levels of 1 to 10 ppm (three mackerel and four bonito) and three (8%) had >10 ppm (three mackerel, 35 to 86 ppm). Fish from retail markets had detectable histamine levels (>1 ppm) more frequently than did fish bought at wholesale fish markets: 9 (36%) of 25 fish versus 1 (8%) of 13 fish, respectively (P = 0.063). Higher histamine levels were correlated with later time of purchase during the day (Spearman’s rho = 0.37, P = 0.024). Mackerel purchased at retail markets after 2 p.m. had a 75% prevalence of histamine levels of >10 ppm. Mackerel purchased late in the day in retail markets frequently contained high histamine levels, although the overall prevalence of elevated histamine levels was low. Despite the small sample, our findings highlight the need to reinforce seafood safety regulations and quality control in developing countries such as Peru. PMID:19517744

  3. Organic cation transporter 3 modulates murine basophil functions by controlling intracellular histamine levels

    PubMed Central

    Schneider, Elke; Machavoine, François; Pléau, Jean-Marie; Bertron, Anne-France; Thurmond, Robin L.; Ohtsu, Hiroshi; Watanabe, Takehiko; Schinkel, Alfred H.; Dy, Michel

    2005-01-01

    In this study, we identify the bidirectional organic cation transporter 3 (OCT3/Slc22a3) as the molecule responsible for histamine uptake by murine basophils. We demonstrate that OCT3 participates in the control of basophil functions because exogenous histamine can inhibit its own synthesis—and that of interleukin (IL)-4, IL-6, and IL-13—through this means of transport. Furthermore, ligands of H3/H4 histamine receptors or OCT3 inhibit histamine uptake, and outward transport of newly synthesized histamine. By doing so, they increase the histamine content of basophils, which explains why they mimic the effect of exogenous histamine. These drugs were no longer effective in histamine-free histidine decarboxylase (HDC)-deficient mice, in contrast with histamine itself. Histamine was not taken up and lost its inhibitory effect in mice deficient for OCT3, which proved its specific involvement. Intracellular histamine levels were increased strongly in IL-3–induced OCT3 −/− bone marrow basophils, and explained why they generated fewer cytokines than their wild-type counterpart. Their production was enhanced when histamine synthesis was blocked by the specific HDC inhibitor α-fluoro-methyl histidine, and underscored the determinant role of histamine in the inhibitory effect. We postulate that pharmacologic modulation of histamine transport might become instrumental in the control of basophil functions during allergic diseases. PMID:16061728

  4. Regulation of the Cardiovascular System by Histamine.

    PubMed

    Hattori, Yuichi; Hattori, Kohshi; Matsuda, Naoyuki

    2017-01-01

    Histamine mediates a wide range of cellular responses, including allergic and inflammatory reactions, gastric acid secretion, and neurotransmission in the central nervous system. Histamine also exerts a series of actions upon the cardiovascular system but may not normally play a significant role in regulating cardiovascular function. During tissue injury, inflammation, and allergic responses, mast cells (or non-mast cells) within the tissues can release large amounts of histamine that leads to noticeable cardiovascular effects. Owing to intensive research during several decades, the distribution, function, and pathophysiological role of cardiovascular H 1 - and H 2 -receptors has become recognized adequately. Besides the recognized H 1 - and H 2 -receptor-mediated cardiovascular responses, novel roles of H 3 - and H 4 -receptors in cardiovascular physiology and pathophysiology have been identified over the last decade. In this review, we describe recent advances in our understanding of cardiovascular function and dysfunction mediated by histamine receptors, including H 3 - and H 4 -receptors, their potential mechanisms of action, and their pathological significance.

  5. Changes in Dorsal Root Ganglion Gene Expression in Response to Spinal Cord Stimulation.

    PubMed

    Tilley, Dana M; Cedeño, David L; Kelley, Courtney A; DeMaegd, Margaret; Benyamin, Ramsin; Vallejo, Ricardo

    Spinal cord stimulation (SCS) has been shown to influence pain-related genes in the spinal cord directly under the stimulating electrodes. There is limited information regarding changes occurring at the dorsal root ganglion (DRG). This study evaluates gene expression in the DRG in response to SCS therapy. Rats were randomized into experimental or control groups (n = 6 per group). Experimental animals underwent spared-nerve injury, implantation of lead, and continuous SCS (72 hours). Behavioral assessment for mechanical hyperalgesia was conducted to compare responses after injury and treatment. Ipsilateral DRG tissue was collected, and gene expression quantified for interleukin 1b (IL-1b), interleukin 6 (IL-6), tumor necrosis factor α (TNF-α), GABA B receptor 1 (GABAbr1), substance P (subP), Integrin alpha M (ITGAM), sodium/potassium ATP-ase (Na/K ATPase), fos proto-oncogene (cFOS), serotonin receptor 3A (5HT3r), galanin (Gal), vasoactive intestinal peptide (VIP), neuropeptide Y (NpY), glial fibrillary acidic protein (GFAP), and brain derived neurotropic factor (BDNF) via quantitative polymerase chain reaction. Statistical significance was established using analysis of variance (ANOVA), independent t tests, and Pearson correlation tests. Expression of IL-1b and IL-6 was reversed following SCS therapy relative to the increase caused by the injury model. Both GABAbr1 and Na/K ATPase were significantly up-regulated upon implantation of the lead, and SCS therapy reversed their expression to within control levels. Pearson correlation analyses reveal that GABAbr1 and Na/K ATPase expression was dependent on the stimulating current intensity. Spinal cord stimulation modulates expression of key pain-related genes in the DRG. Specifically, SCS led to reversal of IL-1b and IL-6 expression induced by injury. Interleukin 6 expression was still significantly larger than in sham animals, which may correlate to residual sensitivity following continuous SCS treatment. In addition

  6. Influence of iodinated contrast media on the activities of histamine inactivating enzymes diamine oxidase and histamine N-methyltransferase in vitro.

    PubMed

    Kuefner, M A; Feurle, J; Petersen, J; Uder, M; Schwelberger, H G

    2014-01-01

    Iodinated contrast media can cause pseudoallergic reactions associated with histamine release in significant numbers of patients. To clarify whether these adverse reactions may be aggravated by a compromised histamine catabolism we asked if radiographic contrast agents in vitro inhibit the histamine inactivating enzymes diamine oxidase (DAO) and histamine N-methyltransferase (HMT). Nine iodinated contrast agents were tested in vitro. Following pre-incubation of purified porcine kidney DAO and recombinant human HMT with 0.1-10mM of the respective contrast medium (H2O and specific inhibitors of DAO and HMT as controls) enzyme activities were determined by using radiometric micro assays. None of the contrast media irrespective of their structure showed significant inhibition of the activities of DAO and HMT. Pre-incubation of the enzymes with specific inhibitors led to complete inhibition of the respective enzymatic activity. The iodinated contrast media tested in vitro did not exhibit inhibition of histamine converting enzymes at physiologically relevant concentrations. However due to the in vitro character of this study these results do not directly reflect the in vivo situation. Copyright © 2012 SEICAP. Published by Elsevier Espana. All rights reserved.

  7. Blood histamine release: A new allergy blood test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faraj, B.A.; Gottlieb, G.R.; Camp, V.M.

    1985-05-01

    Allergen-mediated histamine release from human leukocytes represents an important model for in vitro studies of allergic reactions. The purpose of this study was to determine whether the measurement of histamine released in allergic patients (pts) by radioenzymatic assay following mixing of their blood with common allergens represents a reliable index for diagnosis of atopic allergy. Three categories of allergies were used: (1) housedust and mite; (2) cat and dog dander; (3) trees and grasses and ragweed mixture. The presence of allergy was established by intradermal skin testing in the study group of 82 pts. Significant atopy was defined as greatermore » than or equal to 3+ (overall range 0-4 +, negative to maximum) on skin testing. The test was carried out in tubes with 0.5 ml heparinized blood, 0.5 ml tris albumin buffer, and one of the allergens (60-100 PNU/ml). In 20 controls without allergy, there always was less than or equal to 4% histamine release (normal response). A significant allergen-mediated histamine release, ranging from 12 to 30% of the total blood histamine content, was observed in 96% of the pts with skin test sensitivity of greater than or equal to 3+. There was good agreement between skin testing and histamine release in terms of the allergen causing the response. Thus, measurement of histamine release in blood in response to allergen challenge represents a clinically useful in vitro test for the diagnosis of atopic allergy. Because data can be obtained from a single sample and are highly quantitative, this new method should have application to the longitudinal study of allergic pts and to the assessment of interventions.« less

  8. Human eosinophils - potential pharmacological model applied in human histamine H4 receptor research.

    PubMed

    Grosicki, Marek; Kieć-Kononowicz, Katarzyna

    2015-01-01

    Histamine and histamine receptors are well known for their immunomodulatory role in inflammation. In this review we describe the role of histamine and histamine H4 receptor on human eosinophils. In the first part of article we provide short summary of histamine and histamine receptors role in physiology and histamine related therapeutics used in clinics. We briefly describe the human histamine receptor H4 and its ligands, as well as human eosinophils. In the second part of the review we provide detailed description of known histamine effects on eosinophils including: intracellular calcium concentration flux, actin polymerization, cellular shape change, upregulation of adhesion proteins and cellular chemotaxis. We provide proofs that these effects are mainly connected with the activation of histamine H4 receptor. When examining experimental data we discuss the controversial results and limitations of the studies performed on isolated eosinophils. In conclusion we believe that studies on histamine H4 receptor on human eosinophils can provide interesting new biomarkers that can be used in clinical studies of histamine receptors, that in future might result in the development of new strategies in the treatment of chronic inflammatory conditions like asthma or allergy, in which eosinophils are involved.

  9. PUNISHING AND CARDIOVASCULAR EFFECTS OF INTRAVENOUS HISTAMINE IN RATS: PHARMACOLOGICAL SELECTIVITY

    PubMed Central

    Podlesnik, Christopher A.; Jimenez-Gomez, Corina

    2014-01-01

    Although drugs may serve as reinforcers or punishers of operant behavior, the punishing function has received much less experimental attention than the reinforcing function. A sensitive method for studying drug-induced punishment is to assess choice for a punished response over an unpunished response. In these experiments, rats chose between pressing one lever and receiving a sucrose pellet or pressing another lever and receiving a sucrose pellet plus an intravenous injection of histamine. When sucrose was delivered equally frequently for either the punished or the unpunished response, rats selected the unpunished lever consistently, but decreases in the punished response did not differ as a function of intravenous histamine dose (0.1–1 mg/kg/inj). Changing the procedure so that sucrose was delivered on the unpunished lever with p = .5 increased the rats’ responding on the punished lever with saline injections. In addition, the same range of histamine doses produced a much larger range of responses on the punished lever that was dose dependent. Using these procedures to assess the receptors mediating histamine’s effects, the histamine H1-receptor antagonists, pyrilamine and ketotifen, antagonized the punishing effect of histamine, but the histamine H2-receptor antagonist ranitidine did not. However, ranitidine pretreatments reduced histamine-induced heart-rate increases to a greater extent than did the histamine H1-receptor antagonists when administered at the same doses examined under conditions of histamine punishment. Overall, the present findings extend the general hypothesis that activation of histamine H1-receptors mediates the punishing effects of histamine. They also introduce methods for rapidly assessing pharmacological mechanisms underlying drug-induced punishment. PMID:23982898

  10. Interactions of the histamine and hypocretin systems in CNS disorders.

    PubMed

    Shan, Ling; Dauvilliers, Yves; Siegel, Jerome M

    2015-07-01

    Histamine and hypocretin neurons are localized to the hypothalamus, a brain area critical to autonomic function and sleep. Narcolepsy type 1, also known as narcolepsy with cataplexy, is a neurological disorder characterized by excessive daytime sleepiness, impaired night-time sleep, cataplexy, sleep paralysis and short latency to rapid eye movement (REM) sleep after sleep onset. In narcolepsy, 90% of hypocretin neurons are lost; in addition, two groups reported in 2014 that the number of histamine neurons is increased by 64% or more in human patients with narcolepsy, suggesting involvement of histamine in the aetiology of this disorder. Here, we review the role of the histamine and hypocretin systems in sleep-wake modulation. Furthermore, we summarize the neuropathological changes to these two systems in narcolepsy and discuss the possibility that narcolepsy-associated histamine abnormalities could mediate or result from the same processes that cause the hypocretin cell loss. We also review the changes in the hypocretin and histamine systems, and the associated sleep disruptions, in Parkinson disease, Alzheimer disease, Huntington disease and Tourette syndrome. Finally, we discuss novel therapeutic approaches for manipulation of the histamine system.

  11. Effects of Bidens pilosa L. var. radiata SCHERFF treated with enzyme on histamine-induced contraction of guinea pig ileum and on histamine release from mast cells.

    PubMed

    Matsumoto, Takayuki; Horiuchi, Masako; Kamata, Katsuo; Seyama, Yoshiyuki

    2009-06-01

    The medical mechanism against type I allergies is to block the release or production of chemical mediators from mast cells or to block the H(1)-receptor signaling. We previously reported that the anti-allergic action of the dry powder from Bidens pilosa L. var. radiata SCHERFF treated with the enzyme cellulosine (eMMBP) was dependent on the inhibition of histamine release from mast cells. Here, we investigate that the effect of fractions in eMMBP on the histamine-induced contraction in guinea pig ileum and on the release of histamine in rat peritoneal mast cells. The histamine-induced contraction in guinea pig ileum is dose-dependently inhibited by ketotifen, an antagonist of H(1)-receptor. Fractions contained caffeic acid, caffeoylquinic acid and fractions contained flavonoids such as hyperin and isoquercitrin in eMMBP inhibit histamine release from mast cells, but only flavonoids such as hyperin, isoquercitrin and rutin suppress the histamine-induced contraction in guinea pig ileum. Moreover, the histamine-induced contraction was not affected by caffeic acid, however, such contraction was significantly inhibited by rutin. These results suggest that the primary antagonists of H(1)- receptor are different from the components in eMMBP that inhibit histamine release, and that these components participate in the anti-allergic activity of eMMBP.

  12. TRPC1 is required for survival and proliferation of cochlear spiral ganglion stem/progenitor cells.

    PubMed

    Chen, Hsin-Chien; Wang, Chih-Hung; Shih, Cheng-Ping; Chueh, Sheau-Huei; Liu, Shu-Fan; Chen, Hang-Kang; Lin, Yi-Chun

    2015-12-01

    The present studies were designed to test the hypothesis that canonical transient receptor potential channel 1 (TRPC1) is required for the proliferation of cochlear spiral ganglion stem/progenitor cells (SPCs). TRPC1 were detected and evaluated in postnatal day 1 CBA/CaJ mice pups derived-cochlear spiral ganglion SPCs by reverse transcription-polymerase chain reaction, Western blot, immunocytochemistry, and calcium imaging. The cell viability and proliferation of the spiral ganglion SPCs following si-RNA mediated knockdown of TRPC1 or addition of TRPC channel blocker SKF9635 were compared to controls. In spiral ganglion SPCs, TRPC1 was found to be the most abundantly expressed TRPC subunit and shown to contribute to store-operated calcium entry. Silencing of TRPC1 or addition of TRPC channel blockers significantly decreased the rate of cell proliferation. The results suggest that TRPC1 might serve as an essential molecule in regulating the proliferation of spiral ganglion SPCs. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Evidence that histamine is the causative toxin of scombroid-fish poisoning.

    PubMed

    Morrow, J D; Margolies, G R; Rowland, J; Roberts, L J

    1991-03-14

    The highest morbidity worldwide from fish poisoning results from the ingestion of spoiled scombroid fish, such as tuna and mackerel, and its cause is not clear. Histamine could be responsible, because spoiled scombroid fish contain large quantities of histamine. Whether histamine is the causative toxin, however, has remained in question. To address this issue, we investigated whether histamine homeostasis is altered in poisoned people. The urinary excretion of histamine and its metabolite, N-methylhistamine, was measured in three persons who had scombroid-fish poisoning (scombrotoxism) after the ingestion of marlin. We measured 9 alpha, 11 beta-dihydroxy-15-oxo-2,3,18,19-tetranorprost-5-ene-1,20-dioic acid (PGD-M), the principal metabolite of prostaglandin D2, a mast-cell secretory product, to assess whether mast cells had been activated to release histamine. The fish contained high levels of histamine (842 to 2503 mumol per 100 g of tissue). Symptoms of scombrotoxism--flushing and headache--began 10 to 30 minutes after the ingestion of fish. In urine samples collected one to four hours after fish ingestion, the levels of histamine and N-methylhistamine were 9 to 20 times and 15 to 20 times the normal mean, respectively. During the subsequent 24 hours, the levels fell to 4 to 15 times and 4 to 11 times the normal values. Levels of both were normal 14 days later. PGD-M excretion was not increased at any time. Two persons treated with diphenhydramine had prompt amelioration of symptoms. Scombroid-fish poisoning is associated with urinary excretion of histamine in quantities far exceeding those required to produce toxicity. The histamine is most likely derived from the spoiled fish. These results identify histamine as the toxin responsible for scombroid-fish poisoning.

  14. Histamine content does not influence the tolerance of wine in normal subjects.

    PubMed

    Kanny, G; Bauza, T; Frémont, S; Guillemin, F; Blaise, A; Daumas, F; Cabanis, J C; Nicolas, J P; Moneret-Vautrin, D A

    1999-02-01

    Histamine has been incriminated as having a responsibility for intolerance reaction to wines. We have made a study by double blind oral provocation test to find the effect of ingestion of a histamine-rich (22.8 mg.l-1) and a histamine free wine in eight healthy subjects. Blood samples were taken at 0, 10, 30 and 45 minutes after ingestion of the wine for measurement of plasma histamine and methylhistamine. Urines were collected 5 hours before and 5 hours after ingestion for measurement of urinary methylhistamine. No subject presented a reaction of intolerance after ingestion of wine rich or poor in histamine. No change in plasma histamine and plasma and urinary methylhistamine was seen. This study shows that the amount of histamine in wine has no clinical or biological effect in healthy subjects, and this emphasized the efficiency in man of the systems for degradation of histamine that is absorbed by the alimentary tract.

  15. Updosing of Nonsedating Anti-histamines in Recalcitrant Chronic Urticaria

    PubMed Central

    Godse, Kiran; Bhattar, Prachi; Patil, Sharmila; Nadkarni, Nitin; Gautam, Manjyot

    2016-01-01

    Chronic urticaria (CU) is a persistent, debiliating condition that causes severe impairment on the quality of life (QoL) of patient by interrupting work productivity. Current guidelines recommend second-generation (nonsedating) anti-histamines for the treatment for all forms of urticaria. In patients who do not respond adequately to conventional doses of anti-histamines, it is recommended to increase the dose to up to four times to obtain control. But there are only few controlled studies that have assessed the efficacy and safety of nonsedating anti-histamines. Though sedating histamines are frequently used as an add-on therapy in severe cases, they have a negative impact on QoL by compromising sleep and performance. The use of other suggested therapeutic options (omalizumab, cyclosporine A, montelukast and dapsone) is also limited by paucity of data on their efficacy and adverse effect profile. Second-generation anti-histamines which are relatively safer require more proven data to support their judicious use to improve disease in patients with CU. PMID:27293247

  16. Stimulation of cell proliferation by histamine H2 receptors in dimethylhdrazine-induced adenocarcinomata.

    PubMed

    Tutton, P J; Barkla, D H

    1978-03-01

    Cell proliferation in dimethylhydrazine-induced colonic carcinomata was stimulated by histamine and by the histamine H2 receptor agonist dimaprit and inhibited by the histamine H2 receptor antagonists Metiamide and Cimetidine but not by the histamine H1 receptor antagonist Mepyramine. In contrast histamine had no effect on colonic crypt cell proliferation in normal or dimethylhydrazine-treated rats.

  17. Immunological release of histamine and slow-reacting substance in domestic fowl.

    PubMed Central

    Chand, N; Eyre, P

    1978-01-01

    Immunological release of histamine from the whole blood of the sensitized chickens was demonstrated. Compound 48/80 (a potent histamine releaser) released histamine from isolated chicken lung. The sensitizing antigens (bovine albumin or horse plasma) did not release histamine from the lung. Bovine albumin and horse plasma released slow-reacting substance of anaphylaxis only from the lungs of adult domestic fowl and not from ileum or lungs of immature chickens. PMID:84701

  18. Intrinsically photosensitive retinal ganglion cells.

    PubMed

    Do, Michael Tri Hoang; Yau, King-Wai

    2010-10-01

    Life on earth is subject to alternating cycles of day and night imposed by the rotation of the earth. Consequently, living things have evolved photodetective systems to synchronize their physiology and behavior with the external light-dark cycle. This form of photodetection is unlike the familiar "image vision," in that the basic information is light or darkness over time, independent of spatial patterns. "Nonimage" vision is probably far more ancient than image vision and is widespread in living species. For mammals, it has long been assumed that the photoreceptors for nonimage vision are also the textbook rods and cones. However, recent years have witnessed the discovery of a small population of retinal ganglion cells in the mammalian eye that express a unique visual pigment called melanopsin. These ganglion cells are intrinsically photosensitive and drive a variety of nonimage visual functions. In addition to being photoreceptors themselves, they also constitute the major conduit for rod and cone signals to the brain for nonimage visual functions such as circadian photoentrainment and the pupillary light reflex. Here we review what is known about these novel mammalian photoreceptors.

  19. Synthesis and Characterization of Novel Ruthenium(III) Complexes with Histamine

    PubMed Central

    Kljun, Jakob; Petriček, Saša; Žigon, Dušan; Hudej, Rosana; Miklavčič, Damijan; Turel, Iztok

    2010-01-01

    Novel ruthenium(III) complexes with histamine [RuCl4(dmso-S)(histamineH)] · H2O (1a) and [RuCl4(dmso-S)(histamineH)] (1b) have been prepared and characterized by X-ray structure analysis. Their crystal structures are similar and show a protonated amino group on the side chain of the ligand which is not very common for a simple heterocyclic derivative such as histamine. Biological assays to test the cytotoxicity of the compound 1b combined with electroporation were performed to determine its potential for future medical applications in cancer treatment. PMID:20631838

  20. Histamine regulation of pancreatitis and pancreatic cancer: a review of recent findings

    PubMed Central

    Francis, Taylor; Graf, Allyson; Hodges, Kyle; Kennedy, Lindsey; Hargrove, Laura; Price, Mattie; Kearney, Kate

    2013-01-01

    The pancreas is a dynamic organ that performs a multitude of functions within the body. Diseases that target the pancreas, like pancreatitis and pancreatic cancer, are devastating and often fatal to the suffering patient. Histamine and histamine receptors (H1-H4HRs) have been found to play a critical role in biliary diseases. Accordingly, the biliary tract and the pancreas share similarities with regards to morphological, phenotypical and functional features and disease progression, studies related the role of H1-H4HRs in pancreatic diseases are important. In this review, we have highlighted the role that histamine, histidine decarboxylase (HDC), histamine receptors and mast cells (the main source of histamine in the body) play during both pancreatitis and pancreatic cancer. The objective of the review is to demonstrate that histamine and histamine signaling may be a potential therapeutic avenue towards treatment strategies for pancreatic diseases. PMID:24570946

  1. Serum diamine oxidase activity as a diagnostic test for histamine intolerance.

    PubMed

    Mušič, Ema; Korošec, Peter; Šilar, Mira; Adamič, Katja; Košnik, Mitja; Rijavec, Matija

    2013-05-01

    Histamine intolerance (HIT) is characterized by an imbalance between histamine intake and the capacity for histamine degradation. The main enzyme for metabolizing ingested histamine is diamine oxidase (DAO). Determining DAO activity in serum may be useful in diagnosing HIT. Over a period of 3.5 years we recruited 316 subjects with clinically suspected HIT and 55 healthy controls. Serum DAO activity was measured with a quantitative enzyme immunoassay. Twenty patients with highly reduced DAO activity went on a histamine-free diet for 6-12 months. Afterwards, their DAO activity was determined again. We found that DAO activity was significantly lower in patients than in healthy control subjects (P < 0.0001). Furthermore, 54 patients had highly reduced serum DAO activity (< 40 HDU/ml). Their main symptoms involved the skin, gastrointestinal tract, respiratory system, and eyes. In all the 20 patients with highly reduced DAO activity, the main clinical symptoms typical of histamine intolerance disappeared after they adopted a histamine-free diet. Furthermore, the serum DAO activity values measured increased significantly (P < 0.0001). Our results suggest that determining DAO activity in serum is a useful tool in diagnosing HIT. Furthermore, our results showed the benefit of a histamine-free diet because after the diet the majority of symptoms disappeared and the serum DAO activity significantly increased.

  2. Novel Roles for Kv7 Channels in Shaping Histamine-Induced Contractions and Bradykinin-Dependent Relaxations in Pig Coronary Arteries

    PubMed Central

    Chen, Xingjuan; Li, Wennan; Hiett, S. Christopher; Obukhov, Alexander G.

    2016-01-01

    -contracted CAs. We propose that in CAs, a decreased expression or a loss of function of Kv7 channels may lead to sustained histamine-induced contractions and reduced endothelium-dependent relaxation, both risk factors for coronary spasm. PMID:26844882

  3. Histamine production by Klebsiella pneumoniae and an incident of scombroid fish poisoning.

    PubMed Central

    Taylor, S L; Guthertz, L S; Leatherwood, M; Lieber, E R

    1979-01-01

    A histamine-producing strain of Klebsiella pneumoniae was isolated from a sample of tuna sashimi implicated in an outbreak of scombroid fish poisoning. None of the other nine gram-negative bacterial strains isolated from the tuna sashimi was capable of equivalent histamine production. Bacterial histamine production was monitored in a tuna fish infusion broth (TFIB), and the implicated K. pneumoniae was capable of producing 442 mg of histamine per 100 g of tuna in TFIB in 7 h under controlled incubation conditions. Only 12 of 50 other K. pneumoniae strains, representing 5 distinct biochemical types, which had been originally isolated from foods, were able to produce such levels of histamine in TFIB. No correlation was found between histamine production and other biochemical characteristics or antibiotic resistance. Of the 12 histamine-producing strains, 11 belonged to type 2, which is characterized as indole negative with positive reactions in the urea and Voges-Proskauer tests. However, only 50% of the type 2 strains examined produced high levels of histamine in TFIB. Additionally, the implicated K. pneumoniae strain and one other strain belonged to type 1, which is characterized by positive reactions in the indole, urea, and Voges-Proskauer tests. PMID:373626

  4. Cold urticaria: inhibition of cold-induced histamine release by doxantrazole.

    PubMed

    Bentley-Phillips, C B; Eady, R A; Greaves, M W

    1978-10-01

    Thirteen patients with cold urticaria were studied to assess the effect of the systemic drug doxantrazole, which has actions resembling disodium cromoglycate, on cold evoked histamine release. The patients, all of whom developed an immediate local whealing response after cooling of the forearm, demonstrated release of histamine into venous blood draining that forearm. Following doxantrazole treatment, significant suppression of histamine release occurred. In some but not all patients this was accompanied by diminution of urtication in response to cooling. A double-blind study was carried out in 3 subjects, all of whom showed diminished cold-stimulated histamine release after doxantrazole. Two of these showed clinical improvement. Doxantrazole had no effect on erythema due to intradermal histamine, but did suppress the erythematous reaction to intradermal injection of compound 48/80. Our results suggest that doxantrazole or related anti-allergic agents might be useful in the treatment of cold urticaria.

  5. Cochlear implants and ex vivo BDNF gene therapy protect spiral ganglion neurons.

    PubMed

    Rejali, Darius; Lee, Valerie A; Abrashkin, Karen A; Humayun, Nousheen; Swiderski, Donald L; Raphael, Yehoash

    2007-06-01

    Spiral ganglion neurons often degenerate in the deaf ear, compromising the function of cochlear implants. Cochlear implant function can be improved by good preservation of the spiral ganglion neurons, which are the target of electrical stimulation by the implant. Brain derived neurotrophic factor (BDNF) has previously been shown to enhance spiral ganglion survival in experimentally deafened ears. Providing enhanced levels of BDNF in human ears may be accomplished by one of several different methods. The goal of these experiments was to test a modified design of the cochlear implant electrode that includes a coating of fibroblast cells transduced by a viral vector with a BDNF gene insert. To accomplish this type of ex vivo gene transfer, we transduced guinea pig fibroblasts with an adenovirus with a BDNF gene cassette insert, and determined that these cells secreted BDNF. We then attached BDNF-secreting cells to the cochlear implant electrode via an agarose gel, and implanted the electrode in the scala tympani. We determined that the BDNF expressing electrodes were able to preserve significantly more spiral ganglion neurons in the basal turns of the cochlea after 48 days of implantation when compared to control electrodes. This protective effect decreased in the higher cochlear turns. The data demonstrate the feasibility of combining cochlear implant therapy with ex vivo gene transfer for enhancing spiral ganglion neuron survival.

  6. One-day high-fat diet induces inflammation in the nodose ganglion and hypothalamus of mice.

    PubMed

    Waise, T M Zaved; Toshinai, Koji; Naznin, Farhana; NamKoong, Cherl; Md Moin, Abu Saleh; Sakoda, Hideyuki; Nakazato, Masamitsu

    2015-09-04

    A high-fat diet (HFD) induces inflammation in systemic organs including the hypothalamus, resulting in obesity and diabetes. The vagus nerve connects the visceral organs and central nervous system, and the gastric-derived orexigenic peptide ghrelin transmits its starvation signals to the hypothalamus via the vagal afferent nerve. Here we investigated the inflammatory response in vagal afferent neurons and the hypothalamus in mice following one day of HFD feeding. This treatment increased the number of macrophages/microglia in the nodose ganglion and hypothalamus. Furthermore, one-day HFD induced expression of Toll-like receptor 4 in the goblet cells of the colon and upregulated mRNA expressions of the proinflammatory biomarkers Emr1, Iba1, Il6, and Tnfα in the nodose ganglion and hypothalamus. Both subcutaneous administration of ghrelin and celiac vagotomy reduced HFD-induced inflammation in these tissues. HFD intake triggered inflammatory responses in the gut, nodose ganglion, and subsequently in the hypothalamus within 24 h. These findings suggest that the vagal afferent nerve may transfer gut-derived inflammatory signals to the hypothalamus via the nodose ganglion, and that ghrelin may protect against HFD-induced inflammation. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Topical Histamine Stimulates Repigmentation of Nonsegmental Vitiligo by a Receptor-Dependent Mechanism.

    PubMed

    Liu, Jun; Xu, Yan; Lin, Tzu-Kai; Lv, Chengzhi; Elias, Peter M; Man, Mao-Qiang

    2017-01-01

    Though vitiligo is a common depigmentary disorder, it still represents a substantial therapeutic challenge. Therapeutic options are limited in part due to its uncertain etiology. Because recent studies suggest that histamine stimulates melanogenesis in vitro, we determined here whether topical histamine stimulates repigmentation in patients with stable, nonsegmental vitiligo. A total of 23 otherwise normal volunteers with vitiligo, including 14 males and 9 females aged 6-59 years (mean age 29.2 ± 2.8), were enrolled in this study. 1% histamine in distilled water was applied to the lesions twice daily for 5 weeks, while comparable lesions, treated with distilled water alone, served as the controls. The melanin index was measured on the uninvolved and lesional skin sites before and after 5 weeks of treatments using the melanin/erythema probe connected to a Courage-Khazaka MPA5 (Cologne, Germany). Changes in epidermal permeability barrier were also assessed at the same time point. To determine whether histamine-induced repigmentation is receptor-dependent, both ears of C57BL/6J mice were treated topically with 5% cimetidine, a histamine type 2 receptor (H2r) antagonist, twice daily for 10 days. One hour after each cimetidine application, the right ear was treated topically with 10% histamine, while vehicle alone was applied to the left ear. Changes in melanin index were measured 24 h after the last application of histamine and vehicle as described in the human study. In patients with vitiligo treated with vehicle alone for 5 weeks, the melanin index remained unchanged, while topical histamine treatment increased the melanin index by 38% (p < 0.001 vs. both vehicle and pretreatment), which was paralleled by a >60% reduction in lesion surface area. Moreover, topical histamine accelerated permeability barrier recovery. No adverse events were observed following histamine applications. In mice, topical histamine significantly increased the melanin index, while topical co

  8. Orofacial inflammatory pain affects the expression of MT1 and NADPH-d in rat caudal spinal trigeminal nucleus and trigeminal ganglion

    PubMed Central

    Huang, Fang; He, Hongwen; Fan, Wenguo; Liu, Yongliang; Zhou, Hongyu; Cheng, Bin

    2013-01-01

    Very little is known about the role of melatonin in the trigeminal system, including the function of melatonin receptor 1. In the present study, adult rats were injected with formaldehyde into the right vibrissae pad to establish a model of orofacial inflammatory pain. The distribution of melatonin receptor 1 and nicotinamide adenine dinucleotide phosphate diaphorase in the caudal spinal trigeminal nucleus and trigeminal ganglion was determined with immunohistochemistry and histochemistry. The results show that there are significant differences in melatonin receptor 1 expression and nicotinamide adenine dinucleotide phosphate diaphorase expression in the trigeminal ganglia and caudal spinal nucleus during the early stage of orofacial inflammatory pain. Our findings suggest that when melatonin receptor 1 expression in the caudal spinal nucleus is significantly reduced, melatonin's regulatory effect on pain is attenuated. PMID:25206619

  9. Expression of zinc transporter ZnT7 in mouse superior cervical ganglion

    USDA-ARS?s Scientific Manuscript database

    The superior cervical ganglion (SCG) neurons contain a considerable amount of zinc ions, but little is known about zinc homeostasis in the SCG. It is known that zinc transporter 7 (ZnT7, Slc30a7), a member of the Slc30 ZnT family, is involved in mobilizing zinc ions from the cytoplasm into the Golgi...

  10. Investigations of magnesium, histamine and immunoglobulins dynamics in acute urticaria.

    PubMed

    Mureşan, D; Oană, A; Nicolae, I; Alecu, M; Moşescu, L; Benea, V; Flueraş, M

    1990-01-01

    In 42 urticaria patients, magnesium, histamine and IgE were dosed. Magnesium, IgE and histamine variations were followed in urticaria evolution, during acute phase and clinical remission. We noticed magnesium, histamine, IgE values variations depending on disease evolution and applied therapeutic scheme. Therefore: At disease starting point, histamine presented 3.5 times higher values than the normal ones. The value decreases following a curve which tends to reach normal values during clinical remission. At disease starting point, magnesium presented values under the inferior limit of the normal, 0.5 m mol/L respectively, as a mean. The value increases towards the normal limit during clinical remission. Immunoglobulins E follow a similar curve to histamine one, presenting 1,250 U/L values at the starting point, that, under medication, influence decrease between normal limits (800 U/L), during clinical remission. Analyzing the variations of biochemical parameters, the authors emphasize magnesium substitution treatment in urticaria.

  11. Cost-effectiveness of histamine receptor-2 antagonist versus proton pump inhibitor for stress ulcer prophylaxis in critically ill patients*.

    PubMed

    MacLaren, Robert; Campbell, Jon

    2014-04-01

    To examine the cost-effectiveness of using histamine receptor-2 antagonist or proton pump inhibitor for stress ulcer prophylaxis. Decision analysis model examining costs and effectiveness of using histamine receptor-2 antagonist or proton pump inhibitor for stress ulcer prophylaxis. Costs were expressed in 2012 U.S. dollars from the perspective of the institution and included drug regimens and the following outcomes: clinically significant stress-related mucosal bleed, ventilator-associated pneumonia, and Clostridium difficile infection. Effectiveness was the mortality risk associated with these outcomes and represented by survival. Costs, occurrence rates, and mortality probabilities were extracted from published data. A simulation model. A mixed adult ICU population. Histamine receptor-2 antagonist or proton pump inhibitor for 9 days of stress ulcer prophylaxis therapy. Output variables were expected costs, expected survival rates, incremental cost, and incremental survival rate. Univariate sensitivity analyses were conducted to determine the drivers of incremental cost and incremental survival. Probabilistic sensitivity analysis was conducted using second-order Monte Carlo simulation. For the base case analysis, the expected cost of providing stress ulcer prophylaxis was $6,707 with histamine receptor-2 antagonist and $7,802 with proton pump inhibitor, resulting in a cost saving of $1,095 with histamine receptor-2 antagonist. The associated mortality probabilities were 3.819% and 3.825%, respectively, resulting in an absolute survival benefit of 0.006% with histamine receptor-2 antagonist. The primary drivers of incremental cost and survival were the assumptions surrounding ventilator-associated pneumonia and bleed. The probabilities that histamine receptor-2 antagonist was less costly and provided favorable survival were 89.4% and 55.7%, respectively. A secondary analysis assuming equal rates of C. difficile infection showed a cost saving of $908 with histamine

  12. Ganglion Cyst

    MedlinePlus

    ... with aspiration and injection therapy, there are nevertheless cases in which the ganglion cyst returns. Find an ACFAS Physician Search Search Tools Find an ACFAS Physician: Search by Mail Address ...

  13. Complex distribution patterns of voltage-gated calcium channel α-subunits in the spiral ganglion

    PubMed Central

    Chen, Wei Chun; Xue, Hui Zhong; Hsu, Yun (Lucy); Liu, Qing; Patel, Shail; Davis, Robin L.

    2011-01-01

    As with other elements of the peripheral auditory system, spiral ganglion neurons display specializations that vary as a function of location along the tonotopic axis. Previous work has shown that voltage-gated K+ channels and synaptic proteins show graded changes in their density that confers rapid responsiveness to neurons in the high frequency, basal region of the cochlea and slower, more maintained responsiveness to neurons in the low frequency, apical region of the cochlea. In order to understand how voltage-gated calcium channels (VGCCs) may contribute to these diverse phenotypes, we identified the VGCC α-subunits expressed in the ganglion, investigated aspects of Ca2+-dependent neuronal firing patterns, and mapped the intracellular and intercellular distributions of seven VGCC α-subunits in the spiral ganglion in vitro. Initial experiments with qRT-PCR showed that eight of the ten known VGCC α-subunits were expressed in the ganglion and electrophysiological analysis revealed firing patterns that were consistent with the presence of both LVA and HVA Ca2+ channels. Moreover, we were able to study seven of the α-subunits with immunocytochemistry, and we found that all were present in spiral ganglion neurons, and that three of them were neuron-specific (CaV1.3, CaV2.2, and CaV3.3). Further characterization of neuron-specific α-subunits showed that CaV1.3 and CaV3.3 were tonotopically-distributed, whereas CaV2.2 was uniformly distributed in apical and basal neurons. Multiple VGCC α-subunits were also immunolocalized to Schwann cells, having distinct intracellular localizations, and, significantly, appearing to distinguish putative compact0 (CaV2.3, CaV3.1) from loose (CaV1.2) myelin. Electrophysiological evaluation of spiral ganglion neurons in the presence of TEA revealed Ca2+ plateau potentials with slopes that varied proportionately with the cochlear region from which neurons were isolated. Because afterhyperpolarizations were minimal or absent under

  14. Determination of histamine in milkfish stick implicated in food-borne poisoning.

    PubMed

    Lee, Yi-Chen; Kung, Hsien-Feng; Wu, Chien-Hui; Hsu, Hui-Mei; Chen, Hwi-Chang; Huang, Tzou-Chi; Tsai, Yung-Hsiang

    2016-01-01

    An incident of food-borne poisoning causing illness in 37 victims due to ingestion of fried fish sticks occurred in September 2014, in Tainan city, southern Taiwan. Leftovers of the victims' fried fish sticks and 16 other raw fish stick samples from retail stores were collected and tested to determine the occurrence of histamine and histamine-forming bacteria. Two suspected fried fish samples contained 86.6 mg/100 g and 235.0 mg/100 g histamine; levels that are greater than the potential hazard action level (50 mg/100 g) in most illness cases. Given the allergy-like symptoms of the victims and the high histamine content in the suspected fried fish samples, this food-borne poisoning was strongly suspected to be caused by histamine intoxication. Moreover, the fish species of suspected samples was identified as milkfish (Chanos chanos), using polymerase chain reaction direct sequence analysis. In addition, four of the 16 commercial raw milkfish stick samples (25%) had histamine levels greater than the US Food & Drug Administration guideline of 5.0 mg/100 g for scombroid fish and/or products. Ten histamine-producing bacterial strains, capable of producing 373-1261 ppm of histamine in trypticase soy broth supplemented with 1.0% L-histidine, were identified as Enterobacter aerogenes (4 strains), Enterobacter cloacae (1 strain), Morganella morganii (2 strains), Serratia marcescens (1 strain), Hafnia alvei (1 strain), and Raoultella orithinolytica (1 strain), by 16S ribosomal DNA sequencing with polymerase chain reaction amplification. Copyright © 2015. Published by Elsevier B.V.

  15. Inhibition of in vivo histamine metabolism in rats by foodborne and pharmacologic inhibitors of diamine oxidase, histamine N-methyltransferase, and monoamine oxidase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hui, J.Y.; Taylor, S.L.

    When (/sup 14/C)histamine was administered orally to rats, an average of 80% of the administered radioactivity was recovered in the urine at the end of 24 hr. About 10% of the total dose was excreted via the feces. Analysis of 4-hr urine samples found imidazoleacetic acid to be the predominant metabolite (60.6%), with N tau-methylimidazoleacetic acid (8.6%), N tau-methylhistamine (7.3%), and N-acetylhistamine (4.5%) to be the minor metabolites. Histamine metabolism was inhibited by simultaneous oral administration of aminoguanidine, isoniazid, quinacrine, cadaverine, putrescine, tyramine, and beta-phenylethylamine. The administration of inhibitors resulted in an increased amount of unmetabolized histamine and a decreasedmore » amount of metabolites reaching the urine. Pharmacologic inhibitors were found to be more potent and have a longer duration of action than foodborne ones. The inhibitors could potentiate food poisoning caused by histamine by inhibiting its metabolism.« less

  16. Developmental changes in expression of GABAA receptor-channels in rat intrinsic cardiac ganglion neurones

    PubMed Central

    Fischer, Harald; Harper, Alexander A; Anderson, Colin R; Adams, David J

    2005-01-01

    The effects of γ-aminobutyric acid (GABA) on the electrophysiological properties of intracardiac neurones were investigated in the intracardiac ganglion plexus in situ and in dissociated neurones from neonatal, juvenile and adult rat hearts. Focal application of GABA evoked a depolarizing, excitatory response in both intact and dissociated intracardiac ganglion neurones. Under voltage clamp, both GABA and muscimol elicited inward currents at −60 mV in a concentration-dependent manner. The fast, desensitizing currents were mimicked by the GABAA receptor agonists muscimol and taurine, and inhibited by the GABAA receptor antagonists, bicuculline and picrotoxin. The GABAA0 antagonist (1,2,5,6-tetrahydropyridin-4-yl)methyl phosphonic acid (TPMPA), had no effect on GABA-induced currents, suggesting that GABAA receptor-channels mediate the response. The GABA-evoked current amplitude recorded from dissociated neurones was age dependent whereby the peak current density measured at −100 mV was ∼ 20 times higher for intracardiac neurones obtained from neonatal rats (P2–5) compared with adult rats (P45–49). The decrease in GABA sensitivity occurred during the first two postnatal weeks and coincides with maturation of the sympathetic innervation of the rat heart. Immunohistochemical staining using antibodies against GABA demonstrate the presence of GABA in the intracardiac ganglion plexus of the neonatal rat heart. Taken together, these results suggest that GABA and taurine may act as modulators of neurotransmission and cardiac function in the developing mammalian intrinsic cardiac nervous system. PMID:15731187

  17. Histamine-binding capacities of different natural zeolites: a comparative study.

    PubMed

    Selvam, Thangaraj; Schwieger, Wilhelm; Dathe, Wilfried

    2018-06-07

    Two different natural zeolites from Cuba and Mexico, which are already being used as contemporaneous drugs or dietary supplements in Germany and Mexico, respectively, are applied in a comparative study of their histamine-binding capacities as a function of their particle sizes. The zeolites are characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM) and N 2 -sorption measurements (BET surface areas). The Cuban zeolite contains clinoptilolite and mordenite as major phases (78% zeolite), whereas the Mexican one contains only clinoptilolite (65% zeolite). Both zeolites are apparently free from fibrous materials according to SEM. Both zeolites adsorb significant amount of histamine under the experimental conditions. Nevertheless, the results showed that the histamine-binding capacity of the Cuban zeolite is higher than the Mexican one and the smaller the particle size of zeolite, the higher the histamine-binding capacity. This difference could be due to the variation in their mineralogical compositions resulting in varied BET surface areas. Thus, the high histamine-binding capacities of Cuban zeolites seem to be due at least partly to the presence of the large-pore zeolite mordenite, providing high total pore volumes, which will be discussed in detail. For the first time, we have shown that the mineralogical compositions of natural zeolites and their particle sizes play a key role in binding histamine, which is one of the most important regulators in human physiology.

  18. Punishment and the potential for negative reinforcement with histamine injection.

    PubMed

    Mayer, Paulo César Morales; de Carvalho Neto, Marcus Bentes; Katz, Jonathan L

    2018-03-01

    The present study examined punishment of responding with histamine injection, and its potential to generate avoidance of punishment. Sprague-Dawley rats were trained under concurrent schedules in which responses on one lever (the punishment lever) produced food under a variable-interval schedule, and under some conditions intermittent injections of histamine, which suppressed behavior. Responses on a second (avoidance) lever prevented histamine injections scheduled on the punishment lever. After stabilization of punished responding, a variable-interval 15-s schedule of cancellation of histamine (avoidance) was added for responding on the second/avoidance lever, without subsequent acquisition of responding on that lever. Progressive decreases in the length of the punishment variable-interval schedule increased suppression on the punishment lever without increases in response rates on the avoidance lever. Exchanging contingencies on the levers ensured that response rates on the avoidance lever were sufficiently high to decrease the histamine injection frequency; nonetheless response rates on the avoidance lever decreased over subsequent sessions. Under no condition was responding maintained on the avoidance lever despite continued punishing effectiveness of histamine throughout. The present results suggest that avoidance conditioning is not a necessary condition for effective punishment, and confirm the importance of empirical rather than presumed categorization of behavioral effects of stimulus events. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.

  19. Progranulin deficiency causes the retinal ganglion cell loss during development.

    PubMed

    Kuse, Yoshiki; Tsuruma, Kazuhiro; Mizoguchi, Takahiro; Shimazawa, Masamitsu; Hara, Hideaki

    2017-05-10

    Astrocytes are glial cells that support and protect neurons in the central nervous systems including the retina. Retinal ganglion cells (RGCs) are in contact with the astrocytes and our earlier findings showed the reduction of the number of cells in the ganglion cell layer in adult progranulin deficient mice. In the present study, we focused on the time of activation of the astrocytes and the alterations in the number of RGCs in the retina and optic nerve in progranulin deficient mice. Our findings showed that the number of Brn3a-positive cells was reduced and the expression of glial fibrillary acidic protein (GFAP) was increased in progranulin deficient mice. The progranulin deficient mice had a high expression of GFAP on postnatal day 9 (P9) but not on postnatal day 1. These mice also had a decrease in the number of the Brn3a-positive cells on P9. Taken together, these findings indicate that the absence of progranulin can affect the survival of RGCs subsequent the activation of astrocytes during retinal development.

  20. Protective effect of oestradiol in the coeliac ganglion against ovarian apoptotic mechanism on dioestrus.

    PubMed

    Cynthia, Bronzi; Cristina, Daneri Becerra; Adriana, Vega Orozco; Belén, Delsouc María; María, Rastrilla Ana; Marilina, Casais; Zulema, Sosa

    2013-05-01

    The aims of this work were to investigate if oestradiol 10(-8)M in the incubation media of either the ovary alone (OV) or the ganglion compartment of an ex vivo coeliac ganglion-superior ovarian nerve-ovary system (a) modifies the release of ovarian progesterone (P4) and oestradiol (E2) on dioestrus II, and (b) modifies the ovarian gene expression of 3β-HSD and 20α-HSD enzymes and markers of apoptosis. The concentration of ovarian P4 release was measured in both experimental schemes, and ovarian P4 and E2 in the ex vivo system by RIA at different times. The expression of 3β-hydroxysteroid dehydrogenase, 20α-hydroxysteroid dehydrogenase and antiapoptotic bcl-2 and proapoptotic bax by RT-PCR were determined. E2 added in the coeliac ganglion caused an increase in the ovarian release of the P4, E2 and 3β-HSD, while in the ovary incubation alone it decreased P4 and 3β-HSD but increased and 20α-HSD and bax/bcl-2 ratio. It is concluded that through a direct effect on the ovary, E2 promotes luteal regression in DII rats, but the addition of E2 in the coeliac ganglion does not have the same effect. The peripheral nervous system, through the superior ovarian nerve, has a protective effect against the apoptotic mechanism on DII. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Histamine as an emergent indoor contaminant: Accumulation and persistence in bed bug infested homes.

    PubMed

    DeVries, Zachary C; Santangelo, Richard G; Barbarin, Alexis M; Schal, Coby

    2018-01-01

    Histamine is used in bronchial and dermal provocation, but it is rarely considered an environmental risk factor in allergic disease. Because bed bugs defecate large amounts of histamine as a component of their aggregation pheromone, we sought to determine if histamine accumulates in household dust in bed bug infested homes, and the effects of bed bug eradication with spatial heat on histamine levels in dust. We collected dust in homes and analyzed for histamine before, and up to three months after bed bug eradication. Histamine levels in bed bug infested homes were remarkably high (mean = 54.6±18.9 μg/100 mg of sieved household dust) and significantly higher than in control homes not infested with bed bugs (mean < 2.5±1.9 μg/100 mg of sieved household dust). Heat treatments that eradicated the bed bug infestations failed to reduce histamine levels, even three months after treatment. We report a clear association between histamine levels in household dust and bed bug infestations. The high concentrations, persistence, and proximity to humans during sleep suggest that bed bug-produced histamine may represent an emergent contaminant and pose a serious health risk in the indoor environment.

  2. Effect of budesonide and azelastine on histamine signaling regulation in human nasal epithelial cells.

    PubMed

    Liu, Shao-Cheng; Lin, Chun-Shu; Chen, Shyi-Gen; Chu, Yueng-Hsiang; Lee, Fei-Peng; Lu, Hsuan-Hsuan; Wang, Hsing-Won

    2017-02-01

    Both glucocorticoids and H1-antihistamines are widely used on patients with airway diseases. However, their direct effects on airway epithelial cells are not fully explored. Therefore, we use the primary culture of human nasal epithelial cells (HNEpC) to delineate in vitro mucosal responses to above two drugs. HNEpC cells were cultured with/without budesonide and azelastine. The growth rate at each group was recorded and measured as population double time (PDT). The histamine1-receptor (H1R), muscarinic1-receptor (M1R) and M3R were measured using immunocytochemistry and western blotting after 7-days treatment. Then, we used histamine and methacholine to stimulate the mucus secretion from HNEpC and observed the MUC5AC expression in culture supernatants. Concentration-dependent treatment-induced inhibition of HNEpC growth rate was observed. Cells incubated with azelastine proliferated significantly slower than that with budesonide and the combined use of those drugs led to significant PDT prolong. The immunocytochemistry showed the H1R, M1R and M3R were obviously located in the cell membrane without apparent difference after treatment. However, western blotting showed that budesonide can significantly up-regulate the H1R, M1R and M3R level while azelastine had opposite effects. Histamine and methacholine stimulated MUC5AC secretion was greater in cells treated with budesonide but was lesser in those treated with azelastine, as compared to controls. Our data suggest that both budesonide and azelastine can significantly inhibit HNEpC proliferation, and therefore, be helpful in against airway remodeling. Long-term use of budesonide might amplify histamine signaling and result in airway hyperreactivity to stimulants by enhancing H1R, M1R and M3R expression while azelastine can oppose this effect. Therefore, combined use of those two drugs in patients with chronic inflammatory airway diseases may be an ideal option.

  3. Modulation of human dermal microvascular endothelial cells by Sarcoptes scabiei in combination with proinflammatory cytokines, histamine, and lipid-derived biologic mediators

    PubMed Central

    Elder, B. Laurel; Arlian, Larry G.; Morgan, Marjorie S.

    2009-01-01

    The ectoparasitic mite, Sarcoptes scabiei, produces molecules that depress initiation of host inflammatory and immune responses. Some of these down-regulate expression of adhesion molecules or secretion of chemokines or cytokines on and by cultured dermal endothelial cells (HMVEC-D). This study was undertaken to determine if the response of HMVEC-D to scabies is altered in the presence of various proinflammatory cytokines (tumor necrosis factor α and interleukins 1α, 1β and 6), histamine, and lipid-derived mediators (prostaglandins D2 and E2, leukotriene B4, platelet activation factor) that likely occur in scabietic lesions in vivo. Scabies extract down-regulated the TNFα-induced expression of VCAM-1 by HMVEC-D and this down-regulation still occurred in the presence of the other proinflammatory cytokines, histamine or the lipid-derived mediators. Scabies inhibited the IL-1α and IL-1β-induced secretion of IL-6, while a combination of scabies and histamine or LTB4 reduced the TNFα-induced secretion of IL-6. Scabies extract inhibited secretion of IL-8. Histamine, PGD2, PGE2, LTB4, PAF, and IL-6 alone had no effect on this inhibition, but the scabies-induced inhibition of IL-8 secretion was reduced in a dose-dependent fashion in the presence of IL-1α and IL-1β. PMID:19523846

  4. High-performance liquid chromatographic determination of histamine in biological samples: the cerebrospinal fluid challenge--a review.

    PubMed

    Wang, Zhaopin; Wu, Juanli; Wu, Shihua; Bao, Aimin

    2013-04-24

    Histamine, a neurotransmitter crucially involved in a number of basic physiological functions, undergoes changes in neuropsychiatric disorders. Detection of histamine in biological samples such as cerebrospinal fluid (CSF) is thus of clinical importance. The most commonly used method for measuring histamine levels is high performance liquid chromatography (HPLC). However, factors such as very low levels of histamine, the even lower CSF-histamine and CSF-histamine metabolite levels, especially in certain neuropsychiatric diseases, rapid formation of histamine metabolites, and other confounding elements during sample collection, make analysis of CSF-histamine and CSF-histamine metabolites a challenging task. Nonetheless, this challenge can be met, not only with respect to HPLC separation column, derivative reagent, and detector, but also in terms of optimizing the CSF sample collection. This review aims to provide a general insight into the quantitative analyses of histamine in biological samples, with an emphasis on HPLC instruments, methods, and hyphenated techniques, with the aim of promoting the development of an optimal and practical protocol for the determination of CSF-histamine and/or CSF-histamine metabolites. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Upregulated expression of substance P in basophils of the patients with chronic spontaneous urticaria: induction of histamine release and basophil accumulation by substance P.

    PubMed

    Zheng, Wenjiao; Wang, Junling; Zhu, Wei; Xu, Chiyan; He, Shaoheng

    2016-06-01

    Human basophils have been implicated in the pathogenesis of chronic spontaneous urticaria (CSU), and substance P (SP) is a possible candidate as histamine-releasing factor in some patients with CSU. However, little is known of relationship between basophils and SP in CSU. In the present study, we investigated expression of SP and NK1R on basophils from patients with CSU, and influence of SP on basophil functions by using flow cytometry analysis, basophil challenge, and mouse sensitization model techniques. The results showed that plasma SP level and basophil numbers in CSU patients were higher than that in HC subject. The percentages of SP+ and NK1R+ basophils were markedly elevated in CSU blood in comparison with HC blood. Once added, SP induced up to 41.2 % net histamine release from basophils of CSU patients, which was comparable with that provoked by anti-IgE, and fMLP. It appeared that SP induced dramatic increase in blood basophil numbers of mice following peritoneal injection. Ovalbumin (OVA)-sensitized mice had much more SP+ and NK1R+ basophils in blood than non-sensitized mice. In conclusion, the elevated plasma concentration of SP, upregulated expression of SP and NK1R on basophils, and the ability of SP in induction of basophil degranulation and accumulation indicate strongly that SP is most likely a potent proinflammatory mediator, which contributes greatly to the pathogenesis of CSU through basophils. Inhibitors of SP and blockers of NK1R are likely useful agents for treatment of CSU.

  6. Activation of histamine H4 receptor inhibits TNFα/IMD-0354-induced apoptosis in human salivary NS-SV-AC cells.

    PubMed

    Stegajev, Vasili; Kouri, Vesa-Petteri; Salem, Abdelhakim; Rozov, Stanislav; Stark, Holger; Nordström, Dan C E; Konttinen, Yrjö T

    2014-12-01

    Apoptosis is involved in the pathogenesis of Sjögren's syndrome (SS), an autoimmune disease affecting exocrine glands. Our recent studies revealed diminished histamine H4 receptor (H₄R) expression and impaired histamine transport in the salivary gland epithelial cells in SS. The aim was now to test if nanomolar histamine and high-affinity H₄R signaling affect apoptosis of human salivary gland epithelial cell. Simian virus 40-immortalized acinar NS-SV-AC cells were cultured in serum-free keratinocyte medium ± histamine H₄R agonist HST-10. Expression and internalization of H₄R were studied by immunofluorescence staining ± clathrin inhibitor methyl-β-cyclodextrin (MβCD). Apoptosis induced using tumor necrosis factor-α with nuclear factor-κB inhibitor IMD-0354 was studied using phase contrast microscopy, Western blot, flow cytometry and polymerase chain reaction (qRT-PCR). HST-10-stimulated H₄R internalization was inhibited by MβCD. Western blotting revealed diminished phosphorylated c-Jun N-terminal kinase JNK, but unchanged levels of phosphorylated extracellular signal regulated kinase pERK1/2 in H₄R-stimulated samples compared to controls. qRT-PCR showed up-regulated expression of anti-apoptotic B cell lymphoma-extra large/Bcl-xL mRNAs and proteins, whereas pro-apoptotic Bcl-2-associated X protein/BAX remained unchanged in H4R-stimulated samples. H₄R stimulation diminished cleavage of PARP and flow cytometry showed significant dose-dependent inhibitory effect of H₄R stimulation on apoptosis. As far as we know this is the first study showing inhibitory effect of H₄R activation on apoptosis of human salivary gland cells. Diminished H₄R-mediated activation may contribute to loss of immune tolerance in autoimmune diseases and in SS in particular.

  7. Molecular and functional expression of cation-chloride cotransporters in dorsal root ganglion neurons during postnatal maturation

    PubMed Central

    Mao, Shihong; Garzon-Muvdi, Tomás; Di Fulvio, Mauricio; Chen, Yanfang; Delpire, Eric; Alvarez, Francisco J.

    2012-01-01

    GABA depolarizes and excites central neurons during early development, becoming inhibitory and hyperpolarizing with maturation. This “developmental shift” occurs abruptly, reflecting a decrease in intracellular Cl− concentration ([Cl−]i) and a hyperpolarizing shift in Cl− equilibrium potential due to upregulation of the K+-Cl− cotransporter KCC2b, a neuron-specific Cl− extruder. In contrast, primary afferent neurons (PANs) are depolarized by GABA throughout adulthood because of expression of NKCC1, a Na+-K+-2Cl− cotransporter that accumulates Cl− above equilibrium. The GABAA-mediated depolarization of PANs determines presynaptic inhibition in the spinal cord, a key mechanism gating somatosensory information. Little is known about developmental changes in Cl− transporter expression and Cl− homeostasis in PANs. Whether NKCC1 is expressed in PANs of all phenotypes or is restricted to subpopulations (e.g., nociceptors) is debatable. Likewise, whether PANs express KCC2s is controversial. We investigated NKCC1 and K+-Cl− cotransporter expression in rat and mouse dorsal root ganglion (DRG) neurons with molecular methods. Using fluorescence imaging microscopy, we measured [Cl−]i in acutely dissociated rat DRG neurons (P0–P21) loaded with N-(ethoxycarbonylmethyl)-6-methoxyquinolinium bromide and classified with phenotypic markers. DRG neurons of all sizes express two NKCC1 mRNAs, one full-length and a shorter splice variant lacking exon 21. Immunolabeling with validated antibodies revealed ubiquitous expression of NKCC1 in DRG neurons irrespective of postnatal age and phenotype. As maturation progresses [Cl−]i decreases gradually, persisting above equilibrium in >95% mature neurons. DRG neurons express mRNAs for KCC1, KCC3s, and KCC4, but not for KCC2s. Mechanisms underlying PANs' developmental changes in Cl− homeostasis are discussed and compared with those of central neurons. PMID:22457464

  8. Development of a cell-based treatment for long-term neurotrophin expression and spiral ganglion neuron survival.

    PubMed

    Zanin, M P; Hellström, M; Shepherd, R K; Harvey, A R; Gillespie, L N

    2014-09-26

    Spiral ganglion neurons (SGNs), the target cells of the cochlear implant, undergo gradual degeneration following loss of the sensory epithelium in deafness. The preservation of a viable population of SGNs in deafness can be achieved in animal models with exogenous application of neurotrophins such as brain-derived neurotrophic factor (BDNF) and neurotrophin-3. For translation into clinical application, a suitable delivery strategy that provides ongoing neurotrophic support and promotes long-term SGN survival is required. Cell-based neurotrophin treatment has the potential to meet the specific requirements for clinical application, and we have previously reported that Schwann cells genetically modified to express BDNF can support SGN survival in deafness for 4 weeks. This study aimed to investigate various parameters important for the development of a long-term cell-based neurotrophin treatment to support SGN survival. Specifically, we investigated different (i) cell types, (ii) gene transfer methods and (iii) neurotrophins, in order to determine which variables may provide long-term neurotrophin expression and which, therefore, may be the most effective for supporting long-term SGN survival in vivo. We found that fibroblasts that were nucleofected to express BDNF provided the most sustained neurotrophin expression, with ongoing BDNF expression for at least 30 weeks. In addition, the secreted neurotrophin was biologically active and elicited survival effects on SGNs in vitro. Nucleofected fibroblasts may therefore represent a method for safe, long-term delivery of neurotrophins to the deafened cochlea to support SGN survival in deafness. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  9. Cortical-basal ganglionic degeneration.

    PubMed

    Riley, D E; Lang, A E; Lewis, A; Resch, L; Ashby, P; Hornykiewicz, O; Black, S

    1990-08-01

    We report our experience with 15 patients believed to have cortical-basal ganglionic degeneration. The clinical picture is distinctive, comprising features referable to both cortical and basal ganglionic dysfunction. Characteristic manifestations include cortical sensory loss, focal reflex myoclonus, "alien limb" phenomena, apraxia, rigidity and akinesia, a postural-action tremor, limb dystonia, hyperreflexia, and postural instability. The asymmetry of symptoms and signs is often striking. Brain imaging may demonstrate greater abnormalities contralateral to the more affected side. Postmortem studies in 2 patients revealed the characteristic pathologic features of swollen, poorly staining (achromatic) neurons and degeneration of cerebral cortex and substantia nigra. Biochemical analysis of 1 brain showed a severe, diffuse loss of dopamine in the striatum. This condition is more frequent than previously believed, and the diagnosis can be predicted during life on the basis of clinical findings. However, as with other "degenerative" diseases of the nervous system, a definitive diagnosis of cortical-basal ganglionic degeneration requires confirmation by autopsy.

  10. Histamine as an emergent indoor contaminant: Accumulation and persistence in bed bug infested homes

    PubMed Central

    Santangelo, Richard G.; Barbarin, Alexis M.; Schal, Coby

    2018-01-01

    Histamine is used in bronchial and dermal provocation, but it is rarely considered an environmental risk factor in allergic disease. Because bed bugs defecate large amounts of histamine as a component of their aggregation pheromone, we sought to determine if histamine accumulates in household dust in bed bug infested homes, and the effects of bed bug eradication with spatial heat on histamine levels in dust. We collected dust in homes and analyzed for histamine before, and up to three months after bed bug eradication. Histamine levels in bed bug infested homes were remarkably high (mean = 54.6±18.9 μg/100 mg of sieved household dust) and significantly higher than in control homes not infested with bed bugs (mean < 2.5±1.9 μg/100 mg of sieved household dust). Heat treatments that eradicated the bed bug infestations failed to reduce histamine levels, even three months after treatment. We report a clear association between histamine levels in household dust and bed bug infestations. The high concentrations, persistence, and proximity to humans during sleep suggest that bed bug-produced histamine may represent an emergent contaminant and pose a serious health risk in the indoor environment. PMID:29432483

  11. Nobiletin and tangeretin ameliorate scratching behavior in mice by inhibiting the action of histamine and the activation of NF-κB, AP-1 and p38.

    PubMed

    Jang, Se-Eun; Ryu, Kwon-Ryeol; Park, Sung-Hwan; Chung, Suna; Teruya, Yuto; Han, Myung Joo; Woo, Je-Tae; Kim, Dong-Hyun

    2013-11-01

    Nobiletin and tangeretin are polymethoxy flavonoids that are abundantly present in the pericarp of Citrus unshiu (family Rutaceae) and the fruit of Citrus depressa (family Rutaceae). They exhibit various biological activities, including anti-inflammatory and anti-asthmatic effects. To evaluate the anti-allergic effects of nobiletin and tangeretin, we measured their inhibitory effects in histamine- or compound 48/80-induced scratching behavioral mice. Nobiletin and tangeretin potently inhibited scratching behavior, as well as histamine-induced vascular permeability. Furthermore, they inhibited the expression of the allergic cytokines, IL-4 and TNF-α as well as the activation of their transcription factors NF-κB, AP-1 and p38 in histamine-stimulated skin tissues. They also inhibited the expression of IL-4 and TNF-α and the activation of NF-κB and c-jun in PMA-stimulated RBL-2H3 cells. Furthermore, nobiletin and tangeretin inhibited protein kinase C (PKC) activity and the IgE-induced degranulation of RBL-2H3 cells. These agents showed potent anti-histamine effect through the Magnus test when guinea pig ileum was used. Based on these results, nobiletin and tangeretin may ameliorate scratching behavioral reactions by inhibiting the action of histamine as well as the activation of the transcription factors NF-κB and AP-1 via PKC. © 2013.

  12. Involvement of the histamine H{sub 4} receptor in clozapine-induced hematopoietic toxicity: Vulnerability under granulocytic differentiation of HL-60 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goto, Aya; Mouri, Akihiro; Nagai, Tomoko

    Clozapine is an effective antipsychotic for treatment-resistant schizophrenia, but can cause fatal hematopoietic toxicity as agranulocytosis. To elucidate the mechanism of hematopoietic toxicity induced by clozapine, we developed an in vitro assay system using HL-60 cells, and investigated the effect on hematopoiesis. HL-60 cells were differentiated by all-trans retinoic acid (ATRA) into three states according to the following hematopoietic process: undifferentiated HL-60 cells, those undergoing granulocytic ATRA-differentiation, and ATRA-differentiated granulocytic cells. Hematopoietic toxicity was evaluated by analyzing cell survival, cell proliferation, granulocytic differentiation, apoptosis, and necrosis. In undifferentiated HL-60 cells and ATRA-differentiated granulocytic cells, both clozapine (50 and 100 μM)more » and doxorubicin (0.2 µM) decreased the cell survival rate, but olanzapine (1–100 µM) did not. Under granulocytic differentiation for 5 days, clozapine, even at a concentration of 25 μM, decreased survival without affecting granulocytic differentiation, increased caspase activity, and caused apoptosis rather than necrosis. Histamine H{sub 4} receptor mRNA was expressed in HL-60 cells, whereas the expression decreased under granulocytic ATRA-differentiation little by little. Both thioperamide, a histamine H{sub 4} receptor antagonist, and DEVD-FMK, a caspase-3 inhibitor, exerted protection against clozapine-induced survival rate reduction, but not of live cell counts. 4-Methylhistamine, a histamine H{sub 4} receptor agonist, decreased the survival rate and live cell counts, as did clozapine. HL-60 cells under granulocytic differentiation are vulnerable under in vitro assay conditions to hematopoietic toxicity induced by clozapine. Histamine H{sub 4} receptor is involved in the development of clozapine-induced hematopoietic toxicity through apoptosis, and may be a potential target for preventing its occurrence through granulocytic

  13. The site of the 5-hydroxytryptamine receptor on the intramural nervous plexus of the guinea-pig isolated ileum

    PubMed Central

    Brownlee, G.; Johnson, E. S.

    1963-01-01

    Dose/response measurements were made on the guinea-pig isolated ileum with six agonists, acetylcholine, 5-hydroxytryptamine, nicotine, dimethylphenylpiperazinium, choline phenyl ether and histamine. The dose effects were repeated in the presence of each of twelve antagonists and one anticholinesterase. Acetylcholine and histamine were chosen because of their direct mode of action on smooth muscle, nicotine, dimethylphenylpiperazinium and choline phenyl ether were used as examples of drugs that act at the ganglionic acetylcholine receptor. 5-Hydroxytryptamine was the drug investigated. Hyoscine blocked the contractions caused by acetylcholine, 5-hydroxytryptamine and the ganglion-stimulants but left the responses to histamine unchanged. The anticholinesterase N,N'-diisopropylphosphorodiamidic fluoride (mipafox) potentiated all the agonists except histamine. The strength of potentiation decreased in the order 5-hydroxytryptamine, nicotine, dimethylphenylpiperazinium and choline phenyl ether, and acetylcholine. The local anaesthetic procaine inhibited to the same extent contractions elicited by 5-hydroxytryptamine, nicotine, dimethylphenylpiperazinium and choline phenyl ether. These results showed that 5-hydroxytryptamine, like nicotine, choline phenyl ether and dimethylphenylpiperazinium, mediated its response through the nervous plexus. Of those tested 5-hydroxytryptamine was the only specific antagonist to 5-hydroxytryptamine; lysergic acid derivatives produced spasm and prolonged changes in tone; phenoxybenzamine caused non-specific block. The diverse modes of action of a number of ganglion-blocking agents were selectively used. Thus hexamethonium, pentolinium, and nicotine in its competitive phase, blocked contractions due to nicotine, dimethylphenylpiperazinium and choline phenyl ether and left those due to 5-hydroxytryptamine, acetylcholine and histamine unchanged. The depolarizing ganglion-blocking agents, dimethylphenylpiperazinium and nicotine, inhibited the

  14. [Effect of nociceptin on histamine and serotonin release in the central nervous system].

    PubMed

    Gyenge, Melinda; Hantos, Mónika; Laufer, Rudolf; Tekes, Korniléa

    2006-01-01

    Role in pain sensation of both nociceptin (NC), the bioactive heptadecapeptide sequence of preproorphaninFQ and of histamine has been widely evidenced in the central nervous system (CNS). In the current series of experiments effect of intracerebroventricularly (i.c.v.) administered NC (5.5 nmol/rat) on histamine and serotonin levels in blood plasma, CSF and brain areas (hypothalamus and hippocampus) was studies and compared to the effect of the mast cell degranulator Compound 48/80(100microg/kg, i.c.v.) and the neuroactive peptide Substance P (50nmol/rat, i.c.v.). It was found that all the three compounds increased the histamine level in the CNS, however their activity concerning the mast cell-, and neuronal histamine release is different. NC could release histamine from both the mast cells and the neurons and it decreased CNS serotonin levels. Substance P was found the most potent in increasing CNS histamine levels. Compound 48/80 treatment resulted in elevated histamine levels both in the CNS and blood plasma. It is concluded that the histamine releasing effects of i.c.v. administered NC and SP are limited to the CNS, but in the effect of Compound 48/80 its blood-brain barrier impairing activity is also involved. Data also demonstrate that NC has significant effect on both the histaminergic and serotonergic neurotransmission in the CNS.

  15. Identification and characterization of a histamine-binding lipocalin-like molecule from the relapsing fever tick Ornithodoros turicata.

    PubMed

    Neelakanta, G; Sultana, H; Sonenshine, D E; Andersen, J F

    2018-04-01

    Lipocalins are low molecular weight membrane transporters that are abundantly expressed in the salivary glands and other tissues of ticks. In this study, we identified a lipocalin-like molecule, designated as otlip, from the soft ticks Ornithodoros turicata, the vector for the relapsing fever causing spirochete Borrelia turicatae. We noted that the expression of otlip was developmentally regulated, with adult ticks expressing significantly higher levels in comparison to the larvae or nymphal ticks. Expression of otlip was evident in both fed and unfed O. turicata ticks, with significantly increased expression in the salivary glands in comparison to the midgut or ovary tissues. High conservation of the biogenic amine-binding motif was evident in the deduced primary amino acid sequence of Otlip. Protein modelling of Otlip revealed conservation of most of the residues involved in binding histamine or serotonin ligand. In vitro assays demonstrated binding of recombinant Otlip with histamine. Furthermore, prediction of post-translational modifications revealed that Otlip contained phosphorylation and myristoylation sites. Taken together, our study not only provides evidence for the presence of a lipocalin-like molecule in O. turicata ticks but also suggests a role for this molecule in the salivary glands of this medically important vector. © 2017 The Royal Entomological Society.

  16. A novel model for rapid induction of apoptosis in spiral ganglions of mice.

    PubMed

    Lee, Ji Eun; Nakagawa, Takayuki; Kim, Tae Soo; Iguchi, Fukuichiro; Endo, Tsuyoshi; Dong, Youyi; Yuki, Kazuo; Naito, Yasushi; Lee, Sang Heun; Ito, Juichi

    2003-06-01

    The survival of the spiral ganglion (SG) is a critical issue in preservation of hearing. Research on topics related to this issue requires a mouse experimental model because such a model has advantages including use of genetic information and knockout or "knockin" mice. Thus, the aim of the study was to establish a mouse model for induction of apoptosis of SG neurons with a definite time course. Laboratory study using experimental animals. C57BL/6 mice were used as experimental animals and were subjected to direct application of cisplatin into the inner ear. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay and immunostaining for Neurofilament 200-kD (NF) and peripherin were used for analysis of SG degeneration. In addition, generation of peroxynitrite in affected spiral ganglions was examined by immunostaining for nitrotyrosine. Cellular location of activated caspase-9 and cytochrome-c in dying SG neurons were examined for analysis of cell death pathway. The TUNEL assay and immunohistochemical analysis for NF and peripherin indicated that type I neurons in spiral ganglions were deleted through the apoptotic pathway over time. Spiral ganglion neurons treated with cisplatin exhibited expression of nitrotyrosine, indicating induction of peroxynitrite by cisplatin. In dying SG neurons, expression of activated caspase-9 and translocation of cytochrome-c from mitochondria to cytoplasm were observed, indicating the mitochondrial pathway of apoptosis. The predictable fashion of induction of apoptosis in SG neurons over a well-defined time course in the model in the study will aid studies of the molecular mechanism of cell death and elucidation of a strategy for prevention of SG degeneration.

  17. Simultaneous cell death in the trigeminal ganglion and in ganglion neurons present in the oculomotor nerve of the bovine fetus.

    PubMed Central

    Bortolami, R; Lucchi, M L; Callegari, E; Barazzoni, A M; Costerbosa, G L; Scapolo, P A

    1990-01-01

    A well-developed ganglion and scattered ganglion cells are present in the intracranial portion of the oculomotor nerve during the first half of fetal life in the ox. In the second half of fetal life a dramatic reduction of the ganglion cells associated with the oculomotor nerve occurs because of spontaneous cell death. Concomitantly, the same phenomenon of cell death is found in the trigeminal ganglion, especially in its rostromedial portion. Free degenerating perikarya can be found in the cavernous sinus. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 PMID:2384329

  18. Major advances in the development of histamine H4 receptor ligands.

    PubMed

    Smits, Rogier A; Leurs, Rob; de Esch, Iwan J P

    2009-08-01

    The search for new and potent histamine H4 receptor ligands is leading to a steadily increasing number of scientific publications and patent applications. Several interesting and structurally diverse compounds have been found, but fierce IP competition for a preferred 2-aminopyrimidine scaffold is becoming apparent. Recent investigations into the role of the histamine H(4)R in (patho)physiology and the use of H4R ligands in in vivo disease models reveal enormous potential in the field of inflammation and allergy, among others. The development of ligands that display activity at two or more histamine receptor (HR) subtypes is another clinical opportunity that is currently being explored. Taken together, the histamine H4R field is gearing up for clinical studies and has the potential to deliver another generation of blockbuster drugs.

  19. Increased release of histamine in patients with respiratory symptoms related to perfume.

    PubMed

    Elberling, J; Skov, P S; Mosbech, H; Holst, H; Dirksen, A; Johansen, J D

    2007-11-01

    Environmental perfume exposure may cause respiratory symptoms. Individuals with asthma and perfume contact allergy report such symptoms more frequently than others. However, immunologic mechanisms have not been demonstrated and the symptoms are not associated with IgE-mediated allergy. The study aimed to investigate whether basophils from patients with respiratory symptoms related to perfume released more histamine in the presence of perfume as compared with healthy volunteers. Histamine release was measured by the glass fibre method. Blood was obtained from healthy volunteers (n=20) and patients with respiratory symptoms related to perfume (n=17) attending a dermatological outpatient clinic for patch testing. The effect of an international brand perfume was investigated using the basophil histamine release test with perfume. Furthermore, basophils from a healthy non-atopic donor were incubated with participant's sera and histamine release induced by perfume was measured. In both groups incremental perfume concentrations showed a positive and significant (P<0.001) dose-response effect on the release of histamine. At the highest perfume concentration, the basophils released significantly (P<0.05) more histamine in patients as compared with healthy volunteers. No difference was found between the groups when sera were incubated with basophils from a healthy non-atopic donor. Perfume induces a dose-dependent non-IgE-mediated release of histamine from human peripheral blood basophils. Increased basophil reactivity to perfume was found in patients with respiratory symptoms related to perfume.

  20. Vascular Leiomyoma and Geniculate Ganglion

    PubMed Central

    Magliulo, Giuseppe; Iannella, Giannicola; Valente, Michele; Greco, Antonio; Appiani, Mario Ciniglio

    2013-01-01

    Objectives Discussion of a rare case of angioleiomyoma involving the geniculate ganglion and the intratemporal facial nerve segment and its surgical treatment. Design Case report. Setting Presence of an expansive lesion englobing the geniculate ganglion without any lesion to the cerebellopontine angle. Participants A 45-year-old man with a grade III facial paralysis according to the House-Brackmann scale of evaluation. Main Outcomes Measure Surgical pathology, radiologic appearance, histological features, and postoperative facial function. Results Removal of the entire lesion was achieved, preserving the anatomic integrity of the nerve; no nerve graft was necessary. Postoperative histology and immunohistochemical studies revealed features indicative of solid vascular leiomyoma. Conclusion Angioleiomyoma should be considered in the differential diagnosis of geniculate ganglion lesions. Optimal postoperative facial function is possible only by preserving the anatomical and functional integrity of the facial nerve. PMID:23943721

  1. Histamine, carbachol, and serotonin induce hyperresponsiveness to ATP in guinea pig tracheas: involvement of COX-2 pathway.

    PubMed

    Montaño, Luis M; Carbajal, Verónica; Vargas, Mario H; García-Hernández, Luz M; Díaz-Hernández, Verónica; Checa, Marco; Barajas-López, Carlos

    2013-08-01

    Extracellular ATP promotes an indirect contraction of airway smooth muscle via the secondary release of thromboxane A2 (TXA2) from airway epithelium. Our aim was to evaluate if common contractile agonists modify this response to ATP. Tracheas from sensitized guinea pigs were used to evaluate ATP-induced contractions before and after a transient contraction produced by histamine, carbachol, or serotonin. Epithelial mRNA for COX-1 and COX-2 was measured by RT-PCR and their expression assessed by immunohistochemistry. Compared with the initial response, ATP-induced contraction was potentiated by pretreatment with histamine, carbachol, or serotonin. Either suramin (antagonist of P2X and P2Y receptors) plus RB2 (antagonist of P2Y receptors) or indomethacin (inhibitor of COX-1 and COX-2) annulled the ATP-induced contraction, suggesting that it was mediated by P2Y receptor stimulation and TXA2 production. When COX-2 was inhibited by SC-58125 or thromboxane receptors were antagonized by SQ-29548, just the potentiation was abolished, leaving the basal response intact. Airway epithelial cells showed increased COX-2 mRNA after stimulation with histamine or carbachol, but not serotonin, while COX-1 mRNA was unaffected. Immunochemistry corroborated this upregulation of COX-2. In conclusion, we showed for the first time that histamine and carbachol cause hyperresponsiveness to ATP by upregulating COX-2 in airway epithelium, which likely increases TXA2 production. Serotonin-mediated hyperresponsiveness seems to be independent of COX-2 upregulation, but nonetheless is TXA2 dependent. Because acetylcholine, histamine, and serotonin can be present during asthmatic exacerbations, their potential interactions with ATP might be relevant in its pathophysiology.

  2. CSF histamine contents in narcolepsy, idiopathic hypersomnia and obstructive sleep apnea syndrome.

    PubMed

    Kanbayashi, Takashi; Kodama, Tohru; Kondo, Hideaki; Satoh, Shinsuke; Inoue, Yuichi; Chiba, Shigeru; Shimizu, Tetsuo; Nishino, Seiji

    2009-02-01

    To (1) replicate our prior result of low cerebrospinal fluid (CSF) histamine levels in human narcolepsy in a different sample population and to (2) evaluate if histamine contents are altered in other types of hypersomnia with and without hypocretin deficiency. Cross sectional studies. Sixty-seven narcolepsy subjects, 26 idiopathic hypersomnia (IHS) subjects, 16 obstructive sleep apnea syndrome (OSAS) subjects, and 73 neurological controls were included. All patients were Japanese. Diagnoses were made according to ICSD-2. We found significant reductions in CSF histamine levels in hypocretin deficient narcolepsy with cataplexy (mean +/- SEM; 176.0 +/- 25.8 pg/mL), hypocretin non-deficient narcolepsy with cataplexy (97.8 +/- 38.4 pg/mL), hypocretin non-deficient narcolepsy without cataplexy (113.6 +/- 16.4 pg/mL), and idiopathic hypersomnia (161.0 +/- 29.3 pg/ mL); the levels in OSAS (259.3 +/- 46.6 pg/mL) did not statistically differ from those in the controls (333.8 +/- 22.0 pg/mL). Low CSF histamine levels were mostly observed in non-medicated patients; significant reductions in histamine levels were evident in non-medicated patients with hypocretin deficient narcolepsy with cataplexy (112.1 +/- 16.3 pg/ mL) and idiopathic hypersomnia (143.3 +/- 28.8 pg/mL), while the levels in the medicated patients were in the normal range. The study confirmed reduced CSF histamine levels in hypocretin-deficient narcolepsy with cataplexy. Similar degrees of reduction were also observed in hypocretin non-deficient narcolepsy and in idiopathic hypersomnia, while those in OSAS (non central nervous system hypersomnia) were not altered. The decrease in histamine in these subjects were more specifically observed in non-medicated subjects, suggesting CSF histamine is a biomarker reflecting the degree of hypersomnia of central origin.

  3. Sex-, stress-, and sympathetic post-ganglionic neuron-dependent changes in the expression of pro- and anti-inflammatory mediators in rat dural immune cells

    PubMed Central

    McIlvried, Lisa A; Borghesi, Lisa A; Gold, Michael S

    2015-01-01

    Background Migraine attacks are associated with sterile inflammation of the dura. Immune cells are a primary source of inflammatory mediators, and we therefore sought to further explore the link between dural immune cells and migraine. Objective Based on the observations that migraine is more common in women than in men, stress is the most common trigger for a migraine attack, and sympathetic post-ganglionic innervation of the dura enables local control of dural immune cells, we hypothesized that stress shifts the balance of inflammatory mediator expression in dural immune cells toward those that trigger a migraine attack, where these changes are larger in females and dependent, at least in part, on sympathetic post-ganglionic innervation of the dura. Our objective was to test this hypothesis. Methods Dura were obtained from naïve or stressed, intact or surgically sympathectomized, adult male and female rats. Dura were assessed immediately or 24 hrs after termination of four continuous days of unpredictable, mild stressors. Following enzymatic digestion of each dura, myeloid and lymphoid derived dural immune cells were isolated by fluorescence activated cell sorting for semi-quantitative polymerase chain reaction analysis. Results In myeloid derived dural immune cells there was an increase in pro-inflammatory mediator mRNA following stress, particularly in females, which remained elevated with a 24 hr delay after stress. There was a stress-induced decrease in anti-inflammatory mediator mRNA immediately after stress in females, but not males. The stress-induced changes were attenuated in sympathectomized females. In lymphoid derived dural immune cells, there was a persistent increase in pro-inflammatory mediator mRNA following stress, particularly in females. A stress-induced increase in anti-inflammatory mediator mRNA was also observed in both males and females, and was further attenuated in sympathectomized females. Conclusions Consistent with our hypothesis

  4. Repurposing a Histamine Detection Platform for High-Throughput Screening of Histidine Decarboxylase.

    PubMed

    Juang, Yu-Chi; Fradera, Xavier; Han, Yongxin; Partridge, Anthony William

    2018-06-01

    Histidine decarboxylase (HDC) is the primary enzyme that catalyzes the conversion of histidine to histamine. HDC contributes to many physiological responses as histamine plays important roles in allergic reaction, neurological response, gastric acid secretion, and cell proliferation and differentiation. Small-molecule modulation of HDC represents a potential therapeutic strategy for a range of histamine-associated diseases, including inflammatory disease, neurological disorders, gastric ulcers, and select cancers. High-throughput screening (HTS) methods for measuring HDC activity are currently limited. Here, we report the development of a time-resolved fluorescence resonance energy transfer (TR-FRET) assay for monitoring HDC activity. The assay is based on competition between HDC-generated histamine and fluorophore-labeled histamine for binding to a Europium cryptate (EuK)-labeled anti-histamine antibody. We demonstrated that the assay is highly sensitive and simple to develop. Assay validation experiments were performed using low-volume 384-well plates and resulted in good statistical parameters. A pilot HTS screen gave a Z' score > 0.5 and a hit rate of 1.1%, and led to the identification of a validated hit series. Overall, the presented assay should facilitate the discovery of therapeutic HDC inhibitors by acting as a novel tool suitable for large-scale HTS and subsequent interrogation of compound structure-activity relationships.

  5. Elevated blood histamine levels and mast cell degranulation in solar urticaria.

    PubMed Central

    Hawk, J L; Eady, R A; Challoner, A V; Kobza-Black, A; Keahey, T M; Greaves, M W

    1980-01-01

    1 Ultraviolet radiation (UVR)-induced wealing was studied in four patients with solar urticaria, whose measured action spectra were within the range 300 to 700 nm. 2 Elevated histamine levels were found in blood draining wealed skin in all four patients. 3 Histological and electron microscopial studies of the irradiated skin showed evidence of mast cell degranulation. 4 These findings demonstrate an association between histamine release from mast cells and wealing in solar urticaria, and should encourage evaluation of drugs which suppress histamine release in this disorder. Images Figure 2 PMID:7356907

  6. Extended-gate organic field-effect transistor for the detection of histamine in water

    NASA Astrophysics Data System (ADS)

    Minamiki, Tsukuru; Minami, Tsuyoshi; Yokoyama, Daisuke; Fukuda, Kenjiro; Kumaki, Daisuke; Tokito, Shizuo

    2015-04-01

    As part of our ongoing research program to develop health care sensors based on organic field-effect transistor (OFET) devices, we have attempted to detect histamine using an extended-gate OFET. Histamine is found in spoiled or decayed fish, and causes foodborne illness known as scombroid food poisoning. The new OFET device possesses an extended gate functionalized by carboxyalkanethiol that can interact with histamine. As a result, we have succeeded in detecting histamine in water through a shift in OFET threshold voltage. This result indicates the potential utility of the designed OFET devices in food freshness sensing.

  7. Cold urticaria. Dissociation of cold-evoked histamine release and urticara following cold challenge.

    PubMed

    Keahey, T M; Greaves, M W

    1980-02-01

    Nine patients with acquired cold urticaria were studied to assess the effects of beta-adrenergic agents, xanthines, and corticosteroids on cold-evoked histamine release from skin in vivo. The patients, in all of whom an immediate urticarial response developed after cooling of the forearm, demonstrated release of histamine into the venous blood draining that forearm. Following treatment with aminophylline and albuterol in combination or prednisone alone, suppression of histamine release occurred in all but one patient. In some patients, this was accompanied by a subjective diminution in pruritus or buring, but there was no significant improvement in the ensuing edema or erythema. In one patient, total suppression of histamine release was achieved without any effect on whealing and erythema in response to cold challenge. Our results suggest that histamine is not central to the pathogenesis of vascular changes in acquired cold urticaria.

  8. Glucagon effects on 3H-histamine uptake by the isolated guinea-pig heart during anaphylaxis.

    PubMed

    Rosic, Mirko; Parodi, Oberdan; Jakovljevic, Vladimir; Colic, Maja; Zivkovic, Vladimir; Jokovic, Vuk; Pantovic, Suzana

    2014-01-01

    We estimated the influence of acute glucagon applications on (3)H-histamine uptake by the isolated guinea-pig heart, during a single (3)H-histamine passage through the coronary circulation, before and during anaphylaxis, and the influence of glucagon on level of histamine, NO, O2 (-), and H2O2 in the venous effluent during anaphylaxis. Before anaphylaxis, glucagon pretreatment does not change (3)H-histamine Umax and the level of endogenous histamine. At the same time, in the presence of glucagon, (3)H-histamine Unet is increased and backflux is decreased when compared to the corresponding values in the absence of glucagon. During anaphylaxis, in the presence of glucagon, the values of (3)H-histamine Umax and Unet are significantly higher and backflux is significantly lower in the presence of glucagon when compared to the corresponding values in the absence of glucagon. The level of endogenous histamine during anaphylaxis in the presence of glucagon (6.9-7.38 × 10(-8) μM) is significantly lower than the histamine level in the absence of glucagon (10.35-10.45 × 10(-8) μM). Glucagon pretreatment leads to a significant increase in NO release (5.69 nmol/mL) in comparison with the period before glucagon administration (2.49 nmol/mL). Then, in the presence of glucagon, O2 (-) level fails to increase during anaphylaxis. Also, our results show no significant differences in H2O2 levels before, during, and after anaphylaxis in the presence of glucagon, but these values are significantly lower than the corresponding values in the absence of glucagon. In conclusion, our results show that glucagon increases NO release and prevents the increased release of free radicals during anaphylaxis, and decreases histamine level in the venous effluent during cardiac anaphylaxis, which may be a consequence of decreased histamine release and/or intensified histamine capturing by the heart during anaphylaxis.

  9. GCaMP expression in retinal ganglion cells characterized using a low-cost fundus imaging system

    NASA Astrophysics Data System (ADS)

    Chang, Yao-Chuan; Walston, Steven T.; Chow, Robert H.; Weiland, James D.

    2017-10-01

    Objective. Virus-transduced, intracellular-calcium indicators are effective reporters of neural activity, offering the advantage of cell-specific labeling. Due to the existence of an optimal time window for the expression of calcium indicators, a suitable tool for tracking GECI expression in vivo following transduction is highly desirable. Approach. We developed a noninvasive imaging approach based on a custom-modified, low-cost fundus viewing system that allowed us to monitor and characterize in vivo bright-field and fluorescence images of the mouse retina. AAV2-CAG-GCaMP6f was injected into a mouse eye. The fundus imaging system was used to measure fluorescence at several time points post injection. At defined time points, we prepared wholemount retina mounted on a transparent multielectrode array and used calcium imaging to evaluate the responsiveness of retinal ganglion cells (RGCs) to external electrical stimulation. Main results. The noninvasive fundus imaging system clearly resolves individual (RGCs and axons. RGC fluorescence intensity and the number of observable fluorescent cells show a similar rising trend from week 1 to week 3 after viral injection, indicating a consistent increase of GCaMP6f expression. Analysis of the in vivo fluorescence intensity trend and in vitro neurophysiological responsiveness shows that the slope of intensity versus days post injection can be used to estimate the optimal time for calcium imaging of RGCs in response to external electrical stimulation. Significance. The proposed fundus imaging system enables high-resolution digital fundus imaging in the mouse eye, based on off-the-shelf components. The long-term tracking experiment with in vitro calcium imaging validation demonstrates the system can serve as a powerful tool monitoring the level of genetically-encoded calcium indicator expression, further determining the optimal time window for following experiment.

  10. Expression of messenger molecules and receptors in rat and human sphenopalatine ganglion indicating therapeutic targets.

    PubMed

    Steinberg, Anna; Frederiksen, Simona D; Blixt, Frank W; Warfvinge, Karin; Edvinsson, Lars

    2016-12-01

    Migraine and Cluster Headache (CH) are two primary headaches with severe disease burden. The disease expression and the mechanisms involved are poorly known. In some attacks of migraine and in most attacks of CH, there is a release of vasoactive intestinal peptide (VIP) originating from parasympathetic cranial ganglia such as the sphenopalatine ganglion (SPG). Patients suffering from these diseases are often deprived of effective drugs. The aim of the study was to examine the localization of the botulinum toxin receptor element synaptic vesicle glycoprotein 2A (SV-2A) and the vesicular docking protein synaptosomal-associated protein 25 (SNAP25) in human and rat SPG. Additionally the expression of the neurotransmitters pituitary adenylate cyclase activating polypeptide (PACAP-38), nitric oxide synthase (nNOS), VIP and 5-hydroxttryptamine subtype receptors (5-HT1B,1D,1F) were examined. SPG from adult male rats and from humans, the later removed at autopsy, were prepared for immunohistochemistry using specific antibodies against neurotransmitters, 5-HT1B,1D,1F receptors, and botulinum toxin receptor elements. We found that the selected neurotransmitters and 5-HT receptors were expressed in rat and human SPG. In addition, we found SV2-A and SNAP25 expression in both rat and human SPG. We report that all three 5-HT receptors studied occur in neurons and satellite glial cells (SGCs) of the SPG. 5-HT1B receptors were in addition found in the walls of intraganglionic blood vessels. Recent focus on the SPG has emphasized the role of parasympathetic mechanisms in the pathophysiology of mainly CH. The development of next generation's drugs and treatment of cranial parasympathetic symptoms, mediated through the SPG, can be modulated by treatment with BoNT-A and 5-HT receptor agonists.

  11. Short-wavelength cone-opponent retinal ganglion cells in mammals.

    PubMed

    Marshak, David W; Mills, Stephen L

    2014-03-01

    In all of the mammalian species studied to date, the short-wavelength-sensitive (S) cones and the S-cone bipolar cells that receive their input are very similar, but the retinal ganglion cells that receive synapses from the S-cone bipolar cells appear to be quite different. Here, we review the literature on mammalian retinal ganglion cells that respond selectively to stimulation of S-cones and respond with opposite polarity to longer wavelength stimuli. There are at least three basic mechanisms to generate these color-opponent responses, including: (1) opponency is generated in the outer plexiform layer by horizontal cells and is conveyed to the ganglion cells via S-cone bipolar cells, (2) inputs from bipolar cells with different cone inputs and opposite response polarity converge directly on the ganglion cells, and (3) inputs from S-cone bipolar cells are inverted by S-cone amacrine cells. These are not mutually exclusive; some mammalian ganglion cells that respond selectively to S-cone stimulation seem to utilize at least two of them. Based on these findings, we suggest that the small bistratified ganglion cells described in primates are not the ancestral type, as proposed previously. Instead, the known types of ganglion cells in this pathway evolved from monostratified ancestral types and became bistratified in some mammalian lineages.

  12. Developmental Profiling of Spiral Ganglion Neurons Reveals Insights into Auditory Circuit Assembly

    PubMed Central

    Lu, Cindy C.; Appler, Jessica M.; Houseman, E. Andres; Goodrich, Lisa V.

    2011-01-01

    The sense of hearing depends on the faithful transmission of sound information from the ear to the brain by spiral ganglion (SG) neurons. However, how SG neurons develop the connections and properties that underlie auditory processing is largely unknown. We catalogued gene expression in mouse SG neurons from embryonic day 12 (E12), when SG neurons first extend projections, up until postnatal day 15 (P15), after the onset of hearing. For comparison, we also analyzed the closely-related vestibular ganglion (VG). Gene ontology analysis confirmed enriched expression of genes associated with gene regulation and neurite outgrowth at early stages, with the SG and VG often expressing different members of the same gene family. At later stages, the neurons transcribe more genes related to mature function, and exhibit a dramatic increase in immune gene expression. Comparisons of the two populations revealed enhanced expression of TGFβ pathway components in SG neurons and established new markers that consistently distinguish auditory and vestibular neurons. Unexpectedly, we found that Gata3, a transcription factor commonly associated with auditory development, is also expressed in VG neurons at early stages. We therefore defined new cohorts of transcription factors and axon guidance molecules that are uniquely expressed in SG neurons and may drive auditory-specific aspects of their differentiation and wiring. We show that one of these molecules, the receptor guanylyl cyclase Npr2, is required for bifurcation of the SG central axon. Hence, our data set provides a useful resource for uncovering the molecular basis of specific auditory circuit assembly events. PMID:21795542

  13. CSF Histamine Contents in Narcolepsy, Idiopathic Hypersomnia and Obstructive Sleep Apnea Syndrome

    PubMed Central

    Kanbayashi, Takashi; Kodama, Tohru; Kondo, Hideaki; Satoh, Shinsuke; Inoue, Yuichi; Chiba, Shigeru; Shimizu, Tetsuo; Nishino, Seiji

    2009-01-01

    Study Objective: To (1) replicate our prior result of low cerebrospinal fluid (CSF) histamine levels in human narcolepsy in a different sample population and to (2) evaluate if histamine contents are altered in other types of hypersomnia with and without hypocretin deficiency. Design: Cross sectional studies. Setting and Patients: Sixty-seven narcolepsy subjects, 26 idiopathic hypersomnia (IHS) subjects, 16 obstructive sleep apnea syndrome (OSAS) subjects, and 73 neurological controls were included. All patients were Japanese. Diagnoses were made according to ICSD-2. Results: We found significant reductions in CSF histamine levels in hypocretin deficient narcolepsy with cataplexy (mean ± SEM; 176.0 ± 25.8 pg/mL), hypocretin non-deficient narcolepsy with cataplexy (97.8 ± 38.4 pg/mL), hypocretin non-deficient narcolepsy without cataplexy (113.6 ± 16.4 pg/mL), and idiopathic hypersomnia (161.0 ± 29.3 pg/mL); the levels in OSAS (259.3 ± 46.6 pg/mL) did not statistically differ from those in the controls (333.8 ± 22.0 pg/mL). Low CSF histamine levels were mostly observed in non-medicated patients; significant reductions in histamine levels were evident in non-medicated patients with hypocretin deficient narcolepsy with cataplexy (112.1 ± 16.3 pg/mL) and idiopathic hypersomnia (143.3 ± 28.8 pg/mL), while the levels in the medicated patients were in the normal range. Conclusion: The study confirmed reduced CSF histamine levels in hypocretin-deficient narcolepsy with cataplexy. Similar degrees of reduction were also observed in hypocretin non-deficient narcolepsy and in idiopathic hypersomnia, while those in OSAS (non central nervous system hypersomnia) were not altered. The decrease in histamine in these subjects were more specifically observed in non-medicated subjects, suggesting CSF histamine is a biomarker reflecting the degree of hypersomnia of central origin. Citation: Kanbayashi T; Kodama T; Kondo H; Satoh S; Inoue Y; Chiba S; Shimizu T; Nishino S. CSF

  14. Histamine H2 receptor - Involvement in gastric ulceration

    NASA Technical Reports Server (NTRS)

    Brown, P. A.; Vernikos-Danellis, J.; Brown, T. H.

    1976-01-01

    The involvement of the H1 and H2 receptors for histamine in the pathogenesis of gastric ulcers was investigated in rats. Metiamide, an H2 receptor antagonist, reliably reduced ulceration produced by stress alone or by a combination of stress and aspirin. In contrast, pyrilamine, which blocks only the H1 receptor, was without effect under these same conditions. The results support the hypothesis that histamine mediates both stress and stress plus aspirin induced ulceration by a mechanism involving the H2 receptor.

  15. PCR detection and identification of histamine-forming bacteria in filleted tuna fish samples.

    PubMed

    Ferrario, Chiara; Pegollo, Chiara; Ricci, Giovanni; Borgo, Francesca; Fortina, M Grazia

    2012-02-01

    Total of 14 filleted yellowfin tuna fish (Thunnus albacares) sold in wholesale fish market and supermarkets in Milan, Italy, were purchased and tested to determine microbial count, histamine level, histamine-forming bacteria, and their ability to produce histamine in culture broth. Although histamine level was less than 10 ppm, many samples showed high total viable bacterial and enterobacterial counts that reached dangerous levels after temperature abuse for short periods of time. A PCR assay targeting a 709-bp fragment of the histidine decarboxylase gene (hdc) revealed that 30.5% of the 141 enteric bacteria isolated from samples were positive and potentially able to produce histamine. The hdc positive strains were mainly isolated from fish bought at wholesale fish market, where we observed several possible risk factors, such as handling in poor and non-refrigerated conditions during fillet preparation. These positive strains were identified as Citrobacter koseri/Enterobacter spp. and Morganella morganii, by 16S/23S rRNA internal transcribed spacer amplification and 16S rRNA sequence analysis. The strains showed a variable ability of histamine production, with Morganella morganii being the most active histamine-producing species. A direct DNA extraction from fish and a PCR targeting the hdc gene showed a high degree of concordance with the results obtained through microbiological and chemical analyses, and could aid in the prompt detection of potentially contaminated fish products, before histamine accumulates. The use of methods for the early and rapid detection of bacteria producing biogenic amines is important for preventing accumulation of these toxic substances in food products. In this study, we used a molecular approach for the detection of histamine-forming bacteria in fish. PCR-based methods require expensive equipment and a high degree of training for the user, but are fast (< 24 h) and reliable. They now represent the best predictive methods to identify

  16. Histamine Poisoning from Ingestion of Fish or Scombroid Syndrome

    PubMed Central

    Tortorella, Vincenzo; Masciari, Peppino; Pezzi, Mario; Mola, Assunta; Tiburzi, Simona Paola; Zinzi, Maria Concetta; Scozzafava, Annamaria; Verre, Mario

    2014-01-01

    The scombroid poisoning is due to the ingestion of poorly preserved fish (especially tuna, sardines, and mackerel) out of the cold chain. Under the influence of the proliferation of gram negative bacteria that occurs for heating, the histidine content in the muscle of the fish is converted into histamine, by the action of the enzyme histidine decarboxylase. If the histamine is ingested in large quantities, it causes an anaphylactoid reaction with a variety of symptoms from moderate to severe to life-threating. We will describe two cases that came under our observation after consuming a meal of bluefin tuna. The diagnosis of scombroid syndrome was made on the basis of the anamnestic data and the clinical one. The rapid resolution of the signs and symptoms after treatment with histamines H1-H2 receptor blockers confirmed the suspected diagnosis. PMID:25544905

  17. Histamine poisoning from ingestion of fish or scombroid syndrome.

    PubMed

    Tortorella, Vincenzo; Masciari, Peppino; Pezzi, Mario; Mola, Assunta; Tiburzi, Simona Paola; Zinzi, Maria Concetta; Scozzafava, Annamaria; Verre, Mario

    2014-01-01

    The scombroid poisoning is due to the ingestion of poorly preserved fish (especially tuna, sardines, and mackerel) out of the cold chain. Under the influence of the proliferation of gram negative bacteria that occurs for heating, the histidine content in the muscle of the fish is converted into histamine, by the action of the enzyme histidine decarboxylase. If the histamine is ingested in large quantities, it causes an anaphylactoid reaction with a variety of symptoms from moderate to severe to life-threating. We will describe two cases that came under our observation after consuming a meal of bluefin tuna. The diagnosis of scombroid syndrome was made on the basis of the anamnestic data and the clinical one. The rapid resolution of the signs and symptoms after treatment with histamines H1-H2 receptor blockers confirmed the suspected diagnosis.

  18. Piriformis ganglion: An uncommon cause of sciatica.

    PubMed

    Park, J H; Jeong, H J; Shin, H K; Park, S J; Lee, J H; Kim, E

    2016-04-01

    Sciatica can occur due to a spinal lesion, intrapelvic tumor, diabetic neuropathy, and rarely piriformis syndrome. The causes of piriformis syndrome vary by a space-occupying lesion. A ganglionic cyst can occur in various lesions in the body but seldom around the hip joint. In addition, sciatica due to a ganglionic cyst around the hip joint has been reported in one patient in Korea who underwent surgical treatment. We experienced two cases of sciatica from a piriformis ganglionic cyst and we report the clinical characterics and progress after non-operative treatment by ultrasonography-guided aspiration. The two cases were diagnosed by magnetic resonance imaging and were treated by ultrasonography-guided aspiration. We followed the patients for more than 6months. The symptoms of piriformis syndrome from the ganglion improved following aspiration and this conservative treatment is a treatment method that can be used without extensive incision or cyst excision. Level IV historical case. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  19. Histamine production by Enterobacter aerogenes in sailfish and milkfish at various storage temperatures.

    PubMed

    Tsai, Yung-Hsiang; Chang, Shiou-Chung; Kung, Hsien-Feng; Wei, Cheng-I; Hwang, Deng-Fwu

    2005-08-01

    Enterobacter aerogenes was studied for its growth and ability to promote the formation of total volatile base nitrogen (TVBN) and histamine in sailfish (Istiophorus platypterus) and milkfish (Chanos chanos) stored at various temperatures from -20 to 37 degrees C. The optimal temperature for bacterial growth in both fish species was 25 degrees C, whereas the optimal temperature for histamine formation was 37 degrees C. The two fish species inoculated with E. aerogenes, when not properly stored at low temperatures such as 15 degrees C for 36 h, formed histamine at above the U.S. Food and Drug Administration hazardous guideline level of 50 mg/100 g. Milkfish was a better substrate than sailfish for histamine formation by bacterial histidine decarboxylation at elevated temperatures (> 15 degrees C). Although higher contents of TVBN were detected in the spiked sailfish than milkfish during the same storage time at temperatures above 15 degrees C, the use of the 30-mg/100 g level of TVBN as a determination index for fish quality and decomposition was not a good criterion for assessing potential histamine hazard for both fish species. Bacterial growth was controlled by cold storage of the fish at 4 degrees C or below, but histamine formation was stopped only by frozen storage. Once the frozen fish samples were thawed and stored at 25 degrees C, histamine started to accumulate rapidly and reached levels greater than the hazardous action level in 36 h.

  20. Functional coupling between the Na+/Ca2+ exchanger and nonselective cation channels during histamine stimulation in guinea pig tracheal smooth muscle.

    PubMed

    Algara-Suárez, Paola; Romero-Méndez, Catalina; Chrones, Tom; Sánchez-Armass, Sergio; Meza, Ulises; Sims, Stephen M; Espinosa-Tanguma, Ricardo

    2007-07-01

    Airway smooth muscle (ASM) contracts partly due to an increase in cytosolic Ca(2+). In this work, we found that the contraction caused by histamine depends on external Na(+), possibly involving nonselective cationic channels (NSCC) and the Na(+)/Ca(2+) exchanger (NCX). We performed various protocols using isometric force measurement of guinea pig tracheal rings stimulated by histamine. We observed that force reached 53 +/- 1% of control during external Na(+) substitution by N-methyl-D-glucamine(+), whereas substitution by Li(+) led to no significant change (91 +/- 1%). Preincubation with KB-R7943 decreased the maximal force developed (52.3 +/- 5.6%), whereas preincubation with nifedipine did not (89.7 +/- 1.8%). Also, application of the nonspecific NCX blocker KB-R7943 and nifedipine on histamine-precontracted tracheal rings reduced force to 1 +/- 3%, significantly different from nifedipine alone (49 +/- 6%). Moreover, nonspecific NSCC inhibitors SKF-96365 and 2-aminoethyldiphenyl borate reduced force to 1 +/- 1% and 19 +/- 7%, respectively. Intracellular Ca(2+) measurements in isolated ASM cells showed that KB-R7943 and SKF-96365 reduced the peak and sustained response to histamine (0.20 +/- 0.1 and 0.19 +/- 0.09 for KB-R, 0.43 +/- 0.16 and 0.47 +/- 0.18 for SKF, expressed as mean of differences). Moreover, Na(+)-free solution only inhibited the sustained response (0.54 +/- 0.25). These data support an important role for NSCC and NCX during histamine stimulation. We speculate that histamine induces Na(+) influx through NSCC that promotes the Ca(2+) entry mode of NCX and Ca(V)1.2 channel activation, thereby causing contraction.

  1. Histamine excites groups III and IV afferents from the cat knee joint depending on their resting activity.

    PubMed

    Herbert, M K; Just, H; Schmidt, R F

    2001-06-08

    The effect of histamine on the sensory activity of primary afferents was studied in normal and acutely inflamed cat knee joints. A subpopulation of groups III and IV articular afferents could be activated by close-arterial bolus injections of histamine: units with a high resting activity (about 100/min) were particular sensitive to histamine and were excited even by 3.3 fg histamine. The lower the resting discharges of groups III and IV units both from normal and acutely inflamed joints, the higher the dose of histamine (up to 3.3 or 33 microg) necessary to excite the nerve fibres. Thirty-seven of 39 units without any resting activity were completely insensitive to histamine. In contrast to its clear excitatory effect, histamine caused only minor changes in the responses to joint movements. Movement-evoked activity remained unchanged in 22 of 28 units, 1 unit was sensitized and 5 units showed reduced activity after histamine (3.3 microg). The present results support the notion that histamine may participate in the mediation of pain from injured or inflamed tissue. It is remarkable that histamine has a profound excitatory action on a proportion of both groups III and IV articular afferents without changing their sensitivity to joint movements.

  2. Incomplete segregation of endorgan-specific vestibular ganglion cells in mice and rats

    NASA Technical Reports Server (NTRS)

    Maklad, A.; Fritzsch, B.

    1999-01-01

    The endorgan-specific distribution of vestibular ganglion cells was studied in neonatal and postnatal rats and mice using indocarbocyanine dye (DiI) and dextran amines for retrograde and anterograde labeling. Retrograde DiI tracing from the anterior vertical canal labeled neurons scattered throughout the whole superior vestibular ganglion, with denser labeling at the dorsal and central regions. Horizontal canal neurons were scattered along the dorsoventral axis with more clustering toward the dorsal and ventral poles of this axis. Utricular ganglion cells occupied predominantly the central region of the superior vestibular ganglion. This utricular population overlapped with both the anterior vertical and horizontal canals' ganglion cells. Posterior vertical canal neurons were clustered in the posterior part of the inferior vestibular ganglion. The saccular neurons were distributed in the two parts of the vestibular ganglion, the superior and inferior ganglia. Within the inferior ganglion, the saccular neurons were clustered in the anterior part. In the superior ganglion, the saccular neurons were widely scattered throughout the whole ganglion with more numerous neurons at the posterior half. Small and large neurons were labeled from all endorgans. Examination of the fiber trajectory within the superior division of the vestibular nerve showed no clear lamination of the fibers innervating the different endorgans. These results demonstrate an overlapping pattern between the different populations within the superior ganglion, while in the inferior ganglion, the posterior canal and saccular neurons show tighter clustering but incomplete segregation. This distribution implies that the ganglion cells are assigned for their target during development in a stochastic rather than topographical fashion.

  3. Histamine H3 Receptors Decrease Dopamine Release in the Ventral Striatum by Reducing the Activity of Striatal Cholinergic Interneurons.

    PubMed

    Varaschin, Rafael Koerich; Osterstock, Guillaume; Ducrot, Charles; Leino, Sakari; Bourque, Marie-Josée; Prado, Marco A M; Prado, Vania Ferreira; Salminen, Outi; Rannanpää Née Nuutinen, Saara; Trudeau, Louis-Eric

    2018-04-15

    Histamine H 3 receptors are widely distributed G i -coupled receptors whose activation reduces neuronal activity and inhibits release of numerous neurotransmitters. Although these receptors are abundantly expressed in the striatum, their modulatory role on activity-dependent dopamine release is not well understood. Here, we observed that histamine H 3 receptor activation indirectly diminishes dopamine overflow in the ventral striatum by reducing cholinergic interneuron activity. Acute brain slices from C57BL/6 or channelrhodopsin-2-transfected DAT-cre mice were obtained, and dopamine transients evoked either electrically or optogenetically were measured by fast-scan cyclic voltammetry. The H 3 agonist α-methylhistamine significantly reduced electrically- evoked dopamine overflow, an effect blocked by the nicotinic acetylcholine receptor antagonist dihydro-β-erythroidine, suggesting involvement of cholinergic interneurons. None of the drug treatments targeting H 3 receptors affected optogenetically evoked dopamine overflow, indicating that direct H 3 -modulation of dopaminergic axons is unlikely. Next, we used qPCR and confirmed the expression of histamine H 3 receptor mRNA in cholinergic interneurons, both in ventral and dorsal striatum. Activation of H 3 receptors by α-methylhistamine reduced spontaneous firing of cholinergic interneurons in the ventral, but not in the dorsal striatum. Resting membrane potential and number of spontaneous action potentials in ventral-striatal cholinergic interneurons were significantly reduced by α-methylhistamine. Acetylcholine release from isolated striatal synaptosomes, however, was not altered by α-methylhistamine. Together, these results indicate that histamine H 3 receptors are important modulators of dopamine release, specifically in the ventral striatum, and that they do so by decreasing the firing rate of cholinergic neurons and, consequently, reducing cholinergic tone on dopaminergic axons. Copyright © 2018 IBRO

  4. Distribution of TRPV1 and TRPV2 in the human stellate ganglion and spinal cord.

    PubMed

    Kokubun, Souichi; Sato, Tadasu; Ogawa, Chikara; Kudo, Kai; Goto, Koju; Fujii, Yuki; Shimizu, Yoshinaka; Ichikawa, Hiroyuki

    2015-03-17

    Immunohistochemistry for the transient receptor potential cation channel subfamily V member 1 (TRPV1) and 2 (TRPV2) was performed on the stellate ganglion and spinal cord in human cadavers. In the stellate ganglion, 25.3% and 16.2% of sympathetic neurons contained TRPV1- and TRPV2-immunoreactivity, respectively. The cell size analysis also demonstrated that proportion of TRPV1- or TRPV2-immunoreactive (-IR) neurons among large (>600 μm(2)) sympathetic neurons (TRPV1, 30.7%; TRPV2, 27.0%) was higher than among small (<600 μm(2)) sympathetic neurons (TRPV1, 22.0%; TRPV2, 13.6%). The present study also demonstrated that 10.0% of sympathetic neurons in the stellate ganglion had pericellular TRPV2-IR nerve fibers. Fourteen percent of large neurons and 7.8% of small neurons were surrounded by TRPV2-IR nerve fibers. TRPV2-immunoreactivity was also detected in about 40% of neuronal cell bodies with pericellular TRPV2-IR nerve fibers. In the lateral horn of the human thoracic spinal cord, TRPV2-immunoreactivity was expressed by some neurons and many varicose fibers surrounding TRPV2-immunonegative neurons. TRPV2-IR pericellular fibers in the stellate ganglion may originate from the lateral horn of the spinal cord. There appears to be TRPV1- or TRPV2-IR sympathetic pathway in the human stellate ganglion and spinal cord. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. Bioautography-guided isolation of antibacterial compounds of essential oils from Thai spices against histamine-producing bacteria.

    PubMed

    Lomarat, Pattamapan; Phanthong, Phanida; Wongsariya, Karn; Chomnawang, Mullika Traidej; Bunyapraphatsara, Nuntavan

    2013-05-01

    The outbreak of histamine fish poisoning has been being an issue in food safety and international trade. The growth of contaminated bacterial species including Morganella morganii which produce histidine decarboxylase causes histamine formation in fish during storage. Histamine, the main toxin, causes mild to severe allergic reaction. At present, there is no well-established solution for histamine fish poisoning. This study was performed to determine the antibacterial activity of essential oils from Thai spices against histamine-producing bacteria. Among the essential oils tested, clove, lemongrass and sweet basil oils were found to possess the antibacterial activity. Clove oil showed the strongest inhibitory activity against Morganella morganii, followed by lemongrass and sweet basil oils. The results indicated that clove, lemongrass and sweet basil oils could be useful for the control of histamine-producing bacteria. The attempt to identify the active components using preparative TLC and GC/MS found eugenol, citral and methyl chavicol as the active components of clove, lemongrass and sweet basil oils, respectively. The information from this study would be useful in the research and development for the control of histamine-producing bacteria in fish or seafood products to reduce the incidence of histamine fish poisoning.

  6. Early and late histamine release induced by albumin, hetastarch and polygeline: some unexpected findings.

    PubMed

    Celik, I; Duda, D; Stinner, B; Kimura, K; Gajek, H; Lorenz, W

    2003-10-01

    The perioperative use of colloidal plasma substitutes is still under discussion. We therefore conducted a prospective randomised study with three commonly used plasma substitutes to examine their histamine releasing effects in 21 volunteers. MATERIAL OR SUBJETS: 21 male volunteers were enrolled in this prospective, randomised, controlled clinical study. Endpoints were the incidence of early and late histamine release and the time course of the release kinetics. Normovolemic hemodilution technique was used with hydroxyethyl starch (n = 6), human albumin (n = 6) and polygeline (n = 9). Measurement and observation period was 240 min after the start of the plasma substitute infusion. Heart rate, blood pressure, SaO(2), clinical symptoms/signs and plasma histamine were measured during the observation period. The incidence of histamine release over the whole observation period in all three groups was 100%. Histamine release occurred frequently in all three groups until 30 min (50%-78%) and up to 240 min (late release reaction: 67%-83%) after the start of infusion. Surprisingly even hydroxyethyl starch, which is regarded as a generally safe and effective plasma substitute, caused high incidences of late histamine release (67%). Histamine release is a well known side effect of polygeline and - to a lesser extent - also of albumin, but was a novel finding for hydroxyethyl starch. We demonstrated for the first time histamine releasing effects of hydroxyethyl starch over a long period of time after administration. This perioperatively and for intensive care possibly relevant finding should make clinicians aware of late side effects not yet connected with the clinical use of these colloidal plasma substitutes.

  7. Effect of perinatal asphyxia on tuberomammillary nucleus neuronal density and object recognition memory: A possible role for histamine?

    PubMed

    Flores-Balter, Gabriela; Cordova-Jadue, Héctor; Chiti-Morales, Alessandra; Lespay, Carolyne; Espina-Marchant, Pablo; Falcon, Romina; Grinspun, Noemi; Sanchez, Jessica; Bustamante, Diego; Morales, Paola; Herrera-Marschitz, Mario; Valdés, José L

    2016-10-15

    Perinatal asphyxia (PA) is associated with long-term neuronal damage and cognitive deficits in adulthood, such as learning and memory disabilities. After PA, specific brain regions are compromised, including neocortex, hippocampus, basal ganglia, and ascending neuromodulatory pathways, such as dopamine system, explaining some of the cognitive disabilities. We hypothesize that other neuromodulatory systems, such as histamine system from the tuberomammillary nucleus (TMN), which widely project to telencephalon, shown to be relevant for learning and memory, may be compromised by PA. We investigated here the effect of PA on (i) Density and neuronal activity of TMN neurons by double immunoreactivity for adenosine deaminase (ADA) and c-Fos, as marker for histaminergic neurons and neuronal activity respectively. (ii) Expression of the histamine-synthesizing enzyme, histidine decarboxylase (HDC) by western blot and (iii) thioperamide an H3 histamine receptor antagonist, on an object recognition memory task. Asphyxia-exposed rats showed a decrease of ADA density and c-Fos activity in TMN, and decrease of HDC expression in hypothalamus. Asphyxia-exposed rats also showed a low performance in object recognition memory compared to caesarean-delivered controls, which was reverted in a dose-dependent manner by the H3 antagonist thioperamide (5-10mg/kg, i.p.). The present results show that the histaminergic neuronal system of the TMN is involved in the long-term effects induced by PA, affecting learning and memory. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Antagonism of histamine H4 receptors exacerbates clinical and pathological signs of experimental autoimmune encephalomyelitis

    PubMed Central

    Ballerini, C; Aldinucci, A; Luccarini, I; Galante, A; Manuelli, C; Blandina, P; Katebe, M; Chazot, P L; Masini, E; Passani, M B

    2013-01-01

    Background and Purpose The histamine H4 receptor has a primary role in inflammatory functions, making it an attractive target for the treatment of asthma and refractory inflammation. These observations suggested a facilitating action on autoimmune diseases. Here we have assessed the role of H4 receptors in experimental autoimmune encephalomyelitis (EAE) a model of multiple sclerosis (MS). Experimental Approach We induced EAE with myelin oligodendrocyte glycoprotein (MOG35–55) in C57BL/6 female mice as a model of MS. The histamine H4 receptor antagonist 5-chloro-2-[(4-methylpiperazin-1-yl)carbonyl]-1H-indole (JNJ7777120) was injected i.p. daily starting at day 10 post-immunization (D10 p.i.). Disease severity was monitored by clinical and histopathological evaluation of inflammatory cells infiltrating into the spinal cord, anti-MOG35–55 antibody production, assay of T-cell proliferation by [3H]-thymidine incorporation, mononucleate cell phenotype by flow cytometry, cytokine production by elisa assay and transcription factor quantification of mRNA expression. Key Results Treatment with JNJ7777120 exacerbated EAE, increased inflammation and demyelination in the spinal cord of EAE mice and increased IFN-γ expression in lymph nodes, whereas it suppressed IL-4 and IL-10, and augmented expression of the transcription factors Tbet, FOXP3 and IL-17 mRNA in lymphocytes. JNJ7777120 did not affect proliferation of anti-MOG35–55 T-cells, anti-MOG35–55 antibody production or mononucleate cell phenotype. Conclusions and Implications H4 receptor blockade was detrimental in EAE. Given the interest in the development of H4 receptor antagonists as anti-inflammatory compounds, it is important to understand the role of H4 receptors in immune diseases to anticipate clinical benefits and also predict possible detrimental effects. Linked Articles This article is part of a themed issue on Histamine Pharmacology Update. To view the other articles in this issue visit http

  9. Effect of terfenadine on nasal, eustachian tube, and pulmonary function after provocative intranasal histamine challenge.

    PubMed

    Skoner, D P; Doyle, W J; Boehm, S; Fireman, P

    1991-12-01

    Previous studies have documented that intranasal histamine challenge results in nasal and eustachian tube obstruction (ETO) in human volunteers. The purpose of the present study was to assess the effect of pretreatment with terfenadine, a nonsedating antihistamine on the pathophysiologic consequences of intranasal histamine challenge. Fifteen subjects with allergic rhinitis were challenged intranasally with saline and increasing histamine doses (0.01, 0.1, 0.5, 1.0, 5.0, and 10.0 mg) before pretreatment (baseline) and after 1 week of pretreatment with terfenadine, 60 mg b.i.d., terfenadine, 120 mg b.i.d., and placebo. Nasal conductance as measured by posterior rhinomanometry showed a dose-dependent, monotonic decrease following sequential administration of the histamine solutions, but there were no apparent differences in the average responses among the four challenge sessions. The frequency of ETO after histamine challenge was decreased by pretreatment with both doses of terfenadine, although this was not significant. Histamine-induced sneezing and rhinorrhea, but not congestion, were significantly reduced by terfenadine pretreatment. There was no evidence of extension of the histamine effects to the lower airway. The results of the present study suggest that terfenadine, a nonsedating antihistamine, had a favorable effect on sneezing and rhinorrhea after provocative intranasal histamine challenge, but did not significantly attenuate the subjective or objective nasal and ET obstructive responses.

  10. Noxious heat and scratching decrease histamine-induced itch and skin blood flow.

    PubMed

    Yosipovitch, Gil; Fast, Katharine; Bernhard, Jeffrey D

    2005-12-01

    The aim of this study was to assess the effect of thermal stimuli or distal scratching on skin blood flow and histamine-induced itch in healthy volunteers. Twenty-one healthy volunteers participated in the study. Baseline measurements of skin blood flow were obtained on the flexor aspect of the forearm. These measurements were compared with skin blood flow after various stimuli: heating the skin, cooling the skin, noxious cold 2 degrees C, noxious heat 49 degrees C, and scratching via a brush with controlled pressure. Afterwards histamine iontophoresis was performed and skin blood flow and itch intensity were measured immediately after the above-mentioned stimuli. Scratching reduced mean histamine-induced skin blood flow and itch intensity. Noxious heat pain increased basal skin blood flow but reduced histamine-induced maximal skin blood flow and itch intensity. Cold pain and cooling reduced itch intensity, but neither affected histamine-induced skin blood flow. Sub-noxious warming the skin did not affect the skin blood flow or itch intensity. These findings suggest that heat pain and scratching may inhibit itch through a neurogenic mechanism that also affects skin blood flow.

  11. Quantitative electrophysiological monitoring of anti-histamine drug effects on live cells via reusable sensor platforms.

    PubMed

    Pham Ba, Viet Anh; Cho, Dong-Guk; Kim, Daesan; Yoo, Haneul; Ta, Van-Thao; Hong, Seunghun

    2017-08-15

    We demonstrated the quantitative electrophysiological monitoring of histamine and anti-histamine drug effects on live cells via reusable sensor platforms based on carbon nanotube transistors. This method enabled us to monitor the real-time electrophysiological responses of a single HeLa cell to histamine with different concentrations. The measured electrophysiological responses were attributed to the activity of histamine type 1 receptors on a HeLa cell membrane by histamine. Furthermore, the effects of anti-histamine drugs such as cetirizine or chlorphenamine on the electrophysiological activities of HeLa cells were also evaluated quantitatively. Significantly, we utilized only a single device to monitor the responses of multiple HeLa cells to each drug, which allowed us to quantitatively analyze the antihistamine drug effects on live cells without errors from the device-to-device variation in device characteristics. Such quantitative evaluation capability of our method would promise versatile applications such as drug screening and nanoscale bio sensor researches. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Withdrawal of repeated morphine enhances histamine-induced scratching responses in mice.

    PubMed

    Abe, Kenji; Kobayashi, Kanayo; Yoshino, Saori; Taguchi, Kyoji; Nojima, Hiroshi

    2015-04-01

    An itch is experientially well known that the scratching response of conditions such as atopic dermatitis is enhanced under psychological stress. Morphine is typical narcotic drug that induces a scratching response upon local application as an adverse drug reaction. Although long-term treatment with morphine will cause tolerance and dependence, morphine withdrawal can cause psychologically and physiologically stressful changes in humans. In this study, we evaluated the effects of morphine withdrawal on histamine-induced scratching behavior in mice. Administration of morphine with progressively increasing doses (10-50 mg/kg, i.p.) was performed for 5 consecutive days. At 3, 24, 48, and 72 hr after spontaneous withdrawal from the final morphine dose, histamine was intradermally injected into the rostral part of the back and then the number of bouts of scratching in 60 min was recorded and summed. We found that at 24 hr after morphine withdrawal there was a significant increase in histamine-induced scratching behavior. The spinal c-Fos positive cells were also significantly increased. The relative adrenal weight increased and the relative thymus weight decreased, both significantly. Moreover, the plasma corticosterone levels changed in parallel with the number of scratching bouts. These results suggest that morphine withdrawal induces a stressed state and enhances in histamine-induced scratching behavior. Increased reaction against histamine in the cervical vertebrae will participate in this stress-induced itch enhancement.

  13. Light-evoked currents in retinal ganglion cells from dystrophic RCS rats.

    PubMed

    Liu, Kang; Wang, Yi; Yin, Zhengqin; Weng, Chuanhuang

    2013-01-01

    To study the electrophysiological properties of the light-evoked currents in ganglion cells in situations of retinal degeneration. We investigated light-evoked currents in ganglion cells by performing whole-cell patch-clamp recordings from ganglion cells using a retina-stretched preparation from Royal College of Surgeons (RCS) rats, a model of retinal degeneration and congenic controls at different ages. Pharmacological inhibitors of the AMPA receptor (NBQX), GABA receptor (BMI), and sodium channels (TTX) were used to identify the components of the light-evoked currents in ON, OFF and ON-OFF retinal ganglion cells. We found that the light-evoked currents in ganglion cells from control rats were inhibited by NBQX, BMI and TTX, suggesting that AMPA receptors, GABA receptors and sodium channels contribute to these currents in ganglion cells. However, only AMPA receptor-mediated currents were recorded in RCS rats. Light-evoked inward currents were absent in the majority of ganglion cells from RCS rats, particularly at the later stages of retinal degeneration. At earlier stages of retinal degeneration, we found that both the timing and amplitude of light-evoked currents are significantly different in ganglion cells from RCS and control rats. Our study furthers the understanding of the electrophysiological characteristics of retinal ganglion cells during retinal degeneration, and provides insight into the optimal timing for the treatment of retinal degeneration. Copyright © 2013 S. Karger AG, Basel.

  14. Involvement of prostaglandins and histamine in nickel wire-induced acute inflammation in mice.

    PubMed

    Hirasawa, Noriyasu; Goi, Yoshiaki; Tanaka, Rina; Ishihara, Kenji; Ohtsu, Hiroshi; Ohuchi, Kazuo

    2010-06-15

    The irritancy of Nickel (Ni) ions has been well documented clinically. However, the chemical mediators involved in the acute inflammation induced by solid Ni are not fully understood. We used the Ni wire-implantation model in mice and examined roles of prostaglandins and histamine in plasma leakage in the acute phase. The subcutaneous implantation of a Ni wire into the back of mice induced plasma leakage from 8 to 24 h and tissue necrosis around the wire at 3 days, whereas the implantation of an aluminum wire induced no such inflammatory responses. An increase in the mRNA for cyclooxygenase (COX)-2 and HDC in cells around the Ni wire was detected 4 h after the implantation. The leakage of plasma at 8 h was inhibited by indomethacin in a dose-dependent manner. Dexamethasone and the p38 MAP kinase inhibitor SB203580 also inhibited the exudation of plasma consistent with the inhibition of the expression of COX-2 mRNA. Furthermore, plasma leakage was partially but siginificantly reduced in histamine H1 receptor knockout mice and histidine decarboxylase (HDC) knockout mice but not in H2 receptor knockout mice. These results suggested that the Ni ions released from the wire induced the expression of COX-2 and HDC, resulting in an increase in vascular permeability during the acute phase of inflammation. (c) 2009 Wiley Periodicals, Inc.

  15. The effects of substance P on histamine and 5-hydroxytryptamine release in the rat

    PubMed Central

    Fewtrell, C. M. S.; Foreman, J. C.; Jordan, C. C.; Oehme, P.; Renner, H.; Stewart, J. M.

    1982-01-01

    1. Substance P (SP) induces histamine release from isolated rat peritoneal mast cells at concentrations of 0·1-10 μM. 2. Inhibitors of glycolysis and oxidative phosphorylation prevent the release of histamine induced by SP. 3. Cells heated to 47 °C for 20 min release histamine when treated with an agent causing cell lysis but fail to release in response to SP. 4. SP does not release histamine by interacting with cell-bound IgE. 5. Histamine release by SP is rapid, with more than 90% of the response occurring within 1 min of the addition of the peptide to mast cells at 37 °C. 6. Substance P, unlike antigen—antibody or compound 48/80, does not show enhanced release of histamine when calcium (0·1-1 mM) is present in the extracellular medium but calcium increases the response to SP when the ion is added after the peptide. Extracellular calcium (0·1-1 mM), magnesium (1-10 mM) and cobalt (0·01-0·1 mM) all inhibit SP-induced histamine release when added before the peptide. Pre-treatment of the cells with EDTA (10 mM) and washing in calcium-free medium inhibits the histamine release induced by SP. 7. Histamine release induced by SP was optimum at an extracellular pH of 7·2. 8. A number of peptides structurally related to SP were examined for histamine-releasing activity. At the concentrations tested, the N-terminal dipeptides Lys-Pro and Arg-Pro, tuftsin, physalaemin, eledoisin, SP3-11, SP4-11 and [p-Glu6, p-amino Phe7]-SP6-11 were all found to be inactive. The relative activities of the other peptides were: [Formula: see text] 9. Rat basophilic leukaemia cells (RBL-2H3) fail to respond to SP at concentrations which activate rat mast cells. Release of 5-hydroxytryptamine by immunological activation of RBL cells is not changed by the presence of SP. 10. The mechanism of action of SP on mast cells and the nature of the SP receptor on mast cells is discussed in relation to SP receptors in other cell types. PMID:6184468

  16. Comparison of the effects of histamine and tolazoline on adenylate cyclase activity from guinea pig heart.

    PubMed

    Weinryb, I; Michel, I M

    1975-01-01

    Both histamine and tolazoline (2-benzyl-2-imidazoline) stimulated particulate fractions of adenylate cyclase from guinea pig myocardium. Tolazoline was one-tenth as potent, and about two-thirds as active at maximally effective levels, as was histamine. Enhancement of cyclase activity by tolazoline was additive with that by isoproterenol, and the histamine and tolazoline concentration-response curves were parallel, suggesting that tolazoline acted at the same site as histamine. At maximally effective concentrations, tolazoline did not affect ATPase or cyclic AMP phosphodiesterase activities associated with the cyclase preparations. The H1-receptor antagonist mepyramine, and the H2 antagonist, burimamide, blocked stimulation of cyclase by tolazoline at one-tenth the molarity of agonist. Both antagonists were less effective vs. histamine stimulation of heart cyclase in particulate fractions or whole homogenates, with mepyramine being generally more potent. It is suggested that the molecular basis of the stimulatory effect of tolazoline on cardiac tissue may be histaminergic stimulation of adenylate cyclase. Furthermore, the lack of potency of burimamide as a histamine antagonist and its lack of specificity compared to mepyramine, at the subcellular level, indicate that histamine-responsive adenylate cyclase from heart may not be a satisfactory molecular model for the H2 receptor pharmacology of histamine in cardiac tissue.

  17. [Performance evaluation of a fluorescamine-HPLC method for determination of histamine in fish and fish products].

    PubMed

    Kikuchi, Hiroyuki; Tsutsumi, Tomoaki; Matsuda, Rieko

    2012-01-01

    A method for the quantification of histamine in fish and fish products using tandem solid-phase extraction and fluorescence derivatization with fluorescamine was previously developed. In this study, we improved this analytical method to develop an official test method for quantification of histamine in fish and fish products, and performed a single laboratory study to validate it. Recovery tests of histamine from fillet (Thunnus obesus), and two fish products (fish sauce and salted and dried whole big-eye sardine) that were spiked at the level of 25 and 50 µg/g for T. obesus, and 50 and 100 µg/g for the two fish products, were carried out. The recoveries of histamine from the three samples tested were 88.8-99.6% with good repeatability (1.3-2.1%) and reproducibility (2.1-4.7%). Therefore, this method is acceptable for the quantification of histamine in fish and fish products. Moreover, surveillance of histamine content in food on the market was conducted using this method, and high levels of histamine were detected in some fish products.

  18. Molecular and functional profiling of histamine receptor-mediated calcium ion signals in different cell lines.

    PubMed

    Meisenberg, Annika; Kaschuba, Dagmar; Balfanz, Sabine; Jordan, Nadine; Baumann, Arnd

    2015-10-01

    Calcium ions (Ca(2+)) play a pivotal role in cellular physiology. Often Ca(2+)-dependent processes are studied in commonly available cell lines. To induce Ca(2+) signals on demand, cells may need to be equipped with additional proteins. A prominent group of membrane proteins evoking Ca(2+) signals are G-protein coupled receptors (GPCRs). These proteins register external signals such as photons, odorants, and neurotransmitters and convey ligand recognition into cellular responses, one of which is Ca(2+) signaling. To avoid receptor cross-talk or cross-activation with introduced proteins, the repertoire of cell-endogenous receptors must be known. Here we examined the presence of histamine receptors in six cell lines frequently used as hosts to study cellular signaling processes. In a concentration-dependent manner, histamine caused a rise in intracellular Ca(2+) in HeLa, HEK 293, and COS-1 cells. The concentration for half-maximal activation (EC50) was in the low micromolar range. In individual cells, transient Ca(2+) signals and Ca(2+) oscillations were uncovered. The results show that (i) HeLa, HEK 293, and COS-1 cells express sufficient amounts of endogenous receptors to study cellular Ca(2+) signaling processes directly and (ii) these cell lines are suitable for calibrating Ca(2+) biosensors in situ based on histamine receptor evoked responses. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. A Nanoporous Alumina Membrane Based Electrochemical Biosensor for Histamine Determination with Biofunctionalized Magnetic Nanoparticles Concentration and Signal Amplification

    PubMed Central

    Ye, Weiwei; Xu, Yifan; Zheng, Lihao; Zhang, Yu; Yang, Mo; Sun, Peilong

    2016-01-01

    Histamine is an indicator of food quality and indispensable in the efficient functioning of various physiological systems. Rapid and sensitive determination of histamine is urgently needed in food analysis and clinical diagnostics. Traditional histamine detection methods require qualified personnel, need complex operation processes, and are time-consuming. In this study, a biofunctionalized nanoporous alumina membrane based electrochemical biosensor with magnetic nanoparticles (MNPs) concentration and signal amplification was developed for histamine determination. Nanoporous alumina membranes were modified by anti-histamine antibody and integrated into polydimethylsiloxane (PDMS) chambers. The specific antibody modified MNPs were used to concentrate histamine from samples and transferred to the antibody modified nanoporous membrane. The MNPs conjugated to histamine were captured in the nanopores via specific reaction between histamine and anti-histamine antibody, resulting in a blocking effect that was amplified by MNPs in the nanopores. The blockage signals could be measured by electrochemical impedance spectroscopy across the nanoporous alumina membrane. The sensing platform had great sensitivity and the limit of detection (LOD) reached as low as 3 nM. This biosensor could be successfully applied for histamine determination in saury that was stored in frozen conditions for different hours, presenting a potentially novel, sensitive, and specific sensing system for food quality assessment and safety support. PMID:27782087

  20. Presence of Functional Neurotrophin TrkB Receptors in the Rat Superior Cervical Ganglion

    PubMed Central

    Valle-Leija, Pablo; Cancino-Rodezno, Angeles; Sánchez-Tafolla, Berardo M.; Arias, Erwin; Elinos, Diana; Feria, Jessica; Zetina, María E.; Morales, Miguel A.; Cifuentes, Fredy

    2017-01-01

    Sympathetic neurons express the neurotrophin receptors TrkA, p75NTR, and a non-functional truncated TrkB isoform (TrkB-Tc), but are not thought to express a functional full-length TrkB receptor (TrkB-Fl). We, and others, have demonstrated that nerve growth factor (NGF) and brain derived neurotrophic factor (BDNF) modulate synaptic transmission and synaptic plasticity in neurons of the superior cervical ganglion (SCG) of the rat. To clarify whether TrkB is expressed in sympathetic ganglia and contributes to the effects of BDNF upon sympathetic function, we characterized the presence and activity of the neurotrophin receptors expressed in the adult SCG compared with their presence in neonatal and cultured sympathetic neurons. Here, we expand our previous study regarding the immunodetection of neurotrophin receptors. Immunohistochemical analysis revealed that 19% of adult ganglionic neurons expressed TrkB-Fl immunoreactivity (IR), 82% expressed TrkA-IR, and 51% expressed p75NTR-IR; TrkB-Tc would be expressed in 36% of neurons. In addition, using Western-blotting and reverse transcriptase polymerase chain reaction (RT-PCR) analyses, we confirmed the expression of TrkB-Fl and TrkB-Tc protein and mRNA transcripts in adult SCG. Neonatal neurons expressed significantly more TrkA-IR and TrkB-Fl-IR than p75NTR-IR. Finally, the application of neurotrophin, and high frequency stimulation, induced the activation of Trk receptors and the downstream PI3-kinase (phosphatidyl inositol-3-kinase) signaling pathway, thus evoking the phosphorylation of Trk and Akt. These results demonstrate that SCG neurons express functional TrkA and TrkB-Fl receptors, which may contribute to the differential modulation of synaptic transmission and long-term synaptic plasticity. PMID:28744222

  1. Presence of Functional Neurotrophin TrkB Receptors in the Rat Superior Cervical Ganglion.

    PubMed

    Valle-Leija, Pablo; Cancino-Rodezno, Angeles; Sánchez-Tafolla, Berardo M; Arias, Erwin; Elinos, Diana; Feria, Jessica; Zetina, María E; Morales, Miguel A; Cifuentes, Fredy

    2017-01-01

    Sympathetic neurons express the neurotrophin receptors TrkA, p75NTR, and a non-functional truncated TrkB isoform (TrkB-Tc), but are not thought to express a functional full-length TrkB receptor (TrkB-Fl). We, and others, have demonstrated that nerve growth factor (NGF) and brain derived neurotrophic factor (BDNF) modulate synaptic transmission and synaptic plasticity in neurons of the superior cervical ganglion (SCG) of the rat. To clarify whether TrkB is expressed in sympathetic ganglia and contributes to the effects of BDNF upon sympathetic function, we characterized the presence and activity of the neurotrophin receptors expressed in the adult SCG compared with their presence in neonatal and cultured sympathetic neurons. Here, we expand our previous study regarding the immunodetection of neurotrophin receptors. Immunohistochemical analysis revealed that 19% of adult ganglionic neurons expressed TrkB-Fl immunoreactivity (IR), 82% expressed TrkA-IR, and 51% expressed p75NTR-IR; TrkB-Tc would be expressed in 36% of neurons. In addition, using Western-blotting and reverse transcriptase polymerase chain reaction (RT-PCR) analyses, we confirmed the expression of TrkB-Fl and TrkB-Tc protein and mRNA transcripts in adult SCG. Neonatal neurons expressed significantly more TrkA-IR and TrkB-Fl-IR than p75NTR-IR. Finally, the application of neurotrophin, and high frequency stimulation, induced the activation of Trk receptors and the downstream PI3-kinase (phosphatidyl inositol-3-kinase) signaling pathway, thus evoking the phosphorylation of Trk and Akt. These results demonstrate that SCG neurons express functional TrkA and TrkB-Fl receptors, which may contribute to the differential modulation of synaptic transmission and long-term synaptic plasticity.

  2. Antagonistic targeting of the histamine H3 receptor decreases caloric intake in higher mammalian species.

    PubMed

    Malmlöf, Kjell; Hastrup, Sven; Wulff, Birgitte Schellerup; Hansen, Barbara C; Peschke, Bernd; Jeppesen, Claus Bekker; Hohlweg, Rolf; Rimvall, Karin

    2007-04-15

    The main purpose of this study was to examine the effects of a selective histamine H(3) receptor antagonist, NNC 38-1202, on caloric intake in pigs and in rhesus monkeys. The compound was given intragastrically (5 or 15 mg/kg), to normal pigs (n=7) and subcutaneously (1 or 0.1mg/kg) to obese rhesus monkeys (n=9). The energy intake recorded following administration of vehicle to the same animals served as control for the effect of the compound. In addition, rhesus monkey and pig histamine H(3) receptors were cloned from hypothalamic tissues and expressed in mammalian cell lines. The in vitro antagonist potencies of NNC 38-1202 at the H(3) receptors were determined using a functional GTPgammaS binding assay. Porcine and human H(3) receptors were found to have 93.3% identity at the amino acid level and the close homology between the monkey and human H(3) receptors (98.4% identity) was confirmed. The antagonist potencies of NNC 38-1202 at the porcine, monkey and human histamine H(3) receptors were high as evidenced by K(i)-values being clearly below 20 nM, whereas the K(i)-value on the rat H(3) receptor was significantly higher (56+/-6.0 nM). NNC 38-1202, given to pigs in a dose of 15 mg/kg, produced a significant (p<0.05) reduction (55%) of calorie intake compared with vehicle alone, (132.6+/-10.0 kcal/kgday versus 59.7+/-10.2 kcal/kgday). In rhesus monkeys administration of 0.1 and 1mg/kg decreased (p<0.05) average calorie intakes by 40 and 75%, respectively. In conclusion, the present study demonstrates that antagonistic targeting of the histamine H(3) receptor decreases caloric intake in higher mammalian species.

  3. Histamine and thrombin modulate endothelial focal adhesion through centripetal and centrifugal forces.

    PubMed Central

    Moy, A B; Van Engelenhoven, J; Bodmer, J; Kamath, J; Keese, C; Giaever, I; Shasby, S; Shasby, D M

    1996-01-01

    We examined the contribution of actin-myosin contraction to the modulation of human umbilical vein endothelial cell focal adhesion caused by histamine and thrombin. Focal adhesion was measured as the electrical resistance across a cultured monolayer grown on a microelectrode. Actin-myosin contraction was measured as isometric tension of cultured monolayers grown on a collagen gel. Histamine immediately decreased electrical resistance but returned to basal levels within 3-5 min. Histamine did not increase isometric tension. Thrombin also immediately decreased electrical resistance, but, however, resistance did not return to basal levels for 40-60 min. Thrombin also increased isometric tension, ML-7, an inhibitor of myosin light chain kinase, prevented increases in myosin light chain phosphorylation and increases in tension development in cells exposed to thrombin. ML-7 did not prevent a decline in electrical resistance in cells exposed to thrombin. Instead, ML-7 restored the electrical resistance to basal levels in a shorter period of time (20 min) than cells exposed to thrombin alone. Also, histamine subsequently increased electrical resistance to above basal levels, and thrombin initiated an increase in resistance during the time of peak tension development. Hence, histamine and thrombin modulate endothelial cell focal adhesion through centripetal and centrifugal forces. PMID:8613524

  4. Morphological patterns in children with ganglion related enteric neuronal abnormalities.

    PubMed

    Henna, Nausheen; Nagi, Abdul H; Sheikh, Muhammad A; Shaukat, Mahmood

    2011-01-01

    Hirschsprung's Disease (HD) is a developmental disorder of enteric nervous system characterised by the absence of ganglion cells in submucosal (Meissner's) and myenteric (Aurbach's) plexuses of distal bowel. The purpose of the present study was to observe and report the morphological patterns of ganglion related enteric neuronal abnormalities in children presented with clinical features of (HD) in a Pakistani population. A total of 92 patients with clinical presentation of HD were enrolled between March 2009 and October 2009. Among them, 8 were excluded according to the exclusion criteria. After detailed history and physical examination, paraffin embedded H and E stained sections were prepared from the serial open biopsies from colorectum. The data was analysed using SPSS-17. Frequencies and percentages are given for qualitative variables. Non-parametric Binomial Chi-Square test was applied to observe within group associations and p<0.05 was considered statistically significant. Among 84 patients, 13 (15.5%) proved to be normally ganglionic whereas 71 (84.5%) showed ganglion related enteric neuronal abnormalities namely isolated hypoganglionosis 9 (12.7%), immaturity of ganglion cells 9 (12.7%), isolated hyperganglionosis (IND Type B) 2 (2.8%) and Hirschsprung's disease 51 (71.8%). Among HD group, 34 (66.7%) belonged to isolated form and 17 (33.3%) showed combined ganglion related abnormalities. Hirschsprung's disease is common in Pakistani population, followed by hypoganglionosis, immaturity of ganglion cells and IND type B. The presence of hypertrophic nerve fibres was significant in HD, hyperganglionosis and hypoganglionosis, whereas, no hypertrophic nerve fibres were appreciated in immaturity of ganglion cell group.

  5. Histamine Induces Alzheimer's Disease-Like Blood Brain Barrier Breach and Local Cellular Responses in Mouse Brain Organotypic Cultures

    PubMed Central

    Sedeyn, Jonathan C.; Wu, Hao; Hobbs, Reilly D.; Levin, Eli C.; Nagele, Robert G.; Venkataraman, Venkat

    2015-01-01

    Among the top ten causes of death in the United States, Alzheimer's disease (AD) is the only one that cannot be cured, prevented, or even slowed down at present. Significant efforts have been exerted in generating model systems to delineate the mechanism as well as establishing platforms for drug screening. In this study, a promising candidate model utilizing primary mouse brain organotypic (MBO) cultures is reported. For the first time, we have demonstrated that the MBO cultures exhibit increased blood brain barrier (BBB) permeability as shown by IgG leakage into the brain parenchyma, astrocyte activation as evidenced by increased expression of glial fibrillary acidic protein (GFAP), and neuronal damage-response as suggested by increased vimentin-positive neurons occur upon histamine treatment. Identical responses—a breakdown of the BBB, astrocyte activation, and neuronal expression of vimentin—were then demonstrated in brains from AD patients compared to age-matched controls, consistent with other reports. Thus, the histamine-treated MBO culture system may provide a valuable tool in combating AD. PMID:26697497

  6. Comparison of analytical methods for the determination of histamine in reference canned fish samples

    NASA Astrophysics Data System (ADS)

    Jakšić, S.; Baloš, M. Ž.; Mihaljev, Ž.; Prodanov Radulović, J.; Nešić, K.

    2017-09-01

    Two screening methods for histamine in canned fish, an enzymatic test and a competitive direct enzyme-linked immunosorbent assay (CD-ELISA), were compared with the reversed-phase liquid chromatography (RP-HPLC) standard method. For enzymatic and CD-ELISA methods, determination was conducted according to producers’ manuals. For RP-HPLC, histamine was derivatized with dansyl-chloride, followed by RP-HPLC and diode array detection. Results of analysis of canned fish, supplied as reference samples for proficiency testing, showed good agreement when histamine was present at higher concentrations (above 100 mg kg-1). At a lower level (16.95 mg kg-1), the enzymatic test produced some higher results. Generally, analysis of four reference samples according to CD-ELISA and RP-HPLC showed good agreement for histamine determination (r=0.977 in concentration range 16.95-216 mg kg-1) The results show that the applied enzymatic test and CD-ELISA appeared to be suitable screening methods for the determination of histamine in canned fish.

  7. Fisetin inhibits IL-31 production in stimulated human mast cells: Possibilities of fisetin being exploited to treat histamine-independent pruritus.

    PubMed

    Che, Denis Nchang; Cho, Byoung Ok; Shin, Jae Young; Kang, Hyun Ju; Kim, Young-Soo; Jang, Seon Il

    2018-05-15

    Interleukin-31 (IL-31) is a recently discovered cytokine that is tightly linked to the pathogenesis of pruritus seen in atopic dermatitis. Flavonoids, like fisetin, are naturally occurring molecules with antioxidant, cytoprotective, and anti-inflammatory actions. the present study sought to investigate whether fisetin modulates IL-31 and histamine release in human mast cells (HMC-1). HMC-1 cells were pretreated with fisetin at various doses and stimulated with phorbol-12-myristate 13-acetate and calcium ionophore A23187 (PI) for different time intervals. We evaluated IL-31 production and histamine release and signaling mechanism of the action of fisetin on IL-31 production. We also investigated the effects of fisetin on scratching behaviors in mice. Fisetin decreased PI-stimulated mRNA expression and production of IL-31 in HMC-1 cells. Fisetin inhibited PI-induced phosphorylation of mitogen-activated protein kinases that further suppressed nuclear factor (NF-κB) activation and translocation to the nucleus through the inhibition of IκB-α phosphorylation. Fisetin also prevented mast cell release of histamine in HMC-1 cells. Mice in-vivo studies show that fisetin reduced scratching behaviors in mice. These pharmacological actions of fisetin provide new suggestions that fisetin can be of potential use for the treatment of pruritus that cannot be treated with histamine receptor blockers alone. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Inhibition of antibody synthesis by histamine in concanavalin A-treated mice: the possible role of glucocorticosteroids.

    PubMed

    Badger, A M; Griswold, D E; DiMartino, M J; Poste, G

    1982-09-01

    Administration of histamine (50 mg/kg) to BALB/C mice injected with concanavalin A (Con A) (100 micrograms, i.v.) 24 hr previously, results in a marked decrease in antibody synthesis to sheep red blood cells (SRBC) injected 2 hr later. This phenomenon occurs with nonimmunosuppressive doses of Con A and is strain-specific. It does not take place in the response to the T-independent antigen polyvinylpyrrolidone (PVP) or if histamine is administered after the antigen. Adoptive transfer of normal syngeneic cells at the same time as antigen does not reverse this effect. Excess suppressor cell generation was excluded by co-cultivation of treated spleen cells with normal cells in vitro and by determining their antibody response to SRBC 5 days later. 2-Methylhistamine, a histamine type 1 (H1) receptor agonist, mimicks the effect of histamine whereas dimaprit, a histamine type 2 (H2) receptor agonist, does not. Because histamine interaction with H1 receptors causes the release of adrenocorticotropic hormone (ACTH), we examined the effects of ACTH and corticosterone in this system and found that both could mimick the effect of histamine. These results suggest that the interaction of histamine with H1 receptors causes the release of glucocorticosteroids that may interfere with either Con A-activated T helper cell function or macrophage processing of T-dependent antigen.

  9. Modulation of genioglossus muscle activity across sleep-wake states by histamine at the hypoglossal motor pool.

    PubMed

    Bastedo, Timothy; Chan, Erin; Park, Eileen; Liu, Hattie; Horner, Richard L

    2009-10-01

    Histamine neurons comprise a major component of the aminergic arousal system and significantly influence sleep-wake states, with antihistamines widely used as sedative hypnotics. Unlike the serotonergic and noradrenergic components of this arousal system, however, the role of histamine in the central control of respiratory motor activity has not been determined. The aims of this study were to characterize the effects of histamine receptor agonists and antagonists at the hypoglossal motor pool on genioglossus muscle activity across sleep and awake states, and also determine if histamine contributes an endogenous excitatory drive to modulate hypoglossal motor outflow to genioglossus muscle. Thirty-three rats were implanted with electroencephalogram and neck electrodes to record sleep-wake states, and genioglossus and diaphragm electrodes for respiratory muscle recordings. Microdialysis probes were inserted into the hypoglossal motor nucleus. Histamine at the hypoglossal motor nucleus significantly increased tonic genioglossus muscle activity in wakefulness, non-REM sleep and REM sleep. The activating effects of histamine on genioglossus muscle activity also occurred with a histamine type-1 (H1) but not H2 receptor agonist. However, H1 receptor antagonism at the hypoglossal motor nucleus did not decrease genioglossus muscle activity in wakefulness or sleep. The results suggest that histamine at the hypoglossal motor pool increases genioglossus muscle activity in freely behaving rats in wakefulness, non-REM, and REM sleep via an H1 receptor mechanism.

  10. Isolation of histamine-producing Lactobacillus buchneri from Swiss cheese implicated in a food poisoning outbreak.

    PubMed Central

    Sumner, S S; Speckhard, M W; Somers, E B; Taylor, S L

    1985-01-01

    A histamine-producing strain of Lactobacillus buchneri was isolated from Swiss cheese that had been implicated in an outbreak of histamine poisoning. It produced up to 4,070 nmol of histamine per ml in MRS broth supplemented with 0.1% histidine. The identification of this isolate was based on its biochemical, bacteriological, and DNA characterizations. PMID:4083875

  11. Liquid chromatographic determination of histamine in fish, sauerkraut, and wine: interlaboratory study.

    PubMed

    Beljaars, P R; Van Dijk, R; Jonker, K M; Schout, L J

    1998-01-01

    An interlaboratory study of the liquid chromatographic (LC) determination of histamine in fish, sauerkraut, and wine was conducted. Diminuted and homogenized samples were suspended in water followed by clarification of extracts with perchloric acid, filtration, and dilution with water. After LC separation on a reversed-phase C18 column with phosphate buffer (pH 3.0)--acetonitrile (875 + 125, v/v) as mobile phase, histamine was measured fluorometrically (excitation, 340 nm; emission, 455 nm) in samples and standards after postcolumn derivatization with o-phthaldialdehyde (OPA). Fourteen samples (including 6 blind duplicates and 1 split level) containing histamine at about 10-400 mg/kg or mg/L were analyzed singly according to the proposed procedure by 11 laboratories. Results from one participant were excluded from statistical analysis. For all samples analyzed, repeatability relative standard deviations varied from 2.1 to 5.6%, and reproducibility relative standard deviations ranged from 2.2 to 7.1%. Averaged recoveries of histamine for this concentration range varied from 94 to 100%.

  12. Comparative anatomy of the accessory ciliary ganglion in mammals.

    PubMed

    Kuchiiwa, S; Kuchiiwa, T; Suzuki, T

    1989-01-01

    The orbits of 13 mammalian species (pig, sika deer, domestic sheep, horse, cat, fox, racoon dog, marten, rat, rabbit, crab-eating macaque, japanese macaque and man) were stained with silver nitrate and dissected under a dissecting microscope with special attention to the presence and location of the accessory ciliary ganglion. Some preparations were stained with thionin and examined as whole-mounts in a transmission microscope. The accessory ciliary ganglion was present in all 13 species, although the number and degree of development varied greatly from species to species. The accessory ciliary ganglion could be readily differentiated from the main ciliary ganglion in the following respects: it was located on the short ciliary nerve, and it had no root derived directly from the inferior trunk of the oculomotor nerve and it never attaches to this nerve. In many species, ganglion cells were also scattered in the short ciliary nerves in the stained whole preparations. In a few species, there were one or more small ganglia on the nerve to the inferior oblique muscle.

  13. Assessment of the binding performance of histamine-imprinted microspheres by frontal analysis capillary electrophoresis.

    PubMed

    Romano, Edwin F; Quirino, Joselito P; Holdsworth, John L; So, Regina C; Holdsworth, Clovia I

    2017-05-01

    Frontal analysis capillary electrophoresis was used to evaluate the binding performance of molecularly imprinted microspheres (MIM) toward its template histamine and analogs at pH 7, and compared to the high performance liquid chromatographic method. In both methods, batch binding was employed and the binding parameters were calculated from the measured concentration of unbound amine analytes and afforded comparable histamine equilibrium dissociation constants (K d ∼ 0.4 mM). FACE was easily carried out at shorter binding equilibration time (i.e. 30 min) and without the need to separate the microspheres, circumventing laborious and, in the case of the system under study, inefficient sample filtration. It also allowed for competitive binding studies by virtue of its ability to distinctly separate intact microspheres and all tested amines which could not be resolved in HPLC. K d 's for nonimprinted (control) microspheres (NIM) from FACE and HPLC were also comparable (∼ 0.6 mM) but at higher histamine concentrations, HPLC gave lower histamine binding. This discrepancy was attributed to inefficient filtration of the batch binding samples prior to HPLC analysis resulting in an over-estimation of the concentration of free histamine brought about by the presence of unfiltered histamine-bound microspheres. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Depicting the pterygopalatine ganglion on 3 Tesla magnetic resonance images.

    PubMed

    Bratbak, Daniel Fossum; Folvik, Mari; Nordgård, Ståle; Stovner, Lars Jacob; Dodick, David W; Matharu, Manjit; Tronvik, Erling

    2018-06-01

    The pterygopalatine ganglion has yet not been identified on medical images in living humans. The primary aim of this study was to evaluate whether the pterygopalatine ganglion could be identified on 3 T MR imaging. This study was performed on medical images of 20 Caucasian subjects on both sides (n = 40 ganglia) with an exploratory design. 3 T MR images were assessed by two physicians for the presence and size of the pterygopalatine ganglion. The distance from the pterygopalatine ganglion to four bony landmarks was registered from fused MR and CT images. In an equivalence analysis, the distances were compared to those obtained in an anatomical cadaveric study serving as historical controls (n = 50). A structure assumed to be the pterygopalatine ganglion was identified on MR images in all patients on both sides by both physicians. The mean size was depth 2.1 ± 0.5 mm, width 4.2 ± 1.1 mm and height 5.1 ± 1.4 mm, which is in accordance with formerly published data. Equivalence of the measurements on MR images and the historical controls was established, suggesting that the structure identified on the MR images is the pterygopalatine ganglion. Our findings suggest that the pterygopalatine ganglion can be detected on 3 T MR images. Identification of the pterygopalatine ganglion may be important for image-guided interventions targeting the pterygopalatine ganglion, and has the potential to increase the efficacy, safety and reliability for these treatments.

  15. Melanopsin expressing human retinal ganglion cells: Subtypes, distribution, and intraretinal connectivity.

    PubMed

    Hannibal, Jens; Christiansen, Anders Tolstrup; Heegaard, Steffen; Fahrenkrug, Jan; Kiilgaard, Jens Folke

    2017-06-01

    Intrinsically photosensitive retinal ganglion cells (ipRGCs) expressing the photopigment melanopsin belong to a heterogenic population of RGCs which regulate the circadian clock, masking behavior, melatonin suppression, the pupillary light reflex, and sleep/wake cycles. The different functions seem to be associated to different subtypes of melanopsin cells. In rodents, subtype classification has associated subtypes to function. In primate and human retina such classification has so far, not been applied. In the present study using antibodies against N- and C-terminal parts of human melanopsin, confocal microscopy and 3D reconstruction of melanopsin immunoreactive (-ir) RGCs, we applied the criteria used in mouse on human melanopsin-ir RGCs. We identified M1, displaced M1, M2, and M4 cells. We found two other subtypes of melanopsin-ir RGCs, which were named "gigantic M1 (GM1)" and "gigantic displaced M1 (GDM1)." Few M3 cells and no M5 subtypes were labeled. Total cell counts from one male and one female retina revealed that the human retina contains 7283 ± 237 melanopsin-ir (0.63-0.75% of the total number of RGCs). The melanopsin subtypes were unevenly distributed. Most significant was the highest density of M4 cells in the nasal retina. We identified input to the melanopsin-ir RGCs from AII amacrine cells and directly from rod bipolar cells via ribbon synapses in the innermost ON layer of the inner plexiform layer (IPL) and from dopaminergic amacrine cells and GABAergic processes in the outermost OFF layer of the IPL. The study characterizes a heterogenic population of human melanopsin-ir RGCs, which most likely are involved in different functions. © 2017 Wiley Periodicals, Inc.

  16. Label-free histamine detection with nanofluidic diodes through metal ion displacement mechanism.

    PubMed

    Ali, Mubarak; Ramirez, Patricio; Duznovic, Ivana; Nasir, Saima; Mafe, Salvador; Ensinger, Wolfgang

    2017-02-01

    We design and characterize a nanofluidic device for the label-free specific detection of histamine neurotransmitter based on a metal ion displacement mechanism. The sensor consists of an asymmetric polymer nanopore fabricated via ion track-etching technique. The nanopore sensor surface having metal-nitrilotriacetic (NTA-Ni 2+ ) chelates is obtained by covalent coupling of native carboxylic acid groups with N α ,N α -bis(carboxymethyl)-l-lysine (BCML), followed by exposure to Ni 2+ ion solution. The BCML immobilization and subsequent Ni 2+ ion complexation with NTA moieties change the surface charge concentration, which has a significant impact on the current-voltage (I-V) curve after chemical modification of the nanopore. The sensing mechanism is based on the displacement of the metal ion from the NTA-Ni 2+ chelates. When the modified pore is exposed to histamine solution, the Ni 2+ ion in NTA-Ni 2+ chelate recognizes histamine through a metal ion coordination displacement process and formation of stable Ni-histamine complexes, leading to the regeneration of metal-free NTA groups on the pore surface, as shown in the current-voltage characteristics. Nanomolar concentrations of the histamine in the working electrolyte can be detected. On the contrary, other neurotransmitters such as glycine, serotonin, gamma-aminobutyric acid, and dopamine do not provoke significant changes in the nanopore electronic signal due to their inability to displace the metal ion and form a stable complex with Ni 2+ ion. The nanofluidic sensor exhibits high sensitivity, specificity and reusability towards histamine detection and can then be used to monitor the concentration of biological important neurotransmitters. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. N-(4-Trifluoromethylphenyl)amide group of the synthetic histamine receptor agonist inhibits nicotinic acetylcholine receptor-mediated catecholamine secretion.

    PubMed

    Kim, Dong-Chan; Park, Yong-Soo; Jun, Dong-Jae; Hur, Eun-Mi; Kim, Sun-Hee; Choi, Bo-Hwa; Kim, Kyong-Tai

    2006-02-28

    The therapeutic targeting of nicotinic receptors requires the identification of drugs that selectively activate or inhibit a limited range of nicotine acetylcholine receptors (nAChRs). In this study, we identified N-(4-trifluoromethylphenyl)amide group of the synthetic histamine receptor ligands, histamine-trifluoromethyltoluide, that act as potent inhibitors of nAChRs in bovine adrenal chromaffin cells. Catecholamine secretion induced by the nAChRs agonist, 1,1-dimethyl-4-phenylpiperazinium iodide (DMPP), was significantly inhibited by histamine-trifluoromethyltoluide. Real time carbon-fiber amperometry confirmed the ability of histamine-trifluoromethyltoluide to inhibit DMPP-induced exocytosis in single chromaffin cells. We also found that histamine-trifluoromethyltoluide inhibited DMPP-induced [Ca(2+)](i) and [Na(+)](i) increases, as well as DMPP-induced inward currents in the absence of extracellular calcium. Histamine-trifluoromethyltoluide had no effect on [(3)H]nicotine binding or on calcium increases induced by high K(+), bradykinin, veratridine, histamine, and benzoylbenzoyl ATP. Among the synthetic histamine receptor ligands, clobenpropit exhibited similarity. In addition, 4'-nitroacetanilide also significantly attenuated nAChR-mediated catecholamine secretion. In conclusion, the N-(4-trifluoromethylphenyl)amide group of the histamine-trifluoromethyltoluide might be the critical moiety in the inhibition of nAChR-mediated CA secretion.

  18. Arthroscopic excision of ganglion cysts.

    PubMed

    Bontempo, Nicholas A; Weiss, Arnold-Peter C

    2014-02-01

    Arthroscopy is an advancing field in orthopedics, the applications of which have been expanding over time. Traditionally, excision of ganglion cysts has been done in an open fashion. However, more recently, studies show outcomes following arthroscopic excision to be as good as open excision. Cosmetically, the incisions are smaller and heal faster following arthroscopy. In addition, there is the suggested benefit that patients will regain function and return to work faster following arthroscopic excision. More prospective studies comparing open and arthroscopic excision of ganglion cysts need to be done in order to delineate if there is a true functional benefit. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Chronic cervical radiculopathic pain is associated with increased excitability and hyperpolarization-activated current ( Ih) in large-diameter dorsal root ganglion neurons.

    PubMed

    Liu, Da-Lu; Wang, Xu; Chu, Wen-Guang; Lu, Na; Han, Wen-Juan; Du, Yi-Kang; Hu, San-Jue; Bai, Zhan-Tao; Wu, Sheng-Xi; Xie, Rou-Gang; Luo, Ceng

    2017-01-01

    Cervical radiculopathic pain is a very common symptom that may occur with cervical spondylosis. Mechanical allodynia is often associated with cervical radiculopathic pain and is inadequately treated with current therapies. However, the precise mechanisms underlying cervical radiculopathic pain-associated mechanical allodynia have remained elusive. Compelling evidence from animal models suggests a role of large-diameter dorsal root ganglion neurons and plasticity of spinal circuitry attached with Aβ fibers in mediating neuropathic pain. Whether cervical radiculopathic pain condition induces plastic changes of large-diameter dorsal root ganglion neurons and what mechanisms underlie these changes are yet to be known. With combination of patch-clamp recording, immunohistochemical staining, as well as behavioral surveys, we demonstrated that upon chronic compression of C7/8 dorsal root ganglions, large-diameter cervical dorsal root ganglion neurons exhibited frequent spontaneous firing together with hyperexcitability. Quantitative analysis of hyperpolarization-activated cation current ( I h ) revealed that I h was greatly upregulated in large dorsal root ganglion neurons from cervical radiculopathic pain rats. This increased I h was supported by the enhanced expression of hyperpolarization-activated, cyclic nucleotide-modulated channels subunit 3 in large dorsal root ganglion neurons. Blockade of I h with selective antagonist, ZD7288 was able to eliminate the mechanical allodynia associated with cervical radiculopathic pain. This study sheds new light on the functional plasticity of a specific subset of large-diameter dorsal root ganglion neurons and reveals a novel mechanism that could underlie the mechanical allodynia associated with cervical radiculopathy.

  20. Neural Stem Cells Injected into the Sound-Damaged Cochlea Migrate Throughout the Cochlea and Express Markers of Hair Cells, Supporting Cells, and Spiral Ganglion Cells

    PubMed Central

    Corliss, Deborah A.; Gray, Brianna; Anderson, Julia K.; Bobbin, Richard P.; Snyder, Evan Y.; Cotanche, Douglas A.

    2007-01-01

    Most cases of hearing loss are caused by the death or dysfunction of one of the many cochlear cell types. We examined whether cells from a neural stem cell line could replace cochlear cell types lost after exposure to intense noise. For this purpose, we transplanted a clonal stem cell line into the scala tympani of sound damaged mice and guinea pigs. Utilizing morphological, protein expression and genetic criteria, stem cells were found with characteristics of both neural tissues (satellite, spiral ganglion and Schwann cells) and cells of the organ of Corti (hair cells, supporting cells). Additionally, noise-exposed, stem cell-injected animals exhibited a small but significant increase in the number of satellite cells and Type I spiral ganglion neurons compared to non-injected noise-exposed animals. These results indicate that cells of this neural stem cell line migrate from the scala tympani to Rosenthal's canal and the organ of Corti. Moreover, it suggests that cells of this neural stem cell line may derive some information needed from the microenvironment of the cochlea to differentiate into replacement cells in the cochlea. PMID:17659854

  1. Histamine-producing Lactobacillus parabuchneri strains isolated from grated cheese can form biofilms on stainless steel.

    PubMed

    Diaz, Maria; Del Rio, Beatriz; Sanchez-Llana, Esther; Ladero, Victor; Redruello, Begoña; Fernández, María; Martin, M Cruz; Alvarez, Miguel A

    2016-10-01

    The consumption of food containing large amounts of histamine can lead to histamine poisoning. Cheese is one of the most frequently involved foods. Histamine, one of the biogenic amines (BAs) exhibiting the highest safety risk, accumulates in food contaminated by microorganisms with histidine decarboxylase activity. The origin of these microorganisms may be very diverse with contamination likely occurring during post-ripening processing, but the microorganisms involved during this manufacturing step have never been identified. The present work reports the isolation of 21 histamine-producing Lactobacillus parabuchneri strains from a histamine-containing grated cheese. PCR revealed that every isolate carried the histidine decarboxylase gene (hdcA). Eight lineages were identified based on the results of genome PFGE restriction analysis plus endonuclease restriction profile analysis of the carried plasmids. Members of all lineages were able to form biofilms on polystyrene and stainless steel surfaces. L. parabuchneri is therefore an undesirable species in the dairy industry; the biofilms it can produce on food processing equipment represent a reservoir of histamine-producing bacteria and thus a source of contamination of post-ripening-processed cheeses. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Heat resistance of histamine-producing bacteria in irradiated tuna loins.

    PubMed

    Enache, Elena; Kataoka, Ai; Black, D Glenn; Weddig, Lisa; Hayman, Melinda; Bjornsdottir-Butler, Kristin

    2013-09-01

    Consumption of foods high in biogenic amines leads to an illness known as histamine, or scombrotoxin, poisoning. The illness is commonly associated with consumption of fish with high levels of histamine ( $ 500 ppm). The objective of this study was to determine and compare the heat resistance of five histamine-producing bacteria in irradiated albacore tuna loins. Heat-resistance parameters (D- and z-values) were determined for Morganella morganii, Raoultella planticola, Hafnia alvei, and Enterobacter aerogenes. D- or z-values were not determined for Photobacterium damselae, which was the most heat-sensitive organism in this study. P. damselae declined > 5.9 log CFU/g after a heat treatment of 50°C for 10 min, 54°C for 3 min, and 56°C for 0.5 min. M. morganii was the most heat-resistant histamine-producing bacteria in albacore tuna loins, followed by E. aerogenes, H. alvei, and R. planticola. M. morganii and E. aerogenes had the highest D(50°C), 49.7 ± 17.57 and 51.8 ± 17.38 min, respectively. In addition, M. morganii had the highest D-values for all other temperatures (54, 56, and 58°C) tested. D- and zvalues were also determined for M. morganii in skipjack tuna. While no significant (P > 0.05) difference was observed between D(54°C) and D(56°C) of M. morganii in either albacore or skipjack tuna, the D(58°C) (0.4 ± 0.17 min) was significantly lower (P < 0.05) in skipjack than in albacore (0.9 ± 0.24 min). The z-values for all organisms tested were in the range of 3.2 to 3.8°C. This study suggests that heat treatment designed to control M. morganii in tuna loins is sufficient for controlling histamine-producing bacteria in canned-tuna processing environments.

  3. Histamine poisoning from insect consumption: an outbreak investigation from Thailand.

    PubMed

    Chomchai, Summon; Chomchai, Chulathida

    2018-02-01

    Insect consumption is a common practice in the Asian culture and all over the world. We are reporting an outbreak investigation of histamine poisoning from ingestion of fried insects. On 24 July 2014, a group of students at a seminar presented to Angthong Provincial Hospital, Thailand, with pruritic rash after ingesting snacks consisting of fried insects from a vendor. We initiated an outbreak investigation with retrospective cohort design and collected samples of remaining foods for analyses. Attack rates, relative risks and their confidence intervals (CI) were calculated. Out of 227 students, 28 developed illnesses that were consistent with our case definition which included, flushing, pruritus, urticarial rashes, headache, nausea, vomiting, diarrhea, dyspnea and bronchospasm. Two children were hospitalized for progressive bronchospasm overnight without serious complications. The types of food ingested included a lunch that was provided at the seminar for all students and snacks that 41 students bought from the only vendor in the vicinity. The snacks included fried grasshoppers, silkworm pupae, common green frogs, bamboo borers, crickets and meat balls. The attack rates were highest (82.6 and 85.0%) among students who ingested fried grasshoppers and silkworm pupae and lowest (4.4 and 5.3%) among those who did not ingest them, with relative risk of 18.7 (95% CI 9.6-36.4) for grasshoppers and 16.0 (95% CI 8.8-29.3) for silkworm pupae. Histamine concentrations in the fried grasshoppers and silkworm pupae were 9.73 and 7.66 mg/100g, respectively. Through epidemiological analysis and laboratory confirmation, we have illustrated that histamine poisoning can occur from ingestion of fried insects. We postulate that histidine, which is present in high concentration in grasshoppers and silkworm pupae, is decarboxylated by bacteria to histamine, a heat stable toxin. The ingestion of histamine is responsible for the clinical pictures being reported.

  4. Endothelial cell-dependent relaxation and contraction induced by histamine in the isolated guinea-pig pulmonary artery.

    PubMed

    Satoh, H; Inui, J

    1984-01-27

    Histamine (10(-8)-10(-6) M) relaxed in a concentration-dependent manner the guinea-pig pulmonary artery which had been contracted by noradrenaline (5 X 10(-7) M). After the removal of endothelial cells (ETCs) histamine at the same concentrations did not cause relaxation but induced additional contraction. Both responses to histamine were antagonized by chlorpheniramine (3 X 10(-7) M). These results suggest that in the pulmonary artery histamine simultaneously stimulates H1-receptors located on both ETCs and smooth muscle cells. This results in two opposite effects, relaxation mediated by ETCs, and contraction.

  5. Effects of alpha-lipoic acid on retinal ganglion cells, retinal thicknesses, and VEGF production in an experimental model of diabetes.

    PubMed

    Kan, Emrah; Alici, Ömer; Kan, Elif Kılıç; Ayar, Ahmet

    2017-12-01

    The purpose of the present study was to investigate the effect of alpha-lipoic acid (ALA) on the thicknesses of various retinal layers and on the numbers of retinal ganglion cells and vascular endothelial growth factor levels in experimental diabetic mouse retinas. Twenty-one male BALB/C mice were made diabetic by the intraperitoneal administration of streptozotocin (200 mg/kg). One week after the induction of diabetes, the mice were divided randomly into three groups: control group (non-diabetic mice treated with alpha-lipoic acid, n = 7), diabetic group (diabetic mice without treatment, n = 7), and alpha-lipoic acid treatment group (diabetic mice with alpha-lipoic acid treatment, n = 7). At the end of the 8th week, the thicknesses of the inner nuclear layer (INL), outer nuclear layer (ONL), and full-length retina were measured; also retinal ganglion cells and VEGF expressions were counted on the histological sections of the mouse retinas and compared with each other. The thicknesses of the full-length retina, ONL, and INL were significantly reduced in the diabetic group compared to the control and ALA treatment groups (p = 0.001), whereas the thicknesses of these layers did not show a significant difference between ALA treatment and control groups. The number of ganglion cells in the diabetic group was significantly lower than those in the control and ALA treatment groups (p = 0.001). The VEGF expression was significantly higher in the diabetic group and mostly observed in the ganglion cell and inner nuclear layers compared to the control and ALA treatment groups (p = 0.001). Therefore, the number of ganglion cells and VEGF levels did not show significant differences between the ALA treatment and control groups (p = 0.7). Our results show that alpha-lipoic acid treatment may have an impact on reducing VEGF levels, protecting ganglion cells, and preserving the thicknesses of the inner and outer layers in diabetic mouse retinas.

  6. IGE AND IGGA ANTIBODY-MEDIATED RELEASE OF HISTAMINE FROM RAT PERITONEAL CELLS

    PubMed Central

    Bach, Michael K.; Bloch, Kurt J.; Austen, K. Frank

    1971-01-01

    IgGa, in contrast to IgE, antibodies mediated the antigen-induced release of histamine from rat peritoneal mast cells without a requirement for a latent period and without the capacity to bind firmly to the target cell. Nonetheless, IgGa anti-DNP antibody interfered with the capacity of rat anti-N. brasiliensis antiserum rich in IgE antibodies to prepare the target cells for histamine release by worm antigen. Further, interaction of IgE antibody-prepared cells with IgGa anti-DNP antibody and DNP-BSA at 0°C so as to achieve sterile activation, or at 30°C to permit histamine release, inactivated such cells as determined by the subsequent failure to release histamine upon challenge with worm antigen. Thus, although IgE and IgGa antibodies are immunochemically distinct homologous immunoglobulins and exhibit different functional characteristics, their interaction at the target cell involves a common receptor and at least one common point in the pathway to the release of pharmacologic agents from the cell. PMID:4101607

  7. Effects of antidepressant drugs on histamine-H/sub 1/ receptors in the brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, H.; Oegren, S.O.

    1984-02-06

    The histamine-H/sub 1/ receptor blocking properties of a number of structurally different antidepressant drugs have been evaluated using a /sup 3/H-mepyramine binding assay and a guinea-pig ileum preparation. The tricyclic antidepressants all inhibited the histamine-H/sub 1/ receptor. Some newer antidepressant drugs, such as zimeldine and nomifensine were devoid of activity while others, such as iprindole and mianserin were very potent. It is concluded that antagonistic effects on the histamine-H/sub 1/ receptor is not associated with the therapeutic efficacy in depression, but may contribute to the sedative effects of the antidepressant drugs.

  8. Serotonin and histamine mediate gastroprotective effect of fluoxetine against experimentally-induced ulcers in rats.

    PubMed

    Salem Sokar, Samia; Elsayed Elsayad, Mageda; Sabri Ali, Hend

    2016-09-01

    Research in the treatment of gastric ulcer has involved the investigation of new alternatives, such as anti-depressant drugs. The present study was designed to investigate the gastroprotective effects of fluoxetine against indomethacin and alcohol induced gastric ulcers in rats and the potential mechanisms of that effect. Fluoxetine (20 mg/kg) was administered IP for 14 days. For comparative purposes, other rats were treated with ranitidine (30 mg/kg). Thereafter, after 24 h of fasting, INDO (100 mg/kg) or absolute alcohol (5 ml/kg) was administered to all rats (saline was administered to naïve controls) and rats in each group were sacrificed 5 h (for INDO rats) or 1 h (for alcohol rats) later. Macroscopic examination revealed that both fluoxetine and ranitidine decreased ulcer scores in variable ratios, which was supported by microscopic histopathological examination. Biochemical analysis of fluoxetine- or ranitidine-pre-treated host tissues demonstrated reductions in tumor necrosis factor (TNF)-α and myeloperoxidase (MPO) levels and concomitant increases in gastric pH, nitric oxide (NO) and reduced glutathione (GSH) contents. Fluoxetine, more than ranitidine, also resulted in serotonin and histamine levels nearest to control values. Moreover, immuno-histochemical analysis showed that fluoxetine markedly enhanced expression of cyclo-oxygenases COX-1 and COX-2 in both models; in comparison, ranitidine did not affect COX-1 expression in either ulcer model but caused moderate increases in COX-2 expression in INDO-induced hosts and high expression in alcohol-induced hosts. The results here indicated fluoxetine exhibited better gastroprotective effects than ranitidine and this could be due to anti-secretory, anti-oxidant, anti-inflammatory and anti-histaminic effects of the drug, as well as a stabilization of gastric serotonin levels.

  9. Sex differences in mouse Transient Receptor Potential Cation Channel, Subfamily M, Member 8 expressing trigeminal ganglion neurons

    PubMed Central

    Caudle, Stephanie L.; Jenkins, Alan C.; Ahn, Andrew H.; Neubert, John K.

    2017-01-01

    The detection of cool temperatures is thought to be mediated by primary afferent neurons that express the cool temperature sensing protein Transient Receptor Potential Cation Channel, Subfamily M, Member 8 (TRPM8). Using mice, this study tested the hypothesis that sex differences in sensitivity to cool temperatures were mediated by differences in neurons that express TRPM8. Ion currents from TRPM8 expressing trigeminal ganglion (TRG) neurons in females demonstrated larger hyperpolarization-activated cyclic nucleotide-gated currents (Ih) than male neurons at both 30° and 18°C. Additionally, female neurons’ voltage gated potassium currents (Ik) were suppressed by cooling, whereas male Ik was not significantly affected. At the holding potential tested (-60mV) TRPM8 currents were not visibly activated in either sex by cooling. Modeling the effect of Ih and Ik on membrane potentials demonstrated that at 30° the membrane potential in both sexes is unstable. At 18°, female TRPM8 TRG neurons develop a large oscillating pattern in their membrane potential, whereas male neurons become highly stable. These findings suggest that the differences in Ih and Ik in the TRPM8 TRG neurons of male and female mice likely leads to greater sensitivity of female mice to the cool temperature. This hypothesis was confirmed in an operant reward/conflict assay. Female mice contacted an 18°C surface for approximately half the time that males contacted the cool surface. At 33° and 10°C male and female mice contacted the stimulus for similar amounts of time. These data suggest that sex differences in the functioning of Ih and Ik in TRPM8 expressing primary afferent neurons leads to differences in cool temperature sensitivity. PMID:28472061

  10. Coordination of distinct but interacting rhythmic motor programs by a modulatory projection neuron using different co-transmitters in different ganglia

    PubMed Central

    Kwiatkowski, Molly A.; Gabranski, Emily R.; Huber, Kristen E.; Chapline, M. Christine; Christie, Andrew E.; Dickinson, Patsy S.

    2013-01-01

    SUMMARY While many neurons are known to contain multiple neurotransmitters, the specific roles played by each co-transmitter within a neuron are often poorly understood. Here, we investigated the roles of the co-transmitters of the pyloric suppressor (PS) neurons, which are located in the stomatogastric nervous system (STNS) of the lobster Homarus americanus. The PS neurons are known to contain histamine; using RT-PCR, we identified a second co-transmitter as the FMRFamide-like peptide crustacean myosuppressin (Crust-MS). The modulatory effects of Crust-MS application on the gastric mill and pyloric patterns, generated in the stomatogastric ganglion (STG), closely resembled those recorded following extracellular PS neuron stimulation. To determine whether histamine plays a role in mediating the effects of the PS neurons in the STG, we bath-applied histamine receptor antagonists to the ganglion. In the presence of the antagonists, the histamine response was blocked, but Crust-MS application and PS stimulation continued to modulate the gastric and pyloric patterns, suggesting that PS effects in the STG are mediated largely by Crust-MS. PS neuron stimulation also excited the oesophageal rhythm, produced in the commissural ganglia (CoGs) of the STNS. Application of histamine, but not Crust-MS, to the CoGs mimicked this effect. Histamine receptor antagonists blocked the ability of both histamine and PS stimulation to excite the oesophageal rhythm, providing strong evidence that the PS neurons use histamine in the CoGs to exert their effects. Overall, our data suggest that the PS neurons differentially utilize their co-transmitters in spatially distinct locations to coordinate the activity of three independent networks. PMID:23393282

  11. Coordination of distinct but interacting rhythmic motor programs by a modulatory projection neuron using different co-transmitters in different ganglia.

    PubMed

    Kwiatkowski, Molly A; Gabranski, Emily R; Huber, Kristen E; Chapline, M Christine; Christie, Andrew E; Dickinson, Patsy S

    2013-05-15

    While many neurons are known to contain multiple neurotransmitters, the specific roles played by each co-transmitter within a neuron are often poorly understood. Here, we investigated the roles of the co-transmitters of the pyloric suppressor (PS) neurons, which are located in the stomatogastric nervous system (STNS) of the lobster Homarus americanus. The PS neurons are known to contain histamine; using RT-PCR, we identified a second co-transmitter as the FMRFamide-like peptide crustacean myosuppressin (Crust-MS). The modulatory effects of Crust-MS application on the gastric mill and pyloric patterns, generated in the stomatogastric ganglion (STG), closely resembled those recorded following extracellular PS neuron stimulation. To determine whether histamine plays a role in mediating the effects of the PS neurons in the STG, we bath-applied histamine receptor antagonists to the ganglion. In the presence of the antagonists, the histamine response was blocked, but Crust-MS application and PS stimulation continued to modulate the gastric and pyloric patterns, suggesting that PS effects in the STG are mediated largely by Crust-MS. PS neuron stimulation also excited the oesophageal rhythm, produced in the commissural ganglia (CoGs) of the STNS. Application of histamine, but not Crust-MS, to the CoGs mimicked this effect. Histamine receptor antagonists blocked the ability of both histamine and PS stimulation to excite the oesophageal rhythm, providing strong evidence that the PS neurons use histamine in the CoGs to exert their effects. Overall, our data suggest that the PS neurons differentially utilize their co-transmitters in spatially distinct locations to coordinate the activity of three independent networks.

  12. Butorphanol suppression of histamine itch is mediated by nucleus accumbens and septal nuclei: a pharmacological fMRI study.

    PubMed

    Papoiu, Alexandru D P; Kraft, Robert A; Coghill, Robert C; Yosipovitch, Gil

    2015-02-01

    Opioid receptors in the central nervous system are important modulators of itch transmission. In this study, we examined the effect of mixed-action opioid butorphanol on histamine itch, cowhage itch, and heat pain in healthy volunteers. Using functional MRI, we investigated significant changes in cerebral perfusion to identify the critical brain centers mediating the antipruritic effect of butorphanol. Butorphanol suppressed the itch induced experimentally with histamine, reduced the intensity of cowhage itch by approximately 35%, and did not affect heat pain sensitivity. In comparison with the placebo, butorphanol produced a bilateral deactivation of claustrum, insula, and putamen, areas activated during itch processing. Analysis of cerebral perfusion patterns of brain processing of itch versus itch inhibition under the effect of the drug revealed that the reduction in cowhage itch by butorphanol was correlated with changes in cerebral perfusion in the midbrain, thalamus, S1, insula, and cerebellum. The suppression of histamine itch by butorphanol was paralleled by the activation of nucleus accumbens and septal nuclei, structures expressing high levels of kappa opioid receptors. In conclusion, important relays of the mesolimbic circuit were involved in the inhibition of itch by butorphanol and could represent potential targets for the development of antipruritic therapy.

  13. Pulmonary serotonin and histamine in experimental asbestosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keith, I.M.; Day, R.; Lemaire, S.

    1986-03-01

    Adult male Wistar rats were treated once with tracheal instillation of 5 mg Crysotile B asbestos fibers in 0.5 ml saline under ketamine/xylaxine anesthesia. Control rats (n = 37) received 0.5 ml saline. Test and control rats were killed at 7 and 14 d., and 1, 3 and 6 mo. post instillation. Serotonin (5-HT) was quantitated in lung tissue homogenate from all rats using HPLC and electrochemical detection. Among rats killed at 1, 3 and 6 mo., lung tissue histamine-o-phthaldialdehyde complex was quantitated using reverse phase HPLC coupled to a fluorometric detector. Furthermore, 5-HT was quantitated in the cytoplasm ofmore » grouped (NEB) and individual (NEC) neuroendocrine cells and in mast cells using formaldehyde-vapor-induced fluorescence and microspectrofluorometry, and mast cell numbers were determined. Test rats had higher pulmonary 5-HT and histamine levels than controls at 1, 3 and 6 mo. Test rats also had higher cellular 5-HT compared to controls in NEB's at 1 mo., but not in NECs, and tended to have higher 5-HT-levels in mast cells at 6 mo. Mast cell numbers were higher among tests at 1 and 3 mo. The authors results suggest that NEBs may contribute to the early asbestos induced rise in 5-HT, and that the major source of 5-HT and histamine is from the increased numbers of mast cells.« less

  14. Non-steroidal Anti-inflammatory Drugs Attenuate Hyperalgesia and Block Upregulation of Trigeminal Ganglionic Sodium Channel 1.7 after Induction of Temporomandibular Joint Inflammation in Rats.

    PubMed

    Bi, Rui Yun; Ding, Yun; Gan, Ye Hua

    2016-03-01

    To investigate the association between the analgesic effect of non-steroidal antiinflammatory drugs (NSAIDs) and sodium channel 1.7 (Nav1.7) expression in the trigeminal ganglion (TG). Temporomandibular joint (TMJ) inflammation was induced by complete Freund's adjuvant (CFA) in female rats. Ibuprofen, diclofenac sodium and meloxicam were given intragastrically before induction of TMJ inflammation. Histopathological evaluation and scoring of TMJ inflammation was used to evaluate the level of inflammation. The head withdrawal threshold and food intake were measured to evaluate TMJ nociceptive responses. The mRNA and protein expression of trigeminal ganglionic Nav1.7 was examined using real-time polymerase chain reaction and western blot. Twenty-four hours after the injection of CFA into the TMJs, NSAIDs attenuated hyperalgesia of inflamed TMJ and simultaneously blocked inflammation-induced upregulation of Nav1.7 mRNA and protein expression in the TG. However, ibuprofen and diclofenac sodium slightly attenuated TMJ inflammation and meloxicam did not affect TMJ inflammation. Attenuation of hyperalgesia of inflamed TMJ by NSAIDs might be associated with their role in blocking upregulation of trigeminal ganglionic Nav1.7.

  15. Atypical fibrosarcomas derived from cutaneous ganglion cell-like cells in 2 domestic Djungarian hamsters (Phodopus sungorus).

    PubMed

    Kondo, Hirotaka; Onuma, Mamoru; Shibuya, Hisashi; Sato, Tsuneo; Abbott, Jeffrey R

    2011-07-01

    Androgen-dependent atypical fibromas are benign tumors derived from ganglion-cell-like cells that are particular to Djungarian hamsters (Phodopus sungorus). Masses excised from 2 hamsters were composed of pleomorphic ganglion cell-like cells supported by small to moderate amounts of collagenous matrix. Intracytoplasmic fibrils were present in silver-stained sections, and immunohistochemistry showed that the cells expressed vimentin, androgen receptor, and, in one case, estrogen receptor α. In contrast to previously reported atypical fibromas, these tumors had features of anaplasia and were locally invasive. We diagnosed the tumors as atypical fibrosarcomas and consider them an unusual malignant counterpart of atypical fibroma. Copyright 2011 by the American Association for Laboratory Animal Science

  16. T-box Transcription Regulator Tbr2 Is Essential for the Formation and Maintenance of Opn4/Melanopsin-Expressing Intrinsically Photosensitive Retinal Ganglion Cells

    PubMed Central

    Li, Hongyan; Zhang, Zhijing; Kiyama, Takae; Panda, Satchidananda; Hattar, Samer; Ribelayga, Christophe P.; Mills, Stephen L.

    2014-01-01

    Opsin 4 (Opn4)/melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs) play a major role in non-image-forming visual system. Although advances have been made in understanding their morphological features and functions, the molecular mechanisms that regulate their formation and survival remain unknown. Previously, we found that mouse T-box brain 2 (Tbr2) (also known as Eomes), a T-box-containing transcription factor, was expressed in a subset of newborn RGCs, suggesting that it is involved in the formation of specific RGC subtypes. In this in vivo study, we used complex mouse genetics, single-cell dye tracing, and behavioral analyses to determine whether Tbr2 regulates ipRGC formation and survival. Our results show the following: (1) Opn4 is expressed exclusively in Tbr2-positive RGCs; (2) no ipRGCs are detected when Tbr2 is genetically ablated before RGC specification; and (3) most ipRGCs are eliminated when Tbr2 is deleted in established ipRGCs. The few remaining ipRGCs display abnormal dendritic morphological features and functions. In addition, some Tbr2-expressing RGCs can activate Opn4 expression on the loss of native ipRGCs, suggesting that Tbr2-expressing RGCs may serve as a reservoir of ipRGCs to regulate the number of ipRGCs and the expression levels of Opn4. PMID:25253855

  17. Room temperature synthesis and binding studies of solution-processable histamine-imprinted microspheres.

    PubMed

    Romano, Edwin F; Holdsworth, Clovia I; Quirino, Joselito P; So, Regina C

    2018-01-01

    Accurate quantification of histamine levels in food and in biological samples is important for monitoring the quality of food products and for the detection of pathophysiological conditions. In this study, solution processable histamine-imprinted microspheres were synthesized at 30°C via dilute free radical phototochemical polymerization technique using ethylene glycol dimethacrylate (EGDMA) as the crosslinker and methacrylic acid (MAA) as the monomer. The processability of the resulting polymer is dictated by the monomer feed concentration (eg, 4 wt% 80:20 EGDMA:MAA formulation) and solvent (acetonitrile). Whereas, the particle size is influenced by the monomer feed concentration, the presence of template molecule, and independent of the crosslinker content. Evaluation of the binding performance of the photochemically imprinted polymers (PCP) with different crosslinker content (80 and 90 wt%) indicated that the selective binding capacity was notably higher in PCP-80 (N= 16.0 μmol/g) compared to PCP-90 (N= 10.1 μmol/g) when analyzed via frontal analysis capillary electrophoresis (FACE) using Freundlich isotherm. In addition, PCP-80 microspheres are more selective toward histamine than conventional thermal polymers (CTP-80) prepared at 60°C in the presence of structural analogs such as histidine, imidazole, and tryptamine under cross-rebinding and competitive conditions. These results demonstrated that histamine-selective imprinted polymers can be obtained readily using room temperature photochemical polymerization where these materials can be subsequently used as recognition element for optical-based histamine sensing. Copyright © 2017 John Wiley & Sons, Ltd.

  18. Pharmacology of JB-9315, a new selective histamine H2-receptor antagonist.

    PubMed

    Palacios, B; Montero, M J; Sevilla, M A; San Román, L

    1998-02-01

    1. The histamine H2-receptor antagonistic activity and antisecretory and antiulcer effects of JB-9315 were studied in comparison with the standard H2 blocker ranitidine. 2. In vitro, JB-9315 is a competitive antagonist of histamine H2 receptors in the isolated, spontaneously beating guinea-pig right atrium, with a pA2 value of 7.30 relative to a value of 7.36 for ranitidine. JB-9315 was specific for the histamine H2 receptor because, at high concentration, it did not affect histamine- or acetylcholine-induced contractions in guinea-pig isolated ileum or rat isolated duodenum, respectively. 3. JB-9315 dose dependently inhibited histamine-, pentagastrin- or carbachol-stimulated acid secretion and basal secretion in the perfused stomach preparation of the anesthetized rat. In the pylorus-ligated rat after intraperitoneal administration, total acid output over 4 h was inhibited by JB-9315 with an ID50 of 32.8 mg/kg, confirming its H2-receptor antagonist properties. 4. JB-9315 showed antiulcer activity against cold stress plus indomethacin-induced lesions with an ID50 of 6.8 mg/kg. 5. JB-9315, 50 and 100 mg/kg, inhibited macroscopic gastric hemorrhagic lesions induced by ethanol. In contrast, ranitidine (50 mg/kg) failed to reduce these lesions. 6. These results indicate that JB-9315 is a new antiulcer drug that exerts a cytoprotective effect in addition to its gastric antisecretory activity.

  19. Histamine H{sub 3} receptor antagonist OUP-186 attenuates the proliferation of cultured human breast cancer cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, Satoshi; Sakaguchi, Minoru; Yoneyama, Hiroki

    Histamine is involved in various physiological functions, including its neurotransmitter actions in the central nervous system and its action as a causative agent of inflammation, allergic reactions, and gastric acid secretions. Histamine expression and biosynthesis have been detected in breast cancer cells. It was recently suggested that the histamine H{sub 3} receptor (H{sub 3}R) plays a role in the proliferation of breast cancer cells. We recently developed the non-imidazole H{sub 3}R antagonist OUP-186 which exhibited a potent and selective human H{sub 3}R antagonistic activity as well as no activity against the human histamine H{sub 4} receptor (H{sub 4}R). In thismore » study, we compared the effects of OUP-186 on the proliferation of estrogen receptor negative (ER−) breast cancer cells (MDA-MB-231) and ER+ breast cancer cells (MCF7) to the effects of clobenpropit (potent imidazole-containing H{sub 3}R antagonist). OUP-186 and clobenpropit suppressed the proliferation of breast cancer cells. The IC{sub 50} values at 48 h for OUP-186 and clobenpropit were approximately 10 μM and 50 μM, respectively. Furthermore, OUP-186 potently induced cell death by activating caspase-3/7, whereas cell death was only slightly induced by clobenpropit. In addition, OUP-186 treatment blocked the proliferation increase triggered by 100 μM (R)-(-)-α-methylhistamine (H{sub 3}R agonist). The use of 4-methylhistamine (H{sub 4}R agonist) and JNJ10191584 (selective H{sub 4}R antagonist) did not affect breast cancer proliferation. These results indicate that OUP-186 potently suppresses proliferation and induces caspase-dependent apoptotic death in both ER+ and ER-breast cancer cells. - Highlights: • OUP-186, a histamine H{sub 3} receptor antagonist, effects breast cancer cell growth. • OUP-186 potently suppressed proliferation and induced caspase-dependent apoptosis. • OUP-186 may be an effective drug against ER+ and ER− breast cancers.« less

  20. Respiratory effects of cigarette smoke, dust, and histamine in newborn rabbits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trippenbach, T.; Kelly, G.

    1988-02-01

    We studied the respiratory effects of cigarette smoke, 5% histamine aerosol, and dust in unanesthetized 1- to 7-day-old rabbits in a body plethysmograph. Cigarette smoke immediately provoked the animal's arousal and irregular breathing. Histamine and dust had no effect in some of the youngest animals. In others, 5-15 s from the onset of the exposure to either of the two stimuli, respiratory rate increased and the depth of breathing decreased. These changes were more pronounced with age. The fact that effects of dust and aerosol lessened with time of exposure showed adaptation to the stimuli. The age dependence of themore » reflex response was also observed after injection of 50 micrograms of histamine per kilogram into the external jugular vein in anesthetized (50 mg ketamine + 3 mg acepromazine per kg) and tracheostomized rabbits during the 1st wk of life. In 1-day-old animals, a short-lasting excitation was followed by apnea or a prolongation of expiratory phase. Peak amplitude of the diaphragmatic EMG (EMGdi) increased in all animals, but only in the youngest was the EMGdi increase paralleled by an increase in tidal volume. In vagotomized animals or animals pretreated with H1-blocker, histamine never affected timing parameters in animals greater than 1 day old. In the youngest animals, respiratory depression due to histamine was not abolished after vagotomy or promethazine. The results imply that inputs from the upper airways and the rapidly adapting pulmonary mechanoreceptors exert their effects on the pattern of breathing immediately after birth in rabbits. The importance of those inputs increases with maturation.« less

  1. Diversity in spatial scope of contrast adaptation among mouse retinal ganglion cells.

    PubMed

    Khani, Mohammad Hossein; Gollisch, Tim

    2017-12-01

    Retinal ganglion cells adapt to changes in visual contrast by adjusting their response kinetics and sensitivity. While much work has focused on the time scales of these adaptation processes, less is known about the spatial scale of contrast adaptation. For example, do small, localized contrast changes affect a cell's signal processing across its entire receptive field? Previous investigations have provided conflicting evidence, suggesting that contrast adaptation occurs either locally within subregions of a ganglion cell's receptive field or globally over the receptive field in its entirety. Here, we investigated the spatial extent of contrast adaptation in ganglion cells of the isolated mouse retina through multielectrode-array recordings. We applied visual stimuli so that ganglion cell receptive fields contained regions where the average contrast level changed periodically as well as regions with constant average contrast level. This allowed us to analyze temporal stimulus integration and sensitivity separately for stimulus regions with and without contrast changes. We found that the spatial scope of contrast adaptation depends strongly on cell identity, with some ganglion cells displaying clear local adaptation, whereas others, in particular large transient ganglion cells, adapted globally to contrast changes. Thus, the spatial scope of contrast adaptation in mouse retinal ganglion cells appears to be cell-type specific. This could reflect differences in mechanisms of contrast adaptation and may contribute to the functional diversity of different ganglion cell types. NEW & NOTEWORTHY Understanding whether adaptation of a neuron in a sensory system can occur locally inside the receptive field or whether it always globally affects the entire receptive field is important for understanding how the neuron processes complex sensory stimuli. For mouse retinal ganglion cells, we here show that both local and global contrast adaptation exist and that this diversity in

  2. Diversity in spatial scope of contrast adaptation among mouse retinal ganglion cells

    PubMed Central

    Khani, Mohammad Hossein

    2017-01-01

    Retinal ganglion cells adapt to changes in visual contrast by adjusting their response kinetics and sensitivity. While much work has focused on the time scales of these adaptation processes, less is known about the spatial scale of contrast adaptation. For example, do small, localized contrast changes affect a cell’s signal processing across its entire receptive field? Previous investigations have provided conflicting evidence, suggesting that contrast adaptation occurs either locally within subregions of a ganglion cell’s receptive field or globally over the receptive field in its entirety. Here, we investigated the spatial extent of contrast adaptation in ganglion cells of the isolated mouse retina through multielectrode-array recordings. We applied visual stimuli so that ganglion cell receptive fields contained regions where the average contrast level changed periodically as well as regions with constant average contrast level. This allowed us to analyze temporal stimulus integration and sensitivity separately for stimulus regions with and without contrast changes. We found that the spatial scope of contrast adaptation depends strongly on cell identity, with some ganglion cells displaying clear local adaptation, whereas others, in particular large transient ganglion cells, adapted globally to contrast changes. Thus, the spatial scope of contrast adaptation in mouse retinal ganglion cells appears to be cell-type specific. This could reflect differences in mechanisms of contrast adaptation and may contribute to the functional diversity of different ganglion cell types. NEW & NOTEWORTHY Understanding whether adaptation of a neuron in a sensory system can occur locally inside the receptive field or whether it always globally affects the entire receptive field is important for understanding how the neuron processes complex sensory stimuli. For mouse retinal ganglion cells, we here show that both local and global contrast adaptation exist and that this diversity

  3. Structure-based discovery and binding site analysis of histamine receptor ligands.

    PubMed

    Kiss, Róbert; Keserű, György M

    2016-12-01

    The application of structure-based drug discovery in histamine receptor projects was previously hampered by the lack of experimental structures. The publication of the first X-ray structure of the histamine H1 receptor has been followed by several successful virtual screens and binding site analysis studies of H1-antihistamines. This structure together with several other recently solved aminergic G-protein coupled receptors (GPCRs) enabled the development of more realistic homology models for H2, H3 and H4 receptors. Areas covered: In this paper, the authors review the development of histamine receptor models and their application in drug discovery. Expert opinion: In the authors' opinion, the application of atomistic histamine receptor models has played a significant role in understanding key ligand-receptor interactions as well as in the discovery of novel chemical starting points. The recently solved H1 receptor structure is a major milestone in structure-based drug discovery; however, our analysis also demonstrates that for building H3 and H4 receptor homology models, other GPCRs may be more suitable as templates. For these receptors, the authors envisage that the development of higher quality homology models will significantly contribute to the discovery and optimization of novel H3 and H4 ligands.

  4. Selective cytoprotective effect of histamine on doxorubicin-induced hepatic and cardiac toxicity in animal models

    PubMed Central

    Lamas, DJMartinel; Nicoud, MB; Sterle, HA; Carabajal, E; Tesan, F; Perazzo, JC; Cremaschi, GA; Rivera, ES; Medina, VA

    2015-01-01

    The aim of the present work was to evaluate the potential protective effect of histamine on Doxorubicin (Dox)-induced hepatic and cardiac toxicity in different rodent species and in a triple-negative breast tumor-bearing mice model. Male Sprague Dawley rats and Balb/c mice were divided into four groups: control (received saline), histamine (5 mg/kg for rats and 1 mg/kg for mice, daily subcutaneous injection starting 24 h before treatment with Dox), Dox (2 mg/kg, intraperitoneally injected three times a week for 2 weeks) and Dox+histamine (received both treatments). Tissue toxicity was evaluated by histopathological studies and oxidative stress and biochemical parameters. The combined effect of histamine and Dox was also investigated in vitro and in vivo in human MDA-MB-231 triple-negative breast cancer model. Heart and liver of Dox-treated animals displayed severe histological damage, loss of tissue weight, increased TBARS levels and DNA damage along with an augment in serum creatine kinase-myocardial band. Pretreatment with histamine prevented Dox-induced tissue events producing a significant preservation of the integrity of both rat and mouse myocardium and liver, through the reduction of Dox-induced oxidative stress and apoptosis. Histamine treatment preserved anti-tumor activity of Dox, exhibiting differential cytotoxicity and increasing the Dox-induced inhibition of breast tumor growth. Findings provide preclinical evidence indicating that histamine could be a promising candidate as a selective cytoprotective agent for the treatment of Dox-induced cardiac and hepatic toxicity, and encourage the translation to clinical practice. PMID:27551485

  5. A case of histamine fish poisoning in a young atopic woman.

    PubMed

    Wilson, Ben J; Musto, Richard J; Ghali, William A

    2012-07-01

    Histamine fish poisoning, also known as scombroid poisoning, is a histamine toxicity syndrome that results from eating specific types of spoiled fish. Although typically a benign syndrome, characterized by self-limited flushing, headache, and gastrointestinal symptoms, we describe a case unique in its severity and as a precipitant of an asthma exacerbation. A 25-year-old woman presented to the emergency department (ED) with one hour of tongue and face swelling, an erythematous pruritic rash, and dyspnea with wheezing after consuming a tuna sandwich. She developed abdominal pain, diarrhea and hypotension in the ED requiring admission to the hospital. A diagnosis of histamine fish poisoning was made and the patient was treated supportively and discharged within 24 hours, but was readmitted within 3 hours due to an asthma exacerbation. Her course was complicated by recurrent admissions for asthma exacerbations.

  6. [The neurotrophic effect of endogenous NT-3 from adult cat spared dorsal root ganglion on ganglionic neurons].

    PubMed

    Zhang, Wei; Zhou, Xue; Wang, Ting-hua; Wang, Te-wei; Liu, Su; Chen, Si-xiu; Ou, Ke-qun

    2004-01-01

    To investigate the neurotrophic effect of endogenous NT-3 from adult cat dorsal root ganglion (DRG) on ganglionic neurons. Rhizotomy of bilateral L1, L3, L5 and L7 dorsal roots of cats was performed, leaving L2, L4 and L6 DRG as spared DRGs. The separate neurons of normal (control) DRG, spared DRG and anti-NT-3 antibody blocking DRG were cultured in vitro respectively. The number of survival neurons and the length of neurites were measured and used for comparison in the control, spared DRG, and block groups. There were survival neurons and cell clusters in every group. The number of survival neurons and cell clusters of spared DRG group were much larger than those of the control and block groups. The neurite length of neurons, the neurite number and the length of cell clusters of spared DRG group were much greater than those of control and block groups. Endogenous NT-3 from spared DRG may act on ganglionic neurons to maintain survival of neuron and stimulate growth of neurite.

  7. Brain Histamine Is Crucial for Selective Serotonin Reuptake Inhibitors‘ Behavioral and Neurochemical Effects

    PubMed Central

    Munari, Leonardo; Provensi, Gustavo; Passani, Maria Beatrice; Galeotti, Nicoletta; Cassano, Tommaso; Benetti, Fernando; Corradetti, Renato

    2015-01-01

    Backgound: The neurobiological changes underlying depression resistant to treatments remain poorly understood, and failure to respond to selective serotonin reuptake inhibitors may result from abnormalities of neurotransmitter systems that excite serotonergic neurons, such as histamine. Methods: Using behavioral (tail suspension test) and neurochemical (in vivo microdialysis, Western-blot analysis) approaches, here we report that antidepressant responses to selective serotonin reuptake inhibitors (citalopram or paroxetine) are abolished in mice unable to synthesize histamine due to either targeted disruption of histidine decarboxylase gene (HDC-/-) or injection of alpha-fluoromethylhistidine, a suicide inhibitor of this enzyme. Results: In the tail suspension test, all classes of antidepressants tested reduced the immobility time of controls. Systemic reboxetine or imipramine reduced the immobility time of histamine-deprived mice as well, whereas selective serotonin reuptake inhibitors did not even though their serotonergic system is functional. In in vivo microdialysis experiments, citalopram significantly increased histamine extraneuronal levels in the cortex of freely moving mice, and methysergide, a serotonin 5-HT1/5-HT2 receptor antagonist, abolished this effect, thus suggesting the involvement of endogenous serotonin. CREB phosphorylation, which is implicated in the molecular mechanisms of antidepressant treatment, was abolished in histamine-deficient mice treated with citalopram. The CREB pathway is not impaired in HDC-/- mice, as administration of 8-bromoadenosine 3’, 5’-cyclic monophosphate increased CREB phosphorylation, and in the tail suspension test it significantly reduced the time spent immobile by mice of both genotypes. Conclusions: Our results demonstrate that selective serotonin reuptake inhibitors selectively require the integrity of the brain histamine system to exert their preclinical responses. PMID:25899065

  8. In vitro histamine H/sub 2/-antagonist activity of the novel compound HUK 978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coombes, J.D.; Norris, D.B.; Rising, T.J.

    1985-11-04

    Histamine stimulated adenylate cyclase from guinea-pig fundic mucosa and /sup 3/H-tiotidine binding in guinea-pig cerebral cortex were used to assess the in-vitro histamine H/sub 2/-activity of the novel H/sub 2/-antagonist HUK 978. The results showed that HUK 978 was a more potent H/sub 2/-antagonist than either cimetidine or ranitidine. HUK 978 was also shown to be devoid of activity at the histamine H-/sub 1/-receptor, the muscarinic receptor and the ..cap alpha.. and ..beta..-adrenergic receptors.

  9. Protective effect of histamine microinjected into cerebellar fastigial nucleus on stress gastric mucosal damage in rats.

    PubMed

    Qiao, Xiao; Yang, Jun; Fei, Su-Juan; Zhu, Jin-Zhou; Zhu, Sheng-Ping; Liu, Zhang-Bo; Li, Ting-Ting; Zhang, Jian-Fu

    2015-12-10

    In the study, we investigated the effect of histamine microinjected into cerebellar fastigial nucleus (FN) on stress gastric mucosal damage (SGMD), and its mechanisms in rats. The model of SGMD was established by restraining and water (21±1°C)-immersion for 3h. The gastric mucosal damage index (GMDI) indicated the severity of gastric mucosal damage. Histamine or receptor antagonist was microinjected into the FN. The decussation of superior cerebellar peduncle (DSCP) and the lateral hypothalamic area (LHA) were destroyed, respectively. The pathological changes of gastric mucosa were evaluated using biological signal acquisition system, Laser-Doppler flowmeter, and western blotting. We found that the microinjection of histamine (0.05, 0.5, and 5μg) into FN significantly attenuated the SGMD, in a dose-dependent manner, whereas, the microinjection of histamine H2 receptor antagonist, ranitidine, and glutamic acid decarboxylase antagonist, 3-mercaptopropionic acid (3-MPA) exacerbated the SGMD. The protective effect of histamine on SGMD was abolished by electrical lesion of DSCP or chemical ablation of LHA. The microinjection of histamine decreased the discharge frequency of the greater splanchnic nerve, and the gastric mucosal blood flow was increased. In addition, the cellular proliferation was enhanced, but the cellular apoptosis was reduced in the gastric mucosa. Also the pro-apoptosis protein, Bax, and caspase-3 were down-regulated, and the anti-apoptosis protein, Bcl-2 was up-regulated following microinjection of histamine. In conclusion, the FN participated in the regulation of SGMD after histamine microinjected into FN, and cerebellar-hypothalamic circuits (include: DSCP, LHA) contribute to the process, which may provide a new therapeutic strategy for SGMD. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Spiral Ganglion Stem Cells Can Be Propagated and Differentiated Into Neurons and Glia

    PubMed Central

    Zecha, Veronika; Wagenblast, Jens; Arnhold, Stefan; Edge, Albert S. B.; Stöver, Timo

    2014-01-01

    Abstract The spiral ganglion is an essential functional component of the peripheral auditory system. Most types of hearing loss are associated with spiral ganglion cell degeneration which is irreversible due to the inner ear's lack of regenerative capacity. Recent studies revealed the existence of stem cells in the postnatal spiral ganglion, which gives rise to the hope that these cells might be useful for regenerative inner ear therapies. Here, we provide an in-depth analysis of sphere-forming stem cells isolated from the spiral ganglion of postnatal mice. We show that spiral ganglion spheres have characteristics similar to neurospheres isolated from the brain. Importantly, spiral ganglion sphere cells maintain their major stem cell characteristics after repeated propagation, which enables the culture of spheres for an extended period of time. In this work, we also demonstrate that differentiated sphere-derived cell populations not only adopt the immunophenotype of mature spiral ganglion cells but also develop distinct ultrastructural features of neurons and glial cells. Thus, our work provides further evidence that self-renewing spiral ganglion stem cells might serve as a promising source for the regeneration of lost auditory neurons. PMID:24940560

  11. Induction of histamine release in vitro from rat peritoneal mast cells by extracts of grain dust.

    PubMed Central

    Warren, C P; Holford-Strevens, V

    1986-01-01

    The ability of extracts of grain dust and wheat to induce histamine release from rat peritoneal cells was investigated. Some grain dusts, with a high endotoxin content, were found to produce cytotoxic histamine release. Extract of wheat dust, with a low endotoxin release, produced noncytotoxic histamine release from peritoneal cells but not from purified mast cells. This reaction was dependent on the presence of phosphatidyl serine. The agent did not appear to be a lectin because histamine release was not enhanced by passive sensitization of mast cells with IgE. The activity occurred only over a narrow range of concentrations of the extract of wheat. The cause was unclear. PMID:2423321

  12. The effect of vacuum packaging on histamine changes of milkfish sticks at various storage temperatures.

    PubMed

    Kung, Hsien-Feng; Lee, Yi-Chen; Lin, Chiang-Wei; Huang, Yu-Ru; Cheng, Chao-An; Lin, Chia-Min; Tsai, Yung-Hsiang

    2017-10-01

    The effects of polyethylene packaging (PEP) (in air) and vacuum packaging (VP) on the histamine related quality of milkfish sticks stored at different temperatures (-20°C, 4°C, 15°C, and 25°C) were studied. The results showed that the aerobic plate count (APC), pH, total volatile basic nitrogen (TVBN), and histamine contents increased as storage time increased when the PEP and VP samples were stored at 25°C. At below 15°C, the APC, TVBN, pH, and histamine levels in PEP and VP samples were retarded, but the VP samples had considerably lower levels of APC, TVBN, and histamine than PEP samples. Once the frozen fish samples stored at -20°C for 2 months were thawed and stored at 25°C, VP retarded the increase of histamine in milkfish sticks as compared to PEP. In summary, this result suggested the milkfish sticks packed with VP and stored below 4°C could prevent deterioration of product quality and extend shelf-life. Copyright © 2017. Published by Elsevier B.V.

  13. Excitation of mouse superficial dorsal horn neurons by histamine and/or PAR-2 agonist: potential role in itch.

    PubMed

    Akiyama, Tasuku; Carstens, Mirela Iodi; Carstens, E

    2009-10-01

    Recent studies have suggested the existence of separate transduction mechanisms and sensory pathways for histamine and nonhistaminergic types of itch. We studied whether histamine and an agonist of the protease-activated receptor (PAR)-2, associated with nonhistaminergic itch, excite murine dorsal horn neurons. Single units were recorded in superficial lumbar dorsal horn of adult ICR mice anesthetized with pentobarbital. Unit activity was searched using a small intradermal hindpaw injection of histamine or the PAR-2 agonist SLIGRL-NH2. Isolated units were subsequently challenged with intradermal histamine followed by SLIGRL-NH2 (each 50 microg/1 microl) or reverse order, followed by mechanical, thermal, and algogenic stimuli. Forty-three units were classified as wide dynamic range (62%), nociceptive specific (22%), or mechano insensitive (16%). Twenty units gave prolonged (mean, 10 min) discharges to intradermal injection of histamine; 76% responded to subsequent SLIGRL-NH2, often more briefly. Units additionally responded to noxious heat (63%), cooling (43%), topical mustard oil (53%), and intradermal capsaicin (67%). Twenty-two other units gave prolonged (mean, 5 min) responses to initial intradermal injection of SLIGRL-NH2; 85% responded to subsequent intradermal histamine. They also responded to noxious heat (75%), mustard oil (93%), capsaicin (63%), and one to cooling. Most superficial dorsal horn neurons were excited by both histamine and the PAR-2 agonist, suggesting overlapping pathways for histamine- and non-histamine-mediated itch. Because the large majority of pruritogen-responsive neurons also responded to noxious stimuli, itch may be signaled at least partly by a population code.

  14. Histamine and Tyramine in Food.

    DTIC Science & Technology

    1985-05-01

    normal constituents of many foods and have been found in cheese; sauerkraut; wine; fish; and putrid, aged or fermented meats. These low molecular...constituents of many foods and have been found in cheese; sauerkraut; wine; fish; and putrid, aged, or fermented meats. These low molecular weight organic...amounts of tyramine and histamine, formation of large amounts of these amines has been reported only in aged, fermented products or products such as

  15. Expression of inducible heat shock proteins Hsp27 and Hsp70 in the visual pathway of rats subjected to various models of retinal ganglion cell injury.

    PubMed

    Chidlow, Glyn; Wood, John P M; Casson, Robert J

    2014-01-01

    Inducible heat shock proteins (Hsps) are upregulated in the central nervous system in response to a wide variety of injuries. Surprisingly, however, no coherent picture has emerged regarding the magnitude, duration and cellular distribution of inducible Hsps in the visual system following injury to retinal ganglion cells (RGCs). The current study sought, therefore, to achieve the following two objectives. The first aim of this study was to systematically characterise the patterns of Hsp27 and -70 expression in the retina and optic nerve in four discrete models of retinal ganglion cell (RGC) degeneration: axonal injury (ON crush), somato-dendritic injury (NMDA-induced excitotoxicity), chronic hypoperfusion (bilateral occlusion of the carotid arteris) and experimental glaucoma. The second aim was to document Hsp27 and -70 expression in the optic tract, the subcortical retinorecipient areas of the brain, and the visual cortex during Wallerian degeneration of RGC axons. Hsp27 was robustly upregulated in the retina in each injury paradigm, with the chronic models, 2VO and experimental glaucoma, displaying a more persistent Hsp27 transcriptional response than the acute models. Hsp27 expression was always associated with astrocytes and with a subset of RGCs in each of the models excluding NMDA. Hsp27 was present within astrocytes of the optic nerve/optic tract in control rats. During Wallerian degeneration, Hsp27 was upregulated in the optic nerve/optic tract and expressed de novo by astrocytes in the lateral geniculate nucleus and the stratum opticum of the superior colliculus. Conversely, the results of our study indicate Hsp70 was minimally induced in any of the models of injury, either in the retina, or in the optic nerve/optic tract, or in the subcortical, retinorecipient areas of the brain. The findings of the present study augment our understanding of the involvement of Hsp27 and Hsp70 in the response of the visual system to RGC degeneration.

  16. Expression of Inducible Heat Shock Proteins Hsp27 and Hsp70 in the Visual Pathway of Rats Subjected to Various Models of Retinal Ganglion Cell Injury

    PubMed Central

    Chidlow, Glyn; Wood, John P. M.; Casson, Robert J.

    2014-01-01

    Inducible heat shock proteins (Hsps) are upregulated in the central nervous system in response to a wide variety of injuries. Surprisingly, however, no coherent picture has emerged regarding the magnitude, duration and cellular distribution of inducible Hsps in the visual system following injury to retinal ganglion cells (RGCs). The current study sought, therefore, to achieve the following two objectives. The first aim of this study was to systematically characterise the patterns of Hsp27 and −70 expression in the retina and optic nerve in four discrete models of retinal ganglion cell (RGC) degeneration: axonal injury (ON crush), somato-dendritic injury (NMDA-induced excitotoxicity), chronic hypoperfusion (bilateral occlusion of the carotid arteris) and experimental glaucoma. The second aim was to document Hsp27 and −70 expression in the optic tract, the subcortical retinorecipient areas of the brain, and the visual cortex during Wallerian degeneration of RGC axons. Hsp27 was robustly upregulated in the retina in each injury paradigm, with the chronic models, 2VO and experimental glaucoma, displaying a more persistent Hsp27 transcriptional response than the acute models. Hsp27 expression was always associated with astrocytes and with a subset of RGCs in each of the models excluding NMDA. Hsp27 was present within astrocytes of the optic nerve/optic tract in control rats. During Wallerian degeneration, Hsp27 was upregulated in the optic nerve/optic tract and expressed de novo by astrocytes in the lateral geniculate nucleus and the stratum opticum of the superior colliculus. Conversely, the results of our study indicate Hsp70 was minimally induced in any of the models of injury, either in the retina, or in the optic nerve/optic tract, or in the subcortical, retinorecipient areas of the brain. The findings of the present study augment our understanding of the involvement of Hsp27 and Hsp70 in the response of the visual system to RGC degeneration. PMID:25535743

  17. Generation of a proton motive force by histidine decarboxylation and electrogenic histidine/histamine antiport in Lactobacillus buchneri.

    PubMed

    Molenaar, D; Bosscher, J S; ten Brink, B; Driessen, A J; Konings, W N

    1993-05-01

    Lactobacillus buchneri ST2A vigorously decarboxylates histidine to the biogenic amine histamine, which is excreted into the medium. Cells grown in the presence of histidine generate both a transmembrane pH gradient, inside alkaline, and an electrical potential (delta psi), inside negative, upon addition of histidine. Studies of the mechanism of histidine uptake and histamine excretion in membrane vesicles and proteoliposomes devoid of cytosolic histidine decarboxylase activity demonstrate that histidine uptake, histamine efflux, and histidine/histamine exchange are electrogenic processes. Histidine/histamine exchange is much faster than the unidirectional fluxes of these substrates, is inhibited by an inside-negative delta psi and is stimulated by an inside positive delta psi. These data suggest that the generation of metabolic energy from histidine decarboxylation results from an electrogenic histidine/histamine exchange and indirect proton extrusion due to the combined action of the decarboxylase and carrier-mediated exchange. The abundance of amino acid decarboxylation reactions among bacteria suggests that this mechanism of metabolic energy generation and/or pH regulation is widespread.

  18. Rare Death Via Histamine Poisoning Following Crab Consumption: A Case Report.

    PubMed

    Yu, Yang; Wang, Ping; Bian, Ligong; Hong, Shijun

    2018-05-01

    Histamine poisoning (scombroid food poisoning) is a toxicity syndrome that results from eating spoiled fish. To date, however, few poisoning (or mortality) cases have been reported in relation to crab consumption. Here, we describe a very uncommon case in which a 37-year-old woman and her 14-year-old son ate cooked crabs (Scylla serrata), resulting in the death of the female. Samples of vomitus, food residue, liver tissue, gastric content, intestinal content, and cardiac blood were analyzed by high-performance liquid chromatography. Toxicological analysis revealed that histamine concentrations were very high in the cooked crab (47.08 mg/100 g) and intestinal content (22.54 mg/100 g). Comparing our toxicological results, police investigations, and family member statements, it can be assumed that the decedent ingested spoiled crabs, and by excluding other causes of death, lethal intoxication with histamine poisoning was confirmed. © 2017 American Academy of Forensic Sciences.

  19. Precooking as a Control for Histamine Formation during the Processing of Tuna: An Industrial Process Validation.

    PubMed

    Adams, Farzana; Nolte, Fred; Colton, James; De Beer, John; Weddig, Lisa

    2018-02-23

    An experiment to validate the precooking of tuna as a control for histamine formation was carried out at a commercial tuna factory in Fiji. Albacore tuna ( Thunnus alalunga) were brought on board long-line catcher vessels alive, immediately chilled but never frozen, and delivered to an on-shore facility within 3 to 13 days. These fish were then allowed to spoil at 25 to 30°C for 21 to 25 h to induce high levels of histamine (>50 ppm), as a simulation of "worst-case" postharvest conditions, and subsequently frozen. These spoiled fish later were thawed normally and then precooked at a commercial tuna processing facility to a target maximum core temperature of 60°C. These tuna were then held at ambient temperatures of 19 to 37°C for up to 30 h, and samples were collected every 6 h for histamine analysis. After precooking, no further histamine formation was observed for 12 to 18 h, indicating that a conservative minimum core temperature of 60°C pauses subsequent histamine formation for 12 to 18 h. Using the maximum core temperature of 60°C provided a challenge study to validate a recommended minimum core temperature of 60°C, and 12 to 18 h was sufficient to convert precooked tuna into frozen loins or canned tuna. This industrial-scale process validation study provides support at a high confidence level for the preventive histamine control associated with precooking. This study was conducted with tuna deliberately allowed to spoil to induce high concentrations of histamine and histamine-forming capacity and to fail standard organoleptic evaluations, and the critical limits for precooking were validated. Thus, these limits can be used in a hazard analysis critical control point plan in which precooking is identified as a critical control point.

  20. Implementation of a Fluorescence-Based Screening Assay Identifies Histamine H3 Receptor Antagonists Clobenpropit and Iodophenpropit as Subunit-Selective N-Methyl-d-Aspartate Receptor Antagonists

    PubMed Central

    Hansen, Kasper B.; Mullasseril, Praseeda; Dawit, Sara; Kurtkaya, Natalie L.; Yuan, Hongjie; Vance, Katie M.; Orr, Anna G.; Kvist, Trine; Ogden, Kevin K.; Le, Phuong; Vellano, Kimberly M.; Lewis, Iestyn; Kurtkaya, Serdar; Du, Yuhong; Qui, Min; Murphy, T. J.; Snyder, James P.; Bräuner-Osborne, Hans

    2010-01-01

    N-Methyl-d-aspartate (NMDA) receptors are ligand-gated ion channels that mediate a slow, Ca2+-permeable component of excitatory synaptic transmission in the central nervous system and play a pivotal role in synaptic plasticity, neuronal development, and several neurological diseases. We describe a fluorescence-based assay that measures NMDA receptor-mediated changes in intracellular calcium in a BHK-21 cell line stably expressing NMDA receptor NR2D with NR1 under the control of a tetracycline-inducible promoter (Tet-On). The assay selectively identifies allosteric modulators by using supramaximal concentrations of glutamate and glycine to minimize detection of competitive antagonists. The assay is validated by successfully identifying known noncompetitive, but not competitive NMDA receptor antagonists among 1800 screened compounds from two small focused libraries, including the commercially available library of pharmacologically active compounds. Hits from the primary screen are validated through a secondary screen that used two-electrode voltage-clamp recordings on recombinant NMDA receptors expressed in Xenopus laevis oocytes. This strategy identified several novel modulators of NMDA receptor function, including the histamine H3 receptor antagonists clobenpropit and iodophenpropit, as well as the vanilloid receptor transient receptor potential cation channel, subfamily V, member 1 (TRPV1) antagonist capsazepine. These compounds are noncompetitive antagonists and the histamine H3 receptor ligand showed submicromolar potency at NR1/NR2B NMDA receptors, which raises the possibility that compounds can be developed that act with high potency on both glutamate and histamine receptor systems simultaneously. Furthermore, it is possible that some actions attributed to histamine H3 receptor inhibition in vivo may also involve NMDA receptor antagonism. PMID:20197375

  1. Satellite glial cells in the trigeminal ganglion as a determinant of orofacial neuropathic pain

    PubMed Central

    VIT, JEAN-PHILIPPE; JASMIN, LUC; BHARGAVA, ADITI; OHARA, PETER T.

    2008-01-01

    Satellite glial cells (SGCs) tightly envelop the perikarya of primary sensory neurons in peripheral ganglion and are identified by their morphology and the presence of proteins not found in ganglion neurons. These SGC-unique proteins include the inwardly rectifying K+ channel Kir4.1, the connexin-43 (Cx43) subunit of gap junctions, the purinergic receptor P2Y4 and soluble guanylate cyclase. We also present evidence that the small-conductance Ca2+-activated K+ channel SK3 is present only in SGCs and that SGCs divide following nerve injury. All the above proteins are involved, either directly or indirectly, in potassium ion (K+) buffering and, thus, can influence the level of neuronal excitability, which, in turn, has been associated with neuropathic pain conditions. We used in vivo RNA interference to reduce the expression of Cx43 (present only in SGCs) in the rat trigeminal ganglion and show that this results in the development of spontaneous pain behavior. The pain behavior is present only when Cx43 is reduced and returns to normal when Cx43 concentrations are restored. This finding shows that perturbation of a single SGC-specific protein is sufficient to induce pain responses and demonstrates the importance of PNS glial cell activity in the pathophysiology of neuropathic pain. PMID:18568096

  2. Inhibitory effects of carbohydrates on histamine release and mast cell disruption by dextran

    PubMed Central

    Beraldo, W. T.; Da Silva, W. dias; Fernandes, A. D. Lemos

    1962-01-01

    Alloxan diabetic rats failed to show the skin reaction (blue spot) evoked by dextran, whereas the effects produced by histamine and compound 48/80 were not altered. When dextran and glucose were injected simultaneously into the skin the reaction was inhibited. In vitro, mast cell alterations produced by dextran occurred simultaneously with histamine release; both processes were inhibited by glucose, other carbohydrates related to glucose, and inhibitors of anaphylaxis. These experiments suggest that dextran releases histamine by a mechanism similar to that found with 48/80 and anaphylaxis in the rat. The inhibitory effect of carbohydrates may be understood on the basis of a competitive mechanism. ImagesFig. 1Fig. 2 PMID:13967594

  3. Tyramine and histamine risk assessment related to consumption of dry fermented sausages by the Spanish population.

    PubMed

    Latorre-Moratalla, M L; Comas-Basté, O; Bover-Cid, S; Vidal-Carou, M C

    2017-01-01

    Tyramine and histamine are the main dietary bioactive amines related to acute adverse health effects. Dry fermented sausages can easily accumulate high levels of these hazards and are frequently consumed in Spain. The present work aims to assess the exposure to tyramine and histamine from the consumption of dry fermented sausages by the Spanish population and to assess the risk to suffer acute health effects from this exposure. A probabilistic estimation of the exposure to these hazards was derived combining probability distributions of these amines in dry fermented sausages (n = 474) and their consumption by the Spanish population. The mean dietary exposure to tyramine and histamine was 6.2 and 1.39 mg/meal, respectively. The risk of suffering hypertensive crisis or histamine intoxication by healthy population due to tyramine or histamine intake, respectively, exclusively from dry fermented sausages, can be considered negligible. For individuals under treatment with MAOI drugs, the probability to surpass the safe threshold dose (6 mg/meal) was estimated as 34%. For patients with histamine intolerance, even the presence of this amine in food is not tolerable and it could be estimated that 7000 individuals per million could be at risk to suffer the related symptoms after consuming dry fermented sausages. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Characterization of Ganglionic Acetylcholine Receptor Autoantibodies

    PubMed Central

    Vernino, Steven; Lindstrom, Jon; Hopkins, Steve; Wang, Zhengbei; Low, Phillip A.

    2008-01-01

    In myasthenia gravis (MG), autoantibodies bind to the α1 subunit and other subunits of the muscle nicotinic acetylcholine receptor (AChR). Autoimmune autonomic ganglionopathy (AAG) is an antibody-mediated neurological disorder caused by antibodies against neuronal AChRs in autonomic ganglia. Subunits of muscle and neuronal AChR are homologous. We examined the specificity of AChR antibodies in patients with MG and AAG. Ganglionic AChR autoantibodies found in AAG patients are specific for AChRs containing the α3 subunit. Muscle and ganglionic AChR antibody specificities are distinct. Antibody crossreactivity between AChRs with different α subunits is uncommon but can occur. PMID:18485491

  5. Ganglionic adrenergic action modulates ovarian steroids and nitric oxide in prepubertal rat.

    PubMed

    Delgado, Silvia Marcela; Casais, Marilina; Sosa, Zulema; Rastrilla, Ana María

    2006-08-01

    Both peripheral innervation and nitric oxide (NO) participate in ovarian steroidogenesis. The purpose of this work was to analyse the ganglionic adrenergic influence on the ovarian release of steroids and NO and the possible steroids/NO relationship. The experiments were carried out in the ex vivo coeliac ganglion-superior ovarian nerve (SON)-ovary system of prepubertal rats. The coeliac ganglion-SON-ovary system was incubated in Krebs Ringer-bicarbonate buffer in presence of adrenergic agents in the ganglionic compartment. The accumulation of progesterone, androstenedione, oestradiol and NO in the ovarian incubation liquid was measured. Norepinephrine in coeliac ganglion inhibited the liberation of progesterone and increased androstenedione, oestradiol and NO in ovary. The addition of alpha and beta adrenergic antagonists also showed different responses in the liberation of the substances mentioned before, which, from a physiological point of view, reveals the presence of adrenergic receptors in coeliac ganglion. In relation to propranolol, it does not revert the effect of noradrenaline on the liberation of progesterone, which leads us to think that it might also have a "per se" effect on the ganglion, responsible for the ovarian response observed for progesterone. Finally, we can conclude that the ganglionic adrenergic action via SON participates on the regulation of the prepubertal ovary in one of two ways: either increasing the NO, a gaseous neurotransmitter with cytostatic characteristics, to favour the immature follicles to remain dormant or increasing the liberation of androstenedione and oestradiol, the steroids necessary for the beginning of the near first estral cycle.

  6. Mast cells and histamine alter intestinal permeability during malaria parasite infection.

    PubMed

    Potts, Rashaun A; Tiffany, Caitlin M; Pakpour, Nazzy; Lokken, Kristen L; Tiffany, Connor R; Cheung, Kong; Tsolis, Renée M; Luckhart, Shirley

    2016-03-01

    Co-infections with malaria and non-typhoidal Salmonella serotypes (NTS) can present as life-threatening bacteremia, in contrast to self-resolving NTS diarrhea in healthy individuals. In previous work with our mouse model of malaria/NTS co-infection, we showed increased gut mastocytosis and increased ileal and plasma histamine levels that were temporally associated with increased gut permeability and bacterial translocation. Here, we report that gut mastocytosis and elevated plasma histamine are also associated with malaria in an animal model of falciparum malaria, suggesting a broader host distribution of this biology. In support of mast cell function in this phenotype, malaria/NTS co-infection in mast cell-deficient mice was associated with a reduction in gut permeability and bacteremia. Further, antihistamine treatment reduced bacterial translocation and gut permeability in mice with malaria, suggesting a contribution of mast cell-derived histamine to GI pathology and enhanced risk of bacteremia during malaria/NTS co-infection. Copyright © 2015 Elsevier GmbH. All rights reserved.

  7. Hmx1 is required for the normal development of somatosensory neurons in the geniculate ganglion

    PubMed Central

    Quina, Lely A.; Tempest, Lynne; Hsu, Yun-Wei A.; Cox, Timothy C.; Turner, Eric E.

    2012-01-01

    Hmx1 is a variant homeodomain transcription factor expressed in the developing sensory nervous system, retina, and craniofacial mesenchyme. Recently, mutations at the Hmx1 locus have been linked to craniofacial defects in humans, rats, and mice, but its role in nervous system development is largely unknown. Here we show that Hmx1 is expressed in a subset of sensory neurons in the cranial and dorsal root ganglia which does not correspond to any specific sensory modality. Sensory neurons in the dorsal root and trigeminal ganglia of Hmx1dm/dm mouse embryos have no detectable Hmx1 protein, yet they undergo neurogenesis and express sensory subtype markers normally, demonstrating that Hmx1 is not globally required for the specification of sensory neurons from neural crest precursors. Loss of Hmx1 expression has no obvious effect on the early development of the trigeminal (V), superior (IX/X), or dorsal root ganglia neurons in which it is expressed, but results in marked defects in the geniculate (VII) ganglion. Hmx1dm/dm mouse embryos possess only a vestigial posterior auricular nerve, and general somatosensory neurons in the geniculate ganglion are greatly reduced by mid-gestation. Although Hmx1 is expressed in geniculate neurons prior to cell cycle exit, it does not appear to be required for neurogenesis, and the loss of geniculate neurons is likely to be the result of increased cell death. Fate mapping of neural crest-derived tissues indicates that Hmx1-expressing somatosensory neurons at different axial levels may be derived from either the neural crest or the neurogenic placodes. PMID:22586713

  8. Effect of antioxidants on histamine receptor activation and sustained postexercise vasodilatation in humans.

    PubMed

    Romero, Steven A; Ely, Matthew R; Sieck, Dylan C; Luttrell, Meredith J; Buck, Tahisha M; Kono, Jordan M; Branscum, Adam J; Halliwill, John R

    2015-04-01

    What is the central question of this study? Is exercise-induced oxidative stress the upstream exercise-related signalling mechanism that leads to sustained postexercise vasodilatation via activation of H1 and H2 histamine receptors? What is the main finding and its importance? Systemic administration of the antioxidant ascorbate inhibits sustained postexercise vasodilatation to the same extent as seen previously with H1 and H2 histamine receptor blockade following small muscle-mass exercise. However, ascorbate has a unique ability to catalyse the degradation of histamine. We also found that systemic infusion of the antioxidant N-acetylcysteine had no effect on sustained postexercise vasodilatation, suggesting that exercise-induced oxidative stress does not contribute to sustained postexercise vasodilatation. An acute bout of aerobic exercise elicits a sustained postexercise vasodilatation that is mediated by histamine H1 and H2 receptor activation. However, the upstream signalling pathway that leads to postexercise histamine receptor activation is unknown. We tested the hypothesis that the potent antioxidant ascorbate would inhibit this histaminergic vasodilatation following exercise. Subjects performed 1 h of unilateral dynamic knee extension at 60% of peak power in three conditions: (i) control; (ii) i.v. ascorbate infusion; and (iii) ascorbate infusion plus oral H1 /H2 histamine receptor blockade. Femoral artery blood flow was measured (using Doppler ultrasound) before exercise and for 2 h postexercise. Femoral vascular conductance was calculated as flow/pressure. Postexercise vascular conductance was greater for control conditions (3.4 ± 0.1 ml min(-1) mmHg(-1) ) compared with ascorbate (2.7 ± 0.1 ml min(-1) mmHg(-1) ; P < 0.05) and ascorbate plus H1 /H2 blockade (2.8 ± 0.1 ml min(-1) mmHg(-1) ; P < 0.05), which did not differ from one another (P = 0.9). Given that ascorbate may catalyse the degradation of histamine in vivo, we conducted a follow-up study

  9. Comparison of capnovolumetry-derived dead space parameters with pulmonary function test in normal adults using histamine provocation.

    PubMed

    Sun, Xiaoli; Zhang, Yan; Yang, Wenlan; Liu, Jinming

    2015-04-01

    This study in healthy adults was conducted to explore the clinical application of capnovolumetric indices as compared to lung function parameters using histamine provocation. Forty healthy subjects received aerosol histamine or salbutamol in an automatic stimulation system with escalating doses of histamine. Dead space volumes of capnovolumetry and lung function parameters were examined with increased concentrations of histamine at a fixed time interval. The doses of histamine were selected from 0.0562 mg-2.2 mg and 0.1 mg salbutamol was inhaled when a maximal dose of histamine was reached. Baseline values in each group were calculated prior to histamine inhalation. Fowler dead space (VDF), Wolff dead space (VDW), threshold dead space (VDT), Bohr dead space (VDB), forced expiratory volume in 1 s (FEV1 ) and peak expiratory flow (PEF) showed a dose-dependent reduction following histamine provocation, but there were no statistical differences in the measurements at baseline and post S6 provocation. The value of dC3/DV at the maximal dose was significantly increased over its baseline value (P < 0.05). VDF, VDT and VDW were significantly increased after bronchodilator use (P < 0.05 or <0.01). The changes in capnovolumetry did not correspond with the results of lung function test. The dC3/DV and airway dead spaces of capnovolumetry in healthy adults are significantly increased compared to lung function parameters before or after bronchodilator use, suggesting that capnovolumetry is feasible in diagnostic evaluation of airway reactivity, especially for persons who are unable to undertake lung function test. © 2014 John Wiley & Sons Ltd.

  10. Effects of histamine and 5-hydroxytryptamine on the growth rate of xenografted human bronchogenic carcinomas.

    PubMed

    Sheehan, P F; Baker, T; Tutton, P J; Barkla, D H

    1996-01-01

    1. The influence of histamine and 5-hydroxytryptamine (5-HT) antagonists and agonists on the volume doubling times (Td) of human bronchogenic carcinomas propagated as s.c. xenografts in immunosuppressed mice was examined. 2. The H2-receptor antagonists, cimetidine and ranitidine, increased Td. 3. Treatment with the H2-receptor agonist, 4-methyl histamine, had no effect on Td. 4. Co-administration of 4-methyl histamine and cimetidine abolished the effects of cimetidine. 5. The 5-HT2-receptor antagonists, cinanserin and ketanserin, both increased Td. 6. Treatment with the 5-HT1/2-receptor agonist quipazine (0.1 mg/kg, reflecting 5-HT2 agonist activity) decreased Td, while a higher dose (10.0 mg/kg) had no effect. 7. The 5-HT1/2-receptor antagonist, methiothepin, decreased Td. 8. The 5-HT uptake inhibitor, fluoxetine, increased Td in one tumour line but not in another, while the 5-HT releaser/depletor, fenfluramine, increased Td. 9. Histamine may stimulate tumour growth through the histamine H2-receptor, while the dominant effect of 5-HT is 5-HT1-receptor inhibition. 10. Tumour growth in some bronchogenic carcinomas may involve 5-HT uptake mechanisms.

  11. Retinal ganglion cell topography and spatial resolving power in penguins.

    PubMed

    Coimbra, João Paulo; Nolan, Paul M; Collin, Shaun P; Hart, Nathan S

    2012-01-01

    Penguins are a group of flightless seabirds that exhibit numerous morphological, behavioral and ecological adaptations to their amphibious lifestyle, but little is known about the topographic organization of neurons in their retinas. In this study, we used retinal wholemounts and stereological methods to estimate the total number and topographic distribution of retinal ganglion cells in addition to an anatomical estimate of spatial resolving power in two species of penguins: the little penguin, Eudyptula minor, and the king penguin, Aptenodytes patagonicus. The total number of ganglion cells per retina was approximately 1,200,000 in the little penguin and 1,110,000 in the king penguin. The topographic distribution of retinal ganglion cells in both species revealed the presence of a prominent horizontal visual streak with steeper gradients in the little penguin. The little penguin retinas showed ganglion cell density peaks of 21,867 cells/mm², affording spatial resolution in water of 17.07-17.46 cycles/degree (12.81-13.09 cycles/degree in air). In contrast, the king penguin showed a relatively lower peak density of ganglion cells of 14,222 cells/mm², but--due to its larger eye--slightly higher spatial resolution in water of 20.40 cycles/degree (15.30 cycles/degree in air). In addition, we mapped the distribution of giant ganglion cells in both penguin species using Nissl-stained wholemounts. In both species, topographic mapping of this cell type revealed the presence of an area gigantocellularis with a concentric organization of isodensity contours showing a peak in the far temporal retina of approximately 70 cells/mm² in the little penguin and 39 cells/mm² in the king penguin. Giant ganglion cell densities gradually fall towards the outermost isodensity contours revealing the presence of a vertically organized streak. In the little penguin, we confirmed our cytological characterization of giant ganglion cells using immunohistochemistry for microtubule

  12. PKC-dependent regulation of Kv7.5 channels by the bronchoconstrictor histamine in human airway smooth muscle cells.

    PubMed

    Haick, Jennifer M; Brueggemann, Lioubov I; Cribbs, Leanne L; Denning, Mitchell F; Schwartz, Jeffrey; Byron, Kenneth L

    2017-06-01

    Kv7 potassium channels have recently been found to be expressed and functionally important for relaxation of airway smooth muscle. Previous research suggests that native Kv7 currents are inhibited following treatment of freshly isolated airway smooth muscle cells with bronchoconstrictor agonists, and in intact airways inhibition of Kv7 channels is sufficient to induce bronchiolar constriction. However, the mechanism by which Kv7 currents are inhibited by bronchoconstrictor agonists has yet to be elucidated. In the present study, native Kv7 currents in cultured human trachealis smooth muscle cells (HTSMCs) were observed to be inhibited upon treatment with histamine; inhibition of Kv7 currents was associated with membrane depolarization and an increase in cytosolic Ca 2+ ([Ca 2+ ] cyt ). The latter response was inhibited by verapamil, a blocker of L-type voltage-sensitive Ca 2+ channels (VSCCs). Protein kinase C (PKC) has been implicated as a mediator of bronchoconstrictor actions, although the targets of PKC are not clearly established. We found that histamine treatment significantly and dose-dependently suppressed currents through overexpressed wild-type human Kv7.5 (hKv7.5) channels in cultured HTSMCs, and this effect was inhibited by the PKC inhibitor Ro-31-8220 (3 µM). The PKC-dependent suppression of hKv7.5 currents corresponded with a PKC-dependent increase in hKv7.5 channel phosphorylation. Knocking down or inhibiting PKCα, or mutating hKv7.5 serine 441 to alanine, abolished the inhibitory effects of histamine on hKv7.5 currents. These findings provide the first evidence linking PKC activation to suppression of Kv7 currents, membrane depolarization, and Ca 2+ influx via L-type VSCCs as a mechanism for histamine-induced bronchoconstriction. Copyright © 2017 the American Physiological Society.

  13. Sphenopalatine ganglion: block, radiofrequency ablation and neurostimulation - a systematic review.

    PubMed

    Ho, Kwo Wei David; Przkora, Rene; Kumar, Sanjeev

    2017-12-28

    Sphenopalatine ganglion is the largest collection of neurons in the calvarium outside of the brain. Over the past century, it has been a target for interventional treatment of head and facial pain due to its ease of access. Block, radiofrequency ablation, and neurostimulation have all been applied to treat a myriad of painful syndromes. Despite the routine use of these interventions, the literature supporting their use has not been systematically summarized. This systematic review aims to collect and summarize the level of evidence supporting the use of sphenopalatine ganglion block, radiofrequency ablation and neurostimulation. Medline, Google Scholar, and the Cochrane Central Register of Controlled Trials (CENTRAL) databases were reviewed for studies on sphenopalatine ganglion block, radiofrequency ablation and neurostimulation. Studies included in this review were compiled and analyzed for their treated medical conditions, study design, outcomes and procedural details. Studies were graded using Oxford Center for Evidence-Based Medicine for level of evidence. Based on the level of evidence, grades of recommendations are provided for each intervention and its associated medical conditions. Eighty-three publications were included in this review, of which 60 were studies on sphenopalatine ganglion block, 15 were on radiofrequency ablation, and 8 were on neurostimulation. Of all the studies, 23 have evidence level above case series. Of the 23 studies, 19 were on sphenopalatine ganglion block, 1 study on radiofrequency ablation, and 3 studies on neurostimulation. The rest of the available literature was case reports and case series. The strongest evidence lies in using sphenopalatine ganglion block, radiofrequency ablation and neurostimulation for cluster headache. Sphenopalatine ganglion block also has evidence in treating trigeminal neuralgia, migraines, reducing the needs of analgesics after endoscopic sinus surgery and reducing pain associated with nasal packing

  14. Prostaglandin E2 Inhibits Histamine-Evoked Ca2+ Release in Human Aortic Smooth Muscle Cells through Hyperactive cAMP Signaling Junctions and Protein Kinase A

    PubMed Central

    Taylor, Emily J. A.; Pantazaka, Evangelia; Shelley, Kathryn L.

    2017-01-01

    In human aortic smooth muscle cells, prostaglandin E2 (PGE2) stimulates adenylyl cyclase (AC) and attenuates the increase in intracellular free Ca2+ concentration evoked by activation of histamine H1 receptors. The mechanisms are not resolved. We show that cAMP mediates inhibition of histamine-evoked Ca2+ signals by PGE2. Exchange proteins activated by cAMP were not required, but the effects were attenuated by inhibition of cAMP-dependent protein kinase (PKA). PGE2 had no effect on the Ca2+ signals evoked by protease-activated receptors, heterologously expressed muscarinic M3 receptors, or by direct activation of inositol 1,4,5-trisphosphate (IP3) receptors by photolysis of caged IP3. The rate of Ca2+ removal from the cytosol was unaffected by PGE2, but PGE2 attenuated histamine-evoked IP3 accumulation. Substantial inhibition of AC had no effect on the concentration-dependent inhibition of Ca2+ signals by PGE2 or butaprost (to activate EP2 receptors selectively), but it modestly attenuated responses to EP4 receptors, activation of which generated less cAMP than EP2 receptors. We conclude that inhibition of histamine-evoked Ca2+ signals by PGE2 occurs through “hyperactive signaling junctions,” wherein cAMP is locally delivered to PKA at supersaturating concentrations to cause uncoupling of H1 receptors from phospholipase C. This sequence allows digital signaling from PGE2 receptors, through cAMP and PKA, to histamine-evoked Ca2+ signals. PMID:28877931

  15. Demethylation regulation of BDNF gene expression in dorsal root ganglion neurons is implicated in opioid-induced pain hypersensitivity in rats.

    PubMed

    Chao, Yu-Chieh; Xie, Fang; Li, Xueyang; Guo, Ruijuan; Yang, Ning; Zhang, Chen; Shi, Rong; Guan, Yun; Yue, Yun; Wang, Yun

    2016-07-01

    Repeated administration of morphine may result in opioid-induced hypersensitivity (OIH), which involves altered expression of numerous genes, including brain-derived neurotrophic factor (BDNF) in dorsal root ganglion (DRG) neurons. Yet, it remains unclear how BDNF expression is increased in DRG neurons after repeated morphine treatment. DNA methylation is an important mechanism of epigenetic control of gene expression. In the current study, we hypothesized that the demethylation regulation of certain BDNF gene promoters in DRG neurons may contribute to the development of OIH. Real-time RT-PCR was used to assess changes in the mRNA transcription levels of major BDNF exons including exon I, II, IV, VI, as well as total BDNF mRNA in DRGs from rats after repeated morphine administration. The levels of exon IV and total BDNF mRNA were significantly upregulated by repeated morphine administration, as compared to that in saline control group. Further, ELISA array and immunocytochemistry study revealed a robust upregulation of BDNF protein expression in DRG neurons after repeated morphine exposure. Correspondingly, the methylation levels of BDNF exon IV promoter showed a significant downregulation by morphine treatment. Importantly, intrathecal administration of a BDNF antibody, but not control IgG, significantly inhibited mechanical hypersensitivity that developed in rats after repeated morphine treatment. Conversely, intrathecal administration of an inhibitor of DNA methylation, 5-aza-2'-deoxycytidine (5-aza-dC) markedly upregulated the BDNF protein expression in DRG neurons and enhanced the mechanical allodynia after repeated morphine exposure. Together, our findings suggest that demethylation regulation of BDNF gene promoter may be implicated in the development of OIH through epigenetic control of BDNF expression in DRG neurons. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Scalp stratum corneum histamine levels: novel sampling method reveals association with itch resolution in dandruff/seborrhoeic dermatitis treatment.

    PubMed

    Kerr, Kathy; Schwartz, James R; Filloon, Thomas; Fieno, Angela; Wehmeyer, Ken; Szepietowski, Jacek C; Mills, Kevin J

    2011-06-01

    Dandruff and seborrhoeic dermatitis are accompanied by bothersome itch. We have established a novel non-invasive methodology to sample histamine levels in the stratum corneum in order to facilitate an understanding of pruritogenesis in this condition. Histamine levels were assessed in two groups of subjects with dandruff before and after 3 weeks of treatment with a commercial potentiated zinc pyrithione shampoo. A comparative population without dandruff was also studied. Itch self-perception was quantified on a visual analogue scale. The histamine level in subjects with dandruff was more than twice that in those who did not have dandruff. Under conditions known to resolve flaking symptoms, the shampoo led to a reduction in histamine in subjects with dandruff to a level that was statistically indistinguishable from those who did not have dandruff. This reduction in histamine was accompanied by a highly significant reduction in the perception of itch intensity. These findings suggest an association between the subjective perception of itch in the scalp and the level of histamine in the skin.

  17. The control effect of histamine on body temperature and respiratory function in IgE-dependent systemic anaphylaxis.

    PubMed

    Makabe-Kobayashi, Yoko; Hori, Yoshio; Adachi, Tetsuya; Ishigaki-Suzuki, Satsuki; Kikuchi, Yoshihiro; Kagaya, Yutaka; Shirato, Kunio; Nagy, András; Ujike, Azusa; Takai, Toshiyuki; Watanabe, Takehiko; Ohtsu, Hiroshi

    2002-08-01

    The systemic anaphylaxis reaction comprises various symptoms, including hypotension, changes in respiration pattern, and hypothermia. To elucidate the role of histamine in each of these symptoms, we induced the passive systemic anaphylaxis reaction in histidine decarboxylase gene knockout (HDC [-/-]) mice, which lack histamine. HDC(-/-) mice were generated by knocking out the HDC gene, which codes for the unique histamine-synthesizing enzyme. Twenty-four hours after the injection of IgE, HDC(+/+) and HDC(-/-) mice were injected with allergen and body temperature, blood pressure, and respiratory function were monitored in each mouse. Blood pressure dropped in both the HDC(-/-) mice and the HDC(+/+) mice. In contrast, respiratory frequency dropped and the expiratory respiration time was elongated only in the HDC(+/+) mice. Body temperature was decreased in the HDC(+/+) mice and was practically unchanged in the HDC(-/-) mice. Histamine receptor antagonists blocked the body temperature drop in the HDC(+/+) mice. Intravenous histamine induced similar patterns of body temperature decrease in the HDC(+/+) mice and the HDC(-/-) mice. Mast cell-deficient W/W (v) mice did not show the decrease in body temperature; this suggests that the histamine that contributed to the decrease in body temperature was derived from mast cells. According to the results of this investigation, in the passive systemic anaphylaxis reaction, respiratory frequency, expiratory time, and body temperature are shown to be controlled by the activity of histamine, but its contribution to blood pressure is negligible.

  18. Histamine H4 receptor in oral lichen planus.

    PubMed

    Salem, A; Al-Samadi, A; Stegajev, V; Stark, H; Häyrinen-Immonen, R; Ainola, M; Hietanen, J; Konttinen, Y T

    2015-04-01

    Oral lichen planus (OLP) is an autoimmune disease characterized by a band-like T-cell infiltrate below the apoptotic epithelial cells and degenerated basement membrane. We tested the hypothesis that the high-affinity histamine H4 receptors (H4 Rs) are downregulated in OLP by high histamine concentrations and proinflammatory T-cell cytokines. Immunohistochemistry and immunofluorescence staining, image analysis and quantitative real-time polymerase chain reaction of tissue samples and cytokine-stimulated cultured SCC-25 and primary human oral keratinocytes. H4 R immunoreactivity was weak in OLP and characterized by mast cell (MC) hyperplasia and degranulation. In contrast to controls, H4 R immunostaining and MC counts were negatively correlated in OLP (P = 0.003). H4 R agonist at nanomolar levels led to a rapid internalization of H4 Rs, whereas high histamine concentration and interferon-γ decreased HRH4 -gene transcripts. Healthy oral epithelial cells are equipped with H4 R, which displays a uniform staining pattern in a MC-independent fashion. In contrast, in OLP, increased numbers of activated MCs associate with increasing loss of epithelial H4 R. Cell culture experiments suggest a rapid H4 R stimulation-dependent receptor internalization and a slow cytokine-driven decrease in H4 R synthesis. H4 R may be involved in the maintenance of healthy oral mucosa. In OLP, this maintenance might be impaired by MC degranulation and inflammatory cytokines. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Structural basis of orientation sensitivity of cat retinal ganglion cells.

    PubMed

    Leventhal, A G; Schall, J D

    1983-11-10

    We investigated the structural basis of the physiological orientation sensitivity of retinal ganglion cells (Levick and Thibos, '82). The dendritic fields of 840 retinal ganglion cells labeled by injections of horseradish peroxidase into the dorsal lateral geniculate nucleus (LGNd) or optic tracts of normal cats. Siamese cats, and cat deprived of patterned visual experience from birth by monocular lid-suture (MD) were studied. Mathematical techniques designed to analyze direction were used to find the dendritic field orientation of each cell. Statistical techniques designed for angular data were used to determine the relationship between dendritic field orientation and angular position on the retina (polar angle). Our results indicate that 88% of retinal ganglion cells have oriented dendritic fields and that dendritic field orientation is related systematically to retinal position. In all regions of retina more that 0.5 mm from the area centralis the dendritic fields of retinal ganglion cells are oriented radially, i.e., like the spokes of a wheel having the area centralis at its hub. This relationship was present in all animals and cell types studied and was strongest for cells located close to the horizontal meridian (visual streak) of the retina. Retinal ganglion cells appear to be sensitive to stimulus orientation because they have oriented dendritic fields.

  20. Morphology of retinal ganglion cells in the ferret (Mustela putorius furo).

    PubMed

    Isayama, Tomoki; O'Brien, Brendan J; Ugalde, Irma; Muller, Jay F; Frenz, Aaron; Aurora, Vikas; Tsiaras, William; Berson, David M

    2009-12-01

    The ferret is the premiere mammalian model of retinal and visual system development, but the spectrum and properties of its retinal ganglion cells are less well understood than in another member of the Carnivora, the domestic cat. Here, we have extensively surveyed the dendritic architecture of ferret ganglion cells and report that the classification scheme previously developed for cat ganglion cells can be applied with few modifications to the ferret retina. We confirm the presence of alpha and beta cells in ferret retina, which are very similar to those in cat retina. Both cell types exhibited an increase in dendritic field size with distance from the area centralis (eccentricity) and with distance from the visual streak. Both alpha and beta cell populations existed as two subtypes whose dendrites stratified mainly in sublamina a or b of the inner plexiform layer. Six additional morphological types of ganglion cells were identified: four monostratified cell types (delta, epsilon, zeta, and eta) and two bistratified types (theta and iota). These types closely resembled their counterparts in the cat in terms of form, relative field size, and stratification. Our data indicate that, among carnivore species, the retinal ganglion cells resemble one another closely and that the ferret is a useful model for studies of the ontogenetic differentiation of ganglion cell types.

  1. Factors associated with negative histamine control for penicillin allergy skin testing in the inpatient setting.

    PubMed

    Geng, Bob; Thakor, Ami; Clayton, Elisabeth; Finkas, Lindsay; Riedl, Marc A

    2015-07-01

    Identification of factors adversely affecting the utility of allergy skin testing is important in optimizing patient care. Inpatient penicillin skin test data from 1997 through 2007 demonstrate that up to 20% of attempted penicillin skin tests are indeterminate owing to a negative histamine test response, despite exclusion of H1 antagonists. Critical illness, vasopressors, steroid use, and psychotropic medications have been postulated to influence outcomes, but large studies are lacking. To identify factors associated with a negative histamine test response for the inpatient setting. Fifty-two cases were identified with a negative histamine response after penicillin skin testing in the absence of antihistamine therapy for 72 hours before testing. One hundred twenty-five controls with a normal histamine response were randomly selected from same population. Independent variables assessed included stay in the intensive care unit (ICU), skin color, diabetes, age, use of vasopressors, H2 blocker, steroids, other immunosuppressive drugs, thyroid replacement, proton pump inhibitors, diuretics, 5 categories of psychotropic medications, and amiodarone. Mean age was 68 years for cases vs 60 years for controls (P = .002). Bivariate analysis showed ICU stay was more frequent in cases than in controls (73.1% vs 33.6%, P < .001). Regression analysis yielded odds ratios (ORs) of 8.18 (95% confidence interval 3.22-20.76) for ICU status, 3.76 (1.30-10.92) for systemic corticosteroids, and 4.90 (1.17-20.62) for H2 blockers as associated with lack of histamine response. For every additional year in age, there was increase in the OR of 1.04 (1.01-1.07). Regression analysis supports ICU stay during skin testing as associated with a high OR for a negative histamine response independent of age. Systemic corticosteroids, H2 blockers, and older age are associated with a significant OR for a negative histamine response. This is one of largest studies on factors associated with a negative

  2. Ganglion cyst of the temporomandibular joint.

    PubMed

    Heng-Kun, W; Yan-Ling, G; Wen-Feng, Z; Zhe, S; Ren-Xin, W; Xiao-Tao, Z

    2014-02-01

    Ganglion cyst of the temporomandibular joint is a rare disease, which may arise from myxoid degeneration of the collagenous tissue of the temporomandibular joint capsule, without epithelial or endothelial lining. We report a case of cystic lesion in a 40-year-old female patient. The patient had a left pre-auricular oval-shaped swelling without any articular symptoms. The pathological analysis after surgical removal allowed diagnosing the lesion as a ganglion cyst of the left temporomandibular joint. We made a literature review and noted that this condition was predominant in female patients. We recommend using MRI for diagnostic purposes and surgery as the best therapeutic alternative. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  3. Histamine development and bacterial diversity in microbially-challenged tonggol (Thunnus tonggol) under temperature abuse during canning manufacture.

    PubMed

    Hongpattarakere, Tipparat; Buntin, Nirunya; Nuylert, Aem

    2016-01-01

    Histamine formation and bacteriological changes caused by temperature abuse commonly occurring in the manufacturing process of standard canned tuna was assessed in microbiologically challenged tonggol (Thunnus tonggol). The in situ challenge was performed by water-soaking at 26-28 °C for 7 h to ensure the multiplication and active phase of fish microflora. Right after pre-cooking to back-bone temperature (BBT) of 50-52 °C, histamine dropped to 5.17 ± 2.71 ppm, and slowly reached 6.84 ± 1.69 ppm at 16 h abuse. On the contrary, histamine was reduced to 2.87 ± 1.23 ppm and eventually reached 5.01 ± 1.32 ppm at 24 h abuse in the pre-cooked fish previously frozen. The numbers of total aerobic bacteria, Enterobactericeae, psychrotroph, histamine forming bacteria (HFB) and diversity of fish microflora were revealed by cultural and nested PCR-Denaturing Gradient Gel Electrophoresis (PCR-DGGE) techniques. Interestingly, frozen storage effectively halted histamine formation in raw fish throughout 16 h abuse despite the presence of HFB. These included the prolific strains of Morganella morganii, Proteus penneri, Proteus mirabilin, Citrobacter spp. The nested PCR-DGGE profile confirmed the presence of M. morganii and Citrobacter spp. in raw fish. These prolific strains were hardly observed in the precooked fish previously frozen. Frozen storage did not only promote even histamine distribution throughout fish muscle but also enhanced histamine loss during thawing and pre-cooking. Therefore, pre-cooking and frozen storage were proven to be the effective combined hurdles not only to reduce but also prolong histamine formation of the challenged toggol throughout 24 h of temperature abuse during canning process.

  4. Neuronal histamine and the interplay of memory, reinforcement and emotions.

    PubMed

    Dere, E; Zlomuzica, A; De Souza Silva, M A; Ruocco, L A; Sadile, A G; Huston, J P

    2010-12-31

    The biogenic amine histamine is an important neurotransmitter-neuromodulator in the central nervous system that has been implicated in a variety of biological functions including thermo- and immunoregulation, food intake, seizures, arousal, anxiety, reward and memory. The review of the pertinent literature indicates that the majority of findings are compatible with the appraisal that the inhibition of histaminergic neurotransmission impairs learning and memory formation, decreases cortical activation and arousal, has a suppressive effect on behavioral measures of fear and anxiety, exponentiates the rewarding effects of drugs of abuse and intracranial brain stimulation. In contrast, the stimulation of histaminergic neurotransmission can ameliorate learning and memory impairments that are associated with various experimental deficit models and pathological conditions. Clinical investigations with patients suffering from neurodegenerative diseases such as Alzheimer's and Parkinson's disease demonstrate pathological alterations in the brain's histaminergic system, which, in some cases are correlated with the severity of cognitive deficits. The role of the brain's histamine system in episodic memory formation and the potential of histamine-related drugs to ameliorate cognitive deficits in early stages of neurodegenerative diseases are discussed. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Slit/Robo Signaling Mediates Spatial Positioning of Spiral Ganglion Neurons during Development of Cochlear Innervation

    PubMed Central

    Wang, Sheng-zhi; Ibrahim, Leena A.; Kim, Young J.; Gibson, Daniel A.; Leung, Haiwen C.; Yuan, Wei; Zhang, Ke K.; Tao, Huizhong W.

    2013-01-01

    During the development of periphery auditory circuits, spiral ganglion neurons (SGNs) extend their neurites to innervate cochlear hair cells (HCs) with their soma aggregated into a cluster spatially segregated from the cochlear sensory epithelium. The molecular mechanisms underlying this spatial patterning remain unclear. In this study, in situ hybridization in the mouse cochlea suggests that Slit2 and its receptor, Robo1/2, exhibit apparently complementary expression patterns in the spiral ganglion and its nearby region, the spiral limbus. In Slit2 and Robo1/2 mutants, the spatial restriction of SGNs was disrupted. Mispositioned SGNs were found to scatter in the space between the cochlear epithelium and the main body of spiral ganglion, and the neurites of mispositioned SGNs were misrouted and failed to innervate HCs. Furthermore, in Robo1/2 mutants, SGNs were displaced toward the cochlear epithelium as an entirety. Examination of different embryonic stages in the mutants revealed that the mispositioning of SGNs was due to a progressive displacement to ectopic locations after their initial normal settlement at an earlier stage. Our results suggest that Slit/Robo signaling imposes a restriction force on SGNs to ensure their precise positioning for correct SGN-HC innervations. PMID:23884932

  6. Degradation of histamine in the presence of ascorbic acid and Cu2+ ion; involvement of hydrogen peroxide.

    PubMed

    Yamamoto, I; Ohmori, H

    1981-01-01

    In the presence, but not in the absence of Cu2+, ascorbate decomposes histamine in citrate phosphate buffer (pH 6.5) at 37 degrees, but not at 0 degrees. The breakdown is completely inhibited by catalase, but only slightly by superoxide dismutase, and scavengers of OH. like benzoic acid, ethanol or potassium iodide. A1 O2 scavenger, alpha-tocopherol also did not show significant effects on the reaction. On the other hand, addition of H2O2 to the reaction mixture markedly enhances the rate of histamine breakdown induced by ascorbate or ascorbate-Cu2+ systems. However, H2O2 alone cannot breakdown histamine even in the presence of Cu2+. Histamine breakdown induced by ascorbate appears to be dependent upon the autooxidation of this vitamin. From these results and the findings reported by Chatterjee et al. that the products of its aerobic oxidation, dehydroascorbic acid and H2O2 were ineffective in reacting with histamine in the presence of Cu2+, it is concluded that the combination of H2O2 and the intermediate of ascorbate oxidation (monodehydroascorbic acid or other unstable species), both of which are produced during the autooxidation of ascorbate, plays a major role in the histamine transformation by ascorbate-Cu2+ system.

  7. Histamine release and fibrinogen adsorption mediate acute inflammatory responses to biomaterial implants in humans

    PubMed Central

    Zdolsek, Johann; Eaton, John W; Tang, Liping

    2007-01-01

    Background Medical implants often fail as a result of so-called foreign body reactions during which inflammatory cells are recruited to implant surfaces. Despite the clinical importance of this phenomenon, the mechanisms involved in these reactions to biomedical implants in humans are not well understood. The results from animal studies suggest that both fibrinogen adsorption to the implant surface and histamine release by local mast cells are involved in biomaterial-mediated acute inflammatory responses. The purpose of this study was to test this hypothesis in humans. Methods Thirteen male medical student volunteers (Caucasian, 21–30 years of age) were employed for this study. To assess the importance of fibrinogen adsorption, six volunteers were implanted with polyethylene teraphthalate disks pre-coated with their own (fibrinogen-containing) plasma or (fibrinogen-free) serum. To evaluate the importance of histamine, seven volunteers were implanted with uncoated disks with or without prior oral administration of histamine receptor antagonists. The acute inflammatory response was estimated 24 hours later by measuring the activities of implant-associated phagocyte-specific enzymes. Results Plasma coated implants accumulated significantly more phagocytes than did serum coated implants and the recruited cells were predominantly macrophage/monocytes. Administration of both H1 and H2 histamine receptor antagonists greatly reduced the recruitment of macrophages/monocytes and neutrophils on implant surfaces. Conclusion In humans – as in rodents – biomaterial-mediated inflammatory responses involve at least two crucial events: histamine-mediated phagocyte recruitment and phagocyte accumulation on implant surfaces engendered by spontaneously adsorbed host fibrinogen. Based on these results, we conclude that reducing fibrinogen:surface interactions should enhance biocompatibility and that administration of histamine receptor antagonists prior to, and shortly after

  8. Prevention of Excitotoxicity in Primary Retinal Ganglion Cells by (+)-Pentazocine, a Sigma Receptor-1-Specific Ligand

    PubMed Central

    Dun, Ying; Thangaraju, Muthusamy; Prasad, Puttur; Ganapathy, Vadivel; Smith, Sylvia B.

    2013-01-01

    Purpose σRs are non-opioid, non-phencyclidine binding sites with robust neuroprotective properties. Previously, we induced death in the RGC-5 cell line using very high concentrations (1 mM) of the excitatory amino acids glutamate (Glu) and homocysteine (Hcy) and demonstrated that the σR1 ligand (+)-pentazocine ((+)-PTZ) could protect against cell death. The purpose of the present study was to establish a physiologically relevant paradigm for testing the neuroprotective effect of (+)-PTZ in retinal ganglion cells. Methods Primary ganglion cells (1°GCs) were isolated by immunopanning from retinas of 1-day-old mice, maintained in culture for 3 days and then exposed to 10, 20, 25 or 50 µM Glu or 10, 25, 50 or 100 µM Hcy for 6 or 18 h in the presence or absence of (+)-PTZ (0.5, 1, 3 µM). Cell viability was measured using the Live/Dead and ApopTag Fluorescein In Situ Assays. Expression of σR1 was assessed by immunocytochemistry, RT-PCR and western blotting. Morphological appearance of live ganglion cells and their processes was examined over time (0, 3, 6, 18 h) by differential interference contrast (DIC) microscopy following exposure to excitotoxins in the presence or absence of (+)-PTZ. Results 1°GCs showed robust σR1 expression. The cells are exquisitely sensitive to Glu or Hcy toxicity (6 h treatment with 25 or 50 µM Glu or 50 or 100 µM Hcy induced marked cell death). 1°GCs pre-treated 1 h with (+)-PTZ followed by 18 h co-treatment with 25 µM Glu and (+)-PTZ showed a marked decrease in cell death: (25 µM Glu alone: 50%; 25 µM Glu/0.5 µM (+)-PTZ: 38%; 25 µM Glu/1 µM (+)-PTZ: 20%; 25 µM Glu/3 µM (+)-PTZ: 18%). Similar results were obtained with Hcy. σR1 mRNA and protein levels did not change in the presence of the excitotoxins. DIC examination of cells exposed to excitotoxins revealed substantial disruption of neuronal processes; co-treatment with (+)-PTZ revealed marked preservation of these processes. The stereoselective effect of (+)-PTZ for

  9. Insulin-like growth factor-1 prevents dorsal root ganglion neuronal tyrosine kinase receptor expression alterations induced by dideoxycytidine in vitro.

    PubMed

    Liu, Huaxiang; Lu, Jing; He, Yong; Yuan, Bin; Li, Yizhao; Li, Xingfu

    2014-03-01

    Dideoxycytidine (zalcitabine, ddC) produces neurotoxic effects. It is particularly important to understand the toxic effects of ddC on different subpopulations of dorsal root ganglion (DRG) neurons which express distinct tyrosine kinase receptor (Trk) and to find therapeutic factors for prevention and therapy for ddC-induced peripheral sensory neuropathy. Insulin-like growth factor-1 (IGF-1) has been shown to have neurotrophic effects on DRG sensory neurons. However, little is known about the effects of ddC on distinct Trk (TrkA, TrkB, and TrkC) expression in DRG neurons and the neuroprotective effects of IGF-1 on ddC-induced neurotoxicity. Here, we have tested the extent to which the expression of TrkA, TrkB, and TrkC receptors in primary cultured DRG neurons is affected by ddC in the presence or absence of IGF-1. In this experiment, we found that exposure of 5, 25, and 50 μmol/L ddC caused a dose-dependent decrease of the mRNA, protein, and the proportion of TrkA-, TrkB-, and TrkC-expressing neurons. IGF-1 (20 nmol/L) could partially reverse the decrease of TrkA and TrkB, but not TrkC, expression with ddC exposure. The phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 (10 μmol/L) blocked the effects of IGF-1. These results suggested that the subpopulations of DRG neurons which express distinct TrkA, TrkB, and TrkC receptors were affected by ddC exposure. IGF-1 might relieve the ddC-induced toxicity of TrkA- and TrkB-, but not TrkC-expressing DRG neurons. These data offer new clues for a better understanding of the association of ddC with distinct Trk receptor expression and provide new evidence of the potential therapeutic role of IGF-1 on ddC-induced neurotoxicity.

  10. An anatomic and morphometric study of C2 nerve root ganglion and its corresponding foramen.

    PubMed

    Bilge, Okan

    2004-03-01

    Exposing and measuring the dorsal root ganglion of the second cervical spinal nerve (C2 ganglion) and the second intervertebral space, which is present between posterior arch of atlas (APA) and lamina of axis (LA). This study aims to investigate the shape, size, and relation of the C2 ganglion with the adjacent structures that limits the corresponding intervertebral space and the alterations of relation between C2 ganglion and APA and between C2 ganglion and LA with the movements of the head bilaterally. In previous studies, the position and the heights of the C2 ganglion have been described. But the shape of the C2 ganglion and its relation to APA and LA by the movement of the head had not been considered previously. Upper cervical spines of 20 cadavers were dissected posteriorly. The muscles attaching to the atlas and axis were resected to ease the head movements. The heights of the C2 ganglion and space were measured in anatomic position and in hyperextension with opposite rotation position of the head. Originally in this study, plastic dough casts were used to obtain reliable outcomes. The shape of the ganglions was defined in three types: 70% were oval, 20% were spindle-like, and 10% were spherical. The height of the C2 ganglion was 4.97 +/- 0.92 mm on the right side and 4.6 +/- 0.84 mm on the left side. The height of the intervertebral space in anatomic position and in hyperextension with rotation to the opposite position of the head were, respectively, 9.74 +/- 1.77 mm and 7.48 +/- 1.44 mm on the right side and 9.64 +/- 1.47 mm and 7.12 +/- 0.96 mm on the left side. There was no bone contact or impact to the ganglion in each position of the head. The C2 ganglions are confident in their place between APA and LA. No bone contact to the C2 ganglion was detected in either normal limited or in forced head motions.

  11. Biogenic amine content, histamine-forming bacteria, and adulteration of pork in tuna sausage products.

    PubMed

    Kung, Hsien-Feng; Tsai, Yung-Hsiang; Chang, Shih-Chih; Hong, Tang-Yao

    2012-10-01

    Twenty-five tuna sausage products were purchased from retail markets in Taiwan. The rates of occurrence of biogenic amines, histamine-forming bacteria, and adulteration by pork and poultry were determined. The average content of various biogenic amines in all tested samples was less than 2.0 mg/100 g (<0.05 to 1.85 mg/100 g). Thirteen histamine-producing bacterial strains isolated from tested samples produced 12.1 to 1,261 ppm of histamine in Trypticase soy broth supplemented with 1.0% L-histidine. Among them, Raoultella ornithinolytica (one strain), Enterobacter aerogenes (one strain), and Staphylococcus pasteuri (two strains) were identified as prolific histamine formers. PCR assay revealed that the adulteration rates were 80% (20 of 25) and 4% (1 of 25) for pork and poultry, respectively, in tuna sausage. The fish species in the tuna sausage samples were identified as Thunnus albacares for 22 samples (88%), Thunnus alalunga for 1 sample (4%), and Thunnus thynnus for 1 sample (4%), whereas the remaining sample was identified as Makaira nigricans (blue marlin).

  12. C-terminal substance P fragments elicit histamine release from a murine mast cell line.

    PubMed

    Krumins, S A; Broomfield, C A

    1993-01-01

    Incubation of mouse mast cells with C-terminal substance P fragments in the micromolar range caused a release of histamine. Maximum release was observed with the tetrapeptide SP(8-11), followed by the tripeptide SP(9-11). SP(6-11) and SP(5-11) were nearly equipotent, while SP(4-11) caused only a slight histamine release. The substance P parent molecule and the N-terminal substance P fragments SP(1-4), SP(1-6) and SP(1-7) evoked no release of histamine. In confirmation of our previous findings, incubation with neurokinin A caused a release comparable to that of SP(8-11). Whereas neurokinin A-induced release was partially preventable by pretreating the cells with the NK2 receptor-selective antagonist cyclo(Gln-Trp-Phe-(R)Gly[ANC-2]Leu-Met), SP(8-11)-induced release was completely abolished by such treatment. The results provide the first evidence for the involvement of NK2 tachykinin receptors in the release of histamine by C-terminal substance P fragments.

  13. Diamine Oxidase from White Pea (Lathyrus sativus) Combined with Catalase Protects the Human Intestinal Caco-2 Cell Line from Histamine Damage.

    PubMed

    Jumarie, Catherine; Séïde, Marilyne; Marcocci, Lucia; Pietrangeli, Paola; Mateescu, Mircea Alexandru

    2017-07-01

    Diamine oxidase (DAO) administration has been proposed to treat certain gastrointestinal dysfunctions induced by histamine, an immunomodulator, signaling, and pro-inflammatory factor. However, H 2 O 2 resulting from the oxidative deamination of histamine by DAO may be toxic. The purpose of this study was to investigate to which extent DAO from white pea (Lathyrus sativus), alone or in combination with catalase, may modulate histamine toxicity in the human intestinal Caco-2 cell line. The results show that histamine at concentrations higher than 1 mM is toxic to the Caco-2 cells, independently of the cell differentiation status, with a LC 50 of ≅ 10 mM following a 24-h exposure. Depending on its concentration, DAO increased histamine toxicity to a greater extent in differentiated cells compared to undifferentiated cultures. In the presence of catalase, the DAO-induced increase in histamine toxicity was completely abolished in the undifferentiated cells and only partially decreased in differentiated cells, showing differences in the sensitivity of Caco-2 cells to the products resulting from histamine degradation by DAO (H 2 O 2 , NH 3 , or imidazole aldehyde). It appears that treatment of food histaminosis using a combination of vegetal DAO and catalase would protect against histamine toxicity and prevent H 2 O 2 -induced damage that may occur during histamine oxidative deamination.

  14. The expression of hyperpolarization-activated cyclic nucleotide-gated channel 1 (HCN1) and HCN2 in the rat trigeminal ganglion, sensory root, and dental pulp.

    PubMed

    Cho, Y S; Kim, Y S; Moozhayil, S J; Yang, E S; Bae, Y C

    2015-04-16

    Hyperpolarization-activated cyclic nucleotide-gated channel 1 (HCN1) and 2 (HCN2) are abundantly expressed in primary sensory neurons and contribute to neuronal excitability and pathological pain. We studied the expression of HCN1 and HCN2 in the rat trigeminal ganglion (TG) neurons and axons in the dental pulp, and the changes in their expression following inflammation, using light- and electron-microscopic immunocytochemistry and quantitative analysis. HCN1 and HCN2 were expressed predominantly in large-sized, neurofilament 200-immunopositive (+) or parvalbumin+ soma in the TG whereas they were expressed mostly in unmyelinated and small myelinated axons in the sensory root. The expression was particularly strong along the plasma membrane in the soma. In the dental pulp, majority of HCN1+ and HCN2+ axons coexpressed calcitonin gene-related peptide. They were expressed mainly in the peripheral pulp and pulp horn where the axons branch extensively in the dental pulp. The expression of HCN1 and HCN2 in TG neurons increased significantly in rats with experimentally induced inflammation of the dental pulp. Our findings support the notion that HCN1 and HCN2 are expressed mainly by both the soma of mechanosensitive neurons in the TG and peripheral axons of nociceptive neurons in the sensory root, and may play a role in the mechanisms of inflammatory pain from the dental pulp. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  15. Impact of fexofenadine, osthole and histamine on peripheral blood mononuclear cell proliferation and cytokine secretion.

    PubMed

    Karolina Kordulewska, Natalia; Kostyra, Elżbieta; Matysiewicz, Michał; Cieślińska, Anna; Jarmołowska, Beata

    2015-08-15

    This paper compares results of peripheral blood mononuclear cell (PBMC) incubation with fexofenadine (FXF) and osthole. FXF is a third-generation antihistamine drug and osthole is assumed a natural antihistamine alternative. To our best knowledge, this is the first comparative study on FXF, osthole and histamine cytokine secretion and cytotoxicity in PBMC in vitro cultures using cell proliferation ELISA BrdU. The cultures were treated 12, 42, 48 and 72h with FXF and osthole at 150, 300 and 450ng/ml concentrations and histamine at 50, 100 and 200ng/ml. Our study results confirm that FXF, osthole and histamine exert no cytotoxic effect on PBMCs and that IL-6, IL-10 and TNF-α cytokine secretion following osthole cell stimulation was similar to that by FXF stimulation.This confirms our hypothesis that osthole is a natural histamine antagonist, and can therefore be beneficially applied in antihistamine treatment. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. TRPA1, substance P, histamine and 5-hydroxytryptamine interact in an interdependent way to induce nociception.

    PubMed

    Fischer, Luana; Lavoranti, Maria Isabel; de Oliveira Borges, Mariana; Miksza, Alana Farias; Sardi, Natalia Fantin; Martynhak, Bruno Jacson; Tambeli, Claudia H; Parada, Carlos Amílcar

    2017-04-01

    Although TRPA1, SP, histamine and 5-hydroxytryptamine (5-HT) have recognized contribution to nociceptive mechanisms, little is known about how they interact with each other to mediate inflammatory pain in vivo. In this study we evaluated whether TRPA1, SP, histamine and 5-HT interact, in an interdependent way, to induce nociception in vivo. The subcutaneous injection of the TRPA1 agonist allyl isothiocyanate (AITC) into the rat's hind paw induced a dose-dependent and short lasting behavioral nociceptive response that was blocked by the co-administration of the TRPA1 antagonist, HC030031, or by the pretreatment with antisense ODN against TRPA1. AITC-induced nociception was significantly decreased by the co-administration of selective antagonists for the NK1 receptor for substance P, the H1 receptor for histamine and the 5-HT 1A or 3 receptors for 5-HT. Histamine- or 5-HT-induced nociception was decreased by the pretreatment with antisense ODN against TRPA1. These findings suggest that AITC-induced nociception depends on substance P, histamine and 5-HT, while histamine- or 5-HT-induced nociception depends on TRPA1. Most important, AITC interact in a synergistic way with histamine, 5-HT or substance P, since their combination at non-nociceptive doses induced a nociceptive response much higher than that expected by the sum of the effect of each one alone. This synergistic effect is dependent on the H1, 5-HT 1A or 3 receptors. Together, these findings suggest a self-sustainable cycle around TRPA1, no matter where the cycle is initiated each step is achieved and even subeffective activation of more than one step results in a synergistic activation of the overall cycle.

  17. [Outbreak due to butterfish consumption: keriorrhea and histamine poisoning].

    PubMed

    Fariñas Cabrero, Maria Azucena; Berbel Hernández, Clara; Allué Tango, Marta; Díez Hillera, Margarita; Herrero Marcos, Juan Antonio

    2015-01-01

    The consumption of butterfish is spreading in our country; if appropriate standards of conservation and preparation of this type of food are not met may cause poisoning. The objective is to describe an outbreak of histamine poisoning and double cerous esters after consumption butterfish. A descriptive study of the double intoxication at a banquet held in July 2013 in Valladolid. It was studied by filling a specific survey, by phone or by the medical centers who treated the guests. The database and subsequent descriptive statistical analyzes were performed with Microsoft Excel Professional Plus 2010 program. Of the 27 cases reported in 24 we obtained information on symptoms. The attack rate was 22.5 %, with a clinical picture in which predominant diarrhea (75%), headache (46%), abdominal pain (38%) and sweating (38%), highlighting its specificity itching/burning of mouth (29%). Four patients had orange and oily stools (keriorrhea). The average time from the start of dinner to onset of symptoms was 119 minutes. The mean duration of symptoms was 14 hours. Analytical served fish showed histamine levels above 2,000 mg / kg. A double poisoning (histamine and cerous esters) was produced by consumption of butterfish. The picture was mild and self-limiting. You need to know this type of poison to properly handle avoiding unnecessary tests, and to notify the health authority for investigation and subsequent adoption of appropriate measures.

  18. Skin reactions to histamine of healthy subjects after hypnotically induced emotions of sadness, anger, and happiness.

    PubMed

    Zachariae, R; Jørgensen, M M; Egekvist, H; Bjerring, P

    2001-08-01

    The severity of symptoms in asthma and other hypersensitivity-related disorders has been associated with changes in mood but little is known about the mechanisms possibly mediating such a relationship. The purpose of this study was to examine the influence of mood on skin reactivity to histamine by comparing the effects of hypnotically induced emotions on flare and wheal reactions to cutaneous histamine prick tests. Fifteen highly hypnotically susceptible volunteers had their cutaneous reactivity to histamine measured before hypnosis at 1, 2, 3, 4, 5, 10, and 15 min after the histamine prick. These measurements were repeated under three hypnotically induced emotions of sadness, anger, and happiness presented in a counterbalanced order. Skin reactions were measured as change in histamine flare and wheal area in mm2 per minute. The increase in flare reaction in the time interval from 1 to 3 min during happiness and anger was significantly smaller than flare reactions during sadness (P<0.05). No effect of emotion was found for wheal reactions. Hypnotic susceptibility scores were associated with increased flare reactions at baseline (r=0.56; P<0.05) and during the condition of happiness (r=0.56; P<0.05). Our results agree with previous studies showing mood to be a predictor of cutaneous immediate-type hypersensitivity and histamine skin reactions. The results are also in concordance with earlier findings of an association between hypnotic susceptibility and increased reactivity to an allergen.

  19. Changes in morphology of retinal ganglion cells with eccentricity in retinal degeneration.

    PubMed

    Anderson, E E; Greferath, U; Fletcher, E L

    2016-05-01

    Ganglion cells are the output neurons of the retina and are known to remodel during the subtle plasticity changes that occur following the death of photoreceptors in inherited retinal degeneration. We examine the influence of retinal eccentricity on anatomical remodelling and ganglion cell morphology well after photoreceptor loss. Rd1 mice that have a mutation in the β subunit of phosphodiesterase 6 were used as a model of retinal degeneration and gross remodelling events were examined by processing serial sections for immunocytochemistry. Retinal wholemounts from rd1-Thy1 and control Thy1 mice that contained a fluorescent protein labelling a subset of ganglion cells were processed for immunohistochemistry at 11 months of age. Ganglion cells were classified based on their soma size, dendritic field size and dendritic branching pattern and their dendritic fields were analysed for their length, area and quantity of branching points. Overall, more remodelling was found in the central compared with the peripheral retina. In addition, the size and complexity of A2, B1, C1 and D type ganglion cells located in the central region of the retina decreased. We propose that the changes in ganglion cell morphology are correlated with remodelling events in these regions and impact the function of retinal circuitry in the degenerated retina.

  20. A Case Report of an Acromioclavicular Joint Ganglion Associated with a Rotator Cuff Tear.

    PubMed

    Tanaka, Suguru; Gotoh, Masafumi; Mitsui, Yasuhiro; Shirachi, Isao; Okawa, Takahiro; Higuchi, Fujio; Shiba, Naoto

    2017-04-13

    We report a case of subcutaneous ganglion adjacent to the acromioclavicular joint with massive rotator cuff tear [1-7]. An 81-year-old woman presented with a ganglion adjacent to the acromioclavicular joint that had first been identified 9 months earlier. The ganglion had recurred after having been aspirated by her local physician, so she was referred to our hospital. The puncture fluid was yellowish, clear and viscous. Magnetic resonance imaging identified a massive rotator cuff tear with multi- lobular cystic lesions continuous to the acromioclavicular joint, presenting the "geyser sign". During arthroscopy, distal clavicular resection and excision of the ganglion were performed together with joint debridement. At present, the ganglion has not recurred and the patient has returned to normal daily activity. In this case, the ganglion may have developed subsequent to the concomitant massive cuff tear, due to subcutaneous fluid flow through the damaged acromioclavicular joint.

  1. Synaptic potentials recorded by the sucrosegap method from the rabbit superior cervical ganglion

    PubMed Central

    Kosterlitz, H. W.; Lees, G. M.; Wallis, D. I.

    1970-01-01

    1. Compound ganglionic potentials evoked by stimulation of the preganglionic nerves to the superior cervical ganglion of the rabbit were recorded by the sucrose-gap method. 2. When the distal part of the ganglion was bathed in flowing isotonic sucrose solution or sodium-deficient solutions, ganglionic action potentials were no longer evoked, only large synaptic potentials. 3. The compound synaptic potential, which remained unaltered for more than 1 h, originated in a population of cells at the interface between the Krebs and sucrose solutions. Hexamethonium reduced the size but did not alter the time course of the synaptic potential. 4. It is suggested that a higher concentration of sodium ions is required for the generation of ganglionic action potentials than for either conduction in the postganglionic axons or production of synaptic potentials. 5. When lithium replaced sodium in the solution bathing the distal part of the ganglion, the synaptic potential was greatly reduced in amplitude. Impulse propagation in the postganglionic axons was only slightly impaired when lithium replaced sodium in the solution bathing the axons. 6. A quantitative assessment of the potency of the ganglion-blocking drugs nicotine, pentolinium, hexamethonium and pempidine was made by measuring the depression of the synaptic potentials produced by bathing the distal part of the ganglion in flowing isotonic sucrose solution. The concentrations which produced a 50% depression were 8·1 μM nicotine, 26·5 μM pentolinium, 111 μM hexamethonium and 22·2 μM pempidine. PMID:5492898

  2. Enkephalins in the inferior mesenteric ganglion of the cat and in the area of the lower digestive tract innervated by this ganglion: quantification by radio-immunoassay and characterization by high pressure liquid chromatography.

    PubMed

    Cupo, A; Niel, J P; Miolan, J P; Jule, Y; Jarry, T

    1988-01-01

    Met-enkephalin, Leu-enkephalin and Met-enkephalin-Arg-Gly-Leu were quantified and characterized in the cat inferior mesenteric ganglion and in the area of the lower digestive tract innervated by this ganglion, including the proximal colon, distal colon and internal anal sphincter. In the structures studied, the concentrations of enkephalins expressed as femtomole/mg of wet tissue ranged from 66 to 160 with Met-enkephalin, from 15 to 45 with Leu-enkephalin and from 2 to 12 for Met-enkephalin-arg-gly-leu. In the lower digestive tract, the Met- and Leu-enkephalin content decreased from the proximal colon to the internal anal sphincter. The Met-enkephalin versus Leu-enkephalin ratio of the structures investigated were as follows: inferior mesenteric ganglion 3.2, proximal colon 4.4, distal colon 5, internal and sphincter 4.5. In individual samples of all the structures assayed the results of high pressure liquid chromatography (HPLC) analysis pointed to the presence of authentic Met- and Leu-enkephalin. HPLC analysis could not be carried out on Met-enkephalin-Arg-Gly-Leu due to the very low concentrations of this peptide in all the structures assayed. Our results, combined with those of previous immunohistochemical and physiological studies, support the idea that enkephalins are involved in the nervous control of the motility of the lower digestive tract.

  3. Sonic Hedgehog Has a Dual Effect on the Growth of Retinal Ganglion Axons Depending on Its Concentration

    PubMed Central

    Kolpak, Adrianne; Zhang, Jinhua; Bao, Zheng-Zheng

    2006-01-01

    The stereotypical projection of retinal ganglion cell (RGC) axons to the optic disc has served as a good model system for studying axon guidance. By both in vitro and in vivo experiments, we show that a secreted molecule, Sonic hedgehog (Shh), may play a critical role in the process. It is expressed in a dynamic pattern in the ganglion cell layer with a relatively higher expression in the center of the retina. Through gel culture and stripe assays, we show that Shh has a dual effect on RGC axonal growth, acting as a positive factor at low concentrations and a negative factor at high concentrations. Results from time-lapse video microscopic and stripe assay experiments further suggest that the effects of Shh on axons are not likely attributable to indirect transcriptional regulation by Shh. Overexpression of Shh protein or inhibition of Shh function inside the retina resulted in a complete loss of centrally directed projection of RGC axons, suggesting that precise regulation of Shh level inside the retina is critical for the projection of RGC axons to the optic disc. PMID:15800198

  4. Regenerating reptile retinas: a comparative approach to restoring retinal ganglion cell function.

    PubMed

    Williams, D L

    2017-02-01

    Transection or damage to the mammalian optic nerve generally results in loss of retinal ganglion cells by apoptosis. This cell death is seen less in fish or amphibians where retinal ganglion cell survival and axon regeneration leads to recovery of sight. Reptiles lie somewhere in the middle of this spectrum of nerve regeneration, and different species have been reported to have a significant variation in their retinal ganglion cell regenerative capacity. The ornate dragon lizard Ctenophoris ornatus exhibits a profound capacity for regeneration, whereas the Tenerife wall lizard Gallotia galloti has a more variable response to optic nerve damage. Some individuals regain visual activity such as the pupillomotor responses, whereas in others axons fail to regenerate sufficiently. Even in Ctenophoris, although the retinal ganglion cell axons regenerate adequately enough to synapse in the tectum, they do not make long-term topographic connections allowing recovery of complex visually motivated behaviour. The question then centres on where these intraspecies differences originate. Is it variation in the innate ability of retinal ganglion cells from different species to regenerate with functional validity? Or is it variances between different species in the substrate within which the nerves regenerate, the extracellular environment of the damaged nerve or the supporting cells surrounding the regenerating axons? Investigations of retinal ganglion cell regeneration between different species of lower vertebrates in vivo may shed light on these questions. Or perhaps more interesting are in vitro studies comparing axon regeneration of retinal ganglion cells from various species placed on differing substrates.

  5. Expression of vesicular glutamate transporters in transient receptor potential ankyrin 1 (TRPA1)-positive neurons in the rat trigeminal ganglion.

    PubMed

    Kim, Yun Sook; Kim, Sung Kuk; Lee, Jae Sik; Ko, Sang Jin; Bae, Yong Chul

    2018-07-01

    Transient receptor potential ankyrin 1 (TRPA1), a cold receptor in sensory neurons activated by a variety of stimuli, is implicated in nociception and mechanotransduction. To help understand the vesicular glutamate transporter (VGLUT)-mediated glutamate signaling in TRPA1-immunopositive (+) neurons, we examined the expression of VGLUT1 and VGLUT2 in the TRPA1+ neurons in the male rat trigeminal ganglion (n = 19) under normal conditions and following experimental inflammation in the vibrissal pad by light microscopic immunohistochemistry (n = 11), western blot (n = 8), and quantitative analysis. One half (50.8%, 250/492) of the TRPA1+ neurons expressed VGLUT2, and a small fraction (8.3%, 57/683) also expressed VGLUT1. The majority of the VGLUT2-expressing TRPA1+ (VGLUT2+/TRPA1+) neurons coexpressed the markers of peptidergic and non-peptidergic neurons, CGRP, IB4, and TRPV1 but not the markers of neurons with myelinated fibers, NF200 and parvalbumin. In contrast, most VGLUT1+/TRPA1+ neurons coexpressed NF200 and parvalbumin but rarely expressed CGRP, IB4, or TRPV1. Following experimental inflammation, the fraction of VGLUT2+ (experimental vs. control: 34.7% vs. 22.3%), TRPA1+ (39.3% vs. 25.3%), and VGLUT2+/TRPA1+ (60.7% vs. 49.7%) neurons and the protein levels for TRPA1 and VGLUT2 increased significantly, compared to control, whereas the fraction of VGLUT1+ and VGLUT1+/TRPA1+ neurons and the protein level for VGLUT1 remained unchanged. These findings suggest that both VGLUT1 and VGLUT2 are involved in the glutamate signaling in TRPA1+ neurons under normal conditions in the male rats, and raise a possibility that VGLUT2 may play a role in the TRPA1-induced hypersensitivity following inflammation. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Localization of laminin B1 mRNA in retinal ganglion cells by in situ hybridization

    PubMed Central

    1990-01-01

    In the nervous system, neuronal migration and axonal growth are dependent on specific interactions with extracellular matrix proteins. During development of the vertebrate retina, ganglion cell axons extend along the internal limiting (basement) membrane and form the optic nerve. Laminin, a major component of basement membranes, is known to be present in the internal limiting membrane, and might be involved in the growth of ganglion cell axons. The identity of the cells that produce retinal laminin, however, has not been established. In the present study, we have used in situ hybridization to localize the sites of laminin B1 mRNA synthesis in the developing mouse retina. Our results show that there are at least two principal sites of laminin B1 mRNA synthesis: (a) the hyaloid vessels and the lens during the period of major axonal outgrowth, and (b) the retinal ganglion cells at later development stages. Muller (glial) cells, the major class of nonneuronal cells in the retina, do not appear to express laminin B1 mRNA either during development or in the adult retina. In Northern blots, we found a single transcript of approximately 6-kb size that encodes the laminin B1 chain in the retina. Moreover, laminin B1 mRNA level was four- to fivefold higher in the postnatal retina compared to that in the adult. Our results show that in addition to nonneuronal cells, retinal ganglion cells also synthesize laminin. The function of laminin in postnatal retinas, however, remains to be elucidated. Nevertheless, our findings raise the possibility that neurons in other parts of the nervous system might also synthesize extracellular matrix proteins. PMID:2351694

  7. Growth and histamine formation of Morganella morganii in determining the safety and quality of inoculated and uninoculated bluefish (Pomatomus saltatrix).

    PubMed

    Lorca, T A; Gingerich, T M; Pierson, M D; Flick, G J; Hackney, C R; Sumner, S S

    2001-12-01

    The objective of this study was to determine the effect of normal microflora and Morganella morganii on histamine formation and olfactory acceptability in raw bluefish under controlled storage conditions. Fillets inoculated with and without M. morganii were stored at 5, 10, and 15 degrees C for 7 days. Microbial isolates from surface swabs were identified and screened for histidine decarboxylase activity. Olfactory acceptance was performed by an informal sensory panel. Histamine levels were quantified using high-performance liquid chromatography and fluorescence detection. While olfactory acceptance decreased, histamine concentration and bacterial counts increased. Storage temperature had a significant effect on histamine levels, bacterial counts, and olfactory acceptance of the bluefish. Inoculation with M. morganii had a positive significant effect on histamine formation for bluefish held at 10 and 15 degrees C (P < 0.0001). The results of the study will serve in supporting U.S. Food and Drug Administration (FDA) regulations regarding guidance and hazard levels of histamine in fresh bluefish.

  8. Topographic specializations of catecholaminergic cells and ganglion cells and distribution of calcium binding proteins in the crepuscular rock cavy (Kerodon rupestris) retina.

    PubMed

    Oliveira, Francisco Gilberto; Nascimento-Júnior, Expedito Silva do; Cavalcante, Judney Cley; Guzen, Fausto Pierdoná; Cavalcante, Jeferson de Souza; Soares, Joacil Germano; Cavalcanti, José Rodolfo Lopes de Paiva; Freitas, Leandro Moura de; Costa, Miriam Stela Maris de Oliveira; Andrade-da-Costa, Belmira Lara da Silveira

    2018-07-01

    The rock cavy (Kerodon rupestris) is a crepuscular Hystricomorpha rodent that has been used in comparative analysis of retinal targets, but its retinal organization remains to be investigated. In order to better characterize its visual system, the present study analyzed neurochemical features related to the topographic organization of catecholaminergic cells and ganglion cells, as well the distribution of calcium-binding proteins in the outer and inner retina. Retinal sections and/or wholemounts were processed using tyrosine hydroxylase (TH), GABA, calbindin, parvalbumin and calretinin immunohistochemistry or Nissl staining. Two types of TH-immunoreactive (TH-IR) cells were found which differ in soma size, dendritic arborization, intensity of TH immunoreactivity and stratification pattern in the inner plexiform layer. The topographic distribution of all TH-IR cells defines a visual streak along the horizontal meridian in the superior retina. The ganglion cells are also distributed in a visual streak and the visual acuity estimated considering their peak density is 4.13 cycles/degree. A subset of TH-IR cells express GABA or calbindin. Calretinin is abundant in most of retinal layers and coexists with calbindin in horizontal cells. Parvalbumin is less abundant and expressed by presumed amacrine cells in the INL and some ganglion cells in the GCL. The topographic distribution of TH-IR cells and ganglion cells in the rock cavy retina indicate a suitable adaptation for using a broad extension of its inferior visual field in aspects that involve resolution, adjustment to ambient light intensity and movement detection without specialized eye movements. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Histamine response and local cooling in the human skin: involvement of H1- and H2-receptors.

    PubMed

    Grossmann, M; Jamieson, M J; Kirch, W

    1999-08-01

    Histamine may contribute locally to cutaneous blood flow control under normal and pathologic conditions. The objective of this study was to observe the influence of skin temperature on histamine vasodilation, and the roles of H1-and H2-receptors using novel noninvasive methods. Eleven healthy subjects received, double-blind, single doses of the H1-receptor antagonist cetirizine (10 mg), cetirizine (10 mg) plus the H2-receptor antagonist cimetidine (400 mg), or placebo on separate occasions. Histamine was dosed cumulatively by iontophoresis to the forearm skin at 34 degrees C and 14 degrees C. Laser-Doppler flux (LDF) was measured at the same sites using customised probeholder/iontophoretic chambers with Peltier cooling elements. Finger mean arterial pressure (MAP) was measured and cutaneous vascular conductance calculated as LDF/MAP. Histamine vasodilation was reduced in cold skin. Cetirizine shifted the histamine dose-response at both temperatures: statistically significantly at 14 degrees C only. Combined H1- and H2-receptor antagonism shifted the response significantly at both temperatures. H1- and H2-receptors mediate histamine-induced skin vasodilation. The sensitivity of these receptors, particularly the H1- receptor, is attenuated at low skin temperature. Whether the reduced effect in cold skin represents specific receptor or postreceptor desensitization, or nonspecific attenuation of cutaneous vasodilation remains to be elucidated.

  10. Dorsal raphe nucleus projecting retinal ganglion cells: Why Y cells?

    PubMed Central

    Pickard, Gary E.; So, Kwok-Fai; Pu, Mingliang

    2015-01-01

    Retinal ganglion Y (alpha) cells are found in retinas ranging from frogs to mice to primates. The highly conserved nature of the large, fast conducting retinal Y cell is a testament to its fundamental task, although precisely what this task is remained ill-defined. The recent discovery that Y-alpha retinal ganglion cells send axon collaterals to the serotonergic dorsal raphe nucleus (DRN) in addition to the lateral geniculate nucleus (LGN), medial interlaminar nucleus (MIN), pretectum and the superior colliculus (SC) has offered new insights into the important survival tasks performed by these cells with highly branched axons. We propose that in addition to its role in visual perception, the Y-alpha retinal ganglion cell provides concurrent signals via axon collaterals to the DRN, the major source of serotonergic afferents to the forebrain, to dramatically inhibit 5-HT activity during orientation or alerting/escape responses, which dis-facilitates ongoing tonic motor activity while dis-inhibiting sensory information processing throughout the visual system. The new data provide a fresh view of these evolutionarily old retinal ganglion cells. PMID:26363667

  11. Enhanced Indirect Photochemical Transformation of Histidine and Histamine through Association with Chromophoric Dissolved Organic Matter.

    PubMed

    Chu, Chiheng; Lundeen, Rachel A; Remucal, Christina K; Sander, Michael; McNeill, Kristopher

    2015-05-05

    Photochemical transformations greatly affect the stability and fate of amino acids (AAs) in sunlit aquatic ecosystems. Whereas the direct phototransformation of dissolved AAs is well investigated, their indirect photolysis in the presence of chromophoric dissolved organic matter (CDOM) is poorly understood. In aquatic systems, CDOM may act both as sorbent for AAs and as photosensitizer, creating microenvironments with high concentrations of photochemically produced reactive intermediates, such as singlet oxygen (1O2). This study provides a systematic investigation of the indirect photochemical transformation of histidine (His) and histamine by 1O2 in solutions containing CDOM as a function of solution pH. Both His and histamine showed pH-dependent enhanced phototransformation in the CDOM systems as compared to systems in which model, low-molecular-weight 1O2 sensitizers were used. Enhanced reactivity resulted from sorption of His and histamine to CDOM and thus exposure to elevated 1O2 concentrations in the CDOM microenvironment. The extent of reactivity enhancement depended on solution pH via its effects on the protonation state of His, histamine, and CDOM. Sorption-enhanced reactivity was independently supported by depressed rate enhancements in the presence of a cosorbate that competitively displaced His and histamine from CDOM. Incorporating sorption and photochemical transformation processes into a reaction rate prediction model improved the description of the abiotic photochemical transformation rates of His in the presence of CDOM.

  12. Soluble Adenylyl Cyclase Is Required for Retinal Ganglion Cell and Photoreceptor Differentiation

    PubMed Central

    Shaw, Peter X.; Fang, Jiahua; Sang, Alan; Wang, Yan; Kapiloff, Michael S.; Goldberg, Jeffrey L.

    2016-01-01

    Purpose We have previously demonstrated that soluble adenylyl cyclase (sAC) is necessary for retinal ganglion cell (RGC) survival and axon growth. Here, we further investigate the role of sAC in neuronal differentiation during retinal development. Methods Chx10 or Math5 promoter-driven Cre-Lox recombination were used to conditionally delete sAC from early and intermediate retinal progenitor cells during retinal development. We examined cell type–specific markers expressed by retinal cells to estimate their relative numbers and characterize retinal laminar morphology by immunofluorescence in adult and newborn mice. Results Retinal ganglion cell and amacrine cell markers were significantly lower in the retinas of adult Math5cre/sACfl/fl and Chx10cre/sACfl/fl mice than in those of wild-type controls. The effect on RGC development was detectable as early as postnatal day 1 and deleting sAC in either Math5- or Chx10-expressing retinal progenitor cells also reduced nerve fiber layer thickness into adulthood. The thickness of the photoreceptor layer was slightly but statistically significantly decreased in both the newborn Chx10cre/sACfl/fl and Math5cre/sACfl/fl mice, but this reduction and abnormal morphology persisted in the adults in only the Chx10cre/sACfl/fl mice. Conclusions sAC plays an important role in the early retinal development of RGCs as well as in the development of amacrine cells and to a lesser degree photoreceptors. PMID:27679853

  13. Paracetamol (acetaminophen) attenuates in vitro mast cell and peripheral blood mononucleocyte cell histamine release induced by N-acetylcysteine.

    PubMed

    Coulson, James; Thompson, John Paul

    2010-02-01

    The treatment of acute paracetamol (acetaminophen) poisoning with N-acetylcysteine (NAC) is frequently complicated by an anaphylactoid reaction to the antidote. The mechanism that underlies this reaction is unclear. We used the human mast cell line 1 (HMC-1) and human peripheral blood mononucleocytes (PBMCs) to investigate the effects of NAC and paracetamol on histamine secretion in vitro. HMC-1 and human PBMCs were incubated in the presence of increasing concentrations of NAC +/- paracetamol. Cell viability was determined by the Trypan Blue Assay, and histamine secretion was measured by ELISA. NAC was toxic to HMC-1 cells at 100 mg/mL and to PBMCs at 67 mg/mL. NAC increased HMC-1 and PBMC histamine secretion at concentrations of NAC from 20 to 50 mg/mL and 2.5 to 100 mg/mL, respectively. NAC-induced histamine secretion by both cell types was reduced by co-incubation with 2.5 mg/mL of paracetamol. Paracetamol (acetaminophen) is capable of modifying histamine secretion in vitro. This may explain the clinical observation of a lower incidence of adverse reactions to NAC in vivo when higher concentrations of paracetamol are present than when paracetamol concentrations are low. Paracetamol (acetaminophen) attenuates in vitro mast cell and PBMC cell histamine release induced by NAC.

  14. Comparison of intradermal and percutaneous testing to histamine, saline and nine allergens in healthy adult cats.

    PubMed

    Gentry, Christina M; Messinger, Linda

    2016-10-01

    Intradermal testing (IDT) in cats has potential limitations; this has led to an interest in novel testing methods. A pilot study demonstrated that healthy cats produced reliable percutaneous glycerinated (PG) histamine wheals, whereas percutaneously applied glycerosaline did not lead to wheal formation. The purpose of this study was to determine if percutaneously applied aqueous and glycerinated allergens would lead to irritant reactions in healthy cats. Percutaneous testing (PCT) with both glycerinated and aqueous allergens and IDT were compared in twelve healthy cats. The lateral thorax was clipped and histamine, saline and nine allergens were tested in rows. Objective and subjective evaluations were performed at 15, 20 and 25 min, and 4 h. Results were evaluated as positive or negative at 15, 20, 25 min and 4 h. Skin test reactions for intradermal (ID) histamine wheals were larger when compared to PG and percutaneous aqueous (PA) at the immediate reading points (P < 0.05) subjectively and objectively; however, PG was not significantly different from ID when compared as either positive (2-4) or negative (0-1). PG histamine and allergen reactions, when present, were larger than equivalent PA reactions. PG and PA allergens did not cause irritant reactions at tested concentrations. Bassia scoparia (kochia), when tested at 1000 PNU/mL with IDT, was suspected to be an irritant. Percutaneously (PCT) applied allergens did not cause irritant reactions in healthy cats. PG histamine wheals, although smaller than ID histamine wheals, were easily recognizable and PCT was simple to perform. © 2016 ESVD and ACVD.

  15. Impaired locomotor activity and exploratory behavior in mice lacking histamine H1 receptors

    PubMed Central

    Inoue, Isao; Yanai, Kazuhiko; Kitamura, Daisuke; Taniuchi, Ichiro; Kobayashi, Takashi; Niimura, Kaku; Watanabe, Takehiko; Watanabe, Takeshi

    1996-01-01

    From pharmacological studies using histamine antagonists and agonists, it has been demonstrated that histamine modulates many physiological functions of the hypothalamus, such as arousal state, locomotor activity, feeding, and drinking. Three kinds of receptors (H1, H2, and H3) mediate these actions. To define the contribution of the histamine H1 receptors (H1R) to behavior, mutant mice lacking the H1R were generated by homologous recombination. In brains of homozygous mutant mice, no specific binding of [3H]pyrilamine was seen. [3H]Doxepin has two saturable binding sites with higher and lower affinities in brains of wild-type mice, but H1R-deficient mice showed only the weak labeling of [3H]doxepin that corresponds to lower-affinity binding sites. Mutant mice develop normally, but absence of H1R significantly increased the ratio of ambulation during the light period to the total ambulation for 24 hr in an accustomed environment. In addition, mutant mice significantly reduced exploratory behavior of ambulation and rearings in a new environment. These results indicate that through H1R, histamine is involved in circadian rhythm of locomotor activity and exploratory behavior as a neurotransmitter. PMID:8917588

  16. Histamine release inhibitory activity of Piper nigrum leaf.

    PubMed

    Hirata, Noriko; Naruto, Shunsuke; Inaba, Kazunori; Itoh, Kimihisa; Tokunaga, Masashi; Iinuma, Munekazu; Matsuda, Hideaki

    2008-10-01

    Oral administration of a methanolic extract of Piper nigrum leaf (PN-ext, 50, 200 and 500 mg/kg) showed a potent dose-dependent inhibition of dinitrofluorobenzene (DNFB)-induced cutaneous reaction at 1 h [immediate phase response (IPR)] after and 24 h [late phase response (LPR)] after DNFB challenge in mice which were passively sensitized with anti-dinitrophenyl (DNP) IgE antibody. Ear swelling inhibitory effect of PN-ext (50, 200 and 500 mg/kg, per os (p.o.)) on very late phase response (vLPR) in the model mice was significant but weaker than that on IPR. Oral administration of PN-ext (50, 200 and 500 mg/kg for 7 d) inhibited picryl chloride (PC)-induced ear swelling in PC sensitized mice. PN-ext exhibited in vitro inhibitory effect on compound 48/80-induced histamine release from rat peritoneal mast cells. Two lignans of PN-ext, (-)-cubebin (1) and (-)-3,4-dimethoxy-3,4-desmethylenedioxycubebin (2), were identified as major active principles having histamine release inhibitory activity.

  17. [Ganglions of the wrist: proposals for topographical systematization and natural history].

    PubMed

    Kuhlmann, J-N; Luboinski, J; Baux, S; Mimoun, M

    2003-06-01

    We looked for the anatomic origin and mechanism of constitution of the so-called "ganglions" of the wrist. Fifty-nine formations considered to be synovial ganglions were dissected and removed according to the same protocol by the same surgeon. Eleven were re-examined by a pathologist. All ganglions were extra-articular but had intra- and extra-capsular components. The extra-capsular part was the clinically palpable main cyst. The intra-capsular part was composed of the cystic stalk and its base of implantation. An intra-capsular stalk was present in 58 cases. The stalk was situated between the joint synovium and the capsula which it perforated at a weak point between two ligaments, forming a collar before expanding outwardly. Based on our findings, we propose a topographical systematization and natural history of ganglions of the wrist. The stalk's implantation base was always located on bone and found in the intermediate area of Colomniati and Soubbotine, which lies outside the articular cartilage between the synovium and the ligamentous capsula. This area is exposed to mechanical stress initiating histological degenerative lesions, particularly mucoid degeneration. At the radiocarpal joint, the stalk's base of implantation was located at the distal end of the lateral dorsal or volar edge of the lunate bone or at the corresponding part of the scaphoid. The collar of the proximal ganglions was situated between the dorsal radiocarpal and transverse scaphotriquetral ligament. The collar of distal dorsal ganglions was situated between the transverse scaphotriquetral and the trapezotriquetral ligament. The collar of the lateral ganglions was situated between the lateral collateral and the transverse ligament. The collar of the volar ganglions was situated between the stylocarpal ligament and the radiolunotriquetral ligament, or between the different stylocarpal ligaments. At the level of the scaphotrapezal joint, the stalk's base of implantation was located near the

  18. Integrative genomic analyses of the histamine H1 receptor and its role in cancer prediction.

    PubMed

    Wang, Minghai; Wei, Xiaolong; Shi, Lianghui; Chen, Bin; Zhao, Guohai; Yang, Haiwei

    2014-04-01

    The human histamine receptor H1 (HRH1) gene is located on chromosome 3p25 and encodes for a 487 amino acid G protein-coupled receptor (GPCR) with a long third intracellular loop (IL3). The HRH1 predominantly couples to Gαq/11 proteins, leading to the activation of phospholipase C (PLC) and subsequent release of the second messengers inositol trisphosphate (IP3) and diacylglycerol (DAG) followed by the activation of PKC and the release of [Ca2+]i. In the present study, we identified HRH1 genes from 14 vertebrate genomes and found that HRH1 exists in all types of vertebrates including fish, amphibians, birds and mammals. We identified 88 SNPs including 4 available alleles disrupting an existing exonic splicing enhancer and 84 SNPs causing missense mutation, which may impact the effect of histamine on the HRH1 protein. We found that the human HRH1 gene was expressed in many tissues or organs, and predominant expression of HRH1 was shown in the bone marrow, whole blood, lymph node, thymus, brain, cerebellum, retina, spinal cord, heart, smooth muscle, skeletal muscle, small intestine, colon, adipocytes, kidney, liver, lung, pancreas, thyroid salivary gland, skin, ovary, uterus, placenta, prostate and testis. When searched in the PrognoScan database, human HRH1 was also found to be expressed in bladder cancer, blood cancer, brain cancer, breast cancer, colorectal cancer, eye cancer, head and neck cancer, lung cancer, ovarian cancer, skin cancer and soft tissue cancer tissues. The relationship between the expression of HRH1 and prognosis was found to vary in different types of cancers, even in the same cancer from different databases. This implies that the function of HRH1 in these tumors may be multidimensional. GR, STAT5A and c-Myb regulatory transcription factor binding sites were identified in the HRH1 gene upstream (promoter) region, which may be involved in the effect of HRH1 in tumors.

  19. Role of histamine in the inhibitory effects of phycocyanin in experimental models of allergic inflammatory response.

    PubMed Central

    Remirez, D; Ledón, N; González, R

    2002-01-01

    It has recently been reported that phycocyanin, a biliprotein found in the blue-green microalgae Spirulina, exerts anti-inflammatory effects in some animal models of inflammation. Taking into account these findings, we decided to elucidate whether phycocyanin might exert also inhibitory effects in the induced allergic inflammatory response and on histamine release from isolated rat mast cells. In in vivo experiments, phycocyanin (100, 200 and 300mg/kg post-orally (p.o.)) was administered 1 h before the challenge with 1 microg of ovalbumin (OA) in the ear of mice previously sensitized with OA. One hour later, myeloperoxidase activity and ear edema were assessed. Phycocyanin significantly reduced both parameters. In separate experiments, phycocyanin (100 and 200 mg/kg p.o.) also reduced the blue spot area induced by intradermal injections of histamine, and the histamine releaser compound 48/80 in rat skin. In concordance with the former results, phycocyanin also significantly reduced histamine release induced by compound 48/80 from isolated peritoneal rat mast cells. The inhibitory effects of phycocyanin were dose dependent. Taken together, our results suggest that inhibition of allergic inflammatory response by phycocyanin is mediated, at least in part, by inhibition of histamine release from mast cells. PMID:12061428

  20. Histamine-releasing properties of Polysorbate 80 in vitro and in vivo: correlation with its hypotensive action in the dog.

    PubMed

    Masini, E; Planchenault, J; Pezziardi, F; Gautier, P; Gagnol, J P

    1985-09-01

    The solvent of commercial amiodarone (Polysorbate 80) has been reported to produce haemodynamic responses in humans and in dogs similar to those produced by histamine infusion. We therefore evaluated the correlation between hypotension induced by the solvent of amiodarone and its histamine-releasing properties in the awake dog. The solvent of amiodarone administered to a dog, over 5 min in a dose of 10 mg/kg of Polysorbate 80, produced severe hypotension after the first administration; the second injection (24 h later) caused fewer hypotensive effects. Histamine release in the peripheral tissues was demonstrated by a marked increase in plasma histamine concentrations, with the maximum value 10 min after the solvent administration. H1- and H2-receptor blockade with mepyramine (5 mg/kg) and cimetidine (10 mg/kg) significantly reduced the cardiovascular effects of the solvent. Isolated peritoneal mast cells from rats also released histamine in response to Polysorbate 80. These studies show that Polysorbate 80 releases histamine both in vitro and in isolated mast cells from rats and in vivo in the dog, and that the plasma concentrations are correlated with the haemodynamic responses.

  1. [Regulation of the phases of the sleep-wakefulness cycle with histamine].

    PubMed

    Diez-Garcia, A; Garzon, M

    2017-03-16

    Distributed neural networks in the brain sustain generation of wakefulness and two sleep states: non-REM sleep and REM sleep. These three behavioral states are jointly ingrained in a rhythmic sequence that constitutes the sleep-wakefulness cycle. This paper reviews and updates knowledge about the involvement of the histaminergic system in sleep-wakefulness cycle organization. Histaminergic neurons are exclusively located in the hypothalamic tuberomammillary nucleus, but are the source of a widespread projection system to many brain regions. Histamine neurons are active during waking, especially with high attention need, and remain silent in both non-REM and REM sleep. There have been described four metabotropic histamine receptors, of which H1R, H2R and H3R are present in the nervous system. H1R and H2R are mainly postsynaptic heteroreceptors, whereas H3R is thought to be mostly a presynaptic auto- and hetero-receptor. Histaminergic neurons are excited by hypocretinergic neurons and most of the arousing hypocretin effects are thought to depend on histaminergic actions. Interactions among histaminergic axons and cholinergic nuclei within forebrain and brainstem are particularly important for cortical activation. In contrast, histaminergic tuberomammillary neurons, similarly to other aminergic neurons in locus coeruleus or dorsal raphe nucleus, are inhibited by non-REM sleep-promoting neurons of the preoptic region. Further inhibitory actions on histamine neurons come from adenosine release on tuberomammillary region. Finally, histaminergic neurons inhibit REM-on hypothalamic neurons containing melanine-concentrating hormone, thus supporting a permissive role of tuberomammillary nucleus in REM sleep. Actually, knockout mice for histidine decarboxylase, the enzyme synthetizing histamine, show a significant REM sleep increase.

  2. Genetic Variation along the Histamine Pathway in Children with Allergic versus Nonallergic Asthma

    PubMed Central

    Anvari, Sara; Vyhlidal, Carrie A.; Dai, Hongying

    2015-01-01

    Histamine is an important mediator in the pathogenesis of asthma. Variation in genes along the histamine production, response, and degradation pathway may be important in predicting response to antihistamines. We hypothesize that differences exist among single-nucleotide polymorphisms (SNPs) in genes of the histamine pathway between children with allergic versus nonallergic asthma. Children (7–18 yr of age; n = 202) with asthma were classified as allergic or nonallergic based on allergy skin testing. Genotyping was performed to detect known SNPs (n = 10) among genes (HDC, HNMT, ABP1, HRH1, and HRH4) within the histamine pathway. Chi square tests and Cochran-Armitage Trend were used to identify associations between genetic variants and allergic or nonallergic asthma. Significance was determined by P < 0.05 and false-positive report probability. After correction for race differences in genotype were observed, HRH1-17 TT (6% allergic versus 0% nonallergic; P = 0.04), HNMT-464 TT (41% allergic versus 29% nonallergic; P = 0.04), and HNMT-1639 TT (30% allergic versus 20% nonallergic; P = 0.04) were overrepresented among children with allergic asthma. Genotype differences specifically among the African-American children were also observed: HRH1-17 TT (13% allergic versus 0% nonallergic; P = 0.04) and HNMT-1639 TT (23% allergic versus 3% nonallergic; P = 0.03) genotypes were overrepresented among African-American children with allergic asthma. Our study suggests that genetic variation within the histamine pathway may be associated with an allergic versus nonallergic asthma phenotype. Further studies are needed to determine the functional significance of identified SNPs and their impact on antihistamine response in patients with asthma and allergic disease. PMID:25909280

  3. GDF15 is elevated in mice following retinal ganglion cell death and in glaucoma patients

    PubMed Central

    Ban, Norimitsu; Siegfried, Carla J.; Lin, Jonathan B.; Shui, Ying-Bo; Sein, Julia; Pita-Thomas, Wolfgang; Sene, Abdoulaye; Santeford, Andrea; Gordon, Mae; Lamb, Rachel; Dong, Zhenyu; Kelly, Shannon C.; Cavalli, Valeria; Yoshino, Jun

    2017-01-01

    Glaucoma is the second leading cause of blindness worldwide. Physicians often use surrogate endpoints to monitor the progression of glaucomatous neurodegeneration. These approaches are limited in their ability to quantify disease severity and progression due to inherent subjectivity, unreliability, and limitations of normative databases. Therefore, there is a critical need to identify specific molecular markers that predict or measure glaucomatous neurodegeneration. Here, we demonstrate that growth differentiation factor 15 (GDF15) is associated with retinal ganglion cell death. Gdf15 expression in the retina is specifically increased after acute injury to retinal ganglion cell axons and in a murine chronic glaucoma model. We also demonstrate that the ganglion cell layer may be one of the sources of secreted GDF15 and that GDF15 diffuses to and can be detected in aqueous humor (AH). In validating these findings in human patients with glaucoma, we find not only that GDF15 is increased in AH of patients with primary open angle glaucoma (POAG), but also that elevated GDF15 levels are significantly associated with worse functional outcomes in glaucoma patients, as measured by visual field testing. Thus, GDF15 maybe a reliable metric of glaucomatous neurodegeneration, although further prospective validation studies will be necessary to determine if GDF15 can be used in clinical practice. PMID:28469085

  4. Gene Therapy for Neuropathic Pain by Silencing of TNF-α Expression with Lentiviral Vectors Targeting the Dorsal Root Ganglion in Mice

    PubMed Central

    Ogawa, Nobuhiro; Kawai, Hiromichi; Terashima, Tomoya; Kojima, Hideto; Oka, Kazuhiro; Chan, Lawrence; Maegawa, Hiroshi

    2014-01-01

    Neuropathic pain can be a debilitating condition. Many types of drugs that have been used to treat neuropathic pain have only limited efficacy. Recent studies indicate that pro-inflammatory mediators including tumor necrosis factor α (TNF-α) are involved in the pathogenesis of neuropathic pain. In the present study, we engineered a gene therapy strategy to relieve neuropathic pain by silencing TNF-α expression in the dorsal root ganglion (DRG) using lentiviral vectors expressing TNF short hairpin RNA1-4 (LV-TNF-shRNA1-4) in mice. First, based on its efficacy in silencing TNF-α in vitro, we selected shRNA3 to construct LV-TNF-shRNA3 for in vivo study. We used L5 spinal nerve transection (SNT) mice as a neuropathic pain model. These animals were found to display up-regulated mRNA expression of activating transcription factor 3 (ATF3) and neuropeptide Y (NPY), injury markers, and interleukin (IL)-6, an inflammatory cytokine in the ipsilateral L5 DRG. Injection of LV-TNF-shRNA3 onto the proximal transected site suppressed significantly the mRNA levels of ATF3, NPY and IL-6, reduced mechanical allodynia and neuronal cell death of DRG neurons. These results suggest that lentiviral-mediated silencing of TNF-α in DRG relieves neuropathic pain and reduces neuronal cell death, and may constitute a novel therapeutic option for neuropathic pain. PMID:24642694

  5. Deletion of angiotensin II type 1 receptor gene attenuates chronic alcohol-induced retinal ganglion cell death with preservation of VEGF expression.

    PubMed

    Miao, Xiao; Lv, Huayi; Wang, Bo; Chen, Qiang; Miao, Lining; Su, Guanfang; Tan, Yi

    2013-01-01

    To investigate how chronic alcohol consumption affects adult visual nervous system and whether renin-angiotensin system (RAS) is involved in this pathogenic process. Male transgenic mice with angiotensin II (Ang II) type 1 (AT1) receptor gene knockout (AT1-KO) and age-matched wild-type (WT) mice were pair-fed a modified Lieber-DeCarli alcohol or isocaloric maltose dextrin control liquid diet for 2 months. At the end of the study, retinas were harvested and subjected to histopathological and immunohistochemical examination. We found that chronic alcohol consumption significantly increased retinal ganglion cell (RGC) apoptosis in the retina of WT mice, but not AT1-KO mice, detected by terminal deoxynucleotidyl-transferase-mediated dUTP-nick-end labeling staining and caspase 3 activation, along with an up-regulation of AT1 expression in RGC. At the same time, the phosphorylation of P53 in RGCs was significantly increased for both WT and AT1-KO mice exposed to alcohol, which could be significantly, although partially, prevented by AT1 gene deletion. We further examined the expression of vascular endothelial growth factor (VEGF) and CD31, and found that alcohol treatment significantly decreased the expression of VEGF and CD31 in RGCs of WT mice, but not AT1-KO mice. Taken together, our study demonstrates that the induction of RGC apoptosis by chronic alcohol exposure may be related to p53-activation and VEGF depression, all which are partially dependent of AT1 receptor activation.

  6. Histamine reduces boron neutron capture therapy-induced mucositis in an oral precancer model.

    PubMed

    Monti Hughes, A; Pozzi, Ecc; Thorp, S I; Curotto, P; Medina, V A; Martinel Lamas, D J; Rivera, E S; Garabalino, M A; Farías, R O; Gonzalez, S J; Heber, E M; Itoiz, M E; Aromando, R F; Nigg, D W; Trivillin, V A; Schwint, A E

    2015-09-01

    Searching for more effective and selective therapies for head and neck cancer, we demonstrated the therapeutic effect of boron neutron capture therapy (BNCT) to treat oral cancer and inhibit long-term tumor development from field-cancerized tissue in the hamster cheek pouch model. However, BNCT-induced mucositis in field-cancerized tissue was dose limiting. In a clinical scenario, oral mucositis affects patients' treatment and quality of life. Our aim was to evaluate different radioprotectors, seeking to reduce the incidence of BNCT-induced severe mucositis in field-cancerized tissue. Cancerized pouches treated with BNCT mediated by boronophenylalanine at 5 Gy were treated as follows: control: saline solution; Hishigh : histamine 5 mg kg(-1) ; Hislow : histamine 1 mg kg(-1) ; and JNJ7777120: 10 mg kg(-1). Hislow reduced the incidence of severe mucositis in field-cancerized tissue to 17% vs 55%; Hishigh : 67%; JNJ7777120: 57%. Hislow was non-toxic and did not compromise the long-term therapeutic effect of BNCT or alter gross boron concentration. Histamine reduces BNCT-induced mucositis in experimental oral precancer without jeopardizing therapeutic efficacy. The fact that both histamine and boronophenylalanine are approved for use in humans bridges the gap between experimental work and potential clinical application to reduce BNCT-induced radiotoxicity in patients with head and neck cancer. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Characterization of a novel bacteriophage, Phda1, infecting the histamine-producing Photobacterium damselae subsp. damselae.

    PubMed

    Yamaki, S; Kawai, Y; Yamazaki, K

    2015-06-01

    Photobacterium damselae subsp. damselae is a potent histamine-producing micro-organism. The aim of this study was to isolate and characterize a bacteriophage Phda1 that infected P. damselae subsp. damselae to inhibit its growth and histamine accumulation. Phda1 was isolated from a raw oyster, and the host range, morphology and the bacteriophage genome size were analysed. Phda1 formed a clear plaque only against P. damselae subsp. damselae JCM8969 among five Gram-positive and 32 Gram-negative bacterial strains tested. Phda1 belongs to the family Myoviridae, and its genome size was estimated as 35·2-39·5 kb. According to the one-step growth curve analysis, the latent period, rise period and burst size of Phda1 were 60 min, 50 min and 19 plaque-forming units per infected cell, respectively. Divalent cations, especially Ca(2+) and Mg(2+) , strongly improved Phda1 adsorption to the host cells and its propagation. Phda1 treatment delayed the growth and histamine production of P. damselae subsp. damselae in an in vitro challenge test. The bacteriophage Phda1 might serve as a potential antimicrobial agent to inhibit the histamine poisoning caused by P. damselae subsp. damselae. This is the first description of a bacteriophage specifically infecting P. damselae subsp. damselae and its potential applications. Bacteriophage therapy could prove useful in the prevention of histamine poisoning. © 2015 The Society for Applied Microbiology.

  8. The Itch-Producing Agents Histamine and Cowhage Activate Separate Populations of Primate Spinothalamic Tract Neurons

    PubMed Central

    Davidson, Steve; Zhang, Xijing; Yoon, Chul H.; Khasabov, Sergey G.; Simone, Donald A.; Giesler, Glenn J.

    2010-01-01

    Itch is an everyday sensation, but when associated with disease or infection it can be chronic and debilitating. Several forms of itch can be blocked using antihistamines, but others cannot and these constitute an important clinical problem. Little information is available on the mechanisms underlying itch that is produced by nonhistaminergic mechanisms. We examined the responses of spinothalamic tract neurons to histaminergic and, for the first time, nonhistaminergic forms of itch stimuli. Fifty-seven primate spinothalamic tract (STT) neurons were identified using antidromic activation techniques and examined for their responses to histamine and cowhage, the nonhistaminergic itch-producing spicules covering the pod of the legume Mucuna pruriens. Each examined neuron had a receptive field on the hairy skin of the hindlimb and responded to noxious mechanical stimulation. STT neurons were tested with both pruritogens applied in a random order and we found 12 that responded to histamine and seven to cowhage. Each pruritogen-responsive STT neuron was activated by the chemical algogen capsaicin and two-thirds responded to noxious heat stimuli, demonstrating that these neurons convey chemical, thermal, and mechanical nociceptive information as well. Histamine or cowhage responsive STT neurons were found in both the marginal zone and the deep dorsal horn and were classified as high threshold and wide dynamic range. Unexpectedly, histamine and cowhage never activated the same cell. Our results demonstrate that the spinothalamic tract contains mutually exclusive populations of neurons responsive to histamine or the nonhistaminergic itch-producing agent cowhage. PMID:17855615

  9. Strychnine blocks transient but not sustained inhibition in mudpuppy retinal ganglion cells.

    PubMed Central

    Belgum, J H; Dvorak, D R; McReynolds, J S

    1984-01-01

    Transient and sustained inhibitory synaptic inputs to on-centre, off-centre, and on-off ganglion cells in the mudpuppy retina were studied using intracellular recording in the superfused eye-cup preparation. When chemical transmission was blocked with 4 mM-Co2+, application of either glycine or gamma-aminobutyric acid (GABA) caused a hyperpolarization and conductance increase in all ganglion cells. For both amino acids, the responses were dose dependent in the range 0.05-10 mM, with a half-maximal response at about 0.7 mM. Glycine and GABA sensitivities were very similar in all three types of ganglion cells. The response to applied glycine was selectively antagonized by 10(-5) M-strychnine and the response to applied GABA was selectively antagonized by 10(-5) M-picrotoxin. In all ganglion cells, 10(-5) M-strychnine eliminated the transient inhibitory events which occur at the onset and termination of a light stimulus. The block of transient inhibition was associated with a relative depolarization of membrane potential and decrease in conductance at these times. Strychnine had no effect on membrane potential or conductance in darkness or during sustained inhibitory responses to light. Picrotoxin (10(-5) M) did not block transient inhibitory events in any ganglion cells, but did affect other components of their responses. The results suggest that in all three classes of ganglion cells transient inhibition, but not sustained inhibition, may be mediated by glycine or a closely related substance. PMID:6481635

  10. The modulatory role of spinally located histamine receptors in the regulation of the blood glucose level in d-glucose-fed mice.

    PubMed

    Sim, Yun-Beom; Park, Soo-Hyun; Kim, Sung-Su; Kim, Chea-Ha; Kim, Su-Jin; Lim, Su-Min; Jung, Jun-Sub; Ryu, Ohk-Hyun; Choi, Moon-Gi; Suh, Hong-Won

    2014-02-01

    The possible roles of spinal histamine receptors in the regulation of the blood glucose level were studied in ICR mice. Mice were intrathecally (i.t.) treated with histamine 1 (H1) receptor agonist (2-pyridylethylamine) or antagonist (cetirizine), histamine 2 (H2) receptor agonist (dimaprit) or antagonist (ranitidine), histamine 3 (H3) receptor agonist (α-methylhistamine) or antagonist (carcinine) and histamine 4 (H4) receptor agonist (VUF 8430) or antagonist (JNJ 7777120), and the blood glucose level was measured at 30, 60 and 120 min after i.t. administration. The i.t. injection with α-methylhistamine, but not carcinine slightly caused an elevation of the blood glucose level. In addition, histamine H1, H2, and H4 receptor agonists and antagonists did not affect the blood glucose level. In D-glucose-fed model, i.t. pretreatment with cetirizine enhanced the blood glucose level, whereas 2-pyridylethylamine did not affect. The i.t. pretreatment with dimaprit, but not ranitidine, enhanced the blood glucose level in D-glucose-fed model. In addition, α-methylhistamine, but not carcinine, slightly but significantly enhanced the blood glucose level D-glucose-fed model. Finally, i.t. pretreatment with JNJ 7777120, but not VUF 8430, slightly but significantly increased the blood glucose level. Although histamine receptors themselves located at the spinal cord do not exert any effect on the regulation of the blood glucose level, our results suggest that the activation of spinal histamine H2 receptors and the blockade of spinal histamine H1 or H3 receptors may play modulatory roles for up-regulation and down-regulation, respectively, of the blood glucose level in D-glucose fed model.

  11. C-terminal of human histamine H1 receptors regulates their agonist-induced clathrin-mediated internalization and G-protein signaling.

    PubMed

    Hishinuma, Shigeru; Nozawa, Hiroki; Akatsu, Chizuru; Shoji, Masaru

    2016-11-01

    It has been suggested that the agonist-induced internalization of G-protein-coupled receptors from the cell surface into intracellular compartments regulates cellular responsiveness. We previously reported that G q/11 -protein-coupled human histamine H 1 receptors internalized via clathrin-dependent mechanisms upon stimulation with histamine. However, the molecular determinants of H 1 receptors responsible for agonist-induced internalization remain unclear. In this study, we evaluated the roles of the intracellular C-terminal of human histamine H 1 receptors tagged with hemagglutinin (HA) at the N-terminal in histamine-induced internalization in Chinese hamster ovary cells. The histamine-induced internalization was evaluated by the receptor binding assay with [ 3 H]mepyramine and confocal immunofluorescence microscopy with an anti-HA antibody. We found that histamine-induced internalization was inhibited under hypertonic conditions or by pitstop, a clathrin terminal domain inhibitor, but not by filipin or nystatin, disruptors of the caveolar structure and function. The histamine-induced internalization was also inhibited by truncation of a single amino acid, Ser487, located at the end of the intracellular C-terminal of H 1 receptors, but not by its mutation to alanine. In contrast, the receptor-G-protein coupling, which was evaluated by histamine-induced accumulation of [ 3 H]inositol phosphates, was potentiated by truncation of Ser487, but was lost by its mutation to alanine. These results suggest that the intracellular C-terminal of human H 1 receptors, which only comprises 17 amino acids (Cys471-Ser487), plays crucial roles in both clathrin-dependent internalization of H 1 receptors and G-protein signaling, in which truncation of Ser487 and its mutation to alanine are revealed to result in biased signaling toward activation of G-proteins and clathrin-mediated internalization, respectively. © 2016 International Society for Neurochemistry.

  12. Comparison of the expression of neurotransmitter and muscular genesis markers in the postnatal male mouse masseter and trigeminal ganglion during development.

    PubMed

    Kamata, Hiroaki; Karibe, Hiroyuki; Sato, Iwao

    2018-06-01

    Calcitonin gene-related peptide (CGRP) is released by motor neurons and affects skeletal muscle fiber and transient receptor potential cation channel subfamily V member 1 (TRPV1), an important marker of pain modulation. However, the expression of CGRP and TRPV1 in the trigeminal ganglion (TG) during changes and in feeding patterns has not been described. We used real-time reverse transcription polymerase chain reaction and in situ hybridization to investigate the mRNA expression levels of CGRP and TRPV1 in the TG. The expression of myosin heavy-chain (MyHC) isoforms was also investigated in the masseter muscle (MM) during the transition from sucking to mastication, an important functional trigger for muscle. The mRNA and protein levels of CGRP increased in the MM and TG from postnatal day 10 (P10) to P20 in male mice. The protein levels of TRPV1 were almost constant in the TG from P10 to P20, in contrast to increases in the MM. The mRNA abundance of TRPV1 in the TG and MM was increased from P10 to P20. The localization of an antisense probe was used to count CGRP cell numbers and found to differentiate the ophthalmic, maxillary, and mandibular nerve divisions of the TG. In particular, the number of CGRP + cells per 10,000 μm 2 in the maxillary and mandibular divisions of the TG gradually changed from P10 to P20. The expression of CGRP and TRPV1 in the TG and MM and the patterns of expression of different MyHC isoforms were affected by changes in feeding during male mouse development. © 2017 Wiley Periodicals, Inc.

  13. Parkin overexpression protects retinal ganglion cells against glutamate excitotoxicity.

    PubMed

    Hu, Xinxin; Dai, Yi; Sun, Xinghuai

    2017-01-01

    To investigate the role of parkin in regulating mitochondrial homeostasis of retinal ganglion cells (RGCs) under glutamate excitotoxicity. Rat RGCs were purified from dissociated retinal tissue with a modified two-step panning protocol. Cultured RGCs were transfected with parkin using an adenovirus system. The distribution and morphology of mitochondria in the RGCs were assessed with MitoTracker. The expression and distribution of parkin and optineurin proteins were measured with western blot analysis and immunofluorescence. Cytotoxicity of RGCs was evaluated by measuring lactate dehydrogenase (LDH) activity. Mitochondrial membrane potential was determined with the JC-1 assay. The expression of Bax and Bcl-2 were measured with western blot analysis. In the presence of glutamate-induced excitotoxicity, the number of mitochondria in the axons of the RGCs was predominantly increased, and the mitochondrial membrane potential in RGCs was depolarized. The expression of the parkin and optineurin proteins was upregulated and distributed mostly in the axons of the RGCs. Overexpression of parkin stabilized the mitochondrial membrane potential of RGCs, decreased cytotoxicity and apoptosis, attenuated the expression of Bax, and promoted the expression of optineurin under glutamate excitotoxicity. Overexpression of parkin exerted a significant protective effect on cultured RGCs against glutamate excitotoxicity. Interventions to alter the parkin-mediated mitochondria pathway may be useful in protecting RGCs against excitotoxic RGC damage.

  14. Histamine H1-receptor-mediated modulation of the delayed rectifier K+ current in guinea-pig atrial cells: opposite effects on IKs and IKr

    PubMed Central

    Matsumoto, Yasunori; Ogura, Takehiko; Uemura, Hiroko; Saito, Toshihiro; Masuda, Yoshiaki; Nakaya, Haruaki

    1999-01-01

    Histamine receptor-mediated modulation of the rapid and slow components of the delayed rectifier K+ current (IK) was investigated in enzymatically-dissociated atrial cells of guinea-pigs using the whole cell configuration of the patch clamp technique.Histamine at a concentration of 10 μM enhanced IK recorded during strong depolarization to potentials ranging from +20 to +40 mV and inhibited IK recorded during mild depolarization to potentials ranging from −20 to −10 mV. The increase of IK was more prominent with longer depolarizing pulses, whereas the inhibition of IK was more marked with shorter depolarizing pulses, suggesting that histamine enhances IKs (the slow component of IK) and inhibits IKr (the rapid component of IK).The histamine-induced enhancement of IKs and inhibition of IKr were abolished by 3 μM chlorpheniramine but not by 10 μM cimetidine, suggesting that these opposite effects of histamine on IKr and IKs are mediated by H1-receptors.In the presence of 5 μM E-4031, an IKr blocker, histamine hardly affected IK during mild depolarization although it enhanced IK during strong depolarization in a concentration-dependent manner. Histamine increased IKs with EC50 value of 0.7 μM. In the presence of 300 μM indapamide, an IKs blocker, histamine hardly affected IKs but inhibited IKr in a concentration-dependent manner. Histamine decreased IKr with IC50 value of 0.3 μM.Pretreatment with 100 nM calphostin C or 30 nM staurosporine, protein kinase C inhibitors, abolished the histamine-induced enhancement of IKs, but failed to affect the histamine-induced inhibition of IKr.We conclude that in guinea-pig atrial cells H1-receptor stimulation enhances IKs and inhibits IKr through different intracellular mechanisms. PMID:10602335

  15. Cryotherapy decreases histamine levels in the blood of patients with rheumatoid arthritis.

    PubMed

    Wojtecka-Lukasik, E; Ksiezopolska-Orlowska, K; Gaszewska, E; Krasowicz-Towalska, O; Rzodkiewicz, P; Maslinska, D; Szukiewicz, D; Maslinski, S

    2010-03-01

    Conventional physiotherapy (electrotherapy, magnetic fields), kinesitherapy, and whole-body cryotherapy (plus kinesitherapy) are used to relieve pain and inflammation or to improve function in rheumatic diseases. The aim of this study was to investigate the effects of different physiotherapies and cryotherapy on biochemical blood parameters of patients with rheumatoid arthritis (RA) and osteoarthritis (OA). Twenty patients with RA and 17 patients with OA received whole-body cryotherapy at -140 to -160 degrees C for 2 to 3 min, once daily for 4 weeks. The second group of patients (24 with RA and 28 with OA) received conventional physiotherapy for 4 weeks. We measured the parameters of neutrophil activation (respiratory burst, calprotectin) and markers of cartilage metabolism [N-acetyl-beta-D-hexosaminidase (NAHase), ectonucleotide pyrophosphohydrolase (NTPPHase)] twice: before and 3 months after cryotherapy or physiotherapy. We showed, for the first time, that cryotherapy significantly reduced (P < 0.001) histamine levels in the blood of patients with RA. The effect was long-lasting (for at least 3 months). The levels of blood histamine in patients with OA were not changed significantly. Cryotherapy also downregulated the respiratory burst of PMNs and NAHase activity and upregulated calprotectin levels and the activity of NTPPHase. However, these changes were not statistically significant. In contrast, there were no significant changes in histamine levels or the other biochemical parameters measured in groups of patients treated only with physiotherapy and kinesitherapy. It may be concluded that the beneficial clinical effects of cryotherapy in RA patients are in part due to the action on the production, release, or degradation of histamine.

  16. Effects of Icariside II on Corpus Cavernosum and Major Pelvic Ganglion Neuropathy in Streptozotocin-Induced Diabetic Rats

    PubMed Central

    Bai, Guang-Yi; Zhou, Feng; Hui, Yu; Xu, Yong-De; Lei, Hong-En; Pu, Jin-Xian; Xin, Zhong-Cheng

    2014-01-01

    Diabetic erectile dysfunction is associated with penile dorsal nerve bundle neuropathy in the corpus cavernosum and the mechanism is not well understood. We investigated the neuropathy changes in the corpus cavernosum of rats with streptozotocin-induced diabetes and the effects of Icariside II (ICA II) on improving neuropathy. Thirty-six 8-week-old Sprague-Dawley rats were randomly distributed into normal control group, diabetic group and ICA-II treated group. Diabetes was induced by a one-time intraperitoneal injection of streptozotocin (60 mg/kg). Three days later, the diabetic rats were randomly divided into 2 groups including a saline treated placebo group and an ICA II-treated group (5 mg/kg/day, by intragastric administration daily). Twelve weeks later, erectile function was measured by cavernous nerve electrostimulation with real time intracorporal pressure assessment. The penis was harvested for the histological examination (immunofluorescence and immunohistochemical staining) and transmission electron microscopy detecting. Diabetic animals exhibited a decreased density of dorsal nerve bundle in penis. The neurofilament of the dorsal nerve bundle was fragmented in the diabetic rats. There was a decreased expression of nNOS and NGF in the diabetic group. The ICA II group had higher density of dorsal nerve bundle, higher expression of NGF and nNOS in the penis. The pathological change of major pelvic nerve ganglion (including the microstructure by transmission electron microscope and the neurite outgrowth length of major pelvic nerve ganglion tissue cultured in vitro) was greatly attenuated in the ICA II-treated group (p < 0.01). ICA II treatment attenuates the diabetes-related impairment of corpus cavernosum and major pelvic ganglion neuropathy in rats with Streptozotocin-Induced Diabetes. PMID:25517034

  17. Quantifying Spiral Ganglion Neurite and Schwann Behavior on Micropatterned Polymer Substrates.

    PubMed

    Cheng, Elise L; Leigh, Braden; Guymon, C Allan; Hansen, Marlan R

    2016-01-01

    The first successful in vitro experiments on the cochlea were conducted in 1928 by Honor Fell (Fell, Arch Exp Zellforsch 7(1):69-81, 1928). Since then, techniques for culture of this tissue have been refined, and dissociated primary culture of the spiral ganglion has become a widely accepted in vitro model for studying nerve damage and regeneration in the cochlea. Additionally, patterned substrates have been developed that facilitate and direct neural outgrowth. A number of automated and semi-automated methods for quantifying this neurite outgrowth have been utilized in recent years (Zhang et al., J Neurosci Methods 160(1):149-162, 2007; Tapias et al., Neurobiol Dis 54:158-168, 2013). Here, we describe a method to study the effect of topographical cues on spiral ganglion neurite and Schwann cell alignment. We discuss our microfabrication process, characterization of pattern features, cell culture techniques for both spiral ganglion neurons and spiral ganglion Schwann cells. In addition, we describe protocols for reducing fibroblast count, immunocytochemistry, and methods for quantifying neurite and Schwann cell alignment.

  18. Further studies on the structural requirements for mast cell degranulating (MCD) peptide-mediated histamine release.

    PubMed

    Buku, A; Price, J A

    2001-12-01

    Mast cell degranulating (MCD) peptide was modified in its two disulfide bridges and in the two arginine residues in order to measure the ability of these analogs to induce histamine release from mast cells in vitro. Analogs prepared were [Ala(3,15)]MCD, [Ala(5,19)]MCD, [Orn(16)]MCD, and [Orn(7,16)]MCD. Their histamine-releasing activity was determined spectrofluorometrically with peritoneal mast cells. The monocyclic analogs in which the cysteine residues were replaced pairwise with alanine residues showed three-to ten-fold diminished histamine-releasing activity respectively, compared with the parent MCD peptide. Substantial increases in activity were observed where arginine residues were replaced by ornithines. The ornithine-mono substituted analog showed an almost six-fold increase and the ornithine-doubly substituted analog three-fold increase in histamine-releasing activity compared with the parent MCD peptide. The structural changes associated with these activities were followed by circular dichroism (CD) spectroscopy. Changes in the shape and ellipticity of the CD spectra reflected a role for the disulfide bonds and the two arginine residues in the overall conformation and biological activity of the molecule.

  19. BTK inhibition is a potent approach to block IgE-mediated histamine release in human basophils.

    PubMed

    Smiljkovic, D; Blatt, K; Stefanzl, G; Dorofeeva, Y; Skrabs, C; Focke-Tejkl, M; Sperr, W R; Jaeger, U; Valenta, R; Valent, P

    2017-11-01

    Recent data suggest that Bruton's tyrosine kinase (BTK) is an emerging therapeutic target in IgE receptor (IgER)-cross-linked basophils. We examined the effects of four BTK inhibitors (ibrutinib, dasatinib, AVL-292, and CNX-774) on IgE-dependent activation and histamine release in blood basophils obtained from allergic patients (n=11) and nonallergic donors (n=5). In addition, we examined the effects of these drugs on the growth of the human basophil cell line KU812 and the human mast cell line HMC-1. All four BTK blockers were found to inhibit anti-IgE-induced histamine release from basophils in nonallergic subjects and allergen-induced histamine liberation from basophils in allergic donors. Drug effects on allergen-induced histamine release were dose dependent, with IC 50 values ranging between 0.001 and 0.5 μmol/L, and the following rank order of potency: ibrutinib>AVL-292>dasatinib>CNX-774. The basophil-targeting effect of ibrutinib was confirmed by demonstrating that IgE-dependent histamine release in ex vivo blood basophils is largely suppressed in a leukemia patient treated with ibrutinib. Dasatinib and ibrutinib were also found to counteract anti-IgE-induced and allergen-induced upregulation of CD13, CD63, CD164, and CD203c on basophils, whereas AVL-292 and CNX-774 showed no significant effects. Whereas dasatinib and CNX-774 were found to inhibit the growth of HMC-1 cells and KU812 cells, no substantial effects were seen with ibrutinib or AVL-292. BTK-targeting drugs are potent inhibitors of IgE-dependent histamine release in human basophils. The clinical value of BTK inhibition in the context of allergic diseases remains to be determined. © 2017 The Authors. Allergy Published by John Wiley & Sons Ltd.

  20. Characterization of intravitreally delivered capsid mutant AAV2-Cre vector to induce tissue-specific mutations in murine retinal ganglion cells.

    PubMed

    Langouet-Astrie, Christophe J; Yang, Zhiyong; Polisetti, Sraavya M; Welsbie, Derek S; Hauswirth, William W; Zack, Donald J; Merbs, Shannath L; Enke, Raymond A

    2016-10-01

    Targeted expression of Cre recombinase in murine retinal ganglion cells (RGCs) by viral vector is an effective strategy for creating tissue-specific gene knockouts for investigation of genetic contribution to RGC degeneration associated with optic neuropathies. Here we characterize dosage, efficacy and toxicity for sufficient intravitreal delivery of a capsid mutant Adeno-associated virus 2 (AAV2) vector encoding Cre recombinase. Wild type and Rosa26 (R26) LacZ mice were intravitreally injected with capsid mutant AAV2 viral vectors. Murine eyes were harvested at intervals ranging from 2 weeks to 15 weeks post-injection and were assayed for viral transduction, transgene expression and RGC survival. 10(9) vector genomes (vg) were sufficient for effective in vivo targeting of murine ganglion cell layer (GCL) retinal neurons. Transgene expression was observed as early as 2 weeks post-injection of viral vectors and persisted to 11 weeks. Early expression of Cre had no significant effect on RGC survival, while significant RGC loss was detected beginning 5 weeks post-injection. Early expression of viral Cre recombinase was robust, well-tolerated and predominantly found in GCL neurons suggesting this strategy can be effective in short-term RGC-specific mutation studies in experimental glaucoma models such as optic nerve crush and transection experiments. RGC degeneration with Cre expression for more than 4 weeks suggests that Cre toxicity is a limiting factor for targeted mutation strategies in RGCs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Painful Pathways Induced by Toll-like Receptor Stimulation of Dorsal Root Ganglion Neurons

    PubMed Central

    Qi, Jia; Buzas, Krisztina; Fan, Huiting; Cohen, Jeffrey I.; Wang, Kening; Mont, Erik; Klinman, Dennis; Oppenheim, Joost J.; Howard, O.M. Zack

    2011-01-01

    We hypothesize that innate immune signals from infectious organisms and/or injured tissues may activate peripheral neuronal pain signals. In this study, we demonstrated that toll-like receptors 3/7/9 (TLRs) are expressed by human dorsal root ganglion neurons (DRGNs) and in cultures of primary mouse DRGNs. Stimulation of murine DRGNs with TLR ligands induced expression and production of proinflammatory chemokines and cytokines CCL5 (RANTES), CXCL10 (IP10), interleukin-1alpha, interleukin-1beta, and prostaglandin E2 (PGE2), which have previously been shown to augment pain. Further, TLR ligands up-regulated the expression of a nociceptive receptor transient receptor potential vanilloid type 1 (TRPV1), and enhanced calcium flux by TRPV1 expressing DRGNs. Using a tumor-induced temperature sensitivity model, we showed that in vivo administration of a TLR9 antagonist, known as a suppressive ODN, blocked tumor-induced temperature sensitivity. Taken together, these data indicate that stimulation of peripheral neurons by TLR ligands can induce nerve pain. PMID:21515789

  2. Docking-based Screening of Ficus religiosa Phytochemicals as Inhibitors of Human Histamine H2 Receptor.

    PubMed

    Chaudhary, Amit; Yadav, Birendra Singh; Singh, Swati; Maurya, Pramod Kumar; Mishra, Alok; Srivastva, Shweta; Varadwaj, Pritish Kumar; Singh, Nand Kumar; Mani, Ashutosh

    2017-10-01

    Ficus religiosa L. is generally known as Peepal and belongs to family Moraceae . The tree is a source of many compounds having high medicinal value. In gastrointestinal tract, histamine H2 receptors have key role in histamine-stimulated gastric acid secretion. Their over stimulation causes its excessive production which is responsible for gastric ulcer. This study aims to screen the range of phytochemicals present in F. religiosa for binding with human histamine H2 and identify therapeutics for a gastric ulcer from the plant. In this work, a 3D-structure of human histamine H2 receptor was modeled by using homology modeling and the predicted model was validated using PROCHECK. Docking studies were also performed to assess binding affinities between modeled receptor and 34 compounds. Molecular dynamics simulations were done to identify most stable receptor-ligand complexes. Absorption, distribution, metabolism, excretion, and screening was done to evaluate pharmacokinetic properties of compounds. The results suggest that seven ligands, namely, germacrene, bergaptol, lanosterol, Ergost-5-en-3beta-ol, α-amyrin acetate, bergapten, and γ-cadinene showed better binding affinities. Among seven phytochemicals, lanosterol and α-amyrin acetate were found to have greater stability during simulation studies. These two compounds may be a suitable therapeutic agent against histamine H2 receptor. This study was performed to screen antiulcer compounds from F. religiosa . Molecular modeling, molecular docking and MD simulation studies were performed with selected phytochemicals from F. religiosa . The analysis suggests that Lanosterol and α-amyrin may be a suitable therapeutic agent against histamine H2 receptor. This study facilitates initiation of the herbal drug discovery process for the antiulcer activity. Abbreviations used: ADMET: Absorption, distribution, metabolism, excretion and toxicity, DOPE: Discrete Optimized Potential Energy, OPLS: Optimized potential for liquid

  3. The nervus terminalis ganglion in Anguilla rostrata: an immunocytochemical and HRP histochemical analysis.

    PubMed

    Grober, M S; Bass, A H; Burd, G; Marchaterre, M A; Segil, N; Scholz, K; Hodgson, T

    1987-12-08

    Immunocytochemistry and retrograde horseradish peroxidase (HRP) transport were used to study the ganglion of the nervus terminalis in the American eel, Anguilla rostrata. Luteinizing hormone releasing hormone (LHRH) like immunoreactivity was found in large, ganglion-like cells located ventromedially at the junction of the telencephalon and olfactory bulb and in fibers within the retina and olfactory epithelium. HRP transport from the retina demonstrated direct connections with both the ipsi- and contralateral populations of these ganglion-like cells. Given the well-documented role of both olfaction and vision during migratory and reproductive phases of the life cycle of eels, the robust nature of a nervus terminalis system in these fish may present a unique opportunity to study the behavioral correlates of structure-function organization in a discrete population of ganglion-like cells.

  4. Protecting retinal ganglion cells.

    PubMed

    Khatib, T Z; Martin, K R

    2017-02-01

    Retinal ganglion cell degeneration underlies several conditions which give rise to significant visual compromise, including glaucoma, hereditary optic neuropathies, ischaemic optic neuropathies, and demyelinating disease. In this review, we discuss the emerging strategies for neuroprotection specifically in the context of glaucoma, including pharmacological neuroprotection, mesenchymal stem cells, and gene therapy approaches. We highlight potential pitfalls that need to be considered when developing these strategies and outline future directions, including the prospects for clinical trials.

  5. Cyclic AMP agonist inhibition increases at low levels of histamine release from human basophils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tung, R.S.; Lichtenstein, L.M.

    1981-09-01

    The relationship between the intensity of the signal for antigen-induced immunoglobulin E-mediated histamine release from human basophils and the concentration of agonist needed to inhibit release has been determined. The agonists, prostaglandin E1, dimaprit, fenoterol, isobutylmethylxanthine and dibutyryl cyclic AMP, all act by increasing the cyclic AMP level. Each agonist was 10- to 1000-fold more potent (relative ID50) at low levels of histamine release (5-10% of total histamine) than at high levels (50-80%). Thus, the inhibitory potential of a drug is a function of the concentration of antigen used to initiate the response. Our results are now more in accordmore » with the inhibitory profile of these drugs in human lung tissue. It is suggested that in vivo release is likely to be low and that this is the level at which to evaluate drugs in vitro.« less

  6. Effect of antioxidants on histamine receptor activation and sustained post-exercise vasodilatation in humans

    PubMed Central

    Romero, Steven A.; Ely, Matthew R.; Sieck, Dylan C.; Luttrell, Meredith J.; Buck, Tahisha M.; Kono, Jordan M.; Branscum, Adam J.; Halliwill, John R.

    2015-01-01

    An acute bout of aerobic exercise elicits a sustained post-exercise vasodilatation that is mediated by histamine H1 and H2 receptor activation. However, the upstream signaling pathway that leads to post-exercise histamine receptor activation is unknown. We tested the hypothesis that the potent antioxidant ascorbate would inhibit this histaminergic vasodilatation following exercise. Subjects performed 1 hr unilateral dynamic knee extension at 60% of peak power in three conditions: 1) control; 2) intravenous ascorbate infusion; and, 3) ascorbate infusion plus oral H1/H2 histamine receptor blockade. Femoral artery blood flow (Doppler ultrasound) was measured before exercise and for 2 hr post-exercise. Femoral vascular conductance was calculated as flow/pressure. Post-exercise vascular conductance was greater for control condition (3.4 ± 0.1 ml min−1 mmHg−1) compared with ascorbate (2.7 ± 0.1 ml min−1 mmHg−1, P < 0.05) and ascorbate plus H1/H2 blockade (2.8 ± 0.1 ml min−1 mmHg−1, P < 0.05), which did not differ from one another (P = 0.9). Because ascorbate may catalyze the degradation of histamine in vivo, we conducted a follow-up study where subjects performed exercise in two conditions: 1) control and 2) intravenous N-acetylcysteine infusion. Post-exercise vascular conductance was similar for control (4.0 ± 0.1 ml min−1 mmHg−1) and N-acetylcysteine conditions (4.0 ± 0.1 ml min−1 mmHg−1; P = 0.8). Thus, the results in study 1 were due to the degradation of histamine in skeletal muscle by ascorbate, since the histaminergic vasodilatation was unaffected by N-acetylcysteine. Taken together, exercise-induced oxidative stress does not appear to contribute to sustained post-exercise vasodilatation. PMID:25664905

  7. Histamine H3 receptor antagonists display antischizophrenic activities in rats treated with MK-801.

    PubMed

    Mahmood, Danish; Akhtar, Mohd; Jahan, Kausar; Goswami, Dipanjan

    2016-09-01

    Animal models based on N-methyl-d-aspartate receptor blockade have been extensively used for schizophrenia. Ketamine and MK-801 produce behaviors related to schizophrenia and exacerbated symptoms in patients with schizophrenia, which led to the use of PCP (phencyclidine)- and MK-801 (dizocilpine)-treated animals as models for schizophrenia. The study investigated the effect of subchronic dosing (once daily, 7 days) of histamine H3 receptor (H3R) antagonists, ciproxifan (CPX) (3 mg/kg, i.p.), and clobenpropit (CBP) (15 mg/kg, i.p.) on MK-801 (0.2 mg/kg, i.p.)-induced locomotor activity and also measured dopamine and histamine levels in rat's brain homogenates. The study also included clozapine (CLZ) (3.0 mg/kg, i.p.) and chlorpromazine (CPZ) (3.0 mg/kg, i.p.), the atypical and typical antipsychotic, respectively. Atypical and typical antipsychotic was used to serve as clinically relevant reference agents to compare the effects of the H3R antagonists. MK-801 significantly increased horizontal locomotor activity, which was reduced with CPX and CBP. MK-801-induced locomotor hyperactivity attenuated by CPX and CBP was comparable to CLZ and CPZ. MK-801 raised striatal dopamine level, which was reduced in rats pretreated with CPX and CBP. CPZ also significantly lowered striatal dopamine levels, although the decrease was less robust compared to CLZ, CPX, and CBP. MK-801 increased histamine content although to a lesser degree. Subchronic treatment with CPX and CBP exhibited further increased histamine levels in the hypothalamus compared to MK-801 treatment alone. Histamine H3 receptor agonist, R-α methylhistamine (10 mg/kg, i.p.), counteracted the effect of CPX and CBP. The present study shows the positive effects of CPX and CBP on MK-801-induced schizophrenia-like behaviors in rodents.

  8. Clustering is a feature of the spiral ganglion in the basal turn.

    PubMed

    Gacek, Richard R

    2012-01-01

    To demonstrate the organization of the spiral ganglion in the mammalian species. Temporal bone (TB) specimens from man (n = 2), monkey (n = 2), lion (n = 2) and cat (n = 20) were stained, decalcified and dissected according to the Sudan black B method of Rasmussen. These TB specimens were examined under a Zeiss operating microscope and photographed with a Canon 100 camera interfaced with the microscope. Spiral ganglion cells occurred in clusters within Rosenthal's canal in all four species. The location of the clusters was marked by the interface between axon and dendritic bundles as well as groups of ganglion cells. In monkey and man the clusters were more separated than in lion and cat. These observations indicate that the spiral ganglion forms clusters of neurons within Rosenthal's canal at the basal cochlear turn in the mammals investigated here. The formation of clusters may be related to the principles of neurogenesis. Copyright © 2011 S. Karger AG, Basel.

  9. A ROIC for Mn(TPP)Cl-DOP-THF-Polyhema PVC membrane modified n-channel Si3N4 ISFET sensitive to histamine.

    PubMed

    Samah, N L M A; Lee, Khuan Y; Sulaiman, S A; Jarmin, R

    2017-07-01

    Intolerance of histamine could lead to scombroid poisoning with fatal consequences. Current detection methods for histamine are wet laboratory techniques which employ expensive equipment that depends on skills of seasoned technicians and produces delayed test analysis result. Previous works from our group has established that ISFETs can be adapted for detecting histamine with the use of a novel membrane. However, work to integrate ISFETs with a readout interfacing circuit (ROIC) circuit to display the histamine concentration has not been reported so far. This paper concerns the development of a ROIC specifically to integrate with a Mn(TPP)Cl-DOP-THF-Polyhema PVC membrane modified n-channel Si3N4 ISFET to display the histamine concentration. It embodies the design of constant voltage constant current (CVCC) circuit, amplification circuit and micro-controller based display circuit. A DC millivolt source is used to substitute the membrane modified ISFET as preliminary work. Input is histamine concentration corresponding to the safety level designated by the Food and Drugs Administration (FDA). Results show the CVCC circuit makes the output follows the input and keeps VDS constant. The amplification circuit amplifies the output from the CVCC circuit to the range 2.406-4.888V to integrate with the microcontroller, which is programmed to classify and display the histamine safety level and its corresponding voltage on a LCD panel. The ROIC could be used to produce direct output voltages corresponding to histamine concentrations, for in-situ applications.

  10. Transplantation of Human Neural Progenitor Cells Expressing IGF-1 Enhances Retinal Ganglion Cell Survival

    PubMed Central

    Guo, Caiwei; Sun, Yu; Liao, Tiffany; Beattie, Ursula; López, Francisco J.; Chen, Dong Feng; Lashkari, Kameran

    2015-01-01

    We have previously characterized human neuronal progenitor cells (hNP) that can adopt a retinal ganglion cell (RGC)-like morphology within the RGC and nerve fiber layers of the retina. In an effort to determine whether hNPs could be used a candidate cells for targeted delivery of neurotrophic factors (NTFs), we evaluated whether hNPs transfected with an vector that expresses IGF-1 in the form of a fusion protein with tdTomato (TD), would increase RGC survival in vitro and confer neuroprotective effects in a mouse model of glaucoma. RGCs co-cultured with hNPIGF-TD cells displayed enhanced survival, and increased neurite extension and branching as compared to hNPTD or untransfected hNP cells. Application of various IGF-1 signaling blockers or IGF-1 receptor antagonists abrogated these effects. In vivo, using a model of glaucoma we showed that IOP elevation led to reductions in retinal RGC count. In this model, evaluation of retinal flatmounts and optic nerve cross sections indicated that only hNPIGF-TD cells effectively reduced RGC death and showed a trend to improve optic nerve axonal loss. RT-PCR analysis of retina lysates over time showed that the neurotrophic effects of IGF-1 were also attributed to down-regulation of inflammatory and to some extent, angiogenic pathways. This study shows that neuronal progenitor cells that hone into the RGC and nerve fiber layers may be used as vehicles for local production and delivery of a desired NTF. Transplantation of hNPIGF-TD cells improves RGC survival in vitro and protects against RGC loss in a rodent model of glaucoma. Our findings have provided experimental evidence and form the basis for applying cell-based strategies for local delivery of NTFs into the retina. Application of cell-based delivery may be extended to other disease conditions beyond glaucoma. PMID:25923430

  11. Berberine exerts antioxidant effects via protection of spiral ganglion cells against cytomegalovirus-induced apoptosis.

    PubMed

    Zhuang, Wei; Li, Ting; Wang, Caiji; Shi, Xi; Li, Yalan; Zhang, Shili; Zhao, Zeqi; Dong, Hongyan; Qiao, Yuehua

    2018-06-01

    Cytomegalovirus (CMV) is the leading cause of sensorineural hearing loss (SNHL) in children because of its damage to the cochlea and spiral ganglion cells. Therefore, it has become a top priority to devise new methods to effectively protect spiral ganglion cells from damage. Berberine (BBR) has gained attention for its vast beneficial biological effects through immunomodulation, and its anti-inflammatory and anti-apoptosis properties. However, the effect of BBR on spiral ganglion cells and molecular mechanisms are still unclear. This study aims to investigate whether BBR has an anti-apoptosis effect in CMV-induced apoptosis in cultured spiral ganglion cells and explore the possible mechanism. In this study, TUNEL and MTT assays significantly demonstrated that low doses of BBR did not promote cell apoptosis and they also inhibited the CMV-induced cultured spiral ganglion cell apoptosis. Immunofluorescence and Western blot assays indicated that the anti-apoptosis effect of BBR was related to Nox3. Mitochondrial calcium and Western blot assays revealed that NMDAR1 mediated this anti-apoptosis effect. Our results demonstrated that BBR exerted an anti-apoptosis effect against CMV in cultured spiral ganglion cells, and the mechanism is related to NMDAR1/Nox3-mediated mitochondrial reactive oxygen species (ROS) generation. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Histamine H3R receptor activation in the dorsal striatum triggers stereotypies in a mouse model of tic disorders

    PubMed Central

    Rapanelli, M; Frick, L; Pogorelov, V; Ohtsu, H; Bito, H; Pittenger, C

    2017-01-01

    Tic disorders affect ~5% of the population and are frequently comorbid with obsessive-compulsive disorder, autism, and attention deficit disorder. Histamine dysregulation has been identified as a rare genetic cause of tic disorders; mice with a knockout of the histidine decarboxylase (Hdc) gene represent a promising pathophysiologically grounded model. How alterations in the histamine system lead to tics and other neuropsychiatric pathology, however, remains unclear. We found elevated expression of the histamine H3 receptor in the striatum of Hdc knockout mice. The H3 receptor has significant basal activity even in the absence of ligand and thus may modulate striatal function in this knockout model. We probed H3R function using specific agonists. The H3 agonists R-aminomethylhistamine (RAMH) and immepip produced behavioral stereotypies in KO mice, but not in controls. H3 agonist treatment elevated intra-striatal dopamine in KO mice, but not in controls. This was associated with elevations in phosphorylation of rpS6, a sensitive marker of neural activity, in the dorsal striatum. We used a novel chemogenetic strategy to demonstrate that this dorsal striatal activity is necessary and sufficient for the development of stereotypy: when RAMH-activated cells in the dorsal striatum were chemogenetically activated (in the absence of RAMH), stereotypy was recapitulated in KO animals, and when they were silenced the ability of RAMH to produce stereotypy was blocked. These results identify the H3 receptor in the dorsal striatum as a contributor to repetitive behavioral pathology. PMID:28117842

  13. Identification of histamine receptors and reduction of squalene levels by an antihistamine in sebocytes.

    PubMed

    Pelle, Edward; McCarthy, James; Seltmann, Holger; Huang, Xi; Mammone, Thomas; Zouboulis, Christos C; Maes, Daniel

    2008-05-01

    Overproduction of sebum, especially during adolescence, is causally related to acne and inflammation. As a way to reduce sebum and its interference with the process of follicular keratinization in the pilosebaceous unit leading to inflammatory acne lesions, antihistamines were investigated for their effect on sebocytes, the major cell of the sebaceous gland responsible for producing sebum. Reverse transcriptase-PCR analysis and immunofluorescence of an immortalized sebocyte cell line (SZ95) revealed the presence of histamine-1 receptor (H-1 receptor), and thus indicated that histamines and, conversely, antihistamines could potentially modulate sebocyte function directly. When sebocytes were incubated with an H-1 receptor antagonist, diphenhydramine (DPH), at non-cytotoxic doses, a significant decrease in squalene levels, a biomarker for sebum, was observed. As determined by high-performance liquid chromatography, untreated sebocytes contained 6.27 (+/-0.73) nmol squalene per 10(6) cells, whereas for DPH-treated cells, the levels were 2.37 (+/-0.24) and 2.03 (+/-0.97) nmol squalene per 10(6) cells at 50 and 100 microM, respectively. These data were further substantiated by the identification of histamine receptors in human sebaceous glands. In conclusion, our data show the presence of histamine receptors on sebocytes, demonstrate how an antagonist to these receptors modulated cellular function, and may indicate a new paradigm for acne therapy involving an H-1 receptor-mediated pathway.

  14. Prevalence and Characterization of High Histamine-Producing Bacteria in Gulf of Mexico Fish Species.

    PubMed

    Bjornsdottir-Butler, Kristin; Bowers, John C; Benner, Ronald A

    2015-07-01

    Recent developments in detection and enumeration of histamine-producing bacteria (HPB) have created powerful molecular-based tools to better understand the presence of spoilage bacteria and conditions, resulting in increased risk of scombrotoxin fish poisoning. We examined 235 scombrotoxin-forming fish from the Gulf of Mexico for the presence of high HPB. Photobacterium damselae subsp. damselae was the most prevalent HPB (49%), followed by Morganella morganii (14%), Enterobacter aerogenes (4%), and Raoultella planticola (3%). The growth characteristics and histamine production capabilities of the two most prevalent HPB were further examined. M. morganii and P. damselae had optimum growth at 35°C and 30 to 35°C and 0 to 2% and 1 to 3% NaCl, respectively. P. damselae produced significantly (P < 0.001) higher histamine than M. morganii in inoculated mahimahi and Spanish mackerel incubated at 30°C for 24 h, but histamine production was not significantly different between the two HPB in inoculated tuna, possibly due to differences in muscle composition and salt content. Results in this study showed that P. damselae was the most prevalent high HPB in Gulf of Mexico fish. In addition, previously reported results using the traditional Niven's method may underreport the prevalence of P. damselae. Molecular-based methods should be used in addition to culture-based methods to enhance detection and enumeration of HPB.

  15. Transgenic mice expressing cyan fluorescent protein as a reporter strain to detect the effects of rotenone toxicity on retinal ganglion cells.

    PubMed

    Hayworth, C R; Rojas, J C; Gonzalez-Lima, F

    2008-01-01

    This is the first study using a reporter transgenic model to investigate the effects of an environmental toxin on the retina. Rotenone is a widely used pesticide that inhibits mitochondrial complex I and produces neurotoxicity. Previous studies demonstrated the time course and dose response of rotenone toxicity on retinal ganglion cells (RGC). However, previous analyses of rotenone-induced retinotoxicity provided little detail of the optic nerve axons and cellular pathology. These limitations were successfully surmounted by using a transgenic mouse line shown to express cyan fluorescent protein (CFP) in neurons, including RGC, under regulatory elements of the human the thy1.1 promoter (thy-CFP). Data showed that CFP expression is limited to RGC and their processes in the retina of thy-CFP mice. Eyes exposed to the pesticide rotenone displayed marked alterations in RGC morphology, inner plexiform layer, optic disc, and optic nerves. After 24 h, the number of CFP-labeled RGC was reduced 50%. Correlated with a loss of RGC bodies was an approximate 50% reduction in CFP fluorescence intensity at the optic disc. The findings showed that rotenone-induced degeneration of RGC and their processes can be visualized with exquisite detail in thy-CFP mice, and that this approach may provide a novel and effective way to monitor the association between environmental toxins and neurodegeneration in living animals.

  16. A search for presynaptic inhibitory histamine receptors in guinea-pig tissues: Further H3 receptors but no evidence for H4 receptors.

    PubMed

    Petri, Doris; Schlicker, Eberhard

    2016-07-01

    The histamine H4 receptor is coupled to Gi/o proteins and expressed on inflammatory cells and lymphoid tissues; it was suggested that this receptor also occurs in the brain or on peripheral neurones. Since many Gi/o protein-coupled receptors, including the H3 receptor, serve as presynaptic inhibitory receptors, we studied whether the sympathetic neurones supplying four peripheral tissues and the cholinergic neurones in the hippocampus from the guinea-pig are equipped with release-modulating H4 and H3 receptors. For this purpose, we preincubated tissue pieces from the aorta, atrium, renal cortex and vas deferens with (3)H-noradrenaline and hippocampal slices with (3)H-choline and determined the electrically evoked tritium overflow. The stimulation-evoked overflow in the five superfused tissues was inhibited by the muscarinic receptor agonist oxotremorine, which served as a positive control, but not affected by the H4 receptor agonist 4-methylhistamine. The H3 receptor agonist R-α-methylhistamine inhibited noradrenaline release in the peripheral tissues without affecting acetylcholine release in the hippocampal slices. Thioperamide shifted the concentration-response curve of histamine in the aorta and the renal cortex to the right, yielding apparent pA2 values of 8.0 and 8.1, respectively, which are close to its affinity at other H3 receptors but higher by one log unit than its pKi at the H4 receptor of the guinea-pig. In conclusion, histamine H4 receptors could not be identified in five experimental models of the guinea-pig that are suited for the detection of presynaptic inhibitory receptors whereas H3 receptors could be shown in the peripheral tissues but not in the hippocampus. This article is part of the Special Issue entitled 'Histamine Receptors'. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Inhibition of mTOR by Rapamycin Results in Auditory Hair Cell Damage and Decreased Spiral Ganglion Neuron Outgrowth and Neurite Formation In Vitro

    PubMed Central

    Leitmeyer, Katharina; Glutz, Andrea; Radojevic, Vesna; Setz, Cristian; Huerzeler, Nathan; Bumann, Helen; Bodmer, Daniel; Brand, Yves

    2015-01-01

    Rapamycin is an antifungal agent with immunosuppressive properties. Rapamycin inhibits the mammalian target of rapamycin (mTOR) by blocking the mTOR complex 1 (mTORC1). mTOR is an atypical serine/threonine protein kinase, which controls cell growth, cell proliferation, and cell metabolism. However, less is known about the mTOR pathway in the inner ear. First, we evaluated whether or not the two mTOR complexes (mTORC1 and mTORC2, resp.) are present in the mammalian cochlea. Next, tissue explants of 5-day-old rats were treated with increasing concentrations of rapamycin to explore the effects of rapamycin on auditory hair cells and spiral ganglion neurons. Auditory hair cell survival, spiral ganglion neuron number, length of neurites, and neuronal survival were analyzed in vitro. Our data indicates that both mTOR complexes are expressed in the mammalian cochlea. We observed that inhibition of mTOR by rapamycin results in a dose dependent damage of auditory hair cells. Moreover, spiral ganglion neurite number and length of neurites were significantly decreased in all concentrations used compared to control in a dose dependent manner. Our data indicate that the mTOR may play a role in the survival of hair cells and modulates spiral ganglion neuronal outgrowth and neurite formation. PMID:25918725

  18. Inhibition of mTOR by Rapamycin Results in Auditory Hair Cell Damage and Decreased Spiral Ganglion Neuron Outgrowth and Neurite Formation In Vitro.

    PubMed

    Leitmeyer, Katharina; Glutz, Andrea; Radojevic, Vesna; Setz, Cristian; Huerzeler, Nathan; Bumann, Helen; Bodmer, Daniel; Brand, Yves

    2015-01-01

    Rapamycin is an antifungal agent with immunosuppressive properties. Rapamycin inhibits the mammalian target of rapamycin (mTOR) by blocking the mTOR complex 1 (mTORC1). mTOR is an atypical serine/threonine protein kinase, which controls cell growth, cell proliferation, and cell metabolism. However, less is known about the mTOR pathway in the inner ear. First, we evaluated whether or not the two mTOR complexes (mTORC1 and mTORC2, resp.) are present in the mammalian cochlea. Next, tissue explants of 5-day-old rats were treated with increasing concentrations of rapamycin to explore the effects of rapamycin on auditory hair cells and spiral ganglion neurons. Auditory hair cell survival, spiral ganglion neuron number, length of neurites, and neuronal survival were analyzed in vitro. Our data indicates that both mTOR complexes are expressed in the mammalian cochlea. We observed that inhibition of mTOR by rapamycin results in a dose dependent damage of auditory hair cells. Moreover, spiral ganglion neurite number and length of neurites were significantly decreased in all concentrations used compared to control in a dose dependent manner. Our data indicate that the mTOR may play a role in the survival of hair cells and modulates spiral ganglion neuronal outgrowth and neurite formation.

  19. Retinal ganglion cell distribution and spatial resolving power in elasmobranchs.

    PubMed

    Lisney, Thomas J; Collin, Shaun P

    2008-01-01

    The total number, distribution and peak density of presumed retinal ganglion cells was assessed in 10 species of elasmobranch (nine species of shark and one species of batoid) using counts of Nissl-stained cells in retinal wholemounts. The species sampled include a number of active, predatory benthopelagic and pelagic sharks that are found in a variety of coastal and oceanic habitats and represent elasmobranch groups for which information of this nature is currently lacking. The topographic distribution of cells was heterogeneous in all species. Two benthic species, the shark Chiloscyllium punctatum and the batoid Taeniura lymma, have a dorsal or dorso-central horizontal streak of increased cell density, whereas the majority of the benthopelagic and pelagic sharks examined exhibit a more concentric pattern of increasing cell density, culminating in a central area centralis of higher cell density located close to the optic nerve head. The exception is the shark Alopias superciliosus, which possesses a ventral horizontal streak. Variation in retinal ganglion cell topography appears to be related to the visual demands of different habitats and lifestyles, as well as the positioning of the eyes in the head. The upper limits of spatial resolving power were calculated for all 10 species, using peak ganglion cell densities and estimates of focal length taken from cryo-sectioned eyes in combination with information from the literature. Spatial resolving power ranged from 2.02 to 10.56 cycles deg(-1), which is in accordance with previous studies. Species with a lower spatial resolving power tend to be benthic and/or coastal species that feed on benthic invertebrates and fishes. Active, benthopelagic and pelagic species from more oceanic habitats which feed on larger, more active prey, possess a higher resolving power. Additionally, ganglion cells in a juvenile of C. punctatum, were retrogradely-labeled from the optic nerve with biotinylated dextran amine (BDA). A comparison

  20. [Met]- and [Leu]enkephalin-like immunoreactive cell bodies and nerve fibres in the coeliac ganglion of the cat.

    PubMed

    Julé, Y; Clerc, N; Niel, J P; Condamin, M

    1986-06-01

    The occurrence and distribution of methionine- and leucine-enkephalin-like immunoreactivity were investigated in the cat coeliac ganglion using either the indirect immunoperoxidase method or the peroxidase-antiperoxidase technique. Several antisera raised to methionine- and leucine-enkephalin were used. Their specificity was assessed by incubating sections of the coeliac ganglion with increasing dilutions of antisera and with antisera saturated with their respective antigen. The present study was performed both in untreated and in colchicine-treated cats. Immunoreactive methionine- and leucine-enkephalin-like cell bodies were only visualized in colchicine-treated cats. Two types of labeled cells were observed. The first type had a size similar to that of unlabeled principal ganglion cells. These labeled cells were numerous and scattered throughout the ganglion; they probably represented enkephalin-containing ganglion cells. The second type of immunoreactive cells were of a much smaller size. They were always gathered in small clusters of about 5-15 cells and were not numerous; they presumably represented enkephalin-containing small intensely fluorescent cells. Immunoreactive nerve fibres were mainly observed in untreated cats and accessorily in colchicine-treated cats. In untreated animals dense networks of methionine- and leucine-enkephalin-like immunoreactive fibres were found in the coeliac ganglion. These fibres had numerous varicosities which often closely surrounded unlabeled principal ganglion cells. In colchicine-treated cats some immunoreactive fibres surrounded labeled principal ganglion cell bodies. The present results establish for the first time the presence of enkephalin-like immunoreactive principal ganglion cells in a mammalian sympathetic prevertebral ganglion. The presence of enkephalin-containing principal ganglion cells, small intensely fluorescent cells and nerve terminals, supports an important role of enkephalins in the integrative synaptic

  1. RdgB2 is required for dim-light input into intrinsically photosensitive retinal ganglion cells

    PubMed Central

    Walker, Marquis T.; Rupp, Alan; Elsaesser, Rebecca; Güler, Ali D.; Sheng, Wenlong; Weng, Shijun; Berson, David M.; Hattar, Samer; Montell, Craig

    2015-01-01

    A subset of retinal ganglion cells is intrinsically photosensitive (ipRGCs) and contributes directly to the pupillary light reflex and circadian photoentrainment under bright-light conditions. ipRGCs are also indirectly activated by light through cellular circuits initiated in rods and cones. A mammalian homologue (RdgB2) of a phosphoinositide transfer/exchange protein that functions in Drosophila phototransduction is expressed in the retinal ganglion cell layer. This raised the possibility that RdgB2 might function in the intrinsic light response in ipRGCs, which depends on a cascade reminiscent of Drosophila phototransduction. Here we found that under high light intensities, RdgB2−/− mutant mice showed normal pupillary light responses and circadian photoentrainment. Consistent with this behavioral phenotype, the intrinsic light responses of ipRGCs in RdgB2−/− were indistinguishable from wild-type. In contrast, under low-light conditions, RdgB2−/− mutants displayed defects in both circadian photoentrainment and the pupillary light response. The RdgB2 protein was not expressed in ipRGCs but was in GABAergic amacrine cells, which provided inhibitory feedback onto bipolar cells. We propose that RdgB2 is required in a cellular circuit that transduces light input from rods to bipolar cells that are coupled to GABAergic amacrine cells and ultimately to ipRGCs, thereby enabling ipRGCs to respond to dim light. PMID:26269578

  2. Protecting retinal ganglion cells

    PubMed Central

    Khatib, T Z; Martin, K R

    2017-01-01

    Retinal ganglion cell degeneration underlies several conditions which give rise to significant visual compromise, including glaucoma, hereditary optic neuropathies, ischaemic optic neuropathies, and demyelinating disease. In this review, we discuss the emerging strategies for neuroprotection specifically in the context of glaucoma, including pharmacological neuroprotection, mesenchymal stem cells, and gene therapy approaches. We highlight potential pitfalls that need to be considered when developing these strategies and outline future directions, including the prospects for clinical trials. PMID:28085136

  3. Features and functions of nonlinear spatial integration by retinal ganglion cells.

    PubMed

    Gollisch, Tim

    2013-11-01

    Ganglion cells in the vertebrate retina integrate visual information over their receptive fields. They do so by pooling presynaptic excitatory inputs from typically many bipolar cells, which themselves collect inputs from several photoreceptors. In addition, inhibitory interactions mediated by horizontal cells and amacrine cells modulate the structure of the receptive field. In many models, this spatial integration is assumed to occur in a linear fashion. Yet, it has long been known that spatial integration by retinal ganglion cells also incurs nonlinear phenomena. Moreover, several recent examples have shown that nonlinear spatial integration is tightly connected to specific visual functions performed by different types of retinal ganglion cells. This work discusses these advances in understanding the role of nonlinear spatial integration and reviews recent efforts to quantitatively study the nature and mechanisms underlying spatial nonlinearities. These new insights point towards a critical role of nonlinearities within ganglion cell receptive fields for capturing responses of the cells to natural and behaviorally relevant visual stimuli. In the long run, nonlinear phenomena of spatial integration may also prove important for implementing the actual neural code of retinal neurons when designing visual prostheses for the eye. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Cloning and sequencing of the histidine decarboxylase genes of gram-negative, histamine-producing bacteria and their application in detection and identification of these organisms in fish.

    PubMed

    Takahashi, Hajime; Kimura, Bon; Yoshikawa, Miwako; Fujii, Tateo

    2003-05-01

    The use of molecular tools for early and rapid detection of gram-negative histamine-producing bacteria is important for preventing the accumulation of histamine in fish products. To date, no molecular detection or identification system for gram-negative histamine-producing bacteria has been developed. A molecular method that allows the rapid detection of gram-negative histamine producers by PCR and simultaneous differentiation by single-strand conformation polymorphism (SSCP) analysis using the amplification product of the histidine decarboxylase genes (hdc) was developed. A collection of 37 strains of histamine-producing bacteria (8 reference strains from culture collections and 29 isolates from fish) and 470 strains of non-histamine-producing bacteria isolated from fish were tested. Histamine production of bacteria was determined by paper chromatography and confirmed by high-performance liquid chromatography. Among 37 strains of histamine-producing bacteria, all histidine-decarboxylating gram-negative bacteria produced a PCR product, except for a strain of Citrobacter braakii. In contrast, none of the non-histamine-producing strains (470 strains) produced an amplification product. Specificity of the amplification was further confirmed by sequencing the 0.7-kbp amplification product. A phylogenetic tree of the isolates constructed using newly determined sequences of partial hdc was similar to the phylogenetic tree generated from 16S ribosomal DNA sequences. Histamine accumulation occurred when PCR amplification of hdc was positive in all of fish samples tested and the presence of powerful histamine producers was confirmed by subsequent SSCP identification. The potential application of the PCR-SSCP method as a rapid monitoring tool is discussed.

  5. Spontaneous Discharge Patterns in Cochlear Spiral Ganglion Cells Prior to the Onset of Hearing in Cats

    PubMed Central

    Jones, Timothy A.; Leake, Patricia A.; Snyder, Russell L.; Stakhovskaya, Olga; Bonham, Ben

    2008-01-01

    Spontaneous neural activity has been recorded in the auditory nerve of cats as early as 2 days postnatal (P2 ), yet individual auditory neurons do not respond to ambient sound levels below 90–100 dB SPL until about P10. Significant refinement of the central projections from the spiral ganglion to the cochlear nucleus occurs during this neonatal period. This refinement may be dependent on peripheral spontaneous discharge activity. We recorded from single spiral ganglion cells in kittens aged P3 to P9. The spiral ganglion was accessed via the round window through the spiral lamina. A total of 112 ganglion cells were isolated for study in 9 animals. Spike rates in neonates were very low, ranging from 0.06 to 56 sp/s with a mean of 3.09 +/− 8.24 sp/s. Ganglion cells in neonatal kittens exhibited remarkable repetitive spontaneous bursting discharge patterns. The unusual patterns were evident in the large mean interval coefficient of variation (CVi = 2.9 +/−1.6) and burst index of 5.2 +/− 3.5 across ganglion cells. Spontaneous bursting patterns in these neonatal mammals were similar to those reported for cochlear ganglion cells of the embryonic chicken suggesting this may be a general phenomenon that is common across animal classes. Rhythmic spontaneous discharge of retinal ganglion cells has been shown to be important in the development of central retinotopic projections and normal binocular vision (Shatz, 1996, Proc Natl Acad Sci 93). Bursting rhythms in cochlear ganglion cells may play a similar role in the auditory system during pre-hearing periods. PMID:17686914

  6. Effect of the novel histamine H2-antagonist 5,6-dimethyl-2-[4-[3-(1- piperidinomethyl)phenoxy]-(z)-2-butenylamino]-4(1H)-pyrimidine dihydrochloride on histamine-induced gastric acid secretion in Heidenhain pouch dogs.

    PubMed

    Uchida, M; Ohba, S; Ikarashi, Y; Misaki, N; Kawano, O

    1993-08-01

    Effects of IGN-2098 (5,6-dimethyl-2-[4-[3-(1-piperidinomethyl)phenoxy]- (z)-2-butenylamino]-4(1H)-pyrimidone dihydrochloride, CAS 126869-04-3) a novel histamine H2-antagonist, on histamine-induced gastric acid secretion were investigated in Heidenhain pouch dogs in comparison with those of famotidine, roxatidine acetate HCl and cimetidine. Orally administered IGN-2098 (0.03-1.0 mg/kg), famotidine (0.01-0.3 mg/kg), roxatidine acetate HCl (0.1-1.0 mg/kg) and cimetidine (0.3-3.0 mg/kg) showed dose-dependent inhibition on histamine-induced gastric acid secretion, and ED50 values of IGN-2098, famotidine, roxatidine acetate HCl and cimetidine were 0.077, 0.024, 0.200 and 0.585 mg/kg, respectively. IGN-2098 was effective even at 6 h after administration and ED50 value was 0.315 mg/kg. IGN-2098 was effective also by intravenous route. The inhibitory effect of IGN-2098 on histamine-induced gastric secretion was not affected by the repeated administration of IGN-2098 (1 mg/kg b.i.d. for 14 days). These results show that IGN-2098 is a potent and long acting antisecretory agent and is a useful antisecretory drug for the treatment of peptic ulcer disease.

  7. Effects of methyl p-hydroxybenzoate (methyl paraben) on Ca2+ concentration and histamine release in rat peritoneal mast cells

    PubMed Central

    Fukugasako, Sanae; Ito, Shinichi; Ikemoto, Yoshimi

    2003-01-01

    Mechanisms of methyl p-hydroxybenzoate (methyl paraben) action in allergic reactions were investigated by measuring the intracellular Ca2+ concentration ([Ca2+]i) and histamine release in rat peritoneal mast cells (RPMCs). In the presence or absence of extracellular Ca2+, methyl paraben (0.1–10 mM) increased [Ca2+]i, in a concentration-dependent manner. Under both the conditions, methyl paraben alone did not evoke histamine release. In RPMCs pretreated with a protein kinase C (PKC) activator (phorbol 12-myristate 13-acetate (PMA) 3 and 10 nM), methyl paraben (0.3–3 mM) induced histamine release. However, a high concentration (10 mM) of the agent did not increase the histamine release. U73122 (0.1 and 0.5 μM), an inhibitor of phospholipase C (PLC), significantly inhibited the methyl paraben-induced histamine release in PMA-pretreated RPMCs. U73343 (0.5 μM), an inactive analogue of U73122, did not inhibit the histamine release caused by methyl paraben. In Ca2+-free solution, PLC inhibitors (U73122 0.1 and 0.5 μM, D609 1–10 μM) inhibited the methyl paraben-induced increase in [Ca2+]i, whereas U73343 (0.5 μM) did not. Xestospongin C (2–20 μM) and 2 aminoethoxydiphenyl borate (30 and 100 μM), blockers of the inositol 1,4,5-trisphosphate (IP3) receptor, inhibited the methyl paraben-induced increase in [Ca2+]i in Ca2+-free solution. In conclusion, methyl paraben causes an increase in [Ca2+]i, which may be due to release of Ca2+ from storage sites by IP3 via activation of PLC in RPMCs. In addition, methyl paraben possibly has some inhibitory effects on histamine release via unknown mechanisms. PMID:12770943

  8. Reduced N-Type Ca2+ Channels in Atrioventricular Ganglion Neurons Are Involved in Ventricular Arrhythmogenesis.

    PubMed

    Zhang, Dongze; Tu, Huiyin; Cao, Liang; Zheng, Hong; Muelleman, Robert L; Wadman, Michael C; Li, Yu-Long

    2018-01-15

    Attenuated cardiac vagal activity is associated with ventricular arrhythmogenesis and related mortality in patients with chronic heart failure. Our recent study has shown that expression of N-type Ca 2+ channel α-subunits (Ca v 2.2-α) and N-type Ca 2+ currents are reduced in intracardiac ganglion neurons from rats with chronic heart failure. Rat intracardiac ganglia are divided into the atrioventricular ganglion (AVG) and sinoatrial ganglion. Ventricular myocardium receives projection of neuronal terminals only from the AVG. In this study we tested whether a decrease in N-type Ca 2+ channels in AVG neurons contributes to ventricular arrhythmogenesis. Lentiviral Ca v 2.2-α shRNA (2 μL, 2×10 7  pfu/mL) or scrambled shRNA was in vivo transfected into rat AVG neurons. Nontransfected sham rats served as controls. Using real-time single-cell polymerase chain reaction and reverse-phase protein array, we found that in vivo transfection of Ca v 2.2-α shRNA decreased expression of Ca v 2.2-α mRNA and protein in rat AVG neurons. Whole-cell patch-clamp data showed that Ca v 2.2-α shRNA reduced N-type Ca 2+ currents and cell excitability in AVG neurons. The data from telemetry electrocardiographic recording demonstrated that 83% (5 out of 6) of conscious rats with Ca v 2.2-α shRNA transfection had premature ventricular contractions ( P <0.05 versus 0% of nontransfected sham rats or scrambled shRNA-transfected rats). Additionally, an index of susceptibility to ventricular arrhythmias, inducibility of ventricular arrhythmias evoked by programmed electrical stimulation, was higher in rats with Ca v 2.2-α shRNA transfection compared with nontransfected sham rats and scrambled shRNA-transfected rats. A decrease in N-type Ca 2+ channels in AVG neurons attenuates vagal control of ventricular myocardium, thereby initiating ventricular arrhythmias. © 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  9. Is compensatory hyperhidrosis after thoracic sympathicotomy in palmar hyperhidrosis patients related to the excitability of thoracic sympathetic ganglions?

    PubMed Central

    Chen, Jun-Peng; Peng, A-Jing; Xu, Chen-Hui; Li, Guo-Ying

    2017-01-01

    Background The mechanism of compensatory hyperhidrosis remains unclear. The aim of this study was to explore the relationship between compensatory hyperhidrosis and thoracic sympathetic ganglion excitability to assess the effectiveness of thoracoscopic T4 sympathicotomy for treating palmar hyperhidrosis. Methods Sixty-six cases of T4 sympathetic ganglions were prospectively collected from patients with palmar hyperhidrosis who underwent thoracoscopic T4 sympathicotomy from 2013 to 2016 in our department. The expression levels of choline acetyltransferase (ChAT), vasoactive intestinal peptide (VIP), and synaptophysin were detected using immunohistochemistry. Patients with palmar hyperhidrosis were followed-up for examination of postoperative sweating status. Results Thirty-eight cases (57.6%) of compensatory hyperhidrosis were identified. Mild compensatory hyperhidrosis occurred in 26 patients (39.4%), moderate in 11 (16.7%), and severe in 1 (1.5%). The rate of compensatory hyperhidrosis was higher in patients with axilla hyperhidrosis than those without (76.0% vs. 46.3%, P=0.018). However, the clinical data were similar between the compensatory hyperhidrosis group and the no compensatory hyperhidrosis group. In addition, the ChAT, VIP, and synaptophysin expression levels were not significantly different between the two groups (P values of 0.356, 0.071, and 0.141, respectively). Furthermore, the ChAT, VIP, and synaptophysin expression levels in the mild group were similar to those observed in the moderate/intense group (P values of 0.089, 0.124, and 0.149, respectively). The remission rate was 100% in palmar hyperhidrosis, 48.2% (27/56) in pedal hyperhidrosis, 56.0% (14/25) in axilla hyperhidrosis and 88.9% (16/18) in skin symptoms. No signs of chapped skin on the palms were found. Conclusions There was no significant correlation between compensatory hyperhidrosis and thoracic sympathetic ganglion excitability; however, compensatory hyperhidrosis is more likely to

  10. Laminin γ3 plays an important role in retinal lamination, photoreceptor organisation and ganglion cell differentiation.

    PubMed

    Dorgau, Birthe; Felemban, Majed; Sharpe, Alexander; Bauer, Roman; Hallam, Dean; Steel, David H; Lindsay, Susan; Mellough, Carla; Lako, Majlinda

    2018-05-23

    Laminins are heterotrimeric glycoproteins of the extracellular matrix. Eleven different laminin chains have been identified in vertebrates. They are ubiquitously expressed in the human body, with a distinct tissue distribution. Laminin expression in neural retina and their functional role during human retinogenesis is still unknown. This study investigated the laminin expression in human developing and adult retina, showing laminin α1, α5, β1, β2 and γ1 to be predominantly expressed in Bruch's membrane and the inner limiting membrane. Laminin-332 and laminin γ3 expression were mainly observed in the neural retina during retinal histogenesis. These expression patterns were largely conserved in pluripotent stem cell-derived retinal organoids. Blocking of laminin γ3 function in retinal organoids resulted in the disruption of laminar organisation and synapse formation, the loss of photoreceptor organisation and retinal ganglion cells. Our data demonstrate a unique temporal and spatial expression for laminins and reveal a novel role for laminin γ3 during human retinogenesis.

  11. Melanopsin-expressing retinal ganglion cells are resistant to cell injury, but not always.

    PubMed

    Georg, Birgitte; Ghelli, Anna; Giordano, Carla; Ross-Cisneros, Fred N; Sadun, Alfredo A; Carelli, Valerio; Hannibal, Jens; La Morgia, Chiara

    2017-09-01

    Melanopsin retinal ganglion cells (mRGCs) are intrinsically photosensitive RGCs deputed to non-image forming functions of the eye such as synchronization of circadian rhythms to light-dark cycle. These cells are characterized by unique electrophysiological, anatomical and biochemical properties and are usually more resistant than conventional RGCs to different insults, such as axotomy and different paradigms of stress. We also demonstrated that these cells are relatively spared compared to conventional RGCs in mitochondrial optic neuropathies (Leber's hereditary optic neuropathy and Dominant Optic Atrophy). However, these cells are affected in other neurodegenerative conditions, such as glaucoma and Alzheimer's disease. We here review the current evidences that may underlie this dichotomy. We also present our unpublished data on cell experiments demonstrating that melanopsin itself does not explain the robustness of these cells and some preliminary data on immunohistochemical assessment of mitochondria in mRGCs. Copyright © 2017 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

  12. Melanopsin-expressing retinal ganglion-cell photoreceptors: cellular diversity and role in pattern vision

    PubMed Central

    Ecker, Jennifer L.; Dumitrescu, Olivia N.; Wong, Kwoon Y.; Alam, Nazia M.; Chen, Shih-Kuo; LeGates, Tara; Renna, Jordan M.; Prusky, Glen T.; Berson, David M.; Hattar, Samer

    2010-01-01

    Using the photopigment melanopsin, intrinsically photosensitive retinal ganglion cells (ipRGCs) respond directly to light to drive circadian clock resetting and pupillary constriction. We now report that ipRGCs are more abundant and diverse than previously appreciated, project more widely within the brain, and can support spatial visual perception. A Cre-based melanopsin reporter mouse line revealed at least five subtypes of ipRGCs with distinct morphological and physiological characteristics. Collectively, these cells project beyond the known brain targets of ipRGCs to heavily innervate the superior colliculus and dorsal lateral geniculate nucleus, retinotopically-organized nuclei mediating object localization and discrimination. Mice lacking classical rod-cone photoreception, and thus entirely dependent on melanopsin for light detection, were able to discriminate grating stimuli from equiluminant gray, and had measurable visual acuity. Thus, non-classical retinal photoreception occurs within diverse cell types, and influences circuits and functions encompassing luminance as well as spatial information. PMID:20624591

  13. Histamine Immunoreactive Elements in the Central and Peripheral Nervous Systems of the Snail, Biomphalaria spp., Intermediate Host for Schistosoma mansoni

    PubMed Central

    Habib, Mohamed R.; Mohamed, Azza H.; Osman, Gamalat Y.; Sharaf El-Din, Ahmed T.; Mossalem, Hanan S.; Delgado, Nadia; Torres, Grace; Rolón-Martínez, Solymar; Miller, Mark W.; Croll, Roger P.

    2015-01-01

    Histamine appears to be an important transmitter throughout the Animal Kingdom. Gastropods, in particular, have been used in numerous studies establishing potential roles for this biogenic amine in the nervous system and showing its involvement in the generation of diverse behaviours. And yet, the distribution of histamine has only previously been described in a small number of molluscan species. The present study examined the localization of histamine-like immunoreactivity in the central and peripheral nervous systems of pulmonate snails of the genus Biomphalaria. This investigation demonstrates immunoreactive cells throughout the buccal, cerebral, pedal, left parietal and visceral ganglia, indicative of diverse regulatory functions in Biomphalaria. Immunoreactivity was also present in statocyst hair cells, supporting a role for histamine in graviception. In the periphery, dense innervation by immunoreactive fibers was observed in the anterior foot, perioral zone, and other regions of the body wall. This study thus shows that histamine is an abundant transmitter in these snails and its distribution suggest involvement in numerous neural circuits. In addition to providing novel subjects for comparative studies of histaminegic neurons in gastropods, Biomphalaria is also the major intermediate host for the digenetic trematode parasite, which causes human schistosomiasis. The study therefore provides a foundation for understanding potential roles for histamine in interactions between the snail hosts and their trematode parasites. PMID:26086611

  14. A study of IgE sensitization and skin response to histamine in Asian-Pacific American adults.

    PubMed

    Lee-Wong, Mary; Chou, Vivian; Silverberg, Jonathan I

    2012-01-01

    Allergic disorders and skin response to histamine have been noted to vary in different ethnicities. We investigated IgE-mediated allergic sensitization and skin response to histamine in Asian Pacific Americans (APAs), black and Hispanic Americans, and white adults. A retrospective questionnaire-based study was performed of 2222 adults presenting at a New York City allergy referral center from 1994 to 2003. Questionnaire data included sex, age, and ethnicity and personal and family history of atopic disorders. Skin-prick test (SPT) data included saline and histamine controls and response to a standardized panel of 10 aeroallergens. APA patients had a lower odds of asthma (adjusted odds ratio [aOR], 0.68; 95% confidence interval [CI], 0.52-0.89; p = 0.005) and/or animal allergies (aOR, 0.64; 95% CI, 0.50-0.82; p = 0.0003). Histamine response was not significantly different in APA (aOR, 0.90; 95% CI, 0.73-1.12; p = 0.36) or Hispanic Americans (aOR, 1.03; 95% CI, 0.85-1.24; p = 0.76), but was higher in black Americans (aOR, 2.32; 95% CI, 1.67-3.21; p < 0.0001). APA had higher odds of a positive SPT to trees (aOR, 1.49; 95% CI, 1.16-1.91; p = 0.002), grasses (aOR, 1.32; 95% CI, 1.05-1.43; p = 0.02), feathers (aOR, 1.65; 95% CI, 1.31-2.09; p < 0.0001), and cockroaches (aOR, 1.37; 95% CI, 1.10-1.62; p = 0.005). Moreover, APA had a higher total number of positive SPTs when compared with white patients (5.5 ± 3.2 versus 4.9 ± 3.3; aOR, 1.34; 95% CI, 1.10-1.62 p = 0.004). APA adults in our patient population had more IgE sensitizations but not an increased skin response to histamine. In contrast, black Americans had increased skin response to histamine.

  15. Single cell RNA sequencing of stem cell-derived retinal ganglion cells.

    PubMed

    Daniszewski, Maciej; Senabouth, Anne; Nguyen, Quan H; Crombie, Duncan E; Lukowski, Samuel W; Kulkarni, Tejal; Sluch, Valentin M; Jabbari, Jafar S; Chamling, Xitiz; Zack, Donald J; Pébay, Alice; Powell, Joseph E; Hewitt, Alex W

    2018-02-13

    We used single cell sequencing technology to characterize the transcriptomes of 1,174 human embryonic stem cell-derived retinal ganglion cells (RGCs) at the single cell level. The human embryonic stem cell line BRN3B-mCherry (A81-H7), was differentiated to RGCs using a guided differentiation approach. Cells were harvested at day 36 and prepared for single cell RNA sequencing. Our data indicates the presence of three distinct subpopulations of cells, with various degrees of maturity. One cluster of 288 cells showed increased expression of genes involved in axon guidance together with semaphorin interactions, cell-extracellular matrix interactions and ECM proteoglycans, suggestive of a more mature RGC phenotype.

  16. Histamine plays an essential regulatory role in lung inflammation and protective immunity in the acute phase of Mycobacterium tuberculosis infection.

    PubMed

    Carlos, D; Fremond, C; Samarina, A; Vasseur, V; Maillet, I; Ramos, S G; Erard, F; Quesniaux, V; Ohtsu, H; Silva, C L; Faccioli, L H; Ryffel, B

    2009-12-01

    The course and outcome of infection with mycobacteria are determined by a complex interplay between the immune system of the host and the survival mechanisms developed by the bacilli. Recent data suggest a regulatory role of histamine not only in the innate but also in the adaptive immune response. We used a model of pulmonary Mycobacterium tuberculosis infection in histamine-deficient mice lacking histidine decarboxylase (HDC(-/-)), the histamine-synthesizing enzyme. To confirm that mycobacterial infection induced histamine production, we exposed mice to M. tuberculosis and compared responses in C57BL/6 (wild-type) and HDC(-/-) mice. Histamine levels increased around fivefold above baseline in infected C57BL/6 mice at day 28 of infection, whereas only small amounts were detected in the lungs of infected HDC(-/-) mice. Blocking histamine production decreased both neutrophil influx into lung tissue and the release of proinflammatory mediators, such as interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-alpha), in the acute phase of infection. However, the accumulation and activation of CD4(+) T cells were augmented in the lungs of infected HDC(-/-) mice and correlated with a distinct granuloma formation that contained abundant lymphocytic infiltration and reduced numbers of mycobacteria 28 days after infection. Furthermore, the production of IL-12, gamma interferon, and nitric oxide, as well as CD11c(+) cell influx into the lungs of infected HDC(-/-) mice, was increased. These findings indicate that histamine produced after M. tuberculosis infection may play a regulatory role not only by enhancing the pulmonary neutrophilia and production of IL-6 and TNF-alpha but also by impairing the protective Th1 response, which ultimately restricts mycobacterial growth.

  17. Synthesis, characterisation and DFT studies of three Schiff bases derived from histamine

    NASA Astrophysics Data System (ADS)

    Touafri, Lasnouni; Hellal, Abdelkader; Chafaa, Salah; Khelifa, Abdellah; Kadri, Abdelaziz.

    2017-12-01

    In this paper, we report first, the synthesis and characterisation of three Schiff bases derived from histamine by condensation of histamine with various aldehydes. Then, we present a detailed DFT study based on B3LYP/6-31G(d,p) of geometrical structures and electronic properties of these compounds. The study was extended to the HOMO-LUMO analysis to calculate the energy gap (Δ), Ionisation potential (I), Electron Affinity (A), Global Hardness (η), Chemical Potential (μ), Electrophilicity (ω), Electronegativity (χ) and Polarisability (α). The calculated HOMO and LUMO energy reveals that the charge transfers occurring within the molecule. On the basis of vibration analyses, the thermodynamic properties of the titles compound were also calculated.

  18. The vascular permeabilizing factors histamine and serotonin induce angiogenesis through TR3/Nur77 and subsequently truncate it through thrombospondin-1

    PubMed Central

    Qin, Liuliang; Zhao, Dezheng; Xu, Jianfeng; Ren, Xianghui; Terwilliger, Ernest F.; Parangi, Sareh; Lawler, Jack; Dvorak, Harold F.

    2013-01-01

    Angiogenesis plays an important role in cancer and in many other human diseases. Vascular endothelial growth factor-A (VEGF-A), the best known angiogenic factor, was originally discovered as a potent vascular permeability factor (VPF), suggesting that other vascular permeabilizing agents, such as histamine and serotonin, might also have angiogenic activity. We recently demonstrated that, like VEGF-A, histamine and serotonin up-regulate the orphan nuclear receptor and transcription factor TR3 (mouse homolog Nur77) and that TR3/Nur77 is essential for their vascular permeabilizing activities. We now report that histamine and serotonin are also angiogenic factors that, at low micromolar concentrations, induce endothelial cell proliferation, migration and tube formation in vitro, and angiogenesis in vivo. All of these responses are mediated through specific histamine and serotonin receptors, are independent of VEGF-A, and are directly dependent on TR3/Nur77. Initially, the angiogenic response closely resembled that induced by VEGF-A, with generation of “mother” vessels. However, after ∼10 days, mother vessels began to regress as histamine and serotonin, unlike VEGF-A, up-regulated the potent angiogenesis inhibitor thrombospondin-1, thereby triggering a negative feedback loop. Thus, histamine and serotonin induce an angiogenic response that fits the time scale of acute inflammation. PMID:23315169

  19. Utilization of Diamine Oxidase Enzyme from Mung Bean Sprouts (Vigna radiata L) for Histamine biosensors

    NASA Astrophysics Data System (ADS)

    Karim, Abdul; Wahab, A. W.; Raya, I.; Natsir, H.; Arif, A. R.

    2018-03-01

    This research is aimed to utilize the diamine oxidase enzyme (DAO) which isolated from mung bean sprouts (Vigna radiata L) to develop histamine biosensors based on electode enzyme with the amperometric method (cyclic voltammetry).The DAO enzyme is trapped inside the membrane of chitin-cellulose acetate 2:1 and glutaraldehyde which super imposed on a Pt electrode. Histamine will be oxidized by DAO enzyme to produce aldehydes and H2O2 that acting as electron transfer mediators.The performance of biosensors will be measured at various concentrations of glutaraldehyde, temperature changes and different range of pH. Recently, it has been found that the optimal conditions obtained from the paramaters as follows; at 25% of glutaraldehyde, temperature of 37°C and pH of 7.4. Eventually, the results provided an expectation for applying histamine biosensors in determining the freshness and safety of fish specifically skombroidae families.

  20. Determination of trans- and cis-urocanic acid in relation to histamine, putrescine, and cadaverine contents in tuna (Auxis Thazard) at different storage temperatures.

    PubMed

    Zare, Davood; Muhammad, Kharidah; Bejo, Mohd Hair; Ghazali, H M

    2015-02-01

    Scombroid fish poisoning is usually associated with consumption of fish containing high levels of histamine. However, reports indicate that some cases have responded to antihistamine therapy while ingested histamine levels in these cases were low. Potentiation of histamine toxicity by some biogenic amines, and release of endogenous histamine by other compounds such as cis-urocanic acid (UCA) are some hypotheses that have been put forth to explain this anomaly. Very little is known about the effects of storage conditions on the production of both UCA isomers and biogenic amines in tuna. Thus, the production of trans- and cis-UCA, histamine, putrescine, and cadaverine in tuna during 15 d of storage at 0, 3, and 10 °C and 2 d storage at ambient temperature were monitored. The initial trans- and cis-UCA contents in fresh tuna were 2.90 and 1.47 mg/kg, respectively, whereas the levels of putrescine and cadaverine were less than 2 mg/kg, and histamine was not detected. The highest levels of trans- and cis-UCA were obtained during 15 d storage at 3 °C (23.74 and 21.79 mg/kg, respectively) while the highest concentrations of histamine (2796 mg/kg), putrescine (220.32 mg/kg) and cadaverine (1045.20 mg/kg) were obtained during storage at room temperature, 10 and 10 °C, respectively. Histamine content increased considerably during storage at 10 °C whereas trans- and cis-UCA contents changed slightly. The initial trans-UCA content decreased during storage at ambient temperature. Thus, unlike histamine, concentrations of trans- and cis-UCA did not result in elevated levels during storage of tuna. © 2015 Institute of Food Technologists®

  1. A decay of gap junctions associated with ganglion cell differentiation during retinal regeneration of the adult newt.

    PubMed

    Oi, Hanako; Chiba, Chikafumi; Saito, Takehiko

    2003-12-01

    Changes in the gap junctional coupling and maturation of voltage-activated Na(+) currents during regeneration of newt retinas were examined by whole-cell patch-clamping in slice preparations. Progenitor cells in regenerating retinas did not exhibit Na(+) currents but showed prominent electrical and tracer couplings. Cells identified by LY-fills were typically slender. Na(+) currents were detected in premature ganglion cells with round somata in the 'intermediate-II' regenerating retina. No electrical and tracer couplings were observed between these cells. Mature ganglion cells did not exhibit electrical coupling, but showed tracer coupling. On average, the maximum Na(+) current amplitude recorded from premature ganglion cells was roughly 2.5-fold smaller than that of mature ganglion cells. In addition, the activation threshold of the Na(+) current was nearly 11 mV more positive than that of mature cells. We provide morphological and physiological evidence showing that loss of gap junctions between progenitor cells is associated with ganglion cell differentiation during retinal regeneration and that new gap junctions are recreated between mature ganglion cells. Also we provide evidence suggesting that the loss of gap junctions correlates with the appearance of voltage-activated Na(+) currents in ganglion cells.

  2. [Effect of high-fat diet on expression of transient receptor potential vanilloid 1 in respiratory tract and dorsal root ganglion of mice].

    PubMed

    Zhu, Lian; Xu, Zhi-Liang

    2017-07-01

    To investigate the effect of high-fat diet on the expression of transient receptor potential vanilloid 1 (TRPV1) in the respiratory system and the dorsal root ganglion (DRG) of mice, as well as its effect on the excitability of sensory neurons. A total of 20 C57BL/6 mice were randomly divided into normal-diet (ND) group and high-fat diet (HFD) group, with 10 mice in each group. The mice were given corresponding diets and body weights were monitored. After 7 weeks of feeding, lung tissue, bronchial tissue, and DRG at thoracic segments 3-4 were collected and immunohistochemical staining was performed. A patch clamp was used to measure the number of action potentials and TRPV1 current intensity in the DRG. After 7 weeks of feeding, the HFD group had significantly greater mean weight gain than the ND group (6.4±2.6 g vs 2.3±0.5 g; P<0.001). The HFD group had significantly higher expression of TRPV1 in the bronchus, pulmonary alveoli, and DRG than the ND group (P<0.05). Compared with the ND group, the HFD group had significant increases in the TRPV1 current intensity and number of action potentials in the DRG (P<0.05). High-fat diet induces a significant increase in body weight and leads to high expression of TRPV1 and high excitability in the respiratory system and the peripheral sensory neurons. This suggests that TRPV1 may be an important factor in the physiopathological mechanisms of bronchial hyperresponsiveness.

  3. Accelerated retinal ganglion cell death in mice deficient in the Sigma-1 receptor.

    PubMed

    Mavlyutov, Timur A; Nickells, Robert W; Guo, Lian-Wang

    2011-04-26

    The sigma-1 receptor (σR1), a ligand-operated chaperone, has been inferred to be neuroprotective in previous studies using σR1 ligands. The σR1 specificity of the protective function, however, has yet to be firmly established, due to the existence of non-σR1 targets of the ligands. Here, we used the σR1-knockout mouse (Sigmar1(-/-)) to demonstrate unambiguously the role of the σR1 in protecting the retinal ganglion cells against degeneration after acute damage to the optic nerve. Retinal σR binding sites were labeled with radioiodinated σR ligands and analyzed by autoradiography. Localization of the σR1 was performed by indirect immunofluorescence on frozen retinal sections. Retinal ganglion cell death was induced by acute optic nerve crush in wild-type and Sigmar1(-/-) mice. Surviving cells in the ganglion cell layer were counted on Nissl-stained retinal whole mounts 7 days after the crush surgery. Photoaffinity labeling indicated the presence of the σR1 in the retina, in concentrations equivalent to those in liver tissue. Immunolabeling detected this receptor in cells of both the ganglion cell layer and the photoreceptor cell layer in wild-type retinas. Quantification of cells remaining after optic nerve crush showed that 86.8±7.9% cells remained in the wild-type ganglion cell layer, but only 68.3±3.4% survived in the Sigmar1(-/-), demonstrating a significant difference between the wild-type and the Sigmar1(-/-) in crush-induced ganglion cell loss. Our data indicated faster retinal ganglion cell death in Sigmar1(-/-) than in wild-type mice under the stresses caused by optic nerve crush, providing direct evidence for a role of the σR1 in alleviating retinal degeneration. This conclusion is consistent with the previous pharmacological studies using σR1 agonists. Thus, our study supports the idea that the σR1 is a promising therapeutic target for neurodegenerative retinal diseases, such as glaucoma.

  4. Desloratadine citrate disodium injection, a potent histamine H(1) receptor antagonist, inhibits chemokine production in ovalbumin-induced allergic rhinitis guinea pig model and histamine-induced human nasal epithelial cells via inhibiting the ERK1/2 and NF-kappa B signal cascades.

    PubMed

    Chen, Meiling; Xu, Shuhong; Zhou, Peipei; He, Guangwei; Jie, Qiong; Wu, Yulin

    2015-11-15

    Chemokines have chemotactic properties on leukocyte subsets whose modulation plays a pivotal role in allergic inflammatory processes. Our present study was designed to investigate the anti-allergic and anti-inflammatory properties of desloratadine citrate disodium injection (DLC) and elucidate the molecular mechanisms of its anti-inflammatory properties. The anti-allergic effects of DLC were evaluated based on allergic symptoms, serological marker production and histological changes of the nasal mucosa in guinea pigs model of allergic rhinitis. The anti-inflammatory properties and molecular mechanisms of DLC were explored by studying the regulation of a set of chemokines and extracellular signal-regulated kinase (ERK)1/2 and nuclear factor-kappa B (NF-κB) pathways, after DLC treatment in guinea pigs model of allergic rhinitis in vivo and histamine-activated human nasal epithelial cells (HNECs) in vitro. In vivo model in guinea pigs, DLC alleviated the rhinitis symptoms, inhibited inflammatory cells infiltration in nasal lavage fluid (NLF) and histamine, monocyte chemotactic protein (MCP)-1, regulated on activation normal T cell expressed, and presumably secreted (RANTEs) and interleukin (IL)-8 release in sera and P-ERK1/2 and NF-κB activation in nasal mucosa. In vitro, DLC markedly inhibited histamine-induced production of MCP-1, RANTEs and IL-8 and suppressed c-Raf, mitogen-activated protein/extracellular signal-regulated kinase kinase (MEK) and ERK1/2 activation in HNECs. These results provide evidence that DLC possesses potent anti-allergic and anti-inflammatory properties. The mechanism of action underlying DLC in allergic inflammation appears to be inhibition of the phosphorylation of ERK1/2, in addition to blocking of the NF-κB pathway. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Inhibition of histamine and eicosanoid release from dispersed human lung cells in vitro by quinotolast.

    PubMed

    Okayama, Y; Hiroi, J; Lau, L C; Church, M K

    1995-12-01

    We have examined the effects of a new anti-allergic drug, quinotolast [sodium 5-(4-oxo-1-phenoxy-4H-quinolizine-3-carboxamido) yetrazolate monohydrate], in inhibiting the release of histamine and the generation of leukotriene (LT) C4 and prostaglandin (PG) D2 from dispersed human lung cells and compared this with those of its active metabolite in the rat, hydroxy quinotolast, and reference drugs, tranilast and sodium cromoglycate (SCG). Quinotolast in the concentration range of 1-100 micrograms/ml inhibited histamine and LTC4 release in a concentration-dependent manner. The inhibitory effect of quinotolast on histamine release from dispersed lung cells was largely independent of the preincubation period, no tachyphylaxis being observed. Hydroxy quinotolast and tranilast showed a weak inhibition of histamine release only when the drugs were added to the cells simultaneously with anti-IgE challenge. Quinotolast, 100 micrograms/ml, and SCG, 1 mM, significantly inhibited PGD2 and LTC4 release. Quinotolast inhibited PGD2 release by 100% and LTC4 release by 54%, whereas SCG inhibited PDG2 release by 33% and LTC4 release by 100%. No cross-tachyphylaxis between quinotolast and SCG was observed. The results demonstrated that quinotolast showed a significant inhibition of inflammatory mediators from human dispersed lung cells, suggesting that quinotolast is a good candidate for a clinical anti-allergic drug.

  6. Simultaneous detection of pH changes and histamine release from oxyntic glands in isolated stomach.

    PubMed

    Bitziou, Eleni; O'Hare, Danny; Patel, Bhavik Anil

    2008-11-15

    Real-time simultaneous detection of changes in pH and levels of histamine over the oxyntic glands of guinea pig stomach have been investigated. An iridium oxide pH microelectrode was used in a potentiometric mode to record the pH decrease associated with acid secretion when the sensor approached the isolated tissue. A boron-doped diamond (BDD) microelectrode was used in an amperometric mode to detect histamine when the electrode was placed over the tissue. Both sensors provided stable and reproducible responses that were qualitatively consistent with the signaling mechanism for acid secretion at the stomach. Simultaneous measurements in the presence of pharmacological treatments produced significant variations in the signals obtained by both sensors. As the H2 receptor antagonist cimetidine was perfused to the tissue, histamine levels increased that produced an increase in the signal of the BDD electrode whereas the pH sensor recorded a decrease in acid secretion as expected. Addition of acetylcholine (ACh) stimulated additional acid secretion detected with the pH microelectrode whereas the BDD sensor recorded the histamine levels decreasing significantly. This result shows that the primary influence of ACh is directly on the parietal cell receptors rather then the ECL cell receptors of the oxyntic glands. These results highlight the power of this simultaneous detection technique in the monitoring and diagnosis of physiological significant signaling mechanisms and pathways.

  7. Shifting physician prescribing to a preferred histamine-2-receptor antagonist. Effects of a multifactorial intervention in a mixed-model health maintenance organization.

    PubMed

    Brufsky, J W; Ross-Degnan, D; Calabrese, D; Gao, X; Soumerai, S B

    1998-03-01

    This study was undertaken to determine whether a program of education, therapeutic reevaluation of eligible patients, and performance feedback could shift prescribing to cimetidine from other histamine-2 receptor antagonists, which commonly are used in the management of ulcers and reflux, and reduce costs without increasing rates of ulcer-related hospital admissions. This study used an interrupted monthly time series with comparison series in a large mixed-model health maintenance organization. Physicians employed in health centers (staff model) and physicians in independent medical groups contracting to provide health maintenance organization services (group model) participated. The comparative percentage prescribed of specific histamine-2 receptor antagonists (market share), total histamine-2 receptor antagonist prescribing, cost per histamine-2 receptor antagonist prescription, and the rate of hospitalization for gastrointestinal illness were assessed. In the staff model, therapeutic reevaluation resulted in a sudden increase in market share of the preferred histamine-2 receptor antagonist cimetidine (+53.8%) and a sudden decrease in ranitidine (-44.7%) and famotidine (-4.8%); subsequently, cimetidine market share grew by 1.1% per month. In the group model, therapeutic reevaluation resulted in increased cimetidine market share (+9.7%) and decreased prescribing of other histamine-2 receptor antagonists (ranitidine -11.6%; famotidine -1.2%). Performance feedback did not result in further changes in prescribing in either setting. Use of omeprazole, an expensive alternative, essentially was unchanged by the interventions, as were overall histamine-2 receptor antagonist prescribing and hospital admissions for gastrointestinal illnesses. This intervention, which cost approximately $60,000 to implement, resulted in estimated annual savings in histamine-2 receptor antagonist expenditures of $1.06 million. Annual savings in histamine-2 receptor antagonist expenditures

  8. Histamine Enhances Theta-Coupled Spiking and Gamma Oscillations in the Medial Entorhinal Cortex Consistent With Successful Spatial Recognition.

    PubMed

    Chen, Quanhui; Luo, Fenlan; Yue, Faguo; Xia, Jianxia; Xiao, Qin; Liao, Xiang; Jiang, Jun; Zhang, Jun; Hu, Bo; Gao, Dong; He, Chao; Hu, Zhian

    2017-06-07

    Encoding of spatial information in the superficial layers of the medial entorhinal cortex (sMEC) involves theta-modulated spiking and gamma oscillations, as well as spatially tuned grid cells and border cells. Little is known about the role of the arousal-promoting histaminergic system in the modification of information encoded in the sMEC in vivo, and how such histamine-regulated information correlates with behavioral functions. Here, we show that histamine upregulates the neural excitability of a significant proportion of neurons (16.32%, 39.18%, and 52.94% at 30 μM, 300 μM, and 3 mM, respectively) and increases local theta (4-12 Hz) and gamma power (low: 25-48 Hz; high: 60-120 Hz) in the sMEC, through activation of histamine receptor types 1 and 3. During spatial exploration, the strength of theta-modulated firing of putative principal neurons and high gamma oscillations is enhanced about 2-fold by histamine. The histamine-mediated increase of theta phase-locking of spikes and high gamma power is consistent with successful spatial recognition. These results, for the first time, reveal possible mechanisms involving the arousal-promoting histaminergic system in the modulation of spatial cognition. Published by Oxford University Press 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  9. A randomized clinical trial of histamine 2 receptor antagonism in treatment-resistant schizophrenia.

    PubMed

    Meskanen, Katarina; Ekelund, Heidi; Laitinen, Jarmo; Neuvonen, Pertti J; Haukka, Jari; Panula, Pertti; Ekelund, Jesper

    2013-08-01

    Histamine has important functions as regulator of several other key neurotransmitters. Patients with schizophrenia have lower histamine H1 receptor levels. Since a case report in 1990 of an effect of the H2 antagonist famotidine on negative symptoms in schizophrenia, some open-label trials have been performed, but no randomized controlled trial. Recently, it was shown that clozapine is a full inverse agonist at the H2 receptor. We performed a researcher-initiated, academically financed, double-blind, placebo-controlled, parallel-group, randomized trial with the histamine H2 antagonist famotidine in treatment-resistant schizophrenia. Thirty subjects with schizophrenia were randomized to have either famotidine (100 mg twice daily, n = 16) or placebo (n = 14) orally, added to their normal treatment regimen for 4 weeks. They were followed up weekly with the Scale for the Assessment of Negative Symptoms (SANS), the PANSS (Positive and Negative Syndrome Scale), and Clinical Global Impression (CGI) Scale. In the famotidine group, the SANS score was reduced by 5.3 (SD, 13.1) points, whereas in the placebo group the SANS score was virtually unchanged (mean change, +0.2 [SD, 9.5]). The difference did not reach statistical significance (P = 0.134) in Mann-Whitney U analysis. However, the PANSS Total score and the General subscore as well as the CGI showed significantly (P < 0.05) greater change in the famotidine group than in the placebo group. No significant adverse effects were observed. This is the first placebo-controlled, randomized clinical trial showing a beneficial effect of histamine H2 antagonism in schizophrenia. H2 receptor antagonism may provide a new alternative for the treatment of schizophrenia.

  10. Lipoxin A4 Counter-regulates Histamine-stimulated Glycoconjugate Secretion in Conjunctival Goblet Cells.

    PubMed

    Hodges, Robin R; Li, Dayu; Shatos, Marie A; Serhan, Charles N; Dartt, Darlene A

    2016-11-08

    Conjunctival goblet cells synthesize and secrete mucins which play an important role in protecting the ocular surface. Pro-resolution mediators, such as lipoxin A 4 (LXA 4 ), are produced during inflammation returning the tissue to homeostasis and are also produced in non-inflamed tissues. The purpose of this study was to determine the actions of LXA 4 on cultured human conjunctival goblet cell mucin secretion and increase in intracellular [Ca 2+ ] ([Ca 2+ ] i ) and on histamine-stimulated responses. LXA 4 increased mucin secretion and [Ca 2+ ] i , and activated ERK1/2 in human goblet cells. Addition of LXA 4 before resolvin D1 (RvD1) decreased RvD1 responses though RvD1 did not block LXA 4 responses. LXA 4 inhibited histamine-stimulated increases in mucin secretion, [Ca 2+ ] i , and ERK1/2 activation through activation of β-adrenergic receptor kinase 1. We conclude that conjunctival goblet cells respond to LXA 4 through the ALX/FPR2 receptor to maintain homeostasis of the ocular surface and regulate histamine responses and could provide a new therapeutic approach for allergic conjunctivitis and dry eye diseases.

  11. Lipoxin A4 Counter-regulates Histamine-stimulated Glycoconjugate Secretion in Conjunctival Goblet Cells

    PubMed Central

    Hodges, Robin R.; Li, Dayu; Shatos, Marie A.; Serhan, Charles N.; Dartt, Darlene A.

    2016-01-01

    Conjunctival goblet cells synthesize and secrete mucins which play an important role in protecting the ocular surface. Pro-resolution mediators, such as lipoxin A4 (LXA4), are produced during inflammation returning the tissue to homeostasis and are also produced in non-inflamed tissues. The purpose of this study was to determine the actions of LXA4 on cultured human conjunctival goblet cell mucin secretion and increase in intracellular [Ca2+] ([Ca2+]i) and on histamine-stimulated responses. LXA4 increased mucin secretion and [Ca2+]i, and activated ERK1/2 in human goblet cells. Addition of LXA4 before resolvin D1 (RvD1) decreased RvD1 responses though RvD1 did not block LXA4 responses. LXA4 inhibited histamine-stimulated increases in mucin secretion, [Ca2+]i, and ERK1/2 activation through activation of β-adrenergic receptor kinase 1. We conclude that conjunctival goblet cells respond to LXA4 through the ALX/FPR2 receptor to maintain homeostasis of the ocular surface and regulate histamine responses and could provide a new therapeutic approach for allergic conjunctivitis and dry eye diseases. PMID:27824117

  12. Angioarchitecture of the coeliac sympathetic ganglion complex in the common tree shrew (Tupaia glis)

    PubMed Central

    PROMWIKORN, WARAPORN; THONGPILA, SAKPORN; PRADIDARCHEEP, WISUIT; MINGSAKUL, THAWORN; CHUNHABUNDIT, PANJIT; SOMANA, REON

    1998-01-01

    The angioarchitecture of the coeliac sympathetic ganglion complex (CGC) of the common tree shrew (Tupaia glis) was studied by the vascular corrosion cast technique in conjunction with scanning electron microscopy. The CGC of the tree shrew was found to be a highly vascularised organ. It normally received arterial blood supply from branches of the inferior phrenic, superior suprarenal and inferior suprarenal arteries and of the abdominal aorta. In some animals, its blood supply was also derived from branches of the middle suprarenal arteries, coeliac artery, superior mesenteric artery and lumbar arteries. These arteries penetrated the ganglion at variable points and in slightly different patterns. They gave off peripheral branches to form a subcapsular capillary plexus while their main trunks traversed deeply into the inner part before branching into the densely packed intraganglionic capillary networks. The capillaries merged to form venules before draining into collecting veins at the peripheral region of the ganglion complex. Finally, the veins coursed to the dorsal aspect of the ganglion to drain into the renal and inferior phrenic veins and the inferior vena cava. The capillaries on the coeliac ganglion complex do not possess fenestrations. PMID:9877296

  13. Retinal ganglion cell projections to the hamster suprachiasmatic nucleus, intergeniculate leaflet, and visual midbrain: bifurcation and melanopsin immunoreactivity

    NASA Technical Reports Server (NTRS)

    Morin, Lawrence P.; Blanchard, Jane H.; Provencio, Ignacio

    2003-01-01

    The circadian clock in the suprachiasmatic nucleus (SCN) receives direct retinal input via the retinohypothalamic tract (RHT), and the retinal ganglion cells contributing to this projection may be specialized with respect to direct regulation of the circadian clock. However, some ganglion cells forming the RHT bifurcate, sending axon collaterals to the intergeniculate leaflet (IGL) through which light has secondary access to the circadian clock. The present studies provide a more extensive examination of ganglion cell bifurcation and evaluate whether ganglion cells projecting to several subcortical visual nuclei contain melanopsin, a putative ganglion cell photopigment. The results showed that retinal ganglion cells projecting to the SCN send collaterals to the IGL, olivary pretectal nucleus, and superior colliculus, among other places. Melanopsin-immunoreactive (IR) ganglion cells are present in the hamster retina, and some of these cells project to the SCN, IGL, olivary pretectal nucleus, or superior colliculus. Triple-label analysis showed that melanopsin-IR cells bifurcate and project bilaterally to each SCN, but not to the other visual nuclei evaluated. The melanopsin-IR cells have photoreceptive characteristics optimal for circadian rhythm regulation. However, the presence of moderately widespread bifurcation among ganglion cells projecting to the SCN, and projection by melanopsin-IR cells to locations distinct from the SCN and without known rhythm function, suggest that this ganglion cell type is generalized, rather than specialized, with respect to the conveyance of photic information to the brain. Copyright 2003 Wiley-Liss, Inc.

  14. Thresholds for activation of rabbit retinal ganglion cells with an ultrafine, extracellular microelectrode.

    PubMed

    Jensen, Ralph J; Rizzo, Joseph F; Ziv, Ofer R; Grumet, Andrew; Wyatt, John

    2003-08-01

    To determine electrical thresholds required for extracellular activation of retinal ganglion cells as part of a project to develop an epiretinal prosthesis. Retinal ganglion cells were recorded extracellularly in retinas isolated from adult New Zealand White rabbits. Electrical current pulses of 100- micro s duration were delivered to the inner surface of the retina from a 5- micro m long electrode. In about half of the cells, the point of lowest threshold was found by searching with anodal current pulses; in the other cells, cathodal current pulses were used. Threshold measurements were obtained near the cell bodies of 20 ganglion cells and near the axons of 19 ganglion cells. Both cathodal and anodal stimuli evoked a neural response in the ganglion cells that consisted of a single action potential of near-constant latency that persisted when retinal synaptic transmission was blocked with cadmium chloride. For cell bodies, but not axons, thresholds for both cathodal and anodal stimulation were dependent on the search method used to find the point of lowest threshold. With search and stimulation of matching polarity, cathodal stimuli evoked a ganglion cell response at lower currents (approximately one seventh to one tenth axonal threshold) than did anodal stimuli for both cell bodies and axons. With cathodal search and stimulation, cell body median thresholds were somewhat lower (approximately one half) than the axonal median thresholds. With anodal search and stimulation, cell body median thresholds were approximately the same as axonal median thresholds. The results suggest that cathodal stimulation should produce lower thresholds, more localized stimulation, and somewhat better selectivity for cell bodies over axons than would anodal stimulation.

  15. Changes in NGF and NT-3 protein species in the superior cervical ganglion following axotomy of postganglionic axons.

    PubMed

    Walker, Ryan G; Foster, Andrew; Randolph, Chris L; Isaacson, Lori G

    2009-02-19

    Mature sympathetic neurons in the superior cervical ganglion (SCG) are regulated by target-derived neurotrophins such as nerve growth factor (NGF) and neurotrophin-3 (NT-3). High molecular weight NGF species and mature NT-3 are the predominant NGF and NT-3 protein isoforms in the SCG, yet it is unknown whether the presence of these species is dependent on intact connection with the target tissues. In an attempt to determine the role of peripheral targets in regulating the neurotrophin species found in the SCG, we investigated the NGF and NT-3 protein species present in the SCG following axotomy (transection) or injury of the post-ganglionic axons. Following a 7 day axotomy, the 22-24 kDa NGF species and the mature 14 kDa NT-3 species in the SCG were significantly reduced by 99% and 66% respectively, suggesting that intact connection with the target is necessary for the expression of these protein species. As expected, tyrosine hydroxylase (TH) protein in the SCG was significantly reduced by 80% at 7 days following axotomy. In order to distinguish between the effects of injury and loss of target connectivity, the SCG was examined following compression injury to the post-ganglionic nerves. Following injury, no reduction in the 22-24 kDa NGF or 14 kDa mature NT-3 species was observed in the SCG. TH protein was slightly, yet significantly, decreased in the SCG following injury. The findings of this study suggest that the presence of the 22-24 kDa NGF and mature 14 kDa NT-3 species in the SCG is dependent on connection with peripheral targets and may influence, at least in part, TH protein expression in adult sympathetic neurons.

  16. Leucine 208 in human histamine N-methyltransferase emerges as a hotspot for protein stability rationalizing the role of the L208P variant in intellectual disability.

    PubMed

    Tongsook, Chanakan; Niederhauser, Johannes; Kronegger, Elena; Straganz, Grit; Macheroux, Peter

    2017-01-01

    The degradation of histamine catalyzed by the SAM-dependent histamine N-methyltransferase (HNMT) is critically important for the maintenance of neurological processes. Recently, two mutations in the encoding human gene were reported to give rise to dysfunctional protein variants (G60D and L208P) leading to intellectual disability. In the present study, we have expressed eight L208 variants with either apolar (L208F and L208V), polar (L208N and L208T) or charged (L208D, L208H, L208K and L208R) amino acids to define the impact of side chain variations on protein structure and function. We found that the variants L208N, L208T, L208D and L208H were severely compromised in their stability. The other four variants were obtained in lower amounts in the order wild-type HNMT>L208F=L208V>L208K=L208R. Biochemical characterization of the two variants L208F and L208V exhibited similar Michaelis-Menten parameters for SAM and histamine while the enzymatic activity was reduced to 21% and 48%, respectively. A substantial loss of enzymatic activity and binding affinity for histamine was seen for the L208K and L208R variants. Similarly the thermal stability for the latter variants was reduced by 8 and 13°C, respectively. These findings demonstrate that position 208 is extremely sensitive to side chain variations and even conservative replacements affect enzymatic function. Molecular dynamics simulations showed that amino acid replacements in position 208 perturb the helical character and disrupt interactions with the adjacent β-strand, which is involved in the binding and correct positioning of histamine. This finding rationalizes the gradual loss of enzymatic activity observed in the L208 variants. Copyright © 2016 The Author(s). Published by Elsevier B.V. All rights reserved.

  17. [A preliminary study on the role of substance P in histamine-nasal-spray-induced allergic conjunctivitis in guinea pigs].

    PubMed

    Li, Tong; Zhao, Changqing

    2015-10-01

    To investigate the effect of the non adrenergic non cholinergic nerve (NANC) and substance P (SP) in allergic rhinoconjunctivitis by observing histamine nasal provocation induced conjunctivitis in guinea pigs. Forty male guinea pigs were randomly divided into five groups with each group consisting of eight guinea pigs. All anesthetized guinea pigs were exposed either to histamine (0.2%, 5 µl) (group B~E) or saline (5 µl, group A) via unilateral nostril. No pretreatment was done in group A and B while pretreatment was done in groups C~E through injection into the unilateral common carotid artery with cholinergic nerve inhibitor (atropine, 1 mg/kg, group C), cholinergic nerve inhibitor plus adrenergic nerve inhibitors (atropine, 1 mg/kg, phentolamine, 1 mg/kg plus Esmolol, 1 mg/kg, group D) and cholinergic nerve inhibitor, adrenergic nerve inhibitors plus SP receptor antagonist (the same treatment with group D plus D-SP 10(-6) mol/L, 1 µl/g, group E), respectively. To assess the ipsilateral conjunctival inflammatory reaction, conjunctiva leakage with Evans blue dye assessments and HE staining of conjunctival tissues were performed. The SP expression in ipsilateral conjunctival tissue in different groups of guinea pigs were assessed by immunofluorescence and RT-PCR. The activity of eosinophils was assessed by eosinophil major basic protein 1 (MBP1) with RT-PCR, meanwhile, the activity of mast cells was assessed by tryptase with RT-PCR. SPSS 17.0 software was used to analyze the data. At 30 min after nasal application of histamine, ipsilateral conjunctivitis was successfully induced as shown by the change of conjunctiva leakage and histology. The content of Evans blue in ipsilateral conjunctival tissue of group A~E was (13.78 ± 2.48), (29.62 ± 3.31), (19.03 ± 1.47), (18.42 ± 2.52), (14.83 ± 2.14) µg/ml, respectively. There was statistically significant difference between group A and B (t = -10.66, P < 0.05), group B and C (t = 7.97, P < 0.05), group C and E (t

  18. Effects of vasoactive intestinal peptide, helodermin and galanin on responses of guinea-pig lung parenchyma to histamine, acetylcholine and leukotriene D4.

    PubMed Central

    Conroy, D. M.; Samhoun, M. N.; Piper, P. J.

    1991-01-01

    1. The effect of vasoactive intestinal peptide (VIP) was studied on the contractile response of guinea-pig lung parenchymal strips (GPP) induced by bronchoconstrictor agonists, such as leukotriene D4 (LTD4), histamine and acetylcholine (ACh). This effect of VIP was compared with helodermin, a peptide that is structurally related to VIP, and galanin, another neuropeptide that is thought to co-exist with VIP. 2. VIP (10 nM) induced a potent and reversible inhibition of the contractions of GPP induced by LTD4 (1-30 pmol) but did not affect those due to ACh (1-100 nmol) or histamine (1-30 nmol). A ten fold higher concentration of VIP (100 nM) did not further inhibit LTD4-induced responses or reduce those induced by histamine or ACh. 3. Helodermin (10 nM) had a similar inhibitory effect on contractions of GPP induced by LTD4 (3-30 pmol) but did not affect contractions induced by histamine (1-10 nmol). 4. Indomethacin (2.8 microM) and salbutamol (10 nM) significantly reduced responses elicited by LTD4 and histamine but not those due to ACh. A ten fold higher concentration of salbutamol (100 nM) further inhibited the contractions due to LTD4 and histamine and at this concentration responses induced by ACh were inhibited. 5. VIP (10 nM) and helodermin (10 nM) significantly reduced the LTD4-induced release of thromboxane A2 (TXA2), measured as TxB2 by radioimmunoassay, from GPP. The smaller release of TxA2 induced by histamine was not significantly reduced in the presence of VIP. 6. In comparative studies, galanin (10-100 nM) did not affect contractions of GPP induced by either LTD4, histamine or ACh.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1725762

  19. Tumor necrosis factor-α inhibits angiotensin II receptor type 1 expression in dorsal root ganglion neurons via β-catenin signaling.

    PubMed

    Yang, Y; Wu, H; Yan, J-Q; Song, Z-B; Guo, Q-L

    2013-09-17

    Both tumor necrosis factor (TNF)-α and the angiotensin (Ang) II/angiotensin II receptor type 1 (AT1) axis play important roles in neuropathic pain and nociception. In the present study, we explored the interaction between the two systems by examining the mutual effects between TNF-α and the Ang II/AT1 receptor axis in dorsal root ganglion (DRG) neurons. Rat DRG neurons were treated with TNF-α in different concentrations for different lengths of time in the presence or absence of transcription inhibitor actinomycin D, TNF receptor 1 (TNFR1) inhibitor SPD304, β-catenin signaling inhibitor CCT031374, or different kinase inhibitors. TNF-α decreased the AT1 receptor mRNA level as well as the AT1a receptor promoter activity in a dose-dependent manner within 30 h, which led to dose-dependent inhibition of Ang II-binding AT1 receptor level on the cell membrane. Actinomycin D (1 mg/ml), SPD304 (50 μM), p38 mitogen-activated protein kinase (MAPK) inhibitor PD169316 (25 μM), and CCT031374 (50 μM) completely abolished the inhibitory effect of TNF-α on AT1 receptor expression. TNF-α dose-dependently increased soluble β-catenin and phosphorylated GSK-3β levels, which was blocked by SPD304 and PD169316. In DRG neurons treated with AT2 receptor agonist CGP421140, or Ang II with or without AT1 receptor antagonist losartan or AT2 receptor antagonist PD123319 for 30 h, we found that Ang II and Ang II+PD123319 significantly decreased TNF-α expression, whereas CPG421140 and Ang II+losartan increased TNF-α expression. In conclusion, we demonstrate that TNF-α inhibits AT1 receptor expression at the transcription level via TNFR1 in rat DRG neurons by increasing the soluble β-catenin level through the p38 MAPK/GSK-3β pathway. In addition, Ang II appears to inhibit and induce TNF-α expression via the AT1 receptor and the AT2 receptor in DRG neurons, respectively. This is the first evidence of crosstalk between TNF-α and the Ang II/AT receptor axis in DRG neurons

  20. Broad Thorny Ganglion Cells: A Candidate for Visual Pursuit Error Signaling in the Primate Retina

    PubMed Central

    Manookin, Michael B.; Neitz, Jay; Rieke, Fred

    2015-01-01

    Functional analyses exist only for a few of the morphologically described primate ganglion cell types, and their correlates in other mammalian species remain elusive. Here, we recorded light responses of broad thorny cells in the whole-mounted macaque retina. They showed ON-OFF-center light responses that were strongly suppressed by stimulation of the receptive field surround. Spike responses were delayed compared with parasol ganglion cells and other ON-OFF cells, including recursive bistratified ganglion cells and A1 amacrine cells. The receptive field structure was shaped by direct excitatory synaptic input and strong presynaptic and postsynaptic inhibition in both ON and OFF pathways. The cells responded strongly to dark or bright stimuli moving either in or out of the receptive field, independent of the direction of motion. However, they did not show a maintained spike response either to a uniform background or to a drifting plaid pattern. These properties could be ideally suited for guiding movements involved in visual pursuit. The functional characteristics reported here permit the first direct cross-species comparison of putative homologous ganglion cell types. Based on morphological similarities, broad thorny ganglion cells have been proposed to be homologs of rabbit local edge detector ganglion cells, but we now show that the two cells have quite distinct physiological properties. Thus, our data argue against broad thorny cells as the homologs of local edge detector cells. PMID:25834063

  1. Paracoccygeal corkscrew approach to ganglion impar injections for tailbone pain.

    PubMed

    Foye, Patrick M; Patel, Shounuck I

    2009-01-01

    A new technique for performing nerve blocks of the ganglion impar (ganglion Walther) is presented. These injections have been reported to relieve coccydynia (tailbone pain), as well as other malignant and nonmalignant pelvic pain syndromes. A variety of techniques have been previously described for blocking this sympathetic nerve ganglion, which is located in the retrorectal space just anterior to the upper coccygeal segments. Prior techniques have included approaches through the anococcygeal ligament, through the sacrococcygeal joint, and through intracoccygeal joint spaces. This article presents a new, paracoccygeal approach whereby the needle is inserted alongside the coccyx and the needle is guided through three discrete steps with a rotating or corkscrew trajectory. Compared with some of the previously published techniques, this paracoccygeal corkscrew approach has multiple potential benefits, including ease of fluoroscopic guidance using the lateral view, ability to easily use a stylet for the spinal needle, and use of a shorter, thinner needle. While no single technique works best for all patients and each technique has potential advantages and disadvantages, this new technique adds to the available options.

  2. Regional Differential Effects of the Novel Histamine H3 Receptor Antagonist 6-[(3-Cyclobutyl-2,3,4,5-tetrahydro-1H-3-benzazepin-7-yl)oxy]-N-methyl-3-pyridinecarboxamide hydrochloride (GSK189254) on Histamine Release in the Central Nervous System of Freely Moving Rats

    PubMed Central

    Giannoni, Patrizia; Medhurst, Andrew D.; Passani, Maria Beatrice; Giovannini, Maria Grazia; Ballini, Chiara; Corte, Laura Della

    2010-01-01

    After oral administration, the nonimidazole histamine H3 receptor antagonist, 6-[(3-cyclobutyl-2,3,4,5-tetrahydro-1H-3-benzazepin-7-yl)oxy]-N-methyl-3-pyridinecarboxamide hydrochloride (GSK189254), increased histamine release from the tuberomammillary nucleus, where all histaminergic somata are localized, and from where their axons project to the entire brain. To further understand functional histaminergic circuitry in the brain, dual-probe microdialysis was used to pharmacologically block H3 receptors in the tuberomammillary nucleus, and monitor histamine release in projection areas. Perfusion of the tuberomammillary nucleus with GSK189254 increased histamine release from the tuberomammillary nucleus, nucleus basalis magnocellularis, and cortex, but not from the striatum or nucleus accumbens. Cortical acetylcholine (ACh) release was also increased, but striatal dopamine release was not affected. When administered locally, GSK189254 increased histamine release from the nucleus basalis magnocellularis, but not from the striatum. Thus, defined by their sensitivity to GSK189254, histaminergic neurons establish distinct pathways according to their terminal projections, and can differentially modulate neurotransmitter release in a brain region-specific manner. Consistent with its effects on cortical ACh release, systemic administration of GSK189254 antagonized the amnesic effects of scopolamine in the rat object recognition test, a cognition paradigm with important cortical components. PMID:19815811

  3. Binding mechanisms for histamine and agmatine ligands in plasmid deoxyribonucleic acid purifications.

    PubMed

    Sousa, Ângela; Pereira, Patrícia; Sousa, Fani; Queiroz, João A

    2014-10-31

    Histamine and agmatine amino acid derivatives were immobilized into monolithic disks, in order to combine the specificity and selectivity of the ligand with the high mass transfer and binding capacity offered by monolithic supports, to purify potential plasmid DNA biopharmaceuticals. Different elution strategies were explored by changing the type and salt concentration, as well as the pH, in order to understand the retention pattern of different plasmids isoforms The pVAX1-LacZ supercoiled isoform was isolated from a mixture of pDNA isoforms by using NaCl increasing stepwise gradient and also by ammonium sulfate decreasing stepwise gradient, in both histamine and agmatine monoliths. Acidic pH in the binding buffer mainly strengthened ionic interactions with both ligands in the presence of sodium chloride. Otherwise, for histamine ligand, pH values higher than 7 intensified hydrophobic interactions in the presence of ammonium sulfate. In addition, circular dichroism spectroscopy studies revealed that the binding and elution chromatographic conditions, such as the combination of high ionic strength with extreme pH values can reversibly influence the structural stability of the target nucleic acid. Therefore, ascending sodium chloride gradients with pH manipulation can be preferable chromatographic conditions to be explored in the purification of plasmid DNA biopharmaceuticals, in order to avoid the environmental impact of ammonium sulfate. Copyright © 2014. Published by Elsevier B.V.

  4. Diagnostic ability of macular ganglion cell asymmetry for glaucoma.

    PubMed

    Hwang, Young Hoon; Ahn, Sang Il; Ko, Sung Ju

    2015-11-01

    Using spectral-domain optical coherence tomography (OCT), this study aims to investigate the glaucoma diagnostic ability of macular ganglion cell asymmetry analysis. A cross-sectional study was conducted. This study was performed to investigate glaucoma diagnostic ability of macular ganglion cell asymmetry analysis in eyes with various degrees of glaucoma. We enrolled 181 healthy eyes and 265 glaucomatous eyes. Glaucomatous eyes were subdivided into pre-perimetric, early, moderate and advanced-to-severe glaucoma based on visual field test results. For each eye, macular ganglion cell-inner plexiform layer (GCIPL) thickness was measured using OCT. Average GCIPL thickness, GCIPL thicknesses in superior and inferior hemispheres, absolute difference in GCIPL thickness between superior and inferior hemispheres and GCIPL asymmetry index calculated as the absolute value of log10 (inferior hemisphere thickness/superior hemisphere thickness) were analysed. Areas under the receiver operating characteristics curves (AUCs) of GCIPL parameter were calculated and compared. All of the GCIPL parameters showed good glaucoma diagnostic ability (AUCs ≥ 0.817, P < 0.01). AUCs of average, superior and inferior GCIPL thickness increased as the severity of glaucoma increased. GCIPL thickness difference and asymmetry index showed the highest AUCs in early and moderate glaucoma and lower AUCs in pre-perimetric and advanced-to-severe glaucoma. GCIPL thickness difference and asymmetry index showed better glaucoma diagnostic ability than other GCIPL parameters only in early stage of glaucoma (P < 0.05); in other stages, these parameters had similar to or worse glaucoma diagnostic ability than other GCIPL parameters. Macular ganglion cell asymmetry analysis showed good glaucoma diagnostic ability, especially in early-stage glaucoma. However, it has limited usefulness in other stages of glaucoma. © 2015 Royal Australian and New Zealand College of Ophthalmologists.

  5. Hypothalamic histamine H1 receptor-AMPK signaling time-dependently mediates olanzapine-induced hyperphagia and weight gain in female rats.

    PubMed

    He, Meng; Zhang, Qingsheng; Deng, Chao; Wang, Hongqin; Lian, Jiamei; Huang, Xu-Feng

    2014-04-01

    Although second-generation antipsychotics induce severe weight gain and obesity, there is a lack of detailed knowledge about the progressive development of antipsychotic-induced obesity. This study examined the hypothalamic histamine H1 receptor and AMP-activated protein kinase (H1R-AMPK) signaling at three distinctive stages of olanzapine-induced weight gain (day 1-12: early acceleration, day 13-28: middle new equilibrium, and day 29-36: late heavy weight maintenance). At the early acceleration stage, the rats were hyperphagic with an underlying mechanism of olanzapine-increased H1R mRNA expression and AMPK phosphorylation (pAMPK), in which pAMPK levels positively correlated with H1R mRNA expression and food intake. At the middle stage, when the rats were no longer hyperphagic, the changes in H1R-AMPK signaling vanished. At the late stage, olanzapine increased H1R mRNA expression but decreased pAMPK which were positively and negatively correlated with weight gain, respectively. These data suggest a time-dependent change of H1R-AMPK signaling, where olanzapine activates AMPK by blocking the H1Rs and causing hyperphagia in the acute phase. The chronic blockade of H1R may contribute to the late stage of olanzapine-induced heavy weight maintenance. However, pAMPK was no longer elevated and actually decreased. This indicates that AMPK acts as an energy sensor and negatively responds to the positive energy balance induced by olanzapine. Furthermore, we showed that an H1R agonist, 2-(3-trifluoromethylphenyl) histamine, can significantly inhibit olanzapine-induced hyperphagia and AMPK activation in the mediobasal hypothalamus in a dose dependent manner. Therefore, lowering H1R-AMPK signaling is an effective treatment for the olanzapine-induced hyperphagia associated with the development of obesity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Lead identification of acetylcholinesterase inhibitors-histamine H3 receptor antagonists from molecular modeling.

    PubMed

    Bembenek, Scott D; Keith, John M; Letavic, Michael A; Apodaca, Richard; Barbier, Ann J; Dvorak, Lisa; Aluisio, Leah; Miller, Kirsten L; Lovenberg, Timothy W; Carruthers, Nicholas I

    2008-03-15

    Currently, the only clinically effective treatment for Alzheimer's disease (AD) is the use of acetylcholinesterase (AChE) inhibitors. These inhibitors have limited efficacy in that they only treat the symptoms and not the disease itself. Additionally, they often have unpleasant side effects. Here we consider the viability of a single molecule having the actions of both an AChE inhibitor and histamine H(3) receptor antagonist. Both histamine H(3) receptor antagonists and AChE inhibitors improve and augment cholinergic neurotransmission in the cortex. However, whereas an AChE inhibitor will impart its effect everywhere, a histamine H(3) antagonist will raise acetylcholine levels mostly in the brain as its mode of action will primarily be on the central nervous system. Therefore, the combination of both activities in a single molecule could be advantageous. Indeed, studies suggest an appropriate dual-acting compound may offer the desired therapeutic effect with fewer unpleasant side effects [CNS Drugs2004, 18, 827]. Further, recent studies(2) indicate the peripheral anionic site (PAS) of AChE interacts with the beta-amyloid (betaA) peptide. Consequently, a molecule capable of disrupting this interaction may have a significant impact on the production of or the aggregation of betaA. This may result in slowing down the progression of the disease rather than only treating the symptoms as current therapies do. Here, we detail how the use of the available crystal structure information, pharmacophore modeling and docking (automated, manual, classical, and QM/MM) lead to the identification of an AChE inhibitor-histamine H(3) receptor antagonist. Further, based on our models we speculate that this dual-acting compound may interact with the PAS. Such a dual-acting compound may be able to affect the pathology of AD in addition to providing symptomatic relief.

  7. Sodium channel diversity in the vestibular ganglion: NaV1.5, NaV1.8, and tetrodotoxin-sensitive currents

    PubMed Central

    2016-01-01

    Firing patterns differ between subpopulations of vestibular primary afferent neurons. The role of sodium (NaV) channels in this diversity has not been investigated because NaV currents in rodent vestibular ganglion neurons (VGNs) were reported to be homogeneous, with the voltage dependence and tetrodotoxin (TTX) sensitivity of most neuronal NaV channels. RT-PCR experiments, however, indicated expression of diverse NaV channel subunits in the vestibular ganglion, motivating a closer look. Whole cell recordings from acutely dissociated postnatal VGNs confirmed that nearly all neurons expressed NaV currents that are TTX-sensitive and have activation midpoints between −30 and −40 mV. In addition, however, many VGNs expressed one of two other NaV currents. Some VGNs had a small current with properties consistent with NaV1.5 channels: low TTX sensitivity, sensitivity to divalent cation block, and a relatively negative voltage range, and some VGNs showed NaV1.5-like immunoreactivity. Other VGNs had a current with the properties of NaV1.8 channels: high TTX resistance, slow time course, and a relatively depolarized voltage range. In two NaV1.8 reporter lines, subsets of VGNs were labeled. VGNs with NaV1.8-like TTX-resistant current also differed from other VGNs in the voltage dependence of their TTX-sensitive currents and in the voltage threshold for spiking and action potential shape. Regulated expression of NaV channels in primary afferent neurons is likely to selectively affect firing properties that contribute to the encoding of vestibular stimuli. PMID:26936982

  8. Accelerated retinal ganglion cell death in mice deficient in the Sigma-1 receptor

    PubMed Central

    Mavlyutov, Timur A.; Nickells, Robert W.

    2011-01-01

    Purpose The sigma-1 receptor (σR1), a ligand-operated chaperone, has been inferred to be neuroprotective in previous studies using σR1 ligands. The σR1 specificity of the protective function, however, has yet to be firmly established, due to the existence of non-σR1 targets of the ligands. Here, we used the σR1-knockout mouse (Sigmar1−/−) to demonstrate unambiguously the role of the σR1 in protecting the retinal ganglion cells against degeneration after acute damage to the optic nerve. Methods Retinal σR binding sites were labeled with radioiodinated σR ligands and analyzed by autoradiography. Localization of the σR1 was performed by indirect immunofluorescence on frozen retinal sections. Retinal ganglion cell death was induced by acute optic nerve crush in wild-type and Sigmar1−/− mice. Surviving cells in the ganglion cell layer were counted on Nissl-stained retinal whole mounts 7 days after the crush surgery. Results Photoaffinity labeling indicated the presence of the σR1 in the retina, in concentrations equivalent to those in liver tissue. Immunolabeling detected this receptor in cells of both the ganglion cell layer and the photoreceptor cell layer in wild-type retinas. Quantification of cells remaining after optic nerve crush showed that 86.8±7.9% cells remained in the wild-type ganglion cell layer, but only 68.3±3.4% survived in the Sigmar1−/−, demonstrating a significant difference between the wild-type and the Sigmar1−/− in crush-induced ganglion cell loss. Conclusions Our data indicated faster retinal ganglion cell death in Sigmar1−/− than in wild-type mice under the stresses caused by optic nerve crush, providing direct evidence for a role of the σR1 in alleviating retinal degeneration. This conclusion is consistent with the previous pharmacological studies using σR1 agonists. Thus, our study supports the idea that the σR1 is a promising therapeutic target for neurodegenerative retinal diseases, such as glaucoma. PMID

  9. Relationship between macular ganglion cell complex thickness and macular outer retinal thickness: a spectral-domain optical coherence tomography study.

    PubMed

    Kita, Yoshiyuki; Kita, Ritsuko; Takeyama, Asuka; Anraku, Ayako; Tomita, Goji; Goldberg, Ivan

    2013-01-01

    To assess the relationship between macular ganglion cell complex and macular outer retinal thicknesses. Case-control study. Forty-two normal eyes and 91 eyes with primary open-angle glaucoma were studied. Spectral-domain optical coherence tomography (RTVue-100) was used to measure the macular ganglion cell complex and macular outer retinal thickness. Ganglion cell complex to outer retinal thickness ratio was also calculated. The relationships between the ganglion cell complex and outer retinal thicknesses and between the ganglion cell complex to outer retinal thickness ratio and outer retinal thickness were evaluated. There was a positive correlation between ganglion cell complex and outer retinal thicknesses in the normal group and the glaucoma group (r = 0.53, P < 0.001 and r = 0.42, P < 0.001, respectively). In that respect, there was no correlation between ganglion cell complex to outer retinal thickness ratio and outer retinal thickness in the both groups (r = -0.07, P = 0.657, and r = 0.04, P = 0.677, respectively). The ganglion cell complex to outer retinal thickness ratio was 55.65% in the normal group, 45.07% in the glaucoma group. This difference was statistically significant. The ganglion cell complex thickness may be affected by outer retinal thickness, and there is individual variation in the outer retinal thickness. Therefore, when determining the ganglion cell complex, it seems necessary to consider the outer retinal thickness as well. We propose the ratio as a suitable parameter to account for individual variations in outer retinal thickness. © 2013 The Authors. Clinical and Experimental Ophthalmology © 2013 Royal Australian and New Zealand College of Ophthalmologists.

  10. Digital Museum of Retinal Ganglion Cells with Dense Anatomy and Physiology.

    PubMed

    Bae, J Alexander; Mu, Shang; Kim, Jinseop S; Turner, Nicholas L; Tartavull, Ignacio; Kemnitz, Nico; Jordan, Chris S; Norton, Alex D; Silversmith, William M; Prentki, Rachel; Sorek, Marissa; David, Celia; Jones, Devon L; Bland, Doug; Sterling, Amy L R; Park, Jungman; Briggman, Kevin L; Seung, H Sebastian

    2018-05-17

    When 3D electron microscopy and calcium imaging are used to investigate the structure and function of neural circuits, the resulting datasets pose new challenges of visualization and interpretation. Here, we present a new kind of digital resource that encompasses almost 400 ganglion cells from a single patch of mouse retina. An online "museum" provides a 3D interactive view of each cell's anatomy, as well as graphs of its visual responses. The resource reveals two aspects of the retina's inner plexiform layer: an arbor segregation principle governing structure along the light axis and a density conservation principle governing structure in the tangential plane. Structure is related to visual function; ganglion cells with arbors near the layer of ganglion cell somas are more sustained in their visual responses on average. Our methods are potentially applicable to dense maps of neuronal anatomy and physiology in other parts of the nervous system. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Evaluation of three different histamine concentrations in intradermal testing of normal cats and attempted determination of 'irritant' threshold concentrations for 48 allergens.

    PubMed

    Austel, Michaela; Hensel, Patrick; Jackson, Dawn; Vidyashankar, Anand; Zhao, Ying; Medleau, Linda

    2006-06-01

    The purpose of this study was to determine the optimal histamine concentration and 'irritant' allergen threshold concentrations in intradermal testing (IDT) in normal cats. Thirty healthy cats were tested with three different histamine concentrations and four different concentrations of each allergen. The optimal histamine concentration was determined to be 1: 50,000 w/v (0.05 mg mL(-1)). Using this histamine concentration, the 'irritant' threshold concentration for most allergens was above the highest concentrations tested (4,000 PNU mL(-1) for 41 allergens and 700 PNU mL(-1) for human dander). The 'irritant' threshold concentration for flea antigen was determined to be 1:750 w/v. More than 10% of the tested cats showed positive reactions to Dermatophagoides farinae, Dermatophagoides pteronyssinus, housefly, mosquito and moth at every allergen concentration, which suggests that the 'irritant' threshold concentration for these allergens is below 1,000 PNU mL(-1), the lowest allergen concentration tested. Our results confirm previous studies in indicating that allergen and histamine concentrations used in feline IDT may need to be revised.

  12. Expression of Vesicular Glutamate Transporters VGLUT1 and VGLUT2 in the Rat Dental Pulp and Trigeminal Ganglion following Inflammation

    PubMed Central

    Hong, Jae Hyun; Kim, Yun Sook; Choi, So Young; Kim, Tae Heon; Cho, Yi Sul; Bae, Yong Chul

    2014-01-01

    Background There is increasing evidence that peripheral glutamate signaling mechanism is involved in the nociceptive transmission during pathological conditions. However, little is known about the glutamate signaling mechanism and related specific type of vesicular glutamate transporter (VGLUT) in the dental pulp following inflammation. To address this issue, we investigated expression and protein levels of VGLUT1 and VGLUT2 in the dental pulp and trigeminal ganglion (TG) following complete Freund’s adjuvant (CFA) application to the rat dental pulp by light microscopic immunohistochemistry and Western blot analysis. Results The density of VGLUT2− immunopositive (+) axons in the dental pulp and the number of VGLUT2+ soma in the TG increased significantly in the CFA-treated group, compared to control group. The protein levels of VGLUT2 in the dental pulp and TG were also significantly higher in the CFA-treated group than control group by Western blot analysis. The density of VGLUT1+ axons in the dental pulp and soma in the TG remained unchanged in the CFA-treated group. Conclusions These findings suggest that glutamate signaling that is mediated by VGLUT2 in the pulpal axons may be enhanced in the inflamed dental pulp, which may contribute to pulpal axon sensitization leading to hyperalgesia following inflammation. PMID:25290694

  13. Expression of vesicular glutamate transporters VGLUT1 and VGLUT2 in the rat dental pulp and trigeminal ganglion following inflammation.

    PubMed

    Yang, Eun Sun; Jin, Myoung Uk; Hong, Jae Hyun; Kim, Yun Sook; Choi, So Young; Kim, Tae Heon; Cho, Yi Sul; Bae, Yong Chul

    2014-01-01

    There is increasing evidence that peripheral glutamate signaling mechanism is involved in the nociceptive transmission during pathological conditions. However, little is known about the glutamate signaling mechanism and related specific type of vesicular glutamate transporter (VGLUT) in the dental pulp following inflammation. To address this issue, we investigated expression and protein levels of VGLUT1 and VGLUT2 in the dental pulp and trigeminal ganglion (TG) following complete Freund's adjuvant (CFA) application to the rat dental pulp by light microscopic immunohistochemistry and Western blot analysis. The density of VGLUT2- immunopositive (+) axons in the dental pulp and the number of VGLUT2+ soma in the TG increased significantly in the CFA-treated group, compared to control group. The protein levels of VGLUT2 in the dental pulp and TG were also significantly higher in the CFA-treated group than control group by Western blot analysis. The density of VGLUT1+ axons in the dental pulp and soma in the TG remained unchanged in the CFA-treated group. These findings suggest that glutamate signaling that is mediated by VGLUT2 in the pulpal axons may be enhanced in the inflamed dental pulp, which may contribute to pulpal axon sensitization leading to hyperalgesia following inflammation.

  14. Visual Field Defects and Retinal Ganglion Cell Losses in Human Glaucoma Patients

    PubMed Central

    Harwerth, Ronald S.; Quigley, Harry A.

    2007-01-01

    Objective The depth of visual field defects are correlated with retinal ganglion cell densities in experimental glaucoma. This study was to determine whether a similar structure-function relationship holds for human glaucoma. Methods The study was based on retinal ganglion cell densities and visual thresholds of patients with documented glaucoma (Kerrigan-Baumrind, et al.) The data were analyzed by a model that predicted ganglion cell densities from standard clinical perimetry, which were then compared to histologic cell counts. Results The model, without free parameters, produced accurate and relatively precise quantification of ganglion cell densities associated with visual field defects. For 437 sets of data, the unity correlation for predicted vs. measured cell densities had a coefficient of determination of 0.39. The mean absolute deviation of the predicted vs. measured values was 2.59 dB, the mean and SD of the distribution of residual errors of prediction was -0.26 ± 3.22 dB. Conclusions Visual field defects by standard clinical perimetry are proportional to neural losses caused by glaucoma. Clinical Relevance The evidence for quantitative structure-function relationships provides a scientific basis of interpreting glaucomatous neuropathy from visual thresholds and supports the application of standard perimetry to establish the stage of the disease. PMID:16769839

  15. Macroanatomical investigation of the aorticorenal ganglion in 1-day-old infant sheep.

    PubMed

    Klećkowska-Nawrot, J; Kaczyńska, K; Jakubowska, W

    2009-06-01

    The aorticorenal gland belongs to the paired splanchnic ganglion, which is the main component of the coeliac plexus. It lies near the renal artery and suprarenal gland. The research was conducted on 13 1-day-old infant sheep - eight males and five females. Based on the conducted studies, it was concluded that the aorticorenal ganglion is characterized by the variable location in relation to the abdominal aorta, renal artery, caudal vena cava and suprarenal gland (holotopy), the thoracic and lumbar segment of the vertebral column (skeletotopy) (between L(1) and L(3)) and also a different shape (elongated, round, triangular, oval) as well as variable length (the aorticorenal ganglion is longer on the left side of the body; 2.72 mm) and distance from the caudal end of the suprarenal gland (longer on the left side of the body; 8.34 mm). With regard to the sex of the animal, the ganglion is the longest on the left side in ewes (3.02 mm), while in rams it is the longest on the right side (2.68 mm). Regarding the division according to sex, the longest segment was observed on the right side in ewes (9.27 mm), and the shortest segment in rams was also on the right side (6.84 mm).

  16. Behavioral characterization of mice lacking histamine H(3) receptors.

    PubMed

    Toyota, Hiroshi; Dugovic, Christine; Koehl, Muriel; Laposky, Aaron D; Weber, China; Ngo, Karen; Wu, Ying; Lee, Doo Hyun; Yanai, Kazuhiko; Sakurai, Eiko; Watanabe, Takehiko; Liu, Changlu; Chen, Jingcai; Barbier, Ann J; Turek, Fred W; Fung-Leung, Wai-Ping; Lovenberg, Timothy W

    2002-08-01

    Brain histamine H(3) receptors are predominantly presynaptic and serve an important autoregulatory function for the release of histamine and other neurotransmitters. They have been implicated in a variety of brain functions, including arousal, locomotor activity, thermoregulation, food intake, and memory. The recent cloning of the H(3) receptor in our laboratory has made it possible to create a transgenic line of mice devoid of H(3) receptors. This paper provides the first description of the H(3) receptor-deficient mouse (H(3)(-/-)), including molecular and pharmacologic verification of the receptor deletion as well as phenotypic screens. The H(3)(-/-) mice showed a decrease in overall locomotion, wheel-running behavior, and body temperature during the dark phase but maintained normal circadian rhythmicity. H(3)(-/-) mice were insensitive to the wake-promoting effects of the H(3) receptor antagonist thioperamide. We also observed a slightly decreased stereotypic response to the dopamine releaser, methamphetamine, and an insensitivity to the amnesic effects of the cholinergic receptor antagonist, scopolamine. These data indicate that the H(3) receptor-deficient mouse represents a valuable model for studying histaminergic regulation of a variety of behaviors and neurotransmitter systems, including dopamine and acetylcholine.

  17. Phosphorescent nanosensors for in vivo tracking of histamine levels.

    PubMed

    Cash, Kevin J; Clark, Heather A

    2013-07-02

    Continuously tracking bioanalytes in vivo will enable clinicians and researchers to profile normal physiology and monitor diseased states. Current in vivo monitoring system designs are limited by invasive implantation procedures and biofouling, limiting the utility of these tools for obtaining physiologic data. In this work, we demonstrate the first success in optically tracking histamine levels in vivo using a modular, injectable sensing platform based on diamine oxidase and a phosphorescent oxygen nanosensor. Our new approach increases the range of measurable analytes by combining an enzymatic recognition element with a reversible nanosensor capable of measuring the effects of enzymatic activity. We use these enzyme nanosensors (EnzNS) to monitor the in vivo histamine dynamics as the concentration rapidly increases and decreases due to administration and clearance. The EnzNS system measured kinetics that match those reported from ex vivo measurements. This work establishes a modular approach to in vivo nanosensor design for measuring a broad range of potential target analytes. Simply replacing the recognition enzyme, or both the enzyme and nanosensor, can produce a new sensor system capable of measuring a wide range of specific analytical targets in vivo.

  18. Stimulation of ganglionated plexus attenuates cardiac neural remodeling and heart failure progression in a canine model of acute heart failure post-myocardial infarction.

    PubMed

    Luo, Da; Hu, Huihui; Qin, Zhiliang; Liu, Shan; Yu, Xiaomei; Ma, Ruisong; He, Wenbo; Xie, Jing; Lu, Zhibing; He, Bo; Jiang, Hong

    2017-12-01

    Heart failure (HF) is associated with autonomic dysfunction. Vagus nerve stimulation has been shown to improve cardiac function both in HF patients and animal models of HF. The purpose of this present study is to investigate the effects of ganglionated plexus stimulation (GPS) on HF progression and autonomic remodeling in a canine model of acute HF post-myocardial infarction. Eighteen adult mongrel male dogs were randomized into the control (n=8) and GPS (n=10) groups. All dogs underwent left anterior descending artery ligation followed by 6-hour high-rate (180-220bpm) ventricular pacing to induce acute HF. Transthoracic 2-dimensional echocardiography was performed at different time points. The plasma levels of norepinephrine, B-type natriuretic peptide (BNP) and Ang-II were measured using ELISA kits. C-fos and nerve growth factor (NGF) proteins expressed in the left stellate ganglion as well as GAP43 and TH proteins expressed in the peri-infarct zone were measured using western blot. After 6h of GPS, the left ventricular end-diastolic volume, end-systolic volume and ejection fraction showed no significant differences between the 2 groups, but the interventricular septal thickness at end-systole in the GPS group was significantly higher than that in the control group. The plasma levels of norepinephrine, BNP, Ang-II were increased 1h after myocardial infarction while the increase was attenuated by GPS. The expression of c-fos and NGF proteins in the left stellate ganglion as well as GAP43 and TH proteins in cardiac peri-infarct zone in GPS group were significantly lower than that in control group. GPS inhibits cardiac sympathetic remodeling and attenuates HF progression in canines with acute HF induced by myocardial infarction and ventricular pacing. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Temporal changes in the calcium-dependence of the histamine H1-receptor-stimulation of cyclic AMP accumulation in guinea-pig cerebral cortex.

    PubMed Central

    Donaldson, J.; Brown, A. M.; Hill, S. J.

    1989-01-01

    1. 2-Chloroadenosine (2CA) causes a maintained rise in adenosine 3':5'-cyclic monophosphate (cyclic AMP) content of guinea-pig cerebral cortical slices which is augmented by addition of histamine. We have investigated the temporal profile of the sensitivity of this response to calcium. 2. Rapid removal of extracellular calcium with EGTA (5 mM) at 2CA (30 microM)-induced steady state caused a slight increase in the cyclic AMP response to 2CA alone and completely abolished the augmentation produced by histamine (0.1 mM) added 20 min later. When EGTA was added only 2 min before histamine, the augmentation was reduced by 72%. 3. The calcium sensitivity of the histamine response was also indicated in studies in which EGTA was added 1 or 3 min after histamine at 2CA-induced steady state. Following addition of EGTA at either of these times, the augmentation was not maintained. 4. When calcium was rapidly removed with EGTA once a steady state level of cyclic AMP had been achieved with histamine, the augmentation response was maintained. This was despite the fact that EGTA had a similar effect on both extracellular free calcium and tissue calcium content when it was applied before or after histamine. 5. The 2CA response was augmented by phorbol esters (which mimic the actions of diacylglycerol) in a calcium-independent manner. 6. These results suggest that calcium is important for the initiation and early stages of the histamine-induced augmentation response. The apparent lack of calcium sensitivity of the response at later stages could mean that calcium is not involved in the maintenance of the response or that the intracellular machinery involved in the augmentation process becomes more sensitive to calcium as the response progresses, such that it becomes able to operate at a much lower level of intracellular calcium. A possible role for diacylglycerol in the maintenance of the response is discussed. PMID:2558762

  20. Synthesis and biological evaluation of histamine Schiff bases as carbonic anhydrase I, II, IV, VII, and IX activators.

    PubMed

    Akocak, Suleyman; Lolak, Nabih; Vullo, Daniela; Durgun, Mustafa; Supuran, Claudiu T

    2017-12-01

    A series of 20 histamine Schiff base was synthesised by reaction of histamine, a well known carbonic anhydrase (CA, E.C 4.2.2.1.) activator pharmacophore, with substituted aldehydes. The obtained histamine Schiff bases were assayed as activators of five selected human (h) CA isozymes, the cytosolic hCA I, hCA II, and hCA VII, the membrane-anchored hCA IV and transmembrane hCA IX. Some of these compounds showed efficient activity (in the nanomolar range) against the cytosolic isoform hCA VII, which is a key CA enzyme involved in brain metabolism. Moderate activity was observed against hCA I and hCA IV (in the nanomolar to low micromolar range). The structure-activity relationship for activation of these isoforms with the new histamine Schiff bases is discussed in detail based on the nature of the aliphatic, aromatic, or heterocyclic moiety present in the aldehyde fragment of the molecule, which may participate in diverse interactions with amino acid residues at the entrance of the active site, where activators bind, and which is the most variable part among the different CA isoforms.

  1. A role for Runx transcription factor signaling in dorsal root ganglion sensory neuron diversification.

    PubMed

    Kramer, Ina; Sigrist, Markus; de Nooij, Joriene C; Taniuchi, Ichiro; Jessell, Thomas M; Arber, Silvia

    2006-02-02

    Subpopulations of sensory neurons in the dorsal root ganglion (DRG) can be characterized on the basis of sensory modalities that convey distinct peripheral stimuli, but the molecular mechanisms that underlie sensory neuronal diversification remain unclear. Here, we have used genetic manipulations in the mouse embryo to examine how Runx transcription factor signaling controls the acquisition of distinct DRG neuronal subtype identities. Runx3 acts to diversify an Ngn1-independent neuronal cohort by promoting the differentiation of proprioceptive sensory neurons through erosion of TrkB expression in prospective TrkC+ sensory neurons. In contrast, Runx1 controls neuronal diversification within Ngn1-dependent TrkA+ neurons by repression of neuropeptide CGRP expression and controlling the fine pattern of laminar termination in the dorsal spinal cord. Together, our findings suggest that Runx transcription factor signaling plays a key role in sensory neuron diversification.

  2. Differential expression and signaling of the human histamine H3 receptor isoforms of 445 and 365 amino acids expressed in human neuroblastoma SH-SY5Y cells.

    PubMed

    Nieto-Alamilla, Gustavo; Escamilla-Sánchez, Juan; López-Méndez, María-Cristina; Molina-Hernández, Anayansi; Guerrero-Hernández, Agustín; Arias-Montaño, José-Antonio

    2018-04-01

    In stably-transfected human neuroblastoma SH-SY5Y cells, we have compared the effect of activating two isoforms of 445 and 365 amino acids of the human histamine H 3 receptor (hH 3 R 445 and hH 3 R 365 ) on [ 35 S]-GTPγS binding, forskolin-induced cAMP formation, depolarization-induced increase in the intracellular concentration of Ca 2+ ions ([Ca 2+ ]i) and depolarization-evoked [ 3  H]-dopamine release. Maximal specific binding (B max ) of [ 3  H]-N-methyl-histamine to cell membranes was 953 ± 204 and 555 ± 140 fmol/mg protein for SH-SY5Y-hH 3 R 445 and SH-SY5Y-hH 3 R 365 cells, respectively, with similar dissociation constants (K d , 0.86 nM and 0.81 nM). The mRNA of the hH 3 R 365 isoform was 40.9 ± 7.9% of the hH 3 R 445 isoform. No differences in receptor affinity were found for the H 3 R ligands histamine, immepip, (R)(-)-α-methylhistamine (RAMH), A-331440, clobenpropit and ciproxifan. Both the stimulation of [ 35 S]-GTPγS binding and the inhibition of forskolin-stimulated cAMP accumulation by the agonist RAMH were significantly larger in SH-SY5Y-hH 3 R 445 cells ([ 35 S]-GTPγS binding, 158.1 ± 7.5% versus 136.5 ± 3.6% for SH-SY5Y-hH 3 R 365 cells; cAMP accumulation, -74.0 ± 4.9% versus -43.5 ± 5.3%), with no significant effect on agonist potency. In contrast, there were no differences in the efficacy and potency of RAMH to inhibit [ 3  H]-dopamine release evoked by 100 mM K + (-18.9 ± 3.0% and -20.5 ± 3.3%, for SH-SY5Y-hH 3 R 445 and SH-SY5Y-hH 3 R 365 cells), or the inhibition of depolarization-induced increase in [Ca 2+ ]i (S2/S1 ratios: parental cells 0.967 ± 0.069, SH-SY5Y-hH 3 R 445 cells 0.639 ± 0.049, SH-SY5Y-hH 3 R 365 cells 0.737 ± 0.045). These results indicate that in SH-SY5Y cells, hH 3 R 445 and hH 3 R 365 isoforms regulate in a differential manner the signaling pathways triggered by receptor activation.

  3. The Effects of Electrical Stimuli on Calcium Change and Histamine Release in Rat Basophilic Leukemia Mast Cells

    NASA Astrophysics Data System (ADS)

    Zhu, Dan; Wu, Zu-Hui; Chen, Ji-Yao; Zhou, Lu-Wei

    2013-06-01

    We apply electric fields at different frequencies of 0.1, 1, 10 and 100 kHz to the rat basophilic leukemia (RBL) mast cells in calcium-containing or calcium-free buffers. The stimuli cause changes of the intracellular calcium ion concentration [Ca2+]i as well as the histamine. The [Ca2+]i increases when the frequency of the external electric field increases from 100 Hz to 10 kHz, and then decreases when the frequency further increases from 10 kHz to 100 kHz, showing a peak at 100 kHz. A similar frequency dependence of the histamine release is also found. The [Ca2+]i and the histamine releases at 100 Hz are about the same as the values of the control group with no electrical stimulation. The ruthenium red (RR), an inhibitor to the TRPV (transient receptor potential (TRP) family V) channels across the cell membrane, is used in the experiment to check whether the electric field stimuli act on the TRPV channels. Under an electric field of 10 kHz, the [Ca2+]i in a calcium-concentration buffer is about 3.5 times as much as that of the control group with no electric stimulation, while the [Ca2+]i in a calcium-free buffer is only about 2.2 times. Similar behavior is also found for the histamine release. RR blockage effect on the [Ca2+]i decrease is statistically significant (~75%) when mast cells in the buffer with calcium are stimulated with a 10 kHz electric field in comparison with the result without the RR treatment. This proves that TRPVs are the channels that calcium ions inflow through from the extracellular environment under electrical stimuli. Under this condition, the histamine is also released following a similar way. We suggest that, as far as an electric stimulation is concerned, an application of ac electric field of 10 kHz is better than other frequencies to open TRPV channels in mast cells, and this would cause a significant calcium influx resulting in a significant histamine release, which could be one of the mechanisms for electric therapy.

  4. Processing of central and reflex vagal drives by rat cardiac ganglion neurones: an intracellular analysis

    PubMed Central

    McAllen, Robin M; Salo, Lauren M; Paton, Julian F R; Pickering, Anthony E

    2011-01-01

    Abstract Cardiac vagal tone is an important indicator of cardiovascular health, and its loss is an independent risk factor for arrhythmias and mortality. Several studies suggest that this loss of vagal tone can occur at the cardiac ganglion but the factors affecting ganglionic transmissionin vivoare poorly understood. We have employed a novel approach allowing intracellular recordings from functionally connected cardiac vagal ganglion cells in the working heart–brainstem preparation. The atria were stabilisedin situpreserving their central neural connections, and ganglion cells (n = 32) were impaled with sharp microelectrodes. Cardiac ganglion cells with vagal synaptic inputs (spontaneous, n = 10; or electrically evoked from the vagus, n = 3) were identified as principal neurones and showed tonic firing responses to current injected to their somata. Cells lacking vagal inputs (n = 19, presumed interneurones) were quiescent but showed phasic firing responses to depolarising current. In principal cells the ongoing action potentials and EPSPs exhibited respiratory modulation, with peak frequency in post-inspiration. Action potentials arose from unitary EPSPs and autocorrelation of those events showed that each ganglion cell received inputs from a single active preganglionic source. Peripheral chemoreceptor, arterial baroreceptor and diving response activation all evoked high frequency synaptic barrages in these cells, always from the same single preganglionic source. EPSP amplitudes showed frequency dependent depression, leading to more spike failures at shorter inter-event intervals. These findings indicate that rather than integrating convergent inputs, cardiac vagal postganglionic neurones gate preganglionic inputs, so regulating the proportion of central parasympathetic tone that is transmitted on to the heart. PMID:22005679

  5. Recurrent Cubital Tunnel Syndrome Caused by Ganglion: A Report of Nine Cases.

    PubMed

    Komatsu, Masatoshi; Uchiyama, Shigeharu; Kimura, Takumi; Suenaga, Naoki; Hayashi, Masanori; Kato, Hiroyuki

    2018-06-01

    Cubital tunnel syndrome (CuTS) is generally treated successfully by surgery and recurrent cases are rare. This study retrospectively investigated the clinical characteristics of recurrent CuTS caused by ganglion. We evaluated nine patients who were surgically treated for recurrent CuTS caused by ganglion. Age distribution at recurrence ranged from 43 to 79 years. The initial surgery for CuTS had been performed using various methods. The asymptomatic period from initial surgery to recurrence ranged from 22 to 252 months. Clinical, diagnostic imaging, and operative findings during the second surgery were analyzed. All patients were treated by anterior subcutaneous ulnar nerve transposition with ganglion resection and later examined directly within a mean of 71 months after the second surgery. The interval from recurrence to consultation was shorter than two months for eight cases. Chief complaints included numbness with or without pain in the ring and little fingers in all patients and resting pain in the medial elbow in five patients. Elbow osteoarthritis was present in all cases. Although four of 10 ganglia were palpable, ultrasonography and magnetic resonance imaging could identify all ganglia preoperatively. The ulnar nerve typically had become entrapped by the ganglion posteriorly and by fascia, scar tissue, and/or muscle anteriorly. Chief complaints and ulnar nerve function were improved in all patients following revision surgery. The acute onset of numbness with or without intolerable pain in the ring and little fingers after a long-term remission period following initial surgery for CuTS in patients with elbow osteoarthritis appears to be the characteristic clinical profile of recurrent CuTS caused by ganglion. As ganglia are often not palpable, ultrasonography and magnetic resonance imaging are recommended for accurate diagnosis.

  6. Hypoxia Induces a Metabolic Shift and Enhances the Stemness and Expansion of Cochlear Spiral Ganglion Stem/Progenitor Cells

    PubMed Central

    Chao, Ting-Ting; Sytwu, Huey-Kang; Li, Shiue-Li; Fang, Mei-Cho; Chen, Hang-Kang; Lin, Yi-Chun; Kuo, Chao-Yin

    2015-01-01

    Previously, we demonstrated that hypoxia (1% O2) enhances stemness markers and expands the cell numbers of cochlear stem/progenitor cells (SPCs). In this study, we further investigated the long-term effect of hypoxia on stemness and the bioenergetic status of cochlear spiral ganglion SPCs cultured at low oxygen tensions. Spiral ganglion SPCs were obtained from postnatal day 1 CBA/CaJ mouse pups. The measurement of oxygen consumption rate, extracellular acidification rate (ECAR), and intracellular adenosine triphosphate levels corresponding to 20% and 5% oxygen concentrations was determined using a Seahorse XF extracellular flux analyzer. After low oxygen tension cultivation for 21 days, the mean size of the hypoxia-expanded neurospheres was significantly increased at 5% O2; this correlated with high-level expression of hypoxia-inducible factor-1 alpha (Hif-1α), proliferating cell nuclear antigen (PCNA), cyclin D1, Abcg2, nestin, and Nanog proteins but downregulated expression of p27 compared to that in a normoxic condition. Low oxygen tension cultivation tended to increase the side population fraction, with a significant difference found at 5% O2 compared to that at 20% O2. In addition, hypoxia induced a metabolic energy shift of SPCs toward higher basal ECARs and higher maximum mitochondrial respiratory capacity but lower proton leak than under normoxia, where the SPC metabolism was switched toward glycolysis in long-term hypoxic cultivation. PMID:26236724

  7. A score for the differential diagnosis of bradykinin- and histamine-induced head and neck swellings.

    PubMed

    Lenschow, M; Bas, M; Johnson, F; Wirth, M; Strassen, U

    2018-05-02

    Acute edema of the head and neck region may lead to life-threatening dyspnea and require quick and targeted treatment. They can be subdivided in bradykinin- and histamine-mediated swellings, which require treatment with different classes of pharmaceuticals. Clinical pathways for differential diagnoses do not exist so far, although it is known that early treatment is decisive for faster symptom relief and reduced expression of the swellings. Aim of the study was the creation of a clinical algorithm for identification of bradykinin-mediated angioedema. 188 patients that presented to our outpatient department between 2010 and 2016 with an acute, non-inflammatory swelling of the head and neck region were included in our retrospective study. All available anamnestic and clinical parameters were obtained from patient files. Parameters showing significant differences between the two groups were included in our score. Utilization of the Youden's index allowed determination of an optimal cut-off value. 76 patients could be assigned to the histamine and 112 patients to bradykinin group. The following parameters were included in our score: age, dyspnea, itching or erythema, glucocorticoid response and intake of ACEi/AT-II blockers. The cut-off value is set at three points. The proposed score yielded a sensitivity for identification of bradykinin-mediated angioedema of 96%, a specificity of 84%, a positive predictive value of 91% and a negative predictive value of 93%. Utilization of the proposed score allows quick and reliable assignment of patients to the correct subgroup and thereby reduces time for treatment.

  8. Infralimbic cortex controls core body temperature in a histamine dependent manner.

    PubMed

    Riveros, M E; Perdomo, G; Torrealba, F

    2014-04-10

    An increase in body temperature accelerates biochemical reactions and behavioral and physiological responses. A mechanism to actively increase body temperature would be beneficial during motivated behaviors. The prefrontal cortex is implicated in organizing motivated behavior; the infralimbic cortex, a subregion of the medial prefrontal cortex, has the necessary connectivity to serve the role of initiating such thermogenic mechanism at the beginning of the appetitive phase of motivated behavior; further, this cortex is active during motivated behavior and its disinhibition produces a marked behavioral and vegetative arousal increase, together with increases in histamine levels. We wanted to explore if this arousal was related to histaminergic activation after pharmacological infralimbic disinhibition and during the appetitive phase of motivated behavior. We measured core temperature and motor activity in response to picrotoxin injection in the infralimbic cortex, as well as during food-related appetitive behavior, evoked by enticing hungry rats with food. Pretreatment with the H1 receptor antagonist pyrilamine decreased thermal response to picrotoxin and enticement and completely blunted motor response to enticement. Motor and temperature responses to enticement were also completely abolished by infralimbic cortex inhibition with muscimol. To assess if this histamine dependent temperature increase was produced by an active sympathetic mediated thermogenic mechanism or was just a consequence of increased locomotor activity, we injected propranolol (i.p.), a β adrenergic receptor blocker, before picrotoxin injection into the infralimbic cortex. Propranolol reduced the temperature increase without affecting locomotor activity. Altogether, these results suggest that infralimbic activation is necessary for appetitive behavior by inducing a motor and a vegetative arousal increase mediated by central histamine. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. The role of histamine degradation gene polymorphisms in moderating the effects of food additives on children's ADHD symptoms.

    PubMed

    Stevenson, Jim; Sonuga-Barke, Edmund; McCann, Donna; Grimshaw, Kate; Parker, Karen M; Rose-Zerilli, Matthew J; Holloway, John W; Warner, John O

    2010-09-01

    Food additives can exacerbate ADHD symptoms and cause non-immunoglobulin E-dependent histamine release from circulating basophils. However, children vary in the extent to which their ADHD symptoms are exacerbated by the ingestion of food additives. The authors hypothesized that genetic polymorphisms affecting histamine degradation would explain the diversity of responses to additives. In a double-blind, placebo-controlled crossover trial, challenges involving two food color additive and sodium benzoate (preservative) mixtures in a fruit drink were administered to a general community sample of 3-year-old children (N = 153) and 8/9-year-old children (N = 144). An aggregate ADHD symptom measure (based on teacher and parent blind ratings of behavior, blind direct observation of behavior in the classroom, and--for 8/9-year-old children only--a computerized measure of attention) was the main outcome variable. The adverse effect of food additives on ADHD symptoms was moderated by histamine degradation gene polymorphisms HNMT T939C and HNMT Thr105Ile in 3- and 8/9-year-old children and by a DAT1 polymorphism (short versus long) in 8/9-year-old children only. There was no evidence that polymorphisms in catecholamine genes COMT Val108Met, ADRA2A C1291G, and DRD4-rs7403703 moderated the effect on ADHD symptoms. Histamine may mediate the effects of food additives on ADHD symptoms, and variations in genes influencing the action of histamine may explain the inconsistency between previous studies. Genes influencing a range of neurotransmitter systems and their interplay with environmental factors, such as diet, need to be examined to understand genetic influences on ADHD symptoms.

  10. Ganglion blocks as a treatment of pain: current perspectives

    PubMed Central

    Gunduz, Osman Hakan; Kenis-Coskun, Ozge

    2017-01-01

    The inputs from sympathetic ganglia have been known to be involved in the pathophysiology of various painful conditions such as complex regional pain syndrome, cancer pain of different origin, and coccygodynia. Sympathetic ganglia blocks are used to relieve patients who suffer from these conditions for over a century. Many numbers of local anesthetics such as bupivacaine or neurolytic agents such as alcohol can be chosen for a successful block. The agent is selected according to its duration of effect and the purpose of the injection. Most commonly used sympathetic blocks are stellate ganglion block, lumbar sympathetic block, celiac plexus block, superior hypogastric block, and ganglion Impar block. In this review, indications, methods, effectiveness, and complications of these blocks are discussed based on the data from the current literature. PMID:29276402

  11. Prediction of the Efficacy of Antihistamines in Chronic Spontaneous Urticaria Based on Initial Suppression of the Histamine- Induced Wheal.

    PubMed

    Sánchez, J; Zakzuk, J; Cardona, R

    2016-01-01

    Antihistamines are the first line of treatment for chronic spontaneous urticaria. However, there is no effective method to predict whether an antihistamine will have a beneficial clinical effect or not. To assess whether the change in histamine-induced wheal and flare measurements 24 hours after administration of antihistamine can predict the efficacy of treatment. We performed a multicenter, triple-blind, randomized study. Patients received a daily oral dose of cetirizine, fexofenadine, bilastine, desloratadine, or ebastine over 8 weeks. After 4 weeks, a higher dose of antihistamine was administered to patients who did not experience a clinical response. A histamine skin prick test was carried out at baseline and 24 hours after the first dose of antihistamine. Disease severity (Urticaria Activity Score [UAS]), response to the histamine skin prick test, and impact on the patient's quality of life (Dermatology Life Quality Index [DLQI]) were determined every 2 weeks. The study population comprised 150 patients (30 per group) and 30 controls. Twenty-four hours after administration of antihistamine, inhibition of the histamine wheal by >75% was significantly associated with better UAS and DLQI scores. The safety and efficacy of the 5 antihistamines were similar. After updosing, rates of disease control (DLQI score <5) increased from 58.7% to 76.7%. Measurement of the histamine-induced wheal can predict which patients will have a strong clinical response to antihistamines but has limited utility for identifying nonresponders. The clinical significance of these data could be relevant in the search for new urticaria treatment regimens.

  12. Specific cerebral heat shock proteins and histamine receptor cross-talking mechanisms promote distinct lead-dependent neurotoxic responses in teleosts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giusi, Giuseppina; Alo, Raffaella; Crudo, Michele

    Recent interests are beginning to be directed towards toxic neurobiological dysfunctions caused by lead (Pb) in aquatic vertebrates. In the present work, treatment with a maximum acceptable toxic concentration of this heavy metal was responsible for highly significant (p < 0.01) abnormal motor behaviors such as hyperactive movements in the teleost Thalassoma pavo and the same treatment accounted for significantly (p < 0.05) enhanced hyperventilating states. On the other hand, greater abnormal motor behaviors were detected in the presence of the histamine (HA) receptor subtype 2 (H{sub 2}R) antagonist cimetidine (Cim), as shown by the very robust (p < 0.001)more » increases of the two behavioral states. Interestingly, elevated expression levels of stress-related factors, i.e. heat shock protein70/90 (HSP90/70) orthologs were reported for the first time in hypothalamic and mesencephalic areas of Pb-treated teleosts. In particular, an up-regulation of HSP70 was readily detected when this heavy metal was given concomitantly with Cim, while the histamine subtype 3 antagonist (H{sub 3}R) thioperamide (Thio), instead, blocked Pb-dependent up-regulatory trends of both chaperones in mostly hypothalamic areas. Moreover, intense neuronal damages of the above brain regions coincided with altered expressions of HSP70 and HSP90 when treated only with Cim. Overall these first results show that distinct H{sub n}R are able to exert a net neuroprotective role arising from their interaction with chaperones in fish exposed to Pb-dependent stressful conditions making this a potentially key interaction especially for T. pavo, aquatic species which plays an important ecological role towards the survival of other commercially vital fishes.« less

  13. Antagonism of histamine-activated adenylate cyclase in brain by D-lysergic acid diethylamide.

    PubMed

    Green, J P; Johnson, C L; Weinstein, H; Maayani, S

    1977-12-01

    D-Lysergic acid diethylamide and D-2-bromolysergic acid diethylamide are competitive antagonists of the histamine activation of adenylate cyclase [ATP pyrophosphate-lyase (cyclizing); E.C. 4.6.1.1] in broken cell preparations of the hippocampus and cortex of guinea pig brain. The adenylate cyclase is linked to the histamine H2-receptor. Both D-lysergic acid diethylamide and D-2-bromolysergic acid diethylamide show topological congruency with potent H2-antagonists. D-2-Bromolysergic acid diethylamide is 10 times more potent as an H2-antagonist than cimetidine, which has been the most potent H2-antagonist reported, and D-lysergic acid diethylamide is about equipotent to cimetidine. Blockade of H2-receptors could contribute to the behavioral effects of D-2-bromolysergic acid diethylamide and D-lysergic acid diethylamide.

  14. A Learning Model for L/M Specificity in Ganglion Cells

    NASA Technical Reports Server (NTRS)

    Ahumada, Albert J.

    2016-01-01

    An unsupervised learning model for developing LM specific wiring at the ganglion cell level would support the research indicating LM specific wiring at the ganglion cell level (Reid and Shapley, 2002). Removing the contributions to the surround from cells of the same cone type improves the signal-to-noise ratio of the chromatic signals. The unsupervised learning model used is Hebbian associative learning, which strengthens the surround input connections according to the correlation of the output with the input. Since the surround units of the same cone type as the center are redundant with the center, their weights end up disappearing. This process can be thought of as a general mechanism for eliminating unnecessary cells in the nervous system.

  15. An Optic Nerve Crush Injury Murine Model to Study Retinal Ganglion Cell Survival

    PubMed Central

    Tang, Zhongshu; Zhang, Shuihua; Lee, Chunsik; Kumar, Anil; Arjunan, Pachiappan; Li, Yang; Zhang, Fan; Li, Xuri

    2011-01-01

    Injury to the optic nerve can lead to axonal degeneration, followed by a gradual death of retinal ganglion cells (RGCs), which results in irreversible vision loss. Examples of such diseases in human include traumatic optic neuropathy and optic nerve degeneration in glaucoma. It is characterized by typical changes in the optic nerve head, progressive optic nerve degeneration, and loss of retinal ganglion cells, if uncontrolled, leading to vision loss and blindness. The optic nerve crush (ONC) injury mouse model is an important experimental disease model for traumatic optic neuropathy, glaucoma, etc. In this model, the crush injury to the optic nerve leads to gradual retinal ganglion cells apoptosis. This disease model can be used to study the general processes and mechanisms of neuronal death and survival, which is essential for the development of therapeutic measures. In addition, pharmacological and molecular approaches can be used in this model to identify and test potential therapeutic reagents to treat different types of optic neuropathy. Here, we provide a step by step demonstration of (I) Baseline retrograde labeling of retinal ganglion cells (RGCs) at day 1, (II) Optic nerve crush injury at day 4, (III) Harvest the retinae and analyze RGC survival at day 11, and (IV) Representative result. PMID:21540827

  16. Thalamic pain alleviated by stellate ganglion block: A case report.

    PubMed

    Liao, Chenlong; Yang, Min; Liu, Pengfei; Zhong, Wenxiang; Zhang, Wenchuan

    2017-02-01

    Thalamic pain is a distressing and treatment-resistant type of central post-stroke pain. Although stellate ganglion block is an established intervention used in pain management, its use in the treatment of thalamic pain has never been reported. A 66-year-old woman presented with a 3-year history of severe intermittent lancinating pain on the right side of the face and the right hand. The pain started from the ulnar side of the right forearm after a mild ischemic stroke in bilateral basal ganglia and left thalamus. Weeks later, the pain extended to the dorsum of the finger tips and the whole palmar surface, becoming more severe. Meanwhile, there was also pain with similar characteristics emerging on her right face, resembling atypical trigeminal neuralgia. Thalamic pain was diagnosed. After refusing the further invasive treatment, she was suggested to try stellate ganglion block. After a 3-day period of pain free (numerical rating scale: 0) postoperatively, she reported moderate to good pain relief with a numerical rating scale of about 3 to 4 lasting 1 month after the first injection. Pain as well as the quality of life was markedly improved with less dose of analgesic agents. Stellate ganglion block may be an optional treatment for thalamic pain.

  17. Sox11 Expression Promotes Regeneration of Some Retinal Ganglion Cell Types but Kills Others.

    PubMed

    Norsworthy, Michael W; Bei, Fengfeng; Kawaguchi, Riki; Wang, Qing; Tran, Nicholas M; Li, Yi; Brommer, Benedikt; Zhang, Yiming; Wang, Chen; Sanes, Joshua R; Coppola, Giovanni; He, Zhigang

    2017-06-21

    At least 30 types of retinal ganglion cells (RGCs) send distinct messages through the optic nerve to the brain. Available strategies of promoting axon regeneration act on only some of these types. Here we tested the hypothesis that overexpressing developmentally important transcription factors in adult RGCs could reprogram them to a "youthful" growth-competent state and promote regeneration of other types. From a screen of transcription factors, we identified Sox11 as one that could induce substantial axon regeneration. Transcriptome profiling indicated that Sox11 activates genes involved in cytoskeletal remodeling and axon growth. Remarkably, α-RGCs, which preferentially regenerate following treatments such as Pten deletion, were killed by Sox11 overexpression. Thus, Sox11 promotes regeneration of non-α-RGCs, which are refractory to Pten deletion-induced regeneration. We conclude that Sox11 can reprogram adult RGCs to a growth-competent state, suggesting that different growth-promoting interventions promote regeneration in distinct neuronal types. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Histamine-dependent behavioral response to methamphetamine in 12-month-old male mice

    PubMed Central

    Acevedo, Summer F.; Raber, Jacob

    2011-01-01

    Methamphetamine (MA) use is a growing problem across the United States. Effects of MA include hyperactivity and increased anxiety. Using a mouse model system, we examined behavioral performance in the open field and elevated zero maze and shock-startle response of 12-month-old wild-type mice injected with MA once (1mg/kg) 30 min prior to behavioral testing. MA treatment resulted in behavioral sensitization in the open field, consistent with studies in younger mice. There was an increased activity in the elevated zero maze and an increased shock-startle response 30 and 60 min post-injection. Since histamine mediates some effects of MA in the brain, we assessed whether 12-month-old mice lacking histidine decarboxylase (Hdc−/−), the enzyme required to synthesize histamine, respond differently to MA than wild-type (Hdc+/+) mice. Compared to saline treatment, acute and repeated MA administration increased activity in the open field and measures of anxiety, though more so in Hdc−/− than Hdc+/+ mice. In the elevated zero maze, opposite effects of MA on activity and measures of anxiety were seen in Hdc+/+ mice. In contrast, MA similarly increased the shock-startle response in Hdc−/− and Hdc+/+ mice, compared to saline-treated genotype-matched mice. These results are similar to those in younger mice suggesting that the effects are not age-dependent. Overall, single or repeated MA treatment causes histamine-dependent changes in 12-month-old mice in the open field and elevated zero-maze, but not in the shock-startle response. PMID:21466792

  19. Learning LM Specificity for Ganglion Cells

    NASA Technical Reports Server (NTRS)

    Ahumada, Albert J.

    2015-01-01

    Unsupervised learning models have been proposed based on experience (Ahumada and Mulligan, 1990;Wachtler, Doi, Lee and Sejnowski, 2007) that allow the cortex to develop units with LM specific color opponent receptive fields like the blob cells reported by Hubel and Wiesel on the basis of visual experience. These models used ganglion cells with LM indiscriminate wiring as inputs to the learning mechanism, which was presumed to occur at the cortical level.

  20. Decreased release of histamine and sulfidoleukotrienes by human peripheral blood leukocytes after wasp venom immunotherapy is partially due to induction of IL-10 and IFN-gamma production of T cells.

    PubMed

    Pierkes, M; Bellinghausen, I; Hultsch, T; Metz, G; Knop, J; Saloga, J

    1999-02-01

    Recent studies provide evidence that venom immunotherapy (VIT) alters the pattern of cytokine production by inducing an allergen-specific T-cell shift in cytokine expression from TH2 (IL-4, IL-5) to TH1 (IFN-gamma) cytokines and also inducing the production of IL-10. This study was carried out to analyze whether these changes in cytokine production of T cells already observed 1 week after the initiation of VIT in subjects with wasp venom allergy also influence the reactivity of effector cells, such as mast cells and basophils. All subjects included in this study had a history of severe systemic allergic reactions to wasp stings and positive skin test responses with venom and venom-specific IgE in the sera. Peripheral blood leukocytes were isolated before and after the initiation of VIT (rush therapy reaching a maintenance dose of 100 microg venom injected subcutaneously within 1 week) and preincubated with or without addition of IL-10, IFN-gamma, IL-10 + IFN-gamma, anti-IL-10, or anti-IFN-gamma. After stimulation with wasp venom, histamine and sulfidoleukotriene release were assessed by ELISA and compared with spontaneous release and total histamine content. After the induction of VIT, venom-induced absolute and relative histamine and sulfidoleukotriene release were reduced. This was at least partially due to the induction of IFN-gamma and IL-10 production, because (1) neutralization of IL-10 and IFN-gamma by mAbs partially restored the release after the initiation of VIT and (2) the addition of exogenous IFN-gamma and IL-10 caused a statistically significant diminution of the venom-induced histamine and sulfidoleukotriene release before VIT. Depletion of CD2(+) T cells also restored the releasability after VIT. These data indicate that T cells (producing IL-10 and IFN-gamma after VIT) play a key role for the inhibition of histamine and sulfidoleukotriene release of effector cells.

  1. Protective effects of brain-derived neurotrophic factor on the noise-damaged cochlear spiral ganglion.

    PubMed

    Zhai, S-Q; Guo, W; Hu, Y-Y; Yu, N; Chen, Q; Wang, J-Z; Fan, M; Yang, W-Y

    2011-05-01

    To explore the protective effects of brain-derived neurotrophic factor on the noise-damaged cochlear spiral ganglion. Recombinant adenovirus brain-derived neurotrophic factor vector, recombinant adenovirus LacZ and artificial perilymph were prepared. Guinea pigs with audiometric auditory brainstem response thresholds of more than 75 dB SPL, measured seven days after four hours of noise exposure at 135 dB SPL, were divided into three groups. Adenovirus brain-derived neurotrophic factor vector, adenovirus LacZ and perilymph were infused into the cochleae of the three groups, variously. Eight weeks later, the cochleae were stained immunohistochemically and the spiral ganglion cells counted. The auditory brainstem response threshold recorded before and seven days after noise exposure did not differ significantly between the three groups. However, eight weeks after cochlear perfusion, the group receiving brain-derived neurotrophic factor had a significantly decreased auditory brainstem response threshold and increased spiral ganglion cell count, compared with the adenovirus LacZ and perilymph groups. When administered via cochlear infusion following noise damage, brain-derived neurotrophic factor appears to improve the auditory threshold, and to have a protective effect on the spiral ganglion cells.

  2. Ocular anatomy, ganglion cell distribution and retinal resolution of a killer whale (Orcinus orca).

    PubMed

    Mass, Alla M; Supin, Alexander Y; Abramov, Andrey V; Mukhametov, Lev M; Rozanova, Elena I

    2013-01-01

    Retinal topography, cell density and sizes of ganglion cells in the killer whale (Orcinus orca) were analyzed in retinal whole mounts stained with cresyl violet. A distinctive feature of the killer whale's retina is the large size of ganglion cells and low cell density compared to terrestrial mammals. The ganglion cell diameter ranged from 8 to 100 µm, with the majority of cells within a range of 20-40 µm. The topographic distribution of ganglion cells displayed two spots of high cell density located in the temporal and nasal quadrants, 20 mm from the optic disk. The high-density areas were connected by a horizontal belt-like area passing below the optic disk of the retina. Peak cell densities in these areas were evaluated. Mean peak cell densities were 334 and 288 cells/mm(2) in the temporal and nasal high-density areas, respectively. With a posterior nodal distance of 19.5 mm, these high-density data predict a retinal resolution of 9.6' (3.1 cycles/deg.) and 12.6' (2.4 cycles/deg.) in the temporal and nasal areas, respectively, in water. Copyright © 2012 S. Karger AG, Basel.

  3. The Sigma Receptor Ligand (+)-Pentazocine Prevents Apoptotic Retinal Ganglion Cell Death induced in vitro by Homocysteine and Glutamate

    PubMed Central

    Martin, Pamela Moore; Ola, Mohammad S.; Agarwal, Neeraj; Ganapathy, Vadivel; Smith, Sylvia B.

    2013-01-01

    Recent studies demonstrated that the excitotoxic amino acid homocysteine induces apoptotic death of retinal ganglion cells in vivo. In the present study, an in vitro rat retinal ganglion cell (RGC-5) culture system was used to analyze the toxicity of acute exposure to high levels of homocysteine, the mechanism of homocysteine-induced toxicity and the usefulness of σR1 ligands as neuroprotectants. When cultured RGC-5 cells were subjected to treatment with 1 mM D, L- homocysteine, a significant increase in cell death was detected by TUNEL analysis and analysis of activated caspase. When cells were treated with homocysteine- or glutamate in the presence of MK-801, an antagonist of the NMDA receptor, the cell death was inhibited significantly. In contrast, NBQX, an antagonist of the AMPA/Kainate receptor, and nifedipine, a calcium channel blocker, did not prevent the homocysteine- or glutamate-induced cell death. Semi-quantitative RT-PCR and immunocytochemical analysis demonstrated that RGC-5 cells exposed to homocysteine or glutamate express type 1 sigma receptor at levels similar to control cells. Treatment of RGC-5 cells with 3 µM or 10 µM concentrations of the σR1-specific ligand (+)-pentazocine inhibited significantly the apoptotic cell death induced by homocysteine or glutamate. The results suggest that homocysteine is toxic to ganglion cells in vitro, that the toxicity is mediated via NMDA receptor activation, and that the σR1-specific ligand (+)-pentazocine can block the RGC-5 cell death induced by homocysteine and glutamate. PMID:15046867

  4. Progress in the development of histamine H3 receptor antagonists/inverse agonists: a patent review (2013-2017).

    PubMed

    Łażewska, Dorota; Kieć-Kononowicz, Katarzyna

    2018-03-01

    Since years, ligands blocking histamine H 3 receptor (H 3 R) activity (antagonists/inverse agonists) are interesting targets in the search for new cures for CNS disorders. Intensive works done by academic and pharmaceutical company researchers have led to many potent and selective H 3 R antagonists/inverse agonists. Some of them have reached to clinical trials. Areas covered: Patent applications from January 2013 to September 2017 and the most important topics connected with H 3 R field are analysed. Espacenet, Patentscope, Pubmed, GoogleScholar or Cochrane Library online databases were principially used to collect all the materials. Expert opinion: The research interest in histamine H 3 R field is still high although the number of patent applications has decreased during the past 4 years (around 20 publications). Complexity of histamine H 3 R biology e.g. many isoforms, constitutive activity, heteromerization with other receptors (dopamine D 2 , D 1 , adenosine A 2A ) and pharmacology make not easy realization and evaluation of therapeutic potential of anti-H 3 R ligands. First results from clinical trials have verified potential utility of histamine H 3 R antagonist/inverse agonists in some diseases. However, more studies are necessary for better understanding of an involvement of the histaminergic system in CNS-related disorders and helping more ligands approach to clinical trials and the market. Lists of abbreviations: hAChEI - human acetylcholinesterase inhibitor; hBuChEI - human butyrylcholinesterase inhibitor; hMAO - human monoamine oxidase; MAO - monoamine oxidase.

  5. Lithium alters the morphology of neurites regenerating from cultured adult spiral ganglion neurons.

    PubMed

    Shah, S M; Patel, C H; Feng, A S; Kollmar, R

    2013-10-01

    The small-molecule drug lithium (as a monovalent ion) promotes neurite regeneration and functional recovery, is easy to administer, and is approved for human use to treat bipolar disorder. Lithium exerts its neuritogenic effect mainly by inhibiting glycogen synthase kinase 3, a constitutively-active serine/threonine kinase that is regulated by neurotrophin and "wingless-related MMTV integration site" (Wnt) signaling. In spiral ganglion neurons of the cochlea, the effects of lithium and the function of glycogen synthase kinase 3 have not been investigated. We, therefore, set out to test whether lithium modulates neuritogenesis from adult spiral ganglion neurons. Primary cultures of dissociated spiral ganglion neurons from adult mice were exposed to lithium at concentrations between 0 and 12.5 mM. The resulting neurite morphology and growth-cone appearance were measured in detail by using immunofluorescence microscopy and image analysis. We found that lithium altered the morphology of regenerating neurites and their growth cones in a differential, concentration-dependent fashion. Low concentrations of 0.5-2.5 mM (around the half-maximal inhibitory concentration for glycogen synthase kinase 3 and the recommended therapeutic serum concentration for bipolar disorder) enhanced neurite sprouting and branching. A high concentration of 12.5 mM, in contrast, slowed elongation. As the lithium concentration rose from low to high, the microtubules became increasingly disarranged and the growth cones more arborized. Our results demonstrate that lithium selectively stimulates phases of neuritogenesis that are driven by microtubule reorganization. In contrast, most other drugs that have previously been tested on spiral ganglion neurons are reported to inhibit neurite outgrowth or affect only elongation. Lithium sensitivity is a necessary, but not sufficient condition for the involvement of glycogen synthase kinase 3. Our results are, therefore, consistent with, but do not prove

  6. The Extracellular Loop 2 (ECL2) of the Human Histamine H4 Receptor Substantially Contributes to Ligand Binding and Constitutive Activity

    PubMed Central

    Wifling, David; Bernhardt, Günther; Dove, Stefan; Buschauer, Armin

    2015-01-01

    In contrast to the corresponding mouse and rat orthologs, the human histamine H4 receptor (hH4R) shows extraordinarily high constitutive activity. In the extracellular loop (ECL), replacement of F169 by V as in the mouse H4R significantly reduced constitutive activity. Stabilization of the inactive state was even more pronounced for a double mutant, in which, in addition to F169V, S179 in the ligand binding site was replaced by M. To study the role of the FF motif in ECL2, we generated the hH4R-F168A mutant. The receptor was co-expressed in Sf9 insect cells with the G-protein subunits Gαi2 and Gβ1γ2, and the membranes were studied in [3H]histamine binding and functional [35S]GTPγS assays. The potency of various ligands at the hH4R-F168A mutant decreased compared to the wild-type hH4R, for example by 30- and more than 100-fold in case of the H4R agonist UR-PI376 and histamine, respectively. The high constitutive activity of the hH4R was completely lost in the hH4R-F168A mutant, as reflected by neutral antagonism of thioperamide, a full inverse agonist at the wild-type hH4R. By analogy, JNJ7777120 was a partial inverse agonist at the hH4R, but a partial agonist at the hH4R-F168A mutant, again demonstrating the decrease in constitutive activity due to F168A mutation. Thus, F168 was proven to play a key role not only in ligand binding and potency, but also in the high constitutive activity of the hH4R. PMID:25629160

  7. RdgB2 is required for dim-light input into intrinsically photosensitive retinal ganglion cells.

    PubMed

    Walker, Marquis T; Rupp, Alan; Elsaesser, Rebecca; Güler, Ali D; Sheng, Wenlong; Weng, Shijun; Berson, David M; Hattar, Samer; Montell, Craig

    2015-10-15

    A subset of retinal ganglion cells is intrinsically photosensitive (ipRGCs) and contributes directly to the pupillary light reflex and circadian photoentrainment under bright-light conditions. ipRGCs are also indirectly activated by light through cellular circuits initiated in rods and cones. A mammalian homologue (RdgB2) of a phosphoinositide transfer/exchange protein that functions in Drosophila phototransduction is expressed in the retinal ganglion cell layer. This raised the possibility that RdgB2 might function in the intrinsic light response in ipRGCs, which depends on a cascade reminiscent of Drosophila phototransduction. Here we found that under high light intensities, RdgB2(-/-) mutant mice showed normal pupillary light responses and circadian photoentrainment. Consistent with this behavioral phenotype, the intrinsic light responses of ipRGCs in RdgB2(-/-) were indistinguishable from wild-type. In contrast, under low-light conditions, RdgB2(-/-) mutants displayed defects in both circadian photoentrainment and the pupillary light response. The RdgB2 protein was not expressed in ipRGCs but was in GABAergic amacrine cells, which provided inhibitory feedback onto bipolar cells. We propose that RdgB2 is required in a cellular circuit that transduces light input from rods to bipolar cells that are coupled to GABAergic amacrine cells and ultimately to ipRGCs, thereby enabling ipRGCs to respond to dim light. © 2015 Walker et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  8. Neuroprotective Effect of Tauroursodeoxycholic Acid on N-Methyl-D-Aspartate-Induced Retinal Ganglion Cell Degeneration

    PubMed Central

    Fernández-Sánchez, Laura; Rondón, Netxibeth; Esquiva, Gema; Germain, Francisco; de la Villa, Pedro; Cuenca, Nicolás

    2015-01-01

    Retinal ganglion cell degeneration underlies the pathophysiology of diseases affecting the retina and optic nerve. Several studies have previously evidenced the anti-apoptotic properties of the bile constituent, tauroursodeoxycholic acid, in diverse models of photoreceptor degeneration. The aim of this study was to investigate the effects of systemic administration of tauroursodeoxycholic acid on N-methyl-D-aspartate (NMDA)-induced damage in the rat retina using a functional and morphological approach. Tauroursodeoxycholic acid was administered intraperitoneally before and after intravitreal injection of NMDA. Three days after insult, full-field electroretinograms showed reductions in the amplitudes of the positive and negative-scotopic threshold responses, scotopic a- and b-waves and oscillatory potentials. Quantitative morphological evaluation of whole-mount retinas demonstrated a reduction in the density of retinal ganglion cells. Systemic administration of tauroursodeoxycholic acid attenuated the functional impairment induced by NMDA, which correlated with a higher retinal ganglion cell density. Our findings sustain the efficacy of tauroursodeoxycholic acid administration in vivo, suggesting it would be a good candidate for the pharmacological treatment of degenerative diseases coursing with retinal ganglion cell loss. PMID:26379056

  9. Differential homologous desensitization of the human histamine H3 receptors of 445 and 365 amino acids expressed in CHO-K1 cells.

    PubMed

    García-Gálvez, Ana-Maricela; Escamilla-Sánchez, Juan; Flores-Maldonado, Catalina; Contreras, Rubén-Gerardo; Arias, Juan-Manuel; Arias-Montaño, José-Antonio

    2018-01-01

    Histamine H 3 receptors (H 3 Rs) signal through Gα i/o proteins and are found in neuronal cells as auto- and hetero-receptors. Alternative splicing of the human H 3 R (hH 3 R) originates 20 isoforms, and the mRNAs of two receptors of 445 and 365 amino acids (hH 3 R 445 and hH 3 R 365 ) are widely expressed in the human brain. We previously showed that the hH 3 R 445 stably expressed in CHO-K1 cells experiences homologous desensitization. The hH 3 R 365 lacks 80 residues in the third intracellular loop, and in this work we therefore studied whether this isoform also experiences homologous desensitization and the possible differences with the hH 3 R 445 . In clones of CHO-K1 cells stably expressing similar receptor levels (211 ± 12 and 199 ± 16 fmol/mg protein for hH 3 R 445 and hH 3 R 365 , respectively), there were no differences in receptor affinity for selective H 3 R ligands or for agonist-induced [ 35 S]-GTPγS binding to membranes and inhibition of forskolin-stimulated cAMP accumulation in intact cells. For both cell clones, pre-incubation with the H 3 R agonist RAMH (1 μM) resulted in functional receptor desensitization, as indicated by cAMP accumulation assays, and loss of receptors from the cell surface and reduced affinity for the agonist immepip in cell membranes, evaluated by radioligand binding. However, functional desensitization differed in the maximal extent (96 ± 15% and 58 ± 8% for hH 3 R 445 and hH 3 R 365 , respectively) and the length of pre-exposure required to reach the maximum desensitization (60 and 30 min, respectively). Furthermore, the isoforms differed in their recovery from desensitization. These results indicate that the hH 3 R 365 experiences homologous desensitization, but that the process differs between the isoforms in time-course, magnitude and re-sensitization. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Visual pattern recognition based on spatio-temporal patterns of retinal ganglion cells’ activities

    PubMed Central

    Jing, Wei; Liu, Wen-Zhong; Gong, Xin-Wei; Gong, Hai-Qing

    2010-01-01

    Neural information is processed based on integrated activities of relevant neurons. Concerted population activity is one of the important ways for retinal ganglion cells to efficiently organize and process visual information. In the present study, the spike activities of bullfrog retinal ganglion cells in response to three different visual patterns (checker-board, vertical gratings and horizontal gratings) were recorded using multi-electrode arrays. A measurement of subsequence distribution discrepancy (MSDD) was applied to identify the spatio-temporal patterns of retinal ganglion cells’ activities in response to different stimulation patterns. The results show that the population activity patterns were different in response to different stimulation patterns, such difference in activity pattern was consistently detectable even when visual adaptation occurred during repeated experimental trials. Therefore, the stimulus pattern can be reliably discriminated according to the spatio-temporal pattern of the neuronal activities calculated using the MSDD algorithm. PMID:21886670

  11. Neuroprotection of a Novel Cyclopeptide C*HSDGIC* from the Cyclization of PACAP (1–5) in Cellular and Rodent Models of Retinal Ganglion Cell Apoptosis

    PubMed Central

    Cheng, Huanhuan; Ding, Yong; Yu, Rongjie; Chen, Jiansu; Wu, Chunyun

    2014-01-01

    Purpose To investigate the protective effects of a novel cyclopeptide C*HSDGIC* (CHC) from the cyclization of Pituitary adenylate cyclase-activating polypeptide (PACAP) (1–5) in cellular and rodent models of retinal ganglion cell apoptosis. Methodology/Principal Findings Double-labeling immunohistochemistry was used to detect the expression of Thy-1 and PACAP receptor type 1 in a retinal ganglion cell line RGC-5. The apoptosis of RGC-5 cells was induced by 0.02 J/cm2 Ultraviolet B irradiation. MTT assay, flow cytometry, fluorescence microscopy were used to investigate the viability, the level of reactive oxygen species (ROS) and apoptosis of RGC-5 cells respectively. CHC attenuated apoptotic cell death induced by Ultraviolet B irradiation and inhibited the excessive generation of ROS. Moreover, CHC treatment resulted in decreased expression of Bax and concomitant increase of Bcl-2, as was revealed by western-blot analysis. The in vivo apoptosis of retinal ganglion cells was induced by injecting 50 mM N-methyl-D-aspartate (NMDA) (100 nmol in a 2 µL saline solution) intravitreally, and different dosages of CHC were administered. At day 7, rats in CHC+ NMDA-treated groups showed obvious aversion to light when compared to NMDA rats. Electroretinogram recordings revealed a marked decrease in the amplitudes of a-wave, b-wave, and photopic negative response due to NMDA damage. In retina receiving intravitreal NMDA and CHC co-treatment, these values were significantly increased. CHC treatment also resulted in less NMDA-induced cell loss and a decrease in the proportion of dUTP end-labeling-positive cells in ganglion cell line. Conclusions C*HSDGIC*, a novel cyclopeptide from PACAP (1–5) attenuates apoptosis in RGC-5 cells and inhibits NMDA-induced retinal neuronal death. The beneficial effects may occur via the mitochondria pathway. PACAP derivatives like CHC may serve as a promising candidate for neuroprotection in glaucoma. PMID:25286089

  12. The effects of thermal stimuli on intracellular calcium change and histamine releases in rat basophilic leukemia mast cells

    NASA Astrophysics Data System (ADS)

    Wu, Zu-Hui; Zhu, Dan; Chen, Ji-Yao; Zhou, Lu-Wei

    2012-05-01

    The effects of thermal stimuli on rat basophilic leukemia mast cells were studied. The cells in calcium-contained or calcium-free buffers were thermally stimulated in the temperature range of 25-60 °C. The corresponding calcium ion concentration in cells [Ca2+]i as well as the released histamine from cells was measured with fluorescence staining methods. The ruthenium red (RR), a block of membrane calcium channels (transient receptor potential family V (TRPV)), was used in experiments. Under the stimulus of 25-50 °C, no significant difference on [Ca2+]i was found between these three groups of the cells in calcium-contained buffer without or with RR and cells in calcium-free saline, indicating that the increased calcium in cytosol did not result from the extracellular buffer but came from the intracellular calcium stores. The [Ca2+]i continuously increased under the temperature of 50-60 °C, but the RR and calcium-free saline can obviously diminish the [Ca2+]i increase at these high temperatures, reflecting that the opening of the TRPV2 channels leads to a calcium influx resulting in the [Ca2+]i increment. The histamine release also became significant in these cases. Since the released histamine is a well-known mediator for the microcirculation promotion, the histamine release from mast cells could be one of the mechanisms of thermal therapy.

  13. Response localization of the pharmacological agents histamine and salbutamol along the respiratory system by forced oscillations in asthmatic subjects.

    PubMed

    Wouters, E F; Polko, A H; Visser, B F

    1989-01-01

    The bronchodilating effect of 1 mg and 0.4 mg salbutamol on the impedance of the respiratory system was studied in 25 asthmatic subjects after histamine-induced bronchoconstriction. Histamine caused an increase of respiratory resistance (Rrs) at lower frequencies and a frequency dependence of Rrs. Respiratory reactance (Xrs) decreased at all frequencies after histamine challenge. These changes can be explained by peripheral airway obstruction. Impedance measurements performed 5 min after inhalation of 1 mg and 0.4 mg salbutamol showed a decrease of Rrs values at lower frequencies, a disappearance of the frequency dependence of Rrs, and a significant increase of Xrs values. No significant differences in absolute changes of Rrs and Xrs are observed between the salbutamol regimens. These changes after inhalation of salbutamol can be explained by supposing a predominant action on the peripheral airways.

  14. Effect of acute aerobic exercise and histamine receptor blockade on arterial stiffness in African Americans and Caucasians

    PubMed Central

    Ranadive, Sushant M.; Lane-Cordova, Abbi D.; Kappus, Rebecca M.; Behun, Michael A.; Cook, Marc D.; Woods, Jeffrey A.; Wilund, Kenneth R.; Baynard, Tracy; Fernhall, Bo

    2017-01-01

    African Americans (AA) exhibit exaggerated central blood pressure (BP) and arterial stiffness measured by pulse wave velocity (PWV) in response to an acute bout of maximal exercise compared with Caucasians (CA). However, whether potential racial differences exist in central BP, elastic, or muscular arterial distensibility after submaximal aerobic exercise remains unknown. Histamine receptor activation mediates sustained postexercise hyperemia in CA but the effect on arterial stiffness is unknown. This study sought to determine the effects of an acute bout of aerobic exercise on central BP and arterial stiffness and the role of histamine receptors, in AA and CA. Forty-nine (22 AA, 27 CA) young and healthy subjects completed the study. Subjects were randomly assigned to take either histamine receptor antagonist or control placebo. Central blood BP and arterial stiffness measurements were obtained at baseline, and at 30, 60, and 90 min after 45 min of moderate treadmill exercise. AA exhibited greater central diastolic BP, elevated brachial PWV, and local carotid arterial stiffness after an acute bout of submaximal exercise compared with CA, which may contribute to their higher risk of cardiovascular disease. Unexpectedly, histamine receptor blockade did not affect central BP or PWV in AA or CA after exercise, but it may play a role in mediating local carotid arterial stiffness. Furthermore, histamine may mediate postexercise carotid arterial dilation in CA but not in AA. These observations provide evidence that young and healthy AA exhibit an exaggerated hemodynamic response to exercise and attenuated vasodilator response compared with CA. NEW & NOTEWORTHY African Americans are at greater risk for developing cardiovascular disease than Caucasians. We are the first to show that young and healthy African Americans exhibit greater central blood pressure, elevated brachial stiffness, and local carotid arterial stiffness following an acute bout of submaximal exercise

  15. Effect of acute aerobic exercise and histamine receptor blockade on arterial stiffness in African Americans and Caucasians.

    PubMed

    Yan, Huimin; Ranadive, Sushant M; Lane-Cordova, Abbi D; Kappus, Rebecca M; Behun, Michael A; Cook, Marc D; Woods, Jeffrey A; Wilund, Kenneth R; Baynard, Tracy; Halliwill, John R; Fernhall, Bo

    2017-02-01

    African Americans (AA) exhibit exaggerated central blood pressure (BP) and arterial stiffness measured by pulse wave velocity (PWV) in response to an acute bout of maximal exercise compared with Caucasians (CA). However, whether potential racial differences exist in central BP, elastic, or muscular arterial distensibility after submaximal aerobic exercise remains unknown. Histamine receptor activation mediates sustained postexercise hyperemia in CA but the effect on arterial stiffness is unknown. This study sought to determine the effects of an acute bout of aerobic exercise on central BP and arterial stiffness and the role of histamine receptors, in AA and CA. Forty-nine (22 AA, 27 CA) young and healthy subjects completed the study. Subjects were randomly assigned to take either histamine receptor antagonist or control placebo. Central blood BP and arterial stiffness measurements were obtained at baseline, and at 30, 60, and 90 min after 45 min of moderate treadmill exercise. AA exhibited greater central diastolic BP, elevated brachial PWV, and local carotid arterial stiffness after an acute bout of submaximal exercise compared with CA, which may contribute to their higher risk of cardiovascular disease. Unexpectedly, histamine receptor blockade did not affect central BP or PWV in AA or CA after exercise, but it may play a role in mediating local carotid arterial stiffness. Furthermore, histamine may mediate postexercise carotid arterial dilation in CA but not in AA. These observations provide evidence that young and healthy AA exhibit an exaggerated hemodynamic response to exercise and attenuated vasodilator response compared with CA. NEW & NOTEWORTHY African Americans are at greater risk for developing cardiovascular disease than Caucasians. We are the first to show that young and healthy African Americans exhibit greater central blood pressure, elevated brachial stiffness, and local carotid arterial stiffness following an acute bout of submaximal exercise

  16. Adrenergic receptors inhibit TRPV1 activity in the dorsal root ganglion neurons of rats.

    PubMed

    Matsushita, Yumi; Manabe, Miki; Kitamura, Naoki; Shibuya, Izumi

    2018-01-01

    Transient receptor potential vanilloid type 1 (TRPV1) is a polymodal receptor channel that responds to multiple types of stimuli, such as heat, acid, mechanical pressure and some vanilloids. Capsaicin is the most commonly used vanilloid to stimulate TRPV1. TRPV1 channels are expressed in dorsal root ganglion neurons that extend to Aδ- and C-fibers and have a role in the transduction of noxious inputs to the skin into the electrical signals of the sensory nerve. Although noradrenergic nervous systems, including the descending antinociceptive system and the sympathetic nervous system, are known to modulate pain sensation, the functional association between TRPV1 and noradrenaline in primary sensory neurons has rarely been examined. In the present study, we examined the effects of noradrenaline on capsaicin-evoked currents in cultured dorsal root ganglion neurons of the rat by the whole-cell voltage clamp method. Noradrenaline at concentrations higher than 0.1 pM significantly reduced the amplitudes of the inward capsaicin currents recorded at -60 mV holding potential. This inhibitory action was reversed by either yohimbine (an α2 antagonist, 10 nM) or propranolol (a β antagonist, 10 nM). The α2 agonists, clonidine (1 pM) and dexmedetomidine (1 pM) inhibited capsaicin currents, and yohimbine (1 nM) reversed the effects of clonidine. The inhibitory action of noradrenaline was not seen in the neurons pretreated with pertussis toxin (100 μg/ml for 24 h) and the neurons dialyzed intracellularly with guanosine 5'- [β-thio] diphosphate (GDPβS, 200 μM), the catalytic subunit of protein kinase A (250 U/ml) or okadaic acid (1 μM). These results suggest that noradrenaline directly acts on dorsal root ganglion neurons to inhibit the activity of TRPV1 depending on the activation of α2-adrenoceptors followed by the inhibition of the adenylate cyclase/cAMP/protein kinase A pathway.

  17. Ganglion cell distribution and retinal resolution in the Florida manatee, Trichechus manatus latirostris.

    PubMed

    Mass, Alla M; Ketten, Darlene R; Odell, Daniel K; Supin, Alexander Ya

    2012-01-01

    The topographic organization of retinal ganglion cells was examined in the Florida manatee (Trichechus manatus latirostris) to assess ganglion cell size and distribution and to estimate retinal resolution. The ganglion cell layer of the manatee's retina was comprised primarily of large neurons with broad intercellular spaces. Cell sizes varied from 10 to 60 μm in diameter (mean 24.3 μm). The retinal wholemounts from adult animals measured 446-501 mm(2) in area with total ganglion cell counts of 62,000-81,800 (mean 70,200). The cell density changed across the retina, with the maximum in the area below the optic disc and decreasing toward the retinal edges and in the immediate vicinity of the optic disc. The maximum cell density ranged from 235 to 337 cells per millimeter square in the adult retinae. Two wholemounts obtained from juvenile animals were 271 and 282 mm(2) in area with total cell numbers of 70,900 and 68,700, respectively (mean 69,800), that is, nearly equivalent to those of adults, but juvenile retinae consequently had maximum cell densities that were higher than those of adults: 478 and 491 cells per millimeter square. Calculations indicate a retinal resolution of ∼19' (1.6 cycles per degree) in both adult and juvenile retinae. Copyright © 2011 Wiley Periodicals, Inc.

  18. Periosteal ganglion: a report of three new cases including MRI findings and a review of the literature.

    PubMed

    Okada, K; Unoki, E; Kubota, H; Abe, E; Taniwaki, M; Morita, M; Sato, K

    1996-02-01

    To clarify the clinicopathological features of periosteal ganglion. Three patients with periosteal ganglion were studied clinicopathologically. One patient was selected from the files of our institute and two from a consultation file. All three lesions were located over the medial aspect of the tibia. Plain radiographs showed cortical erosions of varying degrees and mild periosteal reaction of the medial side of the tibia. MR images demonstrated well-circumscribed lesions overlying the cortical bone of the tibia, shown as low-intensity areas on T1-weighted images. On T2-weighted images, lesions were homogeneous, lobulated, and showed a characteristic markedly increased signal intensity. These findings are helpful in making a diagnosis of periosteal ganglion. Each patient had an uneventful clinical course after an excision involving the wall of the ganglion, the adjoining periosteum, and the underlying sclerotic cortical bone.

  19. [Shikimic acid inhibits the degranulation and histamine release in RBL-2H3 cells].

    PubMed

    Chen, Xianyong; Zheng, Qianqian; Liu, Wei; Yu, Lingling; Wang, Jinling; Li, Shigang

    2017-05-01

    Objective To study the effects of shikimic acid on the proliferation of rat RBL-2H3 cells and the degranulation of the cells induced by C48/80 and its mechanism. Methods MTT assay was performed to measure the proliferation of RBL-2H3 cells treated with 3, 10, 30 μg/mL shikimic acid. Toluidine blue staining was used to observe the degranulation of RBL-2H3 cells. The release of β-hexosaminidase from RBL-2H3 cells treated with 0, 12.5, 25, 50, 80, 100 μg/mL C48/80 was determined by substrate assay. ELISA was used to detect the histamine content in the supernatant of each treated group. Results Shikimic acid at 3, 10, 300 μg/mL had no obvious inhibitory effect on the proliferation of RBL-2H3 cells. There was a dose-effect relationship between the degranulation of RBL-2H3 cells and C48/80 concentration. Shikimic acid inhibited the degranulation of RBL-2H3 cells compared with the positive control group, the β-hexosaminidase release rate and histamine release were significantly reduced in RBL-2H3 cells treated with shikimic acid and C48/80. Conclusion Shikimic acid can inhibit the degranulation of RBL-2H3 cells and reduce histamine release.

  20. Synaptic transmission in the superior cervical ganglion of the cat after reinnervation by vagus fibres

    PubMed Central

    Ceccarelli, B.; Clementi, F.; Mantegazza, P.

    1971-01-01

    1. A vagus-sympathetic anastomosis was performed in the cat by connecting end to end the cranial trunk of the vagus to the cranial end of the cervical sympathetic trunk, both severed under the ganglia. 2. Forty to sixty days after the anastomosis, the ocular signs of sympathetic paralysis (such as myosis and prolapse of the nictitating membrane) which had developed shortly after the operation, had completely disappeared, thus suggesting the recovery of synaptic transmission in the ganglion. In case of plain preganglionic denervation after the same period the ocular signs of cervical sympathetic paralysis were still present. 3. Contraction of the nictitating membrane could be induced by electrical stimulation of both the vagus preanastomotic and the sympathetic postanastomotic—preganglionic trunks. Ganglionic blocking agents induced the blockade of the `new' ganglionic synaptic function, while nicotine and pilocarpine provoked a marked contraction of the nictitating membrane. 4. Electron microscopy showed that the preganglionic regeneration of vagus fibers resulted in the formation of new synapses, mainly of axodendritic type, identical to normal ganglionic synapses. Moreover, after cutting the preanastomotic trunk of the vagus, these new ganglionic presynaptic profiles degenerated, thus proving their vagal origin. 5. During restoration of the synaptic contacts readjustment of dendritic tips occurred. ImagesText-fig. 2Fig. 9Fig. 10Fig. 11Fig. 12Fig. 13Fig. 16Fig. 17Fig. 14Fig. 15Fig. 1Fig. 2Fig. 3Fig. 4Fig. 5Fig. 7Fig. 8 PMID:4326851

  1. Spatial resolution, contrast sensitivity, and sensitivity to defocus of chicken retinal ganglion cells in vitro.

    PubMed

    Diedrich, Erich; Schaeffel, Frank

    2009-11-01

    The chicken has been extensively studied as an animal model for myopia because its eye growth is tightly controlled by visual experience. It has been found that the retina controls the axial eye growth rates depending on the amount and the sign of defocus imposed in the projected image. Glucagonergic amacrine cells were discovered that appear to encode for the sign of imposed defocus. It is not clear whether the downstream neurons, the retinal ganglion cells, still have access to this information-and whether it ultimately reaches the brain. We have analyzed the spike rates of chicken retinal ganglion cells in vitro using a microelectrode array. For this purpose, we initially defined spatial resolution and contrast sensitivity in vitro. Two classes of chicken retinal ganglions were found, depending on the linearity of their responses with increasing contrast. Responses generally declined with increasing defocus of the visual stimulus. These responses were well predicted by the modulation transfer function for a diffraction-limited defocused optical system, the first Bessel function. Thus, the studied retinal ganglion cells did not distinguish between a loss of contrast at a given spatial frequency due to reduced contrast of the stimulus pattern or because the pattern was presented out of focus. Furthermore, there was no indication that the retinal ganglion cells responded differently to defocus of either sign, at least for the cells that were recorded in this study.

  2. Immunocytochemical localization of metabotropic (mGluR2/3 and mGluR4a) and ionotropic (GluR2/3) glutamate receptors in adrenal medullary ganglion cells.

    PubMed

    Sarría, R; Díez, J; Losada, J; Doñate-Oliver, F; Kuhn, R; Grandes, P

    2006-02-01

    The localization of metabotropic glutamate receptors of groups II (mGluR2/3) and III (mGluR4a) and the subunits 2 and 3 of alfa-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) ionotropic glutamate receptors (GluR2/3) was investigated with immunocytochemical methods in the rat adrenal gland. MGluR2/3, mGluR4a and GluR2/3 immunoreactivities were observed in large-sized, centrally located type I adrenal medullary ganglion neurons. Furthermore, the small-sized type II adrenal ganglion neurons identified by their immunoreactivity to brain nitric oxide synthase (bNOS), also expressed mGluR2/3, mGluR4a and GluR2/3. These cells were disposed in the peripheral portion of the adrenal medulla. None of the type I neurons were positively labeled for bNOS. These morphological observations suggest that activation of glutamate receptors in ganglion neurons may be instrumental in the control of adrenal endocrine systems as well as blood regulation.

  3. Tuneable surface enhanced Raman spectroscopy hyphenated to chemically derivatized thin-layer chromatography plates for screening histamine in fish.

    PubMed

    Xie, Zhengjun; Wang, Yang; Chen, Yisheng; Xu, Xueming; Jin, Zhengyu; Ding, Yunlian; Yang, Na; Wu, Fengfeng

    2017-09-01

    Reliable screening of histamine in fish was of urgent importance for food safety. This work presented a highly selective surface enhanced Raman spectroscopy (SERS) method mediated by thin-layer chromatography (TLC), which was tailored for identification and quantitation of histamine. Following separation and derivatization with fluram, plates were assayed with SERS, jointly using silver nanoparticle and NaCl. The latter dramatically suppressed the masking effect caused by excessive fluram throughout the plate, thus offering clear baseline and intensive Raman fingerprints specific to the analyte. Under optimized conditions, the usability of this method was validated by identifying the structural fingerprints of both targeted and unknown compounds in fish samples. Meanwhile, the quantitative results of this method agreed with those by an HPLC method officially suggested by EU for histamine determination. Showing remarkable cost-efficiency and user-friendliness, this facile TLC-SERS method was indeed screening-oriented and may be more attractive to controlling laboratories of limited resource. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Expression of ionotropic glutamate receptors, AMPA, kainite and NMDA, in the pigeon retina.

    PubMed

    Atoji, Yasuro

    2015-07-01

    Glutamate is an excitatory neurotransmitter in the vertebrate retina. A previous study found vesicular glutamate transporter 2 (vGluT2) mRNA in the pigeon retina, suggesting that bipolar and ganglion cells are glutamatergic. The present study examined the localization of ionotropic glutamate receptors to identify receptor cells in the pigeon retina using in situ hybridization histochemistry. Nine subunits of AMPA receptor (GluA1, GluA2, GluA3, and GluA4), kainate receptor (GluK1, GluK2, and GluK4), and NMDA receptor (GluN1 and GluN2A) were found to be expressed in the inner nuclear layer (INL) and ganglion cell layers. GluA1, GluA2, GluA3, and GluA4 were primarily expressed in the inner half of INL, and the signal intensity was strong for GluA2, GluA3, and GluA4. GluK1 was intensely expressed in the outer half of INL, whereas GluK2 and GluK4 were mainly localized in the inner half of INL. GluN1 and GluN2A were moderately expressed in the inner half of INL. Horizontal cells expressed GluA3 and GluA4, and ganglion cells expressed all subunits examined. These results suggest that the glutamatergic neurotransmission in the pigeon retina is similar to that in mammals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Molecular Responses of the Spiral Ganglion to Aminoglycosides

    ERIC Educational Resources Information Center

    Balaban, Carey D.

    2005-01-01

    Aminoglycosides are toxic to both the inner ear hair cells and the ganglion cells that give rise to the eighth cranial nerve. According to recent studies, these cells have a repertoire of molecular responses to aminoglycoside exposure that engages multiple neuroprotective mechanisms. The responses appear to involve regulation of ionic homeostasis,…

  6. Studies of Ventilatory Capacity and Histamine Response during Exposure to Isocyanate Vapour in Polyurethane Foam Manufacture

    PubMed Central

    Gandevia, Bryan

    1963-01-01

    Complaints of respiratory symptoms amongst workers in a factory using isocyanate to produce polyurethane foam led to a study of changes in ventilatory capacity in the course of several working days. Mean decreases of the order of 0·181. were observed in the forced expiratory volume at one second in 15 employees during each of three normal working shifts. No significant change occurred on days when a process involving the liberation of isocyanate was stopped, or when the men were given an oral aminophylline compound prophylactically. An aerosol of isoprenaline failed to reverse the decrease in ventilatory capacity observed during one normal working day. Approximately half the subjects studied were found to show increased bronchial sensitivity to a histamine aerosol; all were smokers, whereas none of the non-smokers showed a significant (over 10%) reduction in ventilatory capacity after histamine. Smokers and/or positive histamine reactors tended to show a greater decrease in ventilatory capacity during a working day than non-smokers or non-reactors. The present findings, which confirm clinical reports of adverse respiratory effects of isocyanate in low concentrations, are compared with other studies of ventilatory capacity during occupational exposure to respiratory irritants. PMID:14046157

  7. Effects of electroacupuncture at 2 and 100 Hz on rat type 2 diabetic neuropathic pain and hyperalgesia-related protein expression in the dorsal root ganglion.

    PubMed

    He, Xiao-Fen; Wei, Jun-Jun; Shou, Sheng-Yun; Fang, Jian-Qiao; Jiang, Yong-Liang

    To investigate the analgesic effects of electroacupuncture (EA) at 2 and 100 Hz on type 2 diabetic neuropathic pain (DNP) and on the expressions of the P2X3 receptor and calcitonin gene-related peptide (CGRP) in the dorsal root ganglion (DRG). Rat type 2 DNP was induced by a high calorie and high sugar diet fed for 7 weeks, plus a single intraperitoneal injection of streptozotocin (STZ) after 5 weeks. EA at 2 and 100 Hz was carried out once every day after 7 weeks for 7 consecutive days. Body weight, serum fasting insulin (FINS), fasting blood glucose (FBG), insulin sensitivity index (ISI), and paw withdrawal latency (PWL) were measured. The expressions of L4-L6 DRG P2X3 receptors and CGRP were assessed by immunofluorescence. Type 2 DNP was successfully induced as shown by the increased body weight, FINS, and FBG, as well as the reduced ISI and PWL. Expressions of P2X3 receptors and CGRP in L4-L6 DRGs increased. EA at both 2 and 100 Hz relieved type 2 DNP, but the analgesic effect of EA was stronger at 2 Hz. P2X3 receptor expression decreased in L4-L6 DRGs following EA at 2 Hz and in L5 and L6 DRGs following EA at 100 Hz. EA at both 2 and 100 Hz down-regulated CGRP overexpression in L4-L6 DRGs. These findings indicate that EA at 2 Hz is a good option for the management of type 2 DNP. The EA effect may be related to its down-regulation of the overexpressions of the DRG P2X3 receptors and CGRP in this condition.

  8. Effects of electroacupuncture at 2 and 100 Hz on rat type 2 diabetic neuropathic pain and hyperalgesia-related protein expression in the dorsal root ganglion*

    PubMed Central

    He, Xiao-fen; Wei, Jun-jun; Shou, Sheng-yun; Fang, Jian-qiao; Jiang, Yong-liang

    2017-01-01

    Objective: To investigate the analgesic effects of electroacupuncture (EA) at 2 and 100 Hz on type 2 diabetic neuropathic pain (DNP) and on the expressions of the P2X3 receptor and calcitonin gene-related peptide (CGRP) in the dorsal root ganglion (DRG). Methods: Rat type 2 DNP was induced by a high calorie and high sugar diet fed for 7 weeks, plus a single intraperitoneal injection of streptozotocin (STZ) after 5 weeks. EA at 2 and 100 Hz was carried out once every day after 7 weeks for 7 consecutive days. Body weight, serum fasting insulin (FINS), fasting blood glucose (FBG), insulin sensitivity index (ISI), and paw withdrawal latency (PWL) were measured. The expressions of L4–L6 DRG P2X3 receptors and CGRP were assessed by immunofluorescence. Results: Type 2 DNP was successfully induced as shown by the increased body weight, FINS, and FBG, as well as the reduced ISI and PWL. Expressions of P2X3 receptors and CGRP in L4–L6 DRGs increased. EA at both 2 and 100 Hz relieved type 2 DNP, but the analgesic effect of EA was stronger at 2 Hz. P2X3 receptor expression decreased in L4–L6 DRGs following EA at 2 Hz and in L5 and L6 DRGs following EA at 100 Hz. EA at both 2 and 100 Hz down-regulated CGRP overexpression in L4–L6 DRGs. Conclusions: These findings indicate that EA at 2 Hz is a good option for the management of type 2 DNP. The EA effect may be related to its down-regulation of the overexpressions of the DRG P2X3 receptors and CGRP in this condition. PMID:28271659

  9. Mangiferin Protects Retinal Ganglion Cells in Ischemic Mouse Retina via SIRT1.

    PubMed

    Kim, Soo-Jin; Sung, Mi-Sun; Heo, Hwan; Lee, Jae-Hyuk; Park, Sang-Woo

    2016-06-01

    To investigate whether mangiferin can increase the viability of retinal ganglion cells (RGCs) in ischemic mouse retina, and to determine the possible mechanism of neuroprotection. C57BL/6J mice underwent constant elevation of intraocular pressure for 60 min and received saline or mangiferin (30 mg/kg) intraperitoneally once daily until sacrifice. HIF-1α, GFAP and SIRT1 expression was assessed at 1, 4, and 7 days after retinal ischemia. Bax and Bcl-2 expression was also analyzed at 1 and 4 days. RGC survival was assessed by labeling flat-mounted retinas with Brn3a at 2 weeks after retinal ischemia. The effect of co-treatment with mangiferin and sirtinol (SIRT1 inhibitor) was also evaluated. The expression of HIF-1α and GFAP was upregulated in saline-treated retinas within 7 days after ischemia. Mangiferin treatment suppressed this upregulation. The expression of SIRT1 was downregulated in saline-treated ischemic retinas. This downregulation was reversed by mangiferin treatment, resulting in a significant difference from saline-treated ischemic retinas. In mangiferin-treated ischemic retinas, Bax expression was downregulated, whereas Bcl-2 expression was upregulated in comparison with saline-treated ischemic retinas. Mangiferin treatment protected ischemic retinas against RGC loss. Treatment of sirtinol decreased the neuroprotective effect of mangiferin. Our findings suggest that mangiferin has a neuroprotective effect on RGC through downregulation of HIF-1a and GFAP, and upregulation of SIRT1 in ischemic mouse retinas. We suggest that mangiferin might be a potential neuroprotective agent against RGC loss under oxidative stress.

  10. Curcumin Attenuates Staurosporine-Mediated Death of Retinal Ganglion Cells

    PubMed Central

    Burugula, Balabharathi; Ganesh, Bhagyalaxmi S.

    2011-01-01

    Purpose. Staurosporine (SS) causes retinal ganglion cell (RGC) death in vivo, but the underlying mechanisms have been unclear. Since previous studies on RGC-5 cells indicated that SS induces cell death by elevating proteases, this study was undertaken to investigate whether SS induces RGC loss by elevating proteases in the retina, and curcumin prevents SS-mediated death of RGCs. Methods. Transformed mouse retinal ganglion-like cells (RGC-5) were treated with 2.0 μM SS and various doses of curcumin. Two optimal doses of SS (12.5 and 100 nM) and curcumin (2.5 and 10 μM) were injected into the vitreous of C57BL/6 mice. Matrix metalloproteinase (MMP)-9, tissue plasminogen activator (tPA), and urokinase plasminogen activator (uPA) activities were assessed by zymography assays. Viability of RGC-5 cells was assessed by MTT assays. RGC and amacrine cell loss in vivo was assessed by immunostaining with Brn3a and ChAT antibodies, respectively. Frozen retinal cross sections were immunostained for nuclear factor-κB (NF-κB). Results. Staurosporine induced uPA and tPA levels in RGC-5 cells, and MMP-9, uPA, and tPA levels in the retinas and promoted the death of RGC-5 cells in vitro and RGCs and amacrine cells in vivo. In contrast, curcumin attenuated RGC and amacrine cell loss, despite elevated levels of proteases. An NF-κB inhibitory peptide reversed curcumin-mediated protective effect on RGC-5 cells, but did not inhibit protease levels. Curcumin did not inhibit protease levels in vivo, but attenuated RGC and amacrine cell loss by restoring NF-κB expression. Conclusions. The results show that curcumin attenuates RGC and amacrine cell death despite elevated levels of proteases and raises the possibility that it may be used as a plausible adjuvant therapeutic agent to prevent the loss of these cells in retinal degenerative conditions. PMID:21498608

  11. Gasserian Ganglion and Retrobulbar Nerve Block in the Treatment of Ophthalmic Postherpetic Neuralgia: A Case Report.

    PubMed

    Huang, Jie; Ni, Zhongge; Finch, Philip

    2017-09-01

    Varicella zoster virus reactivation can cause permanent histological changes in the central and peripheral nervous system. Neural inflammatory changes or damage to the dorsal root ganglia sensory nerve fibers during reactivation can lead to postherpetic neuralgia (PHN). For PHN of the first division of the fifth cranial nerve (ophthalmic division of the trigeminal ganglion), there is evidence of inflammatory change in the ganglion and adjacent ocular neural structures. First division trigeminal nerve PHN can prove to be difficult and sometimes even impossible to manage despite the use of a wide range of conservative measures, including anticonvulsant and antidepressant medication. Steroids have been shown to play an important role by suppressing neural inflammatory processes. We therefore chose the trigeminal ganglion as an interventional target for an 88-year-old woman with severe ophthalmic division PHN after she failed to respond to conservative treatment. Under fluoroscopic guidance, a trigeminal ganglion nerve block was performed with lidocaine combined with dexamethasone. A retrobulbar block with lidocaine and triamcinolone settled residual oculodynia. At 1-year follow-up, the patient remained pain free and did not require analgesic medication. To our knowledge, this is the first reported case of ophthalmic division PHN successfully treated with a combination of trigeminal ganglion and retrobulbar nerve block using a local anesthetic agent and steroid for central and peripheral neural inflammatory processes. © 2016 World Institute of Pain.

  12. A Protein Encoded by the Latency-Related Gene of Bovine Herpesvirus 1 Is Expressed in Trigeminal Ganglionic Neurons of Latently Infected Cattle and Interacts with Cyclin-Dependent Kinase 2 during Productive Infection

    PubMed Central

    Jiang, Yunquan; Hossain, Ashfaque; Winkler, Maria Teresa; Holt, Todd; Doster, Alan; Jones, Clinton

    1998-01-01

    Despite productive viral gene expression in the peripheral nervous system during acute infection, the bovine herpesvirus 1 (BHV-1) infection cycle is blocked in sensory ganglionic neurons and consequently latency is established. The only abundant viral transcript expressed during latency is the latency-related (LR) RNA. LR gene products inhibit S-phase entry, and binding of the LR protein (LRP) to cyclin A was hypothesized to block cell cycle progression. This study demonstrates LRP is a nuclear protein which is expressed in neurons of latently infected cattle. Affinity chromatography indicated that LRP interacts with cyclin-dependent kinase 2 (cdk2)-cyclin complexes or cdc2-cyclin complexes in transfected human cells or infected bovine cells. After partial purification using three different columns (DEAE-Sepharose, Econo S, and heparin-agarose), LRP was primarily associated with cdk2-cyclin E complexes, an enzyme which is necessary for G1-to-S-phase cell cycle progression. During acute infection of trigeminal ganglia or following dexamethasone-induced reactivation, BHV-1 induces expression of cyclin A in neurons (L. M. Schang, A. Hossain, and C. Jones, J. Virol. 70:3807–3814, 1996). Expression of S-phase regulatory proteins (cyclin A, for example) leads to neuronal apoptosis. Consequently, we hypothesize that interactions between LRP and cell cycle regulatory proteins promote survival of postmitotic neurons during acute infection and/or reactivation. PMID:9733854

  13. A protein encoded by the latency-related gene of bovine herpesvirus 1 is expressed in trigeminal ganglionic neurons of latently infected cattle and interacts with cyclin-dependent kinase 2 during productive infection.

    PubMed

    Jiang, Y; Hossain, A; Winkler, M T; Holt, T; Doster, A; Jones, C

    1998-10-01

    Despite productive viral gene expression in the peripheral nervous system during acute infection, the bovine herpesvirus 1 (BHV-1) infection cycle is blocked in sensory ganglionic neurons and consequently latency is established. The only abundant viral transcript expressed during latency is the latency-related (LR) RNA. LR gene products inhibit S-phase entry, and binding of the LR protein (LRP) to cyclin A was hypothesized to block cell cycle progression. This study demonstrates LRP is a nuclear protein which is expressed in neurons of latently infected cattle. Affinity chromatography indicated that LRP interacts with cyclin-dependent kinase 2 (cdk2)-cyclin complexes or cdc2-cyclin complexes in transfected human cells or infected bovine cells. After partial purification using three different columns (DEAE-Sepharose, Econo S, and heparin-agarose), LRP was primarily associated with cdk2-cyclin E complexes, an enzyme which is necessary for G1-to-S-phase cell cycle progression. During acute infection of trigeminal ganglia or following dexamethasone-induced reactivation, BHV-1 induces expression of cyclin A in neurons (L. M. Schang, A. Hossain, and C. Jones, J. Virol. 70:3807-3814, 1996). Expression of S-phase regulatory proteins (cyclin A, for example) leads to neuronal apoptosis. Consequently, we hypothesize that interactions between LRP and cell cycle regulatory proteins promote survival of postmitotic neurons during acute infection and/or reactivation.

  14. Therapeutic potential of stellate ganglion block in orofacial pain: a mini review.

    PubMed

    Jeon, Younghoon

    2016-09-01

    Orofacial pain is a common complaint of patients that causes distress and compromises the quality of life. It has many etiologies including trauma, interventional procedures, nerve injury, varicella-zoster (shingles), tumor, and vascular and idiopathic factors. It has been demonstrated that the sympathetic nervous system is usually involved in various orofacial pain disorders such as postherpetic neuralgia, complex regional pain syndromes, and atypical facial pain. The stellate sympathetic ganglion innervates the head, neck, and upper extremity. In this review article, the effect of stellate ganglion block and its mechanism of action in orofacial pain disorders are discussed.

  15. Acid-sensing ion channels in trigeminal ganglion neurons innervating the orofacial region contribute to orofacial inflammatory pain.

    PubMed

    Fu, Hui; Fang, Peng; Zhou, Hai-Yun; Zhou, Jun; Yu, Xiao-Wei; Ni, Ming; Zheng, Jie-Yan; Jin, You; Chen, Jian-Guo; Wang, Fang; Hu, Zhuang-Li

    2016-02-01

    Orofacial pain is a common clinical symptom that is accompanied by tooth pain, migraine and gingivitis. Accumulating evidence suggests that acid-sensing ion channels (ASICs), especially ASIC3, can profoundly affect the physiological properties of nociception in peripheral sensory neurons. The aim of this study is to examine the contribution of ASICs in trigeminal ganglion (TG) neurons to orofacial inflammatory pain. A Western blot (WB), immunofluorescence assay of labelled trigeminal ganglion neurons, orofacial formalin test, cell preparation and electrophysiological experiments are performed. This study demonstrated that ASIC1, ASIC2a and ASIC3 are highly expressed in TG neurons innervating the orofacial region of rats. The amplitude of ASIC currents in these neurons increased 119.72% (for ASIC1-like current) and 230.59% (for ASIC3-like current) in the formalin-induced orofacial inflammatory pain model. In addition, WB and immunofluorescence assay demonstrated a significantly augmented expression of ASICs in orofacial TG neurons during orofacial inflammation compared with the control group. The relative protein density of ASIC1, ASIC2a and ASIC3 also increased 58.82 ± 8.92%, 45.30 ± 11.42% and 55.32 ± 14.71%, respectively, compared with the control group. Furthermore, pharmacological blockade of ASICs and genetic deletion of ASIC1 attenuated the inflammation response. These findings indicate that peripheral inflammation can induce the upregulation of ASICs in TG neurons, causing orofacial inflammatory pain. Additionally, the specific inhibitor of ASICs may have a significant analgesic effect on orofacial inflammatory pain. © 2016 John Wiley & Sons Australia, Ltd.

  16. Expression of LIM-homeodomain transcription factors in the developing and mature mouse retina

    PubMed Central

    Balasubramanian, Revathi; Bui, Andrew; Ding, Qian; Gan, Lin

    2014-01-01

    LIM-homeodomain (LIM-HD) transcription factors have been extensively studied for their role in the development of the central nervous system. Their function is key to several developmental events like cell proliferation, differentiation and subtype specification. However, their roles in retinal neurogenesis remain largely unknown. Here we report a detailed expression study of LIM-HD transcription factors LHX9 and LHX2, LHX3 and LHX4, and LHX6 in the developing and mature mouse retina using immunohistochemistry and in situ hybridization techniques. We show that LHX9 is expressed during the early stages of development in the retinal ganglion cell layer and the inner nuclear layer. We also show that LHX9 is expressed in a subset of amacrine cells in the adult retina. LHX2 is known to be expressed in retinal progenitor cells during development and in Müller glial cells and a subset of amacrine cells in the adult retina. We found that the LHX2 subset of amacrine cells is not cholinergic and that a very few of LHX2 amacrine cells express calretinin. LHX3 and LHX4 are expressed in a subset of bipolar cells in the adult retina. LHX6 is expressed in cells in the ganglion cell layer and the neuroblast layer starting at embryonic stage 13.5 (E13.5) and continues to be expressed in cells in the ganglion cell layer and inner nuclear layer, postnatally, suggesting its likely expression in amacrine cells or a subset thereof. Taken together, our comprehensive assay of expression patterns of LIM-HD transcription factors during mouse retinal development will help further studies elucidating their biological functions in the differentiation of retinal cell subtypes. PMID:24333658

  17. The mast cell stabilizer sodium cromoglycate reduces histamine release and status epilepticus-induced neuronal damage in the rat hippocampus.

    PubMed

    Valle-Dorado, María Guadalupe; Santana-Gómez, César Emmanuel; Orozco-Suárez, Sandra Adela; Rocha, Luisa

    2015-05-01

    Experiments were designed to evaluate changes in the histamine release, mast cell number and neuronal damage in hippocampus induced by status epilepticus. We also evaluated if sodium cromoglycate, a stabilizer of mast cells with a possible stabilizing effect on the membrane of neurons, was able to prevent the release of histamine, γ-aminobutyric acid (GABA) and glutamate during the status epilepticus. During microdialysis experiments, rats were treated with saline (SS-SE) or sodium cromoglycate (CG-SE) and 30 min later received the administration of pilocarpine to induce status epilepticus. Twenty-four hours after the status epilepticus, the brains were used to determine the neuronal damage and the number of mast cells in hippocampus. During the status epilepticus, SS-SE group showed an enhanced release of histamine (138.5%, p = 0.005), GABA (331 ± 91%, p ≤ 0.001) and glutamate (467%, p ≤ 0.001), even after diazepam administration. One day after the status epilepticus, SS-SE group demonstrated increased number of mast cells in Stratum pyramidale of CA1 (88%, p < 0.001) and neuronal damage in dentate gyrus, CA1 and CA3. In contrast to SS-SE group, rats from the CG-SE group showed increased latency to the establishment of the status epilepticus (p = 0.048), absence of wet-dog shakes, reduced histamine (but not GABA and glutamate) release, lower number of mast cells (p = 0.008) and reduced neuronal damage in hippocampus. Our data revealed that histamine, possibly from mast cells, is released in hippocampus during the status epilepticus. This effect may be involved in the subsequent neuronal damage and is diminished with sodium cromoglycate pretreatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. The spiral ganglion: connecting the peripheral and central auditory systems

    PubMed Central

    Nayagam, Bryony A; Muniak, Michael A; Ryugo, David K

    2011-01-01

    In mammals, the initial bridge between the physical world of sound and perception of that sound is established by neurons of the spiral ganglion. The cell bodies of these neurons give rise to peripheral processes that contact acoustic receptors in the organ of Corti, and the central processes collect together to form the auditory nerve that projects into the brain. In order to better understand hearing at this initial stage, we need to know the following about spiral ganglion neurons: (1) their cell biology including cytoplasmic, cytoskeletal, and membrane properties, (2) their peripheral and central connections including synaptic structure; (3) the nature of their neural signaling; and (4) their capacity for plasticity and rehabilitation. In this report, we will update the progress on these topics and indicate important issues still awaiting resolution. PMID:21530629

  19. The retina of the shovel-nosed ray, Rhinobatos batillum (Rhinobatidae): morphology and quantitative analysis of the ganglion, amacrine and bipolar cell populations.

    PubMed

    Collin, S P

    1988-01-01

    A light microscopy study of the retina of the shovel-nosed ray, Rhinobatos batillum (Rhinobatidae) has revealed a duplex retina with a rod to cone ratio between 4:1 and 6:1. The inner nuclear layer consists of three layers of large horizontal cells, tightly packed, stellate bipolar cells, and up to three substrata of amacrine cells. The collaterals of the many supporting Müller cells project from the inner to the outer limiting membrane and divide the retina into many subunits. The cells of the ganglion cell layer are distributed into two layers, although a large proportion of ganglion cells are also displaced into the inner plexiform and inner nuclear layers. Topographic analysis of the cells in the ganglion cell layer, inner plexiform and inner nuclear layers reveals a number of regional specializations or "areae centrales". Ganglion cells were retrogradely-labelled with cobalt-lysine from the optic nerve, and three sub-populations of neurons characterized on their soma size and position. Small (20-50 microns2), large (80-300 microns2) and giant (greater than 300 microns2) sub-populations of ganglion cells each revealed distinct retinal specializations with peak densities of 3 x 10(3), 1.25 x 10(3) and 1.57 x 10(3) cells per mm2, respectively. Topographical comparison between Nissl-stained and retrogradely-labelled ganglion cell populations have established that a maximum of 20% in the "area centralis", and 75% in unspecialized, peripheral regions of the retina are non-ganglion cells. Out of a total of 210,566 cells in the ganglion cell layer, 49% were found to be non-ganglion cells. Iso-density contour maps of amacrine and bipolar cell distributions also reveal some specializations. These cell concentrations lie in corresponding regions to areas of increased density in the large and giant ganglion cell populations, suggesting some functional association.

  20. Long-term spironolactone treatment reduces coronary TRPC expression, vasoconstriction, and atherosclerosis in metabolic syndrome pigs.

    PubMed

    Li, Wennan; Chen, Xingjuan; Riley, Ashley M; Hiett, S Christopher; Temm, Constance J; Beli, Eleni; Long, Xin; Chakraborty, Saikat; Alloosh, Mouhamad; White, Fletcher A; Grant, Maria B; Sturek, Michael; Obukhov, Alexander G

    2017-09-01

    Coronary transient receptor potential canonical (TRPC) channel expression is elevated in metabolic syndrome (MetS). However, differential contribution of TRPCs to coronary pathology in MetS is not fully elucidated. We investigated the roles of TRPC1 and TRPC6 isoforms in coronary arteries of MetS pigs and determined whether long-term treatment with a mineralocorticoid receptor inhibitor, spironolactone, attenuates coronary TRPC expression and associated dysfunctions. MetS coronary arteries exhibited significant atherosclerosis, endothelial dysfunction, and increased histamine-induced contractions. Immunohistochemical studies revealed that TRPC6 immunostaining was significantly greater in the medial layer of MetS pig coronary arteries compared to that in Lean pigs, whereas little TRPC6 immunostaining was found in atheromas. Conversely, TRPC1 immunostaining was weak in the medial layer but strong in MetS atheromas, where it was predominantly localized to macrophages. Spironolactone treatment significantly decreased coronary TRPC expression and dysfunctions in MetS pigs. In vivo targeted delivery of the dominant-negative (DN)-TRPC6 cDNA to the coronary wall reduced histamine-induced calcium transients in the MetS coronary artery medial layer, implying a role for TRPC6 in mediating calcium influx in MetS coronary smooth muscles. Monocyte adhesion was increased in Lean pig coronary arteries cultured in the presence of aldosterone; and spironolactone antagonized this effect, suggesting that coronary mineralocorticoid receptor activation may regulate macrophage infiltration. TRPC1 expression in atheroma macrophages was associated with advanced atherosclerosis, whereas medial TRPC6 upregulation correlated with increased histamine-induced calcium transients and coronary contractility. We propose that long-term spironolactone treatment may be a therapeutic strategy to decrease TRPC expression and coronary pathology associated with MetS.

  1. Histamine paw edema of mice was increased and became H[sub 2]-antagonist sensitive by co-injection of nitric oxide forming agents, but serotonin paw edema was decreased

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oyanagui, Yoshihiko; Sato, Sachio

    1993-01-01

    Nitric oxide (NO) surprisingly caused the opposite effect on histamine and serotonin edema. The local injection of acidified nitrite (0.3-30 [mu]g/paw which correspond 10 [mu]g-1mg/kg) increased histamine edema of mice up to 45[plus minus]4% and suppressed serotonin edema to 90[plus minus]3%. Other NO-generators (nitroprusside sodium and hydroxylamine) showed similar effects. These results were in accordance with previous data on endogenous NO. Methylene blue (MB, 30ng/paw which corresponds to 1 [mu]g/kg) suppressed histamine edema (62[plus minus]3%) and increased serotonin edema (43[plus minus]3%) in normal mice, being reversed by acidified nitrite. This suggests the involvement of guanosine 3[prime], 5[prime]-cyclic monophosphate (cGMP) formationmore » for the action of NO. Histamine edema became sensitive to H[sub 2]-antagonist, cimetidine, by co-injection of 30 [mu]g/paw (which corresponds to 1mg/kg) acidified nitrite (ED[sub 50] = 30 [mu]g/kg versus [much gt] 1mg/kg). NO seemed to modify the histamine receptor(s) or tautomeric form of histamine. NO, O[sup [minus

  2. Fractalkine Signaling Regulates Macrophage Recruitment into the Cochlea and Promotes the Survival of Spiral Ganglion Neurons after Selective Hair Cell Lesion.

    PubMed

    Kaur, Tejbeer; Zamani, Darius; Tong, Ling; Rubel, Edwin W; Ohlemiller, Kevin K; Hirose, Keiko; Warchol, Mark E

    2015-11-11

    Macrophages are recruited into the cochlea in response to injury caused by acoustic trauma or ototoxicity, but the nature of the interaction between macrophages and the sensory structures of the inner ear remains unclear. The present study examined the role of fractalkine signaling in regulating the injury-evoked behavior of macrophages following the selective ablation of cochlear hair cells. We used a novel transgenic mouse model in which the human diphtheria toxin receptor (huDTR) is selectively expressed under the control of Pou4f3, a hair cell-specific transcription factor. Administration of diphtheria toxin (DT) to these mice resulted in nearly complete ablation of cochlear hair cells, with no evident pathology among supporting cells, spiral ganglion neurons, or cells of the cochlear lateral wall. Hair cell death led to an increase in macrophages associated with the sensory epithelium of the cochlea. Their numbers peaked at 14 days after DT and then declined at later survival times. Increased macrophages were also observed within the spiral ganglion, but their numbers remained elevated for (at least) 56 d after DT. To investigate the role of fractalkine signaling in macrophage recruitment, we crossed huDTR mice to a mouse line that lacks expression of the fractalkine receptor (CX3CR1). Disruption of fractalkine signaling reduced macrophage recruitment into both the sensory epithelium and spiral ganglion and also resulted in diminished survival of spiral ganglion neurons after hair cell death. Our results suggest a fractalkine-mediated interaction between macrophages and the neurons of the cochlea. It is known that damage to the inner ear leads to recruitment of inflammatory cells (macrophages), but the chemical signals that initiate this recruitment and the functions of macrophages in the damaged ear are unclear. Here we show that fractalkine signaling regulates macrophage recruitment into the cochlea and also promotes the survival of cochlear afferents after

  3. Identification of two H3-histamine receptor subtypes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, R.E. Jr.; Zweig, A.; Shih, N.Y.

    The H3-histamine receptor provides feedback inhibition of histamine synthesis and release as well as inhibition of other neurotransmitter release. We have characterized this receptor by radioligand binding studies with the H3 agonist N alpha-(3H)methylhistamine ((3H)NAMHA). The results of (3H)NAMHA saturation binding and NAMHA inhibition of (3H)NAMHA binding were consistent with an apparently single class of receptors (KD = 0.37 nM, Bmax = 73 fmol/mg of protein) and competition assays with other agonists and the antagonists impromidine and dimaprit disclosed only a single class of sites. In contrast, inhibition of (3H)NAMHA binding by the specific high affinity H3 antagonist thioperamide revealedmore » two classes of sites (KiA = 5 nM, BmaxA = 30 fmol/mg of protein; KiB = 68 nM, BmaxB = 48 fmol/mg of protein). Burimamide, another antagonist that, like thioperamide, contains a thiourea group, likewise discriminated between two classes of sites. In addition to differences between some antagonist potencies for the two receptors, there is a differential guanine nucleotide sensitivity of the two. The affinity of the H3A receptor for (3H) NAMHA was reduced less than 2-fold, whereas (3H)NAMHA binding to the H3B receptor was undetectable in the presence of guanosine 5'-O-(3-thiotriphosphate). The distinction between H3A and H3B receptor subtypes, the former a high affinity and the latter a low affinity thioperamide site, draws support from published in vitro data.« less

  4. Prickle1 regulates neurite outgrowth of apical spiral ganglion neurons but not hair cell polarity in the murine cochlea

    PubMed Central

    Kersigo, Jennifer; Wu, Shu; Fritzsch, Bernd; Bassuk, Alexander G.

    2017-01-01

    In the mammalian organ of Corti (OC), the stereocilia on the apical surface of hair cells (HCs) are uniformly organized in a neural to abneural axis (or medial-laterally). This organization is regulated by planar cell polarity (PCP) signaling. Mutations of PCP genes, such as Vangl2, Dvl1/2, Celsr1, and Fzd3/6, affect the formation of HC orientation to varying degrees. Prickle1 is a PCP signaling gene that belongs to the prickle / espinas / testin family. Prickle1 protein is shown to be asymmetrically localized in the HCs of the OC, and this asymmetric localization is associated with loss of PCP in Smurf mutants, implying that Prickle1 is involved in HC PCP development in the OC. A follow-up study found no PCP polarity defects after loss of Prickle1 (Prickle1-/-) in the cochlea. We show here strong Prickle1 mRNA expression in the spiral ganglion by in situ hybridization and β-Gal staining, and weak expression in the OC by β-Gal staining. Consistent with this limited expression in the OC, cochlear HC PCP is unaffected in either Prickle1C251X/C251X mice or Prickle1f/f; Pax2-cre conditional null mice. Meanwhile, type II afferents of apical spiral ganglion neurons (SGN) innervating outer hair cells (OHC) have unusual neurite growth. In addition, afferents from the apex show unusual collaterals in the cochlear nuclei that overlap with basal turn afferents. Our findings argue against the role of Prickle1 in regulating hair cell polarity in the cochlea. Instead, Prickle1 regulates the polarity-related growth of distal and central processes of apical SGNs. PMID:28837644

  5. Nedocromil sodium inhibits antigen-induced contraction of human lung parenchymal and bronchial strips, and the release of sulphidopeptide-leukotriene and histamine from human lung fragments.

    PubMed Central

    Napier, F. E.; Shearer, M. A.; Temple, D. M.

    1990-01-01

    1. The effects of nedocromil sodium on antigen-induced release of sulphidopeptide-leukotrienes and histamine from passively sensitized fragments of human lung, and on antigen-induced contraction of sensitized strips of human lung parenchyma and bronchus, have been studied. 2. Nedocromil sodium 0.1 and 1 microM inhibited leukotriene release from fragments of human lung by 30% and 38% respectively, and histamine release by 43% for both concentrations, but 10 microM was ineffective. The lung fragments, which were passively sensitized to house dust mite, Dermataphagoides pteronyssinus, in control experiments released leukotrienes (6.58 +/- 0.12 nmol equiv. leukotriene C4 per g, n = 6) and histamine (10.3 +/- 1.8 of total tissue histamine, n = 5) when challenged with house dust mite extract. 3. Isolated strips of human lung parenchyma, passively sensitized to D. pteronyssinus, contracted when treated with house dust mite extract to a mean value of 40% of the maximal histamine response for each strip. Nedocromil sodium 0.1 and 1 microM inhibited these contractions by 50% and 70% of the control response, but 10 microM had no inhibitory effect. 4. Isolated rings from human bronchus, also passively sensitized to D. pteronyssinus, contracted when treated with house dust mite extract to a mean value of 86% of the maximal histamine response. Nedocromil sodium 1 microM, but not 0.1 or 10 microM, inhibited contractions by 48% of the control response. 5. The therapeutic effects of nedocromil sodium in allergic asthma may depend, partly, on its inhibition of antigen-induced release of leukotrienes and histamine in human lung and its consequent inhibition of antigen-induced contractions of parenchymal and bronchial tissue. PMID:1696152

  6. Effect of duration and severity of migraine on retinal nerve fiber layer, ganglion cell layer, and choroidal thickness.

    PubMed

    Abdellatif, Mona K; Fouad, Mohamed M

    2018-03-01

    To investigate the factors in migraine that have the highest significance on retinal and choroidal layers' thickness. Ninety patients with migraine and 40 age-matched healthy participants were enrolled in this observational, cross-sectional study. After full ophthalmological examination, spectral domain-optical coherence tomography was done for all patients measuring the thickness of ganglion cell layer and retinal nerve fiber layer. Enhanced depth imaging technique was used to measure the choroidal thickness. There was significant thinning in the superior and inferior ganglion cell layers, all retinal nerve fiber layer quadrants, and all choroidal quadrants (except for the central subfield) in migraineurs compared to controls. The duration of migraine was significantly correlated with ganglion cell layer, retinal nerve fiber layer, and all choroidal quadrants, while the severity of migraine was significantly correlated with ganglion cell layer and retinal nerve fiber layer only. Multiregression analysis showed that the duration of migraine is the most important determinant factor of the superior retinal nerve fiber layer quadrant (β = -0.375, p = 0.001) and in all the choroidal quadrants (β = -0.531, -0.692, -0.503, -0.461, -0.564, respectively, p  < 0.001), while severity is the most important determinant factor of inferior, nasal, and temporal retinal nerve fiber layer quadrants (β = -0.256, -0.335, -0.308; p  = 0.036, 0.005, 0.009, respectively) and the inferior ganglion cell layer hemisphere (β = -0.377 and p = 0.001). Ganglion cell layer, retinal nerve fiber layer, and choroidal thickness are significantly thinner in patients with migraine. The severity of migraine has more significant influence in the thinning of ganglion cell layer and retinal nerve fiber layer, while the duration of the disease affected the choroidal thickness more.

  7. Prox1 Regulates the Subtype-Specific Development of Caudal Ganglionic Eminence-Derived GABAergic Cortical Interneurons

    PubMed Central

    Young, Allison; Petros, Timothy; Karayannis, Theofanis; McKenzie Chang, Melissa; Lavado, Alfonso; Iwano, Tomohiko; Nakajima, Miho; Taniguchi, Hiroki; Huang, Z. Josh; Heintz, Nathaniel; Oliver, Guillermo; Matsuzaki, Fumio; Machold, Robert P.

    2015-01-01

    Neurogliaform (RELN+) and bipolar (VIP+) GABAergic interneurons of the mammalian cerebral cortex provide critical inhibition locally within the superficial layers. While these subtypes are known to originate from the embryonic caudal ganglionic eminence (CGE), the specific genetic programs that direct their positioning, maturation, and integration into the cortical network have not been elucidated. Here, we report that in mice expression of the transcription factor Prox1 is selectively maintained in postmitotic CGE-derived cortical interneuron precursors and that loss of Prox1 impairs the integration of these cells into superficial layers. Moreover, Prox1 differentially regulates the postnatal maturation of each specific subtype originating from the CGE (RELN, Calb2/VIP, and VIP). Interestingly, Prox1 promotes the maturation of CGE-derived interneuron subtypes through intrinsic differentiation programs that operate in tandem with extrinsically driven neuronal activity-dependent pathways. Thus Prox1 represents the first identified transcription factor specifically required for the embryonic and postnatal acquisition of CGE-derived cortical interneuron properties. SIGNIFICANCE STATEMENT Despite the recognition that 30% of GABAergic cortical interneurons originate from the caudal ganglionic eminence (CGE), to date, a specific transcriptional program that selectively regulates the development of these populations has not yet been identified. Moreover, while CGE-derived interneurons display unique patterns of tangential and radial migration and preferentially populate the superficial layers of the cortex, identification of a molecular program that controls these events is lacking. Here, we demonstrate that the homeodomain transcription factor Prox1 is expressed in postmitotic CGE-derived cortical interneuron precursors and is maintained into adulthood. We found that Prox1 function is differentially required during both embryonic and postnatal stages of development to

  8. Clinical value of a self-designed training model for pinpointing and puncturing trigeminal ganglion.

    PubMed

    He, Yu-Quan; He, Shu; Shen, Yun-Xia; Qian, Cheng

    2014-04-01

    OBJECTIVES. A training model was designed for learners and young physicians to polish their skills in clinical practices of pinpointing and puncturing trigeminal ganglion. METHODS. A head model, on both cheeks of which the deep soft tissue was replaced by stuffed organosilicone and sponge while the superficial soft tissue, skin and the trigeminal ganglion were made of organic silicon rubber for an appearance of real human being, was made from a dried skull specimen and epoxy resin. Two physicians who had experiences in puncturing foramen ovale and trigeminal ganglion were selected to test the model, mainly for its appearance, X-ray permeability, handling of the puncture, and closure of the puncture sites. Four inexperienced physicians were selected afterwards to be trained combining Hartel's anterior facial approach with the new method of real-time observation on foramen ovale studied by us. RESULTS. Both appearance and texture of the model were extremely close to those of a real human. The fact that the skin, superficial soft tissue, deep muscles of the cheeks, and the trigeminal ganglion made of organic silicon rubber all had great elasticity resulted in quick closure and sealing of the puncture sites. The head model made of epoxy resin had similar X-ray permeability to a human skull specimen under fluoroscopy. The soft tissue was made of radiolucent material so that the training can be conducted with X-ray guidance. After repeated training, all the four young physicians were able to smoothly and successfully accomplish the puncture. CONCLUSION. This self-made model can substitute for cadaver specimen in training learners and young physicians on foramen ovale and trigeminal ganglion puncture. It is very helpful for fast learning and mastering this interventional operation skill, and the puncture accuracy can be improved significantly with our new method of real-time observation on foramen ovale.

  9. A morphometric analysis of the superior cervical ganglion and its surrounding structures.

    PubMed

    Fazliogullari, Zeliha; Kilic, Cenk; Karabulut, Ahmet Kagan; Yazar, Fatih

    2016-04-01

    The aim of this cadaveric study was to detect the superior cervical ganglion (SCG) in a topographic manner according to vertebrae and to determine the relationship between the vertebrae, mandibular angle and longus colli muscle through morphometric analysis. The present study was performed on 40 SCG of 20 human cadavers (16 males, 4 females). The level of the SCG was determined based on the vertebrae. Ganglion length, width and thickness were detected. Distance to the adjacent vertebra, the mandibular angle and medial side of the longus colli muscle were measured. The results were evaluated statistically. The SCG existing in all cadavers was detected at the C2 vertebra level in 34 cadavers and at the C3 vertebra level in 6 cadavers. The average length, width and thickness of the SCG were 15.18 ± 1.12, 4.62 ± 0.25, and 1.83 ± 0.10 mm, respectively. No statistically significant difference was detected in terms of the distances between the ganglion and anterior tubercle of transverse processes of the vertebrae as well as the mandibular angle on either side. The distance between the SCG and the medial edge of the longus colli muscle was significantly greater on the left side in both men (p < 0.001) and women (p < 0.01). Recognition of morphometric characteristics of the SCG and detection of its location according to adjacent formations may serve as a guide for nerve blockage studies and help surgeons to preserve the ganglion in both anterior and anterolateral cervical approaches.

  10. Lithospermi radix extract inhibits histamine release and production of inflammatory cytokine in mast cells.

    PubMed

    Kim, Eun Kyoung; Kim, Eun-Young; Moon, Phil-Dong; Um, Jae-Young; Kim, Hyung-Min; Lee, Hyun-Sam; Sohn, Youngjoo; Park, Seong Kyu; Jung, Hyuk-Sang; Sohn, Nak-Won

    2007-12-01

    Lithospermi radix (LR, Borraginaceae, the root of Lithospermum erythrorhizon Siebold. et Zuccarinii) is used in herbal medicine to treat such conditions as eczema, skin burns and frostbite. This study investigates the effects of LR on the anti-allergy mechanism. LR inhibited the release of histamine from rat peritoneal mast cells by compound 48/80 in a dose-dependent manner. LR orally administered at 6.59 mg/100 g also inhibited the anti-DNP IgE-induced passive cutaneous anaphylaxis reaction. LR inhibited the PMA plus A23187-induced increase in IL-6, IL-8, and TNF-alpha expression in HMC-1 cells. In addition, LR also inhibited nuclear factor-kappa B (NF-kappaB) activation and I kappaB-alpha degradation. These results show that LR had an inhibitory effect on the atopic allergic reaction. Furthermore, the in vivo and in vitro anti-allergic effect of LR suggests possible therapeutic applications of this agent for inflammatory allergic diseases.

  11. Dietary supplementation with zinc oxide decreases expression of the stem cell factor in the small intestine of weanling pigs.

    PubMed

    Ou, Deyuan; Li, Defa; Cao, Yunhe; Li, Xilong; Yin, Jingdong; Qiao, Shiyan; Wu, Guoyao

    2007-12-01

    Dietary supplementation with a high level of zinc oxide (ZnO) has been shown to reduce the incidence of diarrhea in weanling pigs, but the underlying mechanisms remain largely unknown. Intestinal-mucosal mast cells, whose maturation and proliferation is under the control of the stem cell factor (SCF), play an important role in the etiology of diarrhea by releasing histamine. The present study was conducted to test the novel hypothesis that supplementing ZnO to the diet for weanling piglets may inhibit SCF expression in the small intestine, thereby reducing the number of mast cells, histamine release, and diarrhea. In Experiment 1, 32 piglets (28 days of age) were weaned and fed diets containing 100 or 3000 mg zinc/kg (as ZnO) for 10 days (16 piglets per group). In Experiment 2, two groups of 28-day-old piglets (8 piglets per group) were fed the 100- or 3000-mg zinc/kg diet as in Experiment 1, except that they were pair-fed the same amounts of feed. Supplementation with a high level of ZnO reduced the incidence of diarrhea in weanling piglets. Dietary Zn supplementation reduced expression of the SCF gene at both mRNA and protein levels, the number of mast cells in the mucosa and submucosa of the small intestine and histamine release from mucosal mast cells. Collectively, our results indicate that dietary supplementation with ZnO inhibits SCF expression in the small intestine, leading to reductions in the number of mast cells and histamine release. These findings may have important implications for the prevention of weaning-associated diarrhea in piglets.

  12. The production of nitric oxide in the coeliac ganglion modulates the effect of cholinergic neurotransmission on the rat ovary during the preovulatory period.

    PubMed

    Delsouc, María B; Della Vedova, María C; Ramírez, Darío; Delgado, Silvia M; Casais, Marilina

    2018-05-01

    The aim of the present work was to investigate whether the nitric oxide produced by the nitric oxide/nitric oxide synthase (NO/NOS) system present in the coeliac ganglion modulates the effects of cholinergic innervation on oxidative status, steroidogenesis and apoptotic mechanisms that take place in the rat ovary during the first proestrous. An ex vivo Coeliac Ganglion- Superior Ovarian Nerve- Ovary (CG-SON-O) system was used. Cholinergic stimulation of the CG was achieved by 10 -6  M Acetylcholine (Ach). Furthermore, 400 μM Aminoguanidine (AG) - an inhibitor of inducible-NOS was added in the CG compartment in absence and presence of Ach. It was found that Ach in the CG compartment promotes apoptosis in ovarian tissue, probably due to the oxidative stress generated. AG in the CG compartment decreases the release of NO and progesterone, and increases the release of estradiol from the ovary. The CG co-treatment with Ach and AG counteracts the effects of the ganglionic cholinergic agonist on ovarian oxidative stress, increases hormone production and decreases Fas mRNA expression. These results suggest that NO is an endogenous modulator of cholinergic neurotransmission in CG, with implication in ovarian steroidogenesis and the apoptotic mechanisms that take place in the ovary during the preovulatory period in rats. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Identification of 2-arylbenzimidazoles as potent human histamine H4 receptor ligands.

    PubMed

    Lee-Dutra, Alice; Arienti, Kristen L; Buzard, Daniel J; Hack, Michael D; Khatuya, Haripada; Desai, Pragnya J; Nguyen, Steven; Thurmond, Robin L; Karlsson, Lars; Edwards, James P; Breitenbucher, J Guy

    2006-12-01

    A series of 2-arylbenzimidazoles was synthesized and found to bind with high affinity to the human histamine H(4) receptor. Structure-activity relationships were investigated through library preparation and evaluation as well as traditional medicinal chemistry approaches, leading to the discovery of compounds with single-digit nanomolar affinity for the H(4) receptor.

  14. Histamine H2 receptor trafficking: role of arrestin, dynamin, and clathrin in histamine H2 receptor internalization.

    PubMed

    Fernandez, Natalia; Monczor, Federico; Baldi, Alberto; Davio, Carlos; Shayo, Carina

    2008-10-01

    Agonist-induced internalization of G protein-coupled receptors (GPCRs) has been implicated in receptor desensitization, resensitization, and down-regulation. In the present study, we sought to establish whether the histamine H2 receptor (H2r) agonist amthamine, besides promoting receptor desensitization, induced H2r internalization. We further studied the mechanisms involved and its potential role in receptor resensitization. In COS7 transfected cells, amthamine induced H2r time-dependent internalization, showing 70% of receptor endocytosis after 60-min exposure to amthamine. Agonist removal led to the rapid recovery of resensitized receptors to the cell surface. Similar results were obtained in the presence of cycloheximide, an inhibitor of protein synthesis. Treatment with okadaic acid, an inhibitor of the protein phosphatase 2A (PP2A) family of phosphatases, reduced the recovery of both H2r membrane sites and cAMP response. Arrestin 3 but not arrestin 2 overexpression reduced both H2r membrane sites and H2r-evoked cAMP response. Receptor cotransfection with dominant-negative mutants for arrestin, dynamin, Eps15 (a component of the clathrin-mediated endocytosis machinery), or RNA interference against arrestin 3 abolished both H2r internalization and resensitization. Similar results were obtained in U937 cells endogenously expressing H2r. Our findings suggest that amthamine-induced H2r internalization is crucial for H2r resensitization, processes independent of H2r de novo synthesis but dependent on PP2A-mediated dephosphorylation. Although we do not provide direct evidence for H2r interaction with beta-arrestin, dynamin, and/or clathrin, our results support their involvement in H2r endocytosis. The rapid receptor recycling to the cell surface and the specific involvement of arrestin 3 in receptor internalization further suggest that the H2r belongs to class A GPCRs.

  15. JB-9322, a new selective histamine H2-receptor antagonist with potent gastric mucosal protective properties.

    PubMed

    Palacios, B; Montero, M J; Sevilla, M A; Román, L S

    1995-05-01

    1. JB-9322 is a selective histamine H2-receptor antagonist with gastric antisecretory activity and mucosal protective properties. 2. The affinity of JB-9322 for the guinea-pig atria histamine H2-receptor was approximately 2 times greater than that of ranitidine. 3. In vivo, the ID50 value for the inhibition of gastric acid secretion in pylorus-ligated rats was 5.28 mg kg-1 intraperitoneally. JB-9322 also dose-dependently inhibited gastric juice volume and pepsin secretion. In gastric lumen-perfused rats, intravenous injection of JB-9322 dose-dependently reduced histamine-, pentagastrin- and carbachol-stimulated gastric acid secretion. 4. JB-9322 showed antiulcer activity against aspirin and indomethacin-induced gastric lesions and was more potent than ranitidine. 5. JB-9322 effectively inhibited macroscopic gastric haemorrhagic lesions induced by ethanol. Intraperitoneal injection was effective in preventing the lesions as well as oral treatment. The oral ID50 value for these lesions was 1.33 mg kg-1. By contrast, ranitidine (50 mg kg-1) failed to reduce these lesions. In addition, the protective effect of JB-9322 was independent of prostaglandin synthesis. 6. These results indicate that JB-9322 is a new antiulcer drug that exerts a potent cytoprotective effect in addition to its gastric antisecretory activity.

  16. Changes in cross-sectional airway areas induced by methacholine, histamine, and LTC4 in asthmatic subjects.

    PubMed

    Molfino, N A; Slutsky, A S; Hoffstein, V; McClean, P A; Rebuck, A S; Drazen, J M; Zamel, N

    1992-09-01

    To examine whether leukotrienes, histamine, and methacholine have different sites of bronchoconstrictor action, we studied 8 stable asthmatic subjects (mean age +/- SD, 26 +/- 5 yr) on 3 different days. On each day, a randomized challenge with LTC4, methacholine, or histamine was performed until the dose that provoked a fall of 20% in FEV1 (PC20) was obtained. Complete and partial flow-volume curves as well as area-distance profiles generated by the acoustic reflection technique (ART) at a fixed lung volume were obtained in all subjects before and after each inhalation challenge. No significant differences were found in pulmonary function or baseline cross-sectional airway areas for the different study days. The three agonists provoked significant (p less than 0.05) bronchoconstriction at the level of the main bronchi when identical falls of FEV1 were achieved. Similarly, equal reductions of V30p were elicited by the three agonists. However, LTC4 and methacholine induced additional tracheal constriction but histamine inhalation did not. These differences in the degree of tracheal constriction were statistically significant (p less than 0.05; ANOVA). These results may be explained by distinct pharmacologic properties of the agents used and may have relevance in the understanding of the pathophysiology of asthma.

  17. Activation of adenosine low-affinity A3 receptors inhibits the enteric short interplexus neural circuit triggered by histamine.

    PubMed

    Bozarov, Andrey; Wang, Yu-Zhong; Yu, Jun Ge; Wunderlich, Jacqueline; Hassanain, Hamdy H; Alhaj, Mazin; Cooke, Helen J; Grants, Iveta; Ren, Tianhua; Christofi, Fievos L

    2009-12-01

    We tested the novel hypothesis that endogenous adenosine (eADO) activates low-affinity A3 receptors in a model of neurogenic diarrhea in the guinea pig colon. Dimaprit activation of H2 receptors was used to trigger a cyclic coordinated response of contraction and Cl(-) secretion. Contraction-relaxation was monitored by sonomicrometry (via intracrystal distance) simultaneously with short-circuit current (I(sc), Cl(-) secretion). The short interplexus reflex coordinated response was attenuated or abolished by antagonists at H2 (cimetidine), 5-hydroxytryptamine 4 receptor (RS39604), neurokinin-1 receptor (GR82334), or nicotinic (mecamylamine) receptors. The A1 agonist 2-chloro-N(6)-cyclopentyladenosine (CCPA) abolished coordinated responses, and A1 antagonists could restore normal responses. A1-selective antagonists alone [8-cyclopentyltheophylline (CPT), 1,3-dipropyl-8-(2-amino-4-chlorophenyl)xanthine (PACPX), or 8-cyclopentyl-N(3)-[3-(4-(fluorosulfonyl)benzoyloxy)propyl]-xanthine (FSCPX)] caused a concentration-dependent augmentation of crypt cell secretion or contraction and acted at nanomolar concentrations. The A3 agonist N(6)-(3-iodobenzyl)-adenosine-5'-N-methyluronamide (IB-MECA) abolished coordinated responses and the A3 antagonist 3-ethyl-5-benzyl-2-methyl-4-phenylethynyl-6-phenyl-1,4-(+/-)-dihydropyridine-3,5-dicarboxylate (MRS1191) could restore and further augment responses. The IB-MECA effect was resistant to knockdown of adenosine A1 receptor with the irreversible antagonist FSCPX; the IC(50) for IB-MECA was 0.8 microM. MRS1191 alone could augment or unmask coordinated responses to dimaprit, and IB-MECA suppressed them. MRS1191 augmented distension-evoked reflex I(sc) responses. Adenosine deaminase mimicked actions of adenosine receptor antagonists. A3 receptor immunoreactivity was differentially expressed in enteric neurons of different parts of colon. After tetrodotoxin, IB-MECA caused circular muscle relaxation. The data support the novel concept that

  18. Activation of adenosine low-affinity A3 receptors inhibits the enteric short interplexus neural circuit triggered by histamine

    PubMed Central

    Bozarov, Andrey; Wang, Yu-Zhong; Yu, Jun Ge; Wunderlich, Jacqueline; Hassanain, Hamdy H.; Alhaj, Mazin; Cooke, Helen J.; Grants, Iveta; Ren, Tianhua

    2009-01-01

    We tested the novel hypothesis that endogenous adenosine (eADO) activates low-affinity A3 receptors in a model of neurogenic diarrhea in the guinea pig colon. Dimaprit activation of H2 receptors was used to trigger a cyclic coordinated response of contraction and Cl− secretion. Contraction-relaxation was monitored by sonomicrometry (via intracrystal distance) simultaneously with short-circuit current (Isc, Cl− secretion). The short interplexus reflex coordinated response was attenuated or abolished by antagonists at H2 (cimetidine), 5-hydroxytryptamine 4 receptor (RS39604), neurokinin-1 receptor (GR82334), or nicotinic (mecamylamine) receptors. The A1 agonist 2-chloro-N6-cyclopentyladenosine (CCPA) abolished coordinated responses, and A1 antagonists could restore normal responses. A1-selective antagonists alone [8-cyclopentyltheophylline (CPT), 1,3-dipropyl-8-(2-amino-4-chlorophenyl)xanthine (PACPX), or 8-cyclopentyl-N3-[3-(4-(fluorosulfonyl)benzoyloxy)propyl]-xanthine (FSCPX)] caused a concentration-dependent augmentation of crypt cell secretion or contraction and acted at nanomolar concentrations. The A3 agonist N6-(3-iodobenzyl)-adenosine-5′-N-methyluronamide (IB-MECA) abolished coordinated responses and the A3 antagonist 3-ethyl-5-benzyl-2-methyl-4-phenylethynyl-6-phenyl-1,4-(±)-dihydropyridine-3,5-dicarboxylate (MRS1191) could restore and further augment responses. The IB-MECA effect was resistant to knockdown of adenosine A1 receptor with the irreversible antagonist FSCPX; the IC50 for IB-MECA was 0.8 μM. MRS1191 alone could augment or unmask coordinated responses to dimaprit, and IB-MECA suppressed them. MRS1191 augmented distension-evoked reflex Isc responses. Adenosine deaminase mimicked actions of adenosine receptor antagonists. A3 receptor immunoreactivity was differentially expressed in enteric neurons of different parts of colon. After tetrodotoxin, IB-MECA caused circular muscle relaxation. The data support the novel concept that eADO acts at

  19. Changes in ganglion cell physiology during retinal degeneration influence excitability by prosthetic electrodes

    NASA Astrophysics Data System (ADS)

    Cho, Alice; Ratliff, Charles; Sampath, Alapakkam; Weiland, James

    2016-04-01

    Objective. Here we investigate ganglion cell physiology in healthy and degenerating retina to test its influence on threshold to electrical stimulation. Approach. Age-related Macular Degeneration and Retinitis Pigmentosa cause blindness via outer retinal degeneration. Inner retinal pathways that transmit visual information to the central brain remain intact, so direct electrical stimulation from prosthetic devices offers the possibility for visual restoration. Since inner retinal physiology changes during degeneration, we characterize physiological properties and responses to electrical stimulation in retinal ganglion cells (RGCs) of both wild type mice and the rd10 mouse model of retinal degeneration. Main results. Our aggregate results support previous observations that elevated thresholds characterize diseased retinas. However, a physiology-driven classification scheme reveals distinct sub-populations of ganglion cells with thresholds either normal or strongly elevated compared to wild-type. When these populations are combined, only a weakly elevated threshold with large variance is observed. The cells with normal threshold are more depolarized at rest and exhibit periodic oscillations. Significance. During degeneration, physiological changes in RGCs affect the threshold stimulation currents required to evoke action potentials.

  20. Influence of preseasonal treatment with L-tyrosine-adsorbed allergoids on IgE-mediated histamine release from basophils of children suffering from allergic diseases.

    PubMed

    Wegner, F; Fenkes, A; Stemmann, E A; Reinhardt, D

    1981-04-01

    In 10 children suffering from allergic pollinosis and/or asthma, a preseasonal hyposensitization scheme with 3 weekly injections of a glutaraldehyde-modified, tyrosine-adsorbed grass-pollen allergen reduced the histamine release from basophils in response to increasing concentrations of antigen. The decrease in histamine release which occurred 1 week after the injection course was even maintained during the pollen season. The inhibition was only obtained when basophils were incubated with the serum of patients, but not with the serum of normals, indicating that blocking antibodies may have occurred. In contrast to what has been observed in the treated patients' group, 5 patients, who were not included in the hyposensitization scheme, showed identical histamine release curves during the whole investigation period. Specific IgE did not increase after the treatment course and shows the same behaviour as the untreated patients. Thus, as treatment with glutaraldehyde modified, tyrosine-adsorbed allergoids is safe to administer, requires only 3 injections, reduces histamine release from basophils by production of "blocking" antibodies, it appears to be a useful tool in the hyposensitization treatment.