Sample records for ganglion neurons innervating

  1. Neurons of self-defence: neuronal innervation of the exocrine defence glands in stick insects.

    PubMed

    Stolz, Konrad; von Bredow, Christoph-Rüdiger; von Bredow, Yvette M; Lakes-Harlan, Reinhard; Trenczek, Tina E; Strauß, Johannes

    2015-01-01

    Stick insects (Phasmatodea) use repellent chemical substances (allomones) for defence which are released from so-called defence glands in the prothorax. These glands differ in size between species, and are under neuronal control from the CNS. The detailed neural innervation and possible differences between species are not studied so far. Using axonal tracing, the neuronal innervation is investigated comparing four species. The aim is to document the complexity of defence gland innervation in peripheral nerves and central motoneurons in stick insects. In the species studied here, the defence gland is innervated by the intersegmental nerve complex (ISN) which is formed by three nerves from the prothoracic (T1) and suboesophageal ganglion (SOG), as well as a distinct suboesophageal nerve (Nervus anterior of the suboesophageal ganglion). In Carausius morosus and Sipyloidea sipylus, axonal tracing confirmed an innervation of the defence glands by this N. anterior SOG as well as N. anterior T1 and N. posterior SOG from the intersegmental nerve complex. In Peruphasma schultei, which has rather large defence glands, only the innervation by the N. anterior SOG was documented by axonal tracing. In the central nervous system of all species, 3-4 neuron types are identified by axonal tracing which send axons in the N. anterior SOG likely innervating the defence gland as well as adjacent muscles. These neurons are mainly suboesophageal neurons with one intersegmental neuron located in the prothoracic ganglion. The neuron types are conserved in the species studied, but the combination of neuron types is not identical. In addition, the central nervous system in S. sipylus contains one suboesophageal and one prothoracic neuron type with axons in the intersegmental nerve complex contacting the defence gland. Axonal tracing shows a very complex innervation pattern of the defence glands of Phasmatodea which contains different neurons in different nerves from two adjacent body segments

  2. Slit/Robo Signaling Mediates Spatial Positioning of Spiral Ganglion Neurons during Development of Cochlear Innervation

    PubMed Central

    Wang, Sheng-zhi; Ibrahim, Leena A.; Kim, Young J.; Gibson, Daniel A.; Leung, Haiwen C.; Yuan, Wei; Zhang, Ke K.; Tao, Huizhong W.

    2013-01-01

    During the development of periphery auditory circuits, spiral ganglion neurons (SGNs) extend their neurites to innervate cochlear hair cells (HCs) with their soma aggregated into a cluster spatially segregated from the cochlear sensory epithelium. The molecular mechanisms underlying this spatial patterning remain unclear. In this study, in situ hybridization in the mouse cochlea suggests that Slit2 and its receptor, Robo1/2, exhibit apparently complementary expression patterns in the spiral ganglion and its nearby region, the spiral limbus. In Slit2 and Robo1/2 mutants, the spatial restriction of SGNs was disrupted. Mispositioned SGNs were found to scatter in the space between the cochlear epithelium and the main body of spiral ganglion, and the neurites of mispositioned SGNs were misrouted and failed to innervate HCs. Furthermore, in Robo1/2 mutants, SGNs were displaced toward the cochlear epithelium as an entirety. Examination of different embryonic stages in the mutants revealed that the mispositioning of SGNs was due to a progressive displacement to ectopic locations after their initial normal settlement at an earlier stage. Our results suggest that Slit/Robo signaling imposes a restriction force on SGNs to ensure their precise positioning for correct SGN-HC innervations. PMID:23884932

  3. Discrete innervation of murine taste buds by peripheral taste neurons.

    PubMed

    Zaidi, Faisal N; Whitehead, Mark C

    2006-08-09

    The peripheral taste system likely maintains a specific relationship between ganglion cells that signal a particular taste quality and taste bud cells responsive to that quality. We have explored a measure of the receptoneural relationship in the mouse. By injecting single fungiform taste buds with lipophilic retrograde neuroanatomical markers, the number of labeled geniculate ganglion cells innervating single buds on the tongue were identified. We found that three to five ganglion cells innervate a single bud. Injecting neighboring buds with different color markers showed that the buds are primarily innervated by separate populations of geniculate cells (i.e., multiply labeled ganglion cells are rare). In other words, each taste bud is innervated by a population of neurons that only connects with that bud. Palate bud injections revealed a similar, relatively exclusive receptoneural relationship. Injecting buds in different regions of the tongue did not reveal a topographic representation of buds in the geniculate ganglion, despite a stereotyped patterned arrangement of fungiform buds as rows and columns on the tongue. However, ganglion cells innervating the tongue and palate were differentially concentrated in lateral and rostral regions of the ganglion, respectively. The principal finding that small groups of ganglion cells send sensory fibers that converge selectively on a single bud is a new-found measure of specific matching between the two principal cellular elements of the mouse peripheral taste system. Repetition of the experiments in the hamster showed a more divergent innervation of buds in this species. The results indicate that whatever taste quality is signaled by a murine geniculate ganglion neuron, that signal reflects the activity of cells in a single taste bud.

  4. Acid-sensing ion channels in trigeminal ganglion neurons innervating the orofacial region contribute to orofacial inflammatory pain.

    PubMed

    Fu, Hui; Fang, Peng; Zhou, Hai-Yun; Zhou, Jun; Yu, Xiao-Wei; Ni, Ming; Zheng, Jie-Yan; Jin, You; Chen, Jian-Guo; Wang, Fang; Hu, Zhuang-Li

    2016-02-01

    Orofacial pain is a common clinical symptom that is accompanied by tooth pain, migraine and gingivitis. Accumulating evidence suggests that acid-sensing ion channels (ASICs), especially ASIC3, can profoundly affect the physiological properties of nociception in peripheral sensory neurons. The aim of this study is to examine the contribution of ASICs in trigeminal ganglion (TG) neurons to orofacial inflammatory pain. A Western blot (WB), immunofluorescence assay of labelled trigeminal ganglion neurons, orofacial formalin test, cell preparation and electrophysiological experiments are performed. This study demonstrated that ASIC1, ASIC2a and ASIC3 are highly expressed in TG neurons innervating the orofacial region of rats. The amplitude of ASIC currents in these neurons increased 119.72% (for ASIC1-like current) and 230.59% (for ASIC3-like current) in the formalin-induced orofacial inflammatory pain model. In addition, WB and immunofluorescence assay demonstrated a significantly augmented expression of ASICs in orofacial TG neurons during orofacial inflammation compared with the control group. The relative protein density of ASIC1, ASIC2a and ASIC3 also increased 58.82 ± 8.92%, 45.30 ± 11.42% and 55.32 ± 14.71%, respectively, compared with the control group. Furthermore, pharmacological blockade of ASICs and genetic deletion of ASIC1 attenuated the inflammation response. These findings indicate that peripheral inflammation can induce the upregulation of ASICs in TG neurons, causing orofacial inflammatory pain. Additionally, the specific inhibitor of ASICs may have a significant analgesic effect on orofacial inflammatory pain. © 2016 John Wiley & Sons Australia, Ltd.

  5. Phenotypic alterations of neuropeptide Y and calcitonin gene-related peptide-containing neurons innervating the rat temporomandibular joint during carrageenan-induced arthritis

    PubMed Central

    Damico, J.P.; Ervolino, E.; Torres, K.R.; Batagello, D.S.; Cruz-Rizzolo, R.J.; Casatti, C.A.; Bauer, J.A.

    2012-01-01

    The aim of this study was to identify immunoreactive neuropeptide Y (NPY) and calcitonin gene-related peptide (CGRP) neurons in the autonomic and sensory ganglia, specifically neurons that innervate the rat temporomandibular joint (TMJ). A possible variation between the percentages of these neurons in acute and chronic phases of carrageenan-induced arthritis was examined. Retrograde neuronal tracing was combined with indirect immunofluorescence to identify NPY-immunoreactive (NPY-IR) and CGRP- immunoreactive (CGRP-IR) neurons that send nerve fibers to the normal and arthritic temporomandibular joint. In normal joints, NPY-IR neurons constitute 78±3%, 77±6% and 10±4% of double-labeled nucleated neuronal profile originated from the superior cervical, stellate and otic ganglia, respectively. These percentages in the sympathetic ganglia were significantly decreased in acute (58±2% for superior cervical ganglion and 58±8% for stellate ganglion) and chronic (60±2% for superior cervical ganglion and 59±15% for stellate ganglion) phases of arthritis, while in the otic ganglion these percentages were significantly increased to 19±5% and 13±3%, respectively. In the trigeminal ganglion, CGRP-IR neurons innervating the joint significantly increased from 31±3% in normal animals to 54±2% and 49±3% in the acute and chronic phases of arthritis, respectively. It can be concluded that NPY neurons that send nerve fibers to the rat temporomandibular joint are located mainly in the superior cervical, stellate and otic ganglia. Acute and chronic phases of carrageenan-induced arthritis lead to an increase in the percentage of NPY-IR parasympathetic and CGRP-IR sensory neurons and to a decrease in the percentage of NPY-IR sympathetic neurons related to TMJ innervation. PMID:23027347

  6. Expression of Vesicular Glutamate Transporters Type 1 and 2 in Sensory and Autonomic Neurons Innervating the Mouse Colorectum

    PubMed Central

    Brumovsky, Pablo R.; Robinson, David R.; La, Jun-Ho; Seroogy, Kim B.; Lundgren, Kerstin H.; Albers, Kathryn M.; Kiyatkin, Michael E.; Seal, Rebecca P.; Edwards, Robert H.; Watanabe, Masahiko; Hökfelt, Tomas; Gebhart, G.F.

    2013-01-01

    Vesicular glutamate transporters (VGLUTs) have been extensively studied in various neuronal systems, but their expression in visceral sensory and autonomic neurons remains to be analyzed in detail. Here we studied VGLUTs type 1 and 2 (VGLUT1 and VGLUT2, respectively) in neurons innervating the mouse colorectum. Lumbosacral and thoracolumbar dorsal root ganglion (DRG), lumbar sympathetic chain (LSC), and major pelvic ganglion (MPG) neurons innervating the colorectum of BALB/C mice were retrogradely traced with Fast Blue, dissected, and processed for immunohistochemistry. Tissue from additional naïve mice was included. Previously characterized antibodies against VGLUT1, VGLUT2, and calcitonin gene-related peptide (CGRP) were used. Riboprobe in situ hybridization, using probes against VGLUT1 and VGLUT2, was also performed. Most colorectal DRG neurons expressed VGLUT2 and often colocalized with CGRP. A smaller percentage of neurons expressed VGLUT1. VGLUT2-immunoreactive (IR) neurons in the MPG were rare. Abundant VGLUT2-IR nerves were detected in all layers of the colorectum; VGLUT1-IR nerves were sparse. A subpopulation of myenteric plexus neurons expressed VGLUT2 protein and mRNA, but VGLUT1 mRNA was undetectable. In conclusion, we show 1) that most colorectal DRG neurons express VGLUT2, and to a lesser extent, VGLUT1; 2) abundance of VGLUT2-IR fibers innervating colorectum; and 3) a subpopulation of myenteric plexus neurons expressing VGLUT2. Altogether, our data suggests a role for VGLUT2 in colorectal glutamatergic neurotransmission, potentially influencing colorectal sensitivity and motility. PMID:21800314

  7. Innervation of single fungiform taste buds during development in rat.

    PubMed

    Krimm, R F; Hill, D L

    1998-08-17

    To determine whether the innervation of taste buds changes during postnatal development, the number of geniculate ganglion cells that innervated single fungiform taste buds were quantified in the tip- and midregions of the tongue of adult and developing rats. There was substantial variation in both the size of individual taste buds and number of geniculate ganglion cells that innervated them. Importantly, taste bud morphology and innervation were highly related. Namely, the number of labeled geniculate ganglion cells that innervated a taste bud was highly correlated with the size of the taste bud (r = 0.91, P < .0003): The larger the taste bud, the more geniculate ganglion cells that innervated it. The relationship between ganglion cell number and taste bud volume emerged during the first 40 days postnatal. Whereas there was no difference in the average number of ganglion cells that innervated individual taste buds in rats aged 10 days postnatal through adulthood, taste bud volumes increased progressively between 10 and 40 days postnatal, at which age taste bud volumes were similar to adults. The maturation of taste bud size was accompanied by the emergence of the relationship between taste bud volume and number of innervating neurons. Specifically, there was no correlation between taste bud size and number of innervating geniculate ganglion cells in 10-, 20-, or 30-day-old rats, whereas taste bud size and the number of innervating ganglion cells in 40-day-old rats were positively correlated (r = .80, P < .002). Therefore, the relationship between taste bud size and number of innervating ganglion cells develops over a prolonged postnatal period and is established when taste buds grow to their adult size.

  8. Patterns of innervation of neurones in the inferior mesenteric ganglion of the cat.

    PubMed Central

    Julé, Y; Krier, J; Szurszewski, J H

    1983-01-01

    The patterns of peripheral and central synaptic input to non-spontaneous, irregular discharging and regular discharging neurones in the inferior mesenteric ganglion of the cat were studied in vitro using intracellular recording techniques. All three types of neurones in rostral and caudal lobes received central synaptic input primarily from L3 and L4 spinal cord segments. Since irregular discharging neurones received synaptic input from intraganglionic regular discharging neurones, some of the central input to irregular discharging neurones may have been relayed through the regular discharging neurones. In the rostral lobes of the ganglion, more than 70% of the non-spontaneous and irregular discharging neurones tested received peripheral synaptic input from the lumbar colonic, intermesenteric and left and right hypogastric nerves. Most of the regular discharging neurones tested received synaptic input from the intermesenteric and lumbar colonic nerves; none of the regular discharging neurones received synaptic input from the hypogastric nerves. Some of the peripheral synaptic input from the lumbar colonic and intermesenteric nerves to irregular discharging neurones may have been relayed through the regular discharging neurones. Axons of non-spontaneous and irregular discharging neurones located in the rostral lobes travelled to the periphery exclusively in the lumbar colonic nerves. Antidromic responses were not observed in regular discharging neurones during stimulation of any of the major peripheral nerve trunks. This suggests these neurones were intraganglionic. In the caudal lobes, irregular discharging neurones received a similar pattern of peripheral synaptic input as did irregular discharging neurones located in the rostral lobes. The majority of irregular discharging neurones in the caudal lobes projected their axons to the periphery through the lumbar colonic nerves. Non-spontaneous neurones in the caudal lobes, in contrast to those located in the rostral

  9. Patterns of innervation of neurones in the inferior mesenteric ganglion of the cat.

    PubMed

    Julé, Y; Krier, J; Szurszewski, J H

    1983-11-01

    The patterns of peripheral and central synaptic input to non-spontaneous, irregular discharging and regular discharging neurones in the inferior mesenteric ganglion of the cat were studied in vitro using intracellular recording techniques. All three types of neurones in rostral and caudal lobes received central synaptic input primarily from L3 and L4 spinal cord segments. Since irregular discharging neurones received synaptic input from intraganglionic regular discharging neurones, some of the central input to irregular discharging neurones may have been relayed through the regular discharging neurones. In the rostral lobes of the ganglion, more than 70% of the non-spontaneous and irregular discharging neurones tested received peripheral synaptic input from the lumbar colonic, intermesenteric and left and right hypogastric nerves. Most of the regular discharging neurones tested received synaptic input from the intermesenteric and lumbar colonic nerves; none of the regular discharging neurones received synaptic input from the hypogastric nerves. Some of the peripheral synaptic input from the lumbar colonic and intermesenteric nerves to irregular discharging neurones may have been relayed through the regular discharging neurones. Axons of non-spontaneous and irregular discharging neurones located in the rostral lobes travelled to the periphery exclusively in the lumbar colonic nerves. Antidromic responses were not observed in regular discharging neurones during stimulation of any of the major peripheral nerve trunks. This suggests these neurones were intraganglionic. In the caudal lobes, irregular discharging neurones received a similar pattern of peripheral synaptic input as did irregular discharging neurones located in the rostral lobes. The majority of irregular discharging neurones in the caudal lobes projected their axons to the periphery through the lumbar colonic nerves. Non-spontaneous neurones in the caudal lobes, in contrast to those located in the rostral

  10. Phosphorylation of p38 in Trigeminal Ganglion Neurons Contributes to Tongue Heat Hypersensitivity in Mice.

    PubMed

    Maruno, Mitsuru; Shinoda, Masamichi; Honda, Kuniya; Ito, Reio; Urata, Kentaro; Watanabe, Masahiro; Okada, Shinji; Lee, Jun; Gionhaku, Nobuhito; Iwata, Koichi

    2017-01-01

    To develop a tongue pain model with no mucosal pathologic changes and to examine whether phosphorylation of p38 in trigeminal ganglion (TG) neurons innervating the tongue is associated with tongue heat hypersensitivity in mice. Tongue heat sensitivity in mice was assessed following application of the irritant 2,4,6-trinitrobenzene sulfonic acid (TNBS) to the tongue. After TNBS application, the expressions of p38, phosphorylated p38 (pp38), and transient receptor potential vanilloid 1 (TRPV1) were examined in TG neurons innervating the tongue. To further assess changes in tongue heat sensitivity and TRPV1 expression, a specific inhibitor of p38 phosphorylation (SB203580) was also administered into the TG. Student t test or two-way repeated-measures analysis of variance followed by Sidak multiple comparison test were used for statistical analysis, and P < .05 was considered statistically significant. TNBS application to the tongue induced noninflammatory heat hypersensitivity accompanied by the enhancement of p38 phosphorylation in TG neurons innervating the tongue and by an increase in the number of TRPV1 and pp38-immunoreactive (IR) TG neurons innervating the tongue. Intra-TG administration of SB203580 suppressed the increase in the TRPV1 and pp38-IR TG neurons and alleviated the noninflammatory tongue heat hypersensitivity induced by TNBS. p38 signaling cascades are involved in tongue heat hyperalgesia in association with TRPV1 upregulation in TG neurons innervating the TNBS-treated tongue.

  11. Synaptic Plasticity in Cardiac Innervation and Its Potential Role in Atrial Fibrillation

    PubMed Central

    Ashton, Jesse L.; Burton, Rebecca A. B.; Bub, Gil; Smaill, Bruce H.; Montgomery, Johanna M.

    2018-01-01

    Synaptic plasticity is defined as the ability of synapses to change their strength of transmission. Plasticity of synaptic connections in the brain is a major focus of neuroscience research, as it is the primary mechanism underpinning learning and memory. Beyond the brain however, plasticity in peripheral neurons is less well understood, particularly in the neurons innervating the heart. The atria receive rich innervation from the autonomic branch of the peripheral nervous system. Sympathetic neurons are clustered in stellate and cervical ganglia alongside the spinal cord and extend fibers to the heart directly innervating the myocardium. These neurons are major drivers of hyperactive sympathetic activity observed in heart disease, ventricular arrhythmias, and sudden cardiac death. Both pre- and postsynaptic changes have been observed to occur at synapses formed by sympathetic ganglion neurons, suggesting that plasticity at sympathetic neuro-cardiac synapses is a major contributor to arrhythmias. Less is known about the plasticity in parasympathetic neurons located in clusters on the heart surface. These neuronal clusters, termed ganglionated plexi, or “little brains,” can independently modulate neural control of the heart and stimulation that enhances their excitability can induce arrhythmia such as atrial fibrillation. The ability of these neurons to alter parasympathetic activity suggests that plasticity may indeed occur at the synapses formed on and by ganglionated plexi neurons. Such changes may not only fine-tune autonomic innervation of the heart, but could also be a source of maladaptive plasticity during atrial fibrillation. PMID:29615932

  12. Target innervation is necessary for neuronal polyploidization in the terrestrial slug Limax.

    PubMed

    Matsuo, Ryota; Yamagishi, Miki; Wakiya, Kyoko; Tanaka, Yoko; Ito, Etsuro

    2013-08-01

    The brain of gastropod mollusks contains many giant neurons with polyploid genomic DNAs. Such DNAs are generated through repeated DNA endoreplication during body growth. However, it is not known what triggers DNA endoreplication in neurons. There are two possibilities: (1) DNAs are replicated in response to some unknown molecules in the hemolymph that reflect the nutritive status of the animal; or (2) DNAs are replicated in response to some unknown factors that are retrogradely transported through axons from the innervated target organs. We first tested whether hemolymph with rich nutrition could induce DNA endoreplication. We tested whether the transplanted brain exhibits enhanced DNA endoreplication like an endogenous brain does when transplanted into the homocoel of the body of a slug whose body growth is promoted by an increased food supply. However, no enhancement was observed in the frequency of DNA endoreplication when we compared the transplanted brains in the growth-promoted and growth-suppressed host slugs, suggesting that the humoral environment is irrelevant to triggering the body growth-dependent DNA endoreplication. Next, we tested the requirement of target innervation by surgically dissecting a unilateral posterior pedal nerve of an endogenous brain. Substantially lower number of neurons exhibited DNA endoreplication in the pedal ganglion ipsilateral to the dissected nerve. These results support the view that enhanced DNA endoreplication is mediated by target innervation and is not brought about through the direct effect of humoral factors in the hemolymph during body growth. Copyright © 2013 Wiley Periodicals, Inc.

  13. Target innervation is necessary for neuronal polyploidization in the terrestrial slug Limax.

    PubMed

    Matsuo, Ryota; Yamagishi, Miki; Wakiya, Kyoko; Tanaka, Yoko; Ito, Etsuro

    2013-05-30

    The brain of gastropod mollusks contains many giant neurons with polyploid genomic DNAs. Such DNAs are generated through repeated DNA endoreplication during body growth. However, it is not known what triggers DNA endoreplication in neurons. There are two possibilities: (1) DNAs are replicated in response to some unknown molecules in the hemolymph that reflect the nutritive status of the animal; or (2) DNAs are replicated in response to some unknown factors that are retrogradely transported through axons from the innervated target organs. We first tested whether hemolymph with rich nutrition could induce DNA endoreplication. We tested whether the transplanted brain exhibits enhanced DNA endoreplication like an endogenous brain does when transplanted into the homocoel of the body of a slug whose body growth is promoted by an increased food supply. However, no enhancement was observed in the frequency of DNA endoreplication when we compared the transplanted brains in the growth-promoted and growth-suppressed host slugs, suggesting that the humoral environment is irrelevant to triggering the body growth-dependent DNA endoreplication. Next, we tested the requirement of target innervation by surgically dissecting a unilateral posterior pedal nerve of an endogenous brain. Substantially lower number of neurons exhibited DNA endoreplication in the pedal ganglion ipsilateral to the dissected nerve. These results support the view that enhanced DNA endoreplication is mediated by target innervation and is not brought about through the direct effect of humoral factors in the hemolymph during body growth. © 2013 Wiley Periodicals, Inc. Develop Neurobiol, 2013. Copyright © 2013 Wiley Periodicals, Inc.

  14. Enkephalin-containing neurons in the inferior mesenteric ganglion projecting to the distal colon of cat: evidence from combined retrograde tracing by fluorescent microspheres and immunohistochemistry.

    PubMed

    Bagnol, D; Jule, Y; Kirchner, G; Cupo, A; Roman, C

    1993-02-01

    Retrograde tracing with rhodamine fluorescent microspheres combined with fluorescein immunolabelling of methionine-enkephalin showed the presence of enkephalin-like material in neurons of the inferior mesenteric ganglion (sympathetic prevertebral ganglion) projecting to the distal colon in cat. Two weeks after injecting the microspheres into the wall of the distal colon, the inferior mesenteric ganglion was dissected out and incubated for 24 hours in a colchicine-containing culture medium in order to facilitate the detection of enkephalins in the soma of ganglion neurons. It was observed that retrogradely labelled ganglion cells contained enkephalin-like immunoreactive material. These ganglion cells corresponded to enkephalin-like postganglionic neurons, the terminals of which were located inside the wall of the distal colon. These enkephalin-like neurons were numerous and scattered throughout the ganglion. Sometimes enkephalin-like immunoreactive fibers, probably originating from spinal preganglionic neurons, ran close to immunoreactive and non-immunoreactive retrogradely labelled ganglion cells. This suggests that enkephalin-like immunoreactive fibers may make synaptic connections with enkephalin-like and non-enkephalin-like postganglionic neurons projecting to the distal colon. The present study establishes for the first time the existence of an enkephalin-like postganglionic pathway to the digestive tract originating from a sympathetic prevertebral ganglion. This finding indicates that the enkephalinergic innervation of the cat digestive tract may have at least two possible sources: (i) the sympathetic prevertebral ganglia; and (ii) the enteric nervous ganglia.

  15. Developmental changes in expression of GABAA receptor-channels in rat intrinsic cardiac ganglion neurones

    PubMed Central

    Fischer, Harald; Harper, Alexander A; Anderson, Colin R; Adams, David J

    2005-01-01

    The effects of γ-aminobutyric acid (GABA) on the electrophysiological properties of intracardiac neurones were investigated in the intracardiac ganglion plexus in situ and in dissociated neurones from neonatal, juvenile and adult rat hearts. Focal application of GABA evoked a depolarizing, excitatory response in both intact and dissociated intracardiac ganglion neurones. Under voltage clamp, both GABA and muscimol elicited inward currents at −60 mV in a concentration-dependent manner. The fast, desensitizing currents were mimicked by the GABAA receptor agonists muscimol and taurine, and inhibited by the GABAA receptor antagonists, bicuculline and picrotoxin. The GABAA0 antagonist (1,2,5,6-tetrahydropyridin-4-yl)methyl phosphonic acid (TPMPA), had no effect on GABA-induced currents, suggesting that GABAA receptor-channels mediate the response. The GABA-evoked current amplitude recorded from dissociated neurones was age dependent whereby the peak current density measured at −100 mV was ∼ 20 times higher for intracardiac neurones obtained from neonatal rats (P2–5) compared with adult rats (P45–49). The decrease in GABA sensitivity occurred during the first two postnatal weeks and coincides with maturation of the sympathetic innervation of the rat heart. Immunohistochemical staining using antibodies against GABA demonstrate the presence of GABA in the intracardiac ganglion plexus of the neonatal rat heart. Taken together, these results suggest that GABA and taurine may act as modulators of neurotransmission and cardiac function in the developing mammalian intrinsic cardiac nervous system. PMID:15731187

  16. Spatial distribution of neurons innervated by chandelier cells.

    PubMed

    Blazquez-Llorca, Lidia; Woodruff, Alan; Inan, Melis; Anderson, Stewart A; Yuste, Rafael; DeFelipe, Javier; Merchan-Perez, Angel

    2015-09-01

    Chandelier (or axo-axonic) cells are a distinct group of GABAergic interneurons that innervate the axon initial segments of pyramidal cells and are thus thought to have an important role in controlling the activity of cortical circuits. To examine the circuit connectivity of chandelier cells (ChCs), we made use of a genetic targeting strategy to label neocortical ChCs in upper layers of juvenile mouse neocortex. We filled individual ChCs with biocytin in living brain slices and reconstructed their axonal arbors from serial semi-thin sections. We also reconstructed the cell somata of pyramidal neurons that were located inside the ChC axonal trees and determined the percentage of pyramidal neurons whose axon initial segments were innervated by ChC terminals. We found that the total percentage of pyramidal neurons that were innervated by a single labeled ChC was 18-22 %. Sholl analysis showed that this percentage peaked at 22-35 % for distances between 30 and 60 µm from the ChC soma, decreasing to lower percentages with increasing distances. We also studied the three-dimensional spatial distribution of the innervated neurons inside the ChC axonal arbor using spatial statistical analysis tools. We found that innervated pyramidal neurons are not distributed at random, but show a clustered distribution, with pockets where almost all cells are innervated and other regions within the ChC axonal tree that receive little or no innervation. Thus, individual ChCs may exert a strong, widespread influence on their local pyramidal neighbors in a spatially heterogeneous fashion.

  17. Expression of vesicular glutamate transporters in sensory and autonomic neurons innervating the mouse bladder.

    PubMed

    Brumovsky, Pablo R; Seal, Rebecca P; Lundgren, Kerstin H; Seroogy, Kim B; Watanabe, Masahiko; Gebhart, G F

    2013-06-01

    VGLUTs, which are essential for loading glutamate into synaptic vesicles, are present in various neuronal systems. However, to our knowledge the expression of VGLUTs in neurons innervating the bladder has not yet been analyzed. We studied VGLUT1, VGLUT2 and VGLUT3 in mouse bladder neurons. We analyzed the expression of VGLUT1, VGLUT2 and calcitonin gene-related peptide by immunohistochemistry in the retrograde labeled primary afferent and autonomic neurons of BALB/c mice after injecting fast blue in the bladder wall. To study VGLUT3 we traced the bladder of transgenic mice, in which VGLUT3 is identified by enhanced green fluorescent protein detection. Most bladder dorsal root ganglion neurons expressed VGLUT2. A smaller percentage of neurons also expressed VGLUT1 or VGLUT3. Co-expression with calcitonin gene-related peptide was only observed for VGLUT2. Occasional VGLUT2 immunoreactive neurons were seen in the major pelvic ganglia. Abundant VGLUT2 immunoreactive nerves were detected in the bladder dome and trigone, and the urethra. VGLUT1 immunoreactive nerves were discretely present. We present what are to our knowledge novel data on VGLUT expression in sensory and autonomic neurons innervating the mouse bladder. The frequent association of VGLUT2 and calcitonin gene-related peptide in sensory neurons suggests interactions between glutamatergic and peptidergic neurotransmissions, potentially influencing commonly perceived sensations in the bladder, such as discomfort and pain. Copyright © 2013 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  18. An intracellular characterization of neurones and neural connexions within the left coeliac ganglion of cats.

    PubMed Central

    Decktor, D L; Weems, W A

    1983-01-01

    Intracellular recordings were made in vitro from neurones located within the left coeliac ganglion of the cat solar plexus. Thirty percent of the neurones within left coeliac ganglia were identified as efferent neurones. Within this neuronal population, splenic-efferent and renal-efferent neurones were identified specifically. Neurones within left coeliac ganglia were characterized as either phasic (fast adapting) neurones or tonic (slowly adapting) neurones depending upon their prolonged firing behaviour. Electrophysiological properties of neurones varied considerably. The wide range of values obtained for both input resistance and input capacitance suggest that sizeable differences in either specific membrane resistance or cell geometry exist within the over-all neurone population. Frequency distributions of input resistance, time constant, input capacitance and current threshold for tonic and phasic neurones were found to be significantly different. Compound excitatory post-synaptic potentials were produced by stimulation of the ipsilateral splanchnic nerves in 69% of the neurones tested and in 3% of the neurones tested upon stimulation of the contralateral splanchnic nerves. Electrical stimulation of nerve fibres located in the coeliac plexus, the superior mesenteric plexus or the left renal nerves generated excitatory synaptic potentials in neurones located within left coeliac ganglia. It is concluded that neurones within the left coeliac ganglion are innervated by splanchnic nerve fibres primarily contained within the left splanchnic nerves, receive excitatory synaptic input from splenic, renal and other peripheral preganglionic fibres and have extremely varied electrophysiological properties. PMID:6620179

  19. Nogo Receptor Homolog NgR2 Expressed in Sensory DRG Neurons Controls Epidermal Innervation by Interaction with Versican

    PubMed Central

    Bäumer, Bastian E.; Kurz, Antje; Borrie, Sarah C.; Sickinger, Stephan; Dours-Zimmermann, María T.; Zimmermann, Dieter R.

    2014-01-01

    Primary sensory afferents of the dorsal root ganglion (DRG) that innervate the skin detect a wide range of stimuli, such as touch, temperature, pain, and itch. Different functional classes of nociceptors project their axons to distinct target zones within the developing skin, but the molecular mechanisms that regulate target innervation are less clear. Here we report that the Nogo66 receptor homolog NgR2 is essential for proper cutaneous innervation. NgR2−/− mice display increased density of nonpeptidergic nociceptors in the footpad and exhibit enhanced sensitivity to mechanical force and innocuous cold temperatures. These sensory deficits are not associated with any abnormality in morphology or density of DRG neurons. However, deletion of NgR2 renders nociceptive nonpeptidergic sensory neurons insensitive to the outgrowth repulsive activity of skin-derived Versican. Biochemical evidence shows that NgR2 specifically interacts with the G3 domain of Versican. The data suggest that Versican/NgR2 signaling at the dermo-epidermal junction acts in vivo as a local suppressor of axonal plasticity to control proper density of epidermal sensory fiber innervation. Our findings not only reveal the existence of a novel and unsuspected mechanism regulating epidermal target innervation, but also provide the first evidence for a physiological role of NgR2 in the peripheral nervous system. PMID:24478347

  20. Nogo receptor homolog NgR2 expressed in sensory DRG neurons controls epidermal innervation by interaction with Versican.

    PubMed

    Bäumer, Bastian E; Kurz, Antje; Borrie, Sarah C; Sickinger, Stephan; Dours-Zimmermann, María T; Zimmermann, Dieter R; Bandtlow, Christine E

    2014-01-29

    Primary sensory afferents of the dorsal root ganglion (DRG) that innervate the skin detect a wide range of stimuli, such as touch, temperature, pain, and itch. Different functional classes of nociceptors project their axons to distinct target zones within the developing skin, but the molecular mechanisms that regulate target innervation are less clear. Here we report that the Nogo66 receptor homolog NgR2 is essential for proper cutaneous innervation. NgR2(-/-) mice display increased density of nonpeptidergic nociceptors in the footpad and exhibit enhanced sensitivity to mechanical force and innocuous cold temperatures. These sensory deficits are not associated with any abnormality in morphology or density of DRG neurons. However, deletion of NgR2 renders nociceptive nonpeptidergic sensory neurons insensitive to the outgrowth repulsive activity of skin-derived Versican. Biochemical evidence shows that NgR2 specifically interacts with the G3 domain of Versican. The data suggest that Versican/NgR2 signaling at the dermo-epidermal junction acts in vivo as a local suppressor of axonal plasticity to control proper density of epidermal sensory fiber innervation. Our findings not only reveal the existence of a novel and unsuspected mechanism regulating epidermal target innervation, but also provide the first evidence for a physiological role of NgR2 in the peripheral nervous system.

  1. Comparative expression analysis of POU4F1, POU4F2 and ISL1 in developing mouse cochleovestibular ganglion neurons

    PubMed Central

    Deng, Min; Yang, Hua; Xie, Xiaoling; Liang, Guoqing; Gan, Lin

    2014-01-01

    POU-homeodomain and LIM-homeodomain transcription factors are expressed in developing projection neurons within retina, inner ear, dorsal root ganglion, and trigeminal ganglion, and play synergistic roles in their differentiation and survival. Here, using immunohistochemistry, we present a comparative analysis of the spatiotemporal expression pattern of POU4F1, POU4F2, and ISL1 during the development of cochleovestibular ganglion (CVG) neurons in mouse inner ear. At early stages, when otic neurons are first detected in the otic epithelium (OE) and migrate into periotic mesenchyme to form the CVG, POU4F1 and ISL1 are co-expressed in a majority of the delaminated CVG neurons, which are marked by NEUROD1 expression, but POU4F1 is absent in the otic epithelium. The onset of POU4F2 expression starts after that of POU4F1 and ISL1, and is observed in the NEUROD1-negative, post-mitotic CVG neurons. When the CVG neurons innervate the vestibular and cochlear sensory organs, the expression of POU4F1, POU4F2, and ISL1 continues in both vestibular and spiral ganglion cells. Later in development, POU4F1 expression becomes down-regulated in a majority of spiral ganglion (SG) neurons and more neurons express POU4F2 expression while ISL1 expression is maintained. The differential as well as overlapping expression of POU4F1, POU4F2, and ISL1 combined with previous studies suggests possible functional interaction and regulatory relationship of these transcription factors in the development of inner ear neurons. PMID:24709358

  2. Incomplete segregation of endorgan-specific vestibular ganglion cells in mice and rats

    NASA Technical Reports Server (NTRS)

    Maklad, A.; Fritzsch, B.

    1999-01-01

    The endorgan-specific distribution of vestibular ganglion cells was studied in neonatal and postnatal rats and mice using indocarbocyanine dye (DiI) and dextran amines for retrograde and anterograde labeling. Retrograde DiI tracing from the anterior vertical canal labeled neurons scattered throughout the whole superior vestibular ganglion, with denser labeling at the dorsal and central regions. Horizontal canal neurons were scattered along the dorsoventral axis with more clustering toward the dorsal and ventral poles of this axis. Utricular ganglion cells occupied predominantly the central region of the superior vestibular ganglion. This utricular population overlapped with both the anterior vertical and horizontal canals' ganglion cells. Posterior vertical canal neurons were clustered in the posterior part of the inferior vestibular ganglion. The saccular neurons were distributed in the two parts of the vestibular ganglion, the superior and inferior ganglia. Within the inferior ganglion, the saccular neurons were clustered in the anterior part. In the superior ganglion, the saccular neurons were widely scattered throughout the whole ganglion with more numerous neurons at the posterior half. Small and large neurons were labeled from all endorgans. Examination of the fiber trajectory within the superior division of the vestibular nerve showed no clear lamination of the fibers innervating the different endorgans. These results demonstrate an overlapping pattern between the different populations within the superior ganglion, while in the inferior ganglion, the posterior canal and saccular neurons show tighter clustering but incomplete segregation. This distribution implies that the ganglion cells are assigned for their target during development in a stochastic rather than topographical fashion.

  3. Denervation does not alter the number of neuronal bungarotoxin binding sites on autonomic neurons in the frog cardiac ganglion.

    PubMed

    Sargent, P B; Bryan, G K; Streichert, L C; Garrett, E N

    1991-11-01

    normally innervated ganglia. These results suggest that denervation alters neither the total number of nicotinic AChRs in the cardiac ganglion nor the number found on the surface of ganglion cells. These autonomic neurons thus respond differently to denervation than do skeletal myofibers. The increase in ACh sensitivity displayed by cardiac ganglion cells upon denervation cannot be explained by changes in AChR number.

  4. TRPV1 regulates excitatory innervation of OLM neurons in the hippocampus

    PubMed Central

    Hurtado-Zavala, Joaquin I.; Ramachandran, Binu; Ahmed, Saheeb; Halder, Rashi; Bolleyer, Christiane; Awasthi, Ankit; Stahlberg, Markus A.; Wagener, Robin J.; Anderson, Kristin; Drenan, Ryan M.; Lester, Henry A.; Miwa, Julie M.; Staiger, Jochen F.; Fischer, Andre; Dean, Camin

    2017-01-01

    TRPV1 is an ion channel activated by heat and pungent agents including capsaicin, and has been extensively studied in nociception of sensory neurons. However, the location and function of TRPV1 in the hippocampus is debated. We found that TRPV1 is expressed in oriens-lacunosum-moleculare (OLM) interneurons in the hippocampus, and promotes excitatory innervation. TRPV1 knockout mice have reduced glutamatergic innervation of OLM neurons. When activated by capsaicin, TRPV1 recruits more glutamatergic, but not GABAergic, terminals to OLM neurons in vitro. When TRPV1 is blocked, glutamatergic input to OLM neurons is dramatically reduced. Heterologous expression of TRPV1 also increases excitatory innervation. Moreover, TRPV1 knockouts have reduced Schaffer collateral LTP, which is rescued by activating OLM neurons with nicotine—via α2β2-containing nicotinic receptors—to bypass innervation defects. Our results reveal a synaptogenic function of TRPV1 in a specific interneuron population in the hippocampus, where it is important for gating hippocampal plasticity. PMID:28722015

  5. Nitrergic nerves derived from the pterygopalatine ganglion innervate arteries irrigating the cerebrum but not the cerebellum and brain stem in monkeys.

    PubMed

    Ayajiki, Kazuhide; Kobuchi, Shuhei; Tawa, Masashi; Okamura, Tomio

    2012-01-01

    The functional roles of the nitrergic nerves innervating the monkey cerebral artery were evaluated in a tension-response study examining isolated arteries in vitro and cerebral angiography in vivo. Nicotine produced relaxation of arteries by stimulation of nerve terminals innervating isolated monkey arteries irrigating the cerebrum, cerebellum and brain stem. Relaxation of arteries induced by nicotine was abolished by treatment with N(G)-nitro-L-arginine, a nitric oxide synthase inhibitor, and was restored by addition of L-arginine. Cerebral angiography showed that electrical stimulation of the unilateral greater petrosal nerve, which connects to the pterygopalatine ganglion via the parasympathetic ganglion synapse, produced vasodilatation of the anterior, middle and posterior cerebral arteries in the stimulated side. However, stimulation failed to produce vasodilatation of the superior and anterior-inferior cerebellar arteries and the basilar artery in anesthetized monkeys. Therefore, nitrergic nerves derived from the pterygopalatine ganglion appear to regulate cerebral vasomotor function. In contrast, circulation in the cerebellum and brain stem might be regulated by nitrergic nerves originating not from the pterygopalatine ganglion, but rather from an unknown ganglion (or ganglia).

  6. Spinally projecting preproglucagon axons preferentially innervate sympathetic preganglionic neurons

    PubMed Central

    Llewellyn-Smith, I.J.; Marina, N.; Manton, R.N.; Reimann, F.; Gribble, F.M.; Trapp, S.

    2015-01-01

    Glucagon-like peptide-1 (GLP-1) affects central autonomic neurons, including those controlling the cardiovascular system, thermogenesis, and energy balance. Preproglucagon (PPG) neurons, located mainly in the nucleus tractus solitarius (NTS) and medullary reticular formation, produce GLP-1. In transgenic mice expressing glucagon promoter-driven yellow fluorescent protein (YFP), these brainstem PPG neurons project to many central autonomic regions where GLP-1 receptors are expressed. The spinal cord also contains GLP-1 receptor mRNA but the distribution of spinal PPG axons is unknown. Here, we used two-color immunoperoxidase labeling to examine PPG innervation of spinal segments T1–S4 in YFP-PPG mice. Immunoreactivity for YFP identified spinal PPG axons and perikarya. We classified spinal neurons receiving PPG input by immunoreactivity for choline acetyltransferase (ChAT), nitric oxide synthase (NOS) and/or Fluorogold (FG) retrogradely transported from the peritoneal cavity. FG microinjected at T9 defined cell bodies that supplied spinal PPG innervation. The deep dorsal horn of lower lumbar cord contained YFP-immunoreactive neurons. Non-varicose, YFP-immunoreactive axons were prominent in the lateral funiculus, ventral white commissure and around the ventral median fissure. In T1–L2, varicose, YFP-containing axons closely apposed many ChAT-immunoreactive sympathetic preganglionic neurons (SPN) in the intermediolateral cell column (IML) and dorsal lamina X. In the sacral parasympathetic nucleus, about 10% of ChAT-immunoreactive preganglionic neurons received YFP appositions, as did occasional ChAT-positive motor neurons throughout the rostrocaudal extent of the ventral horn. YFP appositions also occurred on NOS-immunoreactive spinal interneurons and on spinal YFP-immunoreactive neurons. Injecting FG at T9 retrogradely labeled many YFP-PPG cell bodies in the medulla but none of the spinal YFP-immunoreactive neurons. These results show that brainstem PPG neurons

  7. Recent advances in the development and function of type II spiral ganglion neurons in the mammalian inner ear

    PubMed Central

    Zhang, Kaidi D.; Coate, Thomas M.

    2016-01-01

    In hearing, mechanically sensitive hair cells (HCs) in the cochlea release glutamate onto spiral ganglion neurons (SGNs) to relay auditory information to the central nervous system (CNS). There are two main SGN subtypes, which differ in morphology, number, synaptic targets, innervation patterns and firing properties. About 90-95% of SGNs are the type I SGNs, which make a single bouton connection with inner hair cells (IHCs) and have been well described in the canonical auditory pathway for sound detection. However, less attention has been given to the type II SGNs, which exclusively innervate outer hair cells (OHCs). In this review, we emphasize recent advances in the molecular mechanisms that control how type II SGNs develop and form connections with OHCs, and exciting new insights into the function of type II SGNs. PMID:27760385

  8. Synaptic Proteins Are Tonotopically Graded in Postnatal and Adult Type I and Type II Spiral Ganglion Neurons

    PubMed Central

    Flores-Otero, Jacqueline; Davis, Robin L.

    2011-01-01

    Inherent in the design of the mammalian auditory system is the precision necessary to transduce complex sounds and transmit the resulting electrical signals to higher neural centers. Unique specializations in the organ of Corti are required to make this conversion, such that mechanical and electrical properties of hair cell receptors are tailored to their specific role in signal coding. Electrophysiological and immunocytochemical characterizations have shown that this principle also applies to neurons of the spiral ganglion, as evidenced by distinctly different firing features and synaptic protein distributions of neurons that innervate high- and low-frequency regions of the cochlea. However, understanding the fine structure of how these properties are distributed along the cochlear partition and within the type I and type II classes of spiral ganglion neurons is necessary to appreciate their functional significance fully. To address this issue, we assessed the localization of the postsynaptic AMPA receptor subunits GluR2 and GluR3 and the presynaptic protein synaptophysin by using immunocytochemical labeling in both postnatal and adult tissue. We report that these presynaptic and postsynaptic proteins are distributed oppositely in relation to the tonotopic map and that they are equally distributed in each neuronal class, thus having an overall gradation from one end of the cochlea to the other. For synaptophysin, an additional layer of heterogeneity was superimposed orthogonal to the tonotopic axis. The highest anti-synaptophysin antibody levels were observed within neurons located close to the scala tympani compared with those located close to the scala vestibuli. Furthermore, we noted that the protein distribution patterns observed in postnatal preparations were largely retained in adult tissue sections, indicating that these features characterize spiral ganglion neurons in the fully developed ear. PMID:21452215

  9. Distinct subclassification of DRG neurons innervating the distal colon and glans penis/distal urethra based on the electrophysiological current signature

    PubMed Central

    Petruska, Jeffrey C.; Cooper, Brian Y.; Johnson, Richard D.

    2014-01-01

    Spinal sensory neurons innervating visceral and mucocutaneous tissues have unique microanatomic distribution, peripheral modality, and physiological, pharmacological, and biophysical characteristics compared with those neurons that innervate muscle and cutaneous tissues. In previous patch-clamp electrophysiological studies, we have demonstrated that small- and medium-diameter dorsal root ganglion (DRG) neurons can be subclassified on the basis of their patterns of voltage-activated currents (VAC). These VAC-based subclasses were highly consistent in their action potential characteristics, responses to algesic compounds, immunocytochemical expression patterns, and responses to thermal stimuli. For this study, we examined the VAC of neurons retrogradely traced from the distal colon and the glans penis/distal urethra in the adult male rat. The afferent population from the distal colon contained at least two previously characterized cell types observed in somatic tissues (types 5 and 8), as well as four novel cell types (types 15, 16, 17, and 18). In the glans penis/distal urethra, two previously described cell types (types 6 and 8) and three novel cell types (types 7, 14, and 15) were identified. Other characteristics, including action potential profiles, responses to algesic compounds (acetylcholine, capsaicin, ATP, and pH 5.0 solution), and neurochemistry (expression of substance P, CGRP, neurofilament, TRPV1, TRPV2, and isolectin B4 binding) were consistent for each VAC-defined subgroup. With identification of distinct DRG cell types that innervate the distal colon and glans penis/distal urethra, future in vitro studies related to the gastrointestinal and urogenital sensory function in normal as well as abnormal/pathological conditions may be benefitted. PMID:24872531

  10. Vagal innervation of the aldosterone-sensitive HSD2 neurons in the NTS

    PubMed Central

    Shin, Jung-Won; Geerling, Joel C.; Loewy, Arthur D.

    2009-01-01

    The nucleus of the solitary tract (NTS) contains a unique subpopulation of aldosterone-sensitive neurons. These neurons express the enzyme 11-β-hydroxysteroid dehydrogenase type 2 (HSD2) and are activated by sodium deprivation. They are located in the caudal NTS, a region which is densely innervated by the vagus nerve, suggesting that they could receive direct viscerosensory input from the periphery. To test this possibility, we injected the highly sensitive axonal tracer biotinylated dextran amine (BDA) into the left nodose ganglion in rats. Using confocal microscopy, we observed a sparse input from the vagus to most HSD2 neurons. Roughly 80% of the ipsilateral HSD2 neurons exhibited at least one close contact with a BDA-labeled vagal bouton, although most of these cells received only a few total contacts. Most of these contacts were axo-dendritic (~80%), while ~20% were axo-somatic. In contrast, the synaptic vesicular transporters VGLUT2 or GAD7 labeled much larger populations of boutons contacting HSD2-labeled dendrites and somata, suggesting that direct input from the vagus may only account for a minority of the information integrated by these neurons. In summary, the aldosterone-sensitive HSD2 neurons in the NTS appear to receive a small amount of direct viscerosensory input from the vagus nerve. The peripheral sites of origin and functional significance of this projection remain unknown. Combined with previously-identified central sources of input to these cells, the present finding indicates that the HSD2 neurons integrate humoral information with input from a variety of neural afferents. PMID:19010311

  11. [The neurotrophic effect of endogenous NT-3 from adult cat spared dorsal root ganglion on ganglionic neurons].

    PubMed

    Zhang, Wei; Zhou, Xue; Wang, Ting-hua; Wang, Te-wei; Liu, Su; Chen, Si-xiu; Ou, Ke-qun

    2004-01-01

    To investigate the neurotrophic effect of endogenous NT-3 from adult cat dorsal root ganglion (DRG) on ganglionic neurons. Rhizotomy of bilateral L1, L3, L5 and L7 dorsal roots of cats was performed, leaving L2, L4 and L6 DRG as spared DRGs. The separate neurons of normal (control) DRG, spared DRG and anti-NT-3 antibody blocking DRG were cultured in vitro respectively. The number of survival neurons and the length of neurites were measured and used for comparison in the control, spared DRG, and block groups. There were survival neurons and cell clusters in every group. The number of survival neurons and cell clusters of spared DRG group were much larger than those of the control and block groups. The neurite length of neurons, the neurite number and the length of cell clusters of spared DRG group were much greater than those of control and block groups. Endogenous NT-3 from spared DRG may act on ganglionic neurons to maintain survival of neuron and stimulate growth of neurite.

  12. Three-dimensional analysis of vestibular efferent neurons innervating semicircular canals of the gerbil

    NASA Technical Reports Server (NTRS)

    Purcell, I. M.; Perachio, A. A.

    1997-01-01

    Anterograde labeling techniques were used to examine peripheral innervation patterns of vestibular efferent neurons in the crista ampullares of the gerbil. Vestibular efferent neurons were labeled by extracellular injections of biocytin or biotinylated dextran amine into the contralateral or ipsilateral dorsal subgroup of efferent cell bodies (group e) located dorsolateral to the facial nerve genu. Anterogradely labeled efferent terminal field varicosities consist mainly of boutons en passant with fewer of the terminal type. The bouton swellings are located predominately in apposition to the basolateral borders of the afferent calyces and type II hair cells, but several boutons were identified close to the hair cell apical border on both types. Three-dimensional reconstruction and morphological analysis of the terminal fields from these cells located in the sensory neuroepithelium of the anterior, horizontal, and posterior cristae were performed. We show that efferent neurons densely innervate each end organ in widespread terminal fields. Subepithelial bifurcations of parent axons were minimal, with extensive collateralization occurring after the axons penetrated the basement membrane of the neuroepithelium. Axonal branching ranged between the 6th and 27th orders and terminal field collecting area far exceeds that of the peripheral terminals of primary afferent neurons. The terminal fields of the efferent neurons display three morphologically heterogeneous types: central, peripheral, and planum. All cell types possess terminal fields displaying a high degree of anisotropy with orientations typically parallel to or within +/-45 degrees of the longitudinal axis if the crista. Terminal fields of the central and planum zones predominately project medially toward the transverse axis from the more laterally located penetration of the basement membrane by the parent axon. Peripheral zone terminal fields extend predominately toward the planum semilunatum. The innervation

  13. Divergent Hox Coding and Evasion of Retinoid Signaling Specifies Motor Neurons Innervating Digit Muscles

    PubMed Central

    Mendelsohn, Alana I.; Dasen, Jeremy S.; Jessell, Thomas M.

    2017-01-01

    Summary The establishment of spinal motor neuron subclass diversity is achieved through developmental programs that are aligned with the organization of muscle targets in the limb. The evolutionary emergence of digits represents a specialized adaptation of limb morphology, yet it remains unclear how the specification of digit-innervating motor neuron subtypes parallels the elaboration of digits. We show that digit-innervating motor neurons can be defined by selective gene markers and distinguished from other LMC neurons by the expression of a variant Hox gene repertoire and by the failure to express a key enzyme involved in retinoic acid synthesis. This divergent developmental program is sufficient to induce the specification of digit-innervating motor neurons, emphasizing the specialized status of digit control in the evolution of skilled motor behaviors. Our findings suggest that the emergence of digits in the limb is matched by distinct mechanisms for specifying motor neurons that innervate digit muscles. PMID:28190640

  14. Distinct subclassification of DRG neurons innervating the distal colon and glans penis/distal urethra based on the electrophysiological current signature.

    PubMed

    Rau, Kristofer K; Petruska, Jeffrey C; Cooper, Brian Y; Johnson, Richard D

    2014-09-15

    Spinal sensory neurons innervating visceral and mucocutaneous tissues have unique microanatomic distribution, peripheral modality, and physiological, pharmacological, and biophysical characteristics compared with those neurons that innervate muscle and cutaneous tissues. In previous patch-clamp electrophysiological studies, we have demonstrated that small- and medium-diameter dorsal root ganglion (DRG) neurons can be subclassified on the basis of their patterns of voltage-activated currents (VAC). These VAC-based subclasses were highly consistent in their action potential characteristics, responses to algesic compounds, immunocytochemical expression patterns, and responses to thermal stimuli. For this study, we examined the VAC of neurons retrogradely traced from the distal colon and the glans penis/distal urethra in the adult male rat. The afferent population from the distal colon contained at least two previously characterized cell types observed in somatic tissues (types 5 and 8), as well as four novel cell types (types 15, 16, 17, and 18). In the glans penis/distal urethra, two previously described cell types (types 6 and 8) and three novel cell types (types 7, 14, and 15) were identified. Other characteristics, including action potential profiles, responses to algesic compounds (acetylcholine, capsaicin, ATP, and pH 5.0 solution), and neurochemistry (expression of substance P, CGRP, neurofilament, TRPV1, TRPV2, and isolectin B4 binding) were consistent for each VAC-defined subgroup. With identification of distinct DRG cell types that innervate the distal colon and glans penis/distal urethra, future in vitro studies related to the gastrointestinal and urogenital sensory function in normal as well as abnormal/pathological conditions may be benefitted. Copyright © 2014 the American Physiological Society.

  15. Development of the intrinsic and extrinsic innervation of the gut.

    PubMed

    Uesaka, Toshihiro; Young, Heather M; Pachnis, Vassilis; Enomoto, Hideki

    2016-09-15

    The gastrointestinal (GI) tract is innervated by intrinsic enteric neurons and by extrinsic efferent and afferent nerves. The enteric (intrinsic) nervous system (ENS) in most regions of the gut consists of two main ganglionated layers; myenteric and submucosal ganglia, containing numerous types of enteric neurons and glial cells. Axons arising from the ENS and from extrinsic neurons innervate most layers of the gut wall and regulate many gut functions. The majority of ENS cells are derived from vagal neural crest cells (NCCs), which proliferate, colonize the entire gut, and first populate the myenteric region. After gut colonization by vagal NCCs, the extrinsic nerve fibers reach the GI tract, and Schwann cell precursors (SCPs) enter the gut along the extrinsic nerves. Furthermore, a subpopulation of cells in myenteric ganglia undergoes a radial (inward) migration to form the submucosal plexus, and the intrinsic and extrinsic innervation to the mucosal region develops. Here, we focus on recent progress in understanding the developmental processes that occur after the gut is colonized by vagal ENS precursors, and provide an up-to-date overview of molecular mechanisms regulating the development of the intrinsic and extrinsic innervation of the GI tract. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Midbrain dopamine neurons associated with reward processing innervate the neurogenic subventricular zone.

    PubMed

    Lennington, Jessica B; Pope, Sara; Goodheart, Anna E; Drozdowicz, Linda; Daniels, Stephen B; Salamone, John D; Conover, Joanne C

    2011-09-14

    Coordinated regulation of the adult neurogenic subventricular zone (SVZ) is accomplished by a myriad of intrinsic and extrinsic factors. The neurotransmitter dopamine is one regulatory molecule implicated in SVZ function. Nigrostriatal and ventral tegmental area (VTA) midbrain dopamine neurons innervate regions adjacent to the SVZ, and dopamine synapses are found on SVZ cells. Cell division within the SVZ is decreased in humans with Parkinson's disease and in animal models of Parkinson's disease following exposure to toxins that selectively remove nigrostriatal neurons, suggesting that dopamine is critical for SVZ function and nigrostriatal neurons are the main suppliers of SVZ dopamine. However, when we examined the aphakia mouse, which is deficient in nigrostriatal neurons, we found no detrimental effect to SVZ proliferation or organization. Instead, dopamine innervation of the SVZ tracked to neurons at the ventrolateral boundary of the VTA. This same dopaminergic neuron population also innervated the SVZ of control mice. Characterization of these neurons revealed expression of proteins indicative of VTA neurons. Furthermore, exposure to the neurotoxin MPTP depleted neurons in the ventrolateral VTA and resulted in decreased SVZ proliferation. Together, these results reveal that dopamine signaling in the SVZ originates from a population of midbrain neurons more typically associated with motivational and reward processing.

  17. Differential contribution of Kv4-containing channels to A-type, voltage-gated potassium currents in somatic and visceral dorsal root ganglion neurons.

    PubMed

    Yunoki, Takakazu; Takimoto, Koichi; Kita, Kaori; Funahashi, Yasuhito; Takahashi, Ryosuke; Matsuyoshi, Hiroko; Naito, Seiji; Yoshimura, Naoki

    2014-11-15

    Little is known about electrophysiological differences of A-type transient K(+) (KA) currents in nociceptive afferent neurons that innervate somatic and visceral tissues. Staining with isolectin B4 (IB4)-FITC classifies L6-S1 dorsal root ganglion (DRG) neurons into three populations with distinct staining intensities: negative to weak, moderate, and intense fluorescence signals. All IB4 intensely stained cells are negative for a fluorescent dye, Fast Blue (FB), injected into the bladder wall, whereas a fraction of somatic neurons labeled by FB, injected to the external urethral dermis, is intensely stained with IB4. In whole-cell, patch-clamp recordings, phrixotoxin 2 (PaTx2), a voltage-gated K(+) (Kv)4 channel blocker, exhibits voltage-independent inhibition of the KA current in IB4 intensely stained cells but not the one in bladder-innervating cells. The toxin also shows voltage-independent inhibition of heterologously expressed Kv4.1 current, whereas its inhibition of Kv4.2 and Kv4.3 currents is voltage dependent. The swapping of four amino acids at the carboxyl portion of the S3 region between Kv4.1 and Kv4.2 transfers this characteristic. RT-PCRs detected Kv4.1 and the long isoform of Kv4.3 mRNAs without significant Kv4.2 mRNA in L6-S1 DRGs. Kv4.1 and Kv4.3 mRNA levels were higher in laser-captured, IB4-stained neurons than in bladder afferent neurons. These results indicate that PaTx2 acts differently on channels in the Kv4 family and that Kv4.1 and possibly Kv4.3 subunits functionally participate in the formation of KA channels in a subpopulation of somatic C-fiber neurons but not in visceral C-fiber neurons innervating the bladder. Copyright © 2014 the American Physiological Society.

  18. Differential contribution of Kv4-containing channels to A-type, voltage-gated potassium currents in somatic and visceral dorsal root ganglion neurons

    PubMed Central

    Yunoki, Takakazu; Takimoto, Koichi; Kita, Kaori; Funahashi, Yasuhito; Takahashi, Ryosuke; Matsuyoshi, Hiroko; Naito, Seiji

    2014-01-01

    Little is known about electrophysiological differences of A-type transient K+ (KA) currents in nociceptive afferent neurons that innervate somatic and visceral tissues. Staining with isolectin B4 (IB4)-FITC classifies L6-S1 dorsal root ganglion (DRG) neurons into three populations with distinct staining intensities: negative to weak, moderate, and intense fluorescence signals. All IB4 intensely stained cells are negative for a fluorescent dye, Fast Blue (FB), injected into the bladder wall, whereas a fraction of somatic neurons labeled by FB, injected to the external urethral dermis, is intensely stained with IB4. In whole-cell, patch-clamp recordings, phrixotoxin 2 (PaTx2), a voltage-gated K+ (Kv)4 channel blocker, exhibits voltage-independent inhibition of the KA current in IB4 intensely stained cells but not the one in bladder-innervating cells. The toxin also shows voltage-independent inhibition of heterologously expressed Kv4.1 current, whereas its inhibition of Kv4.2 and Kv4.3 currents is voltage dependent. The swapping of four amino acids at the carboxyl portion of the S3 region between Kv4.1 and Kv4.2 transfers this characteristic. RT-PCRs detected Kv4.1 and the long isoform of Kv4.3 mRNAs without significant Kv4.2 mRNA in L6-S1 DRGs. Kv4.1 and Kv4.3 mRNA levels were higher in laser-captured, IB4-stained neurons than in bladder afferent neurons. These results indicate that PaTx2 acts differently on channels in the Kv4 family and that Kv4.1 and possibly Kv4.3 subunits functionally participate in the formation of KA channels in a subpopulation of somatic C-fiber neurons but not in visceral C-fiber neurons innervating the bladder. PMID:25143545

  19. Distinct requirements for TrkB and TrkC signaling in target innervation by sensory neurons

    NASA Technical Reports Server (NTRS)

    Postigo, Antonio; Calella, Anna Maria; Fritzsch, Bernd; Knipper, Marlies; Katz, David; Eilers, Andreas; Schimmang, Thomas; Lewin, Gary R.; Klein, Rudiger; Minichiello, Liliana

    2002-01-01

    Signaling by brain-derived neurotrophic factor (BDNF) via the TrkB receptor, or by neurotrophin-3 (NT3) through the TrkC receptor support distinct populations of sensory neurons. The intracellular signaling pathways activated by Trk (tyrosine kinase) receptors, which in vivo promote neuronal survival and target innervation, are not well understood. Using mice with TrkB or TrkC receptors lacking the docking site for Shc adaptors (trkB(shc/shc) and trkC(shc/shc) mice), we show that TrkB and TrkC promote survival of sensory neurons mainly through Shc site-independent pathways, suggesting that these receptors use similar pathways to prevent apoptosis. In contrast, the regulation of target innervation appears different: in trkB(shc/shc) mice neurons lose target innervation, whereas in trkC(shc/shc) mice the surviving TrkC-dependent neurons maintain target innervation and function. Biochemical analysis indicates that phosphorylation at the Shc site positively regulates autophosphorylation of TrkB, but not of TrkC. Our findings show that although TrkB and TrkC signals mediating survival are largely similar, TrkB and TrkC signals required for maintenance of target innervation in vivo are regulated by distinct mechanisms.

  20. Mesodermal and neuronal retinoids regulate the induction and maintenance of limb innervating spinal motor neurons.

    PubMed

    Ji, Sheng-Jian; Zhuang, BinQuan; Falco, Crystal; Schneider, André; Schuster-Gossler, Karin; Gossler, Achim; Sockanathan, Shanthini

    2006-09-01

    During embryonic development, the generation, diversification and maintenance of spinal motor neurons depend upon extrinsic signals that are tightly regulated. Retinoic acid (RA) is necessary for specifying the fates of forelimb-innervating motor neurons of the Lateral Motor Column (LMC), and the specification of LMC neurons into medial and lateral subtypes. Previous studies implicate motor neurons as the relevant source of RA for specifying lateral LMC fates at forelimb levels. However, at the time of LMC diversification, a significant amount of retinoids in the spinal cord originates from the adjacent paraxial mesoderm. Here we employ mouse genetics to show that RA derived from the paraxial mesoderm is required for lateral LMC induction at forelimb and hindlimb levels, demonstrating that mesodermally synthesized RA functions as a second source of signals to specify lateral LMC identity. Furthermore, reduced RA levels in postmitotic motor neurons result in a decrease of medial and lateral LMC neurons, and abnormal axonal projections in the limb; invoking additional roles for neuronally synthesized RA in motor neuron maintenance and survival. These findings suggest that during embryogenesis, mesodermal and neuronal retinoids act coordinately to establish and maintain appropriate cohorts of spinal motor neurons that innervate target muscles in the limb.

  1. Involvement of catecholaminergic neurons in motor innervation of striated muscle in the mouse esophagus.

    PubMed

    van der Keylen, Piet; Garreis, Fabian; Steigleder, Ruth; Sommer, Daniel; Neuhuber, Winfried L; Wörl, Jürgen

    2016-05-01

    Enteric co-innervation is a peculiar innervation pattern of striated esophageal musculature. Both anatomical and functional data on enteric co-innervation related to various transmitters have been collected in different species, although its function remains enigmatic. However, it is unclear whether catecholaminergic components are involved in such a co-innervation. Thus, we examined to identify catecholaminergic neuronal elements and clarify their relationship to other innervation components in the esophagus, using immunohistochemistry with antibodies against tyrosine hydroxylase (TH), vesicular acetylcholine transporter (VAChT), choline acetyltransferase (ChAT) and protein gene product 9.5 (PGP 9.5), α-bungarotoxin (α-BT) and PCR with primers for amplification of cDNA encoding TH and dopamine-β-hydroxylase (DBH). TH-positive nerve fibers were abundant throughout the myenteric plexus and localized on about 14% of α-BT-labelled motor endplates differing from VAChT-positive vagal nerve terminals. TH-positive perikarya represented a subpopulation of only about 2.8% of all PGP 9.5-positive myenteric neurons. Analysis of mRNA showed both TH and DBH transcripts in the mouse esophagus. As ChAT-positive neurons in the compact formation of the nucleus ambiguus were negative for TH, the TH-positive nerve varicosities on motor endplates are presumably of enteric origin, although a sympathetic origin cannot be excluded. In the medulla oblongata, the cholinergic ambiguus neurons were densely supplied with TH-positive varicosities. Thus, catecholamines may modulate vagal motor innervation of esophageal-striated muscles not only at the peripheral level via enteric co-innervation but also at the central level via projections to the nucleus ambiguus. As Parkinson's disease, with a loss of central dopaminergic neurons, also affects the enteric nervous system and dysphagia is prevalent in patients with this disease, investigation of intrinsic catecholamines in the esophagus may

  2. Identification of neurons that express ghrelin receptors in autonomic pathways originating from the spinal cord.

    PubMed

    Furness, John B; Cho, Hyun-Jung; Hunne, Billie; Hirayama, Haruko; Callaghan, Brid P; Lomax, Alan E; Brock, James A

    2012-06-01

    Functional studies have shown that subsets of autonomic preganglionic neurons respond to ghrelin and ghrelin mimetics and in situ hybridisation has revealed receptor gene expression in the cell bodies of some preganglionic neurons. Our present goal has been to determine which preganglionic neurons express ghrelin receptors by using mice expressing enhanced green fluorescent protein (EGFP) under the control of the promoter for the ghrelin receptor (also called growth hormone secretagogue receptor). The retrograde tracer Fast Blue was injected into target organs of reporter mice under anaesthesia to identify specific functional subsets of postganglionic sympathetic neurons. Cryo-sections were immunohistochemically stained by using anti-EGFP and antibodies to neuronal markers. EGFP was detected in nerve terminal varicosities in all sympathetic chain, prevertebral and pelvic ganglia and in the adrenal medulla. Non-varicose fibres associated with the ganglia were also immunoreactive. No postganglionic cell bodies contained EGFP. In sympathetic chain ganglia, most neurons were surrounded by EGFP-positive terminals. In the stellate ganglion, neurons with choline acetyltransferase immunoreactivity, some being sudomotor neurons, lacked surrounding ghrelin-receptor-expressing terminals, although these terminals were found around other neurons. In the superior cervical ganglion, the ghrelin receptor terminals innervated subgroups of neurons including neuropeptide Y (NPY)-immunoreactive neurons that projected to the anterior chamber of the eye. However, large NPY-negative neurons projecting to the acini of the submaxillary gland were not innervated by EGFP-positive varicosities. In the celiaco-superior mesenteric ganglion, almost all neurons were surrounded by positive terminals but the VIP-immunoreactive terminals of intestinofugal neurons were EGFP-negative. The pelvic ganglia contained groups of neurons without ghrelin receptor terminal innervation and other groups with

  3. LIF potentiates the NT-3-mediated survival of spiral ganglia neurones in vitro.

    PubMed

    Marzella, P L; Clark, G M; Shepherd, R K; Bartlett, P F; Kilpatrick, T J

    1997-05-06

    The survival of auditory neurones depends on the continued supply of trophic factors. Early postnatal spiral ganglion cells (SGC) in a dissociated cell culture were used as a model of auditory innervation to test the trophic factors leukaemia inhibitory factor (LIF) and neurotrophin-3 (NT-3) for their ability, individually or in combination, to promote neuronal survival. The findings suggest that LIF supports neuronal survival in a concentration-dependent manner. Moreover LIF potentiated NT-3-mediated spiral ganglion neuronal survival in a synergistic fashion.

  4. The structure and function of serially homologous leg motor neurons in the locust. I. Anatomy.

    PubMed

    Wilson, J A

    1979-01-01

    Twenty-one prothoracic and 17 mesothoracic motor neurons innervating leg muscles have been identified physiologically and subsequently injected with dye from a microelectrode. A tract containing the primary neurites of motor neurons innervating the retractor unquis, levator and depressor tarsus, flexor tibiae, and reductor femora is described. All motor neurons studied have regions in which their dendritic branches overlap with those of other leg motor neurons. Identified, serially homologous motor neurons in the three thoracic ganglia were found to have: (1) cell bodies at similar locations and morphologically similar primary neurites (e.g., flexor tibiae motor neurons), (2) cell bodies at different locations in each ganglion and morphologically different primary neurites in each ganglion (e.g., fast retractor unguis motor neurons), or (3) cell bodies at similar locations and morphologically similar primary neurites but with a functional switch in one ganglion relative to the function of the neurons in the other two ganglia. As an example of the latter, the morphology of the metathoracic slow extensor tibiae (SETi) motor neurons was similar to that of pro- and mesothoracic fast extensor tibiae (FETi) motor neurons. Similarly the metathoracic FETi bears a striking resemblance to the pro- and the mesothoracic SETi. It is proposed that in the metathoracic ganglion the two extensor tibiae motor neurons have switched functions while retaining similar morphologies relative to the structure and function of their pro- and mesothoracic serial homologues.

  5. Alimentary tract innervation deficits and dysfunction in mice lacking GDNF family receptor alpha2.

    PubMed

    Rossi, Jari; Herzig, Karl-Heinz; Võikar, Vootele; Hiltunen, Païvi H; Segerstråle, Mikael; Airaksinen, Matti S

    2003-09-01

    Subsets of parasympathetic and enteric neurons require neurturin signaling via glial cell line-derived neurotrophic factor family receptor alpha2 (GFRalpha2) for development and target innervation. Why GFRalpha2-deficient (Gfra2-/-) mice grow poorly has remained unclear. Here, we analyzed several factors that could contribute to the growth retardation. Neurturin mRNA was localized in the gut circular muscle. GFRalpha2 protein was expressed in most substance P-containing myenteric neurons, in most intrapancreatic neurons, and in surrounding glial cells. In the Gfra2-/- mice, density of substance P-containing myenteric ganglion cells and nerve bundles in the myenteric ganglion cell layer was significantly reduced, and transit of test material through small intestine was 25% slower compared to wild-type mice. Importantly, the knockout mice had approximately 80% fewer intrapancreatic neurons, severely impaired cholinergic innervation of the exocrine but not the endocrine pancreas, and increased fecal fat content. Vagally mediated stimulation of pancreatic secretion by 2-deoxy-glucose in vivo was virtually abolished. Retarded growth of the Gfra2-/- mice was accompanied by reduced fat mass and elevated basal metabolic rate. Moreover, the knockout mice drank more water than wild-type controls, and wet-mash feeding resulted in partial growth rescue. Taken together, the results suggest that the growth retardation in mice lacking GFRalpha2 is largely due to impaired salivary and pancreatic secretion and intestinal dysmotility.

  6. Morphological patterns in children with ganglion related enteric neuronal abnormalities.

    PubMed

    Henna, Nausheen; Nagi, Abdul H; Sheikh, Muhammad A; Shaukat, Mahmood

    2011-01-01

    Hirschsprung's Disease (HD) is a developmental disorder of enteric nervous system characterised by the absence of ganglion cells in submucosal (Meissner's) and myenteric (Aurbach's) plexuses of distal bowel. The purpose of the present study was to observe and report the morphological patterns of ganglion related enteric neuronal abnormalities in children presented with clinical features of (HD) in a Pakistani population. A total of 92 patients with clinical presentation of HD were enrolled between March 2009 and October 2009. Among them, 8 were excluded according to the exclusion criteria. After detailed history and physical examination, paraffin embedded H and E stained sections were prepared from the serial open biopsies from colorectum. The data was analysed using SPSS-17. Frequencies and percentages are given for qualitative variables. Non-parametric Binomial Chi-Square test was applied to observe within group associations and p<0.05 was considered statistically significant. Among 84 patients, 13 (15.5%) proved to be normally ganglionic whereas 71 (84.5%) showed ganglion related enteric neuronal abnormalities namely isolated hypoganglionosis 9 (12.7%), immaturity of ganglion cells 9 (12.7%), isolated hyperganglionosis (IND Type B) 2 (2.8%) and Hirschsprung's disease 51 (71.8%). Among HD group, 34 (66.7%) belonged to isolated form and 17 (33.3%) showed combined ganglion related abnormalities. Hirschsprung's disease is common in Pakistani population, followed by hypoganglionosis, immaturity of ganglion cells and IND type B. The presence of hypertrophic nerve fibres was significant in HD, hyperganglionosis and hypoganglionosis, whereas, no hypertrophic nerve fibres were appreciated in immaturity of ganglion cell group.

  7. Cochlear implants and ex vivo BDNF gene therapy protect spiral ganglion neurons.

    PubMed

    Rejali, Darius; Lee, Valerie A; Abrashkin, Karen A; Humayun, Nousheen; Swiderski, Donald L; Raphael, Yehoash

    2007-06-01

    Spiral ganglion neurons often degenerate in the deaf ear, compromising the function of cochlear implants. Cochlear implant function can be improved by good preservation of the spiral ganglion neurons, which are the target of electrical stimulation by the implant. Brain derived neurotrophic factor (BDNF) has previously been shown to enhance spiral ganglion survival in experimentally deafened ears. Providing enhanced levels of BDNF in human ears may be accomplished by one of several different methods. The goal of these experiments was to test a modified design of the cochlear implant electrode that includes a coating of fibroblast cells transduced by a viral vector with a BDNF gene insert. To accomplish this type of ex vivo gene transfer, we transduced guinea pig fibroblasts with an adenovirus with a BDNF gene cassette insert, and determined that these cells secreted BDNF. We then attached BDNF-secreting cells to the cochlear implant electrode via an agarose gel, and implanted the electrode in the scala tympani. We determined that the BDNF expressing electrodes were able to preserve significantly more spiral ganglion neurons in the basal turns of the cochlea after 48 days of implantation when compared to control electrodes. This protective effect decreased in the higher cochlear turns. The data demonstrate the feasibility of combining cochlear implant therapy with ex vivo gene transfer for enhancing spiral ganglion neuron survival.

  8. Functional interdependence of neurons in a single canine intrinsic cardiac ganglionated plexus

    PubMed Central

    Thompson, G W; Collier, K; Ardell, J L; Kember, G; Armour, J A

    2000-01-01

    To determine the activity characteristics displayed by different subpopulations of neurons in a single intrinsic cardiac ganglionated plexus, the behaviour and co-ordination of activity generated by neurons in two loci of the right atrial ganglionated plexus (RAGP) were evaluated in 16 anaesthetized dogs during basal states as well as in response to increasing inputs from ventricular sensory neurites. These sub-populations of right atrial neurons received afferent inputs from sensory neurites in both ventricles that were responsive to local mechanical stimuli and the nitric oxide donor nitroprusside. Neurons in at least one RAGP locus were activated by epicardial application of veratridine, bradykinin, the β1-adrenoceptor agonist prenaterol or glutamate. Epicardial application of angiotensin II, the selective β2-adrenoceptor agonist terbutaline and selective α-adrenoceptor agonists elicited inconsistent neuronal responses. The activity generated by both populations of atrial neurons studied over 5 min periods during basal states displayed periodic coupled behaviour (cross-correlation coefficients of activities that reached, on average, 0·88 ± 0·03; range 0·71–1) for 15–30 s periods of time. These periods of coupled activity occurred every 30–50 s during basal states, as well as when neuronal activity was enhanced by chemical activation of their ventricular sensory inputs. These results indicate that neurons throughout one intrinsic cardiac ganglionated plexus receive inputs from mechano- and chemosensory neurites located in both ventricles. That such neurons respond to multiple chemical stimuli, including those liberated from adjacent adrenergic efferent nerve terminals, indicates the complexity of the integrative processing of information that occurs within the intrinsic cardiac nervous system. It is proposed that the interdependent activity displayed by populations of neurons in different regions of one intrinsic cardiac ganglionated plexus

  9. Retrograde double-labeling demonstrates convergent afferent innervation of the prostate and bladder.

    PubMed

    Lee, Sanghee; Yang, Guang; Xiang, William; Bushman, Wade

    2016-06-01

    Prostatic inflammation is a common histologic finding in men with lower urinary tract symptoms (LUTS). It has been postulated that prostatic inflammation could sensitize afferent neurons innervating the bladder and thereby produce changes in voiding behavior. In support of this, we demonstrate an anatomic basis for pelvic cross-talk involving the prostate and bladder. Retrograde labeling was performed by an application of a neuro-tracer Fast Blue (FB) to one side of either the anterior prostate (AP), dorsal lateral prostate (DLP)/ventral prostate (VP), bladder, or seminal vesicle (SV). Examination of dorsal root ganglion (DRG) neuron labeling revealed shared afferent innervation of the prostate and bladder at spinal segments of T13, L1, L2, L6, and S1. Dual labeling was performed by an application of FB and 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyaine perchlorate (DiI) to the AP and bladder, respectively. We observed double-labeled DRG neurons at T13, L1, L2, L6, and S1--a finding that proves convergent innervation of prostate and bladder. Our observations demonstrate the potential for neural cross-talk between the prostate and bladder and support a postulated mechanism that prostatic inflammation may induce hyper-sensitization of bladder afferents and produce irritative LUTS. © 2016 Wiley Periodicals, Inc.

  10. Spiral Ganglion Stem Cells Can Be Propagated and Differentiated Into Neurons and Glia

    PubMed Central

    Zecha, Veronika; Wagenblast, Jens; Arnhold, Stefan; Edge, Albert S. B.; Stöver, Timo

    2014-01-01

    Abstract The spiral ganglion is an essential functional component of the peripheral auditory system. Most types of hearing loss are associated with spiral ganglion cell degeneration which is irreversible due to the inner ear's lack of regenerative capacity. Recent studies revealed the existence of stem cells in the postnatal spiral ganglion, which gives rise to the hope that these cells might be useful for regenerative inner ear therapies. Here, we provide an in-depth analysis of sphere-forming stem cells isolated from the spiral ganglion of postnatal mice. We show that spiral ganglion spheres have characteristics similar to neurospheres isolated from the brain. Importantly, spiral ganglion sphere cells maintain their major stem cell characteristics after repeated propagation, which enables the culture of spheres for an extended period of time. In this work, we also demonstrate that differentiated sphere-derived cell populations not only adopt the immunophenotype of mature spiral ganglion cells but also develop distinct ultrastructural features of neurons and glial cells. Thus, our work provides further evidence that self-renewing spiral ganglion stem cells might serve as a promising source for the regeneration of lost auditory neurons. PMID:24940560

  11. Accelerated high-yield generation of limb-innervating motor neurons from human stem cells

    PubMed Central

    Amoroso, Mackenzie W.; Croft, Gist F.; Williams, Damian J.; O’Keeffe, Sean; Carrasco, Monica A.; Davis, Anne R.; Roybon, Laurent; Oakley, Derek H.; Maniatis, Tom; Henderson, Christopher E.; Wichterle, Hynek

    2013-01-01

    Human pluripotent stem cells are a promising source of differentiated cells for developmental studies, cell transplantation, disease modeling, and drug testing. However, their widespread use even for intensely studied cell types like spinal motor neurons is hindered by the long duration and low yields of existing protocols for in vitro differentiation and by the molecular heterogeneity of the populations generated. We report a combination of small molecules that within 3 weeks induce motor neurons at up to 50% abundance and with defined subtype identities of relevance to neurodegenerative disease. Despite their accelerated differentiation, motor neurons expressed combinations of HB9, ISL1 and column-specific markers that mirror those observed in vivo in human fetal spinal cord. They also exhibited spontaneous and induced activity, and projected axons towards muscles when grafted into developing chick spinal cord. Strikingly, this novel protocol preferentially generates motor neurons expressing markers of limb-innervating lateral motor column motor neurons (FOXP1+/LHX3−). Access to high-yield cultures of human limb-innervating motor neuron subtypes will facilitate in-depth study of motor neuron subtype-specific properties, disease modeling, and development of large-scale cell-based screening assays. PMID:23303937

  12. Petrosal ganglion: a more complex role than originally imagined.

    PubMed

    Retamal, Mauricio A; Reyes, Edison P; Alcayaga, Julio

    2014-01-01

    The petrosal ganglion (PG) is a peripheral sensory ganglion, composed of pseudomonopolar sensory neurons that innervate the posterior third of the tongue and the carotid sinus and body. According to their electrical properties PG neurons can be ascribed to one of two categories: (i) neurons with action potentials presenting an inflection (hump) on its repolarizing phase and (ii) neurons with fast and brisk action potentials. Although there is some correlation between the electrophysiological properties and the sensory modality of the neurons in some species, no general pattern can be easily recognized. On the other hand, petrosal neurons projecting to the carotid body are activated by several transmitters, with acetylcholine and ATP being the most conspicuous in most species. Petrosal neurons are completely surrounded by a multi-cellular sheet of glial (satellite) cells that prevents the formation of chemical or electrical synapses between neurons. Thus, PG neurons are regarded as mere wires that communicate the periphery (i.e., carotid body) and the central nervous system. However, it has been shown that in other sensory ganglia satellite glial cells and their neighboring neurons can interact, partly by the release of chemical neuro-glio transmitters. This intercellular communication can potentially modulate the excitatory status of sensory neurons and thus the afferent discharge. In this mini review, we will briefly summarize the general properties of PG neurons and the current knowledge about the glial-neuron communication in sensory neurons and how this phenomenon could be important in the chemical sensory processing generated in the carotid body.

  13. Making connections in the inner ear: recent insights into the development of spiral ganglion neurons and their connectivity with sensory hair cells

    PubMed Central

    Coate, Thomas M.; Kelley, Matthew W.

    2013-01-01

    In mammals, auditory information is processed by the hair cells (HCs) located in the cochlea and then rapidly transmitted to the CNS via a specialized cluster of bipolar afferent connections known as the spiral ganglion neurons (SGNs). Although many anatomical aspects of SGNs are well described, the molecular and cellular mechanisms underlying their genesis, how they are precisely arranged along the cochlear duct, and the guidance mechanisms that promote the innervation of their hair cell targets are only now being understood. Building upon foundational studies of neurogenesis and neurotrophins, we review here new concepts and technologies that are helping to enrich our understanding of the development of the nervous system within the inner ear. PMID:23660234

  14. Orofacial neuropathic pain induced by oxaliplatin: downregulation of KCNQ2 channels in V2 trigeminal ganglion neurons and treatment by the KCNQ2 channel potentiator retigabine.

    PubMed

    Ling, Jennifer; Erol, Ferhat; Viatchenko-Karpinski, Viacheslav; Kanda, Hirosato; Gu, Jianguo G

    2017-01-01

    Neuropathic pain induced by chemotherapy drugs such as oxaliplatin is a dose-limiting side effect in cancer treatment. The mechanisms underlying chemotherapy-induced neuropathic pain are not fully understood. KCNQ2 channels are low-threshold voltage-gated K+ channels that play a role in controlling neuronal excitability. Downregulation of KCNQ2 channels has been proposed to be an underlying mechanism of sensory hypersensitivity that leads to neuropathic pain. However, it is currently unknown whether KCNQ channels may be downregulated by chemotherapy drugs in trigeminal ganglion neurons to contribute to the pathogenesis of chemotherapy-induced orofacial neuropathic pain. In the present study, mechanical sensitivity in orofacial regions is measured using the operant behavioral test in rats treated with oxaliplatin. Operant behaviors in these animals show the gradual development of orofacial neuropathic pain that manifests with orofacial mechanical allodynia. Immunostaining shows strong KCNQ2 immunoreactivity in small-sized V2 trigeminal ganglion neurons in controls, and the numbers of KCNQ2 immunoreactivity positive V2 trigeminal ganglion neurons are significantly reduced in oxaliplatin-treated animals. Immunostaining is also performed in brainstem and shows strong KCNQ2 immunoreactivity at the trigeminal afferent central terminals innervating the caudal spinal trigeminal nucleus (Vc) in controls, but the KCNQ2 immunoreactivity intensity is significantly reduced in oxaliplatin-treated animals. We further show with the operant behavioral test that oxaliplatin-induced orofacial mechanical allodynia can be alleviated by the KCNQ2 potentiator retigabine. Taken together, these findings suggest that KCNQ2 downregulation may be a cause of oxaliplatin-induced orofacial neuropathic pain and KCNQ2 potentiators may be useful for alleviating the neuropathic pain.

  15. Lithium alters the morphology of neurites regenerating from cultured adult spiral ganglion neurons.

    PubMed

    Shah, S M; Patel, C H; Feng, A S; Kollmar, R

    2013-10-01

    The small-molecule drug lithium (as a monovalent ion) promotes neurite regeneration and functional recovery, is easy to administer, and is approved for human use to treat bipolar disorder. Lithium exerts its neuritogenic effect mainly by inhibiting glycogen synthase kinase 3, a constitutively-active serine/threonine kinase that is regulated by neurotrophin and "wingless-related MMTV integration site" (Wnt) signaling. In spiral ganglion neurons of the cochlea, the effects of lithium and the function of glycogen synthase kinase 3 have not been investigated. We, therefore, set out to test whether lithium modulates neuritogenesis from adult spiral ganglion neurons. Primary cultures of dissociated spiral ganglion neurons from adult mice were exposed to lithium at concentrations between 0 and 12.5 mM. The resulting neurite morphology and growth-cone appearance were measured in detail by using immunofluorescence microscopy and image analysis. We found that lithium altered the morphology of regenerating neurites and their growth cones in a differential, concentration-dependent fashion. Low concentrations of 0.5-2.5 mM (around the half-maximal inhibitory concentration for glycogen synthase kinase 3 and the recommended therapeutic serum concentration for bipolar disorder) enhanced neurite sprouting and branching. A high concentration of 12.5 mM, in contrast, slowed elongation. As the lithium concentration rose from low to high, the microtubules became increasingly disarranged and the growth cones more arborized. Our results demonstrate that lithium selectively stimulates phases of neuritogenesis that are driven by microtubule reorganization. In contrast, most other drugs that have previously been tested on spiral ganglion neurons are reported to inhibit neurite outgrowth or affect only elongation. Lithium sensitivity is a necessary, but not sufficient condition for the involvement of glycogen synthase kinase 3. Our results are, therefore, consistent with, but do not prove

  16. Synergy between TGF-beta 3 and NT-3 to promote the survival of spiral ganglia neurones in vitro.

    PubMed

    Marzella, P L; Clark, G M; Shepherd, R K; Bartlett, P F; Kilpatrick, T J

    1998-01-09

    Transforming growth factor-betas (TGF-betas) have been implicated in normal inner ear development and in promoting neuronal survival. Early rat post-natal spiral ganglion cells (SGC) in dissociated cell culture were used as a model of auditory innervation to test the trophic factors TGF-beta3 and neurotrophin-3 (NT-3) for their ability, individually or in combination, to promote neuronal survival. The findings from this study suggest that TGF-beta3 supports neuronal survival in a concentration-dependent manner. Moreover TGF-beta3 and NT-3-potentiated spiral ganglion neuronal survival in a synergistic fashion.

  17. Purinergic modulation of adult guinea pig cardiomyocytes in long term cultures and co-cultures with extracardiac or intrinsic cardiac neurones.

    PubMed

    Horackova, M; Huang, M H; Armour, J A

    1994-05-01

    To determine the capacity of ATP to modify cardiomyocytes directly or indirectly via peripheral autonomic neurones, the effects of various purinergic agents were studied on long term cultures of adult guinea pig ventricular myocytes and their co-cultures with extracardiac (stellate ganglion) or intrinsic cardiac neurones. Ventricular myocytes and cardiac neurones were enzymatically dissociated and plated together or alone (myocytes only). Myocyte cultures were used for experiments after three to six weeks. The electrical and contractile properties of cultured myocytes and myocyte-neuronal networks were investigated. The spontaneous beating frequency of ventricular myocytes co-cultured with stellate ganglion neurones increased by approximately 140% (p < 0.001) following superfusion with 10(-5) M ATP. This effect was not modified significantly by tetrodotoxin or by beta adrenoceptor blockade (10(-5) M timolol), but was eliminated following application of the P2 antagonist suramin (10(-5) M). Basal spontaneous contractile rate was reduced by approximately 86% (p < 0.001) in the presence of suramin, indicating the existence of tonically active purinergic synaptic mechanisms in stellate ganglion neurone-myocyte cocultures. Suramin did not significantly affect non-innervated myocyte cultures. ATP increased myocyte contractile rate in intrinsic cardiac neurone-myocyte co-cultures by approximately 40% (p < 0.01) under control conditions, but when beta adrenergic receptors of tetrodotoxin sensitive neural responses were blocked, ATP induced greater augmentation (> 100%). In contrast, ATP induced much smaller effects in non-innervated myocyte cultures (approximately 26%, p < 0.01). Analogues of AT) showed the following order of potency: ATP > UTP > MSATP > beta gamma ATP > alpha beta ATP. Adenosine (10(-4) M) attenuated the beating frequency of myocytes in both types of co-culture, while not significantly affecting non-innervated myocyte cultures. The experimental model used

  18. Intrinsic ruminal innervation in ruminants of different feeding types

    PubMed Central

    Münnich, Juliane; Gäbel, Gotthold; Pfannkuche, Helga

    2008-01-01

    According to their feeding habits, ruminants can be classified as grazers, concentrate selectors and those of intermediate type. The different feeding types are reflected in distinct anatomical properties of the forestomachs. The present study was designed to investigate whether the intrinsic innervation patterns of the rumen (the main part of the forestomach) differ between intermediate types and grazers. Myenteric plexus preparations from the rumen of goats (intermediate type), fallow deer (intermediate type), cattle (grazer) and sheep (grazer) were analysed by immunohistochemical detection of the following antigens: Hu-protein (HuC/D), choline acetyltransferase (ChAT), nitric oxide synthase (NOS), vasoactive intestinal peptide (VIP), neuropeptide Y (NPY), substance P (SP), calbindin (CALB) and somatostatin (SOM). Myenteric ganglia of cattle contained 73 ± 6 neurons per ganglion, whereas the ganglia of sheep were significantly smaller (45 ± 18 neurons per ganglion). The ganglion density of the myenteric plexus was highest in fallow deer (15 ± 3 ganglia per cm2) and lowest in cattle (6 ± 1 ganglia per cm2). All myenteric neurons were either ChAT or NOS positive. The proportion of NOS-positive neurons was significantly lower in sheep (29.5 ± 8.2% of all neurons) than in goats (44.2 ± 9.8%). In all species, additional analysis of the different neuropeptides revealed the following subpopulations in descending order of percentile appearance: ChAT/SP > NOS/VIP/NPY > ChAT/– > NOS/NPY. Expression of CALB was detected in a minority of the ChAT-positive neurons in all species. Somatostatin immunoreactive somata were found only in preparations obtained from fallow deer and sheep. These data suggest that the rumen of grazers is under stronger cholinergic control than the rumen of species belonging to the intermediate type, although most subpopulations of neurons are present in all species. However, whether the strong mixing patterns of low quality roughage during

  19. A Sympathetic Neuron Autonomous Role for Egr3-Mediated Gene Regulation in Dendrite Morphogenesis and Target Tissue Innervation

    PubMed Central

    Quach, David H.; Oliveira-Fernandes, Michelle; Gruner, Katherine A.; Tourtellotte, Warren G.

    2013-01-01

    Egr3 is a nerve growth factor (NGF)-induced transcriptional regulator that is essential for normal sympathetic nervous system development. Mice lacking Egr3 in the germline have sympathetic target tissue innervation abnormalities and physiologic sympathetic dysfunction similar to humans with dysautonomia. However, since Egr3 is widely expressed and has pleiotropic function, it has not been clear whether it has a role within sympathetic neurons and if so, what target genes it regulates to facilitate target tissue innervation. Here, we show that Egr3 expression within sympathetic neurons is required for their normal innervation since isolated sympathetic neurons lacking Egr3 have neurite outgrowth abnormalities when treated with NGF and mice with sympathetic neuron-restricted Egr3 ablation have target tissue innervation abnormalities similar to mice lacking Egr3 in all tissues. Microarray analysis performed on sympathetic neurons identified many target genes deregulated in the absence of Egr3, with some of the most significantly deregulated genes having roles in axonogenesis, dendritogenesis, and axon guidance. Using a novel genetic technique to visualize axons and dendrites in a subpopulation of randomly labeled sympathetic neurons, we found that Egr3 has an essential role in regulating sympathetic neuron dendrite morphology and terminal axon branching, but not in regulating sympathetic axon guidance to their targets. Together, these results indicate that Egr3 has a sympathetic neuron autonomous role in sympathetic nervous system development that involves modulating downstream target genes affecting the outgrowth and branching of sympathetic neuron dendrites and axons. PMID:23467373

  20. Why do hair cells and spiral ganglion neurons in the cochlea die during aging?

    PubMed Central

    Perez, Philip; Bao, Jianxin

    2011-01-01

    Age-related decline of cochlear function is mainly due to the loss of hair cells and spiral ganglion neurons (SGNs). Recent findings clearly indicate that survival of these two cell types during aging depends on genetic and environmental interactions, and this relationship is seen at the systemic, tissue, cellular, and molecular levels. At cellular and molecular levels, age-related loss of hair cells and SGNs can occur independently, suggesting distinct mechanisms for the death of each during aging. This mechanistic independence is also observed in the loss of medial olivocochlear efferent innervation and outer hair cells during aging, pointing to a universal independent cellular mechanism for age-related neuronal death in the peripheral auditory system. While several molecular signaling pathways are implicated in the age-related loss of hair cells and SGNs, studies with the ability to locally modify gene expression in these cell types are needed to address whether these signaling pathways have direct effects on hair cells and SGNs during aging. Finally, the issue of whether age-related loss of these cells occurs via typical apoptotic pathways requires further examination. As new studies in the field of aging reshape the framework for exploring these underpinnings, understanding of the loss of hair cells and SGNs associated with age and the interventions that can treat and prevent these changes will result in dramatic benefits for an aging population. PMID:22396875

  1. Low excitatory innervation balances high intrinsic excitability of immature dentate neurons

    PubMed Central

    Dieni, Cristina V.; Panichi, Roberto; Aimone, James B.; Kuo, Chay T.; Wadiche, Jacques I.; Overstreet-Wadiche, Linda

    2016-01-01

    Persistent neurogenesis in the dentate gyrus produces immature neurons with high intrinsic excitability and low levels of inhibition that are predicted to be more broadly responsive to afferent activity than mature neurons. Mounting evidence suggests that these immature neurons are necessary for generating distinct neural representations of similar contexts, but it is unclear how broadly responsive neurons help distinguish between similar patterns of afferent activity. Here we show that stimulation of the entorhinal cortex in mouse brain slices paradoxically generates spiking of mature neurons in the absence of immature neuron spiking. Immature neurons with high intrinsic excitability fail to spike due to insufficient excitatory drive that results from low innervation rather than silent synapses or low release probability. Our results suggest that low synaptic connectivity prevents immature neurons from responding broadly to cortical activity, potentially enabling excitable immature neurons to contribute to sparse and orthogonal dentate representations. PMID:27095423

  2. Expression of Sex Steroid Hormone Receptors in Vagal Motor Neurons Innervating the Trachea and Esophagus in Mouse

    PubMed Central

    Mukudai, Shigeyuki; Ichi Matsuda, Ken; Bando, Hideki; Takanami, Keiko; Nishio, Takeshi; Sugiyama, Yoichiro; Hisa, Yasuo; Kawata, Mitsuhiro

    2016-01-01

    The medullary vagal motor nuclei, the nucleus ambiguus (NA) and dorsal motor nucleus of the vagus (DMV), innervate the respiratory and gastrointestinal tracts. We conducted immunohistochemical analysis of expression of the androgen receptor (AR) and estrogen receptor α (ERα), in relation to innervation of the trachea and esophagus via vagal motor nuclei in mice. AR and ERα were expressed in the rostral NA and in part of the DMV. Tracing experiments using cholera toxin B subunit demonstrated that neurons of vagal motor nuclei that innervate the trachea and esophagus express AR and ERα. There was no difference in expression of sex steroid hormone receptors between trachea- and esophagus-innervating neurons. These results suggest that sex steroid hormones may act on vagal motor nuclei via their receptors, thereby regulating functions of the trachea and esophagus. PMID:27006520

  3. Differential Effects of RET and TRKB on Axonal Branching and Survival of Parasympathetic Neurons

    PubMed Central

    Simpson, Julie; Keefe, Julie; Nishi, Rae

    2014-01-01

    Interactions between neurons and their targets of innervation influence many aspects of neural development. To examine how synaptic activity interacts with neurotrophic signaling, we determined the effects of blocking neuromuscular transmission on survival and axonal outgrowth of ciliary neurons from the embryonic chicken ciliary ganglion. Ciliary neurons undergo a period of cell loss due to programmed cell death between embryonic Days (E) 8 and 14 and they innervate the striated muscle of the iris. The nicotinic antagonist d-tubocurarine (dTC) induces an increase in branching measured by counting neurofilament-positive voxels (NF-VU) in the iris between E14–17 while reducing ciliary neuron survival. Blocking ganglionic transmission with dihyro-β-erythroidin and α-methyllycacontine does not mimic dTC. At E8, many trophic factors stimulate neurite outgrowth and branching of neurons placed in cell culture; however, at E13, only GDNF stimulates branching selectively in cultured ciliary neurons. The GDNF-induced branching at E13 could be inhibited by BDNF. Blocking ret signaling in vivo with a dominant negative (dn)ret decreases survival of ciliary and choroid neurons at E14 and prevents dTC induced increases in NF-VU in the iris at E17. Blocking TRKB signaling with dn TRKB increases NF-VU in the iris at E17 and decreases neuronal survival at E17, but not at E14. Thus, RET promotes survival during programmed cell death in the ciliary ganglion and contributes to promoting branching when synaptic transmission is blocked while TRKB inhibits branching and promotes maintenance of neuronal survival. These studies highlight the multifunctional nature of trophic molecule function during neuronal development. PMID:22648743

  4. Nanosecond laser pulse stimulation of spiral ganglion neurons and model cells.

    PubMed

    Rettenmaier, Alexander; Lenarz, Thomas; Reuter, Günter

    2014-04-01

    Optical stimulation of the inner ear has recently attracted attention, suggesting a higher frequency resolution compared to electrical cochlear implants due to its high spatial stimulation selectivity. Although the feasibility of the effect is shown in multiple in vivo experiments, the stimulation mechanism remains open to discussion. Here we investigate in single-cell measurements the reaction of spiral ganglion neurons and model cells to irradiation with a nanosecond-pulsed laser beam over a broad wavelength range from 420 nm up to 1950 nm using the patch clamp technique. Cell reactions were wavelength- and pulse-energy-dependent but too small to elicit action potentials in the investigated spiral ganglion neurons. As the applied radiant exposure was much higher than the reported threshold for in vivo experiments in the same laser regime, we conclude that in a stimulation paradigm with nanosecond-pulses, direct neuronal stimulation is not the main cause of optical cochlea stimulation.

  5. The sensory innervation of the calvarial periosteum is nociceptive and contributes to headache-like behavior

    PubMed Central

    Zhao, Jun; Levy, Dan

    2014-01-01

    Headaches are thought to result from the activation and sensitization of nociceptors that innervate deep cephalic tissues. A large body of evidence supports the view that some types of headaches originate intracranially, from activation of sensory neurons that innervate the cranial meninges. However the notion of an extracranial origin of headaches continues to be entertained, although the identity of deep extracranial cephalic tissues which might contribute to headaches remains elusive. Here we employed anatomical, electrophysiological, and behavioral approaches in rats to test the hypothesis that the sensory innervation of the calvarial periosteum is nociceptive. Neural tracing indicated that the calvarial periosteum overlying the frontal and parietal bones is innervated primarily by small and medium-sized neurons in the trigeminal ganglion’s ophthalmic division. In vivo single unit recording in the trigeminal ganglion revealed that calvarial periosteal afferents have slowly conducting axons, are mechanosensitive and respond to inflammatory mediators, consistent with a nociceptive function. Two distinct neuronal populations were distinguished based on their peripheral axonal trajectory: one that reached the periosteum through extracranial branches of the trigeminal nerve, and another that took an intracranial trajectory, innervating the cranial dura and apparently reaching the periosteum via the calvarial sutures. In behavioral studies, inflammatory stimulation of these afferents promoted periorbital tactile hypersensitivity, a sensory change linked to primary headaches. Activation and sensitization of calvarial periosteal afferents could play a role in mediating primary headaches of extracranial and perhaps also intracranial origin, as well as secondary headaches such as post-craniotomy and post-traumatic headaches. Targeting calvarial periosteal afferents may be effective in ameliorating these headaches. PMID:24769138

  6. Low excitatory innervation balances high intrinsic excitability of immature dentate neurons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dieni, Cristina V.; Panichi, Roberto; Aimone, James B.

    Persistent neurogenesis in the dentate gyrus produces immature neurons with high intrinsic excitability and low levels of inhibition that are predicted to be more broadly responsive to afferent activity than mature neurons. Mounting evidence suggests that these immature neurons are necessary for generating distinct neural representations of similar contexts, but it is unclear how broadly responsive neurons help distinguish between similar patterns of afferent activity. Here we show that stimulation of the entorhinal cortex in mouse brain slices paradoxically generates spiking of mature neurons in the absence of immature neuron spiking. Immature neurons with high intrinsic excitability fail to spikemore » due to insufficient excitatory drive that results from low innervation rather than silent synapses or low release probability. Here, our results suggest that low synaptic connectivity prevents immature neurons from responding broadly to cortical activity, potentially enabling excitable immature neurons to contribute to sparse and orthogonal dentate representations.« less

  7. Low excitatory innervation balances high intrinsic excitability of immature dentate neurons

    DOE PAGES

    Dieni, Cristina V.; Panichi, Roberto; Aimone, James B.; ...

    2016-04-20

    Persistent neurogenesis in the dentate gyrus produces immature neurons with high intrinsic excitability and low levels of inhibition that are predicted to be more broadly responsive to afferent activity than mature neurons. Mounting evidence suggests that these immature neurons are necessary for generating distinct neural representations of similar contexts, but it is unclear how broadly responsive neurons help distinguish between similar patterns of afferent activity. Here we show that stimulation of the entorhinal cortex in mouse brain slices paradoxically generates spiking of mature neurons in the absence of immature neuron spiking. Immature neurons with high intrinsic excitability fail to spikemore » due to insufficient excitatory drive that results from low innervation rather than silent synapses or low release probability. Here, our results suggest that low synaptic connectivity prevents immature neurons from responding broadly to cortical activity, potentially enabling excitable immature neurons to contribute to sparse and orthogonal dentate representations.« less

  8. Expression of polysialylated neural cell adhesion molecules on adult stem cells after neuronal differentiation of inner ear spiral ganglion neurons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Kyoung Ho; Yeo, Sang Won, E-mail: swyeo@catholic.ac.kr; Troy, Frederic A., E-mail: fatroy@ucdavis.edu

    Highlights: • PolySia expressed on neurons primarily during early stages of neuronal development. • PolySia–NCAM is expressed on neural stem cells from adult guinea pig spiral ganglion. • PolySia is a biomarker that modulates neuronal differentiation in inner ear stem cells. - Abstract: During brain development, polysialylated (polySia) neural cell adhesion molecules (polySia–NCAMs) modulate cell–cell adhesive interactions involved in synaptogenesis, neural plasticity, myelination, and neural stem cell (NSC) proliferation and differentiation. Our findings show that polySia–NCAM is expressed on NSC isolated from adult guinea pig spiral ganglion (GPSG), and in neurons and Schwann cells after differentiation of the NSC withmore » epidermal, glia, fibroblast growth factors (GFs) and neurotrophins. These differentiated cells were immunoreactive with mAb’s to polySia, NCAM, β-III tubulin, nestin, S-100 and stained with BrdU. NSC could regenerate and be differentiated into neurons and Schwann cells. We conclude: (1) polySia is expressed on NSC isolated from adult GPSG and on neurons and Schwann cells differentiated from these NSC; (2) polySia is expressed on neurons primarily during the early stage of neuronal development and is expressed on Schwann cells at points of cell–cell contact; (3) polySia is a functional biomarker that modulates neuronal differentiation in inner ear stem cells. These new findings suggest that replacement of defective cells in the inner ear of hearing impaired patients using adult spiral ganglion neurons may offer potential hope to improve the quality of life for patients with auditory dysfunction and impaired hearing disorders.« less

  9. Induction of tachykinin gene and peptide expression in guinea pig nodose primary afferent neurons by allergic airway inflammation.

    PubMed Central

    Fischer, A; McGregor, G P; Saria, A; Philippin, B; Kummer, W

    1996-01-01

    Substance P (SP), neurokinin A (NKA), and calcitonin gene-related peptide (CGRP) have potent proinflammatory effects in the airways. They are released from sensory nerve endings originating in jugular and dorsal root ganglia. However, the major sensory supply to the airways originates from the nodose ganglion. In this study, we evaluated changes in neuropeptide biosynthesis in the sensory airway innervation of ovalbumin-sensitized and -challenged guinea pigs at the mRNA and peptide level. In the airways, a three- to fourfold increase of SP, NKA, and CGRP, was seen 24 h following allergen challenge. Whereas no evidence of local tachykinin biosynthesis was found 12 h after challenge, increased levels of preprotachykinin (PPT)-A mRNA (encoding SP and NKA) were found in nodose ganglia. Quantitative in situ hybridization indicated that this increase could be accounted for by de novo induction of PPT-A mRNA in nodose ganglion neurons. Quantitative immunohistochemistry showed that 24 h after challenge, the number of tachykinin-immunoreactive nodose ganglion neurons had increased by 25%. Their projection to the airways was shown. Changes in other sensory ganglia innervating the airways were not evident. These findings suggest that an induction of sensory neuropeptides in nodose ganglion neurons is crucially involved in the increase of airway hyperreactivity in the late response to allergen challenge. PMID:8941645

  10. Peripheral territory and neuropeptides of the trigeminal ganglion neurons centrally projecting through the oculomotor nerve demonstrated by fluorescent retrograde double-labeling combined with immunocytochemistry.

    PubMed

    Bortolami, R; Calzà, L; Lucchi, M L; Giardino, L; Callegari, E; Manni, E; Pettorossi, V E; Barazzoni, A M; Lalatta Costerbosa, G

    1991-04-26

    The peripheral territories of sheep trigeminal neurons which send their central process to the brainstem through the oculomotor nerve were investigated by the use of fluorescent tracers in double-labeling experiments. For this purpose Diamidino yellow (DY) injection into the oculomotor nerve was combined with Fast blue (FB) injection either into the extraocular muscles (EOMs), or the cornea, or the superior eyelid. Double-labeled DY + FB cells were found in the ophthalmic region of the trigeminal ganglion in addition to single-labeled DY or FB cells. The DY and DY + FB-labeled trigeminal cells were analysed immunocytochemically for their content of substance P (SP)-, calcitonin gene-related peptide (CGRP)-, and cholecystokinin-8 (CCK-8)-like. All single-labeled DY cells showed SP-, CGRP- or CCK-8-like immunoreactivity. Double-labeled DY + FB neurons innervating the EOMs were immunoreactive for each of the three peptides, whereas double-labeled neurons supplying the cornea were only CGRP-like positive. The findings suggest that, in the sheep, trigeminal neurons which send their process centrally through the oculomotor nerve supply the EOMs, the cornea, and the superior eyelid and contain neuropeptides which are usually associated with pain sensation.

  11. Intracochlear electrical stimulation suppresses apoptotic signaling in rat spiral ganglion neurons after deafening in vivo.

    PubMed

    Kopelovich, Jonathan C; Cagaanan, Alain P; Miller, Charles A; Abbas, Paul J; Green, Steven H

    2013-11-01

    To establish the intracellular consequences of electrical stimulation to spiral ganglion neurons after deafferentation. Here we use a rat model to determine the effect of both low and high pulse rate acute electrical stimulation on activation of the proapoptotic transcription factor Jun in deafferented spiral ganglion neurons in vivo. Experimental animal study. Hearing research laboratories of the University of Iowa Departments of Biology and Otolaryngology. A single electrode was implanted through the round window of kanamycin-deafened rats at either postnatal day 32 (P32, n = 24) or P60 (n = 22) for 4 hours of stimulation (monopolar, biphasic pulses, amplitude twice electrically evoked auditory brainstem response [eABR] threshold) at either 100 or 5000 Hz. Jun phosphorylation was assayed by immunofluorescence to quantitatively assess the effect of electrical stimulation on proapoptotic signaling. Jun phosphorylation was reliably suppressed by 100 Hz stimuli in deafened cochleae of P32 but not P60 rats. This effect was not significant in the basal cochlear turns. Stimulation frequency may be consequential: 100 Hz was significantly more effective than was 5 kHz stimulation in suppressing phospho-Jun. Suppression of Jun phosphorylation occurs in deafferented spiral ganglion neurons after only 4 hours of electrical stimulation. This finding is consistent with the hypothesis that electrical stimulation can decrease spiral ganglion neuron death after deafferentation.

  12. Biofunctionalized peptide-based hydrogels provide permissive scaffolds to attract neurite outgrowth from spiral ganglion neurons.

    PubMed

    Frick, Claudia; Müller, Marcus; Wank, Ute; Tropitzsch, Anke; Kramer, Benedikt; Senn, Pascal; Rask-Andersen, Helge; Wiesmüller, Karl-Heinz; Löwenheim, Hubert

    2017-01-01

    Cochlear implants (CI) allow for hearing rehabilitation in patients with sensorineural hearing loss or deafness. Restricted CI performance results from the spatial gap between spiral ganglion neurons and the CI, causing current spread that limits spatially restricted stimulation and impairs frequency resolution. This may be substantially improved by guiding peripheral processes of spiral ganglion neurons towards and onto the CI electrode contacts. An injectable, peptide-based hydrogel was developed which may provide a permissive scaffold to facilitate neurite growth towards the CI. To test hydrogel capacity to attract spiral ganglion neurites, neurite outgrowth was quantified in an in vitro model using a custom-designed hydrogel scaffold and PuraMatrix ® . Neurite attachment to native hydrogels is poor, but significantly improved by incorporation of brain-derived neurotrophic factor (BDNF), covalent coupling of the bioactive laminin epitope IKVAV and the incorporation a full length laminin to hydrogel scaffolds. Incorporation of full length laminin protein into a novel custom-designed biofunctionalized hydrogel (IKVAV-GGG-SIINFEKL) allows for neurite outgrowth into the hydrogel scaffold. The study demonstrates that peptide-based hydrogels can be specifically biofunctionalized to provide a permissive scaffold to attract neurite outgrowth from spiral ganglion neurons. Such biomaterials appear suitable to bridge the spatial gap between neurons and the CI. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Electronic neuron within a ganglion of a leech (Hirudo medicinalis).

    PubMed

    Aliaga, J; Busca, N; Minces, V; Mindlin, G B; Pando, B; Salles, A; Sczcupak, L

    2003-06-01

    We report the construction of an electronic device that models and replaces a neuron in a midbody ganglion of the leech Hirudo medicinalis. In order to test the behavior of our device, we used a well-characterized synaptic interaction between the mechanosensory, sensitive to pressure, (P) cell and the anteropagoda (because of the action potential shape) (AP) neuron. We alternatively stimulated a P neuron and our device connected to the AP neuron, and studied the response of the latter. The number and timing of the AP spikes were the same when the electronic parameters were properly adjusted. Moreover, after changes in the depolarization of the AP cell, the responses under the stimulation of both the biological neuron and the electronic device vary in a similar manner.

  14. Chronic cervical radiculopathic pain is associated with increased excitability and hyperpolarization-activated current ( Ih) in large-diameter dorsal root ganglion neurons.

    PubMed

    Liu, Da-Lu; Wang, Xu; Chu, Wen-Guang; Lu, Na; Han, Wen-Juan; Du, Yi-Kang; Hu, San-Jue; Bai, Zhan-Tao; Wu, Sheng-Xi; Xie, Rou-Gang; Luo, Ceng

    2017-01-01

    Cervical radiculopathic pain is a very common symptom that may occur with cervical spondylosis. Mechanical allodynia is often associated with cervical radiculopathic pain and is inadequately treated with current therapies. However, the precise mechanisms underlying cervical radiculopathic pain-associated mechanical allodynia have remained elusive. Compelling evidence from animal models suggests a role of large-diameter dorsal root ganglion neurons and plasticity of spinal circuitry attached with Aβ fibers in mediating neuropathic pain. Whether cervical radiculopathic pain condition induces plastic changes of large-diameter dorsal root ganglion neurons and what mechanisms underlie these changes are yet to be known. With combination of patch-clamp recording, immunohistochemical staining, as well as behavioral surveys, we demonstrated that upon chronic compression of C7/8 dorsal root ganglions, large-diameter cervical dorsal root ganglion neurons exhibited frequent spontaneous firing together with hyperexcitability. Quantitative analysis of hyperpolarization-activated cation current ( I h ) revealed that I h was greatly upregulated in large dorsal root ganglion neurons from cervical radiculopathic pain rats. This increased I h was supported by the enhanced expression of hyperpolarization-activated, cyclic nucleotide-modulated channels subunit 3 in large dorsal root ganglion neurons. Blockade of I h with selective antagonist, ZD7288 was able to eliminate the mechanical allodynia associated with cervical radiculopathic pain. This study sheds new light on the functional plasticity of a specific subset of large-diameter dorsal root ganglion neurons and reveals a novel mechanism that could underlie the mechanical allodynia associated with cervical radiculopathy.

  15. Region-specific role of growth differentiation factor-5 in the establishment of sympathetic innervation.

    PubMed

    O'Keeffe, Gerard W; Gutierrez, Humberto; Howard, Laura; Laurie, Christopher W; Osorio, Catarina; Gavaldà, Núria; Wyatt, Sean L; Davies, Alun M

    2016-02-15

    Nerve growth factor (NGF) is the prototypical target-derived neurotrophic factor required for sympathetic neuron survival and for the growth and ramification of sympathetic axons within most but not all sympathetic targets. This implies the operation of additional target-derived factors for regulating terminal sympathetic axon growth and branching. Here report that growth differentiation factor 5 (GDF5), a widely expressed member of the transforming growth factor beta (TGFβ) superfamily required for limb development, promoted axon growth from mouse superior cervical ganglion (SCG) neurons independently of NGF and enhanced axon growth in combination with NGF. GDF5 had no effect on neuronal survival and influenced axon growth during a narrow window of postnatal development when sympathetic axons are ramifying extensively in their targets in vivo. SCG neurons expressed all receptors capable of participating in GDF5 signaling at this stage of development. Using compartment cultures, we demonstrated that GDF5 exerted its growth promoting effect by acting directly on axons and by initiating retrograde canonical Smad signalling to the nucleus. GDF5 is synthesized in sympathetic targets, and examination of several anatomically circumscribed tissues in Gdf5 null mice revealed regional deficits in sympathetic innervation. There was a marked, highly significant reduction in the sympathetic innervation density of the iris, a smaller though significant reduction in the trachea, but no reduction in the submandibular salivary gland. There was no reduction in the number of neurons in the SCG. These findings show that GDF5 is a novel target-derived factor that promotes sympathetic axon growth and branching and makes a distinctive regional contribution to the establishment of sympathetic innervation, but unlike NGF, plays no role in regulating sympathetic neuron survival.

  16. Unmasking of spiral ganglion neuron firing dynamics by membrane potential and neurotrophin-3.

    PubMed

    Crozier, Robert A; Davis, Robin L

    2014-07-16

    Type I spiral ganglion neurons have a unique role relative to other sensory afferents because, as a single population, they must convey the richness, complexity, and precision of auditory information as they shape signals transmitted to the brain. To understand better the sophistication of spiral ganglion response properties, we compared somatic whole-cell current-clamp recordings from basal and apical neurons obtained during the first 2 postnatal weeks from CBA/CaJ mice. We found that during this developmental time period neuron response properties changed from uniformly excitable to differentially plastic. Low-frequency, apical and high-frequency basal neurons at postnatal day 1 (P1)-P3 were predominantly slowly accommodating (SA), firing at low thresholds with little alteration in accommodation response mode induced by changes in resting membrane potential (RMP) or added neurotrophin-3 (NT-3). In contrast, P10-P14 apical and basal neurons were predominately rapidly accommodating (RA), had higher firing thresholds, and responded to elevation of RMP and added NT-3 by transitioning to the SA category without affecting the instantaneous firing rate. Therefore, older neurons appeared to be uniformly less excitable under baseline conditions yet displayed a previously unrecognized capacity to change response modes dynamically within a remarkably stable accommodation framework. Because the soma is interposed in the signal conduction pathway, these specializations can potentially lead to shaping and filtering of the transmitted signal. These results suggest that spiral ganglion neurons possess electrophysiological mechanisms that enable them to adapt their response properties to the characteristics of incoming stimuli and thus have the capacity to encode a wide spectrum of auditory information. Copyright © 2014 the authors 0270-6474/14/349688-15$15.00/0.

  17. Hypertrophy and neuron loss: structural changes in sheep SCG induced by unilateral sympathectomy.

    PubMed

    Fioretto, Emerson T; Rahal, Sheila C; Borges, Alexandre S; Mayhew, Terry M; Nyengaard, Jens R; Marcondes, Julio S; Balieiro, Júlio C de Carvalho; Teixeira, Carlos R; de Melo, Mariana P; Ladd, Fernando V Lobo; Ladd, Aliny A B Lobo; de Lima, Ana R; da Silva, Andrea A P; Coppi, Antonio A

    2011-06-01

    Recently, superior cervical ganglionectomy has been performed to investigate a variety of scientific topics from regulation of intraocular pressure to suppression of lingual tumour growth. Despite these recent advances in our understanding of the functional mechanisms underlying superior cervical ganglion (SCG) growth and development after surgical ablation, there still exists a need for information concerning the quantitative nature of the relationships between the removed SCG and its remaining contralateral ganglion and between the remaining SCG and its modified innervation territory. To this end, using design-based stereological methods, we have investigated the structural changes induced by unilateral ganglionectomy in sheep at three distinct timepoints (2, 7 and 12 weeks) after surgery. The effects of time, and lateral (left-right) differences, were examined by two-way analyses of variance and paired t-tests. Following removal of the left SCG, the main findings were: (i) the remaining right SCG was bigger at shorter survival times, i.e. 74% at 2 weeks, 55% at 7 weeks and no increase by 12 weeks, (ii) by 7 weeks after surgery, the right SCG contained fewer neurons (no decrease at 2 weeks, 6% fewer by 7 weeks and 17% fewer by 12 weeks) and (iii) by 7 weeks, right SCG neurons were also larger and the magnitude of this increase grew substantially with time (no rise at 2 weeks, 77% by 7 weeks and 215% by 12 weeks). Interaction effects between time and ganglionectomy-induced changes were significant for SCG volume and mean perikaryal volume. These findings show that unilateral superior cervical ganglionectomy has profound effects on the contralateral ganglion. For future investigations, it would be interesting to examine the interaction between SCGs and their innervation targets after ganglionectomy. Is the ganglionectomy-induced imbalance between the sizes of innervation territories the milieu in which morphoquantitative changes, particularly changes in perikaryal

  18. Organ of Corti explants direct tonotopically graded morphology of spiral ganglion neurons in vitro.

    PubMed

    Smith, Felicia L; Davis, Robin L

    2016-08-01

    The spiral ganglion is a compelling model system to examine how morphological form contributes to sensory function. While the ganglion is composed mainly of a single class of type I neurons that make simple one-to-one connections with inner hair cell sensory receptors, it has an elaborate overall morphological design. Specific features, such as soma size and axon outgrowth, are graded along the spiral contour of the cochlea. To begin to understand the interplay between different regulators of neuronal morphology, we cocultured neuron explants with peripheral target tissues removed from distinct cochlear locations. Interestingly, these "hair cell microisolates" were capable of both increasing and decreasing neuronal somata size, without adversely affecting survival. Moreover, axon characteristics elaborated de novo by the primary afferents in culture were systematically regulated by the sensory endorgan. Apparent peripheral nervous system (PNS)-like and central nervous system (CNS)-like axonal profiles were established in our cocultures allowing an analysis of putative PNS/CNS axon length ratios. As predicted from the in vivo organization, PNS-like axon bundles elaborated by apical cocultures were longer than their basal counterparts and this phenotype was methodically altered when neuron explants were cocultured with microisolates from disparate cochlear regions. Thus, location-dependent signals within the organ of Corti may set the "address" of neurons within the spiral ganglion, allowing them to elaborate the appropriate tonotopically associated morphological features in order to carry out their signaling function. J. Comp. Neurol. 524:2182-2207, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  19. Developmental Profiling of Spiral Ganglion Neurons Reveals Insights into Auditory Circuit Assembly

    PubMed Central

    Lu, Cindy C.; Appler, Jessica M.; Houseman, E. Andres; Goodrich, Lisa V.

    2011-01-01

    The sense of hearing depends on the faithful transmission of sound information from the ear to the brain by spiral ganglion (SG) neurons. However, how SG neurons develop the connections and properties that underlie auditory processing is largely unknown. We catalogued gene expression in mouse SG neurons from embryonic day 12 (E12), when SG neurons first extend projections, up until postnatal day 15 (P15), after the onset of hearing. For comparison, we also analyzed the closely-related vestibular ganglion (VG). Gene ontology analysis confirmed enriched expression of genes associated with gene regulation and neurite outgrowth at early stages, with the SG and VG often expressing different members of the same gene family. At later stages, the neurons transcribe more genes related to mature function, and exhibit a dramatic increase in immune gene expression. Comparisons of the two populations revealed enhanced expression of TGFβ pathway components in SG neurons and established new markers that consistently distinguish auditory and vestibular neurons. Unexpectedly, we found that Gata3, a transcription factor commonly associated with auditory development, is also expressed in VG neurons at early stages. We therefore defined new cohorts of transcription factors and axon guidance molecules that are uniquely expressed in SG neurons and may drive auditory-specific aspects of their differentiation and wiring. We show that one of these molecules, the receptor guanylyl cyclase Npr2, is required for bifurcation of the SG central axon. Hence, our data set provides a useful resource for uncovering the molecular basis of specific auditory circuit assembly events. PMID:21795542

  20. Polysensory response characteristics of dorsal root ganglion neurones that may serve sensory functions during myocardial ischaemia.

    PubMed

    Huang, M H; Horackova, M; Negoescu, R M; Wolf, S; Armour, J A

    1996-09-01

    To determine the response characteristics of dorsal root ganglion neurones that may serve sensory functions during myocardial ischaemia. Extracellular recordings were made from 54 spontaneously active and 5 normally quiescent dorsal root ganglion neurones (T2-T5) in 22 anaesthetized open-chest dogs under control conditions and during epicardial mechanical or chemical stimulation and myocardial ischaemia. The activity of 78% of spontaneously active and all quiescent neurones with left ventricular sensory fields was modified by left ventricular ischaemia. Forty-six spontaneously active neurones (85%) were polysensory with respect to mechanical and chemical stimuli. The 5 quiescent neurones responded only to chemical stimuli. Spontaneously active neurones associated with left ventricular mechanosensory endings (37 neurones) generated four different activity patterns in response to similar mechanical stimuli (high or low pressure active, high-low pressure active, high-low pressure inactive). A fifth group generated activity which was not related to chamber dynamics. Adenosine, adenosine 5'-triphosphate, substance P and bradykinin modified 72, 61, 65 and 63% of the spontaneously active neurones, respectively. Maximum local mechanical or chemical stimuli enhanced activity to similar degrees, as did ischaemia. Each ischaemia-sensitive neurone displayed unique activity patterns in response to similar mechanical or chemical stimuli. Most myocardial ischemia-sensitive dorsal root ganglion neurones associated with epicardial neurites sense mechanical and multiple chemical stimuli, a small population sensing only mechanical or chemical stimuli. Activity patterns generated by these neurones depend on their primary sensory characteristics or those of other neurones that may converge on them, as well as the type and magnitude of the stimuli that impinge upon their sensory fields, both normally and during ischaemia.

  1. Effect of Tissue Heterogeneity on the Transmembrane Potential of Type-1 Spiral Ganglion Neurons: A Simulation Study.

    PubMed

    Sriperumbudur, Kiran Kumar; Pau, Hans Wilhelm; van Rienen, Ursula

    2018-03-01

    Electric stimulation of the auditory nerve by cochlear implants has been a successful clinical intervention to treat the sensory neural deafness. In this pathological condition of the cochlea, type-1 spiral ganglion neurons in Rosenthal's canal play a vital role in the action potential initiation. Various morphological studies of the human temporal bones suggest that the spiral ganglion neurons are surrounded by heterogeneous structures formed by a variety of cells and tissues. However, the existing simulation models have not considered the tissue heterogeneity in the Rosenthal's canal while studying the electric field interaction with spiral ganglion neurons. Unlike the existing models, we have implemented the tissue heterogeneity in the Rosenthal's canal using a computationally inexpensive image based method in a two-dimensional finite element model. Our simulation results suggest that the spatial heterogeneity of surrounding tissues influences the electric field distribution in the Rosenthal's canal, and thereby alters the transmembrane potential of the spiral ganglion neurons. In addition to the academic interest, these results are especially useful to understand how the latest tissue regeneration methods such as gene therapy and drug-induced resprouting of peripheral axons, which probably modify the density of the tissues in the Rosenthal's canal, affect the cochlear implant functionality.

  2. Abnormal intrinsic esophageal innervation in congenital diaphragmatic hernia: a likely cause of motor dysfunction.

    PubMed

    Pederiva, Federica; Rodriguez, Jose I; Ruiz-Bravo, Elena; Martinez, Leopoldo; Tovar, Juan A

    2009-03-01

    Patients with congenital diaphragmatic hernia (CDH) often have dilated esophagus and gastroesophageal reflux. Sparse intrinsic esophageal innervation has been described in rats with CDH, but this issue has not been investigated in patients with CDH. The present study tests the hypothesis that innervatory anomalies could account for motor dysfunction in human CDH. The esophagi of CDH (n = 6) and control babies dead of other causes (n = 6) were included in paraffin, transversally sectioned, and immunostained with antineurofilament and anti-S-100 antibodies. The proportion of the section surface occupied by neural structures, the ganglionar surface, and the number of neurons per ganglion were measured in 2 to 5 low-power fields from the proximal and distal esophagus with the assistance of image analysis software. Mann-Whitney tests were used for comparing the results using a threshold of significance of P < .05. The percentage of neural/muscle surface was similar in the upper esophagus in both groups, but it was significantly decreased in the lower esophagus of patients with CDH in comparison with controls. There was a relative scarcity of neural tissue in the intermuscular plexus of the lower esophagus. On the other hand, the ganglionar surface and the number of neurons per ganglion were identical in both groups. These results were similar with both immunostainings. Intrinsic innervation of the lower esophagus in CDH is abnormal in terms of decreased density of neural structures in the intermuscular plexus. These neural crest-derived anomalies could explain in part the esophageal dysfunction in survivors of CDH.

  3. Adult Human Nasal Mesenchymal-Like Stem Cells Restore Cochlear Spiral Ganglion Neurons After Experimental Lesion

    PubMed Central

    Bas, Esperanza; Van De Water, Thomas R.; Lumbreras, Vicente; Rajguru, Suhrud; Goss, Garrett; Hare, Joshua M.

    2014-01-01

    A loss of sensory hair cells or spiral ganglion neurons from the inner ear causes deafness, affecting millions of people. Currently, there is no effective therapy to repair the inner ear sensory structures in humans. Cochlear implantation can restore input, but only if auditory neurons remain intact. Efforts to develop stem cell-based treatments for deafness have demonstrated progress, most notably utilizing embryonic-derived cells. In an effort to bypass limitations of embryonic or induced pluripotent stem cells that may impede the translation to clinical applications, we sought to utilize an alternative cell source. Here, we show that adult human mesenchymal-like stem cells (MSCs) obtained from nasal tissue can repair spiral ganglion loss in experimentally lesioned cochlear cultures from neonatal rats. Stem cells engraft into gentamicin-lesioned organotypic cultures and orchestrate the restoration of the spiral ganglion neuronal population, involving both direct neuronal differentiation and secondary effects on endogenous cells. As a physiologic assay, nasal MSC-derived cells engrafted into lesioned spiral ganglia demonstrate responses to infrared laser stimulus that are consistent with those typical of excitable cells. The addition of a pharmacologic activator of the canonical Wnt/β-catenin pathway concurrent with stem cell treatment promoted robust neuronal differentiation. The availability of an effective adult autologous cell source for inner ear tissue repair should contribute to efforts to translate cell-based strategies to the clinic. PMID:24172073

  4. Evaluation of the percentage of ganglion cells in the ganglion cell layer of the rodent retina

    PubMed Central

    Schlamp, Cassandra L.; Montgomery, Angela D.; Mac Nair, Caitlin E.; Schuart, Claudia; Willmer, Daniel J.

    2013-01-01

    Purpose Retinal ganglion cells comprise a percentage of the neurons actually residing in the ganglion cell layer (GCL) of the rodent retina. This estimate is useful to extrapolate ganglion cell loss in models of optic nerve disease, but the values reported in the literature are highly variable depending on the methods used to obtain them. Methods We tested three retrograde labeling methods and two immunostaining methods to calculate ganglion cell number in the mouse retina (C57BL/6). Additionally, a double-stain retrograde staining method was used to label rats (Long-Evans). The number of total neurons was estimated using a nuclear stain and selecting for nuclei that met specific criteria. Cholinergic amacrine cells were identified using transgenic mice expressing Tomato fluorescent protein. Total neurons and total ganglion cell numbers were measured in microscopic fields of 104 µm2 to determine the percentage of neurons comprising ganglion cells in each field. Results Historical estimates of the percentage of ganglion cells in the mouse GCL range from 36.1% to 67.5% depending on the method used. Experimentally, retrograde labeling methods yielded a combined estimate of 50.3% in mice. A retrograde method also yielded a value of 50.21% for rat retinas. Immunolabeling estimates were higher at 64.8%. Immunolabeling may introduce overestimates, however, with non-specific labeling effects, or ectopic expression of antigens in neurons other than ganglion cells. Conclusions Since immunolabeling methods may overestimate ganglion cell numbers, we conclude that 50%, which is consistently derived from retrograde labeling methods, is a reliable estimate of the ganglion cells in the neuronal population of the GCL. PMID:23825918

  5. Vesicular glutamate transporters, VGluT1 and VGluT2, in the trigeminal ganglion neurons of the rat, with special reference to coexpression.

    PubMed

    Li, Jin-Lian; Xiong, Kang-Hui; Dong, Yu-Lin; Fujiyama, Fumino; Kaneko, Takeshi; Mizuno, Noboru

    2003-08-18

    Vesicular glutamate transporters are responsible for glutamate transport into synaptic vesicles. In the present study, we examined immunohistochemically the expression of vesicular glutamate transporters, VGluT1 and VGluT2, in trigeminal ganglion neurons of the rat. Immunohistochemistry for VGluT1 and VGluT2 indicated that more than 80% of trigeminal ganglion neurons express VGluT1 and/or VGluT2 in their cell bodies. It also indicated that large and small trigeminal ganglion neurons express VGluT2 more frequently than VGluT1. Dual immunofluorescence histochemistry for VGluT1 and VGluT2 indicated that trigeminal ganglion neurons express VGluT2 more frequently than VGluT1 and that more than 80% of VGluT-expressing trigeminal ganglion neurons express VGluT1 and VGluT2. Many axon terminals in the superficial layers of the medullary dorsal horn also showed VGluT1 and VGluT2 immunoreactivities. Some of these axon terminals were confirmed to form the central core of the synaptic glomerulus. These results indicated that VGluT1 and VGluT2 are coexpressed in the cell bodies and axon terminals in most trigeminal ganglion neurons. Copyright 2003 Wiley-Liss, Inc.

  6. Ouabain-Induced Apoptosis in Cochlear Hair Cells and Spiral Ganglion Neurons In Vitro

    PubMed Central

    Fu, Yong; Ding, Dalian; Jiang, Haiyan; Salvi, Richard

    2013-01-01

    Ouabain is a common tool to explore the pathophysiological changes in adult mammalian cochlea in vivo. In prior studies, locally administering ouabain via round window membrane demonstrated that the ototoxic effects of ouabain in vivo varied among mammalian species. Little is known about the ototoxic effects in vitro. Thus, we prepared cochlear organotypic cultures from postnatal day-3 rats and treated these cultures with ouabain at 50, 500, and 1000 μM for different time to elucidate the ototoxic effects of ouabain in vitro and to provide insights that could explain the comparative ototoxic effects of ouabain in vivo. Degeneration of cochlear hair cells and spiral ganglion neurons was evaluated by hair-cell staining and neurofilament labeling, respectively. Annexin V staining was used to detect apoptotic cells. A quantitative RT-PCR apoptosis-focused gene array determined changes in apoptosis-related genes. The results showed that ouabain-induced damage in vitro was dose and time dependent. 500 μM ouabain and 1000 μM ouabain were destructively traumatic to both spiral ganglion neurons and cochlear hair cells in an apoptotic signal-dependent pathway. The major apoptotic pathways in ouabain-induced spiral ganglion neuron apoptosis culminated in the stimulation of the p53 pathway and triggering of apoptosis by a network of proapoptotic signaling pathways. PMID:24228256

  7. Differential control over postganglionic neurons in rat cardiac ganglia by NA and DmnX neurons: anatomical evidence.

    PubMed

    Cheng, Zixi; Zhang, Hong; Guo, Shang Z; Wurster, Robert; Gozal, David

    2004-04-01

    In previous single-labeling experiments, we showed that neurons in the nucleus ambiguous (NA) and the dorsal moto nucleus of the vagus (DmnX) project to intrinsic cardiac ganglia. Neurons in these two motor nuclei differ significantly in the size of their projection fields, axon caliber, and endings in cardiac ganglia. These differences in NA and DmnX axon cardiac projections raise the question as to whether they target the same, distinct, or overlapping populations of cardiac principal neurons. To address this issue, we examined vagal terminals in cardiac ganglia and trace injection sites in the brain stem using two different anterograde t ace s 1,1-dioleyl-3,3,3,3-tetramethylindocarbocyanine methanesulfonate and 4-[4-(dihexadecylamino)-styryl]-N-methylpyridinium iodide] and confocal microscopy in male Sprague-Dawley rats. We found that 1) NA and DmnX neurons innervate the same cardiac ganglia, but these axons target separate subpopulations of principal neurons and 2) axons arising from neurons in the NA and DmnX in the contralateral sides of the brain stem enter the cardiac ganglionic plexus through separate bundles and preferentially innervate principal neurons near their entry regions, providing topographic mapping of vagal motor neurons in left and right brain stem vagal nuclei. Because the NA and DmnX project to distinct populations of cardiac principal neurons, we propose that they may play different roles in controlling cardiac function.

  8. Lingual and Palatal Gustatory Afferents Each Depend on Both BDNF and NT-4, but the Dependence Is Greater for Lingual than Palatal Afferents

    PubMed Central

    Patel, Ami V.; Huang, Tao; Krimm, Robin F.

    2012-01-01

    Neurons of the geniculate ganglion innervate taste buds located in two spatially distinct targets, the tongue and palate. About 50% of these neurons die in Bdnf−/− mice and Ntf4/5−/− mice. Bdnf−/−/Ntf4/5−/− double mutants lose 90-95% of geniculate ganglion neurons. To determine whether different subpopulations are differentially influenced by neurotrophins, we quantified neurons from two ganglion subpopulations separately and remaining taste buds at birth within each target field in wild-type, Bdnf−/−, Ntf4/5−/−, and Bdnf−/−/Ntf4/5−/− mice. In wild-type mice the same number of neurons innervated the anterior tongue and soft palate and each target contained the same number of taste buds. Compared to wild-type mice, Bdnf−/− mice showed a 50% reduction in geniculate neurons innervating the tongue and a 28% loss in neurons innervating the soft palate. Ntf4/5−/− mice lost 58% of the neurons innervating the tongue and 41% of the neurons innervating the soft palate. Taste bud loss was not as profound in the NT-4 null mice compared to BDNF-null mice. Tongues of Bdnf−/−/Ntf4/5−/− mice were innervated by 0 to 4 gustatory neurons and contained 3 to 16 taste buds at birth, indicating that some taste buds remain even when all innervation is lost. Thus, gustatory neurons are equally dependent on BDNF and NT-4 expression for survival, regardless of what peripheral target they innervate. However, taste buds are more sensitive to BDNF than NT-4 removal. PMID:20575060

  9. Hyperexcitable neurons and altered non-neuronal cells in the compressed spinal ganglion

    PubMed Central

    LaMotte, Robert H.; Chao, MA

    2009-01-01

    The cell body or soma in the dosal root ganglion (DRG) is normally excitable and this excitability can increase and persist after an injury of peripheral sensory neurons. In a rat model of radicular pain, an intraforaminal implantation of a rod that chronically compressed the lumbar DRG (“CCD” model) resulted in neuronal somal hyperexcitability and spontaneous activity that was accompanied by hyperalgesia in the ipsilateral hind paw. By the 5th day after onset of CCD, there was a novel upregulation in neuronal expression of the chemokine, monocyte chemoattractant protein-1 (MCP-1 or CCL2) and also its receptor, CCR2. The neurons developed, in response to topically applied MCP-1, an excitatory response that they normally do not have. CCD also activated non-neuronal cells including, for example, the endothelial cells as evidenced by angiogenesis in the form of an increased number of capillaries in the DRG after 7 days. A working hypothesis is that the CCD induced changes in neurons and non-neuronal cells that may act together to promote the survival of the injured tissue. The release of ligands such as CCL2, in addition to possibly activating nociceptive neurons (maintaining the pain), may also act to preserve injured cells in the face of ischemia and hypoxia, for example, by promoting angiogenesis. Thus, somal hyperexcitability, as often said of inflammation, may represent a double edged sword. PMID:18958366

  10. Reactive oxygen species alters the electrophysiological properties and raises [Ca2+]i in intracardiac ganglion neurons

    PubMed Central

    Dyavanapalli, Jhansi; Rimmer, Katrina

    2010-01-01

    We have investigated the effects of the reactive oxygen species (ROS) donors hydrogen peroxide (H2O2) and tert-butyl hydroperoxide (t-BHP) on the intrinsic electrophysiological characteristics: ganglionic transmission and resting [Ca2+]i in neonate and adult rat intracardiac ganglion (ICG) neurons. Intracellular recordings were made using sharp microelectrodes filled with either 0.5 M KCl or Oregon Green 488 BAPTA-1, allowing recording of electrical properties and measurement of [Ca2+]i. H2O2 and t-BHP both hyperpolarized the resting membrane potential and reduced membrane resistance. In adult ICG neurons, the hyperpolarizing action of H2O2 was reversed fully by Ba2+ and partially by tetraethylammonium, muscarine, and linopirdine. H2O2 and t-BHP reduced the action potential afterhyperpolarization (AHP) amplitude but had no impact on either overshoot or AHP duration. ROS donors evoked an increase in discharge adaptation to long depolarizing current pulses. H2O2 blocked ganglionic transmission in most ICG neurons but did not alter nicotine-evoked depolarizations. By contrast, t-BHP had no significant action on ganglionic transmission. H2O2 and t-BHP increased resting intracellular Ca2+ levels to 1.6 ( ± 0.6, n = 11, P < 0.01) and 1.6 ( ± 0.3, n = 8, P < 0.001), respectively, of control value (1.0, ∼60 nM). The ROS scavenger catalase prevented the actions of H2O2, and this protection extended beyond the period of application. Superoxide dismutase partially shielded against the action of H2O2, but this was limited to the period of application. These data demonstrate that ROS decreases the excitability and ganglionic transmission of ICG neurons, attenuating parasympathetic control of the heart. PMID:20445155

  11. Sloppy morphological tuning in identified neurons of the crustacean stomatogastric ganglion

    PubMed Central

    Otopalik, Adriane G; Goeritz, Marie L; Sutton, Alexander C; Brookings, Ted; Guerini, Cosmo; Marder, Eve

    2017-01-01

    Neuronal physiology depends on a neuron’s ion channel composition and unique morphology. Variable ion channel compositions can produce similar neuronal physiologies across animals. Less is known regarding the morphological precision required to produce reliable neuronal physiology. Theoretical studies suggest that moraphology is tightly tuned to minimize wiring and conduction delay of synaptic events. We utilize high-resolution confocal microscopy and custom computational tools to characterize the morphologies of four neuron types in the stomatogastric ganglion (STG) of the crab Cancer borealis. Macroscopic branching patterns and fine cable properties are variable within and across neuron types. We compare these neuronal structures to synthetic minimal spanning neurite trees constrained by a wiring cost equation and find that STG neurons do not adhere to prevailing hypotheses regarding wiring optimization principles. In this highly modulated and oscillating circuit, neuronal structures appear to be governed by a space-filling mechanism that outweighs the cost of inefficient wiring. DOI: http://dx.doi.org/10.7554/eLife.22352.001 PMID:28177286

  12. Processing of central and reflex vagal drives by rat cardiac ganglion neurones: an intracellular analysis

    PubMed Central

    McAllen, Robin M; Salo, Lauren M; Paton, Julian F R; Pickering, Anthony E

    2011-01-01

    Abstract Cardiac vagal tone is an important indicator of cardiovascular health, and its loss is an independent risk factor for arrhythmias and mortality. Several studies suggest that this loss of vagal tone can occur at the cardiac ganglion but the factors affecting ganglionic transmissionin vivoare poorly understood. We have employed a novel approach allowing intracellular recordings from functionally connected cardiac vagal ganglion cells in the working heart–brainstem preparation. The atria were stabilisedin situpreserving their central neural connections, and ganglion cells (n = 32) were impaled with sharp microelectrodes. Cardiac ganglion cells with vagal synaptic inputs (spontaneous, n = 10; or electrically evoked from the vagus, n = 3) were identified as principal neurones and showed tonic firing responses to current injected to their somata. Cells lacking vagal inputs (n = 19, presumed interneurones) were quiescent but showed phasic firing responses to depolarising current. In principal cells the ongoing action potentials and EPSPs exhibited respiratory modulation, with peak frequency in post-inspiration. Action potentials arose from unitary EPSPs and autocorrelation of those events showed that each ganglion cell received inputs from a single active preganglionic source. Peripheral chemoreceptor, arterial baroreceptor and diving response activation all evoked high frequency synaptic barrages in these cells, always from the same single preganglionic source. EPSP amplitudes showed frequency dependent depression, leading to more spike failures at shorter inter-event intervals. These findings indicate that rather than integrating convergent inputs, cardiac vagal postganglionic neurones gate preganglionic inputs, so regulating the proportion of central parasympathetic tone that is transmitted on to the heart. PMID:22005679

  13. Alterations of neurochemical expression of the coeliac-superior mesenteric ganglion complex (CSMG) neurons supplying the prepyloric region of the porcine stomach following partial stomach resection.

    PubMed

    Palus, Katarzyna; Całka, Jarosław

    2016-03-01

    The purpose of the present study was to determine the response of the porcine coeliac-superior mesenteric ganglion complex (CSMG) neurons projecting to the prepyloric area of the porcine stomach to peripheral neuronal damage following partial stomach resection. To identify the sympathetic neurons innervating the studied area of stomach, the neuronal retrograde tracer Fast Blue (FB) was applied to control and partial stomach resection (RES) groups. On the 22nd day after FB injection, following laparotomy, the partial resection of the previously FB-injected stomach prepyloric area was performed in animals of RES group. On the 28th day, all animals were re-anaesthetized and euthanized. The CSMG complex was then collected and processed for double-labeling immunofluorescence. In control animals, retrograde-labelled perikarya were immunoreactive to tyrosine hydroxylase (TH), dopamine β-hydroxylase (DβH), neuropeptide Y (NPY) and galanin (GAL). Partial stomach resection decreased the numbers of FB-positive neurons immunopositive for TH and DβH. However, the strong increase of NPY and GAL expression, as well as de novo-synthesis of neuronal nitric oxide synthase (nNOS) and leu5-Enkephalin (LENK) was noted in studied neurons. Furthermore, FB-positive neurons in all pigs were surrounded by a network of cocaine- and amphetamine-regulated transcript peptide (CART)-, calcitonin gene-related peptide (CGRP)-, and substance P (SP)-, vasoactive intestinal peptide (VIP)-, LENK- and nNOS- immunoreactive nerve fibers. This may suggest neuroprotective contribution of these neurotransmitters in traumatic responses of sympathetic neurons to peripheral axonal damage. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Cytoarchitectonic study of the trigeminal ganglion in humans.

    PubMed

    Krastev, Dimo Stoyanov; Apostolov, Alexander

    2013-01-01

    The trigeminal ganglion (TG), a cluster of pseudounipolar neurons, is located in the trigeminal impression of the temporal pyramid. It is covered by a sheath of the dura mater and arachnoid and is near the rear end of the cavernous sinus. The peripheral processes of the pseudounipolar cells are involved in the formation of the first and second branch and the sensory part of the third branch of the fifth cranial nerve, and the central ones form the sensory root of the nerve, which penetrates at the level of the middle cerebellar peduncle, aside from the pons, and terminate in the sensory nuclei of the trigeminal complex. We found that the primary sensory neurons involved in sensory innervation of the orofacial complex are a diverse group. Although they possess the general structure of pseudounipolar neurons, there are significant differences among them, seen in varying intensities of staining. Based on our investigations we classified the neurons into 7 groups, i.e. large, subdivided into light and dark, medium, also light and dark, and small light and dark, and, moreover, neurons with an irregular shape of their perikarya. Further research by applying various immunohistochemical methods will clarify whether differences in the morphological patterns of the neurons are associated with differences in the neurochemical composition of various neuronal types.

  15. Cytoarchitectonic study of the trigeminal ganglion in humans

    PubMed Central

    KRASTEV, DIMO STOYANOV; APOSTOLOV, ALEXANDER

    2013-01-01

    The trigeminal ganglion (TG), a cluster of pseudounipolar neurons, is located in the trigeminal impression of the temporal pyramid. It is covered by a sheath of the dura mater and arachnoid and is near the rear end of the cavernous sinus. The peripheral processes of the pseudounipolar cells are involved in the formation of the first and second branch and the sensory part of the third branch of the fifth cranial nerve, and the central ones form the sensory root of the nerve, which penetrates at the level of the middle cerebellar peduncle, aside from the pons, and terminate in the sensory nuclei of the trigeminal complex. We found that the primary sensory neurons involved in sensory innervation of the orofacial complex are a diverse group. Although they possess the general structure of pseudounipolar neurons, there are significant differences among them, seen in varying intensities of staining. Based on our investigations we classified the neurons into 7 groups, i.e. large, subdivided into light and dark, medium, also light and dark, and small light and dark, and, moreover, neurons with an irregular shape of their perikarya. Further research by applying various immunohistochemical methods will clarify whether differences in the morphological patterns of the neurons are associated with differences in the neurochemical composition of various neuronal types. PMID:26527926

  16. The effects of ropivacaine hydrochloride on the expression of CaMK II mRNA in the dorsal root ganglion neurons.

    PubMed

    Wen, Xianjie; Lai, Xiaohong; Li, Xiaohong; Zhang, Tao; Liang, Hua

    2016-12-01

    In this study, we identified the subtype of Calcium/calmodulin-dependent protein kinase II (CaMK II) mRNA in dorsal root ganglion neurons and observed the effects of ropivacaine hydrochloride in different concentration and different exposure time on the mRNA expression. Dorsal root ganglion neurons were isolated from the SD rats and cultured in vitro. The mRNA of the CaMK II subtype in dorsal root ganglion neurons were detected by real-time PCR. As well as, the dorsal root ganglion neurons were treated with ropivacaine hydrochloride in different concentration (1mM,2mM, 3mM and 4mM) for the same exposure time of 4h, or different exposure time (0h,2h,3h,4h and 6h) at the same concentration(3mM). The changes of the mRNA expression of the CaMK II subtype were observed with real-time PCR. All subtype mRNA of the CaMK II, CaMK II α , CaMK II β , CaMK II δ , CaMK II γ , can be detected in dorsal root ganglion neurons. With the increased of the concentration and exposure time of the ropivacaine hydrochloride, all the subtype mRNA expression increased. Ropivacaine hydrochloride up-regulate the CaMK II β , CaMK II δ , CaMK II g mRNA expression with the concentration and exposure time increasing. The nerve blocking or the neurotoxicity of the ropivacaine hydrochloride maybe involved with CaMK II. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  17. Development of cardiac parasympathetic neurons, glial cells, and regional cholinergic innervation of the mouse heart.

    PubMed

    Fregoso, S P; Hoover, D B

    2012-09-27

    Very little is known about the development of cardiac parasympathetic ganglia and cholinergic innervation of the mouse heart. Accordingly, we evaluated the growth of cholinergic neurons and nerve fibers in mouse hearts from embryonic day 18.5 (E18.5) through postnatal day 21(P21). Cholinergic perikarya and varicose nerve fibers were identified in paraffin sections immunostained for the vesicular acetylcholine transporter (VAChT). Satellite cells and Schwann cells in adjacent sections were identified by immunostaining for S100β calcium binding protein (S100) and brain-fatty acid binding protein (B-FABP). We found that cardiac ganglia had formed in close association to the atria and cholinergic innervation of the atrioventricular junction had already begun by E18.5. However, most cholinergic innervation of the heart, including the sinoatrial node, developed postnatally (P0.5-P21) along with a doubling of the cross-sectional area of cholinergic perikarya. Satellite cells were present throughout neonatal cardiac ganglia and expressed primarily B-FABP. As they became more mature at P21, satellite cells stained strongly for both B-FABP and S100. Satellite cells appeared to surround most cardiac parasympathetic neurons, even in neonatal hearts. Mature Schwann cells, identified by morphology and strong staining for S100, were already present at E18.5 in atrial regions that receive cholinergic innervation at later developmental times. The abundance and distribution of S100-positive Schwann cells increased postnatally along with nerve density. While S100 staining of cardiac Schwann cells was maintained in P21 and older mice, Schwann cells did not show B-FABP staining at these times. Parallel development of satellite cells and cholinergic perikarya in the cardiac ganglia and the increase in abundance of Schwann cells and varicose cholinergic nerve fibers in the atria suggest that neuronal-glial interactions could be important for development of the parasympathetic nervous

  18. Targeted Deletion of Sox10 by Wnt1-cre Defects Neuronal Migration and Projection in the Mouse Inner Ear

    PubMed Central

    Mao, YanYan; Reiprich, Simone; Wegner, Michael; Fritzsch, Bernd

    2014-01-01

    Sensory nerves of the brainstem are mostly composed of placode-derived neurons, neural crest-derived neurons and neural crest-derived Schwann cells. This mixed origin of cells has made it difficult to dissect interdependence for fiber guidance. Inner ear-derived neurons are known to connect to the brain after delayed loss of Schwann cells in ErbB2 mutants. However, the ErbB2 mutant related alterations in the ear and the brain compound interpretation of the data. We present here a new model to evaluate exclusively the effect of Schwann cell loss on inner ear innervation. Conditional deletion of the neural crest specific transcription factor, Sox10, using the rhombic lip/neural crest specific Wnt1-cre driver spares Sox10 expression in the ear. We confirm that neural crest-derived cells provide a stop signal for migrating spiral ganglion neurons. In the absence of Schwann cells, spiral ganglion neurons migrate into the center of the cochlea and even out of the ear toward the brain. Spiral ganglion neuron afferent processes reach the organ of Corti, but many afferent fibers bypass the organ of Corti to enter the lateral wall of the cochlea. In contrast to this peripheral disorganization, the central projection to cochlear nuclei is normal. Compared to ErbB2 mutants, conditional Sox10 mutants have limited cell death in spiral ganglion neurons, indicating that the absence of Schwann cells alone contributes little to the embryonic survival of neurons. These data suggest that neural crest-derived cells are dispensable for all central and some peripheral targeting of inner ear neurons. However, Schwann cells provide a stop signal for migratory spiral ganglion neurons and facilitate proper targeting of the organ of Corti by spiral ganglion afferents. PMID:24718611

  19. Distinct Expression of Phenotypic Markers in Placodes- and Neural Crest-Derived Afferent Neurons Innervating the Rat Stomach.

    PubMed

    Trancikova, Alzbeta; Kovacova, Eva; Ru, Fei; Varga, Kristian; Brozmanova, Mariana; Tatar, Milos; Kollarik, Marian

    2018-02-01

    Visceral pain is initiated by activation of primary afferent neurons among which the capsaicin-sensitive (TRPV1-positive) neurons play an important role. The stomach is a common source of visceral pain. Similar to other organs, the stomach receives dual spinal and vagal afferent innervation. Developmentally, spinal dorsal root ganglia (DRG) and vagal jugular neurons originate from embryonic neural crest and vagal nodose neurons originate from placodes. In thoracic organs the neural crest- and placodes-derived TRPV1-positive neurons have distinct phenotypes differing in activation profile, neurotrophic regulation and reflex responses. It is unknown to whether such distinction exists in the stomach. We hypothesized that gastric neural crest- and placodes-derived TRPV1-positive neurons express phenotypic markers indicative of placodes and neural crest phenotypes. Gastric DRG and vagal neurons were retrogradely traced by DiI injected into the rat stomach wall. Single-cell RT-PCR was performed on traced gastric neurons. Retrograde tracing demonstrated that vagal gastric neurons locate exclusively into the nodose portion of the rat jugular/petrosal/nodose complex. Gastric DRG TRPV1-positive neurons preferentially expressed markers PPT-A, TrkA and GFRα 3 typical for neural crest-derived TRPV1-positive visceral neurons. In contrast, gastric nodose TRPV1-positive neurons preferentially expressed markers P2X 2 and TrkB typical for placodes-derived TRPV1-positive visceral neurons. Differential expression of neural crest and placodes markers was less pronounced in TRPV1-negative DRG and nodose populations. There are phenotypic distinctions between the neural crest-derived DRG and placodes-derived vagal nodose TRPV1-positive neurons innervating the rat stomach that are similar to those described in thoracic organs.

  20. Adrenergic receptors inhibit TRPV1 activity in the dorsal root ganglion neurons of rats.

    PubMed

    Matsushita, Yumi; Manabe, Miki; Kitamura, Naoki; Shibuya, Izumi

    2018-01-01

    Transient receptor potential vanilloid type 1 (TRPV1) is a polymodal receptor channel that responds to multiple types of stimuli, such as heat, acid, mechanical pressure and some vanilloids. Capsaicin is the most commonly used vanilloid to stimulate TRPV1. TRPV1 channels are expressed in dorsal root ganglion neurons that extend to Aδ- and C-fibers and have a role in the transduction of noxious inputs to the skin into the electrical signals of the sensory nerve. Although noradrenergic nervous systems, including the descending antinociceptive system and the sympathetic nervous system, are known to modulate pain sensation, the functional association between TRPV1 and noradrenaline in primary sensory neurons has rarely been examined. In the present study, we examined the effects of noradrenaline on capsaicin-evoked currents in cultured dorsal root ganglion neurons of the rat by the whole-cell voltage clamp method. Noradrenaline at concentrations higher than 0.1 pM significantly reduced the amplitudes of the inward capsaicin currents recorded at -60 mV holding potential. This inhibitory action was reversed by either yohimbine (an α2 antagonist, 10 nM) or propranolol (a β antagonist, 10 nM). The α2 agonists, clonidine (1 pM) and dexmedetomidine (1 pM) inhibited capsaicin currents, and yohimbine (1 nM) reversed the effects of clonidine. The inhibitory action of noradrenaline was not seen in the neurons pretreated with pertussis toxin (100 μg/ml for 24 h) and the neurons dialyzed intracellularly with guanosine 5'- [β-thio] diphosphate (GDPβS, 200 μM), the catalytic subunit of protein kinase A (250 U/ml) or okadaic acid (1 μM). These results suggest that noradrenaline directly acts on dorsal root ganglion neurons to inhibit the activity of TRPV1 depending on the activation of α2-adrenoceptors followed by the inhibition of the adenylate cyclase/cAMP/protein kinase A pathway.

  1. Muscles innervated by a single motor neuron exhibit divergent synaptic properties on multiple time scales.

    PubMed

    Blitz, Dawn M; Pritchard, Amy E; Latimer, John K; Wakefield, Andrew T

    2017-04-01

    Adaptive changes in the output of neural circuits underlying rhythmic behaviors are relayed to muscles via motor neuron activity. Presynaptic and postsynaptic properties of neuromuscular junctions can impact the transformation from motor neuron activity to muscle response. Further, synaptic plasticity occurring on the time scale of inter-spike intervals can differ between multiple muscles innervated by the same motor neuron. In rhythmic behaviors, motor neuron bursts can elicit additional synaptic plasticity. However, it is unknown whether plasticity regulated by the longer time scale of inter-burst intervals also differs between synapses from the same neuron, and whether any such distinctions occur across a physiological activity range. To address these issues, we measured electrical responses in muscles innervated by a chewing circuit neuron, the lateral gastric (LG) motor neuron, in a well-characterized small motor system, the stomatogastric nervous system (STNS) of the Jonah crab, Cancer borealis In vitro and in vivo , sensory, hormonal and modulatory inputs elicit LG bursting consisting of inter-spike intervals of 50-250 ms and inter-burst intervals of 2-24 s. Muscles expressed similar facilitation measured with paired stimuli except at the shortest inter-spike interval. However, distinct decay time constants resulted in differences in temporal summation. In response to bursting activity, augmentation occurred to different extents and saturated at different inter-burst intervals. Further, augmentation interacted with facilitation, resulting in distinct intra-burst facilitation between muscles. Thus, responses of multiple target muscles diverge across a physiological activity range as a result of distinct synaptic properties sensitive to multiple time scales. © 2017. Published by The Company of Biologists Ltd.

  2. Muscarinic receptor-mediated excitation of rat intracardiac ganglion neurons.

    PubMed

    Hirayama, Michiko; Ogata, Masanori; Kawamata, Tomoyuki; Ishibashi, Hitoshi

    2015-08-01

    Modulation of the membrane excitability of rat parasympathetic intracardiac ganglion neurons by muscarinic receptors was studied using an amphotericin B-perforated patch-clamp recording configuration. Activation of muscarinic receptors by oxotremorine-M (OxoM) depolarized the membrane, accompanied by repetitive action potentials. OxoM evoked inward currents under voltage-clamp conditions at a holding potential of -60 mV. Removal of extracellular Ca(2+) markedly increased the OxoM-induced current (IOxoM). The inward IOxoM in the absence of extracellular Ca(2+) was fully inhibited by removal of extracellular Na(+), indicating the involvement of non-selective cation channels. The IOxoM was inhibited by organic cation channel antagonists including SKF-96365 and ML-204. The IOxoM was antagonized by muscarinic receptor antagonists with the following potency: 4-DAMP > pirenzepine = darifenacin > methoctramine. Muscarinic toxin 7 (MT-7), a highly selective inhibitor for M1 receptor, produced partial inhibition of the IOxoM. In the presence of MT-7, concentration-inhibition curve of the M3-preferring antagonist darifenacin was shifted to the left. These results suggest the contribution of M1 and M3 receptors to the OxoM response. The IOxoM was inhibited by U-73122, a phospholipase C inhibitor. The membrane-permeable IP3 receptor blocker xestospongin C also inhibited the IOxoM. Furthermore, pretreatment with thapsigargin and BAPTA-AM inhibited the IOxoM, while KN-62, a blocker of Ca(2+)/calmodulin-dependent protein kinase II, had no effect. These results suggest that the activation mechanism involves a PLC pathway, release of Ca(2+) from intracellular Ca(2+) stores and calmodulin. The cation channels activated by muscarinic receptors may play an important role in neuronal membrane depolarization in rat intracardiac ganglion neurons. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Enkephalins in the inferior mesenteric ganglion of the cat and in the area of the lower digestive tract innervated by this ganglion: quantification by radio-immunoassay and characterization by high pressure liquid chromatography.

    PubMed

    Cupo, A; Niel, J P; Miolan, J P; Jule, Y; Jarry, T

    1988-01-01

    Met-enkephalin, Leu-enkephalin and Met-enkephalin-Arg-Gly-Leu were quantified and characterized in the cat inferior mesenteric ganglion and in the area of the lower digestive tract innervated by this ganglion, including the proximal colon, distal colon and internal anal sphincter. In the structures studied, the concentrations of enkephalins expressed as femtomole/mg of wet tissue ranged from 66 to 160 with Met-enkephalin, from 15 to 45 with Leu-enkephalin and from 2 to 12 for Met-enkephalin-arg-gly-leu. In the lower digestive tract, the Met- and Leu-enkephalin content decreased from the proximal colon to the internal anal sphincter. The Met-enkephalin versus Leu-enkephalin ratio of the structures investigated were as follows: inferior mesenteric ganglion 3.2, proximal colon 4.4, distal colon 5, internal and sphincter 4.5. In individual samples of all the structures assayed the results of high pressure liquid chromatography (HPLC) analysis pointed to the presence of authentic Met- and Leu-enkephalin. HPLC analysis could not be carried out on Met-enkephalin-Arg-Gly-Leu due to the very low concentrations of this peptide in all the structures assayed. Our results, combined with those of previous immunohistochemical and physiological studies, support the idea that enkephalins are involved in the nervous control of the motility of the lower digestive tract.

  4. Expression of the transient receptor potential channels TRPV1, TRPA1 and TRPM8 in mouse trigeminal primary afferent neurons innervating the dura

    PubMed Central

    2012-01-01

    Background Migraine and other headache disorders affect a large percentage of the population and cause debilitating pain. Activation and sensitization of the trigeminal primary afferent neurons innervating the dura and cerebral vessels is a crucial step in the “headache circuit”. Many dural afferent neurons respond to algesic and inflammatory agents. Given the clear role of the transient receptor potential (TRP) family of channels in both sensing chemical stimulants and mediating inflammatory pain, we investigated the expression of TRP channels in dural afferent neurons. Methods We used two fluorescent tracers to retrogradely label dural afferent neurons in adult mice and quantified the abundance of peptidergic and non-peptidergic neuron populations using calcitonin gene-related peptide immunoreactivity (CGRP-ir) and isolectin B4 (IB4) binding as markers, respectively. Using immunohistochemistry, we compared the expression of TRPV1 and TRPA1 channels in dural afferent neurons with the expression in total trigeminal ganglion (TG) neurons. To examine the distribution of TRPM8 channels, we labeled dural afferent neurons in mice expressing farnesylated enhanced green fluorescent protein (EGFPf) from a TRPM8 locus. We used nearest-neighbor measurement to predict the spatial association between dural afferent neurons and neurons expressing TRPA1 or TRPM8 channels in the TG. Results and conclusions We report that the size of dural afferent neurons is significantly larger than that of total TG neurons and facial skin afferents. Approximately 40% of dural afferent neurons exhibit IB4 binding. Surprisingly, the percentage of dural afferent neurons containing CGRP-ir is significantly lower than those of total TG neurons and facial skin afferents. Both TRPV1 and TRPA1 channels are expressed in dural afferent neurons. Furthermore, nearest-neighbor measurement indicates that TRPA1-expressing neurons are clustered around a subset of dural afferent neurons. Interestingly, TRPM

  5. Multiple forebrain systems converge on motor neurons innervating the thyroarytenoid muscle

    PubMed Central

    Van Daele, Douglas J.; Cassell, Martin D.

    2009-01-01

    The present study investigated the central connections of motor neurons innervating the thyroarytenoid laryngeal muscle that is active in swallowing, respiration and vocalization. In both intact and sympathectomized rats, the pseudorabies virus (PRV) was inoculated into the muscle. After initial infection of laryngomotor neurons in the ipsilateral loose division of the nucleus ambiguous (NA) by 3 days post-inoculation., PRV spread to the ipsilateral compact portion of the NA, the central and intermediate divisions of the nucleus tractus solitarii (NTS), the Botzinger complex, and the parvocellular reticular formation by 4 days. Infection was subsequently expanded to include the ipsilateral granular and dysgranular parietal insular cortex, the ipsilateral medial division of the central nucleus of the amygdala, the lateral, paraventricular, ventrolateral and medial preoptic nuclei of the hypothalamus (generally bilaterally), the lateral periaqueductal gray, the A7 and oral and caudal pontine nuclei. At the latest time points sampled post-inoculation (5 days), infected neurons were identified in the ipsilateral agranular insular cortex, the caudal parietal insular cortex, the anterior cingulate cortex, and the contralateral motor cortex. In the amygdala, infection had spread to the lateral central nucleus and the parvocellular portion of the basolateral nucleus. Hypothalamic infection was largely characterized by an increase in the number of infected cells in earlier infected regions though the posterior, dorsomedial, tuberomammillary and mammillary nuclei contained infected cells. Comparison with previous connectional data suggest PRV followed three interconnected systems originating in the forebrain; a bilateral system including the ventral anterior cingulate cortex, periaqueductal gray and ventral respiratory group; an ipsilateral system involving the parietal insular cortex, central nucleus of the amygdala and parvicellular reticular formation, and a minor

  6. Reduced N-Type Ca2+ Channels in Atrioventricular Ganglion Neurons Are Involved in Ventricular Arrhythmogenesis.

    PubMed

    Zhang, Dongze; Tu, Huiyin; Cao, Liang; Zheng, Hong; Muelleman, Robert L; Wadman, Michael C; Li, Yu-Long

    2018-01-15

    Attenuated cardiac vagal activity is associated with ventricular arrhythmogenesis and related mortality in patients with chronic heart failure. Our recent study has shown that expression of N-type Ca 2+ channel α-subunits (Ca v 2.2-α) and N-type Ca 2+ currents are reduced in intracardiac ganglion neurons from rats with chronic heart failure. Rat intracardiac ganglia are divided into the atrioventricular ganglion (AVG) and sinoatrial ganglion. Ventricular myocardium receives projection of neuronal terminals only from the AVG. In this study we tested whether a decrease in N-type Ca 2+ channels in AVG neurons contributes to ventricular arrhythmogenesis. Lentiviral Ca v 2.2-α shRNA (2 μL, 2×10 7  pfu/mL) or scrambled shRNA was in vivo transfected into rat AVG neurons. Nontransfected sham rats served as controls. Using real-time single-cell polymerase chain reaction and reverse-phase protein array, we found that in vivo transfection of Ca v 2.2-α shRNA decreased expression of Ca v 2.2-α mRNA and protein in rat AVG neurons. Whole-cell patch-clamp data showed that Ca v 2.2-α shRNA reduced N-type Ca 2+ currents and cell excitability in AVG neurons. The data from telemetry electrocardiographic recording demonstrated that 83% (5 out of 6) of conscious rats with Ca v 2.2-α shRNA transfection had premature ventricular contractions ( P <0.05 versus 0% of nontransfected sham rats or scrambled shRNA-transfected rats). Additionally, an index of susceptibility to ventricular arrhythmias, inducibility of ventricular arrhythmias evoked by programmed electrical stimulation, was higher in rats with Ca v 2.2-α shRNA transfection compared with nontransfected sham rats and scrambled shRNA-transfected rats. A decrease in N-type Ca 2+ channels in AVG neurons attenuates vagal control of ventricular myocardium, thereby initiating ventricular arrhythmias. © 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  7. Innervation of the mammalian esophagus.

    PubMed

    Neuhuber, Winfried L; Raab, Marion; Berthoud, Hans-Rudolf; Wörl, Jürgen

    2006-01-01

    Understanding the innervation of the esophagus is a prerequisite for successful treatment of a variety of disorders, e.g., dysphagia, achalasia, gastroesophageal reflux disease (GERD) and non-cardiac chest pain. Although, at first glance, functions of the esophagus are relatively simple, their neuronal control is considerably complex. Vagal motor neurons of the nucleus ambiguus and preganglionic neurons of the dorsal motor nucleus innervate striated and smooth muscle, respectively. Myenteric neurons represent the interface between the dorsal motor nucleus and smooth muscle but they are also involved in striated muscle innervation. Intraganglionic laminar endings (IGLEs) represent mechanosensory vagal afferent terminals. They also establish intricate connections with enteric neurons. Afferent information is implemented by the swallowing central pattern generator in the brainstem, which generates and coordinates deglutitive activity in both striated and smooth esophageal muscle and orchestrates esophageal sphincters as well as gastric adaptive relaxation. Disturbed excitation/inhibition balance in the lower esophageal sphincter results in motility disorders, e.g., achalasia and GERD. Loss of mechanosensory afferents disrupts adaptation of deglutitive motor programs to bolus variables, eventually leading to megaesophagus. Both spinal and vagal afferents appear to contribute to painful sensations, e.g., non-cardiac chest pain. Extrinsic and intrinsic neurons may be involved in intramural reflexes using acetylcholine, nitric oxide, substance P, CGRP and glutamate as main transmitters. In addition, other molecules, e.g., ATP, GABA and probably also inflammatory cytokines, may modulate these neuronal functions.

  8. Autonomic control of the eye

    PubMed Central

    McDougal, David H.; Gamlin, Paul D.

    2016-01-01

    The autonomic nervous system influences numerous ocular functions. It does this by way of parasympathetic innervation from postganglionic fibers that originate from neurons in the ciliary and pterygopalatine ganglia, and by way of sympathetic innervation from postganglionic fibers that originate from neurons in the superior cervical ganglion. Ciliary ganglion neurons project to the ciliary body and the sphincter pupillae muscle of the iris to control ocular accommodation and pupil constriction, respectively. Superior cervical ganglion neurons project to the dilator pupillae muscle of the iris to control pupil dilation. Ocular blood flow is controlled both via direct autonomic influences on the vasculature of the optic nerve, choroid, ciliary body, and iris, as well as via indirect influences on retinal blood flow. In mammals, this vasculature is innervated by vasodilatory fibers from the pterygopalatine ganglion, and by vasoconstrictive fibers from the superior cervical ganglion. Intraocular pressure is regulated primarily through the balance of aqueous humor formation and outflow. Autonomic regulation of ciliary body blood vessels and the ciliary epithelium is an important determinant of aqueous humor formation; autonomic regulation of the trabecular meshwork and episcleral blood vessels is an important determinant of aqueous humor outflow. These tissues are all innervated by fibers from the pterygopalatine and superior cervical ganglia. In addition to these classical autonomic pathways, trigeminal sensory fibers exert local, intrinsic influences on many of these regions of the eye, as well as on some neurons within the ciliary and pterygopalatine ganglia. PMID:25589275

  9. A role for Runx transcription factor signaling in dorsal root ganglion sensory neuron diversification.

    PubMed

    Kramer, Ina; Sigrist, Markus; de Nooij, Joriene C; Taniuchi, Ichiro; Jessell, Thomas M; Arber, Silvia

    2006-02-02

    Subpopulations of sensory neurons in the dorsal root ganglion (DRG) can be characterized on the basis of sensory modalities that convey distinct peripheral stimuli, but the molecular mechanisms that underlie sensory neuronal diversification remain unclear. Here, we have used genetic manipulations in the mouse embryo to examine how Runx transcription factor signaling controls the acquisition of distinct DRG neuronal subtype identities. Runx3 acts to diversify an Ngn1-independent neuronal cohort by promoting the differentiation of proprioceptive sensory neurons through erosion of TrkB expression in prospective TrkC+ sensory neurons. In contrast, Runx1 controls neuronal diversification within Ngn1-dependent TrkA+ neurons by repression of neuropeptide CGRP expression and controlling the fine pattern of laminar termination in the dorsal spinal cord. Together, our findings suggest that Runx transcription factor signaling plays a key role in sensory neuron diversification.

  10. Cholecystokinin (CCK)-expressing neurons in the suprachiasmatic nucleus: innervation, light responsiveness and entrainment in CCK-deficient mice.

    PubMed

    Hannibal, Jens; Hundahl, Christian; Fahrenkrug, Jan; Rehfeld, Jens F; Friis-Hansen, Lennart

    2010-09-01

    The suprachiasmatic nucleus (SCN) is the principal pacemaker driving circadian rhythms of physiology and behaviour. Neurons within the SCN express both classical and neuropeptide transmitters which regulate clock functions. Cholecyctokinin (CCK) is a potent neurotransmitter expressed in neurons of the mammalian SCN, but its role in circadian timing is not known. In the present study, CCK was demonstrated in a distinct population of neurons located in the shell region of the SCN and in a few cells in the core region. The CCK neurons did not express vasopressin or vasoactive intestinal peptide. However, CCK-containing processes make synaptic contacts with both groups of neurons and some CCK cell bodies were innervated by VIPergic neurons. The CCK neurons received no direct input from the three major pathways to the SCN, and the CCK neurons were not light-responsive as evaluated by induction of cFOS, and did not express the core clock protein PER1. Accordingly, CCK-deficient mice showed normal entrainment and had similar τ, light-induced phase shift and negative masking behaviour as wild-type animals. In conclusion, CCK signalling seems not to be involved directly in light-induced resetting of the clock or in regulating core clock function. The expression of CCK in a subpopulation of neurons, which do not belonging to either the VIP or AVP cells but which have synaptic contacts to both cell types and reverse innervation of CCK neurons from VIP neurons, suggests that the CCK neurons may act in non-photic regulation within the clock and/or, via CCK projections, mediate clock information to hypothalamic nuclei. © 2010 The Authors. European Journal of Neuroscience © 2010 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  11. A new mode of pancreatic islet innervation revealed by live imaging in zebrafish.

    PubMed

    Yang, Yu Hsuan Carol; Kawakami, Koichi; Stainier, Didier Yr

    2018-06-19

    Pancreatic islets are innervated by autonomic and sensory nerves that influence their function. Analyzing the innervation process should provide insight into the nerve-endocrine interactions and their roles in development and disease. Here, using in vivo time-lapse imaging and genetic analyses in zebrafish, we determined the events leading to islet innervation. Comparable neural density in the absence of vasculature indicates that it is dispensable for early pancreatic innervation. Neural crest cells are in close contact with endocrine cells early in development. We find these cells give rise to neurons that extend axons towards the islet as they surprisingly migrate away. Specific ablation of these neurons partly prevents other neurons from migrating away from the islet resulting in diminished innervation. Thus, our studies establish the zebrafish as a model to interrogate mechanisms of organ innervation, and reveal a novel mode of innervation whereby neurons establish connections with their targets before migrating away. © 2018, Yang et al.

  12. Diversity amongst trigeminal neurons revealed by high throughput single cell sequencing

    PubMed Central

    Nguyen, Minh Q.; Wu, Youmei; Bonilla, Lauren S.; von Buchholtz, Lars J.

    2017-01-01

    The trigeminal ganglion contains somatosensory neurons that detect a range of thermal, mechanical and chemical cues and innervate unique sensory compartments in the head and neck including the eyes, nose, mouth, meninges and vibrissae. We used single-cell sequencing and in situ hybridization to examine the cellular diversity of the trigeminal ganglion in mice, defining thirteen clusters of neurons. We show that clusters are well conserved in dorsal root ganglia suggesting they represent distinct functional classes of somatosensory neurons and not specialization associated with their sensory targets. Notably, functionally important genes (e.g. the mechanosensory channel Piezo2 and the capsaicin gated ion channel Trpv1) segregate into multiple clusters and often are expressed in subsets of cells within a cluster. Therefore, the 13 genetically-defined classes are likely to be physiologically heterogeneous rather than highly parallel (i.e., redundant) lines of sensory input. Our analysis harnesses the power of single-cell sequencing to provide a unique platform for in silico expression profiling that complements other approaches linking gene-expression with function and exposes unexpected diversity in the somatosensory system. PMID:28957441

  13. Insulin Activates Vagal Afferent Neurons Including those Innervating Pancreas via Insulin Cascade and Ca(2+) Influx: Its Dysfunction in IRS2-KO Mice with Hyperphagic Obesity.

    PubMed

    Iwasaki, Yusaku; Shimomura, Kenju; Kohno, Daisuke; Dezaki, Katsuya; Ayush, Enkh-Amar; Nakabayashi, Hajime; Kubota, Naoto; Kadowaki, Takashi; Kakei, Masafumi; Nakata, Masanori; Yada, Toshihiko

    2013-01-01

    Some of insulin's functions, including glucose/lipid metabolism, satiety and neuroprotection, involve the alteration of brain activities. Insulin could signal to the brain via penetrating through the blood-brain barrier and acting on the vagal afferents, while the latter remains unproved. This study aimed to clarify whether insulin directly regulates the nodose ganglion neurons (NGNs) of vagal afferents in mice. NGs expressed insulin receptor (IR) and insulin receptor substrate-2 (IRS2) mRNA, and some of NGNs were immunoreactive to IR. In patch-clamp and fura-2 microfluorometric studies, insulin (10(-12)∼10(-6) M) depolarized and increased cytosolic Ca(2+) concentration ([Ca(2+)]i) in single NGNs. The insulin-induced [Ca(2+)]i increases were attenuated by L- and N-type Ca(2+) channel blockers, by phosphatidylinositol 3 kinase (PI3K) inhibitor, and in NGNs from IRS2 knockout mice. Half of the insulin-responsive NGNs contained cocaine- and amphetamine-regulated transcript. Neuronal fibers expressing IRs were distributed in/around pancreatic islets. The NGNs innervating the pancreas, identified by injecting retrograde tracer into the pancreas, responded to insulin with much greater incidence than unlabeled NGNs. Insulin concentrations measured in pancreatic vein was 64-fold higher than that in circulation. Elevation of insulin to 10(-7) M recruited a remarkably greater population of NGNs to [Ca(2+)]i increases. Systemic injection of glibenclamide rapidly released insulin and phosphorylated AKT in NGs. Furthermore, in IRS2 knockout mice, insulin action to suppress [Ca(2+)]i in orexigenic ghrelin-responsive neurons in hypothalamic arcuate nucleus was intact while insulin action on NGN was markedly attenuated, suggesting a possible link between impaired insulin sensing by NGNs and hyperphagic obese phenotype in IRS2 knockout mice These data demonstrate that insulin directly activates NGNs via IR-IRS2-PI3K-AKT-cascade and depolarization-gated Ca(2+) influx. Pancreas-innervating

  14. Prickle1 regulates neurite outgrowth of apical spiral ganglion neurons but not hair cell polarity in the murine cochlea

    PubMed Central

    Kersigo, Jennifer; Wu, Shu; Fritzsch, Bernd; Bassuk, Alexander G.

    2017-01-01

    In the mammalian organ of Corti (OC), the stereocilia on the apical surface of hair cells (HCs) are uniformly organized in a neural to abneural axis (or medial-laterally). This organization is regulated by planar cell polarity (PCP) signaling. Mutations of PCP genes, such as Vangl2, Dvl1/2, Celsr1, and Fzd3/6, affect the formation of HC orientation to varying degrees. Prickle1 is a PCP signaling gene that belongs to the prickle / espinas / testin family. Prickle1 protein is shown to be asymmetrically localized in the HCs of the OC, and this asymmetric localization is associated with loss of PCP in Smurf mutants, implying that Prickle1 is involved in HC PCP development in the OC. A follow-up study found no PCP polarity defects after loss of Prickle1 (Prickle1-/-) in the cochlea. We show here strong Prickle1 mRNA expression in the spiral ganglion by in situ hybridization and β-Gal staining, and weak expression in the OC by β-Gal staining. Consistent with this limited expression in the OC, cochlear HC PCP is unaffected in either Prickle1C251X/C251X mice or Prickle1f/f; Pax2-cre conditional null mice. Meanwhile, type II afferents of apical spiral ganglion neurons (SGN) innervating outer hair cells (OHC) have unusual neurite growth. In addition, afferents from the apex show unusual collaterals in the cochlear nuclei that overlap with basal turn afferents. Our findings argue against the role of Prickle1 in regulating hair cell polarity in the cochlea. Instead, Prickle1 regulates the polarity-related growth of distal and central processes of apical SGNs. PMID:28837644

  15. Hmx1 is required for the normal development of somatosensory neurons in the geniculate ganglion

    PubMed Central

    Quina, Lely A.; Tempest, Lynne; Hsu, Yun-Wei A.; Cox, Timothy C.; Turner, Eric E.

    2012-01-01

    Hmx1 is a variant homeodomain transcription factor expressed in the developing sensory nervous system, retina, and craniofacial mesenchyme. Recently, mutations at the Hmx1 locus have been linked to craniofacial defects in humans, rats, and mice, but its role in nervous system development is largely unknown. Here we show that Hmx1 is expressed in a subset of sensory neurons in the cranial and dorsal root ganglia which does not correspond to any specific sensory modality. Sensory neurons in the dorsal root and trigeminal ganglia of Hmx1dm/dm mouse embryos have no detectable Hmx1 protein, yet they undergo neurogenesis and express sensory subtype markers normally, demonstrating that Hmx1 is not globally required for the specification of sensory neurons from neural crest precursors. Loss of Hmx1 expression has no obvious effect on the early development of the trigeminal (V), superior (IX/X), or dorsal root ganglia neurons in which it is expressed, but results in marked defects in the geniculate (VII) ganglion. Hmx1dm/dm mouse embryos possess only a vestigial posterior auricular nerve, and general somatosensory neurons in the geniculate ganglion are greatly reduced by mid-gestation. Although Hmx1 is expressed in geniculate neurons prior to cell cycle exit, it does not appear to be required for neurogenesis, and the loss of geniculate neurons is likely to be the result of increased cell death. Fate mapping of neural crest-derived tissues indicates that Hmx1-expressing somatosensory neurons at different axial levels may be derived from either the neural crest or the neurogenic placodes. PMID:22586713

  16. CO-LOCALIZATION OF THE VANILLOID CAPSAICIN RECEPTOR AND SUBSTANCE P IN SENSORY NERVE FIBERS INNERVATING COCHLEAR AND VERTEBRO-BASILAR ARTERIES

    PubMed Central

    VASS, Z.; DAI, C. F.; STEYGER, P. S.; JANCSÓ, G.; TRUNE, D. R.; NUTTALL, A. L.

    2014-01-01

    Evidence suggests that capsaicin-sensitive substance P (SP)-containing trigeminal ganglion neurons innervate the spiral modiolar artery (SMA), radiating arterioles, and the stria vascularis of the cochlea. Antidromic electrical or chemical stimulation of trigeminal sensory nerves results in neurogenic plasma extravasation in inner ear tissues. The primary aim of this study was to reveal the possible morphological basis of cochlear vascular changes mediated by capsaicin-sensitive sensory nerves. Therefore, the distribution of SP and capsaicin receptor (transient receptor potential vanilloid type 1—TRPV1) was investigated by double immunolabeling to demonstrate the anatomical relationships between the cochlear and vertebro-basilar blood vessels and the trigeminal sensory fiber system. Extensive TRPV1 and SP expression and co-localization were observed in axons within the adventitial layer of the basilar artery, the anterior inferior cerebellar artery, the SMA, and the radiating arterioles of the cochlea. There appears to be a functional relationship between the trigeminal ganglion and the cochlear blood vessels since electrical stimulation of the trigeminal ganglion induced significant plasma extravasation from the SMA and the radiating arterioles. The findings suggest that stimulation of paravascular afferent nerves may result in permeability changes in the basilar and cochlear vascular bed and may contribute to the mechanisms of vertebro-basilar type of headache through the release of SP and stimulation of TPVR1, respectively. We propose that vertigo, tinnitus, and hearing deficits associated with migraine may arise from perturbations of capsaicin-sensitive trigeminal sensory ganglion neurons projecting to the cochlea. PMID:15026132

  17. Central Projections of Antennal and Labial Palp Sensory Neurons in the Migratory Armyworm Mythimna separata

    PubMed Central

    Ma, Bai-Wei; Zhao, Xin-Cheng; Berg, Bente G.; Xie, Gui-Ying; Tang, Qing-Bo; Wang, Gui-Rong

    2017-01-01

    The oriental armyworm, Mythimna separata (Walker), is a polyphagous, migratory pest relying on olfactory cues to find mates, locate nectar, and guide long-distance flight behavior. In the present study, a combination of neuroanatomical techniques were utilized on this species, including backfills, confocal microscopy, and three-dimensional reconstructions, to trace the central projections of sensory neurons from the antenna and the labial pit organ, respectively. As previously shown, the axons of the labial sensory neurons project via the ipsilateral labial nerve and terminate in three main areas of the central nervous system: (1) the labial-palp pit organ glomerulus of each antennal lobe, (2) the gnathal ganglion, and (3) the prothoracic ganglion of the ventral nerve cord. Similarly, the antennal sensory axons project to multiple areas of the central nervous system. The ipsilateral antennal nerve targets mainly the antennal lobe, the antennal mechanosensory and motor center, and the prothoracic and mesothoracic ganglia. Specific staining experiments including dye application to each of the three antennal segments indicate that the antennal lobe receives input from flagellar olfactory neurons exclusively, while the antennal mechanosensory and motor center is innervated by mechanosensory neurons from the whole antenna, comprising the flagellum, pedicle, and scape. The terminals in the mechanosensory and motor center are organized in segregated zones relating to the origin of neurons. The flagellar mechanosensory axons target anterior zones, while the pedicular and scapal axons terminate in posterior zones. In the ventral nerve cord, the processes from the antennal sensory neurons terminate in the motor area of the thoracic ganglia, suggesting a close connection with motor neurons. Taken together, the numerous neuropils innervated by axons both from the antenna and labial palp indicate the multiple roles these sensory organs serve in insect behavior. PMID:29209176

  18. Netrin-1 controls sympathetic arterial innervation.

    PubMed

    Brunet, Isabelle; Gordon, Emma; Han, Jinah; Cristofaro, Brunella; Broqueres-You, Dong; Liu, Chun; Bouvrée, Karine; Zhang, Jiasheng; del Toro, Raquel; Mathivet, Thomas; Larrivée, Bruno; Jagu, Julia; Pibouin-Fragner, Laurence; Pardanaud, Luc; Machado, Maria J C; Kennedy, Timothy E; Zhuang, Zhen; Simons, Michael; Levy, Bernard I; Tessier-Lavigne, Marc; Grenz, Almut; Eltzschig, Holger; Eichmann, Anne

    2014-07-01

    Autonomic sympathetic nerves innervate peripheral resistance arteries, thereby regulating vascular tone and controlling blood supply to organs. Despite the fundamental importance of blood flow control, how sympathetic arterial innervation develops remains largely unknown. Here, we identified the axon guidance cue netrin-1 as an essential factor required for development of arterial innervation in mice. Netrin-1 was produced by arterial smooth muscle cells (SMCs) at the onset of innervation, and arterial innervation required the interaction of netrin-1 with its receptor, deleted in colorectal cancer (DCC), on sympathetic growth cones. Function-blocking approaches, including cell type-specific deletion of the genes encoding Ntn1 in SMCs and Dcc in sympathetic neurons, led to severe and selective reduction of sympathetic innervation and to defective vasoconstriction in resistance arteries. These findings indicate that netrin-1 and DCC are critical for the control of arterial innervation and blood flow regulation in peripheral organs.

  19. Coatings of Different Carbon Nanotubes on Platinum Electrodes for Neuronal Devices: Preparation, Cytocompatibility and Interaction with Spiral Ganglion Cells.

    PubMed

    Burblies, Niklas; Schulze, Jennifer; Schwarz, Hans-Christoph; Kranz, Katharina; Motz, Damian; Vogt, Carla; Lenarz, Thomas; Warnecke, Athanasia; Behrens, Peter

    2016-01-01

    Cochlear and deep brain implants are prominent examples for neuronal prostheses with clinical relevance. Current research focuses on the improvement of the long-term functionality and the size reduction of neural interface electrodes. A promising approach is the application of carbon nanotubes (CNTs), either as pure electrodes but especially as coating material for electrodes. The interaction of CNTs with neuronal cells has shown promising results in various studies, but these appear to depend on the specific type of neurons as well as on the kind of nanotubes. To evaluate a potential application of carbon nanotube coatings for cochlear electrodes, it is necessary to investigate the cytocompatibility of carbon nanotube coatings on platinum for the specific type of neuron in the inner ear, namely spiral ganglion neurons. In this study we have combined the chemical processing of as-delivered CNTs, the fabrication of coatings on platinum, and the characterization of the electrical properties of the coatings as well as a general cytocompatibility testing and the first cell culture investigations of CNTs with spiral ganglion neurons. By applying a modification process to three different as-received CNTs via a reflux treatment with nitric acid, long-term stable aqueous CNT dispersions free of dispersing agents were obtained. These were used to coat platinum substrates by an automated spray-coating process. These coatings enhance the electrical properties of platinum electrodes, decreasing the impedance values and raising the capacitances. Cell culture investigations of the different CNT coatings on platinum with NIH3T3 fibroblasts attest an overall good cytocompatibility of these coatings. For spiral ganglion neurons, this can also be observed but a desired positive effect of the CNTs on the neurons is absent. Furthermore, we found that the well-established DAPI staining assay does not function on the coatings prepared from single-wall nanotubes.

  20. Coatings of Different Carbon Nanotubes on Platinum Electrodes for Neuronal Devices: Preparation, Cytocompatibility and Interaction with Spiral Ganglion Cells

    PubMed Central

    Schwarz, Hans-Christoph; Kranz, Katharina; Motz, Damian; Vogt, Carla; Lenarz, Thomas; Warnecke, Athanasia; Behrens, Peter

    2016-01-01

    Cochlear and deep brain implants are prominent examples for neuronal prostheses with clinical relevance. Current research focuses on the improvement of the long-term functionality and the size reduction of neural interface electrodes. A promising approach is the application of carbon nanotubes (CNTs), either as pure electrodes but especially as coating material for electrodes. The interaction of CNTs with neuronal cells has shown promising results in various studies, but these appear to depend on the specific type of neurons as well as on the kind of nanotubes. To evaluate a potential application of carbon nanotube coatings for cochlear electrodes, it is necessary to investigate the cytocompatibility of carbon nanotube coatings on platinum for the specific type of neuron in the inner ear, namely spiral ganglion neurons. In this study we have combined the chemical processing of as-delivered CNTs, the fabrication of coatings on platinum, and the characterization of the electrical properties of the coatings as well as a general cytocompatibility testing and the first cell culture investigations of CNTs with spiral ganglion neurons. By applying a modification process to three different as-received CNTs via a reflux treatment with nitric acid, long-term stable aqueous CNT dispersions free of dispersing agents were obtained. These were used to coat platinum substrates by an automated spray-coating process. These coatings enhance the electrical properties of platinum electrodes, decreasing the impedance values and raising the capacitances. Cell culture investigations of the different CNT coatings on platinum with NIH3T3 fibroblasts attest an overall good cytocompatibility of these coatings. For spiral ganglion neurons, this can also be observed but a desired positive effect of the CNTs on the neurons is absent. Furthermore, we found that the well-established DAPI staining assay does not function on the coatings prepared from single-wall nanotubes. PMID:27385031

  1. Establishment of a long-term spiral ganglion neuron culture with reduced glial cell number: Effects of AraC on cell composition and neurons.

    PubMed

    Schwieger, Jana; Esser, Karl-Heinz; Lenarz, Thomas; Scheper, Verena

    2016-08-01

    Sensorineural deafness is mainly caused by damage to hair cells and degeneration of the spiral ganglion neurons (SGN). Cochlear implants can functionally replace lost hair cells and stimulate the SGN electrically. The benefit from cochlear implantation depends on the number and excitability of these neurons. To identify potential therapies for SGN protection, in vitro tests are carried out on spiral ganglion cells (SGC). A glial cell-reduced and neuron-enhanced culture of neonatal rat SGC under mitotic inhibition (cytarabine (AraC)) for up to seven days is presented. Serum containing and neurotrophin-enriched cultures with and without AraC-addition were analyzed after 4 and 7 days. The total number of cells was significantly reduced, while the proportion of neurons was greatly increased by AraC-treatment. Cell type-specific labeling demonstrated that nearly all fibroblasts and most of the glial cells were removed. Neither the neuronal survival, nor the neurite outgrowth or soma diameter were negatively affected. Additionally neurites remain partly free of surrounding non-neuronal cells. Recent culture conditions allow only for short-term cultivation of neonatal SGC and lack information on the influence of non-neuronal cells on SGN and of direct contact of neurites with test-materials. AraC-addition reduces the number of non-neuronal cells and increases the ratio of SGN in culture, without negative impact on neuronal viability. This treatment allows longer-term cultivation of SGC and provides deeper insight into SGN-glial cell interaction and the attachment of neurites on test-material surfaces. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Inhibition of mTOR by Rapamycin Results in Auditory Hair Cell Damage and Decreased Spiral Ganglion Neuron Outgrowth and Neurite Formation In Vitro

    PubMed Central

    Leitmeyer, Katharina; Glutz, Andrea; Radojevic, Vesna; Setz, Cristian; Huerzeler, Nathan; Bumann, Helen; Bodmer, Daniel; Brand, Yves

    2015-01-01

    Rapamycin is an antifungal agent with immunosuppressive properties. Rapamycin inhibits the mammalian target of rapamycin (mTOR) by blocking the mTOR complex 1 (mTORC1). mTOR is an atypical serine/threonine protein kinase, which controls cell growth, cell proliferation, and cell metabolism. However, less is known about the mTOR pathway in the inner ear. First, we evaluated whether or not the two mTOR complexes (mTORC1 and mTORC2, resp.) are present in the mammalian cochlea. Next, tissue explants of 5-day-old rats were treated with increasing concentrations of rapamycin to explore the effects of rapamycin on auditory hair cells and spiral ganglion neurons. Auditory hair cell survival, spiral ganglion neuron number, length of neurites, and neuronal survival were analyzed in vitro. Our data indicates that both mTOR complexes are expressed in the mammalian cochlea. We observed that inhibition of mTOR by rapamycin results in a dose dependent damage of auditory hair cells. Moreover, spiral ganglion neurite number and length of neurites were significantly decreased in all concentrations used compared to control in a dose dependent manner. Our data indicate that the mTOR may play a role in the survival of hair cells and modulates spiral ganglion neuronal outgrowth and neurite formation. PMID:25918725

  3. Inhibition of mTOR by Rapamycin Results in Auditory Hair Cell Damage and Decreased Spiral Ganglion Neuron Outgrowth and Neurite Formation In Vitro.

    PubMed

    Leitmeyer, Katharina; Glutz, Andrea; Radojevic, Vesna; Setz, Cristian; Huerzeler, Nathan; Bumann, Helen; Bodmer, Daniel; Brand, Yves

    2015-01-01

    Rapamycin is an antifungal agent with immunosuppressive properties. Rapamycin inhibits the mammalian target of rapamycin (mTOR) by blocking the mTOR complex 1 (mTORC1). mTOR is an atypical serine/threonine protein kinase, which controls cell growth, cell proliferation, and cell metabolism. However, less is known about the mTOR pathway in the inner ear. First, we evaluated whether or not the two mTOR complexes (mTORC1 and mTORC2, resp.) are present in the mammalian cochlea. Next, tissue explants of 5-day-old rats were treated with increasing concentrations of rapamycin to explore the effects of rapamycin on auditory hair cells and spiral ganglion neurons. Auditory hair cell survival, spiral ganglion neuron number, length of neurites, and neuronal survival were analyzed in vitro. Our data indicates that both mTOR complexes are expressed in the mammalian cochlea. We observed that inhibition of mTOR by rapamycin results in a dose dependent damage of auditory hair cells. Moreover, spiral ganglion neurite number and length of neurites were significantly decreased in all concentrations used compared to control in a dose dependent manner. Our data indicate that the mTOR may play a role in the survival of hair cells and modulates spiral ganglion neuronal outgrowth and neurite formation.

  4. Response profiles of murine spiral ganglion neurons on multi-electrode arrays

    NASA Astrophysics Data System (ADS)

    Hahnewald, Stefan; Tscherter, Anne; Marconi, Emanuele; Streit, Jürg; Widmer, Hans Rudolf; Garnham, Carolyn; Benav, Heval; Mueller, Marcus; Löwenheim, Hubert; Roccio, Marta; Senn, Pascal

    2016-02-01

    Objective. Cochlear implants (CIs) have become the gold standard treatment for deafness. These neuroprosthetic devices feature a linear electrode array, surgically inserted into the cochlea, and function by directly stimulating the auditory neurons located within the spiral ganglion, bypassing lost or not-functioning hair cells. Despite their success, some limitations still remain, including poor frequency resolution and high-energy consumption. In both cases, the anatomical gap between the electrode array and the spiral ganglion neurons (SGNs) is believed to be an important limiting factor. The final goal of the study is to characterize response profiles of SGNs growing in intimate contact with an electrode array, in view of designing novel CI devices and stimulation protocols, featuring a gapless interface with auditory neurons. Approach. We have characterized SGN responses to extracellular stimulation using multi-electrode arrays (MEAs). This setup allows, in our view, to optimize in vitro many of the limiting interface aspects between CIs and SGNs. Main results. Early postnatal mouse SGN explants were analyzed after 6-18 days in culture. Different stimulation protocols were compared with the aim to lower the stimulation threshold and the energy needed to elicit a response. In the best case, a four-fold reduction of the energy was obtained by lengthening the biphasic stimulus from 40 μs to 160 μs. Similarly, quasi monophasic pulses were more effective than biphasic pulses and the insertion of an interphase gap moderately improved efficiency. Finally, the stimulation with an external electrode mounted on a micromanipulator showed that the energy needed to elicit a response could be reduced by a factor of five with decreasing its distance from 40 μm to 0 μm from the auditory neurons. Significance. This study is the first to show electrical activity of SGNs on MEAs. Our findings may help to improve stimulation by and to reduce energy consumption of CIs and

  5. Netrin-1 controls sympathetic arterial innervation

    PubMed Central

    Brunet, Isabelle; Gordon, Emma; Han, Jinah; Cristofaro, Brunella; Broqueres-You, Dong; Liu, Chun; Bouvrée, Karine; Zhang, Jiasheng; del Toro, Raquel; Mathivet, Thomas; Larrivée, Bruno; Jagu, Julia; Pibouin-Fragner, Laurence; Pardanaud, Luc; Machado, Maria J.C.; Kennedy, Timothy E.; Zhuang, Zhen; Simons, Michael; Levy, Bernard I.; Tessier-Lavigne, Marc; Grenz, Almut; Eltzschig, Holger; Eichmann, Anne

    2014-01-01

    Autonomic sympathetic nerves innervate peripheral resistance arteries, thereby regulating vascular tone and controlling blood supply to organs. Despite the fundamental importance of blood flow control, how sympathetic arterial innervation develops remains largely unknown. Here, we identified the axon guidance cue netrin-1 as an essential factor required for development of arterial innervation in mice. Netrin-1 was produced by arterial smooth muscle cells (SMCs) at the onset of innervation, and arterial innervation required the interaction of netrin-1 with its receptor, deleted in colorectal cancer (DCC), on sympathetic growth cones. Function-blocking approaches, including cell type–specific deletion of the genes encoding Ntn1 in SMCs and Dcc in sympathetic neurons, led to severe and selective reduction of sympathetic innervation and to defective vasoconstriction in resistance arteries. These findings indicate that netrin-1 and DCC are critical for the control of arterial innervation and blood flow regulation in peripheral organs. PMID:24937433

  6. Neurons innervating the lamina in the butterfly, Papilio xuthus.

    PubMed

    Hamanaka, Yoshitaka; Shibasaki, Hiromichi; Kinoshita, Michiyo; Arikawa, Kentaro

    2013-05-01

    The butterfly Papilio xuthus has compound eyes with three types of ommatidia. Each type houses nine spectrally heterogeneous photoreceptors (R1-R9) that are divided into six spectral classes: ultraviolet, violet, blue, green, red, and broad-band. Analysis of color discrimination has shown that P. xuthus uses the ultraviolet, blue, green, and red receptors for foraging. The ultraviolet and blue receptors are long visual fibers terminating in the medulla, whereas the green and red receptors are short visual fibers terminating in the lamina. This suggests that processing of wavelength information begins in the lamina in P. xuthus, unlike in flies. To establish the anatomical basis of color discrimination mechanisms, we examined neurons innervating the lamina by injecting neurobiotin into this neuropil. We found that in addition to photoreceptors and lamina monopolar cells, three distinct groups of cells project fibers into the lamina. Their cell bodies are located (1) at the anterior rim of the medulla, (2) between the proximal surface of the medulla and lobula plate, and (3) in the medulla cell body rind. Neurobiotin injection also labeled distinct terminals in medulla layers 1, 2, 3, 4 and 5. Terminals in layer 4 belong to the long visual fibers (R1, 2 and 9), while arbors in layers 1, 2 and 3 probably correspond to terminals of three subtypes of lamina monopolar cells, respectively. Immunocytochemistry coupled with neurobiotin injection revealed their transmitter candidates; neurons in (1) and a subset of neurons in (2) are immunoreactive to anti-serotonin and anti-γ-aminobutyric acid, respectively.

  7. I h and HCN channels in murine spiral ganglion neurons: tonotopic variation, local heterogeneity, and kinetic model.

    PubMed

    Liu, Qing; Manis, Paul B; Davis, Robin L

    2014-08-01

    One of the major contributors to the response profile of neurons in the auditory pathways is the I h current. Its properties such as magnitude, activation, and kinetics not only vary among different types of neurons (Banks et al., J Neurophysiol 70:1420-1432, 1993; Fu et al., J Neurophysiol 78:2235-2245, 1997; Bal and Oertel, J Neurophysiol 84:806-817, 2000; Cao and Oertel, J Neurophysiol 94:821-832, 2005; Rodrigues and Oertel, J Neurophysiol 95:76-87, 2006; Yi et al., J Neurophysiol 103:2532-2543, 2010), but they also display notable diversity in a single population of spiral ganglion neurons (Mo and Davis, J Neurophysiol 78:3019-3027, 1997), the first neural element in the auditory periphery. In this study, we found from somatic recordings that part of the heterogeneity can be attributed to variation along the tonotopic axis because I h in the apical neurons have more positive half-activation voltage levels than basal neurons. Even within a single cochlear region, however, I h current properties are not uniform. To account for this heterogeneity, we provide immunocytochemical evidence for variance in the intracellular density of the hyperpolarization-activated cyclic nucleotide-gated channel α-subunit 1 (HCN1), which mediates I h current. We also observed different combinations of HCN1 and HCN4 α-subunits from cell to cell. Lastly, based on the physiological data, we performed kinetic analysis for the I h current and generated a mathematical model to better understand varied I h on spiral ganglion function. Regardless of whether I h currents are recorded at the nerve terminals (Yi et al., J Neurophysiol 103:2532-2543, 2010) or at the somata of spiral ganglion neurons, they have comparable mean half-activation voltage and induce similar resting membrane potential changes, and thus our model may also provide insights into the impact of I h on synaptic physiology.

  8. Inner ear development: building a spiral ganglion and an organ of Corti out of unspecified ectoderm.

    PubMed

    Fritzsch, Bernd; Pan, Ning; Jahan, Israt; Elliott, Karen L

    2015-07-01

    The mammalian inner ear develops from a placodal thickening into a complex labyrinth of ducts with five sensory organs specialized to detect position and movement in space. The mammalian ear also develops a spiraled cochlear duct containing the auditory organ, the organ of Corti (OC), specialized to translate sound into hearing. Development of the OC from a uniform sheet of ectoderm requires unparalleled precision in the topological developmental engineering of four different general cell types, namely sensory neurons, hair cells, supporting cells, and general otic epithelium, into a mosaic of ten distinctly recognizable cell types in and around the OC, each with a unique distribution. Moreover, the OC receives unique innervation by ear-derived spiral ganglion afferents and brainstem-derived motor neurons as efferents and requires neural-crest-derived Schwann cells to form myelin and neural-crest-derived cells to induce the stria vascularis. This transformation of a sheet of cells into a complicated interdigitating set of cells necessitates the orchestrated expression of multiple transcription factors that enable the cellular transformation from ectoderm into neurosensory cells forming the spiral ganglion neurons (SGNs), while simultaneously transforming the flat epithelium into a tube, the cochlear duct, housing the OC. In addition to the cellular and conformational changes forming the cochlear duct with the OC, changes in the surrounding periotic mesenchyme form passageways for sound to stimulate the OC. We review molecular developmental data, generated predominantly in mice, in order to integrate the well-described expression changes of transcription factors and their actions, as revealed in mutants, in the formation of SGNs and OC in the correct position and orientation with suitable innervation. Understanding the molecular basis of these developmental changes leading to the formation of the mammalian OC and highlighting the gaps in our knowledge might guide in

  9. Inner ear development: Building a spiral ganglion and an organ of Corti out of unspecified ectoderm

    PubMed Central

    Fritzsch, Bernd; Pan, Ning; Jahan, Israt; Elliott, Karen L.

    2014-01-01

    The mammalian inner ear develops from a placodal thickening into a complex labyrinth of ducts with five sensory organs specialized to detect position and movement in space. In addition, the mammalian ear develops a spiraled cochlear duct containing the auditory organ, the organ of Corti (OC), specialized to translate sound into hearing. Developing the OC out of a uniform sheet of ectoderm requires an unparalleled precision in topological developmental engineering of four different general cell types, sensory neurons, hair cells, supporting cells, and general otic epithelium, into a mosaic of ten distinctly recognizable cell types in and around the OC, each with a unique distribution. In addition, the OC receives a unique innervation by ear-derived spiral ganglion afferents and brainstem-derived motor neurons as efferents, and requires neural crest-derived Schwann cells to form myelin and neural crest-derived cells to induce the stria vascularis. To achieve this transformation of a sheet of cells into a complicated interdigitating set of cells necessitates the orchestrated expression of multiple transcription factors that enable the cellular transformation from ectoderm into neurosensory cells forming the spiral ganglion neurons (SGN) while simultaneously transforming the flat epithelium into a tube, the cochlear duct housing the OC. In addition to the cellular and conformational changes to make the cochlear duct with the OC, additional changes in the surrounding periotic mesenchyme form passageways for sound to stimulate the OC. This article reviews molecular developmental data generated predominantly in mice. The available data are ordered into a plausible scenario that integrates the well described expression changes of transcription factors and their actions revealed in mouse mutants for formation of SGNs and OC in the right position and orientation with the right kind of innervation. Understanding the molecular basis of these developmental changes leading to

  10. Cholinergic innervation of the zebrafish olfactory bulb.

    PubMed

    Edwards, Jeffrey G; Greig, Ann; Sakata, Yoko; Elkin, Dimitry; Michel, William C

    2007-10-20

    A number of fish species receive forebrain cholinergic input but two recent reports failed to find evidence of cholinergic cell bodies or fibers in the olfactory bulbs (OBs) of zebrafish. In the current study we sought to confirm these findings by examining the OBs of adult zebrafish for choline acetyltransferase (ChAT) immunoreactivity. We observed a diffuse network of varicose ChAT-positive fibers associated with the nervus terminalis ganglion innervating the mitral cell/glomerular layer (MC/GL). The highest density of these fibers occurred in the anterior region of the bulb. The cellular targets of this cholinergic input were identified by exposing isolated OBs to acetylcholine receptor (AChR) agonists in the presence of agmatine (AGB), a cationic probe that permeates some active ion channels. Nicotine (50 microM) significantly increased the activity-dependent labeling of mitral cells and juxtaglomerular cells but not of tyrosine hydroxlase-positive dopaminergic neurons (TH(+) cells) compared to control preparations. The nAChR antagonist mecamylamine, an alpha7-nAChR subunit-specific antagonist, calcium-free artificial cerebrospinal fluid, or a cocktail of ionotropic glutamate receptor (iGluR) antagonists each blocked nicotine-stimulated labeling, suggesting that AGB does not enter the labeled neurons through activated nAChRs but rather through activated iGluRs following ACh-stimulated glutamate release. Deafferentation of OBs did not eliminate nicotine-stimulated labeling, suggesting that cholinergic input is primarily acting on bulbar neurons. These findings confirm the presence of a functioning cholinergic system in the zebrafish OB.

  11. Spatial distribution of intermingling pools of projection neurons with distinct targets: A 3D analysis of the commissural ganglia in Cancer borealis.

    PubMed

    Follmann, Rosangela; Goldsmith, Christopher John; Stein, Wolfgang

    2017-06-01

    Projection neurons play a key role in carrying long-distance information between spatially distant areas of the nervous system and in controlling motor circuits. Little is known about how projection neurons with distinct anatomical targets are organized, and few studies have addressed their spatial organization at the level of individual cells. In the paired commissural ganglia (CoGs) of the stomatogastric nervous system of the crab Cancer borealis, projection neurons convey sensory, motor, and modulatory information to several distinct anatomical regions. While the functions of descending projection neurons (dPNs) which control downstream motor circuits in the stomatogastric ganglion are well characterized, their anatomical distribution as well as that of neurons projecting to the labrum, brain, and thoracic ganglion have received less attention. Using cell membrane staining, we investigated the spatial distribution of CoG projection neurons in relation to all CoG neurons. Retrograde tracing revealed that somata associated with different axonal projection pathways were not completely spatially segregated, but had distinct preferences within the ganglion. Identified dPNs had diameters larger than 70% of CoG somata and were restricted to the most medial and anterior 25% of the ganglion. They were contained within a cluster of motor neurons projecting through the same nerve to innervate the labrum, indicating that soma position was independent of function and target area. Rather, our findings suggest that CoG neurons projecting to a variety of locations follow a generalized rule: for all nerve pathway origins, the soma cluster centroids in closest proximity are those whose axons project down that pathway. © 2017 Wiley Periodicals, Inc.

  12. Defective pulmonary innervation and autonomic imbalance in congenital diaphragmatic hernia

    PubMed Central

    Lath, Nikesh R.; Galambos, Csaba; Rocha, Alejandro Best; Malek, Marcus; Gittes, George K.

    2012-01-01

    Congenital diaphragmatic hernia (CDH) is associated with significant mortality due to lung hypoplasia and pulmonary hypertension. The role of embryonic pulmonary innervation in normal lung development and lung maldevelopment in CDH has not been defined. We hypothesize that developmental defects of intrapulmonary innervation, in particular autonomic innervation, occur in CDH. This abnormal embryonic pulmonary innervation may contribute to lung developmental defects and postnatal physiological derangement in CDH. To define patterns of pulmonary innervation in CDH, human CDH and control lung autopsy specimens were stained with the pan-neural marker S-100. To further characterize patterns of overall and autonomic pulmonary innervation during lung development in CDH, the murine nitrofen model of CDH was utilized. Immunostaining for protein gene product 9.5 (a pan-neuronal marker), tyrosine hydroxylase (a sympathetic marker), vesicular acetylcholine transporter (a parasympathetic marker), or VIP (a parasympathetic marker) was performed on lung whole mounts and analyzed via confocal microscopy and three-dimensional reconstruction. Peribronchial and perivascular neuronal staining pattern is less complex in human CDH than control lung. In mice, protein gene product 9.5 staining reveals less complex neuronal branching and decreased neural tissue in nitrofen-treated lungs from embryonic day 12.5 to 16.5 compared with controls. Furthermore, nitrofen-treated embryonic lungs exhibited altered autonomic innervation, with a relative increase in sympathetic nerve staining and a decrease in parasympathetic nerve staining compared with controls. These results suggest a primary defect in pulmonary neural developmental in CDH, resulting in less complex neural innervation and autonomic imbalance. Defective embryonic pulmonary innervation may contribute to lung developmental defects and postnatal physiological derangement in CDH. PMID:22114150

  13. Functional role of NT-3 in synapse regeneration by spiral ganglion neurons on inner hair cells after excitotoxic trauma in vitro

    PubMed Central

    Wang, Qiong; Green, Steven H.

    2011-01-01

    Spiral ganglion neurons (SGNs) are postsynaptic to hair cells and project to the brainstem. The inner hair cell (IHC) to SGN synapse is susceptible to glutamate excitotoxicity and to acoustic trauma, with potentially adverse consequences to long-term SGN survival. We used a cochlear explant culture from P6 rat pups consisting of a portion of organ of Corti maintained intact with the corresponding portion of spiral ganglion to investigate excitotoxic damage to IHC-SGN synapses in vitro. The normal innervation pattern is preserved in vitro. Brief treatment with NMDA and kainate results in loss of IHC–SGN synapses and degeneration of the distal type 1 SGN peripheral axons, mimicking damage to SGN peripheral axons caused by excitotoxicity or noise in vivo. The number of IHC presynaptic ribbons is not significantly altered. Reinnervation of IHCs occurs and regenerating axons remain restricted to the IHC row. However, the number of postsynaptic densities (PSDs) does not fully recover and not all axons regrow to the IHCs. Addition of either NT-3 or BDNF increases axon growth and synaptogenesis. Selective blockade of endogenous NT-3 signaling with TrkC-IgG reduced regeneration of axons and PSDs, but TrkB-IgG, which blocks BDNF, has no such effect, indicating that endogenous NT-3 is necessary for SGN axon growth and synaptogenesis. Remarkably, TrkC-IgG reduced axon growth and synaptogenesis even in the presence of BDNF, indicating that endogenous NT-3 has a distinctive role, not mimicked by BDNF, in promoting SGN axon growth in the organ of Corti and synaptogenesis on IHCs. PMID:21613508

  14. Protective Effect of Edaravone on Glutamate-Induced Neurotoxicity in Spiral Ganglion Neurons

    PubMed Central

    Bai, Xiaohui; Zhang, Chi; Chen, Aiping; Liu, Wenwen; Li, Jianfeng; Sun, Qian

    2016-01-01

    Glutamate is an important excitatory neurotransmitter in mammalian brains, but excessive amount of glutamate can cause “excitotoxicity” and lead to neuronal death. As bipolar neurons, spiral ganglion neurons (SGNs) function as a “bridge” in transmitting auditory information from the ear to the brain and can be damaged by excessive glutamate which results in sensorineural hearing loss. In this study, edaravone, a free radical scavenger, elicited both preventative and therapeutic effects on SGNs against glutamate-induced cell damage that was tested by MTT assay and trypan blue staining. Ho.33342 and PI double staining revealed that apoptosis as well as necrosis took place during glutamate treatment, and apoptosis was the main type of cell death. Oxidative stress played an important role in glutamate-induced cell damage but pretreatment with edaravone alleviated cell death. Results of western blot demonstrated that mechanisms underlying the toxicity of glutamate and the protection of edaravone were related to the PI3K pathway and Bcl-2 protein family. PMID:27957345

  15. Enhanced non-peptidergic intraepidermal fiber density and an expanded subset of chloroquine-responsive trigeminal neurons in a mouse model of dry skin itch

    PubMed Central

    Valtcheva, Manouela V.; Samineni, Vijay K.; Golden, Judith P.; Gereau, Robert W.; Davidson, Steve

    2015-01-01

    Chronic pruritic conditions are often associated with dry skin and loss of epidermal barrier integrity. In this study, repeated application of acetone and ether, followed by water (AEW) to the cheek skin of mice produced persistent scratching behavior with no increase in pain-related forelimb wiping, indicating the generation of itch without pain. Cheek skin immunohistochemistry showed a 64.5% increase in total epidermal innervation in AEW-treated mice compared to water-treated controls. This increase was independent of scratching, because mice prevented from scratching by Elizabethan collars showed similar hyperinnervation. To determine the effects of dry skin treatment on specific subsets of peripheral fibers, we examined Ret-positive, CGRP-positive, and GFRα3-positive intraepidermal fiber density. AEW treatment increased Ret-positive fibers, but not CGRP-positive or GFRα3-positive fibers, suggesting that a specific subset of non-peptidergic fibers could contribute to dry skin itch. To test whether trigeminal ganglion neurons innervating the cheek exhibited altered excitability after AEW treatment, primary cultures of retrogradely labeled neurons were examined using whole-cell patch clamp electrophysiology. AEW treatment produced no differences in measures of excitability compared to water-treated controls. In contrast, a significantly higher proportion of trigeminal ganglion neurons were responsive to the non-histaminergic pruritogen chloroquine after AEW treatment. We conclude that non-peptidergic, Ret-positive fibers and chloroquine-sensitive neurons may contribute to dry skin pruritus. PMID:25640289

  16. Tumor necrosis factor-α stimulation of calcitonin gene-related peptide expression and secretion from rat trigeminal ganglion neurons

    PubMed Central

    Bowen, Elizabeth J.; Schmidt, Thomas W.; Firm, Christina S.; Russo, Andrew F.; Durham, Paul L.

    2006-01-01

    Expression of the neuropeptide calcitonin gene-related peptide (CGRP) in trigeminal ganglion is implicated in neurovascular headaches and temporomandibular joint disorders. Elevation of cytokines contributes to the pathology of these diseases. However, a connection between cytokines and CGRP gene expression in trigeminal ganglion nerves has not been established. We have focused on the effects of the cytokine tumor necrosis factorα (TNFα). TNFR1 receptors were found on the majority of CGRP-containing rat trigeminal ganglion neurons. Treatment of cultures with TNFα stimulated CGRP secretion. In addition, the intracellular signaling intermediate from the TNFR1 receptor, ceramide, caused a similar increase in CGRP release. TNFα caused a coordinate increase in CGRP promoter activity. TNFα treatment activated the transcription factor NF-κB, as well as the Jun N-terminal kinase (JNK) and p38 mitogen-activated protein (MAP) kinase pathways. The importance of TNFα induction of MAP kinase pathways was demonstrated by inhibiting MAP kinases with pharmacological reagents and gene transfer with an adenoviral vector encoding MAP kinase phosphatase-1 (MKP-1). We propose that selective and regulated inhibition of MAP kinases in trigeminal neurons may be therapeutically beneficial for inflammatory disorders involving elevated CGRP levels. PMID:16277606

  17. Apoptosis of Limb Innervating Motor Neurons and Erosion of Motor Pool Identity Upon Lineage Specific Dicer Inactivation

    PubMed Central

    Chen, Jun-An; Wichterle, Hynek

    2012-01-01

    Diversification of mammalian spinal motor neurons into hundreds of subtypes is critical for the maintenance of body posture and coordination of complex movements. Motor neuron differentiation is controlled by extrinsic signals that regulate intrinsic genetic programs specifying and consolidating motor neuron subtype identity. While transcription factors have been recognized as principal regulators of the intrinsic program, the role of posttranscriptional regulations has not been systematically tested. MicroRNAs produced by Dicer mediated cleavage of RNA hairpins contribute to gene regulation by posttranscriptional silencing. Here we used Olig2-cre conditional deletion of Dicer gene in motor neuron progenitors to examine effects of miRNA biogenesis disruption on postmitotic spinal motor neurons. We report that despite the initial increase in the number of motor neuron progenitors, disruption of Dicer function results in a loss of many limb- and sympathetic ganglia-innervating spinal motor neurons. Furthermore, it leads to defects in motor pool identity specification. Thus, our results indicate that miRNAs are an integral part of the genetic program controlling motor neuron survival and acquisition of subtype specific properties. PMID:22629237

  18. Direct Reprogramming of Spiral Ganglion Non-neuronal Cells into Neurons: Toward Ameliorating Sensorineural Hearing Loss by Gene Therapy

    PubMed Central

    Noda, Teppei; Meas, Steven J.; Nogami, Jumpei; Amemiya, Yutaka; Uchi, Ryutaro; Ohkawa, Yasuyuki; Nishimura, Koji; Dabdoub, Alain

    2018-01-01

    Primary auditory neurons (PANs) play a critical role in hearing by transmitting sound information from the inner ear to the brain. Their progressive degeneration is associated with excessive noise, disease and aging. The loss of PANs leads to permanent hearing impairment since they are incapable of regenerating. Spiral ganglion non-neuronal cells (SGNNCs), comprised mainly of glia, are resident within the modiolus and continue to survive after PAN loss. These attributes make SGNNCs an excellent target for replacing damaged PANs through cellular reprogramming. We used the neurogenic pioneer transcription factor Ascl1 and the auditory neuron differentiation factor NeuroD1 to reprogram SGNNCs into induced neurons (iNs). The overexpression of both Ascl1 and NeuroD1 in vitro generated iNs at high efficiency. Transcriptome analyses revealed that iNs displayed a transcriptome profile resembling that of endogenous PANs, including expression of several key markers of neuronal identity: Tubb3, Map2, Prph, Snap25, and Prox1. Pathway analyses indicated that essential pathways in neuronal growth and maturation were activated in cells upon neuronal induction. Furthermore, iNs extended projections toward cochlear hair cells and cochlear nucleus neurons when cultured with each respective tissue. Taken together, our study demonstrates that PAN-like neurons can be generated from endogenous SGNNCs. This work suggests that gene therapy can be a viable strategy to treat sensorineural hearing loss caused by degeneration of PANs. PMID:29492404

  19. Merkel Cell-Driven BDNF Signaling Specifies SAI Neuron Molecular and Electrophysiological Phenotypes.

    PubMed

    Reed-Geaghan, Erin G; Wright, Margaret C; See, Lauren A; Adelman, Peter C; Lee, Kuan Hsien; Koerber, H Richard; Maricich, Stephen M

    2016-04-13

    The extent to which the skin instructs peripheral somatosensory neuron maturation is unknown. We studied this question in Merkel cell-neurite complexes, where slowly adapting type I (SAI) neurons innervate skin-derived Merkel cells. Transgenic mice lacking Merkel cells had normal dorsal root ganglion (DRG) neuron numbers, but fewer DRG neurons expressed the SAI markers TrkB, TrkC, and Ret. Merkel cell ablation also decreased downstream TrkB signaling in DRGs, and altered the expression of genes associated with SAI development and function. Skin- and Merkel cell-specific deletion of Bdnf during embryogenesis, but not postnatal Bdnf deletion or Ntf3 deletion, reproduced these results. Furthermore, prototypical SAI electrophysiological signatures were absent from skin regions where Bdnf was deleted in embryonic Merkel cells. We conclude that BDNF produced by Merkel cells during a precise embryonic period guides SAI neuron development, providing the first direct evidence that the skin instructs sensory neuron molecular and functional maturation. Peripheral sensory neurons show incredible phenotypic and functional diversity that is initiated early by cell-autonomous and local environmental factors found within the DRG. However, the contribution of target tissues to subsequent sensory neuron development remains unknown. We show that Merkel cells are required for the molecular and functional maturation of the SAI neurons that innervate them. We also show that this process is controlled by BDNF signaling. These findings provide new insights into the regulation of somatosensory neuron development and reveal a novel way in which Merkel cells participate in mechanosensation. Copyright © 2016 the authors 0270-6474/16/364362-15$15.00/0.

  20. Pulsed infrared radiation excites cultured neonatal spiral and vestibular ganglion neurons by modulating mitochondrial calcium cycling

    PubMed Central

    Lumbreras, Vicente; Bas, Esperanza; Gupta, Chhavi

    2014-01-01

    Cochlear implants are currently the most effective solution for profound sensorineural hearing loss, and vestibular prostheses are under development to treat bilateral vestibulopathies. Electrical current spread in these neuroprostheses limits channel independence and, in some cases, may impair their performance. In comparison, optical stimuli that are spatially confined may result in a significant functional improvement. Pulsed infrared radiation (IR) has previously been shown to elicit responses in neurons. This study analyzes the response of neonatal rat spiral and vestibular ganglion neurons in vitro to IR (wavelength = 1,863 nm) using Ca2+ imaging. Both types of neurons responded consistently with robust intracellular Ca2+ ([Ca2+]i) transients that matched the low-frequency IR pulses applied (4 ms, 0.25–1 pps). Radiant exposures of ∼637 mJ/cm2 resulted in continual neuronal activation. Temperature or [Ca2+] variations in the media did not alter the IR-evoked transients, ruling out extracellular Ca2+ involvement or primary mediation by thermal effects on the plasma membrane. While blockage of Na+, K+, and Ca2+ plasma membrane channels did not alter the IR-evoked response, blocking of mitochondrial Ca2+ cycling with CGP-37157 or ruthenium red reversibly inhibited the IR-evoked [Ca2+]i transients. Additionally, the magnitude of the IR-evoked transients was dependent on ryanodine and cyclopiazonic acid-dependent Ca2+ release. These results suggest that IR modulation of intracellular calcium cycling contributes to stimulation of spiral and vestibular ganglion neurons. As a whole, the results suggest selective excitation of neurons in the IR beam path and the potential of IR stimulation in future auditory and vestibular prostheses. PMID:24920028

  1. Pulsed infrared radiation excites cultured neonatal spiral and vestibular ganglion neurons by modulating mitochondrial calcium cycling.

    PubMed

    Lumbreras, Vicente; Bas, Esperanza; Gupta, Chhavi; Rajguru, Suhrud M

    2014-09-15

    Cochlear implants are currently the most effective solution for profound sensorineural hearing loss, and vestibular prostheses are under development to treat bilateral vestibulopathies. Electrical current spread in these neuroprostheses limits channel independence and, in some cases, may impair their performance. In comparison, optical stimuli that are spatially confined may result in a significant functional improvement. Pulsed infrared radiation (IR) has previously been shown to elicit responses in neurons. This study analyzes the response of neonatal rat spiral and vestibular ganglion neurons in vitro to IR (wavelength = 1,863 nm) using Ca(2+) imaging. Both types of neurons responded consistently with robust intracellular Ca(2+) ([Ca(2+)]i) transients that matched the low-frequency IR pulses applied (4 ms, 0.25-1 pps). Radiant exposures of ∼637 mJ/cm(2) resulted in continual neuronal activation. Temperature or [Ca(2+)] variations in the media did not alter the IR-evoked transients, ruling out extracellular Ca(2+) involvement or primary mediation by thermal effects on the plasma membrane. While blockage of Na(+), K(+), and Ca(2+) plasma membrane channels did not alter the IR-evoked response, blocking of mitochondrial Ca(2+) cycling with CGP-37157 or ruthenium red reversibly inhibited the IR-evoked [Ca(2+)]i transients. Additionally, the magnitude of the IR-evoked transients was dependent on ryanodine and cyclopiazonic acid-dependent Ca(2+) release. These results suggest that IR modulation of intracellular calcium cycling contributes to stimulation of spiral and vestibular ganglion neurons. As a whole, the results suggest selective excitation of neurons in the IR beam path and the potential of IR stimulation in future auditory and vestibular prostheses. Copyright © 2014 the American Physiological Society.

  2. Two distinct classes of functional α7-containing nicotinic receptor on rat superior cervical ganglion neurons

    PubMed Central

    Cuevas, Javier; Roth, Adelheid L; Berg, Darwin K

    2000-01-01

    Nicotinic acetylcholine receptors (nAChRs) that bind α-bungarotoxin (αBgt) were studied on isolated rat superior cervical ganglion (SCG) neurons using whole-cell patch clamp recording techniques.Rapid application of ACh onto the soma of voltage clamped neurons evoked a slowly desensitizing current that was reversibly blocked by αBgt (50 nm). The toxin-sensitive current constituted on average about half of the peak whole-cell response evoked by ACh.Nanomolar concentrations of methyllycaconitine blocked the αBgt-sensitive component of the ACh-evoked current as did intracellular dialysis with an anti-α7 monoclonal antibody. The results indicate that the slowly reversible toxin-sensitive response elicited by ACh arises from activation of an unusual class of α7-containing receptor (α7-nAChR) similar to that reported previously for rat intracardiac ganglion neurons.A second class of functional α7-nAChR was identified on some SCG neurons by using rapid application of choline to elicit responses. In these cases a biphasic response was obtained, which included a rapidly desensitizing component that was blocked by αBgt in a pseudo-irreversible manner. The pharmacology and kinetics of the responses resembled those previously attributed to α7-nAChRs in a number of other neuronal cell types.Experiments measuring the dissociation rate of 125I-labelled αBgt from SCG neurons revealed two classes of toxin-binding site. The times for toxin dissociation were consistent with those required to reverse blockade of the two kinds of αBgt-sensitive response.These results indicate that rat SCG neurons express two types of functional α7-nAChR, differing in pharmacology, desensitization and reversibility of αBgt blockade. PMID:10856125

  3. Noradrenergic and cholinergic innervation of the bone marrow.

    PubMed

    Artico, Marco; Bosco, Sandro; Cavallotti, Carlo; Agostinelli, Enzo; Giuliani-Piccari, Gabriella; Sciorio, Salvatore; Cocco, Lucio; Vitale, Marco

    2002-07-01

    Bone marrow is supplied by sensory and autonomic innervation. Although it is well established that hematopoiesis is regulated by cytokines and cell-to-cell contacts, the role played by neuromediators on the proliferation, differentiation and release of hematopoietic cells is still controversial. We studied the innervation of rat femur bone marrow by means of fluorescence histochemistry and immunohistochemistry. Glyoxylic acid-induced fluorescence was used to demonstrate catecholaminergic nerve fibers. The immunoperoxidase method with nickel amplification was applied to detect the distribution of nerve fibers using antibodies against the general neuronal marker PGP 9.5 (neuron-specific cytoplasmic protein), while the cholinacetyltransferase immunoreactivity was studied by immunohistochemistry. Our results show the presence of an extensive network of innervation in the rat bone marrow, providing a morphological basis for the neural modulation of hemopoiesis.

  4. Neurotrophin-4 regulates the survival of gustatory neurons earlier in development using a different mechanism than brain-derived neurotrophic factor.

    PubMed

    Patel, Ami V; Krimm, Robin F

    2012-05-01

    The number of neurons in the geniculate ganglion that are available to innervate taste buds is regulated by neurotrophin-4 (NT-4) and brain-derived neurotrophic factor (BDNF). Our goal for the current study was to examine the timing and mechanism of NT-4-mediated regulation of geniculate neuron number during development. We discovered that NT-4 mutant mice lose 33% of their geniculate neuronal cells between E10.5 and E11.5. By E11.5, geniculate axons have just reached the tongue and do not yet innervate their gustatory targets; thus, NT-4 does not function as a target-derived growth factor. At E11.5, no difference was observed in proliferating cells or the rate at which cells exit the cell cycle between NT-4 mutant and wild type ganglia. Instead, there was an increase in TUNEL-labeling, indicating an increase in cell death in Ntf4(-/-) mice compared with wild types. However, activated caspase-3, which is up-regulated in the absence of BDNF, was not increased. This finding indicates that cell death initiated by NT-4-removal occurs through a different cell death pathway than BDNF-removal. We observed no additional postnatal loss of taste buds or neurons in Ntf4(-/-) mice. Thus, during early embryonic development, NT-4 produced in the ganglion and along the projection pathway inhibits cell death through an activated caspase-3 independent mechanism. Therefore, compared to BDNF, NT-4 plays distinct roles in gustatory development; differences include timing, source of neurotrophin, and mechanism of action. Published by Elsevier Inc.

  5. Cocoa Enriched Diets Enhance Expression of Phosphatases and Decrease Expression of Inflammatory Molecules in Trigeminal Ganglion Neurons

    PubMed Central

    Cady, Ryan J.; Durham, Paul L.

    2010-01-01

    Activation of trigeminal nerves and release of neuropeptides that promote inflammation are implicated in the underlying pathology of migraine and temporomandibular joint (TMJ) disorders. The overall response of trigeminal nerves to peripheral inflammatory stimuli involves a balance between enzymes that promote inflammation, kinases, and those that restore homeostasis, phosphatases. The goal of this study was to determine the effects of a cocoa-enriched diet on the expression of key inflammatory proteins in trigeminal ganglion neurons under basal and inflammatory conditions. Rats were fed a control diet or an isocaloric diet enriched in cocoa for 14 days prior to an injection of noxious stimuli to cause acute or chronic excitation of trigeminal neurons. In animals fed a cocoa-enriched diet, basal levels of the mitogen-activated kinase (MAP) phosphatases MKP-1 and MKP-3 were elevated in neurons. Importantly, the stimulatory effects of acute or chronic peripheral inflammation on neuronal expression of the MAPK p38 and extracellular signal-regulated kinases (ERK) were significantly repressed in response to cocoa. Similarly, dietary cocoa significantly suppressed basal neuronal expression of calcitonin gene-related peptide (CGRP) as well as stimulated levels of the inducible form of nitric oxide synthase (iNOS), proteins implicated in the underlying pathology of migraine and TMJ disorders. To our knowledge, this is first evidence that a dietary supplement can cause upregulation of MKP, and that cocoa can prevent inflammatory responses in trigeminal ganglion neurons. Furthermore, our data provide evidence that cocoa contains biologically active compounds that would be beneficial in the treatment of migraine and TMJ disorders. PMID:20138852

  6. Neurogenin 1 Null Mutant Ears Develop Fewer, Morphologically Normal Hair Cells in Smaller Sensory Epithelia Devoid of Innervation

    PubMed Central

    Ma, Qiufu; Anderson, David J.

    2000-01-01

    The proneuronal gene neurogenin 1 (ngn1) is essential for development of the inner-ear sensory neurons that are completely absent in ngn1 null mutants. Neither afferent, efferent, nor autonomic nerve fibers were detected in the ears of ngn1 null mutants. We suggest that efferent and autonomic fibers are lost secondarily to the absence of afferents. In this article we show that ngn1 null mutants develop smaller sensory epithelia with morphologically normal hair cells. In particular, the saccule is reduced dramatically and forms only a small recess with few hair cells along a duct connecting the utricle with the cochlea. Hair cells of newborn ngn1 null mutants show no structural abnormalities, suggesting that embryonic development of hair cells is independent of innervation. However, the less regular pattern of dispersal within sensory epithelia may be caused by some effects of afferents or to the stunted growth of the sensory epithelia. Tracing of facial and stato-acoustic nerves in control and ngn1 null mutants showed that only the distal, epibranchial, placode-derived sensory neurons of the geniculate ganglion exist in mutants. Tracing further showed that these geniculate ganglion neurons project exclusively to the solitary tract. In addition to the normal complement of facial branchial and visceral motoneurons, ngn1 null mutants have some trigeminal motoneurons and contralateral inner-ear efferents projecting, at least temporarily, through the facial nerve. These data suggest that some neurons in the brainstem (e.g., inner-ear efferents, trigeminal motoneurons) require afferents to grow along and redirect to ectopic cranial nerve roots in the absence of their corresponding sensory roots. PMID:11545141

  7. Chlorogenic acid alters the voltage-gated potassium channel currents of trigeminal ganglion neurons

    PubMed Central

    Zhang, Yu-Jiao; Lu, Xiao-Wen; Song, Ning; Kou, Liang; Wu, Min-Ke; Liu, Fei; Wang, Hang; Shen, Jie-Fei

    2014-01-01

    Chlorogenic acid (5-caffeoylquinic acid, CGA) is a phenolic compound that is found ubiquitously in plants, fruits and vegetables and is formed via the esterification of caffeic acid and quinic acid. In addition to its notable biological functions against cardiovascular diseases, type-2 diabetes and inflammatory conditions, CGA was recently hypothesized to be an alternative for the treatment of neurological diseases such as Alzheimer's disease and neuropathic pain disorders. However, its mechanism of action is unclear. Voltage-gated potassium channel (Kv) is a crucial factor in the electro-physiological processes of sensory neurons. Kv has also been identified as a potential therapeutic target for inflammation and neuropathic pain disorders. In this study, we analysed the effects of CGA on the two main subtypes of Kv in trigeminal ganglion neurons, namely, the IK,A and IK,V channels. Trigeminal ganglion (TRG) neurons were acutely disassociated from the rat TRG, and two different doses of CGA (0.2 and 1 mmol⋅L−1) were applied to the cells. Whole-cell patch-clamp recordings were performed to observe alterations in the activation and inactivation properties of the IK,A and IK,V channels. The results demonstrated that 0.2 mmol⋅L−1 CGA decreased the peak current density of IK,A. Both 0.2 mmol⋅L−1 and 1 mmol⋅L−1 CGA also caused a significant reduction in the activation and inactivation thresholds of IK,A and IK,V. CGA exhibited a strong effect on the activation and inactivation velocities of IK,A and IK,V. These findings provide novel evidence explaining the biological effects of CGA, especially regarding its neurological effects. PMID:25394592

  8. The Transfection of BDNF to Dopamine Neurons Potentiates the Effect of Dopamine D3 Receptor Agonist Recovering the Striatal Innervation, Dendritic Spines and Motor Behavior in an Aged Rat Model of Parkinson’s Disease

    PubMed Central

    Razgado-Hernandez, Luis F.; Espadas-Alvarez, Armando J.; Reyna-Velazquez, Patricia; Sierra-Sanchez, Arturo; Anaya-Martinez, Veronica; Jimenez-Estrada, Ismael; Bannon, Michael J.; Martinez-Fong, Daniel; Aceves-Ruiz, Jorge

    2015-01-01

    The progressive degeneration of the dopamine neurons of the pars compacta of substantia nigra and the consequent loss of the dopamine innervation of the striatum leads to the impairment of motor behavior in Parkinson’s disease. Accordingly, an efficient therapy of the disease should protect and regenerate the dopamine neurons of the substantia nigra and the dopamine innervation of the striatum. Nigral neurons express Brain Derived Neurotropic Factor (BDNF) and dopamine D3 receptors, both of which protect the dopamine neurons. The chronic activation of dopamine D3 receptors by their agonists, in addition, restores, in part, the dopamine innervation of the striatum. Here we explored whether the over-expression of BDNF by dopamine neurons potentiates the effect of the activation of D3 receptors restoring nigrostriatal innervation. Twelve-month old Wistar rats were unilaterally injected with 6-hydroxydopamine into the striatum. Five months later, rats were treated with the D3 agonist 7-hydroxy-N,N-di-n-propy1-2-aminotetralin (7-OH-DPAT) administered i.p. during 4½ months via osmotic pumps and the BDNF gene transfection into nigral cells using the neurotensin-polyplex nanovector (a non-viral transfection) that selectively transfect the dopamine neurons via the high-affinity neurotensin receptor expressed by these neurons. Two months after the withdrawal of 7-OH-DPAT when rats were aged (24 months old), immunohistochemistry assays were made. The over-expression of BDNF in rats receiving the D3 agonist normalized gait and motor coordination; in addition, it eliminated the muscle rigidity produced by the loss of dopamine. The recovery of motor behavior was associated with the recovery of the nigral neurons, the dopamine innervation of the striatum and of the number of dendritic spines of the striatal neurons. Thus, the over-expression of BDNF in dopamine neurons associated with the chronic activation of the D3 receptors appears to be a promising strategy for restoring

  9. Tumor necrosis factor-alpha stimulation of calcitonin gene-related peptide expression and secretion from rat trigeminal ganglion neurons.

    PubMed

    Bowen, Elizabeth J; Schmidt, Thomas W; Firm, Christina S; Russo, Andrew F; Durham, Paul L

    2006-01-01

    Expression of the neuropeptide calcitonin gene-related peptide (CGRP) in trigeminal ganglion is implicated in neurovascular headaches and temporomandibular joint disorders. Elevation of cytokines contributes to the pathology of these diseases. However, a connection between cytokines and CGRP gene expression in trigeminal ganglion nerves has not been established. We have focused on the effects of the cytokine tumor necrosis factor-alpha (TNF-alpha). TNFR1 receptors were found on the majority of CGRP-containing rat trigeminal ganglion neurons. Treatment of cultures with TNF-alpha stimulated CGRP secretion. In addition, the intracellular signaling intermediate from the TNFR1 receptor, ceramide, caused a similar increase in CGRP release. TNF-alpha caused a coordinate increase in CGRP promoter activity. TNF-alpha treatment activated the transcription factor NF-kappaB, as well as the Jun N-terminal kinase (JNK) and p38 mitogen-activated protein (MAP) kinase pathways. The importance of TNF-alpha induction of MAP kinase pathways was demonstrated by inhibiting MAP kinases with pharmacological reagents and gene transfer with an adenoviral vector encoding MAP kinase phosphatase-1 (MKP-1). We propose that selective and regulated inhibition of MAP kinases in trigeminal neurons may be therapeutically beneficial for inflammatory disorders involving elevated CGRP levels.

  10. Painful Pathways Induced by Toll-like Receptor Stimulation of Dorsal Root Ganglion Neurons

    PubMed Central

    Qi, Jia; Buzas, Krisztina; Fan, Huiting; Cohen, Jeffrey I.; Wang, Kening; Mont, Erik; Klinman, Dennis; Oppenheim, Joost J.; Howard, O.M. Zack

    2011-01-01

    We hypothesize that innate immune signals from infectious organisms and/or injured tissues may activate peripheral neuronal pain signals. In this study, we demonstrated that toll-like receptors 3/7/9 (TLRs) are expressed by human dorsal root ganglion neurons (DRGNs) and in cultures of primary mouse DRGNs. Stimulation of murine DRGNs with TLR ligands induced expression and production of proinflammatory chemokines and cytokines CCL5 (RANTES), CXCL10 (IP10), interleukin-1alpha, interleukin-1beta, and prostaglandin E2 (PGE2), which have previously been shown to augment pain. Further, TLR ligands up-regulated the expression of a nociceptive receptor transient receptor potential vanilloid type 1 (TRPV1), and enhanced calcium flux by TRPV1 expressing DRGNs. Using a tumor-induced temperature sensitivity model, we showed that in vivo administration of a TLR9 antagonist, known as a suppressive ODN, blocked tumor-induced temperature sensitivity. Taken together, these data indicate that stimulation of peripheral neurons by TLR ligands can induce nerve pain. PMID:21515789

  11. Silent Damage of Noise on Cochlear Afferent Innervation in Guinea Pigs and the Impact on Temporal Processing

    PubMed Central

    He, Tingting; Aiken, Steve; Bance, Manohar; Yin, Shankai; Wang, Jian

    2012-01-01

    Noise-exposure at levels low enough to avoid a permanent threshold shift has been found to cause a massive, delayed degeneration of spiral ganglion neurons (SGNs) in mouse cochleae. Damage to the afferent innervation was initiated by a loss of synaptic ribbons, which is largely irreversible in mice. A similar delayed loss of SGNs has been found in guinea pig cochleae, but at a reduced level, suggesting a cross-species difference in SGN sensitivity to noise. Ribbon synapse damage occurs “silently” in that it does not affect hearing thresholds as conventionally measured, and the functional consequence of this damage is not clear. In the present study, we further explored the effect of noise on cochlear afferent innervation in guinea pigs by focusing on the dynamic changes in ribbon counts over time, and resultant changes in temporal processing. It was found that (1) contrary to reports in mice, the initial loss of ribbons largely recovered within a month after the noise exposure, although a significant amount of residual damage existed; (2) while the response threshold fully recovered in a month, the temporal processing continued to be deteriorated during this period. PMID:23185359

  12. CRISPR Epigenome Editing of AKAP150 in DRG Neurons Abolishes Degenerative IVD-Induced Neuronal Activation.

    PubMed

    Stover, Joshua D; Farhang, Niloofar; Berrett, Kristofer C; Gertz, Jason; Lawrence, Brandon; Bowles, Robby D

    2017-09-06

    Back pain is a major contributor to disability and has significant socioeconomic impacts worldwide. The degenerative intervertebral disc (IVD) has been hypothesized to contribute to back pain, but a better understanding of the interactions between the degenerative IVD and nociceptive neurons innervating the disc and treatment strategies that directly target these interactions is needed to improve our understanding and treatment of back pain. We investigated degenerative IVD-induced changes to dorsal root ganglion (DRG) neuron activity and utilized CRISPR epigenome editing as a neuromodulation strategy. By exposing DRG neurons to degenerative IVD-conditioned media under both normal and pathological IVD pH levels, we demonstrate that degenerative IVDs trigger interleukin (IL)-6-induced increases in neuron activity to thermal stimuli, which is directly mediated by AKAP and enhanced by acidic pH. Utilizing this novel information on AKAP-mediated increases in nociceptive neuron activity, we developed lentiviral CRISPR epigenome editing vectors that modulate endogenous expression of AKAP150 by targeted promoter histone methylation. When delivered to DRG neurons, these epigenome-modifying vectors abolished degenerative IVD-induced DRG-elevated neuron activity while preserving non-pathologic neuron activity. This work elucidates the potential for CRISPR epigenome editing as a targeted gene-based pain neuromodulation strategy. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  13. Pre-Bötzinger Complex Receives Glutamatergic Innervation From Galaninergic and Other Retrotrapezoid Nucleus Neurons

    PubMed Central

    Bochorishvili, Genrieta; Stornetta, Ruth L.; Coates, Melissa B.; Guyenet, Patrice G.

    2014-01-01

    The retrotrapezoid nucleus (RTN) contains CO2-responsive neurons that regulate breathing frequency and amplitude. These neurons (RTN-Phox2b neurons) contain the transcription factor Phox2b, vesicular glutamate transporter 2 (VGLUT2) mRNA, and a subset contains preprogalanin mRNA. We wished to determine whether the terminals of RTN-Phox2b neurons contain galanin and VGLUT2 proteins, to identify the specific projections of the galaninergic subset, to test whether RTN-Phox2b neurons contact neurons in the pre-Bötzinger complex, and to identify the ultrastructure of these synapses. The axonal projections of RTN-Phox2b neurons were traced by using biotinylated dextran amine (BDA), and many BDA-ir boutons were found to contain galanin immunoreactivity. RTN galaninergic neurons had ipsilateral projections that were identical with those of this nucleus at large: the ventral respiratory column, the caudolateral nucleus of the solitary tract, and the pontine Köliker-Fuse, intertrigeminal region, and lateral parabrachial nucleus. For ultrastructural studies, RTN-Phox2b neurons (galaninergic and others) were transfected with a lentiviral vector that expresses mCherry almost exclusively in Phox2b-ir neurons. After spinal cord injections of a catecholamine neuron-selective toxin, there was a depletion of C1 neurons in the RTN area; thus it was determined that the mCherry-positive terminals located in the pre-Bötzinger complex originated almost exclusively from the RTN-Phox2b (non-C1) neurons. These terminals were generally VGLUT2-immunoreactive and formed numerous close appositions with neurokinin-1 receptor-ir pre-Bötzinger complex neurons. Their boutons (n = 48) formed asymmetric synapses filled with small clear vesicles. In summary, RTN-Phox2b neurons, including the galaninergic subset, selectively innervate the respiratory pattern generator plus a portion of the dorsolateral pons. RTN-Phox2b neurons establish classic excitatory glutamatergic synapses with pre

  14. Successful Implantation of Bioengineered, Intrinsically Innervated, Human Internal Anal Sphincter

    PubMed Central

    Raghavan, Shreya; Gilmont, Robert R.; Miyasaka, Eiichi A.; Somara, Sita; Srinivasan, Shanthi; Teitelbaum, Daniel H; Bitar, Khalil N.

    2011-01-01

    Background & Aims To restore fecal continence, the weakened pressure of the internal anal sphincter (IAS) must be increased. We bioengineered intrinsically innervated human IAS, to emulate sphincteric physiology, in vitro. Methods We co-cultured human IAS circular smooth muscle with immortomouse fetal enteric neurons. We investigated the ability of bioengineered innervated human IAS, implanted in RAG1−/− mice, to undergo neovascularization and preserve the physiology of the constituent myogenic and neuronal components. Results The implanted IAS was neovascularized in vivo; numerous blood vessels were observed with no signs of inflammation or infection. Real-time force acquisition from implanted and pre-implant IAS showed distinct characteristics of IAS physiology. Features included the development of spontaneous myogenic basal tone; relaxation of 100% of basal tone in response to inhibitory neurotransmitter vasoactive intestinal peptide (VIP) and direct electrical field stimulation of the intrinsic innervation; inhibition of nitrergic and VIPergic EFS-induced relaxation (by antagonizing nitric oxide synthesis or receptor interaction); contraction in response to cholinergic stimulation with acetylcholine; and intact electromechanical coupling (evidenced by direct response to potassium chloride). Implanted, intrinsically innervated bioengineered human IAS tissue preserved the integrity and physiology of myogenic and neuronal components. Conclusion Intrinsically innervated human IAS bioengineered tissue can be successfully implanted in mice. This approach might be used to treat patients with fecal incontinence. PMID:21463628

  15. Pericellular innervation of neurons expressing abnormally hyperphosphorylated tau in the hippocampal formation of Alzheimer's disease patients.

    PubMed

    Blazquez-Llorca, Lidia; Garcia-Marin, Virginia; Defelipe, Javier

    2010-01-01

    Neurofibrillary tangles (NFT) represent one of the main neuropathological features in the cerebral cortex associated with Alzheimer's disease (AD). This neurofibrillary lesion involves the accumulation of abnormally hyperphosphorylated or abnormally phosphorylated microtubule-associated protein tau into paired helical filaments (PHF-tau) within neurons. We have used immunocytochemical techniques and confocal microscopy reconstructions to examine the distribution of PHF-tau-immunoreactive (ir) cells, and their perisomatic GABAergic and glutamatergic innervations in the hippocampal formation and adjacent cortex of AD patients. Furthermore, correlative light and electron microscopy was employed to examine these neurons and the perisomatic synapses. We observed two patterns of staining in PHF-tau-ir neurons, pattern I (without NFT) and pattern II (with NFT), the distribution of which varies according to the cortical layer and area. Furthermore, the distribution of both GABAergic and glutamatergic terminals around the soma and proximal processes of PHF-tau-ir neurons does not seem to be altered as it is indistinguishable from both control cases and from adjacent neurons that did not contain PHF-tau. At the electron microscope level, a normal looking neuropil with typical symmetric and asymmetric synapses was observed around PHF-tau-ir neurons. These observations suggest that the synaptic connectivity around the perisomatic region of these PHF-tau-ir neurons was apparently unaltered.

  16. The anti-nociceptive agent ralfinamide inhibits tetrodotoxin-resistant and tetrodotoxin-sensitive Na+ currents in dorsal root ganglion neurons.

    PubMed

    Stummann, Tina C; Salvati, Patricia; Fariello, Ruggero G; Faravelli, Laura

    2005-03-14

    Tetrodotoxin-resistant and tetrodotoxin-sensitive Na+ channels contribute to the abnormal spontaneous firing in dorsal root ganglion neurons associated with neuropathic pain. Effects of the anti-nociceptive agent ralfinamide on tetrodotoxin-resistant and tetrodotoxin-sensitive currents in rat dorsal root ganglion neurons were therefore investigated by patch clamp experiments. Ralfinamide inhibition was voltage-dependent showing highest potency towards inactivated channels. IC50 values for tonic block of half-maximal inactivated tetrodotoxin-resistant and tetrodotoxin-sensitive currents were 10 microM and 22 microM. Carbamazepine, an anticonvulsant used in the treatment of pain, showed significantly lower potency. Ralfinamide produced a hyperpolarising shift in the steady-state inactivation curves of both currents confirming the preferential interaction with inactivated channels. Additionally, ralfinamide use and frequency dependently inhibited both currents and significantly delayed repriming from inactivation. All effects were more pronounced for tetrodotoxin-resistant than tetrodotoxin-sensitive currents. The potency and mechanisms of actions of ralfinamide provide a hypothesis for the anti-nociceptive properties found in animal models.

  17. Redox modulation of A-type K+ currents in pain-sensing dorsal root ganglion neurons.

    PubMed

    Hsieh, Chi-Pan

    2008-06-06

    Redox modulation of fast inactivation has been described in certain cloned A-type voltage-gated K(+) (Kv) channels in expressing systems, but the effects remain to be demonstrated in native neurons. In this study, we examined the effects of cysteine-specific redox agents on the A-type K(+) currents in acutely dissociated small diameter dorsal root ganglion (DRG) neurons from rats. The fast inactivation of most A-type currents was markedly removed or slowed by the oxidizing agents 2,2'-dithio-bis(5-nitropyridine) (DTBNP) and chloramine-T. Dithiothreitol, a reducing agent for the disulfide bond, restored the inactivation. These results demonstrated that native A-type K(+) channels, probably Kv1.4, could switch the roles between inactivating and non-inactivating K(+) channels via redox regulation in pain-sensing DRG neurons. The A-type channels may play a role in adjusting pain sensitivity in response to peripheral redox conditions.

  18. Motor neurons with limb-innervating character in the cervical spinal cord are sculpted by apoptosis based on the Hox code in chick embryo.

    PubMed

    Mukaigasa, Katsuki; Sakuma, Chie; Okada, Tomoaki; Homma, Shunsaku; Shimada, Takako; Nishiyama, Keiji; Sato, Noboru; Yaginuma, Hiroyuki

    2017-12-15

    In the developing chick embryo, a certain population of motor neurons (MNs) in the non-limb-innervating cervical spinal cord undergoes apoptosis between embryonic days 4 and 5. However, the characteristics of these apoptotic MNs remain undefined. Here, by examining the spatiotemporal profiles of apoptosis and MN subtype marker expression in normal or apoptosis-inhibited chick embryos, we found that this apoptotic population is distinguishable by Foxp1 expression. When apoptosis was inhibited, the Foxp1 + MNs survived and showed characteristics of lateral motor column (LMC) neurons, which are of a limb-innervating subtype, suggesting that cervical Foxp1 + MNs are the rostral continuation of the LMC. Knockdown and misexpression of Foxp1 did not affect apoptosis progression, but revealed the role of Foxp1 in conferring LMC identity on the cervical MNs. Furthermore, ectopic expression of Hox genes that are normally expressed in the brachial region prevented apoptosis, and directed Foxp1 + MNs to LMC neurons at the cervical level. These results indicate that apoptosis in the cervical spinal cord plays a role in sculpting Foxp1 + MNs committed to LMC neurons, depending on the Hox expression pattern. © 2017. Published by The Company of Biologists Ltd.

  19. Sex-, stress-, and sympathetic post-ganglionic neuron-dependent changes in the expression of pro- and anti-inflammatory mediators in rat dural immune cells

    PubMed Central

    McIlvried, Lisa A; Borghesi, Lisa A; Gold, Michael S

    2015-01-01

    Background Migraine attacks are associated with sterile inflammation of the dura. Immune cells are a primary source of inflammatory mediators, and we therefore sought to further explore the link between dural immune cells and migraine. Objective Based on the observations that migraine is more common in women than in men, stress is the most common trigger for a migraine attack, and sympathetic post-ganglionic innervation of the dura enables local control of dural immune cells, we hypothesized that stress shifts the balance of inflammatory mediator expression in dural immune cells toward those that trigger a migraine attack, where these changes are larger in females and dependent, at least in part, on sympathetic post-ganglionic innervation of the dura. Our objective was to test this hypothesis. Methods Dura were obtained from naïve or stressed, intact or surgically sympathectomized, adult male and female rats. Dura were assessed immediately or 24 hrs after termination of four continuous days of unpredictable, mild stressors. Following enzymatic digestion of each dura, myeloid and lymphoid derived dural immune cells were isolated by fluorescence activated cell sorting for semi-quantitative polymerase chain reaction analysis. Results In myeloid derived dural immune cells there was an increase in pro-inflammatory mediator mRNA following stress, particularly in females, which remained elevated with a 24 hr delay after stress. There was a stress-induced decrease in anti-inflammatory mediator mRNA immediately after stress in females, but not males. The stress-induced changes were attenuated in sympathectomized females. In lymphoid derived dural immune cells, there was a persistent increase in pro-inflammatory mediator mRNA following stress, particularly in females. A stress-induced increase in anti-inflammatory mediator mRNA was also observed in both males and females, and was further attenuated in sympathectomized females. Conclusions Consistent with our hypothesis

  20. Bilirubin Modulates Acetylcholine Receptors In Rat Superior Cervical Ganglionic Neurons In a Bidirectional Manner

    PubMed Central

    Zhang, Chengmi; Wang, Zhenmeng; Dong, Jing; Pan, Ruirui; Qiu, Haibo; Zhang, Jinmin; Zhang, Peng; Zheng, Jijian; Yu, Weifeng

    2014-01-01

    Autonomic dysfunction as a partial contributing factor to cardiovascular instability in jaundiced patients is often associated with increased serum bilirubin levels. Whether increased serum bilirubin levels could directly inhibit sympathetic ganglion transmission by blocking neuronal nicotinic acetylcholine receptors (nAChRs) remains to be elucidated. Conventional patch-clamp recordings were used to study the effect of bilirubin on nAChRs currents from enzymatically dissociated rat superior cervical ganglia (SCG) neurons. The results showed that low concnetrations (0.5 and 2 μM) of bilirubin enhanced the peak ACh-evoked currents, while high concentrations (3 to 5.5 µM) of bilirubin suppressed the currents with an IC50 of 4 ± 0.5 μM. In addition, bilirubin decreased the extent of desensitization of nAChRs in a concentration-dependent manner. This inhibitory effect of bilirubin on nAChRs channel currents was non-competitive and voltage independent. Bilirubin partly improved the inhibitory effect of forskolin on ACh-induced currents without affecting the action of H-89. These data suggest that the dual effects of enhancement and suppression of bilirubin on nAChR function may be ascribed to the action mechanism of positive allosteric modulation and direct blockade. Thus, suppression of sympathetic ganglionic transmission through postganglionic nAChRs inhibition may partially contribute to the adverse cardiovascular effects in jaundiced patients. PMID:25503810

  1. Atoh1-lineal neurons are required for hearing and for the survival of neurons in the spiral ganglion and brainstem accessory auditory nuclei

    PubMed Central

    Maricich, Stephen M.; Xia, Anping; Mathes, Erin L.; Wang, Vincent Y.; Oghalai, John S.; Fritzsch, Bernd; Zoghbi, Huda Y.

    2009-01-01

    Atoh1 is a basic helix-loop-helix transcription factor necessary for the specification of inner ear hair cells and central auditory system neurons derived from the rhombic lip. We used the Cre-loxP system and two Cre-driver lines (Egr2Cre and Hoxb1Cre) to delete Atoh1 from different regions of the cochlear nucleus (CN) and accessory auditory nuclei (AAN). Adult Atoh1-conditional knockout mice (Atoh1CKO) are behaviorally deaf, have diminished auditory brainstem evoked responses and disrupted CN and AAN morphology and connectivity. In addition, Egr2; Atoh1CKO mice lose spiral ganglion neurons in the cochlea and AAN neurons during the first 3 days of life, revealing a novel critical period in the development of these neurons. These new mouse models of predominantly central deafness illuminate the importance of the CN for support of a subset of peripheral and central auditory neurons. PMID:19741118

  2. PKC regulates capsaicin-induced currents of dorsal root ganglion neurons in rats.

    PubMed

    Zhou, Y; Zhou, Z S; Zhao, Z Q

    2001-10-01

    Capsaicin activates a non-specific cation conductance in a subset of dorsal root ganglion (DRG) neurons. The inward current and membrane potential of acutely isolated DRG neurons were examined using whole-cell patch recording methods. We report here that the current and voltage responses activated by capsaicin were markedly increased by phorbol 12-myristate 13-acetate (PMA), an activator of protein kinase C (PKC). The mean current, after application of 0.3 microM PMA, was 153.5+/-5.7% of control (n=32) in Ca(2+)-free external solution and 181.6+/-6.8% of control (n=15) in standard external solution. Under current-clamp conditions, 0.3 microM PMA facilitated capsaicin-induced depolarization and action potential generation. Bindolylmaleimide I (BIM), a specific inhibitor of PKC activity, abolished the effect of PMA. In addition, capsaicin-evoked current was attenuated to 68.3+/-5.0% of control (n=13) by individual administration of 1 microM BIM in standard external solution, while 0.3 microM BIM did not have this effect. These data suggest that PKC can directly regulate the capsaicin response in DRG neurons, which could increase nociceptive sensory transmission and contribute to hyperalgesia.

  3. Dual Innervation of Neonatal Merkel Cells in Mouse Touch Domes

    PubMed Central

    Luo, Wenqin

    2014-01-01

    Merkel cell-neurite complexes are specialized mechanosensory end organs that mediate discriminative touch sensation. It is well established that type I slowly adapting (SAI) mechanoreceptors, which express neural filament heavy chain (NFH), innervate Merkel cells. It was previously shown that neurotrophic factor NT3 and its receptor TrkC play crucial roles in controlling touch dome Merkel cell innervation of NFH+ fibers. In addition, nerve fibers expressing another neurotrophic tyrosine receptor kinase (NTRK), Ret, innervate touch dome Merkel cells as well. However, the relationship between afferents responsive to NT3/TrkC signaling and those expressing Ret is unclear. It is also controversial if these Ret+ fibers belong to the early or late Ret+ DRG neurons, which are defined based on the co-expression and developmental dependence of TrkA. To address these questions, we genetically traced Ret+ and TrkC+ fibers and analyzed their developmental dependence on TrkA. We found that Merkel cells in neonatal mouse touch domes receive innervation of two types of fibers: one group is Ret+, while the other subset expresses TrkC and NFH. In addition, Ret+ fibers depend on TrkA for their survival and normal innervation whereas NFH+ Merkel cell innervating fibers are almost unaltered in TrkA mutant mice, supporting that Ret+ and NFH+/TrkC+ afferents are two distinct groups. Ret signaling, on the other hand, plays a minor role for the innervation of neonatal touch domes. In contrast, Merkel cells in the glabrous skin are mainly contacted by NFH+/TrkC+ afferents. Taken together, our results suggest that neonatal Merkel cells around hair follicles receive dual innervation while Merkel cells in the glabrous skin are mainly innervated by only SAI mechanoreceptors. In addition, our results suggest that neonatal Ret+ Merkel cell innervating fibers most likely belong to the late but not early Ret+ DRG neurons. PMID:24637732

  4. Neuronal couplings between retinal ganglion cells inferred by efficient inverse statistical physics methods

    PubMed Central

    Cocco, Simona; Leibler, Stanislas; Monasson, Rémi

    2009-01-01

    Complexity of neural systems often makes impracticable explicit measurements of all interactions between their constituents. Inverse statistical physics approaches, which infer effective couplings between neurons from their spiking activity, have been so far hindered by their computational complexity. Here, we present 2 complementary, computationally efficient inverse algorithms based on the Ising and “leaky integrate-and-fire” models. We apply those algorithms to reanalyze multielectrode recordings in the salamander retina in darkness and under random visual stimulus. We find strong positive couplings between nearby ganglion cells common to both stimuli, whereas long-range couplings appear under random stimulus only. The uncertainty on the inferred couplings due to limitations in the recordings (duration, small area covered on the retina) is discussed. Our methods will allow real-time evaluation of couplings for large assemblies of neurons. PMID:19666487

  5. Muscarinic receptor immunoreactivity in the superior salivatory nucleus neurons innervating the salivary glands of the rat.

    PubMed

    Ueda, Hirotaka; Mitoh, Yoshihiro; Fujita, Masako; Kobashi, Motoi; Yamashiro, Takashi; Sugimoto, Tomosada; Ichikawa, Hiroyuki; Matsuo, Ryuji

    2011-07-15

    The superior salivatory nucleus (SSN) contains preganglionic parasympathetic neurons to the submandibular and sublingual salivary glands. Cevimeline, a muscarinic acetylcholine receptor agonist, stimulates the salivary glands and is presently used as sialogogue in the treatment of dry mouth. Since cevimeline passes through the blood-brain barrier, it is also able to act on muscarinic acetylcholine receptors in the central nervous system. Our preliminary experiment using the whole-cell patch-clamp technique has shown that cevimeline excites SSN neurons in rat brain slices, suggesting that SSN neurons have muscarinic acetylcholine receptors; however, it is unclear which subtypes of muscarinic acetylcholine receptors exist in SSN neurons. In the present study, we investigated immunohistochemically muscarinic acetylcholine receptor subtypes, M1 receptor (M1R), M2R, M3R, M4R, and M5R in SSN neurons. SSN neurons innervating the salivary glands, retrogradely labeled with a fluorescent tracer from the chorda-lingual nerve, mostly expressed M3R immunoreactivity (-ir) (92.3%) but not M1R-ir. About half of such SSN neurons also showed M2R- (40.1%), M4R- (54.0%) and M5R-ir (46.0%); therefore, it is probable that SSN neurons co-express M3R-ir with at least two of the other muscarinic receptor subtypes. This is the first report to show that SSN neurons contain muscarinic acetylcholine receptors. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  6. Nerve Repulsion by the Lens and Cornea during Cornea Innervation is Dependent on Robo-Slit Signaling and Diminishes with Neuron Age

    PubMed Central

    Schwend, Tyler; Lwigale, Peter Y.; Conrad, Gary W.

    2012-01-01

    The cornea, the most densely innervated tissue on the surface of the body, becomes innervated in a series of highly coordinated developmental events. During cornea development, chick trigeminal nerve growth cones reach the cornea margin at embryonic day (E)5, where they are initially repelled for days from E5-8, instead encircling the corneal periphery in a nerve ring prior to entering on E9. The molecular events coordinating growth cone guidance during cornea development are poorly understood. Here we evaluated a potential role for the Robo-Slit nerve guidance family. We found that Slit 1, 2 and 3 expression in the cornea and lens persisted during all stages of cornea innervation examined. Robo1 expression was developmentally regulated in trigeminal cell bodies, expressed robustly during nerve ring formation (E5-8), then later declining concurrent with projection of growth cones into the cornea. In this study we provide in vivo and in vitro evidence that Robo-Slit signaling guides trigeminal nerves during cornea innervation. Transient, localized inhibition of Robo-Slit signaling, by means of beads loaded with inhibitory Robo-Fc protein implanted into the developing eyefield in vivo, led to disorganized nerve ring formation and premature cornea innervation. Additionally, when trigeminal explants (source of neurons) were oriented adjacent to lens vesicles or corneas (source of repellant molecules) in organotypic tissue culture both lens and cornea tissues strongly repelled E7 trigeminal neurites, except in the presence of inhibitory Robo-Fc protein. In contrast, E10 trigeminal neurites were not as strongly repelled by cornea, and presence of Robo-Slit inhibitory protein had no effect. In full, these findings suggest that nerve repulsion from the lens and cornea during nerve ring formation is mediated by Robo-Slit signaling. Later, a shift in nerve guidance behavior occurs, in part due to molecular changes in trigeminal neurons, including Robo1 downregulation, thus

  7. Embryonic development of the innervation of the locust extensor tibiae muscle by identified neurons: formation and elimination of inappropriate axon branches.

    PubMed

    Myers, C M; Whitington, P M; Ball, E E

    1990-01-01

    Intracellular dye fills have been used to reveal the pattern of embryonic growth of each of the four neurons which innervate the extensor tibiae muscle (ETi) of the hind leg of the locust. The growth cone of the slow extensor tibiae motoneuron (SETi), the first of the four neurons to leave the central nervous system, pioneers nerve 3 (N3). The fast extensor motoneuron (FETi), the next neuron to grow out, follows earlier outgrowing motoneurons into the periphery in nerve 5 (N5) and then rejoins SETi in N3. As it transfers from N5 to N3, it is transiently dye-coupled to the Tr1 pioneer neuron which spans the gap between the two nerves. It then follows SETi onto the ETi muscle in the femur. The common inhibitory neuron and the dorsal unpaired median neuron (DUMETi) follow SETi and FETi in nerves 3B2 and 5B1, respectively. SETi's growth cone requires almost twice as long to reach ETi as those of the three later motoneurons, all of which follow preexisting neural pathways. At least three of the four developing motoneurons form one or more axon branches not found in the adult. These branches may occur (1) at segmental boundaries; (2) where the nerve, which the growth cone is following, itself branches or the growth cone encounters another nerve; or (3) when the axon continues to grow beyond its target muscle. These findings contrast with the apparent absence of inappropriate axon branches in another developing locust neuromuscular system and during the innervation of zebrafish myotomes, but resemble in some ways the transient production of inappropriate axonal branches reported for embryonic leech motoneurons.

  8. Amitriptyline Activates TrkA to Aid Neuronal Growth and Attenuate Anesthesia-Induced Neurodegeneration in Rat Dorsal Root Ganglion Neurons.

    PubMed

    Zheng, Xiaochun; Chen, Feng; Zheng, Ting; Huang, Fengyi; Chen, Jianghu; Tu, Wenshao

    2016-05-01

    Tricyclic antidepressant amitriptyline (AM) has been shown to exert neurotrophic activity on neurons. We thus explored whether AM may aid the neuronal development and protect anesthesia-induced neuro-injury in young spinal cord dorsal root ganglion (DRG) neurons.The DRG explants were prepared from 1-day-old rats. The effect of AM on aiding DRG neural development was examined by immunohistochemistry at dose-dependent manner. AM-induced changes in gene and protein expressions, and also phosphorylation states of tyrosine kinases receptor A (TrkA) and B (TrkB) in DRG, were examined by quantitative real-time polymerase chain reaction and western blot. The effect of AM on attenuating lidocaine-induced DRG neurodegeneration was examined by immunohistochemistry, and small interfering RNA (siRNA)-mediated TrkA/B down-regulation.Amitriptyline stimulated DRG neuronal development in dose-dependent manner, but exerted toxic effect at concentrations higher than 10 M. AM activated TrkA in DRG through phosphorylation, whereas it had little effect on TrkB-signaling pathway. AM reduced lidocaine-induced DRG neurodegeneration by regenerating neurites and growth cones. Moreover, the neuroprotection of AM on lidocaine-injured neurodegeneration was blocked by siRNA-mediated TrkA down-regulation, but not by TrkB down-regulation.Amitriptyline facilitated neuronal development and had protective effect on lidocaine-induced neurodegeneration, very likely through the activation of TrkA-signaling pathway in DRG.

  9. Amitriptyline Activates TrkA to Aid Neuronal Growth and Attenuate Anesthesia-Induced Neurodegeneration in Rat Dorsal Root Ganglion Neurons

    PubMed Central

    Zheng, Xiaochun; Chen, Feng; Zheng, Ting; Huang, Fengyi; Chen, Jianghu; Tu, Wenshao

    2016-01-01

    Abstract Tricyclic antidepressant amitriptyline (AM) has been shown to exert neurotrophic activity on neurons. We thus explored whether AM may aid the neuronal development and protect anesthesia-induced neuro-injury in young spinal cord dorsal root ganglion (DRG) neurons. The DRG explants were prepared from 1-day-old rats. The effect of AM on aiding DRG neural development was examined by immunohistochemistry at dose-dependent manner. AM-induced changes in gene and protein expressions, and also phosphorylation states of tyrosine kinases receptor A (TrkA) and B (TrkB) in DRG, were examined by quantitative real-time polymerase chain reaction and western blot. The effect of AM on attenuating lidocaine-induced DRG neurodegeneration was examined by immunohistochemistry, and small interfering RNA (siRNA)-mediated TrkA/B down-regulation. Amitriptyline stimulated DRG neuronal development in dose-dependent manner, but exerted toxic effect at concentrations higher than 10 M. AM activated TrkA in DRG through phosphorylation, whereas it had little effect on TrkB-signaling pathway. AM reduced lidocaine-induced DRG neurodegeneration by regenerating neurites and growth cones. Moreover, the neuroprotection of AM on lidocaine-injured neurodegeneration was blocked by siRNA-mediated TrkA down-regulation, but not by TrkB down-regulation. Amitriptyline facilitated neuronal development and had protective effect on lidocaine-induced neurodegeneration, very likely through the activation of TrkA-signaling pathway in DRG. PMID:27149473

  10. Characteristics of hyperpolarization-activated cyclic nucleotide-gated channels in dorsal root ganglion neurons at different ages and sizes.

    PubMed

    Hou, Baohua; Chen, Hengling; Qu, Xiangwei; Lin, Xianguang; Luo, Fang; Li, Chenhong

    2015-11-11

    In rat's sensory neurons, hyperpolarization-activated inward currents (Ih) play an essential role in mediating action potentials and contributing to neuronal excitability. Classified by the size of neurons and ages, we studied the Ih and transcription levels of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels using electrophysiology and the single-cell RT-PCR. In voltage-clamp studies, Ih and half-maximal activation voltage (V1/2) changed with age and size. An analysis of all HCN subtypes in dorsal root ganglion (DRG) neurons by single-cell RT-PCR was carried out. HCN1 and HCN3 in medium-small elderly neurons had a weak expression. HCN2 in newborns and HCN4 in elderly rats also had a weak expression. The aim of this study is to examine the age-related Ih and HCN channels subunits in different ages and sizes of DRG neurons. The results would be significant in understanding the physiological and pathophysiological function of different sizes of DRG neurons in different age periods.

  11. Characterization of Ganglionic Acetylcholine Receptor Autoantibodies

    PubMed Central

    Vernino, Steven; Lindstrom, Jon; Hopkins, Steve; Wang, Zhengbei; Low, Phillip A.

    2008-01-01

    In myasthenia gravis (MG), autoantibodies bind to the α1 subunit and other subunits of the muscle nicotinic acetylcholine receptor (AChR). Autoimmune autonomic ganglionopathy (AAG) is an antibody-mediated neurological disorder caused by antibodies against neuronal AChRs in autonomic ganglia. Subunits of muscle and neuronal AChR are homologous. We examined the specificity of AChR antibodies in patients with MG and AAG. Ganglionic AChR autoantibodies found in AAG patients are specific for AChRs containing the α3 subunit. Muscle and ganglionic AChR antibody specificities are distinct. Antibody crossreactivity between AChRs with different α subunits is uncommon but can occur. PMID:18485491

  12. Morphological study of the innervation pattern of the rabbit sinoatrial node

    NASA Technical Reports Server (NTRS)

    Roberts, L. A.; Slocum, G. R.; Riley, D. A.

    1989-01-01

    The pattern of sinoatrial (SA) node innervations in rabbit was elucidated using a newly developed highly reproducible cholinesterase/silver impregnation staining procedure which made it possible to delineate large nerves, fine processes, and ganglion cells. The SA node and dominant pacemaker sites were identified by microelectrode recording. A generalized pattern of innnervation was recognized, which includes a large ganglionic complex inferior to the SA node; two or more moderately large nerves traversing the SA node parallel to the crista terminalis; nerves entering the intercaval region from the septum, the superior vena cava, and the inferior vena cava to impinge on the SA node; and a fine network of nerve processes, which was particularly dense in the SA node. From the location and distribution of the nerves and ganglionic branches, it can be inferred that the neural network in the intercaval region is capable of performing complex modulatory and integrative functions among the structures within this region.

  13. Therapeutic potential of stellate ganglion block in orofacial pain: a mini review.

    PubMed

    Jeon, Younghoon

    2016-09-01

    Orofacial pain is a common complaint of patients that causes distress and compromises the quality of life. It has many etiologies including trauma, interventional procedures, nerve injury, varicella-zoster (shingles), tumor, and vascular and idiopathic factors. It has been demonstrated that the sympathetic nervous system is usually involved in various orofacial pain disorders such as postherpetic neuralgia, complex regional pain syndromes, and atypical facial pain. The stellate sympathetic ganglion innervates the head, neck, and upper extremity. In this review article, the effect of stellate ganglion block and its mechanism of action in orofacial pain disorders are discussed.

  14. Organization of the sympathetic innervation of the forelimb resistance vessels in the cat.

    PubMed

    Backman, S B; Stein, R D; Polosa, C

    1999-02-01

    Detailed information on the outflow pathway of sympathetic vasoconstrictor fibers to the upper extremity is lacking. We studied the organization of the sympathetic innervation of the forelimb resistance vessels and of the sinoatrial (SA) node in the decerebrated, artificially respirated cat. The distal portion of sectioned individual rami T1-8 and the sympathetic chain immediately caudal to T8 on the right side were electrically stimulated while the right forelimb perfusion pressure (forelimb perfused at constant flow) and heart rate were recorded. Increases in perfusion pressure were evoked by stimulation of T2-8 (maximal response T7: 55 +/- 2.3 mm Hg). Responses were still evoked by stimulation of the sympathetic chain immediately caudal to T8 (44 +/- 15 mm Hg). Increases in heart rate were evoked by the stimulation of more rostral rami (T1-5; maximal response T3: 55.2 +/- 8 bpm). These vasoconstrictor and cardioacceleratory responses were blocked by the cholinergic antagonists hexamethonium and scopolamine. Sectioning of the vertebral nerve and the T1 ramus abolished the vasoconstrictor response. Stimulation of the vertebral nerve and of the proximal portion of the sectioned T1 ramus increased perfusion pressure (69 +/- 9 and 34 +/- 14 mm Hg, respectively), which was unaffected by ganglionic cholinergic block. These data suggest that forelimb resistance vessel control is subserved by sympathetic preganglionic neurons located mainly in the middle to caudal thoracic spinal segments. Some of the postganglionic axons subserving vasomotor function course through the T1 ramus, in addition to the vertebral nerve. Forelimb vasculature is controlled by sympathetic preganglionic neurons located in middle to caudal thoracic spinal segments and by postganglionic axons carried in the T1 ramus and vertebral nerve. This helps to provide the anatomical substrate of interruption of sympathetic outflow to the upper extremity produced by major conduction anesthesia of the stellate

  15. Sensory Neuroanatomy of Parastrongyloides trichosuri, a Nematode Parasite of Mammals: Amphidial Neurons of the First-Stage Larva

    PubMed Central

    Zhu, He; Li, Jian; Nolan, Thomas J.; Schad, Gerhard A.; Lok, James B.

    2011-01-01

    Owing to its ability to switch between free-living and parasitic modes of development, Parastrongyloides trichosuri represents a valuable model with which to study the evolution of parasitism among the nematodes, especially aspects pertaining to morphogenesis of infective third-stage larvae. In the free-living nematode Caenorhabditis elegans, developmental fates of third-stage larvae are determined in part by environmental cues received by chemosensory neurons in the amphidial sensillae. As a basis for comparative study, we have described the neuroanatomy of the amphidial sensillae of P. trichosuri. Using computational methods we incorporated serial electron micrographs into a three-dimensional reconstruction of the amphidial neurons of this parasite. Each amphid is innervated by 13 neurons, and the dendritic processes of 10 of these extend nearly to the amphidial pore. Dendritic processes of two specialized neurons leave the amphidial channel and terminate within invaginations of the sheath cell. One of these is similar to the finger cell of C. elegans, terminating in digitiform projections. The other projects a single cilium into the sheath cell. The dendritic process of a third specialized neuron terminates within the tight junction of the amphid. Each amphidial neuron was traced from the tip of its dendrite(s) to its cell body in the lateral ganglion. Positions of these cell bodies approximate those of morphologically similar amphidial neurons in Caenorhabditis elegans, so the standard nomenclature for amphidial neurons in C. elegans was adopted. A map of cell bodies within the lateral ganglion of P. trichosuri was prepared to facilitate functional study of these neurons. PMID:21456026

  16. The intriguing nature of dorsal root ganglion neurons: linking structure with polarity and function.

    PubMed

    Nascimento, Ana Isabel; Mar, Fernando Milhazes; Sousa, Mónica Mendes

    2018-05-02

    Dorsal root ganglion (DRG) neurons are the first neurons of the sensory pathway. They are activated by a variety of sensory stimuli that are then transmitted to the central nervous system. An important feature of DRG neurons is their unique morphology where a single process -the stem axon- bifurcates into a peripheral and a central axonal branch, with different functions and cellular properties. Distinctive structural aspects of the two DRG neuron branches may have important implications for their function in health and disease. However, the link between DRG axonal branch structure, polarity and function has been largely neglected in the field, and relevant information is rather scattered across the literature. In particular, ultrastructural differences between the two axonal branches are likely to account for the higher transport and regenerative ability of the peripheral DRG neuron axon when compared to the central one. Nevertheless, the cell intrinsic factors contributing to this central-peripheral asymmetry are still unknown. Here we critically review the factors that may underlie the functional asymmetry between the peripheral and central DRG axonal branches. Also, we discuss the hypothesis that DRG neurons may assemble a structure resembling the axon initial segment that may be responsible, at least in part, for their polarity and electrophysiological features. Ultimately, we suggest that the clarification of the axonal ultrastructure of DRG neurons using state-of-the-art techniques will be crucial to understand the physiology of this peculiar cell type. Copyright © 2018. Published by Elsevier Ltd.

  17. Modulating nitric oxide levels in dorsal root ganglion neurons of rat with low-level laser therapy

    NASA Astrophysics Data System (ADS)

    Zheng, Li-qin; Wang, Yu-hua; He, Yi-peng; Zhou, Jie; Yang, Hong-qin; Zhang, Yan-ding; Xie, Shu-sen

    2015-05-01

    Nitric oxide (NO) and nitric oxide synthase (NOS) have an important role in pain signaling transmission in animal models. Low-level laser therapy (LLLT) is known to have an analgesic effect, but the mechanism is unclear. The aim of the study is to investigate the influence of LLLT on NO release and NOS synthesis in dorsal root ganglion (DRG) neurons, in order to find whether LLLI can ameliorate pain through modulating NO production at the cellular level. The results show that in stress conditions, the laser irradiation at 658 nm can modulate NO production in DRG neurons with soma diameter of about 20 μm in a short time after illumination, and affect NOS synthesis in a dose-dependent manner. It is demonstrated that LLLT might treat pain by altering NO release directly and indirectly in DRG neurons.

  18. Distribution of TRPV1 and TRPV2 in the human stellate ganglion and spinal cord.

    PubMed

    Kokubun, Souichi; Sato, Tadasu; Ogawa, Chikara; Kudo, Kai; Goto, Koju; Fujii, Yuki; Shimizu, Yoshinaka; Ichikawa, Hiroyuki

    2015-03-17

    Immunohistochemistry for the transient receptor potential cation channel subfamily V member 1 (TRPV1) and 2 (TRPV2) was performed on the stellate ganglion and spinal cord in human cadavers. In the stellate ganglion, 25.3% and 16.2% of sympathetic neurons contained TRPV1- and TRPV2-immunoreactivity, respectively. The cell size analysis also demonstrated that proportion of TRPV1- or TRPV2-immunoreactive (-IR) neurons among large (>600 μm(2)) sympathetic neurons (TRPV1, 30.7%; TRPV2, 27.0%) was higher than among small (<600 μm(2)) sympathetic neurons (TRPV1, 22.0%; TRPV2, 13.6%). The present study also demonstrated that 10.0% of sympathetic neurons in the stellate ganglion had pericellular TRPV2-IR nerve fibers. Fourteen percent of large neurons and 7.8% of small neurons were surrounded by TRPV2-IR nerve fibers. TRPV2-immunoreactivity was also detected in about 40% of neuronal cell bodies with pericellular TRPV2-IR nerve fibers. In the lateral horn of the human thoracic spinal cord, TRPV2-immunoreactivity was expressed by some neurons and many varicose fibers surrounding TRPV2-immunonegative neurons. TRPV2-IR pericellular fibers in the stellate ganglion may originate from the lateral horn of the spinal cord. There appears to be TRPV1- or TRPV2-IR sympathetic pathway in the human stellate ganglion and spinal cord. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Complex distribution patterns of voltage-gated calcium channel α-subunits in the spiral ganglion

    PubMed Central

    Chen, Wei Chun; Xue, Hui Zhong; Hsu, Yun (Lucy); Liu, Qing; Patel, Shail; Davis, Robin L.

    2011-01-01

    As with other elements of the peripheral auditory system, spiral ganglion neurons display specializations that vary as a function of location along the tonotopic axis. Previous work has shown that voltage-gated K+ channels and synaptic proteins show graded changes in their density that confers rapid responsiveness to neurons in the high frequency, basal region of the cochlea and slower, more maintained responsiveness to neurons in the low frequency, apical region of the cochlea. In order to understand how voltage-gated calcium channels (VGCCs) may contribute to these diverse phenotypes, we identified the VGCC α-subunits expressed in the ganglion, investigated aspects of Ca2+-dependent neuronal firing patterns, and mapped the intracellular and intercellular distributions of seven VGCC α-subunits in the spiral ganglion in vitro. Initial experiments with qRT-PCR showed that eight of the ten known VGCC α-subunits were expressed in the ganglion and electrophysiological analysis revealed firing patterns that were consistent with the presence of both LVA and HVA Ca2+ channels. Moreover, we were able to study seven of the α-subunits with immunocytochemistry, and we found that all were present in spiral ganglion neurons, and that three of them were neuron-specific (CaV1.3, CaV2.2, and CaV3.3). Further characterization of neuron-specific α-subunits showed that CaV1.3 and CaV3.3 were tonotopically-distributed, whereas CaV2.2 was uniformly distributed in apical and basal neurons. Multiple VGCC α-subunits were also immunolocalized to Schwann cells, having distinct intracellular localizations, and, significantly, appearing to distinguish putative compact0 (CaV2.3, CaV3.1) from loose (CaV1.2) myelin. Electrophysiological evaluation of spiral ganglion neurons in the presence of TEA revealed Ca2+ plateau potentials with slopes that varied proportionately with the cochlear region from which neurons were isolated. Because afterhyperpolarizations were minimal or absent under

  20. Electrophysiological property and chemical sensitivity of primary afferent neurons that innervate rat whisker hair follicles.

    PubMed

    Ikeda, Ryo; Gu, Jianguo

    2016-01-01

    Whisker hair follicles are sensory organs that sense touch and perform tactile discrimination in animals, and they are sites where sensory impulses are initiated when whisker hairs touch an object. The sensory signals are then conveyed by whisker afferent fibers to the brain for sensory perception. Electrophysiological property and chemical sensitivity of whisker afferent fibers, important factors affecting whisker sensory processing, are largely not known. In the present study, we performed patch-clamp recordings from pre-identified whisker afferent neurons in whole-mount trigeminal ganglion preparations and characterized their electrophysiological property and sensitivity to ATP, serotonin and glutamate. Of 97 whisker afferent neurons examined, 67% of them are found to be large-sized (diameter ≥45 µm) cells and 33% of them are medium- to small-sized (diameter <45 µm) cells. Almost every large-sized whisker afferent neuron fires a single action potential but many (40%) small/medium-sized whisker afferent neurons fire multiple action potentials in response to prolonged stepwise depolarization. Other electrophysiological properties including resting membrane potential, action potential threshold, and membrane input resistance are also significantly different between large-sized and small/medium-sized whisker afferent neurons. Most large-sized and many small/medium-sized whisker afferent neurons are sensitive to ATP and/or serotonin, and ATP and/or serotonin could evoke strong inward currents in these cells. In contrast, few whisker afferent neurons are sensitive to glutamate. Our results raise a possibility that ATP and/or serotonin may be chemical messengers involving sensory signaling for different types of rat whisker afferent fibers.

  1. Molecular biology of retinal ganglion cells.

    PubMed Central

    Xiang, M; Zhou, H; Nathans, J

    1996-01-01

    Retinal ganglion cells are the output neurons that encode and transmit information from the eye to the brain. Their diverse physiologic and anatomic properties have been intensively studied and appear to account well for a number of psychophysical phenomena such as lateral inhibition and chromatic opponency. In this paper, we summarize our current view of retinal ganglion cell properties and pose a number of questions regarding underlying molecular mechanisms. As an example of one approach to understanding molecular mechanisms, we describe recent work on several POU domain transcription factors that are expressed in subsets of retinal ganglion cells and that appear to be involved in ganglion cell development. Images Fig. 1 Fig. 2 Fig. 4 Fig. 5 Fig. 6 PMID:8570601

  2. PKA-induced internalization of slack KNa channels produces dorsal root ganglion neuron hyperexcitability.

    PubMed

    Nuwer, Megan O; Picchione, Kelly E; Bhattacharjee, Arin

    2010-10-20

    Inflammatory mediators through the activation of the protein kinase A (PKA) pathway sensitize primary afferent nociceptors to mechanical, thermal, and osmotic stimuli. However, it is unclear which ion conductances are responsible for PKA-induced nociceptor hyperexcitability. We have previously shown the abundant expression of Slack sodium-activated potassium (K(Na)) channels in nociceptive dorsal root ganglion (DRG) neurons. Here we show using cultured DRG neurons, that of the total potassium current, I(K), the K(Na) current is predominantly inhibited by PKA. We demonstrate that PKA modulation of K(Na) channels does not happen at the level of channel gating but arises from the internal trafficking of Slack channels from DRG membranes. Furthermore, we found that knocking down the Slack subunit by RNA interference causes a loss of firing accommodation analogous to that observed during PKA activation. Our data suggest that the change in nociceptive firing occurring during inflammation is the result of PKA-induced Slack channel trafficking.

  3. Early dietary sodium restriction disrupts the peripheral anatomical development of the gustatory system.

    PubMed

    Krimm, R F; Hill, D L

    1999-05-01

    Dietary sodium restriction has profound effects on the development of peripheral taste function and central taste system anatomy. This study examined whether early dietary sodium restriction also affects innervation of taste buds. The number of geniculate ganglion cells that innervate single fungiform taste buds were quantified for the midregion of the tongue in two groups of rats: those fed either a low-sodium diet and those fed a sodium replete diet (control rats) from early prenatal development through adulthood. The same mean number of ganglion cells in developmentally sodium-restricted and control adult rats innervated taste buds on the midregion of the tongue. However, the characteristic relationship of the larger the taste bud, the more neurons that innervate it did not develop in sodium-restricted rats. The failure to form such a relationship in experimental rats was likely due to a substantially smaller mean taste bud volume than controls and probably not to changes in innervation. Further experiments demonstrated that the altered association between number of innervating neurons and taste bud size in restricted rats was reversible. Feeding developmentally sodium-restricted rats a sodium replete diet at adulthood resulted in an increase in taste bud size. Accordingly, the high correlation between taste bud volume and innervation was established in sodium-replete rats. Findings from the current study reveal that early dietary manipulations influence neuron-target interactions; however, the effects of dietary sodium restriction on peripheral gustatory anatomy can be completely restored, even in adult animals.

  4. Peribronchial innervation of the rat lung.

    PubMed

    Artico, Marco; Bosco, Sandro; Bronzetti, Elena; Felici, Laura M; Pelusi, Giuseppe; Lo Vasco, Vincenza Rita; Vitale, Marco

    2004-10-01

    Mammalian peribronchial tissue is supplied by several peptide-containing nerve fibers. Although it is well established that different neuropeptides exert significant effects on bronchial and vascular tone in the lungs, the role played by some neuromediators on the general regulation, differentiation and release of locally active substances is still controversial. We studied the innervation of rat peribronchial tissue by immunohistochemical techniques. The immunoperoxidase method with nickel amplification was applied to detect the distribution of nerve fibers using antibodies against the general neuronal marker PGP 9.5 (neuron-specific cytoplasmic protein), while the cholinacetyltransferase immunoreactivity was studied by immunohistochemistry. A slight immunoreactivity for NT receptors is observed in lung bronchial epithelium. There is increasing evidence that NTs may act with a paracrine mechanism regulating functional activity of neuronal and non-neuronal structures. A specific immunoreactivity for NTs and NT receptors was also demonstrated within different layers of large, medium and small sized intrapulmonary arteries and veins, according to a recent study of our group. Moreover our data describe the expression of NTs and NT receptors in lymphoid aggregates of the lung (BALT) in which both lymphocytes and macrophages express TrkA receptor and synthesize NTs. Our results show the presence of an extensive network of innervation in the rat peribronchial tissue, confirming a morphological basis for a possible neural modulation of the respiratory mucosa and the physiological/pathophysiological mechanisms of the lung.

  5. Millisecond infrared laser pulses depolarize and elicit action potentials on in-vitro dorsal root ganglion neurons

    PubMed Central

    Paris, Lambert; Marc, Isabelle; Charlot, Benoit; Dumas, Michel; Valmier, Jean; Bardin, Fabrice

    2017-01-01

    This work focuses on the optical stimulation of dorsal root ganglion (DRG) neurons through infrared laser light stimulation. We show that a few millisecond laser pulse at 1875 nm induces a membrane depolarization, which was observed by the patch-clamp technique. This stimulation led to action potentials firing on a minority of neurons beyond an energy threshold. A depolarization without action potential was observed for the majority of DRG neurons, even beyond the action potential energy threshold. The use of ruthenium red, a thermal channel blocker, stops the action potential generation, but has no effects on membrane depolarization. Local temperature measurements reveal that the depolarization amplitude is sensitive to the amplitude of the temperature rise as well as to the time rate of change of temperature, but in a way which may not fully follow a photothermal capacitive mechanism, suggesting that more complex mechanisms are involved. PMID:29082085

  6. ATF3 expression improves motor function in the ALS mouse model by promoting motor neuron survival and retaining muscle innervation.

    PubMed

    Seijffers, Rhona; Zhang, Jiangwen; Matthews, Jonathan C; Chen, Adam; Tamrazian, Eric; Babaniyi, Olusegun; Selig, Martin; Hynynen, Meri; Woolf, Clifford J; Brown, Robert H

    2014-01-28

    ALS is a fatal neurodegenerative disease characterized by a progressive loss of motor neurons and atrophy of distal axon terminals in muscle, resulting in loss of motor function. Motor end plates denervated by axonal retraction of dying motor neurons are partially reinnervated by remaining viable motor neurons; however, this axonal sprouting is insufficient to compensate for motor neuron loss. Activating transcription factor 3 (ATF3) promotes neuronal survival and axonal growth. Here, we reveal that forced expression of ATF3 in motor neurons of transgenic SOD1(G93A) ALS mice delays neuromuscular junction denervation by inducing axonal sprouting and enhancing motor neuron viability. Maintenance of neuromuscular junction innervation during the course of the disease in ATF3/SOD1(G93A) mice is associated with a substantial delay in muscle atrophy and improved motor performance. Although disease onset and mortality are delayed, disease duration is not affected. This study shows that adaptive axonal growth-promoting mechanisms can substantially improve motor function in ALS and importantly, that augmenting viability of the motor neuron soma and maintaining functional neuromuscular junction connections are both essential elements in therapy for motor neuron disease in the SOD1(G93A) mice. Accordingly, effective protection of optimal motor neuron function requires restitution of multiple dysregulated cellular pathways.

  7. [Effect of spontaneous firing of injured dorsal root ganglion neuron on excitability of wide dynamic range neuron in rat spinal dorsal horn].

    PubMed

    Song, Ying; Zhang, Yong-Mei; Xu, Jie; Wu, Jing-Ru; Qin, Xia; Hua, Rong

    2013-10-25

    The aim of the paper is to study the effect of spontaneous firing of injured dorsal root ganglion (DRG) neuron in chronic compression of DRG (CCD) model on excitability of wide dynamic range (WDR) neuron in rat spinal dorsal horn. In vivo intracellular recording was done in DRG neurons and in vivo extracellular recording was done in spinal WDR neurons. After CCD, incidence of spontaneous discharge and firing frequency enhanced to 59.46% and (4.30 ± 0.69) Hz respectively from 22.81% and (0.60 ± 0.08) Hz in normal control group (P < 0.05). Local administration of 50 nmol/L tetrodotoxin (TTX) on DRG neuron in CCD rats decreased the spontaneous activities of WDR neurons from (191.97 ± 45.20)/min to (92.50 ± 30.32)/min (P < 0.05). On the other side, local administration of 100 mmol/L KCl on DRG neuron evoked spontaneous firing in a reversible way (n = 5) in silent WDR neurons of normal rats. There was 36.36% (12/33) WDR neuron showing after-discharge in response to innocuous mechanical stimuli on cutaneous receptive field in CCD rats, while after-discharge was not seen in control rats. Local administration of TTX on DRG with a concentration of 50 nmol/L attenuated innocuous electric stimuli-evoked after-discharge of WDR neurons in CCD rats in a reversible manner, and the frequency was decreased from (263 ± 56.5) Hz to (117 ± 30) Hz (P < 0.05). The study suggests that the excitability of WDR neurons is influenced by spontaneous firings of DRG neurons after CCD.

  8. Neuronal and glial expression of inward rectifier potassium channel subunits Kir2.x in rat dorsal root ganglion and spinal cord.

    PubMed

    Murata, Yuzo; Yasaka, Toshiharu; Takano, Makoto; Ishihara, Keiko

    2016-03-23

    Inward rectifier K(+) channels of the Kir2.x subfamily play important roles in controlling the neuronal excitability. Although their cellular localization in the brain has been extensively studied, only a few studies have examined their expression in the spinal cord and peripheral nervous system. In this study, immunohistochemical analyses of Kir2.1, Kir2.2, and Kir2.3 expression were performed in rat dorsal root ganglion (DRG) and spinal cord using bright-field and confocal microscopy. In DRG, most ganglionic neurons expressed Kir2.1, Kir2.2 and Kir2.3, whereas satellite glial cells chiefly expressed Kir2.3. In the spinal cord, Kir2.1, Kir2.2 and Kir2.3 were all expressed highly in the gray matter of dorsal and ventral horns and moderately in the white matter also. Within the gray matter, the expression was especially high in the substantia gelatinosa (lamina II). Confocal images obtained using markers for neuronal cells, NeuN, and astrocytes, Sox9, showed expression of all three Kir2 subunits in both neuronal somata and astrocytes in lamina I-III of the dorsal horn and the lateral spinal nucleus of the dorsolateral funiculus. Immunoreactive signals other than those in neuronal and glial somata were abundant in lamina I and II, which probably located mainly in nerve fibers or nerve terminals. Colocalization of Kir2.1 and 2.3 and that of Kir2.2 and 2.3 were present in neuronal and glial somata. In the ventral horn, motor neurons and interneurons were also immunoreactive with the three Kir2 subunits. Our study suggests that Kir2 channels composed of Kir2.1-2.3 subunits are expressed in neuronal and glial cells in the DRG and spinal cord, contributing to sensory transduction and motor control. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Decoupling kinematics and mechanics reveals coding properties of trigeminal ganglion neurons in the rat vibrissal system

    PubMed Central

    Bush, Nicholas E; Schroeder, Christopher L; Hobbs, Jennifer A; Yang, Anne ET; Huet, Lucie A; Solla, Sara A; Hartmann, Mitra JZ

    2016-01-01

    Tactile information available to the rat vibrissal system begins as external forces that cause whisker deformations, which in turn excite mechanoreceptors in the follicle. Despite the fundamental mechanical origin of tactile information, primary sensory neurons in the trigeminal ganglion (Vg) have often been described as encoding the kinematics (geometry) of object contact. Here we aimed to determine the extent to which Vg neurons encode the kinematics vs. mechanics of contact. We used models of whisker bending to quantify mechanical signals (forces and moments) at the whisker base while simultaneously monitoring whisker kinematics and recording single Vg units in both anesthetized rats and awake, body restrained rats. We employed a novel manual stimulation technique to deflect whiskers in a way that decouples kinematics from mechanics, and used Generalized Linear Models (GLMs) to show that Vg neurons more directly encode mechanical signals when the whisker is deflected in this decoupled stimulus space. DOI: http://dx.doi.org/10.7554/eLife.13969.001 PMID:27348221

  10. Fractalkine Signaling Regulates Macrophage Recruitment into the Cochlea and Promotes the Survival of Spiral Ganglion Neurons after Selective Hair Cell Lesion.

    PubMed

    Kaur, Tejbeer; Zamani, Darius; Tong, Ling; Rubel, Edwin W; Ohlemiller, Kevin K; Hirose, Keiko; Warchol, Mark E

    2015-11-11

    Macrophages are recruited into the cochlea in response to injury caused by acoustic trauma or ototoxicity, but the nature of the interaction between macrophages and the sensory structures of the inner ear remains unclear. The present study examined the role of fractalkine signaling in regulating the injury-evoked behavior of macrophages following the selective ablation of cochlear hair cells. We used a novel transgenic mouse model in which the human diphtheria toxin receptor (huDTR) is selectively expressed under the control of Pou4f3, a hair cell-specific transcription factor. Administration of diphtheria toxin (DT) to these mice resulted in nearly complete ablation of cochlear hair cells, with no evident pathology among supporting cells, spiral ganglion neurons, or cells of the cochlear lateral wall. Hair cell death led to an increase in macrophages associated with the sensory epithelium of the cochlea. Their numbers peaked at 14 days after DT and then declined at later survival times. Increased macrophages were also observed within the spiral ganglion, but their numbers remained elevated for (at least) 56 d after DT. To investigate the role of fractalkine signaling in macrophage recruitment, we crossed huDTR mice to a mouse line that lacks expression of the fractalkine receptor (CX3CR1). Disruption of fractalkine signaling reduced macrophage recruitment into both the sensory epithelium and spiral ganglion and also resulted in diminished survival of spiral ganglion neurons after hair cell death. Our results suggest a fractalkine-mediated interaction between macrophages and the neurons of the cochlea. It is known that damage to the inner ear leads to recruitment of inflammatory cells (macrophages), but the chemical signals that initiate this recruitment and the functions of macrophages in the damaged ear are unclear. Here we show that fractalkine signaling regulates macrophage recruitment into the cochlea and also promotes the survival of cochlear afferents after

  11. Cholinergic innervation of the chick basilar papilla.

    PubMed

    Zidanic, Michael

    2002-04-01

    Antibodies directed against choline acetyltransferase (ChAT), the synthesizing enzyme for acetylcholine (ACh) and a specific marker of cholinergic neurons, were used to label axons and nerve terminals of efferent fibers that innervate the chick basilar papilla (BP). Two morphologically distinct populations of cholinergic fibers were labeled and classified according to the region of the BP they innervated. The inferior efferent system was composed of thick fibers that coursed radially across the basilar membrane in small fascicles, gave off small branches that innervated short hair cells with large cup-like endings, and continued past the inferior edge of the BP to ramify extensively in the hyaline cell area. The superior efferent system was made up of a group of thin fibers that remained in the superior half of the epithelium and innervated tall hair cells with bouton endings. Both inferior and superior efferent fibers richly innervated the basal two thirds of the BP. However, the apical quarter of the chick BP was virtually devoid of efferent innervation except for a few fibers that gave off bouton endings around the peripheral edges. The distribution of ChAT-positive efferent endings appeared very similar to the population of efferent endings that labeled with synapsin antisera. Double labeling with ChAT and synapsin antibodies showed that the two markers colocalized in all nerve terminals that were identified in BP whole-mounts and frozen sections. These results strongly suggest that all of the efferent fibers that innervate the chick BP are cholinergic. Copyright 2002 Wiley-Liss, Inc.

  12. Kv2 Channel Regulation of Action Potential Repolarization and Firing Patterns in Superior Cervical Ganglion Neurons and Hippocampal CA1 Pyramidal Neurons

    PubMed Central

    Liu, Pin W.

    2014-01-01

    Kv2 family “delayed-rectifier” potassium channels are widely expressed in mammalian neurons. Kv2 channels activate relatively slowly and their contribution to action potential repolarization under physiological conditions has been unclear. We explored the function of Kv2 channels using a Kv2-selective blocker, Guangxitoxin-1E (GxTX-1E). Using acutely isolated neurons, mixed voltage-clamp and current-clamp experiments were done at 37°C to study the physiological kinetics of channel gating and action potentials. In both rat superior cervical ganglion (SCG) neurons and mouse hippocampal CA1 pyramidal neurons, 100 nm GxTX-1E produced near-saturating block of a component of current typically constituting ∼60–80% of the total delayed-rectifier current. GxTX-1E also reduced A-type potassium current (IA), but much more weakly. In SCG neurons, 100 nm GxTX-1E broadened spikes and voltage clamp experiments using action potential waveforms showed that Kv2 channels carry ∼55% of the total outward current during action potential repolarization despite activating relatively late in the spike. In CA1 neurons, 100 nm GxTX-1E broadened spikes evoked from −70 mV, but not −80 mV, likely reflecting a greater role of Kv2 when other potassium channels were partially inactivated at −70 mV. In both CA1 and SCG neurons, inhibition of Kv2 channels produced dramatic depolarization of interspike voltages during repetitive firing. In CA1 neurons and some SCG neurons, this was associated with increased initial firing frequency. In all neurons, inhibition of Kv2 channels depressed maintained firing because neurons entered depolarization block more readily. Therefore, Kv2 channels can either decrease or increase neuronal excitability depending on the time scale of excitation. PMID:24695716

  13. Macrophage migration inhibitory factor acts as a neurotrophin in the developing inner ear.

    PubMed

    Bank, Lisa M; Bianchi, Lynne M; Ebisu, Fumi; Lerman-Sinkoff, Dov; Smiley, Elizabeth C; Shen, Yu-chi; Ramamurthy, Poornapriya; Thompson, Deborah L; Roth, Therese M; Beck, Christine R; Flynn, Matthew; Teller, Ryan S; Feng, Luming; Llewellyn, G Nicholas; Holmes, Brandon; Sharples, Cyrrene; Coutinho-Budd, Jaeda; Linn, Stephanie A; Chervenak, Andrew P; Dolan, David F; Benson, Jennifer; Kanicki, Ariane; Martin, Catherine A; Altschuler, Richard; Koch, Alisa E; Koch, Alicia E; Jewett, Ethan M; Germiller, John A; Barald, Kate F

    2012-12-01

    This study is the first to demonstrate that macrophage migration inhibitory factor (MIF), an immune system 'inflammatory' cytokine that is released by the developing otocyst, plays a role in regulating early innervation of the mouse and chick inner ear. We demonstrate that MIF is a major bioactive component of the previously uncharacterized otocyst-derived factor, which directs initial neurite outgrowth from the statoacoustic ganglion (SAG) to the developing inner ear. Recombinant MIF acts as a neurotrophin in promoting both SAG directional neurite outgrowth and neuronal survival and is expressed in both the developing and mature inner ear of chick and mouse. A MIF receptor, CD74, is found on both embryonic SAG neurons and adult mouse spiral ganglion neurons. Mif knockout mice are hearing impaired and demonstrate altered innervation to the organ of Corti, as well as fewer sensory hair cells. Furthermore, mouse embryonic stem cells become neuron-like when exposed to picomolar levels of MIF, suggesting the general importance of this cytokine in neural development.

  14. Development of the peptidergic innervation of human heart.

    PubMed Central

    Gordon, L; Polak, J M; Moscoso, G J; Smith, A; Kuhn, D M; Wharton, J

    1993-01-01

    The aim of the present investigation was to study the developing peptidergic innervation of the human fetal heart of 7-24 wk gestational age. An immunohistochemical approach was adopted and the total innervation visualised with antisera to general neuronal and Schwann cell markers, while the onset and development of specific neuropeptide-containing subpopulations were investigated using antisera to neuropeptide Y (NPY), somatostatin, vasoactive intestinal polypeptide (VIP), calcitonin gene-related peptide (CGRP) and substance P (SP). Cardiac ganglia and nerves were demonstrated from 7 wk of gestation whereas peptide-immunoreactive nerves were not observed until the 10th week of gestation. NPY-immunoreactive nerve fibres constituted the major subpopulation of peptide-containing nerves identified in the fetal heart, exhibiting a descending atrial to ventricular density gradient, and were first identified during the 10th wk of gestation. Somatostatin- and VIP-immunoreactive nerves appeared at 10-12 wk of gestation and were mainly distributed in the atria. Somatostatin immunoreactivity was localised to cell bodies in cardiac ganglia, as well as to nerve fibres, indicating an intrinsic origin for this nerve subpopulation. Conversely, the other peptide-containing nerves appear to be of extrinsic origin, including those immunoreactive for VIP. Intracardiac neurons exhibit a transient expression of tyrosine hydroxylase immunoreactivity. Putative sympathetic nerve fibres, displaying tyrosine hydroxylase and NPY immunoreactivity, were demonstrated before the adrenergic innervation has previously been shown to be present by formaldehyde-induced fluorescence staining of catecholamines. The onset of the CGRP- and SP-immunoreactive innervation, at 18-24 wk of gestation, followed the appearance of other peptide-containing nerves, suggesting that the sensory, afferent innervation occurs later than the autonomic. The differential appearance and distribution of peptide

  15. Decreased voltage-gated potassium currents in rat dorsal root ganglion neurons after chronic constriction injury.

    PubMed

    Xiao, Yun; Wu, Yang; Zhao, Bo; Xia, Zhongyuan

    2016-01-20

    Voltage-gated potassium channels (KV) regulate pain transmission by controlling neuronal excitability. Changes in KV expression patterns may thus contribute toward hyperalgesia following nerve injury. The aim of this study was to characterize KV current density in dorsal root ganglion (DRG) neurons following chronic constriction injury (CCI) of the right sciatic nerve, a robust model of post-traumatic neuropathic pain. The study examined changes in small-diameter potassium ion currents (<30 µm) in neurons in the L4-L6 DRG following CCI by whole-cell patch-clamping and the association with post-CCI mechanical and thermal nociceptive thresholds. Compared with the control group, 7 days after CCI, the mechanical force and temperature required to elicit ipsilateral foot withdrawal decreased significantly, indicating tactile allodynia and thermal hyperalgesia. Post-CCI neurons had a significantly lower rheobase current and depolarized resting membrane potential than controls, suggesting KV current downregulation. Some ipsilateral DRG neurons also had spontaneous action potentials and repetitive firing. There was a 55% reduction in the total KV current density caused by a 55% decrease in the sustained delayed rectifier potassium ion current (IK) density and a 17% decrease in the transient A-type potassium ion current (IA) density. These results indicated that changes in DRG neuron IK and IA current density and concomitant afferent hyperexcitability may contribute toward neuropathic pain following injury. The rat CCI model may prove valuable for examining pathogenic mechanisms and potential therapies, such as KV channel modulators.

  16. The nature of catecholamine-containing neurons in the enteric nervous system in relationship with organogenesis, normal human anatomy and neurodegeneration.

    PubMed

    Natale, G; Ryskalin, L; Busceti, C L; Biagioni, F; Fornai, F

    2017-09-01

    The gastrointestinal tract is provided with extrinsic and intrinsic innervation. The extrinsic innervation includes the classic vagal parasympathetic and sympathetic components, with afferent sensitive and efferent secretomotor fibers. The intrinsic innervations is represented by the enteric nervous system (ENS), which is recognized as a complex neural network controlling a variety of cell populations, including smooth muscle cells, mucosal secretory cells, endocrine cells, microvasculature, immune and inflammatory cells. This is finalized to regulate gastrointestinal secretion, absorption and motility. In particular, this network is organized in several plexuses each one providing quite autonomous control of gastrointestinal functions (hence the definition of "second brain"). The similarity between ENS and CNS is further substantiated by the presence of local sensitive pseudo- unipolar ganglionic neurons with both peripheral and central branching which terminate in the enteric wall. A large variety of neurons and neurotransmitters takes part in the ENS. However, the nature of these neurons and their role in the regulation of gastrointestinal functions is debatable. In particular, the available literature reporting the specific nature of catecholamine- containing neurons provides conflicting evidence. This is critical both for understanding the specific role of each catecholamine in the gut and, mostly, to characterize specifically the enteric neuropathology occurring in a variety of diseases. An emphasis is posed on neurodegenerative disorders, such as Parkinson's disease, which is associated with the loss of catecholamine neurons. In this respect, the recognition of the nature of such neurons within the ENS would contribute to elucidate the pathological mechanisms which produce both CNS and ENS degeneration and to achieve more effective therapeutic approaches. Despite a great emphasis is posed on the role of noradrenaline to regulate enteric activities only a few

  17. Trigeminal ganglion neuron subtype-specific alterations of CaV2.1 calcium current and excitability in a Cacna1a mouse model of migraine

    PubMed Central

    Fioretti, B; Catacuzzeno, L; Sforna, L; Gerke-Duncan, M B; van den Maagdenberg, A M J M; Franciolini, F; Connor, M; Pietrobon, D

    2011-01-01

    Abstract Familial hemiplegic migraine type-1 (FHM1), a monogenic subtype of migraine with aura, is caused by gain-of-function mutations in CaV2.1 (P/Q-type) calcium channels. The consequences of FHM1 mutations on the trigeminovascular pathway that generates migraine headache remain largely unexplored. Here we studied the calcium currents and excitability properties of two subpopulations of small-diameter trigeminal ganglion (TG) neurons from adult wild-type (WT) and R192Q FHM1 knockin (KI) mice: capsaicin-sensitive neurons without T-type calcium currents (CS) and capsaicin-insensitive neurons characterized by the expression of T-type calcium currents (CI-T). Small TG neurons retrogradely labelled from the dura are mostly CS neurons, while CI-T neurons were not present in the labelled population. CS and CI-T neurons express CaV2.1 channels with different activation properties, and the CaV2.1 channels are differently affected by the FHM1 mutation in the two TG neuron subtypes. In CI-T neurons from FHM1 KI mice there was a larger P/Q-type current density following mild depolarizations, a larger action potential (AP)-evoked calcium current and a longer AP duration when compared to CI-T neurons from WT mice. In striking contrast, the P/Q-type current density, voltage dependence and kinetics were not altered by the FHM1 mutation in CS neurons. The excitability properties of mutant CS neurons were also unaltered. Congruently, the FHM1 mutation did not alter depolarization-evoked CGRP release from the dura mater, while CGRP release from the trigeminal ganglion was larger in KI compared to WT mice. Our findings suggest that the facilitation of peripheral mechanisms of CGRP action, such as dural vasodilatation and nociceptor sensitization at the meninges, does not contribute to the generation of headache in FHM1. PMID:22005682

  18. Nerve growth factor regulates galanin and neuropeptide Y expression in primary cultured superior cervical ganglion neurons.

    PubMed

    Liu, Huaxiang; Liu, Zhen; Xu, Xiaobo; Yang, Xiangdong; Wang, Huaijing; Li, Zhengzhong

    2010-03-01

    Both galanin and neuropeptide Y (NPY) are expressed in superior cervical ganglion (SCG) neurons. Following nerve transection or axotomy galanin is strongly upregulated and NPY is downregulated in SCG neurons because target-derived nerve growth factor (NGF) content decreased. It is not known whether or to what extent NGF affects both galanin and NPY expression in primary cultured SCG neurons. In the present study we examine whether exogenous NGF affects expression of neuropeptides for galanin and NPY in primary cultured SCG neurons. In addition, we explore whether mRNAs for galanin and NPY are affected by administration of exogenous NGF in SCG cultures. The significance of expression of galanin and NPY and their mRNAs was revealed by performing experiments without and with administration of exogenous NGF. Galanin and its mRNA expression was attenuated by administration of exogenous NGF in SCG cultures. The enhancement of NPY and its mRNA expression by administration of exogenous NGF in SCG cultures was dose-dependent. The physiological or pathophysiological mechanisms of the alterations of galanin and NPY expression affected by NGF in primary cultured SCG neurons are still unknown. The present data provide basic knowledge about the expression of galanin and NPY in primary cultured SCG neurons of rats, which may further improve our understanding of the functional significance of galanin and NPY expression affected by NGF.

  19. Charge-balanced biphasic electrical stimulation inhibits neurite extension of spiral ganglion neurons.

    PubMed

    Shen, Na; Liang, Qiong; Liu, Yuehong; Lai, Bin; Li, Wen; Wang, Zhengmin; Li, Shufeng

    2016-06-15

    Intracochlear application of exogenous or transgenic neurotrophins, such as neurotrophin-3 (NT-3) and brain derived neurotrophic factor (BDNF), could promote the resprouting of spiral ganglion neuron (SGN) neurites in deafened animals. These resprouting neurites might reduce the gap between cochlear implant electrodes and their targeting SGNs, allowing for an improvement of spatial resolution of electrical stimulation. This study is to investigate the impact of electrical stimulation employed in CI on the extension of resprouting SGN neurites. We established an in vitro model including the devices delivering charge-balanced biphasic electrical stimulation, and spiral ganglion (SG) dissociated culture treated with BDNF and NT-3. After electrical stimulation with varying durations and intensities, we quantified neurite lengths and Schwann cell densities in SG cultures. Stimulations that were greater than 50μA or longer than 8h significantly decreased SG neurite length. Schwann cell density under 100μA electrical stimulation for 48h was significantly lower compared to that in non-stimulated group. These electrical stimulation-induced decreases of neurite extension and Schwann cell density were attenuated by various types of voltage-dependent calcium channel (VDCC) blockers, or completely prevented by their combination, cadmium or calcium-free medium. Our study suggested that charge-balanced biphasic electrical stimulation inhibited the extension of resprouting SGN neurites and decreased Schwann cell density in vitro. Calcium influx through multiple types of VDCCs was involved in the electrical stimulation-induced inhibition. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Simultaneous cell death in the trigeminal ganglion and in ganglion neurons present in the oculomotor nerve of the bovine fetus.

    PubMed Central

    Bortolami, R; Lucchi, M L; Callegari, E; Barazzoni, A M; Costerbosa, G L; Scapolo, P A

    1990-01-01

    A well-developed ganglion and scattered ganglion cells are present in the intracranial portion of the oculomotor nerve during the first half of fetal life in the ox. In the second half of fetal life a dramatic reduction of the ganglion cells associated with the oculomotor nerve occurs because of spontaneous cell death. Concomitantly, the same phenomenon of cell death is found in the trigeminal ganglion, especially in its rostromedial portion. Free degenerating perikarya can be found in the cavernous sinus. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 PMID:2384329

  1. Isolated dorsal root ganglion neurones inhibit receptor-dependent adenylyl cyclase activity in associated glial cells

    PubMed Central

    Ng, KY; Yeung, BHS; Wong, YH; Wise, H

    2013-01-01

    Background and Purpose Hyper-nociceptive PGE2 EP4 receptors and prostacyclin (IP) receptors are present in adult rat dorsal root ganglion (DRG) neurones and glial cells in culture. The present study has investigated the cell-specific expression of two other Gs-protein coupled hyper-nociceptive receptor systems: β-adrenoceptors and calcitonin gene-related peptide (CGRP) receptors in isolated DRG cells and has examined the influence of neurone–glial cell interactions in regulating adenylyl cyclase (AC) activity. Experimental Approach Agonist-stimulated AC activity was determined in mixed DRG cell cultures from adult rats and compared with activity in DRG neurone-enriched cell cultures and pure DRG glial cell cultures. Key Results Pharmacological analysis showed the presence of Gs-coupled β2-adrenoceptors and CGRP receptors, but not β1-adrenoceptors, in all three DRG cell preparations. Agonist-stimulated AC activity was weakest in DRG neurone-enriched cell cultures. DRG neurones inhibited IP receptor-stimulated glial cell AC activity by a process dependent on both cell–cell contact and neurone-derived soluble factors, but this is unlikely to involve purine or glutamine receptor activation. Conclusions and Implications Gs-coupled hyper-nociceptive receptors are readily expressed on DRG glial cells in isolated cell cultures and the activity of CGRP, EP4 and IP receptors, but not β2-adrenoceptors, in glial cells is inhibited by DRG neurones. Studies using isolated DRG cells should be aware that hyper-nociceptive ligands may stimulate receptors on glial cells in addition to neurones, and that variable numbers of neurones and glial cells will influence absolute measures of AC activity and affect downstream functional responses. PMID:22924655

  2. Dync1h1 Mutation Causes Proprioceptive Sensory Neuron Loss and Impaired Retrograde Axonal Transport of Dorsal Root Ganglion Neurons.

    PubMed

    Zhao, Jing; Wang, Yi; Xu, Huan; Fu, Yuan; Qian, Ting; Bo, Deng; Lu, Yan-Xin; Xiong, Yi; Wan, Jun; Zhang, Xiang; Dong, Qiang; Chen, Xiang-Jun

    2016-07-01

    Sprawling (Swl) is a radiation-induced mutation which has been identified to have a nine base pair deletion in dynein heavy chain 1 (DYNC1H1: encoded by a single gene Dync1h1). This study is to investigate the phenotype and the underlying mechanism of the Dync1h1 mutant. To display the phenotype of Swl mutant mice, we examined the embryos of homozygous (Swl/Swl) and heterozygous (Swl/+) mice and their postnatal dorsal root ganglion (DRG) of surviving Swl/+ mice. The Swl/+ mice could survive for a normal life span, while Swl/Swl could only survive till embryonic (E) 8.5 days. Excessive apoptosis of Swl/+ DRG neurons was revealed during E11.5-E15.5 days, and the peak rate was at E13.5 days. In vitro study of mutated DRG neurons showed impaired retrograde transport of dynein-driven nerve growth factor (NGF). Mitochondria, another dynein-driven cargo, demonstrated much slower retrograde transport velocity in Swl/+ neurons than in wild-type (WT) neurons. Nevertheless, the Swl, Loa, and Cra mutations did not affect homodimerization of DYNC1H1. The Swl/Swl mutation of Dync1h1 gene led to embryonic mal-development and lethality, whereas the Swl/+ DRG neurons demonstrated deficient retrograde transport in dynein-driven cargos and excessive apoptosis during mid- to late-developmental stages. The underlying mechanism of the mutation may not be due to impaired homodimerization of DYNC1H1. © 2016 John Wiley & Sons Ltd.

  3. The developing dorsal ganglion of the salp Thalia democratica, and the nature of the ancestral chordate brain

    PubMed Central

    C.Lacalli, T.

    1998-01-01

    The development of the dorsal ganglion of the salp, Thalia democratica, is described from electron microscope reconstructions up to the stage of central neuropile formation. The central nervous system (CNS) rudiment is initially tubular with an open central canal. Early developmental events include: (i) the formation of a thick dorsal mantle of neuroblasts from which paired dorsal paraxial neuropiles arise; (ii) the differentiation of clusters of primary motor neurons along the ventral margin of the mantle; and (iii) the development from the latter of a series of peripheral nerves. The dorsal paraxial neuropiles ultimately connect to the large central neuropile, which develops later. Direct contact between neuroblasts and muscle appears to be involved in the development of some anterior nerves. The caudal nerves responsible for innervating more distant targets in the posterior part of the body develop without such contacts, which suggests that a different patterning mechanism may be employed in this part of the neuromuscular system. The results are compared with patterns of brain organization in other chordates. Because the salp CNS is symmetrical and generally less reduced than that of ascidian larvae, it is more easily compared with the CNS of amphioxus and vertebrates. The dorsal paraxial centres in the salp resemble the dorsolateral tectal centres in amphioxus in both position and organization; the central neuropile in salps likewise resembles the translumenal system in amphioxus. The neurons themselves are similar in that many of their neurites appear to be derived from the apical surface instead of the basal surface of the cell. Such neurons, with extensively developed apical neurites, may represent a new cell type that evolved in the earliest chordates in conjunction with the formation of translumenal or intralumenal integrative centres. In comparing the salp ganglion with vertebrates, we suggest that the main core of the ganglion is most like the mes

  4. A critical period for experience-dependent remodeling of adult-born neuron connectivity.

    PubMed

    Bergami, Matteo; Masserdotti, Giacomo; Temprana, Silvio G; Motori, Elisa; Eriksson, Therese M; Göbel, Jana; Yang, Sung Min; Conzelmann, Karl-Klaus; Schinder, Alejandro F; Götz, Magdalena; Berninger, Benedikt

    2015-02-18

    Neurogenesis in the dentate gyrus (DG) of the adult hippocampus is a process regulated by experience. To understand whether experience also modifies the connectivity of new neurons, we systematically investigated changes in their innervation following environmental enrichment (EE). We found that EE exposure between 2-6 weeks following neuron birth, rather than merely increasing the number of new neurons, profoundly affected their pattern of monosynaptic inputs. Both local innervation by interneurons and to even greater degree long-distance innervation by cortical neurons were markedly enhanced. Furthermore, following EE, new neurons received inputs from CA3 and CA1 inhibitory neurons that were rarely observed under control conditions. While EE-induced changes in inhibitory innervation were largely transient, cortical innervation remained increased after returning animals to control conditions. Our findings demonstrate an unprecedented experience-dependent reorganization of connections impinging onto adult-born neurons, which is likely to have important impact on their contribution to hippocampal information processing. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Cortical-basal ganglionic degeneration.

    PubMed

    Riley, D E; Lang, A E; Lewis, A; Resch, L; Ashby, P; Hornykiewicz, O; Black, S

    1990-08-01

    We report our experience with 15 patients believed to have cortical-basal ganglionic degeneration. The clinical picture is distinctive, comprising features referable to both cortical and basal ganglionic dysfunction. Characteristic manifestations include cortical sensory loss, focal reflex myoclonus, "alien limb" phenomena, apraxia, rigidity and akinesia, a postural-action tremor, limb dystonia, hyperreflexia, and postural instability. The asymmetry of symptoms and signs is often striking. Brain imaging may demonstrate greater abnormalities contralateral to the more affected side. Postmortem studies in 2 patients revealed the characteristic pathologic features of swollen, poorly staining (achromatic) neurons and degeneration of cerebral cortex and substantia nigra. Biochemical analysis of 1 brain showed a severe, diffuse loss of dopamine in the striatum. This condition is more frequent than previously believed, and the diagnosis can be predicted during life on the basis of clinical findings. However, as with other "degenerative" diseases of the nervous system, a definitive diagnosis of cortical-basal ganglionic degeneration requires confirmation by autopsy.

  6. Bortezomib alters microtubule polymerization and axonal transport in rat dorsal root ganglion neurons

    PubMed Central

    Staff, Nathan P.; Podratz, Jewel L.; Grassner, Lukas; Bader, Miranda; Paz, Justin; Knight, Andrew M.; Loprinzi, Charles L.; Trushina, Eugenia; Windebank, Anthony J.

    2013-01-01

    Bortezomib is part of a newer class of chemotherapeutic agents whose mechanism of action is inhibition of the proteasome-ubiquitination system. Primarily used in multiple myeloma, bortezomib causes a sensory-predominant axonal peripheral neuropathy in approximately 30% of patients. There are no established useful preventative agents for bortezomib-induced peripheral neuropathy (BIPN), and the molecular mechanisms of BIPN are unknown. We have developed an in vitro model of BIPN using rat dorsal root ganglia neuronal cultures. At clinically–relevant dosages, bortezomib produces a sensory axonopathy as evidenced by whole explant outgrowth and cell survival assays. This sensory axonopathy is associated with alterations in tubulin and results in accumulation of somatic tubulin without changes in microtubule ultrastructure. Furthermore, we observed an increased proportion of polymerized tubulin, but not total or acetylated tubulin, in bortezomib-treated DRG neurons. Similar findings are observed with lactacystin, an unrelated proteasome-inhibitor, which argues for a class effect of proteasome inhibition on dorsal root ganglion neurons. Finally, there is a change in axonal transport of mitochondria induced by bortezomib in a time-dependent fashion. In summary, we have developed an in vitro model of BIPN that recapitulates the clinical sensory axonopathy; this model demonstrates that bortezomib induces an alteration in microtubules and axonal transport. This robust model will be used in future mechanistic studies of BIPN and its prevention. PMID:24035926

  7. Efferent innervation to the auditory basilar papilla of scincid lizards.

    PubMed

    Wibowo, Erik; Brockhausen, Jennifer; Köppl, Christine

    2009-09-01

    Hair cells of the inner ear of vertebrates are innervated by afferent neurons that transmit sensory information to the brain as well as efferent neurons that receive feedback from the brainstem. The function of the efferent feedback system is poorly understood and may have changed during evolution when different tetrapod groups acquired sensitivity to airborne sound and extended their hearing ranges to higher frequencies. Lizards show a unique subdivision of their basilar papilla (homologous to the mammalian organ of Corti) into a low-frequency (<1 kHz) and a high-frequency (approximately 1-5 kHz) region. The high-frequency region was reported to have lost its efferent innervation, suggesting it was insignificant or even functionally detrimental at higher frequencies. We re-examined the innervation to the basilar papilla of five species of Australian scincid lizards, by using immunohistochemistry. Anti-choline acetyltransferase (ChAT) was used as an efferent marker. Co-localization with anti-synaptic vesicle protein 2 confirmed the synaptic identity of label. Cholinergic terminals were observed along the whole length of the basilar papilla, including the regions that had previously been described as devoid of efferent innervation. However, there was a clear decrease in terminal density from apical, low-frequency to basal, high-frequency locations. Our findings suggest that efferent innervation is a general feature of the hair cells in the basilar papilla of lizards, irrespective of tonotopic location. This re-enforces the notion that efferent feedback control of hair cells is a fundamental and important property of all vertebrate hearing organs. (c) 2009 Wiley-Liss, Inc.

  8. Ganglionic adrenergic action modulates ovarian steroids and nitric oxide in prepubertal rat.

    PubMed

    Delgado, Silvia Marcela; Casais, Marilina; Sosa, Zulema; Rastrilla, Ana María

    2006-08-01

    Both peripheral innervation and nitric oxide (NO) participate in ovarian steroidogenesis. The purpose of this work was to analyse the ganglionic adrenergic influence on the ovarian release of steroids and NO and the possible steroids/NO relationship. The experiments were carried out in the ex vivo coeliac ganglion-superior ovarian nerve (SON)-ovary system of prepubertal rats. The coeliac ganglion-SON-ovary system was incubated in Krebs Ringer-bicarbonate buffer in presence of adrenergic agents in the ganglionic compartment. The accumulation of progesterone, androstenedione, oestradiol and NO in the ovarian incubation liquid was measured. Norepinephrine in coeliac ganglion inhibited the liberation of progesterone and increased androstenedione, oestradiol and NO in ovary. The addition of alpha and beta adrenergic antagonists also showed different responses in the liberation of the substances mentioned before, which, from a physiological point of view, reveals the presence of adrenergic receptors in coeliac ganglion. In relation to propranolol, it does not revert the effect of noradrenaline on the liberation of progesterone, which leads us to think that it might also have a "per se" effect on the ganglion, responsible for the ovarian response observed for progesterone. Finally, we can conclude that the ganglionic adrenergic action via SON participates on the regulation of the prepubertal ovary in one of two ways: either increasing the NO, a gaseous neurotransmitter with cytostatic characteristics, to favour the immature follicles to remain dormant or increasing the liberation of androstenedione and oestradiol, the steroids necessary for the beginning of the near first estral cycle.

  9. Comprehensive Method for Culturing Embryonic Dorsal Root Ganglion Neurons for Seahorse Extracellular Flux XF24 Analysis

    PubMed Central

    Lange, Miranda; Zeng, Yan; Knight, Andrew; Windebank, Anthony; Trushina, Eugenia

    2012-01-01

    Changes in mitochondrial dynamics and function contribute to progression of multiple neurodegenerative diseases including peripheral neuropathies. The Seahorse Extracellular Flux XF24 analyzer provides a comprehensive assessment of the relative state of glycolytic and aerobic metabolism in live cells making this method instrumental in assessing mitochondrial function. One of the most important steps in the analysis of mitochondrial respiration using the Seahorse XF24 analyzer is plating a uniform monolayer of firmly attached cells. However, culturing of primary dorsal root ganglion (DRG) neurons is associated with multiple challenges, including their propensity to form clumps and detach from the culture plate. This could significantly interfere with proper analysis and interpretation of data. We have tested multiple cell culture parameters including coating substrates, culture medium, XF24 microplate plastics, and plating techniques in order to optimize plating conditions. Here we describe a highly reproducible method to obtain neuron-enriched monolayers of securely attached dissociated primary embryonic (E15) rat DRG neurons suitable for analysis with the Seahorse XF24 platform. PMID:23248613

  10. [Effect of trimebutine on cholinergic transmission in neurons of the inferior mesenteric ganglion of the rabbit].

    PubMed

    Julé, Y

    1987-01-01

    We analyzed the effects of trimebutine on the synaptic activity of neurons of the rabbit inferior mesenteric ganglion, using intracellular recording techniques. The synaptic activity was produced by subthreshold stimuli (0.5 Hz) applied individually, on lumbar splanchnic and lumbar colonic nerves. These stimuli triggered cholinergic responses corresponding to fast excitatory postsynaptic potentials. In 8 of 20 neurones tested trimebutine (10(-6) g/ml) produced an inhibition of excitatory postsynaptic potentials, without any change in the resting membrane potential. In 6 of 20 neurons tested, trimebutine produced, successively, an early facilitation followed by a late inhibition of excitatory postsynaptic potentials. Both effects occurred without change in the resting membrane potential. The inhibitory and facilitatory effects of trimebutine were accompanied, by an increase and a decrease in the number of failures of nerve stimulation respectively. These results indicate that inhibitory and facilitatory effects of trimebutine correspond respectively to a decrease and an increase in the amount of acetylcholine released from presynaptic nerve terminals originating from the spinal cord and the distal colon.

  11. Comprehensive Method for Culturing Embryonic Dorsal Root Ganglion Neurons for Seahorse Extracellular Flux XF24 Analysis.

    PubMed

    Lange, Miranda; Zeng, Yan; Knight, Andrew; Windebank, Anthony; Trushina, Eugenia

    2012-01-01

    Changes in mitochondrial dynamics and function contribute to progression of multiple neurodegenerative diseases including peripheral neuropathies. The Seahorse Extracellular Flux XF24 analyzer provides a comprehensive assessment of the relative state of glycolytic and aerobic metabolism in live cells making this method instrumental in assessing mitochondrial function. One of the most important steps in the analysis of mitochondrial respiration using the Seahorse XF24 analyzer is plating a uniform monolayer of firmly attached cells. However, culturing of primary dorsal root ganglion (DRG) neurons is associated with multiple challenges, including their propensity to form clumps and detach from the culture plate. This could significantly interfere with proper analysis and interpretation of data. We have tested multiple cell culture parameters including coating substrates, culture medium, XF24 microplate plastics, and plating techniques in order to optimize plating conditions. Here we describe a highly reproducible method to obtain neuron-enriched monolayers of securely attached dissociated primary embryonic (E15) rat DRG neurons suitable for analysis with the Seahorse XF24 platform.

  12. [Botulinum toxin type A does not affect spontaneous discharge but blocks sympathetic-sensory coupling in chronically compressed rat dorsal root ganglion neurons].

    PubMed

    Yang, Hong-jun; Peng, Kai-run; Hu, San-jue; Duan, Jian-hong

    2007-11-01

    To study the effect of botulinum toxin type A (BTXA) on spontaneous discharge and sympathetic- sensory coupling in chronically compressed dorsal root ganglion (DRG) neurons in rats. In chronically compressed rat DRG, spontaneous activities of the single fibers from DRG neurons were recorded and their changes observed after BTAX application on the damaged DGR. Sympathetic modulation of the spontaneous discharge from the compressed DRG neurons was observed by electric stimulation of the lumbar sympathetic trunk, and the changes in this effect were evaluated after intravenous BTXA injection in the rats. Active spontaneous discharges were recorded in the injured DRG neurons, and 47 injured DRG neurons responded to Ca2+-free artificial cerebrospinal fluid but not to BTXA treatment. Sixty-four percent of the neurons in the injured DRG responded to sympathetic stimulation, and this response was blocked by intravenously injection of BTXA. BTXA does not affect spontaneous activities of injured DRG neurons, but blocks sympathetic-sensory coupling in these neurons.

  13. Muscarinic modulation of TREK currents in mouse sympathetic superior cervical ganglion neurons.

    PubMed

    Rivas-Ramírez, P; Cadaveira-Mosquera, A; Lamas, J A; Reboreda, A

    2015-07-01

    Muscarinic receptors play a key role in the control of neurotransmission in the autonomic ganglia, which has mainly been ascribed to the regulation of potassium M-currents and voltage-dependent calcium currents. Muscarinic agonists provoke depolarization of the membrane potential and a reduction in spike frequency adaptation in postganglionic neurons, effects that may be explained by M-current inhibition. Here, we report the presence of a riluzole-activated current (IRIL ) that flows through the TREK-2 channels, and that is also inhibited by muscarinic agonists in neurons of the mouse superior cervical ganglion (mSCG). The muscarinic agonist oxotremorine-M (Oxo-M) inhibited the IRIL by 50%, an effect that was abolished by pretreatment with atropine or pirenzepine, but was unaffected in the presence of himbacine. Moreover, these antagonists had similar effects on single-channel TREK-2 currents. IRIL inhibition was unaffected by pretreatment with pertussis toxin. The protein kinase C blocker bisindolylmaleimide did not have an effect, and neither did the inositol triphosphate antagonist 2-aminoethoxydiphenylborane. Nevertheless, the IRIL was markedly attenuated by the phospholipase C (PLC) inhibitor ET-18-OCH3. Finally, the phosphatidylinositol-3-kinase/phosphatidylinositol-4-kinase inhibitor wortmannin strongly attenuated the IRIL , whereas blocking phosphatidylinositol 4,5-bisphosphate (PIP2 ) depletion consistently prevented IRIL inhibition by Oxo-M. These results demonstrate that TREK-2 currents in mSCG neurons are inhibited by muscarinic agonists that activate M1 muscarinic receptors, reducing PIP2 levels via a PLC-dependent pathway. The similarities between the signaling pathways regulating the IRIL and the M-current in the same neurons reflect an important role of this new pathway in the control of autonomic ganglia excitability. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  14. Adenovector GAD65 gene delivery into the rat trigeminal ganglion produces orofacial analgesia

    PubMed Central

    Vit, Jean-Philippe; Ohara, Peter T; Sundberg, Christopher; Rubi, Blanca; Maechler, Pierre; Liu, Chunyan; Puntel, Mariana; Lowenstein, Pedro; Castro, Maria; Jasmin, Luc

    2009-01-01

    Background Our goal is to use gene therapy to alleviate pain by targeting glial cells. In an animal model of facial pain we tested the effect of transfecting the glutamic acid decarboxylase (GAD) gene into satellite glial cells (SGCs) of the trigeminal ganglion by using a serotype 5 adenovector with high tropisms for glial cells. We postulated that GABA produced from the expression of GAD would reduce pain behavior by acting on GABA receptors on neurons within the ganglion. Results Injection of adenoviral vectors (AdGAD65) directly into the trigeminal ganglion leads to sustained expression of the GAD65 isoform over the 4 weeks observation period. Immunohistochemical analysis showed that adenovirus-mediated GAD65 expression and GABA synthesis were mainly in SGCs. GABAA and GABAB receptors were both seen in sensory neurons, yet only GABAA receptors decorated the neuronal surface. GABA receptors were not found on SGCs. Six days after injection of AdGAD65 into the trigeminal ganglion, there was a statistically significant decrease of pain behavior in the orofacial formalin test, a model of inflammatory pain. Rats injected with control virus (AdGFP or AdLacZ) had no reduction in their pain behavior. AdGAD65-dependent analgesia was blocked by bicuculline, a selective GABAA receptor antagonist, but not by CGP46381, a selective GABAB receptor antagonist. Conclusion Transfection of glial cells in the trigeminal ganglion with the GAD gene blocks pain behavior by acting on GABAA receptors on neuronal perikarya. PMID:19656360

  15. Adenovector GAD65 gene delivery into the rat trigeminal ganglion produces orofacial analgesia.

    PubMed

    Vit, Jean-Philippe; Ohara, Peter T; Sundberg, Christopher; Rubi, Blanca; Maechler, Pierre; Liu, Chunyan; Puntel, Mariana; Lowenstein, Pedro; Castro, Maria; Jasmin, Luc

    2009-08-05

    Our goal is to use gene therapy to alleviate pain by targeting glial cells. In an animal model of facial pain we tested the effect of transfecting the glutamic acid decarboxylase (GAD) gene into satellite glial cells (SGCs) of the trigeminal ganglion by using a serotype 5 adenovector with high tropisms for glial cells. We postulated that GABA produced from the expression of GAD would reduce pain behavior by acting on GABA receptors on neurons within the ganglion. Injection of adenoviral vectors (AdGAD65) directly into the trigeminal ganglion leads to sustained expression of the GAD65 isoform over the 4 weeks observation period. Immunohistochemical analysis showed that adenovirus-mediated GAD65 expression and GABA synthesis were mainly in SGCs. GABAA and GABAB receptors were both seen in sensory neurons, yet only GABAA receptors decorated the neuronal surface. GABA receptors were not found on SGCs. Six days after injection of AdGAD65 into the trigeminal ganglion, there was a statistically significant decrease of pain behavior in the orofacial formalin test, a model of inflammatory pain. Rats injected with control virus (AdGFP or AdLacZ) had no reduction in their pain behavior. AdGAD65-dependent analgesia was blocked by bicuculline, a selective GABAA receptor antagonist, but not by CGP46381, a selective GABAB receptor antagonist. Transfection of glial cells in the trigeminal ganglion with the GAD gene blocks pain behavior by acting on GABAA receptors on neuronal perikarya.

  16. Hindbrain Catecholamine Neurons Activate Orexin Neurons During Systemic Glucoprivation in Male Rats.

    PubMed

    Li, Ai-Jun; Wang, Qing; Elsarelli, Megan M; Brown, R Lane; Ritter, Sue

    2015-08-01

    Hindbrain catecholamine neurons are required for elicitation of feeding responses to glucose deficit, but the forebrain circuitry required for these responses is incompletely understood. Here we examined interactions of catecholamine and orexin neurons in eliciting glucoprivic feeding. Orexin neurons, located in the perifornical lateral hypothalamus (PeFLH), are heavily innervated by hindbrain catecholamine neurons, stimulate food intake, and increase arousal and behavioral activation. Orexin neurons may therefore contribute importantly to appetitive responses, such as food seeking, during glucoprivation. Retrograde tracing results showed that nearly all innervation of the PeFLH from the hindbrain originated from catecholamine neurons and some raphe nuclei. Results also suggested that many catecholamine neurons project collaterally to the PeFLH and paraventricular hypothalamic nucleus. Systemic administration of the antiglycolytic agent, 2-deoxy-D-glucose, increased food intake and c-Fos expression in orexin neurons. Both responses were eliminated by a lesion of catecholamine neurons innervating orexin neurons using the retrogradely transported immunotoxin, anti-dopamine-β-hydroxylase saporin, which is specifically internalized by dopamine-β-hydroxylase-expressing catecholamine neurons. Using designer receptors exclusively activated by designer drugs in transgenic rats expressing Cre recombinase under the control of tyrosine hydroxylase promoter, catecholamine neurons in cell groups A1 and C1 of the ventrolateral medulla were activated selectively by peripheral injection of clozapine-N-oxide. Clozapine-N-oxide injection increased food intake and c-Fos expression in PeFLH orexin neurons as well as in paraventricular hypothalamic nucleus neurons. In summary, catecholamine neurons are required for the activation of orexin neurons during glucoprivation. Activation of orexin neurons may contribute to appetitive responses required for glucoprivic feeding.

  17. Intercellular signal communication among odontoblasts and trigeminal ganglion neurons via glutamate.

    PubMed

    Nishiyama, A; Sato, M; Kimura, M; Katakura, A; Tazaki, M; Shibukawa, Y

    2016-11-01

    Various stimuli to the exposed surface of dentin induce changes in the hydrodynamic force inside the dentinal tubules resulting in dentinal pain. Recent evidences indicate that mechano-sensor channels, such as the transient receptor potential channels, in odontoblasts receive these hydrodynamic forces and trigger the release of ATP to the pulpal neurons, to generate dentinal pain. A recent study, however, has shown that odontoblasts also express glutamate receptors (GluRs). This implies that cells in the dental pulp tissue have the ability to release glutamate, which acts as a functional intercellular mediator to establish inter-odontoblast and odontoblast-trigeminal ganglion (TG) neuron signal communication. To investigate the intercellular signal communication, we applied mechanical stimulation to odontoblasts and measured the intracellular free Ca 2+ concentration ([Ca 2+ ] i ). During mechanical stimulation in the presence of extracellular Ca 2+ , we observed a transient [Ca 2+ ] i increase not only in single stimulated odontoblasts, but also in adjacent odontoblasts. We could not observe these responses in the absence of extracellular Ca 2+ . [Ca 2+ ] i increases in the neighboring odontoblasts during mechanical stimulation of single odontoblasts were inhibited by antagonists of metabotropic glutamate receptors (mGluRs) as well as glutamate-permeable anion channels. In the odontoblast-TG neuron coculture, we observed an increase in [Ca 2+ ] i in the stimulated odontoblasts and TG neurons, in response to direct mechanical stimulation of single odontoblasts. These [Ca 2+ ] i increases in the neighboring TG neurons were inhibited by antagonists for mGluRs. The [Ca 2+ ] i increases in the stimulated odontoblasts were also inhibited by mGluRs antagonists. We further confirmed that the odontoblasts express group I, II, and III mGluRs. However, we could not record any currents evoked from odontoblasts near the mechanically stimulated odontoblast, with or without

  18. The Three-Dimensional Culture System with Matrigel and Neurotrophic Factors Preserves the Structure and Function of Spiral Ganglion Neuron In Vitro.

    PubMed

    Sun, Gaoying; Liu, Wenwen; Fan, Zhaomin; Zhang, Daogong; Han, Yuechen; Xu, Lei; Qi, Jieyu; Zhang, Shasha; Gao, Bradley T; Bai, Xiaohui; Li, Jianfeng; Chai, Renjie; Wang, Haibo

    2016-01-01

    Whole organ culture of the spiral ganglion region is a resourceful model system facilitating manipulation and analysis of live sprial ganglion neurons (SGNs). Three-dimensional (3D) cultures have been demonstrated to have many biomedical applications, but the effect of 3D culture in maintaining the SGNs structure and function in explant culture remains uninvestigated. In this study, we used the matrigel to encapsulate the spiral ganglion region isolated from neonatal mice. First, we optimized the matrigel concentration for the 3D culture system and found the 3D culture system protected the SGNs against apoptosis, preserved the structure of spiral ganglion region, and promoted the sprouting and outgrowth of SGNs neurites. Next, we found the 3D culture system promoted growth cone growth as evidenced by a higher average number and a longer average length of filopodia and a larger growth cone area. 3D culture system also significantly elevated the synapse density of SGNs. Last, we found that the 3D culture system combined with neurotrophic factors had accumulated effects in promoting the neurites outgrowth compared with 3D culture or NFs treatment only groups. Together, we conclude that the 3D culture system preserves the structure and function of SGN in explant culture.

  19. Spinal Cord Injury-Induced Dysautonomia via Plasticity in Paravertebral Sympathetic Postganglionic

    DTIC Science & Technology

    2016-10-01

    sympathetic chain of the guinea - pig . J Physiol 203:173-198. Bratton B, Davies P, Janig W, McAllen R (2010) Ganglionic transmission in a vasomotor...sympathetic neurons. Journal of neurophysiology 82:2747-2764. Lichtman JW, Purves D, Yip JW (1980) Innervation of sympathetic neurones in the guinea - pig ...10 6. PRODUCTS

  20. Parasympathetic, sympathetic, and sensory interactions in the iris: nerve growth factor regulates cholinergic ciliary ganglion innervation in vivo.

    PubMed

    Kessler, J A

    1985-10-01

    Interactions between peptidergic sensory nerves, noradrenergic sympathetic nerves, and cholinergic parasympathetic fibers were examined in the rat iris. The putative peptide neurotransmitter, substance P (SP), was used as an index of the trigeminal sensory innervation, tyrosine hydroxylase (TH) activity served to monitor the sympathetic fibers, and choline acetyltransferase (CAT) activity was used as an index of the parasympathetic innervation. Destruction of the sympathetic innervation by neonatal administration of 6-hydroxydopamine resulted in increased SP development and a smaller increase in CAT activity in the iris. Moreover, trigeminal ablation resulted in an increase in both TH and CAT activities. Finally, ciliary ganglionectomy resulted in increased SP and a smaller increase in TH activity in the iris. Administration of nerve growth factor (NGF) into the anterior chamber substantially increased both SP and TH activity in the iris and also increased CAT activity to a lesser extent. Moreover, administration of anti-NGF into the anterior chamber prevented both the sympathectomy-induced increases in SP and CAT, and the increases in TH and CAT activities after trigeminal ablation, suggesting that NGF mediated these increases. These observations suggest that the sympathetic, sensory, and parasympathetic innervations of the iris interact by altering availability of NGF elaborated by the iris. Regulation of iris CAT activity was examined in greater detail. Injection of the cholinergic toxin, AF64A, into the anterior chamber concurrently with ablation of the sympathetic and sensory innervations paradoxically increased CAT activity, whereas AF64A alone decreased CAT activity.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Spiral Ganglion Neuron Projection Development to the Hindbrain in Mice Lacking Peripheral and/or Central Target Differentiation

    PubMed Central

    Elliott, Karen L.; Kersigo, Jennifer; Pan, Ning; Jahan, Israt; Fritzsch, Bernd

    2017-01-01

    We investigate the importance of the degree of peripheral or central target differentiation for mouse auditory afferent navigation to the organ of Corti and auditory nuclei in three different mouse models: first, a mouse in which the differentiation of hair cells, but not central auditory nuclei neurons is compromised (Atoh1-cre; Atoh1f/f); second, a mouse in which hair cell defects are combined with a delayed defect in central auditory nuclei neurons (Pax2-cre; Atoh1f/f), and third, a mouse in which both hair cells and central auditory nuclei are absent (Atoh1−/−). Our results show that neither differentiated peripheral nor the central target cells of inner ear afferents are needed (hair cells, cochlear nucleus neurons) for segregation of vestibular and cochlear afferents within the hindbrain and some degree of base to apex segregation of cochlear afferents. These data suggest that inner ear spiral ganglion neuron processes may predominantly rely on temporally and spatially distinct molecular cues in the region of the targets rather than interaction with differentiated target cells for a crude topological organization. These developmental data imply that auditory neuron navigation properties may have evolved before auditory nuclei. PMID:28450830

  2. Immunocytochemical distribution of locustamyoinhibiting peptide (Lom-MIP) in the nervous system of Locusta migratoria.

    PubMed

    Schoofs, L; Veelaert, D; Broeck, J V; De Loof, A

    1996-07-05

    Locustamyoinhibiting peptide (Lom-MIP) is one of the 4 identified myoinhibiting neuropeptides, isolated from brain-corpora cardiaca-corpora allata-suboesophageal ganglion complexes of the locust, Locusta migratoria. An antiserum was raised against Lom-MIP for use in immunohistochemistry. Locustamyoinhibiting peptide-like immunoreactivity (Lom-MIP-LI) was visualized in the nervous system and peripheral organs of Locusta migratoria by means of the peroxidase-antiperoxidase method. A total of 12 specific immunoreactive neurons was found in the brain. Processes of these neurons innervate the protocerebral bridge the central body complex and distinct neuropil areas in the proto- and tritocerebrum but not in the deuterocerebrum nor in the optic lobes. The glandular cells of the corpora cardiaca, known to produce adipokinetic hormones, are contacted by Lom-MIP-LI fibers. The corpora allata were innervated by the nervus corporis allati I containing immunoreactive fibers. Lom-MIP-LI cell bodies were also found in the subesophageal ganglion, the metathoracic ganglion and the abdominal ganglia I-IV. In peripheral muscles, Lom-MIP-LI fibers innervate the heart, the oviduct, and the hindgut. In the salivary glands, Lom-MIP-LI was detected in the intracellular ductule of the parietal cells. Possible functions of Lom-MIP are discussed.

  3. Molecular and functional expression of cation-chloride cotransporters in dorsal root ganglion neurons during postnatal maturation

    PubMed Central

    Mao, Shihong; Garzon-Muvdi, Tomás; Di Fulvio, Mauricio; Chen, Yanfang; Delpire, Eric; Alvarez, Francisco J.

    2012-01-01

    GABA depolarizes and excites central neurons during early development, becoming inhibitory and hyperpolarizing with maturation. This “developmental shift” occurs abruptly, reflecting a decrease in intracellular Cl− concentration ([Cl−]i) and a hyperpolarizing shift in Cl− equilibrium potential due to upregulation of the K+-Cl− cotransporter KCC2b, a neuron-specific Cl− extruder. In contrast, primary afferent neurons (PANs) are depolarized by GABA throughout adulthood because of expression of NKCC1, a Na+-K+-2Cl− cotransporter that accumulates Cl− above equilibrium. The GABAA-mediated depolarization of PANs determines presynaptic inhibition in the spinal cord, a key mechanism gating somatosensory information. Little is known about developmental changes in Cl− transporter expression and Cl− homeostasis in PANs. Whether NKCC1 is expressed in PANs of all phenotypes or is restricted to subpopulations (e.g., nociceptors) is debatable. Likewise, whether PANs express KCC2s is controversial. We investigated NKCC1 and K+-Cl− cotransporter expression in rat and mouse dorsal root ganglion (DRG) neurons with molecular methods. Using fluorescence imaging microscopy, we measured [Cl−]i in acutely dissociated rat DRG neurons (P0–P21) loaded with N-(ethoxycarbonylmethyl)-6-methoxyquinolinium bromide and classified with phenotypic markers. DRG neurons of all sizes express two NKCC1 mRNAs, one full-length and a shorter splice variant lacking exon 21. Immunolabeling with validated antibodies revealed ubiquitous expression of NKCC1 in DRG neurons irrespective of postnatal age and phenotype. As maturation progresses [Cl−]i decreases gradually, persisting above equilibrium in >95% mature neurons. DRG neurons express mRNAs for KCC1, KCC3s, and KCC4, but not for KCC2s. Mechanisms underlying PANs' developmental changes in Cl− homeostasis are discussed and compared with those of central neurons. PMID:22457464

  4. Wogonin prevents rat dorsal root ganglion neurons death via inhibiting tunicamycin-induced ER stress in vitro.

    PubMed

    Xu, Shujuan; Zhao, Xin; Zhao, Quanlai; Zheng, Quan; Fang, Zhen; Yang, Xiaoming; Wang, Hong; Liu, Ping; Xu, Hongguang

    2015-04-01

    Wogonin is a natural flavonoid isolated from the root of Scutellaria baicalensis Georgi, which has been widely used in various research areas for its anti-oxidant, anti-inflammatory, and anti-cancer activities. It also presents a neuroprotective effect in the brain while encounters stress conditions, but the mechanisms controlling the neuroprotective effect of wogonin are not clear. In this study, we investigated the biomechanism underlying the neuroprotective effect of wogonin on rat dorsal root ganglion (DRG) neurons. Wogonin pre-treatment at 75 μM significantly increased the cell viability of DRG neurons and decreased the number of the propidium iodide-positive DRG neurons before the endoplasmic reticulum (ER) stress is being induced by tunicamycin (TUN) (0.75 μg/mL). In addition, Wogonin also inhibited the release of LDH and up-regulated the level of GSH. Furthermore, wogonin decreased the activation of ER stress-related molecules, including glucose-regulated protein 78 (GRP78), GRP94, C/EBP-homologous protein, active caspase12 and active caspase3, phosphorylation of pancreatic ER stress kinase, and eukaryotic initiation factor 2 alpha (eIF2α). In summary, our results indicated that wogonin could protect DRG neurons against TUN-induced ER stress.

  5. Dopaminergic neurons encode a distributed, asymmetric representation of temperature in Drosophila.

    PubMed

    Tomchik, Seth M

    2013-01-30

    Dopaminergic circuits modulate a wide variety of innate and learned behaviors in animals, including olfactory associative learning, arousal, and temperature-preference behavior. It is not known whether distinct or overlapping sets of dopaminergic neurons modulate these behaviors. Here, I have functionally characterized the dopaminergic circuits innervating the Drosophila mushroom body with in vivo calcium imaging and conditional silencing of genetically defined subsets of neurons. Distinct subsets of PPL1 dopaminergic neurons innervating the vertical lobes of the mushroom body responded to decreases in temperature, but not increases, with rapidly adapting bursts of activity. PAM neurons innervating the horizontal lobes did not respond to temperature shifts. Ablation of the antennae and maxillary palps reduced, but did not eliminate, the responses. Genetic silencing of dopaminergic neurons innervating the vertical mushroom body lobes substantially reduced behavioral cold avoidance, but silencing smaller subsets of these neurons had no effect. These data demonstrate that overlapping dopaminergic circuits encode a broadly distributed, asymmetric representation of temperature that overlays regions implicated previously in learning, memory, and forgetting. Thus, diverse behaviors engage overlapping sets of dopaminergic neurons that encode multimodal stimuli and innervate a single anatomical target, the mushroom body.

  6. 7, 8, 3′-Trihydroxyflavone Promotes Neurite Outgrowth and Protects Against Bupivacaine-Induced Neurotoxicity in Mouse Dorsal Root Ganglion Neurons

    PubMed Central

    Shi, Haohong; Luo, Xingjing

    2016-01-01

    Background 7, 8, 3′-trihydroxyflavone (THF) is a novel pro-neuronal small molecule that acts as a TrkB agonist. In this study, we examined the effect of THF on promoting neuronal growth and protecting anesthetics-induced neurotoxicity in dorsal root ganglion (DRG) neurons in vitro. Material/Methods Neonatal mouse DRG neurons were cultured in vitro and treated with various concentrations of THF. The effect of THF on neuronal growth was investigated by neurite outgrowth assay and Western blot. In addition, the protective effects of THF on bupivacaine-induced neurotoxicity were investigated by apoptosis TUNEL assay, neurite outgrowth assay, and Western blot, respectively. Results THF promoted neurite outgrowth of DRG neurons in dose-dependent manner, with an EC50 concentration of 67.4 nM. Western blot analysis showed THF activated TrkB signaling pathway by inducing TrkB phosphorylation. THF also rescued bupivacaine-induced neurotoxicity by reducing apoptosis and protecting neurite retraction in DRG neurons. Furthermore, the protection of THF in bupivacaine-injured neurotoxicity was directly associated with TrkB phosphorylation in a concentration-dependent manner in DRG neurons. Conclusions THF has pro-neuronal effect on DRG neurons by promoting neurite growth and protecting against bupivacaine-induced neurotoxicity, likely through TrkB activation. PMID:27371503

  7. Preferential inhibition of Ih in rat trigeminal ganglion neurons by an organic blocker.

    PubMed

    Janigro, D; Martenson, M E; Baumann, T K

    1997-11-15

    The potency and specificity of a novel organic Ih current blocker DK-AH 268 (DK, Boehringer) was studied in cultured rat trigeminal ganglion neurons using whole-cell patch-clamp recording techniques. In neurons current-clamped at the resting potential, the application of 10 microM DK caused a slight hyperpolarization of the membrane potential and a small increase in the threshold for action potential discharge without any major change in the shape of the action potential. In voltage-clamped neurons, DK caused a reduction of a hyperpolarization-activated current. Current subtraction protocols revealed that the time-dependent, hyperpolarization-activated currents blocked by 10 microM DK or external Cs+ (3 mM) had virtually identical activation properties, suggesting that DK and Cs+ caused blockade of the same current, namely Ih. The block of Ih by DK was dose-dependent. At the intermediate and higher concentrations of DK (10 and 100 microM) a decrease in specificity was observed so that time-independent, inwardly rectifying and noninactivating, voltage-gated outward potassium currents were also reduced by DK but to a much lesser extent than the time-dependent, hyperpolarization-activated currents. Blockade of the time-dependent, hyperpolarization-activated currents by DK appeared to be use-dependent since it required hyperpolarization for the effect to take place. Relief of DK block was also aided by membrane hyperpolarization. Since both the time-dependent current blocked by DK and the Cs+-sensitive time-dependent current behaved as Ih, we conclude that 10 microM DK can preferentially reduce Ih without a major effect on other potassium currents. Thus, DK may be a useful agent in the investigation of the function of Ih in neurons.

  8. Evidence that antidromically stimulated vagal afferents activate inhibitory neurones innervating guinea-pig trachealis.

    PubMed Central

    Canning, B J; Undem, B J

    1994-01-01

    1. We recently described a capsaicin-sensitive vagal pathway mediating non-adrenergic, non-cholinergic (NANC) relaxations of an isolated, innervated rostral guinea-pig tracheal preparation. These afferent fibres are carried by the superior laryngeal nerves and relaxations elicited by their activation are insensitive to autonomic ganglion blockers such as hexamethonium. In the present study this vagal relaxant pathway was further characterized. 2. Relaxations of the trachealis elicited by electrical stimulation of capsaicin-sensitive vagal afferents were mimicked by bath application of capsaicin. Relaxations elicited by both methods were abolished when the tissue between the trachea and the adjacent oesophagus was disrupted. Indeed, separating the trachea from the oesophagus uncovered a contractile effect of capsaicin administration on the trachealis. 3. Capsaicin-induced, oesophagus-dependent relaxations of the trachealis were blocked by pretreatment with the fast sodium channel blocker tetrodotoxin (TTX). By contrast, capsaicin-induced contractions of the trachealis (obtained in the absence of the oesophagus) were unaffected by tetrodotoxin. 4. Substance P, neurokinin A (NKA) and neurokinin B (NKB) also elicited NANC relaxations of precontracted trachealis that were abolished by separating the trachea from the oesophagus or by TTX pretreatment. Like capsaicin, the tachykinins elicited only contractions of the trachealis following TTX pretreatment or separation of the trachea from the adjacent oesophagus. 5. Relaxations elicited by stimulation of the capsaicin-sensitive nerves were unaffected by a concentration of the tachykinin NK2 receptor-selective antagonist, SR 48968, that is selective for NK2 receptor blockade and were not mimicked by the NK2 receptor-selective agonist [beta-Ala8]-NKA(4-10). This suggests that NK2 receptors are not responsible for these relaxations. By contrast, the NK3 receptor-selective agonist, senktide analogue, and the NK1 receptor

  9. Atrophy and neuron loss: effects of a protein-deficient diet on sympathetic neurons.

    PubMed

    Gomes, Silvio Pires; Nyengaard, Jens Randel; Misawa, Rúbia; Girotti, Priscila Azevedo; Castelucci, Patrìcia; Blazquez, Francisco Hernandez Javier; de Melo, Mariana Pereira; Ribeiro, Antonio Augusto Coppi

    2009-12-01

    Protein deficiency is one of the biggest public health problems in the world, accounting for about 30-40% of hospital admissions in developing countries. Nutritional deficiencies lead to alterations in the peripheral nervous system and in the digestive system. Most studies have focused on the effects of protein-deficient diets on the enteric neurons, but not on sympathetic ganglia, which supply extrinsic sympathetic input to the digestive system. Hence, in this study, we investigated whether a protein-restricted diet would affect the quantitative structure of rat coeliac ganglion neurons. Five male Wistar rats (undernourished group) were given a pre- and postnatal hypoproteinic diet receiving 5% casein, whereas the nourished group (n = 5) was fed with 20% casein (normoproteinic diet). Blood tests were carried out on the animals, e.g., glucose, leptin, and triglyceride plasma concentrations. The main structural findings in this study were that a protein-deficient diet (5% casein) caused coeliac ganglion (78%) and coeliac ganglion neurons (24%) to atrophy and led to neuron loss (63%). Therefore, the fall in the total number of coeliac ganglion neurons in protein-restricted rats contrasts strongly with no neuron losses previously described for the enteric neurons of animals subjected to similar protein-restriction diets. Discrepancies between our figures and the data for enteric neurons (using very similar protein-restriction protocols) may be attributable to the counting method used. In light of this, further systematic investigations comparing 2-D and 3-D quantitative methods are warranted to provide even more advanced data on the effects that a protein-deficient diet may exert on sympathetic neurons. (c) 2009 Wiley-Liss, Inc. Copyright 2009 Wiley-Liss, Inc.

  10. Metabolic changes in deafferented central neurons of an insect, Acheta domesticus. I. Effects upon amino acid uptake and incorporation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, M.R.; Edwards, J.S.

    1982-11-01

    Chronic cercal deafferentation of the terminal ganglion in developing crickets (Acheta domesticus), which is known to suppress normal development of giant interneuron dendritic arborizations is shown here to reduce (/sup 3/H)leucine uptake and incorporation into ganglion proteins. Short term deafferentation of adult crickets, in contrast, does not depress amino acid uptake and incorporation significantly. Following unilateral long term deafferentation of the terminal ganglion, a comparison was made of the (/sup 3/H)leucine incorporation into primary dendritic processes and somata of deafferented and normally innervated medial giant interneurons (MGIs) within the same ganglion by means of quantitative autoradiography. Grain densities within dendritesmore » of deafferented MGIs were significantly lower than in paired control MGIs' grain densities within somata of deafferented MGIs also were reduced, although the effects of deafferentation were less pronounced in somata than in target dendrites. These results imply a specific influence of afferent innervation on protein metabolism during growth and development of target postsynaptic elements.« less

  11. The spiral ganglion: connecting the peripheral and central auditory systems

    PubMed Central

    Nayagam, Bryony A; Muniak, Michael A; Ryugo, David K

    2011-01-01

    In mammals, the initial bridge between the physical world of sound and perception of that sound is established by neurons of the spiral ganglion. The cell bodies of these neurons give rise to peripheral processes that contact acoustic receptors in the organ of Corti, and the central processes collect together to form the auditory nerve that projects into the brain. In order to better understand hearing at this initial stage, we need to know the following about spiral ganglion neurons: (1) their cell biology including cytoplasmic, cytoskeletal, and membrane properties, (2) their peripheral and central connections including synaptic structure; (3) the nature of their neural signaling; and (4) their capacity for plasticity and rehabilitation. In this report, we will update the progress on these topics and indicate important issues still awaiting resolution. PMID:21530629

  12. Wnt1 from cochlear schwann cells enhances neuronal differentiation of transplanted neural stem cells in a rat spiral ganglion neuron degeneration model.

    PubMed

    He, Ya; Zhang, Peng-Zhi; Sun, Dong; Mi, Wen-Juan; Zhang, Xin-Yi; Cui, Yong; Jiang, Xing-Wang; Mao, Xiao-Bo; Qiu, Jian-Hua

    2014-04-01

    Although neural stem cell (NSC) transplantation is widely expected to become a therapy for nervous system degenerative diseases and injuries, the low neuronal differentiation rate of NSCs transplanted into the inner ear is a major obstacle for the successful treatment of spiral ganglion neuron (SGN) degeneration. In this study, we validated whether the local microenvironment influences the neuronal differentiation of transplanted NSCs in the inner ear. Using a rat SGN degeneration model, we demonstrated that transplanted NSCs were more likely to differentiate into microtubule-associated protein 2 (MAP2)-positive neurons in SGN-degenerated cochleae than in control cochleae. Using real-time quantitative PCR and an immunofluorescence assay, we also proved that the expression of Wnt1 (a ligand of Wnt signaling) increases significantly in Schwann cells in the SGN-degenerated cochlea. We further verified that NSC cultures express receptors and signaling components for Wnts. Based on these expression patterns, we hypothesized that Schwann cell-derived Wnt1 and Wnt signaling might be involved in the regulation of the neuronal differentiation of transplanted NSCs. We verified our hypothesis in vitro using a coculture system. We transduced a lentiviral vector expressing Wnt1 into cochlear Schwann cell cultures and cocultured them with NSC cultures. The coculture with Wnt1-expressing Schwann cells resulted in a significant increase in the percentage of NSCs that differentiated into MAP2-positive neurons, whereas this differentiation-enhancing effect was prevented by Dkk1 (an inhibitor of the Wnt signaling pathway). These results suggested that Wnt1 derived from cochlear Schwann cells enhanced the neuronal differentiation of transplanted NSCs through Wnt signaling pathway activation. Alterations of the microenvironment deserve detailed investigation because they may help us to conceive effective strategies to overcome the barrier of the low differentiation rate of transplanted

  13. Immunocytochemical characterization of the synaptic innervation of a single spinal neuron, the electric catfish electromotoneuron.

    PubMed

    Schikorski, T; Braun, N; Zimmermann, H

    1994-05-22

    The electric catfish, Malapterurus electricus, possesses electric organs that are innervated by a pair of identifiable electromotoneurons located within the cervical spinal cord. The pattern of synaptic innervation of the electromotoneurons can be revealed by an antibody against the synaptic vesicle protein SV2. Both somata and proximal dendrites are densely innervated. Several transmitters contribute to this innervation. Glutamate, the neurotransmitter of the dorsal root sensory fibers, reveals a weak punctuate immunoreactivity. The previously described electrical synapses of the electromotoneurons were visualized by an antibody against a gap-junctional protein. In contrast to the electromotoneurons of other electric fish, the electric catfish electromotoneurons possess many inhibitory synapses. With antibodies against glycine and against the glycine receptor, a dense immunoreactivity of the surface of the somata and proximal dendrites can be revealed. The glycine receptor-like immunoreactivity exhibits a patch-like distribution similar to that revealed by the anti-SV2 antibody. gamma-Aminobutyric acid (GABA)-immunopositive terminals contribute to the inhibitory electromotoneuron innervations to a lesser degree. The chemical characteristics of the electromotoneuron innervations of Malapterurus resemble those of other spinal motoneurons rather than spinal electromotoneurons of other electric fish. Thus our immunocytochemical study supports the view that the pattern of electromotoneuron innervations in Malapterurus reveals little specialization. The capacity for information processing required for the control of the electric organ discharge appears to be achieved by the increased integrational capacity of the newly evolved multiple dendrites and not by an additional parallel channel specific for the electromotor system.

  14. RNA interference-based functional knockdown of the voltage-gated potassium channel Kv7.2 in dorsal root ganglion neurons after in vitro and in vivo gene transfer by adeno-associated virus vectors.

    PubMed

    Valdor, Markus; Wagner, Anke; Röhrs, Viola; Berg, Johanna; Fechner, Henry; Schröder, Wolfgang; Tzschentke, Thomas M; Bahrenberg, Gregor; Christoph, Thomas; Kurreck, Jens

    2018-01-01

    Activation of the neuronal potassium channel Kv7.2 encoded by the KCNQ2 gene has recently been shown to be an attractive mechanism to inhibit nociceptive transmission. However, potent, selective, and clinically proven activators of Kv7.2/Kv7.3 currents with analgesic properties are still lacking. An important prerequisite for the development of new drugs is a model to test the selectivity of novel agonists by abrogating Kv7.2/Kv7.3 function. Since constitutive knockout mice are not viable, we developed a model based on RNA interference-mediated silencing of KCNQ2. By delivery of a KCNQ2-specific short hairpin RNA with adeno-associated virus vectors, we completely abolished the activity of the specific Kv7.2/Kv7.3-opener ICA-27243 in rat sensory neurons. Results obtained in the silencing experiments were consistent between freshly prepared and cryopreserved dorsal root ganglion neurons, as well as in dorsal root ganglion neurons dissociated and cultured after in vivo administration of the silencing vector by intrathecal injections into rats. Interestingly, the tested associated virus serotypes substantially differed with respect to their transduction capability in cultured neuronal cell lines and primary dorsal root ganglion neurons and the in vivo transfer of transgenes by intrathecal injection of associated virus vectors. However, our study provides the proof-of-concept that RNA interference-mediated silencing of KCNQ2 is a suitable approach to create an ex vivo model for testing the specificity of novel Kv7.2/Kv7.3 agonists.

  15. Quantitative Analysis of Rat Dorsal Root Ganglion Neurons Cultured on Microelectrode Arrays Based on Fluorescence Microscopy Image Processing.

    PubMed

    Mari, João Fernando; Saito, José Hiroki; Neves, Amanda Ferreira; Lotufo, Celina Monteiro da Cruz; Destro-Filho, João-Batista; Nicoletti, Maria do Carmo

    2015-12-01

    Microelectrode Arrays (MEA) are devices for long term electrophysiological recording of extracellular spontaneous or evocated activities on in vitro neuron culture. This work proposes and develops a framework for quantitative and morphological analysis of neuron cultures on MEAs, by processing their corresponding images, acquired by fluorescence microscopy. The neurons are segmented from the fluorescence channel images using a combination of segmentation by thresholding, watershed transform, and object classification. The positioning of microelectrodes is obtained from the transmitted light channel images using the circular Hough transform. The proposed method was applied to images of dissociated culture of rat dorsal root ganglion (DRG) neuronal cells. The morphological and topological quantitative analysis carried out produced information regarding the state of culture, such as population count, neuron-to-neuron and neuron-to-microelectrode distances, soma morphologies, neuron sizes, neuron and microelectrode spatial distributions. Most of the analysis of microscopy images taken from neuronal cultures on MEA only consider simple qualitative analysis. Also, the proposed framework aims to standardize the image processing and to compute quantitative useful measures for integrated image-signal studies and further computational simulations. As results show, the implemented microelectrode identification method is robust and so are the implemented neuron segmentation and classification one (with a correct segmentation rate up to 84%). The quantitative information retrieved by the method is highly relevant to assist the integrated signal-image study of recorded electrophysiological signals as well as the physical aspects of the neuron culture on MEA. Although the experiments deal with DRG cell images, cortical and hippocampal cell images could also be processed with small adjustments in the image processing parameter estimation.

  16. A novel model for rapid induction of apoptosis in spiral ganglions of mice.

    PubMed

    Lee, Ji Eun; Nakagawa, Takayuki; Kim, Tae Soo; Iguchi, Fukuichiro; Endo, Tsuyoshi; Dong, Youyi; Yuki, Kazuo; Naito, Yasushi; Lee, Sang Heun; Ito, Juichi

    2003-06-01

    The survival of the spiral ganglion (SG) is a critical issue in preservation of hearing. Research on topics related to this issue requires a mouse experimental model because such a model has advantages including use of genetic information and knockout or "knockin" mice. Thus, the aim of the study was to establish a mouse model for induction of apoptosis of SG neurons with a definite time course. Laboratory study using experimental animals. C57BL/6 mice were used as experimental animals and were subjected to direct application of cisplatin into the inner ear. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay and immunostaining for Neurofilament 200-kD (NF) and peripherin were used for analysis of SG degeneration. In addition, generation of peroxynitrite in affected spiral ganglions was examined by immunostaining for nitrotyrosine. Cellular location of activated caspase-9 and cytochrome-c in dying SG neurons were examined for analysis of cell death pathway. The TUNEL assay and immunohistochemical analysis for NF and peripherin indicated that type I neurons in spiral ganglions were deleted through the apoptotic pathway over time. Spiral ganglion neurons treated with cisplatin exhibited expression of nitrotyrosine, indicating induction of peroxynitrite by cisplatin. In dying SG neurons, expression of activated caspase-9 and translocation of cytochrome-c from mitochondria to cytoplasm were observed, indicating the mitochondrial pathway of apoptosis. The predictable fashion of induction of apoptosis in SG neurons over a well-defined time course in the model in the study will aid studies of the molecular mechanism of cell death and elucidation of a strategy for prevention of SG degeneration.

  17. Diversity in spatial scope of contrast adaptation among mouse retinal ganglion cells.

    PubMed

    Khani, Mohammad Hossein; Gollisch, Tim

    2017-12-01

    Retinal ganglion cells adapt to changes in visual contrast by adjusting their response kinetics and sensitivity. While much work has focused on the time scales of these adaptation processes, less is known about the spatial scale of contrast adaptation. For example, do small, localized contrast changes affect a cell's signal processing across its entire receptive field? Previous investigations have provided conflicting evidence, suggesting that contrast adaptation occurs either locally within subregions of a ganglion cell's receptive field or globally over the receptive field in its entirety. Here, we investigated the spatial extent of contrast adaptation in ganglion cells of the isolated mouse retina through multielectrode-array recordings. We applied visual stimuli so that ganglion cell receptive fields contained regions where the average contrast level changed periodically as well as regions with constant average contrast level. This allowed us to analyze temporal stimulus integration and sensitivity separately for stimulus regions with and without contrast changes. We found that the spatial scope of contrast adaptation depends strongly on cell identity, with some ganglion cells displaying clear local adaptation, whereas others, in particular large transient ganglion cells, adapted globally to contrast changes. Thus, the spatial scope of contrast adaptation in mouse retinal ganglion cells appears to be cell-type specific. This could reflect differences in mechanisms of contrast adaptation and may contribute to the functional diversity of different ganglion cell types. NEW & NOTEWORTHY Understanding whether adaptation of a neuron in a sensory system can occur locally inside the receptive field or whether it always globally affects the entire receptive field is important for understanding how the neuron processes complex sensory stimuli. For mouse retinal ganglion cells, we here show that both local and global contrast adaptation exist and that this diversity in

  18. Diversity in spatial scope of contrast adaptation among mouse retinal ganglion cells

    PubMed Central

    Khani, Mohammad Hossein

    2017-01-01

    Retinal ganglion cells adapt to changes in visual contrast by adjusting their response kinetics and sensitivity. While much work has focused on the time scales of these adaptation processes, less is known about the spatial scale of contrast adaptation. For example, do small, localized contrast changes affect a cell’s signal processing across its entire receptive field? Previous investigations have provided conflicting evidence, suggesting that contrast adaptation occurs either locally within subregions of a ganglion cell’s receptive field or globally over the receptive field in its entirety. Here, we investigated the spatial extent of contrast adaptation in ganglion cells of the isolated mouse retina through multielectrode-array recordings. We applied visual stimuli so that ganglion cell receptive fields contained regions where the average contrast level changed periodically as well as regions with constant average contrast level. This allowed us to analyze temporal stimulus integration and sensitivity separately for stimulus regions with and without contrast changes. We found that the spatial scope of contrast adaptation depends strongly on cell identity, with some ganglion cells displaying clear local adaptation, whereas others, in particular large transient ganglion cells, adapted globally to contrast changes. Thus, the spatial scope of contrast adaptation in mouse retinal ganglion cells appears to be cell-type specific. This could reflect differences in mechanisms of contrast adaptation and may contribute to the functional diversity of different ganglion cell types. NEW & NOTEWORTHY Understanding whether adaptation of a neuron in a sensory system can occur locally inside the receptive field or whether it always globally affects the entire receptive field is important for understanding how the neuron processes complex sensory stimuli. For mouse retinal ganglion cells, we here show that both local and global contrast adaptation exist and that this diversity

  19. Differential TRPV1 and TRPV2 Channel Expression in Dental Pulp

    PubMed Central

    Gibbs, J.L.; Melnyk, J.L.; Basbaum, A.I.

    2011-01-01

    Hypersensitivity to thermal and mechanical stimuli can occur in painful pulpitis. To explore the neuro-anatomical basis of heat and mechanical sensitivity, we evaluated expression of TRPV1 (heat) and TRPV2 (heat/mechanical) channels in the cell bodies and terminal arborizations of neurons that innervate the dental pulp (DP) and periodontal tissues (PDL). We report that ~50% of trigeminal ganglion (TG) neurons retrogradely labeled from the DP express TRPV2, and this was significantly greater than the general expression of this channel in the TG (15%) and slightly more than what is expressed in the PDL by retrograde labeling (40%). The TRPV1 receptor, however, was less prevalent in neurons innervating the DP than their general expression in the TG (17% vs. 26%) and was more extensively expressed in neurons innervating the PDL (26%). Co-labeling studies showed that 70% of neurons that innervate the DP are myelinated. Approximately 1/3 of the retrogradely labeled neurons from the DP were calcitonin-gene-related-peptide-positive (peptide-expressing), but very few expressed the IB4 marker of non-peptidergic unmyelinated afferents. These findings suggest that the DP has a unique neurochemical innervation with regard to TRP receptor expression, which has significant implications for the mechanisms contributing to odontogenic pain and management strategies. PMID:21406609

  20. Differential TRPV1 and TRPV2 channel expression in dental pulp.

    PubMed

    Gibbs, J L; Melnyk, J L; Basbaum, A I

    2011-06-01

    Hypersensitivity to thermal and mechanical stimuli can occur in painful pulpitis. To explore the neuro-anatomical basis of heat and mechanical sensitivity, we evaluated expression of TRPV1 (heat) and TRPV2 (heat/mechanical) channels in the cell bodies and terminal arborizations of neurons that innervate the dental pulp (DP) and periodontal tissues (PDL). We report that ~50% of trigeminal ganglion (TG) neurons retrogradely labeled from the DP express TRPV2, and this was significantly greater than the general expression of this channel in the TG (15%) and slightly more than what is expressed in the PDL by retrograde labeling (40%). The TRPV1 receptor, however, was less prevalent in neurons innervating the DP than their general expression in the TG (17% vs. 26%) and was more extensively expressed in neurons innervating the PDL (26%). Co-labeling studies showed that 70% of neurons that innervate the DP are myelinated. Approximately 1/3 of the retrogradely labeled neurons from the DP were calcitonin-gene-related-peptide-positive (peptide-expressing), but very few expressed the IB4 marker of non-peptidergic unmyelinated afferents. These findings suggest that the DP has a unique neurochemical innervation with regard to TRP receptor expression, which has significant implications for the mechanisms contributing to odontogenic pain and management strategies.

  1. Sex-, stress-, and sympathetic post-ganglionic-dependent changes in identity and proportions of immune cells in the dura.

    PubMed

    McIlvried, Lisa A; Cruz, J Agustin; Borghesi, Lisa A; Gold, Michael S

    2017-01-01

    Aim of investigation Due to compelling evidence in support of links between sex, stress, sympathetic post-ganglionic innervation, dural immune cells, and migraine, our aim was to characterize the impacts of these factors on the type and proportion of immune cells in the dura. Methods Dural immune cells were obtained from naïve or stressed adult male and female Sprague Dawley rats for flow cytometry. Rats with surgical denervation of sympathetic post-ganglionic neurons of the dura were also studied. Results Immune cells comprise ∼17% of all cells in the dura. These included: macrophages/granulocytes ("Macs"; 63.2% of immune cells), dendritic cells (0.88%), T-cells (4.51%), natural killer T-cells (0.51%), natural killer cells (3.08%), and B-cells (20.0%). There were significantly more Macs and fewer B- and natural killer T-cells in the dura of females compared with males. Macs and dendritic cells were significantly increased by stress in males, but not females. In contrast, T-cells were significantly increased in females with a 24-hour delay following stress. Lastly, Macs, dendritic cells, and T-cells were significantly higher in sympathectomized-naïve males, but not females. Conclusions It may not only be possible, but necessary to use different strategies for the most effective treatment of migraine in men and women.

  2. A novel perspective on neuron study: damaging and promoting effects in different neurons induced by mechanical stress.

    PubMed

    Wang, Yazhou; Wang, Wei; Li, Zong; Hao, Shilei; Wang, Bochu

    2016-10-01

    A growing volume of experimental evidence demonstrates that mechanical stress plays a significant role in growth, proliferation, apoptosis, gene expression, electrophysiological properties and many other aspects of neurons. In this review, first, the mechanical microenvironment and properties of neurons under in vivo conditions are introduced and analyzed. Second, research works in recent decades on the effects of different mechanical forces, especially compression and tension, on various neurons, including dorsal root ganglion neurons, retinal ganglion cells, cerebral cortex neurons, hippocampus neurons, neural stem cells, and other neurons, are summarized. Previous research results demonstrate that mechanical stress can not only injure neurons by damaging their morphology, impacting their electrophysiological characteristics and gene expression, but also promote neuron self-repair. Finally, some future perspectives in neuron research are discussed.

  3. Galanin-Expressing GABA Neurons in the Lateral Hypothalamus Modulate Food Reward and Noncompulsive Locomotion

    PubMed Central

    Hoang, John; Bruce-Keller, Annadora; Berthoud, Hans-Rudolf; Morrison, Christopher D.

    2017-01-01

    The lateral hypothalamus (LHA) integrates reward and appetitive behavior and is composed of many overlapping neuronal populations. Recent studies associated LHA GABAergic neurons (LHAGABA), which densely innervate the ventral tegmental area (VTA), with modulation of food reward and consumption; yet, LHAGABA projections to the VTA exclusively modulated food consumption, not reward. We identified a subpopulation of LHAGABA neurons that coexpress the neuropeptide galanin (LHAGal). These LHAGal neurons also modulate food reward, but lack direct VTA innervation. We hypothesized that LHAGal neurons may represent a subpopulation of LHAGABA neurons that mediates food reward independent of direct VTA innervation. We used chemogenetic activation of LHAGal or LHAGABA neurons in mice to compare their role in feeding behavior. We further analyzed locomotor behavior to understand how differential VTA connectivity and transmitter release in these LHA neurons influences this behavior. LHAGal or LHAGABA neuronal activation both increased operant food-seeking behavior, but only activation of LHAGABA neurons increased overall chow consumption. Additionally, LHAGal or LHAGABA neuronal activation similarly induced locomotor activity, but with striking differences in modality. Activation of LHAGABA neurons induced compulsive-like locomotor behavior; while LHAGal neurons induced locomotor activity without compulsivity. Thus, LHAGal neurons define a subpopulation of LHAGABA neurons without direct VTA innervation that mediate noncompulsive food-seeking behavior. We speculate that the striking difference in compulsive-like locomotor behavior is also based on differential VTA innervation. The downstream neural network responsible for this behavior and a potential role for galanin as neuromodulator remains to be identified. SIGNIFICANCE STATEMENT The lateral hypothalamus (LHA) regulates motivated feeding behavior via GABAergic LHA neurons. The molecular identity of LHAGABA neurons is

  4. Variant BDNF-Val66Met Polymorphism is Associated with Layer-Specific Alterations in GABAergic Innervation of Pyramidal Neurons, Elevated Anxiety and Reduced Vulnerability of Adolescent Male Mice to Activity-Based Anorexia.

    PubMed

    Chen, Yi-Wen; Surgent, Olivia; Rana, Barkha S; Lee, Francis; Aoki, Chiye

    2017-08-01

    Previously, we determined that rodents' vulnerability to food restriction (FR)-evoked wheel running during adolescence (activity-based anorexia, ABA) is associated with failures to increase GABAergic innervation of hippocampal and medial prefrontal pyramidal neurons. Since brain-derived neurotrophic factor (BDNF) promotes GABAergic synaptogenesis, we hypothesized that individual differences in this vulnerability may arise from differences in the link between BDNF bioavailability and FR-evoked wheel running. We tested this hypothesis in male BDNF-Val66Met knock-in mice (BDNFMet/Met), known for reduction in the activity-dependent BDNF secretion and elevated anxiety-like behaviors. We found that 1) in the absence of FR or a wheel (i.e., control), BDNFMet/Met mice are more anxious than wild-type (WT) littermates, 2) electron microscopically verified GABAergic innervations of pyramidal neurons of BDNFMet/Met mice are reduced at distal dendrites in hippocampal CA1 and medial prefrontal cortex, 3) following ABA, WT mice exhibit anxiety equal to those of the BDNFMet/Met mice and have lost GABAergic innervation along distal dendrites, 4) BDNFMet/Met mice show blunted ABA vulnerability, and 5) unexpectedly, GABAergic innervation is higher at somata of BDNFMet/Met mice than of WT. We conclude that lamina-specific GABAergic inhibition is important for regulating anxiety, whether arising from environmental stress, such as food deprivation, or genetically, such as BDNFMet/Met single nucleotide polymorphism. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. Loss of the transcription factor Meis1 prevents sympathetic neurons target-field innervation and increases susceptibility to sudden cardiac death

    PubMed Central

    Bouilloux, Fabrice; Thireau, Jérôme; Ventéo, Stéphanie; Farah, Charlotte; Karam, Sarah; Dauvilliers, Yves; Valmier, Jean; Copeland, Neal G; Jenkins, Nancy A; Richard, Sylvain; Marmigère, Frédéric

    2016-01-01

    Although cardio-vascular incidents and sudden cardiac death (SCD) are among the leading causes of premature death in the general population, the origins remain unidentified in many cases. Genome-wide association studies have identified Meis1 as a risk factor for SCD. We report that Meis1 inactivation in the mouse neural crest leads to an altered sympatho-vagal regulation of cardiac rhythmicity in adults characterized by a chronotropic incompetence and cardiac conduction defects, thus increasing the susceptibility to SCD. We demonstrated that Meis1 is a major regulator of sympathetic target-field innervation and that Meis1 deficient sympathetic neurons die by apoptosis from early embryonic stages to perinatal stages. In addition, we showed that Meis1 regulates the transcription of key molecules necessary for the endosomal machinery. Accordingly, the traffic of Rab5+ endosomes is severely altered in Meis1-inactivated sympathetic neurons. These results suggest that Meis1 interacts with various trophic factors signaling pathways during postmitotic neurons differentiation. DOI: http://dx.doi.org/10.7554/eLife.11627.001 PMID:26857994

  6. Enhanced excitability of small dorsal root ganglion neurons in rats with bone cancer pain

    PubMed Central

    2012-01-01

    Background Primary and metastatic cancers that affect bone are frequently associated with severe and intractable pain. The mechanisms underlying the development of bone cancer pain are largely unknown. The aim of this study was to determine whether enhanced excitability of primary sensory neurons contributed to peripheral sensitization and tumor-induced hyperalgesia during cancer condition. In this study, using techniques of whole-cell patch-clamp recording associated with immunofluorescent staining, single-cell reverse-transcriptase PCR and behavioral test, we investigated whether the intrinsic membrane properties and the excitability of small-sized dorsal root ganglion (DRG) neurons altered in a rat model of bone cancer pain, and whether suppression of DRG neurons activity inhibited the bone cancer-induced pain. Results Our present study showed that implantation of MRMT-1 tumor cells into the tibial canal in rats produced significant mechanical and thermal hyperalgesia in the ipsilateral hind paw. Moreover, implantation of tumor cells provoked spontaneous discharges and tonic excitatory discharges evoked by a depolarizing current pulse in small-sized DRG neurons. In line with these findings, alterations in intrinsic membrane properties that reflect the enhanced neuronal excitability were observed in small DRG neurons in bone cancer rats, of which including: 1) depolarized resting membrane potential (RMP); 2) decreased input resistance (Rin); 3) a marked reduction in current threshold (CT) and voltage threshold (TP) of action potential (AP); 4) a dramatic decrease in amplitude, overshot, and duration of evoked action potentials as well as in amplitude and duration of afterhyperpolarization (AHP); and 5) a significant increase in the firing frequency of evoked action potentials. Here, the decreased AP threshold and increased firing frequency of evoked action potentials implicate the occurrence of hyperexcitability in small-sized DRG neurons in bone cancer rats. In

  7. Electrical receptive fields of retinal ganglion cells: Influence of presynaptic neurons

    PubMed Central

    Apollo, Nicholas V.; Garrett, David J.

    2018-01-01

    Implantable retinal stimulators activate surviving neurons to restore a sense of vision in people who have lost their photoreceptors through degenerative diseases. Complex spatial and temporal interactions occur in the retina during multi-electrode stimulation. Due to these complexities, most existing implants activate only a few electrodes at a time, limiting the repertoire of available stimulation patterns. Measuring the spatiotemporal interactions between electrodes and retinal cells, and incorporating them into a model may lead to improved stimulation algorithms that exploit the interactions. Here, we present a computational model that accurately predicts both the spatial and temporal nonlinear interactions of multi-electrode stimulation of rat retinal ganglion cells (RGCs). The model was verified using in vitro recordings of ON, OFF, and ON-OFF RGCs in response to subretinal multi-electrode stimulation with biphasic pulses at three stimulation frequencies (10, 20, 30 Hz). The model gives an estimate of each cell’s spatiotemporal electrical receptive fields (ERFs); i.e., the pattern of stimulation leading to excitation or suppression in the neuron. All cells had excitatory ERFs and many also had suppressive sub-regions of their ERFs. We show that the nonlinearities in observed responses arise largely from activation of presynaptic interneurons. When synaptic transmission was blocked, the number of sub-regions of the ERF was reduced, usually to a single excitatory ERF. This suggests that direct cell activation can be modeled accurately by a one-dimensional model with linear interactions between electrodes, whereas indirect stimulation due to summated presynaptic responses is nonlinear. PMID:29432411

  8. Retrograde influences of SCG axotomy on uninjured preganglionic neurons.

    PubMed

    Gannon, Sean M; Hawk, Kiel; Walsh, Brian F; Coulibaly, Aminata; Isaacson, Lori G

    2018-07-15

    There is evidence that neuronal injury can affect uninjured neurons in the same neural circuit. The overall goal of this study was to understand the effects of peripheral nerve injury on uninjured neurons located in the central nervous system (CNS). As a model, we examined whether axotomy (transection of postganglionic axons) of the superior cervical ganglion (SCG) affected the uninjured, preganglionic neurons that innervate the SCG. At 7 days post-injury a reduction in choline acetyltransferase (ChAT) and synaptophysin immunoreactivity in the SCG, both markers for preganglionic axons, was observed, and this reduction persisted at 8 and 12 weeks post-injury. No changes were observed in the number or size of the parent cell bodies in the intermediolateral cell column (IML) of the spinal cord, yet synaptic input to the IML neurons was decreased at both 8 and 12 weeks post-injury. In order to understand the mechanisms underlying these changes, protein levels of brain-derived neurotrophic factor (BDNF) and tyrosine receptor kinase B (TrkB) were examined and reductions were observed at 7 days post-injury in both the SCG and spinal cord. Taken together these results suggest that axotomy of the SCG led to reduced BDNF in the SCG and spinal cord, which in turn influenced ChAT and synaptophysin expression in the SCG and also contributed to the altered synaptic input to the IML neurons. More generally these findings provide evidence that the effects of peripheral injury can cascade into the CNS and affect uninjured neurons. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Evidence that ganglion cells react to retinal detachment.

    PubMed

    Coblentz, Francie E; Radeke, Monte J; Lewis, Geoffrey P; Fisher, Steven K

    2003-03-01

    Growth associated protein 43 (GAP 43) is involved in synapse formation and it is expressed in the retina in a very specific pattern. Although GAP 43 is downregulated at the time of synapse formation, it can be re-expressed following injury such as axotomy or ischemia. Because of this we sought to characterize the expression of GAP 43 after retinal detachment (RD). Immunoblot, immunocytochemical and quantitative polymerase chain reaction (QPCR) techniques were used to assess the level of GAP 43 expression after experimental RD. GAP 43 was localized to three sublaminae of the inner plexiform layer of the normal retina. GAP 43 became upregulated in a subset of retinal ganglion cells following at least 7 days of RD. By immunoblot GAP 43 could be detected by 3 days. QPCR shows the upregulation of GAP 43 message by 6hr of detachment. To further characterize changes in ganglion cells, we used an antibody to neurofilament 70 and 200kDa (NF) proteins. Anti-NF labels horizontal cells, ganglion cell dendrites in the inner plexiform layer, and ganglion cell axons (fasicles) in the normal retina. Following detachment it is upregulated in horizontal cells and ganglion cells. When detached retina was double labelled with anti-GAP 43 and anti-NF, some cells were labelled with both markers, while others labelled with only one. We have previously shown that second order neurons respond to detachment; here we show that third order neurons are responding as well. Cellular remodelling of this type in response to detachment may explain the slow recovery of vision that often occurs after reattachment, or those changes that are often assumed to be permanent.

  10. Peripheral innervation patterns of vestibular nerve afferents in the bullfrog utriculus

    NASA Technical Reports Server (NTRS)

    Baird, Richard A.; Schuff, N. R.

    1994-01-01

    Vestibular nerve afferents innervating the bullfrog utriculus differ in their response dynamics and sensitivity to natural stimulation. They also supply hair cells that differ markedly in hair bundle morphology. To examine the peripheral innervation patterns of individual utricular afferents more closely, afferent fibers were labeled by the extracellular injection of horseradish peroxidase (HRP) into the vestibular nerve after sectioning the vestibular nerve medial to Scarpa's ganglion to allow the degeneration of sympathetic and efferent fibers. The peripheral arborizations of individual afferents were then correlated with the diameters of their parent axons, the regions of the macula they innervate, and the number and type of hair cells they supply. The utriculus is divided by the striola, a narrow zone of distinctive morphology, into media and lateral parts. Utiricular afferents were classified as striolar or extrastriolar according to the epithelial entrance of their parent axons and the location of their terminal fields. In general, striolar afferents had thicker parent axons, fewer subepithelial bifurcations, larger terminal fields, and more synaptic endings than afferents in extrstriolar regions. Afferents in a juxtastriolar zone, immediately adjacent to the medial striola, had innervation patterns transitional between those in the striola and more peripheral parts of the medial extrastriola. moast afferents innervated only a single macular zone. The terminal fields of striolar afferents, with the notable exception of a few afferents with thin parent axons, were generally confined to one side of the striola. Hair cells in the bullfrog utriculus have perviously been classified into four types based on hair bundle morphology. Afferents in the extrastriolar and juxtastriolar zones largely or exclusively innervated Type B hair cells, the predominant hair cell type in the utricular macula. Striolar afferents supplied a mixture of four hair cell types, but largely

  11. Tissue engineering the mechanosensory circuit of the stretch reflex arc: sensory neuron innervation of intrafusal muscle fibers.

    PubMed

    Rumsey, John W; Das, Mainak; Bhalkikar, Abhijeet; Stancescu, Maria; Hickman, James J

    2010-11-01

    The sensory circuit of the stretch reflex arc, composed of specialized intrafusal muscle fibers and type Ia proprioceptive sensory neurons, converts mechanical information regarding muscle length and stretch to electrical action potentials and relays them to the central nervous system. Utilizing a non-biological substrate, surface patterning photolithography and a serum-free medium formulation a co-culture system was developed that facilitated functional interactions between intrafusal muscle fibers and sensory neurons. The presence of annulospiral wrappings (ASWs) and flower-spray endings (FSEs), both physiologically relevant morphologies in sensory neuron-intrafusal fiber interactions, were demonstrated and quantified using immunocytochemistry. Furthermore, two proposed components of the mammalian mechanosensory transduction system, BNaC1 and PICK1, were both identified at the ASWs and FSEs. To verify functionality of the mechanoreceptor elements the system was integrated with a MEMS cantilever device, and Ca(2+) currents were imaged along the length of an axon innervating an intrafusal fiber when stretched by cantilever deflection. This system provides a platform for examining the role of this mechanosensory complex in the pathology of myotonic and muscular dystrophies, peripheral neuropathy, and spasticity inducing diseases like Parkinson's. These studies will also assist in engineering fine motor control for prosthetic devices by improving our understanding of mechanosensitive feedback. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  12. Citral Sensing by TRANSient Receptor Potential Channels in Dorsal Root Ganglion Neurons

    PubMed Central

    Stotz, Stephanie C.; Vriens, Joris; Martyn, Derek; Clardy, Jon; Clapham, David E.

    2008-01-01

    Transient receptor potential (TRP) ion channels mediate key aspects of taste, smell, pain, temperature sensation, and pheromone detection. To deepen our understanding of TRP channel physiology, we require more diverse pharmacological tools. Citral, a bioactive component of lemongrass, is commonly used as a taste enhancer, as an odorant in perfumes, and as an insect repellent. Here we report that citral activates TRP channels found in sensory neurons (TRPV1 and TRPV3, TRPM8, and TRPA1), and produces long-lasting inhibition of TRPV1–3 and TRPM8, while transiently blocking TRPV4 and TRPA1. Sustained citral inhibition is independent of internal calcium concentration, but is state-dependent, developing only after TRP channel opening. Citral's actions as a partial agonist are not due to cysteine modification of the channels nor are they a consequence of citral's stereoisoforms. The isolated aldehyde and alcohol cis and trans enantiomers (neral, nerol, geranial, and geraniol) each reproduce citral's actions. In juvenile rat dorsal root ganglion neurons, prolonged citral inhibition of native TRPV1 channels enabled the separation of TRPV2 and TRPV3 currents. We find that TRPV2 and TRPV3 channels are present in a high proportion of these neurons (94% respond to 2-aminoethyldiphenyl borate), consistent with our immunolabeling experiments and previous in situ hybridization studies. The TRPV1 activation requires residues in transmembrane segments two through four of the voltage-sensor domain, a region previously implicated in capsaicin activation of TRPV1 and analogous menthol activation of TRPM8. Citral's broad spectrum and prolonged sensory inhibition may prove more useful than capsaicin for allodynia, itch, or other types of pain involving superficial sensory nerves and skin. PMID:18461159

  13. Postnatal reduction of BDNF regulates the developmental remodeling of taste bud innervation

    PubMed Central

    Huang, Tao; Ma, Liqun; Krimm, Robin F

    2015-01-01

    The refinement of innervation is a common developmental mechanism that serves to increase the specificity of connections following initial innervation. In the peripheral gustatory system, the extent to which innervation is refined and how refinement might be regulated is unclear. The initial innervation of taste buds is controlled by brain-derived neurotrophic factor (BDNF). Following initial innervation, taste receptor cells are added and become newly innervated. The connections between the taste receptor cells and nerve fibers are likely to be specific in order to retain peripheral coding mechanisms. Here, we explored the possibility that the down-regulation of BDNF regulates the refinement of taste bud innervation during postnatal development. An analysis of BDNF expression in BdnflacZ/+ mice and real-time reverse transcription polymerase chain reaction (RT-PCR) revealed that BDNF was down-regulated between postnatal day (P) 5 and P10. This reduction in BDNF expression was due to a loss of precursor/progenitor cells that express BDNF, while the expression of BDNF in the subpopulations of taste receptor cells did not change. Gustatory innervation, which was identified by P2X3 immunohistochemistry, was lost around the perimeter where most progenitor/precursor cells are located. In addition, the density of innervation in the taste bud was reduced between P5 and P10, because taste buds increase in size without increasing innervation. This reduction of innervation density was blocked by the overexpression of BDNF in the precursor/progenitor population of taste bud cells. Together these findings indicate that the process of BDNF restriction to a subpopulation of taste receptor cells between P5 and P10, results in a refinement of gustatory innervation. We speculate that this refinement results in an increased specificity of connections between neurons and taste receptor cells during development. PMID:26164656

  14. Postnatal reduction of BDNF regulates the developmental remodeling of taste bud innervation.

    PubMed

    Huang, Tao; Ma, Liqun; Krimm, Robin F

    2015-09-15

    The refinement of innervation is a common developmental mechanism that serves to increase the specificity of connections following initial innervation. In the peripheral gustatory system, the extent to which innervation is refined and how refinement might be regulated is unclear. The initial innervation of taste buds is controlled by brain-derived neurotrophic factor (BDNF). Following initial innervation, taste receptor cells are added and become newly innervated. The connections between the taste receptor cells and nerve fibers are likely to be specific in order to retain peripheral coding mechanisms. Here, we explored the possibility that the down-regulation of BDNF regulates the refinement of taste bud innervation during postnatal development. An analysis of BDNF expression in Bdnf(lacZ/+) mice and real-time reverse transcription polymerase chain reaction (RT-PCR) revealed that BDNF was down-regulated between postnatal day (P) 5 and P10. This reduction in BDNF expression was due to a loss of precursor/progenitor cells that express BDNF, while the expression of BDNF in the subpopulations of taste receptor cells did not change. Gustatory innervation, which was identified by P2X3 immunohistochemistry, was lost around the perimeter where most progenitor/precursor cells are located. In addition, the density of innervation in the taste bud was reduced between P5 and P10, because taste buds increase in size without increasing innervation. This reduction of innervation density was blocked by the overexpression of BDNF in the precursor/progenitor population of taste bud cells. Together these findings indicate that the process of BDNF restriction to a subpopulation of taste receptor cells between P5 and P10, results in a refinement of gustatory innervation. We speculate that this refinement results in an increased specificity of connections between neurons and taste receptor cells during development. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Vertebral body innervation: Implications for pain.

    PubMed

    Buonocore, Michelangelo; Aloisi, Anna Maria; Barbieri, Massimo; Gatti, Anna Maria; Bonezzi, Cesare

    2010-03-01

    Vertebral fractures often cause intractable pain. To define the involvement of vertebral body innervation in pain, we collected specimens from male and female patients during percutaneous kyphoplasty, a procedure used for reconstruction of the vertebral body. Specimens were taken from 31 patients (9 men and 22 women) suffering high-intensity pain before surgery. In total, 1,876 histological preparations were obtained and analysed. Immunohistochemical techniques were used to locate the nerves in the specimens. The nerve fibres were labelled by indirect immunofluorescence with the primary antibody directed against Protein Gene Product 9.5 (PGP 9.5), a pan-neuronal marker; another primary antibody directed against type IV collagen (Col IV) was used to identify vessels and to determine their relationship with vertebral nerve fibres. The mean percentage of samples in which it was possible to identify nerve fibres was 35% in men and 29% in women. The percentages varied depending on the spinal level considered and the sex of the subject, nerve fibres being mostly present around vessels (95%). In conclusion, there is scarce innervation of the vertebral bodies, with a clear prevalence of fibres located around vessels. It seems unlikely that this pattern of vertebral body innervation is involved in vertebral pain or in pain relief following kyphoplasty.

  16. Effects of 4-phenyl butyric acid on high glucose-induced alterations in dorsal root ganglion neurons.

    PubMed

    Sharma, Dilip; Singh, Jitendra Narain; Sharma, Shyam S

    2016-12-02

    Mechanisms and pathways involving in diabetic neuropathy are still not fully understood but can be unified by the process of overproduction of reactive oxygen species (ROS) such as superoxide, endoplasmic reticulum (ER) stress, downstream intracellular signaling pathways and their modulation. Susceptibility of dorsal root ganglion (DRG) to internal/external hyperglycemic environment stress contributes to the pathogenesis and progression of diabetic neuropathy. ER stress leads to abnormal ion channel function, gene expression, transcriptional regulation, metabolism and protein folding. 4-phenyl butyric acid (4-PBA) is a potent and selective chemical chaperone; which may inhibit ER stress. It may be hypothesized that 4-PBA could attenuate via channels in DRG in diabetic neuropathy. Effects of 4-PBA were determined by applying different parameters of oxidative stress, cell viability, apoptosis assays and channel expression in cultured DRG neurons. Hyperglycemia-induced apoptosis in the DRG neuron was inhibited by 4-PBA. Cell viability of DRG neurons was not altered by 4-PBA. Oxidative stress was significantly blocked by the 4-PBA. Sodium channel expression was not altered by the 4-PBA. Our data provide evidence that the hyperglycemia-induced alteration may be reduced by the 4-PBA without altering the sodium channel expression. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Dynamic Expression of Serotonin Receptor 5-HT3A in Developing Sensory Innervation of the Lower Urinary Tract

    PubMed Central

    Ritter, K. Elaine; Southard-Smith, E. Michelle

    2017-01-01

    Sensory afferent signaling is required for normal function of the lower urinary tract (LUT). Despite the wide prevalence of bladder dysfunction and pelvic pain syndromes, few effective treatment options are available. Serotonin receptor 5-HT3A is a known mediator of visceral afferent signaling and has been implicated in bladder function. However, basic expression patterns for this gene and others among developing bladder sensory afferents that could be used to inform regenerative efforts aimed at treating deficiencies in pelvic innervation are lacking. To gain greater insight into the molecular characteristics of bladder sensory innervation, we conducted a thorough characterization of Htr3a expression in developing and adult bladder-projecting lumbosacral dorsal root ganglia (DRG) neurons. Using a transgenic Htr3a-EGFP reporter mouse line, we identified 5-HT3A expression at 10 days post coitus (dpc) in neural crest derivatives and in 12 dpc lumbosacral DRG. Using immunohistochemical co-localization we observed Htr3a-EGFP expression in developing lumbosacral DRG that partially coincides with neuropeptides CGRP and Substance P and capsaicin receptor TRPV1. A majority of Htr3a-EGFP+ DRG neurons also express a marker of myelinated Aδ neurons, NF200. There was no co-localization of 5-HT3A with the TRPV4 receptor. We employed retrograde tracing in adult Htr3a-EGFP mice to quantify the contribution of 5-HT3A+ DRG neurons to bladder afferent innervation. We found that 5-HT3A is expressed in a substantial proportion of retrograde traced DRG neurons in both rostral (L1, L2) and caudal (L6, S1) axial levels that supply bladder innervation. Most bladder-projecting Htr3a-EGFP+ neurons that co-express CGRP, Substance P, or TRPV1 are found in L1, L2 DRG, whereas Htr3a-EGFP+, NF200+ bladder-projecting neurons are from the L6, S1 axial levels. Our findings contribute much needed information regarding the development of LUT innervation and highlight the 5-HT3A serotonin receptor as

  18. Galanin-Expressing GABA Neurons in the Lateral Hypothalamus Modulate Food Reward and Noncompulsive Locomotion.

    PubMed

    Qualls-Creekmore, Emily; Yu, Sangho; Francois, Marie; Hoang, John; Huesing, Clara; Bruce-Keller, Annadora; Burk, David; Berthoud, Hans-Rudolf; Morrison, Christopher D; Münzberg, Heike

    2017-06-21

    The lateral hypothalamus (LHA) integrates reward and appetitive behavior and is composed of many overlapping neuronal populations. Recent studies associated LHA GABAergic neurons (LHA GABA ), which densely innervate the ventral tegmental area (VTA), with modulation of food reward and consumption; yet, LHA GABA projections to the VTA exclusively modulated food consumption, not reward. We identified a subpopulation of LHA GABA neurons that coexpress the neuropeptide galanin (LHA Gal ). These LHA Gal neurons also modulate food reward, but lack direct VTA innervation. We hypothesized that LHA Gal neurons may represent a subpopulation of LHA GABA neurons that mediates food reward independent of direct VTA innervation. We used chemogenetic activation of LHA Gal or LHA GABA neurons in mice to compare their role in feeding behavior. We further analyzed locomotor behavior to understand how differential VTA connectivity and transmitter release in these LHA neurons influences this behavior. LHA Gal or LHA GABA neuronal activation both increased operant food-seeking behavior, but only activation of LHA GABA neurons increased overall chow consumption. Additionally, LHA Gal or LHA GABA neuronal activation similarly induced locomotor activity, but with striking differences in modality. Activation of LHA GABA neurons induced compulsive-like locomotor behavior; while LHA Gal neurons induced locomotor activity without compulsivity. Thus, LHA Gal neurons define a subpopulation of LHA GABA neurons without direct VTA innervation that mediate noncompulsive food-seeking behavior. We speculate that the striking difference in compulsive-like locomotor behavior is also based on differential VTA innervation. The downstream neural network responsible for this behavior and a potential role for galanin as neuromodulator remains to be identified. SIGNIFICANCE STATEMENT The lateral hypothalamus (LHA) regulates motivated feeding behavior via GABAergic LHA neurons. The molecular identity of LHA

  19. Characterization of Neuronal Populations in the Human Trigeminal Ganglion and Their Association with Latent Herpes Simplex Virus-1 Infection

    PubMed Central

    Horn, Anja K. E.; Sinicina, Inga; Strupp, Michael; Brandt, Thomas; Theil, Diethilde; Hüfner, Katharina

    2013-01-01

    Following primary infection Herpes simplex virus-1 (HSV-1) establishes lifelong latency in the neurons of human sensory ganglia. Upon reactivation HSV-1 can cause neurological diseases such as facial palsy, vestibular neuritis or encephalitis. Certain populations of sensory neurons have been shown to be more susceptible to latent infection in the animal model, but this has not been addressed in human tissue. In the present study, trigeminal ganglion (TG) neurons expressing six neuronal marker proteins were characterized, based on staining with antibodies against the GDNF family ligand receptor Ret, the high-affinity nerve growth factor receptor TrkA, neuronal nitric oxide synthase (nNOS), the antibody RT97 against 200kDa neurofilament, calcitonin gene-related peptide and peripherin. The frequencies of marker-positive neurons and their average neuronal sizes were assessed, with TrkA-positive (61.82%) neurons being the most abundant, and Ret-positive (26.93%) the least prevalent. Neurons positive with the antibody RT97 (1253 µm2) were the largest, and those stained against peripherin (884 µm2) were the smallest. Dual immunofluorescence revealed at least a 4.5% overlap for every tested marker combination, with overlap for the combinations TrkA/Ret, TrkA/RT97 and Ret/nNOS lower, and the overlap between Ret/CGRP being higher than would be expected by chance. With respect to latent HSV-1 infection, latency associated transcripts (LAT) were detected using in situ hybridization (ISH) in neurons expressing each of the marker proteins. In contrast to the mouse model, co-localization with neuronal markers Ret or CGRP mirrored the magnitude of these neuron populations, whereas for the other four neuronal markers fewer marker-positive cells were also LAT-ISH+. Ret and CGRP are both known to label neurons related to pain signaling. PMID:24367603

  20. Reactive species modify NaV1.8 channels and affect action potentials in murine dorsal root ganglion neurons.

    PubMed

    Schink, Martin; Leipold, Enrico; Schirmeyer, Jana; Schönherr, Roland; Hoshi, Toshinori; Heinemann, Stefan H

    2016-01-01

    Dorsal root ganglion (DRG) neurons are important relay stations between the periphery and the central nervous system and are essential for somatosensory signaling. Reactive species are produced in a variety of physiological and pathophysiological conditions and are known to alter electric signaling. Here we studied the influence of reactive species on the electrical properties of DRG neurons from mice with the whole-cell patch-clamp method. Even mild stress induced by either low concentrations of chloramine-T (10 μM) or low-intensity blue light irradiation profoundly diminished action potential frequency but prolonged single action potentials in wild-type neurons. The impact on evoked action potentials was much smaller in neurons deficient of the tetrodotoxin (TTX)-resistant voltage-gated sodium channel NaV1.8 (NaV1.8(-/-)), the channel most important for the action potential upstroke in DRG neurons. Low concentrations of chloramine-T caused a significant reduction of NaV1.8 peak current and, at higher concentrations, progressively slowed down inactivation. Blue light had a smaller effect on amplitude but slowed down NaV1.8 channel inactivation. The observed effects were less apparent for TTX-sensitive NaV channels. NaV1.8 is an important reactive-species-sensitive component in the electrical signaling of DRG neurons, potentially giving rise to loss-of-function and gain-of-function phenomena depending on the type of reactive species and their effective concentration and time of exposure.

  1. Sex differences in mouse Transient Receptor Potential Cation Channel, Subfamily M, Member 8 expressing trigeminal ganglion neurons

    PubMed Central

    Caudle, Stephanie L.; Jenkins, Alan C.; Ahn, Andrew H.; Neubert, John K.

    2017-01-01

    The detection of cool temperatures is thought to be mediated by primary afferent neurons that express the cool temperature sensing protein Transient Receptor Potential Cation Channel, Subfamily M, Member 8 (TRPM8). Using mice, this study tested the hypothesis that sex differences in sensitivity to cool temperatures were mediated by differences in neurons that express TRPM8. Ion currents from TRPM8 expressing trigeminal ganglion (TRG) neurons in females demonstrated larger hyperpolarization-activated cyclic nucleotide-gated currents (Ih) than male neurons at both 30° and 18°C. Additionally, female neurons’ voltage gated potassium currents (Ik) were suppressed by cooling, whereas male Ik was not significantly affected. At the holding potential tested (-60mV) TRPM8 currents were not visibly activated in either sex by cooling. Modeling the effect of Ih and Ik on membrane potentials demonstrated that at 30° the membrane potential in both sexes is unstable. At 18°, female TRPM8 TRG neurons develop a large oscillating pattern in their membrane potential, whereas male neurons become highly stable. These findings suggest that the differences in Ih and Ik in the TRPM8 TRG neurons of male and female mice likely leads to greater sensitivity of female mice to the cool temperature. This hypothesis was confirmed in an operant reward/conflict assay. Female mice contacted an 18°C surface for approximately half the time that males contacted the cool surface. At 33° and 10°C male and female mice contacted the stimulus for similar amounts of time. These data suggest that sex differences in the functioning of Ih and Ik in TRPM8 expressing primary afferent neurons leads to differences in cool temperature sensitivity. PMID:28472061

  2. Trigeminal Ganglion Neurons of Mice Show Intracellular Chloride Accumulation and Chloride-Dependent Amplification of Capsaicin-Induced Responses

    PubMed Central

    Schöbel, Nicole; Radtke, Debbie; Lübbert, Matthias; Gisselmann, Günter; Lehmann, Ramona; Cichy, Annika; Schreiner, Benjamin S. P.; Altmüller, Janine; Spector, Alan C.; Spehr, Jennifer; Hatt, Hanns; Wetzel, Christian H.

    2012-01-01

    Intracellular Cl− concentrations ([Cl−]i) of sensory neurons regulate signal transmission and signal amplification. In dorsal root ganglion (DRG) and olfactory sensory neurons (OSNs), Cl− is accumulated by the Na+-K+-2Cl− cotransporter 1 (NKCC1), resulting in a [Cl−]i above electrochemical equilibrium and a depolarizing Cl− efflux upon Cl− channel opening. Here, we investigate the [Cl−]i and function of Cl− in primary sensory neurons of trigeminal ganglia (TG) of wild type (WT) and NKCC1−/− mice using pharmacological and imaging approaches, patch-clamping, as well as behavioral testing. The [Cl−]i of WT TG neurons indicated active NKCC1-dependent Cl− accumulation. Gamma-aminobutyric acid (GABA)A receptor activation induced a reduction of [Cl−]i as well as Ca2+ transients in a corresponding fraction of TG neurons. Ca2+ transients were sensitive to inhibition of NKCC1 and voltage-gated Ca2+ channels (VGCCs). Ca2+ responses induced by capsaicin, a prototypical stimulus of transient receptor potential vanilloid subfamily member-1 (TRPV1) were diminished in NKCC1−/− TG neurons, but elevated under conditions of a lowered [Cl−]o suggesting a Cl−-dependent amplification of capsaicin-induced responses. Using next generation sequencing (NGS), we found expression of different Ca2+-activated Cl− channels (CaCCs) in TGs of mice. Pharmacological inhibition of CaCCs reduced the amplitude of capsaicin-induced responses of TG neurons in Ca2+ imaging and electrophysiological recordings. In a behavioral paradigm, NKCC1−/− mice showed less avoidance of the aversive stimulus capsaicin. In summary, our results strongly argue for a Ca2+-activated Cl−-dependent signal amplification mechanism in TG neurons that requires intracellular Cl− accumulation by NKCC1 and the activation of CaCCs. PMID:23144843

  3. Serotonin and cholecystokinin synergistically stimulate rat vagal primary afferent neurones

    PubMed Central

    Li, Y; Wu, X Y; Owyang, C

    2004-01-01

    Recent studies indicate that cholecystokinin (CCK) and serotonin (5-hydroxytryptamine, 5-HT) act via vagal afferent fibres to mediate gastrointestinal functions. In the present study, we characterized the interaction between CCK and 5-HT in the vagal primary afferent neurones. Single neuronal discharges of vagal primary afferent neurones innervating the duodenum were recorded from rat nodose ganglia. Two groups of nodose ganglia neurones were identified: group A neurones responded to intra-arterial injection of low doses of cholecystokinin octapeptide (CCK-8; 10–60 pmol); group B neurones responded only to high doses of CCK-8 (120–240 pmol), and were also activated by duodenal distention. CCK-JMV-180, which acts as an agonist in high-affinity states and as an antagonist in low-affinity states, dose dependently stimulated group A neurones, but inhibited the effect of the high doses of CCK-8 on group B neurones. Duodenal perfusion of 5-HT evoked dose-dependent increases in nodose neuronal discharges. Some neurones that responded to 5-HT showed no response to either high or low doses of CCK-8. A separate group of nodose neurones that possessed high-affinity CCK type A (CCK-A) receptors also responded to luminal infusion of 5-HT. Further, a subthreshold dose of CCK-8 (i.e. 5 pmol) produced no measurable electrophysiological effects but it augmented the neuronal responses to 5-HT. This potentiation effect of CCK-8 was eliminated by CR 1409. From these results we concluded that the vagal nodose ganglion contains neurones that may possess only high- or low-affinity CCK-A receptors or 5-HT3 receptors. Some neurones that express high-affinity CCK-A receptors also express 5-HT3 receptors. Pre-exposure to luminal 5-HT may augment the subsequent response to a subthreshold dose of CCK. PMID:15235095

  4. Citral sensing by Transient [corrected] receptor potential channels in dorsal root ganglion neurons.

    PubMed

    Stotz, Stephanie C; Vriens, Joris; Martyn, Derek; Clardy, Jon; Clapham, David E

    2008-05-07

    Transient receptor potential (TRP) ion channels mediate key aspects of taste, smell, pain, temperature sensation, and pheromone detection. To deepen our understanding of TRP channel physiology, we require more diverse pharmacological tools. Citral, a bioactive component of lemongrass, is commonly used as a taste enhancer, as an odorant in perfumes, and as an insect repellent. Here we report that citral activates TRP channels found in sensory neurons (TRPV1 and TRPV3, TRPM8, and TRPA1), and produces long-lasting inhibition of TRPV1-3 and TRPM8, while transiently blocking TRPV4 and TRPA1. Sustained citral inhibition is independent of internal calcium concentration, but is state-dependent, developing only after TRP channel opening. Citral's actions as a partial agonist are not due to cysteine modification of the channels nor are they a consequence of citral's stereoisoforms. The isolated aldehyde and alcohol cis and trans enantiomers (neral, nerol, geranial, and geraniol) each reproduce citral's actions. In juvenile rat dorsal root ganglion neurons, prolonged citral inhibition of native TRPV1 channels enabled the separation of TRPV2 and TRPV3 currents. We find that TRPV2 and TRPV3 channels are present in a high proportion of these neurons (94% respond to 2-aminoethyldiphenyl borate), consistent with our immunolabeling experiments and previous in situ hybridization studies. The TRPV1 activation requires residues in transmembrane segments two through four of the voltage-sensor domain, a region previously implicated in capsaicin activation of TRPV1 and analogous menthol activation of TRPM8. Citral's broad spectrum and prolonged sensory inhibition may prove more useful than capsaicin for allodynia, itch, or other types of pain involving superficial sensory nerves and skin.

  5. Selective deletion of cochlear hair cells causes rapid age-dependent changes in spiral ganglion and cochlear nucleus neurons.

    PubMed

    Tong, Ling; Strong, Melissa K; Kaur, Tejbeer; Juiz, Jose M; Oesterle, Elizabeth C; Hume, Clifford; Warchol, Mark E; Palmiter, Richard D; Rubel, Edwin W

    2015-05-20

    During nervous system development, critical periods are usually defined as early periods during which manipulations dramatically change neuronal structure or function, whereas the same manipulations in mature animals have little or no effect on the same property. Neurons in the ventral cochlear nucleus (CN) are dependent on excitatory afferent input for survival during a critical period of development. Cochlear removal in young mammals and birds results in rapid death of target neurons in the CN. Cochlear removal in older animals results in little or no neuron death. However, the extent to which hair-cell-specific afferent activity prevents neuronal death in the neonatal brain is unknown. We further explore this phenomenon using a new mouse model that allows temporal control of cochlear hair cell deletion. Hair cells express the human diphtheria toxin (DT) receptor behind the Pou4f3 promoter. Injections of DT resulted in nearly complete loss of organ of Corti hair cells within 1 week of injection regardless of the age of injection. Injection of DT did not influence surrounding supporting cells directly in the sensory epithelium or spiral ganglion neurons (SGNs). Loss of hair cells in neonates resulted in rapid and profound neuronal loss in the ventral CN, but not when hair cells were eliminated at a more mature age. In addition, normal survival of SGNs was dependent on hair cell integrity early in development and less so in mature animals. This defines a previously undocumented critical period for SGN survival. Copyright © 2015 the authors 0270-6474/15/357878-14$15.00/0.

  6. Difference of acute dissociation and 1-day culture on the electrophysiological properties of rat dorsal root ganglion neurons.

    PubMed

    Song, Yuanlong; Zhang, Miaomiao; Tao, Xiaoqing; Xu, Zifen; Zheng, Yunjie; Zhu, Minjie; Zhang, Liangpin; Qiao, Jinhan; Gao, Linlin

    2018-01-19

    The dissociated dorsal root ganglion (DRG) neurons with or without culture were widely used for investigation of their electrophysiological properties. The culture procedures, however, may alter the properties of these neurons and the effects are not clear. In the present study, we recorded the action potentials (AP) and the voltage-gated Na + , K + , and Ca 2+ currents with patch clamp technique and measured the mRNA of Nav1.6-1.9 and Cav2.1-2.2 with real-time PCR technique from acutely dissociated and 1-day (1-d) cultured DRG neurons. The effects of the nerve growth factor (NGF) on the expression of Nav1.6-1.9 and Cav2.1-2.2 were evaluated. The neurons were classified as small (DRG-S), medium (DRG-M), and large (DRG-L), according to their size frequency distribution pattern. We found 1-d culture increased the AP size but reduced the excitability, and reduced the voltage-gated Na + and Ca 2+ currents and their corresponding mRNA expression in all types of neurons. The lack of NGF in the culture medium may contribute to the reduced Na + and Ca 2+ current, as the application of NGF recovered some of the reduced transcripts (Nav1.9, Cav2.1, and Cav2.2). 1-d culture showed neuron-type specific effects on some of the AP properties: it increased the maximum AP depolarizing rate (MDR) and hyperpolarized the resting membrane potential (RP) in DRG-M and DRG-L neurons, but slowed the maximum AP repolarizing rate (MRR) in DRG-S neurons. In conclusion, the 1-d cultured neurons had different properties with those of the acutely dissociated neurons, and lack of NGF may contribute to some of these differences.

  7. Reduced intestinal brain-derived neurotrophic factor increases vagal sensory innervation of the intestine and enhances satiation.

    PubMed

    Biddinger, Jessica E; Fox, Edward A

    2014-07-30

    Brain-derived neurotrophic factor (BDNF) is produced by developing and mature gastrointestinal (GI) tissues that are heavily innervated by autonomic neurons and may therefore control their development or function. To begin investigating this hypothesis, we compared the morphology, distribution, and density of intraganglionic laminar endings (IGLEs), the predominant vagal GI afferent, in mice with reduced intestinal BDNF (INT-BDNF(-/-)) and controls. Contrary to expectations of reduced development, IGLE density and longitudinal axon bundle number in the intestine of INT-BDNF(-/-) mice were increased, but stomach IGLEs were normal. INT-BDNF(-/-) mice also exhibited increased vagal sensory neuron numbers, suggesting that their survival was enhanced. To determine whether increased intestinal IGLE density or other changes to gut innervation in INT-BDNF(-/-) mice altered feeding behavior, meal pattern and microstructural analyses were performed. INT-BDNF(-/-) mice ate meals of much shorter duration than controls, resulting in reduced meal size. Increased suppression of feeding in INT-BDNF(-/-) mice during the late phase of a scheduled meal suggested that increased satiation signaling contributed to reduced meal duration and size. Furthermore, INT-BDNF(-/-) mice demonstrated increases in total daily intermeal interval and satiety ratio, suggesting that satiety signaling was augmented. Compensatory responses maintained normal daily food intake and body weight in INT-BDNF(-/-) mice. These findings suggest a target organ-derived neurotrophin suppresses development of that organ's sensory innervation and sensory neuron survival and demonstrate a role for BDNF produced by peripheral tissues in short-term controls of feeding, likely through its regulation of development or function of gut innervation, possibly including augmented intestinal IGLE innervation. Copyright © 2014 the authors 0270-6474/14/3410379-15$15.00/0.

  8. Innervation of the cow's inner ear derived from micro-computed tomography

    NASA Astrophysics Data System (ADS)

    Costeur, Loic; Mennecart, Bastien; Khimchenko, Anna; Müller, Bert; Schulz, Georg

    2017-09-01

    The innervation of the inner ear has been thoroughly investigated in humans and in some animal models such as the guinea pig, the rabbit, the cat, the dog, the rat, the pig and some monkeys. Ruminant inner ears are still poorly known and their innervation was never investigated despite its potential interest in phylogenetic reconstructions. Following earlier works on the ontogeny of the cow's ear, we expand our understanding of this structure by reconstructing the fine innervation pattern of the inner ear of the cow in two ontogenetic stages, at 7 months gestation and at an adult age. Since we work on dry skeletal specimens, only the endocast of the innervation inside the petrosal bone was reconstructed up to the internal acoustic meatus. The paths of the facial and vestibulocochlear nerves could be reconstructed together with that of the spiral ganglion canal. The nerves have a very fibrous pattern. The bony cavities of the ampular and utricular branches of the vestibulocochlear nerve could also be reconstructed. Our observations confirm that not all bony structures are present in foetal stages since the branch of cranial nerve VII is not visible on the foetus but very broad on the adult stage. The fibrous pattern within the modiolus connecting the spiral canal to the cochlear nerve is also less dense than in the adult stage. The shape of the branch of cranial nerve VII is very broad in the cow ending in a large hiatus Fallopii; this, together with the above-mentioned particularities, could constitute relevant observations for phylogenetical purposes when more data will be made available.

  9. Evidence for crustacean cardioactive peptide-like innervation of the gut in Locusta migratoria.

    PubMed

    Donini, Andrew; Ngo, Caroline; Lange, Angela B

    2002-11-01

    Hindguts from female Vth instar larvae, young adults (1-2 days) and old adults (>10 days) are equally sensitive to the crustacean cardioactive peptide (CCAP), with changes in contraction occurring at a threshold concentration of 10(-9)M and maximal responses observed at concentrations ranging between 10(-7) and 5x10(-6)M. An immunohistochemical examination of the gut of Locusta migratoria with an antiserum raised against CCAP revealed an extensive network of CCAP-like immunoreactive processes on the hindgut and posterior midgut via the 11th sternal nerve arising from the terminal abdominal ganglion. Anterograde filling of the 11th sternal nerve with neurobiotin revealed extensive processes and terminals on the hindgut. Retrograde filling of the branch of the 11th sternal nerve which innervates the hindgut with neurobiotin revealed two bilaterally paired cells in the terminal abdominal ganglion which co-localized with CCAP-like immunoreactivity. Results suggest that a CCAP-like substance acts as a neurotransmitter/neuromodulator at the locust hindgut.

  10. Herpes Simplex Virus 1 Tropism for Human Sensory Ganglion Neurons in the Severe Combined Immunodeficiency Mouse Model of Neuropathogenesis

    PubMed Central

    Che, Xibing; Reichelt, Mike; Qiao, Yanli; Gu, Haidong; Arvin, Ann

    2013-01-01

    The tropism of herpes simplex virus (HSV-1) for human sensory neurons infected in vivo was examined using dorsal root ganglion (DRG) xenografts maintained in mice with severe combined immunodeficiency (SCID). In contrast to the HSV-1 lytic infectious cycle in vitro, replication of the HSV-1 F strain was restricted in human DRG neurons despite the absence of adaptive immune responses in SCID mice, allowing the establishment of neuronal latency. At 12 days after DRG inoculation, 26.2% of human neurons expressed HSV-1 protein and 13.1% expressed latency-associated transcripts (LAT). Some infected neurons showed cytopathic changes, but HSV-1, unlike varicella-zoster virus (VZV), only rarely infected satellite cells and did not induce fusion of neuronal and satellite cell plasma membranes. Cell-free enveloped HSV-1 virions were observed, indicating productive infection. A recombinant HSV-1-expressing luciferase exhibited less virulence than HSV-1 F in the SCID mouse host, enabling analysis of infection in human DRG xenografts for a 61-day interval. At 12 days after inoculation, 4.2% of neurons expressed HSV-1 proteins; frequencies increased to 32.1% at 33 days but declined to 20.8% by 61 days. Frequencies of LAT-positive neurons were 1.2% at 12 days and increased to 40.2% at 33 days. LAT expression remained at 37% at 61 days, in contrast to the decline in neurons expressing viral proteins. These observations show that the progression of HSV-1 infection is highly restricted in human DRG, and HSV-1 genome silencing occurs in human neurons infected in vivo as a consequence of virus-host cell interactions and does not require adaptive immune control. PMID:23269807

  11. Dietary grape seed polyphenols repress neuron and glia activation in trigeminal ganglion and trigeminal nucleus caudalis

    PubMed Central

    2010-01-01

    Background Inflammation and pain associated with temporomandibular joint disorder, a chronic disease that affects 15% of the adult population, involves activation of trigeminal ganglion nerves and development of peripheral and central sensitization. Natural products represent an underutilized resource in the pursuit of safe and effective ways to treat chronic inflammatory diseases. The goal of this study was to investigate effects of grape seed extract on neurons and glia in trigeminal ganglia and trigeminal nucleus caudalis in response to persistent temporomandibular joint inflammation. Sprague Dawley rats were pretreated with 200 mg/kg/d MegaNatural-BP grape seed extract for 14 days prior to bilateral injections of complete Freund's adjuvant into the temporomandibular joint capsule. Results In response to grape seed extract, basal expression of mitogen-activated protein kinase phosphatase 1 was elevated in neurons and glia in trigeminal ganglia and trigeminal nucleus caudalis, and expression of the glutamate aspartate transporter was increased in spinal glia. Rats on a normal diet injected with adjuvant exhibited greater basal levels of phosphorylated-p38 in trigeminal ganglia neurons and spinal neurons and microglia. Similarly, immunoreactive levels of OX-42 in microglia and glial fibrillary acidic protein in astrocytes were greatly increased in response to adjuvant. However, adjuvant-stimulated levels of phosphorylated-p38, OX-42, and glial fibrillary acidic protein were significantly repressed in extract treated animals. Furthermore, grape seed extract suppressed basal expression of the neuropeptide calcitonin gene-related peptide in spinal neurons. Conclusions Results from our study provide evidence that grape seed extract may be beneficial as a natural therapeutic option for temporomandibular joint disorders by suppressing development of peripheral and central sensitization. PMID:21143976

  12. Retinal ganglion cells in diabetes

    PubMed Central

    Kern, Timothy S; Barber, Alistair J

    2008-01-01

    Diabetic retinopathy has long been recognized as a vascular disease that develops in most patients, and it was believed that the visual dysfunction that develops in some diabetics was due to the vascular lesions used to characterize the disease. It is becoming increasingly clear that neuronal cells of the retina also are affected by diabetes, resulting in dysfunction and even degeneration of some neuronal cells. Retinal ganglion cells (RGCs) are the best studied of the retinal neurons with respect to the effect of diabetes. Although investigations are providing new information about RGCs in diabetes, including therapies to inhibit the neurodegeneration, critical information about the function, anatomy and response properties of these cells is yet needed to understand the relationship between RGC changes and visual dysfunction in diabetes. PMID:18565995

  13. Effect of nerve injury on the number of dorsal root ganglion neurons and autotomy behavior in adult Bax-deficient mice.

    PubMed

    Lyu, Chuang; Lyu, Gong-Wei; Martinez, Aurora; Shi, Tie-Jun Sten

    2017-01-01

    The proapoptotic molecule BAX, plays an important role in mitochondrial apoptotic pathway. Dorsal root ganglion (DRG) neurons depend on neurotrophic factors for survival at early developmental stages. Withdrawal of neurotrophic factors will induce apoptosis in DRG neurons, but this type of cell death can be delayed or prevented in neonatal Bax knockout (KO) mice. In adult animals, evidence also shows that DRG neurons are less dependent upon neurotrophic factors for survival. However, little is known about the effect of Bax deletion on the survival of normal and denervated DRG neurons in adult mice. A unilateral sciatic nerve transection was performed in adult Bax KO mice and wild-type (WT) littermates. Stereological method was employed to quantify the number of lumbar-5 DRG neurons 1 month post-surgery. Nerve injury-induced autotomy behavior was also examined on days 1, 3, and 7 post-surgery. There were significantly more neurons in contralateral DRGs of KO mice as compared with WT mice. The number of neurons was reduced in ipsilateral DRGs in both KO and WT mice. No changes in size distributions of DRG neuron profiles were detected before or after nerve injury. Injury-induced autotomy behavior developed much earlier and was more serious in KO mice. Although postnatal death or loss of DRG neurons is partially prevented by Bax deletion, this effect cannot interfere with long-term nerve injury-induced neuronal loss. The exaggerated self-amputation behavior observed in the mutant mice indicates that Bax deficiency may enhance the development of spontaneous pain following nerve injury.

  14. Met receptor signaling is required for sensory nerve development and HGF promotes axonal growth and survival of sensory neurons

    PubMed Central

    Maina, Flavio; Hilton, Mark C.; Ponzetto, Carola; Davies, Alun M.; Klein, Rüdiger

    1997-01-01

    The development of the nervous system is a dynamic process during which factors act in an instructive fashion to direct the differentiation and survival of neurons, and to induce axonal outgrowth, guidance to, and terminal branching within the target tissue. Here we report that mice expressing signaling mutants of the hepatocyte growth factor (HGF) receptor, the Met tyrosine kinase, show a striking reduction of sensory nerves innervating the skin of the limbs and thorax, implicating the HGF/Met system in sensory neuron development. Using in vitro assays, we find that HGF cooperates with nerve growth factor (NGF) to enhance axonal outgrowth from cultured dorsal root ganglion (DRG) neurons. HGF also enhances the neurotrophic activities of NGF in vitro, and Met receptor signaling is required for the survival of a proportion of DRG neurons in vivo. This synergism is specific for NGF but not for the related neurotrophins BDNF and NT3. By using a mild signaling mutant of Met, we have demonstrated previously that Met requires signaling via the adapter molecule Grb2 to induce proliferation of myoblasts. In contrast, the actions of HGF on sensory neurons are mediated by Met effectors distinct from Grb2. Our findings demonstrate a requirement for Met signaling in neurons during development. PMID:9407027

  15. Innervation pattern of the preocular human central retinal artery.

    PubMed

    Bergua, Antonio; Kapsreiter, Markus; Neuhuber, Winfried L; Reitsamer, Herbert A; Schrödl, Falk

    2013-05-01

    The central retinal artery (CRA) is the main vessel for inner retinal oxygen and nutrition supply. While the intraocular branches lack autonomic innervation, the innervation pattern of the extra-ocular part of this vessel along its course within the optic nerve is poorly investigated. This part however is essential for maintenance of retinal blood supply, in physiological and pathological conditions. Therefore, the aim of this study was the characterization of the autonomic innervation of the preocular CRA in humans with morphological methods. Meeting the Declaration of Helsinki, eyes of body or cornea donors were processed for single or double immunohistochemistry against tyrosine hydroxilase (TH), dopamine-β-hydroxylase (DBH), choline acetyl-transferase (ChAT), vesicular acetylcholine transporter (VAChT), neuronal nitric oxide synthase (nNOS), calcitonin gene-related peptide (CGRP), substance P (SP), vasoactive intestinal polypeptide (VIP), and cytochemistry for NADPH-diaphorase (NADPH-d). For documentation, light-, fluorescence-, and confocal laser-scanning microscopy were used. TH and DBH immunoreactive nerve fibres were detected in the CRA vessel wall, although a distinct perivascular plexus was missing. Further, nerve fibres immunoreactive for ChAT and VAChT were found, while CGRP, SP, and VIP were not detected. NADPH-d staining revealed scattered nerve fibres in the adventitia of the CRA and in close vicinity; however, nNOS-immunostaining could not confirm this finding. The CRA receives adrenergic and cholinergic innervations, indicating sympathetic and parasympathetic components, respectively. Remarkably, a peptidergic primary afferent innervation was missing. Since clinical results suggest an autoregulation of intraretinal vessels, further studies are needed to clarify the impact of CRA innervation for retinal perfusion. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Immunoglobulinfree light chains reduce in an antigen-specific manner the rate of rise of action potentials of mouse non-nociceptive dorsal root ganglion neurons.

    PubMed

    Rijnierse, Anneke; Kraneveld, Aletta D; Salemi, Arezo; Zwaneveld, Sandra; Goumans, Aleida P H; Rychter, Jakub W; Thio, Marco; Redegeld, Frank A; Westerink, Remco H S; Kroese, Alfons B A

    2013-11-15

    Plasma B cells secrete immunoglobulinfree light chains (IgLC) which by binding to mast cells can mediate hypersensitivity responses and are involved in several immunological disorders. To investigate the effects of antigen-specific IgLC activation, intracellular recordings were made from cultured murine dorsal root ganglion (DRG) neurons, which can specifically bind IgLC. The neurons were sensitized with IgLC for 90min and subsequently activated by application of the corresponding antigen (DNP-HSA). Antigen application induced a decrease in the rate of rise of the action potentials of non-nociceptive neurons (MANOVA, p=2.10(-6)), without affecting the resting membrane potential or firing threshold. The action potentials of the nociceptive neurons (p=0.57) and the electrical excitability of both types of neurons (p>0.35) were not affected. We conclude that IgLC can mediate antigen-specific responses by reducing the rate of rise of action potentials in non-nociceptive murine DRG neurons. We suggest that antigen-specific activation of IgLC-sensitized non-nociceptive DRG neurons may contribute to immunological hypersensitivity responses and neuroinflammation. © 2013.

  17. Inhibition of acid-sensing ion channels by levo-tetrahydropalmatine in rat dorsal root ganglion neurons.

    PubMed

    Liu, Ting-Ting; Qu, Zu-Wei; Qiu, Chun-Yu; Qiu, Fang; Ren, Cuixia; Gan, Xiong; Peng, Fang; Hu, Wang-Ping

    2015-02-01

    Levo-tetrahydropalmatine (l-THP), a main bioactive Chinese herbal constituent from the genera Stephania and Corydalis, has been in use in clinical practice for years in China as a traditional analgesic agent. However, the mechanism underlying the analgesic action of l-THP is poorly understood. This study shows that l-THP can exert an inhibitory effect on the functional activity of native acid-sensing ion channels (ASICs), which are believed to mediate pain caused by extracellular acidification. l-THP dose dependently decreased the amplitude of proton-gated currents mediated by ASICs in rat dorsal root ganglion (DRG) neurons. l-THP shifted the proton concentration-response curve downward, with a decrease of 40.93% ± 8.45% in the maximum current response to protons, with no significant change in the pH0.5 value. Moreover, l-THP can alter the membrane excitability of rat DRG neurons to acid stimuli. It significantly decreased the number of action potentials and the amplitude of the depolarization induced by an extracellular pH drop. Finally, peripherally administered l-THP inhibited the nociceptive response to intraplantar injection of acetic acid in rats. These results indicate that l-THP can inhibit the functional activity of ASICs in dissociated primary sensory neurons and relieve acidosis-evoked pain in vivo, which for the first time provides a novel peripheral mechanism underlying the analgesic action of l-THP. © 2014 Wiley Periodicals, Inc.

  18. Mechanical compression insults induce nanoscale changes of membrane-skeleton arrangement which could cause apoptosis and necrosis in dorsal root ganglion neurons.

    PubMed

    Quan, Xin; Guo, Kai; Wang, Yuqing; Huang, Liangliang; Chen, Beiyu; Ye, Zhengxu; Luo, Zhuojing

    2014-01-01

    In a primary spinal cord injury, the amount of mechanical compression insult that the neurons experience is one of the most critical factors in determining the extent of the injury. The ultrastructural changes that neurons undergo when subjected to mechanical compression are largely unknown. In the present study, using a compression-driven instrument that can simulate mechanical compression insult, we applied mechanical compression stimulation at 0.3, 0.5, and 0.7 MPa to dorsal root ganglion (DRG) neurons for 10 min. Combined with atomic force microscopy, we investigated nanoscale changes in the membrane-skeleton, cytoskeleton alterations, and apoptosis induced by mechanical compression injury. The results indicated that mechanical compression injury leads to rearrangement of the membrane-skeleton compared with the control group. In addition, mechanical compression stimulation induced apoptosis and necrosis and also changed the distribution of the cytoskeleton in DRG neurons. Thus, the membrane-skeleton may play an important role in the response to mechanical insults in DRG neurons. Moreover, sudden insults caused by high mechanical compression, which is most likely conducted by the membrane-skeleton, may induce necrosis, apoptosis, and cytoskeletal alterations.

  19. Signaling via the transcriptionally regulated activin receptor 2B is a novel mediator of neuronal cell death during chicken ciliary ganglion development.

    PubMed

    Koszinowski, S; Buss, K; Kaehlcke, K; Krieglstein, K

    2015-04-01

    The TGF-β ligand superfamily members activin A and BMP control important aspects of embryonic neuronal development and differentiation. Both are known to bind to activin receptor subtypes IIA (ActRIIA) and IIB, while in the avian ciliary ganglion (CG), so far only ActRIIA-expression has been described. We show that the expression of ACVR2B, coding for the ActRIIB, is tightly regulated during CG development and the knockdown of ACVR2B expression leads to a deregulation in the execution of neuronal apoptosis and therefore affects ontogenetic programmed cell death in vivo. While the differentiation of choroid neurons was impeded in the knockdown, pointing toward a reduction in activin A-mediated neural differentiation signaling, naturally occurring neuronal cell death in the CG was not prevented by follistatin treatment. Systemic injections of the BMP antagonist noggin, on the other hand, reduced the number of apoptotic neurons to a similar extent as ACVR2B knockdown. We therefore propose a novel pathway in the regulation of CG neuron ontogenetic programmed cell death, which could be mediated by BMP and signals via the ActRIIB. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. The role of Sema3–Npn-1 signaling during diaphragm innervation and muscle development

    PubMed Central

    Huettl, Rosa-Eva; Hanuschick, Philipp; Amend, Anna-Lena; Alberton, Paolo; Aszodi, Attila; Huber, Andrea B.

    2016-01-01

    ABSTRACT Correct innervation of the main respiratory muscle in mammals, namely the thoracic diaphragm, is a crucial pre-requisite for the functionality of this muscle and the viability of the entire organism. Systemic impairment of Sema3A–Npn-1 (Npn-1 is also known as NRP1) signaling causes excessive branching of phrenic nerves in the diaphragm and into the central tendon region, where the majority of misguided axons innervate ectopic musculature. To elucidate whether these ectopic muscles are a result of misguidance of myoblast precursors due to the loss of Sema3A–Npn-1 signaling, we conditionally ablated Npn-1 in somatic motor neurons, which led to a similar phenotype of phrenic nerve defasciculation and, intriguingly, also formation of innervated ectopic muscles. We therefore hypothesize that ectopic myocyte fusion is caused by additional factors released by misprojecting growth cones. Slit2 and its Robo receptors are expressed by phrenic motor axons and migrating myoblasts, respectively, during innervation of the diaphragm. In vitro analyses revealed a chemoattractant effect of Slit2 on primary diaphragm myoblasts. Thus, we postulate that factors released by motor neuron growth cones have an influence on the migration properties of myoblasts during establishment of the diaphragm. PMID:27466379

  1. In vitro 3D corneal tissue model with epithelium, stroma, and innervation.

    PubMed

    Wang, Siran; Ghezzi, Chiara E; Gomes, Rachel; Pollard, Rachel E; Funderburgh, James L; Kaplan, David L

    2017-01-01

    The interactions between corneal nerve, epithelium, and stroma are essential for maintaining a healthy cornea. Thus, corneal tissue models that more fully mimic the anatomy, mechanical properties and cellular components of corneal tissue would provide useful systems to study cellular interactions, corneal diseases and provide options for improved drug screening. Here a corneal tissue model was constructed to include the stroma, epithelium, and innervation. Thin silk protein film stacks served as the scaffolding to support the corneal epithelial and stromal layers, while a surrounding silk porous sponge supported neuronal growth. The neurons innervated the stromal and epithelial layers and improved function and viability of the tissues. An air-liquid interface environment of the corneal tissue was also mimicked in vitro, resulting in a positive impact on epithelial maturity. The inclusion of three cell types in co-culture at an air-liquid interface provides an important advance for the field of in vitro corneal tissue engineering, to permit improvements in the study of innervation and corneal tissue development, corneal disease, and tissue responses to environmental factors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Frequency-Dependent Activation of Glucose Utilization in the Superior Cervical Ganglion by Electrical Stimulation of Cervical Sympathetic Trunk

    NASA Astrophysics Data System (ADS)

    Yarowsky, Paul; Kadekaro, Massako; Sokoloff, Louis

    1983-07-01

    Electrical stimulation of the distal stump of the transected cervical sympathetic trunk produces a frequency-dependent activation of glucose utilization, measured by the deoxy[14C]glucose method, in the superior cervical ganglion of the urethane-anesthetized rat. The frequency dependence falls between 0-15 Hz; at 20 Hz the activation of glucose utilization is no greater than at 15 Hz. Deafferentation of the superior cervical ganglion by transection of the cervical sympathetic trunk does not diminish the rate of glucose utilization in the ganglion in the urethane-anesthetized rat. These results indicate that the rate of energy metabolism in an innervated neural structure is, at least in part, regulated by the impulse frequency of the electrical input to the structure, and this regulation may be an essential component of the mechanism of the coupling of metabolic activity to functional activity in the nervous system.

  3. Electrophysiological effects of tachykinins and capsaicin on guinea-pig bronchial parasympathetic ganglion neurones.

    PubMed Central

    Myers, A C; Undem, B J

    1993-01-01

    1. We evaluated the effects of neurokinins, tachykinin analogues, or capsaicin on passive membrane properties of guinea-pig bronchial parasympathetic neurones using intracellular recording techniques. 2. Substance P (SP) and the tachykinin analogue, acetyl-[Arg6,Sar9,Met(O2)11]-SP(6-11) (ASMSP), at concentrations selective for the neurokinin (NK)-1 receptor subtype, depolarized the resting potential (3 and 5 mV, respectively) with no change in input resistance. Neurokinin A and beta Ala8NKA(4-10), at concentrations selective for the NK-2 receptor subtype (0.1 microM), were without effect. 3. Neurokinin B (NKB) and [Asp5,6,methyl-Phe8]SP(5-11) (senktide analogue), at concentrations selective for NK-3 receptor subtype, elicited maximum depolarizations of 16 +/- 2 mV for both agonists. The peak of the depolarization was associated with an decrease in membrane resistance (35 +/- 4 and 50 +/- 7%, respectively). 4. Capsaicin (1 microM) elicited a 3-24 mV depolarization of the resting potential of thirteen of eighteen bronchial ganglion neurones and decreased the input resistance of seven of thirteen of these neurones. The effects of capsaicin were reduced by desensitization with senktide analogue at a concentration selective for the NK-3 receptor subtype, whereas a non-peptide NK-1 receptor antagonist had no effect. 5. Using voltage clamp analysis, capsaicin and senktide analogue evoked an inward current and an increase in membrane conductance at the resting membrane potential. The reversal potential for senktide analogue was estimated to be + 4 mV. 6. These data support the hypothesis that neurokinin-containing nerve terminals are localized within guinea-pig bronchial parasympathetic ganglia and, when released, the predominant effect of the neurokinins is by activation of NK-3 receptors. PMID:7508508

  4. Visual pattern recognition based on spatio-temporal patterns of retinal ganglion cells’ activities

    PubMed Central

    Jing, Wei; Liu, Wen-Zhong; Gong, Xin-Wei; Gong, Hai-Qing

    2010-01-01

    Neural information is processed based on integrated activities of relevant neurons. Concerted population activity is one of the important ways for retinal ganglion cells to efficiently organize and process visual information. In the present study, the spike activities of bullfrog retinal ganglion cells in response to three different visual patterns (checker-board, vertical gratings and horizontal gratings) were recorded using multi-electrode arrays. A measurement of subsequence distribution discrepancy (MSDD) was applied to identify the spatio-temporal patterns of retinal ganglion cells’ activities in response to different stimulation patterns. The results show that the population activity patterns were different in response to different stimulation patterns, such difference in activity pattern was consistently detectable even when visual adaptation occurred during repeated experimental trials. Therefore, the stimulus pattern can be reliably discriminated according to the spatio-temporal pattern of the neuronal activities calculated using the MSDD algorithm. PMID:21886670

  5. Glutamatergic input is selectively increased in dorsal raphe subfield 5-HT neurons: role of morphology, topography and selective innervation.

    PubMed

    Crawford, LaTasha K; Craige, Caryne P; Beck, Sheryl G

    2011-12-01

    Characterization of glutamatergic input to dorsal raphe (DR) serotonin (5-HT) neurons is crucial for understanding how the glutamate and 5-HT systems interact in psychiatric disorders. Markers of glutamatergic terminals, vGlut1, 2 and 3, reflect inputs from specific forebrain and midbrain regions. Punctate staining of vGlut2 was homogeneous throughout the mouse DR whereas vGlut1 and vGlut3 puncta were less dense in the lateral wing (lwDR) compared with the ventromedial (vmDR) subregion. The distribution of glutamate terminals was consistent with the lower miniature excitatory postsynaptic current frequency found in the lwDR; however, it was not predictive of glutamatergic synaptic input with local activity intact, as spontaneous excitatory postsynaptic current (sEPSC) frequency was higher in the lwDR. We examined the morphology of recorded cells to determine if variations in dendrite structure contributed to differences in synaptic input. Although lwDR neurons had longer, more complex dendrites than vmDR neurons, glutamatergic input was not correlated with dendrite length in the lwDR, suggesting that dendrite length did not contribute to subregional differences in sEPSC frequency. Overall, glutamatergic input in the DR was the result of selective innervation of subpopulations of 5-HT neurons and was rooted in the topography of DR neurons and the activity of glutamate neurons located within the midbrain slice. Increased glutamatergic input to lwDR cells potentially synergizes with previously reported increased intrinsic excitability of lwDR cells to increase 5-HT output in lwDR target regions. Because the vmDR and lwDR are involved in unique circuits, subregional differences in glutamate modulation may result in diverse effects on 5-HT output in stress-related psychopathology. © 2011 The Authors. European Journal of Neuroscience © 2011 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  6. Taste bud-derived BDNF maintains innervation of a subset of TrkB-expressing gustatory nerve fibers

    PubMed Central

    Tang, Tao; Rios-Pilier, Jennifer; Krimm, Robin

    2018-01-01

    Taste receptor cells transduce different types of taste stimuli and transmit this information to gustatory neurons that carry it to the brain. Taste receptor cells turn over continuously in adulthood, requiring constant new innervation from nerve fibers. Therefore, the maintenance of innervation to taste buds is an active process mediated by many factors, including brain-derived neurotrophic factor (BDNF). Specifically, 40% of taste bud innervation is lost when Bdnf is removed during adulthood. Here we speculated that not all gustatory nerve fibers express the BDNF receptor, TrkB, resulting in subsets of neurons that vary in their response to BDNF. However, it is also possible that the partial loss of innervation occurred because the Bdnf gene was not effectively removed. To test these possibilities, we first determined that not all gustatory nerve fibers express the TrkB receptor in adult mice. We then verified the efficiency of Bdnf removal specifically in taste buds of K14-CreER:Bdnf mice and found that Bdnf expression was reduced to 1%, indicating efficient Bdnf gene recombination. BDNF removal resulted in a 55% loss of TrkB-expressing nerve fibers, which was greater than the loss of P2X3-positive fibers (39%), likely because taste buds were innervated by P2X3+/TrkB− fibers that were unaffected by BDNF removal. We conclude that gustatory innervation consists of both TrkB-positive and TrkB-negative taste fibers and that BDNF is specifically important for maintaining TrkB-positive innervation to taste buds. In addition, although taste bud size was not affected by inducible Bdnf removal, the expression of the γ subunit of the ENaC channel was reduced. So, BDNF may regulate expression of some molecular components of taste transduction pathways. PMID:28600222

  7. Taste bud-derived BDNF maintains innervation of a subset of TrkB-expressing gustatory nerve fibers.

    PubMed

    Tang, Tao; Rios-Pilier, Jennifer; Krimm, Robin

    2017-07-01

    Taste receptor cells transduce different types of taste stimuli and transmit this information to gustatory neurons that carry it to the brain. Taste receptor cells turn over continuously in adulthood, requiring constant new innervation from nerve fibers. Therefore, the maintenance of innervation to taste buds is an active process mediated by many factors, including brain-derived neurotrophic factor (BDNF). Specifically, 40% of taste bud innervation is lost when Bdnf is removed during adulthood. Here we speculated that not all gustatory nerve fibers express the BDNF receptor, TrkB, resulting in subsets of neurons that vary in their response to BDNF. However, it is also possible that the partial loss of innervation occurred because the Bdnf gene was not effectively removed. To test these possibilities, we first determined that not all gustatory nerve fibers express the TrkB receptor in adult mice. We then verified the efficiency of Bdnf removal specifically in taste buds of K14-CreER:Bdnf mice and found that Bdnf expression was reduced to 1%, indicating efficient Bdnf gene recombination. BDNF removal resulted in a 55% loss of TrkB-expressing nerve fibers, which was greater than the loss of P2X3-positive fibers (39%), likely because taste buds were innervated by P2X3+/TrkB- fibers that were unaffected by BDNF removal. We conclude that gustatory innervation consists of both TrkB-positive and TrkB-negative taste fibers and that BDNF is specifically important for maintaining TrkB-positive innervation to taste buds. In addition, although taste bud size was not affected by inducible Bdnf removal, the expression of the γ subunit of the ENaC channel was reduced. So, BDNF may regulate expression of some molecular components of taste transduction pathways. Copyright © 2017. Published by Elsevier Inc.

  8. A gustatory second-order neuron that connects sucrose-sensitive primary neurons and a distinct region of the gnathal ganglion in the Drosophila brain

    PubMed Central

    Miyazaki, Takaaki; Lin, Tzu-Yang; Ito, Kei; Lee, Chi-Hon; Stopfer, Mark

    2016-01-01

    Although the gustatory system provides animals with sensory cues important for food choice and other critical behaviors, little is known about neural circuitry immediately following gustatory sensory neurons (GSNs). Here, we identify and characterize a bilateral pair of gustatory second-order neurons in Drosophila. Previous studies identified GSNs that relay taste information to distinct subregions of the primary gustatory center (PGC) in the gnathal ganglia (GNG). To identify candidate gustatory second-order neurons (G2Ns) we screened ~5,000 GAL4 driver strains for lines that label neural fibers innervating the PGC. We then combined GRASP (GFP reconstitution across synaptic partners) with presynaptic labeling to visualize potential synaptic contacts between the dendrites of the candidate G2Ns and the axonal terminals of Gr5a-expressing GSNs, which are known to respond to sucrose. Results of the GRASP analysis, followed by a single cell analysis by FLPout recombination, revealed a pair of neurons that contact Gr5a axon terminals in both brain hemispheres, and send axonal arborizations to a distinct region outside the PGC but within the GNG. To characterize the input and output branches, respectively, we expressed fluorescence-tagged acetylcholine receptor subunit (Dα7) and active-zone marker (Brp) in the G2Ns. We found that G2N input sites overlaid GRASP-labeled synaptic contacts to Gr5a neurons, while presynaptic sites were broadly distributed throughout the neurons’ arborizations. GRASP analysis and further tests with the Syb-GRASP method suggested that the identified G2Ns receive synaptic inputs from Gr5a-expressing GSNs, but not Gr66a-expressing GSNs, which respond to caffeine. The identified G2Ns relay information from Gr5a-expressing GSNs to distinct regions in the GNG, and are distinct from other, recently identified gustatory projection neurons, which relay information about sugars to a brain region called the antennal mechanosensory and motor center

  9. A gustatory second-order neuron that connects sucrose-sensitive primary neurons and a distinct region of the gnathal ganglion in the Drosophila brain.

    PubMed

    Miyazaki, Takaaki; Lin, Tzu-Yang; Ito, Kei; Lee, Chi-Hon; Stopfer, Mark

    2015-01-01

    Although the gustatory system provides animals with sensory cues important for food choice and other critical behaviors, little is known about neural circuitry immediately following gustatory sensory neurons (GSNs). Here, we identify and characterize a bilateral pair of gustatory second-order neurons (G2Ns) in Drosophila. Previous studies identified GSNs that relay taste information to distinct subregions of the primary gustatory center (PGC) in the gnathal ganglia (GNG). To identify candidate G2Ns, we screened ∼5,000 GAL4 driver strains for lines that label neural fibers innervating the PGC. We then combined GRASP (GFP reconstitution across synaptic partners) with presynaptic labeling to visualize potential synaptic contacts between the dendrites of the candidate G2Ns and the axonal terminals of Gr5a-expressing GSNs, which are known to respond to sucrose. Results of the GRASP analysis, followed by a single-cell analysis by FLP-out recombination, revealed a pair of neurons that contact Gr5a axon terminals in both brain hemispheres and send axonal arborizations to a distinct region outside the PGC but within the GNG. To characterize the input and output branches, respectively, we expressed fluorescence-tagged acetylcholine receptor subunit (Dα7) and active-zone marker (Brp) in the G2Ns. We found that G2N input sites overlaid GRASP-labeled synaptic contacts to Gr5a neurons, while presynaptic sites were broadly distributed throughout the neurons' arborizations. GRASP analysis and further tests with the Syb-GRASP method suggested that the identified G2Ns receive synaptic inputs from Gr5a-expressing GSNs, but not Gr66a-expressing GSNs, which respond to caffeine. The identified G2Ns relay information from Gr5a-expressing GSNs to distinct regions in the GNG, and are distinct from other, recently identified gustatory projection neurons, which relay information about sugars to a brain region called the antennal mechanosensory and motor center (AMMC). Our findings suggest

  10. Augmentation of glycolytic metabolism by meclizine is indispensable for protection of dorsal root ganglion neurons from hypoxia-induced mitochondrial compromise.

    PubMed

    Zhuo, Ming; Gorgun, Murat F; Englander, Ella W

    2016-10-01

    To meet energy demands, dorsal root ganglion (DRG) neurons harbor high mitochondrial content, which renders them acutely vulnerable to disruptions of energy homeostasis. While neurons typically rely on mitochondrial energy production and have not been associated with metabolic plasticity, new studies reveal that meclizine, a drug, recently linked to modulations of energy metabolism, protects neurons from insults that disrupt energy homeostasis. We show that meclizine rapidly enhances glycolysis in DRG neurons and that glycolytic metabolism is indispensable for meclizine-exerted protection of DRG neurons from hypoxic stress. We report that supplementation of meclizine during hypoxic exposure prevents ATP depletion, preserves NADPH and glutathione stores, curbs reactive oxygen species (ROS) and attenuates mitochondrial clustering in DRG neurites. Using extracellular flux analyzer, we show that in cultured DRG neurons meclizine mitigates hypoxia-induced loss of mitochondrial respiratory capacity. Respiratory capacity is a measure of mitochondrial fitness and cell ability to meet fluctuating energy demands and therefore, a key determinant of cellular fate. While meclizine is an 'old' drug with long record of clinical use, its ability to modulate energy metabolism has been uncovered only recently. Our findings documenting neuroprotection by meclizine in a setting of hypoxic stress reveal previously unappreciated metabolic plasticity of DRG neurons as well as potential for pharmacological harnessing of the newly discovered metabolic plasticity for protection of peripheral nervous system under mitochondria compromising conditions. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Tentonin 3/TMEM150c Confers Distinct Mechanosensitive Currents in Dorsal-Root Ganglion Neurons with Proprioceptive Function.

    PubMed

    Hong, Gyu-Sang; Lee, Byeongjun; Wee, Jungwon; Chun, Hyeyeon; Kim, Hyungsup; Jung, Jooyoung; Cha, Joo Young; Riew, Tae-Ryong; Kim, Gyu Hyun; Kim, In-Beom; Oh, Uhtaek

    2016-07-06

    Touch sensation or proprioception requires the transduction of mechanical stimuli into electrical signals by mechanoreceptors in the periphery. These mechanoreceptors are equipped with various transducer channels. Although Piezo1 and 2 are mechanically activated (MA) channels with rapid inactivation, MA molecules with other inactivation kinetics have not been identified. Here we report that heterologously expressed Tentonin3 (TTN3)/TMEM150C is activated by mechanical stimuli with distinctly slow inactivation kinetics. Genetic ablation of Ttn3/Tmem150c markedly reduced slowly adapting neurons in dorsal-root ganglion neurons. The MA TTN3 currents were inhibited by known blockers of mechanosensitive ion channels. Moreover, TTN3 was localized in muscle spindle afferents. Ttn3-deficient mice exhibited the loss of coordinated movements and abnormal gait. Thus, TTN3 appears to be a component of a mechanosensitive channel with a slow inactivation rate and contributes to motor coordination. Identification of this gene advances our understanding of the various types of mechanosensations, including proprioception. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. FMRFamide-like immunoreactive neurons of the nervus terminalis of teleosts innervate both retina and pineal organ.

    PubMed

    Ekström, P; Honkanen, T; Ebbesson, S O

    1988-09-13

    The tetrapeptide FMRFamide (Phe-Met-Arg-Phe-NH2) was first isolated from molluscan ganglia. Subsequently, it has become clear that vertebrate brains also contain endogenous FMRFamide-like substances. In teleosts, the neurons of the nervus terminalis contain an FMRFamide-like substance, and provide a direct innervation to the retina (Proc. Natl. Acad. Sci. U.S.A., 81 [1984] 940-944). Here we report the presence of FMRFamide-immunoreactive axonal bundles in the pineal organ of Coho salmon and three-spined sticklebacks. The largest numbers of axons were observed proximal to the brain, in the pineal stalk, while the distal part of the pineal organ contained only few axons. No FMRFamide-like-immunoreactive (IR) cell bodies were observed in the pineal organ. In adult fish it was not possible to determine the origin of these axons, due to the large numbers of FMRFamide-like IR axons in the teleost brain. However, by following the development of FMRFamide-like IR neurons in the embryonic and larval stickleback brain, it was possible to conclude that, at least in newly hatched fish, FMRFamide-like IR axons that originate in the nucleus nervus terminalis reach the pineal organ. Thus, it seems there is a direct connection between a specialized part of the chemosensory system and both the retina and the pineal organ in teleost fish.

  13. BARHL2 differentially regulates the development of retinal amacrine and ganglion neurons

    PubMed Central

    Ding, Qian; Chen, Hui; Xie, Xiaoling; Libby, Richard T.; Tian, Ning; Gan, Lin

    2009-01-01

    Summary Through transcriptional regulations the BarH family of homeodomain proteins play essential roles in cell fate specification, cell differentiation, migration and survival. Barhl2, a member of the Barh gene family, is expressed in retinal ganglion cells (RGCs), amacrine cells (ACs) and horizontal cells. Here, to investigate the role of Barhl2 in retinal development, Barhl2 deficient mice were generated. Analysis of AC subtypes in Barhl2 deficient retinas suggests that Barhl2 plays a critical role in AC subtype determination. A significant reduction of glycinergic and GABAergic ACs with a substantial increase in the number of cholinergic ACs was observed in Barhl2-null retinas. Barhl2 is also critical for the development of a normal complement of RGCs. Barhl2 deficiency resulted in a 35% increase in RGCs undergoing apoptosis during development. Genetic analysis revealed that Barhl2 functions downstream of the Atoh7-Pou4f3 regulatory pathway and regulates the maturation and/or survival of RGCs. Thus, BARHL2 appears to have numerous roles in retinal development, including regulating neuronal subtype specification, differentiation, and survival. PMID:19339595

  14. Expression of vesicular glutamate transporters in transient receptor potential ankyrin 1 (TRPA1)-positive neurons in the rat trigeminal ganglion.

    PubMed

    Kim, Yun Sook; Kim, Sung Kuk; Lee, Jae Sik; Ko, Sang Jin; Bae, Yong Chul

    2018-07-01

    Transient receptor potential ankyrin 1 (TRPA1), a cold receptor in sensory neurons activated by a variety of stimuli, is implicated in nociception and mechanotransduction. To help understand the vesicular glutamate transporter (VGLUT)-mediated glutamate signaling in TRPA1-immunopositive (+) neurons, we examined the expression of VGLUT1 and VGLUT2 in the TRPA1+ neurons in the male rat trigeminal ganglion (n = 19) under normal conditions and following experimental inflammation in the vibrissal pad by light microscopic immunohistochemistry (n = 11), western blot (n = 8), and quantitative analysis. One half (50.8%, 250/492) of the TRPA1+ neurons expressed VGLUT2, and a small fraction (8.3%, 57/683) also expressed VGLUT1. The majority of the VGLUT2-expressing TRPA1+ (VGLUT2+/TRPA1+) neurons coexpressed the markers of peptidergic and non-peptidergic neurons, CGRP, IB4, and TRPV1 but not the markers of neurons with myelinated fibers, NF200 and parvalbumin. In contrast, most VGLUT1+/TRPA1+ neurons coexpressed NF200 and parvalbumin but rarely expressed CGRP, IB4, or TRPV1. Following experimental inflammation, the fraction of VGLUT2+ (experimental vs. control: 34.7% vs. 22.3%), TRPA1+ (39.3% vs. 25.3%), and VGLUT2+/TRPA1+ (60.7% vs. 49.7%) neurons and the protein levels for TRPA1 and VGLUT2 increased significantly, compared to control, whereas the fraction of VGLUT1+ and VGLUT1+/TRPA1+ neurons and the protein level for VGLUT1 remained unchanged. These findings suggest that both VGLUT1 and VGLUT2 are involved in the glutamate signaling in TRPA1+ neurons under normal conditions in the male rats, and raise a possibility that VGLUT2 may play a role in the TRPA1-induced hypersensitivity following inflammation. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Sympathetic reinnervation of peripheral targets following bilateral axotomy of the adult superior cervical ganglion

    PubMed Central

    Hesp, Zoe C.; Zhu, Zheng; Morris, Teresa A.; Walker, Ryan G.; Isaacson, L.G.

    2012-01-01

    The ability of adult injured postganglionic axons to reinnervate cerebrovascular targets is unknown, yet these axons can influence cerebral blood flow, particularly during REM sleep. The objective of the present study was to assess quantitatively the sympathetic reinnervation of vascular as well as non-vascular targets following bilateral axotomy of the superior cervical ganglion (SCG) at short term (1 day, 7 days) and long term (8 weeks, 12 weeks) survival time points. The sympathetic innervation of representative extracerebral blood vessels [internal carotid artery (ICA), basilar artery (BA), middle cerebral artery (MCA)], the submandibular gland (SMG), and pineal gland was quantified following injury using an antibody to tyrosine hydroxylase (TH). Changes in TH innervation were related to TH protein content in the SCG. At 7 days following bilateral SCG axotomy, all targets were significantly depleted of TH innervation, and the exact site on the BA where SCG input was lost could be discerned. Complete sympathetic reinnervation of the ICA was observed at long term survival times, yet TH innervation of other vascular targets showed significant decreases even at 12 weeks following axotomy. The SMG was fully reinnervated by 12 weeks, yet TH innervation of the pineal gland remained significantly decreased. TH protein in the SCG was significantly decreased at both short term and long term time points and showed little evidence of recovery. Our data demonstrate a slow reinnervation of most vascular targets following axotomy of the SCG with only minimal recovery of TH protein in the SCG at 12 weeks following injury. PMID:22842079

  16. Shp-1 dephosphorylates TRPV1 in dorsal root ganglion neurons and alleviates CFA-induced inflammatory pain in rats.

    PubMed

    Xiao, Xing; Zhao, Xiao-Tao; Xu, Ling-Chi; Yue, Lu-Peng; Liu, Feng-Yu; Cai, Jie; Liao, Fei-Fei; Kong, Jin-Ge; Xing, Guo-Gang; Yi, Ming; Wan, You

    2015-04-01

    Transient receptor potential vanilloid 1 (TRPV1) receptors are expressed in nociceptive neurons of rat dorsal root ganglions (DRGs) and mediate inflammatory pain. Nonspecific inhibition of protein-tyrosine phosphatases (PTPs) increases the tyrosine phosphorylation of TRPV1 and sensitizes TRPV1. However, less is known about tyrosine phosphorylation's implication in inflammatory pain, compared with that of serine/threonine phosphorylation. Src homology 2 domain-containing tyrosine phosphatase 1 (Shp-1) is a key phosphatase dephosphorylating TRPV1. In this study, we reported that Shp-1 colocalized with and bound to TRPV1 in nociceptive DRG neurons. Shp-1 inhibitors, including sodium stibogluconate and PTP inhibitor III, sensitized TRPV1 in cultured DRG neurons. In naive rats, intrathecal injection of Shp-1 inhibitors increased both TRPV1 and tyrosine-phosphorylated TRPV1 in DRGs and induced thermal hyperalgesia, which was abolished by pretreatment with TRPV1 antagonists capsazepine, BCTC, or AMG9810. Complete Freund's adjuvant (CFA)-induced inflammatory pain in rats significantly increased the expression of Shp-1, TRPV1, and tyrosine-phosphorylated TRPV1, as well as the colocalization of Shp-1 and TRPV1 in DRGs. Intrathecal injection of sodium stibogluconate aggravated CFA-induced inflammatory pain, whereas Shp-1 overexpression in DRG neurons alleviated it. These results suggested that Shp-1 dephosphorylated and inhibited TRPV1 in DRG neurons, contributing to maintain thermal nociceptive thresholds in normal rats, and as a compensatory mechanism, Shp-1 increased in DRGs of rats with CFA-induced inflammatory pain, which was involved in protecting against excessive thermal hyperalgesia.

  17. Optical Imaging of Neuronal Activity and Visualization of Fine Neural Structures in Non-Desheathed Nervous Systems

    PubMed Central

    Stein, Wolfgang

    2014-01-01

    Locating circuit neurons and recording from them with single-cell resolution is a prerequisite for studying neural circuits. Determining neuron location can be challenging even in small nervous systems because neurons are densely packed, found in different layers, and are often covered by ganglion and nerve sheaths that impede access for recording electrodes and neuronal markers. We revisited the voltage-sensitive dye RH795 for its ability to stain and record neurons through the ganglion sheath. Bath-application of RH795 stained neuronal membranes in cricket, earthworm and crab ganglia without removing the ganglion sheath, revealing neuron cell body locations in different ganglion layers. Using the pyloric and gastric mill central pattern generating neurons in the stomatogastric ganglion (STG) of the crab, Cancer borealis, we found that RH795 permeated the ganglion without major residue in the sheath and brightly stained somatic, axonal and dendritic membranes. Visibility improved significantly in comparison to unstained ganglia, allowing the identification of somata location and number of most STG neurons. RH795 also stained axons and varicosities in non-desheathed nerves, and it revealed the location of sensory cell bodies in peripheral nerves. Importantly, the spike activity of the sensory neuron AGR, which influences the STG motor patterns, remained unaffected by RH795, while desheathing caused significant changes in AGR activity. With respect to recording neural activity, RH795 allowed us to optically record membrane potential changes of sub-sheath neuronal membranes without impairing sensory activity. The signal-to-noise ratio was comparable with that previously observed in desheathed preparations and sufficiently high to identify neurons in single-sweep recordings and synaptic events after spike-triggered averaging. In conclusion, RH795 enabled staining and optical recording of neurons through the ganglion sheath and is therefore both a good anatomical

  18. Modulation of ATP-induced inward currents by docosahexaenoic acid and other fatty acids in rat nodose ganglion neurons.

    PubMed

    Eto, Kei; Arimura, Yukiko; Mizuguchi, Hiroko; Nishikawa, Masazumi; Noda, Mami; Ishibashi, Hitoshi

    2006-11-01

    The effects of docosahexaenoic acid (DHA) and other fatty acids on P2X-receptor-mediated inward currents in rat nodose ganglion neurons were studied using the nystatin perforated patch-clamp technique. DHA accelerated the desensitization rate of the ATP-induced current. DHA showed use-dependent inhibition of the peak ATP-induced current. Other polyunsaturated fatty acids, such as arachidonic acid and eicosapentaenoic acid, displayed a similar use-dependent inhibition. The inhibitory effects of saturated fatty acids including palmitic acid and arachidic acid were weaker than those of polyunsaturated fatty acids. The results suggest that fatty acids may modulate the P2X receptor-mediated response when the channel is in the open-state.

  19. Developing grasshopper neurons show variable levels of guanylyl cyclase activity on arrival at their targets.

    PubMed

    Ball, E E; Truman, J W

    1998-04-27

    The ability of certain grasshopper neurons to respond to exogenously applied donors of nitric oxide (NO) by producing cyclic GMP (cGMP) depends on their developmental state. ODQ, a selective blocker of NO-sensitive guanylyl cyclase, blocks cGMP production at 10(-5) M, thus confirming the nature of the response. Experiments in which the distal axon is separated from its proximal stump before application of an NO donor show that guanylyl cyclase is distributed uniformly throughout the neuron. In the locust abdomen, where segments are formed sequentially, the pattern of guanylyl cyclase up-regulation is predictable and sequential from anterior to posterior. There are two patterns of innervation by cGMP-expressing motor neurons. In the first, typified by muscle 187, an innervating neuron begins to be NO responsive on arrival at its muscle and continues to be so over most of the remainder of embryonic development, including the formation of motor end plates. In the second, typified by a neuron innervating muscle 191, the neuron extends well along the muscle, apparently laying down a number of sites of contact with it, before it becomes NO responsive. In both patterns, however, NO responsiveness marks the neuron's transition from growth cone elongation to the production of lateral branches. Individual muscles receive innervation from multiple motor neurons, some of which express transient NO sensitivity during development and others which do not. With the exception of the leg motor neuron SETi, the first motor neuron to reach any muscle is usually not NO responsive. We suggest that cGMP plays a role in, or reflects, the early stages of communication between a target and specific innervating neurons.

  20. Accumulation of misfolded SOD1 in dorsal root ganglion degenerating proprioceptive sensory neurons of transgenic mice with amyotrophic lateral sclerosis.

    PubMed

    Sábado, Javier; Casanovas, Anna; Tarabal, Olga; Hereu, Marta; Piedrafita, Lídia; Calderó, Jordi; Esquerda, Josep E

    2014-01-01

    Amyotrophic lateral sclerosis (ALS) is an adult-onset progressive neurodegenerative disease affecting upper and lower motoneurons (MNs). Although the motor phenotype is a hallmark for ALS, there is increasing evidence that systems other than the efferent MN system can be involved. Mutations of superoxide dismutase 1 (SOD1) gene cause a proportion of familial forms of this disease. Misfolding and aggregation of mutant SOD1 exert neurotoxicity in a noncell autonomous manner, as evidenced in studies using transgenic mouse models. Here, we used the SOD1(G93A) mouse model for ALS to detect, by means of conformational-specific anti-SOD1 antibodies, whether misfolded SOD1-mediated neurotoxicity extended to neuronal types other than MNs. We report that large dorsal root ganglion (DRG) proprioceptive neurons accumulate misfolded SOD1 and suffer a degenerative process involving the inflammatory recruitment of macrophagic cells. Degenerating sensory axons were also detected in association with activated microglial cells in the spinal cord dorsal horn of diseased animals. As large proprioceptive DRG neurons project monosynaptically to ventral horn MNs, we hypothesise that a prion-like mechanism may be responsible for the transsynaptic propagation of SOD1 misfolding from ventral horn MNs to DRG sensory neurons.

  1. Upregulation of N-type calcium channels in the soma of uninjured dorsal root ganglion neurons contributes to neuropathic pain by increasing neuronal excitability following peripheral nerve injury.

    PubMed

    Yang, Jie; Xie, Man-Xiu; Hu, Li; Wang, Xiao-Fang; Mai, Jie-Zhen; Li, Yong-Yong; Wu, Ning; Zhang, Cheng; Li, Jin; Pang, Rui-Ping; Liu, Xian-Guo

    2018-07-01

    N-type voltage-gated calcium (Cav2.2) channels are expressed in the central terminals of dorsal root ganglion (DRG) neurons, and are critical for neurotransmitter release. Cav2.2 channels are also expressed in the soma of DRG neurons, where their function remains largely unknown. Here, we showed that Cav2.2 was upregulated in the soma of uninjured L4 DRG neurons, but downregulated in those of injured L5 DRG neurons following L5 spinal nerve ligation (L5-SNL). Local application of specific Cav2.2 blockers (ω-conotoxin GVIA, 1-100 μM or ZC88, 10-1000 μM) onto L4 and 6 DRGs on the operated side, but not the contralateral side, dose-dependently reversed mechanical allodynia induced by L5-SNL. Patch clamp recordings revealed that both ω-conotoxin GVIA (1 μM) and ZC88 (10 μM) depressed hyperexcitability in L4 but not in L5 DRG neurons of L5-SNL rats. Consistent with this, knockdown of Cav2.2 in L4 DRG neurons with AAV-Cav2.2 shRNA substantially prevented L5-SNL-induced mechanical allodynia and hyperexcitability of L4 DRG neurons. Furthermore, in L5-SNL rats, interleukin-1 beta (IL-1β) and IL-10 were upregulated in L4 DRGs and L5 DRGs, respectively. Intrathecal injection of IL-1β induced mechanical allodynia and Cav2.2 upregulation in bilateral L4-6 DRGs of naïve rats, whereas injection of IL-10 substantially prevented mechanical allodynia and Cav2.2 upregulation in L4 DRGs in L5-SNL rats. Finally, in cultured DRG neurons, Cav2.2 was dose-dependently upregulated by IL-1β and downregulated by IL-10. These data indicate that the upregulation of Cav2.2 in uninjured DRG neurons via IL-1β over-production contributes to neuropathic pain by increasing neuronal excitability following peripheral nerve injury. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Activity of Palythoa caribaeorum Venom on Voltage-Gated Ion Channels in Mammalian Superior Cervical Ganglion Neurons.

    PubMed

    Lazcano-Pérez, Fernando; Castro, Héctor; Arenas, Isabel; García, David E; González-Muñoz, Ricardo; Arreguín-Espinosa, Roberto

    2016-05-05

    The Zoanthids are an order of cnidarians whose venoms and toxins have been poorly studied. Palythoa caribaeorum is a zoanthid commonly found around the Mexican coastline. In this study, we tested the activity of P. caribaeorum venom on voltage-gated sodium channel (NaV1.7), voltage-gated calcium channel (CaV2.2), the A-type transient outward (IA) and delayed rectifier (IDR) currents of KV channels of the superior cervical ganglion (SCG) neurons of the rat. These results showed that the venom reversibly delays the inactivation process of voltage-gated sodium channels and inhibits voltage-gated calcium and potassium channels in this mammalian model. The compounds responsible for these effects seem to be low molecular weight peptides. Together, these results provide evidence for the potential use of zoanthids as a novel source of cnidarian toxins active on voltage-gated ion channels.

  3. A Wasp Manipulates Neuronal Activity in the Sub-Esophageal Ganglion to Decrease the Drive for Walking in Its Cockroach Prey

    PubMed Central

    Gal, Ram; Libersat, Frederic

    2010-01-01

    Background The parasitoid Jewel Wasp hunts cockroaches to serve as a live food supply for its offspring. The wasp stings the cockroach in the head and delivers a cocktail of neurotoxins directly inside the prey's cerebral ganglia. Although not paralyzed, the stung cockroach becomes a living yet docile ‘zombie’, incapable of self-initiating spontaneous or evoked walking. We show here that such neuro-chemical manipulation can be attributed to decreased neuronal activity in a small region of the cockroach cerebral nervous system, the sub-esophageal ganglion (SEG). A decrease in descending permissive inputs from this ganglion to thoracic central pattern generators decreases the propensity for walking-related behaviors. Methodology and Principal Findings We have used behavioral, neuro-pharmacological and electrophysiological methods to show that: (1) Surgically removing the cockroach SEG prior to wasp stinging prolongs the duration of the sting 5-fold, suggesting that the wasp actively targets the SEG during the stinging sequence; (2) injecting a sodium channel blocker, procaine, into the SEG of non-stung cockroaches reversibly decreases spontaneous and evoked walking, suggesting that the SEG plays an important role in the up-regulation of locomotion; (3) artificial focal injection of crude milked venom into the SEG of non-stung cockroaches decreases spontaneous and evoked walking, as seen with naturally-stung cockroaches; and (4) spontaneous and evoked neuronal spiking activity in the SEG, recorded with an extracellular bipolar microelectrode, is markedly decreased in stung cockroaches versus non-stung controls. Conclusions and Significance We have identified the neuronal substrate responsible for the venom-induced manipulation of the cockroach's drive for walking. Our data strongly support previous findings suggesting a critical and permissive role for the SEG in the regulation of locomotion in insects. By injecting a venom cocktail directly into the SEG, the

  4. Limited distal organelles and synaptic function in extensive monoaminergic innervation.

    PubMed

    Tao, Juan; Bulgari, Dinara; Deitcher, David L; Levitan, Edwin S

    2017-08-01

    Organelles such as neuropeptide-containing dense-core vesicles (DCVs) and mitochondria travel down axons to supply synaptic boutons. DCV distribution among en passant boutons in small axonal arbors is mediated by circulation with bidirectional capture. However, it is not known how organelles are distributed in extensive arbors associated with mammalian dopamine neuron vulnerability, and with volume transmission and neuromodulation by monoamines and neuropeptides. Therefore, we studied presynaptic organelle distribution in Drosophila octopamine neurons that innervate ∼20 muscles with ∼1500 boutons. Unlike in smaller arbors, distal boutons in these arbors contain fewer DCVs and mitochondria, although active zones are present. Absence of vesicle circulation is evident by proximal nascent DCV delivery, limited impact of retrograde transport and older distal DCVs. Traffic studies show that DCV axonal transport and synaptic capture are not scaled for extensive innervation, thus limiting distal delivery. Activity-induced synaptic endocytosis and synaptic neuropeptide release are also reduced distally. We propose that limits in organelle transport and synaptic capture compromise distal synapse maintenance and function in extensive axonal arbors, thereby affecting development, plasticity and vulnerability to neurodegenerative disease. © 2017. Published by The Company of Biologists Ltd.

  5. Pulsed Infrared Releases Ca2+ from the Endoplasmic Reticulum of Cultured Spiral Ganglion Neurons.

    PubMed

    Barrett, John N; Rincon, Samantha; Singh, Jayanti; Matthewman, Cristina; Pasos, Julio; Barrett, Ellen F; Rajguru, Suhrud M

    2018-04-18

    We investigated the effects of pulsed infrared radiation (IR, 1863 nm) stimulation on cytosolic [Ca 2+ ] in inner ear spiral ganglion neurons cultured from day 4 postnatal mice and loaded with a fluorescent Ca 2+ indicator (fluo-4, -5F or -5N). IR pulse trains (200 µs, 200-250 Hz, 2-5 s) delivered via an optical fiber coupled to IR source produced a rapid, transient temperature increase of 6-11ºC (above a baseline of 24-30 ºC) and evoked transient increases in both nuclear and cytosolic [Ca 2+ ] of 0.20 - 1.4 µM, with a simultaneous reduction of [Ca 2+ ] in regions containing endoplasmic reticulum (ER). IR-induced increases in cytosolic [Ca 2+ ] continued in medium containing no added Ca 2+ ({plus minus} Ca 2+ buffers) and low [Na + ], indicating that the [Ca 2+ ] increase was mediated by release from intracellular stores. Consistent with this hypothesis, the IR-induced [Ca 2+ ] response was prolonged and eventually blocked by inhibition of ER Ca-ATPase with cyclopiazonic acid, and was also inhibited by a high concentration of ryanodine and by inhibitors of IP 3 -mediated Ca 2+ release (xestospongin C and 2-APB). The thermal sensitivity of the response suggested involvement of warm-sensitive transient receptor potential (TRP) receptors. Immunostaining of the spiral ganglion demonstrated the presence of intracellular TRPV4 and TRPM2, and the IR-induced [Ca 2+ ] increase was inhibited by TRPV4 inhibitors (HC067047 and GSK2193874). These results suggest that the temperature-sensitivity of IR-induced [Ca 2+ ] elevations is conferred by TRP channels on ER membranes, which facilitate Ca 2+ efflux into the cytosol and initiate Ca 2+ -induced Ca 2+ -release via IP 3 and ryanodine receptors.

  6. Sensitivity of spiral ganglion neurons to damage caused by mobile phone electromagnetic radiation will increase in lipopolysaccharide-induced inflammation in vitro model.

    PubMed

    Zuo, Wen-Qi; Hu, Yu-Juan; Yang, Yang; Zhao, Xue-Yan; Zhang, Yuan-Yuan; Kong, Wen; Kong, Wei-Jia

    2015-05-29

    With the increasing popularity of mobile phones, the potential hazards of radiofrequency electromagnetic radiation (RF-EMR) on the auditory system remain unclear. Apart from RF-EMR, humans are also exposed to various physical and chemical factors. We established a lipopolysaccharide (LPS)-induced inflammation in vitro model to investigate whether the possible sensitivity of spiral ganglion neurons to damage caused by mobile phone electromagnetic radiation (at specific absorption rates: 2, 4 W/kg) will increase. Spiral ganglion neurons (SGN) were obtained from neonatal (1- to 3-day-old) Sprague Dawley® (SD) rats. After the SGN were treated with different concentrations (0, 20, 40, 50, 100, 200, and 400 μg/ml) of LPS, the Cell Counting Kit-8 (CCK-8) and alkaline comet assay were used to quantify cellular activity and DNA damage, respectively. The SGN were treated with the moderate LPS concentrations before RF-EMR exposure. After 24 h intermittent exposure at an absorption rate of 2 and 4 W/kg, DNA damage was examined by alkaline comet assay, ultrastructure changes were detected by transmission electron microscopy, and expression of the autophagy markers LC3-II and Beclin1 were examined by immunofluorescence and confocal laser scanning microscopy. Reactive oxygen species (ROS) production was quantified by the dichlorofluorescin-diacetate assay. LPS (100 μg/ml) induced DNA damage and suppressed cellular activity (P < 0.05). LPS (40 μg/ml) did not exhibit cellular activity changes or DNA damage (P > 0.05); therefore, 40 μg/ml was used to pretreat the concentration before exposure to RF-EMR. RF-EMR could not directly induce DNA damage. However, the 4 W/kg combined with LPS (40 μg/ml) group showed mitochondria vacuoles, karyopyknosis, presence of lysosomes and autophagosome, and increasing expression of LC3-II and Beclin1. The ROS values significantly increased in the 4 W/kg exposure, 4 W/kg combined with LPS (40 μg/ml) exposure, and H2O2 groups (P < 0.05, 0

  7. Adaptive Plasticity of Vaginal Innervation in Term Pregnant Rats

    PubMed Central

    Liao, Zhaohui; Smith, Peter G.

    2011-01-01

    Changes in reproductive status place varied functional demands on the vagina. These include receptivity to male intromission and sperm transport in estrus, barrier functions during early pregnancy, and providing a conduit for fetal passage at parturition. Peripheral innervation regulates vaginal function, which in turn may be influenced by circulating reproductive hormones. We assessed vaginal innervation in diestrus and estrus (before and after the estrous cycle surge in estrogen), and in the early (low estrogen) and late (high estrogen) stages in pregnancy. In vaginal sections from cycling rats, axons immunoreactive for the pan-neuronal marker protein gene product 9.5 (PGP 9.5) showed a small reduction at estrus relative to diestrus, but this difference did not persist after correcting for changes in target size. No changes were detected in axons immunoreactive for tyrosine hydroxylase (sympathetic), vesicular acetylcholine transporter (parasympathetic), or calcitonin gene-related peptide and transient receptor potential vanilloid type 1 (TRPV-1; sensory nociceptors). In rats at 10 days of pregnancy, innervation was similar to that observed in cycling rats. However, at 21 days of pregnancy, axons immunoreactive for PGP 9.5 and each of the subpopulation-selective markers were significantly reduced both when expressed as percentage of sectional area or after correcting for changes in target size. Because peripheral nerves regulate vaginal smooth muscle tone, blood flow, and pain sensitivity, reductions in innervation may represent important adaptive mechanisms facilitating parturition. PMID:21666101

  8. Deletion of Tsc2 in Nociceptors Reduces Target Innervation, Ion Channel Expression, and Sensitivity to Heat

    PubMed Central

    Carlin, Dan; Golden, Judith P.; Monk, Kelly R.

    2018-01-01

    Abstract The mechanistic target of rapamycin complex 1 (mTORC1) is known to regulate cellular growth pathways, and its genetic activation is sufficient to enhance regenerative axon growth following injury to the central or peripheral nervous systems. However, excess mTORC1 activation may promote innervation defects, and mTORC1 activity mediates injury-induced hypersensitivity, reducing enthusiasm for the pathway as a therapeutic target. While mTORC1 activity is required for full expression of some pain modalities, the effects of pathway activation on nociceptor phenotypes and sensory behaviors are currently unknown. To address this, we genetically activated mTORC1 in mouse peripheral sensory neurons by conditional deletion of its negative regulator Tuberous Sclerosis Complex 2 (Tsc2). Consistent with the well-known role of mTORC1 in regulating cell size, soma size and axon diameter of C-nociceptors were increased in Tsc2-deleted mice. Glabrous skin and spinal cord innervation by C-fiber neurons were also disrupted. Transcriptional profiling of nociceptors enriched by fluorescence-associated cell sorting (FACS) revealed downregulation of multiple classes of ion channels as well as reduced expression of markers for peptidergic nociceptors in Tsc2-deleted mice. In addition to these changes in innervation and gene expression, Tsc2-deleted mice exhibited reduced noxious heat sensitivity and decreased injury-induced cold hypersensitivity, but normal baseline sensitivity to cold and mechanical stimuli. Together, these data show that excess mTORC1 activity in sensory neurons produces changes in gene expression, neuron morphology and sensory behavior. PMID:29766046

  9. Insulin-like growth factor-1 attenuates apoptosis and protects neurochemical phenotypes of dorsal root ganglion neurons with paclitaxel-induced neurotoxicity in vitro.

    PubMed

    Chen, Cheng; Bai, Xue; Bi, Yanwen; Liu, Guixiang; Li, Hao; Liu, Zhen; Liu, Huaxiang

    2017-02-01

    Paclitaxel (PT)-induced neurotoxicity is a significant problem associated with successful treatment of cancers. Insulin-like growth factor-1 (IGF-1) is a neurotrophic factor and plays an important role in promoting axonal growth from dorsal root ganglion (DRG) neurons. Whether IGF-1 has protective effects on neurite growth, cell viability, neuronal apoptosis and neuronal phenotypes in DRG neurons with PT-induced neurotoxicity is still unclear. In this study, primary cultured rat DRG neurons were used to assess the effects of IGF-1 on DRG neurons with PT-induced neurotoxicity. The results showed that PT exposure caused neurite retraction in a dose-dependent manner. PT exposure caused a decrease of cell viability and an increase in the ratio of apoptotic cells which could be reversed by IGF-1. The percentage of calcitonin gene-related peptide immunoreactive (CGRP-IR) neurons and neurofilament (NF)-200-IR neurons, mRNA, and protein levels of CGRP and NF-200 decreased significantly after treatment with PT. IGF-1 administration had protective effects on CGRP-IR neurons, but not on NF-200-IR neurons. Either extracellular signal-regulated protein kinase (ERK1/2) inhibitor PD98059 or phosphatidylinositol 3-kinase (PI3 K) inhibitor LY294002 blocked the effect of IGF-1. The results imply that IGF-1 may attenuate apoptosis to improve neuronal cell viability and promote neurite growth of DRG neurons with PT-induced neurotoxicity. Moreover, these results support an important neuroprotective role of exogenous IGF-1 on distinct subpopulations of DRG neurons which is responsible for skin sensation. The effects of IGF-1 might be through ERK1/2 or PI3 K/Akt signaling pathways. These findings provide experimental evidence for IGF-1 administration to alleviate neurotoxicity of distinct subpopulations of DRG neurons induced by PT.

  10. Ganglion Cysts

    MedlinePlus

    ... Ganglion Cysts Find a hand surgeon near you. Videos Ganglion Cysts Close Popup Figures Figure 1 - Ganglion ... or "in." Also, avoid using media types like "video," "article," and "picture." Tip 4: Your results can ...

  11. PKCepsilon-dependent potentiation of TTX-resistant Nav1.8 current by neurokinin-1 receptor activation in rat dorsal root ganglion neurons.

    PubMed

    Cang, Chun-Lei; Zhang, Hua; Zhang, Yu-Qiu; Zhao, Zhi-Qi

    2009-06-30

    Substance P (SP), which mainly exists in a subtype of small-diameter dorsal root ganglion (DRG) neurons, is an important signal molecule in pain processing in the spinal cord. Our previous results have proved the expression of SP receptor neurokinin-1 (NK-1) on DRG neurons and its interaction with transient receptor potential vanilloid 1 (TRPV1) receptor. In this study we investigated the effect of NK-1 receptor agonist on Na(v)1.8, a tetrodotoxin (TTX)-resistant sodium channel, in rat small-diameter DRG neurons employing whole-cell patch clamp recordings. NK-1 agonist [Sar(9), Met(O2)(11)]-substance P (Sar-SP) significantly enhanced the Na(v)1.8 currents in a subgroup of small-diameter DRG neurons under both the normal and inflammatory situation, and the enhancement was blocked by NK-1 antagonist Win51708 and protein kinase C (PKC) inhibitor bisindolylmaleimide (BIM), but not the protein kinase A (PKA) inhibitor H89. In particular, the inhibitor of PKCepsilon, a PKC isoform, completely blocked this effect. Under current clamp model, Sar-SP reduced the amount of current required to evoke action potentials and increased the firing rate in a subgroup of DRG neurons. These data suggest that activation of NK-1 receptor potentiates Na(v)1.8 sodium current via PKCepsilon-dependent signaling pathway, probably participating in the generation of inflammatory hyperalgesia.

  12. VGLUT1 and VGLUT2 innervation in autonomic regions of intact and transected rat spinal cord.

    PubMed

    Llewellyn-Smith, Ida J; Martin, Carolyn L; Fenwick, Natalie M; Dicarlo, Stephen E; Lujan, Heidi L; Schreihofer, Ann M

    2007-08-20

    Fast excitatory neurotransmission to sympathetic and parasympathetic preganglionic neurons (SPN and PPN) is glutamatergic. To characterize this innervation in spinal autonomic regions, we localized immunoreactivity for vesicular glutamate transporters (VGLUTs) 1 and 2 in intact cords and after upper thoracic complete transections. Preganglionic neurons were retrogradely labeled by intraperitoneal Fluoro-Gold or with cholera toxin B (CTB) from superior cervical, celiac, or major pelvic ganglia or adrenal medulla. Glutamatergic somata were localized with in situ hybridization for VGLUT mRNA. In intact cords, all autonomic areas contained abundant VGLUT2-immunoreactive axons and synapses. CTB-immunoreactive SPN and PPN received many close appositions from VGLUT2-immunoreactive axons. VGLUT2-immunoreactive synapses occurred on Fluoro-Gold-labeled SPN. Somata with VGLUT2 mRNA occurred throughout the spinal gray matter. VGLUT2 immunoreactivity was not noticeably affected caudal to a transection. In contrast, in intact cords, VGLUT1-immunoreactive axons were sparse in the intermediolateral cell column (IML) and lumbosacral parasympathetic nucleus but moderately dense above the central canal. VGLUT1-immunoreactive close appositions were rare on SPN in the IML and the central autonomic area and on PPN. Transection reduced the density of VGLUT1-immunoreactive axons in sympathetic subnuclei but increased their density in the parasympathetic nucleus. Neuronal cell bodies with VGLUT1 mRNA occurred only in Clarke's column. These data indicate that SPN and PPN are densely innervated by VGLUT2-immunoreactive axons, some of which arise from spinal neurons. In contrast, the VGLUT1-immunoreactive innervation of spinal preganglionic neurons is sparse, and some may arise from supraspinal sources. Increased VGLUT1 immunoreactivity after transection may correlate with increased glutamatergic transmission to PPN. (c) 2007 Wiley-Liss, Inc.

  13. Enhanced total neurite outgrowth and secondary branching in dorsal root ganglion neurons elicited by low intensity pulsed ultrasound.

    PubMed

    Ventre, Daniel; Puzan, Marissa; Ashbolt, Emily; Koppes, Abigail

    2018-04-17

    Despite the prevalence of peripheral nerve injuries (PNI), challenges remain in restoring full functionality to those afflicted. For recovery to occur, axons must extend across the injury site to connect with distal targets, where injury gap size is a critical factor in the probability of restoration of function. Current clinical therapies often achieve limited neural regeneration, motivating the development of new therapeutic interventions such as biophysical stimulation. To investigate the potential for low intensity, pulsed ultrasonic simulation (LIPUS) to impact peripheral nerve regeneration, primary neonatal rat dorsal root ganglion neurons were examined in vitro in response to ultrasound (US). Dissociated neurons were stimulated with varied acoustic power (low, medium, high) and their morphometrics, including total outgrowth, branching, and length, were analyzed acutely after 18 h of growth. Results show US increases total neurite outgrowth by 2.83-fold compared to unstimulated controls at the highest power. Neurite branching at medium and high-power US increased approximately 2-fold compared to controls, while low stimulation exhibited more muted trends. Neurite branching is also impacted by US, with medium and high power eliciting the highest branching, of approximately 2-fold compared to low power and unstimulated controls. These results demonstrate that US stimulation of DRG neurons in vitro impacts neurite morphology and enhances total extension, indicating the potential for advancing and understanding driving mechanisms of ultrasonic therapies for peripheral nerve regeneration.

  14. Satellite glial cells in the trigeminal ganglion as a determinant of orofacial neuropathic pain

    PubMed Central

    VIT, JEAN-PHILIPPE; JASMIN, LUC; BHARGAVA, ADITI; OHARA, PETER T.

    2008-01-01

    Satellite glial cells (SGCs) tightly envelop the perikarya of primary sensory neurons in peripheral ganglion and are identified by their morphology and the presence of proteins not found in ganglion neurons. These SGC-unique proteins include the inwardly rectifying K+ channel Kir4.1, the connexin-43 (Cx43) subunit of gap junctions, the purinergic receptor P2Y4 and soluble guanylate cyclase. We also present evidence that the small-conductance Ca2+-activated K+ channel SK3 is present only in SGCs and that SGCs divide following nerve injury. All the above proteins are involved, either directly or indirectly, in potassium ion (K+) buffering and, thus, can influence the level of neuronal excitability, which, in turn, has been associated with neuropathic pain conditions. We used in vivo RNA interference to reduce the expression of Cx43 (present only in SGCs) in the rat trigeminal ganglion and show that this results in the development of spontaneous pain behavior. The pain behavior is present only when Cx43 is reduced and returns to normal when Cx43 concentrations are restored. This finding shows that perturbation of a single SGC-specific protein is sufficient to induce pain responses and demonstrates the importance of PNS glial cell activity in the pathophysiology of neuropathic pain. PMID:18568096

  15. Activity of Palythoa caribaeorum Venom on Voltage-Gated Ion Channels in Mammalian Superior Cervical Ganglion Neurons

    PubMed Central

    Lazcano-Pérez, Fernando; Castro, Héctor; Arenas, Isabel; García, David E.; González-Muñoz, Ricardo; Arreguín-Espinosa, Roberto

    2016-01-01

    The Zoanthids are an order of cnidarians whose venoms and toxins have been poorly studied. Palythoa caribaeorum is a zoanthid commonly found around the Mexican coastline. In this study, we tested the activity of P. caribaeorum venom on voltage-gated sodium channel (NaV1.7), voltage-gated calcium channel (CaV2.2), the A-type transient outward (IA) and delayed rectifier (IDR) currents of KV channels of the superior cervical ganglion (SCG) neurons of the rat. These results showed that the venom reversibly delays the inactivation process of voltage-gated sodium channels and inhibits voltage-gated calcium and potassium channels in this mammalian model. The compounds responsible for these effects seem to be low molecular weight peptides. Together, these results provide evidence for the potential use of zoanthids as a novel source of cnidarian toxins active on voltage-gated ion channels. PMID:27164140

  16. Taste Bud-Derived BDNF Is Required to Maintain Normal Amounts of Innervation to Adult Taste Buds.

    PubMed

    Meng, Lingbin; Ohman-Gault, Lisa; Ma, Liqun; Krimm, Robin F

    2015-01-01

    Gustatory neurons transmit chemical information from taste receptor cells, which reside in taste buds in the oral cavity, to the brain. As adult taste receptor cells are renewed at a constant rate, nerve fibers must reconnect with new taste receptor cells as they arise. Therefore, the maintenance of gustatory innervation to the taste bud is an active process. Understanding how this process is regulated is a fundamental concern of gustatory system biology. We speculated that because brain-derived neurotrophic factor (BDNF) is required for taste bud innervation during development, it might function to maintain innervation during adulthood. If so, taste buds should lose innervation when Bdnf is deleted in adult mice. To test this idea, we first removed Bdnf from all cells in adulthood using transgenic mice with inducible CreERT2 under the control of the Ubiquitin promoter. When Bdnf was removed, approximately one-half of the innervation to taste buds was lost, and taste buds became smaller because of the loss of taste bud cells. Individual taste buds varied in the amount of innervation each lost, and those that lost the most innervation also lost the most taste bud cells. We then tested the idea that that the taste bud was the source of this BDNF by reducing Bdnf levels specifically in the lingual epithelium and taste buds. Taste buds were confirmed as the source of BDNF regulating innervation. We conclude that BDNF expressed in taste receptor cells is required to maintain normal levels of innervation in adulthood.

  17. Foxp2 regulates neuronal differentiation and neuronal subtype specification.

    PubMed

    Chiu, Yi-Chi; Li, Ming-Yang; Liu, Yuan-Hsuan; Ding, Jing-Ya; Yu, Jenn-Yah; Wang, Tsu-Wei

    2014-07-01

    Mutations of the transcription factor FOXP2 in humans cause a severe speech and language disorder. Disruption of Foxp2 in songbirds or mice also leads to deficits in song learning or ultrasonic vocalization, respectively. These data suggest that Foxp2 plays important roles in the developing nervous system. However, the mechanism of Foxp2 in regulating neural development remains elusive. In the current study, we found that Foxp2 increased neuronal differentiation without affecting cell proliferation and cell survival in primary neural progenitors from embryonic forebrains. Foxp2 induced the expression of platelet-derived growth factor receptor α, which mediated the neurognic effect of Foxp2. In addition, Foxp2 positively regulated the differentiation of medium spiny neurons derived from the lateral ganglionic eminence and negatively regulated the formation of interneurons derived from dorsal medial ganglionic eminence by interacting with the Sonic hedgehog pathway. Taken together, our results suggest that Foxp2 regulates multiple aspects of neuronal development in the embryonic forebrain. © 2014 Wiley Periodicals, Inc.

  18. Impact of Morphometry, Myelinization and Synaptic Current Strength on Spike Conduction in Human and Cat Spiral Ganglion Neurons

    PubMed Central

    Rattay, Frank; Potrusil, Thomas; Wenger, Cornelia; Wise, Andrew K.; Glueckert, Rudolf; Schrott-Fischer, Anneliese

    2013-01-01

    Background Our knowledge about the neural code in the auditory nerve is based to a large extent on experiments on cats. Several anatomical differences between auditory neurons in human and cat are expected to lead to functional differences in speed and safety of spike conduction. Methodology/Principal Findings Confocal microscopy was used to systematically evaluate peripheral and central process diameters, commonness of myelination and morphology of spiral ganglion neurons (SGNs) along the cochlea of three human and three cats. Based on these morphometric data, model analysis reveales that spike conduction in SGNs is characterized by four phases: a postsynaptic delay, constant velocity in the peripheral process, a presomatic delay and constant velocity in the central process. The majority of SGNs are type I, connecting the inner hair cells with the brainstem. In contrast to those of humans, type I neurons of the cat are entirely myelinated. Biophysical model evaluation showed delayed and weak spikes in the human soma region as a consequence of a lack of myelin. The simulated spike conduction times are in accordance with normal interwave latencies from auditory brainstem response recordings from man and cat. Simulated 400 pA postsynaptic currents from inner hair cell ribbon synapses were 15 times above threshold. They enforced quick and synchronous spiking. Both of these properties were not present in type II cells as they receive fewer and much weaker (∼26 pA) synaptic stimuli. Conclusions/Significance Wasting synaptic energy boosts spike initiation, which guarantees the rapid transmission of temporal fine structure of auditory signals. However, a lack of myelin in the soma regions of human type I neurons causes a large delay in spike conduction in comparison with cat neurons. The absent myelin, in combination with a longer peripheral process, causes quantitative differences of temporal parameters in the electrically stimulated human cochlea compared to the cat

  19. Neurotoxicity of cytarabine (Ara-C) in dorsal root ganglion neurons originates from impediment of mtDNA synthesis and compromise of mitochondrial function.

    PubMed

    Zhuo, Ming; Gorgun, Murat F; Englander, Ella W

    2018-06-01

    Peripheral Nervous System (PNS) neurotoxicity caused by cancer drugs hinders attainment of chemotherapy goals. Due to leakiness of the blood nerve barrier, circulating chemotherapeutic drugs reach PNS neurons and adversely affect their function. Chemotherapeutic drugs are designed to target dividing cancer cells and mechanisms underlying their toxicity in postmitotic neurons remain to be fully clarified. The objective of this work was to elucidate progression of events triggered by antimitotic drugs in postmitotic neurons. For proof of mechanism study, we chose cytarabine (ara-C), an antimetabolite used in treatment of hematological cancers. Ara-C is a cytosine analog that terminates DNA synthesis. To investigate how ara-C affects postmitotic neurons, which replicate mitochondrial but not genomic DNA, we adapted a model of Dorsal Root Ganglion (DRG) neurons. We showed that DNA polymerase γ, which is responsible for mtDNA synthesis, is inhibited by ara-C and that sublethal ara-C exposure of DRG neurons leads to reduction in mtDNA content, ROS generation, oxidative mtDNA damage formation, compromised mitochondrial respiration and diminution of NADPH and GSH stores, as well as, activation of the DNA damage response. Hence, it is plausible that in ara-C exposed DRG neurons, ROS amplified by the high mitochondrial content shifts from physiologic to pathologic levels signaling stress to the nucleus. Combined, the findings suggest that ara-C neurotoxicity in DRG neurons originates in mitochondria and that continuous mtDNA synthesis and reliance on oxidative phosphorylation for energy needs sensitize the highly metabolic neurons to injury by mtDNA synthesis terminating cancer drugs. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Inhibitory Effects of Honokiol on the Voltage-Gated Potassium Channels in Freshly Isolated Mouse Dorsal Root Ganglion Neurons.

    PubMed

    Sheng, Anqi; Zhang, Yan; Li, Guang; Zhang, Guangqin

    2018-02-01

    Voltage-gated potassium (K V ) currents, subdivided into rapidly inactivating A-type currents (I A ) and slowly inactivating delayed rectifier currents (I K ), play a fundamental role in modulating pain by controlling neuronal excitability. The effects of Honokiol (Hon), a natural biphenolic compound derived from Magnolia officinalis, on K V currents were investigated in freshly isolated mouse dorsal root ganglion neurons using the whole-cell patch clamp technique. Results showed that Hon inhibited I A and I K in concentration-dependent manner. The IC 50 values for block of I A and I K were 30.5 and 25.7 µM, respectively. Hon (30 µM) shifted the steady-state activation curves of I A and I K to positive potentials by 17.6 and 16.7 mV, whereas inactivation and recovery from the inactivated state of I A were unaffected. These results suggest that Hon preferentially interacts with the active states of the I A and I K channels, and has no effect on the resting state and inactivated state of the I A channel. Blockade on K + channels by Hon may contribute to its antinociceptive effect, especially anti-inflammatory pain.

  1. Clustering is a feature of the spiral ganglion in the basal turn.

    PubMed

    Gacek, Richard R

    2012-01-01

    To demonstrate the organization of the spiral ganglion in the mammalian species. Temporal bone (TB) specimens from man (n = 2), monkey (n = 2), lion (n = 2) and cat (n = 20) were stained, decalcified and dissected according to the Sudan black B method of Rasmussen. These TB specimens were examined under a Zeiss operating microscope and photographed with a Canon 100 camera interfaced with the microscope. Spiral ganglion cells occurred in clusters within Rosenthal's canal in all four species. The location of the clusters was marked by the interface between axon and dendritic bundles as well as groups of ganglion cells. In monkey and man the clusters were more separated than in lion and cat. These observations indicate that the spiral ganglion forms clusters of neurons within Rosenthal's canal at the basal cochlear turn in the mammals investigated here. The formation of clusters may be related to the principles of neurogenesis. Copyright © 2011 S. Karger AG, Basel.

  2. Afferents to the Orexin Neurons of the Rat Brain

    PubMed Central

    YOSHIDA, KYOKO; McCORMACK, SARAH; ESPAÑA, RODRIGO A.; CROCKER, AMANDA; SCAMMELL, THOMAS E.

    2008-01-01

    Emotions, stress, hunger, and circadian rhythms all promote wakefulness and behavioral arousal. Little is known about the pathways mediating these influences, but the orexin-producing neurons of the hypothalamus may play an essential role. These cells heavily innervate many wake-promoting brain regions, and mice lacking the orexin neurons have narcolepsy and fail to rouse in response to hunger (Yamanaka et al. [2003] Neuron 38:701–713). To identify the afferents to the orexin neurons, we first injected a retrograde tracer into the orexin neuron field of rats. Retrogradely labeled neurons were abundant in the allocortex, claustrum, lateral septum, bed nucleus of the stria terminalis, and in many hypothalamic regions including the preoptic area, dorsomedial nucleus, lateral hypothalamus, and posterior hypothalamus. Retrograde labeling in the brainstem was generally more modest, but labeling was strong in the periaqueductal gray matter, dorsal raphe nucleus, and lateral parabrachial nucleus. Injection of an anterograde tracer confirmed that most of these regions directly innervate the orexin neurons, with some of the heaviest input coming from the lateral septum, preoptic area, and posterior hypothalamus. In addition, hypothalamic regions preferentially innervate orexin neurons in the medial and perifornical parts of the field, but most projections from the brainstem target the lateral part of the field. Inputs from the suprachiasmatic nucleus are mainly relayed via the subparaventricular zone and dorsomedial nucleus. These observations suggest that the orexin neurons may integrate a variety of interoceptive and homeostatic signals to increase behavioral arousal in response to hunger, stress, circadian signals, and autonomic challenges. PMID:16374809

  3. Spatio-temporal specialization of GABAergic septo-hippocampal neurons for rhythmic network activity.

    PubMed

    Unal, Gunes; Crump, Michael G; Viney, Tim J; Éltes, Tímea; Katona, Linda; Klausberger, Thomas; Somogyi, Peter

    2018-03-03

    Medial septal GABAergic neurons of the basal forebrain innervate the hippocampus and related cortical areas, contributing to the coordination of network activity, such as theta oscillations and sharp wave-ripple events, via a preferential innervation of GABAergic interneurons. Individual medial septal neurons display diverse activity patterns, which may be related to their termination in different cortical areas and/or to the different types of innervated interneurons. To test these hypotheses, we extracellularly recorded and juxtacellularly labeled single medial septal neurons in anesthetized rats in vivo during hippocampal theta and ripple oscillations, traced their axons to distant cortical target areas, and analyzed their postsynaptic interneurons. Medial septal GABAergic neurons exhibiting different hippocampal theta phase preferences and/or sharp wave-ripple related activity terminated in restricted hippocampal regions, and selectively targeted a limited number of interneuron types, as established on the basis of molecular markers. We demonstrate the preferential innervation of bistratified cells in CA1 and of basket cells in CA3 by individual axons. One group of septal neurons was suppressed during sharp wave-ripples, maintained their firing rate across theta and non-theta network states and mainly fired along the descending phase of CA1 theta oscillations. In contrast, neurons that were active during sharp wave-ripples increased their firing significantly during "theta" compared to "non-theta" states, with most firing during the ascending phase of theta oscillations. These results demonstrate that specialized septal GABAergic neurons contribute to the coordination of network activity through parallel, target area- and cell type-selective projections to the hippocampus.

  4. Neuromodulation targets intrinsic cardiac neurons to attenuate neuronally mediated atrial arrhythmias.

    PubMed

    Gibbons, David D; Southerland, E Marie; Hoover, Donald B; Beaumont, Eric; Armour, J Andrew; Ardell, Jeffrey L

    2012-02-01

    Our objective was to determine whether atrial fibrillation (AF) results from excessive activation of intrinsic cardiac neurons (ICNs) and, if so, whether select subpopulations of neurons therein represent therapeutic targets for suppression of this arrhythmogenic potential. Trains of five electrical stimuli (0.3-1.2 mA, 1 ms) were delivered during the atrial refractory period to mediastinal nerves (MSN) on the superior vena cava to evoke AF. Neuroanatomical studies were performed by injecting the neuronal tracer DiI into MSN sites that induced AF. Functional studies involved recording of neuronal activity in situ from the right atrial ganglionated plexus (RAGP) in response to MSN stimulation (MSNS) prior to and following neuromodulation involving either preemptive spinal cord stimulation (SCS; T(1)-T(3), 50 Hz, 200-ms duration) or ganglionic blockade (hexamethonium, 5 mg/kg). The tetramethylindocarbocyanine perchlorate (DiI) neuronal tracer labeled a subset (13.2%) of RAGP neurons, which also colocalized with cholinergic or adrenergic markers. A subset of DiI-labeled RAGP neurons were noncholinergic/nonadrenergic. MSNS evoked an ∼4-fold increase in RAGP neuronal activity from baseline, which SCS reduced by 43%. Hexamethonium blocked MSNS-evoked increases in neuronal activity. MSNS evoked AF in 78% of right-sided MSN sites, which SCS reduced to 33% and hexamethonium reduced to 7%. MSNS-induced bradycardia was maintained with SCS but was mitigated by hexamethonium. We conclude that MSNS activates subpopulations of intrinsic cardiac neurons, thereby resulting in the formation of atrial arrhythmias leading to atrial fibrillation. Stabilization of ICN local circuit neurons by SCS or the local circuit and autonomic efferent neurons with hexamethonium reduces the arrhythmogenic potential.

  5. Changes in morphology of retinal ganglion cells with eccentricity in retinal degeneration.

    PubMed

    Anderson, E E; Greferath, U; Fletcher, E L

    2016-05-01

    Ganglion cells are the output neurons of the retina and are known to remodel during the subtle plasticity changes that occur following the death of photoreceptors in inherited retinal degeneration. We examine the influence of retinal eccentricity on anatomical remodelling and ganglion cell morphology well after photoreceptor loss. Rd1 mice that have a mutation in the β subunit of phosphodiesterase 6 were used as a model of retinal degeneration and gross remodelling events were examined by processing serial sections for immunocytochemistry. Retinal wholemounts from rd1-Thy1 and control Thy1 mice that contained a fluorescent protein labelling a subset of ganglion cells were processed for immunohistochemistry at 11 months of age. Ganglion cells were classified based on their soma size, dendritic field size and dendritic branching pattern and their dendritic fields were analysed for their length, area and quantity of branching points. Overall, more remodelling was found in the central compared with the peripheral retina. In addition, the size and complexity of A2, B1, C1 and D type ganglion cells located in the central region of the retina decreased. We propose that the changes in ganglion cell morphology are correlated with remodelling events in these regions and impact the function of retinal circuitry in the degenerated retina.

  6. Elevated Levels of Calcitonin Gene-Related Peptide in Upper Spinal Cord Promotes Sensitization of Primary Trigeminal Nociceptive Neurons

    PubMed Central

    Cornelison, Lauren E.; Hawkins, Jordan L.; Durham, Paul L.

    2016-01-01

    Orofacial pain conditions including temporomandibular joint disorder and migraine are characterized by peripheral and central sensitization of trigeminal nociceptive neurons. Although calcitonin gene-related peptide (CGRP) is implicated in the development of central sensitization, the pathway by which elevated spinal cord CGRP levels promote peripheral sensitization of primary trigeminal nociceptive neurons is not well understood. The goal of this study was to investigate the role of CGRP in promoting bidirectional signaling within the trigeminal system to mediate sensitization of primary trigeminal ganglion nociceptive neurons. Adult male Sprague Dawley rats were injected in the upper spinal cord with CGRP or co-injected with the receptor antagonist CGRP8-37 or KT 5720, an inhibitor of protein kinase A (PKA). Nocifensive head withdrawal response to mechanical stimulation of trigeminal nerves was investigated using von Frey filaments. Expression of PKA, GFAP, and Iba1 in the spinal cord and P-ERK in the trigeminal ganglion was studied using immunohistochemistry. Some animals were co-injected intracisternally with CGRP and Fast Blue dye and trigeminal ganglion imaged using fluorescent microscopy. Intracisternal CGRP increased nocifensive responses to mechanical stimulation when compared to control levels. Co-injection of CGRP8-37 or KT 5720 with CGRP inhibited the nocifensive response. CGRP stimulated expression of PKA and GFAP in the spinal cord, and P-ERK in trigeminal ganglion neurons. Seven days post injection, Fast Blue was observed in trigeminal ganglion neurons and satellite glial cells. Our results demonstrate that elevated levels of CGRP in the upper spinal cord promote sensitization of primary trigeminal nociceptive neurons via a mechanism that involves activation of PKA centrally and P-ERK in trigeminal ganglion neurons. Our findings provide evidence of bidirectional signaling within the trigeminal system that can facilitate increased neuron

  7. Morphology and Neurochemistry of Rabbit Iris Innervation

    PubMed Central

    He, Jiucheng; Bazan, Haydee E.P.

    2016-01-01

    The aim of this study was to map the entire nerve architecture and sensory neuropeptide content of the rabbit iris. Irises from New Zealand rabbits were stained with antibodies against neuronal-class βIII-tubulin, calcitonin gene-related peptide (CGRP) and substance P (SP), and whole-mount images were acquired to build a two-dimensional view of the iridal nerve architecture. After taking images in time-lapse mode, we observed thick nerves running in the iris stroma close to the anterior epithelia, forming four to five stromal nerve rings from the iris periphery to the pupillary margin and sub-branches that connected with each other, constituting the stromal nerve plexus. In the anterior side, fine divisions derivated from the stromal nerves, forming a nerve network-like structure to innervate the superficial anterior border layer, with the pupillary margin having the densest innervation. In the posterior side, the nerve bundles ran along with the pupil dilator muscle in a radial pattern. The morphology of the iris nerves on both sides changed with pupil size. To obtain the relative content of the neuropeptides in the iris, the specimens were double stained with βIII-tubulin and CGRP or SP antibodies. Relative nerve fiber densities for each fiber population were assessed quantitatively by computer-assisted analysis. On the anterior side, CGRP-positive nerve fibers constituted about 61%, while SP-positive nerves constitute about 30.5%, of the total nerve content, which was expressed as βIII tubulin-positive fibers. In addition, in the anterior stroma of the collarette region, there were non-neuronal cells that were positive for SP. On the posterior side, CGRP-positive nerve fibers were about 69% of total nerve content, while SP constituted only up to 20%. Similarly, in the trigeminal ganglia (TG), the number of CGRP-positive neurons significantly outnumbered those that were positive for SP. Also, all the SP-positive neurons were labeled with CGRP. This is the

  8. The role of TRPV1 in different subtypes of dorsal root ganglion neurons in rat chronic inflammatory nociception induced by complete Freund's adjuvant

    PubMed Central

    Yu, Lu; Yang, Fei; Luo, Hao; Liu, Feng-Yu; Han, Ji-Sheng; Xing, Guo-Gang; Wan, You

    2008-01-01

    Background The present study aims to investigate the role of transient receptor potential vanilloid 1 (TRPV1) in dorsal root ganglion (DRG) neurons in chronic pain including thermal hyperalgesia and mechanical allodynia. Chronic inflammatory nociception of rats was produced by intraplantar injection of complete Freund's adjuvant (CFA) and data was collected until day 28 following injection. Results Thermal hyperalgesia was evident from day 1 to day 28 with peak at day 7, while mechanical allodynia persisted from day 1 to day 14 and was greatest at day 7. Intrathecal administration of AMG 9810 at day 7, a selective TRPV1 antagonist, significantly reduced thermal hyperalgesia and mechanical allodynia. TRPV1 expression in DRG detected by Western blotting was increased relative to baseline throughout the observation period. Double labeling of TRPV1 with neuronal marker neurofilament 200 (NF200), calcitonin gene-related peptide (CGRP) or isolectin B4 (IB4) was used to distinguish different subtypes of DRG neurons. TRPV1 expression was increased in the medium-sized myelinated A fiber (NF200 positive) neurons and in small non-peptidergic (IB4 positive) neurons from day 1 to day 14 and was increased in small peptidergic (CGRP positive) neurons from day 1 to day 28. Conclusion TRPV1 expression increases in all three types of DRG neurons after CFA injection and plays a role in CFA-induced chronic inflammatory pain including thermal hyperalgesia and mechanical allodynia. PMID:19055783

  9. Suprascapular Nerve Entrapment Caused by Protrusion of an Intraosseous Ganglion of the Glenoid into the Spinoglenoid Notch: A Rare Cause of Posterior Shoulder Pain

    PubMed Central

    Terabayashi, Nobuo; Nishimoto, Yutaka; Akiyama, Haruhiko

    2017-01-01

    We describe a case of suprascapular nerve entrapment caused by protrusion of an intraosseous ganglion of the glenoid into the spinoglenoid notch. A 47-year-old man with left shoulder pain developed an intraosseous cyst in the left glenoid, which came into contact with the suprascapular nerve. The area at which the patient experienced spontaneous shoulder pain was innervated by the suprascapular nerve, and 1% xylocaine injection into the spinoglenoid notch under ultrasonographic guidance relieved the pain. Therefore, we concluded that the protrusion of an intraosseous cyst of the glenoid into the spinoglenoid notch was a cause of the pain, and performed curettage. Consequently, the shoulder pain was resolved promptly without suprascapular nerve complications, and the cyst was histologically diagnosed as an intraosseous ganglion. This case demonstrated that the intraosseous ganglion of the glenoid was a benign lesion but could be a cause of suprascapular nerve entrapment syndrome. Curettage is a useful treatment option for a ganglion inside bone and very close to the suprascapular nerve. PMID:28620557

  10. Quantifying Spiral Ganglion Neurite and Schwann Behavior on Micropatterned Polymer Substrates.

    PubMed

    Cheng, Elise L; Leigh, Braden; Guymon, C Allan; Hansen, Marlan R

    2016-01-01

    The first successful in vitro experiments on the cochlea were conducted in 1928 by Honor Fell (Fell, Arch Exp Zellforsch 7(1):69-81, 1928). Since then, techniques for culture of this tissue have been refined, and dissociated primary culture of the spiral ganglion has become a widely accepted in vitro model for studying nerve damage and regeneration in the cochlea. Additionally, patterned substrates have been developed that facilitate and direct neural outgrowth. A number of automated and semi-automated methods for quantifying this neurite outgrowth have been utilized in recent years (Zhang et al., J Neurosci Methods 160(1):149-162, 2007; Tapias et al., Neurobiol Dis 54:158-168, 2013). Here, we describe a method to study the effect of topographical cues on spiral ganglion neurite and Schwann cell alignment. We discuss our microfabrication process, characterization of pattern features, cell culture techniques for both spiral ganglion neurons and spiral ganglion Schwann cells. In addition, we describe protocols for reducing fibroblast count, immunocytochemistry, and methods for quantifying neurite and Schwann cell alignment.

  11. Drug discovery for hearing loss: Phenotypic screening of chemical compounds on primary cultures of the spiral ganglion.

    PubMed

    Whitlon, Donna S

    2017-06-01

    In the United States there are, at present, no drugs that are specifically FDA approved to treat hearing loss. Although several clinical trials are ongoing, including one testing D-methionine that is supported by the US Army, none of these trials directly address the effect of noise exposure on cochlear spiral ganglion neurons. We recently published the first report of a systematic chemical compound screen using primary, mammalian spiral ganglion cultures in which we were able to detect a compound and others in its class that increased neurite elongation, a critical step in restoring cochlear synapses after noise induced hearing loss. Here we discuss the issues, both pro and con, that influenced the development of our approach. These considerations may be useful for future compound screens that target the same or other attributes of cochlear spiral ganglion neurons. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Taste Bud-Derived BDNF Is Required to Maintain Normal Amounts of Innervation to Adult Taste Buds123

    PubMed Central

    Meng, Lingbin; Ohman-Gault, Lisa; Ma, Liqun

    2015-01-01

    Abstract Gustatory neurons transmit chemical information from taste receptor cells, which reside in taste buds in the oral cavity, to the brain. As adult taste receptor cells are renewed at a constant rate, nerve fibers must reconnect with new taste receptor cells as they arise. Therefore, the maintenance of gustatory innervation to the taste bud is an active process. Understanding how this process is regulated is a fundamental concern of gustatory system biology. We speculated that because brain-derived neurotrophic factor (BDNF) is required for taste bud innervation during development, it might function to maintain innervation during adulthood. If so, taste buds should lose innervation when Bdnf is deleted in adult mice. To test this idea, we first removed Bdnf from all cells in adulthood using transgenic mice with inducible CreERT2 under the control of the Ubiquitin promoter. When Bdnf was removed, approximately one-half of the innervation to taste buds was lost, and taste buds became smaller because of the loss of taste bud cells. Individual taste buds varied in the amount of innervation each lost, and those that lost the most innervation also lost the most taste bud cells. We then tested the idea that that the taste bud was the source of this BDNF by reducing Bdnf levels specifically in the lingual epithelium and taste buds. Taste buds were confirmed as the source of BDNF regulating innervation. We conclude that BDNF expressed in taste receptor cells is required to maintain normal levels of innervation in adulthood. PMID:26730405

  13. Models of Inflammation: Carrageenan- or Complete Freund's Adjuvant (CFA)-Induced Edema and Hypersensitivity in the Rat.

    PubMed

    McCarson, Kenneth E

    2015-09-01

    Animal models of inflammation are used to assess the production of inflammatory mediators at sites of inflammation, the processing of pain sensation at CNS sites, the anti-inflammatory properties of agents such as nonsteroidal anti-inflammatory drugs (NSAIDs), and the efficacy of putative analgesic compounds in reversing cutaneous hypersensitivity. Detailed in this unit are methods to elicit and measure carrageenan- and complete Freund's adjuvant (CFA)-induced cutaneous inflammation. Due to possible differences between the dorsal root sensory system and the trigeminal sensory system, injections into either the footpad or vibrissal pad are described. In this manner, cutaneous inflammation can be assessed in tissue innervated by the lumbar dorsal root ganglion neurons (footpad) or by the trigeminal ganglion neurons (vibrissal pad). Copyright © 2015 John Wiley & Sons, Inc.

  14. Activation of Mechanosensitive Transient Receptor Potential/Piezo Channels in Odontoblasts Generates Action Potentials in Cocultured Isolectin B4-negative Medium-sized Trigeminal Ganglion Neurons.

    PubMed

    Sato, Masaki; Ogura, Kazuhiro; Kimura, Maki; Nishi, Koichi; Ando, Masayuki; Tazaki, Masakazu; Shibukawa, Yoshiyuki

    2018-06-01

    Various stimuli to the dentin surface elicit dentinal pain by inducing dentinal fluid movement causing cellular deformation in odontoblasts. Although odontoblasts detect deformation by the activation of mechanosensitive ionic channels, it is still unclear whether odontoblasts are capable of establishing neurotransmission with myelinated A delta (Aδ) neurons. Additionally, it is still unclear whether these neurons evoke action potentials by neurotransmitters from odontoblasts to mediate sensory transduction in dentin. Thus, we investigated evoked inward currents and evoked action potentials form trigeminal ganglion (TG) neurons after odontoblast mechanical stimulation. We used patch clamp recordings to identify electrophysiological properties and record evoked responses in TG neurons. We classified TG cells into small-sized and medium-sized neurons. In both types of neurons, we observed voltage-dependent inward currents. The currents from medium-sized neurons showed fast inactivation kinetics. When mechanical stimuli were applied to odontoblasts, evoked inward currents were recorded from medium-sized neurons. Antagonists for the ionotropic adenosine triphosphate receptor (P2X 3 ), transient receptor potential channel subfamilies, and Piezo1 channel significantly inhibited these inward currents. Mechanical stimulation to odontoblasts also generated action potentials in the isolectin B 4 -negative medium-sized neurons. Action potentials in these isolectin B 4 -negative medium-sized neurons showed a short duration. Overall, electrophysiological properties of neurons indicate that the TG neurons with recorded evoked responses after odontoblast mechanical stimulation were myelinated Aδ neurons. Odontoblasts established neurotransmission with myelinated Aδ neurons via P2X 3 receptor activation. The results also indicated that mechanosensitive TRP/Piezo1 channels were functionally expressed in odontoblasts. The activation of P2X 3 receptors induced an action potential

  15. Activation of oral trigeminal neurons by fatty acids is dependent upon intracellular calcium.

    PubMed

    Yu, Tian; Shah, Bhavik P; Hansen, Dane R; Park-York, MieJung; Gilbertson, Timothy A

    2012-08-01

    The chemoreception of dietary fat in the oral cavity has largely been attributed to activation of the somatosensory system that conveys the textural properties of fat. However, the ability of fatty acids, which are believed to represent the proximate stimulus for fat taste, to stimulate rat trigeminal neurons has remained unexplored. Here, we found that several free fatty acids are capable of activating trigeminal neurons with different kinetics. Further, a polyunsaturated fatty acid, linoleic acid (LA), activates trigeminal neurons by increasing intracellular calcium concentration and generating depolarizing receptor potentials. Ion substitution and pharmacological approaches reveal that intracellular calcium store depletion is crucial for LA-induced signaling in a subset of trigeminal neurons. Using pseudorabies virus (PrV) as a live cell tracer, we identified a subset of lingual nerve-innervated trigeminal neurons that respond to different subsets of fatty acids. Quantitative real-time PCR of several transient receptor potential channel markers in individual neurons validated that PrV labeled a subset but not the entire population of lingual-innervated trigeminal neurons. We further confirmed that the LA-induced intracellular calcium rise is exclusively coming from the release of calcium stores from the endoplasmic reticulum in this subset of lingual nerve-innervated trigeminal neurons.

  16. Activation of Oral Trigeminal Neurons by Fatty Acids is Dependent upon Intracellular Calcium

    PubMed Central

    Yu, Tian; Shah, Bhavik P.; Hansen, Dane R.; Park-York, MieJung; Gilbertson, Timothy A.

    2012-01-01

    The chemoreception of dietary fat in the oral cavity has largely been attributed to activation of the somatosensory system that conveys the textural properties of fat. However, the ability of fatty acids, which are believed to represent the proximate stimulus for fat taste, to stimulate rat trigeminal neurons has remained unexplored. Here, we found that several free fatty acids are capable of activating trigeminal neurons with different kinetics. Further, a polyunsaturated fatty acid, linoleic acid (LA), activates trigeminal neurons by increasing intracellular calcium concentration and generating depolarizing receptor potentials. Ion substitution and pharmacological approaches reveal that intracellular calcium store depletion is crucial for LA-induced signaling in a subset of trigeminal neurons. Using pseudorabies virus (PrV) as a live cell tracer, we identified a subset of lingual nerve-innervated trigeminal neurons that respond to different subsets of fatty acids. Quantitative real-time PCR of several transient receptor potential (TRP) channel markers in individual neurons validated that PrV labeled a subset but not the entire population of lingual-innervated trigeminal neurons. We further confirmed that the LA-induced intracellular calcium rise is exclusively coming from the release of calcium stores from the endoplasmic reticulum in this subset of lingual nerve-innervated trigeminal neurons. PMID:22644615

  17. Effects of nano red elemental selenium on sodium currents in rat dorsal root ganglion neurons.

    PubMed

    Yuan, Huijun; Lin, Jiarui; Lan, Tonghan

    2006-01-01

    Nano red elemental selenium (Nano-Se), was demonstrated to be useful in medical and scientific researches. Here, we investigated the effects of Nano-Se on sodium currents on rat dorsal root ganglion neurons (DRG), using the whole-cell patch clamp method. Nano-Se reversibly decrease the I(Na)(TTX-S) in a concentration-dependent, time-dependent and open-channel block manners without affecting I(Na)(TTX-R). It shifted the steady-state activation and inactivation curves for I(Na) to more negative potentials. In the research of recovery from inactivation, the recovery time constant is longer in the present of Nano-Se. Nano-Se had a weaker inhibitory effect on I(Na), compared with marked decrease caused by selenite which indicated that Nano-Se is less neurotoxic than selenite in short-term/large dose treatments and had similar bio availability to sodium selenite. The results of interaction between the effects of Nano-Se and selenite on sodium currents indicated a negative allosteric interaction between the selenite binding site and the Nano-Se binding site or that they have the same competitive binding site.

  18. The role of RIP3 mediated necroptosis in ouabain-induced spiral ganglion neurons injuries.

    PubMed

    Wang, Xi; Wang, Ye; Ding, Zhong-jia; Yue, Bo; Zhang, Peng-zhi; Chen, Xiao-dong; Chen, Xin; Chen, Jun; Chen, Fu-quan; Chen, Yang; Wang, Ren-feng; Mi, Wen-juan; Lin, Ying; Wang, Jie; Qiu, Jian-hua

    2014-08-22

    Spiral ganglion neuron (SGN) injury is a generally accepted precursor of auditory neuropathy. Receptor-interacting protein 3 (RIP3) has been reported as an important necroptosis pathway mediator that can be blocked by necrostatin-1 (Nec-1). In our study, we sought to identify whether necroptosis participated in SGN injury. Ouabain was applied to establish an SGN injury model. We measured the auditory brain-stem response (ABR) threshold shift as an indicator of the auditory conditions. Positive β3-tubulin immunofluorescence staining indicated the surviving SGNs. RIP3 expression was evaluated using immunofluorescence, quantitative real-time polymerase chain reaction and western blot. SGN injury promoted an increase in RIP3 expression that could be suppressed by application of the necroptosis inhibitor Nec-1. A decreased ABR threshold shift and increased SGN density were observed when Nec-1 was administered with apoptosis inhibitor N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (Z-VAD). These results demonstrated that necroptosis is an indispensable pathway separately from apoptosis leading to SGN death pathway, in which RIP3 plays an important role. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. Transection of Preganglionic Axons Leads to CNS Neuronal Plasticity Followed by Survival and Target Reinnervation

    PubMed Central

    Coulibaly, Aminata P.; Gannon, Sean M.; Hawk, Kiel; Walsh, Brian F.; Isaacson, Lori G.

    2013-01-01

    The goals of the present study were to investigate the changes in sympathetic preganglionic neurons following transection of distal axons in the cervical sympathetic trunk (CST) that innervate the superior cervical ganglion (SCG) and to assess changes in the protein expression of brain derived neurotrophic factor (BDNF) and its receptor TrkB in the thoracic spinal cord. . At 1 week, a significant decrease in soma volume and reduced soma expression of choline acetyltransferase (ChAT) in the intermediolateral cell column (IML) of T1 spinal cord were observed, with both ChAT-ir and non-immunoreactive neurons expressing the injury marker activating transcription factor 3. . These changes were transient, and at later time points, ChAT expression and soma volume returned to control values and the number of ATF3 neurons declined. No evidence for cell loss or neuronal apoptosis was detected at any time point. Protein levels of BDNF and/or full length TrkB in the spinal cord were increased throughout the survival period. In the SCG, both ChAT-ir axons and ChAT protein remained decreased at 16 weeks, but were increased compared to the 10 week time point. These results suggest that though IML neurons show reduced ChAT expression and cell volume at 1 week following CST transection, at later time points, the neurons recovered and exhibited no significant signs of neurodegeneration. The alterations in BDNF and/or TrkB may have contributed to the survival of the IML neurons and the recovery of ChAT expression, as well as to the reinnervation of the SCG. PMID:23891533

  20. Proneurotrophin-3 may induce Sortilin dependent death in inner ear neurons

    PubMed Central

    Tauris, Jacob; Gustafsen, Camilla; Christensen, Erik Ilsø; Jansen, Pernille; Nykjaer, Anders; Nyengaard, Jens R.; Teng, Kenneth K.; Schwarz, Elisabeth; Ovesen, Therese; Madsen, Peder; Petersen, Claus Munck

    2010-01-01

    The precursor of the neurotrophin NGF (proNGF) serves physiological functions distinct from its mature counterpart as it induces neuronal apoptosis through activation of a p75 neurotrophin receptor (p75NTR) and Sortilin death-signalling complex. The neurotrophins BDNF and NT3 provide essential trophic support to auditory neurons. Injury to the neurotrophin secreting cells in the inner ear is followed by irreversible degeneration of spiral ganglion neurons with consequences such as impaired hearing or deafness. Lack of mature neurotrophins may explain the degeneration of spiral ganglion neurons, but another mechanism is possible since unprocessed proNTs released from the injured cells may contribute to the degeneration by induction of apoptosis. Recent studies demonstrate that proBDNF, like proNGF, is a potent inducer of Sortilin:p75NTR mediated apoptosis. In addition, a coincident upregulation of proBDNF and p75NTR has been observed in degenerating spiral ganglion neurons, but the Sortilin expression in the inner ear is unresolved. Here we demonstrate that Sortilin and p75NTR are coexpressed in neurons of the neonatal inner ear. Furthermore, we establish that proNT3 exhibits high affinity binding to Sortilin and has the capacity to enhance cell surface Sortilin:p75NTR complex formation as well as to mediate apoptosis in neurons coexpressing p75NTR and Sortilin. Based on examination of wt and Sortilin deficient mouse embryos, Sortilin does not significantly influence the developmental selection of spiral ganglion neurons. However, our results suggest that proNT3 and proBDNF may play important roles in the response to noise-induced injuries or ototoxic damage via the Sortilin:p75NTR death-signalling complex. PMID:21261755

  1. Persistent Genital Hyperinnervation Following Progesterone Administration to Adolescent Female Rats1

    PubMed Central

    Liao, Zhaohui; Smith, Peter G.

    2014-01-01

    ABSTRACT Provoked vestibulodynia, a female pelvic pain syndrome affecting substantial numbers of women, is characterized by genital hypersensitivity and sensory hyperinnervation. Previous studies have shown that the risk of developing provoked vestibulodynia is markedly elevated following adolescent use of oral contraceptives with high progesterone content. We hypothesized that progesterone, a steroid hormone with known neurotropic properties, may alter genital innervation through direct or indirect actions. Female Sprague Dawley rats received progesterone (20 mg/kg subcutaneously) from Days 20–27; tissue was removed for analysis in some rats on Day 28, while others were ovariectomized on Day 43 and infused for 7 days with vehicle or 17beta estradiol. Progesterone resulted in overall increases in vaginal innervation at both Day 28 and 50 due to proliferation of peptidergic sensory and sympathetic (but not parasympathetic) axons. Estradiol reduced innervation in progesterone-treated and untreated groups. To assess the mechanisms of sensory hyperinnervation, we cultured dissociated dorsal root ganglion neurons and found that progesterone increases neurite outgrowth by small unmyelinated (but not myelinated) sensory neurons, it was receptor mediated, and it was nonadditive with NGF. Pretreatment of ganglion with progesterone also increased neurite outgrowth in response to vaginal target explants. However, pretreatment of vaginal target with progesterone did not improve outgrowth. We conclude that adolescent progesterone exposure may contribute to provoked vestibulodynia by eliciting persistent genital hyperinnervation via a direct effect on unmyelinated sensory nociceptor neurons and that estradiol, a well-documented therapeutic, may alleviate symptoms in part by reducing progesterone-induced sensory hyperinnervation. PMID:25359899

  2. Reliable, responsive pacemaking and pattern generation with minimal cell numbers: the crustacean cardiac ganglion.

    PubMed

    Cooke, Ian M

    2002-04-01

    Investigations of the electrophysiology of crustacean cardiac ganglia over the last half-century are reviewed for their contributions to elucidating the cellular mechanisms and interactions by which a small (as few as nine cells) neuronal network accomplishes extremely reliable, rhythmical, patterned activation of muscular activity-in this case, beating of the neurogenic heart. This ganglion is thus a model for pacemaking and central pattern generation. Favorable anatomy has permitted voltage- and space-clamp analyses of voltage-dependent ionic currents that endow each neuron with the intrinsic ability to respond with rhythmical, patterned impulse activity to nonpatterned stimulation. The crustacean soma and initial axon segment do not support impulse generation but integrate input from stretch-sensitive dendrites and electrotonic and chemically mediated synapses on axonal processes in neuropils. The soma and initial axon produce a depolarization-activated, calcium-mediated, sustained potential, the "driver potential," so-called because it drives a train of impulses at the "trigger zone" of the axon. Extreme reliability results from redundancy and the electrotonic coupling and synaptic interaction among all the neurons. Complex modulation by central nervous system inputs and by neurohormones to adjust heart pumping to physiological demands has long been demonstrated, but much remains to be learned about the cellular and molecular mechanisms of action. The continuing relevance of the crustacean cardiac ganglion as a relatively simple model for pacemaking and central pattern generation is confirmed by the rapidly widening documentation of intrinsic potentials such as plateau potentials in neurons of all major animal groups. The suite of ionic currents (a slowly inactivating calcium current and various potassium currents, with variations) observed for the crustacean cardiac ganglion have been implicated in or proven to underlie a majority of the intrinsic potentials

  3. Demethylation regulation of BDNF gene expression in dorsal root ganglion neurons is implicated in opioid-induced pain hypersensitivity in rats.

    PubMed

    Chao, Yu-Chieh; Xie, Fang; Li, Xueyang; Guo, Ruijuan; Yang, Ning; Zhang, Chen; Shi, Rong; Guan, Yun; Yue, Yun; Wang, Yun

    2016-07-01

    Repeated administration of morphine may result in opioid-induced hypersensitivity (OIH), which involves altered expression of numerous genes, including brain-derived neurotrophic factor (BDNF) in dorsal root ganglion (DRG) neurons. Yet, it remains unclear how BDNF expression is increased in DRG neurons after repeated morphine treatment. DNA methylation is an important mechanism of epigenetic control of gene expression. In the current study, we hypothesized that the demethylation regulation of certain BDNF gene promoters in DRG neurons may contribute to the development of OIH. Real-time RT-PCR was used to assess changes in the mRNA transcription levels of major BDNF exons including exon I, II, IV, VI, as well as total BDNF mRNA in DRGs from rats after repeated morphine administration. The levels of exon IV and total BDNF mRNA were significantly upregulated by repeated morphine administration, as compared to that in saline control group. Further, ELISA array and immunocytochemistry study revealed a robust upregulation of BDNF protein expression in DRG neurons after repeated morphine exposure. Correspondingly, the methylation levels of BDNF exon IV promoter showed a significant downregulation by morphine treatment. Importantly, intrathecal administration of a BDNF antibody, but not control IgG, significantly inhibited mechanical hypersensitivity that developed in rats after repeated morphine treatment. Conversely, intrathecal administration of an inhibitor of DNA methylation, 5-aza-2'-deoxycytidine (5-aza-dC) markedly upregulated the BDNF protein expression in DRG neurons and enhanced the mechanical allodynia after repeated morphine exposure. Together, our findings suggest that demethylation regulation of BDNF gene promoter may be implicated in the development of OIH through epigenetic control of BDNF expression in DRG neurons. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Identification of motor neurons and a mechanosensitive sensory neuron in the defecation circuitry of Drosophila larvae

    PubMed Central

    Zhang, Wei; Yan, Zhiqiang; Li, Bingxue; Jan, Lily Yeh; Jan, Yuh Nung

    2014-01-01

    Defecation allows the body to eliminate waste, an essential step in food processing for animal survival. In contrast to the extensive studies of feeding, its obligate counterpart, defecation, has received much less attention until recently. In this study, we report our characterizations of the defecation behavior of Drosophila larvae and its neural basis. Drosophila larvae display defecation cycles of stereotypic frequency, involving sequential contraction of hindgut and anal sphincter. The defecation behavior requires two groups of motor neurons that innervate hindgut and anal sphincter, respectively, and can excite gut muscles directly. These two groups of motor neurons fire sequentially with the same periodicity as the defecation behavior, as revealed by in vivo Ca2+ imaging. Moreover, we identified a single mechanosensitive sensory neuron that innervates the anal slit and senses the opening of the intestine terminus. This anus sensory neuron relies on the TRP channel NOMPC but not on INACTIVE, NANCHUNG, or PIEZO for mechanotransduction. DOI: http://dx.doi.org/10.7554/eLife.03293.001 PMID:25358089

  5. Characterization of Glutamatergic Neurons in the Rat Atrial Intrinsic Cardiac Ganglia that Project to the Cardiac Ventricular Wall

    PubMed Central

    Wang, Ting; Miller, Kenneth E.

    2016-01-01

    The intrinsic cardiac nervous system modulates cardiac function by acting as an integration site for regulating autonomic efferent cardiac output. This intrinsic system is proposed to be composed of a short cardio-cardiac feedback control loop within the cardiac innervation hierarchy. For example, electrophysiological studies have postulated the presence of sensory neurons in intrinsic cardiac ganglia for regional cardiac control. There is still a knowledge gap, however, about the anatomical location and neurochemical phenotype of sensory neurons inside intrinsic cardiac ganglia. In the present study, rat intrinsic cardiac ganglia neurons were characterized neurochemically with immunohistochemistry using glutamatergic markers: vesicular glutamate transporters 1 and 2 (VGLUT1; VGLUT2), and glutaminase (GLS), the enzyme essential for glutamate production. Glutamatergic neurons (VGLUT1/VGLUT2/GLS) in the ICG that have axons to the ventricles were identified by retrograde tracing of wheat germ agglutinin-horseradish peroxidase (WGA-HRP) injected in the ventricular wall. Co-labeling of VGLUT1, VGLUT2, and GLS with the vesicular acetylcholine transporter (VAChT) was used to evaluate the relationship between post-ganglionic autonomic neurons and glutamatergic neurons. Sequential labeling of VGLUT1 and VGLUT2 in adjacent tissue sections was used to evaluate the co-localization of VGLUT1 and VGLUT2 in ICG neurons. Our studies yielded the following results: (1) intrinsic cardiac ganglia contain glutamatergic neurons with GLS for glutamate production and VGLUT1 and 2 for transport of glutamate into synaptic vesicles; (2) atrial intrinsic cardiac ganglia contain neurons that project to ventricle walls and these neurons are glutamatergic; (3) many glutamatergic ICG neurons also were cholinergic, expressing VAChT. (4) VGLUT1 and VGLUT2 co-localization occurred in ICG neurons with variation of their protein expression level. Investigation of both glutamatergic and cholinergic ICG

  6. Characterization of glutamatergic neurons in the rat atrial intrinsic cardiac ganglia that project to the cardiac ventricular wall.

    PubMed

    Wang, Ting; Miller, Kenneth E

    2016-08-04

    The intrinsic cardiac nervous system modulates cardiac function by acting as an integration site for regulating autonomic efferent cardiac output. This intrinsic system is proposed to be composed of a short cardio-cardiac feedback control loop within the cardiac innervation hierarchy. For example, electrophysiological studies have postulated the presence of sensory neurons in intrinsic cardiac ganglia (ICG) for regional cardiac control. There is still a knowledge gap, however, about the anatomical location and neurochemical phenotype of sensory neurons inside ICG. In the present study, rat ICG neurons were characterized neurochemically with immunohistochemistry using glutamatergic markers: vesicular glutamate transporters 1 and 2 (VGLUT1; VGLUT2), and glutaminase (GLS), the enzyme essential for glutamate production. Glutamatergic neurons (VGLUT1/VGLUT2/GLS) in the ICG that have axons to the ventricles were identified by retrograde tracing of wheat germ agglutinin-horseradish peroxidase (WGA-HRP) injected in the ventricular wall. Co-labeling of VGLUT1, VGLUT2, and GLS with the vesicular acetylcholine transporter (VAChT) was used to evaluate the relationship between post-ganglionic autonomic neurons and glutamatergic neurons. Sequential labeling of VGLUT1 and VGLUT2 in adjacent tissue sections was used to evaluate the co-localization of VGLUT1 and VGLUT2 in ICG neurons. Our studies yielded the following results: (1) ICG contain glutamatergic neurons with GLS for glutamate production and VGLUT1 and 2 for transport of glutamate into synaptic vesicles; (2) atrial ICG contain neurons that project to ventricle walls and these neurons are glutamatergic; (3) many glutamatergic ICG neurons also were cholinergic, expressing VAChT; (4) VGLUT1 and VGLUT2 co-localization occurred in ICG neurons with variation of their protein expression level. Investigation of both glutamatergic and cholinergic ICG neurons could help in better understanding the function of the intrinsic cardiac

  7. Piezo2 senses airway stretch and mediates lung inflation-induced apnoea

    PubMed Central

    Nonomura, Keiko; Woo, Seung-Hyun; Chang, Rui B.; Gillich, Astrid; Qiu, Zhaozhu; Francisco, Allain G.; Ranade, Sanjeev S.; Liberles, Stephen D.; Patapoutian, Ardem

    2017-01-01

    Respiratory dysfunction is a notorious cause of perinatal mortality in infants and sleep apnoea in adults, but the mechanisms of respiratory control are not clearly understood. Mechanical signals transduced by airway-innervating sensory neurons control respiration; however, the physiological significance and molecular mechanisms of these signals remain obscured. Here we show that global and sensory neuron-specific ablation of the mechanically activated ion channel Piezo2 causes respiratory distress and death in newborn mice. Optogenetic activation of Piezo2+ vagal sensory neurons causes apnoea in adult mice. Moreover, induced ablation of Piezo2 in sensory neurons of adult mice causes decreased neuronal responses to lung inflation, an impaired Hering–Breuer mechanoreflex, and increased tidal volume under normal conditions. These phenotypes are reproduced in mice lacking Piezo2 in the nodose ganglion. Our data suggest that Piezo2 is an airway stretch sensor and that Piezo2-mediated mechanotransduction within various airway-innervating sensory neurons is critical for establishing efficient respiration at birth and maintaining normal breathing in adults. PMID:28002412

  8. Prospects for Replacement of Auditory Neurons by Stem Cells

    PubMed Central

    Shi, Fuxin; Edge, Albert S.B.

    2013-01-01

    Sensorineural hearing loss is caused by degeneration of hair cells or auditory neurons. Spiral ganglion cells, the primary afferent neurons of the auditory system, are patterned during development and send out projections to hair cells and to the brainstem under the control of largely unknown guidance molecules. The neurons do not regenerate after loss and even damage to their projections tends to be permanent. The genesis of spiral ganglion neurons and their synapses forms a basis for regenerative approaches. In this review we critically present the current experimental findings on auditory neuron replacement. We discuss the latest advances with a focus on (a) exogenous stem cell transplantation into the cochlea for neural replacement, (b) expression of local guidance signals in the cochlea after loss of auditory neurons, (c) the possibility of neural replacement from an endogenous cell source, and (d) functional changes from cell engraftment. PMID:23370457

  9. Dendritic space-filling requires a neuronal type-specific extracellular permissive signal in Drosophila.

    PubMed

    Poe, Amy R; Tang, Lingfeng; Wang, Bei; Li, Yun; Sapar, Maria L; Han, Chun

    2017-09-19

    Neurons sometimes completely fill available space in their receptive fields with evenly spaced dendrites to uniformly sample sensory or synaptic information. The mechanisms that enable neurons to sense and innervate all space in their target tissues are poorly understood. Using Drosophila somatosensory neurons as a model, we show that heparan sulfate proteoglycans (HSPGs) Dally and Syndecan on the surface of epidermal cells act as local permissive signals for the dendritic growth and maintenance of space-filling nociceptive C4da neurons, allowing them to innervate the entire skin. Using long-term time-lapse imaging with intact Drosophila larvae, we found that dendrites grow into HSPG-deficient areas but fail to stay there. HSPGs are necessary to stabilize microtubules in newly formed high-order dendrites. In contrast to C4da neurons, non-space-filling sensory neurons that develop in the same microenvironment do not rely on HSPGs for their dendritic growth. Furthermore, HSPGs do not act by transporting extracellular diffusible ligands or require leukocyte antigen-related (Lar), a receptor protein tyrosine phosphatase (RPTP) and the only known Drosophila HSPG receptor, for promoting dendritic growth of space-filling neurons. Interestingly, another RPTP, Ptp69D, promotes dendritic growth of C4da neurons in parallel to HSPGs. Together, our data reveal an HSPG-dependent pathway that specifically allows dendrites of space-filling neurons to innervate all target tissues in Drosophila .

  10. Vagal Sensory Innervation of the Gastric Sling Muscle and Antral Wall: Implications for GERD?

    PubMed Central

    Powley, Terry L.; Gilbert, Jared M.; Baronowsky, Elizabeth A.; Billingsley, Cherie N.; Martin, Felecia N.; Phillips, Robert J.

    2012-01-01

    Background The gastric sling muscle has not been investigated for possible sensory innervation, in spite of the key roles the structure plays in lower esophageal sphincter (LES) function and gastric physiology. Thus, the present experiment used tracing techniques to label vagal afferents and survey their projections in the lesser curvature. Methods Sprague Dawley rats received injections of dextran biotin into the nodose ganglia. Fourteen days post-injection, animals were euthanized and their stomachs were processed to visualize the vagal afferent innervation. In different cases, neurons, muscle cells, or interstitial cells of Cajal were counterstained. Key Results The sling muscle is innervated throughout its length by vagal afferent intramuscular arrays (IMAs) associated with interstitial cells of Cajal. In addition, the distal antral attachment site of the sling muscle is innervated by a novel vagal afferent terminal specialization, an antral web ending. The muscle wall of the distal antrum is also innervated by conventional IMAs and intraganglionic laminar endings (IGLEs), the two types of mechanoreceptors found throughout stomach smooth muscle. Conclusions & Inferences The innervation of sling muscle by IMAs, putative stretch receptors, suggests that sling sensory feedback may generate vago-vagal or other reflexes with vagal afferent limbs. The restricted distribution of afferent web endings near the antral attachments of sling fibers suggests the possibility of specialized mechanoreceptor functions linking antral and pyloric activity to the operation of the LES. Dysfunctional sling afferents could generate LES motor disturbances, or normative compensatory sensory feedback from the muscle could compromise therapies targeting only effectors. PMID:22925069

  11. Intracellular chloride regulation in amphibian dorsal root ganglion neurones studied with ion-selective microelectrodes.

    PubMed Central

    Alvarez-Leefmans, F J; Gamiño, S M; Giraldez, F; Noguerón, I

    1988-01-01

    1. Intracellular Cl- activity (aiCl) and membrane potential (Em) were measured in frog dorsal root ganglion neurones (DRG neurones) using double-barrelled Cl- -selective microelectrodes. In standard Ringer solution buffered with HEPES (5 mM), equilibrated with air or 100% O2, the resting membrane potential was -57.7 +/- 1.0 mV and aiCl was 23.6 +/- 1.0 mM (n = 53). The value of aiCl was 2.6 times the activity expected for an equilibrium distribution and the difference between Em and ECl was 25 mV. 2. Removal of external Cl- led to a reversible fall in aiCl. Initial rates of decay and recovery of aiCl were 4.1 and 3.3 mM min-1, respectively. During the recovery of aiCl following return to standard Ringer solution, most of the movement of Cl- occurred against the driving force for a passive distribution. Changes in aiCl were not associated with changes in Em. Chloride fluxes estimated from initial rates of change in aiCl when external Cl- was removed were too high to be accounted for by electrodiffusion. 3. The intracellular accumulation of Cl- was dependent on the extracellular Cl- activity (aoCl). The relationship between aiCl and aoCl had a sigmoidal shape with a half-maximal activation of about 50 mM-external Cl-. 4. The steady-state aiCl depended on the simultaneous presence of extracellular Na+ and K+. Similarly, the active reaccumulation of Cl- after intracellular Cl- depletion was abolished in the absence of either Na+ or K+ in the bathing solution. 5. The reaccumulation of Cl- was inhibited by furosemide (0.5-1 x 10(-3) M) or bumetanide (10(-5) M). The decrease in aiCl observed in Cl- -free solutions was also inhibited by bumetanide. 6. Cell volume changes were calculated from the observed changes in aiCl. Cells were estimated to shrink in Cl- -free solutions to about 75% their initial volume, at an initial rate of 6% min-1. 7. The present results provide direct evidence for the active accumulation of Cl- in DRG neurones. The mechanism of Cl- transport is

  12. Patterns of innervation of the lacrimal gland with clinical application.

    PubMed

    Scott, Gabriel; Balsiger, Heather; Kluckman, Matthew; Fan, Jerry; Gest, Thomas

    2014-11-01

    Parasympathetic stimulation of the lacrimal gland is responsible for tear production, and this innervation originates from fibers conveyed in the facial nerve. After synapse in the pterygopalatine ganglion, postsynaptic parasympathetic fibers travel within the zygomatic and zygomaticotemporal nerves (ZTN) into the orbit. As described in most anatomy texts, ZTN communicates with the lacrimal nerve (LN) posterior to the gland and then secretomotor fibers enter the gland. This study was performed to gain a better understanding of the innervation of the lacrimal gland. Seventeen cadaver heads were bisected for a total of 34 sides, which then underwent dissection of the superolateral orbital region to observe the course for the LN and ZTN. Three variations of the course of the LN and ZTN were found. In 20 (60.6%) dissections it was documented that the ZTN entered directly into the lacrimal gland with no communication with the LN. In 12 (36.4%) of the bisected heads, ZTN had both a direct connection into the gland and a communicating branch with the LN. In only one (3.0%) bisected head, ZTN communicated with the LN before entering the gland as it is commonly described in anatomy texts. Our study reveals that the ZTN usually takes a different course than is classically described in most anatomy textbooks. A greater understanding of the typical course these nerves take may help surgeons identify them more easily and avoid damaging them. © 2014 Wiley Periodicals, Inc.

  13. Sensory innervation of the dorsal longitudinal ligament and the meninges in the lumbar spine of the dog.

    PubMed

    Waber-Wenger, Barbara; Forterre, Franck; Kuehni-Boghenbor, Kathrin; Danuser, Renzo; Stein, Jens Volker; Stoffel, Michael Hubert

    2014-10-01

    Although intervertebral disc herniation is a well-known disease in dogs, pain management for this condition has remained a challenge. The goal of the present study is to address the lack of information regarding the innervation of anatomical structures within the canine vertebral canal. Immunolabeling was performed with antibodies against protein gene product 9.5, Tuj-1 (neuron-specific class III β-tubulin), calcitonin gene-related peptide, and neuropeptide Y in combination with the lectin from Lycopersicon esculentum as a marker for blood vessels. Staining was indicative of both sensory and sympathetic fibers. Innervation density was the highest in lateral areas, intermediate in dorsal areas, and the lowest in ventral areas. In the dorsal longitudinal ligament (DLL), the highest innervation density was observed in the lateral regions. Innervation was lower at mid-vertebral levels than at intervertebral levels. The presence of sensory and sympathetic fibers in the canine dura and DLL suggests that pain may originate from both these structures. Due to these regional differences in sensory innervation patterns, trauma to intervertebral DLL and lateral dura is expected to be particularly painful. The results ought to provide a better basis for the assessment of medicinal and surgical procedures.

  14. Involvement of transient receptor potential vanilloid 2 in intra-oral incisional pain.

    PubMed

    Urata, K; Shinoda, M; Ikutame, D; Iinuma, T; Iwata, K

    2018-03-05

    To examine whether transient receptor potential vanilloid 2 (TRPV2) contributes to the changes in intra-oral thermal and mechanical sensitivity following the incision of buccal mucosa. Buccal mucosal pain threshold was measured after the incision. Changes in the number of TRPV2-immunoreactive (IR) trigeminal ganglion (TG) neurons which innervate the whisker pad skin and buccal mucosa, changes in the number of isolectin B4-negative/isolectin B4-positive TRPV2-IR TG neurons which innervate the whisker pad skin and the buccal mucosa, and the effect of peripheral TRPV2 antagonism on the pain threshold of incisional whisker pad skin and buccal mucosa were examined after these injuries. Buccal mucosal pain hypersensitivities were induced on day 3 following the incision. The total number of TRPV2-IR TG neurons and the number of isolectin B4-negative TRPV2-IR TG neurons which innervate the whisker pad skin and buccal mucosa were increased. Buccal mucosal TRPV2 antagonism completely suppressed the heat and mechanical hypersensitivities, but not cold hypersensitivity. TRPV2 antagonist administration to the incisional whisker pad skin only partially suppressed pain hypersensitivities. The increased expression of TRPV2 in peptidergic TG neurons innervating the incisional buccal mucosa is predominantly involved in buccal mucosal heat hyperalgesia and mechanical allodynia following buccal mucosal incision. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. All rights reserved.

  15. Features and functions of nonlinear spatial integration by retinal ganglion cells.

    PubMed

    Gollisch, Tim

    2013-11-01

    Ganglion cells in the vertebrate retina integrate visual information over their receptive fields. They do so by pooling presynaptic excitatory inputs from typically many bipolar cells, which themselves collect inputs from several photoreceptors. In addition, inhibitory interactions mediated by horizontal cells and amacrine cells modulate the structure of the receptive field. In many models, this spatial integration is assumed to occur in a linear fashion. Yet, it has long been known that spatial integration by retinal ganglion cells also incurs nonlinear phenomena. Moreover, several recent examples have shown that nonlinear spatial integration is tightly connected to specific visual functions performed by different types of retinal ganglion cells. This work discusses these advances in understanding the role of nonlinear spatial integration and reviews recent efforts to quantitatively study the nature and mechanisms underlying spatial nonlinearities. These new insights point towards a critical role of nonlinearities within ganglion cell receptive fields for capturing responses of the cells to natural and behaviorally relevant visual stimuli. In the long run, nonlinear phenomena of spatial integration may also prove important for implementing the actual neural code of retinal neurons when designing visual prostheses for the eye. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Insulin-like growth factor-1 prevents dorsal root ganglion neuronal tyrosine kinase receptor expression alterations induced by dideoxycytidine in vitro.

    PubMed

    Liu, Huaxiang; Lu, Jing; He, Yong; Yuan, Bin; Li, Yizhao; Li, Xingfu

    2014-03-01

    Dideoxycytidine (zalcitabine, ddC) produces neurotoxic effects. It is particularly important to understand the toxic effects of ddC on different subpopulations of dorsal root ganglion (DRG) neurons which express distinct tyrosine kinase receptor (Trk) and to find therapeutic factors for prevention and therapy for ddC-induced peripheral sensory neuropathy. Insulin-like growth factor-1 (IGF-1) has been shown to have neurotrophic effects on DRG sensory neurons. However, little is known about the effects of ddC on distinct Trk (TrkA, TrkB, and TrkC) expression in DRG neurons and the neuroprotective effects of IGF-1 on ddC-induced neurotoxicity. Here, we have tested the extent to which the expression of TrkA, TrkB, and TrkC receptors in primary cultured DRG neurons is affected by ddC in the presence or absence of IGF-1. In this experiment, we found that exposure of 5, 25, and 50 μmol/L ddC caused a dose-dependent decrease of the mRNA, protein, and the proportion of TrkA-, TrkB-, and TrkC-expressing neurons. IGF-1 (20 nmol/L) could partially reverse the decrease of TrkA and TrkB, but not TrkC, expression with ddC exposure. The phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 (10 μmol/L) blocked the effects of IGF-1. These results suggested that the subpopulations of DRG neurons which express distinct TrkA, TrkB, and TrkC receptors were affected by ddC exposure. IGF-1 might relieve the ddC-induced toxicity of TrkA- and TrkB-, but not TrkC-expressing DRG neurons. These data offer new clues for a better understanding of the association of ddC with distinct Trk receptor expression and provide new evidence of the potential therapeutic role of IGF-1 on ddC-induced neurotoxicity.

  17. Regulate axon branching by the cyclic GMP pathway via inhibition of glycogen synthase kinase 3 in dorsal root ganglion sensory neurons.

    PubMed

    Zhao, Zhen; Wang, Zheng; Gu, Ying; Feil, Robert; Hofmann, Franz; Ma, Le

    2009-02-04

    Cyclic GMP has been proposed to regulate axonal development, but the molecular and cellular mechanisms underlying the formation of axon branches are not well understood. Here, we report the use of rodent embryonic sensory neurons from the dorsal root ganglion (DRG) to demonstrate the role of cGMP signaling in axon branching and to identify the downstream molecular pathway mediating this novel regulation. Pharmacologically, a specific cGMP analog promotes DRG axon branching in culture, and this activity can be achieved by activating the endogenous soluble guanylyl cyclase that produces cGMP. At the molecular level, the cGMP-dependent protein kinase 1 (PrkG1) mediates this activity, as DRG neurons isolated from the kinase-deficient mouse fail to respond to cGMP activation to make branches, whereas overexpression of a PrkG1 mutant with a higher-than-normal basal kinase activity is sufficient to induce branching. In addition, cGMP activation in DRG neurons leads to phosphorylation of glycogen synthase kinase 3 (GSK3), a protein that normally suppresses branching. This interaction is direct, because PrkG1 binds GSK3 in heterologous cells and the purified kinase can phosphorylate GSK3 in vitro. More importantly, overexpression of a dominant active form of GSK3 suppresses cGMP-dependent branching in DRG neurons. Thus, our study establishes an intrinsic signaling cascade that links cGMP activation to GSK3 inhibition in controlling axon branching during sensory axon development.

  18. [Change in trigeminal mesencephalic neurons after teeth extraction in guinea pig].

    PubMed

    Kimoto, A

    1993-03-01

    Trigeminal mesencephalic (Mes V) neurons innervating the periodontal mechanoreceptor (PMR) are known to play an important role in controlling the bite force and jaw-movements during mastication. After teeth loss, the PMR disappears due to loss of the periodontal membrane. The present work is a study on whether cell death is induced in the Mes V neurons in association with teeth loss. The upper and lower incisors were extracted on the right side in 5 guinea pigs (extraction group) and the other 5 guinea pigs were kept intact (control group). In the extraction group, the animals were kept alive for 58-119 days after teeth extraction. Serial coronal sections (50 microns thick) were made of the midbrain and pons and stained with cresyl violet. The Mes V neurons were counted on every other section. In the caudal half of the Mes V nucleus, where the neurons innervating the PMR are reported to be located, the number of neurons was less on the right side than on the left side (P < 0.01) in the extraction group, while there was no difference between the right and left sides in the control group. We conclude that teeth extraction can induce cell death in the Mes V neurons innervating the PMR and produce a significant change in the brainstem mechanisms controlling mastication.

  19. The Changing Roles of Neurons in the Cortical Subplate

    PubMed Central

    Friedlander, Michael J.; Torres-Reveron, Juan

    2009-01-01

    Neurons may serve different functions over the course of an organism's life. Recent evidence suggests that cortical subplate (SP) neurons including those that reside in the white matter may perform longitudinal multi-tasking at different stages of development. These cells play a key role in early cortical development in coordinating thalamocortical reciprocal innervation. At later stages of development, they become integrated within the cortical microcircuitry. This type of longitudinal multi-tasking can enhance the capacity for information processing by populations of cells serving different functions over the lifespan. Subplate cells are initially derived when cells from the ventricular zone underlying the cortex migrate to the cortical preplate that is subsequently split by the differentiating neurons of the cortical plate with some neurons locating in the marginal zone and others settling below in the SP. While the cortical plate neurons form most of the cortical layers (layers 2–6), the marginal zone neurons form layer 1 and the SP neurons become interstitial cells of the white matter as well as forming a compact sublayer along the bottom of layer 6. After serving as transient innervation targets for thalamocortical axons, most of these cells die and layer 4 neurons become innervated by thalamic axons. However, 10–20% survives, remaining into adulthood along the bottom of layer 6 and as a scattered population of interstitial neurons in the white matter. Surviving SP cells' axons project throughout the overlying laminae, reaching layer 1 and issuing axon collaterals within white matter and in lower layer 6. This suggests that they participate in local synaptic networks, as well. Moreover, they receive excitatory and inhibitory synaptic inputs, potentially monitoring outputs from axon collaterals of cortical efferents, from cortical afferents and/or from each other. We explore our understanding of the functional connectivity of these cells at different

  20. Digital Museum of Retinal Ganglion Cells with Dense Anatomy and Physiology.

    PubMed

    Bae, J Alexander; Mu, Shang; Kim, Jinseop S; Turner, Nicholas L; Tartavull, Ignacio; Kemnitz, Nico; Jordan, Chris S; Norton, Alex D; Silversmith, William M; Prentki, Rachel; Sorek, Marissa; David, Celia; Jones, Devon L; Bland, Doug; Sterling, Amy L R; Park, Jungman; Briggman, Kevin L; Seung, H Sebastian

    2018-05-17

    When 3D electron microscopy and calcium imaging are used to investigate the structure and function of neural circuits, the resulting datasets pose new challenges of visualization and interpretation. Here, we present a new kind of digital resource that encompasses almost 400 ganglion cells from a single patch of mouse retina. An online "museum" provides a 3D interactive view of each cell's anatomy, as well as graphs of its visual responses. The resource reveals two aspects of the retina's inner plexiform layer: an arbor segregation principle governing structure along the light axis and a density conservation principle governing structure in the tangential plane. Structure is related to visual function; ganglion cells with arbors near the layer of ganglion cell somas are more sustained in their visual responses on average. Our methods are potentially applicable to dense maps of neuronal anatomy and physiology in other parts of the nervous system. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Morphology and neurochemistry of rabbit iris innervation.

    PubMed

    He, Jiucheng; Bazan, Haydee E P

    2015-06-01

    The aim of this study was to map the entire nerve architecture and sensory neuropeptide content of the rabbit iris. Irises from New Zealand rabbits were stained with antibodies against neuronal-class βIII-tubulin, calcitonin gene-related peptide (CGRP) and substance P (SP), and whole-mount images were acquired to build a two-dimensional view of the iridal nerve architecture. After taking images in time-lapse mode, we observed thick nerves running in the iris stroma close to the anterior epithelia, forming four to five stromal nerve rings from the iris periphery to the pupillary margin and sub-branches that connected with each other, constituting the stromal nerve plexus. In the anterior side, fine divisions derivated from the stromal nerves, forming a nerve network-like structure to innervate the superficial anterior border layer, with the pupillary margin having the densest innervation. In the posterior side, the nerve bundles ran along with the pupil dilator muscle in a radial pattern. The morphology of the iris nerves on both sides changed with pupil size. To obtain the relative content of the neuropeptides in the iris, the specimens were double stained with βIII-tubulin and CGRP or SP antibodies. Relative nerve fiber densities for each fiber population were assessed quantitatively by computer-assisted analysis. On the anterior side, CGRP-positive nerve fibers constituted about 61%, while SP-positive nerves constitute about 30.5%, of the total nerve content, which was expressed as βIII tubulin-positive fibers. In addition, in the anterior stroma of the collarette region, there were non-neuronal cells that were positive for SP. On the posterior side, CGRP-positive nerve fibers were about 69% of total nerve content, while SP constituted only up to 20%. Similarly, in the trigeminal ganglia (TG), the number of CGRP-positive neurons significantly outnumbered those that were positive for SP. Also, all the SP-positive neurons were labeled with CGRP. This is the

  2. Directional selectivity of afferent neurons in zebrafish neuromasts is regulated by Emx2 in presynaptic hair cells

    PubMed Central

    Ji, Young Rae; Warrier, Sunita; Jiang, Tao

    2018-01-01

    The orientation of hair bundles on top of sensory hair cells (HCs) in neuromasts of the lateral line system allows fish to detect direction of water flow. Each neuromast shows hair bundles arranged in two opposing directions and each afferent neuron innervates only HCs of the same orientation. Previously, we showed that this opposition is established by expression of Emx2 in half of the HCs, where it mediates hair bundle reversal (Jiang et al., 2017). Here, we show that Emx2 also regulates neuronal selection: afferent neurons innervate either Emx2-positive or negative HCs. In emx2 knockout and gain-of-function neuromasts, all HCs are unidirectional and the innervation patterns and physiological responses of the afferent neurons are dependent on the presence or absence of Emx2. Our results indicate that Emx2 mediates the directional selectivity of neuromasts by two distinct processes: regulating hair bundle orientation in HCs and selecting afferent neuronal targets. PMID:29671737

  3. A high-threshold heat-activated channel in cultured rat dorsal root ganglion neurons resembles TRPV2 and is blocked by gadolinium.

    PubMed

    Leffler, Andreas; Linte, Ramona Madalina; Nau, Carla; Reeh, Peter; Babes, Alexandru

    2007-07-01

    Heat-activated ion channels from the vanilloid-type TRP group (TRPV1-4) seem to be central for heat-sensitivity of nociceptive sensory neurons. Displaying a high-threshold (> 52 degrees C) for activation, TRPV2 was proposed to act as a sensor for intense noxious heat in mammalian sensory neurons. However, although TRPV2 is expressed in a distinct population of thinly myelinated primary afferents, a widespread expression in a variety of neuronal and non-neuronal tissues suggests a more diverse physiological role of TRPV2. In its role as a heat-sensor, TRPV2 has not been thoroughly characterized in terms of biophysical and pharmacological properties. In the present study, we demonstrate that the features of heterologously expressed rat TRPV2 closely resemble those of high-threshold heat-evoked currents in medium- and large-sized capsaicin-insensitive rat dorsal root ganglion (DRG) neurons. Both in TRPV2-expressing human embryonic kidney (HEK)293t cells and in DRGs, high-threshold heat-currents were sensitized by repeated activation and by the TRPV1-3 agonist, 2-aminoethoxydiphenyl borate (2-APB). In addition to a previously described block by ruthenium red, we identified the trivalent cations, lanthanum (La(3+)) and gadolinium (Gd(3+)) as potent blockers of TRPV2. Thus, we present a new pharmacological tool to distinguish between heat responses of TRPV2 and the closely related capsaicin-receptor, TRPV1, which is strongly sensitized by trivalent cations. We demonstrate that self-sensitization of heat-evoked currents through TRPV2 does not require extracellular calcium and that TRPV2 can be activated in cell-free membrane patches in the outside-out configuration. Taken together our results provide new evidence for a role of TRPV2 in mediating high-threshold heat responses in a subpopulation of mammalian sensory neurons.

  4. Glucocorticoid receptor gene inactivation in dopamine-innervated areas selectively decreases behavioral responses to amphetamine

    PubMed Central

    Parnaudeau, Sébastien; Dongelmans, Marie-louise; Turiault, Marc; Ambroggi, Frédéric; Delbes, Anne-Sophie; Cansell, Céline; Luquet, Serge; Piazza, Pier-Vincenzo; Tronche, François; Barik, Jacques

    2014-01-01

    The meso-cortico-limbic system, via dopamine release, encodes the rewarding and reinforcing properties of natural rewards. It is also activated in response to abused substances and is believed to support drug-related behaviors. Dysfunctions of this system lead to several psychiatric conditions including feeding disorders and drug addiction. These disorders are also largely influenced by environmental factors and in particular stress exposure. Stressors activate the corticotrope axis ultimately leading to glucocorticoid hormone (GCs) release. GCs bind the glucocorticoid receptor (GR) a transcription factor ubiquitously expressed including within the meso-cortico-limbic tract. While GR within dopamine-innervated areas drives cocaine's behavioral responses, its implication in responses to other psychostimulants such as amphetamine has never been clearly established. Moreover, while extensive work has been made to uncover the role of this receptor in addicted behaviors, its contribution to the rewarding and reinforcing properties of food has yet to be investigated. Using mouse models carrying GR gene inactivation in either dopamine neurons or in dopamine-innervated areas, we found that GR in dopamine responsive neurons is essential to properly build amphetamine-induced conditioned place preference and locomotor sensitization. c-Fos quantification in the nucleus accumbens further confirmed defective neuronal activation following amphetamine injection. These diminished neuronal and behavioral responses to amphetamine may involve alterations in glutamate transmission as suggested by the decreased MK801-elicited hyperlocomotion and by the hyporeactivity to glutamate of a subpopulation of medium spiny neurons. In contrast, GR inactivation did not affect rewarding and reinforcing properties of food suggesting that responding for natural reward under basal conditions is preserved in these mice. PMID:24574986

  5. Auditory hair cell innervational patterns in lizards.

    PubMed

    Miller, M R; Beck, J

    1988-05-22

    The pattern of afferent and efferent innervation of two to four unidirectional (UHC) and two to nine bidirectional (BHC) hair cells of five different types of lizard auditory papillae was determined by reconstruction of serial TEM sections. The species studies were Crotaphytus wislizeni (iguanid), Podarcis (Lacerta) sicula and P. muralis (lacertids), Ameiva ameiva (teiid), Coleonyx variegatus (gekkonid), and Mabuya multifasciata (scincid). The main object was to determine in which species and in which hair cell types the nerve fibers were innervating only one (exclusive innervation), or two or more hair cells (nonexclusive innervation); how many nerve fibers were supplying each hair cell; how many synapses were made by the innervating fibers; and the total number of synapses on each hair cell. In the species studies, efferent innervation was limited to the UHC, and except for the iguanid, C. wislizeni, it was nonexclusive, each fiber supplying two or more hair cells. Afferent innervation varied both with the species and the hair cell types. In Crotaphytus, both the UHC and the BHC were exclusively innervated. In Podarcis and Ameiva, the UHC were innervated exclusively by some fibers but nonexclusively by others (mixed pattern). In Coleonyx, the UHC were exclusively innervated but the BHC were nonexclusively innervated. In Mabuya, both the UHC and BHC were nonexclusively innervated. The number of afferent nerve fibers and the number of afferent synapses were always larger in the UHC than in the BHC. In Ameiva, Podarcis, and Mabuya, groups of bidirectionally oriented hair cells occur in regions of cytologically distinct UHC, and in Ameiva, unidirectionally oriented hair cells occur in cytologically distinct BHC regions.

  6. Segregated cholinergic transmission modulates dopamine neurons integrated in distinct functional circuits.

    PubMed

    Dautan, Daniel; Souza, Albert S; Huerta-Ocampo, Icnelia; Valencia, Miguel; Assous, Maxime; Witten, Ilana B; Deisseroth, Karl; Tepper, James M; Bolam, J Paul; Gerdjikov, Todor V; Mena-Segovia, Juan

    2016-08-01

    Dopamine neurons in the ventral tegmental area (VTA) receive cholinergic innervation from brainstem structures that are associated with either movement or reward. Whereas cholinergic neurons of the pedunculopontine nucleus (PPN) carry an associative/motor signal, those of the laterodorsal tegmental nucleus (LDT) convey limbic information. We used optogenetics and in vivo juxtacellular recording and labeling to examine the influence of brainstem cholinergic innervation of distinct neuronal subpopulations in the VTA. We found that LDT cholinergic axons selectively enhanced the bursting activity of mesolimbic dopamine neurons that were excited by aversive stimulation. In contrast, PPN cholinergic axons activated and changed the discharge properties of VTA neurons that were integrated in distinct functional circuits and were inhibited by aversive stimulation. Although both structures conveyed a reinforcing signal, they had opposite roles in locomotion. Our results demonstrate that two modes of cholinergic transmission operate in the VTA and segregate the neurons involved in different reward circuits.

  7. Localization of multiple neurotransmitters in surgically derived specimens of human atrial ganglia.

    PubMed

    Hoover, D B; Isaacs, E R; Jacques, F; Hoard, J L; Pagé, P; Armour, J A

    2009-12-15

    Dysfunction of the intrinsic cardiac nervous system is implicated in the genesis of atrial and ventricular arrhythmias. While this system has been studied extensively in animal models, far less is known about the intrinsic cardiac nervous system of humans. This study was initiated to anatomically identify neurotransmitters associated with the right atrial ganglionated plexus (RAGP) of the human heart. Biopsies of epicardial fat containing a portion of the RAGP were collected from eight patients during cardiothoracic surgery and processed for immunofluorescent detection of specific neuronal markers. Colocalization of markers was evaluated by confocal microscopy. Most intrinsic cardiac neuronal somata displayed immunoreactivity for the cholinergic marker choline acetyltransferase and the nitrergic marker neuronal nitric oxide synthase. A subpopulation of intrinsic cardiac neurons also stained for noradrenergic markers. While most intrinsic cardiac neurons received cholinergic innervation evident as punctate immunostaining for the high affinity choline transporter, some lacked cholinergic inputs. Moreover, peptidergic, nitrergic, and noradrenergic nerves provided substantial innervation of intrinsic cardiac ganglia. These findings demonstrate that the human RAGP has a complex neurochemical anatomy, which includes the presence of a dual cholinergic/nitrergic phenotype for most of its neurons, the presence of noradrenergic markers in a subpopulation of neurons, and innervation by a host of neurochemically distinct nerves. The putative role of multiple neurotransmitters in controlling intrinsic cardiac neurons and mediating efferent signaling to the heart indicates the possibility of novel therapeutic targets for arrhythmia prevention.

  8. Increased expression of CaV3.2 T-type calcium channels in damaged DRG neurons contributes to neuropathic pain in rats with spared nerve injury.

    PubMed

    Kang, Xue-Jing; Chi, Ye-Nan; Chen, Wen; Liu, Feng-Yu; Cui, Shuang; Liao, Fei-Fei; Cai, Jie; Wan, You

    2018-01-01

    Ion channels are very important in the peripheral sensitization in neuropathic pain. Our present study aims to investigate the possible contribution of Ca V 3.2 T-type calcium channels in damaged dorsal root ganglion neurons in neuropathic pain. We established a neuropathic pain model of rats with spared nerve injury. In these model rats, it was easy to distinguish damaged dorsal root ganglion neurons (of tibial nerve and common peroneal nerve) from intact dorsal root ganglion neurons (of sural nerves). Our results showed that Ca V 3.2 protein expression increased in medium-sized neurons from the damaged dorsal root ganglions but not in the intact ones. With whole cell patch clamp recording technique, it was found that after-depolarizing amplitudes of the damaged medium-sized dorsal root ganglion neurons increased significantly at membrane potentials of -85 mV and -95 mV. These results indicate a functional up-regulation of Ca V 3.2 T-type calcium channels in the damaged medium-sized neurons after spared nerve injury. Behaviorally, blockade of Ca V 3.2 with antisense oligodeoxynucleotides could significantly reverse mechanical allodynia. These results suggest that Ca V 3.2 T-type calcium channels in damaged medium-sized dorsal root ganglion neurons might contribute to neuropathic pain after peripheral nerve injury.

  9. Dicer maintains the identity and function of proprioceptive sensory neurons

    PubMed Central

    O’Toole, Sean M.; Ferrer, Monica M.; Mekonnen, Jennifer; Zhang, Haihan; Shima, Yasuyuki; Ladle, David R.

    2017-01-01

    Neuronal cell identity is established during development and must be maintained throughout an animal’s life (Fishell G, Heintz N. Neuron 80: 602–612, 2013). Transcription factors critical for establishing neuronal identity can be required for maintaining it (Deneris ES, Hobert O. Nat Neurosci 17: 899–907, 2014). Posttranscriptional regulation also plays an important role in neuronal differentiation (Bian S, Sun T. Mol Neurobiol 44: 359–373, 2011), but its role in maintaining cell identity is less established. To better understand how posttranscriptional regulation might contribute to cell identity, we examined the proprioceptive neurons in the dorsal root ganglion (DRG), a highly specialized sensory neuron class, with well-established properties that distinguish them from other neurons in the ganglion. By conditionally ablating Dicer in mice, using parvalbumin (Pvalb)-driven Cre recombinase, we impaired posttranscriptional regulation in the proprioceptive sensory neuron population. Knockout (KO) animals display a progressive form of ataxia at the beginning of the fourth postnatal week that is accompanied by a cell death within the DRG. Before cell loss, expression profiling shows a reduction of proprioceptor specific genes and an increased expression of nonproprioceptive genes normally enriched in other ganglion neurons. Furthermore, although central connections of these neurons are intact, the peripheral connections to the muscle are functionally impaired. Posttranscriptional regulation is therefore necessary to retain the transcriptional identity and support functional specialization of the proprioceptive sensory neurons. NEW & NOTEWORTHY We have demonstrated that selectively impairing Dicer in parvalbumin-positive neurons, which include the proprioceptors, triggers behavioral changes, a lack of muscle connectivity, and a loss of transcriptional identity as observed through RNA sequencing. These results suggest that Dicer and, most likely by extension

  10. Dicer maintains the identity and function of proprioceptive sensory neurons.

    PubMed

    O'Toole, Sean M; Ferrer, Monica M; Mekonnen, Jennifer; Zhang, Haihan; Shima, Yasuyuki; Ladle, David R; Nelson, Sacha B

    2017-03-01

    Neuronal cell identity is established during development and must be maintained throughout an animal's life (Fishell G, Heintz N. Neuron 80: 602-612, 2013). Transcription factors critical for establishing neuronal identity can be required for maintaining it (Deneris ES, Hobert O. Nat Neurosci 17: 899-907, 2014). Posttranscriptional regulation also plays an important role in neuronal differentiation (Bian S, Sun T. Mol Neurobiol 44: 359-373, 2011), but its role in maintaining cell identity is less established. To better understand how posttranscriptional regulation might contribute to cell identity, we examined the proprioceptive neurons in the dorsal root ganglion (DRG), a highly specialized sensory neuron class, with well-established properties that distinguish them from other neurons in the ganglion. By conditionally ablating Dicer in mice, using parvalbumin (Pvalb)-driven Cre recombinase, we impaired posttranscriptional regulation in the proprioceptive sensory neuron population. Knockout (KO) animals display a progressive form of ataxia at the beginning of the fourth postnatal week that is accompanied by a cell death within the DRG. Before cell loss, expression profiling shows a reduction of proprioceptor specific genes and an increased expression of nonproprioceptive genes normally enriched in other ganglion neurons. Furthermore, although central connections of these neurons are intact, the peripheral connections to the muscle are functionally impaired. Posttranscriptional regulation is therefore necessary to retain the transcriptional identity and support functional specialization of the proprioceptive sensory neurons. NEW & NOTEWORTHY We have demonstrated that selectively impairing Dicer in parvalbumin-positive neurons, which include the proprioceptors, triggers behavioral changes, a lack of muscle connectivity, and a loss of transcriptional identity as observed through RNA sequencing. These results suggest that Dicer and, most likely by extension, micro

  11. Dose-dependent effects of ouabain on spiral ganglion neurons and Schwann cells in mouse cochlea.

    PubMed

    Zhang, Zhi-Jian; Guan, Hong-Xia; Yang, Kun; Xiao, Bo-Kui; Liao, Hua; Jiang, Yang; Zhou, Tao; Hua, Qing-Quan

    2017-10-01

    This study aimed in fully investigating the toxicities of ouabain to mouse cochlea and the related cellular environment, and providing an optimal animal model system for cell transplantation in the treatment of auditory neuropathy (AN) and sensorineural hearing loss (SNHL). Different dosages of ouabain were applied to mouse round window. The auditory brainstem responses and distortion product otoacoustic emissions were used to evaluate the cochlear function. The immunohistochemical staining and cochlea surface preparation were performed to detect the spiral ganglion neurons (SGNs), Schwann cells and hair cells. Ouabain at the dosages of 0.5 mM, 1 mM and 3 mM selectively and permanently destroyed SGNs and their functions, while leaving the hair cells relatively intact. Ouabain at 3 mM resulted in the most severe SGNs loss and induced significant loss of Schwann cells started as early as 7 days and with further damages at 14 and 30 days after ouabain exposure. The application of ouabain to mouse round window induces damages of SGNs and Schwann cells in a dose- and time-dependent manner, this study established a reliable and accurate animal model system of AN and SNHL.

  12. How many hair follicles are innervated by one afferent axon? A confocal microscopic analysis of palisade endings in the auricular skin of thy1-YFP transgenic mouse

    PubMed Central

    SUZUKI, Maasa; EBARA, Satomi; KOIKE, Taro; TONOMURA, Sotatsu; KUMAMOTO, Kenzo

    2012-01-01

    Hairs are known as a sensory apparatus for touch. Their follicles are innervated predominantly by palisade endings composed of longitudinal and circumferential lanceolate endings. However, little is known as to how their original primary neurons make up a part of the ending. In this study, innervation of the palisade endings was investigated in the auricular skin of thy1-YFP transgenic mouse. Major observations were 1) Only a small portion of PGP9.5-immunopositive axons showed YFP-positivity, 2) All of thy1-YFP-positive sensory axons were thick and myelinated, 3) Individual thy1-YFP-positive trunk axons innervated 4–54 hair follicles, 4) Most palisade endings had a gap of lanceolate ending arrangement, 5) PGP9.5-immunopositive 10–32 longitudinal lanceolate endings were closely arranged. Only a part of them were thy1-YFP-positive axons that originated from 1–3 afferents, and 6) Single nerve bundles of the dermal nerve network included both bidirectional afferents. Palisade endings innervated by multiple sensory neurons might be highly sensitive to hair movement. PMID:23229751

  13. How many hair follicles are innervated by one afferent axon? A confocal microscopic analysis of palisade endings in the auricular skin of thy1-YFP transgenic mouse.

    PubMed

    Suzuki, Maasa; Ebara, Satomi; Koike, Taro; Tonomura, Sotatsu; Kumamoto, Kenzo

    2012-01-01

    Hairs are known as a sensory apparatus for touch. Their follicles are innervated predominantly by palisade endings composed of longitudinal and circumferential lanceolate endings. However, little is known as to how their original primary neurons make up a part of the ending. In this study, innervation of the palisade endings was investigated in the auricular skin of thy1-YFP transgenic mouse. Major observations were 1) Only a small portion of PGP9.5-immunopositive axons showed YFP-positivity, 2) All of thy1-YFP-positive sensory axons were thick and myelinated, 3) Individual thy1-YFP-positive trunk axons innervated 4-54 hair follicles, 4) Most palisade endings had a gap of lanceolate ending arrangement, 5) PGP9.5-immunopositive 10-32 longitudinal lanceolate endings were closely arranged. Only a part of them were thy1-YFP-positive axons that originated from 1-3 afferents, and 6) Single nerve bundles of the dermal nerve network included both bidirectional afferents. Palisade endings innervated by multiple sensory neurons might be highly sensitive to hair movement.

  14. Effects of 14 days of spaceflight and nine days of recovery on cell body size and succinate dehydrogenase activity of rat dorsal root ganglion neurons

    NASA Technical Reports Server (NTRS)

    Ishihara, A.; Ohira, Y.; Roy, R. R.; Nagaoka, S.; Sekiguchi, C.; Hinds, W. E.; Edgerton, V. R.

    1997-01-01

    The cross-sectional areas and succinate dehydrogenase activities of L5 dorsal root ganglion neurons in rats were determined after 14 days of spaceflight and after nine days of recovery. The mean and distribution of the cross-sectional areas were similar to age-matched, ground-based controls for both the spaceflight and for the spaceflight plus recovery groups. The mean succinate dehydrogenase activity was significantly lower in spaceflight compared to aged-matched control rats, whereas the mean succinate dehydrogenase activity was similar in age-matched control and spaceflight plus recovery rats. The mean succinate dehydrogenase activity of neurons with cross-sectional areas between 1000 and 2000 microns2 was lower (between 7 and 10%) in both the spaceflight and the spaceflight plus recovery groups compared to the appropriate control groups. The reduction in the oxidative capacity of a subpopulation of sensory neurons having relatively large cross-sectional areas immediately following spaceflight and the sustained depression for nine days after returning to 1 g suggest that the 0 g environment induced significant alterations in proprioceptive function.

  15. Tibial periosteal ganglion cyst: The ganglion in disguise.

    PubMed

    Reghunath, Anjuna; Mittal, Mahesh K; Khanna, Geetika; Anil, V

    2017-01-01

    Soft tissue ganglions are commonly encountered cystic lesions around the wrist presumed to arise from myxomatous degeneration of periarticular connective tissue. Lesions with similar pathology in subchondral location close to joints, and often simulating a geode, is the less common entity called intraosseous ganglion. Rarer still is a lesion produced by mucoid degeneration and cyst formation of the periostium of long bones, rightly called the periosteal ganglion. They are mostly found in the lower extremities at the region of pes anserinus, typically limited to the periosteum and outer cortex without any intramedullary component. We report the case of a 62 year-old male who presented with a tender swelling on the mid shaft of the left tibia, which radiologically suggested a juxtacortical lesion extending to the soft tissue or a soft tissue neoplasm eroding the bony cortex of tibia. It was later diagnosed definitively as a periosteal ganglion in an atypical location, on further radiologic work-up and histopathological correlation.

  16. Tibial periosteal ganglion cyst: The ganglion in disguise

    PubMed Central

    Reghunath, Anjuna; Mittal, Mahesh K; Khanna, Geetika; Anil, V

    2017-01-01

    Soft tissue ganglions are commonly encountered cystic lesions around the wrist presumed to arise from myxomatous degeneration of periarticular connective tissue. Lesions with similar pathology in subchondral location close to joints, and often simulating a geode, is the less common entity called intraosseous ganglion. Rarer still is a lesion produced by mucoid degeneration and cyst formation of the periostium of long bones, rightly called the periosteal ganglion. They are mostly found in the lower extremities at the region of pes anserinus, typically limited to the periosteum and outer cortex without any intramedullary component. We report the case of a 62 year-old male who presented with a tender swelling on the mid shaft of the left tibia, which radiologically suggested a juxtacortical lesion extending to the soft tissue or a soft tissue neoplasm eroding the bony cortex of tibia. It was later diagnosed definitively as a periosteal ganglion in an atypical location, on further radiologic work-up and histopathological correlation. PMID:28515597

  17. Reduced noradrenergic innervation of ventral midbrain dopaminergic cell groups and the subthalamic nucleus in MPTP-treated parkinsonian monkeys.

    PubMed

    Masilamoni, Gunasingh Jeyaraj; Groover, Olivia; Smith, Yoland

    2017-04-01

    There is anatomical and functional evidence that ventral midbrain dopaminergic (DA) cell groups and the subthalamic nucleus (STN) receive noradrenergic innervation in rodents, but much less is known about these interactions in primates. Degeneration of NE neurons in the locus coeruleus (LC) and related brainstem NE cell groups is a well-established pathological feature of Parkinson's disease (PD), but the development of such pathology in animal models of PD has been inconsistent across species and laboratories. We recently demonstrated 30-40% neuronal loss in the LC, A5 and A6 NE cell groups of rhesus monkeys rendered parkinsonian by chronic administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). In this study, we used dopamine-beta-hydroxylase (DβH) immunocytochemistry to assess the impact of this neuronal loss on the number of NE terminal-like varicosities in the substantia nigra pars compacta (SNC), ventral tegmental area (VTA), retrorubral field (RRF) and STN of MPTP-treated parkinsonian monkeys. Our findings reveal that the NE innervation of the ventral midbrain and STN of normal monkeys is heterogeneously distributed being far more extensive in the VTA, RRF and dorsal tier of the SNC than in the ventral SNC and STN. In parkinsonian monkeys, all regions underwent a significant (~50-70%) decrease in NE innervation. At the electron microscopic level, some DβH-positive terminals formed asymmetric axo-dendritic synapses in VTA and STN. These findings demonstrate that the VTA, RRF and SNCd are the main ventral midbrain targets of ascending NE inputs, and that these connections undergo a major break-down in chronically MPTP-treated parkinsonian monkeys. This severe degeneration of the ascending NE system may contribute to the pathophysiology of ventral midbrain and STN neurons in PD. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Macrophages associated with the intrinsic and extrinsic autonomic innervation of the rat gastrointestinal tract.

    PubMed

    Phillips, Robert J; Powley, Terry L

    2012-07-02

    Interactions between macrophages and the autonomic innervation of gastrointestinal (GI) tract smooth muscle have received little experimental attention. To better understand this relationship, immunohistochemistry was performed on GI whole mounts from rats at three ages. The phenotypes, morphologies, and distributions of gut macrophages are consistent with the cells performing extensive housekeeping functions in the smooth muscle layers. Specifically, a dense population of macrophages was located throughout the muscle wall where they were distributed among the muscle fibers and along the vasculature. Macrophages were also associated with ganglia and connectives of the myenteric plexus and with the sympathetic innervation. Additionally, these cells were in tight registration with the dendrites and axons of the myenteric neurons as well as the varicosities along the length of the sympathetic axons, suggestive of a contribution by the macrophages to the homeostasis of both synapses and contacts between the various elements of the enteric circuitry. Similarly, macrophages were involved in the presumed elimination of neuropathies as indicated by their association with dystrophic neurons and neurites which are located throughout the myenteric plexus and smooth muscle wall of aged rats. Importantly, the patterns of macrophage-neuron interactions in the gut paralleled the much more extensively characterized interactions of macrophages (i.e., microglia) and neurons in the CNS. The present observations in the PNS as well as extrapolations from homologous microglia in the CNS suggest that GI macrophages play significant roles in maintaining the nervous system of the gut in the face of wear and tear, disease, and aging. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Why are enteric ganglia so small? Role of differential adhesion of enteric neurons and enteric neural crest cells.

    PubMed Central

    Rollo, Benjamin N.; Zhang, Dongcheng; Simkin, Johanna E.; Menheniott, Trevelyan R.; Newgreen, Donald F.

    2015-01-01

    The avian enteric nervous system (ENS) consists of a vast number of unusually small ganglia compared to other peripheral ganglia. Each ENS ganglion at mid-gestation has a core of neurons and a shell of mesenchymal precursor/glia-like enteric neural crest (ENC) cells. To study ENS cell ganglionation we isolated midgut ENS cells by HNK-1 fluorescence-activated cell sorting (FACS) from E5 and E8 quail embryos, and from E9 chick embryos. We performed cell-cell aggregation assays which revealed a developmentally regulated functional increase in ENS cell adhesive function, requiring both Ca 2+ -dependent and independent adhesion. This was consistent with N-cadherin and NCAM labelling. Neurons sorted to the core of aggregates, surrounded by outer ENC cells, showing that neurons had higher adhesion than ENC cells. The outer surface of aggregates became relatively non-adhesive, correlating with low levels of NCAM and N-cadherin on this surface of the outer non-neuronal ENC cells. Aggregation assays showed that ENS cells FACS selected for NCAM-high and enriched for enteric neurons formed larger and more coherent aggregates than unsorted ENS cells. In contrast, ENS cells of the NCAM-low FACS fraction formed small, disorganised aggregates.  This suggests a novel mechanism for control of ENS ganglion morphogenesis where i) differential adhesion of ENS neurons and ENC cells controls the core/shell ganglionic structure and ii) the ratio of neurons to ENC cells dictates the equilibrium ganglion size by generation of an outer non-adhesive surface. PMID:26064478

  20. Neural Markers Reveal a One-Segmented Head in Tardigrades (Water Bears)

    PubMed Central

    Mayer, Georg; Kauschke, Susann; Rüdiger, Jan; Stevenson, Paul A.

    2013-01-01

    Background While recent neuroanatomical and gene expression studies have clarified the alignment of cephalic segments in arthropods and onychophorans, the identity of head segments in tardigrades remains controversial. In particular, it is unclear whether the tardigrade head and its enclosed brain comprises one, or several segments, or a non-segmental structure. To clarify this, we applied a variety of histochemical and immunocytochemical markers to specimens of the tardigrade Macrobiotus cf. harmsworthi and the onychophoran Euperipatoides rowelli. Methodology/Principal Findings Our immunolabelling against serotonin, FMRFamide and α-tubulin reveals that the tardigrade brain is a dorsal, bilaterally symmetric structure that resembles the brain of onychophorans and arthropods rather than a circumoesophageal ring typical of cycloneuralians (nematodes and allies). A suboesophageal ganglion is clearly lacking. Our data further reveal a hitherto unknown, unpaired stomatogastric ganglion in Macrobiotus cf. harmsworthi, which innervates the ectodermal oesophagus and the endodermal midgut and is associated with the second leg-bearing segment. In contrast, the oesophagus of the onychophoran E. rowelli possesses no immunoreactive neurons, whereas scattered bipolar, serotonin-like immunoreactive cell bodies are found in the midgut wall. Furthermore, our results show that the onychophoran pharynx is innervated by a medullary loop nerve accompanied by monopolar, serotonin-like immunoreactive cell bodies. Conclusions/Significance A comparison of the nervous system innervating the foregut and midgut structures in tardigrades and onychophorans to that of arthropods indicates that the stomatogastric ganglion is a potential synapomorphy of Tardigrada and Arthropoda. Its association with the second leg-bearing segment in tardigrades suggests that the second trunk ganglion is a homologue of the arthropod tritocerebrum, whereas the first ganglion corresponds to the deutocerebrum. We

  1. Neural markers reveal a one-segmented head in tardigrades (water bears).

    PubMed

    Mayer, Georg; Kauschke, Susann; Rüdiger, Jan; Stevenson, Paul A

    2013-01-01

    While recent neuroanatomical and gene expression studies have clarified the alignment of cephalic segments in arthropods and onychophorans, the identity of head segments in tardigrades remains controversial. In particular, it is unclear whether the tardigrade head and its enclosed brain comprises one, or several segments, or a non-segmental structure. To clarify this, we applied a variety of histochemical and immunocytochemical markers to specimens of the tardigrade Macrobiotus cf. harmsworthi and the onychophoran Euperipatoides rowelli. Our immunolabelling against serotonin, FMRFamide and α-tubulin reveals that the tardigrade brain is a dorsal, bilaterally symmetric structure that resembles the brain of onychophorans and arthropods rather than a circumoesophageal ring typical of cycloneuralians (nematodes and allies). A suboesophageal ganglion is clearly lacking. Our data further reveal a hitherto unknown, unpaired stomatogastric ganglion in Macrobiotus cf. harmsworthi, which innervates the ectodermal oesophagus and the endodermal midgut and is associated with the second leg-bearing segment. In contrast, the oesophagus of the onychophoran E. rowelli possesses no immunoreactive neurons, whereas scattered bipolar, serotonin-like immunoreactive cell bodies are found in the midgut wall. Furthermore, our results show that the onychophoran pharynx is innervated by a medullary loop nerve accompanied by monopolar, serotonin-like immunoreactive cell bodies. A comparison of the nervous system innervating the foregut and midgut structures in tardigrades and onychophorans to that of arthropods indicates that the stomatogastric ganglion is a potential synapomorphy of Tardigrada and Arthropoda. Its association with the second leg-bearing segment in tardigrades suggests that the second trunk ganglion is a homologue of the arthropod tritocerebrum, whereas the first ganglion corresponds to the deutocerebrum. We therefore conclude that the tardigrade brain consists of a single

  2. Efferent innervation of turtle semicircular canal cristae: comparisons with bird and mouse

    PubMed Central

    Jordan, Paivi M.; Fettis, Margaret; Holt, Joseph C.

    2014-01-01

    In the vestibular periphery of nearly every vertebrate, cholinergic vestibular efferent neurons give rise to numerous presynaptic varicosities that target hair cells and afferent processes in the sensory neuroepithelium. Although pharmacological studies have described the postsynaptic actions of vestibular efferent stimulation in several species, characterization of efferent innervation patterns and the relative distribution of efferent varicosities among hair cells and afferents are also integral to understanding how efferent synapses operate. Vestibular efferent markers, however, have not been well characterized in the turtle, one of the animal models utilized by our laboratory. Here, we sought to identify reliable efferent neuronal markers in the vestibular periphery of turtle, to utilize these markers to understand how efferent synapses are organized, and to compare efferent neuronal labeling patterns in turtle with two other amniotes using some of the same markers. Efferent fibers and varicosities were visualized in the semicircular canal of Red-Eared Turtles (Trachemys scripta elegans), Zebra Finches (Taeniopygia guttata), and mice (Mus musculus) utilizing fluorescent immunohistochemistry with antibodies against choline acetyltransferase (ChAT). Vestibular hair cells and afferents were counterstained using antibodies to myosin VIIa and calretinin. In all species, ChAT labeled a population of small diameter fibers giving rise to numerous spherical varicosities abutting type II hair cells and afferent processes. That these ChAT-positive varicosities represent presynaptic release sites were demonstrated by colabeling with antibodies against the synaptic vesicle proteins synapsin I, SV2, or syntaxin and the neuropeptide calcitonin gene-related peptide (CGRP). Comparisons of efferent innervation patterns among the three species are discussed. PMID:25560461

  3. Efferent innervation of turtle semicircular canal cristae: comparisons with bird and mouse.

    PubMed

    Jordan, Paivi M; Fettis, Margaret; Holt, Joseph C

    2015-06-01

    In the vestibular periphery of nearly every vertebrate, cholinergic vestibular efferent neurons give rise to numerous presynaptic varicosities that target hair cells and afferent processes in the sensory neuroepithelium. Although pharmacological studies have described the postsynaptic actions of vestibular efferent stimulation in several species, characterization of efferent innervation patterns and the relative distribution of efferent varicosities among hair cells and afferents are also integral to understanding how efferent synapses operate. Vestibular efferent markers, however, have not been well characterized in the turtle, one of the animal models used by our laboratory. Here we sought to identify reliable efferent neuronal markers in the vestibular periphery of turtle, to use these markers to understand how efferent synapses are organized, and to compare efferent neuronal labeling patterns in turtle with two other amniotes using some of the same markers. Efferent fibers and varicosities were visualized in the semicircular canal of red-eared turtles (Trachemys scripta elegans), zebra finches (Taeniopygia guttata), and mice (Mus musculus) utilizing fluorescent immunohistochemistry with antibodies against choline acetyltransferase (ChAT). Vestibular hair cells and afferents were counterstained using antibodies to myosin VIIa and calretinin. In all species, ChAT labeled a population of small diameter fibers giving rise to numerous spherical varicosities abutting type II hair cells and afferent processes. That these ChAT-positive varicosities represent presynaptic release sites were demonstrated by colabeling with antibodies against the synaptic vesicle proteins synapsin I, SV2, or syntaxin and the neuropeptide calcitonin gene-related peptide. Comparisons of efferent innervation patterns among the three species are discussed. © 2015 Wiley Periodicals, Inc.

  4. Vagal sensory innervation of the gastric sling muscle and antral wall: implications for gastro-esophageal reflux disease?

    PubMed

    Powley, T L; Gilbert, J M; Baronowsky, E A; Billingsley, C N; Martin, F N; Phillips, R J

    2012-10-01

    The gastric sling muscle has not been investigated for possible sensory innervation, in spite of the key roles the structure plays in lower esophageal sphincter (LES) function and gastric physiology. Thus, the present experiment used tracing techniques to label vagal afferents and survey their projections in the lesser curvature. Sprague-Dawley rats received injections of dextran biotin into the nodose ganglia. Fourteen days postinjection, animals were euthanized and their stomachs were processed to visualize the vagal afferent innervation. In different cases, neurons, muscle cells, or interstitial cells of Cajal (ICC) were counterstained. The sling muscle is innervated throughout its length by vagal afferent intramuscular arrays (IMAs) associated with ICC. In addition, the distal antral attachment site of the sling muscle is innervated by a novel vagal afferent terminal specialization, an antral web ending. The muscle wall of the distal antrum is also innervated by conventional IMAs and intraganglionic laminar endings, the two types of mechanoreceptors found throughout stomach smooth muscle. The innervation of sling muscle by IMAs, putative stretch receptors, suggests that sling sensory feedback may generate vago-vagal or other reflexes with vagal afferent limbs. The restricted distribution of afferent web endings near the antral attachments of sling fibers suggests the possibility of specialized mechanoreceptor functions linking antral and pyloric activity to the operation of the LES. Dysfunctional sling afferents could generate LES motor disturbances, or normative compensatory sensory feedback from the muscle could compromise therapies targeting only effectors. © 2012 Blackwell Publishing Ltd.

  5. Quercetin protects rat dorsal root ganglion neurons against high glucose-induced injury in vitro through Nrf-2/HO-1 activation and NF-κB inhibition.

    PubMed

    Shi, Yue; Liang, Xiao-chun; Zhang, Hong; Wu, Qun-li; Qu, Ling; Sun, Qing

    2013-09-01

    To examine the effects of quercetin, a natural antioxidant, on high glucose (HG)-induced apoptosis of cultured dorsal root ganglion (DRG) neurons of rats. DRG neurons exposed to HG (45 mmol/L) for 24 h were employed as an in vitro model of diabetic neuropathy. Cell viability, reactive oxygen species (ROS) level and apoptosis were determined. The expression of NF-кB, IкBα, phosphorylated IкBα and Nrf2 was examined using RT PCR and Western blot assay. The expression of hemeoxygenase-1 (HO-1), IL-6, TNF-α, iNOS, COX-2, and caspase-3 were also examined. HG treatment markedly increased DRG neuron apoptosis via increasing intracellular ROS level and activating the NF-κB signaling pathway. Co-treatment with quercetin (2.5, 5, and 10 mmol/L) dose-dependently decreased HG-induced caspase-3 activation and apoptosis. Quercetin could directly scavenge ROS and significantly increased the expression of Nrf-2 and HO-1 in DRG neurons. Quercetin also dose-dependently inhibited the NF-κB signaling pathway and suppressed the expression of iNOS, COX-2, and proinflammatory cytokines IL-6 and TNF-α. Quercetin protects rat DRG neurons against HG-induced injury in vitro through Nrf-2/HO-1 activation and NF-κB inhibition, thus may be beneficial for the treatment of diabetic neuropathy.

  6. Autonomic innervation of the fish gut.

    PubMed

    Olsson, Catharina

    2009-01-01

    The enteric nervous system follows a similar overall arrangement in all vertebrate groups. In fish, the majority of nerve cell bodies are found in the myenteric plexus, innervating muscles, blood vessels and glands. In this review, I describe similarities and differences in size, shape and transmitter content in enteric neurons in different fish species and also in comparison with other vertebrates, foremost mammals. The use of different histological and immunochemical methods is reviewed in a historical perspective including advantages and disadvantages of different methods. Lately, zebrafish have become an important model species for developmental studies of the nervous system, including the enteric nervous system, and this is briefly discussed. Finally, examples of how the enteric nervous system controls gut activity in fish is presented, focussing on the effect on gastrointestinal motility.

  7. Fixative Composition Alters Distributions of Immunoreactivity for Glutaminase and Two Markers of Nociceptive Neurons, Nav1.8 and TRPV1, in the Rat Dorsal Root Ganglion

    PubMed Central

    Hoffman, E. Matthew; Schechter, Ruben; Miller, Kenneth E.

    2010-01-01

    Most, if not all, dorsal root ganglion (DRG) neurons use the neurotransmitter glutamate. There are, however, conflicting reports of the percentages of DRG neurons that express glutaminase (GLS), the enzyme that synthesizes glutamate, ranging from 30% to 100% of DRG neurons. Defining DRG neuron populations by the expression of proteins like GLS, which indicates function, is routinely accomplished with immunolabeling techniques. Proper characterization of DRG neuron populations relies on accurate detection of such antigens. It is known intuitively that fixation can alter immunoreactivity (IR). In this study, we compared the effects of five formaldehyde concentrations between 0.25% and 4.0% (w/v) and five picric acid concentrations between 0.0% and 0.8% (w/v) on the IR of GLS, the voltage-gated sodium channel 1.8 (Nav1.8), and the capsaicin receptor TRPV1. We also compared the effects of five incubation time lengths from 2 to 192 hr, in primary antiserum on IR. Lowering formaldehyde concentration elevated IR for all three antigens, while raising picric acid concentration increased Nav1.8 and TRPV1 IR. Increasing IR improved detection sensitivity, which led to higher percentages of labeled DRG neurons. By selecting fixation conditions that optimized IR, we found that all DRG neurons express GLS, 69% of neurons express Nav1.8, and 77% of neurons express TRPV1, indicating that some previous studies may have underestimated the percentages of DRG neurons expressing these proteins. This manuscript contains online supplemental material at http://www.jhc.org. Please visit this article online to view these materials. (J Histochem Cytochem 58:329–344, 2010) PMID:20026672

  8. Strychnine, but not PMBA, inhibits neuronal nicotinic acetylcholine receptors expressed by rabbit retinal ganglion cells.

    PubMed

    Renna, J M; Strang, C E; Amthor, F R; Keyser, K T

    2007-01-01

    Strychnine is considered a selective competitive antagonist of glycine gated Cl- channels (Saitoh et al., 1994) and studies have used strychnine at low micromolar concentrations to study the role of glycine in rabbit retina (Linn, 1998; Protti et al., 2005). However, other studies have shown that strychnine, in the concentrations commonly used, is also a potent competitive antagonist of alpha7 nicotinic acetylcholine receptors (nAChRs; Matsubayashi et al., 1998). We tested the effects of low micromolar concentrations of strychnine and 3-[2'-phosphonomethyl[1,1'-biphenyl]-3-yl] alanine (PMBA), a specific glycine receptor blocker (Saitoh et al., 1994; Hosie et al., 1999) on the activation of both alpha7 nAChRs on retinal ganglion cells and on ganglion cell responses to a light flash. Extracellular recordings were obtained from ganglion cells in an isolated retina/choroid preparation and 500 microM choline was used as an alpha7 agonist (Alkondon et al., 1997). We recorded from brisk sustained and brisk transient OFF cells, many of which have been previously shown to have alpha7 receptors (Strang et al., 2005). Further, we tested the effect of strychnine, PMBA and alpha-bungarotoxin on the binding of tetramethylrhodamine alpha-bungarotoxin in the inner plexiform layer. Our data indicates that strychnine, at doses as low as 1.0 microM, can inhibit the alpha7 nAChR-mediated response to choline, but PMBA at concentrations as high as 0.4 microM does not. Binding studies show strychnine and alpha-bungarotoxin inhibit binding of labeled alpha-bungarotoxin in the IPL. Thus, the effects of strychnine application may be to inhibit glycine receptors expressed by ganglion cell or to inhibit amacrine cell alpha7 nAChRs, both of which would result in an increase in the ganglion cell responses. Further research will be required to disentangle the effects of strychnine previously believed to be caused by a single mechanism of glycine receptor inhibition.

  9. The neuronal control of cardiac functions in Molluscs☆

    PubMed Central

    Kodirov, Sodikdjon A.

    2017-01-01

    In this manuscript, I review the current and relevant classical studies on properties of the Mollusca heart and their central nervous system including ganglia, neurons, and nerves involved in cardiomodulation. Similar to mammalian brain hemispheres, these invertebrates possess symmetrical pairs of ganglia albeit visceral (only one) ganglion and the parietal ganglia (the right ganglion is bigger than the left one). Furthermore, there are two major regulatory drives into the compartments (pericard, auricle, and ventricle) and cardiomyocytes of the heart. These are the excitatory and inhibitory signals that originate from a few designated neurons and their putative neurotransmitters. Many of these neurons are well-identified, their specific locations within the corresponding ganglion are mapped, and some are termed as either heart excitatory (HE) or inhibitory (HI) cells. The remaining neurons are classified as cardio-regulatory, and their direct and indirect actions on the heart’s function have been documented. The cardiovascular anatomy of frequently used experimental animals, Achatina, Aplysia, Helix, and Lymnaea is relatively simple. However, as in humans, it possesses all major components including even trabeculae and atrio-ventricular valves. Since the myocardial cells are enzymatically dispersible, multiple voltage dependent cationic currents in isolated cardiomyocytes are described. The latter include at least the A-type K+, delayed rectifier K+, TTX-sensitive Na+, and L-type Ca2+ channels. PMID:21736949

  10. Satb2-Independent Acquisition of the Cholinergic Sudomotor Phenotype in Rodents

    PubMed Central

    Schütz, Burkhard; Schaäfer, Martin K.-H.; Gördes, Markus; Eiden, Lee E.; Weihe, Eberhard

    2014-01-01

    Expression of Satb2 (Special AT-rich sequence-binding protein-2) elicits expression of the vesicular acetylcholine transporter (VAChT) and choline acetyltransferase (ChAT) in cultured rat sympathetic neurons exposed to soluble differentiation factors. Here, we determined whether or not Satb2 plays a similar role in cholinergic differentiation in vivo, by comparing the postnatal profile of Satb2 expression in the rodent stellate ganglion to that of VAChT and ChAT. Throughout postnatal development, VAChT and ChAT were found to be co-expressed in a numerically stable subpopulation of rat stellate ganglion neurons. Nerve fibers innervating rat forepaw sweat glands on P1 were VAChT immunoreactive, while ChAT was detectable at this target only after P5. The postnatal abundance of VAChT transcripts in the stellate ganglion was at maximum already on P1, whereas ChAT mRNA levels increased from low levels on P1 to reach maximum levels between P5 and P21. Satb2 mRNA was detected in cholinergic neurons in the stellate ganglion beginning with P8, thus coincident with the onset of unequivocal detection of ChAT immunoreactivity in forepaw sweat gland endings. Satb2 knockout mice exhibited no change in the P1 cholinergic VAChT/ChAT co-phenotype in stellate ganglion neurons. Thus, cholinergic phenotype maturation involves first, early target (sweat-gland)-independent expression and trafficking of VAChT, and later, potentially target- and Satb2-dependent elevation of ChAT mRNA and protein transport into sweat gland endings. In rat sudomotor neurons that, unlike mouse sudomotor neurons, co-express calcitonin gene-related peptide (CGRP), Satb2 may also be related to the establishment of species-specific neuropeptide co-phenotypes during postnatal development. PMID:25239161

  11. Retinal ganglion cell topography and spatial resolving power in penguins.

    PubMed

    Coimbra, João Paulo; Nolan, Paul M; Collin, Shaun P; Hart, Nathan S

    2012-01-01

    Penguins are a group of flightless seabirds that exhibit numerous morphological, behavioral and ecological adaptations to their amphibious lifestyle, but little is known about the topographic organization of neurons in their retinas. In this study, we used retinal wholemounts and stereological methods to estimate the total number and topographic distribution of retinal ganglion cells in addition to an anatomical estimate of spatial resolving power in two species of penguins: the little penguin, Eudyptula minor, and the king penguin, Aptenodytes patagonicus. The total number of ganglion cells per retina was approximately 1,200,000 in the little penguin and 1,110,000 in the king penguin. The topographic distribution of retinal ganglion cells in both species revealed the presence of a prominent horizontal visual streak with steeper gradients in the little penguin. The little penguin retinas showed ganglion cell density peaks of 21,867 cells/mm², affording spatial resolution in water of 17.07-17.46 cycles/degree (12.81-13.09 cycles/degree in air). In contrast, the king penguin showed a relatively lower peak density of ganglion cells of 14,222 cells/mm², but--due to its larger eye--slightly higher spatial resolution in water of 20.40 cycles/degree (15.30 cycles/degree in air). In addition, we mapped the distribution of giant ganglion cells in both penguin species using Nissl-stained wholemounts. In both species, topographic mapping of this cell type revealed the presence of an area gigantocellularis with a concentric organization of isodensity contours showing a peak in the far temporal retina of approximately 70 cells/mm² in the little penguin and 39 cells/mm² in the king penguin. Giant ganglion cell densities gradually fall towards the outermost isodensity contours revealing the presence of a vertically organized streak. In the little penguin, we confirmed our cytological characterization of giant ganglion cells using immunohistochemistry for microtubule

  12. Sphenopalatine ganglion: block, radiofrequency ablation and neurostimulation - a systematic review.

    PubMed

    Ho, Kwo Wei David; Przkora, Rene; Kumar, Sanjeev

    2017-12-28

    Sphenopalatine ganglion is the largest collection of neurons in the calvarium outside of the brain. Over the past century, it has been a target for interventional treatment of head and facial pain due to its ease of access. Block, radiofrequency ablation, and neurostimulation have all been applied to treat a myriad of painful syndromes. Despite the routine use of these interventions, the literature supporting their use has not been systematically summarized. This systematic review aims to collect and summarize the level of evidence supporting the use of sphenopalatine ganglion block, radiofrequency ablation and neurostimulation. Medline, Google Scholar, and the Cochrane Central Register of Controlled Trials (CENTRAL) databases were reviewed for studies on sphenopalatine ganglion block, radiofrequency ablation and neurostimulation. Studies included in this review were compiled and analyzed for their treated medical conditions, study design, outcomes and procedural details. Studies were graded using Oxford Center for Evidence-Based Medicine for level of evidence. Based on the level of evidence, grades of recommendations are provided for each intervention and its associated medical conditions. Eighty-three publications were included in this review, of which 60 were studies on sphenopalatine ganglion block, 15 were on radiofrequency ablation, and 8 were on neurostimulation. Of all the studies, 23 have evidence level above case series. Of the 23 studies, 19 were on sphenopalatine ganglion block, 1 study on radiofrequency ablation, and 3 studies on neurostimulation. The rest of the available literature was case reports and case series. The strongest evidence lies in using sphenopalatine ganglion block, radiofrequency ablation and neurostimulation for cluster headache. Sphenopalatine ganglion block also has evidence in treating trigeminal neuralgia, migraines, reducing the needs of analgesics after endoscopic sinus surgery and reducing pain associated with nasal packing

  13. Functional crosstalk in culture between macrophages and trigeminal sensory neurons of a mouse genetic model of migraine.

    PubMed

    Franceschini, Alessia; Nair, Asha; Bele, Tanja; van den Maagdenberg, Arn Mjm; Nistri, Andrea; Fabbretti, Elsa

    2012-11-21

    Enhanced activity of trigeminal ganglion neurons is thought to underlie neuronal sensitization facilitating the onset of chronic pain attacks, including migraine. Recurrent headache attacks might establish a chronic neuroinflammatory ganglion profile contributing to the hypersensitive phenotype. Since it is difficult to study this process in vivo, we investigated functional crosstalk between macrophages and sensory neurons in primary cultures from trigeminal sensory ganglia of wild-type (WT) or knock-in (KI) mice expressing the Cacna1a gene mutation (R192Q) found in familial hemiplegic migraine-type 1. After studying the number and morphology of resident macrophages in culture, the consequences of adding host macrophages on macrophage phagocytosis and membrane currents mediated by pain-transducing P2X3 receptors on sensory neurons were examined. KI ganglion cultures constitutively contained a larger number of active macrophages, although no difference in P2X3 receptor expression was found. Co-culturing WT or KI ganglia with host macrophages (active as much as resident cells) strongly stimulated single cell phagocytosis. The same protocol had no effect on P2X3 receptor expression in WT or KI co-cultures, but it largely enhanced WT neuron currents that grew to the high amplitude constitutively seen for KI neurons. No further potentiation of KI neuronal currents was observed. Trigeminal ganglion cultures from a genetic mouse model of migraine showed basal macrophage activation together with enhanced neuronal currents mediated by P2X3 receptors. This phenotype could be replicated in WT cultures by adding host macrophages, indicating an important functional crosstalk between macrophages and sensory neurons.

  14. Actions of subtype-specific purinergic ligands on rat spiral ganglion neurons.

    PubMed

    Ito, Ken; Iwasaki, Shinichi; Kondo, Kenji; Dulon, Didier; Kaga, Kimitaka

    2004-08-01

    In a previous study we showed that, in rat spiral ganglion neurons (SGNs), the adenosine 5'-triphosphate (ATP)-evoked currents were a combination of the activation of ionotropic receptors (the first fast current) and the activation of metabotropic receptors which secondarily opened non-selective cation channels. These two conductances imply the involvement of different receptor subtypes. In the present study, we tested three subtype-specific purinergic ligands: alpha,beta-methylene ATP (a;pha,beta-meATP) for P2X receptors, uridine 5'-triphosphate (UTP) for P2Y receptors and 2'-3'-O-(4-benzoylbenzoyl) ATP (Bz-ATP) for P2Z (P2X(7)) receptors. Application of 100 microM alpha,beta-meATP did not trigger any significant change in membrane conductance, while the SGNs were responsive to ATP. Pressure application of UTP (100 microM, 1 s) evoked an inward current averaging 344+/-169 pA at a holding potential of -50 mV. The conductance developed after a latency averaging 1.5+/-0.6 s, took 4-6 s to peak and reversed slowly within 15-30 s. The current-voltage curve reversed near 0 mV, suggesting a non-selective cation conductance, like the second component of the ATP conductance. Bz-ATP evoked an inward current which developed without latency, was sustained during ligand application and was rapidly inactivated at the end of application: the same characteristics as the first component of the ATP-evoked current. The Bz-ATP conductance reversed around -10 mV, indicating also a non-selective cation conductance. These results suggest that, in SGNs, ATP acts via two different receptor subtypes, ionotropic P2Z receptors and metabotropic P2Y receptors, and that these two receptor subtypes can assume different physiological roles.

  15. Allicin protects auditory hair cells and spiral ganglion neurons from cisplatin - Induced apoptosis.

    PubMed

    Wu, Xianmin; Li, Xiaofei; Song, Yongdong; Li, He; Bai, Xiaohui; Liu, Wenwen; Han, Yuechen; Xu, Lei; Li, Jianfeng; Zhang, Daogong; Wang, Haibo; Fan, Zhaomin

    2017-04-01

    Cisplatin is a broad-spectrum anticancer drug that is commonly used in the clinic. Ototoxicity is one of the major side effects of this drug, which caused irreversible sensorineural hearing loss. Allicin, the main biologically active compound derived from garlic, has been shown to exert various anti-apoptotic and anti-oxidative activities in vitro and in vivo studies. We took advantage of C57 mice intraperitoneally injected with cisplatin alone or with cisplatin and allicin combined, to investigate whether allicin plays a protective role in vivo against cisplatin ototoxicity. The result showed that C57 mice in cisplatin group exhibited increased shift in auditory brainstem response, whereas the auditory fuction of mice in allicin + cisplatin group was protected in most frequencies, which was accordance with observed damages of outer hair cells (OHCs) and spiral ganglion neurons (SGNs) in the cochlea. Allicin markedly protected SGN mitochondria from damage and releasing cytochrome c, and significantly reduced pro-apoptosis factor expressions activated by cisplatin, including Bax, cleaved-caspase-9, cleaved-caspase-3and p53. Furthermore, allicin reduced the level of Malondialdehyde (MDA), but increased the level of superoxide dismutase (SOD). All data suggested that allicin could prevent hearing loss induced by cisplatin effectively, of which allicin protected SGNs from apoptosis via mitochondrial pathway while protected OHCs and supporting cells (SCs) from apoptosis through p53 pathway. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. FMRFamide-like immunoreactive nervus terminalis innervation to the pituitary in the catfish, Clarias batrachus (Linn.): demonstration by lesion and immunocytochemical techniques

    NASA Technical Reports Server (NTRS)

    Krishna, N. S.; Subhedar, N.; Schreibman, M. P.

    1992-01-01

    Certain thick FMRFamide-like immunoreactive fibers arising from the ganglion cells of nervus terminalis in the olfactory bulb of Clarias batrachus can be traced centripetally through the medial olfactory tract, telencephalon, lateral preoptic area, tuberal area, and hypothalamohypophysial tract to the pituitary. Following 6 days of bilateral olfactory tract transection, the immunoreactivity in the thick fibers, caudal to the lesion site, was partially eliminated, whereas after 10 and 14 days, it was totally abolished in the processes en route to the pituitary. The results indicate a direct innervation of the pituitary gland by the FMRFamide-like peptide containing fibers of the nervus terminalis.

  17. Immunization with neuronal nicotinic acetylcholine receptor induces neurological autoimmune disease

    PubMed Central

    Lennon, Vanda A.; Ermilov, Leonid G.; Szurszewski, Joseph H.; Vernino, Steven

    2003-01-01

    Neuronal nicotinic AChRs (nAChRs) are implicated in the pathogenesis of diverse neurological disorders and in the regulation of small-cell lung carcinoma growth. Twelve subunits have been identified in vertebrates, and mutations of one are recognized in a rare form of human epilepsy. Mice with genetically manipulated neuronal nAChR subunits exhibit behavioral or autonomic phenotypes. Here, we report the first model of an acquired neuronal nAChR disorder and evidence for its pertinence to paraneoplastic neurological autoimmunity. Rabbits immunized once with recombinant α3 subunit (residues 1–205) develop profound gastrointestinal hypomotility, dilated pupils with impaired light response, and grossly distended bladders. As in patients with idiopathic and paraneoplastic autoimmune autonomic neuropathy, the severity parallels serum levels of ganglionic nAChR autoantibody. Failure of neurotransmission through abdominal sympathetic ganglia, with retention of neuronal viability, confirms that the disorder is a postsynaptic channelopathy. In addition, we found ganglionic nAChR protein in small-cell carcinoma lines, identifying this cancer as a potential initiator of ganglionic nAChR autoimmunity. The data support our hypothesis that immune responses driven by distinct neuronal nAChR subtypes expressed in small-cell carcinomas account for several lung cancer–related paraneoplastic disorders affecting cholinergic systems, including autoimmune autonomic neuropathy, seizures, dementia, and movement disorders. PMID:12639997

  18. Presence of Functional Neurotrophin TrkB Receptors in the Rat Superior Cervical Ganglion

    PubMed Central

    Valle-Leija, Pablo; Cancino-Rodezno, Angeles; Sánchez-Tafolla, Berardo M.; Arias, Erwin; Elinos, Diana; Feria, Jessica; Zetina, María E.; Morales, Miguel A.; Cifuentes, Fredy

    2017-01-01

    Sympathetic neurons express the neurotrophin receptors TrkA, p75NTR, and a non-functional truncated TrkB isoform (TrkB-Tc), but are not thought to express a functional full-length TrkB receptor (TrkB-Fl). We, and others, have demonstrated that nerve growth factor (NGF) and brain derived neurotrophic factor (BDNF) modulate synaptic transmission and synaptic plasticity in neurons of the superior cervical ganglion (SCG) of the rat. To clarify whether TrkB is expressed in sympathetic ganglia and contributes to the effects of BDNF upon sympathetic function, we characterized the presence and activity of the neurotrophin receptors expressed in the adult SCG compared with their presence in neonatal and cultured sympathetic neurons. Here, we expand our previous study regarding the immunodetection of neurotrophin receptors. Immunohistochemical analysis revealed that 19% of adult ganglionic neurons expressed TrkB-Fl immunoreactivity (IR), 82% expressed TrkA-IR, and 51% expressed p75NTR-IR; TrkB-Tc would be expressed in 36% of neurons. In addition, using Western-blotting and reverse transcriptase polymerase chain reaction (RT-PCR) analyses, we confirmed the expression of TrkB-Fl and TrkB-Tc protein and mRNA transcripts in adult SCG. Neonatal neurons expressed significantly more TrkA-IR and TrkB-Fl-IR than p75NTR-IR. Finally, the application of neurotrophin, and high frequency stimulation, induced the activation of Trk receptors and the downstream PI3-kinase (phosphatidyl inositol-3-kinase) signaling pathway, thus evoking the phosphorylation of Trk and Akt. These results demonstrate that SCG neurons express functional TrkA and TrkB-Fl receptors, which may contribute to the differential modulation of synaptic transmission and long-term synaptic plasticity. PMID:28744222

  19. Presence of Functional Neurotrophin TrkB Receptors in the Rat Superior Cervical Ganglion.

    PubMed

    Valle-Leija, Pablo; Cancino-Rodezno, Angeles; Sánchez-Tafolla, Berardo M; Arias, Erwin; Elinos, Diana; Feria, Jessica; Zetina, María E; Morales, Miguel A; Cifuentes, Fredy

    2017-01-01

    Sympathetic neurons express the neurotrophin receptors TrkA, p75NTR, and a non-functional truncated TrkB isoform (TrkB-Tc), but are not thought to express a functional full-length TrkB receptor (TrkB-Fl). We, and others, have demonstrated that nerve growth factor (NGF) and brain derived neurotrophic factor (BDNF) modulate synaptic transmission and synaptic plasticity in neurons of the superior cervical ganglion (SCG) of the rat. To clarify whether TrkB is expressed in sympathetic ganglia and contributes to the effects of BDNF upon sympathetic function, we characterized the presence and activity of the neurotrophin receptors expressed in the adult SCG compared with their presence in neonatal and cultured sympathetic neurons. Here, we expand our previous study regarding the immunodetection of neurotrophin receptors. Immunohistochemical analysis revealed that 19% of adult ganglionic neurons expressed TrkB-Fl immunoreactivity (IR), 82% expressed TrkA-IR, and 51% expressed p75NTR-IR; TrkB-Tc would be expressed in 36% of neurons. In addition, using Western-blotting and reverse transcriptase polymerase chain reaction (RT-PCR) analyses, we confirmed the expression of TrkB-Fl and TrkB-Tc protein and mRNA transcripts in adult SCG. Neonatal neurons expressed significantly more TrkA-IR and TrkB-Fl-IR than p75NTR-IR. Finally, the application of neurotrophin, and high frequency stimulation, induced the activation of Trk receptors and the downstream PI3-kinase (phosphatidyl inositol-3-kinase) signaling pathway, thus evoking the phosphorylation of Trk and Akt. These results demonstrate that SCG neurons express functional TrkA and TrkB-Fl receptors, which may contribute to the differential modulation of synaptic transmission and long-term synaptic plasticity.

  20. Expression of zinc transporter ZnT7 in mouse superior cervical ganglion

    USDA-ARS?s Scientific Manuscript database

    The superior cervical ganglion (SCG) neurons contain a considerable amount of zinc ions, but little is known about zinc homeostasis in the SCG. It is known that zinc transporter 7 (ZnT7, Slc30a7), a member of the Slc30 ZnT family, is involved in mobilizing zinc ions from the cytoplasm into the Golgi...

  1. Characterization of PDF-immunoreactive neurons in the optic lobe and cerebral lobe of the cricket, Gryllus bimaculatus.

    PubMed

    Abdelsalam, Salaheldin; Uemura, Hiroyuki; Umezaki, Yujiro; Saifullah, A S M; Shimohigashi, Miki; Tomioka, Kenji

    2008-07-01

    Pigment-dispersing factor (PDF) is a neuropeptide playing important roles in insect circadian systems. In this study, we morphologically and physiologically characterized PDF-immunoreactive neurons in the optic lobe and the brain of the cricket Gryllus bimaculatus. PDF-immunoreactivity was detected in cells located in the proximal medulla (PDFMe cells) and those in the dorsal and ventral regions of the outer chiasma (PDFLa cells). The PDFMe cells had varicose processes spread over the frontal surface of the medulla and the PDFLa cells had varicose mesh-like innervations in almost whole lamina, suggesting their modulatory role in the optic lobe. Some of PDFMe cells had a hairpin-shaped axonal process running toward the lamina then turning back to project into the brain where they terminated at various protocerebral areas. The PDFMe cells had a low frequency spontaneous spike activity that was higher during the night and was often slightly increased by light pulses. Six pairs of PDF-immunoreactive neurons were also found in the frontal ganglion. Competitive ELISA with anti-PDF antibodies revealed daily cycling of PDF both in the optic lobe and cerebral lobe with an increase during the night that persisted in constant darkness. The physiological role of PDF is discussed based on these results.

  2. Sumatriptan Inhibits TRPV1 Channels in Trigeminal Neurons

    PubMed Central

    Evans, M. Steven; Cheng, Xiangying; Jeffry, Joseph A.; Disney, Kimberly E.; Premkumar, Louis S.

    2011-01-01

    Objective To understand a possible role for transient potential receptor vanilloid 1 (TRPV1) ion channels in sumatriptan relief of pain mediated by trigeminal nociceptors. Background TRPV1 channels are expressed in small nociceptive sensory neurons. In dorsal root ganglia (DRG), TRPV1-containing nociceptors mediate certain types of inflammatory pain. Neurogenic inflammation of cerebral dura and blood vessels in the trigeminal nociceptive system is thought to be important in migraine pain, but the ion channels important in transducing migraine pain are not known. Sumatriptan is an agent effective in treatment of migraine and cluster headache. We hypothesized that sumatriptan might modulate activity of TRPV1 channels found in the trigeminal nociceptive system. Methods We used immunohistochemistry to detect the presence of TRPV1 channel protein, whole cell recording in acutely dissociated trigeminal ganglia (TG) to detect functionality of TRPV1 channels, and whole cell recording in trigeminal nucleus caudalis (TNC) to detect effects on release of neurotransmitters from trigeminal neurons onto second order sensory neurons. Effects specifically on TG neurons that project to cerebral dura were assessed by labeling dural nociceptors with DiI. Results Immunohistochemistry demonstrated that TRPV1 channels are present in cerebral dura, trigeminal ganglion, and in the trigeminal nucleus caudalis. Capsaicin, a TRPV1 agonist, produced depolarization and repetitive action potential firing in current clamp recordings and large inward currents in voltage clamp recordings from acutely dissociated TG neurons, demonstrating that TRPV1 channels are functional in trigeminal neurons. Capsaicin increased spontaneous excitatory postsynaptic currents (sEPSCs) in neurons of layer II in TNC slices, showing that these channels have a physiological effect on central synaptic transmission. Sumatriptan (10 μM), a selective anti-migraine drug inhibited TRPV1-mediated inward currents in TG. and

  3. L-acetylcarnitine enhances functional muscle re-innervation.

    PubMed

    Pettorossi, V E; Brunetti, O; Carobi, C; Della Torre, G; Grassi, S

    1991-01-01

    The efficacy of L-acetylcarnitine and L-carnitine treatment on motor re-innervation was analyzed by evaluating different muscular parameters describing functional muscle recovery after denervation and re-innervation. The results show that L-acetylcarnitine markedly enhances functional muscle re-innervation, which on the contrary is unaffected by L-carnitine. The medial gastrocnemius muscle was denervated by cutting the nerve at the muscle entry point. After 20 days the sectioned nerve was resutured into the medial gastrocnemius muscle, and the extent of re-innervation was monitored 45 days later. L-acetylcarnitine-treated animals show significantly higher twitch and tetanic tensions of re-innervated muscle. Furthermore the results, obtained by analysing the twitch time to peak and tetanic contraction-relaxation times, suggest that L-acetylcarnitine mostly affects the functional re-innervation of slow motor units. The possible mechanisms by which L-acetylcarnitine facilitates such motor and nerve recovery are discussed.

  4. Excitatory and inhibitory innervation of the mouse orofacial motor nuclei: A stereological study.

    PubMed

    Faunes, Macarena; Oñate-Ponce, Alejandro; Fernández-Collemann, Sara; Henny, Pablo

    2016-03-01

    Neurons in the trigeminal (Mo5), facial (Mo7), ambiguus (Amb), and hypoglossal (Mo12) motor nuclei innervate jaw, facial, pharynx/larynx/esophagus, and tongue muscles, respectively. They are essential for movements subserving feeding, exploration of the environment, and social communication. These neurons are largely controlled by sensory afferents and premotor neurons of the reticular formation, where central pattern generator circuits controlling orofacial movements are located. To provide a description of the orofacial nuclei of the adult mouse and to ascertain the influence of excitatory and inhibitory afferents upon them, we used stereology to estimate the number of motoneurons as well as of varicosities immunopositive for glutamate (VGluT1+, VGluT2+) and GABA/glycine (known as VIAAT+ or VGAT+) vesicular transporters in the Mo5, Mo7, Amb, and Mo12. Mo5, Mo7, Amb, and Mo12 contain ∼1,000, ∼3,000, ∼600, and ∼1,700 cells, respectively. VGluT1+, VGluT2+, and VIAAT+ varicosities respectively represent: 28%, 41%, and 31% in Mo5; 2%, 49%, and 49% in Mo7; 12%, 42%, and 46% in Amb; and 4%, 54%, and 42% in Mo12. The Mo5 jaw-closing subdivision shows the highest VGluT1+ innervation. Noticeably, the VGluT2+ and VIAAT+ varicosity density in Mo7 is 5-fold higher than in Mo5 and 10-fold higher than in Amb and Mo12. The high density of terminals in Mo7 likely reflects the convergence and integration of numerous inputs to motoneurons subserving the wide range of complex behaviors to which this nucleus contributes. Also, somatic versus neuropil location of varicosities suggests that most of these afferents are integrated in the dendritic trees of Mo7 neurons. © 2015 Wiley Periodicals, Inc.

  5. Pirt contributes to uterine contraction-induced pain in mice.

    PubMed

    Wang, Changming; Wang, Zhongli; Yang, Yan; Zhu, Chan; Wu, Guanyi; Yu, Guang; Jian, Tunyu; Yang, Niuniu; Shi, Hao; Tang, Min; He, Qian; Lan, Lei; Liu, Qin; Guan, Yun; Dong, Xinzhong; Duan, Jinao; Tang, Zongxiang

    2015-09-17

    Uterine contraction-induced pain (UCP) represents a common and severe form of visceral pain. Nerve fibers that innervate uterine tissue express the transient receptor potential vanilloid channel 1 (TRPV1), which has been shown to be involved in the perception of UCP. The phosphoinositide-interacting regulator of TRP (Pirt) may act as a regulatory subunit of TRPV1. The intraperitoneal injection of oxytocin into female mice after a 6-day priming treatment with estradiol benzoate induces writhing responses, which reflect the presence of UCP. Here, we first compared writhing response between Pirt (+/+) and Pirt (-/-) mice. Second, we examined the innervation of Pirt-expressing nerves in the uterus of Pirt (-/-) mice by immunofluorescence and two-photon microscopy. Third, we identified the soma of dorsal root ganglion (DRG) neurons that innerve the uterus using retrograde tracing and further characterized the neurochemical properties of these DRG neurons. Finally, we compared the calcium response of capsaicin between DRG neurons from Pirt (+/+) and Pirt (-/-) mice. We found that the writhing responses were less intensive in Pirt (-/-) mice than in Pirt (+/+) mice. We also observed Pirt-expressing nerve fibers in the myometrium of the uterus, and that retrograde-labeled cells were small-diameter, unmyelinated, and Pirt-positive DRG neurons. Additionally, we found that the number of capsaicin-responding neurons and the magnitude of evoked calcium response were markedly reduced in DRG neurons from Pirt (-/-) mice. Taken together, we speculate that Pirt plays an important role in mice uterine contraction-induced pain.

  6. Immunocytochemical localization of metabotropic (mGluR2/3 and mGluR4a) and ionotropic (GluR2/3) glutamate receptors in adrenal medullary ganglion cells.

    PubMed

    Sarría, R; Díez, J; Losada, J; Doñate-Oliver, F; Kuhn, R; Grandes, P

    2006-02-01

    The localization of metabotropic glutamate receptors of groups II (mGluR2/3) and III (mGluR4a) and the subunits 2 and 3 of alfa-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) ionotropic glutamate receptors (GluR2/3) was investigated with immunocytochemical methods in the rat adrenal gland. MGluR2/3, mGluR4a and GluR2/3 immunoreactivities were observed in large-sized, centrally located type I adrenal medullary ganglion neurons. Furthermore, the small-sized type II adrenal ganglion neurons identified by their immunoreactivity to brain nitric oxide synthase (bNOS), also expressed mGluR2/3, mGluR4a and GluR2/3. These cells were disposed in the peripheral portion of the adrenal medulla. None of the type I neurons were positively labeled for bNOS. These morphological observations suggest that activation of glutamate receptors in ganglion neurons may be instrumental in the control of adrenal endocrine systems as well as blood regulation.

  7. The role of calcium in the desensitization of capsaicin responses in rat dorsal root ganglion neurons.

    PubMed

    Koplas, P A; Rosenberg, R L; Oxford, G S

    1997-05-15

    Capsaicin (Cap) is a pungent extract of the Capsicum pepper family, which activates nociceptive primary sensory neurons. Inward current and membrane potential responses of cultured neonatal rat dorsal root ganglion neurons to capsaicin were examined using whole-cell and perforated patch recording methods. The responses exhibited strong desensitization operationally classified as acute (diminished response during constant Cap exposure) and tachyphylaxis (diminished response to successive applications of Cap). Both acute desensitization and tachyphylaxis were greatly diminished by reductions in external Ca2+ concentration. Furthermore, chelation of intracellular Ca2+ by addition of either EGTA or bis(2-aminophenoxy)ethane-N,N,N',N'-tetra-acetic acid to the patch pipette attenuated both forms of desensitization even in normal Ca2+. Release of intracellular Ca2+ by caffeine triggered acute desensitization in the absence of extracellular Ca2+, and barium was found to effectively substitute for calcium in supporting desensitization. Cap activated inward current at an ED50 of 728 nM, exhibiting cooperativity (Hill coefficient, 2.2); however, both forms of desensitization were only weakly dependent on [Cap], suggesting a dissociation between activation of Cap-sensitive channels and desensitization. Removal of ATP and GTP from the intracellular solutions resulted in nearly complete tachyphylaxis even with intracellular Ca2+ buffered to low levels, whereas changes in nucleotide levels did not significantly alter the acute form of desensitization. These data suggest a key role for intracellular Ca2+ in desensitization of Cap responses, perhaps through Ca2+-dependent dephosphorylation at a locus that normally sustains Cap responsiveness via ATP-dependent phosphorylation. It also seems that the signaling mechanisms underlying the two forms of desensitization are not identical in detail.

  8. IL-33/ST2 signaling excites sensory neurons and mediates itch response in a mouse model of poison ivy contact allergy.

    PubMed

    Liu, Boyi; Tai, Yan; Achanta, Satyanarayana; Kaelberer, Melanie M; Caceres, Ana I; Shao, Xiaomei; Fang, Jianqiao; Jordt, Sven-Eric

    2016-11-22

    Poison ivy-induced allergic contact dermatitis (ACD) is the most common environmental allergic condition in the United States. Case numbers of poison ivy ACD are increasing due to growing biomass and geographical expansion of poison ivy and increasing content of the allergen, urushiol, likely attributable to rising atmospheric CO 2 Severe and treatment-resistant itch is the major complaint of affected patients. However, because of limited clinical data and poorly characterized models, the pruritic mechanisms in poison ivy ACD remain unknown. Here, we aim to identify the mechanisms of itch in a mouse model of poison ivy ACD by transcriptomics, neuronal imaging, and behavioral analysis. Using transcriptome microarray analysis, we identified IL-33 as a key cytokine up-regulated in the inflamed skin of urushiol-challenged mice. We further found that the IL-33 receptor, ST2, is expressed in small to medium-sized dorsal root ganglion (DRG) neurons, including neurons that innervate the skin. IL-33 induces Ca 2+ influx into a subset of DRG neurons through neuronal ST2. Neutralizing antibodies against IL-33 or ST2 reduced scratching behavior and skin inflammation in urushiol-challenged mice. Injection of IL-33 into urushiol-challenged skin rapidly exacerbated itch-related scratching via ST2, in a histamine-independent manner. Targeted silencing of neuronal ST2 expression by intrathecal ST2 siRNA delivery significantly attenuated pruritic responses caused by urushiol-induced ACD. These results indicate that IL-33/ST2 signaling is functionally present in primary sensory neurons and contributes to pruritus in poison ivy ACD. Blocking IL-33/ST2 signaling may represent a therapeutic approach to ameliorate itch and skin inflammation related to poison ivy ACD.

  9. Functional compatibility between Purkinje cell axon branches and their target neurons in the cerebellum.

    PubMed

    Yang, Zhilai; Chen, Na; Ge, Rongjing; Qian, Hao; Wang, Jin-Hui

    2017-09-22

    A neuron sprouts an axon, and its branches to innervate many target neurons that are divergent in their functions. In order to efficiently regulate the diversified cells, the axon branches should differentiate functionally to be compatible with their target neurons, i.e., a function compatibility between presynaptic and postsynaptic partners. We have examined this hypothesis by using electrophysiological method in the cerebellum, in which the main axon of Purkinje cell projected to deep nucleus cells and the recurrent axons innervated the adjacent Purkinje cells. The fidelity of spike propagation is superior in the recurrent branches than the main axon. The capabilities of encoding spikes and processing GABAergic inputs are advanced in Purkinje cells versus deep nucleus cells. The functional differences among Purkinje's axonal branches and their postsynaptic neurons are preset by the variable dynamics of their voltage-gated sodium channels. In addition, activity strengths between presynaptic and postsynaptic partners are proportionally correlated, i.e., active axonal branches innervate active target neurons, or vice versa. The physiological impact of the functional compatibility is to make the neurons in their circuits to be activated appropriately. In conclusion, each cerebellar Purkinje cell sprouts the differentiated axon branches to be compatible with the diversified target cells in their functions, in order to construct the homeostatic and efficient units for their coordinated activity in neural circuits.

  10. Functional compatibility between Purkinje cell axon branches and their target neurons in the cerebellum

    PubMed Central

    Qian, Hao; Wang, Jin-Hui

    2017-01-01

    A neuron sprouts an axon, and its branches to innervate many target neurons that are divergent in their functions. In order to efficiently regulate the diversified cells, the axon branches should differentiate functionally to be compatible with their target neurons, i.e., a function compatibility between presynaptic and postsynaptic partners. We have examined this hypothesis by using electrophysiological method in the cerebellum, in which the main axon of Purkinje cell projected to deep nucleus cells and the recurrent axons innervated the adjacent Purkinje cells. The fidelity of spike propagation is superior in the recurrent branches than the main axon. The capabilities of encoding spikes and processing GABAergic inputs are advanced in Purkinje cells versus deep nucleus cells. The functional differences among Purkinje's axonal branches and their postsynaptic neurons are preset by the variable dynamics of their voltage-gated sodium channels. In addition, activity strengths between presynaptic and postsynaptic partners are proportionally correlated, i.e., active axonal branches innervate active target neurons, or vice versa. The physiological impact of the functional compatibility is to make the neurons in their circuits to be activated appropriately. In conclusion, each cerebellar Purkinje cell sprouts the differentiated axon branches to be compatible with the diversified target cells in their functions, in order to construct the homeostatic and efficient units for their coordinated activity in neural circuits. PMID:29069799

  11. Inverse Association Between Basilar Artery Volume and Neuron Density in the Stellate Ganglion Following Bilateral Common Carotid Artery Ligation: An Experimental Study.

    PubMed

    Yilmaz, Ilhan; Eseoglu, Metehan; Onen, Mehmet Resid; Tanrıverdi, Osman; Kilic, Mustafa; Yilmaz, Adem; Musluman, Ahmet Murat; Aydin, Mehmet Dumlu; Gündogdu, Cemal

    2017-04-01

    This study examined the relationship between neuron density in the stellate ganglion and the severity of basilar artery (BA) enlargement after bilateral common carotid artery ligation. Rabbits (n = 24) were randomly divided into 3 groups: unoperated control group (n = 4), experimental group subjected to bilateral common carotid artery ligation (n = 15), and sham-operated control group (n = 5). Histologic examination of the BAs and stellate ganglia was performed 2 months later. Permanent bilateral common carotid artery ligation was induced by ligation of common carotid arteries at prebifurcation levels as a model for steno-occlusive carotid artery disease. Mean BA volume and neuron density in stellate ganglia for all animals were 4200 μm 3 ± 240 and 8325 μm 3 ± 210. In sham-operated animals, the mean values were 4360 μm 3 ± 340 and 8250 mm 3 ± 250. For the experimental group, mean volume and density in animals with slight dilatation of the BA (n = 6) were 4948 μm 3 ± 680 and 10,321 mm 3 ± 120, whereas in animals with severe dilatation (n = 9), the values were 6728 μm 3 ± 440 and 6300 mm 3 ± 730. An inverse association was observed between degree of BA enlargement and stellate ganglia neuronal density. High neuron density in stellate ganglia may protect against steno-occlusive carotid artery disease by preventing BA dilatation and aneurysm formation in the posterior circulatory arteries. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Neurons within the trigeminal mesencephalic nucleus encode for the kinematic parameters of the whisker pad macrovibrissae.

    PubMed

    Mameli, Ombretta; Caria, Marcello A; Biagi, Francesca; Zedda, Marco; Farina, Vittorio

    2017-05-01

    It has been recently shown in rats that spontaneous movements of whisker pad macrovibrissae elicited evoked responses in the trigeminal mesencephalic nucleus (Me5). In the present study, electrophysiological and neuroanatomical experiments were performed in anesthetized rats to evaluate whether, besides the whisker displacement per se, the Me5 neurons are also involved in encoding the kinematic properties of macrovibrissae movements, and also whether, as reported for the trigeminal ganglion, even within the Me5 nucleus exists a neuroanatomical representation of the whisker pad macrovibrissae. Extracellular electrical activity of single Me5 neurons was recorded before, during, and after mechanical deflection of the ipsilateral whisker pad macrovibrissae in different directions, and with different velocities and amplitudes. In several groups of animals, single or multiple injections of the tracer Dil were performed into the whisker pad of one side, in close proximity to the vibrissae follicles, in order to label the peripheral terminals of the Me5 neurons innervating the macrovibrissae (whisking-neurons), and therefore, the respective perikaria within the nucleus. Results showed that: (1) the whisker pad macrovibrissae were represented in the medial-caudal part of the Me5 nucleus by a single cluster of cells whose number seemed to match that of the macrovibrissae; (2) macrovibrissae mechanical deflection elicited significant responses in the Me5 whisking-neurons, which were related to the direction, amplitude, and frequency of the applied deflection. The specific functional role of Me5 neurons involved in encoding proprioceptive information arising from the macrovibrissae movements is discussed within the framework of the whole trigeminal nuclei activities. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  13. Arterial innervation in development and disease.

    PubMed

    Eichmann, Anne; Brunet, Isabelle

    2014-09-03

    Innervation of arteries by sympathetic nerves is well known to control blood supply to organs. Recent studies have elucidated the mechanisms that regulate the development of arterial innervation and show that in addition to vascular tone, sympathetic nerves may also influence arterial maturation and growth. Understanding sympathetic arterial innervation may lead to new approaches to treat peripheral arterial disease and hypertension. Copyright © 2014, American Association for the Advancement of Science.

  14. Complete adult neurogenesis within a Wallerian degenerating nerve expressed as an ectopic ganglion.

    PubMed

    Nakano, Tomonori; Kurimoto, Shigeru; Kato, Shuichi; Asano, Kenichi; Hirata, Takuma; Kiyama, Hiroshi; Hirata, Hitoshi

    2018-06-01

    Neurogenesis in the adult peripheral nervous system remains to be demonstrated. We transplanted embryonic neural stem cells into a Wallerian degenerating nerve graft and observed development of a nodular structure consisting of neurons, glia, and Schwann cells. Histological analysis revealed a structure loosely resembling the spinal cord, including a synaptic network that formed along the neuron. Furthermore, the new axons reinnervated the paralysed muscle, forming both de novo and revived neuromuscular junctions. Reinnervation of the paralysed muscle resulted in significantly greater mean wet muscle weight and muscle fibre cross-sectional area on the cell transplantation side than on the surgical control side (body weight 0.071 ± 0.011% vs. 0.051 ± 0.007%, p = .006; area 355.6 ± 345.2 vs. 114.0 ± 132.0 μm 2 , p < .001). Electrophysiological experiments demonstrated a functional connection between the neurons and muscle; hence, we identified this nodule as an ectopic ganglion. Surprisingly, in green rat experiments, most of these glial cells, but none of the neurons, expressed enhanced green fluorescent protein, suggesting that the cells constituting the ectopic ganglion were derived from both transplanted stem cells and endogenous stem cells. Such adult neurogenesis in a peripheral nerve related to neural stem cell transplantation has not been reported previously, and these results form the basis for a novel regenerative medicine approach in paralysed muscle. Copyright © 2018 John Wiley & Sons, Ltd.

  15. Glial interleukin-1β upregulates neuronal sodium channel 1.7 in trigeminal ganglion contributing to temporomandibular joint inflammatory hypernociception in rats.

    PubMed

    Zhang, Peng; Bi, Rui-Yun; Gan, Ye-Hua

    2018-04-20

    The proinflammatory cytokine interleukin-1β (IL-1β) drives pain by inducing the expression of inflammatory mediators; however, its ability to regulate sodium channel 1.7 (Nav1.7), a key driver of temporomandibular joint (TMJ) hypernociception, remains unknown. IL-1β induces cyclooxygenase-2 (COX-2) and prostaglandin E2 (PGE2). We previously showed that PGE2 upregulated trigeminal ganglionic Nav1.7 expression. Satellite glial cells (SGCs) involve in inflammatory pain through glial cytokines. Therefore, we explored here in the trigeminal ganglion (TG) whether IL-1β upregulated Nav1.7 expression and whether the IL-1β located in the SGCs upregulated Nav1.7 expression in the neurons contributing to TMJ inflammatory hypernociception. We treated rat TG explants with IL-1β with or without inhibitors, including NS398 for COX-2, PF-04418948 for EP2, and H89 and PKI-(6-22)-amide for protein kinase A (PKA), or with adenylate cyclase agonist forskolin, and used real-time PCR, Western blot, and immunohistofluorescence to determine the expressions or locations of Nav1.7, COX-2, cAMP response element-binding protein (CREB) phosphorylation, and IL-1β. We used chromatin immunoprecipitation to examine CREB binding to the Nav1.7 promoter. Finally, we microinjected IL-1β into the TGs or injected complete Freund's adjuvant into TMJs with or without previous microinjection of fluorocitrate, an inhibitor of SGCs activation, into the TGs, and evaluated nociception and gene expressions. Differences between groups were examined by one-way analysis of variance (ANOVA) or independent samples t test. IL-1β upregulated Nav1.7 mRNA and protein expressions in the TG explants, whereas NS398, PF-04418948, H89, or PKI-(6-22)-amide could all block this upregulation, and forskolin could also upregulate Nav1.7 mRNA and protein expressions. IL-1β enhanced CREB binding to the Nav1.7 promoter. Microinjection of IL-1β into the TGs or TMJ inflammation both induced hypernociception of TMJ region

  16. Expression of squid iridescence depends on environmental luminance and peripheral ganglion control.

    PubMed

    Gonzalez-Bellido, P T; Wardill, T J; Buresch, K C; Ulmer, K M; Hanlon, R T

    2014-03-15

    Squid display impressive changes in body coloration that are afforded by two types of dynamic skin elements: structural iridophores (which produce iridescence) and pigmented chromatophores. Both color elements are neurally controlled, but nothing is known about the iridescence circuit, or the environmental cues, that elicit iridescence expression. To tackle this knowledge gap, we performed denervation, electrical stimulation and behavioral experiments using the long-fin squid, Doryteuthis pealeii. We show that while the pigmentary and iridescence circuits originate in the brain, they are wired differently in the periphery: (1) the iridescence signals are routed through a peripheral center called the stellate ganglion and (2) the iridescence motor neurons likely originate within this ganglion (as revealed by nerve fluorescence dye fills). Cutting the inputs to the stellate ganglion that descend from the brain shifts highly reflective iridophores into a transparent state. Taken together, these findings suggest that although brain commands are necessary for expression of iridescence, integration with peripheral information in the stellate ganglion could modulate the final output. We also demonstrate that squid change their iridescence brightness in response to environmental luminance; such changes are robust but slow (minutes to hours). The squid's ability to alter its iridescence levels may improve camouflage under different lighting intensities.

  17. Characterization of spiral ganglion neurons cultured on silicon micro-pillar substrates for new auditory neuro-electronic interfaces.

    PubMed

    Mattotti, M; Micholt, L; Braeken, D; Kovačić, D

    2015-04-01

    One of the strategies to improve cochlear implant technology is to increase the number of electrodes in the neuro-electronic interface. The objective was to characterize in vitro cultures of spiral ganglion neurons (SGN) cultured on surfaces of novel silicon micro-pillar substrates (MPS). SGN from P5 rat pups were cultured on MPS with different micro-pillar widths (1-5.6 μm) and spacings (0.6-15 μm) and were compared with control SGN cultures on glass coverslips by immunocytochemistry and scanning electron microscopy (SEM). Overall, MPS support SGN growth equally well as the control glass surfaces. Micro-pillars of a particular size-range (1.2-2.4 μm) were optimal in promoting SGN presence, neurite growth and alignment. On this specific micro-pillar size, more SGN were present, and neurites were longer and more aligned. SEM pictures highlight how cells on micro-pillars with smaller spacings grow directly on top of pillars, while at wider spacings (from 3.2 to 15 μm) they grow on the bottom of the surface, losing contact guidance. Further, we found that MPS encourage more monopolar and bipolar SGN morphologies compared to the control condition. Finally, MPS induce longest neurite growth with minimal interaction of S100+ glial cells. These results indicate that silicon micro-pillar substrates create a permissive environment for the growth of primary auditory neurons promoting neurite sprouting and are a promising technology for future high-density three-dimensional CMOS-based auditory neuro-electronic interfaces.

  18. Afferent innervation of the utricular macula in pigeons

    NASA Technical Reports Server (NTRS)

    Si, Xiaohong; Zakir, Mridha Md; Dickman, J. David

    2003-01-01

    Biotinylated dextran amine (BDA) was used to retrogradely label afferents innervating the utricular macula in adult pigeons. The pigeon utriclar macula consists of a large rectangular-shaped neuroepithelium with a dorsally curved anterior edge and an extended medioposterior tail. The macula could be demarcated into several regions based on cytoarchitectural differences. The striola occupied 30% of the macula and contained a large density of type I hair cells with fewer type II hair cells. Medial and lateral extrastriola zones were located outside the striola and contained only type II hair cells. A six- to eight-cell-wide band of type II hair cells existed near the center of the striola. The reversal line marked by the morphological polarization of hair cells coursed throughout the epithelium, near the peripheral margin, and through the center of the type II band. Calyx afferents innervated type I hair cells with calyceal terminals that contained between 2 and 15 receptor cells. Calyx afferents were located only in the striola region, exclusive of the type II band, had small total fiber innervation areas and low innervation densities. Dimorph afferents innervated both type I and type II hair cells with calyceal and bouton terminals and were primarily located in the striola region. Dimorph afferents had smaller calyceal terminals with few type I hair cells, extended fiber branches with bouton terminals and larger innervation areas. Bouton afferents innervated only type II hair cells in the extrastriola and type II band regions. Bouton afferents innervating the type II band had smaller terminal fields with fewer bouton terminals and smaller innervation areas than fibers located in the extrastriolar zones. Bouton afferents had the most bouton terminals on the longest fibers, the largest innervation areas with the highest innervation densities of all afferents. Among all afferents, smaller terminal innervation fields were observed in the striola and large fields were

  19. Functional crosstalk in culture between macrophages and trigeminal sensory neurons of a mouse genetic model of migraine

    PubMed Central

    2012-01-01

    Background Enhanced activity of trigeminal ganglion neurons is thought to underlie neuronal sensitization facilitating the onset of chronic pain attacks, including migraine. Recurrent headache attacks might establish a chronic neuroinflammatory ganglion profile contributing to the hypersensitive phenotype. Since it is difficult to study this process in vivo, we investigated functional crosstalk between macrophages and sensory neurons in primary cultures from trigeminal sensory ganglia of wild-type (WT) or knock-in (KI) mice expressing the Cacna1a gene mutation (R192Q) found in familial hemiplegic migraine-type 1. After studying the number and morphology of resident macrophages in culture, the consequences of adding host macrophages on macrophage phagocytosis and membrane currents mediated by pain-transducing P2X3 receptors on sensory neurons were examined. Results KI ganglion cultures constitutively contained a larger number of active macrophages, although no difference in P2X3 receptor expression was found. Co-culturing WT or KI ganglia with host macrophages (active as much as resident cells) strongly stimulated single cell phagocytosis. The same protocol had no effect on P2X3 receptor expression in WT or KI co-cultures, but it largely enhanced WT neuron currents that grew to the high amplitude constitutively seen for KI neurons. No further potentiation of KI neuronal currents was observed. Conclusions Trigeminal ganglion cultures from a genetic mouse model of migraine showed basal macrophage activation together with enhanced neuronal currents mediated by P2X3 receptors. This phenotype could be replicated in WT cultures by adding host macrophages, indicating an important functional crosstalk between macrophages and sensory neurons. PMID:23171280

  20. Calcium channels in solitary retinal ganglion cells from post-natal rat.

    PubMed Central

    Karschin, A; Lipton, S A

    1989-01-01

    1. Calcium currents from identified, post-natal retinal ganglion cell neurones from rat were studied with whole-cell and single-channel patch-clamp techniques. Na+ and K+ currents were suppressed with pharmacological agents, allowing isolation of current carried by either 10 mM-Ca2+ or Ba2- during whole-cell recordings. For cell-attached patch recordings, the recording pipette contained 96-110 mM-BaCl2 while the bath solution consisted of isotonic potassium aspartate in order to zero the neuronal membrane potential. 2. A transient component, present in approximately one-third of the whole-cell recordings resembles closely the T-type calcium current observed previously in other tissues. This component activates at low voltages (-40 to -50 mV from holding potentials negative to -80 mV), inactivates with a time constant of 10-30 ms at 35 degrees C, and is carried equally well by Ba2+ or Ca2+. In single-channel recordings small (8 pS) channels are observed whose aggregate microscopic kinetics correspond well to the macroscopic current obtained during whole-cell measurements. 3. During whole-cell recordings, a more prolonged component activates in all retinal ganglion cells at -40 to -20 mV from a holding potential of -90 mV. This component is substantially larger when equimolar Ba2+ replaces Ca2+ as the charge carrier, and is sensitive to the dihydropyridine agonist Bay K8644 (5 microM) and antagonists nifedipine (1-10 microM) and nimodipine (1-10 microM). Thus, the dihydropyridine pharmacology of this prolonged component resembles that of the L-type calcium current found in dorsal root ganglion neurones and in heart cells. Also reminiscent of the L-current, the prolonged component in this preparation is less inactivated at depolarized holding potentials (-60 to -40 mV) than the transient component. In cell-attached recordings, large (20 pS) channels are observed with activation properties similar to those of the prolonged portion of the whole-cell current. 4. omega

  1. Bidirectional crosstalk between the sensory and sympathetic motor systems innervating brown and white adipose tissue in male Siberian hamsters.

    PubMed

    Ryu, Vitaly; Watts, Alan G; Xue, Bingzhong; Bartness, Timothy J

    2017-03-01

    The brain networks connected to the sympathetic motor and sensory innervations of brown (BAT) and white (WAT) adipose tissues were originally described using two transneuronally transported viruses: the retrogradely transported pseudorabies virus (PRV), and the anterogradely transported H129 strain of herpes simplex virus-1 (HSV-1 H129). Further complexity was added to this network organization when combined injections of PRV and HSV-1 H129 into either BAT or WAT of the same animal generated sets of coinfected neurons in the brain, spinal cord, and sympathetic and dorsal root ganglia. These neurons are well positioned to act as sensorimotor links in the feedback circuits that control each fat pad. We have now determined the extent of sensorimotor crosstalk between interscapular BAT (IBAT) and inguinal WAT (IWAT). PRV152 and HSV-1 H129 were each injected into IBAT or IWAT of the same animal: H129 into IBAT and PRV152 into IWAT. The reverse configuration was applied in a different set of animals. We found single-labeled neurons together with H129+PRV152 coinfected neurons in multiple brain sites, with lesser numbers in the sympathetic and dorsal root ganglia that innervate IBAT and IWAT. We propose that these coinfected neurons mediate sensory-sympathetic motor crosstalk between IBAT and IWAT. Comparing the relative numbers of coinfected neurons between the two injection configurations showed a bias toward IBAT-sensory and IWAT-sympathetic motor feedback loops. These coinfected neurons provide a neuroanatomical framework for functional interactions between IBAT thermogenesis and IWAT lipolysis that occurs with cold exposure, food restriction/deprivation, exercise, and more generally with alterations in adiposity. Copyright © 2017 the American Physiological Society.

  2. Spontaneous Discharge Patterns in Cochlear Spiral Ganglion Cells Prior to the Onset of Hearing in Cats

    PubMed Central

    Jones, Timothy A.; Leake, Patricia A.; Snyder, Russell L.; Stakhovskaya, Olga; Bonham, Ben

    2008-01-01

    Spontaneous neural activity has been recorded in the auditory nerve of cats as early as 2 days postnatal (P2 ), yet individual auditory neurons do not respond to ambient sound levels below 90–100 dB SPL until about P10. Significant refinement of the central projections from the spiral ganglion to the cochlear nucleus occurs during this neonatal period. This refinement may be dependent on peripheral spontaneous discharge activity. We recorded from single spiral ganglion cells in kittens aged P3 to P9. The spiral ganglion was accessed via the round window through the spiral lamina. A total of 112 ganglion cells were isolated for study in 9 animals. Spike rates in neonates were very low, ranging from 0.06 to 56 sp/s with a mean of 3.09 +/− 8.24 sp/s. Ganglion cells in neonatal kittens exhibited remarkable repetitive spontaneous bursting discharge patterns. The unusual patterns were evident in the large mean interval coefficient of variation (CVi = 2.9 +/−1.6) and burst index of 5.2 +/− 3.5 across ganglion cells. Spontaneous bursting patterns in these neonatal mammals were similar to those reported for cochlear ganglion cells of the embryonic chicken suggesting this may be a general phenomenon that is common across animal classes. Rhythmic spontaneous discharge of retinal ganglion cells has been shown to be important in the development of central retinotopic projections and normal binocular vision (Shatz, 1996, Proc Natl Acad Sci 93). Bursting rhythms in cochlear ganglion cells may play a similar role in the auditory system during pre-hearing periods. PMID:17686914

  3. Regulation of the intracellular free calcium concentration in single rat dorsal root ganglion neurones in vitro.

    PubMed Central

    Thayer, S A; Miller, R J

    1990-01-01

    1. Simultaneous whole-cell patch-clamp and Fura-2 microfluorimetric recordings of calcium currents (ICa) and the intracellular free Ca2+ concentration ([Ca2+]i) were made from neurones grown in primary culture from the dorsal root ganglion of the rat. 2. Cells held at -80 mV and depolarized to 0 mV elicited a ICa that resulted in an [Ca2+]i transient which was not significantly buffered during the voltage step and lasted long after the cell had repolarized and the current ceased. The process by which the cell buffered [Ca2+]i back to basal levels could best be described with a single-exponential equation. 3. The membrane potential versus ICa and [Ca2+]i relationship revealed that the peak of the [Ca2+]i transient evoked at a given test potential closely paralleled the magnitude of the ICa suggesting that neither voltage-dependent nor Ca2(+)-induced Ca2+ release from intracellular stores made a significant contribution to the [Ca2+]i transient. 4. When the cell was challenged with Ca2+ loads of different magnitude by varying the duration or potential of the test pulse, [Ca2+]i buffering was more effective for larger Ca2+ loads. The relationship between the integrated ICa and the peak of the [Ca2+]i transient reached an asymptote at large Ca2+ loads indicating that Ca2(+)-dependent processes became more efficient or that low-affinity processes had been recruited. 5. Inhibition of Ca2+ influx with neuropeptide Y demonstrated that inhibition of a large ICa produced minor alterations in the peak of the [Ca2+]i transient, while inhibition of smaller currents produced corresponding decreases in the [Ca2+]i transient. Thus, inhibition of the ICa was reflected by a change in the peak [Ca2+]i only when submaximal Ca2+ loads were applied to the cell, implying that modulation of [Ca2+]i is dependent on the activation state of the cells. 6. Intracellular dialysis with the mitochondrial Ca2+ uptake blocker Ruthenium Red in whole-cell patch-clamp experiments removed the buffering

  4. Single-unit labeling of medial olivocochlear neurons: the cochlear frequency map for efferent axons.

    PubMed

    Brown, M Christian

    2014-06-01

    Medial olivocochlear (MOC) neurons are efferent neurons that project axons from the brain to the cochlea. Their action on outer hair cells reduces the gain of the "cochlear amplifier," which shifts the dynamic range of hearing and reduces the effects of noise masking. The MOC effects in one ear can be elicited by sound in that ipsilateral ear or by sound in the contralateral ear. To study how MOC neurons project onto the cochlea to mediate these effects, single-unit labeling in guinea pigs was used to study the mapping of MOC neurons for neurons responsive to ipsilateral sound vs. those responsive to contralateral sound. MOC neurons were sharply tuned to sound frequency with a well-defined characteristic frequency (CF). However, their labeled termination spans in the organ of Corti ranged from narrow to broad, innervating between 14 and 69 outer hair cells per axon in a "patchy" pattern. For units responsive to ipsilateral sound, the midpoint of innervation was mapped according to CF in a relationship generally similar to, but with more variability than, that of auditory-nerve fibers. Thus, based on CF mappings, most of the MOC terminations miss outer hair cells involved in the cochlear amplifier for their CF, which are located more basally. Compared with ipsilaterally responsive neurons, contralaterally responsive neurons had an apical offset in termination and a larger span of innervation (an average of 10.41% cochlear distance), suggesting that when contralateral sound activates the MOC reflex, the actions are different than those for ipsilateral sound. Copyright © 2014 the American Physiological Society.

  5. Single-unit labeling of medial olivocochlear neurons: the cochlear frequency map for efferent axons

    PubMed Central

    2014-01-01

    Medial olivocochlear (MOC) neurons are efferent neurons that project axons from the brain to the cochlea. Their action on outer hair cells reduces the gain of the “cochlear amplifier,” which shifts the dynamic range of hearing and reduces the effects of noise masking. The MOC effects in one ear can be elicited by sound in that ipsilateral ear or by sound in the contralateral ear. To study how MOC neurons project onto the cochlea to mediate these effects, single-unit labeling in guinea pigs was used to study the mapping of MOC neurons for neurons responsive to ipsilateral sound vs. those responsive to contralateral sound. MOC neurons were sharply tuned to sound frequency with a well-defined characteristic frequency (CF). However, their labeled termination spans in the organ of Corti ranged from narrow to broad, innervating between 14 and 69 outer hair cells per axon in a “patchy” pattern. For units responsive to ipsilateral sound, the midpoint of innervation was mapped according to CF in a relationship generally similar to, but with more variability than, that of auditory-nerve fibers. Thus, based on CF mappings, most of the MOC terminations miss outer hair cells involved in the cochlear amplifier for their CF, which are located more basally. Compared with ipsilaterally responsive neurons, contralaterally responsive neurons had an apical offset in termination and a larger span of innervation (an average of 10.41% cochlear distance), suggesting that when contralateral sound activates the MOC reflex, the actions are different than those for ipsilateral sound. PMID:24598524

  6. Tumor necrosis factor-α inhibits angiotensin II receptor type 1 expression in dorsal root ganglion neurons via β-catenin signaling.

    PubMed

    Yang, Y; Wu, H; Yan, J-Q; Song, Z-B; Guo, Q-L

    2013-09-17

    Both tumor necrosis factor (TNF)-α and the angiotensin (Ang) II/angiotensin II receptor type 1 (AT1) axis play important roles in neuropathic pain and nociception. In the present study, we explored the interaction between the two systems by examining the mutual effects between TNF-α and the Ang II/AT1 receptor axis in dorsal root ganglion (DRG) neurons. Rat DRG neurons were treated with TNF-α in different concentrations for different lengths of time in the presence or absence of transcription inhibitor actinomycin D, TNF receptor 1 (TNFR1) inhibitor SPD304, β-catenin signaling inhibitor CCT031374, or different kinase inhibitors. TNF-α decreased the AT1 receptor mRNA level as well as the AT1a receptor promoter activity in a dose-dependent manner within 30 h, which led to dose-dependent inhibition of Ang II-binding AT1 receptor level on the cell membrane. Actinomycin D (1 mg/ml), SPD304 (50 μM), p38 mitogen-activated protein kinase (MAPK) inhibitor PD169316 (25 μM), and CCT031374 (50 μM) completely abolished the inhibitory effect of TNF-α on AT1 receptor expression. TNF-α dose-dependently increased soluble β-catenin and phosphorylated GSK-3β levels, which was blocked by SPD304 and PD169316. In DRG neurons treated with AT2 receptor agonist CGP421140, or Ang II with or without AT1 receptor antagonist losartan or AT2 receptor antagonist PD123319 for 30 h, we found that Ang II and Ang II+PD123319 significantly decreased TNF-α expression, whereas CPG421140 and Ang II+losartan increased TNF-α expression. In conclusion, we demonstrate that TNF-α inhibits AT1 receptor expression at the transcription level via TNFR1 in rat DRG neurons by increasing the soluble β-catenin level through the p38 MAPK/GSK-3β pathway. In addition, Ang II appears to inhibit and induce TNF-α expression via the AT1 receptor and the AT2 receptor in DRG neurons, respectively. This is the first evidence of crosstalk between TNF-α and the Ang II/AT receptor axis in DRG neurons

  7. The neuronal EGF-related gene Nell2 interacts with Macf1 and supports survival of retinal ganglion cells after optic nerve injury.

    PubMed

    Munemasa, Yasunari; Chang, Chang-Sheng; Kwong, Jacky M K; Kyung, Haksu; Kitaoka, Yasushi; Caprioli, Joseph; Piri, Natik

    2012-01-01

    Nell2 is a neuron-specific protein containing six epidermal growth factor-like domains. We have identified Nell2 as a retinal ganglion cell (RGC)-expressed gene by comparing mRNA profiles of control and RGC-deficient rat retinas. The aim of this study was to analyze Nell2 expression in wild-type and optic nerve axotomized retinas and evaluate its potential role in RGCs. Nell2-positive in situ and immunohistochemical signals were localized to irregularly shaped cells in the ganglion cell layer (GCL) and colocalized with retrogradely-labeled RGCs. No Nell2-positive cells were detected in 2 weeks optic nerve transected (ONT) retinas characterized with approximately 90% RGC loss. RT-PCR analysis showed a dramatic decrease in the Nell2 mRNA level after ONT compared to the controls. Immunoblot analysis of the Nell2 expression in the retina revealed the presence of two proteins with approximate MW of 140 and 90 kDa representing glycosylated and non-glycosylated Nell2, respectively. Both products were almost undetectable in retinal protein extracts two weeks after ONT. Proteome analysis of Nell2-interacting proteins carried out with MALDI-TOF MS (MS) identified microtubule-actin crosslinking factor 1 (Macf1), known to be critical in CNS development. Strong Macf1 expression was observed in the inner plexiform layer and GCL where it was colocalizied with Thy-1 staining. Since Nell2 has been reported to increase neuronal survival of the hippocampus and cerebral cortex, we evaluated the effect of Nell2 overexpression on RGC survival. RGCs in the nasal retina were consistently more efficiently transfected than in other areas (49% vs. 13%; n = 5, p<0.05). In non-transfected or pEGFP-transfected ONT retinas, the loss of RGCs was approximately 90% compared to the untreated control. In the nasal region, Nell2 transfection led to the preservation of approximately 58% more cells damaged by axotomy compared to non-transfected (n = 5, p<0.01) or pEGFP-transfected controls (n = 5, p<0.01).

  8. The Neuronal EGF-Related Gene Nell2 Interacts with Macf1 and Supports Survival of Retinal Ganglion Cells after Optic Nerve Injury

    PubMed Central

    Munemasa, Yasunari; Chang, Chang-Sheng; Kwong, Jacky M. K.; Kyung, Haksu; Kitaoka, Yasushi; Caprioli, Joseph; Piri, Natik

    2012-01-01

    Nell2 is a neuron-specific protein containing six epidermal growth factor-like domains. We have identified Nell2 as a retinal ganglion cell (RGC)-expressed gene by comparing mRNA profiles of control and RGC-deficient rat retinas. The aim of this study was to analyze Nell2 expression in wild-type and optic nerve axotomized retinas and evaluate its potential role in RGCs. Nell2-positive in situ and immunohistochemical signals were localized to irregularly shaped cells in the ganglion cell layer (GCL) and colocalized with retrogradely-labeled RGCs. No Nell2-positive cells were detected in 2 weeks optic nerve transected (ONT) retinas characterized with approximately 90% RGC loss. RT-PCR analysis showed a dramatic decrease in the Nell2 mRNA level after ONT compared to the controls. Immunoblot analysis of the Nell2 expression in the retina revealed the presence of two proteins with approximate MW of 140 and 90 kDa representing glycosylated and non-glycosylated Nell2, respectively. Both products were almost undetectable in retinal protein extracts two weeks after ONT. Proteome analysis of Nell2-interacting proteins carried out with MALDI-TOF MS (MS) identified microtubule-actin crosslinking factor 1 (Macf1), known to be critical in CNS development. Strong Macf1 expression was observed in the inner plexiform layer and GCL where it was colocalizied with Thy-1 staining. Since Nell2 has been reported to increase neuronal survival of the hippocampus and cerebral cortex, we evaluated the effect of Nell2 overexpression on RGC survival. RGCs in the nasal retina were consistently more efficiently transfected than in other areas (49% vs. 13%; n = 5, p<0.05). In non-transfected or pEGFP-transfected ONT retinas, the loss of RGCs was approximately 90% compared to the untreated control. In the nasal region, Nell2 transfection led to the preservation of approximately 58% more cells damaged by axotomy compared to non-transfected (n = 5, p<0.01) or pEGFP-transfected controls (n

  9. Estrogen and female reproductive tract innervation: cellular and molecular mechanisms of autonomic neuroplasticity

    PubMed Central

    Brauer, M. Mónica; Smith, Peter G.

    2014-01-01

    The female reproductive tract undergoes remarkable functional and structural changes associated with cycling, conception and pregnancy, and it is likely advantageous to both individual and species to alter relationships between reproductive tissues and innervation. For several decades, it has been appreciated that the mammalian uterus undergoes massive sympathetic axon depletion in late pregnancy, possibly representing an adaptation to promote smooth muscle quiescence and sustained blood flow. Innervation to other structures such as cervix and vagina also undergo pregnancy-related changes in innervation that may facilitate parturition. These tissues provide highly tractable models for examining cellular and molecular mechanisms underlying peripheral nervous system plasticity. Studies show that estrogen elicits rapid degeneration of sympathetic terminal axons in myometrium, which regenerate under low-estrogen conditions. Degeneration is mediated by the target tissue: under estrogen's influence, the myometrium produces proteins repulsive to sympathetic axons including BDNF, neurotrimin, semaphorins, and pro-NGF, and extracellular matrix components are remodeled. Interestingly, nerve depletion does not involve diminished levels of classical sympathetic neurotrophins that promote axon growth. Estrogen also affects sympathetic neuron neurotrophin receptor expression in ways that appear to favor pro-degenerative effects of the target tissue. In contrast to the uterus, estrogen depletes vaginal autonomic and nociceptive axons, with the latter driven in part by estrogen-induced suppression BMP4 synthesis. These findings illustrate that hormonally mediated physiological plasticity is a highly complex phenomenon involving multiple, predominantly repulsive target-derived factors acting in concert to achieve rapid and selective reductions in innervation. PMID:25530517

  10. Ontogeny of neuro-insular complexes and islets innervation in the human pancreas.

    PubMed

    Proshchina, Alexandra E; Krivova, Yulia S; Barabanov, Valeriy M; Saveliev, Sergey V

    2014-01-01

    The ontogeny of the neuro-insular complexes (NIC) and the islets innervation in human pancreas has not been studied in detail. Our aim was to describe the developmental dynamics and distribution of the nervous system structures in the endocrine part of human pancreas. We used double-staining with antibodies specific to pan-neural markers [neuron-specific enolase (NSE) and S100 protein] and to hormones of pancreatic endocrine cells. NSE and S100-positive nerves and ganglia were identified in the human fetal pancreas from gestation week (gw) 10 onward. Later the density of S100 and NSE-positive fibers increased. In adults, this network was sparse. The islets innervation started to form from gw 14. NSE-containing endocrine cells were identified from gw 12 onward. Additionally, S100-positive cells were detected both in the periphery and within some of the islets starting at gw 14. The analysis of islets innervation has shown that the fetal pancreas contained NIC and the number of these complexes was reduced in adults. The highest density of NIC is detected during middle and late fetal periods, when the mosaic islets, typical for adults, form. The close integration between the developing pancreatic islets and the nervous system structures may play an important role not only in the hormone secretion, but also in the islets morphogenesis.

  11. Ontogeny of Neuro-Insular Complexes and Islets Innervation in the Human Pancreas

    PubMed Central

    Proshchina, Alexandra E.; Krivova, Yulia S.; Barabanov, Valeriy M.; Saveliev, Sergey V.

    2014-01-01

    The ontogeny of the neuro-insular complexes (NIC) and the islets innervation in human pancreas has not been studied in detail. Our aim was to describe the developmental dynamics and distribution of the nervous system structures in the endocrine part of human pancreas. We used double-staining with antibodies specific to pan-neural markers [neuron-specific enolase (NSE) and S100 protein] and to hormones of pancreatic endocrine cells. NSE and S100-positive nerves and ganglia were identified in the human fetal pancreas from gestation week (gw) 10 onward. Later the density of S100 and NSE-positive fibers increased. In adults, this network was sparse. The islets innervation started to form from gw 14. NSE-containing endocrine cells were identified from gw 12 onward. Additionally, S100-positive cells were detected both in the periphery and within some of the islets starting at gw 14. The analysis of islets innervation has shown that the fetal pancreas contained NIC and the number of these complexes was reduced in adults. The highest density of NIC is detected during middle and late fetal periods, when the mosaic islets, typical for adults, form. The close integration between the developing pancreatic islets and the nervous system structures may play an important role not only in the hormone secretion, but also in the islets morphogenesis. PMID:24795697

  12. [Changes in the electrical activity of the rabbit proximal colon in vivo by stimulation of the vagus and splanchnic nerves].

    PubMed

    Julé, Y

    1975-05-01

    1. Using extracellular electrodes placed on the serosa, we recorded the modifications of the electrical activity of the colonic muslce fibers caused by the stimulation of vagal and splanchnic nerve fibers. 2. Vagal stimulation produces two types of junction potentials: excitatory junction potentials (EJPs) and inhibitory junction potentials (IJPs). The IJPs are elicited by stimulation of vagal fibers which innervate intramural non-adrenergic inhibitory neurons. 3. The conduction velocity of the nerve impulse along the vagal pre-ganglionic fibers is 1.01 m/sec for excitatory fibers and 0.5. m/sec for inhibitory fibers. 4. Splanchnic fiber stimulation causes EJP disappearance, blocking transmission between preganglionic fibers and intramural excitatory neurons, and a decrease in IJP amplitude that most likely indicates a previous hyperpolarization of the smooth muscle. 5. IJP persistence during splanchnic stimulation proves that sympathetic inhibition does not modify the transmission of the vagal influx onto the non-adrenergic inhibitory neurons of the intramural plexuses. 6. Through a comparative study of proximal and distal colonic innervation, we are able to show that there is a similar organization of both regions, that is a double inhibitory innervation: an adrenergic one of a sympathetic origin, and a non adrenergic one of a parasympathetic origin.

  13. The subgenual organ complex in the cave cricket Troglophilus neglectus (Orthoptera: Rhaphidophoridae): comparative innervation and sensory evolution

    PubMed Central

    Strauß, Johannes; Stritih, Nataša; Lakes-Harlan, Reinhard

    2014-01-01

    Comparative studies of the organization of nervous systems and sensory organs can reveal their evolution and specific adaptations. In the forelegs of some Ensifera (including crickets and tettigoniids), tympanal hearing organs are located in close proximity to the mechanosensitive subgenual organ (SGO). In the present study, the SGO complex in the non-hearing cave cricket Troglophilus neglectus (Rhaphidophoridae) is investigated for the neuronal innervation pattern and for organs homologous to the hearing organs in related taxa. We analyse the innervation pattern of the sensory organs (SGO and intermediate organ (IO)) and its variability between individuals. In T. neglectus, the IO consists of two major groups of closely associated sensilla with different positions. While the distal-most sensilla superficially resemble tettigoniid auditory sensilla in location and orientation, the sensory innervation does not show these two groups to be distinct organs. Though variability in the number of sensory nerve branches occurs, usually either organ is supplied by a single nerve branch. Hence, no sensory elements clearly homologous to the auditory organ are evident. In contrast to other non-hearing Ensifera, the cave cricket sensory structures are relatively simple, consistent with a plesiomorphic organization resembling sensory innervation in grasshoppers and stick insects. PMID:26064547

  14. Targeted ablation of cardiac sympathetic neurons improves ventricular electrical remodelling in a canine model of chronic myocardial infarction.

    PubMed

    Xiong, Liang; Liu, Yu; Zhou, Mingmin; Wang, Guangji; Quan, Dajun; Shen, Caijie; Shuai, Wei; Kong, Bin; Huang, Congxin; Huang, He

    2018-05-31

    The purpose of this study was to evaluate the cardiac electrophysiologic effects of targeted ablation of cardiac sympathetic neurons (TACSN) in a canine model of chronic myocardial infarction (MI). Thirty-eight anaesthetized dogs were randomly assigned into the sham-operated, MI, and MI-TACSN groups, respectively. Myocardial infarction-targeted ablation of cardiac sympathetic neuron was induced by injecting cholera toxin B subunit-saporin compound in the left stellate ganglion (LSG). Five weeks after surgery, the cardiac function, heart rate variability (HRV), ventricular electrophysiological parameters, LSG function and neural activity, serum norepinephrine (NE), nerve growth factor (NGF), and brain natriuretic peptide (BNP) levels were measured. Cardiac sympathetic innervation was determined with immunofluorescence staining of growth associated protein-43 (GAP43) and tyrosine hydroxylase (TH). Compared with MI group, TACSN significantly improved HRV, attenuated LSG function and activity, prolonged corrected QT interval, decreased Tpeak-Tend interval, prolonged ventricular effective refractory period (ERP), and action potential duration (APD), decreased the slopes of APD restitution curves, suppressed the APD alternans, increased ventricular fibrillation threshold, and reduced serum NE, NGF, and BNP levels. Moreover, the densities of GAP43 and TH-positive nerve fibres in the infarcted border zone in the MI-TACSN group were lower than those in the MI group. Targeted ablation of cardiac sympathetic neuron attenuates sympathetic remodelling and improves ventricular electrical remodelling in the chronic phase of MI. These data suggest that TACSN may be a novel approach to treating ventricular arrhythmias.

  15. Localization of laminin B1 mRNA in retinal ganglion cells by in situ hybridization

    PubMed Central

    1990-01-01

    In the nervous system, neuronal migration and axonal growth are dependent on specific interactions with extracellular matrix proteins. During development of the vertebrate retina, ganglion cell axons extend along the internal limiting (basement) membrane and form the optic nerve. Laminin, a major component of basement membranes, is known to be present in the internal limiting membrane, and might be involved in the growth of ganglion cell axons. The identity of the cells that produce retinal laminin, however, has not been established. In the present study, we have used in situ hybridization to localize the sites of laminin B1 mRNA synthesis in the developing mouse retina. Our results show that there are at least two principal sites of laminin B1 mRNA synthesis: (a) the hyaloid vessels and the lens during the period of major axonal outgrowth, and (b) the retinal ganglion cells at later development stages. Muller (glial) cells, the major class of nonneuronal cells in the retina, do not appear to express laminin B1 mRNA either during development or in the adult retina. In Northern blots, we found a single transcript of approximately 6-kb size that encodes the laminin B1 chain in the retina. Moreover, laminin B1 mRNA level was four- to fivefold higher in the postnatal retina compared to that in the adult. Our results show that in addition to nonneuronal cells, retinal ganglion cells also synthesize laminin. The function of laminin in postnatal retinas, however, remains to be elucidated. Nevertheless, our findings raise the possibility that neurons in other parts of the nervous system might also synthesize extracellular matrix proteins. PMID:2351694

  16. Advanced Oxidative Protein Products Cause Pain Hypersensitivity in Rats by Inducing Dorsal Root Ganglion Neurons Apoptosis via NADPH Oxidase 4/c-Jun N-terminal Kinase Pathways.

    PubMed

    Ding, Ruoting; Sun, Baihui; Liu, Zhongyuan; Yao, Xinqiang; Wang, Haiming; Shen, Xing; Jiang, Hui; Chen, Jianting

    2017-01-01

    Pain hypersensitivity is the most common category of chronic pain and is difficult to cure. Oxidative stress and certain cells apoptosis, such as dorsal root ganglion (DRG) neurons, play an essential role in the induction and development of pain hypersensitivity. The focus of this study is at a more specific molecular level. We investigated the role of advanced oxidative protein products (AOPPs) in inducing hypersensitivity and the cellular mechanism underlying the proapoptotic effect of AOPPs. Normal rats were injected by AOPPs-Rat serum albumin (AOPPs-RSA) to cause pain hypersensitivity. Primary cultured DRG neurons were treated with increasing concentrations of AOPPs-RSA or for increasing time durations. The MTT, flow cytometry and western blot analyses were performed in the DRG neurons. A loss of mitochondrial membrane potential (MMP) and an increase in intracellular reactive oxygen species (ROS) were observed. We found that AOPPs triggered DRG neurons apoptosis and MMP loss. After AOPPs treatment, intracellular ROS generation increased in a time- and dose-dependent manner, whereas, N -acetyl-L-cysteine (NAC), a specific ROS scavenger could inhibit the ROS generation. Proapoptotic proteins, such as Bax, caspase 9/caspase 3, and PARP-1 were activated, whereas anti-apoptotic Bcl-2 protein was down-regulated. AOPPs also increased Nox4 and JNK expression. Taken together, these findings suggest that AOPPs cause pain hypersensitivity in rats, and extracellular AOPPs accumulation triggered Nox4-dependent ROS production, which activated JNK, and induced DRG neurons apoptosis by activating caspase 3 and PARP-1.

  17. An Optic Nerve Crush Injury Murine Model to Study Retinal Ganglion Cell Survival

    PubMed Central

    Tang, Zhongshu; Zhang, Shuihua; Lee, Chunsik; Kumar, Anil; Arjunan, Pachiappan; Li, Yang; Zhang, Fan; Li, Xuri

    2011-01-01

    Injury to the optic nerve can lead to axonal degeneration, followed by a gradual death of retinal ganglion cells (RGCs), which results in irreversible vision loss. Examples of such diseases in human include traumatic optic neuropathy and optic nerve degeneration in glaucoma. It is characterized by typical changes in the optic nerve head, progressive optic nerve degeneration, and loss of retinal ganglion cells, if uncontrolled, leading to vision loss and blindness. The optic nerve crush (ONC) injury mouse model is an important experimental disease model for traumatic optic neuropathy, glaucoma, etc. In this model, the crush injury to the optic nerve leads to gradual retinal ganglion cells apoptosis. This disease model can be used to study the general processes and mechanisms of neuronal death and survival, which is essential for the development of therapeutic measures. In addition, pharmacological and molecular approaches can be used in this model to identify and test potential therapeutic reagents to treat different types of optic neuropathy. Here, we provide a step by step demonstration of (I) Baseline retrograde labeling of retinal ganglion cells (RGCs) at day 1, (II) Optic nerve crush injury at day 4, (III) Harvest the retinae and analyze RGC survival at day 11, and (IV) Representative result. PMID:21540827

  18. Morphological relationship between the superior cervical ganglion and cervical nerves in Japanese cadaver donors.

    PubMed

    Mitsuoka, Kazuyuki; Kikutani, Takeshi; Sato, Iwao

    2017-02-01

    There are various communications between the superior cervical ganglion (SCG) and the vagus and glossopharyngeal nerves. However, little information exists concerning the origin of these sympathetic ganglion branches at the superior, middle, and inferior regions of the human SCG. The aim of this study was to describe the human SCG in a morphometric manner with the communication with cranial and cervical nerves and supply. This study characterized 72 SCG samples from 54 elderly Japanese human cadavers (30 males, 24 females; 65-100 years old). The SCG size (length, width, and thickness) and location were measured from the jugular foramen. We also defined the communication branches of the SCG to the vagus, glossopharyngeal, cervical, and accessory nerves at three regions (superior, middle, and inferior regions) of the SCG. Finally, we examined the arrangement and origin of the branch communications in detail and confirmed our observations, using histological sections of the SCG. The SCG in all cadaver donors was detected at the C2 and C3 vertebra levels. The number of SCG branches supplied the communicating branches, such as the carotid branch, communicating branch of the vagus nerve, and glossopharyngeal nerve, were frequently detected in the superior region of the SCG (χ 2  = 587.72, df = 26, p  <   .001). The number of ganglion cells with a large number of neurons per unit area (1 mm 2 ) was most often found in the middle region with shrunken neurons of the SCG compared with other regions. The communication branches of the SCG are mainly connected to the vagus and glossopharyngeal nerves. Characterizing these branches can provide useful data for head and neck ganglion block and surgical treatments.

  19. No dramatic age-related loss of hair cells and spiral ganglion neurons in Bcl-2 over-expression mice or Bax null mice

    PubMed Central

    2010-01-01

    Age-related decline of neuronal function is associated with age-related structural changes. In the central nervous system, age-related decline of cognitive performance is thought to be caused by synaptic loss instead of neuronal loss. However, in the cochlea, age-related loss of hair cells and spiral ganglion neurons (SGNs) is consistently observed in a variety of species, including humans. Since age-related loss of these cells is a major contributing factor to presbycusis, it is important to study possible molecular mechanisms underlying this age-related cell death. Previous studies suggested that apoptotic pathways were involved in age-related loss of hair cells and SGNs. In the present study, we examined the role of Bcl-2 gene in age-related hearing loss. In one transgenic mouse line over-expressing human Bcl-2, there were no significant differences between transgenic mice and wild type littermate controls in their hearing thresholds during aging. Histological analysis of the hair cells and SGNs showed no significant conservation of these cells in transgenic animals compared to the wild type controls during aging. These data suggest that Bcl-2 overexpression has no significant effect on age-related loss of hair cells and SGNs. We also found no delay of age-related hearing loss in mice lacking Bax gene. These findings suggest that age-related hearing loss is not through an apoptotic pathway involving key members of Bcl-2 family. PMID:20637089

  20. Succinate dehydrogenase activity and soma size of motoneurons innervating different portions of the rat tibialis anterior

    NASA Technical Reports Server (NTRS)

    Ishihara, A.; Roy, R. R.; Edgerton, V. R.

    1995-01-01

    The spatial distribution, soma size and oxidative enzyme activity of gamma and alpha motoneurons innervating muscle fibres in the deep (away from the surface of the muscle) and superficial (close to the surface of the muscle) portions of the tibialis anterior in normal rats were determined. The deep portion had a higher percentage of high oxidative fibres than the superficial portion of the muscle. Motoneurons were labelled by retrograde neuronal transport of fluorescent tracers: Fast Blue and Nuclear Yellow were injected into the deep portion and Nuclear Yellow into the superficial portion of the muscle. Therefore, motoneurons innervating the deep portion were identified by both a blue fluorescent cytoplasm and a golden-yellow fluorescent nucleus, while motoneurons innervating the superficial portion were identified by only a golden-yellow fluorescent nucleus. After staining for succinate dehydrogenase activity on the same section used for the identification of the motoneurons, soma size and succinate dehydrogenase activity of the motoneurons were measured. The gamma and alpha motoneurons innervating both the deep and superficial portions were located primarily at L4 and were intermingled within the same region of the dorsolateral portion of the ventral horn in the spinal cord. Mean soma size was similar for either gamma or alpha motoneurons in the two portions of the muscle. The alpha motoneurons innervating the superficial portion had a lower mean succinate dehydrogenase activity than those innervating the deep portion of the muscle. An inverse relationship between soma size and succinate dehydrogenase activity of alpha, but not gamma, motoneurons innervating both the deep and superficial portions was observed. Based on three-dimensional reconstructions within the spinal cord, there were no apparent differences in the spatial distribution of the motoneurons, either gamma or alpha, associated with the deep and superficial compartments of the muscle. The data

  1. Neuroanatomical details of the lateral neurons of Drosophila melanogaster support their functional role in the circadian system

    PubMed Central

    Schubert, Frank K.; Hagedorn, Nicolas; Yoshii, Taishi; Helfrich‐Förster, Charlotte

    2018-01-01

    Abstract Drosophila melanogaster is a long‐standing model organism in the circadian clock research. A major advantage is the relative small number of about 150 neurons, which built the circadian clock in Drosophila. In our recent work, we focused on the neuroanatomical properties of the lateral neurons of the clock network. By applying the multicolor‐labeling technique Flybow we were able to identify the anatomical similarity of the previously described E2 subunit of the evening oscillator of the clock, which is built by the 5th small ventrolateral neuron (5th s‐LNv) and one ITP positive dorsolateral neuron (LNd). These two clock neurons share the same spatial and functional properties. We found both neurons innervating the same brain areas with similar pre‐ and postsynaptic sites in the brain. Here the anatomical findings support their shared function as a main evening oscillator in the clock network like also found in previous studies. A second quite surprising finding addresses the large lateral ventral PDF‐neurons (l‐LNvs). We could show that the four hardly distinguishable l‐LNvs consist of two subgroups with different innervation patterns. While three of the neurons reflect the well‐known branching pattern reproduced by PDF immunohistochemistry, one neuron per brain hemisphere has a distinguished innervation profile and is restricted only to the proximal part of the medulla‐surface. We named this neuron “extra” l‐LNv (l‐LNvx). We suggest the anatomical findings reflect different functional properties of the two l‐LNv subgroups. PMID:29424420

  2. Pine Oil Effects on Chemical and Thermal Injury in Mice and Cultured Mouse Dorsal Root Ganglion Neurons

    PubMed Central

    Clark, SP; Bollag, WB; Westlund, KN; Ma, F; Falls, G; Xie, D; Johnson, M; Isales, CM; Bhattacharyya, MH

    2013-01-01

    A commercial resin-based pine oil derived from Pinus palustris and Pinus elliottii was the major focus of this investigation. Extracts of pine resins, needles and bark are folk medicines commonly used to treat skin ailments, including burns. The American Burn Association estimates that 500,000 people with burn injuries receive medical treatment each year; one-half of US burn victims are children, most with scald burns. This systematic study was initiated as follow-up to personal anecdotal evidence acquired over more than 10 years by MH Bhattacharyya regarding pine oil’s efficacy for treating burns. The results demonstrate that pine oil counteracted dermal inflammation in both a mouse ear model of contact irritant-induced dermal inflammation and a 2nd degree scald burn to the mouse paw. Furthermore, pine oil significantly counteracted the tactile allodynia and soft tissue injury caused by the scald burn. In mouse dorsal root ganglion (DRG) neuronal cultures, pine oil added to the medium blocked ATP-activated, but not capsaicin-activated, pain pathways, demonstrating specificity. These results together support the hypothesis that a pine-oil-based treatment can be developed to provide effective in-home care for 2nd degree burns. PMID:23595692

  3. Cholinergic drugs as therapeutic tools in inflammatory diseases: participation of neuronal and non-neuronal cholinergic systems.

    PubMed

    Sales, María Elena

    2013-01-01

    Acetylcholine (ACh) is synthesized by choline acetyltransferase (ChAT) from acetylcoenzime A and choline. This reaction occurs not only in pre-ganglionic fibers of the autonomic nervous system and post-ganglionic parasympathetic nervous fibers but also in non neuronal cells. This knowledge led to expand the role of ACh as a neurotransmitter and to consider it as a "cytotransmitter" and also to evaluate the existence of a non-neuronal cholinergic system comprising ACh, ChAT, acetylcholinesterase, and the nicotinic and muscarinic ACh receptors, outside the nervous system. This review analyzes the participation of cholinergic system in inflammation and discusses the role of different muscarinic and nicotinic drugs that are being used to treat skin inflammatory disorders, asthma, and chronic obstructive pulmonary disease as well as, intestinal inflammation and systemic inflammatory diseases, among others, to assess the potential application of these compounds as therapeutic tools.

  4. Electrophysiology of neurones of the inferior mesenteric ganglion of the cat.

    PubMed Central

    Julé, Y; Szurszewski, J H

    1983-01-01

    Intracellular recordings were obtained from cells in vitro in the inferior mesenteric ganglia of the cat. Neurones could be classified into three types: non-spontaneous, irregular discharging and regular discharging neurones. Non-spontaneous neurones had a stable resting membrane potential and responded with action potentials to indirect preganglionic nerve stimulation and to intracellular injection of depolarizing current. Irregular discharging neurones were characterized by a discharge of excitatory post-synaptic potentials (e.p.s.p.s.) which sometimes gave rise to action potentials. This activity was abolished by hexamethonium bromide, chlorisondamine and d-tubocurarine chloride. Tetrodotoxin and a low Ca2+ -high Mg2+ solution also blocked on-going activity in irregular discharging neurones. Regular discharging neurones were characterized by a rhythmic discharge of action potentials. Each action potential was preceded by a gradual depolarization of the intracellularly recorded membrane potential. Intracellular injection of hyperpolarizing current abolished the regular discharge of action potential. No synaptic potentials were observed during hyperpolarization of the membrane potential. Nicotinic, muscarinic and adrenergic receptor blocking drugs did not modify the discharge of action potentials in regular discharging neurones. A low Ca2+ -high Mg2+ solution also had no effect on the regular discharge of action potentials. Interpolation of an action potential between spontaneous action potentials in regular discharging neurones reset the rhythm of discharge. It is suggested that regular discharging neurones were endogenously active and that these neurones provided synaptic input to irregular discharging neurones. PMID:6140310

  5. Electrophysiology of neurones of the inferior mesenteric ganglion of the cat.

    PubMed

    Julé, Y; Szurszewski, J H

    1983-11-01

    Intracellular recordings were obtained from cells in vitro in the inferior mesenteric ganglia of the cat. Neurones could be classified into three types: non-spontaneous, irregular discharging and regular discharging neurones. Non-spontaneous neurones had a stable resting membrane potential and responded with action potentials to indirect preganglionic nerve stimulation and to intracellular injection of depolarizing current. Irregular discharging neurones were characterized by a discharge of excitatory post-synaptic potentials (e.p.s.p.s.) which sometimes gave rise to action potentials. This activity was abolished by hexamethonium bromide, chlorisondamine and d-tubocurarine chloride. Tetrodotoxin and a low Ca2+ -high Mg2+ solution also blocked on-going activity in irregular discharging neurones. Regular discharging neurones were characterized by a rhythmic discharge of action potentials. Each action potential was preceded by a gradual depolarization of the intracellularly recorded membrane potential. Intracellular injection of hyperpolarizing current abolished the regular discharge of action potential. No synaptic potentials were observed during hyperpolarization of the membrane potential. Nicotinic, muscarinic and adrenergic receptor blocking drugs did not modify the discharge of action potentials in regular discharging neurones. A low Ca2+ -high Mg2+ solution also had no effect on the regular discharge of action potentials. Interpolation of an action potential between spontaneous action potentials in regular discharging neurones reset the rhythm of discharge. It is suggested that regular discharging neurones were endogenously active and that these neurones provided synaptic input to irregular discharging neurones.

  6. Cannabinoid WIN 55,212-2 inhibits TRPV1 in trigeminal ganglion neurons via PKA and PKC pathways.

    PubMed

    Wang, Wei; Cao, Xuehong; Liu, Changjin; Liu, Lieju

    2012-02-01

    Although the inhibitory effect of cannabinoids on transient receptor potential vanilloid 1 (TRPV1) channel may explain the efficacy of peripheral cannabinoids in antihyperalgesia and antinociceptive actions, the mechanism for cannabinoid-induced inhibition of TRPV1 in primary sensory neurons is not understood. Therefore, we explored how WIN55,212-2 (WIN, a synthetic cannabinoid) inhibited TRPV1 in rat trigeminal ganglion neurons. A "bell"-shaped concentration-dependent curve was obtained from the effects of WIN on TRPV1 channel. The maximal inhibition on capsaicin-induced current (I (cap)) by WIN was at a concentration of 10(-9) M, and at this concentration I (cap) was reduced by 95 ± 1.6%. When the concentration of WIN was at 10(-6) M, it displayed a stimulatory effect on I (cap). In this study, several intracellular signaling transduction pathways were tested to study whether they were involved in the inhibitory effects of WIN on I (cap). We found that the inhibitory effect of WIN on I (cap) was completely reversed by PKA antagonists H-89 and KT5720 as well as by PKC antagonists BIM and staurosporine. It was also found that the inhibitory effect was partly reversed by PKG antagonist PKGi, while G-protein antagonist GDP-βs/pertussis toxin (PTX) and PLC antagonist U-73122 had no effect on the inhibitory effect of WIN on I(cap). These results suggest that several intracellular signaling transduction pathways including PKA and PKC systems underlie the inhibitory effects of WIN on I (cap); however, G protein-coupled receptors CB1 or CB2 were not involved.

  7. G(o) transduces GABAB-receptor modulation of N-type calcium channels in cultured dorsal root ganglion neurons.

    PubMed

    Menon-Johansson, A S; Berrow, N; Dolphin, A C

    1993-11-01

    High-voltage-activated (HVA) calcium channel currents (IBa) were recorded from acutely replated cultured dorsal root ganglion (DRG) neurons. IBa was irreversibly inhibited by 56.9 +/- 2.7% by 1 microM omega-conotoxin-GVIA (omega-CTx-GVIA), whereas the 1,4-dihydropyridine antagonist nicardipine was ineffective. The selective gamma-aminobutyric acidB (GABAB) agonist, (-)-baclofen (50 microM), inhibited the HVA IBa by 30.7 +/- 5.4%. Prior application of omega-CTx-GVIA completely occluded inhibition of the HVA IBa by (-)-baclofen, indicating that in this preparation (-)-baclofen inhibits N-type current. To investigate which G protein subtype was involved, cells were replated in the presence of anti-G protein antisera. Under these conditions the antibodies were shown to enter the cells through transient pores created during the replating procedure. Replating DRGs in the presence of anti-G(o) antiserum, raised against the C-terminal decapeptide of the G alpha o subunit, reduced (-)-baclofen inhibition of the HVA IBa, whereas replating DRGs in the presence of the anti-Gi antiserum did not. Using anti-G alpha o antisera (1:2000) and confocal laser microscopy, G alpha o localisation was investigated in both unreplated and replated neurons. G alpha o immunoreactivity was observed at the plasma membrane, neurites, attachment plaques and perinuclear region, and was particularly pronounced at points of cell-to-cell contact. The plasma membrane G alpha o immunoreactivity was completely blocked by preincubation with the immunising G alpha o undecapeptide (1 microgram.ml-1) for 1 h at 37 degrees C. A similar treatment also blocked recognition of G alpha o in brain membranes on immunoblots.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Focal myocardial infarction induces global remodeling of cardiac sympathetic innervation: neural remodeling in a spatial context

    PubMed Central

    Ajijola, Olujimi A.; Yagishita, Daigo; Patel, Krishan J.; Vaseghi, Marmar; Zhou, Wei; Yamakawa, Kentaro; So, Eileen; Lux, Robert L.; Mahajan, Aman

    2013-01-01

    Myocardial infarction (MI) induces neural and electrical remodeling at scar border zones. The impact of focal MI on global functional neural remodeling is not well understood. Sympathetic stimulation was performed in swine with anteroapical infarcts (MI; n = 9) and control swine (n = 9). A 56-electrode sock was placed over both ventricles to record electrograms at baseline and during left, right, and bilateral stellate ganglion stimulation. Activation recovery intervals (ARIs) were measured from electrograms. Global and regional ARI shortening, dispersion of repolarization, and activation propagation were assessed before and during sympathetic stimulation. At baseline, mean ARI was shorter in MI hearts than control hearts (365 ± 8 vs. 436 ± 9 ms, P < 0.0001), dispersion of repolarization was greater in MI versus control hearts (734 ± 123 vs. 362 ± 32 ms2, P = 0.02), and the infarcted region in MI hearts showed longer ARIs than noninfarcted regions (406 ± 14 vs. 365 ± 8 ms, P = 0.027). In control animals, percent ARI shortening was greater on anterior than posterior walls during right stellate ganglion stimulation (P = 0.0001), whereas left stellate ganglion stimulation showed the reverse (P = 0.0003). In infarcted animals, this pattern was completely lost. In 50% of the animals studied, sympathetic stimulation, compared with baseline, significantly altered the direction of activation propagation emanating from the intramyocardial scar during pacing. In conclusion, focal distal anterior MI alters regional and global pattern of sympathetic innervation, resulting in shorter ARIs in infarcted hearts, greater repolarization dispersion, and altered activation propagation. These conditions may underlie the mechanisms by which arrhythmias are initiated when sympathetic tone is enhanced. PMID:23893167

  9. Some intrinsic neurons of the guinea-pig heart contain substance P.

    PubMed

    Bałuk, P; Gabella, G

    1989-10-09

    Whole-mount preparations of the posterior wall of the atria of the guinea pig heart containing intrinsic ganglion cells and nerve plexuses were stained for substance P-like immunoreactivity by the peroxidase-antiperoxidase method. Substance P-like nerve fibres are present as pericellular baskets around most, but not all, of the neuronal cell bodies, and are also found in the connecting nerve bundles, as perivascular nerve plexuses and in the myocardium and pericardium. The majority of ganglion cell bodies are negative for substance P, as reported previously, but we describe for the first time, a small subpopulation of intrinsic neuronal cell bodies which show immunoreactivity for substance P. Therefore, not all cardiac substance P nerves are extrinsic afferent fibres. At present, the physiological role of intrinsic substance P neurones is not clear.

  10. Corneal Sulfated Glycosaminoglycans and Their Effects on Trigeminal Nerve Growth Cone Behavior In Vitro: Roles for ECM in Cornea Innervation

    PubMed Central

    Schwend, Tyler; Deaton, Ryan J.; Zhang, Yuntao; Caterson, Bruce; Conrad, Gary W.

    2012-01-01

    Purpose. Sensory trigeminal nerve growth cones innervate the cornea in a highly coordinated fashion. The purpose of this study was to determine if extracellular matrix glycosaminoglycans (ECM–GAGs), including keratan sulfate (KS), dermatan sulfate (DS), and chondroitin sulfate A (CSA) and C (CSC), polymerized in developing eyefronts, may provide guidance cues to nerves during cornea innervation. Methods. Immunostaining using antineuron-specific-β-tubulin and monoclonal antibodies for KS, DS, and CSA/C was performed on eyefronts from embryonic day (E) 9 to E14 and staining visualized by confocal microscopy. Effects of purified GAGs on trigeminal nerve growth cone behavior were tested using in vitro neuronal explant cultures. Results. At E9 to E10, nerves exiting the pericorneal nerve ring grew as tight fascicles, advancing straight toward the corneal stroma. In contrast, upon entering the stroma, nerves bifurcated repeatedly as they extended anteriorly toward the epithelium. KS was localized in the path of trigeminal nerves, whereas DS and CSA/C–rich areas were avoided by growth cones. When E10 trigeminal neurons were cultured on different substrates comprised of purified GAG molecules, their neurite growth cone behavior varied depending on GAG type, concentration, and mode of presentation (immobilized versus soluble). High concentrations of immobilized KS, DS, and CSA/C inhibited neurite growth to varying degrees. Neurites traversing lower, permissive concentrations of immobilized DS and CSA/C displayed increased fasciculation and decreased branching, whereas KS caused decreased fasciculation and increased branching. Enzymatic digestion of sulfated GAGs canceled their effects on trigeminal neurons. Conclusions. Data herein suggest that GAGs may direct the movement of trigeminal nerve growth cones innervating the cornea. PMID:23132805

  11. Congenital Nystagmus Gene FRMD7 Is Necessary for Establishing a Neuronal Circuit Asymmetry for Direction Selectivity

    PubMed Central

    Yonehara, Keisuke; Fiscella, Michele; Drinnenberg, Antonia; Esposti, Federico; Trenholm, Stuart; Krol, Jacek; Franke, Felix; Scherf, Brigitte Gross; Kusnyerik, Akos; Müller, Jan; Szabo, Arnold; Jüttner, Josephine; Cordoba, Francisco; Reddy, Ashrithpal Police; Németh, János; Nagy, Zoltán Zsolt; Munier, Francis; Hierlemann, Andreas; Roska, Botond

    2016-01-01

    Summary Neuronal circuit asymmetries are important components of brain circuits, but the molecular pathways leading to their establishment remain unknown. Here we found that the mutation of FRMD7, a gene that is defective in human congenital nystagmus, leads to the selective loss of the horizontal optokinetic reflex in mice, as it does in humans. This is accompanied by the selective loss of horizontal direction selectivity in retinal ganglion cells and the transition from asymmetric to symmetric inhibitory input to horizontal direction-selective ganglion cells. In wild-type retinas, we found FRMD7 specifically expressed in starburst amacrine cells, the interneuron type that provides asymmetric inhibition to direction-selective retinal ganglion cells. This work identifies FRMD7 as a key regulator in establishing a neuronal circuit asymmetry, and it suggests the involvement of a specific inhibitory neuron type in the pathophysiology of a neurological disease. Video Abstract PMID:26711119

  12. Voltage-gated Na+ currents in human dorsal root ganglion neurons

    PubMed Central

    Zhang, Xiulin; Priest, Birgit T; Belfer, Inna; Gold, Michael S

    2017-01-01

    Available evidence indicates voltage-gated Na+ channels (VGSCs) in peripheral sensory neurons are essential for the pain and hypersensitivity associated with tissue injury. However, our understanding of the biophysical and pharmacological properties of the channels in sensory neurons is largely based on the study of heterologous systems or rodent tissue, despite evidence that both expression systems and species differences influence these properties. Therefore, we sought to determine the extent to which the biophysical and pharmacological properties of VGSCs were comparable in rat and human sensory neurons. Whole cell patch clamp techniques were used to study Na+ currents in acutely dissociated neurons from human and rat. Our results indicate that while the two major current types, generally referred to as tetrodotoxin (TTX)-sensitive and TTX-resistant were qualitatively similar in neurons from rats and humans, there were several differences that have important implications for drug development as well as our understanding of pain mechanisms. DOI: http://dx.doi.org/10.7554/eLife.23235.001 PMID:28508747

  13. A New Population of Parvocellular Oxytocin Neurons Controlling Magnocellular Neuron Activity and Inflammatory Pain Processing

    PubMed Central

    Eliava, Marina; Melchior, Meggane; Knobloch-Bollmann, H. Sophie; Wahis, Jérôme; Gouveia, Miriam da Silva; Tang, Yan; Ciobanu, Alexandru Cristian; del Rio, Rodrigo Triana; Roth, Lena C.; Althammer, Ferdinand; Chavant, Virginie; Goumon, Yannick; Gruber, Tim; Petit-Demoulière, Nathalie; Busnelli, Marta; Chini, Bice; Tan, Linette L.; Mitre, Mariela; Froemke, Robert C.; Chao, Moses V.; Giese, Günter; Sprengel, Rolf; Kuner, Rohini; Poisbeau, Pierrick; Seeburg, Peter H.; Stoop, Ron; Charlet, Alexandre; Grinevich, Valery

    2017-01-01

    SUMMARY Oxytocin (OT) is a neuropeptide elaborated by the hypothalamic paraventricular (PVN) and supraoptic (SON) nuclei. Magnocellular OT neurons of these nuclei innervate numerous forebrain regions and release OT into the blood from the posterior pituitary. The PVN also harbors parvocellular OT cells that project to the brainstem and spinal cord, but their function has not been directly assessed. Here, we identified a subset of approximately 30 parvocellular OT neurons, with collateral projections onto magnocellular OT neurons and neurons of deep layers of the spinal cord. Evoked OT release from these OT neurons suppresses nociception and promotes analgesia in an animal model of inflammatory pain. Our findings identify a new population of OT neurons that modulates nociception in a two tier process: (1) directly by release of OT from axons onto sensory spinal cord neurons and inhibiting their activity and (2) indirectly by stimulating OT release from SON neurons into the periphery. PMID:26948889

  14. A New Population of Parvocellular Oxytocin Neurons Controlling Magnocellular Neuron Activity and Inflammatory Pain Processing.

    PubMed

    Eliava, Marina; Melchior, Meggane; Knobloch-Bollmann, H Sophie; Wahis, Jérôme; da Silva Gouveia, Miriam; Tang, Yan; Ciobanu, Alexandru Cristian; Triana Del Rio, Rodrigo; Roth, Lena C; Althammer, Ferdinand; Chavant, Virginie; Goumon, Yannick; Gruber, Tim; Petit-Demoulière, Nathalie; Busnelli, Marta; Chini, Bice; Tan, Linette L; Mitre, Mariela; Froemke, Robert C; Chao, Moses V; Giese, Günter; Sprengel, Rolf; Kuner, Rohini; Poisbeau, Pierrick; Seeburg, Peter H; Stoop, Ron; Charlet, Alexandre; Grinevich, Valery

    2016-03-16

    Oxytocin (OT) is a neuropeptide elaborated by the hypothalamic paraventricular (PVN) and supraoptic (SON) nuclei. Magnocellular OT neurons of these nuclei innervate numerous forebrain regions and release OT into the blood from the posterior pituitary. The PVN also harbors parvocellular OT cells that project to the brainstem and spinal cord, but their function has not been directly assessed. Here, we identified a subset of approximately 30 parvocellular OT neurons, with collateral projections onto magnocellular OT neurons and neurons of deep layers of the spinal cord. Evoked OT release from these OT neurons suppresses nociception and promotes analgesia in an animal model of inflammatory pain. Our findings identify a new population of OT neurons that modulates nociception in a two tier process: (1) directly by release of OT from axons onto sensory spinal cord neurons and inhibiting their activity and (2) indirectly by stimulating OT release from SON neurons into the periphery. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. IL-33/ST2 signaling excites sensory neurons and mediates itch response in a mouse model of poison ivy contact allergy

    PubMed Central

    Liu, Boyi; Tai, Yan; Achanta, Satyanarayana; Kaelberer, Melanie M.; Caceres, Ana I.; Shao, Xiaomei; Fang, Jianqiao; Jordt, Sven-Eric

    2016-01-01

    Poison ivy-induced allergic contact dermatitis (ACD) is the most common environmental allergic condition in the United States. Case numbers of poison ivy ACD are increasing due to growing biomass and geographical expansion of poison ivy and increasing content of the allergen, urushiol, likely attributable to rising atmospheric CO2. Severe and treatment-resistant itch is the major complaint of affected patients. However, because of limited clinical data and poorly characterized models, the pruritic mechanisms in poison ivy ACD remain unknown. Here, we aim to identify the mechanisms of itch in a mouse model of poison ivy ACD by transcriptomics, neuronal imaging, and behavioral analysis. Using transcriptome microarray analysis, we identified IL-33 as a key cytokine up-regulated in the inflamed skin of urushiol-challenged mice. We further found that the IL-33 receptor, ST2, is expressed in small to medium-sized dorsal root ganglion (DRG) neurons, including neurons that innervate the skin. IL-33 induces Ca2+ influx into a subset of DRG neurons through neuronal ST2. Neutralizing antibodies against IL-33 or ST2 reduced scratching behavior and skin inflammation in urushiol-challenged mice. Injection of IL-33 into urushiol-challenged skin rapidly exacerbated itch-related scratching via ST2, in a histamine-independent manner. Targeted silencing of neuronal ST2 expression by intrathecal ST2 siRNA delivery significantly attenuated pruritic responses caused by urushiol-induced ACD. These results indicate that IL-33/ST2 signaling is functionally present in primary sensory neurons and contributes to pruritus in poison ivy ACD. Blocking IL-33/ST2 signaling may represent a therapeutic approach to ameliorate itch and skin inflammation related to poison ivy ACD. PMID:27821781

  16. Nitric Oxide Synthase and Neuronal NADPH Diaphorase are Identical in Brain and Peripheral Tissues

    NASA Astrophysics Data System (ADS)

    Dawson, Ted M.; Bredt, David S.; Fotuhi, Majid; Hwang, Paul M.; Snyder, Solomon H.

    1991-09-01

    NADPH diaphorase staining neurons, uniquely resistant to toxic insults and neurodegenerative disorders, have been colocalized with neurons in the brain and peripheral tissue containing nitric oxide synthase (EC 1.14.23.-), which generates nitric oxide (NO), a recently identified neuronal messenger molecule. In the corpus striatum and cerebral cortex, NO synthase immunoreactivity and NADPH diaphorase staining are colocalized in medium to large aspiny neurons. These same neurons colocalize with somatostatin and neuropeptide Y immunoreactivity. NO synthase immunoreactivity and NADPH diaphorase staining are colocalized in the pedunculopontine nucleus with choline acetyltransferase-containing cells and are also colocalized in amacrine cells of the inner nuclear layer and ganglion cells of the retina, myenteric plexus neurons of the intestine, and ganglion cells of the adrenal medulla. Transfection of human kidney cells with NO synthase cDNA elicits NADPH diaphorase staining. The ratio of NO synthase to NADPH diaphorase staining in the transfected cells is the same as in neurons, indicating that NO synthase fully accounts for observed NADPH staining. The identity of neuronal NO synthase and NADPH diaphorase suggests a role for NO in modulating neurotoxicity.

  17. Efficacy of lateral- versus medial-approach hip joint capsule denervation as surgical treatments of the hip joint pain; a neuronal tract tracing study in the sheep

    PubMed Central

    Sienkiewicz, Waldemar; Dudek, Agnieszka; Czaja, Krzysztof; Janeczek, Maciej; Chrószcz, Aleksander; Kaleczyc, Jerzy

    2018-01-01

    Objective To evaluate efficacy of denervation of the of the hip joint capsule (HJC), as a treatment of hip joint pain. Specifically, we tested the hypothesis that HJC denervation will significantly reduce the number of sensory neurons innervating the capsule. Study design Denervation of the HJC from a medial or lateral approach was followed by retrograde tracing of sensory neurons innervating the capsule. Animals Twenty adult male sheep (30–40 kg of body weight; Polish merino breed) were used in the study. Methods The hip joint was denervated from medial (n = 5) or lateral (n = 5) surgical approaches. Immediately after denervation, the retrograde neural tract tracer Fast Blue (FB) was injected into the HJC. An additional ten animals (n = 5 for medial and n = 5 for lateral approach) received the same treatment without HJC denervation to provide the appropriate controls. Results Results of the study revealed that the vast majority of retrogradely labelled sensory neurons innervating the HJC originate from fifth lumbar to second sacral dorsal root ganglia. Both the medial and the lateral denervations significantly reduced the number of sensory neurons innervating the HJC (39.2% and 69.0% reduction respectively). Conclusions These results show that denervation of the HJC is an effective surgical procedure for reduction of the sensory neuronal input to the HJC. Moreover, the lateral approach was found to be significantly more effective for reducing sensory innervation as compared to the medial one. PMID:29329303

  18. Phospholipase C-dependent hydrolysis of phosphatidylinositol 4,5-bisphosphate underlies agmatine-induced suppression of N-type Ca2+ channel in rat celiac ganglion neurons.

    PubMed

    Kim, Young-Hwan; Jeong, Ji-Hyun; Ahn, Duck-Sun; Chung, Seungsoo

    2017-03-04

    Agmatine suppresses peripheral sympathetic tone by modulating Cav2.2 channels in peripheral sympathetic neurons. However, the detailed cellular signaling mechanism underlying the agmatine-induced Cav2.2 inhibition remains unclear. Therefore, in the present study, we investigated the electrophysiological mechanism for the agmatine-induced inhibition of Cav2.2 current (I Cav2.2 ) in rat celiac ganglion (CG) neurons. Consistent with previous reports, agmatine inhibited I Cav2.2 in a VI manner. The agmatine-induced inhibition of the I Cav2.2 current was also almost completely hindered by the blockade of the imidazoline I 2 receptor (IR 2 ), and an IR 2 agonist mimicked the inhibitory effect of agmatine on I Cav2.2 , implying involvement of IR 2 . The agmatine-induced I Cav2.2 inhibition was significantly hampered by the blockade of G protein or phospholipase C (PLC), but not by the pretreatment with pertussis toxin. In addition, diC8-phosphatidylinositol 4,5-bisphosphate (PIP 2 ) dialysis nearly completely hampered agmatine-induced inhibition, which became irreversible when PIP 2 resynthesis was blocked. These results suggest that in rat peripheral sympathetic neurons, agmatine-induced IR 2 activation suppresses Cav2.2 channel voltage-independently, and that the PLC-dependent PIP 2 hydrolysis is responsible for the agmatine-induced suppression of the Cav2.2 channel. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Modulation of A-type K+ channels by the short-chain cobrotoxin through the protein kinase C-delta isoform decreases membrane excitability in dorsal root ganglion neurons.

    PubMed

    Guo, Qiang; Jiang, You-Jing; Jin, Hong; Jiang, Xing-Hong; Gu, Bo; Zhang, Yi-Ming; Wang, Jian-Gong; Qin, Zheng-Hong; Tao, Jin

    2013-05-01

    A-type K(+) channels are crucial in controlling neuronal excitability, and their regulation in sensory neurons may alter pain sensation. In this study, we identified the functional role of cobrotoxin, the short-chain α-neurotoxin isolated from Naja atra venom, which acts in the regulation of the transient A-type K(+) currents (IA) and membrane excitability in dorsal root ganglion (DRG) neurons via the activation of the muscarinic M3 receptor (M3R). Our results showed that cobrotoxin increased IA in a concentration-dependent manner, whereas the sustained delayed rectifier K(+) currents (IDR) were not affected. Cobrotoxin did not affect the activation of IA markedly, however, it shifted the inactivation curve significantly in the depolarizing direction. The cobrotoxin-induced IA response was blocked by the M3R-selective antagonists DAU-5884 and 4-DAMP. An siRNA targeting the M3R in small DRG neurons abolished the cobrotoxin-induced IA increase. In addition, dialysis of the cells with the novel protein kinase C-delta isoform (PKC-δ) inhibitor δv1-1 or an siRNA targeting PKC-δ abolished the cobrotoxin-induced IA response, whereas inhibition of PKA or classic PKC activity elicited no such effects. Moreover, we observed a significant decrease in the firing rate of the neuronal action potential induced by M3R activation. Pretreatment of the cells with 4-aminopyridine, a selective blocker of IA, abolished this effect. Taken together, these results suggest that the short-chain cobrotoxin selectively enhances IA via a novel PKC-δ-dependent pathway. This effect occurred via the activation of M3R and might contribute to its neuronal hypoexcitability in small DRG neurons. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. An immunohistochemical study of neuropeptides and neuronal cytoskeletal proteins in the neuroepithelial component of a spontaneous murine ovarian teratoma. Primitive neuroepithelium displays immunoreactivity for neuropeptides and neuron-associated beta-tubulin isotype.

    PubMed Central

    Caccamo, D. V.; Herman, M. M.; Frankfurter, A.; Katsetos, C. D.; Collins, V. P.; Rubinstein, L. J.

    1989-01-01

    Approximately one third of the female mice of the LTXBO strain develop spontaneous ovarian teratomas. These tumors contain a large neuroepithelial component, which includes primitive neural structures resembling embryonic neural tubes (medulloepithelial rosettes), ependymoblastic and ependymal rosettes, neuroblasts, mature ganglionic neurons, myelinated neurites, and astrocytes. The purpose of this study was to characterize these tumors according to the immunohistochemical location of some well-characterized trophic and regulatory neuropeptides and neurotransmitters, several neuronal-associated cytoskeletal proteins, and other proteins indicative of neuronal and glial differentiation. Medulloepithelial rosettes showed focal serotonin-like, opioid peptide-like and gamma-amino butyric acid-like immunoreactivity, and displayed immunostaining for the neuron-associated class III beta-tubulin isotype. The mature ganglion cells were also immunoreactive for these markers, and, in addition, for somatostatin, cholecystokinin, bombesin, glucagon, vasoactive intestinal peptide, and neuropeptide Y. Mature ganglion cells were also immunoreactive for proteins associated with the neuronal cytoskeleton (including microtubule-associated proteins, MAP2 and tau, and higher molecular weight phosphorylated and non-phosphorylated neurofilament subunits), neuron-specific enolase, and synaptophysin. Undifferentiated stem cells, ependymoblastic and ependymal rosettes, and astroglia all stained with a monoclonal antibody that recognizes all mammalian beta-tubulin isotypes, but did not react with antibodies to neuronal-associated cytoskeletal proteins or neuropeptides. Neuropeptide-like immunoreactivity and demonstration of the class III beta-tubulin isotype indicate early neuronal commitment in neoplastic primitive neuroepithelium. These patterns of immunoreactivity closely follow those encountered in the normal neurocytogenesis of the mammalian and avian forebrain, and increase the

  1. Olfactory projection neuron pathways in two species of marine Isopoda (Peracarida, Malacostraca, Crustacea).

    PubMed

    Stemme, Torben; Eickhoff, René; Bicker, Gerd

    2014-08-01

    The neuroanatomy of the olfactory pathway has been intensely studied in many representatives of Malacostraca. Nevertheless, the knowledge about bilateral olfactory integration pathways is mainly based on Decapoda. Here, we investigated the olfactory projection neuron pathway of two marine isopod species, Saduria entomon and Idotea emarginata, by lipophilic dye injections into the olfactory neuropil. We show that both arms of the olfactory globular tract form a chiasm in the center of the brain, as known from several other crustaceans. Furthermore, the olfactory projection neurons innervate both the medulla terminalis and the hemiellipsoid body of the ipsi- and the contralateral hemisphere. Both protocerebral neuropils are innervated to a comparable extent. This is reminiscent of the situation in the basal decapod taxon Dendrobranchiata. Thus, we propose that an innervation by the olfactory globular tract of both the medulla terminalis and the hemiellipsoid body is characteristic of the decapod ground pattern, but also of the ground pattern of Caridoida. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Morphological and functional changes in TRPM8-expressing corneal cold thermoreceptor neurons during aging and their impact on tearing in mice.

    PubMed

    Alcalde, Ignacio; Íñigo-Portugués, Almudena; González-González, Omar; Almaraz, Laura; Artime, Enol; Morenilla-Palao, Cruz; Gallar, Juana; Viana, Félix; Merayo-Lloves, Jesús; Belmonte, Carlos

    2018-08-01

    Morphological and functional alterations of peripheral somatosensory neurons during the aging process lead to a decline of somatosensory perception. Here, we analyze the changes occurring with aging in trigeminal ganglion (TG), TRPM8-expressing cold thermoreceptor neurons innervating the mouse cornea, which participate in the regulation of basal tearing and blinking and have been implicated in the pathogenesis of dry eye disease (DED). TG cell bodies and axonal branches were examined in a mouse line (TRPM8 BAC -EYFP) expressing a fluorescent reporter. In 3 months old animals, about 50% of TG cold thermoreceptor neurons were intensely fluorescent, likely providing strongly fluorescent axons and complex corneal nerve terminals with ongoing activity at 34°C and low-threshold, robust responses to cooling. The remaining TRPM8 + corneal axons were weakly fluorescent with nonbeaded axons, sparsely ramified nerve terminals, and exhibited a low-firing rate at 34°C, responding moderately to cooling pulses as do weakly fluorescent TG neurons. In aged (24 months) mice, the number of weakly fluorescent TG neurons was strikingly high while the morphology of TRPM8 + corneal axons changed drastically; 89% were weakly fluorescent, unbranched, and often ending in the basal epithelium. Functionally, 72.5% of aged cold terminals responded as those of young animals, but 27.5% exhibited very low-background activity and abnormal responsiveness to cooling pulses. These morpho-functional changes develop in parallel with an enhancement of tear's basal flow and osmolarity, suggesting that the aberrant sensory inflow to the brain from impaired peripheral cold thermoreceptors contributes to age-induced abnormal tearing and to the high incidence of DED in elderly people. © 2018 Wiley Periodicals, Inc.

  3. Estimating neuronal connectivity from axonal and dendritic density fields

    PubMed Central

    van Pelt, Jaap; van Ooyen, Arjen

    2013-01-01

    Neurons innervate space by extending axonal and dendritic arborizations. When axons and dendrites come in close proximity of each other, synapses between neurons can be formed. Neurons vary greatly in their morphologies and synaptic connections with other neurons. The size and shape of the arborizations determine the way neurons innervate space. A neuron may therefore be characterized by the spatial distribution of its axonal and dendritic “mass.” A population mean “mass” density field of a particular neuron type can be obtained by averaging over the individual variations in neuron geometries. Connectivity in terms of candidate synaptic contacts between neurons can be determined directly on the basis of their arborizations but also indirectly on the basis of their density fields. To decide when a candidate synapse can be formed, we previously developed a criterion defining that axonal and dendritic line pieces should cross in 3D and have an orthogonal distance less than a threshold value. In this paper, we developed new methodology for applying this criterion to density fields. We show that estimates of the number of contacts between neuron pairs calculated from their density fields are fully consistent with the number of contacts calculated from the actual arborizations. However, the estimation of the connection probability and the expected number of contacts per connection cannot be calculated directly from density fields, because density fields do not carry anymore the correlative structure in the spatial distribution of synaptic contacts. Alternatively, these two connectivity measures can be estimated from the expected number of contacts by using empirical mapping functions. The neurons used for the validation studies were generated by our neuron simulator NETMORPH. An example is given of the estimation of average connectivity and Euclidean pre- and postsynaptic distance distributions in a network of neurons represented by their population mean density

  4. Advanced Oxidative Protein Products Cause Pain Hypersensitivity in Rats by Inducing Dorsal Root Ganglion Neurons Apoptosis via NADPH Oxidase 4/c-Jun N-terminal Kinase Pathways

    PubMed Central

    Ding, Ruoting; Sun, Baihui; Liu, Zhongyuan; Yao, Xinqiang; Wang, Haiming; Shen, Xing; Jiang, Hui; Chen, Jianting

    2017-01-01

    Pain hypersensitivity is the most common category of chronic pain and is difficult to cure. Oxidative stress and certain cells apoptosis, such as dorsal root ganglion (DRG) neurons, play an essential role in the induction and development of pain hypersensitivity. The focus of this study is at a more specific molecular level. We investigated the role of advanced oxidative protein products (AOPPs) in inducing hypersensitivity and the cellular mechanism underlying the proapoptotic effect of AOPPs. Normal rats were injected by AOPPs-Rat serum albumin (AOPPs–RSA) to cause pain hypersensitivity. Primary cultured DRG neurons were treated with increasing concentrations of AOPPs–RSA or for increasing time durations. The MTT, flow cytometry and western blot analyses were performed in the DRG neurons. A loss of mitochondrial membrane potential (MMP) and an increase in intracellular reactive oxygen species (ROS) were observed. We found that AOPPs triggered DRG neurons apoptosis and MMP loss. After AOPPs treatment, intracellular ROS generation increased in a time- and dose-dependent manner, whereas, N-acetyl-L-cysteine (NAC), a specific ROS scavenger could inhibit the ROS generation. Proapoptotic proteins, such as Bax, caspase 9/caspase 3, and PARP-1 were activated, whereas anti-apoptotic Bcl-2 protein was down-regulated. AOPPs also increased Nox4 and JNK expression. Taken together, these findings suggest that AOPPs cause pain hypersensitivity in rats, and extracellular AOPPs accumulation triggered Nox4-dependent ROS production, which activated JNK, and induced DRG neurons apoptosis by activating caspase 3 and PARP-1. PMID:28674486

  5. Short-term increases in transient receptor potential vanilloid-1 mediate stress-induced enhancement of neuronal excitation.

    PubMed

    Weitlauf, Carl; Ward, Nicholas J; Lambert, Wendi S; Sidorova, Tatiana N; Ho, Karen W; Sappington, Rebecca M; Calkins, David J

    2014-11-12

    Progression of neurodegeneration in disease and injury is influenced by the response of individual neurons to stressful stimuli and whether this response includes mechanisms to counter declining function. Transient receptor potential (TRP) cation channels transduce a variety of disease-relevant stimuli and can mediate diverse stress-dependent changes in physiology, both presynaptic and postsynaptic. Recently, we demonstrated that knock-out or pharmacological inhibition of the TRP vanilloid-1 (TRPV1) capsaicin-sensitive subunit accelerates degeneration of retinal ganglion cell neurons and their axons with elevated ocular pressure, the critical stressor in the most common optic neuropathy, glaucoma. Here we probed the mechanism of the influence of TRPV1 on ganglion cell survival in mouse models of glaucoma. We found that induced elevations of ocular pressure increased TRPV1 in ganglion cells and its colocalization at excitatory synapses to their dendrites, whereas chronic elevation progressively increased ganglion cell Trpv1 mRNA. Enhanced TRPV1 expression in ganglion cells was transient and supported a reversal of the effect of TRPV1 on ganglion cells from hyperpolarizing to depolarizing, which was also transient. Short-term enhancement of TRPV1-mediated activity led to a delayed increase in axonal spontaneous excitation that was absent in ganglion cells from Trpv1(-/-) retina. In isolated ganglion cells, pharmacologically activated TRPV1 mobilized to discrete nodes along ganglion cell dendrites that corresponded to sites of elevated Ca(2+). These results suggest that TRPV1 may promote retinal ganglion cell survival through transient enhancement of local excitation and axonal activity in response to ocular stress. Copyright © 2014 the authors 0270-6474/14/3415369-13$15.00/0.

  6. Motor neurons and the generation of spinal motor neuron diversity

    PubMed Central

    Stifani, Nicolas

    2014-01-01

    Motor neurons (MNs) are neuronal cells located in the central nervous system (CNS) controlling a variety of downstream targets. This function infers the existence of MN subtypes matching the identity of the targets they innervate. To illustrate the mechanism involved in the generation of cellular diversity and the acquisition of specific identity, this review will focus on spinal MNs (SpMNs) that have been the core of significant work and discoveries during the last decades. SpMNs are responsible for the contraction of effector muscles in the periphery. Humans possess more than 500 different skeletal muscles capable to work in a precise time and space coordination to generate complex movements such as walking or grasping. To ensure such refined coordination, SpMNs must retain the identity of the muscle they innervate. Within the last two decades, scientists around the world have produced considerable efforts to elucidate several critical steps of SpMNs differentiation. During development, SpMNs emerge from dividing progenitor cells located in the medial portion of the ventral neural tube. MN identities are established by patterning cues working in cooperation with intrinsic sets of transcription factors. As the embryo develop, MNs further differentiate in a stepwise manner to form compact anatomical groups termed pools connecting to a unique muscle target. MN pools are not homogeneous and comprise subtypes according to the muscle fibers they innervate. This article aims to provide a global view of MN classification as well as an up-to-date review of the molecular mechanisms involved in the generation of SpMN diversity. Remaining conundrums will be discussed since a complete understanding of those mechanisms constitutes the foundation required for the elaboration of prospective MN regeneration therapies. PMID:25346659

  7. Ganglion cell distribution and retinal resolution in the Florida manatee, Trichechus manatus latirostris.

    PubMed

    Mass, Alla M; Ketten, Darlene R; Odell, Daniel K; Supin, Alexander Ya

    2012-01-01

    The topographic organization of retinal ganglion cells was examined in the Florida manatee (Trichechus manatus latirostris) to assess ganglion cell size and distribution and to estimate retinal resolution. The ganglion cell layer of the manatee's retina was comprised primarily of large neurons with broad intercellular spaces. Cell sizes varied from 10 to 60 μm in diameter (mean 24.3 μm). The retinal wholemounts from adult animals measured 446-501 mm(2) in area with total ganglion cell counts of 62,000-81,800 (mean 70,200). The cell density changed across the retina, with the maximum in the area below the optic disc and decreasing toward the retinal edges and in the immediate vicinity of the optic disc. The maximum cell density ranged from 235 to 337 cells per millimeter square in the adult retinae. Two wholemounts obtained from juvenile animals were 271 and 282 mm(2) in area with total cell numbers of 70,900 and 68,700, respectively (mean 69,800), that is, nearly equivalent to those of adults, but juvenile retinae consequently had maximum cell densities that were higher than those of adults: 478 and 491 cells per millimeter square. Calculations indicate a retinal resolution of ∼19' (1.6 cycles per degree) in both adult and juvenile retinae. Copyright © 2011 Wiley Periodicals, Inc.

  8. Response properties of ON-OFF retinal ganglion cells to high-order stimulus statistics.

    PubMed

    Xiao, Lei; Gong, Han-Yan; Gong, Hai-Qing; Liang, Pei-Ji; Zhang, Pu-Ming

    2014-10-17

    The visual stimulus statistics are the fundamental parameters to provide the reference for studying visual coding rules. In this study, the multi-electrode extracellular recording experiments were designed and implemented on bullfrog retinal ganglion cells to explore the neural response properties to the changes in stimulus statistics. The changes in low-order stimulus statistics, such as intensity and contrast, were clearly reflected in the neuronal firing rate. However, it was difficult to distinguish the changes in high-order statistics, such as skewness and kurtosis, only based on the neuronal firing rate. The neuronal temporal filtering and sensitivity characteristics were further analyzed. We observed that the peak-to-peak amplitude of the temporal filter and the neuronal sensitivity, which were obtained from either neuronal ON spikes or OFF spikes, could exhibit significant changes when the high-order stimulus statistics were changed. These results indicate that in the retina, the neuronal response properties may be reliable and powerful in carrying some complex and subtle visual information. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. Activation of KCNQ Channels Suppresses Spontaneous Activity in Dorsal Root Ganglion Neurons and Reduces Chronic Pain after Spinal Cord Injury

    PubMed Central

    Wu, Zizhen; Li, Lin; Xie, Fuhua; Du, Junhui; Zuo, Yan; Frost, Jeffrey A.; Carlton, Susan M.; Walters, Edgar T.

    2017-01-01

    Abstract A majority of people who have sustained spinal cord injury (SCI) experience chronic pain after injury, and this pain is highly resistant to available treatments. Contusive SCI in rats at T10 results in hyperexcitability of primary sensory neurons, which contributes to chronic pain. KCNQ channels are widely expressed in nociceptive dorsal root ganglion (DRG) neurons, are important for controlling their excitability, and their activation has proven effective in reducing pain in peripheral nerve injury and inflammation models. The possibility that activators of KCNQ channels could be useful for treating SCI-induced chronic pain is strongly supported by the following findings. First, SCI, unlike peripheral nerve injury, failed to decrease the functional or biochemical expression of KCNQ channels in DRG as revealed by electrophysiology, real-time quantitative polymerase chain reaction, and Western blot; therefore, these channels remain available for pharmacological targeting of SCI pain. Second, treatment with retigabine, a specific KCNQ channel opener, profoundly decreased spontaneous activity in primary sensory neurons of SCI animals both in vitro and in vivo without changing the peripheral mechanical threshold. Third, retigabine reversed SCI-induced reflex hypersensitivity, adding to our previous demonstration that retigabine supports the conditioning of place preference after SCI (an operant measure of spontaneous pain). In contrast to SCI animals, naïve animals showed no effects of retigabine on reflex sensitivity or conditioned place preference by pairing with retigabine, indicating that a dose that blocks chronic pain-related behavior has no effect on normal pain sensitivity or motivational state. These results encourage the further exploration of U.S. Food and Drug Administration–approved KCNQ activators for treating SCI pain, as well as efforts to develop a new generation of KCNQ activators that lack central side effects. PMID:28073317

  10. Activation of KCNQ Channels Suppresses Spontaneous Activity in Dorsal Root Ganglion Neurons and Reduces Chronic Pain after Spinal Cord Injury.

    PubMed

    Wu, Zizhen; Li, Lin; Xie, Fuhua; Du, Junhui; Zuo, Yan; Frost, Jeffrey A; Carlton, Susan M; Walters, Edgar T; Yang, Qing

    2017-03-15

    A majority of people who have sustained spinal cord injury (SCI) experience chronic pain after injury, and this pain is highly resistant to available treatments. Contusive SCI in rats at T10 results in hyperexcitability of primary sensory neurons, which contributes to chronic pain. KCNQ channels are widely expressed in nociceptive dorsal root ganglion (DRG) neurons, are important for controlling their excitability, and their activation has proven effective in reducing pain in peripheral nerve injury and inflammation models. The possibility that activators of KCNQ channels could be useful for treating SCI-induced chronic pain is strongly supported by the following findings. First, SCI, unlike peripheral nerve injury, failed to decrease the functional or biochemical expression of KCNQ channels in DRG as revealed by electrophysiology, real-time quantitative polymerase chain reaction, and Western blot; therefore, these channels remain available for pharmacological targeting of SCI pain. Second, treatment with retigabine, a specific KCNQ channel opener, profoundly decreased spontaneous activity in primary sensory neurons of SCI animals both in vitro and in vivo without changing the peripheral mechanical threshold. Third, retigabine reversed SCI-induced reflex hypersensitivity, adding to our previous demonstration that retigabine supports the conditioning of place preference after SCI (an operant measure of spontaneous pain). In contrast to SCI animals, naïve animals showed no effects of retigabine on reflex sensitivity or conditioned place preference by pairing with retigabine, indicating that a dose that blocks chronic pain-related behavior has no effect on normal pain sensitivity or motivational state. These results encourage the further exploration of U.S. Food and Drug Administration-approved KCNQ activators for treating SCI pain, as well as efforts to develop a new generation of KCNQ activators that lack central side effects.

  11. Enkephalin-like immunoreactive principal ganglion cells and nerve fibres in the inferior mesenteric ganglion of the cat.

    PubMed

    Balayadi, M; Jule, Y; Cupo, A

    1988-10-05

    The occurrence and distribution of methionine-enkephalin (ME), leucine-enkephalin (LE) and methionine-enkephalin-Arg6-Gly7-Leu8 (MERGL)-like (LI) immunoreactive material in the inferior mesenteric ganglion (IMG) of the cat were studied by immunohistochemical techniques using the peroxidase-antiperoxidase method. Numerous ME-Li, LE-Li and MERGL-Li immunoreactive fibres with the same distribution pattern were observed. They were varicose and often surrounded closely neighbouring unlabelled ganglion cell bodies. Sometimes they ran in strands between ganglion cells. ME-Li immunoreactive material was detected in a number of cell bodies, the diameter of which was similar to that of unlabelled principal ganglion cell bodies, and which were probably Enk-Li-containing principal ganglion cells. These immunoreactive cells were often surrounded by ME-Li immunoreactive fibres. No LE-Li or MERGL-Li immunoreactive ganglion cell bodies were observed. The presence of ME-Li immunoreactive principal ganglion cells raises the possibility that the Enk-Li immunoreactive fibres present in the IMG may have a prevertebral ganglionic source. The possibility that the Enk-Li material present in nerve fibres might be derived from preproenkephalin-A was suggested by the occurrence of MERGL-Li immunoreactivity.

  12. Eliminating Glutamatergic Input onto Horizontal Cells Changes the Dynamic Range and Receptive Field Organization of Mouse Retinal Ganglion Cells.

    PubMed

    Ströh, Sebastian; Puller, Christian; Swirski, Sebastian; Hölzel, Maj-Britt; van der Linde, Lea I S; Segelken, Jasmin; Schultz, Konrad; Block, Christoph; Monyer, Hannah; Willecke, Klaus; Weiler, Reto; Greschner, Martin; Janssen-Bienhold, Ulrike; Dedek, Karin

    2018-02-21

    In the mammalian retina, horizontal cells receive glutamatergic inputs from many rod and cone photoreceptors and return feedback signals to them, thereby changing photoreceptor glutamate release in a light-dependent manner. Horizontal cells also provide feedforward signals to bipolar cells. It is unclear, however, how horizontal cell signals also affect the temporal, spatial, and contrast tuning in retinal output neurons, the ganglion cells. To study this, we generated a genetically modified mouse line in which we eliminated the light dependency of feedback by deleting glutamate receptors from mouse horizontal cells. This genetic modification allowed us to investigate the impact of horizontal cells on ganglion cell signaling independent of the actual mode of feedback in the outer retina and without pharmacological manipulation of signal transmission. In control and genetically modified mice (both sexes), we recorded the light responses of transient OFF-α retinal ganglion cells in the intact retina. Excitatory postsynaptic currents (EPSCs) were reduced and the cells were tuned to lower temporal frequencies and higher contrasts, presumably because photoreceptor output was attenuated. Moreover, receptive fields of recorded cells showed a significantly altered surround structure. Our data thus suggest that horizontal cells are responsible for adjusting the dynamic range of retinal ganglion cells and, together with amacrine cells, contribute to the center/surround organization of ganglion cell receptive fields in the mouse. SIGNIFICANCE STATEMENT Horizontal cells represent a major neuronal class in the mammalian retina and provide lateral feedback and feedforward signals to photoreceptors and bipolar cells, respectively. The mode of signal transmission remains controversial and, moreover, the contribution of horizontal cells to visual processing is still elusive. To address the question of how horizontal cells affect retinal output signals, we recorded the light

  13. Effects of Oxaliplatin Treatment on the Myenteric Plexus Innervation and Glia in the Murine Distal Colon.

    PubMed

    Stojanovska, Vanesa; McQuade, Rachel M; Miller, Sarah; Nurgali, Kulmira

    2018-05-01

    Oxaliplatin (platinum-based chemotherapeutic agent) is a first-line treatment of colorectal malignancies; its use associates with peripheral neuropathies and gastrointestinal side effects. These gastrointestinal dysfunctions might be due to toxic effects of oxaliplatin on the intestinal innervation and glia. Male Balb/c mice received intraperitoneal injections of sterile water or oxaliplatin (3 mg/kg/d) triweekly for 2 weeks. Colon tissues were collected for immunohistochemical assessment at day 14. The density of sensory, adrenergic, and cholinergic nerve fibers labeled with calcitonin gene-related peptide (CGRP), tyrosine hydroxylase (TH), and vesicular acetylcholine transporter (VAChT), respectively, was assessed within the myenteric plexus of the distal colon. The number and proportion of excitatory neurons immunoreactive (IR) against choline acetyltransferase (ChAT) were counted, and the density of glial subpopulations was determined by using antibodies specific for glial fibrillary acidic protein (GFAP) and s100β protein. Oxaliplatin treatment induced significant reduction of sensory and adrenergic innervations, as well as the total number and proportion of ChAT-IR neurons, and GFAP-IR glia, but increased s100β expression within the myenteric plexus of the distal colon. Treatment with oxaliplatin significantly alters nerve fibers and glial cells in the colonic myenteric plexus, which could contribute to long-term gastrointestinal side effects following chemotherapeutic treatment.

  14. Peripheral choline acetyltransferase in rat skin demonstrated by immunohistochemistry.

    PubMed

    Hanada, Keiji; Kishimoto, Saburo; Bellier, Jean-Pierre; Kimura, Hiroshi

    2013-03-01

    Conventional choline acetyltransferase immunohistochemistry has been used widely for visualizing central cholinergic neurons and fibers but not often for labeling peripheral structures, probably because of their poor staining. The recent identification of the peripheral type of choline acetyltransferase (pChAT) has enabled the clear immunohistochemical detection of many known peripheral cholinergic elements. Here, we report the presence of pChAT-immunoreactive nerve fibers in rat skin. Intensely stained nerve fibers were distributed in association with eccrine sweat glands, blood vessels, hair follicles and portions just beneath the epidermis. These results suggest that pChAT-positive nerves participate in the sympathetic cholinergic innervation of eccrine sweat glands. Moreover, pChAT also appears to play a role in cutaneous sensory nerve endings. These findings are supported by the presence of many pChAT-positive neuronal cells in the sympathetic ganglion and dorsal root ganglion. Thus, pChAT immunohistochemistry should provide a novel and unique tool for studying cholinergic nerves in the skin.

  15. TRPM8 is a neuronal osmosensor that regulates eye blinking in mice

    PubMed Central

    Quallo, Talisia; Vastani, Nisha; Horridge, Elisabeth; Gentry, Clive; Parra, Andres; Moss, Sian; Viana, Felix; Belmonte, Carlos; Andersson, David A.; Bevan, Stuart

    2015-01-01

    Specific peripheral sensory neurons respond to increases in extracellular osmolality but the mechanism responsible for excitation is unknown. Here we show that small increases in osmolality excite isolated mouse dorsal root ganglion (DRG) and trigeminal ganglion (TG) neurons expressing the cold-sensitive TRPM8 channel (transient receptor potential channel, subfamily M, member 8). Hyperosmotic responses were abolished by TRPM8 antagonists, and were absent in DRG and TG neurons isolated from Trpm8−/− mice. Heterologously expressed TRPM8 was activated by increased osmolality around physiological levels and inhibited by reduced osmolality. Electrophysiological studies in a mouse corneal preparation demonstrated that osmolality regulated the electrical activity of TRPM8-expressing corneal afferent neurons. Finally, the frequency of eye blinks was reduced in Trpm8−/− compared with wild-type mice and topical administration of a TRPM8 antagonist reduced blinking in wild-type mice. Our findings identify TRPM8 as a peripheral osmosensor responsible for the regulation of normal eye-blinking in mice. PMID:25998021

  16. Innervation of the rabbit cardiac ventricles.

    PubMed

    Pauziene, Neringa; Alaburda, Paulius; Rysevaite-Kyguoliene, Kristina; Pauza, Audrys G; Inokaitis, Hermanas; Masaityte, Aiste; Rudokaite, Gabriele; Saburkina, Inga; Plisiene, Jurgita; Pauza, Dainius H

    2016-01-01

    The rabbit is widely used in experimental cardiac physiology, but the neuroanatomy of the rabbit heart remains insufficiently examined. This study aimed to ascertain the architecture of the intrinsic nerve plexus in the walls and septum of rabbit cardiac ventricles. In 51 rabbit hearts, a combined approach involving: (i) histochemical acetylcholinesterase staining of intrinsic neural structures in total cardiac ventricles; (ii) immunofluorescent labelling of intrinsic nerves, nerve fibres (NFs) and neuronal somata (NS); and (iii) transmission electron microscopy of intrinsic ventricular nerves and NFs was used. Mediastinal nerves access the ventral and lateral surfaces of both ventricles at a restricted site between the root of the ascending aorta and the pulmonary trunk. The dorsal surface of both ventricles is supplied by several epicardial nerves extending from the left dorsal ganglionated nerve subplexus on the dorsal left atrium. Ventral accessing nerves are thicker and more numerous than dorsal nerves. Intrinsic ventricular NS are rare on the conus arteriosus and the root of the pulmonary trunk. The number of ventricular NS ranged from 11 to 220 per heart. Four chemical phenotypes of NS within ventricular ganglia were identified, i.e. ganglionic cells positive for choline acetyltransferase (ChAT), neuronal nitric oxide synthase (nNOS), and biphenotypic, i.e. positive for both ChAT/nNOS and for ChAT/tyrosine hydroxylase. Clusters of small intensely fluorescent cells are distributed within or close to ganglia on the root of the pulmonary trunk, but not on the conus arteriosus. The largest and most numerous intrinsic nerves proceed within the epicardium. Scarce nerves were found near myocardial blood vessels, but the myocardium contained only a scarce meshwork of NFs. In the endocardium, large numbers of thin nerves and NFs proceed along the bundle of His and both its branches up to the apex of the ventricles. The endocardial meshwork of fine NFs was

  17. Prototypic and Arkypallidal Neurons in the Dopamine-Intact External Globus Pallidus

    PubMed Central

    Abdi, Azzedine; Mallet, Nicolas; Mohamed, Foad Y.; Sharott, Andrew; Dodson, Paul D.; Nakamura, Kouichi C.; Suri, Sana; Avery, Sophie V.; Larvin, Joseph T.; Garas, Farid N.; Garas, Shady N.; Vinciati, Federica; Morin, Stéphanie; Bezard, Erwan

    2015-01-01

    Studies in dopamine-depleted rats indicate that the external globus pallidus (GPe) contains two main types of GABAergic projection cell; so-called “prototypic” and “arkypallidal” neurons. Here, we used correlative anatomical and electrophysiological approaches in rats to determine whether and how this dichotomous organization applies to the dopamine-intact GPe. Prototypic neurons coexpressed the transcription factors Nkx2-1 and Lhx6, comprised approximately two-thirds of all GPe neurons, and were the major GPe cell type innervating the subthalamic nucleus (STN). In contrast, arkypallidal neurons expressed the transcription factor FoxP2, constituted just over one-fourth of GPe neurons, and innervated the striatum but not STN. In anesthetized dopamine-intact rats, molecularly identified prototypic neurons fired at relatively high rates and with high regularity, regardless of brain state (slow-wave activity or spontaneous activation). On average, arkypallidal neurons fired at lower rates and regularities than prototypic neurons, and the two cell types could be further distinguished by the temporal coupling of their firing to ongoing cortical oscillations. Complementing the activity differences observed in vivo, the autonomous firing of identified arkypallidal neurons in vitro was slower and more variable than that of prototypic neurons, which tallied with arkypallidal neurons displaying lower amplitudes of a “persistent” sodium current important for such pacemaking. Arkypallidal neurons also exhibited weaker driven and rebound firing compared with prototypic neurons. In conclusion, our data support the concept that a dichotomous functional organization, as actioned by arkypallidal and prototypic neurons with specialized molecular, structural, and physiological properties, is fundamental to the operations of the dopamine-intact GPe. PMID:25926446

  18. Anti-oxidative and anti-inflammatory effects of cinnamaldehyde on protecting high glucose-induced damage in cultured dorsal root ganglion neurons of rats.

    PubMed

    Yang, Dan; Liang, Xiao-Chun; Shi, Yue; Sun, Qing; Liu, Di; Liu, Wei; Zhang, Hong

    2016-01-01

    To examine the mechanism underlying the beneficial role of cinnamaldehyde on oxidative damage and apoptosis in high glucose (HG)-induced dorsal root ganglion (DRG) neurons in vitro. HG-treated DRG neurons were developed as an in vitro model of diabetic neuropathy. The neurons were randomly divided into five groups: the control group, the HG group and the HG groups treated with 25, 50 and 100 nmol/L cinnamaldehyde, respectively. Cell viability was examined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and apoptosis rate was evaluated by the in situ TdT-mediated dUTP nick end labeling (TUNEL) assay. The intracellular level of reactive oxygen species (ROS) was measured with flow cytometry. Expression of nuclear factor-kappa B (NF-κB), inhibitor of κB (IκB), phosphorylated IκB (p-IκB), tumor necrosis factor (TNF)-α, interleukin-6 (IL-6) and caspase-3 were determined by western blotting and real-time quantitative reverse transcription polymerase chain reaction (RT-PCR). Expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and hemeoxygenase-1 (HO-1) were also measured by western blotting. Cinnamaldehyde reduced HG-induced loss of viability, apoptosis and intracellular generation of ROS in the DRG neurons via inhibiting NF-κB activity. The western blot assay results showed that the HG-induced elevated expressions of NF-κB, IκB and p-IκB were remarkably reduced by cinnamaldehyde treatment in a dose-dependent manner (P <0.01). The HG-induced over-expression of NF-κB p65 mRNA was remarkably attenuated after cinnamaldehyde treatment in a dose-dependent manner (P <0.01). However, the expressions of Nrf2 and HO-1 were not upregulated. Treatment with cinnamaldehyde not only attenuated caspase-3 activation and the caspase cleavage cascade in DRG neurons, but also lowered the elevated IL-6, TNF-α, cyclo-oxygenase and inducible nitric oxide synthase levels, indicating a reduction in inflammatory damage. Cinnamaldehyde protected

  19. Dopamine suppresses neuronal activity of Helisoma B5 neurons via a D2-like receptor, activating PLC and K channels.

    PubMed

    Zhong, L R; Artinian, L; Rehder, V

    2013-01-03

    Dopamine (DA) plays fundamental roles as a neurotransmitter and neuromodulator in the central nervous system. How DA modulates the electrical excitability of individual neurons to elicit various behaviors is of great interest in many systems. The buccal ganglion of the freshwater pond snail Helisoma trivolvis contains the neuronal circuitry for feeding and DA is known to modulate the feeding motor program in Helisoma. The buccal neuron B5 participates in the control of gut contractile activity and is surrounded by dopaminergic processes, which are expected to release DA. In order to study whether DA modulates the electrical activity of individual B5 neurons, we performed experiments on physically isolated B5 neurons in culture and on B5 neurons within the buccal ganglion in situ. We report that DA application elicited a strong hyperpolarization in both conditions and turned the electrical activity from a spontaneously firing state to an electrically silent state. Using the cell culture system, we demonstrated that the strong hyperpolarization was inhibited by the D2 receptor antagonist sulpiride and the phospholipase C (PLC) inhibitor U73122, indicating that DA affected the membrane potential of B5 neurons through the activation of a D2-like receptor and PLC. Further studies revealed that the DA-induced hyperpolarization was inhibited by the K channel blockers 4-aminopyridine and tetraethylammonium, suggesting that K channels might serve as the ultimate target of DA signaling. Through its modulatory effect on the electrical activity of B5 neurons, the release of DA in vivo may contribute to a neuronal output that results in a variable feeding motor program. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  20. Modulation of nano-selenium on tetrodotoxin-sensitive voltage-gated sodium currents in rat dorsal root ganglion neurons.

    PubMed

    Yuan, Huijun; Lan, Tonghan; Lin, Jiarui

    2005-01-01

    Nano-Selenium, a novel Nano technology production, was demonstrated to be useful in medical and scientific researches. Here, we investigated the effects of Nano-Selenium on tetrodotoxin-sensitive (TTX-S) voltage-dependent Na+channels in isolated rat dorsal root ganglion neurons, using whole-cell patch-clamp method. Nano-Selenium irreversibly decreased TTX-S Na+current (INa) in a concentration-dependent manner and shifted the maximum of the current/voltage relationship from -67mV to -52mV, without modifying the threshold potential of the current. Nano-Selenium shifted the steady-state activation and inactivation curves to the left. In the contrast of Na2SeO3, the inhibition effect of 1nM Nano-Se was much stronger. The cell treated with 1nM Na2SeO3firstly, still respond to futher addition of 1nM Nano-Selenium. These results prove Nano-Selenium to be a novel antiagonist, acted within the channel pore, not on or near the exterior surface of the channel protein where it would experience the membrane electric field, which possesses a distinct binding site from Na2SeO3.

  1. Effects of chlorogenic acid on voltage-gated potassium channels of trigeminal ganglion neurons in an inflammatory environment.

    PubMed

    Liu, Fei; Lu, Xiao-Wen; Zhang, Yu-Jiao; Kou, Liang; Song, Ning; Wu, Min-Ke; Wang, Min; Wang, Hang; Shen, Jie-Fei

    2016-10-01

    Chlorogenic acid (CGA) composed of coffee acid and quinic acid is an effective ingredient of many foods and medicines and widely exhibits biological effects. Recently, it is reported to have analgesic effect. However, little is known about the analgesic mechanism of CGA. In this study, whole-cell patch-clamp recordings were performed on two main subtypes (I K,A and I K,V channels) of voltage-gated potassium (K V ) channels in small-diameter(<30μm) trigemianl ganglion neurons to analyze the effects of CGA in an inflammatory environment created by Prostaglandin E 2 (PGE 2 ). On one hand, the activation and inactivation V 1/2 values of I K,A and I K,V channels showed an elevation towards a depolarizing shift caused by PGE 2 . On the other hand, the activation and inactivation V 1/2 values of the two channels had a reduction towards a hyperpolarizing shift caused by CGA under PGE 2 pretreatment. Our results demonstrated that CGA may exhibited an analgesic effect by promoting K V channels activation and inactivation under inflammatory condition, which provided a novel molecular and ionic mechanism underlying anti-inflammatory pain of CGA. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Recording of electroneurograms from the nerves innervating the pancreas of a dog.

    PubMed

    Rozman, J; Zorko, B; Bunc, M

    2001-12-15

    Electroneurograms (ENGs) from the vagus, splanchnic and pancreatic nerves innervating the pancreas of a dog, were recorded with chronically implanted silicone multi-electrode circular cuffs in an intact pancreas and in a pancreas partly disabled with alloxan. The cuffs contained 33 platinum electrodes (0.6x1.5 mm) arranged in three parallel circular groups integrated into the inner surface of the cuff. Each circular group contained 11 electrodes at a distance of 0.5 mm apart, with 6 mm between the circular groups. The cuffs had an inner diameter of 2.5 mm and the length of 18 mm. In a 2-year study, the cuffs were implanted into two adult Beagle dogs (one female and one male). In the vagus nerve, the cuff was installed on the nerve at the neck, whilst in the splanchnic nerve, the cuff was installed on the nerve before the celiac ganglion, and in the pancreatic nerve, the cuff was installed on the nerve just before it enters the pancreas. In each of the three implanted cuffs, the electrodes of the central circular group were connected to each other and this signal provided one input to a multi-channel ENG amplifying system. The electrodes of each of the two outer spiral groups were connected to each other and then both these groups were short-circuited. This signal then provided another input to the multi-channel ENG amplifying system. The ENG amplifying system was designed to amplify the ENGs 100000 times and to pass frequencies of between 500 and 10 kHz. In our study, three recordings in each animal were conducted. Recordings in the intact pancreas were conducted 2 and 6 months after the implantation, while the recording in the partly disabled pancreas, was conducted 10 months after the implantation and 10 days after the disablement. Due to the fact that the results obtained in both animals were actually quite similar, we present the results of the recordings obtained in one animal. In both animals the cuffs were left implanted for more than 1 year and were used

  3. Spatial resolution, contrast sensitivity, and sensitivity to defocus of chicken retinal ganglion cells in vitro.

    PubMed

    Diedrich, Erich; Schaeffel, Frank

    2009-11-01

    The chicken has been extensively studied as an animal model for myopia because its eye growth is tightly controlled by visual experience. It has been found that the retina controls the axial eye growth rates depending on the amount and the sign of defocus imposed in the projected image. Glucagonergic amacrine cells were discovered that appear to encode for the sign of imposed defocus. It is not clear whether the downstream neurons, the retinal ganglion cells, still have access to this information-and whether it ultimately reaches the brain. We have analyzed the spike rates of chicken retinal ganglion cells in vitro using a microelectrode array. For this purpose, we initially defined spatial resolution and contrast sensitivity in vitro. Two classes of chicken retinal ganglions were found, depending on the linearity of their responses with increasing contrast. Responses generally declined with increasing defocus of the visual stimulus. These responses were well predicted by the modulation transfer function for a diffraction-limited defocused optical system, the first Bessel function. Thus, the studied retinal ganglion cells did not distinguish between a loss of contrast at a given spatial frequency due to reduced contrast of the stimulus pattern or because the pattern was presented out of focus. Furthermore, there was no indication that the retinal ganglion cells responded differently to defocus of either sign, at least for the cells that were recorded in this study.

  4. Functional ligand-gated purinergic receptors (P2X) in rat vestibular ganglion neurons.

    PubMed

    Ito, Ken; Chihara, Yasuhiro; Iwasaki, Shinichi; Komuta, Yukari; Sugasawa, Masashi; Sahara, Yoshinori

    2010-08-01

    The expression of purinergic receptors (P2X) on rat vestibular ganglion neurons (VGNs) was examined using whole-cell patch-clamp recordings. An application of adenosine 5'-triphosphate (ATP; 100microM) evoked inward currents in VGNs at a holding potential of -60mV. The decay time constant of the ATP-evoked currents was 2-4s, which is in between the values for rapidly desensitizing subgroups (P2X1 and P2X3) and slowly desensitizing subgroups (P2X2, P2X4, etc.), suggesting the heterogeneous expression of P2X receptors. A dose-response experiment showed an EC(50) of 11.0microM and a Hill's coefficient of 0.82. Suramin (100microM) reversibly inhibited the ATP-evoked inward currents. Alpha, beta-methylene ATP (100microM), a P2X-specific agonist, also evoked inward currents but less extensively than ATP. An application of adenosine 5'-dihosphate (ADP; 100microM) evoked similar, but much smaller, currents. The current-voltage relationship of the ATP-evoked conductance showed pronounced inward rectification with a reversal potential more positive than 0mV, suggesting non-selective cation conductance. However, the channel was not permeable to a large cation (N-methyl-d-glucamine) and acidification (pH 6.3) had little effect on the ATP-evoked conductance. RT-PCR confirmed the expression of five subtypes (P2X2-P2X6) in VGNs. The physiological role of P2X receptors includes the modulation of excitability at the synapses between hair cells and dendrites and/or trophic support (or also neuromodulation) from supporting cells surrounding the VGNs. Copyright 2010 Elsevier B.V. All rights reserved.

  5. One-day high-fat diet induces inflammation in the nodose ganglion and hypothalamus of mice.

    PubMed

    Waise, T M Zaved; Toshinai, Koji; Naznin, Farhana; NamKoong, Cherl; Md Moin, Abu Saleh; Sakoda, Hideyuki; Nakazato, Masamitsu

    2015-09-04

    A high-fat diet (HFD) induces inflammation in systemic organs including the hypothalamus, resulting in obesity and diabetes. The vagus nerve connects the visceral organs and central nervous system, and the gastric-derived orexigenic peptide ghrelin transmits its starvation signals to the hypothalamus via the vagal afferent nerve. Here we investigated the inflammatory response in vagal afferent neurons and the hypothalamus in mice following one day of HFD feeding. This treatment increased the number of macrophages/microglia in the nodose ganglion and hypothalamus. Furthermore, one-day HFD induced expression of Toll-like receptor 4 in the goblet cells of the colon and upregulated mRNA expressions of the proinflammatory biomarkers Emr1, Iba1, Il6, and Tnfα in the nodose ganglion and hypothalamus. Both subcutaneous administration of ghrelin and celiac vagotomy reduced HFD-induced inflammation in these tissues. HFD intake triggered inflammatory responses in the gut, nodose ganglion, and subsequently in the hypothalamus within 24 h. These findings suggest that the vagal afferent nerve may transfer gut-derived inflammatory signals to the hypothalamus via the nodose ganglion, and that ghrelin may protect against HFD-induced inflammation. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Female-biased dimorphism underlies a female-specific role for post-embryonic Ilp7 neurons in Drosophila fertility

    PubMed Central

    Castellanos, Monica C.; Tang, Jonathan C. Y.; Allan, Douglas W.

    2013-01-01

    In Drosophila melanogaster, much of our understanding of sexually dimorphic neuronal development and function comes from the study of male behavior, leaving female behavior less well understood. Here, we identify a post-embryonic population of Insulin-like peptide 7 (Ilp7)-expressing neurons in the posterior ventral nerve cord that innervate the reproductive tracts and exhibit a female bias in their function. They form two distinct dorsal and ventral subsets in females, but only a single dorsal subset in males, signifying a rare example of a female-specific neuronal subset. Female post-embryonic Ilp7 neurons are glutamatergic motoneurons innervating the oviduct and are required for female fertility. In males, they are serotonergic/glutamatergic neuromodulatory neurons innervating the seminal vesicle but are not required for male fertility. In both sexes, these neurons express the sex-differentially spliced fruitless-P1 transcript but not doublesex. The male fruitless-P1 isoform (fruM) was necessary and sufficient for serotonin expression in the shared dorsal Ilp7 subset, but although it was necessary for eliminating female-specific Ilp7 neurons in males, it was not sufficient for their elimination in females. By contrast, sex-specific RNA-splicing by female-specific transformer is necessary for female-type Ilp7 neurons in females and is sufficient for their induction in males. Thus, the emergence of female-biased post-embryonic Ilp7 neurons is mediated in a subset-specific manner by a tra- and fru-dependent mechanism in the shared dorsal subset, and a tra-dependent, fru-independent mechanism in the female-specific subset. These studies provide an important counterpoint to studies of the development and function of male-biased neuronal dimorphism in Drosophila. PMID:23981656

  7. Afferent innervation patterns of the saccule in pigeons

    NASA Technical Reports Server (NTRS)

    Zakir, M.; Huss, D.; Dickman, J. D.

    2003-01-01

    The innervation patterns of vestibular saccular afferents were quantitatively investigated in pigeons using biotinylated dextran amine as a neural tracer and three-dimensional computer reconstruction. Type I hair cells were found throughout a large portion of the macula, with the highest density observed in the striola. Type II hair cells were located throughout the macula, with the highest density in the extrastriola. Three classes of afferent innervation patterns were observed, including calyx, dimorph, and bouton units, with 137 afferents being anatomically reconstructed and used for quantitative comparisons. Calyx afferents were located primarily in the striola, innervated a number of type I hair cells, and had small innervation areas. Most calyx afferent terminal fields were oriented parallel to the anterior-posterior axis and the morphological polarization reversal line. Dimorph afferents were located throughout the macula, contained fewer type I hair cells in a calyceal terminal than calyx afferents and had medium sized innervation areas. Bouton afferents were restricted to the extrastriola, with multi-branching fibers and large innervation areas. Most of the dimorph and bouton afferents had innervation fields that were oriented dorso-ventrally but were parallel to the neighboring reversal line. The organizational morphology of the saccule was found to be distinctly different from that of the avian utricle or lagena otolith organs and appears to represent a receptor organ undergoing evolutionary adaptation toward sensing linear motion in terrestrial and aerial species.

  8. Spatiotemporal definition of neurite outgrowth, refinement and retraction in the developing mouse cochlea.

    PubMed

    Huang, Lin-Chien; Thorne, Peter R; Housley, Gary D; Montgomery, Johanna M

    2007-08-01

    The adult mammalian cochlea receives dual afferent innervation: the inner sensory hair cells are innervated exclusively by type I spiral ganglion neurons (SGN), whereas the sensory outer hair cells are innervated by type II SGN. We have characterized the spatiotemporal reorganization of the dual afferent innervation pattern as it is established in the developing mouse cochlea. This reorganization occurs during the first postnatal week just before the onset of hearing. Our data reveal three distinct phases in the development of the afferent innervation of the organ of Corti: (1) neurite growth and extension of both classes of afferents to all hair cells (E18-P0); (2) neurite refinement, with formation of the outer spiral bundles innervating outer hair cells (P0-P3); (3) neurite retraction and synaptic pruning to eliminate type I SGN innervation of outer hair cells, while retaining their innervation of inner hair cells (P3-P6). The characterization of this developmental innervation pattern was made possible by the finding that tetramethylrhodamine-conjugated dextran (TMRD) specifically labeled type I SGN. Peripherin and choline-acetyltransferase immunofluorescence confirmed the type II and efferent innervation patterns, respectively, and verified the specificity of the type I SGN neurites labeled by TMRD. These findings define the precise spatiotemporal neurite reorganization of the two afferent nerve fiber populations in the cochlea, which is crucial for auditory neurotransmission. This reorganization also establishes the cochlea as a model system for studying CNS synapse development, plasticity and elimination.

  9. Developmental and sex-specific differences in expression of neuropeptides derived from allatotropin gene in the silkmoth Bombyx mori.

    PubMed

    Bednár, Branislav; Roller, Ladislav; Čižmár, Daniel; Mitrová, Diana; Žitňan, Dušan

    2017-05-01

    Allatotropin (AT) and related neuropeptides are widespread bioactive molecules that regulate development, food intake and muscle contractions in insects and other invertebrates. In moths, alternative splicing of the at gene generates three mRNA precursors encoding AT with different combinations of three structurally similar AT-like peptides (ATLI-III). We used in situ hybridization and immunohistochemistry to map the differential expression of these transcripts during the postembryonic development of Bombyx mori. Transcript encoding AT alone was expressed in numerous neurons of the central nervous system and frontal ganglion, whereas transcripts encoding AT with ATLs were produced by smaller specific subgroups of neurons in larval stages. Metamorphosis was associated with considerable developmental changes and sex-specific differences in the expression of all transcripts. The most notable was the appearance of AT/ATL transcripts (1) in the brain lateral neurosecretory cells producing prothoracicotropic hormone; (2) in the male-specific cluster of about 20 neurons in the posterior region of the terminal abdominal ganglion; (3) in the female-specific medial neurons in the abdominal ganglia AG2-7. Immunohistochemical staining showed that these neurons produced a mixture of various neuropeptides and innervated diverse peripheral organs. Our data suggest that AT/ATL neuropeptides are involved in multiple stage- and sex-specific functions during the development of B. mori.

  10. Differential distribution of neurons in the gyral white matter of the human cerebral cortex.

    PubMed

    García-Marín, V; Blazquez-Llorca, L; Rodriguez, J R; Gonzalez-Soriano, J; DeFelipe, J

    2010-12-01

    The neurons in the cortical white matter (WM neurons) originate from the first set of postmitotic neurons that migrates from the ventricular zone. In particular, they arise in the subplate that contains the earliest cells generated in the telencephalon, prior to the appearance of neurons in gray matter cortical layers. These cortical WM neurons are very numerous during development, when they are thought to participate in transient synaptic networks, although many of these cells later die, and relatively few cells survive as WM neurons in the adult. We used light and electron microscopy to analyze the distribution and density of WM neurons in various areas of the adult human cerebral cortex. Furthermore, we examined the perisomatic innervation of these neurons and estimated the density of synapses in the white matter. Finally, we examined the distribution and neurochemical nature of interneurons that putatively innervate the somata of WM neurons. From the data obtained, we can draw three main conclusions: first, the density of WM neurons varies depending on the cortical areas; second, calretinin-immunoreactive neurons represent the major subpopulation of GABAergic WM neurons; and, third, the somata of WM neurons are surrounded by both glutamatergic and GABAergic axon terminals, although only symmetric axosomatic synapses were found. By contrast, both symmetric and asymmetric axodendritic synapses were observed in the neuropil. We discuss the possible functional implications of these findings in terms of cortical circuits. © 2010 Wiley-Liss, Inc.

  11. Excitatory innervation of caudal hypoglossal nucleus from nucleus reticularis gigantocellularis in the rat.

    PubMed

    Yang, C C; Chan, J Y; Chan, S H

    1995-03-01

    We examined the possible innervation of the caudal hypoglossal nucleus by the nucleus reticularis gigantocellularis of the medulla oblongata, based on single-neuron recording and retrograde tracing experiments in Sprague-Dawley rats. Under pentobarbital sodium (50 mg/kg, i.p.) anesthesia, electrical stimulation of the caudal portion of the nucleus reticularis gigantocellularis with repetitive 0.5-ms rectangular pulses increased (46 of 51 neurons) the basal discharge frequency of spontaneously active cells, or evoked spike activity in silent, hypoglossal neurons located at the level of the obex. This excitatory effect was related to the intensity (25-100 microA) and/or frequency (0.5-20 Hz) of the stimulating pulses to the nucleus reticularis gigantocellularis. Perikaryal activation of neurons by microinjection of L-glutamate (0.5 nmol, 25 nl) into the caudal portion of the nucleus reticularis gigantocellularis similarly produced an excitatory action on eight of 14 hypoglossal neurons. Retrogradely labeled neurons were found bilaterally within the confines of the nucleus reticularis gigantocellularis following unilateral microinjection of wheatgerm agglutinin-conjugated horseradish peroxidase or Fast Blue into the corresponding hypoglossal recording sites. Furthermore, the distribution of labeled neurons in the nucleus reticularis gigantocellularis substantially overlapped with the loci of electrical or chemical stimulation. These complementary electrophysiological and neuroanatomical results support the conclusion that an excitatory link exists between the nucleus reticularis gigantocellularis and at least the caudal portion of the hypoglossal nucleus in the rat.

  12. Immunocytochemical localization of calretinin containing neurons in retina from rabbit, cat, and dog.

    PubMed

    Jeon, M H; Jeon, C J

    1998-09-01

    Calcium homeostasis is critical for many neuronal functions, yet the distribution of calcium-binding protein is not always conserved among species, even between closely related species. We decided therefore to study the distribution of one of these calcium-binding proteins calretinin, in retina from rabbit, cat, and dog. Calretinin was localized using antibody immunocytochemistry. Calretinin immunoreactivity was found in numerous cell bodies in the ganglion cell layer in all three animals. These cells had small to medium-sized somas. Large ganglion cells, however, were not labeled using antiserum against calretinin. In the inner nuclear layer, calretinin immunoreactivity was found in many neurons in all three species. The regular distribution of neurons, the inner marginal location of their cell bodies in the inner nuclear layer, and the distinctive bilaminar morphologies of their dendritic arbors in the inner plexiform layer suggested that these calretinin-positive cells were AII amacrine cells. Calretinin immunoreactivity was observed in both A- and B-type horizontal cells in cat and dog retina. However, horizontal cells in the rabbit retina were not labeled by this antibody. Neurons in the photoreceptor cell layer were not labeled by this antibody. The present study suggests that calretinin immunoreactivity is present in several populations in the retina. In particular, calretinin labels AII amacrine cells and a subpopulation of ganglion cells in all three animals. Horizontal cells, however, were not labeled in rabbit.

  13. Expression of neuronal markers in the endometrium of women with and those without endometriosis.

    PubMed

    Newman, T A; Bailey, J L; Stocker, L J; Woo, Y L; Macklon, N S; Cheong, Y C

    2013-09-01

    How do the expression patterns of neuronal markers differ in the endometrium of women with and without endometriosis? The neuronal markers, PGP9.5, NGFp75 and VR1, are expressed in the endometrium at levels that do not differ between women with and without endometriosis. Aberrant neuronal growth within the uterus may contribute to abnormal fertility and uterine dysfunction. However, controversy still exists as to whether aberrant innervation in the endometrium is associated with gynaecological pathology such as endometriosis. This may reflect the use of subjective methods such as histology to assess the innervation of the endometrium. We, therefore, employed a quantitative method, western blotting, to study markers of endometrial innervation in the presence and absence of endometriosis. This study included 45 women undergoing laparoscopic examination for the diagnosis of endometriosis. Endometrial samples were analysed by western blot for the expression of neuronal and neurotrophic markers, PGP9.5, VR1 and NGFp75. Endometrial pipelle biopsies were obtained from patients with (n = 20, study group) and without (n = 25, control group) endometriosis. Tissue was analysed by immunohistochemistry and western blot analysis for the expression of pan-neuronal marker, PGP9.5, sensory nociceptive marker, TPVR1, and low-affinity neurotrophic growth factor receptor, NGFRp75. PGP9.5, NGFp75 and VR1 were expressed in the endometrium of women, independent of the presence of endometriosis. Furthermore, the expression level of PGP9.5, VR1 and NGFp75 did not alter between the two cohorts of women. Studies of this nature are subject to the heterogeneous nature of patient population and tissue samples despite attempts to standardize these parameters. Hence, further studies using similar methodology will be required to confirm our results. Our results highlight that sensory neuronal markers are present in women with and without endometriosis. Future work will assess what the targets of

  14. Activation of satellite glial cells in trigeminal ganglion following dental injury and inflammation.

    PubMed

    Liu, Haichao; Zhao, Lei; Gu, Wenzhen; Liu, Qin; Gao, Zhixiong; Zhu, Xiao; Wu, Zhi; He, Hongwen; Huang, Fang; Fan, Wenguo

    2018-06-01

    Satellite glial cells (SGCs), a peripheral neuroglial cell, surround neurons and form a complete envelope around individual sensory neurons in the trigeminal ganglia (TG), which may be involved in modulating neurons in inflammation. The purpose of this study was to determine the effect of dental injury and inflammation on SGCs in the TG. Pulp exposure (PX) was performed on the first maxillary molar of 28 rats. The neurons innervating injured tooth in TG were labeled by the retrograde transport of fluoro-gold (FG). Specimens were collected at 1, 3, 7, 14, 21 and 28 days after PX and stained immunohistochemically for glial fibrillary acid protein (GFAP), a marker of SGCs activation, in the TG. We observed that GFAP-immunoreactivity (IR) SGCs enclosed FG-labeled neurons increased in a time-dependent manner after PX. The neurons surrounded by GFAP-IR SGCs were mainly small and medium in size. The GFAP-IR SGCs encircled neurons increased significantly in the maxillary nerve region of the TG at 7-28 days following PX. The results show that dental injury and inflammation induced SGCs activation in the TG. It indicates that activation of SGCs might be implicated in the peripheral mechanisms of pain following dental injury and inflammation.

  15. Pox neuro control of cell lineages that give rise to larval poly-innervated external sensory organs in Drosophila.

    PubMed

    Jiang, Yanrui; Boll, Werner; Noll, Markus

    2015-01-15

    The Pox neuro (Poxn) gene of Drosophila plays a crucial role in the development of poly-innervated external sensory (p-es) organs. However, how Poxn exerts this role has remained elusive. In this study, we have analyzed the cell lineages of all larval p-es organs, namely of the kölbchen, papilla 6, and hair 3. Surprisingly, these lineages are distinct from any previously reported cell lineages of sensory organs. Unlike the well-established lineage of mono-innervated external sensory (m-es) organs and a previously proposed model of the p-es lineage, we demonstrate that all wild-type p-es lineages exhibit the following features: the secondary precursor, pIIa, gives rise to all three support cells-socket, shaft, and sheath, whereas the other secondary precursor, pIIb, is neuronal and gives rise to all neurons. We further show that in one of the p-es lineages, that of papilla 6, one cell undergoes apoptosis. By contrast in Poxn null mutants, all p-es lineages have a reduced number of cells and their pattern of cell divisions is changed to that of an m-es organ, with the exception of a lineage in a minority of mutant kölbchen that retains a second bipolar neuron. Indeed, the role of Poxn in p-es lineages is consistent with the specification of the developmental potential of secondary precursors and the regulation of cell division but not apoptosis. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. In vivo clonal overexpression of neuroligin 3 and neuroligin 2 in neurons of the rat cerebral cortex. Differential effects on GABAergic synapses and neuronal migration

    PubMed Central

    Fekete, Christopher D.; Chiou, Tzu-Ting; Miralles, Celia P.; Harris, Rachel S.; Fiondella, Christopher G.; LoTurco, Joseph J.; De Blas, Angel L.

    2015-01-01

    We have studied the effect of clonal overexpression of neuroligin 3 (NL3) or neuroligin 2 (NL2) in the adult rat cerebral cortex following in utero electroporation (IUEP) at embryonic stage E14. Overexpression of NL3 leads to a large increase in vGAT and GAD65 in the GABAergic contacts that the overexpressing neurons receive. Overexpression of NL2 produced a similar effect but to a lesser extent. In contrast, overexpression of NL3 or NL2 after IUEP, does not affect vGlut1 in the glutamatergic contacts that the NL3 or NL2 overexpressing neurons receive. The NL3 or NL2 overexpressing neurons do not show increased innervation by parvalbumin-containing GABAergic terminals or increased parvalbumin in the same terminals that show increased vGAT. These results indicate that the observed increase in vGAT and GAD65 is not due to increased GABAergic innervation but to increased expression of vGAT and GAD65 in the GABAergic contacts that NL3 or NL2 overexpressing neurons receive. The majority of bright vGAT puncta contacting the NL3 overexpressing neurons have no gephyrin juxtaposed to them indicating that many of these contacts are non-synaptic. This contrasts with the majority of the NL2 overexpressing neurons, which show plenty of synaptic gephyrin clusters juxtaposed to vGAT. Besides having an effect on GABAergic contacts, overexpression of NL3 interferes with the neuronal radial migration, in the cerebral cortex, of the neurons overexpressing NL3. PMID:25565602

  17. Caspase-3 dependent nitrergic neuronal apoptosis following cavernous nerve injury is mediated via RhoA and ROCK activation in major pelvic ganglion.

    PubMed

    Hannan, Johanna L; Matsui, Hotaka; Sopko, Nikolai A; Liu, Xiaopu; Weyne, Emmanuel; Albersen, Maarten; Watson, Joseph W; Hoke, Ahmet; Burnett, Arthur L; Bivalacqua, Trinity J

    2016-07-08

    Axonal injury due to prostatectomy leads to Wallerian degeneration of the cavernous nerve (CN) and erectile dysfunction (ED). Return of potency is dependent on axonal regeneration and reinnervation of the penis. Following CN injury (CNI), RhoA and Rho-associated protein kinase (ROCK) increase in penile endothelial and smooth muscle cells. Previous studies indicate that nerve regeneration is hampered by activation of RhoA/ROCK pathway. We evaluated the role of RhoA/ROCK pathway in CN regulation following CNI using a validated rat model. CNI upregulated gene and protein expression of RhoA/ROCK and caspase-3 mediated apoptosis in the major pelvic ganglion (MPG). ROCK inhibitor (ROCK-I) prevented upregulation of RhoA/ROCK pathway as well as activation of caspase-3 in the MPG. Following CNI, there was decrease in the dimer to monomer ratio of neuronal nitric oxide synthase (nNOS) protein and lowered NOS activity in the MPG, which were prevented by ROCK-I. CNI lowered intracavernous pressure and impaired non-adrenergic non-cholinergic-mediated relaxation in the penis, consistent with ED. ROCK-I maintained the intracavernous pressure and non-adrenergic non-cholinergic-mediated relaxation in the penis following CNI. These results suggest that activation of RhoA/ROCK pathway mediates caspase-3 dependent apoptosis of nitrergic neurons in the MPG following CNI and that ROCK-I can prevent post-prostatectomy ED.

  18. Imaging and quantifying ganglion cells and other transparent neurons in the living human retina.

    PubMed

    Liu, Zhuolin; Kurokawa, Kazuhiro; Zhang, Furu; Lee, John J; Miller, Donald T

    2017-11-28

    Ganglion cells (GCs) are fundamental to retinal neural circuitry, processing photoreceptor signals for transmission to the brain via their axons. However, much remains unknown about their role in vision and their vulnerability to disease leading to blindness. A major bottleneck has been our inability to observe GCs and their degeneration in the living human eye. Despite two decades of development of optical technologies to image cells in the living human retina, GCs remain elusive due to their high optical translucency. Failure of conventional imaging-using predominately singly scattered light-to reveal GCs has led to a focus on multiply-scattered, fluorescence, two-photon, and phase imaging techniques to enhance GC contrast. Here, we show that singly scattered light actually carries substantial information that reveals GC somas, axons, and other retinal neurons and permits their quantitative analysis. We perform morphometry on GC layer somas, including projection of GCs onto photoreceptors and identification of the primary GC subtypes, even beneath nerve fibers. We obtained singly scattered images by: ( i ) marrying adaptive optics to optical coherence tomography to avoid optical blurring of the eye; ( ii ) performing 3D subcellular image registration to avoid motion blur; and ( iii ) using organelle motility inside somas as an intrinsic contrast agent. Moreover, through-focus imaging offers the potential to spatially map individual GCs to underlying amacrine, bipolar, horizontal, photoreceptor, and retinal pigment epithelium cells, thus exposing the anatomical substrate for neural processing of visual information. This imaging modality is also a tool for improving clinical diagnosis and assessing treatment of retinal disease. Copyright © 2017 the Author(s). Published by PNAS.

  19. Vagal Afferent Innervation of the Lower Esophageal Sphincter

    PubMed Central

    Powley, Terry L.; Baronowsky, Elizabeth A.; Gilbert, Jared M.; Hudson, Cherie N.; Martin, Felecia N.; Mason, Jacqueline K.; McAdams, Jennifer L.; Phillips, Robert J.

    2013-01-01

    To supply a fuller morphological characterization of the vagal afferents innervating the lower esophageal sphincter (LES), specifically to label vagal terminals in the tissues forming the LES in the gastroesophageal junction, the present experiment employed injections of dextran biotin into the nodose ganglia of rats. Four types of vagal afferents innervated the LES. Clasp and sling muscle fibers were directly and prominently innervated by intramuscular arrays (IMAs). Individual IMA terminals subtended about 16° of arc of the esophageal circumference, and, collectively, the terminal fields were distributed within the muscle ring to establish a 360° annulus of mechanoreceptors in the sphincter wall. 3D morphometry of the terminals established that, compared to sling muscle IMAs, clasp muscle IMAs had more extensive arbors and larger receptive fields. In addition, at the cardia, local myenteric ganglia between smooth muscle sheets and striated muscle bundles were innervated by intraganglionic laminar endings (IGLEs), in a pattern similar to the innervation of the myenteric plexus throughout the stomach and esophagus. Finally, as previously described, the principle bundle of sling muscle fibers that links LES sphincter tissue to the antropyloric region of the lesser curvature was innervated by exceptionally long IMAs as well as by unique web ending specializations at the distal attachment of the bundle. Overall, the specialized varieties of densely distributed vagal afferents innervating the LES underscore the conclusion that these sensory projections are critically involved in generating LES reflexes and may be promising targets for managing esophageal dysfunctions. PMID:23583280

  20. Progranulin deficiency causes the retinal ganglion cell loss during development.

    PubMed

    Kuse, Yoshiki; Tsuruma, Kazuhiro; Mizoguchi, Takahiro; Shimazawa, Masamitsu; Hara, Hideaki

    2017-05-10

    Astrocytes are glial cells that support and protect neurons in the central nervous systems including the retina. Retinal ganglion cells (RGCs) are in contact with the astrocytes and our earlier findings showed the reduction of the number of cells in the ganglion cell layer in adult progranulin deficient mice. In the present study, we focused on the time of activation of the astrocytes and the alterations in the number of RGCs in the retina and optic nerve in progranulin deficient mice. Our findings showed that the number of Brn3a-positive cells was reduced and the expression of glial fibrillary acidic protein (GFAP) was increased in progranulin deficient mice. The progranulin deficient mice had a high expression of GFAP on postnatal day 9 (P9) but not on postnatal day 1. These mice also had a decrease in the number of the Brn3a-positive cells on P9. Taken together, these findings indicate that the absence of progranulin can affect the survival of RGCs subsequent the activation of astrocytes during retinal development.