Sample records for gangliosides gm1 gd1a

  1. Human monoclonal IgM with autoantibody activity against two gangliosides (GM1 and GD1b) in a patient with motor neuron syndrome.

    PubMed

    Jauberteau, M O; Gualde, N; Preud'Homme, J L; Rigaud, M; Gil, R; Vallat, J M; Baumann, N

    1990-05-01

    Small amounts of oligoclonal immunoglobulins were detected by Western blotting in the serum from a patient with motor neuron syndrome. The prominent one, a monoclonal IgM lambda, reacted strongly with the gangliosides GM1 and GD1b and more weakly with asialo GM1, as shown by immunoenzymatic staining of thin-layer chromatograms of gangliosides, ELISA on purified glycolipid coats and immunoadsorption with purified GM1. Affinity-chromatography with purified GM1 resulted in the purification of monoclonal IgM lambda. This purified IgM and its Fab fragments showed the same pattern of reactivity with gangliosides as that observed with whole serum. Such monoclonal IgM could be responsible for motor neuron diseases in some patients with overt or barely detectable monoclonal gammopathies.

  2. Human monoclonal IgM with autoantibody activity against two gangliosides (GM1 and GD1b) in a patient with motor neuron syndrome.

    PubMed Central

    Jauberteau, M O; Gualde, N; Preud'Homme, J L; Rigaud, M; Gil, R; Vallat, J M; Baumann, N

    1990-01-01

    Small amounts of oligoclonal immunoglobulins were detected by Western blotting in the serum from a patient with motor neuron syndrome. The prominent one, a monoclonal IgM lambda, reacted strongly with the gangliosides GM1 and GD1b and more weakly with asialo GM1, as shown by immunoenzymatic staining of thin-layer chromatograms of gangliosides, ELISA on purified glycolipid coats and immunoadsorption with purified GM1. Affinity-chromatography with purified GM1 resulted in the purification of monoclonal IgM lambda. This purified IgM and its Fab fragments showed the same pattern of reactivity with gangliosides as that observed with whole serum. Such monoclonal IgM could be responsible for motor neuron diseases in some patients with overt or barely detectable monoclonal gammopathies. Images Fig. 2 Fig. 3 PMID:2357844

  3. GM1 and GM2 gangliosides: recent developments.

    PubMed

    Bisel, Blaine; Pavone, Francesco S; Calamai, Martino

    2014-03-01

    GM1 and GM2 gangliosides are important components of the cell membrane and play an integral role in cell signaling and metabolism. In this conceptual overview, we discuss recent developments in our understanding of the basic biological functions of GM1 and GM2 and their involvement in several diseases. In addition to a well-established spectrum of disorders known as gangliosidoses, such as Tay-Sachs disease, more and more evidence points at an involvement of GM1 in Alzheimer's and Parkinson's diseases. New emerging methodologies spanning from single-molecule imaging in vivo to simulations in silico have complemented standard studies based on ganglioside extraction.

  4. GD3- and O-acetylated GD3-gangliosides in the GM2 synthase-deficient mouse brain and their immunohistochemical localization

    PubMed Central

    Matsuda, Junko; Vanier, Marie T.; Popa, Iuliana; Portoukalian, Jacques; Suzuki, Kunihiko

    2006-01-01

    Gangliosides in the brain of the knockout mouse deficient in the activity of β1,4 N-acetylgalactosaminyl transferase (β1,4 GalNAc-T)(GM2 synthase) consisted of nearly exclusively of GM3- and GD3-gangliosides as expected from the known substrate specificity of the enzyme and in confirmation of the initial reports from two laboratories that generated the mutant mouse experimentally. The total molar amount of gangliosides was approximately 30% higher in the mutant mouse brain than that in the wild-type brain. However, contrary to the initial reports, one-fourth of total GD3-ganglioside was O-acetylated. It reacted positively with an anti-O-acetylated GD3 monoclonal antibody and disappeared with a corresponding increase in GD3-ganglioside after mild alkaline treatment. The absence of O-acetylated GD3 in the initial reports can be explained by the saponification step included in their analytical procedures. Although quantitatively much less and identification tentative, we also detected GT3 and O-acetylated GT3. Anti-GD3 and anti-O-acetylated GD3 monoclonal antibodies gave positive reactions in the brain of mutant mouse as expected from the analytical results. Either antibody barely stained wild-type brain except for immunoreactivity of GD3 in the cerebellar Purkinje cells. The distributions of GD3 and O-acetylated GD3 in the brain of mutant mouse were similar but differential localization was noted in the cerebellar Purkinje cells and cerebral cortex. PMID:25792782

  5. A photoreactive derivative of radiolabeled GM1 ganglioside: Preparation and use to establish the involvement of specific proteins in GM1 uptake by human fibroblasts in culture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sonnino, S.; Chigorno, V.; Acquotti, D.

    1989-01-10

    A new procedure was used to synthesize a derivative of ganglioside GM1 containing a photoreactive nitrophenyl azide group at the end of the fatty acyl moiety, using deAc-deAcyl-GM1 obtained by deacetylation of the sialic acid and deacylation of the ceramide portion of GM1. This deAc-deAcyl-GM1 was first acylated at the long chain base amino group with 12-aminododecanoic acid, which has the amino group protected by a fluorenyl residue, and tritium labeled at the sialic acid amino group with ({sup 3}H)acetic anhydride of very high specific radioactivity. Cultured human fibroblasts were exposed to mixtures of radioactive photolabeled GM1 for different timesmore » and then illuminated and the radioactive protein patterns studied by SDS-PAGE. After 2 h of exposure, the photolabeled GM1 was stably associated to the cells and underwent almost no metabolic processing, behaving exactly as the underivatized natural GM1. Under these conditions very few proteins became radioactive. Thus, it is evident that the ganglioside binding to fibroblasts and insertion into the outer layer of the plasma membrane involve few individual proteins. When the incubation was prolonged to 24 h, photolabeled GM1 underwent extensive metabolic processing and gave origins to the corresponding ganglioside derivatives of GM2, GM3, and GD1a. Under these conditions many proteins became radioactive, a consequence of GM1 transfer from the surface to the interior or the cell and of the ready availability of interaction of GM1 and its metabolites.« less

  6. The effect of exogenous GM1 ganglioside on kindled-amygdaloid seizures.

    PubMed

    Albertson, T E; Walby, W F

    1987-01-01

    The effects of 12 daily doses of 30 mg/kg GM1 ganglioside i.p. on the acquisition of kindled-amygdaloid seizures in the rat was studied. No modification in the rate of kindling or the expression of the elicited seizures was noted during the acquisition phase. Further studies with additional fully amygdaloid kindled rats failed to show significant modification of suprathreshold or threshold elicited seizures after single 30-60 mg/kg i.p. doses of GM1 ganglioside. Despite previous studies which have shown antibodies to GM1 ganglioside to be convulsive, no anticonvulsant activity was demonstrated in this study with exogenous GM1 ganglioside using a battery of kindled-amygdaloid seizure tests in the rat.

  7. Water response to ganglioside GM1 surface remodelling.

    PubMed

    Brocca, P; Rondelli, V; Mallamace, F; Di Bari, M T; Deriu, A; Lohstroh, W; Del Favero, E; Corti, M; Cantu', L

    2017-01-01

    Gangliosides are biological glycolipids participating in rafts, structural and functional domains of cell membranes. Their headgroups are able to assume different conformations when packed on the surface of an aggregate, more lying or standing. Switching between different conformations is possible, and is a collective event. Switching can be induced, in model systems, by concentration or temperature increase, then possibly involving ganglioside-water interaction. In the present paper, the effect of GM1 ganglioside headgroup conformation on the water structuring and interactions is addressed. Depolarized Rayleigh Scattering, Raman Scattering, Quasielastic Neutron Scattering and NMR measurements were performed on GM1 ganglioside solutions, focusing on solvent properties. All used techniques agree in evidencing differences in the structure and dynamics of solvent water on different time-and-length scales in the presence of either GM1 headgroup conformations. In general, all results indicate that both the structural properties of solvent water and its interactions with the sugar headgroups of GM1 respond to surface remodelling. The extent of this modification is much higher than expected and, interestingly, ganglioside headgroups seem to turn from cosmotropes to chaotropes upon collective rearrangement from the standing- to the lying-conformation. In a biological perspective, water structure modulation could be one of the physico-chemical elements contributing to the raft strategy, both for rafts formation and persistence and for their functional aspects. In particular, the interaction with approaching bodies could be favoured or inhibited or triggered by complex-sugar-sequence conformational switch. This article is part of a Special Issue entitled "Science for Life" Guest Editor: Dr. Austen Angell, Dr. Salvatore Magazù and Dr. Federica Migliardo. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Enhanced expression of unique gangliosides with GM2-determinant in human uterine cervical carcinoma-derived cell lines.

    PubMed

    Tanaka, Kyoko; Miyazawa, Masaki; Mikami, Mikio; Aoki, Daisuke; Kiguchi, Kazushige; Iwamori, Masao

    2016-10-01

    Monoclonal antibody YHD-06 generated by immunization with GM2 reacted with gangliosides with GM2-determinant, i.e., GM2, GalNAc-GM1b and GalNAc-GD1a, among which GalNAc-GD1a was characterized as an antigen of autoimmune peripheral neuropathies including Guillain-Barré syndrome. When glycolipids were examined by TLC-immunostaining with YHD-06 in seven human cervical carcinoma-derived cell lines, GM2 was found in all cell lines, amounting to 15.5 % to 57.5 % of total gangliosides. Whereas GalNAc-GD1a was present in three cell lines, amounting to 5.4-17.5 % of total gangliosides, and GalNAc-GM1b in four cell lines in amounts of less than 2 %. The elevated amounts of gangliosides with GM2 determinant were closely correlated with the relative intensities of gene expression of GalNAc transferase, this being characteristic of cervical carcinoma-derived cells. However, in tissues from patients with several histological types of cervical carcinomas, GM3 was ubiquitously expressed in amounts of more than 66 % of total gangliosides, GM2 was expressed in only five of 15 tissues, and both GalNAc-GM1b and GalNAc-GD1a were not even detected in trace amounts. Since GM1 was detected in all tissues in amounts of less than 0.06 μg/mg dried tissue, all cervical carcinoma tissues were revealed to exhibit GM2 synthesis, indicating that enhanced synthesis of gangliosides with GM2 determinant is a characteristic of cultivated cells in vitro. Similarly, although I(3)SO3-GalCer was not present in the squamous cell carcinoma (SCC) tissues, SCC-derived cells selectively expressed II(3)SO3-LacCer. Since enhanced synthesis of GM2 has been reported in SV-40 virus-transfected fibroblasts, papilloma virus might be involved in the expression of GM2 in cervical carcinoma-derived cells.

  9. Altered distribution of the gangliosides GM1 and GM2 in Alzheimer's disease.

    PubMed

    Pernber, Z; Blennow, K; Bogdanovic, N; Månsson, J-E; Blomqvist, M

    2012-01-01

    Alzheimer's disease (AD) is a neurodegenerative disorder where β-amyloid tends to aggregate and form plaques. Lipid raft-associated ganglioside GM1 has been suggested to facilitate β-amyloid aggregation; furthermore, GM1 and GM2 are increased in lipid rafts isolated from cerebral cortex of AD cases. The distribution of GM1 and GM2 was studied by immunohistochemistry in the frontal and temporal cortex of AD cases. Frontotemporal dementia (FTD) was included as a contrast group. The distribution of GM1 and GM2 changes during the process of AD (n = 5) and FTD (n = 3) compared to controls (n = 5). Altered location of the GM1-positive small circular structures seems to be associated with myelin degradation. In the grey matter, the staining of GM1-positive plasma membranes might reflect neuronal loss in the AD/FTD tissue. The GM1-positive compact bundles were only visible in cells located in the AD frontal grey matter, possibly reflecting raft formation of GM1 and thus a pathological connection. Furthermore, our results suggest GM2 to be enriched within vesicles of pyramidal neurons of the AD/FTD brain. Our study supports the biochemical finding of ganglioside accumulation in cellular membranes of AD patients and shows a redistribution of these molecules. Copyright © 2012 S. Karger AG, Basel.

  10. New Insights on Non-Enzymatic Oxidation of Ganglioside GM1 Using Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Couto, Daniela; Melo, Tânia; Maciel, Elisabete; Campos, Ana; Alves, Eliana; Guedes, Sofia; Domingues, M. Rosário M.; Domingues, Pedro

    2016-12-01

    Gangliosides are acidic glycosphingolipids that are present in cell membranes and lipid raft domains, being particularly abundant in central nervous systems. They participate in modulating cell membrane properties, cell-cell recognition, cell regulation, and signaling. Disturbance in ganglioside metabolism has been correlated with the development of diseases, such as neurodegenerative diseases, and in inflammation. Both conditions are associated with an increased production of reactive oxidation species (ROS) that can induce changes in the structure of biomolecules, including lipids, leading to the loss or modification of their function. Oxidized phospholipids are usually involved in chronic diseases and inflammation. However, knowledge regarding oxidation of gangliosides is scarce. In order to evaluate the effect of ROS in gangliosides, an in vitro biomimetic model system was used to study the susceptibility of GM1 (Neu5Ac α2-3(Gal β1-3GalNAc β1-4)Gal β1-4Glc β1Cer) to undergo oxidative modifications. Oxidation of GM1 under Fenton reaction conditions was monitored using high resolution electrospray ionization-mass spectrometry (ESI-MS) and tandem mass spectrometry (ESI-MS/MS). Upon oxidation, GM1 underwent oxidative cleavages in the carbohydrate chain, leading to the formation of other gangliosides GM2 (GalNAcβ1-4Gal(Neu5Acα2-3)1-4Glcβ1Cer), GM3 (Neu5Acα2-3Galβ1-4Glcβ1Cer), asialo-GM1 (Gal β1-3GalNAc β1-4Gal β1-4Glc β1Cer), asialo-GM2 (GalNAc β1-4Gal β1-4Glc β1Cer), of the small glycolipids lactosylceramide (LacCer), glucosylceramide (GlcCer), and of ceramide (Cer). In addition, oxygenated GM1 and GM2 (as keto and hydroxy derivatives), glycans, oxidized glycans, and oxidized ceramides were also identified. Nonenzymatic oxidation of GM1 under oxidative stress contributes to the generation of other gangliosides that may participate in the imbalance of gangliosides metabolism in vivo, through uncontrolled enzymatic pathways and, consequently, play

  11. Altered Expression of Ganglioside Metabolizing Enzymes Results in GM3 Ganglioside Accumulation in Cerebellar Cells of a Mouse Model of Juvenile Neuronal Ceroid Lipofuscinosis.

    PubMed

    Somogyi, Aleksandra; Petcherski, Anton; Beckert, Benedikt; Huebecker, Mylene; Priestman, David A; Banning, Antje; Cotman, Susan L; Platt, Frances M; Ruonala, Mika O; Tikkanen, Ritva

    2018-02-22

    Juvenile neuronal ceroid lipofuscinosis (JNCL) is caused by mutations in the CLN3 gene. Most JNCL patients exhibit a 1.02 kb genomic deletion removing exons 7 and 8 of this gene, which results in a truncated CLN3 protein carrying an aberrant C-terminus. A genetically accurate mouse model ( Cln3 Δex7/8 mice) for this deletion has been generated. Using cerebellar precursor cell lines generated from wildtype and Cln3 Δex7/8 mice, we have here analyzed the consequences of the CLN3 deletion on levels of cellular gangliosides, particularly GM3, GM2, GM1a and GD1a. The levels of GM1a and GD1a were found to be significantly reduced by both biochemical and cytochemical methods. However, quantitative high-performance liquid chromatography analysis revealed a highly significant increase in GM3, suggesting a metabolic blockade in the conversion of GM3 to more complex gangliosides. Quantitative real-time PCR analysis revealed a significant reduction in the transcripts of the interconverting enzymes, especially of β-1,4- N -acetyl-galactosaminyl transferase 1 (GM2 synthase), which is the enzyme converting GM3 to GM2. Thus, our data suggest that the complex a-series gangliosides are reduced in Cln3 Δex7/8 mouse cerebellar precursor cells due to impaired transcription of the genes responsible for their synthesis.

  12. Altered Expression of Ganglioside Metabolizing Enzymes Results in GM3 Ganglioside Accumulation in Cerebellar Cells of a Mouse Model of Juvenile Neuronal Ceroid Lipofuscinosis

    PubMed Central

    Somogyi, Aleksandra; Petcherski, Anton; Beckert, Benedikt; Huebecker, Mylene; Priestman, David A.; Banning, Antje; Cotman, Susan L.; Platt, Frances M.; Ruonala, Mika O.

    2018-01-01

    Juvenile neuronal ceroid lipofuscinosis (JNCL) is caused by mutations in the CLN3 gene. Most JNCL patients exhibit a 1.02 kb genomic deletion removing exons 7 and 8 of this gene, which results in a truncated CLN3 protein carrying an aberrant C-terminus. A genetically accurate mouse model (Cln3Δex7/8 mice) for this deletion has been generated. Using cerebellar precursor cell lines generated from wildtype and Cln3Δex7/8 mice, we have here analyzed the consequences of the CLN3 deletion on levels of cellular gangliosides, particularly GM3, GM2, GM1a and GD1a. The levels of GM1a and GD1a were found to be significantly reduced by both biochemical and cytochemical methods. However, quantitative high-performance liquid chromatography analysis revealed a highly significant increase in GM3, suggesting a metabolic blockade in the conversion of GM3 to more complex gangliosides. Quantitative real-time PCR analysis revealed a significant reduction in the transcripts of the interconverting enzymes, especially of β-1,4-N-acetyl-galactosaminyl transferase 1 (GM2 synthase), which is the enzyme converting GM3 to GM2. Thus, our data suggest that the complex a-series gangliosides are reduced in Cln3Δex7/8 mouse cerebellar precursor cells due to impaired transcription of the genes responsible for their synthesis. PMID:29470438

  13. An antibody to the GM1/GalNAc-GD1a complex correlates with development of pure motor Guillain-Barré syndrome with reversible conduction failure.

    PubMed

    Ogawa, Go; Kaida, Ken-ichi; Kuwahara, Motoi; Kimura, Fumihiko; Kamakura, Keiko; Kusunoki, Susumu

    2013-01-15

    Antibodies to a ganglioside complex consisting of GM1 and GalNAc-GD1a (GM1/GalNAc-GD1a) are found in sera from patients with Guillain-Barré syndrome (GBS). To elucidate the clinical significance of anti-GM1/GalNAc-GD1a antibodies in GBS, clinical features of 58 GBS patients with IgG anti-GM1/GalNAc-GD1a antibodies confirmed by enzyme-linked immunosorbent assay and thin layer chromatography immunostaining were analyzed. Compared to GBS patients without anti-GM1/GalNAc-GD1a antibodies, anti-GM1/GalNAc-GD1a-positive patients more frequently had a preceding respiratory infection (n=38, 66%, p<0.01) and were characterized by infrequency of cranial nerve deficits (n=9, 16%, p<0.01) and sensory disturbances (n=26, 45%, p<0.01). Of the 28 anti-GM1/GalNAc-GD1a-positive patients for whom electrophysiological data were available, 14 had conduction blocks (CBs) at intermediate segments of motor nerves, which were not followed by evident remyelination. Eight of 10 bedridden cases were able to walk independently within one month after the nadir. These results show that the presence of anti-GM1/GalNAc-GD1a antibodies correlated with pure motor GBS characterized by antecedent respiratory infection, fewer cranial nerve deficits, and CBs at intermediate sites of motor nerves. The CB may be generated through alteration of the regulatory function of sodium channels in the nodal axolemma. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Simultaneous quantification of GM1 and GM2 gangliosides by isotope dilution tandem mass spectrometry.

    PubMed

    Gu, Jianghong; Tifft, Cynthia J; Soldin, Steven J

    2008-04-01

    Gangliosides (GGs) are considered as diagnostic biomarkers and therapeutic targets and agents. The goal of this study was to develop a tandem mass spectrometry (MS/MS) method for the simultaneous measurement of both GM1 and GM2 gangliosides in human cerebrospinal fluid (CSF) samples in order to be able to determine their concentrations in patients with Tay-Sachs and Sandhoff disease and assess whether drugs or transplantation affect their concentrations. An API-4000 tandem mass spectrometer equipped with TurboIonSpray source and Shimadzu HPLC system was employed to perform the analysis using isotope dilution with deuterium labeled internal standards. To a 1.5 mL conical plastic Eppendorf centrifuge tube, 40 microL of human CSF sample was added and mixed with 400 microL of internal standard solution for deproteinization. After centrifugation, 100 microL of supernatant was injected onto a C-18 column. After a 2.5 min wash, the switching valve was activated and the analytes were eluted from the column with a water/methanol gradient into the MS/MS system. Quantification by multiple reaction-monitoring (MRM) analysis was performed in the negative mode. The within-day coefficients of variation were <3% for GM1 and <2% for GM2 and the between-day coefficients of variation were <5% for both GM1 and GM2 at all concentrations tested. Accuracy ranged between 98% and 102% for both analytes. Good linearity was also obtained within the concentration range of 10-200 ng/mL (6.5-129.3 nmol/L) for GM1 and 5-100 ng/mL (3.6-72.3 nmol/L) for GM2 (r> or =0.995). A new simple, accurate, and fast isotope dilution tandem mass spectrometry method was developed for the simultaneous quantification of GM1 and GM2 gangliosides in a small amount of human CSF. Concentrations were measured in "normal" CSF and in CSF from patients with Tay-Sachs disease.

  15. Association to HeLa cells and surface behavior of exogenous gangliosides studied with a fluorescent derivative of GM1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masserini, M.; Giuliani, A.; Palestini, P.

    1990-01-23

    Cultured HeLa cells were incubated with pyrene-GM1/{sup 3}H-radiolabeled GM1 ganglioside (1:4 M/M) mixtures for various times. The process of association of pyrene-GM1 with cells was qualitatively and quantitatively the same as that of {sup 3}H-GM1. The pyrene-GM1 and {sup 3}H-GM1 proportions in the various forms of association with cells were similar to that of the starting ganglioside mixture. After 2-h incubation, the association of ganglioside with cells was well established whereas almost no metabolic processing had occurred. During a 24-h incubation, pyrene- and {sup 3}H-GM1 underwent similar metabolic processing and gave rise to catabolic (GM2 and GM3) and anabolic (GDla)more » derivatives. Fluorescence spectroscopy experiments carried out with the excimer formation technique on subcellular fractions containing plasma membranes showed that exogenous ganglioside was, in part, associated with the cells in a micellar form removable by trypsin treatment, and in part inserted in a seemingly molecular dispersion. Addition of Ca{sup 2+} salts caused aggregation of the ganglioside, as indicated by the increase of the excimer:monomer fluorescence ratio. The phenomenon was Ca{sup 2+} concentration dependent (maximum at 10 mM), and subsequent addition of EDTA has no effect. The saccharide portion of exogenously incorporated pyrene-GM1 was available to interact with external ligands, as shown by its ability to bind cholera toxin whose addition reduced the collision rate among the ganglioside lipid moieties.« less

  16. High-throughput imaging method for direct assessment of GM1 ganglioside levels in mammalian cells.

    PubMed

    Acosta, Walter; Martin, Reid; Radin, David N; Cramer, Carole L

    2016-03-01

    GM1-gangliosidosis is an inherited autosomal recessive disorder caused by mutations in the gene GLB1, which encodes acid β-galactosidase (β-gal). The lack of activity in this lysosomal enzyme leads to accumulation of GM1 gangliosides (GM1) in cells. We have developed a high-content-imaging method to assess GM1 levels in fibroblasts that can be used to evaluate substrate reduction in treated GLB1(-/-) cells [1]. This assay allows fluorescent quantification in a multi-well system which generates unbiased and statistically significant data. Fluorescently labeled Cholera Toxin B subunit (CTXB), which specifically binds to GM1 gangliosides, was used to detect in situ GM1 levels in a fixed monolayer of fibroblasts. This sensitive, rapid, and inexpensive method facilitates in vitro drug screening in a format that allows a high number of replicates using low working volumes.

  17. Approaches in the study of ganglioside metabolism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tettamanti, G.; Ghidoni, R.; Sonnino, S.

    1984-01-01

    Ganglioside GM1, /sup 3/H-labeled in the sphingosine or terminal galactose moiety was injected into mice and its metabolic fate in the liver was followed. After administration of sphingosine-labeled GM1 all major liver gangliosides (GM3, GM2, GM1, GD1a-NeuAc, NeuG1) became radioactive, the radioactivity residing in all cases on the sphingosine moiety. The specific radioactivity was highest on GM1, followed by GM2, GM3 and GD1a-NeuAc, NeuG1. Several neutral glycosphingolipids and sphingomyelin were also formed. After administration of galactose-labelled GM1 the only radioactive gangliosides present in the liver were GM1 and GD1a-NeuAc, NeuG1, both carrying the radioactivity on the terminal galactose residue, withmore » no formation of labelled neutral glycosphingolipids. Subcellular studies gave clear evidence that GM1, after being taken up by the liver, was mainly degraded to GM2, GM3 and neutral glycosphingolipids at the level of lysosomes. A part of it was sialylated to more complex gangliosides and some of its metabolic by-products were used for the biosynthesis of other sphingolipid species, likely at the level of the Golgi apparatus. All this suggests that exogenous GM1 is introduced in the metabolic routes of endogenous gangliosides and of other sphingolipids, which are operating in the liver.« less

  18. High-throughput imaging method for direct assessment of GM1 ganglioside levels in mammalian cells

    PubMed Central

    Acosta, Walter; Martin, Reid; Radin, David N.; Cramer, Carole L.

    2016-01-01

    GM1-gangliosidosis is an inherited autosomal recessive disorder caused by mutations in the gene GLB1, which encodes acid β-galactosidase (β-gal). The lack of activity in this lysosomal enzyme leads to accumulation of GM1 gangliosides (GM1) in cells. We have developed a high-content-imaging method to assess GM1 levels in fibroblasts that can be used to evaluate substrate reduction in treated GLB1−/− cells [1]. This assay allows fluorescent quantification in a multi-well system which generates unbiased and statistically significant data. Fluorescently labeled Cholera Toxin B subunit (CTXB), which specifically binds to GM1 gangliosides, was used to detect in situ GM1 levels in a fixed monolayer of fibroblasts. This sensitive, rapid, and inexpensive method facilitates in vitro drug screening in a format that allows a high number of replicates using low working volumes. PMID:26958633

  19. IgM ganglioside GM1 antibodies in patients with autoimmune disease or neuropathy, and controls.

    PubMed Central

    Bansal, A S; Abdul-Karim, B; Malik, R A; Goulding, P; Pumphrey, R S; Boulton, A J; Holt, P L; Wilson, P B

    1994-01-01

    AIMS--To compare the titre of anti-ganglioside antibodies (AGA) to GM1 ganglioside in patients with central and peripheral neurological disease and pure motor and sensorimotor neuropathy, in patients with classic autoimmune diseases, and controls. METHODS--AGA to GM1 were measured using an enzyme linked immunosorbent assay (ELISA) technique, highly purified bovine GM1 ganglioside, and sequential dilution of control and test sera. Antibody titre was calculated using the optical density readings of three consecutive serum dilutions multiplied by the dilution factor. RESULTS--A considerable overlap was evident in the titre of AGA to GM1 in control and test sera. High antibody titres were most frequent in patients with multifocal motor neuropathy with conduction block (MMNCB). Low AGA titre were observed in several patient groups. Compared with the controls, the median titre of AGA to GM1 was significantly higher in patients with multiple sclerosis, rheumatoid arthritis, primary Sjögren's syndrome and systemic lupus erythematosus. In contrast, the median titre in patients with diabetic peripheral neuropathy, motor neurone disease, sensorimotor neuropathy and chronic inflammatory demyelinating polyneuropathy was no different from that in normal control subjects. CONCLUSIONS--Estimation of AGA to GM1 may be helpful in the diagnosis of MMNCB in patients with a pure motor neuropathy but in few other conditions. Low titre AGA to GM1 are evident in several autoimmune conditions. The pathogenetic importance of AGA to GM1 in patients with neuropathy is not clear. PMID:8027366

  20. The biologic role of ganglioside in neuronal differentiation--effects of GM1 ganglioside on human neuroblastoma SH-SY5Y cells.

    PubMed Central

    Lee, M. C.; Lee, W. S.; Park, C. S.; Juhng, S. W.

    1994-01-01

    Human neuroblastoma SH-SY5Y cell is a cloned cell line which has many attractive features for the study of neuronal proliferation and neurite outgrowth, because it has receptors for insulin, IGF-I and PDGF. Gangliosides are sialic acid containing glycosphingolipids which form an integral part of the plasma membrane of many mammalian cells. They inhibit cell growth mediated by tyrosine kinase receptors and ligand-stimulated tyrosine kinase activity, and autophosphorylation of EGF(epidermal growth factor) and PDGF receptors. The experiment was designed to study the effects of GM1 ganglioside on growth of human neuroblastoma SH-SY5Y cells stimulated with trophic factor in vitro. The cells were plated in Eagle's minimum essential medium without serum. The number and morphologic change of SH-SY5Y cells were evaluated in the serum free medium added GM1 ganglioside with insulin or PDGF. SH-SY5Y cells were maintained for six days in serum-free medium, and then cultured for over two weeks in serum-free medium containing either insulin or PDGF. The effect of insulin on cell proliferation developed earlier and was more potent than that of PDGF. These proliferative effects were inhibited by GM1 ganglioside, and the cells showed prominent neurites outgrowth. These findings suggest that GM1 ganglioside inhibits the cell proliferation mediated by tyrosine kinase receptors and directly induces neuritogenesis as one of the neurotrophic factors. PMID:7986393

  1. UVB-irradiated keratinocytes induce melanoma-associated ganglioside GD3 synthase gene in melanocytes via secretion of tumor necrosis factor α and interleukin 6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyata, Maiko; Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065; Ichihara, Masatoshi

    Highlights: • Melanocytes showed low ST8SIA1 and high B3GALT4 levels in contrast with melanomas. • Direct UVB irradiation of melanocytes did not induce ganglioside synthase genes. • Culture supernatants of UVB-irradiated keratinocytes induced ST8SIA1 in melanocytes. • TNFα and IL-6 secreted from keratinocytes enhanced ST8SIA1 expression in melanocytes. • Inflammatory cytokines induced melanoma-related ST8SIA1 in melanocytes. - Abstract: Although expression of gangliosides and their synthetic enzyme genes in malignant melanomas has been well studied, that in normal melanocytes has been scarcely analyzed. In particular, changes in expression levels of glycosyltransferase genes responsible for ganglioside synthesis during evolution of melanomas frommore » melanocytes are very important to understand roles of gangliosides in melanomas. Here, expression of glycosyltransferase genes related to the ganglioside synthesis was analyzed using RNAs from cultured melanocytes and melanoma cell lines. Quantitative RT-PCR revealed that melanomas expressed high levels of mRNA of GD3 synthase and GM2/GD2 synthase genes and low levels of GM1/GD1b synthase genes compared with melanocytes. As a representative exogenous stimulation, effects of ultraviolet B (UVB) on the expression levels of 3 major ganglioside synthase genes in melanocytes were analyzed. Although direct UVB irradiation of melanocytes caused no marked changes, culture supernatants of UVB-irradiated keratinocytes (HaCaT cells) induced definite up-regulation of GD3 synthase and GM2/GD2 synthase genes. Detailed examination of the supernatants revealed that inflammatory cytokines such as TNFα and IL-6 enhanced GD3 synthase gene expression. These results suggest that inflammatory cytokines secreted from UVB-irradiated keratinocytes induced melanoma-associated ganglioside synthase genes, proposing roles of skin microenvironment in the promotion of melanoma-like ganglioside profiles in melanocytes.« less

  2. Mutations in B4GALNT1 (GM2 synthase) underlie a new disorder of ganglioside biosynthesis.

    PubMed

    Harlalka, Gaurav V; Lehman, Anna; Chioza, Barry; Baple, Emma L; Maroofian, Reza; Cross, Harold; Sreekantan-Nair, Ajith; Priestman, David A; Al-Turki, Saeed; McEntagart, Meriel E; Proukakis, Christos; Royle, Louise; Kozak, Radoslaw P; Bastaki, Laila; Patton, Michael; Wagner, Karin; Coblentz, Roselyn; Price, Joy; Mezei, Michelle; Schlade-Bartusiak, Kamilla; Platt, Frances M; Hurles, Matthew E; Crosby, Andrew H

    2013-12-01

    Glycosphingolipids are ubiquitous constituents of eukaryotic plasma membranes, and their sialylated derivatives, gangliosides, are the major class of glycoconjugates expressed by neurons. Deficiencies in their catabolic pathways give rise to a large and well-studied group of inherited disorders, the lysosomal storage diseases. Although many glycosphingolipid catabolic defects have been defined, only one proven inherited disease arising from a defect in ganglioside biosynthesis is known. This disease, because of defects in the first step of ganglioside biosynthesis (GM3 synthase), results in a severe epileptic disorder found at high frequency amongst the Old Order Amish. Here we investigated an unusual neurodegenerative phenotype, most commonly classified as a complex form of hereditary spastic paraplegia, present in families from Kuwait, Italy and the Old Order Amish. Our genetic studies identified mutations in B4GALNT1 (GM2 synthase), encoding the enzyme that catalyzes the second step in complex ganglioside biosynthesis, as the cause of this neurodegenerative phenotype. Biochemical profiling of glycosphingolipid biosynthesis confirmed a lack of GM2 in affected subjects in association with a predictable increase in levels of its precursor, GM3, a finding that will greatly facilitate diagnosis of this condition. With the description of two neurological human diseases involving defects in two sequentially acting enzymes in ganglioside biosynthesis, there is the real possibility that a previously unidentified family of ganglioside deficiency diseases exist. The study of patients and animal models of these disorders will pave the way for a greater understanding of the role gangliosides play in neuronal structure and function and provide insights into the development of effective treatment therapies.

  3. Synthesis of gangliosides by cultured oligodendrocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mack, S.R.; Szuchet, S.; Dawson, G.

    1981-01-01

    Gangliosides are enriched in the nervous system compared to other tissues. The synthesis of gangliosides by monolayer cultures of isolated oligodendrocytes has not previously been investigated. Cells were labeled with (3H) galactose at preselected times and gangliosides isolated by phase partition, purified, and identified by chromatography. Cultured oligodendrocytes showed selectivity in their synthesis of gangliosides, which was expressed in the type of ganglioside synthesized as well as in the change of incorporation over time in culture. For the first ten days, there was very little incorporation of (3H) galactose in gangliosides, but this was followed by a stimulation of uptakemore » for GM3, GM1/GD3, and GD1 gangliosides, reaching a maximum after approximately 25-30 days in vitro. There was little incorporation into GM2 or trisialogangliosides throughout the life of the cultures. Since oligodendrocytes synthesize extensive membranes during this period, one may speculate that the de novo-synthesized gangliosides are used for membranes.« less

  4. Amyloid Precursor Protein (APP) Mediated Regulation of Ganglioside Homeostasis Linking Alzheimer's Disease Pathology with Ganglioside Metabolism

    PubMed Central

    Grimm, Marcus O. W.; Zinser, Eva G.; Grösgen, Sven; Hundsdörfer, Benjamin; Rothhaar, Tatjana L.; Burg, Verena K.; Kaestner, Lars; Bayer, Thomas A.; Lipp, Peter; Müller, Ulrike; Grimm, Heike S.; Hartmann, Tobias

    2012-01-01

    Gangliosides are important players for controlling neuronal function and are directly involved in AD pathology. They are among the most potent stimulators of Aβ production, are enriched in amyloid plaques and bind amyloid beta (Aβ). However, the molecular mechanisms linking gangliosides with AD are unknown. Here we identified the previously unknown function of the amyloid precursor protein (APP), specifically its cleavage products Aβ and the APP intracellular domain (AICD), of regulating GD3-synthase (GD3S). Since GD3S is the key enzyme converting a- to b-series gangliosides, it therefore plays a major role in controlling the levels of major brain gangliosides. This regulation occurs by two separate and additive mechanisms. The first mechanism directly targets the enzymatic activity of GD3S: Upon binding of Aβ to the ganglioside GM3, the immediate substrate of the GD3S, enzymatic turnover of GM3 by GD3S was strongly reduced. The second mechanism targets GD3S expression. APP cleavage results, in addition to Aβ release, in the release of AICD, a known candidate for gene transcriptional regulation. AICD strongly down regulated GD3S transcription and knock-in of an AICD deletion mutant of APP in vivo, or knock-down of Fe65 in neuroblastoma cells, was sufficient to abrogate normal GD3S functionality. Equally, knock-out of the presenilin genes, presenilin 1 and presenilin 2, essential for Aβ and AICD production, or of APP itself, increased GD3S activity and expression and consequently resulted in a major shift of a- to b-series gangliosides. In addition to GD3S regulation by APP processing, gangliosides in turn altered APP cleavage. GM3 decreased, whereas the ganglioside GD3, the GD3S product, increased Aβ production, resulting in a regulatory feedback cycle, directly linking ganglioside metabolism with APP processing and Aβ generation. A central aspect of this homeostatic control is the reduction of GD3S activity via an Aβ-GM3 complex and AICD

  5. Partial synthesis of ganglioside and lysoganglioside lipoforms as internal standards for MS quantification.

    PubMed

    Gantner, Martin; Schwarzmann, Günter; Sandhoff, Konrad; Kolter, Thomas

    2014-12-01

    Within recent years, ganglioside patterns have been increasingly analyzed by MS. However, internal standards for calibration are only available for gangliosides GM1, GM2, and GM3. For this reason, we prepared homologous internal standards bearing nonnatural fatty acids of the major mammalian brain gangliosides GM1, GD1a, GD1b, GT1b, and GQ1b, and of the tumor-associated gangliosides GM2 and GD2. The fatty acid moieties were incorporated after selective chemical or enzymatic deacylation of bovine brain gangliosides. For modification of the sphingoid bases, we developed a new synthetic method based on olefin cross metathesis. This method was used for the preparation of a lyso-GM1 and a lyso-GM2 standard. The total yield of this method was 8.7% for the synthesis of d17:1-lyso-GM1 from d20:1/18:0-GM1 in four steps. The title compounds are currently used as calibration substances for MS quantification and are also suitable for functional studies. Copyright © 2014 by the American Society for Biochemistry and Molecular Biology, Inc.

  6. Influence of Ganglioside GM1 Concentration on Lipid Clustering and Membrane Properties and Curvature.

    PubMed

    Patel, Dhilon S; Park, Soohyung; Wu, Emilia L; Yeom, Min Sun; Widmalm, Göran; Klauda, Jeffery B; Im, Wonpil

    2016-11-01

    Gangliosides are a class of glycosphingolipids (GSLs) with amphiphilic character that are found at the outer leaflet of the cell membranes, where their ability to organize into special domains makes them vital cell membrane components. However, a molecular understanding of GSL-rich membranes in terms of their clustered organization, stability, and dynamics is still elusive. To gain molecular insight into the organization and dynamics of GSL-rich membranes, we performed all-atom molecular-dynamics simulations of bicomponent ganglioside GM1 in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) phospholipid bilayers with varying concentrations of GM1 (10%, 20%, and 30%). Overall, the simulations show very good agreement with available experimental data, including x-ray electron density profiles along the membrane normal, NMR carbohydrate proton-proton distances, and x-ray crystal structures. This validates the quality of our model systems for investigating GM1 clustering through an ordered-lipid-cluster analysis. The increase in GM1 concentration induces tighter lipid packing, driven mainly by inter-GM1 carbohydrate-carbohydrate interactions, leading to a greater preference for the positive curvature of GM1-containing membranes and larger cluster sizes of ordered-lipid clusters (with a composite of GM1 and POPC). These clusters tend to segregate and form a large percolated cluster at a 30% GM1 concentration at 293 K. At a higher temperature of 330 K, however, the segregation is not maintained. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  7. Auditory brainstem responses of CBA/J mice with neonatal conductive hearing losses and treatment with GM1 ganglioside.

    PubMed

    Money, M K; Pippin, G W; Weaver, K E; Kirsch, J P; Webster, D B

    1995-07-01

    Exogenous administration of GM1 ganglioside to CBA/J mice with a neonatal conductive hearing loss ameliorates the atrophy of spiral ganglion neurons, ventral cochlear nucleus neurons, and ventral cochlear nucleus volume. The present investigation demonstrates the extent of a conductive loss caused by atresia and tests the hypothesis that GM1 ganglioside treatment will ameliorate the conductive hearing loss. Auditory brainstem responses were recorded from four groups of seven mice each: two groups received daily subcutaneous injections of saline (one group had normal hearing; the other had a conductive hearing loss); the other two groups received daily subcutaneous injections of GM1 ganglioside (one group had normal hearing; the other had a conductive hearing loss). In mice with a conductive loss, decreases in hearing sensitivity were greatest at high frequencies. The decreases were determined by comparing mean ABR thresholds of the conductive loss mice with those of normal hearing mice. The conductive hearing loss induced in the mice in this study was similar to that seen in humans with congenital aural atresias. GM1 ganglioside treatment had no significant effect on ABR wave I thresholds or latencies in either group.

  8. The Ganglioside GM-1 Inhibits Bupivacaine-Induced Neurotoxicity in Mouse Neuroblastoma Neuro2a Cells.

    PubMed

    Liang, Yujie; Ji, Jiemei; Lin, Yunan; He, Yajun; Liu, Jingchen

    2016-08-01

    Studies indicate that bupivacaine-induced neurotoxicity results from apoptosis. Gangliosides have been shown to promote neuronal repair and recovery of neurological function after spinal cord injury. Previously, we confirmed that in vivo administration of the ganglioside GM-1 attenuated bupivacaine-induced neurotoxicity in various animal models; however, the underlying mechanism remains unclear. Cells of the neuroblastoma line N2a (Neuro2a cells) were divided into three experimental groups: control, bupivacaine-treated, and bupivacaine-treated with GM-1 pretreatment. Cell viability and apoptosis were assessed through CCK-8 assays, Hoechst staining, and flow cytometry analysis of Annexin-V/propidium iodide double labeling. Real-time polymerase chain reaction and western blotting assessed the expression of caspase-3, caspase-8, and caspase-9. Bupivacaine-induced apoptosis worsened with increasing dose and exposure time. Bupivacaine induced increased expression of caspase-3 and caspase-9, but not caspase-8, indicating that the mitochondrial pathway but not the death receptor apoptosis pathway was activated. GM-1 pretreatment inhibited bupivacaine-induced apoptosis and the expression of caspase-3 and caspase-9 in a dose-dependent manner. Bupivacaine induced neurotoxicity by activating apoptosis via the mitochondrial pathway, and this was inhibited by GM-1 pretreatment. Copyright © 2016 John Wiley & Sons, Ltd.

  9. In situ detection of GM1 and GM2 gangliosides using immunohistochemical and immunofluorescent techniques for auxiliary diagnosis of canine and feline gangliosidoses.

    PubMed

    Kohyama, Moeko; Yabuki, Akira; Ochiai, Kenji; Nakamoto, Yuya; Uchida, Kazuyuki; Hasegawa, Daisuke; Takahashi, Kimimasa; Kawaguchi, Hiroaki; Tsuboi, Masaya; Yamato, Osamu

    2016-03-31

    GM1 and GM2 gangliosidoses are progressive neurodegenerative lysosomal storage diseases resulting from the excessive accumulation of GM1 and GM2 gangliosides in the lysosomes, respectively. The diagnosis of gangliosidosis is carried out based on comprehensive findings using various types of specimens for histological, ultrastructural, biochemical and genetic analyses. Therefore, the partial absence or lack of specimens might have resulted in many undiagnosed cases. The aim of the present study was to establish immunohistochemical and immunofluorescent techniques for the auxiliary diagnosis of canine and feline gangliosidoses, using paraffin-embedded brain specimens stored for a long period. Using hematoxylin and eosin staining, cytoplasmic accumulation of pale to eosinophilic granular materials in swollen neurons was observed in animals previously diagnosed with GM1 or GM2 gangliosidosis. The immunohistochemical and immunofluorescent techniques developed in this study clearly demonstrated the accumulated material to be either GM1 or GM2 ganglioside. Immunohistochemical and immunofluorescent techniques using stored paraffin-embedded brain specimens are useful for the retrospective diagnosis of GM1 and GM2 gangliosidoses in dogs and cats.

  10. Gangliosides as a potential new class of stem cell markers: the case of GD1a in human bone marrow mesenchymal stem cells.

    PubMed

    Bergante, Sonia; Torretta, Enrica; Creo, Pasquale; Sessarego, Nadia; Papini, Nadia; Piccoli, Marco; Fania, Chiara; Cirillo, Federica; Conforti, Erika; Ghiroldi, Andrea; Tringali, Cristina; Venerando, Bruno; Ibatici, Adalberto; Gelfi, Cecilia; Tettamanti, Guido; Anastasia, Luigi

    2014-03-01

    Owing to their exposure on the cell surface and the possibility of being directly recognized with specific antibodies, glycosphingolipids have aroused great interest in the field of stem cell biology. In the search for specific markers of the differentiation of human bone marrow mesenchymal stem cells (hBMSCs) toward osteoblasts, we studied their glycosphingolipid pattern, with particular attention to gangliosides. After lipid extraction and fractionation, gangliosides, metabolically (3)H-labeled in the sphingosine moiety, were separated by high-performance TLC and chemically characterized by MALDI MS. Upon induction of osteogenic differentiation, a 3-fold increase of ganglioside GD1a was observed. Therefore, the hypothesis of GD1a involvement in hBMSCs commitment toward the osteogenic phenotype was tested by comparison of the osteogenic propensity of GD1a-highly expressing versus GD1a-low expressing hBMSCs and direct addition of GD1a in the differentiation medium. It was found that either the high expression of GD1a in hBMSCs or the addition of GD1a in the differentiation medium favored osteogenesis, providing a remarkable increase of alkaline phosphatase. It was also observed that ganglioside GD2, although detectable in hBMSCs by immunohistochemistry with an anti-GD2 antibody, could not be recognized by chemical analysis, likely reflecting a case, not uncommon, of molecular mimicry.

  11. Development of an Immunoassay for Rapid Detection of Ganglioside GM1 Mimicry in Campylobacter jejuni Strains

    PubMed Central

    Prendergast, Martina M.; Kosunen, Timo U.; Moran, Anthony P.

    2001-01-01

    Mimicry of peripheral nerve gangliosides by Campylobacter jejuni lipopolysaccharides (LPSs) has been proposed to induce cross-reacting antiganglioside antibodies in Guillain-Barré syndrome (GBS). Because current methods for LPS characterization are labor-intensive and inhibit the screening of large numbers of strains, a rapid GM1 epitope screening assay was developed. Biomass from two agar plates of confluent growth yielded sufficient LPS using a novel phenol-water and ether extraction procedure. Extracts of LPS were reacted with cholera toxin (GM1 ligand), peanut agglutinin (Galβ1→3GalNAc ligand), and anti-GM1 antibodies. After the assay was validated, 12 of 59 (20%) C. jejuni serostrains, including four serotypes that have not previously been associated with GBS, reacted with two or more anti-GM1 ganglioside reagents. Subsequently, LPS extracts from 5 of 7 (71%) C. jejuni isolates and 2 of 3 (67%) C. jejuni culture collection strains bore GM1 structures. Overall, the assay system was reliable, efficient, and reproducible and may be adapted for large-scale epidemiological studies. PMID:11283076

  12. Increased Expression of Simple Ganglioside Species GM2 and GM3 Detected by MALDI Imaging Mass Spectrometry in a Combined Rat Model of Aβ Toxicity and Stroke

    PubMed Central

    Caughlin, Sarah; Hepburn, Jeffrey D.; Park, Dae Hee; Jurcic, Kristina; Yeung, Ken K.-C.; Cechetto, David F.; Whitehead, Shawn N.

    2015-01-01

    The aging brain is often characterized by the presence of multiple comorbidities resulting in synergistic damaging effects in the brain as demonstrated through the interaction of Alzheimer’s disease (AD) and stroke. Gangliosides, a family of membrane lipids enriched in the central nervous system, may have a mechanistic role in mediating the brain’s response to injury as their expression is altered in a number of disease and injury states. Matrix-Assisted Laser Desorption Ionization (MALDI) Imaging Mass Spectrometry (IMS) was used to study the expression of A-series ganglioside species GD1a, GM1, GM2, and GM3 to determine alteration of their expression profiles in the presence of beta-amyloid (Aβ) toxicity in addition to ischemic injury. To model a stroke, rats received a unilateral striatal injection of endothelin-1 (ET-1) (stroke alone group). To model Aβ toxicity, rats received intracerebralventricular (icv) injections of the toxic 25-35 fragment of the Aβ peptide (Aβ alone group). To model the combination of Aβ toxicity with stroke, rats received both the unilateral ET-1 injection and the bilateral icv injections of Aβ₂₅₋₃₅ (combined Aβ/ET-1 group). By 3 d, a significant increase in the simple ganglioside species GM2 was observed in the ischemic brain region of rats who received a stroke (ET-1), with or without Aβ. By 21 d, GM2 levels only remained elevated in the combined Aβ/ET-1 group. GM3 levels however demonstrated a different pattern of expression. By 3 d GM3 was elevated in the ischemic brain region only in the combined Aβ/ET-1 group. By 21 d, GM3 was elevated in the ischemic brain region in both stroke alone and Aβ/ET-1 groups. Overall, results indicate that the accumulation of simple ganglioside species GM2 and GM3 may be indicative of a mechanism of interaction between AD and stroke. PMID:26086081

  13. Increased Expression of Simple Ganglioside Species GM2 and GM3 Detected by MALDI Imaging Mass Spectrometry in a Combined Rat Model of Aβ Toxicity and Stroke.

    PubMed

    Caughlin, Sarah; Hepburn, Jeffrey D; Park, Dae Hee; Jurcic, Kristina; Yeung, Ken K-C; Cechetto, David F; Whitehead, Shawn N

    2015-01-01

    The aging brain is often characterized by the presence of multiple comorbidities resulting in synergistic damaging effects in the brain as demonstrated through the interaction of Alzheimer's disease (AD) and stroke. Gangliosides, a family of membrane lipids enriched in the central nervous system, may have a mechanistic role in mediating the brain's response to injury as their expression is altered in a number of disease and injury states. Matrix-Assisted Laser Desorption Ionization (MALDI) Imaging Mass Spectrometry (IMS) was used to study the expression of A-series ganglioside species GD1a, GM1, GM2, and GM3 to determine alteration of their expression profiles in the presence of beta-amyloid (Aβ) toxicity in addition to ischemic injury. To model a stroke, rats received a unilateral striatal injection of endothelin-1 (ET-1) (stroke alone group). To model Aβ toxicity, rats received intracerebralventricular (i.c.v.) injections of the toxic 25-35 fragment of the Aβ peptide (Aβ alone group). To model the combination of Aβ toxicity with stroke, rats received both the unilateral ET-1 injection and the bilateral icv injections of Aβ25-35 (combined Aβ/ET-1 group). By 3 d, a significant increase in the simple ganglioside species GM2 was observed in the ischemic brain region of rats who received a stroke (ET-1), with or without Aβ. By 21 d, GM2 levels only remained elevated in the combined Aβ/ET-1 group. GM3 levels however demonstrated a different pattern of expression. By 3 d GM3 was elevated in the ischemic brain region only in the combined Aβ/ET-1 group. By 21 d, GM3 was elevated in the ischemic brain region in both stroke alone and Aβ/ET-1 groups. Overall, results indicate that the accumulation of simple ganglioside species GM2 and GM3 may be indicative of a mechanism of interaction between AD and stroke.

  14. Gangliosides as a potential new class of stem cell markers: the case of GD1a in human bone marrow mesenchymal stem cells[S

    PubMed Central

    Bergante, Sonia; Torretta, Enrica; Creo, Pasquale; Sessarego, Nadia; Papini, Nadia; Piccoli, Marco; Fania, Chiara; Cirillo, Federica; Conforti, Erika; Ghiroldi, Andrea; Tringali, Cristina; Venerando, Bruno; Ibatici, Adalberto; Gelfi, Cecilia; Tettamanti, Guido; Anastasia, Luigi

    2014-01-01

    Owing to their exposure on the cell surface and the possibility of being directly recognized with specific antibodies, glycosphingolipids have aroused great interest in the field of stem cell biology. In the search for specific markers of the differentiation of human bone marrow mesenchymal stem cells (hBMSCs) toward osteoblasts, we studied their glycosphingolipid pattern, with particular attention to gangliosides. After lipid extraction and fractionation, gangliosides, metabolically 3H-labeled in the sphingosine moiety, were separated by high-performance TLC and chemically characterized by MALDI MS. Upon induction of osteogenic differentiation, a 3-fold increase of ganglioside GD1a was observed. Therefore, the hypothesis of GD1a involvement in hBMSCs commitment toward the osteogenic phenotype was tested by comparison of the osteogenic propensity of GD1a-highly expressing versus GD1a-low expressing hBMSCs and direct addition of GD1a in the differentiation medium. It was found that either the high expression of GD1a in hBMSCs or the addition of GD1a in the differentiation medium favored osteogenesis, providing a remarkable increase of alkaline phosphatase. It was also observed that ganglioside GD2, although detectable in hBMSCs by immunohistochemistry with an anti-GD2 antibody, could not be recognized by chemical analysis, likely reflecting a case, not uncommon, of molecular mimicry. PMID:24449473

  15. Beta-galactosidase deficiency in a Korat cat: a new form of feline GM1-gangliosidosis.

    PubMed

    De Maria, R; Divari, S; Bo, S; Sonnio, S; Lotti, D; Capucchio, M T; Castagnaro, M

    1998-09-01

    A 7-month-old Korat cat was referred for a slowly progressive neurological disease. Circulating monocytes and lymphocytes showed the presence of single or multiple empty vacuoles and blood leukocytes enzyme assay revealed a very low beta-galactosidase activity level (4.7 nmol/mg per h) as compared to unaffected parents and relatives. Histologically, the cat, euthanized at the owner request at 21 months of age, presented diffuse vacuolization and enlargement of neurons throughout the brain, spinal cord and peripheral ganglia, severe cerebellar neuronal cell loss, and moderate astrocytosis. Stored material was stained with periodic acid-Schiff on frozen sections and with the lectins Ricinus conmmunis agglutinin-I, concanavalin A and wheat germ agglutinin on paraffin-embedded sections. Ultrastructurally, neuronal vacuoles were filled with concentrically whorled lamellae and small membrane-bound vesicles. In the affected cat, beta-galactosidase activity was markedly reduced in brain (18.9%) and liver (33.25%), while total beta-hexosaminidase activity showed a remarkable increase. Quantitation of total gangliosides revealed a 3-fold increase in brain and 1.7-fold in liver of affected cat. High-performance thin layer chromatography (HPTLC) detected a striking increase of GM1-ganglioside. On densitometric analysis of HPTLC bands, the absorption of GM1-ganglioside band was 98.52% of all stained bands (GD1a, GD1b, GT1b). Based on clinical onset, morphological and histochemical features, and biochemical findings, the Korat cat GM1-gangliosidosis is comparable with the human type II (juvenile) form. However, clinical progression, survival time and level of beta-galactosidase deficiency do not completely fit with those of human type II GM1-gangliosidosis. The disease in the Korat cat is also different from other reported forms of feline GM1-gangliosidosis.

  16. Specific tritium labeling of gangliosides at the 3-position of sphingosines.

    PubMed

    Ghidoni, R; Sonnino, S; Masserini, M; Orlando, P; Tettamanti, G

    1981-11-01

    GM1 and GD1a gangliosides, treated with 2,3-dichloro-5,6-dicyano benzoquinone (DDQ) in the presence of Triton X-100 and in a toluene medium were specifically oxidized at the 3-position of sphingosine. The maximum reaction yield (65%) was obtained after 40 hours at 37 degrees C with the following molar ratio of reactants: ganglioside-Triton X-100-DDQ 1:70:125. The formation of the 3-keto derivatives of GM1 and GD1a was demonstrated by: a) the appearance of a sharp peak at 1700 cm-1 and of a broad band at 1250 cm-1 (typical of allylic ketones and of carbonyl groups, respectively) in the infra-red spectrum; b) the appearance of an absorption maximum at 230 nm, identical to that featured by 3-keto-cerebrosides, in the ultraviolet spectrum; c) the degradation of long chain bases during the process of release from gangliosides and derivatization for analysis by gas-liquid chromatography (expected for long chain bases carrying a keto group in the 3-position); and d) the quantitative transformation of 3-keto-GM1 and 3-keto-GD1a to GM1 and GD1a, respectively, upon NaBH4 reduction. Reduction of 3-keto-GM1 and 3-keto-GD1a with [3H]-NaBH4 produced 3H-labeled GM1 and GD1a. [3H]GM1 and [3H]GD1a maintained the same carbohydrate and fatty acid composition of the original GM1 and GD1a, and did not contain any saturated long chain bases. Direct proof that the label was at C-3 of long chain bases was given by reoxidation with DDQ, which completely removed the label, and by ozonolysis, after which label was retained on the oligosaccharide-containing fragment. More than 99% of incorporated radioactivity was carried by the long chain bases. The radiochemical purity of labeled gangliosides was greater than 95% and the specific radioactivity was 1.25 and 1.28 Ci/m mol for [3H]GM1 and [3H]GD1a, respectively.

  17. Unique Ganglioside Recognition Strategies for Clostridial Neurotoxins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benson, Marc A.; Fu, Zhuji; Kim, Jung-Ja P.

    2012-03-15

    Botulinum neurotoxins (BoNTs) and tetanus neurotoxin are the causative agents of the paralytic diseases botulism and tetanus, respectively. The potency of the clostridial neurotoxins (CNTs) relies primarily on their highly specific binding to nerve terminals and cleavage of SNARE proteins. Although individual CNTs utilize distinct proteins for entry, they share common ganglioside co-receptors. Here, we report the crystal structure of the BoNT/F receptor-binding domain in complex with the sugar moiety of ganglioside GD1a. GD1a binds in a shallow groove formed by the conserved peptide motif E ... H ... SXWY ... G, with additional stabilizing interactions provided by two argininemore » residues. Comparative analysis of BoNT/F with other CNTs revealed several differences in the interactions of each toxin with ganglioside. Notably, exchange of BoNT/F His-1241 with the corresponding lysine residue of BoNT/E resulted in increased affinity for GD1a and conferred the ability to bind ganglioside GM1a. Conversely, BoNT/E was not able to bind GM1a, demonstrating a discrete mechanism of ganglioside recognition. These findings provide a structural basis for ganglioside binding among the CNTs and show that individual toxins utilize unique ganglioside recognition strategies.« less

  18. Size and Shape of Amyloid Fibrils Induced by Ganglioside Nanoclusters: Role of Sialyl Oligosaccharide in Fibril Formation.

    PubMed

    Matsubara, Teruhiko; Nishihara, Masaya; Yasumori, Hanaki; Nakai, Mako; Yanagisawa, Katsuhiko; Sato, Toshinori

    2017-12-05

    Ganglioside-enriched microdomains in the presynaptic neuronal membrane play a key role in the initiation of amyloid ß-protein (Aß) assembly related to Alzheimer's disease. We previously isolated lipids from a detergent-resistant membrane microdomain fraction of synaptosomes prepared from aged mouse brain and found that spherical Aß assemblies were formed on Aß-sensitive ganglioside nanoclusters (ASIGN) of reconstituted lipid bilayers in the synaptosomal fraction. In the present study, we investigated the role of oligosaccharides in Aß fibril formation induced by ganglioside-containing mixed lipid membranes that mimic the features of ASIGN. Ganglioside nanoclusters were constructed as ternary mixed lipid bilayers composed of ganglioside (GM1, GM2, GM3, GD1a, or GT1b), sphingomyelin, and cholesterol, and their surface topography was visualized by atomic force microscopy. Aß fibril formation on the nanocluster was strongly induced in the presence of 10 mol % ganglioside, and Aß-sensitive features were observed at cholesterol contents of 35-55 mol %. GM1-, GD1a-, and GT1b-containing membranes induced longer fibrils than those containing GD1b and GM2, indicating that the terminal galactose of GM1 along with N-acetylneuraminic acid accelerates protofibril elongation. These results demonstrate that Aß fibril formation is induced by ASIGN that are highly enriched ganglioside nanoclusters with a limited number of components and that the generation and elongation of Aß protofibrils are regulated by the oligosaccharide structure of gangliosides.

  19. A Rare Form of Guillan Barre Syndrome: A Child Diagnosed with Anti-GD1a and Anti-GD1b Positive Pharyngeal-Cervical-Brachial Variant.

    PubMed

    Uysalol, Metin; Tatlı, Burak; Uzel, Nedret; Cıtak, Agop; Aygün, Erhan; Kayaoğlu, Semra

    2013-09-01

    Pharyngeal-cervical-brachial (PCB) variant is a rare form of Guillan-Barre Syndrome (GBS). Antibodies against other membrane proteins like GM1b and GD1a have been found only in a small number of patients with Guillan Barre syndrome variant. Here, we report a 5.5 year-old boy diagnosed early with positive GD1a and GD1b gangliosides of Guillan-Barre syndrome pharyngeal cervical-Brachial variant, who improved and recovered fully in a short period. This is in contrast to those whose recovery period prolongs in spite of early diagnosis and appropriate treatment and/or those who experience incomplete recovery. In summary, diagnosis of PCB variant of GBS should be considered in infants with sudden onset bulbar symptoms and muscle weakness, and it should be kept in mind that early diagnosis and appropriate treatment can give successful outcomes.

  20. In search of a solution to the sphinx-like riddle of GM1.

    PubMed

    Ledeen, Robert W; Wu, Gusheng

    2010-12-01

    Among the many glycoconjugates contributing to the sugar code, gangliosides have drawn special attention owing to their predominance as the major sialoglycoconjugate category within the nervous system. However, their occurrence, albeit at lower levels, appears ubiquitous in vertebrate cells and even some invertebrate tissues. Now that over 100 gangliosides have been structurally characterized, their diverse physiological functions constitute a remaining enigma. This has been especially true of GM1, for which a surprising array of functions has already been revealed. Our current research has focused on two areas of GM1 function: (a) signaling induced in neural and immune cells by cross-linking of GM1 in the plasma membrane that leads to activation of TRPC5 (transient receptor potiential, canonical form 5) channels, a process important in neuritogenesis and autoimmune suppression; (b) activation by GM1 of a sodium-calcium exchanger (NCX) in the inner membrane of the nuclear envelope (NE) with resulting modulation of nuclear and cellular calcium. The latter has a role in maintaining neuronal viability, loss of which renders neurons vulnerable to Ca(2+) overload. Pathological manifestations in mutant mice and their cultured neurons lacking GM1 have shown dramatic rescue with a membrane permeable derivative of GM1 that enters the nucleus and restores NCX activity. Nuclear function of GM1 is related to the presence of neuraminidase in the NE, an enzyme that generates GM1 through hydrolysis of GD1a. A different isoform of this enzyme was found in each of the two membranes of the NE.

  1. Cholera toxin binding affinity and specificity for gangliosides determined by surface plasmon resonance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuziemko, G.M.; Stroh, M.; Stevens, R.C.

    1996-05-21

    The present study determines the affinity of cholera toxin for the ganglioside series GM1, GM2, GM3, GD1A, GD1B, GT1B, asialo GM1, globotriosyl ceramide, and lactosyl ceramide using real time biospecific interaction analysis (surface plasmon resonance, SPR). SPR shows that cholera toxin preferably binds to gangliosides in the following sequence: GM1 > GM2 > GD1A > GM3 > GT1B > GD1B > asialo-GM1. The measured binding affinity of cholera toxin for the ganglioside sequence ranges from 4.61 {times} 10{sup {minus}12} M for GM1 to 1.88 {times} 10{sup {minus}10} M for asialo GM1. The picomolar values obtained by surface plasmon resonance aremore » similar to K{sub d} values determined with whole-cell binding assays. Both whole-cell assays ans SPR measurements on synthetic membranes are higher than free solution measurements by several orders of magnitude. This difference may be caused by the effects of avidity and charged lipid head-groups, which may play a major role in the binding between cholera toxin, the receptor, and the membrane surface. The primary difference between free solution binding studies and surface plasmon resonance studies is that the latter technique is performed on surfaces resembling the cell membrane. Surface plasmon resonance has the further advantage of measuring apparent kinetic association and dissociation rates in real time, providing direct information about binding events at the membrane surface. 34 refs., 8 figs., 2 tabs.« less

  2. A Rare Form of Guillan Barre Syndrome: A Child Diagnosed with Anti-GD1a and Anti-GD1b Positive Pharyngeal-Cervical-Brachial Variant

    PubMed Central

    Uysalol, Metin; Tatlı, Burak; Uzel, Nedret; Çıtak, Agop; Aygün, Erhan; Kayaoğlu, Semra

    2013-01-01

    Background: Pharyngeal-cervical-brachial (PCB) variant is a rare form of Guillan-Barre Syndrome (GBS). Antibodies against other membrane proteins like GM1b and GD1a have been found only in a small number of patients with Guillan Barre syndrome variant. Case Report: Here, we report a 5.5 year-old boy diagnosed early with positive GD1a and GD1b gangliosides of Guillan-Barre syndrome pharyngeal cervical-Brachial variant, who improved and recovered fully in a short period. This is in contrast to those whose recovery period prolongs in spite of early diagnosis and appropriate treatment and/or those who experience incomplete recovery. Conclusion: In summary, diagnosis of PCB variant of GBS should be considered in infants with sudden onset bulbar symptoms and muscle weakness, and it should be kept in mind that early diagnosis and appropriate treatment can give successful outcomes. PMID:25207134

  3. Direct evidence that ganglioside is an integral component of the thyrotropin receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kielczynski, W.; Harrison, L.C.; Leedman, P.J.

    1991-03-01

    Gangliosides were extracted from purified human and porcine thyrotropin (TSH) receptors (TSH-R) and were detected by probing with an {sup 125}I-labeled sialic acid-specific lectin, Limax flavus agglutinin. Gangliosides copurified with human and porcine TSH-R migrated between monosialoganglioside GM1 and disialoganglioside GD1a. Ceramide glycanase digestion of the purified human TSH-R-associated glycolipid confirmed its ganglioside nature. It was resistant to Vibrio cholerae sialidase, which digest all gangliosides except GM1, but was sensitive to Arthrobacter ureafaciens sialidase, which digests all gangliosides including GM1. These findings indicate that the human TSH-R contains ganglioside that belongs to the galactosyl({beta}1{r arrow} 3)-N-acetylgalactosaminyl({beta}1{r arrow} 4)-(N-acetylneuraminyl({alpha}2{r arrow} 3))galactosyl({beta}1more » {r arrow} 4)glucosyl({beta}1 {r arrow} 1)ceramide (GM1) family. Its intimate association with receptor protein implies a key role for ganglioside in the structure and function of the TSH-R.« less

  4. Elevation of GM2 ganglioside during ethanol-induced apoptotic neurodegeneration in the developing mouse brain

    PubMed Central

    Saito, Mitsuo; Chakraborty, Goutam; Shah, Relish; Mao, Rui-Fen; Kumar, Asok; Yang, Dun-Sheng; Dobrenis, Kostantin; Saito, Mariko

    2012-01-01

    GM2 ganglioside in the brain increased during ethanol-induced acute apoptotic neurodegeneration in 7-day-old mice. A small but a significant increase observed 2 h after ethanol exposure was followed by a marked increase around 24 h. Subcellular fractionation of the brain 24 h after ethanol treatment indicated that GM2 increased in synaptic and non-synaptic mitochondrial fractions as well as in a lysosome-enriched fraction characteristic to the ethanol-exposed brain. Immunohistochemical staining of GM2 in the ethanol-treated brain showed strong punctate staining mainly in activated microglia, in which it partially overlapped with staining for LAMP1, a late endosomal/lysosomal marker. Also, there was weaker neuronal staining, which partially co-localized with complex IV, a mitochondrial marker, and was augmented in cleaved caspase-3-positive neurons. In contrast, the control brain showed only faint and diffuse GM2 staining in neurons. Incubation of isolated brain mitochondria with GM2 in vitro induced cytochrome c release in a manner similar to that of GD3 ganglioside. Because ethanol is known to trigger mitochondria-mediated apoptosis with cytochrome c release and caspase-3 activation in the 7-day–old mouse brain, the GM2 elevation in mitochondria may be relevant to neuroapoptosis. Subsequently, activated microglia accumulated GM2, indicating a close relationship between GM2 and ethanol-induced neurodegeneration. PMID:22372857

  5. Anti-GM1 ganglioside antibodies modulate membrane-associated sphingomyelin metabolism by altering neutral sphingomyelinase activity.

    PubMed

    Ueda, Akihiro; Shima, Sayuri; Murate, Kenitiroh; Kikuchi, Kouichi; Nagao, Ryunosuke; Maeda, Toshiki; Muto, Eri; Niimi, Yoshiki; Mizutani, Yasuaki; Mutoh, Tatsuro

    2018-06-01

    Previous studies have shown that patients with Guillain-Barré syndrome express autoantibodies against ganglioside GM1 (GM1), although its pathogenic significance for the development of the disease remains to be elucidated. nSMase2 is the best characterized neutral sphingomyelinase (nSMase) found in neuronal cells. Activation of this enzyme leads to ceramide production, which is a known second messenger of the cell-death program in neuronal cells. We have explored the effects of anti-GM1 antibodies on sphingomyelin metabolism of PC12 cells stably transfected with human trk cDNA (PCtrk cells) by determining their effects on nSMase2 activity. The data we present here strongly suggest that anti-GM1 caused a significant change in sphingomyelin content of the membrane fraction in PCtrk cells. Both nSMase2 activity and the level of nSMase2 protein were significantly decreased by anti-GM1 treatment of PCtrk cells, while acidic SMase activities remained unchanged. Our results indicate, for the first time, that anti-GM1 may produce profound impacts on lipid metabolism in neuronal cell membranes. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Enhanced Autophagy Contributes to Protective Effects of GM1 Ganglioside Against Aβ1-42-Induced Neurotoxicity and Cognitive Deficits.

    PubMed

    Dai, Ruwei; Zhang, Shijie; Duan, Wenjun; Wei, Renrong; Chen, Huifang; Cai, Weibin; Yang, Lei; Wang, Qi

    2017-08-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disorder. The aggregation of Aβ peptides, Aβ1-42 in particular, is thought to be a fundamental pathogenic mechanism leading to the neuronal damage in AD. Recently, monosialoganglioside GM1 is reported to possess pivotal neuroprotection in neurodegenerative diseases. Previous studies have focused on the conformational dynamics and the biochemical interaction of the amyloid-peptide with the GM1 ganglioside, as well as the protective effect of GM1 on cognition. However, the phenomenon of autophagy with regard to neuronal dysfunction in AD is less investigated. In the present study, GM1 treatment were investigated in an AD mouse model and cultured PC12 dells to examine cognition-protective and neuroprotective effects of GM1. Furthermore, GM1 was found to induce autophagy via testing light chain 3 (LC3), Beclin1, neighbor of BRCA1 gene 1 protein and p62 (a substrate of LC3). Chloroquine, an inhibitor of lysosomal, was used to exclude the interference of lysosome, which could fuse with autophagosome and then clear it. In the presence of the inhibitor of autophagy (3-methyladenine; 3-MA), the protective effect of GM1 on PC12 cells in Aβ (1-42) induced toxic conditions was diminished. Interestingly, the expression of histone deacetylase 1 was increased in PC12 cells when treated with GM1, indicating that autophagy might be activated by GM1 through a pathway integrates protein acetylation. This study provides a novel insight into the protective role of GM1 against Aβ (1-42)-induced neurotoxicity via enhancing autophagy.

  7. Studies on the biosynthesis and intracellular transport of gangliosides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farrer, R.G.

    1987-01-01

    Ganglioside biosynthesis and transport to myelin was studied in brainstem of 17-21 day old rats. Brainstem slices were incubated for up to 2 hours with (/sup 3/H)glucosamine, and gangliosides were isolated by column chromatography and HPTLC. Results from these experiments showed that: (a) ganglioside synthesis was decreased in the slices compared to in vivo, and this decrease was greater in the more complex gangliosides than in the simpler ones; (b) label incorporation into gangliosides GM3 and GM2 increased in a linear fashion, whereas the rate of incorporation continuously increased over the 2 hour period for the more complex gangliosides; (c)more » label incorporated into gangliosides, which showed almost no effect of chase after 30 minutes; (d) monensin at 0.1 uM inhibited the synthesis of all gangliosides except GM3, GM2 and GD3. Compartmentation of ganglioside biosynthesis was examined by analyzing the subcellular location of two ganglioside synthesizing enzymes, lactosylceramide sialosyltransferase (LCST) and GDlb sialosyltransferase (GDlbST), acting early and late in the ganglioside pathway, respectively.« less

  8. Histochemical detection of GM1 ganglioside using cholera toxin-B subunit. Evaluation of critical factors optimal for in situ detection with special emphasis to acetone pre-extraction

    PubMed Central

    Petr, T.; Šmíd, V.; Šmídová, J.; Hůlková, H.; Jirkovská, M.; Elleder, M.; Muchová, L.; Vítek, L.; Šmíd, F.

    2010-01-01

    A comparison of histochemical detection of GM1 ganglioside in cryostat sections using cholera toxin B-subunit after fixation with 4% formaldehyde and dry acetone gave tissue-dependent results. In the liver no pre-treatment showed detectable differences related to GM1 reaction products, while studies in the brain showed the superiority of acetone pre-extraction (followed by formaldehyde), which yielded sharper images compared with the diffuse, blurred staining pattern associated with formaldehyde. Therefore, the aim of our study was to define the optimal conditions for the GM1 detection using cholera toxin B-subunit. Ganglioside extractability with acetone, the ever neglected topic, was tested comparing anhydrous acetone with acetone containing admixture of water. TLC analysis of acetone extractable GM1 ganglioside from liver sections did not exceed 2% of the total GM1 ganglioside content using anhydrous acetone at −20°C, and 4% at room temperature. The loss increased to 30.5% using 9:1 acetone/water. Similarly, photometric analysis of lipid sialic acid, extracted from dried liver homogenates with anhydrous acetone, showed the loss of gangliosides into acetone 3.0±0.3% only. The loss from dried brain homogenate was 9.5±1.1%. Thus, anhydrous conditions (dry tissue samples and anhydrous acetone) are crucial factors for optimal in situ ganglioside detection using acetone pre-treatment. This ensures effective physical fixation, especially in tissues rich in polar lipids (precipitation, prevention of in situ diffusion), and removal of cholesterol, which can act as a hydrophobic blocking barrier. PMID:20558344

  9. In cellulo examination of a beta-alpha hybrid construct of beta-hexosaminidase A subunits, reported to interact with the GM2 activator protein and hydrolyze GM2 ganglioside.

    PubMed

    Sinici, Incilay; Yonekawa, Sayuri; Tkachyova, Ilona; Gray, Steven J; Samulski, R Jude; Wakarchuk, Warren; Mark, Brian L; Mahuran, Don J

    2013-01-01

    The hydrolysis in lysosomes of GM2 ganglioside to GM3 ganglioside requires the correct synthesis, intracellular assembly and transport of three separate gene products; i.e., the alpha and beta subunits of heterodimeric beta-hexosaminidase A, E.C. # 3.2.1.52 (encoded by the HEXA and HEXB genes, respectively), and the GM2-activator protein (GM2AP, encoded by the GM2A gene). Mutations in any one of these genes can result in one of three neurodegenerative diseases collectively known as GM2 gangliosidosis (HEXA, Tay-Sachs disease, MIM # 272800; HEXB, Sandhoff disease, MIM # 268800; and GM2A, AB-variant form, MIM # 272750). Elements of both of the hexosaminidase A subunits are needed to productively interact with the GM2 ganglioside-GM2AP complex in the lysosome. Some of these elements have been predicted from the crystal structures of hexosaminidase and the activator. Recently a hybrid of the two subunits has been constructed and reported to be capable of forming homodimers that can perform this reaction in vivo, which could greatly simplify vector-mediated gene transfer approaches for Tay-Sachs or Sandhoff diseases. A cDNA encoding a hybrid hexosaminidase subunit capable of dimerizing and hydrolyzing GM2 ganglioside could be incorporated into a single vector, whereas packaging both subunits of hexosaminidase A into vectors, such as adeno-associated virus, would be impractical due to size constraints. In this report we examine the previously published hybrid construct (H1) and a new more extensive hybrid (H2), with our documented in cellulo (live cell- based) assay utilizing a fluorescent GM2 ganglioside derivative. Unfortunately when Tay-Sachs cells were transfected with either the H1 or H2 hybrid construct and then were fed the GM2 derivative, no significant increase in its turnover was detected. In vitro assays with the isolated H1 or H2 homodimers confirmed that neither was capable of human GM2AP-dependent hydrolysis of GM2 ganglioside.

  10. In Cellulo Examination of a Beta-Alpha Hybrid Construct of Beta-Hexosaminidase A Subunits, Reported to Interact with the GM2 Activator Protein and Hydrolyze GM2 Ganglioside

    PubMed Central

    Sinici, Incilay; Yonekawa, Sayuri; Tkachyova, Ilona; Gray, Steven J.; Samulski, R. Jude; Wakarchuk, Warren; Mark, Brian L.; Mahuran, Don J.

    2013-01-01

    The hydrolysis in lysosomes of GM2 ganglioside to GM3 ganglioside requires the correct synthesis, intracellular assembly and transport of three separate gene products; i.e., the alpha and beta subunits of heterodimeric beta-hexosaminidase A, E.C. # 3.2.1.52 (encoded by the HEXA and HEXB genes, respectively), and the GM2-activator protein (GM2AP, encoded by the GM2A gene). Mutations in any one of these genes can result in one of three neurodegenerative diseases collectively known as GM2 gangliosidosis (HEXA, Tay-Sachs disease, MIM # 272800; HEXB, Sandhoff disease, MIM # 268800; and GM2A, AB-variant form, MIM # 272750). Elements of both of the hexosaminidase A subunits are needed to productively interact with the GM2 ganglioside-GM2AP complex in the lysosome. Some of these elements have been predicted from the crystal structures of hexosaminidase and the activator. Recently a hybrid of the two subunits has been constructed and reported to be capable of forming homodimers that can perform this reaction in vivo, which could greatly simplify vector-mediated gene transfer approaches for Tay-Sachs or Sandhoff diseases. A cDNA encoding a hybrid hexosaminidase subunit capable of dimerizing and hydrolyzing GM2 ganglioside could be incorporated into a single vector, whereas packaging both subunits of hexosaminidase A into vectors, such as adeno-associated virus, would be impractical due to size constraints. In this report we examine the previously published hybrid construct (H1) and a new more extensive hybrid (H2), with our documented in cellulo (live cell- based) assay utilizing a fluorescent GM2 ganglioside derivative. Unfortunately when Tay-Sachs cells were transfected with either the H1 or H2 hybrid construct and then were fed the GM2 derivative, no significant increase in its turnover was detected. In vitro assays with the isolated H1 or H2 homodimers confirmed that neither was capable of human GM2AP-dependent hydrolysis of GM2 ganglioside. PMID:23483939

  11. Elevation of GM2 ganglioside during ethanol-induced apoptotic neurodegeneration in the developing mouse brain.

    PubMed

    Saito, Mitsuo; Chakraborty, Goutam; Shah, Relish; Mao, Rui-Fen; Kumar, Asok; Yang, Dun-Sheng; Dobrenis, Kostantin; Saito, Mariko

    2012-05-01

    GM2 ganglioside in the brain increased during ethanol-induced acute apoptotic neurodegeneration in 7-day-old mice. A small but a significant increase observed 2 h after ethanol exposure was followed by a marked increase around 24 h. Subcellular fractionation of the brain 24 h after ethanol treatment indicated that GM2 increased in synaptic and non-synaptic mitochondrial fractions as well as in a lysosome-enriched fraction characteristic to the ethanol-exposed brain. Immunohistochemical staining of GM2 in the ethanol-treated brain showed strong punctate staining mainly in activated microglia, in which it partially overlapped with staining for LAMP1, a late endosomal/lysosomal marker. Also, there was weaker neuronal staining, which partially co-localized with complex IV, a mitochondrial marker, and was augmented in cleaved caspase 3-positive neurons. In contrast, the control brain showed only faint and diffuse GM2 staining in neurons. Incubation of isolated brain mitochondria with GM2 in vitro induced cytochrome c release in a manner similar to that of GD3 ganglioside. Because ethanol is known to trigger mitochondria-mediated apoptosis with cytochrome c release and caspase 3 activation in the 7-day-old mouse brain, the GM2 elevation in mitochondria may be relevant to neuroapoptosis. Subsequently, activated microglia accumulated GM2, indicating a close relationship between GM2 and ethanol-induced neurodegeneration. © 2012 The Authors. Journal of Neurochemistry © 2012 International Society for Neurochemistry.

  12. GM1 ganglioside in Parkinson's disease: Pilot study of effects on dopamine transporter binding.

    PubMed

    Schneider, Jay S; Cambi, Franca; Gollomp, Stephen M; Kuwabara, Hiroto; Brašić, James R; Leiby, Benjamin; Sendek, Stephanie; Wong, Dean F

    2015-09-15

    GM1 ganglioside has been suggested as a treatment for Parkinson's disease (PD), potentially having symptomatic and disease modifying effects. The current pilot imaging study was performed to examine effects of GM1 on dopamine transporter binding, as a surrogate measure of disease progression, studied longitudinally. Positron emission tomography (PET) imaging data were obtained from a subset of subjects enrolled in a delayed start clinical trial of GM1 in PD [1]: 15 Early-start (ES) subjects, 14 Delayed-start (DS) subjects, and 11 Comparison (standard-of-care) subjects. Treatment subjects were studied over a 2.5 year period while Comparison subjects were studied over 2 years. Dynamic PET scans were performed over 90 min following injection of [(11)C]methylphenidate. Regional values of binding potential (BPND) were analyzed for several striatal volumes of interest. Clinical results for this subset of subjects were similar to those previously reported for the larger study group. ES subjects showed early symptomatic improvement and slow symptom progression over the study period. DS and Comparison subjects were initially on the same symptom progression trajectory but diverged once DS subjects received GM1 treatment. Imaging results showed significant slowing of BPND loss in several striatal regions in GM1-treated subjects and in some cases, an increased BPND in some striatal regions was detected after GM1 use. Results of this pilot imaging study provide additional data to suggest a potential disease modifying effect of GM1 on PD. These results need to be confirmed in a larger number of subjects. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Bis(monoacylglycero)phosphate and ganglioside GM1 spontaneously form small homogeneous vesicles at specific concentrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chebukati, Janetricks N.; Goff, Philip C.; Frederick, Thomas E.

    2010-04-09

    The morphology and size of hydrated lipid dispersions of bis(monoacylglycero)phosphate (BMP) mixed with varying mole percentages of the ganglioside GM1 were investigated by dynamic light scattering (DLS) and transmission electron microscopy (TEM). Electron paramagnetic resonance (EPR) spectroscopy of these same mixtures, doped at 0.5 mol% with doxyl labeled lipids, was used to investigate acyl-chain packing. Results show that for 20-30% GM1, hydrated BMP:GM1 mixtures spontaneously form small spherical vesicles with diameters {approx}100 nm and a narrow size distribution profile. For other concentrations of GM1, hydrated dispersions with BMP have non-spherical shapes and heterogeneous size profiles, with average vesicle diameters >400more » nm. All samples were prepared at pH 5.5 to mimic the lumen acidity of the late endosome where BMP is an essential component of intraendosomal vesicle budding, lipid sorting and trafficking. These findings indicate that GM1 and BMP under a limited concentration range spontaneously form small vesicles of homogeneous size in an energy independent manner without the need of protein templating. Because BMP is essential for intraendosomal vesicle formation, these results imply that lipid-lipid interactions may play a critical role in the endosomal process of lipid sorting and trafficking.« less

  14. Complement Factor H and Simian Virus 40 bind the GM1 ganglioside in distinct conformations.

    PubMed

    Blaum, Bärbel S; Frank, Martin; Walker, Ross C; Neu, Ursula; Stehle, Thilo

    2016-05-01

    Mammalian cell surfaces are decorated with a variety of glycan chains that orchestrate development and defense and are exploited by pathogens for cellular attachment and entry. While glycosidic linkages are, in principle, flexible, the conformational space that a given glycan can sample is subject to spatial and electrostatic restrictions imposed by its overall chemical structure. Here, we show how the glycan moiety of the GM1 ganglioside, a branched, monosialylated pentasaccharide that serves as a ligand for various proteins, undergoes differential conformational selection in its interactions with different lectins. Using STD NMR and X-ray crystallography, we found that the innate immune regulator complement Factor H (FH) binds a previously not reported GM1 conformation that is not compatible with the GM1-binding sites of other structurally characterized GM1-binding lectins such as the Simian Virus 40 (SV40) capsid. Molecular dynamics simulations of the free glycan in explicit solvent on the 10 μs timescale reveal that the FH-bound conformation nevertheless corresponds to a minimum in the Gibbs free energy plot. In contrast to the GM1 conformation recognized by SV40, the FH-bound GM1 conformation is associated with poor NOE restraints, explaining how it escaped(1)H-(1)H NOE-restrained modeling in the past and highlighting the necessity for ensemble representations of glycan structures. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Deficits in cognitive function and hippocampal plasticity in GM2/GD2 synthase knockout mice.

    PubMed

    Sha, Sha; Zhou, Libin; Yin, Jun; Takamiya, Koga; Furukawa, Keiko; Furukawa, Koichi; Sokabe, Masahiro; Chen, Ling

    2014-04-01

    In this study, we used GM2/GD2 synthase knockout (GM2/GD2−/−) mice to examine the influence of deficiency in gangliosidea-pathway” and “b-pathway” on cognitive performances and hippocampal synaptic plasticity. Eight-week-old GM2/GD2−/− male mice showed a longer escape-latency in Morris water maze test and a shorter latency in step-down inhibitory avoidance task than wild-type (WT) mice. Schaffer collateral-CA1 synapses in the hippocampal slices from GM2/GD2−/− mice showed an increase in the slope of EPSPs with reduced paired-pulse facilitation, indicating an enhancement of their presynaptic glutamate release. In GM2/GD2−/− mice, NMDA receptor (NMDAr)-dependent LTP could not be induced by high-frequency (100–200 Hz) tetanus or θ-burst conditioning stimulation (CS), whereas NMDAr-independent LTP was induced by medium-frequency CS (20–50 Hz). The application of mono-sialoganglioside GM1 in the slice from GM2/GD2−/− mice, to specifically recover the a-pathway, prevented the increased presynaptic glutamate release and 20 Hz-LTP induction, whereas it could not rescue the impaired NMDAr-dependent LTP. These findings suggest that b-pathway deficiency impairs cognitive function probably through suppression of NMDAr-dependent LTP, while a-pathway deficiency may facilitate NMDAr-independent LTP through enhancing presynaptic glutamate release. As both of the NMDAr-independent LTP and increased presynaptic glutamate release were sensitive to the blockade of L-type voltage-gated Ca2+ channels (L-VGCC), a-pathway deficiency may affect presynaptic L-VGCC.

  16. On the minor gangliosides of erythrocyte membranes of Japanese cats.

    PubMed

    Ando, N; Yamakawa, T

    1982-03-01

    Seven ganglioside species were isolated and purified from erythrocyte membranes of Japanese cats by DEAE-Sephadex and Iatrobeads column chromatographies. The structures of these gangliosides were determined as Gmi(NeuGc), Gm3(NeuAc), GM3(NeuGc), GD3(NeuGc), GD3(NeuGc comes from NeuAc), GT3(NeuGc), and another GM3 containing a sialic acid of unidentified nature. The occurrence of GT3 suggested the probable presence of a biosynthetic pathway of GM3 leads to GD3 leads to GT3 in erythropoietic cells of Japanese cats. The presence of GD3 having one penultimate N-glycolylneuraminic acid and one terminal N-acetylneuraminic acid, GD3(NeuGc comes from NeuAc) would indicate that this GD3 acts as an intermediate in a possible pathway from GM3(NeuGc) to GD3(NeuGc). Thin layer chromatographic patterns of total erythrocyte membrane gangliosides were compared among Japanese cats (n = 3), lions (n = 3), a serval and a racoon dog. The three species of felid showed similar patterns to each other and contained N-glycolylneuraminic acid as the major sialic acid. On the other hand, erythrocytes of racoon dog, a member of canidae, contained neither GD3 nor GT3, but only GM3.

  17. Cholesterol accelerates the binding of Alzheimer's β-amyloid peptide to ganglioside GM1 through a universal hydrogen-bond-dependent sterol tuning of glycolipid conformation

    PubMed Central

    Fantini, Jacques; Yahi, Nouara; Garmy, Nicolas

    2013-01-01

    Age-related alterations of membrane lipids in brain cell membranes together with high blood cholesterol are considered as major risk factors for Alzheimer's disease. Yet the molecular mechanisms by which these factors increase Alzheimer's risk are mostly unknown. In lipid raft domains of the plasma membrane, neurotoxic Alzheimer's beta-amyloid (Abeta) peptides interact with both cholesterol and ganglioside GM1. Recent data also suggested that cholesterol could stimulate the binding of Abeta to GM1 through conformational modulation of the ganglioside headgroup. Here we used a combination of physicochemical and molecular modeling approaches to decipher the mechanisms of cholesterol-assisted binding of Abeta to GM1. With the aim of decoupling the effect of cholesterol on GM1 from direct Abeta-cholesterol interactions, we designed a minimal peptide (Abeta5-16) containing the GM1-binding domain but lacking the amino acid residues involved in cholesterol recognition. Using the Langmuir technique, we showed that cholesterol (but not phosphatidylcholine or sphingomyelin) significantly accelerates the interaction of Abeta5-16 with GM1. Molecular dynamics simulations suggested that Abeta5-16 interacts with a cholesterol-stabilized dimer of GM1. The main structural effect of cholesterol is to establish a hydrogen-bond between its own OH group and the glycosidic-bond linking ceramide to the glycone part of GM1, thereby inducing a tilt in the glycolipid headgroup. This fine conformational tuning stabilizes the active conformation of the GM1 dimer whose headgroups, oriented in two opposite directions, form a chalice-shaped receptacle for Abeta. These data give new mechanistic insights into the stimulatory effect of cholesterol on Abeta/GM1 interactions. They also support the emerging concept that cholesterol is a universal modulator of protein-glycolipid interactions in the broader context of membrane recognition processes. PMID:23772214

  18. Therapeutic evaluation of GM2 gangliosidoses by ELISA using anti-GM2 ganglioside antibodies.

    PubMed

    Tsuji, Daisuke; Higashine, Yukari; Matsuoka, Kazuhiko; Sakuraba, Hitoshi; Itoh, Kohji

    2007-03-01

    GM2 gangliosidoses, including Tay-Sachs disease, Sandhoff disease and the AB variant, comprise deficiencies of beta-hexosaminidase isozymes and GM2 ganglioside activator protein associated with accumulation of GM2 ganglioside (GM2) in lysosomes and neurosomatic clinical manifestations. A simple assay system for intracellular quantification of GM2 is required to evaluate the therapeutic effects on GM2-gangliosidoses. We newly established a cell-ELISA system involving anti-GM2 monoclonal antibodies for measuring GM2 storage in fibroblasts from Tay-Sachs and Sandhoff disease patients. We succeeded in detecting the corrective effect of enzyme replacement on elimination of GM2 in the cells with this ELISA system. This simple and sensitive system should be useful as additional diagnosis tool as well as therapeutic evaluation of GM2 gangliosidoses.

  19. Mice lacking major brain gangliosides develop parkinsonism.

    PubMed

    Wu, Gusheng; Lu, Zi-Hua; Kulkarni, Neil; Amin, Ruchi; Ledeen, Robert W

    2011-09-01

    Parkinson's disease (PD) is the second most prevalent late-onset neurodegenerative disorder that affects nearly 1% of the global population aged 65 and older. Whereas palliative treatments are in use, the goal of blocking progression of motor and cognitive disability remains unfulfilled. A better understanding of the basic pathophysiological mechanisms underlying PD would help to advance that goal. The present study provides evidence that brain ganglioside abnormality, in particular GM1, may be involved. This is based on use of the genetically altered mice with disrupted gene Galgt1 for GM2/GD2 synthase which depletes GM2/GD2 and all the gangliotetraose gangliosides that constitute the major molecular species of brain. These knockout mice show overt motor disability on aging and clear indications of motor impairment with appropriate testing at an earlier age. This disability was rectified by L-dopa administration. These mice show other characteristic symptoms of PD, including depletion of striatal dopamine (DA), loss of DA neurons of the substantia nigra pars compacta, and aggregation of alpha synuclein. These manifestations of parkinsonism were largely attenuated by administration of LIGA-20, a membrane permeable analog of GM1 that penetrates the blood brain barrier and enters living neurons. These results suggest that perturbation of intracellular mechanisms mediated by intracellular GM1 may be a contributing factor to PD.

  20. GM2-ganglioside metabolism in hexosaminidase A deficiency states: determination in situ using labeled GM2 added to fibroblast cultures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raghavan, S.S.; Krusell, A.; Krusell, J.

    1985-11-01

    To clarify the relationship between hexosaminidase A (HEX A) activity and GM2-ganglioside hydrolysis in atypical clinical situations of HEX A deficiency, we have developed a simple method to assess GM2-ganglioside metabolism in cultured fibroblasts utilizing GM2 labeled with tritium in the sphingosine portion of the molecule. The radioactive lipid is added to the media of cultured skin fibroblasts, and after 10 days the cells are thoroughly washed, then harvested, and their lipid composition analyzed by HPLC. The degree of hydrolysis of the ingested GM2 is determined by comparing the amount of radioactive counts recovered in undegraded substrate with total cellularmore » radioactivity. A deficiency in GM2-ganglioside hydrolysis was demonstrated in seven HEX A-deficient adults with neurological signs and in two healthy-appearing adolescents with older affected siblings. In each case, an analysis of endogenous monosialoganglioside composition revealed an increase in GM2-ganglioside, confirming the presence of a block in the metabolism of GM2. No defect in GM2-catabolism was found in four other healthy individuals with HEX A deficiency. This method of assay is especially helpful in the evaluation of atypical cases of HEX A deficiency for the definitive diagnosis of GM2-gangliosidosis.« less

  1. Anti-ganglioside antibodies in patients with systemic lupus erythematosus and neurological manifestations.

    PubMed

    Labrador-Horrillo, M; Martinez-Valle, F; Gallardo, E; Rojas-Garcia, R; Ordi-Ros, J; Vilardell, M

    2012-05-01

    Anti-ganglioside antibodies (AGA) have been associated with several peripheral neuropathies, such as Miller-Fisher syndrome, Guillain-Barré syndrome and multifocal motor neuropathy. They have also been studied in patients with systemic lupus erythematosus (SLE), focusing on neuropsychiatric manifestations and peripheral neuropathy, but the results are contradictory. To study the presence of AGA in a large cohort of patients with SLE and neuropsychiatric manifestations. Serum from 65 consecutive patients with SLE and neuropsychiatric manifestations, collected from 1985 to 2009, was tested for the presence of AGA antibodies (GM1, GM2, GM3, asialo-GM1 GD1a, GD1b, GD3, GT1b, GQ1b) using a standard enzyme-linked immunosorbent assay ELISA test (INCAT 1999) and thin layer chromatography (TLC). Positive results for asialo-GM1 (IgM) were found in 10 patients, 6 were positive for asialo-GM1 (IgM and IgG), and 4 were positive for other AGA such as GM1, GM2, GM3, GD1b, GT1b, GD3, (mainly IgM). Clinical and statistical studies showed no correlation between AGA and neuropsychiatric manifestations of SLE. Although some patients showed reactivity to AGA, these antibodies are not a useful marker of neuropsychiatric manifestations in SLE patients.

  2. Analysis of GD2/GM2 synthase mRNA as a biomarker for small cell lung cancer.

    PubMed

    Chen, Lin-Chi; Brown, Andrew B; Cheung, Irene Y; Cheung, Nai-Kong V; Kris, Mark G; Krug, Lee M

    2010-02-01

    GD2/GM2 synthase is a key enzyme in the synthesis of GD2 and GM2 gangliosides found on the surface of neuroblastoma and small cell lung carcinoma (SCLC) cells. In neuroblastoma, persistent levels of GD2/GM2 synthase RNA in bone marrow (BM) following therapy portend poorer progression-free and overall survival. We conducted this study to determine if GD2/GM2 synthase RNA could be detected in SCLC cell lines and human tissues, and whether mRNA transcript levels corresponded with disease status. Initially, a pilot study enrolled patients with SCLC to determine the rate of GD2 expression at various points in the patients' disease course. Peripheral blood (PB), bone marrow and tumor tissues were used to measure GD2/GM2 synthase levels. In addition, SCLC cell lines were analyzed for GD2/GM2 synthase expression. Based on data from that initial analysis, a prospective trial was developed enrolling patients with newly diagnosed SCLC and following them serially. GD2/GM2 synthase transcript was determined by a sensitive quantitative reverse transcription-PCR (qRT-PCR) assay and normalized to glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Six SCLC cell lines were assayed for expression of GD2/GM2 synthase, and high expression was detected in all. GD2/GM2 synthase transcript levels were obtained from tumor tissue, BM, or PB of 29 patients in the pilot study. 6/10 (60%) tumor tissues or BM samples were positive (median 332.7 units; range 13-2323 units); 8/19 (42%) untreated patients were GD2/GM2 synthase positive in their PB prior to beginning therapy (median 10.2; range 5.1-32.2); 3/4 (75%) patients who were first tested when they developed recurrent disease were positive in their PB (median 16.1; range 8.5-19.9). The fourth patient had an initial value of 2.0 (negative), which increased to 8.4 (positive) within 1 month without treatment. Seven of 12 patients with baseline positive GD2/GM2 synthase values had post-treatment levels measured, all of which were a

  3. Requirement of GM2 ganglioside activator for phospholipase D activation

    PubMed Central

    Nakamura, Shun-ichi; Akisue, Toshihiro; Jinnai, Hitoshi; Hitomi, Tomohiro; Sarkar, Sukumar; Miwa, Noriko; Okada, Taro; Yoshida, Kimihisa; Kuroda, Shun’ichi; Kikkawa, Ushio; Nishizuka, Yasutomi

    1998-01-01

    Sequence analysis of a heat-stable protein necessary for the activation of ADP ribosylation factor-dependent phospholipase D (PLD) reveals that this protein has a structure highly homologous to the previously known GM2 ganglioside activator whose deficiency results in the AB-variant of GM2 gangliosidosis. The heat-stable activator protein indeed has the capacity to enhance enzymatic conversion of GM2 to GM3 ganglioside that is catalyzed by β-hexosaminidase A. Inversely, GM2 ganglioside activator purified separately from tissues as described earlier [Conzelmann, E. & Sandhoff, K. (1987) Methods Enzymol. 138, 792–815] stimulates ADP ribosylation factor-dependent PLD in a dose-dependent manner. At higher concentrations of ammonium sulfate, the PLD activator protein apparently substitutes for protein kinase C and phosphatidylinositol 4,5-bisphosphate, both of which are known as effective stimulators of the PLD reaction. The mechanism of action of the heat-stable PLD activator protein remains unknown. PMID:9770472

  4. Dependence of the form factor of ganglioside micelles on a conformational change with temperature

    NASA Astrophysics Data System (ADS)

    Corti, Mario; Boretta, Marco; Cantù, Laura; Del Favero, Elena; Lesieur, Pierre

    1996-09-01

    The gangliosides GM2, GM1 and GD1b, biological amphiphiles with a double tail hydrophobic part and an oligosaccharide chain headgroup, form micelles in solution. Light scattering experiments have shown that ganglioside micelles which have gone through a temperature cycle have a smaller molecular mass and hydrodynamic radius than those which have been kept at room temperature. This fact has been interpreted with the hypothesis that, with temperature, the ganglioside molecules undergo a conformational change which affects their micellar properties appreciably. Careful small angle X-ray experiments, aimed to confirm the light scattering data and to evidence differences in the micellar internal structure are presented. Ganglioside micelles are quite inhomogeneous particles with respect to X-ray scattering, since there is a large contrast variation between the inner lipid part and the external hydrated sugar layer. Experimental form factors are fitted with a double-shell oblate-ellipsoid model.

  5. Ganglioside-Lipid and Ganglioside-Protein Interactions Revealed by Coarse-Grained and Atomistic Molecular Dynamics Simulations.

    PubMed

    Gu, Ruo-Xu; Ingólfsson, Helgi I; de Vries, Alex H; Marrink, Siewert J; Tieleman, D Peter

    2017-04-20

    Gangliosides are glycolipids in which an oligosaccharide headgroup containing one or more sialic acids is connected to a ceramide. Gangliosides reside in the outer leaflet of the plasma membrane and play a crucial role in various physiological processes such as cell signal transduction and neuronal differentiation by modulating structures and functions of membrane proteins. Because the detailed behavior of gangliosides and protein-ganglioside interactions are poorly known, we investigated the interactions between the gangliosides GM1 and GM3 and the proteins aquaporin (AQP1) and WALP23 using equilibrium molecular dynamics simulations and potential of mean force calculations at both coarse-grained (CG) and atomistic levels. In atomistic simulations, on the basis of the GROMOS force field, ganglioside aggregation appears to be a result of the balance between hydrogen bond interactions and steric hindrance of the headgroups. GM3 clusters are slightly larger and more ordered than GM1 clusters due to the smaller headgroup of GM3. The different structures of GM1 and GM3 clusters from atomistic simulations are not observed at the CG level based on the Martini model, implying a difference in driving forces for ganglioside interactions in atomistic and CG simulations. For protein-ganglioside interactions, in the atomistic simulations, GM1 lipids bind to specific sites on the AQP1 surface, whereas they are depleted from WALP23. In the CG simulations, the ganglioside binding sites on the AQP1 surface are similar, but ganglioside aggregation and protein-ganglioside interactions are more prevalent than in the atomistic simulations. Using the polarizable Martini water model, results were closer to the atomistic simulations. Although experimental data for validation is lacking, we proposed modified Martini parameters for gangliosides to more closely mimic the sizes and structures of ganglioside clusters observed at the atomistic level.

  6. Ganglioside-Lipid and Ganglioside-Protein Interactions Revealed by Coarse-Grained and Atomistic Molecular Dynamics Simulations

    PubMed Central

    2016-01-01

    Gangliosides are glycolipids in which an oligosaccharide headgroup containing one or more sialic acids is connected to a ceramide. Gangliosides reside in the outer leaflet of the plasma membrane and play a crucial role in various physiological processes such as cell signal transduction and neuronal differentiation by modulating structures and functions of membrane proteins. Because the detailed behavior of gangliosides and protein-ganglioside interactions are poorly known, we investigated the interactions between the gangliosides GM1 and GM3 and the proteins aquaporin (AQP1) and WALP23 using equilibrium molecular dynamics simulations and potential of mean force calculations at both coarse-grained (CG) and atomistic levels. In atomistic simulations, on the basis of the GROMOS force field, ganglioside aggregation appears to be a result of the balance between hydrogen bond interactions and steric hindrance of the headgroups. GM3 clusters are slightly larger and more ordered than GM1 clusters due to the smaller headgroup of GM3. The different structures of GM1 and GM3 clusters from atomistic simulations are not observed at the CG level based on the Martini model, implying a difference in driving forces for ganglioside interactions in atomistic and CG simulations. For protein-ganglioside interactions, in the atomistic simulations, GM1 lipids bind to specific sites on the AQP1 surface, whereas they are depleted from WALP23. In the CG simulations, the ganglioside binding sites on the AQP1 surface are similar, but ganglioside aggregation and protein-ganglioside interactions are more prevalent than in the atomistic simulations. Using the polarizable Martini water model, results were closer to the atomistic simulations. Although experimental data for validation is lacking, we proposed modified Martini parameters for gangliosides to more closely mimic the sizes and structures of ganglioside clusters observed at the atomistic level. PMID:27610460

  7. GD3/proteosome vaccines induce consistent IgM antibodies against the ganglioside GD3.

    PubMed

    Livingston, P O; Calves, M J; Helling, F; Zollinger, W D; Blake, M S; Lowell, G H

    1993-09-01

    The gangliosides of melanoma and other tumours of neuroectodermal origin are suitable targets for immune intervention with tumour vaccines. The optimal vaccines in current use contain ganglioside plus bacillus Calmette-Guérin and induce considerable morbidity. We have screened a variety of new adjuvants in the mouse, and describe one antigen-delivery system, proteosomes, which is especially effective. Highly hydrophobic Neisserial outer membrane proteins (OMP) form multimolecular liposome-like vesicular structures termed proteosomes which can readily incorporate amphiphilic molecules such as GD3 ganglioside. The optimal GD3/proteosome vaccine formulation for induction of GD3 antibodies in the mouse is determined. Interestingly, the use of potent immunological adjuvants in addition to proteosomes augments the IgM and IgG antibody titres against OMP in these vaccines but GD3 antibody titres are unaffected. The application of proteosomes to enhance the immune response to GD3 extends the concept of the proteosome immunopotentiating system from lipopeptides to amphipathic carbohydrate epitopes such as cell-surface gangliosides. The demonstrated safety of meningococcal OMP in humans and the data in mice presented here suggest that proteosome vaccines have potential for augmenting the immunogenicity of amphipathic tumour antigens in humans.

  8. GM1 ganglioside counteracts cholinergic and behavioral deficits induced in the rat by intracerebral injection of vincristine.

    PubMed

    Di Patre, P L; Abbamondi, A; Bartolini, L; Pepeu, G

    1989-03-14

    The intracerebroventricular injection of 0.5 mg of vincristine sulphate in adult male Wistar rats caused within 11 days the impairment of motor and reflexive behavior, evaluated by the elevated platform and hanging wire tests, a decrease in food consumption and loss of body weight, a 45% decrease in hippocampal choline acetyltransferase (ChAT) activity and a 35% decrease in the rate of high-affinity choline uptake (HACU) in the injected side. The latter effects are due to the death of neurons in the respective hemiseptum. Intrafimbrial injection of vincristine caused the same decrease in ChAT activity without behavioral alterations. Daily i.p. administration of GM1 ganglioside, beginning immediately after the vincristine injection, prevented dose dependently the decrease in ChAT activity and HACU rate. Prevention was complete with the 60 mg/kg dose. The same dose was equally active on ChAT activity when given s.c. but was inactive p.o. The ChAT decrease was also prevented when GM1 treatment began 5 days after vincristine. GM1 60 mg/kg i.p. also reduced the behavioral toxicity of vincristine. The possibility that GM1 might prevent vincristine toxicity by antagonizing its disruption of neurofilaments and axonal flow is discussed.

  9. Sialidase activities of cultured human fibroblasts and the metabolism of GM3 ganglioside

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Usuki, S.; Lyu, S.C.; Sweeley, C.C.

    1988-05-15

    Free sialic acid has been found in the cell-conditioned medium of human foreskin fibroblasts. It is proposed that the accumulation of extracellular sialic acid may result from the hydrolysis of GM3 ganglioside on the cell surface of these fibroblasts. Sialidase activities with GM3 ganglioside and sialyllactitol as substrates were demonstrated in cell-conditioned medium, and the levels of their activities correlated positively with cell density. The GM3 sialidase activity at pH 4.5 was 4.1 and 38 pmol/h/ml of medium at sparse and confluent densities, respectively; the corresponding activities with sialyllactitol as the substrate were 12 and 75 pmol/h/ml of medium (pHmore » 4.5). The pH versus activity profiles with GM3 as the substrate suggested the presence of a second sialidase with an optimal activity at pH 6.5 in the conditioned medium of preconfluent cells. This activity was virtually absent in the medium of contact-inhibited cells and could not be assayed with sialyllactitol as the substrate. The turnover of cell surface GM3 was assessed by pulse labeling human foreskin fibroblasts with a radioactive precursor of sialic acid ((1-14C)N-acetylmannosamine) and a radioactive precursor of ceramide ((3,3-3H2)serine). During a chase period of 24 h turnover of the doubly labeled cellular GM3 was observed; there was a loss of about 35% of the 14C-labeled sialic acid without any measureable loss of 3H-labeled ceramide from GM3. We have speculated that the enzyme-catalyzed removal of sialic acid from the GM3 ganglioside on the extracellular aspect of the plasma membrane may be a necessary event involved in the modulation of cell growth.« less

  10. Membrane lipids regulate ganglioside GM2 catabolism and GM2 activator protein activity.

    PubMed

    Anheuser, Susi; Breiden, Bernadette; Schwarzmann, Günter; Sandhoff, Konrad

    2015-09-01

    Ganglioside GM2 is the major lysosomal storage compound of Tay-Sachs disease. It also accumulates in Niemann-Pick disease types A and B with primary storage of SM and with cholesterol in type C. Reconstitution of GM2 catabolism with β-hexosaminidase A and GM2 activator protein (GM2AP) at uncharged liposomal surfaces carrying GM2 as substrate generated only a physiologically irrelevant catabolic rate, even at pH 4.2. However, incorporation of anionic phospholipids into the GM2 carrying liposomes stimulated GM2 hydrolysis more than 10-fold, while the incorporation of plasma membrane stabilizing lipids (SM and cholesterol) generated a strong inhibition of GM2 hydrolysis, even in the presence of anionic phospholipids. Mobilization of membrane lipids by GM2AP was also inhibited in the presence of cholesterol or SM, as revealed by surface plasmon resonance studies. These lipids also reduced the interliposomal transfer rate of 2-NBD-GM1 by GM2AP, as observed in assays using Förster resonance energy transfer. Our data raise major concerns about the usage of recombinant His-tagged GM2AP compared with untagged protein. The former binds more strongly to anionic GM2-carrying liposomal surfaces, increases GM2 hydrolysis, and accelerates intermembrane transfer of 2-NBD-GM1, but does not mobilize membrane lipids. Copyright © 2015 by the American Society for Biochemistry and Molecular Biology, Inc.

  11. Lactational changes in concentration and distribution of ganglioside molecular species in human breast milk from Chinese mothers.

    PubMed

    Ma, Lin; Liu, Xihong; MacGibbon, Alastair K H; Rowan, Angela; McJarrow, Paul; Fong, Bertram Y

    2015-11-01

    Gangliosides play a critical role in human brain development and function. Human breast milk (HBM) is an important dietary source of gangliosides for the growing infant. In this study, ganglioside concentrations were measured in the breast milk from a cross-sectional sample of Chinese mothers over an 8-month lactation period. The average total ganglioside concentration increased from 13.1 mg/l during the first month to 20.9 mg/l by 8 months of lactation. The average concentration during the typically solely breast-feeding period of 1‒6 months was 18.9 mg/l. This is the first study to report the relative distribution of the individual ganglioside molecular species through lactation for any population group. The ganglioside molecular species are made up of different fatty acid moieties that influence the physical properties of these gangliosides, and hence affect their function. The GM(3) molecular species containing long-chain acyl fatty acids had the most prominent changes, increasing in both concentration and relative distribution. The equivalent long-chain acyl fatty acid GD(3) molecular species typically decreased in concentration and relative distribution. The lactational trends for both concentration and relative distribution for the very long-chain acyl fatty acid molecular species were more varied. The major GM(3) and GD(3) molecular species during lactation were d40:1 and d42:1, respectively. An understanding of ganglioside molecular species distribution in HBM is essential for accurate application of mass spectrometry methods for ganglioside quantification.

  12. Ganglioside GM3 content in skeletal muscles is increased in type 2 but decreased in type 1 diabetes rat models: Implications of glycosphingolipid metabolism in pathophysiology of diabetes.

    PubMed

    Bozic, Josko; Markotic, Anita; Cikes-Culic, Vedrana; Novak, Anela; Borovac, Josip A; Vucemilovic, Hrvoje; Trgo, Gorana; Ticinovic Kurir, Tina

    2018-02-01

    Ganglioside GM3 is found in the plasma membrane, where its accumulation attenuates insulin receptor signaling. Considering the role of skeletal muscles in insulin-stimulated glucose uptake, the aim of the present study was to determine the expression of GM3 and its precursors in skeletal muscles of rat models of type 1 and type 2 diabetes mellitus (T1DM and T2DM, respectively). Diabetes was induced in male Sprague-Dawley rats by streptozotocin injection (55 mg/kg, i.p., for T1DM induction; 35 mg/kg, i.p., for T2DM induction), followed by feeding of rats with either a normal pellet diet (T1DM) or a high-fat diet (T2DM). Rats were killed 2 weeks after diabetes induction and samples of skeletal muscle were collected. Frozen quadriceps muscle sections were stained with a primary antibody against GM3 (Neu5Ac) and visualized using a secondary antibody coupled with Texas Red. The muscle content of ganglioside GM3 and its precursors was analyzed by high-performance thin-layer chromatography (HPTLC) followed by GM3 immunostaining. Muscle GM3 content was significantly higher in T2DM compared with control rats (P < 0.001). Furthermore, levels of the GM3 precursors ceramide, glucosylceramide, and lactosylceramide were significantly higher in T2DM compared with control rats (P < 0.05), whereas ceramide content was significantly lower in T1DM rats (P < 0.05). The intensity of the GM3 band on HPTLC was significantly higher in T2DM rats (P < 0.001) and significantly lower in T1DM rats (P < 0.05) compared with control. The expression patterns of GM3 ganglioside and its precursors in diabetic rats suggest that the role of glycosphingolipid metabolism may differ between T2DM and T1DM. © 2017 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and John Wiley & Sons Australia, Ltd.

  13. Membrane lipids regulate ganglioside GM2 catabolism and GM2 activator protein activity[S

    PubMed Central

    Anheuser, Susi; Breiden, Bernadette; Schwarzmann, Günter; Sandhoff, Konrad

    2015-01-01

    Ganglioside GM2 is the major lysosomal storage compound of Tay-Sachs disease. It also accumulates in Niemann-Pick disease types A and B with primary storage of SM and with cholesterol in type C. Reconstitution of GM2 catabolism with β-hexosaminidase A and GM2 activator protein (GM2AP) at uncharged liposomal surfaces carrying GM2 as substrate generated only a physiologically irrelevant catabolic rate, even at pH 4.2. However, incorporation of anionic phospholipids into the GM2 carrying liposomes stimulated GM2 hydrolysis more than 10-fold, while the incorporation of plasma membrane stabilizing lipids (SM and cholesterol) generated a strong inhibition of GM2 hydrolysis, even in the presence of anionic phospholipids. Mobilization of membrane lipids by GM2AP was also inhibited in the presence of cholesterol or SM, as revealed by surface plasmon resonance studies. These lipids also reduced the interliposomal transfer rate of 2-NBD-GM1 by GM2AP, as observed in assays using Förster resonance energy transfer. Our data raise major concerns about the usage of recombinant His-tagged GM2AP compared with untagged protein. The former binds more strongly to anionic GM2-carrying liposomal surfaces, increases GM2 hydrolysis, and accelerates intermembrane transfer of 2-NBD-GM1, but does not mobilize membrane lipids. PMID:26175473

  14. Membrane-lipid homeostasis in a prodromal rat model of Alzheimer's disease: Characteristic profiles in ganglioside distributions during aging detected using MALDI imaging mass spectrometry.

    PubMed

    Caughlin, Sarah; Maheshwari, Shikhar; Agca, Yuksel; Agca, Cansu; Harris, Aaron J; Jurcic, Kristina; Yeung, Ken K-C; Cechetto, David F; Whitehead, Shawn N

    2018-06-01

    Accumulation of simple gangliosides GM2 and GM3, and gangliosides with longer long-chain bases (d20:1) have been linked to toxicity and the pathogenesis of Alzheimer's disease (AD). Conversely, complex gangliosides, such as GM1, have been shown to be neuroprotective. Recent evidence using matrix-assisted laser desorption ionization imaging mass spectrometry (MALDI-IMS) has demonstrated that a-series gangliosides are differentially altered during normal aging, yet it remains unclear how simple species are shifting relative to complex gangliosides in the prodromal stages of AD. Ganglioside profiles in wild-type (Wt) and transgenic APP21 Fischer rats were detected and quantified using MALDI-IMS at P0 (birth), 3, 12, and 20 months of age and each species quantified to allow for individual species comparisons. Tg APP21 rats were found to have a decreased level of complex gangliosides in a number of brain regions as compared to Wt rats and showed higher levels of simple gangliosides. A unique pattern of expression was observed in the white matter as compared to gray matter regions, with an age-dependent decrease in GD1 d18:1 species observed and significantly elevated levels of GM3 in Tg APP21 rats. These results are indicative of a pathological shift in ganglioside homeostasis during aging that is exacerbated in Tg APP21 rats. Ganglioside dysregulation may occur in the prodromal stages of neurodegenerative diseases like AD. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Glycosylated SV2 and Gangliosides as Dual Receptors for Botulinum Neurotoxin Serotype F

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Zhuji; Chen, Chen; Barbieri, Joseph T.

    2010-02-22

    Botulinum neurotoxin causes rapid flaccid paralysis through the inhibition of acetylcholine release at the neuromuscular junction. The seven BoNT serotypes (A-G) have been proposed to bind motor neurons via ganglioside-protein dual receptors. To date, the structure-function properties of BoNT/F host receptor interactions have not been resolved. Here, we report the crystal structures of the receptor binding domains (HCR) of BoNT/A and BoNT/F and the characterization of the dual receptors for BoNT/F. The overall polypeptide fold of HCR/A is essentially identical to the receptor binding domain of the BoNT/A holotoxin, and the structure of HCR/F is very similar to that ofmore » HCR/A, except for two regions implicated in neuronal binding. Solid phase array analysis identified two HCR/F binding glycans: ganglioside GD1a and oligosaccharides containing an N-acetyllactosamine core. Using affinity chromatography, HCR/F bound native synaptic vesicle glycoproteins as part of a protein complex. Deglycosylation of glycoproteins using {alpha}(1-3,4)-fucosidase, endo-{beta}-galactosidase, and PNGase F disrupted the interaction with HCR/F, while the binding of HCR/B to its cognate receptor, synaptotagmin I, was unaffected. These data indicate that the HCR/F binds synaptic vesicle glycoproteins through the keratan sulfate moiety of SV2. The interaction of HCR/F with gangliosides was also investigated. HCR/F bound specifically to gangliosides that contain {alpha}2,3-linked sialic acid on the terminal galactose of a neutral saccharide core (binding order GT1b = GD1a GM3; no binding to GD1b and GM1a). Mutations within the putative ganglioside binding pocket of HCR/F decreased binding to gangliosides, synaptic vesicle protein complexes, and primary rat hippocampal neurons. Thus, BoNT/F neuronal discrimination involves the recognition of ganglioside and protein (glycosylated SV2) carbohydrate moieties, providing a structural basis for the high affinity and specificity of BoNT/F for

  16. Synthesis and characterization of N-parinaroyl analogs of ganglioside GM3 and de-N-acetyl GM3. Interactions with the EGF receptor kinase

    NASA Technical Reports Server (NTRS)

    Song, W.; Welti, R.; Hafner-Strauss, S.; Rintoul, D. A.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    A specific plasma membrane glycosphingolipid, known as ganglioside GM3, can regulate the intrinsic tyrosyl kinase activity of the epidermal growth factor (EGF) receptor; this modulation is not associated with alterations in hormone binding to the receptor. GM3 inhibits EGF receptor tyrosyl kinase activity in detergent micelles, in plasma membrane vesicles, and in whole cells. In addition, immunoaffinity-purified EGF receptor preparations contain ganglioside GM3 (Hanai et al. (1988) J. Biol. Chem. 263, 10915-10921), implying that the glycosphingolipid is intimately associated with the receptor kinase in cell membranes. Both the nature of this association and the molecular mechanism of kinase inhibition remain to be elucidated. In this report, we describe the synthesis of a fluorescent analog of ganglioside GM3, in which the native fatty acid was replaced with trans-parinaric acid. This glycosphingolipid inhibited the receptor kinase activity in a manner similar to that of the native ganglioside. A modified fluorescent glycosphingolipid, N-trans-parinaroyl de-N-acetyl ganglioside GM3, was also prepared. This analog, like the nonfluorescent de-N-acetyl ganglioside GM3, had no effect on receptor kinase activity. Results from tryptophan fluorescence quenching and steady-state anisotropy measurements in membranes containing these fluorescent probes and the human EGF receptor were consistent with the notion that GM3, but not de-N-acetyl GM3, interacts specifically with the receptor in intact membranes.

  17. Ganglioside accumulation in activated glia in the developing brain: comparison between WT and GalNAcT KO mice

    PubMed Central

    Saito, Mariko; Wu, Gusheng; Hui, Maria; Masiello, Kurt; Dobrenis, Kostantin; Ledeen, Robert W.; Saito, Mitsuo

    2015-01-01

    Our previous studies have shown accumulation of GM2 ganglioside during ethanol-induced neurodegeneration in the developing brain, and GM2 elevation has also been reported in other brain injuries and neurodegenerative diseases. Using GM2/GD2 synthase KO mice lacking GM2/GD2 and downstream gangliosides, the current study explored the significance of GM2 elevation in WT mice. Immunohistochemical studies indicated that ethanol-induced acute neurodegeneration in postnatal day 7 (P7) WT mice was associated with GM2 accumulation in the late endosomes/lysosomes of both phagocytic microglia and increased glial fibrillary acidic protein (GFAP)-positive astrocytes. However, in KO mice, although ethanol induced robust neurodegeneration and accumulation of GD3 and GM3 in the late endosomes/lysosomes of phagocytic microglia, it did not increase the number of GFAP-positive astrocytes, and the accumulation of GD3/GM3 in astrocytes was minimal. Not only ethanol, but also DMSO, induced GM2 elevation in activated microglia and astrocytes along with neurodegeneration in P7 WT mice, while lipopolysaccharide, which did not induce significant neurodegeneration, caused GM2 accumulation mainly in lysosomes of activated astrocytes. Thus, GM2 elevation is associated with activation of microglia and astrocytes in the injured developing brain, and GM2, GD2, or other downstream gangliosides may regulate astroglial responses in ethanol-induced neurodegeneration. PMID:26063460

  18. Antiganglioside antibodies in Guillain-Barré syndrome after a recent cytomegalovirus infection

    PubMed Central

    Khalili-Shirazi, A.; Gregson, N.; Gray, I.; Rees, J.; Winer, J.; Hughes, R.

    1999-01-01

    OBJECTIVE—To study the association between anti-ganglioside antibody responses and Guillan-Barré syndrome (GBS) after a recent cytomegalovirus (CMV) infection.
METHODS—Enzyme linked immunosorbant assay (ELISA) was undertaken on serum samples from 14 patients with GBS with recent cytomegalovirus (CMV) infection (CMV+GBS) and 12 without (CMV-GBS), 17 patients with other neurological diseases (OND), 11 patients with a recent CMV infection but without neurological involvement, 11 patients with recent Epstein-Barr virus (EBV) infection but without neurological involvement, and 20 normal control (NC) subjects.
RESULTS—IgM antibodies were found at 1:100 serum dilution to gangliosides GM2 (six of 14 patients), GM1 (four of 14), GD1a (three of 14) and GD1b (two of 14) in the serum samples of the CMV+GBS patients, but not in those of any of the CMV-GBS patients. IgM antibodies were also found to gangliosides GM1, GD1a, and GD1b in one of 11 OND patients, to ganglioside GM1 in one of 11 non- neurological CMV patients, and to ganglioside GD1b in one of 20NC subjects. Some patients with EBV infection had IgM antibodies to gangliosides GM1 (five of 11), GM2 (three of 11), and GD1a (two of 11). However, the antibodies to ganglioside GM2 had a low titre, none being positive at 1:200 dilution, whereas five of the CMV+GBS serum samples remained positive at this dilution.
CONCLUSION—Antibodies to ganglioside GM2 are often associated with GBS after CMV infection, but their relevance is not known. It is unlikely that CMV infection and anti-ganglioside GM2 antibodies are solely responsible and an additional factor is required to elicit GBS.

 PMID:10084538

  19. Antiganglioside antibodies in Guillain-Barré syndrome after a recent cytomegalovirus infection.

    PubMed

    Khalili-Shirazi, A; Gregson, N; Gray, I; Rees, J; Winer, J; Hughes, R

    1999-03-01

    To study the association between anti-ganglioside antibody responses and Guillan-Barré syndrome (GBS) after a recent cytomegalovirus (CMV) infection. Enzyme linked immunosorbant assay (ELISA) was undertaken on serum samples from 14 patients with GBS with recent cytomegalovirus (CMV) infection (CMV+GBS) and 12 without (CMV-GBS), 17 patients with other neurological diseases (OND), 11 patients with a recent CMV infection but without neurological involvement, 11 patients with recent Epstein-Barr virus (EBV) infection but without neurological involvement, and 20 normal control (NC) subjects. IgM antibodies were found at 1:100 serum dilution to gangliosides GM2 (six of 14 patients), GM1 (four of 14), GD1a (three of 14) and GD1b (two of 14) in the serum samples of the CMV+GBS patients, but not in those of any of the CMV-GBS patients. IgM antibodies were also found to gangliosides GM1, GD1a, and GD1b in one of 11 OND patients, to ganglioside GM1 in one of 11 non- neurological CMV patients, and to ganglioside GD1b in one of 20 NC subjects. Some patients with EBV infection had IgM antibodies to gangliosides GM1 (five of 11), GM2 (three of 11), and GD1a (two of 11). However, the antibodies to ganglioside GM2 had a low titre, none being positive at 1:200 dilution, whereas five of the CMV+GBS serum samples remained positive at this dilution. Antibodies to ganglioside GM2 are often associated with GBS after CMV infection, but their relevance is not known. It is unlikely that CMV infection and anti-ganglioside GM2 antibodies are solely responsible and an additional factor is required to elicit GBS.

  20. [GM1-dot-EIA for the detection of toxin-producing Vibrio cholerae strains].

    PubMed

    Markina, O V; Alekseeva, L P; Telesmanich, N R; Chemisova, O S; Akulova, M V; Markin, N V

    2011-05-01

    A new variant of enzyme immunoassay (EIA) has been developed on the basis of GM1 gangliosides to detect the toxin-producing Vibrio cholerae strains--GM1-dot-EIA. Experiments were run using a nitrocellulose membrane to bind GM1 gangliosides and polyclonal antitoxic serum to detect cholerogen. GM1-dot-EIA testing identified cholera toxin in 11 of 13 supernatants of V. cholerae eltor ctx(+) strains isolated from man and in 3 of 7 supernatants of V. cholerae eltor ctx(+) strains isolated from water. These data agree with those obtained in CM1-EIA. There was no reaction with the supernatants of other microorganisms. The sensitivity of the technique was 10 ng/ml. Thus, the simple and specific GM1-dot-EIA may be recommended to detect toxin-producing V cholerae strains isolated from man and water.

  1. Childhood-Onset Multifocal Motor Neuropathy With Immunoglobulin M Antibodies to Gangliosides GM1 and GM2: A Case Report and Review of the Literature.

    PubMed

    Ishigaki, Hidetoshi; Hiraide, Takuya; Miyagi, Yoshifumi; Hayashi, Taiju; Matsubayashi, Tomoko; Shimoda, Ayumi; Kusunoki, Susumu; Fukuda, Tokiko

    2016-09-01

    Multifocal motor neuropathy is a rare immune-mediated neuropathy characterized by progressive asymmetric weakness and atrophy without sensory abnormalities. Although disease onset is usually in adulthood, a few childhood-onset cases have been reported. Here, we report the case of an 8-year-old boy with multifocal motor neuropathy who presented with a slowly progressive left and distal upper limb weakness without sensory loss. The initial high-dose intravenous immunoglobulin treatment significantly improved left upper limb muscle weakness. Continued monthly intravenous immunoglobulin treatment gradually improved muscle strength for several months initially. While the muscle strength decreased slightly after 8 months of therapy, it was better than that before intravenous immunoglobulin treatment. One year and eight months after the initiation of treatment, serum testing for IgM antibodies to gangliosides, GM1 and GM2, was negative. This is the first pediatric report of the serum IgM autoantibodies positive to GM1 and GM2. The clinical course is similar to that of partial intravenous immunoglobulin responders among patients with adulthood-onset multifocal motor neuropathy. Since the symptoms plateaued after the initial intravenous immunoglobulin therapy, prognosis appears to be determined by the patient's initial response to intravenous immunoglobulin treatment. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. The GM1 and GM2 Gangliosidoses: Natural History and Progress toward Therapy.

    PubMed

    Regier, Debra S; Proia, Richard L; D'Azzo, Alessandra; Tifft, Cynthia J

    2016-06-01

    The gangliosidoses are lysosomal storage disorders caused by accumulation of GM1 or GM2 gangliosides. GM1 gangliosidosis has both central nervous system and systemic findings; while, GM2 gangliosidosis is restricted primarily to the central nervous system. Both disorders have autosomal recessive modes of inheritance and a continuum of clinical presentations from a severe infantile form to a milder, chronic adult form. Both are devastating diseases without cure or specific treatment however, with the use of supportive aggressive medical management, the lifespan and quality of life has been extended for both diseases. Naturally occurring and engineered animal models that mimic the human diseases have enhanced our understanding of the pathogenesis of disease progression. Some models have shown significant improvement in symptoms and lifespan with enzyme replacement, substrate reduction, and anti-inflammatory treatments alone or in combination. More recently gene therapy has shown impressive results in large and small animal models. Treatment with FDA-approved glucose analogs to reduce the amount of ganglioside substrate is used as off-label treatments for some patients. Therapies also under clinical development include small molecule chaperones and gene therapy.

  3. GM1 ganglioside reduces the motor incoordination and loss of righting reflex caused by acute ethanol in C57BL/6J mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallis, C.; Rezazadeh, S.M.; Forster, M.J.

    1992-02-26

    Ethanol produces its intoxicating effects by modifying neuronal membranes. Gangliosides stabilize neuronal membranes and promote their recovery from a variety of insults. In this experiment, the efficacy of GM1(i.p.) to reverse ethanol intoxication was evaluated in male mice trained to run on a constantly accelerating rotorod. When mice were tested 15-min following saline or ethanol GM1 pre-treatment reduced rotorod performance by 15% but was ineffective in modifying the ethanol-impaired performance. However, when mice were tested at 15, 35, 55, 75, and 95 min intervals following ethanol, GM1 pre-treatments dose-dependently reduced the efficacy and duration of ethanol in producing motor incoordination.more » Further, GM1 given prior to ethanol significantly prolonged the time to onset of the loss of righting reflex from 1.4 to 1.9 min, and reduced the duration of the righting-reflex loss from 94 to 77 min. This GM1 effect was seen at 24 h, but not at 48 or 72 h after its administration. The blood ethanol concentration at awakening was significantly higher in 24h GM1-treated animals than in controls suggesting that the GM1 effect was not due to an alteration in ethanol clearance. These findings support the hypothesis that GM1 promotes recovery from ethanol intoxication via a neuroprotective mechanism.« less

  4. The glycolipid GM1 reshapes asymmetric biomembranes and giant vesicles by curvature generation.

    PubMed

    Dasgupta, Raktim; Miettinen, Markus S; Fricke, Nico; Lipowsky, Reinhard; Dimova, Rumiana

    2018-05-29

    The ganglioside GM1 is present in neuronal membranes at elevated concentrations with an asymmetric spatial distribution. It is known to generate curvature and can be expected to strongly influence the neuron morphology. To elucidate these effects, we prepared giant vesicles with GM1 predominantly present in one leaflet of the membrane, mimicking the asymmetric GM1 distribution in neuronal membranes. Based on pulling inward and outward tubes, we developed a technique that allowed the direct measurement of the membrane spontaneous curvature. Using vesicle electroporation and fluorescence intensity analysis, we were able to quantify the GM1 asymmetry across the membrane and to subsequently estimate the local curvature generated by the molecule in the bilayer. Molecular-dynamics simulations confirm the experimentally determined dependence of the membrane spontaneous curvature as a function of GM1 asymmetry. GM1 plays a crucial role in connection with receptor proteins. Our results on curvature generation of GM1 point to an additional important role of this ganglioside, namely in shaping neuronal membranes. Copyright © 2018 the Author(s). Published by PNAS.

  5. Detecting Protein-Glycolipid Interactions Using Glycomicelles and CaR-ESI-MS

    NASA Astrophysics Data System (ADS)

    Han, Ling; Kitova, Elena N.; Klassen, John S.

    2016-11-01

    This study reports on the use of the catch-and-release electrospray ionization mass spectrometry (CaR-ESI-MS) assay, combined with glycomicelles, as a method for detecting specific interactions between water-soluble proteins and glycolipids (GLs) in aqueous solution. The B subunit homopentamers of cholera toxin (CTB5) and Shiga toxin type 1 B (Stx1B5) and the gangliosides GM1, GM2, GM3, GD1a, GD1b, GT1b, and GD2 served as model systems for this study. The CTB5 exhibits broad specificity for gangliosides and binds to GM1, GM2, GM3, GD1a, GD1b, and GT1b; Stx1B5 does not recognize gangliosides. The CaR-ESI-MS assay was used to analyze solutions of CTB5 or Stx1B5 and individual gangliosides (GM1, GM2, GM3, GD1a, GD1b, GT1b, and GD2) or mixtures thereof. The high affinity interaction of CTB5 with GM1 was successfully detected. However, the apparent affinity, as determined from the mass spectra, is significantly lower than that of the corresponding pentasaccharide or when GM1 is presented in model membranes such as nanodiscs. Interactions between CTB5 and the low affinity gangliosides GD1a, GD1b, and GT1b, as well as GD2, which served as a negative control, were detected; no binding of CTB5 to GM2 or GM3 was observed. The CaR-ESI-MS results obtained for Stx1B5 reveal that nonspecific protein-ganglioside binding can occur during the ESI process, although the extent of binding varies between gangliosides. Consequently, interactions detected for CTB5 with GD1a, GD1b, and GT1b are likely nonspecific in origin. Taken together, these results reveal that the CaR-ESI-MS/glycomicelle approach for detecting protein-GL interactions is prone to false positives and false negatives and must be used with caution.

  6. Accumulation of cholesterol and GM2 ganglioside in cells cultured in the presence of progesterone: an implication for the basic defect in Niemann-Pick disease type C.

    PubMed

    Sato, M; Akaboshi, S; Katsumoto, T; Taniguchi, M; Higaki, K; Tai, T; Sakuraba, H; Ohno, K

    1998-01-01

    Cultured fibroblasts from patients with Niemann-Pick disease type C (NP-C) are characterized by lysosomal accumulation of unesterified cholesterol and a defect in intracellular trafficking of cholesterol. We have found the accumulation of GM2 ganglioside in NP-C fibroblasts [Yano T, Taniguchi M, Akaboshi S, Vanier MT, Tai T, Sakuraba H, et al. Proc Japan Acad 1996;72B:214-219]. In this communication we show that several inhibitors known to inhibit intracellular cholesterol transport, progesterone, imipramine and KN-62, elicit accumulation of not only unesterified cholesterol but also GM2 ganglioside. This finding suggests that intracellular transport of cholesterol may be coupled with that of GM2 ganglioside. The accumulation of free cholesterol and GM2 ganglioside may be a clue for understanding the basic defect of NP-C. Recently NPC1 gene is found by the positional cloning. The mechanism of accumulating of GM2 ganglioside should be further investigated by studying of the functions of NPC1 gene.

  7. Oriented 1,2-dimyristoyl-sn-glycero-3-phosphorylcholine/ganglioside membranes: a Fourier transform infrared attenuated total reflection spectroscopic study. Band assignments; orientational, hydrational, and phase behavior; and effects of Ca2+ binding.

    PubMed

    Müller, E; Giehl, A; Schwarzmann, G; Sandhoff, K; Blume, A

    1996-09-01

    Fourier transform infrared (FTIR) attenuated total reflection (ATR) spectroscopy was used to elucidate the hydration behavior and molecular order of phospholipid/ganglioside bilayers. We examined dry and hydrated films of the gangliosides GM1, deacetyl-GM1, lyso-GM1, deacetyllyso-GM1, and GM3 and oriented mixed films of these gangliosides with 1,2-dimyristoyl-sn-glycero-3-phosphorylcholine (DMPC) using polarized light. Analysis of the amide I frequencies reveals that the amide groups are involved in intermolecular interactions via hydrogen bonds of varying strengths. The tilt angle of the acyl chains of the lipids in mixed films was determined as a function of ganglioside structure. Deacetylation of the sialic acid in the headgroup has a stronger influence on the tilt angle than the removal of the ganglioside fatty acid. The phase behavior was examined by FTIR ATR spectroscopy and by differential scanning calorimetry (DSC) measurements on lipid suspensions. At the same molar concentration, lyso-gangliosides have less effect on changes of transition temperature compared to the double-chain analogs. Distinct differences in the amide band shapes were observed between mixtures with lyso-gangliosides and normal double-chain gangliosides. Determined from the dicroic ratio RATR, the orientation of the COO- group in all DMPC/ganglioside mixtures was found to be relatively fixed with respect to the membrane normal. In 4:1 mixtures of DMPC with GM1 and deacetyl-GM1, the binding of Ca2+ leads to a slight decrease in chain tilt in the gel phase, probably caused by a dehydration of the membrane-water interface. In mixtures of DMPC with GM3 and deacetyl-lyso-GM1, a slight increase in chain tilt is observed. The chain tilt in DMPC/lyso-GM1 mixtures is unchanged. Analysis of the COO- band reveals that Ca2+ does not bind to the carboxylate group of the sialic acid of GM1 and deacetyl-GM1, the mixtures in which a decrease in chain tilt was observed. Binding to the sialic acid was

  8. Botulinum neurotoxin serotype D attacks neurons via two carbohydrate-binding sites in a ganglioside-dependent manner.

    PubMed

    Strotmeier, Jasmin; Lee, Kwangkook; Völker, Anne K; Mahrhold, Stefan; Zong, Yinong; Zeiser, Johannes; Zhou, Jie; Pich, Andreas; Bigalke, Hans; Binz, Thomas; Rummel, Andreas; Jin, Rongsheng

    2010-10-15

    The extraordinarily high toxicity of botulinum neurotoxins primarily results from their specific binding and uptake into neurons. At motor neurons, the seven BoNT (botulinum neurotoxin) serotypes A-G inhibit acetylcholine release leading to flaccid paralysis. Uptake of BoNT/A, B, E, F and G requires a dual interaction with gangliosides and the synaptic vesicle proteins synaptotagmin or SV2 (synaptic vesicle glycoprotein 2), whereas little is known about the cell entry mechanisms of the serotypes C and D, which display the lowest amino acid sequence identity compared with the other five serotypes. In the present study we demonstrate that the neurotoxicity of BoNT/D depends on the presence of gangliosides by employing phrenic nerve hemidiaphragm preparations derived from mice expressing the gangliosides GM3, GM2, GM1 and GD1a, or only GM3 [a description of our use of ganglioside nomenclature is given in Svennerholm (1994) Prog. Brain Res. 101, XI-XIV]. High-resolution crystal structures of the 50 kDa cell-binding domain of BoNT/D alone and in complex with sialic acid, as well as biological analyses of single-site BoNT/D mutants identified two carbohydrate-binding sites. One site is located at a position previously identified in BoNT/A, B, E, F and G, but is lacking the conserved SXWY motif. The other site, co-ordinating one molecule of sialic acid, resembles the second ganglioside-binding pocket (the sialic-acid-binding site) of TeNT (tetanus neurotoxin).

  9. Specific ganglioside binding to receptor sites on T lymphocytes that couple to ganglioside-induced decrease of CD4 expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morrison, W.J.; Offner, H.; Vandenbark, A.A.

    1989-01-01

    The binding of different gangliosides to rat T-helper lymphocytes was characterized under conditions that decrease CD4 expression on different mammalian T-helper lymphoctyes. Saturation binding by monosialylated ({sub 3}H)-GM{sub 1} to rat T-lymphocytes was time- and temperature-dependent, had a dissociation constant (K{sub D}) of 2.2 {plus minus} 1.4 {mu}M and a binding capacity near 2 fmoles/cell. Competitive inhibition of ({sup 3}H)- GM{sub 1} binding demonstrated a structural-activity related to the number of unconstrained sialic acid moieties on GM{sub 1}-congeneric gangliosides. A comparison between the results of these binding studies and gangliosides-induced decrease of CD4 expression demonstrated that every aspect of ({supmore » 3}H)-GM{sub 1} binding concurs with ganglioside modulation of CD4 expression. It is concluded that the specific decrease of CD4 expression induced by pretreatment with gangliosides involves the initial process of gangliosides binding to specific sites on CD4{sup {double dagger}} T-helper lymphocytes.« less

  10. Anti-GM2 ganglioside antibodies are a biomarker for acute canine polyradiculoneuritis

    PubMed Central

    Bianchi, Ezio; Dondi, Maurizio; Penderis, Jacques; Cappell, Joanna; Burgess, Karl; Matiasek, Kaspar; McGonigal, Rhona; Willison, Hugh J.

    2016-01-01

    Acute canine polyradiculoneuritis (ACP) is considered to be the canine equivalent of the human peripheral nerve disorder Guillain-Barré syndrome (GBS); an aetiological relationship, however, remains to be demonstrated. In GBS, anti-glycolipid antibodies (Abs) are considered as important disease mediators. To address the possibility of common Ab biomarkers, the sera of 25 ACP dogs, 19 non-neurological, and 15 epileptic control dogs were screened for IgG Abs to 10 glycolipids and their 1 : 1 heteromeric complexes using combinatorial glycoarrays. Anti-GM2 ganglioside Abs were detected in 14/25 ACP dogs, and anti-GA1 Abs in one further dog. All controls except for one were negative for anti-glycolipid Abs. In this cohort of cases and controls, the glycoarray screen reached a diagnostic sensitivity of 60% and a specificity of 97%; a lower sensitivity (32%) was reported using a conventional glycolipid ELISA. To address the possible pathogenic role for anti-GM2 Abs in ACP, we identified GM2 in canine sciatic nerve by both mass spectrometry and thin layer chromatography overlay. In immunohistological studies, GM2 was localized predominantly to the abaxonal Schwann cell membrane. The presence of anti-GM2 Abs in ACP suggests that it may share a similar pathophysiology with GBS, for which it could thus be considered a naturally occurring animal model. PMID:23521648

  11. Detecting Protein-Glycolipid Interactions Using Glycomicelles and CaR-ESI-MS.

    PubMed

    Han, Ling; Kitova, Elena N; Klassen, John S

    2016-11-01

    This study reports on the use of the catch-and-release electrospray ionization mass spectrometry (CaR-ESI-MS) assay, combined with glycomicelles, as a method for detecting specific interactions between water-soluble proteins and glycolipids (GLs) in aqueous solution. The B subunit homopentamers of cholera toxin (CTB 5 ) and Shiga toxin type 1 B (Stx1B 5 ) and the gangliosides GM1, GM2, GM3, GD1a, GD1b, GT1b, and GD2 served as model systems for this study. The CTB 5 exhibits broad specificity for gangliosides and binds to GM1, GM2, GM3, GD1a, GD1b, and GT1b; Stx1B 5 does not recognize gangliosides. The CaR-ESI-MS assay was used to analyze solutions of CTB 5 or Stx1B 5 and individual gangliosides (GM1, GM2, GM3, GD1a, GD1b, GT1b, and GD2) or mixtures thereof. The high affinity interaction of CTB 5 with GM1 was successfully detected. However, the apparent affinity, as determined from the mass spectra, is significantly lower than that of the corresponding pentasaccharide or when GM1 is presented in model membranes such as nanodiscs. Interactions between CTB 5 and the low affinity gangliosides GD1a, GD1b, and GT1b, as well as GD2, which served as a negative control, were detected; no binding of CTB 5 to GM2 or GM3 was observed. The CaR-ESI-MS results obtained for Stx1B 5 reveal that nonspecific protein-ganglioside binding can occur during the ESI process, although the extent of binding varies between gangliosides. Consequently, interactions detected for CTB 5 with GD1a, GD1b, and GT1b are likely nonspecific in origin. Taken together, these results reveal that the CaR-ESI-MS/glycomicelle approach for detecting protein-GL interactions is prone to false positives and false negatives and must be used with caution. Graphical Abstract .

  12. Radioimmune assay of ganglioside GM/sub 1/ synthase using cholera toxin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Honke, K.; Taniguchi, N.; Makita, A.

    1986-01-01

    A radioimmune assay for uridine 5'-diphosphate-galactose (UDP-Gal):GM/sub 2/ galactosyltransferase, which synthesizes GM/sub 1/, has been developed utilizing cholera toxin. This assay is more sensitive and simpler than previously used assays. Radioactive nucleotide substrate and GM/sub 2/ were incubated with an enzyme sample, and a radiolabeled product, GM/sub 1/, was reacted with cholera toxin. The GM/sub 1/-cholera toxin complex was further reacted with anti-cholera toxin and Staphylococcus aureus cell suspension. The resulting complex was transferred onto a nitrocellulose membrane and quantitated by liquid scintillation counting. This assay was found to be sensitive for the detection of 100 pmol of the reactionmore » product, GM/sub 1/. With this assay method, some properties of the crude enzyme extracts from rat liver were studied. The enzyme had a pH optimum of 6.5-7.0 and required Mn/sup 2 +/. The K/sub m/ values for UDP-Gal and GM/sub 2/ were 0.12 mM and 6 ..mu..M, respectively.« less

  13. A new approach to the modification of cell membrane glycosphingolipids: Ganglioside composition of JTC-12 P3 cells altered by feeding with galactose as a sole carbohydrate source in protein- and lipid-free synthetic medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawaguchi, Tatsuya; Takaoka, Toshiko; Yoshida, Eiko

    1988-12-01

    A significant difference in the glycosphingolipid composition of JTC-12 P3 cells established from monkey kidney tissue was observed when cells cultured in a protein- and lipid-free synthetic medium containing glucose (DM-160) as a sole carbohydrate source were transferred and cultured in the same medium containing galactose and pyruvic acid (DM-170) in place of glucose. In particular, the amounts of gangliosides GM3, GM2, and GD3 in the cells cultured in DM-170 were 5.3-, 17.8-, and more than 8-fold those in the cells cultured in DM-160, respectively, indicating that anabolism of gangliosides is greatly enhanced in cells cultured in the presence ofmore » galactose and pyruvic acid, as compared with cells cultured in the presence of glucose. In fact, after cultivation of cells in the medium with N-acetyl-D-({sup 14}C)mannosamine for 96 h, the radioactivity incorporated into the gangliosides of the cells in DM-170 was 10-fold that of the cells in DM-160. Among the gangliosides of the cells in DM-170, highly sialylated molecules such as GD3, GD1a, GD1b, and GT1b were preferentially labeled, indicating that the sialytransferases responsible for the synthesis of gangliosides are significantly more activated in cells cultured in DM-170 than in DM-160. These observations reveal that the glycosphingolipid composition of the plasma membrane can be modified epigenetically under well-defined conditions and provide important clues for clarifying the roles of glycosphingolipids associated with particular cell functions.« less

  14. Synthesis of ganglioside epitopes for oligosaccharide specific immunoadsorption therapy of Guillian-Barré syndrome.

    PubMed

    Andersen, Søren M; Ling, Chang-Chun; Zhang, Ping; Townson, Kate; Willison, Hugh J; Bundle, David R

    2004-04-21

    Guillain-Barré syndrome is a postinfectious, autoimmune neuropathy resulting in neuromuscular paralysis. Auto-antibodies, often induced by bacterial infection, bind to human gangliosides possessing monosialoside and diasialoside epitopes and impair the function of nerve junctions, where these ganglioside structures are highly enriched. Truncated gangliosides representive of GD3, GQ1b and GM2 epitopes have been synthesized as methyl glycosides and as a glycosides of an eleven carbon tether. The synthetic oligosaccharide ligands are structural mimics of these highly complex ganglioside epitopes and via their ability to neutralize or remove auto-antibodies have the potential for therapy, either as soluble blocking ligands administered systemically, or as immuno-affinity ligands for use as extracorporeal immunoadsorbents.

  15. Radiometric assay for ganglioside sialidase applied to the determination of the enzyme subcellular location in culture human fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chigorno, V.; Cardace, G.; Pitto, M.

    1986-03-01

    A radiometric method for the assay of ganglioside sialidase in cultured human fibroblasts was set up. As substrate, highly radioactive (1.28 Ci/mmol) ganglioside GD/sub 1a/ isotopically tritium-labeled at carbon C-3 of the long chain base was employed; the liberated, and TLC separated (/sup 3/H)GM/sub 1/ was determined by computer-assisted radiochromatoscanning. Under experimental conditions that provided a low and quite acceptable (4-5%) coefficient of variation, the detection limit of the method was 0.1 nmol of liberated GM/sub 1/, using as low as 10 ..mu..g of fibroblast homogenate as protein. The detection limit could be lowered to 0.02-0.03 nmol, adopting conditions that,more » however, carried a higher analytical error (coefficient of variation over 10%). The content of ganglioside sialidase in human fibroblasts cultured in 75-cm/sup 2/ plastic flasks was 5.8 -/+ 2.5 (SD) nmol liberated GM/sub 1/ h/sup -1/ mg protein/sup -1/. Subfractionation studies performed on fibroblast homogenate showed that the ganglioside sialidase was mainly associated with the light membrane subfraction that was rich in plasma and intracellular membranes. This subfraction displayed almost no sialidase activity on the artificial substrate 4-methylumbelliferyl-D-N-acetylneuraminic acid. A small but measurable ganglioside sialidase activity was also present in the lysosome-enriched subfraction, which contained a very high sialidase activity on the above artificial substrate.« less

  16. Liquid chromatography/electrospray ionisation-tandem mass spectrometry quantification of GM2 gangliosides in human peripheral cells and plasma.

    PubMed

    Fuller, Maria; Duplock, Stephen; Hein, Leanne K; Rigat, Brigitte A; Mahuran, Don J

    2014-08-01

    GM2 gangliosidosis is a group of inherited neurodegenerative disorders resulting primarily from the excessive accumulation of GM2 gangliosides (GM2) in neuronal cells. As biomarkers for categorising patients and monitoring the effectiveness of developing therapies are lacking for this group of disorders, we sought to develop methodology to quantify GM2 levels in more readily attainable patient samples such as plasma, leukocytes, and cultured skin fibroblasts. Following organic extraction, gangliosides were partitioned into the aqueous phase and isolated using C18 solid-phase extraction columns. Relative quantification of three species of GM2 was achieved using LC/ESI-MS/MS with d35GM1 18:1/18:0 as an internal standard. The assay was linear over the biological range, and all GM2 gangliosidosis patients were demarcated from controls by elevated GM2 in cultured skin fibroblast extracts. However, in leukocytes only some molecular species could be used for differentiation and in plasma only one was informative. A reduction in GM2 was easily detected in patient skin fibroblasts after a short treatment with media from normal cells enriched in secreted β-hexosaminidase. This method may show promise for measuring the effectiveness of experimental therapies for GM2 gangliosidosis by allowing quantification of a reduction in the primary storage burden. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Anti-GM2 ganglioside antibodies are a biomarker for acute canine polyradiculoneuritis.

    PubMed

    Rupp, Angie; Galban-Horcajo, Francesc; Bianchi, Ezio; Dondi, Maurizio; Penderis, Jacques; Cappell, Joanna; Burgess, Karl; Matiasek, Kaspar; McGonigal, Rhona; Willison, Hugh J

    2013-03-01

    Acute canine polyradiculoneuritis (ACP) is considered to be the canine equivalent of the human peripheral nerve disorder Guillain-Barré syndrome (GBS); an aetiological relationship, however, remains to be demonstrated. In GBS, anti-glycolipid antibodies (Abs) are considered as important disease mediators. To address the possibility of common Ab biomarkers, the sera of 25 ACP dogs, 19 non-neurological, and 15 epileptic control dogs were screened for IgG Abs to 10 glycolipids and their 1 : 1 heteromeric complexes using combinatorial glycoarrays. Anti-GM2 ganglioside Abs were detected in 14/25 ACP dogs, and anti-GA1 Abs in one further dog. All controls except for one were negative for anti-glycolipid Abs. In this cohort of cases and controls, the glycoarray screen reached a diagnostic sensitivity of 60% and a specificity of 97%; a lower sensitivity (32%) was reported using a conventional glycolipid ELISA. To address the possible pathogenic role for anti-GM2 Abs in ACP, we identified GM2 in canine sciatic nerve by both mass spectrometry and thin layer chromatography overlay. In immunohistological studies, GM2 was localized predominantly to the abaxonal Schwann cell membrane. The presence of anti-GM2 Abs in ACP suggests that it may share a similar pathophysiology with GBS, for which it could thus be considered a naturally occurring animal model. © 2013 Peripheral Nerve Society.

  18. Construction of a hybrid β-hexosaminidase subunit capable of forming stable homodimers that hydrolyze GM2 ganglioside in vivo.

    PubMed

    Tropak, Michael B; Yonekawa, Sayuri; Karumuthil-Melethil, Subha; Thompson, Patrick; Wakarchuk, Warren; Gray, Steven J; Walia, Jagdeep S; Mark, Brian L; Mahuran, Don

    2016-01-01

    Tay-Sachs or Sandhoff disease result from mutations in either the evolutionarily related HEXA or HEXB genes encoding respectively, the α- or β-subunits of β-hexosaminidase A (HexA). Of the three Hex isozymes, only HexA can interact with its cofactor, the GM2 activator protein (GM2AP), and hydrolyze GM2 ganglioside. A major impediment to establishing gene or enzyme replacement therapy based on HexA is the need to synthesize both subunits. Thus, we combined the critical features of both α- and β-subunits into a single hybrid µ-subunit that contains the α-subunit active site, the stable β-subunit interface and unique areas in each subunit needed to interact with GM2AP. To facilitate intracellular analysis and the purification of the µ-homodimer (HexM), CRISPR-based genome editing was used to disrupt the HEXA and HEXB genes in a Human Embryonic Kidney 293 cell line stably expressing the µ-subunit. In association with GM2AP, HexM was shown to hydrolyze a fluorescent GM2 ganglioside derivative both in cellulo and in vitro. Gene transfer studies in both Tay-Sachs and Sandhoff mouse models demonstrated that HexM expression reduced brain GM2 ganglioside levels.

  19. Construction of a hybrid β-hexosaminidase subunit capable of forming stable homodimers that hydrolyze GM2 ganglioside in vivo

    PubMed Central

    Tropak, Michael B; Yonekawa, Sayuri; Karumuthil-Melethil, Subha; Thompson, Patrick; Wakarchuk, Warren; Gray, Steven J; Walia, Jagdeep S; Mark, Brian L; Mahuran, Don

    2016-01-01

    Tay-Sachs or Sandhoff disease result from mutations in either the evolutionarily related HEXA or HEXB genes encoding respectively, the α- or β-subunits of β-hexosaminidase A (HexA). Of the three Hex isozymes, only HexA can interact with its cofactor, the GM2 activator protein (GM2AP), and hydrolyze GM2 ganglioside. A major impediment to establishing gene or enzyme replacement therapy based on HexA is the need to synthesize both subunits. Thus, we combined the critical features of both α- and β-subunits into a single hybrid µ-subunit that contains the α-subunit active site, the stable β-subunit interface and unique areas in each subunit needed to interact with GM2AP. To facilitate intracellular analysis and the purification of the µ-homodimer (HexM), CRISPR-based genome editing was used to disrupt the HEXA and HEXB genes in a Human Embryonic Kidney 293 cell line stably expressing the µ-subunit. In association with GM2AP, HexM was shown to hydrolyze a fluorescent GM2 ganglioside derivative both in cellulo and in vitro. Gene transfer studies in both Tay-Sachs and Sandhoff mouse models demonstrated that HexM expression reduced brain GM2 ganglioside levels. PMID:26966698

  20. GD1a Overcomes Inhibition of Myelination by Fibronectin via Activation of Protein Kinase A: Implications for Multiple Sclerosis.

    PubMed

    Qin, Jing; Sikkema, Arend H; van der Bij, Kristine; de Jonge, Jenny C; Klappe, Karin; Nies, Vera; Jonker, Johan W; Kok, Jan Willem; Hoekstra, Dick; Baron, Wia

    2017-10-11

    Remyelination failure by oligodendrocytes contributes to the functional impairment that characterizes the demyelinating disease multiple sclerosis (MS). Since incomplete remyelination will irreversibly damage axonal connections, treatments effectively promoting remyelination are pivotal in halting disease progression. Our previous findings suggest that fibronectin aggregates, as an environmental factor, contribute to remyelination failure by perturbing oligodendrocyte progenitor cell (OPC) maturation. Here, we aim at elucidating whether exogenously added gangliosides (i.e., cell surface lipids with a potential to modulate signaling pathways) could counteract fibronectin-mediated inhibition of OPC maturation. Exclusive exposure of rat oligodendrocytes to GD1a, but not other gangliosides, overcomes aggregated fibronectin-induced inhibition of myelin membrane formation, in vitro , and OPC differentiation in fibronectin aggregate containing cuprizone-induced demyelinated lesions in male mice. GD1a exerts its effect on OPCs by inducing their proliferation and, at a late stage, by modulating OPC maturation. Kinase activity profiling revealed that GD1a activated a protein kinase A (PKA)-dependent signaling pathway and increased phosphorylation of the transcription factor cAMP response element-binding protein. Consistently, the effect of GD1a in restoring myelin membrane formation in the presence of fibronectin aggregates was abolished by the PKA inhibitor H89, whereas the effect of GD1a was mimicked by the PKA activator dibutyryl-cAMP. Together, GD1a overcomes the inhibiting effect of aggregated fibronectin on OPC maturation by activating a PKA-dependent signaling pathway. Given the persistent presence of fibronectin aggregates in MS lesions, ganglioside GD1a might act as a potential novel therapeutic tool to selectively modulate the detrimental signaling environment that precludes remyelination. SIGNIFICANCE STATEMENT As an environmental factor, aggregates of the

  1. Imaging mass spectrometry detection of gangliosides species in the mouse brain following transient focal cerebral ischemia and long-term recovery.

    PubMed

    Whitehead, Shawn N; Chan, Kenneth H N; Gangaraju, Sandhya; Slinn, Jacqueline; Li, Jianjun; Hou, Sheng T

    2011-01-01

    Gangliosides, a member of the glycosphingolipid family, are heterogeneously expressed in biological membranes and are particularly enriched within the central nervous system. Gangliosides consist of mono- or poly-sialylated oligosaccharide chains of variable lengths attached to a ceramide unit and are found to be intimately involved in brain disease development. The purpose of this study is to examine the spatial profile of ganglioside species using matrix-assisted laser desorption/ionization (MALDI) imaging (IMS) following middle cerebral artery occlusion (MCAO) reperfusion injury in the mouse. IMS is a powerful method to not only discriminate gangliosides by their oligosaccharide components, but also by their carbon length within their sphingosine base. Mice were subjected to a 30 min unilateral MCAO followed by long-term survival (up to 28 days of reperfusion). Brain sections were sprayed with the matrix 5-Chloro-2-mercaptobenzothiazole, scanned and analyzed for a series of ganglioside molecules using an Applied Biosystems 4800 MALDI TOF/TOF. Traditional histological and immunofluorescence techniques were performed to assess brain tissue damage and verification of the expression of gangliosides of interest. Results revealed a unique anatomical profile of GM1, GD1 and GT1b (d18:1, d20:1 as well as other members of the glycosphingolipid family). There was marked variability in the ratio of expression between ipsilateral and contralateral cortices for the various detected ganglioside species following MCAO-reperfusion injury. Most interestingly, MCAO resulted in the transient induction of both GM2 and GM3 signals within the ipsilateral hemisphere; at the border of the infarcted tissue. Taken together, the data suggest that brain region specific expression of gangliosides, particularly with respect to hydrocarbon length, may play a role in neuronal responses to injury.

  2. Ganglioside structure dictates signal transduction by cholera toxin and association with caveolae-like membrane domains in polarized epithelia.

    PubMed

    Wolf, A A; Jobling, M G; Wimer-Mackin, S; Ferguson-Maltzman, M; Madara, J L; Holmes, R K; Lencer, W I

    1998-05-18

    In polarized cells, signal transduction by cholera toxin (CT) requires apical endocytosis and retrograde transport into Golgi cisternae and perhaps ER (Lencer, W.I., C. Constable, S. Moe, M. Jobling, H.M. Webb, S. Ruston, J.L. Madara, T. Hirst, and R. Holmes. 1995. J. Cell Biol. 131:951-962). In this study, we tested whether CT's apical membrane receptor ganglioside GM1 acts specifically in toxin action. To do so, we used CT and the related Escherichia coli heat-labile type II enterotoxin LTIIb. CT and LTIIb distinguish between gangliosides GM1 and GD1a at the cell surface by virtue of their dissimilar receptor-binding B subunits. The enzymatically active A subunits, however, are homologous. While both toxins bound specifically to human intestinal T84 cells (Kd approximately 5 nM), only CT elicited a cAMP-dependent Cl- secretory response. LTIIb, however, was more potent than CT in eliciting a cAMP-dependent response from mouse Y1 adrenal cells (toxic dose 10 vs. 300 pg/well). In T84 cells, CT fractionated with caveolae-like detergent-insoluble membranes, but LTIIb did not. To investigate further the relationship between the specificity of ganglioside binding and partitioning into detergent-insoluble membranes and signal transduction, CT and LTIIb chimeric toxins were prepared. Analysis of these chimeric toxins confirmed that toxin-induced signal transduction depended critically on the specificity of ganglioside structure. The mechanism(s) by which ganglioside GM1 functions in signal transduction likely depends on coupling CT with caveolae or caveolae-related membrane domains.

  3. Inhibition of glutamate-induced intensification of free radical reactions by gangliosides: possible role in their protective effect in rat cerebellar granule cells and brain synaptosomes.

    PubMed

    Avrova, N F; Victorov, I V; Tyurin, V A; Zakharova, I O; Sokolova, T V; Andreeva, N A; Stelmaschuk, E V; Tyurina, Y Y; Gonchar, V S

    1998-07-01

    The neurotoxic effect of exposure of rat cerebellar granule cells to glutamate (100 microM) is to a large extent prevented by incubation of neurons not only with micromolar, but even with nanomolar concentrations of gangliosides GM1, GD1b, and GT1b. GM1 was also shown to decrease significantly the per cent of dead neurons in culture after induction of lipid peroxidation. Exposure to glutamate was found to cause a significant decrease of the activity of Na+, K+-ATP-ase in rat brain cortex synaptosomes, but superoxide dismutase, alpha-tocopherol, or 10-100 nM GM1 practically prevented its action. Other data showing the ability of gangliosides to inhibit the intensification of free radical reactions by glutamate (based on the estimation of methemoglobin formation, SH group content, etc.) have been obtained. The results suggest that gangliosides are able to decrease the glutamate-induced activation of free radical reactions in nerve cells. This effect appears to contribute to their protective action against glutamate neurotoxicity.

  4. Transient Isolated Lower Bulbar Palsy With Elevated Serum Anti-GM1 and Anti-GD1b Antibodies During Aripiprazole Treatment.

    PubMed

    Han, Tae Hwan; Kim, Do Yeon; Park, Dong Woo; Moon, Jin-Hwa

    2017-01-01

    Transient bulbar palsy without involvement of the facial or extraocular muscles is a rare presentation. It is considered a form of cranial polyneuropathy, a variant of Guillain-Barré syndrome that is related to the autoimmune mechanisms induced by preceding infections or vaccinations. However, drug-induced cranial polyneuropathy has not previously been reported. We describe a boy with isolated bulbar palsy and positive serum antiganglioside antibodies during aripiprazole treatment. This 12-year-old boy was admitted with a seven-day history of dysarthria, tongue discomfort, and tinnitus. Three weeks before symptom onset, aripiprazole was added to the patient's medications for attention-deficit hyperactivity disorder. On examination, he showed curtaining of the pharyngeal wall, tongue fasciculation and deviation, and a weak gag reflex. Cranial magnetic resonance imaging suggested lower cranial nerve involvement. Serum anti-GM1 IgG and anti-GD1b IgG antibodies were positive. After stopping aripiprazole, his bulbar symptoms improved. However, on readministration of aripiprazole seven weeks later, dysarthria recurred and again resolved after stopping the drug. We describe the first patient with anti-GM1 IgG and anti-GD1b IgG antibodies-associated transient cranial polyneuropathy presenting as isolated bulbar palsy. These findings could be an adverse effect of aripiprazole treatment. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Composite ganglioside autoantibodies and immune treatment response in MMN and MADSAM.

    PubMed

    Martinez-Thompson, Jennifer M; Snyder, Melissa R; Ettore, Michael; McKeon, Andrew; Pittock, Sean J; Roforth, Matthew M; Mandrekar, Jay; Mauermann, Michelle L; Taylor, Bruce V; Dyck, P James B; Windebank, Anthony J; Klein, Christopher J

    2018-06-01

    Multifocal motor neuropathy (MMN) is a motor only, asymmetric onset neuropathy that is relatively treatment-refractory compared with classic chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) and multifocal acquired demyelinating sensory and motor (MADSAM) neuropathy. We reviewed 35 patients seropositive for GM1 (monosialo-asialo [immunoglobulin M, IgM; immunoglobulin G, IgG]) and/or GD1b (disialo [IgG, IgM]) autoantibodies having MMN, classic CIDP, or MADSAM. Immune-treatment responsiveness and clinical course was compared with antibody negative disease controls. Seventy-nine percent of seropositives with an initial diagnosis of MMN were immunotherapy responsive compared with 46% of seronegatives (P = 0.045). Eight ganglioside antibody positive MMN patients of 19 (42%) developed sensory findings consistent with MADSAM compared with 3 of 41 (7%) seronegative MMN patients (P = 0.003). MMN and MADSAM patients with ganglioside antibody positivity had more sustained treatment responses (P = 0.03). Patients initially diagnosed with MMN seropositive for diverse GM1 autoantibodies appear more likely to have sustained treatment response and evolution to MADSAM. Muscle Nerve 57: 1000-1005, 2018. © 2017 Wiley Periodicals, Inc.

  6. The function of cancer-shed gangliosides in macrophage phenotype: involvement with angiogenesis.

    PubMed

    Chung, Tae-Wook; Choi, Hee-Jung; Park, Mi-Ju; Choi, Hee-Jin; Lee, Syng-Ook; Kim, Keuk-Jun; Kim, Cheorl-Ho; Hong, Changwan; Kim, Kyun-Ha; Joo, Myungsoo; Ha, Ki-Tae

    2017-01-17

    Tumor-derived gangliosides in the tumor microenvironment are involved in the malignant progression of cancer. However, the molecular mechanisms underlying the effects of gangliosides shed from tumors on macrophage phenotype remain unknown. Here, we showed that ganglioside GM1 highly induced the activity and expression of arginase-1 (Arg-1), a major M2 macrophage marker, compared to various gangliosides in bone marrow-derived macrophages (BMDM), peritoneal macrophages and Raw264.7 macrophage cells. We found that GM1 bound to macrophage mannose receptor (MMR/CD206) and common gamma chain (γc). In addition, GM1 increased Arg-1 expression through CD206 and γc-mediated activation of Janus kinase 3 (JAK3) and signal transducer and activator of transcription- 6 (STAT-6). Interestingly, GM1-stimulated macrophages secreted monocyte chemoattractant protein-1 (MCP-1/CCL2) through a CD206/γc/STAT6-mediated signaling pathway and induced angiogenesis. Moreover, the angiogenic effect of GM1-treated macrophages was diminished by RS102895, an MCP-1 receptor (CCR2) antagonist. From these results we suggest that tumor-shed ganglioside is a secretory factor regulating the phenotype of macrophages and consequently enhancing angiogenesis.

  7. Analysis of cholera toxin-ganglioside interactions by flow cytometry.

    PubMed

    Lauer, Sabine; Goldstein, Byron; Nolan, Rhiannon L; Nolan, John P

    2002-02-12

    Cholera toxin entry into mammalian cells is mediated by binding of the pentameric B subunit (CTB) to ganglioside GM(1) in the cell membrane. We used flow cytometry to quantitatively measure in real time the interactions of fluorescently labeled pentameric cholera toxin B-subunit (FITC-CTB) with its ganglioside receptor on microsphere-supported phospholipid membranes. A model that describes the multiple steps of this mode of recognition was developed to guide our flow cytometric experiments and extract relevant equilibrium and kinetic rate constants. In contrast to previous studies, our approach takes into account receptor cross-linking, an important feature for multivalent interactions. From equilibrium measurements, we determined an equilibrium binding constant for a single subunit of FITC-CTB binding monovalently to GM(1) presented in bilayers of approximately 8 x 10(7) M(-1) while that for binding to soluble GM(1)-pentasaccharide was found to be approximately 4 x 10(6) M(-1). From kinetic measurements, we determined the rate constant for dissociation of a single site of FITC-CTB from microsphere-supported bilayers to be (3.21 +/- 0.03) x 10(-3) s(-1), and the rate of association of a site on FITC-CTB in solution to a GM(1) in the bilayer to be (2.8 +/- 0.4) x 10(4) M(-1) s(-1). These values yield a lower estimate for the equilibrium binding constant of approximately 1 x 10(7) M(-1). We determined the equilibrium surface cross-linking constant [(1.1 +/- 0.1) x 10(-12) cm(2)] and from this value and the value for the rate constant for dissociation derived a value of approximately 3.5 x 10(-15) cm(2) s(-1) for the forward rate constant for cross-linking. We also compared the interaction of the receptor binding B-subunit with that of the whole toxin (A- and B-subunits). Our results show that the whole toxin binds with approximately 100-fold higher avidity than the pentameric B-subunit alone which is most likely due to the additional interaction of the A(2)-subunit

  8. Early growth and development impairments in patients with ganglioside GM3 synthase deficiency.

    PubMed

    Wang, H; Wang, A; Wang, D; Bright, A; Sency, V; Zhou, A; Xin, B

    2016-05-01

    Ganglioside GM3 synthase is a key enzyme involved in the biosynthesis of gangliosides. GM3 synthase deficiency (GSD) causes a complete absence of GM3 and all downstream biosynthetic derivatives. The individuals affected by this disorder manifest severe irritability, intractable seizures and profound intellectual disability. However, we have found that most newborns seem symptom-free for a period of time after birth. In order to further understand the onset of the disease, we investigated the early growth and development of patients with this condition through this study. We compared 37 affected individuals with their normal siblings and revealed that all children with GSD had relatively normal intrauterine growth and development, as their weight, length and head circumference were similar to their normal siblings at birth. However, the disease progresses quickly after birth and causes significant constitutional impairments of growth and development by 6 months of age. Neither breastfeeding nor gastrostomy tube placement made significant difference on growth and development as all groups of patients showed the similar pattern. We conclude that GSD causes significant postnatal growth and developmental impairments and the amount of gangliosides in breast milk and general nutritional intervention do not seem to alter these outcomes. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Analysis of anti-ganglioside antibodies by a line immunoassay in patients with chronic-inflammatory demyelinating polyneuropathies (CIDP).

    PubMed

    Klehmet, Juliane; Märschenz, Stefanie; Ruprecht, Klemens; Wunderlich, Benjamin; Büttner, Thomas; Hiemann, Rico; Roggenbuck, Dirk; Meisel, Andreas

    2018-05-24

    Unlike for acute immune-mediated neuropathies (IN), anti-ganglioside autoantibody (aGAAb) testing has been recommended for only a minority of chronic IN yet. Thus, we used a multiplex semi-quantitative line immunoassay (LIA) to search for aGAAb in chronic-inflammatory demyelinating polyneuropathy (CIDP) and its clinical variants. Anti-GAAb to 11 gangliosides and sulfatide (SF) were investigated by LIA in 61 patients with IN (27 typical CIDP, 12 distal-acquired demyelinating polyneuropathy, 6 multifocal-acquired demyelinating sensory/motor polyneuropathy, 10 sensory CIDP, 1 focal CIDP and 5 multifocal-motoric neuropathy), 40 with other neuromuscular disorders (OND) (15 non-immune polyneuropathies, 25 myasthenia gravis), 29 with multiple sclerosis (MS) and 54 healthy controls (HC). In contrast to IgG, positive anti-GAAB IgM against at least one ganglioside/SF was found in 17/61 (27.9%) IN compared to 2/40 (5%) in OND, 2/29 MS (6.9%) and 4/54 (7.4%) in HC (p=0.001). There was a statistically higher prevalence of anti-sulfatide (aSF) IgM in IN compared to OND (p=0.008). Further, aGM1 IgM was more prevalent in IN compared to OND and HC (p=0.009) as well as GD1b in IN compared to HC (p<0.04). The prevalence of aGM1 IgM in CIDP was lower compared to in multifocal motor neuropathy (MMN) (12% vs. 60%, p=0.027). Patients showing aSF, aGM1 and aGM2 IgM were younger compared to aGAAb negatives (p<0.05). Patients with aSF IgM positivity presented more frequently typical CIDP and MMN phenotypes (p<0.05, respectively). The aGAAb LIA revealed an elevated frequency of at least one aGAAb IgM in CIDP/MMN patients. Anti-SF, aGM1 and aGM2 IgM were associated with younger age and anti-SF with IN phenotypes.

  10. Ganglioside GM1 mimicry in Campylobacter strains from sporadic infections in the United States.

    PubMed

    Nachamkin, I; Ung, H; Moran, A P; Yoo, D; Prendergast, M M; Nicholson, M A; Sheikh, K; Ho, T; Asbury, A K; McKhann, G M; Griffin, J W

    1999-05-01

    To determine whether GM1-like epitopes in Campylobacter species are specific to O serotypes associated with Guillain-Barré syndrome (GBS) or whether they are frequent among random Campylobacter isolates causing enteritis, 275 random enteritis-associated isolates of Campylobacter jejuni were analyzed. To determine whether GM1-like epitopes in Campylobacter species are specific to O serotypes associated with Guillan-Barre syndrome (GBS) or whether they are frequent among random Campylobacter isolates causing enteritis, 275 enteritis-associated isolates, randomly collected in the United States, were analyzed using a cholera-toxin binding assay [corrected]. Overall, 26.2% of the isolates were positive for the GM1-like epitope. Of the 36 different O serotypes in the sample, 21 (58.3%) contained no strains positive for GM1, whereas in 6 serotypes (16.7%), >50% of isolates were positive for GM1. GBS-associated serotypes were more likely to contain strains positive for GM1 than were non-GBS-associated serotypes (37.8% vs. 15.1%, P=.0116). The results suggest that humans are frequently exposed to strains exhibiting GM1-like mimicry and, while certain serotypes may be more likely to possess GM1-like epitopes, the presence of GM1-like epitopes on Campylobacter strains does not itself trigger GBS.

  11. Lyso-GM2 ganglioside: a possible biomarker of Tay-Sachs disease and Sandhoff disease.

    PubMed

    Kodama, Takashi; Togawa, Tadayasu; Tsukimura, Takahiro; Kawashima, Ikuo; Matsuoka, Kazuhiko; Kitakaze, Keisuke; Tsuji, Daisuke; Itoh, Kohji; Ishida, Yo-Ichi; Suzuki, Minoru; Suzuki, Toshihiro; Sakuraba, Hitoshi

    2011-01-01

    To find a new biomarker of Tay-Sachs disease and Sandhoff disease. The lyso-GM2 ganglioside (lyso-GM2) levels in the brain and plasma in Sandhoff mice were measured by means of high performance liquid chromatography and the effect of a modified hexosaminidase (Hex) B exhibiting Hex A-like activity was examined. Then, the lyso-GM2 concentrations in human plasma samples were determined. The lyso-GM2 levels in the brain and plasma in Sandhoff mice were apparently increased compared with those in wild-type mice, and they decreased on intracerebroventricular administration of the modified Hex B. The lyso-GM2 levels in plasma of patients with Tay-Sachs disease and Sandhoff disease were increased, and the increase in lyso-GM2 was associated with a decrease in Hex A activity. Lyso-GM2 is expected to be a potential biomarker of Tay-Sachs disease and Sandhoff disease.

  12. Studies on the turnover and subcellular localization of membrane gangliosides in cultured neuroblastoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clarke, J.T.; Cook, H.W.; Spence, M.W.

    1985-03-01

    To compare the subcellular distribution of endogenously synthesized and exogenous gangliosides, cultured murine neuroblastoma cells (N1E-115) were incubated in suspension for 22 h in the presence of D-(1-/sup 3/H)galactose or (/sup 3/H)GM1 ganglioside, transferred to culture medium containing no radioisotope for periods of up to 72 hr, and then subjected to subcellular fractionation and analysis of lipid-sialic acid and radiolabeled ganglioside levels. The results indicated that GM2 and GM3 were the principal gangliosides in the cells with only traces of GM1 and small amounts of disialogangliosides present. About 50% of the endogenously synthesized radiolabelled ganglioside in the four major subcellularmore » membrane fractions studied was recovered from plasma membrane and only 10-15% from the crude mitochondrial membrane fraction. In contrast, 45% of the exogenous (/sup 3/H)GM1 taken up into the same subcellular membrane fractions was recovered from the crude mitochondrial fraction; less than 15% was localized in the plasma membrane fraction. The results are similar to those obtained from previously reported studies on membrane phospholipid turnover. They suggest that exogenous GM1 ganglioside, like exogenous phosphatidylcholine, does not intermix freely with any quantitatively major pool of endogenous membrane lipid.« less

  13. Lyso-GM2 Ganglioside: A Possible Biomarker of Tay-Sachs Disease and Sandhoff Disease

    PubMed Central

    Kodama, Takashi; Togawa, Tadayasu; Tsukimura, Takahiro; Kawashima, Ikuo; Matsuoka, Kazuhiko; Kitakaze, Keisuke; Tsuji, Daisuke; Itoh, Kohji; Ishida, Yo-ichi; Suzuki, Minoru; Suzuki, Toshihiro; Sakuraba, Hitoshi

    2011-01-01

    To find a new biomarker of Tay-Sachs disease and Sandhoff disease. The lyso-GM2 ganglioside (lyso-GM2) levels in the brain and plasma in Sandhoff mice were measured by means of high performance liquid chromatography and the effect of a modified hexosaminidase (Hex) B exhibiting Hex A-like activity was examined. Then, the lyso-GM2 concentrations in human plasma samples were determined. The lyso-GM2 levels in the brain and plasma in Sandhoff mice were apparently increased compared with those in wild-type mice, and they decreased on intracerebroventricular administration of the modified Hex B. The lyso-GM2 levels in plasma of patients with Tay-Sachs disease and Sandhoff disease were increased, and the increase in lyso-GM2 was associated with a decrease in Hex A activity. Lyso-GM2 is expected to be a potential biomarker of Tay-Sachs disease and Sandhoff disease. PMID:22205997

  14. Ganglioside GM2 mediates migration of tumor cells by interacting with integrin and modulating the downstream signaling pathway.

    PubMed

    Kundu, Manjari; Mahata, Barun; Banerjee, Avisek; Chakraborty, Sohini; Debnath, Shibjyoti; Ray, Sougata Sinha; Ghosh, Zhumur; Biswas, Kaushik

    2016-07-01

    The definitive role of ganglioside GM2 in mediating tumor-induced growth and progression is still unknown. Here we report a novel role of ganglioside GM2 in mediating tumor cell migration and uncovered its mechanism. Data shows differential expression levels of GM2-synthase as well as GM2 in different human cancer cells. siRNA mediated knockdown of GM2-synthase in CCF52, A549 and SK-RC-26B cells resulted in significant inhibition of tumor cell migration as well as invasion in vitro without affecting cellular proliferation. Over-expression of GM2-synthase in low-GM2 expressing SK-RC-45 cells resulted in a consequent increase in migration thus confirming the potential role GM2 and its downstream partners play in tumor cell migration and motility. Further, treatment of SK-RC-45 cells with exogenous GM2 resulted in a dramatic increase in migratory and invasive capacity with no change in proliferative capacity, thereby confirming the role of GM2 in tumorigenesis specifically by mediating tumor migration and invasion. Gene expression profiling of GM2-synthase silenced cells revealed altered expression of several genes involved in cell migration primarily those controlling the integrin mediated signaling. GM2-synthase knockdown resulted in decreased phosphorylation of FAK, Src as well as Erk, while over-expression and/or exogenous GM2 treatment caused increased FAK and Erk phosphorylation respectively. Again, GM2 mediated invasion and Erk phosphorylation is blocked in integrin knockdown SK-RC-45 cells, thus confirming that GM2 mediated migration and phosphorylation of Erk is integrin dependent. Finally, confocal microscopy suggested co-localization while co-immunoprecipitation and surface plasmon resonance (SPR) confirmed direct interaction of membrane bound ganglioside, GM2 with the integrin receptor. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Anchored and soluble gangliosides contribute to myelosupportivity of stromal cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ziulkoski, Ana L.; Departamento de Bioquimica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS; Instituto de Ciencias da Saude, Centro Universitario Feevale, Novo Hamburgo, RS

    2009-10-09

    Stroma-mediated myelopoiesis depends upon growth factors and an appropriate intercellular microenvironment. Previous studies have demonstrated that gangliosides, produced by hepatic stromal cell types, are required for optimal myelosupportive function. Here, we compared the mielossuportive functions of a bone marrow stroma (S17) and skin fibroblasts (SF) regarding their ganglioside pattern of synthesis and shedding. The survival and proliferation of a myeloid precursor cell (FDC-P1) were used as reporter. Although the ganglioside synthesis of the two stromal cells was similar, their relative content and shedding were distinct. The ganglioside requirement for mielossuportive function was confirmed by the decreased proliferation of FDC-P1 cellsmore » in ganglioside synthesis-inhibited cultures and in presence of an antibody to GM3 ganglioside. The distinct mielossuportive activities of the S17 and SF stromata may be related to differences on plasma membrane ganglioside concentrations or to differences on the gangliosides shed and their subsequent uptake by myeloid cells, specially, GM3 ganglioside.« less

  16. The total chemical synthesis of the monoglycosylated GM2 ganglioside activator using a novel cysteine surrogate.

    PubMed

    Sato, Kohei; Kitakaze, Keisuke; Nakamura, Takahiro; Naruse, Naoto; Aihara, Keisuke; Shigenaga, Akira; Inokuma, Tsubasa; Tsuji, Daisuke; Itoh, Kohji; Otaka, Akira

    2015-06-21

    We describe a novel peptide ligation/desulfurization strategy using a β-mercapto-N-glycosylated asparagine derivative. The newly developed procedure was successfully applied to the total chemical synthesis of the GM2 ganglioside activator protein bearing a monosaccharide on the native glycosylation site.

  17. Determination of ganglioside composition and structure in human brain hemangioma by chip-based nanoelectrospray ionization tandem mass spectrometry.

    PubMed

    Schiopu, Catalin; Flangea, Corina; Capitan, Florina; Serb, Alina; Vukelić, Zeljka; Kalanj-Bognar, Svjetlana; Sisu, Eugen; Przybylski, Michael; Zamfir, Alina D

    2009-12-01

    We report here on a preliminary investigation of ganglioside composition and structure in human hemangioma, a benign tumor in the frontal cortex (HFC) in comparison to normal frontal cortex (NFC) tissue using for the first time advanced mass spectrometric methods based on fully automated chip-nanoelectrospray (nanoESI) high-capacity ion trap (HCT) and collision-induced dissociation (CID). The high ionization efficiency, sensitivity and reproducibility provided by the chip-nanoESI approach allowed for a reliable MS-based ganglioside comparative assay. Unlike NFC, ganglioside mixture extracted from HFC was found dominated by species of short glycan chains exhibiting lower overall sialic acid content. In HFC, only GT1 (d18:1/20:0), and GT3 (d18:1/25:1) polysialylated species were detected. Interestingly, none of these trisialylated forms was detected in NFC, suggesting that such components might selectively be associated with HFC. Unlike the case of previously investigated high malignancy gliosarcoma, in HFC one modified O-Ac-GD2 and one modified O-Ac-GM4 gangliosides were observed. This aspect suggests that these O-acetylated structures could be associated with cerebral tumors having reduced malignancy grade. Fragmentation analysis by CID in MS(2) mode using as precursors the ions corresponding to GT1 (d18:1/20:0) and GD1 (d18:1/20:0) provided data corroborating for the first time the presence of the common GT1a and GT1b isomers and the incidence of unusual GT1c and GT1d glycoforms in brain hemangioma tumor.

  18. A novel human model of the neurodegenerative disease GM1 gangliosidosis using induced pluripotent stem cells demonstrates inflammasome activation.

    PubMed

    Son, Mi-Young; Kwak, Jae Eun; Seol, Binna; Lee, Da Yong; Jeon, Hyejin; Cho, Yee Sook

    2015-09-01

    GM1 gangliosidosis (GM1) is an inherited neurodegenerative disorder caused by mutations in the lysosomal β-galactosidase (β-gal) gene. Insufficient β-gal activity leads to abnormal accumulation of GM1 gangliosides in tissues, particularly in the central nervous system, resulting in progressive neurodegeneration. Here, we report an in vitro human GM1 model, based on induced pluripotent stem cell (iPSC) technology. Neural progenitor cells differentiated from GM1 patient-derived iPSCs (GM1-NPCs) recapitulated the biochemical and molecular phenotypes of GM1, including defective β-gal activity and increased lysosomes. Importantly, the characterization of GM1-NPCs established that GM1 is significantly associated with the activation of inflammasomes, which play a critical role in the pathogenesis of various neurodegenerative diseases. Specific inflammasome inhibitors potently alleviated the disease-related phenotypes of GM1-NPCs in vitro and in vivo. Our data demonstrate that GM1-NPCs are a valuable in vitro human GM1 model and suggest that inflammasome activation is a novel target pathway for GM1 drug development. Copyright © 2015 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  19. Diversity of glycosphingolipid GM2 and cholesterol accumulation in NPC1 patient-specific iPSC-derived neurons.

    PubMed

    Trilck, Michaela; Peter, Franziska; Zheng, Chaonan; Frank, Marcus; Dobrenis, Kostantin; Mascher, Hermann; Rolfs, Arndt; Frech, Moritz J

    2017-02-15

    Niemann-Pick disease Type C1 (NPC1) is a rare progressive neurodegenerative disorder caused by mutations in the NPC1 gene. On the cellular level NPC1 mutations lead to an accumulation of cholesterol and gangliosides. As a thorough analysis of the severely affected neuronal cells is unfeasible in NPC1 patients, we recently described the cellular phenotype of neuronal cells derived from NPC1 patient iPSCs carrying the compound heterozygous mutation c.1836A>C/c.1628delC. Here we expanded the analysis to cell lines carrying the prevalent mutation c.3182T>C and the novel mutation c.1180T>C, as well as to the determination of GM2 and GM3 gangliosides in NPC1 patient-specific iPSC-derived neurons and glia cells. Immunocytochemical detection of GM2 revealed punctated staining pattern predominantly localized in neurons. Detection of cholesterol by filipin staining showed a comparable staining pattern, colocalized with GM2, indicating a deposit of GM2 and cholesterol in the same cellular compartments. Accumulations were not only restricted to cell bodies, but were also found in the neuronal extensions. A quantification of the GM2 amount by HPLC-MS/MS confirmed significantly higher amounts in neurons carrying a mutation. Additionally, these cells displayed a lowered activity of the catabolic enzyme Hex A, but not B4GALNT1. Molecular docking simulations indicated binding of cholesterol to Hex A, suggesting cholesterol influences the GM2 degradation pathway and, subsequently, leading to the accumulation of GM2. Taken together, this is the first study showing an accumulation of GM2 in neuronal derivatives of patient-specific iPSCs and thus proving further disease-specific hallmarks in this human in vitro model of NPC1. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. The reactivities of human erythrocyte autoantibodies anti-Pr2, anti-Gd, Fl and Sa with gangliosides in a chromatogram binding assay.

    PubMed Central

    Uemura, K; Roelcke, D; Nagai, Y; Feizi, T

    1984-01-01

    The thin layer chromatogram binding assay was used to study the reaction of several natural-monoclonal autoantibodies which recognize sialic acid-dependent antigens of human erythrocytes. Immunostaining of gangliosides derived from human and bovine erythrocytes was achieved with four autoantibodies designated anti-Pr2, anti-Gd, Sa and Fl, each of which has a different haemagglutination pattern with untreated and proteinase-treated erythrocytes and with cells of I and i antigen types. From the chromatogram binding patterns of anti-Pr2 with gangliosides of the neolacto and the ganglio series, it is deduced that this antibody reacts best with N-acetylneuraminic acid when it is alpha 2-3- or alpha 2-6-linked to a terminal Gal(beta 1-4)Glc/GlcNAc GlcNAc sequence and to a lesser extent when it is alpha 2-3-linked to a terminal Gal(beta 1-3)GalNAc sequence or to an internal galactose and when it is alpha 2-8-linked to another, internal N-acetylneuraminic acid residue. The other three antibodies differ from anti-Pr2 in their lack of reaction with glycolipids of the ganglio series. They react with the NeuAc(alpha 2-3)Gal(beta 1-4)Glc/GlcNAc sequence as found in GM3 and in glycolipids of the neolacto series, but show a preference for the latter, longer sequences. Thus all four antibodies react with sialylated oligosaccharides containing i type (linear) and I type (branched) neolacto backbones. Fl antibody differs from the other three in its stronger reaction with branched neolacto sequences in accordance with its stronger agglutination of erythrocytes of I rather than i type. The four antibodies show a specificity for N-acetyl- rather than N-glycolyl-neuraminic acid. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. PMID:6204642

  1. Endosomal/Lysosomal Processing of Gangliosides Affects Neuronal Cholesterol Sequestration in Niemann-Pick Disease Type C

    PubMed Central

    Zhou, Sharon; Davidson, Cristin; McGlynn, Robert; Stephney, Gloria; Dobrenis, Kostantin; Vanier, Marie T.; Walkley, Steven U.

    2011-01-01

    Niemann-Pick disease type C (NPC) is a severe neurovisceral lysosomal storage disorder caused by defects in NPC1 or NPC2 proteins. Although numerous studies support the primacy of cholesterol storage, neurons of double-mutant mice lacking both NPC1 and an enzyme required for synthesis of all complex gangliosides1,4GalNAc transferase) have been reported to exhibit dramatically reduced cholesterol sequestration. Here we show that NPC2-deficient mice lacking this enzyme also exhibit reduced cholesterol, but that genetically restricting synthesis to only a-series gangliosides fully restores neuronal cholesterol storage to typical disease levels. Examining the subcellular locations of sequestered compounds in neurons lacking NPC1 or NPC2 by confocal microscopy revealed that cholesterol and the two principal storage gangliosides (GM2 and GM3) were not consistently co-localized within the same intracellular vesicles. To determine whether the lack of GM2 and GM3 co-localization was due to differences in synthetic versus degradative pathway expression, we generated mice lacking both NPC1 and lysosomal β-galactosidase, and therefore unable to generate GM2 and GM3 in lysosomes. Double mutants lacked both gangliosides, indicating that each is the product of endosomal/lysosomal processing. Unexpectedly, GM1 accumulation in double mutants increased compared to single mutants consistent with a direct role for NPC1 in ganglioside salvage. These studies provide further evidence that NPC1 and NPC2 proteins participate in endosomal/lysosomal processing of both sphingolipids and cholesterol. PMID:21708114

  2. Synthesis of novel ganglioside GM4 analogues containing N-deacetylated and lactamized sialic acid: probes for searching new ligand structures for human L-selectin.

    PubMed

    Otsubo, N; Ishida, H; Kiso, M

    2001-01-15

    Novel ganglioside GM4 analogues, which contain N-deacetylated or lactamized sialic acid instead of usual N-acetylneuraminic acid, were synthesized in a highly efficient manner. (Methyl 4,7,8,9-tetra-O-acetyl-3,5-dideoxy-5-trifluoroacetamido-D-glycero-alpha-D-galacto-2-nonulopyranosylonate)-(2-->3)-4,6-di-O-acetyl-2-O-benzoyl-D-galactopyranosyl trichloroacetimidate was coupled with 2-(tetradecyl)hexadecanol to give the desired beta-glycoside in high yield. Successive O- and N-deacylation, and saponification of the methyl ester group afforded the N-deacetylated sialyl derivative that was converted by treatment with 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride in Me2SO into the lactamized sialic acid-containing ganglioside GM4 analogue.

  3. Promotion of neuritogenesis in mouse neuroblastoma cells by ganglioside GM3: Involvement of three signal pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwards, A.H.

    1989-01-01

    Ganglioside GM3 was extracted from human placentae and tested for neuritogenic properties towards the mouse neuroblastoma cell line Neuro-2A. GM3 (2.5 {mu}M) was found to inhibit cell growth when added exogenously to the cell culture. ({sup 3}H)Thymidine incorporation was inhibited by 49% within 6 hr. Neuritogenesis was evident within 24 hr evidenced by an increase in the number and length of neurites produced compared to control cells. An enzymatic assay for protein kinase C activity was employed to study effects of GM3 on the subcellular localization of the enzyme. Ganglioside GM3 was found to alter the subcellular localization of themore » phospholipid- and calcium-dependent protein kinase C. These results were confirmed using a binding assay employing the labeled phorbol ester ({sup 3}H)phorbol-12,13-dibutyrate. Finally, GM3-modulation of IP{sub 3} formation and cytosolic calcium in the Neuro-2A cells was investigated. GM3 did not alter the phosphoinositol metabolism as evidenced by IP{sub 3} formation in these cells. However, the addition of GM3 (16 {mu}M) to cells loaded with the photoprotein, aequorin, induced an increase in the intracellular calcium concentration within 2 min, which was sustained for 10 min. Removal of external calcium by chelation did not abrogate the response to GM3, indicating that calcium was being released from internal stores. The calcium influx was temporally correlated with the translocation of protein kinase C, providing a rationale whereby GM3 may induce the enzyme to translocate.« less

  4. The GM2 Glycan Serves as a Functional Coreceptor for Serotype 1 Reovirus

    PubMed Central

    Liu, Yan; Blaum, Bärbel S.; Reiter, Dirk M.; Feizi, Ten; Dermody, Terence S.; Stehle, Thilo

    2012-01-01

    Viral attachment to target cells is the first step in infection and also serves as a determinant of tropism. Like many viruses, mammalian reoviruses bind with low affinity to cell-surface carbohydrate receptors to initiate the infectious process. Reoviruses disseminate with serotype-specific tropism in the host, which may be explained by differential glycan utilization. Although α2,3-linked sialylated oligosaccharides serve as carbohydrate receptors for type 3 reoviruses, neither a specific glycan bound by any reovirus serotype nor the function of glycan binding in type 1 reovirus infection was known. We have identified the oligosaccharide portion of ganglioside GM2 (the GM2 glycan) as a receptor for the attachment protein σ1 of reovirus strain type 1 Lang (T1L) using glycan array screening. The interaction of T1L σ1 with GM2 in solution was confirmed using NMR spectroscopy. We established that GM2 glycan engagement is required for optimal infection of mouse embryonic fibroblasts (MEFs) by T1L. Preincubation with GM2 specifically inhibited type 1 but not type 3 reovirus infection of MEFs. To provide a structural basis for these observations, we defined the mode of receptor recognition by determining the crystal structure of T1L σ1 in complex with the GM2 glycan. GM2 binds in a shallow groove in the globular head domain of T1L σ1. Both terminal sugar moieties of the GM2 glycan, N-acetylneuraminic acid and N-acetylgalactosamine, form contacts with the protein, providing an explanation for the observed specificity for GM2. Viruses with mutations in the glycan-binding domain display diminished hemagglutination capacity, a property dependent on glycan binding, and reduced capacity to infect MEFs. Our results define a novel mode of virus-glycan engagement and provide a mechanistic explanation for the serotype-dependent differences in glycan utilization by reovirus. PMID:23236285

  5. The GM2 glycan serves as a functional coreceptor for serotype 1 reovirus.

    PubMed

    Reiss, Kerstin; Stencel, Jennifer E; Liu, Yan; Blaum, Bärbel S; Reiter, Dirk M; Feizi, Ten; Dermody, Terence S; Stehle, Thilo

    2012-01-01

    Viral attachment to target cells is the first step in infection and also serves as a determinant of tropism. Like many viruses, mammalian reoviruses bind with low affinity to cell-surface carbohydrate receptors to initiate the infectious process. Reoviruses disseminate with serotype-specific tropism in the host, which may be explained by differential glycan utilization. Although α2,3-linked sialylated oligosaccharides serve as carbohydrate receptors for type 3 reoviruses, neither a specific glycan bound by any reovirus serotype nor the function of glycan binding in type 1 reovirus infection was known. We have identified the oligosaccharide portion of ganglioside GM2 (the GM2 glycan) as a receptor for the attachment protein σ1 of reovirus strain type 1 Lang (T1L) using glycan array screening. The interaction of T1L σ1 with GM2 in solution was confirmed using NMR spectroscopy. We established that GM2 glycan engagement is required for optimal infection of mouse embryonic fibroblasts (MEFs) by T1L. Preincubation with GM2 specifically inhibited type 1 but not type 3 reovirus infection of MEFs. To provide a structural basis for these observations, we defined the mode of receptor recognition by determining the crystal structure of T1L σ1 in complex with the GM2 glycan. GM2 binds in a shallow groove in the globular head domain of T1L σ1. Both terminal sugar moieties of the GM2 glycan, N-acetylneuraminic acid and N-acetylgalactosamine, form contacts with the protein, providing an explanation for the observed specificity for GM2. Viruses with mutations in the glycan-binding domain display diminished hemagglutination capacity, a property dependent on glycan binding, and reduced capacity to infect MEFs. Our results define a novel mode of virus-glycan engagement and provide a mechanistic explanation for the serotype-dependent differences in glycan utilization by reovirus.

  6. Ganglioside Composition in Beef, Chicken, Pork, and Fish Determined Using Liquid Chromatography-High-Resolution Mass Spectrometry.

    PubMed

    Fong, Bertram Y; Ma, Lin; Khor, Geok Lin; van der Does, Yvonne; Rowan, Angela; McJarrow, Paul; MacGibbon, Alastair K H

    2016-08-17

    Gangliosides (GA) are found in animal tissues and fluids, such as blood and milk. These sialo-glycosphingolipids have bioactivities in neural development, the gastrointestinal tract, and the immune system. In this study, a high-performance liquid chromatography-mass spectrometry (HPLC-MS) method was validated to characterize and quantitate the GA in beef, chicken, pork, and fish species (turbot, snapper, king salmon, and island mackerel). For the first time, we report the concentration of GM3, the dominant GA in these foods, as ranging from 0.35 to 1.1 mg/100 g and 0.70 to 5.86 mg/100 g of meat and fish, respectively. The minor GAs measured were GD3, GD1a, GD1b, and GT1b. Molecular species distribution revealed that the GA contained long- to very-long-chain acyl fatty acids attached to the ceramide moiety. Fish GA contained only N-acetylneuraminic acid (NeuAc) sialic acid, while beef, chicken, and pork contained GD1a/b species that incorporated both NeuAc and N-glycolylneuraminic acid (NeuGc) and hydroxylated fatty acids.

  7. A SENSITIVE FLUORESCENCE-BASED ASSAY FOR MONITORING GM2 GANGLIOSIDE HYDROLYSIS IN LIVE PATIENT CELLS AND THEIR LYSATES

    PubMed Central

    Tropak, Michael B.; Bukovac, Scott W.; Rigat, Brigitte A.; Yonekawa, Sayuri; Wakarchuk, Warren; Mahuran, Don J.

    2010-01-01

    Enzyme enhancement therapy, utilizing small molecules as pharmacological chaperones, is anattractive approach for the treatment of lysosomal storage diseases that are associated with protein misfolding. However, pharmacological chaperones are alsoinhibitors of their target enzyme. Thus, a major concern with this approach is that, despite enhancing protein folding within, and intracellular transport of the functional mutant enzyme out of the endoplasmic reticulum, the chaperone will continue to inhibit the enzyme in the lysosome, preventing substrate clearance. Herewe demonstrate that the in vitro hydrolysis of a fluorescent derivative of lyso-GM2 ganglioside, like natural GM2 ganglioside, is specifically carried out by the β-hexosaminidase A isozyme, requires the GM2 activator protein as a co-factor, increases when the derivative is incorporated into anionic liposomes and follows similar Michaelis-Menten kinetics. This substrate can also be used to differentiate between lysates from normal and GM2 activator-deficient cells. When added to the growth medium of cells, the substrate is internalized and primarily incorporated into lysosomes. Utilizing adult Tay-Sachs fibroblasts that have been pre-treated with the pharmacological chaperone Pyrimethamine and subsequently loaded with this substrate, we demonstrate an increase in both the levels of mutant β-hexosaminidase A and substrate-hydrolysis as compared to mock treated cells. PMID:19917668

  8. A sensitive fluorescence-based assay for monitoring GM2 ganglioside hydrolysis in live patient cells and their lysates.

    PubMed

    Tropak, Michael B; Bukovac, Scott W; Rigat, Brigitte A; Yonekawa, Sayuri; Wakarchuk, Warren; Mahuran, Don J

    2010-03-01

    Enzyme enhancement therapy, utilizing small molecules as pharmacological chaperones, is an attractive approach for the treatment of lysosomal storage diseases that are associated with protein misfolding. However, pharmacological chaperones are also inhibitors of their target enzyme. Thus, a major concern with this approach is that, despite enhancing protein folding within, and intracellular transport of the functional mutant enzyme out of the endoplasmic reticulum, the chaperone will continue to inhibit the enzyme in the lysosome, preventing substrate clearance. Here we demonstrate that the in vitro hydrolysis of a fluorescent derivative of lyso-GM2 ganglioside, like natural GM2 ganglioside, is specifically carried out by the beta-hexosaminidase A isozyme, requires the GM2 activator protein as a co-factor, increases when the derivative is incorporated into anionic liposomes and follows similar Michaelis-Menten kinetics. This substrate can also be used to differentiate between lysates from normal and GM2 activator-deficient cells. When added to the growth medium of cells, the substrate is internalized and primarily incorporated into lysosomes. Utilizing adult Tay-Sachs fibroblasts that have been pre-treated with the pharmacological chaperone Pyrimethamine and subsequently loaded with this substrate, we demonstrate an increase in both the levels of mutant beta-hexosaminidase A and substrate-hydrolysis as compared to mock-treated cells.

  9. Lo/Ld phase coexistence modulation induced by GM1.

    PubMed

    Puff, Nicolas; Watanabe, Chiho; Seigneuret, Michel; Angelova, Miglena I; Staneva, Galya

    2014-08-01

    Lipid rafts are assumed to undergo biologically important size-modulations from nanorafts to microrafts. Due to the complexity of cellular membranes, model systems become important tools, especially for the investigation of the factors affecting "raft-like" Lo domain size and the search for Lo nanodomains as precursors in Lo microdomain formation. Because lipid compositional change is the primary mechanism by which a cell can alter membrane phase behavior, we studied the effect of the ganglioside GM1 concentration on the Lo/Ld lateral phase separation in PC/SM/Chol/GM1 bilayers. GM1 above 1mol % abolishes the formation of the micrometer-scale Lo domains observed in GUVs. However, the apparently homogeneous phase observed in optical microscopy corresponds in fact, within a certain temperature range, to a Lo/Ld lateral phase separation taking place below the optical resolution. This nanoscale phase separation is revealed by fluorescence spectroscopy, including C12NBD-PC self-quenching and Laurdan GP measurements, and is supported by Gaussian spectral decomposition analysis. The temperature of formation of nanoscale Lo phase domains over an Ld phase is determined, and is shifted to higher values when the GM1 content increases. A "morphological" phase diagram could be made, and it displays three regions corresponding respectively to Lo/Ld micrometric phase separation, Lo/Ld nanometric phase separation, and a homogeneous Ld phase. We therefore show that a lipid only-based mechanism is able to control the existence and the sizes of phase-separated membrane domains. GM1 could act on the line tension, "arresting" domain growth and thereby stabilizing Lo nanodomains. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Localization patterns of the ganglioside GM1 in human sperm are indicative of male fertility and independent of traditional semen measures

    PubMed Central

    Cardona, Cristina; Neri, Queenie V.; Simpson, Alana J.; Moody, Melissa A.; Ostermeier, G. Charles; Seaman, Eric K.; Paniza, Theodore; Rosenwaks, Zev; Palermo, Gianpiero D.

    2017-01-01

    Semen analysis lacks a functional component and best identifies extreme cases of infertility. The ganglioside GM1 is known to have functional roles during capacitation and acrosome exocytosis. Here, we assessed whether GM1 localization patterns (Cap‐Score™) correspond with male fertility in different settings: Study 1 involved couples pursuing assisted reproduction in a tertiary care fertility clinic, while Study 2 involved men with known fertility versus those questioning their fertility at a local urology center. In Study 1, we examined various thresholds versus clinical history for 42 patients; 13 had Cap‐Scores ≥39.5%, with 12 of these (92.3%) achieving clinical pregnancy by natural conception or ≤3 intrauterine insemination cycles. Of the 29 patients scoring <39.5%, only six (20.7%) attained clinical pregnancy by natural conception or ≤3 intrauterine insemination cycles. In Study 2, Cap‐Scores were obtained from 76 fertile men (Cohort 1, pregnant partner or recent father) and compared to 122 men seeking fertility assessment (Cohort 2). Cap‐Score values were normally distributed in Cohort 1, with 13.2% having Cap‐Scores more than one standard deviation below the mean (35.3 ± 7.7%). Significantly, more men in Cohort 2 had Cap‐Scores greater than one standard deviation below the normal mean (33.6%; p = 0.001). Minimal/no relationship was found between Cap‐Score and sperm concentration, morphology, or motility. Together, these data demonstrate that Cap‐Score provides novel, clinically relevant insights into sperm function and male fertility that complement traditional semen analysis. Furthermore, the data provide normal reference ranges for fertile men that can help clinicians counsel couples toward the most appropriate fertility treatment. PMID:28418610

  11. Interaction of Clostridium perfringens delta toxin with erythrocyte and liposome membranes and relation with the specific binding to the ganglioside GM2.

    PubMed

    Jolivet-Reynaud, C; Hauttecoeur, B; Alouf, J E

    1989-01-01

    The specific interaction of the cytolytic Clostridium perfringens delta toxin with membrane GM2 was indicated by: (i) characterization of this glycolipid in the membrane of sheep and goat erythrocytes, which are lysed by the toxin, whereas GM2 was undetectable in insensitive rabbit erythrocytes, (ii) demonstration of 125I-toxin binding to GM2, by autoradiography, following incubation with thin-layer chromatograms containing separated neuroblastoma gangliosides, and (iii) toxin fixation by phospholipid-cholesterol unilamellar vesicles containing either sheep gangliosides or GM2. In order to investigate the intramembrane events leading to membrane disruption following toxin binding, the photoreactive probe 12(4-azido-2-nitrophenoxy)stearoyl 1-14C glucosamine, which inserts into the outer layer and labels integral membrane proteins, was used to establish whether delta toxin penetrates into target cell membrane. No toxin labeling was found, suggesting that toxin action takes place at the membrane surface. This contention is supported by the observation that despite toxin binding, GM2 liposomes did not release entrapped 14C-glucose. Treatment of toxin with carboxypeptidases, but not aminopeptidases, abolished both toxin binding capacity onto erythrocytes and its combination with antitoxin neutralizing antibodies, suggesting that the carboxy terminal end of the toxin is critical for binding to cell membrane.

  12. Identification of New Serum Biomarkers for Early Breast Cancer Diagnosis and Prognosis Using Lipid Microarrays

    DTIC Science & Technology

    2008-09-01

    specific for asialo-GM1 bound specifically to GM1, but not to the closely related gangliosides GM1 or GM2 (Fig. 2). Monoclonal antibodies raised...against GD3 specifically bound GD3, but not to asialo-GM1, GM1 and GM2 (Fig. 2). The secondary antibodies did not show reactivity against lipids (data not...fluorescent intensity on different membranes. Asialo GM1 GM1 GM2 GD3 Fig 2. Lipids on the PVDF membrane can be detected by specific

  13. Identification of New Serum Biomarkers for Early Breast Cancer Diagnosis and Prognosis Using Lipid Microarrays

    DTIC Science & Technology

    2007-09-01

    specific for asialo-GM1 bound specifically to GM1, but not to the closely related gangliosides GM1 or GM2 (Fig. 2). Monoclonal antibodies raised against...GD3 specifically bound GD3, but not to asialo-GM1, GM1 and GM2 (Fig. 2). The secondary antibodies did not show reactivity against lipids (data not...fluorescent intensity on different membranes. Asialo GM1 GM1 GM2 GD3 Fig 2. Lipids on the PVDF membrane can be detected by specific antibodies

  14. Genetically engineered humanized anti-ganglioside GM2 antibody against multiple organ metastasis produced by GM2-expressing small-cell lung cancer cells.

    PubMed

    Yamada, Tadaaki; Bando, Hideaki; Takeuchi, Shinji; Kita, Kenji; Li, Qi; Wang, Wei; Akinaga, Shiro; Nishioka, Yasuhiko; Sone, Saburo; Yano, Seiji

    2011-12-01

    Small-cell lung cancer (SCLC) grows rapidly and metastasizes to multiple organs. We examined the antimetastatic effects of the humanized anti-ganglioside GM2 (GM2) antibodies, BIW-8962 and KM8927, compared with the chimeric antibody KM966, in a SCID mouse model of multiple organ metastases induced by GM2-expressing SCLC cells. BIW-8962 and KM8927 induced higher antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity than KM966 against the GM2-expressing SCLC cell line SBC-3 in vitro. These humanized antibodies inhibited the production of multiple organ metastases, increased the number of apoptotic cells, and prolonged the survival of the SCID mice. Histological analyses using clinical specimens showed that SCLC cells expressed GM2. These findings suggest that humanized anti-GM2 antibodies could be therapeutically useful for controlling multiple organ metastases of GM2-expressing SCLC. © 2011 Japanese Cancer Association.

  15. Selective Intracellular Delivery of Ganglioside GM3-Binding Peptide through Caveolae/Raft-Mediated Endocytosis.

    PubMed

    Matsubara, Teruhiko; Otani, Ryohei; Yamashita, Miki; Maeno, Haruka; Nodono, Hanae; Sato, Toshinori

    2017-02-13

    Glycosphingolipids are major components of the membrane raft, and several kinds of viruses and bacterial toxins are known to bind to glycosphingolipids in the membrane raft. Since the viral genes and pathogenic proteins that are taken into cells are directly delivered to their target organelles, caveolae/raft-mediated endocytosis represents a promising pathway for specific delivery. In the present study, we demonstrated the ability of an artificial pentadecapeptide, which binds to ganglioside GM3, to deliver protein into cells by caveolae/raft-mediated endocytosis. The cellular uptake of a biotinylated GM3-binding peptide (GM3BP)-avidin complex into HeLa cells was observed, and the cellular uptake of this complex was inhibited by an incubation with sialic acid or endocytic inhibitors such as methyl-ß-cyclodextrin, and also by an incubation at 4 °C. These results indicate that the GM3BP-avidin complex bind to GM3 in membrane raft, and are taken into cell through caveolae/raft-mediated endocytosis. The GM3BP-avidin complex was transported into cells and localized around the nucleus more slowly than a human immunodeficiency virus type 1 TAT peptide. Furthermore, the uptake of a green fluorescent protein (GFP) linked with GM3BP into HeLa cells was similar to that of the GM3BP-avidin complex, and the localization of the GM3BP-GFP fusion protein was markedly different with that of the TAT-GFP fusion protein. The uptake and trafficking of GM3BP were distinguished from conventional cell-penetrating peptides. GM3BP has potential as a novel peptide for the selective delivery of therapeutic proteins and materials into cells in addition to being a cell-penetrating peptide.

  16. Ganglioside inhibition of sup 125 I-plasmin binding to colorectal carcinoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liepkalns, V.A.; Burtin, M.C.; Correc, P.

    1990-01-01

    The pre-incubation of human colorectal carcinoma cells SW 1116 with 25 to 100 uM purified gangliosides resulted in 35-60% inhibition of specific {sup 125}I-plasmin binding to the cell surface. After 5 to 6 days in culture, tumor cells were pre-incubated at 4 degrees for 1 to 4 h followed by post-incubation with {sup 125}I-plasmin by techniques previously described. At 25 uM the capacity for inhibition of plasmin binding was GT1b greater than GQ1b greater than or equal to GD1a greater than GM1 less than or equal to GgOse 4Cer. Thus a terminal sialyl moiety appears to be necessary (p lessmore » than 0.05) although exogenous N-acetyl neuraminic acid was ineffective (p greater than 0.05), indicating a role for the lipid portion of the ganglioside. Other (glyco)lipids such as sphingosine, fucolipid H-1 and sulfatide were without significant effect. The inhibition could not be reversed by the presence of 10 mM Ca+2, EDTA, pre-treatment of the cell with carboxypeptidase or pretreatment of plasmin with neuraminidases. The inhibition was however reversed by post-incubation in control medium without exogenous ganglioside. Cell counts determined prior to, and after ganglioside incubation showed that the effect was not due to cell death or detachment from the culture surface. The dissociation constant for {sup 125}I-plasmin binding was 5.6 x 10(-8) M (700,000 sites/cell), but in the presence of trisialoganglioside (GT1b), Scatchard plots suggested diversification of binding sites with 280,000 sites/cell at Kd 2.6 x 10(-8) M and 820,000 sites/cell at Kd 2.1 x 10(-7) M. Another interpretation of the Scatchard plot in the presence of ganglioside was that the glycolipid imposed negative cooperativity on plasmin binding to the cell surface. These results suggest that certain gangliosides can affect tumor cell invasiveness by altering protease binding to the cell surface.« less

  17. Effect of structural modifications of ganglioside GM2 on intra-molecular carbohydrate-to-carbohydrate interaction and enzymatic susceptibility

    PubMed Central

    Li, Yu-Teh; Li, Su-Chen; Kiso, Makoto; Ishida, Hideharu; Mauri, Laura; Raimondi, Laura; Bernardi, Anna; Sonnino, Sandro

    2008-01-01

    Summary The effect of inter-molecular carbohydrate-to-carbohydrate interaction on basic cell biological processes has been well documented and appreciated. In contrast, very little is known about the intra-molecular carbohydrate-to-carbohydrate interaction. The presence of an interaction between the GalNAc and the Neu5Ac in GM2 detected by NMR spectroscopy represents a well-defined intra-molecular carbohydrate-to-carbohydrate interaction. This intriguing interaction is responsible for the GM2-epitope, GalNAcβ1Π4(Neu5Acα2Π3)Gal-, to exhibit a rigid and compact conformation. We hypothesized that this compact conformation may be the cause for both the GalNAc and the Neu5Ac in GM2 to be refractory to enzymatic hydrolysis and the GM2 activator protein is able to interact with the compact trisaccharide GM2-epitope, rendering the GalNAc and the Neu5Ac accessible to β-hexosaminidase A and sialidase. We have used a series of structurally modified GM2 to study the effect of modifications of sugar chains on the conformation and enzymatic susceptibility of this ganglioside. Our hypothesis was borne out by the fact that when the GalNAcβ1Π4Gal linkage in GM2 was converted to the GalNAcβ1Π6Gal, both the GalNAc and the Neu5Ac became susceptible to β-hexosaminidase A and sialidase, respectively, without GM2 activator protein. We hope our work will engender interest in identifying other intra-molecular carbohydrate-to-carbohydrate interactions in glycoconjugates. PMID:17967427

  18. Effect of structural modifications of ganglioside GM2 on intra-molecular carbohydrate-to-carbohydrate interaction and enzymatic susceptibility.

    PubMed

    Li, Yu-Teh; Li, Su-Chen; Kiso, Makoto; Ishida, Hideharu; Mauri, Laura; Raimondi, Laura; Bernardi, Anna; Sonnino, Sandro

    2008-03-01

    The effect of inter-molecular carbohydrate-to-carbohydrate interaction on basic cell biological processes has been well documented and appreciated. In contrast, very little is known about the intra-molecular carbohydrate-to-carbohydrate interaction. The presence of an interaction between the GalNAc and the Neu5Ac in GM2 detected by NMR spectroscopy represents a well-defined intra-molecular carbohydrate-to-carbohydrate interaction. This intriguing interaction is responsible for the GM2-epitope, GalNAcbeta1-->4(Neu5Acalpha2-->3)Gal-, to exhibit a rigid and compact conformation. We hypothesized that this compact conformation may be the cause for both the GalNAc and the Neu5Ac in GM2 to be refractory to enzymatic hydrolysis and the GM2 activator protein is able to interact with the compact trisaccharide GM2-epitope, rendering the GalNAc and the Neu5Ac accessible to beta-hexosaminidase A and sialidase. We have used a series of structurally modified GM2 to study the effect of modifications of sugar chains on the conformation and enzymatic susceptibility of this ganglioside. Our hypothesis was borne out by the fact that when the GalNAcbeta1-->4Gal linkage in GM2 was converted to the GalNAcbeta1-->6Gal, both the GalNAc and the Neu5Ac became susceptible to beta-hexosaminidase A and sialidase, respectively, without GM2 activator protein. We hope our work will engender interest in identifying other intra-molecular carbohydrate-to-carbohydrate interactions in glycoconjugates.

  19. The Diagnostic Utility of Determining Anti-GM1: GalC Complex Antibodies in Multifocal Motor Neuropathy: A Validation Study

    PubMed Central

    Galban-Horcajo, Francesc; Vlam, Lotte; Delmont, Emilien; Halstead, Susan K.; van den Berg, Leonard; van der Pol, W-Ludo; Willison, Hugh J.

    2015-01-01

    Abstract Background: Multifocal motor neuropathy (MMN) is associated with IgM antibodies to GM1 ganglioside. The importance of the lipid milieu that might facilitate or inhibit antibody binding to GM1 in immunoassays is well recognised. Existing studies, using a range of different approaches, generally concur that anti-GM1 IgM antibody detection rates are improved by the addition of galactocerebroside (GalC) to the GM1 assay. Objective: The current study sought to formally evaluate the clinical utility of the GM1:GalC complex assay in the diagnosis of MMN. Methods: Anti-GM1 and -GM1:GalC antibodies were examined using ELISA and glycoarray (dot blot) in a fully blinded study design, consisting of 100 MMN patients, 100 ALS cases and 100 healthy controls. Results: The detection of anti-GM1 Abs using glycoarray was 67% sensitive and 85% specific. The addition of GalC to GM1, (1:1 weight to weight ratio), increased the sensitivity to 81% , whilst dropping specificity to 80% . Increasing the GalC content to a 1:5 ratio (or higher) further decreased specificity, and in doing so limited the usefulness of the GM1:GalC assay to the level of GM1 alone. The addition of GalC to the ELISA method also significantly increased sensitivity compared with GM1 alone, albeit with a significant decrease in specificity. Conclusions: This study indicates that the GM1:GalC assay is an advantageous assay adaptation for detecting anti-GM1 antibodies in MMN, using either glycoarray or ELISA, and warrants introduction into clinical diagnostic practice. PMID:27858734

  20. Ganglioside GM2/GM3 complex affixed on silica nanospheres strongly inhibits cell motility through CD82/cMet-mediated pathway

    PubMed Central

    Todeschini, Adriane Regina; Dos Santos, Jose Nilson; Handa, Kazuko; Hakomori, Sen-itiroh

    2008-01-01

    Ganglioside GM2 complexed with tetraspanin CD82 in glycosynaptic microdomain of HCV29 and other epithelial cells inhibits hepatocyte growth factor-induced cMet tyrosine kinase. In addition, adhesion of HCV29 cells to extracellular matrix proteins also activates cMet kinase through “cross-talk” of integrins with cMet, leading to inhibition of cell motility and growth. Present studies indicate that cell motility and growth are greatly influenced by expression of GM2, GM3, or GM2/GM3 complexes, which affect cMet kinase activity of various types of cells, based on the following series of observations: (i) Cells expressing CD82, cultured with GM2 and GM3 cocoated on silica nanospheres, displayed stronger and more consistent motility inhibition than those cultured with GM2 or GM3 alone or with other glycosphingolipids. (ii) GM2-GM3, in the presence of Ca2+ form a heterodimer, as evidenced by electrospray ionization (ESI) mass spectrometry and by specific reactivity with mAb 8E11, directed to GM2/GM3 dimer structure. (iii) Cells expressing cMet and CD82 were characterized by enhanced motility associated with HGF-induced cMet activation. Both cMet and motility were strongly inhibited by culturing cells with GM2/GM3 dimer coated on nanospheres. (iv) Adhesion of HCV29 or YTS-1/CD82 cells to laminin-5-coated plate activated cMet kinase in the absence of HGF, whereas GM2/GM3 dimer inhibited adhesion-induced cMet kinase activity and inhibited cell motility. (v) Inhibited cell motility as in i, iii, and iv was restored to normal level by addition of mAb 8E11, which blocks interaction of GM2/GM3 dimer with CD82. Signaling through Src and MAP kinases is activated or inhibited in close association with cMet kinase, in response to GM2/GM3 dimer interaction with CD82. Thus, a previously uncharacterized GM2/GM3 heterodimer complexed with CD82 inhibits cell motility through CD82-cMet or integrin-cMet pathway. PMID:18272501

  1. Ganglioside GM2/GM3 complex affixed on silica nanospheres strongly inhibits cell motility through CD82/cMet-mediated pathway.

    PubMed

    Todeschini, Adriane Regina; Dos Santos, Jose Nilson; Handa, Kazuko; Hakomori, Sen-itiroh

    2008-02-12

    Ganglioside GM2 complexed with tetraspanin CD82 in glycosynaptic microdomain of HCV29 and other epithelial cells inhibits hepatocyte growth factor-induced cMet tyrosine kinase. In addition, adhesion of HCV29 cells to extracellular matrix proteins also activates cMet kinase through "cross-talk" of integrins with cMet, leading to inhibition of cell motility and growth. Present studies indicate that cell motility and growth are greatly influenced by expression of GM2, GM3, or GM2/GM3 complexes, which affect cMet kinase activity of various types of cells, based on the following series of observations: (i) Cells expressing CD82, cultured with GM2 and GM3 cocoated on silica nanospheres, displayed stronger and more consistent motility inhibition than those cultured with GM2 or GM3 alone or with other glycosphingolipids. (ii) GM2-GM3, in the presence of Ca2+ form a heterodimer, as evidenced by electrospray ionization (ESI) mass spectrometry and by specific reactivity with mAb 8E11, directed to GM2/GM3 dimer structure. (iii) Cells expressing cMet and CD82 were characterized by enhanced motility associated with HGF-induced cMet activation. Both cMet and motility were strongly inhibited by culturing cells with GM2/GM3 dimer coated on nanospheres. (iv) Adhesion of HCV29 or YTS-1/CD82 cells to laminin-5-coated plate activated cMet kinase in the absence of HGF, whereas GM2/GM3 dimer inhibited adhesion-induced cMet kinase activity and inhibited cell motility. (v) Inhibited cell motility as in i, iii, and iv was restored to normal level by addition of mAb 8E11, which blocks interaction of GM2/GM3 dimer with CD82. Signaling through Src and MAP kinases is activated or inhibited in close association with cMet kinase, in response to GM2/GM3 dimer interaction with CD82. Thus, a previously uncharacterized GM2/GM3 heterodimer complexed with CD82 inhibits cell motility through CD82-cMet or integrin-cMet pathway.

  2. Protective effect of gangliosides on DNA in human spermatozoa exposed to cryopreservation.

    PubMed

    Gavella, Mirjana; Lipovac, Vaskresenija; Garaj-Vrhovac, Verica; Gajski, Goran

    2012-01-01

    Gangliosides, the sialic acid-containing glycosphyngolipids, are amphiphilic compounds which in micellar form affect the properties and functions of a cellular membrane. The aim of this study was to test whether exogenous gangliosides supplied to cryopreservation media before freezing could protect sperm cells from cryopreservation-induced DNA damage assessed by Comet assay. Additionally, to investigate whether gangliosides were also able to reduce membrane integrity damage, malonaldialdehyde as a measure of lipid peroxidation and sperm-specific lactate dehydrogenase-C4 activity as an enzyme marker of sperm membrane leakage were determined. The monosialogangliosides (GM1) and trisialogangliosides (GT1b) were examined at a concentration of 100 μM, which was above their respective critical micellar concentrations. Exogenous gangliosides were not found to protect sperm membrane from lipid peroxidation. However, a freezing-/thawing-induced increase in Comet parameters was equally significantly prevented by the presence of both GM1 and GT1b (P < .05), indicating that the ceramide moiety, rather than the polar groups, is involved in the protective ability of gangliosides. The observed phenomena suggest that ganglioside micelles could modulate hydrophobic properties of the sperm membrane responsible for better tolerance to DNA fragmentation, thus protecting DNA integrity from cryopreservation-induced damage.

  3. Isotopic labeling of milk disialogangliosides (GD3).

    PubMed

    Reis, Mariza Gomes; Bibiloni, Rodrigo; McJarrow, Paul; MacGibbon, Alastair; Fong, Bertram; Bassett, Shalome; Roy, Nicole; Dos Reis, Marlon Martins

    2016-10-01

    The most abundant ganglioside group in both human milk and bovine milk during the first postnatal week is ganglioside GD3. This group of disialogangliosides forms up to 80% of the total ganglioside content of colostrum. Although dietary gangliosides have shown biological activity such as improvement of cognitive development, gastrointestinal health, and immune function, there is still a gap in our understanding of the molecular mechanisms governing its uptake and the metabolic processes affecting its bioavailability. The use of isotopically labeled ganglioside to track the bioavailability, absorption, distribution, and metabolism of gangliosides may provide key information to bridge this gap. However, isotope labeled GD3 is not commercially available and its preparation has not been described. We report for the first time the preparation of labeled GD3 with stable isotopes. Using alkaline hydrolysis, we were able to selectively remove both acetyl groups from the tetrasaccharide portion of GD3 without promoting significant hydrolysis of the ceramide portion of the molecule to generate N-deacetyl-GD3 (Neu5α2-8Neu5-GD3). The N-deacetyl-GD3 was then chemoselectively re-acetylated in aqueous medium using deuterated acetic anhydride in the presence of Triton X 100 to produce 2 H 6 -GD3 {GD3[(Neu5Ac-11- 2 H 3 )-(Neu5Ac-11- 2 H 3 )]}. This method provided 2 H 6 -GD3 with approximately 60% yield. This compound was characterized by proton nuclear magnetic resonance ( 1 H NMR) and liquid chromatography mass spectrometry (LC-MS). The oral absorption of the 2 H 6 -GD3 was demonstrated using a Sprague-Dawley weaning rats. Our results indicate that some ingested labeled milk gangliosides are absorbed and transported into the bloodstream without modification. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. AP-MALDI Mass Spectrometry Imaging of Gangliosides Using 2,6-Dihydroxyacetophenone

    NASA Astrophysics Data System (ADS)

    Jackson, Shelley N.; Muller, Ludovic; Roux, Aurelie; Oktem, Berk; Moskovets, Eugene; Doroshenko, Vladimir M.; Woods, Amina S.

    2018-03-01

    Matrix-assisted laser/desorption ionization (MALDI) mass spectrometry imaging (MSI) is widely used as a unique tool to record the distribution of a large range of biomolecules in tissues. 2,6-Dihydroxyacetophenone (DHA) matrix has been shown to provide efficient ionization of lipids, especially gangliosides. The major drawback for DHA as it applies to MS imaging is that it sublimes under vacuum (low pressure) at the extended time necessary to complete both high spatial and mass resolution MSI studies of whole organs. To overcome the problem of sublimation, we used an atmospheric pressure (AP)-MALDI source to obtain high spatial resolution images of lipids in the brain using a high mass resolution mass spectrometer. Additionally, the advantages of atmospheric pressure and DHA for imaging gangliosides are highlighted. The imaging of [M-H]- and [M-H2O-H]- mass peaks for GD1 gangliosides showed different distribution, most likely reflecting the different spatial distribution of GD1a and GD1b species in the brain. [Figure not available: see fulltext.

  5. Rapid Profiling of Bovine and Human Milk Gangliosides by Matrix-Assisted Laser Desorption/Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

    PubMed Central

    Lee, Hyeyoung; An, Hyun Joo; Lerno, Larry A.; German, J. Bruce; Lebrilla, Carlito B.

    2010-01-01

    Gangliosides are anionic glycosphingolipids widely distributed in vertebrate tissues and fluids. Their structural and quantitative expression patterns depend on phylogeny and are distinct down to the species level. In milk, gangliosides are exclusively associated with the milk fat globule membrane. They may participate in diverse biological processes but more specifically to host-pathogen interactions. However, due to the molecular complexities, the analysis needs extensive sample preparation, chromatographic separation, and even chemical reaction, which makes the process very complex and time-consuming. Here, we describe a rapid profiling method for bovine and human milk gangliosides employing matrix-assisted desorption/ionization (MALDI) Fourier transform ion cyclotron resonance (FTICR) mass spectrometry (MS). Prior to the analyses of biological samples, milk ganglioside standards GM3 and GD3 fractions were first analyzed in order to validate this method. High mass accuracy and high resolution obtained from MALDI FTICR MS allow for the confident assignment of chain length and degree of unsaturation of the ceramide. For the structural elucidation, tandem mass spectrometry (MS/MS), specifically as collision-induced dissociation (CID) and infrared multiphoton dissociation (IRMPD) were employed. Complex ganglioside mixtures from bovine and human milk were further analyzed with this method. The samples were prepared by two consecutive chloroform/methanol extraction and solid phase extraction. We observed a number of differences between bovine milk and human milk. The common gangliosides in bovine and human milk are NeuAc-NeuAc-Hex-Hex-Cer (GD3) and NeuAc-Hex-Hex-Cer (GM3); whereas, the ion intensities of ganglioside species are different between two milk samples. Kendrick mass defect plot yields grouping of ganglioside peaks according to their structural similarities. Gangliosides were further probed by tandem MS to confirm the compositional and structural assignments

  6. Novel Ganglioside-mediated Entry of Botulinum Neurotoxin Serotype D into Neurons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kroken, Abby R.; Karalewitz, Andrew P.-A.; Fu, Zhuji

    2012-02-07

    Botulinum Neurotoxins (BoNTs) are organized into seven serotypes, A-G. Although several BoNT serotypes enter neurons through synaptic vesicle cycling utilizing dual receptors (a ganglioside and a synaptic vesicle-associated protein), the entry pathway of BoNT/D is less well understood. Although BoNT/D entry is ganglioside-dependent, alignment and structural studies show that BoNT/D lacks key residues within a conserved ganglioside binding pocket that are present in BoNT serotypes A, B, E, F, and G, which indicate that BoNT/D-ganglioside interactions may be unique. In this study BoNT/D is shown to have a unique association with ganglioside relative to the other BoNT serotypes, utilizing amore » ganglioside binding loop (GBL, residues Tyr-1235-Ala-1245) within the receptor binding domain of BoNT/D (HCR/D) via b-series gangliosides, including GT1b, GD1b, and GD2. HCR/D bound gangliosides and entered neurons dependent upon the aromatic ring of Phe-1240 within the GBL. This is the first BoNT-ganglioside interaction that is mediated by a phenylalanine. In contrast, Trp-1238, located near the N terminus of the ganglioside binding loop, was mostly solvent-inaccessible and appeared to contribute to maintaining the loop structure. BoNT/D entry and intoxication were enhanced by membrane depolarization via synaptic vesicle cycling, where HCR/D colocalized with synaptophysin, a synaptic vesicle marker, but immunoprecipitation experiments did not detect direct association with synaptic vesicle protein 2. Thus, BoNT/D utilizes unique associations with gangliosides and synaptic vesicles to enter neurons, which may facilitate new neurotoxin therapies.« less

  7. Adjuvant ganglioside GM2-KLH/QS-21 vaccination versus observation after resection of primary tumor > 1.5 mm in patients with stage II melanoma: results of the EORTC 18961 randomized phase III trial.

    PubMed

    Eggermont, Alexander M M; Suciu, Stefan; Rutkowski, Piotr; Marsden, Jeremy; Santinami, Mario; Corrie, Philippa; Aamdal, Steinar; Ascierto, Paolo A; Patel, Poulam M; Kruit, Wim H; Bastholt, Lars; Borgognoni, Lorenzo; Bernengo, Maria Grazia; Davidson, Neville; Polders, Larissa; Praet, Michel; Spatz, Alan

    2013-10-20

    The GM2 ganglioside is an antigen expressed in the majority of melanomas. The GM2-KLH/QS-21 vaccine induces high immunoglobulin M (IgM) and IgG antibody responses. The EORTC 18961 trial compared the efficacy of GM2-KLH/QS-21 vaccination versus observation. A total of 1,314 patients with a primary tumor > 1.50 mm in thickness (T3-4N0M0; American Joint Committee on Cancer stage II) were randomly assigned to GM2-KLH/QS-21 vaccination (n = 657) or observation (n = 657). Treatment consisted of subcutaneous injections once per week from week 1 to 4, then every 3 months for the first 2 years and every 6 months during the third year. Primary end point was relapse-free survival (RFS). Secondary end points were distant metastasis-free survival (DMFS) and overall survival (OS). Analyses were by intent to treat. After a median follow-up of 1.8 years, the trial was stopped at the second interim analysis for futility regarding RFS (hazard ratio [HR], 1.00; P = .99) and detrimental outcome regarding OS (HR, 1.66; P = .02). After a median follow-up of 4.2 years, we had recorded 400 relapses, nine deaths without relapse, a total of 236 deaths. At 4 years, the vaccination arm showed a decreased RFS rate of 1.2% (HR, 1.03; 95% CI, 0.84 to 1.25) and OS rate of 2.1% (HR, 1.16; 95% CI, 0.90 to 1.51). Toxicity was acceptable, with 4.6% of patients ending study participation because of toxicity. GM2-KLH/QS-21 vaccination does not improve outcome for patients with stage II melanoma.

  8. Revealing the Raft Domain Organization in the Plasma Membrane by Single-Molecule Imaging of Fluorescent Ganglioside Analogs.

    PubMed

    Suzuki, Kenichi G N; Ando, Hiromune; Komura, Naoko; Konishi, Miku; Imamura, Akihiro; Ishida, Hideharu; Kiso, Makoto; Fujiwara, Takahiro K; Kusumi, Akihiro

    2018-01-01

    Gangliosides have been implicated in a variety of physiological processes, particularly in the formation and function of raft domains in the plasma membrane. However, the scarcity of suitable fluorescent ganglioside analogs had long prevented us from determining exactly how gangliosides perform their functions in the live-cell plasma membrane. With the development of new fluorescent ganglioside analogs, as described by Komura et al. (2017), this barrier has been broken. We can now address the dynamic behaviors of gangliosides in the live-cell plasma membrane, using fluorescence microscopy, particularly by single-fluorescent molecule imaging and tracking. Single-molecule tracking of fluorescent GM1 and GM3 revealed that these molecules are transiently and dynamically recruited to monomers (monomer-associated rafts) and homodimer rafts of the raftophilic GPI-anchored protein CD59 in quiescent cells, with exponential residency times of 12 and 40ms, respectively, in a manner dependent on raft-lipid interactions. Upon CD59 stimulation, which induces CD59-cluster signaling rafts, the fluorescent GM1 and GM3 analogs were recruited to the signaling rafts, with a lifetime of 48ms. These results represent the first direct evidence that GPI-anchored receptors and gangliosides interact in a cholesterol-dependent manner. Furthermore, they show that gangliosides continually move in and out of rafts that contain CD59 in an extremely dynamic manner, with much higher frequency than expected previously. Such studies would not have been possible without fluorescent ganglioside probes, which exhibit native-like behavior and single-molecule tracking. In this chapter, we review the methods for single-molecule tracking of fluorescent ganglioside analogs and the results obtained by applying these methods. © 2018 Elsevier Inc. All rights reserved.

  9. Vaccination of High-Risk Breast Cancer Patients with Carbohydrate Mimicking Peptides

    DTIC Science & Technology

    2008-05-01

    Spontaneous pyroglutamic acid formation for peptides starting with glutamic acid or glutamine residues is not considered an impurity. Spontaneous...Examples of tumor- associated carbohydrate antigens include the gangliosides GM2, GD2, GD3, and fucosyl GM1, Globo H, polysialic acid , STn and the...directed toward gangliosides, polysialic acid , Globo, Lewis Y (LeY), and the STn antigen. Because TACA are T-cell–independent antigens and self-antigens

  10. Crystallographic structure of human beta-hexosaminidase A: interpretation of Tay-Sachs mutations and loss of GM2 ganglioside hydrolysis.

    PubMed

    Lemieux, M Joanne; Mark, Brian L; Cherney, Maia M; Withers, Stephen G; Mahuran, Don J; James, Michael N G

    2006-06-16

    Lysosomal beta-hexosaminidase A (Hex A) is essential for the degradation of GM2 gangliosides in the central and peripheral nervous system. Accumulation of GM2 leads to severely debilitating neurodegeneration associated with Tay-Sachs disease (TSD), Sandoff disease (SD) and AB variant. Here, we present the X-ray crystallographic structure of Hex A to 2.8 A resolution and the structure of Hex A in complex with NAG-thiazoline, (NGT) to 3.25 A resolution. NGT, a mechanism-based inhibitor, has been shown to act as a chemical chaperone that, to some extent, prevents misfolding of a Hex A mutant associated with adult onset Tay Sachs disease and, as a result, increases the residual activity of Hex A to a level above the critical threshold for disease. The crystal structure of Hex A reveals an alphabeta heterodimer, with each subunit having a functional active site. Only the alpha-subunit active site can hydrolyze GM2 gangliosides due to a flexible loop structure that is removed post-translationally from beta, and to the presence of alphaAsn423 and alphaArg424. The loop structure is involved in binding the GM2 activator protein, while alphaArg424 is critical for binding the carboxylate group of the N-acetyl-neuraminic acid residue of GM2. The beta-subunit lacks these key residues and has betaAsp452 and betaLeu453 in their place; the beta-subunit therefore cleaves only neutral substrates efficiently. Mutations in the alpha-subunit, associated with TSD, and those in the beta-subunit, associated with SD are discussed. The effect of NGT binding in the active site of a mutant Hex A and its effect on protein function is discussed.

  11. Identification of ganglioside GM2 activator playing a role in cancer cell migration through proteomic analysis of breast cancer secretomes.

    PubMed

    Shin, Jihye; Kim, Gamin; Lee, Jong Won; Lee, Ji Eun; Kim, Yoo Seok; Yu, Jong-Han; Lee, Seung-Taek; Ahn, Sei Hyun; Kim, Hoguen; Lee, Cheolju

    2016-06-01

    Cancer cell secretomes are considered a potential source for the discovery of cancer markers. In this study, the secretomes of four breast cancer (BC) cell lines (Hs578T, MCF-7, MDA-MB-231, and SK-BR-3) were profiled with liquid chromatography-tandem mass spectrometry analysis. A total of 1410 proteins were identified with less than 1% false discovery rate, of which approximately 55% (796 proteins) were predicted to be secreted from cells. To find BC-specific proteins among the secreted proteins, data of immunohistochemical staining compiled in the Human Protein Atlas were investigated by comparing the data of BC tissues with those of normal tissues. By applying various criteria, including higher expression level in BC tissues, higher predicted potential of secretion, and sufficient number of tandem mass spectra, 12 biomarker candidate proteins including ganglioside GM2 activator (GM2A) were selected for confirmation. Western blot analysis and ELISA for plasma samples of healthy controls and BC patients revealed elevation of GM2A in BC patients, especially those who were estrogen receptor-negative. Additionally, siRNA-mediated knockdown of GM2A in BC cells decreased migration in vitro, whereas the overexpression of GM2A led to an increase in cell migration. Although GM2A as a diagnostic and prognostic marker in BC should be carefully verified further, this study has established the potential role of GM2A in BC progression. © 2016 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  12. Optimization of GM(1,1) power model

    NASA Astrophysics Data System (ADS)

    Luo, Dang; Sun, Yu-ling; Song, Bo

    2013-10-01

    GM (1,1) power model is the expansion of traditional GM (1,1) model and Grey Verhulst model. Compared with the traditional models, GM (1,1) power model has the following advantage: The power exponent in the model which best matches the actual data values can be found by certain technology. So, GM (1,1) power model can reflect nonlinear features of the data, simulate and forecast with high accuracy. It's very important to determine the best power exponent during the modeling process. In this paper, according to the GM(1,1) power model of albino equation is Bernoulli equation, through variable substitution, turning it into the GM(1,1) model of the linear albino equation form, and then through the grey differential equation properly built, established GM(1,1) power model, and parameters with pattern search method solution. Finally, we illustrate the effectiveness of the new methods with the example of simulating and forecasting the promotion rates from senior secondary schools to higher education in China.

  13. Serotype-specific differences in inhibition of reovirus infectivity by human-milk glycans are determined by viral attachment protein σ1.

    PubMed

    Iskarpatyoti, Jason A; Morse, E Ashley; McClung, R Paul; Ikizler, Miné; Wetzel, J Denise; Contractor, Nikhat; Dermody, Terence S

    2012-11-25

    Human milk contains many bioactive components, including secretory IgA, oligosaccharides, and milk-associated proteins. We assessed the antiviral effects of several components of milk against mammalian reoviruses. We found that glucocerebroside (GCB) inhibited the infectivity of reovirus strain type 1 Lang (T1L), whereas gangliosides GD3 and GM3 and 3'-sialyllactose (3SL) inhibited the infectivity of reovirus strain type 3 Dearing (T3D). Agglutination of erythrocytes mediated by T1L and T3D was inhibited by GD3, GM3, and bovine lactoferrin. Additionally, α-sialic acid, 3SL, 6'-sialyllactose, sialic acid, human lactoferrin, osteopontin, and α-lactalbumin inhibited hemagglutination mediated by T3D. Using single-gene reassortant viruses, we found that serotype-specific differences segregate with the gene encoding the viral attachment protein. Furthermore, GD3, GM3, and 3SL inhibit T3D infectivity by blocking binding to host cells, whereas GCB inhibits T1L infectivity post-attachment. These results enhance an understanding of reovirus cell attachment and define a mechanism for the antimicrobial activity of human milk. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Atypical juvenile presentation of GM2 gangliosidosis AB in a patient compound-heterozygote for c.259G > T and c.164C > T mutations in the GM2A gene.

    PubMed

    Martins, Carla; Brunel-Guitton, Catherine; Lortie, Anne; Gauvin, France; Morales, Carlos R; Mitchell, Grant A; Pshezhetsky, Alexey V

    2017-06-01

    G M2 -gangliosidosis, AB variant is an extremely rare autosomal recessive inherited disorder caused by mutations in the GM2A gene that encodes G M2 ganglioside activator protein (GM2AP). GM2AP is necessary for solubilisation of G M2 ganglioside in endolysosomes and its presentation to β-hexosaminidase A. Conversely GM2AP deficiency impairs lysosomal catabolism of G M2 ganglioside, leading to its storage in cells and tissues. We describe a 9-year-old child with an unusual juvenile clinical onset of G M2 -gangliosidosis AB. At the age of 3 years he presented with global developmental delay, progressive epilepsy, intellectual disability, axial hypertonia, spasticity, seizures and ataxia, but without the macular cherry-red spots typical for G M2 gangliosidosis. Brain MRI detected a rapid onset of diffuse atrophy, whereas whole exome sequencing showed that the patient is a compound heterozygote for two mutations in GM2A : a novel nonsense mutation, c.259G > T (p.E87X) and a missense mutation c.164C > T (p.P55L) that was recently identified in homozygosity in patients of a Saudi family with a progressive chorea-dementia syndrome. Western blot analysis showed an absence of GM2AP in cultured fibroblasts from the patient, suggesting that both mutations interfere with the synthesis and/or folding of the protein. Finally, impaired catabolism of G M2 ganglioside in the patient's fibroblasts was demonstrated by metabolic labeling with fluorescently labeled G M1 ganglioside and by immunohistochemistry with anti-G M2 and anti-G M3 antibodies. Our observation expands the molecular and clinical spectrum of molecular defects linked to G M2 -gangliosidosis and suggests novel diagnostic approach by whole exome sequencing and perhaps ganglioside analysis in cultured patient's cells.

  15. TALEN mediated targeted editing of GM2/GD2-synthase gene modulates anchorage independent growth by reducing anoikis resistance in mouse tumor cells.

    PubMed

    Mahata, Barun; Banerjee, Avisek; Kundu, Manjari; Bandyopadhyay, Uday; Biswas, Kaushik

    2015-03-12

    Complex ganglioside expression is highly deregulated in several tumors which is further dependent on specific ganglioside synthase genes. Here, we designed and constructed a pair of highly specific transcription-activator like effector endonuclease (TALENs) to disrupt a particular genomic locus of mouse GM2-synthase, a region conserved in coding sequence of all four transcript variants of mouse GM2-synthase. Our designed TALENs effectively work in different mouse cell lines and TALEN induced mutation rate is over 45%. Clonal selection strategy is undertaken to generate stable GM2-synthase knockout cell line. We have also demonstrated non-homologous end joining (NHEJ) mediated integration of neomycin cassette into the TALEN targeted GM2-synthase locus. Functionally, clonally selected GM2-synthase knockout clones show reduced anchorage-independent growth (AIG), reduction in tumor growth and higher cellular adhesion as compared to wild type Renca-v cells. Insight into the mechanism shows that, reduced AIG is due to loss in anoikis resistance, as both knockout clones show increased sensitivity to detachment induced apoptosis. Therefore, TALEN mediated precise genome editing at GM2-synthase locus not only helps us in understanding the function of GM2-synthase gene and complex gangliosides in tumorigenicity but also holds tremendous potential to use TALENs in translational cancer research and therapeutics.

  16. Activation of human naïve Th cells increases surface expression of GD3 and induces neoexpression of GD2 that colocalize with TCR clusters.

    PubMed

    Villanueva-Cabello, Tania M; Mollicone, Rosella; Cruz-Muñoz, Mario E; López-Guerrero, Delia V; Martínez-Duncker, Iván

    2015-12-01

    CD4+ T helper lymphocytes (Th) orchestrate the immune response after their activation by antigen-presenting cells. Activation of naïve Th cells is reported to generate the reduction in surface epitopes of sialic acid (Sia) in α2,3 and α2,6 linkages. In this work, we report that in spite of this glycophenotype, anti-CD3/anti-CD28-activated purified human naïve Th cells show a significant increase in surface Sia, as assessed by metabolic labeling, compared with resting naïve Th cells, suggesting an increased flux of Sia toward Siaα2,8 glycoconjugates. To understand this increase as a result of ganglioside up-regulation, we observed that very early after activation, human naïve Th cells show an increased expression in surface GD3 and neoexpression of surface GD2 gangliosides, the latter clustering with the T cell receptor (TCR). Also, we report that in contrast to GM2/GD2 synthase null mice, lentiviral vector-mediated silencing of the GM2/GD2 synthase in activated human naïve Th cells reduced efficient TCR clustering and downstream signaling, as assessed by proliferation assays and IL-2 and IL-2R expression, pointing to an important role of this enzyme in activation of human naive Th cells. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. TALEN mediated targeted editing of GM2/GD2-synthase gene modulates anchorage independent growth by reducing anoikis resistance in mouse tumor cells

    PubMed Central

    Mahata, Barun; Banerjee, Avisek; Kundu, Manjari; Bandyopadhyay, Uday; Biswas, Kaushik

    2015-01-01

    Complex ganglioside expression is highly deregulated in several tumors which is further dependent on specific ganglioside synthase genes. Here, we designed and constructed a pair of highly specific transcription-activator like effector endonuclease (TALENs) to disrupt a particular genomic locus of mouse GM2-synthase, a region conserved in coding sequence of all four transcript variants of mouse GM2-synthase. Our designed TALENs effectively work in different mouse cell lines and TALEN induced mutation rate is over 45%. Clonal selection strategy is undertaken to generate stable GM2-synthase knockout cell line. We have also demonstrated non-homologous end joining (NHEJ) mediated integration of neomycin cassette into the TALEN targeted GM2-synthase locus. Functionally, clonally selected GM2-synthase knockout clones show reduced anchorage-independent growth (AIG), reduction in tumor growth and higher cellular adhesion as compared to wild type Renca-v cells. Insight into the mechanism shows that, reduced AIG is due to loss in anoikis resistance, as both knockout clones show increased sensitivity to detachment induced apoptosis. Therefore, TALEN mediated precise genome editing at GM2-synthase locus not only helps us in understanding the function of GM2-synthase gene and complex gangliosides in tumorigenicity but also holds tremendous potential to use TALENs in translational cancer research and therapeutics. PMID:25762467

  18. Serum antibodies against gangliosides and Campylobacter jejuni lipopolysaccharides in Miller Fisher syndrome.

    PubMed Central

    Neisser, A; Bernheimer, H; Berger, T; Moran, A P; Schwerer, B

    1997-01-01

    Seven patients with Miller Fisher syndrome (MFS), six in the acute phase and one in the recovery phase, were investigated for serum antibodies against gangliosides and purified lipopolysaccharides (LPS) from different strains of Campylobacter jejuni, including the MFS-associated serotypes O:2 and O:23. Immunoglobulin G antibodies against gangliosides GT1a and GQ1b were found in five of six patients in the acute phase of disease. Three of these patients also displayed antibodies to ganglioside GD2, a finding not previously reported for MFS. All anti-GT1a- and anti-GQ1b-seropositive patients showed antibody binding to C. jejuni LPS, predominantly to O:2 and O:23 LPS. Antibody cross-reactivity between gangliosides GT1a and GQ1b and O:2 and O:23 LPS was demonstrated by adsorption studies. This cross-reactivity between gangliosides and C.jejuni LPS, which is obviously due to oligosaccharide homologies, may be an important pathogenetic factor in the development of MFS after C. jejuni infection. PMID:9317004

  19. Damaging effects of Clostridium perfringens delta toxin on blood platelets and their relevance to ganglioside GM2.

    PubMed

    Jolivet-Reynaud, C; Launay, J M; Alouf, J E

    1988-04-01

    The lytic effect of Clostridium perfringens delta toxin was investigated on goat, human, rabbit, and guinea pig platelets. In contrast to erythrocytes from the latter three species, which are insensitive to the toxin, the platelets were equally lysed by the same amount of toxin. These results suggest the presence of GM2 or GM2-like ganglioside(s) as a specific recognition site of the toxin on platelet plasmic membrane as previously established for sensitive erythrocytes. Plasmic membrane damage of human platelets was evidenced by the release of entrapped alpha-[14C]aminoisobutyric acid used as a cytoplasmic marker. The specific binding of hemolytically active 125I-delta toxin by human and rabbit platelets was practically identical, dose dependent, and inhibitable by GM2. Labeled toxin was also bound by various subcellular organelles separated from rabbit platelets except the 5-hydroxytryptamine (5-HT)-containing dense bodies, suggesting the absence or inaccessibility of GM2 on the surface of the latter organelles. This result correlates with the low amounts of 5-[3H]HT liberated after platelet challenge with delta toxin whereas this mediator was massively liberated upon lysis by the sulfhydryl-activated toxin alveolysin. The levels of M and P forms of phenol sulfotransferase (PST), involved in 5-HT catabolism, were determined in human platelet lysates after challenge with delta toxin, alveolysin, and other disruptive treatments. The low PST-M activities detected after lysis by delta toxin suggest that this isoenzyme is very likely associated to dense bodies in contrast to PST-P which is cytoplasmic. Platelet lysis by the toxin allows easy separation of these organelles.

  20. The possible contribution of a general glycosphingolipid transporter, GM2 activator protein, to atherosclerosis.

    PubMed

    Yanai, Hidekatsu; Yoshida, Hiroshi; Tomono, Yoshiharu; Tada, Norio; Chiba, Hitoshi

    2006-12-01

    We previously found that oxidized low-density lipoprotein (LDL) elevated the expression of mRNA of GalNAcbeta1-4[NeuNAcalpha2-3]Galbeta1-4Glc-Cer (GM2) ganglioside activator protein, in human monocyte-derived macrophages. Recently, GM2 activator protein has become known as a general glycosphingolipid transporter as well as a specific cofactor for the hydrolysis of GM2 ganglioside by lysosomal beta-hexosaminidase A. Accumulation of glycosphingolipids has been observed in the serum or aorta of atherosclerotic model animals and humans. The proliferation of aortic smooth muscle cells, elevation of LDL uptake by macrophages, interfering LDL clearance by the liver, and enhancement of platelet adhesion to collagen have been proposed as the underlying mechanisms of glycosphingolipid-mediated atherogenesis. The GM2 activator protein can bind, solubilize and transport a broad spectrum of lipid molecules, indicating that GM2 activator protein may function as a general intra- and inter-cellular lipid transport protein. Collectively, elevated levels of GM2 activator protein in the aorta may be another feature of human atherosclerosis.

  1. Cancer vaccines: an update with special focus on ganglioside antigens.

    PubMed

    Bitton, Roberto J; Guthmann, Marcel D; Gabri, Mariano R; Carnero, Ariel J L; Alonso, Daniel F; Fainboim, Leonardo; Gomez, Daniel E

    2002-01-01

    the (CIM) from La Havana, Cuba, to developed new strategies for specific active immunotherapy. The project included two ganglioside based vaccines and one anti-idiotypic vaccine. We focused on two antigens: first GM3, an ubiquitous antigen which is over-expressed in several epithelial tumor types; and a second one, N-Glycolyl-GM3 a more molecule, not being expressed in normal tissues and recently found in several neoplastic cells, in particular breast, melanoma and neuroectodermal cancer cells. We developed two vaccines, one with each antigen, both using proteins derived from the outer membrane proteins (OMP) of Neisseria Meningitidis B, as carriers. We developed also the 1E10 vaccine; an anti-idiotype vaccine designed to mimic the N-Glycolyl-GM3 gangliosides. This monoclonal antibody is an Ab2-type-antibody which recognizes the Ab1 antibody called P3, the latter is a monoclonal antibody that specifically recognizes gangliosides as antigens. Since 1998 we initiated a clinical development program for these three compounds. Results of the phase I clinical trials proved that the three vaccines were safe and able to elicit specific antibody responses. In addition we were able to demonstrate the activation of the cellular arm of the immune response in patients treated with the GM3 vaccine. Although phase I trials are not designed to evaluate antitumor efficacy, it was encouraging to observe tumor shrinkage in some patients treated both with the GM3 and N-Glycolyl-GM3 vaccines. We have already begun a phase II program in several neoplastic diseases, with all three vaccines.

  2. Design and efficient synthesis of novel GM2 analogues with respect to the elucidation of the function of GM2 activator.

    PubMed

    Komori, Tatsuya; Ando, Takayuki; Imamura, Akihiro; Li, Yu-Teh; Ishida, Hideharu; Kiso, Makoto

    2008-10-01

    To elucidate the mechanism underlying the hydrolysis of the GalNAcbeta1-->4Gal linkage in ganglioside GM2 [GalNAcbeta1-->4(NeuAcalpha2-->3)Galbeta1-->4Glcbeta1-->1' Cer] by beta-hexosaminidase A (Hex A) with GM2 activator protein, we designed and synthesized two kinds of GM2 linkage analogues-6'-NeuAc-GM2 and alpha-GalNAc-GM2. In this paper, the efficient and systematic synthesis of these GM2 analogues was described. The highlight of our synthesis process is that the key intermediates, newly developed sialyllactose derivatives, were efficiently prepared in sufficient quantities; these derivatives directly served as highly reactive glycosyl acceptors and coupled with GalNTroc donors to furnish the assembly of GM2 tetrasaccharides in large quantities.

  3. A comparative study on GM (1,1) and FRMGM (1,1) model in forecasting FBM KLCI

    NASA Astrophysics Data System (ADS)

    Ying, Sah Pei; Zakaria, Syerrina; Mutalib, Sharifah Sakinah Syed Abd

    2017-11-01

    FTSE Bursa Malaysia Kuala Lumpur Composite Index (FBM KLCI) is a group of indexes combined in a standardized way and is used to measure the Malaysia overall market across the time. Although composite index can give ideas about stock market to investors, it is hard to predict accurately because it is volatile and it is necessary to identify a best model to forecast FBM KLCI. The objective of this study is to determine the most accurate forecasting model between GM (1,1) model and Fourier Residual Modification GM (1,1) (FRMGM (1,1)) model to forecast FBM KLCI. In this study, the actual daily closing data of FBM KLCI was collected from January 1, 2016 to March 15, 2016. GM (1,1) model and FRMGM (1,1) model were used to build the grey model and to test forecasting power of both models. Mean Absolute Percentage Error (MAPE) was used as a measure to determine the best model. Forecasted value by FRMGM (1,1) model do not differ much than the actual value compare to GM (1,1) model for in-sample and out-sample data. Results from MAPE also show that FRMGM (1,1) model is lower than GM (1,1) model for in-sample and out-sample data. These results shown that FRMGM (1,1) model is better than GM (1,1) model to forecast FBM KLCI.

  4. Rapid and sensitive MRM-based mass spectrometry approach for systematically exploring ganglioside-protein interactions.

    PubMed

    Tian, Ruijun; Jin, Jing; Taylor, Lorne; Larsen, Brett; Quaggin, Susan E; Pawson, Tony

    2013-04-01

    Gangliosides are ubiquitous components of cell membranes. Their interactions with bacterial toxins and membrane-associated proteins (e.g. receptor tyrosine kinases) have important roles in the regulation of multiple cellular functions. Currently, an effective approach for measuring ganglioside-protein interactions especially in a large-scale fashion is largely missing. To this end, we report a facile MS-based approach to explore gangliosides extracted from cells and measure their interactions with protein of interest globally. We optimized a two-step protocol for extracting total gangliosides from cells within 2 h. Easy-to-use magnetic beads conjugated with a protein of interest were used to capture interacting gangliosides. To measure ganglioside-protein interaction on a global scale, we applied a high-sensitive LC-MS system, containing hydrophilic interaction LC separation and multiple reaction monitoring-based MS for ganglioside detection. Sensitivity for ganglioside GM1 is below 100 pg, and the whole analysis can be done in 20 min with isocratic elution. To measure ganglioside interactions with soluble vascular endothelial growth factor receptor 1 (sFlt1), we extracted and readily detected 36 species of gangliosides from perivascular retinal pigment epithelium cells across eight different classes. Twenty-three ganglioside species have significant interactions with sFlt1 as compared with IgG control based on p value cutoff <0.05. These results show that the described method provides a rapid and high-sensitive approach for systematically measuring ganglioside-protein interactions. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. NEU3 inhibitory effect of naringin suppresses cancer cell growth by attenuation of EGFR signaling through GM3 ganglioside accumulation.

    PubMed

    Yoshinaga, Ayana; Kajiya, Natsuki; Oishi, Kazuki; Kamada, Yuko; Ikeda, Asami; Chigwechokha, Petros Kingstone; Kibe, Toshiro; Kishida, Michiko; Kishida, Shosei; Komatsu, Masaharu; Shiozaki, Kazuhiro

    2016-07-05

    Naringin, which is one of the flavonoids contained in citrus fruits, is well known to possess various healthy functions to humans. It has been reported that naringin suppresses cancer cell growth in vitro and in vivo, although the underlying mechanisms are not fully understood. Recently, the roles of glycoconjugates, such as gangliosides, in cancer cells have been focused because of their regulatory effects of malignant phenotypes. Here, to clarify the roles of naringin in the negative-regulation of cancer cell growth, the alteration of glycoconjugates induced by naringin exposure and its significance on cell signaling were investigated. Human cancer cells, HeLa and A549, were exposed to various concentrations of naringin. Naringin treatment induced the suppression of cell growth toward HeLa and A549 cells accompanied with an increase of apoptotic cells. In naringin-exposed cells, GM3 ganglioside was drastically increased compared to the GM3 content prior to the treatment. Furthermore, naringin inhibited NEU3 sialidase, a GM3 degrading glycosidase. Similarly, NEU3 inhibition activities were also detected by other flavanone, such as hesperidin and neohesperidin dihydrocalcone, but their aglycones showed less inhibitions. Naringin-treated cancer cells showed suppressed EGFR and ERK phosphorylation levels. These results suggest a novel mechanism of naringin in the suppression of cancer cell growth through the alteration of glycolipids. NEU3 inhibitory effect of naringin induced GM3 accumulation in HeLa and A549 cells, leading the attenuation of EGFR/ERK signaling accompanied with a decrease in cell growth. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Multimodal detection of GM2 and GM3 lipid species in the brain of mucopolysaccharidosis type II mouse by serial imaging mass spectrometry and immunohistochemistry.

    PubMed

    Dufresne, Martin; Guneysu, Daniel; Patterson, Nathan Heath; Marcinkiewicz, Mieczyslaw Martin; Regina, Anthony; Demeule, Michel; Chaurand, Pierre

    2017-02-01

    Mucopolysaccharidosis type II (Hunter's disease) mouse model (IdS-KO) was investigated by both imaging mass spectrometry (IMS) and immunohistochemistry (IHC) performed on the same tissue sections. For this purpose, IdS-KO mice brain sections were coated with sublimated 1,5-diaminonaphtalene and analyzed by high spatial resolution IMS (5 μm) and anti-GM3 IHC on the same tissue sections to characterize the ganglioside monosialated ganglioside (GM) deposits found in Hunter's disease. IMS analysis have found that two species of GM3 and GM2 that are only different due to the length of their fatty acid residue (stearic or arachidic residue) were overexpressed in the IdS-KO mice compared to a control mouse. GM3 and GM2 were characterized by on-tissue exact mass and MS/MS compared to a GM3 standard. Realignment of both IMS and IHC data sets further confirmed the observed regioselective signal previously detected by providing direct correlation of the IMS image for the two GM3 overly expressed MS signals with the anti-GM3 IHC image. Furthermore, these regioselective GM MS signals were also found to have highly heterogeneous distributions within the GM3-IHC staining. Some deposits showed high content in GM3 and GM2 stearic species (r = 0.74) and others had more abundant GM3 and GM2 arachidic species (r = 0.76). Same-section analysis of Hunter's disease mouse model by both high spatial resolution IMS and IHC provides a more in-depth analysis of the composition of the GM aggregates while providing spatial distribution of the observed molecular species. Graphical Abstract Ganglioside imaging mass spectrometry followed by immunohistochemistry performed on the same tissue section.

  7. Guillain–Barré syndrome and anti-ganglioside antibodies: a clinician-scientist’s journey

    PubMed Central

    YUKI, Nobuhiro

    2012-01-01

    Guillain–Barré syndrome (GBS) is the most frequent cause of acute flaccid paralysis. Having seen my first GBS patient in 1989, I have since then dedicated my time in research towards understanding the pathogenesis of GBS. Along with several colleagues, we identified IgG autoantibodies against ganglioside GM1 in two patients with GBS subsequent to Campylobacter jejuni enteritis. We proceeded to demonstrate molecular mimicry between GM1 and bacterial lipo-oligosaccharide of C. jejuni isolated from a patient with GBS. Our group then established a disease model for GBS by sensitization with GM1 or GM1-like lipo-oligosaccharide. With this, a new paradigm that carbohydrate mimicry can cause autoimmune disorders was demonstrated, making GBS the first proof of molecular mimicry in autoimmune disease. Patients with Fisher syndrome, characterized by ophthalmoplegia and ataxia, can develop the disease after an infection by C. jejuni. We showed that the genetic polymorphism of C. jejuni sialyltransferase, an enzyme essential to the biosynthesis of ganglioside-like lipo-oligosaccharides determines whether patients develop GBS or Fisher syndrome. This introduces another paradigm that microbial genetic polymorphism can determine the clinical phenotype of human autoimmune diseases. Similarities between the clinical presentation of Fisher syndrome and Bickerstaff brainstem encephalitis have caused debate as to whether they are in fact the same disease. We demonstrated that IgG anti-GQ1b antibodies were common to both, suggesting that they are part of the same disease spectrum. We followed this work by clarifying the nosological relationship between the various clinical presentations within the anti-GQ1b antibody syndrome. In this review, I wanted to share my journey from being a clinician to a clinician-scientist in the hopes of inspiring younger clinicians to follow a similar path. PMID:22850724

  8. Binding, Conformational Transition and Dimerization of Amyloid-β Peptide on GM1-Containing Ternary Membrane: Insights from Molecular Dynamics Simulation

    PubMed Central

    Manna, Moutusi; Mukhopadhyay, Chaitali

    2013-01-01

    Interactions of amyloid-β (Aβ) with neuronal membrane are associated with the progression of Alzheimer’s disease (AD). Ganglioside GM1 has been shown to promote the structural conversion of Aβ and increase the rate of peptide aggregation; but the exact nature of interaction driving theses processes remains to be explored. In this work, we have carried out atomistic-scale computer simulations (totaling 2.65 µs) to investigate the behavior of Aβ monomer and dimers in GM1-containing raft-like membrane. The oligosaccharide head-group of GM1 was observed to act as scaffold for Aβ-binding through sugar-specific interactions. Starting from the initial helical peptide conformation, a β-hairpin motif was formed at the C-terminus of the GM1-bound Aβ-monomer; that didn’t appear in absence of GM1 (both in fluid POPC and liquid-ordered cholesterol/POPC bilayers and also in aqueous medium) within the simulation time span. For Aβ-dimers, the β-structure was further enhanced by peptide-peptide interactions, which might influence the propensity of Aβ to aggregate into higher-ordered structures. The salt-bridges and inter-peptide hydrogen bonds were found to account for dimer stability. We observed spontaneous formation of intra-peptide D23-K28 salt-bridge and a turn at V24GSN27 region - long been accepted as characteristic structural-motifs for amyloid self-assembly. Altogether, our results provide atomistic details of Aβ-GM1 and Aβ-Aβ interactions and demonstrate their importance in the early-stages of GM1-mediated Aβ-oligomerisation on membrane surface. PMID:23951128

  9. Alteration of Electrostatic Surface Potential Enhances Affinity and Tumor Killing Properties of Anti-ganglioside GD2 Monoclonal Antibody hu3F8.

    PubMed

    Zhao, Qi; Ahmed, Mahiuddin; Guo, Hong-fen; Cheung, Irene Y; Cheung, Nai-Kong V

    2015-05-22

    Ganglioside GD2 is highly expressed on neuroectodermal tumors and an attractive therapeutic target for antibodies that have already shown some clinical efficacy. To further improve the current antibodies, which have modest affinity, we sought to improve affinity by using a combined method of random mutagenesis and in silico assisted design to affinity-mature the anti-GD2 monoclonal antibody hu3F8. Using yeast display, mutants in the Fv with enhanced binding over the parental clone were FACS-sorted and cloned. In silico modeling identified the minimal key interacting residues involved in the important charged interactions with the sialic acid groups of GD2. Two mutations, D32H (L-CDR1) and E1K (L-FR1) altered the electrostatic surface potential of the antigen binding site, allowing for an increase in positive charge to enhance the interaction with the negatively charged GD2-pentasaccharide headgroup. Purified scFv and IgG mutant forms were then tested for antigen specificity by ELISA, for tissue specificity by immunohistochemistry, for affinity by BIACORE, for antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-mediated cytotoxicity in vitro, and for anti-tumor efficacy in xenografted humanized mice. The nearly 7-fold improvement in affinity of hu3F8 with a single D32H (L-CDR1) mutation translated into a ∼12-fold improvement in NK92MI-transfected CD16-mediated ADCC, a 6-fold improvement in CD32-mediated ADCC, and a 2.5-fold improvement in complement-mediated cytotoxicity while maintaining restricted normal tissue cross-reactivity and achieving substantial improvement in tumor ablation in vivo. Despite increasing GD2 affinity, the double mutation D32H (L-CDR1) and E1K (L-FR1) did not further improve anti-tumor efficacy. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Anti-ganglioside antibodies in Guillain-Barré syndrome and chronic inflammatory demyelinating polyneuropathy in Chinese patients.

    PubMed

    Fan, Chenghe; Jin, Haiqiang; Hao, Hongjun; Gao, Feng; Sun, Yongan; Lu, Yuanyuan; Liu, Yuanyuan; Lv, Pu; Cui, Wei; Teng, Yuming; Huang, Yining

    2017-04-01

    In this study we investigated the relationships between anti-ganglioside antibodies and Guillain-Barré syndrome (GBS) and chronic inflammatory demyelinating polyneuropathy (CIDP). Samples from 48 Chinese patients diagnosed with GBS and 18 patients diagnosed with CIDP were retrospectively reviewed. In the GBS patients, 62.5% were classified as having acute inflammatory demyelinating polyneuropathy (AIDP), 27.1% were found to have acute motor axonal neuropathy (AMAN), and 10.4% were unclassified. Serum IgG anti-ganglioside antibodies were detected in 46.2% of the AMAN patients and in 6.7% of the AIDP patients (P < 0.05); 5.6% of the 18 CIDP patients were IgG antibody positive, and 27.8% were IgM antibody positive. Facial palsy and sensory impairment were significantly associated with IgM antibodies. These results suggest that IgG anti-GM1 antibodies are associated with AMAN, but not with AIDP, and that IgM antibodies against GM1, GM2, and GM3 are associated with facial nerve palsy. Muscle Nerve 55: 470-475, 2017. © 2016 Wiley Periodicals, Inc.

  11. Specific binding of Haemophilus influenzae to minor gangliosides of human respiratory epithelial cells.

    PubMed Central

    Fakih, M G; Murphy, T F; Pattoli, M A; Berenson, C S

    1997-01-01

    Gangliosides are sialylated glycosphingolipids that serve as receptors for various bacteria. To investigate endogenous gangliosides of human respiratory epithelial cells as potential receptors for Haemophilus influenzae, three strains, including nontypeable H. influenzae (NTHI) 1479, and isogenic fimbriated (f+) and nonfimbriated (f0) H. influenzae type b 770235, were 3H labeled and overlaid on two-dimensional thin-layer chromatography (TLC) plates containing either purified HEp-2 gangliosides or murine brain gangliosides. NTHI 1479 bound exclusively to two distinct minor ganglioside doublets, with mobilities near that of GM1. These minor gangliosides comprised only 14.2 and 9.4% of the total, respectively. NTHI 1479 also bound to a distinct ganglioside of human macrophages whose chromatographic mobilities closely resemble those of one of the NTHI-binding gangliosides of HEp-2 cells. H. influenzae type b 770235 f+ and f0 each bound to a different minor HEp-2 ganglioside doublet, with proportionately weaker affinity for a major ganglioside doublet. Remarkably, none of the three strains bound to any murine brain gangliosides. Moreover, when 80 to 90% of sialic acid residues were enzymatically removed from HEp-2 gangliosides, NTHI 1479 binding was proportionately impaired, compared with untreated controls. Our findings support a role for specific gangliosides of specific cells as receptors for H. influenzae strains. Our findings further demonstrate that individual minor gangliosides possess unique biological properties. PMID:9125549

  12. Cross-reactive antibodies against GM2 and CMV-infected fibroblasts in Guillain-Barré syndrome.

    PubMed

    Ang, C W; Jacobs, B C; Brandenburg, A H; Laman, J D; van der Meché, F G; Osterhaus, A D; van Doorn, P A

    2000-04-11

    To investigate whether anti-GM2 antibodies in patients with Guillain-Barré syndrome (GBS) are induced by molecular mimicry with cytomegalovirus (CMV). Antibodies against ganglioside GM2 are frequently present in the serum from GBS patients with an antecedent infection with CMV. The authors detected inhibition of anti-GM2 reactivity after incubation of GM2-reactive serum samples with fibroblasts infected with a GBS-associated CMV strain. Control sera consisted of GQ1b-reactive samples, and control antigens included uninfected fibroblasts and fibroblasts that were infected with other herpes viruses. Serum immunoglobulin M reactivity with GM2 was decreased in a dose-dependent manner after incubation with CMV-infected fibroblasts. Incubation of anti-GM2-positive serum samples with uninfected fibroblasts and fibroblasts infected with varicella zoster virus did not inhibit anti-GM2 reactivity, whereas this reactivity was slightly decreased after incubation with herpes simplex virus type 1 in one patient. Antibodies against ganglioside GQ1b did not react with CMV-infected fibroblasts. CMV-infected fibroblasts express gangliosidelike epitopes that recognize specifically anti-GM2 antibodies. These results support the hypothesis that antiganglioside antibodies in CMV-infected GBS patients are induced by molecular mimicry between GM2 and antigens that are induced by a CMV infection.

  13. Clustering T cell GM1 Lipid Rafts Increases Cellular Resistance to Shear on Fibronectin through Changes in Integrin Affinity and Cytoskeletal Dynamics

    PubMed Central

    Mitchell, Jason S.; Brown, Wells S.; Woodside, Darren G.; Vanderslice, Peter; McIntyre, Bradley W.

    2008-01-01

    Lipid rafts are small laterally mobile microdomains that are highly enriched in lymphocyte signaling molecules. GM1 gangliosides are a common lipid raft component and have been shown to be important in many T cell functions. The aggregation of specific GM1 lipid rafts can control many T cell activation events, including their novel association with T cell integrins. We found that clustering GM1 lipid rafts can regulate β1 integrin function. This was apparent through increased resistance to shear flow dependent detachment of T cells adherent to the α4β1 and α5β1 integrin ligand fibronectin (FN). Adhesion strengthening as a result of clustering GM1 enriched lipid rafts correlated with increased cellular rigidity and morphology through the localization of cortical F-actin, the resistance to shear induced cell stretching, and an increase in the surface area and symmetry of the contact area between the cell surface and adhesive substrate. Furthermore, clustering GM1 lipid rafts could initiate integrin “inside-out” signaling mechanisms. This was seen through increased integrin-cytoskeleton associations and enhanced soluble binding of FN and VCAM-1 suggesting the induction of high affinity integrin conformations. The activation of these adhesion strengthening characteristics appear to be specific for the aggregation of GM1 lipid rafts as the aggregation of the heterogeneous raft associated molecule CD59 failed to activate these functions. These findings indicate a novel mechanism to signal to β1 integrins and to activate adhesion strengthening processes. PMID:19139760

  14. The assembly of GM1 glycolipid- and cholesterol-enriched raft-like membrane microdomains is important for giardial encystation.

    PubMed

    De Chatterjee, Atasi; Mendez, Tavis L; Roychowdhury, Sukla; Das, Siddhartha

    2015-05-01

    Although encystation (or cyst formation) is an important step of the life cycle of Giardia, the cellular events that trigger encystation are poorly understood. Because membrane microdomains are involved in inducing growth and differentiation in many eukaryotes, we wondered if these raft-like domains are assembled by this parasite and participate in the encystation process. Since the GM1 ganglioside is a major constituent of mammalian lipid rafts (LRs) and known to react with cholera toxin B (CTXB), we used Alexa Fluor-conjugated CTXB and GM1 antibodies to detect giardial LRs. Raft-like structures in trophozoites are located in the plasma membranes and on the periphery of ventral discs. In cysts, however, they are localized in the membranes beneath the cyst wall. Nystatin and filipin III, two cholesterol-binding agents, and oseltamivir (Tamiflu), a viral neuraminidase inhibitor, disassembled the microdomains, as evidenced by reduced staining of trophozoites with CTXB and GM1 antibodies. GM1- and cholesterol-enriched LRs were isolated from Giardia by density gradient centrifugation and found to be sensitive to nystatin and oseltamivir. The involvement of LRs in encystation could be supported by the observation that raft inhibitors interrupted the biogenesis of encystation-specific vesicles and cyst production. Furthermore, culturing of trophozoites in dialyzed medium containing fetal bovine serum (which is low in cholesterol) reduced raft assembly and encystation, which could be rescued by adding cholesterol from the outside. Our results suggest that Giardia is able to form GM1- and cholesterol-enriched lipid rafts and these raft domains are important for encystation. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  15. Effects of Gangliosides on the Activity of the Plasma Membrane Ca2+-ATPase

    PubMed Central

    Jiang, Lei; Bechtel, Misty D.; Bean, Jennifer L.; Winefield, Robert; Williams, Todd D.; Zaidi, Asma; Michaelis, Elias K.; Michaelis, Mary L.

    2014-01-01

    Control of intracellular calcium concentrations ([Ca2+]i) is essential for neuronal function, and the plasma membrane Ca2+-ATPase (PMCA) is crucial for the maintenance of low [Ca2+]i. We previously reported on loss of PMCA activity in brain synaptic membranes during aging. Gangliosides are known to modulate Ca2+ homeostasis and signal transduction in neurons. In the present study, we observed age-related changes in the ganglioside composition of synaptic plasma membranes. This led us to hypothesize that alterations in ganglioside species might contribute to the age-associated loss of PMCA activity. To probe the relationship between changes in endogenous ganglioside content or composition and PMCA activity in membranes of cortical neurons, we induced depletion of gangliosides by treating neurons with D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (D-PDMP). This caused a marked decrease in the activity of PMCA, which suggested a direct correlation between ganglioside content and PMCA activity. Neurons treated with neuraminidase exhibited an increase in GM1 content, a loss in poly-sialoganglioside content, and a decrease in PMCA activity that was greater than that produced by D-PDMP treatment. Thus, it appeared that poly-sialogangliosides had a stimulatory effect whereas mono-sialogangliosides had the opposite effect. Our observations add support to previous reports of PMCA regulation by gangliosides by demonstrating that manipulations of endogenous ganglioside content and species affect the activity of PMCA in neuronal membranes. Furthermore, our studies suggest that age-associated loss in PMCA activity may result in part from changes in the lipid environment of this Ca2+ transporter. PMID:24434060

  16. CRISPR/Cas9-Mediated Genomic Deletion of the Beta-1, 4 N-acetylgalactosaminyltransferase 1 Gene in Murine P19 Embryonal Carcinoma Cells Results in Low Sensitivity to Botulinum Neurotoxin Type C.

    PubMed

    Tsukamoto, Kentaro; Ozeki, Chikako; Kohda, Tomoko; Tsuji, Takao

    2015-01-01

    Botulinum neurotoxins produced by Clostridium botulinum cause flaccid paralysis by inhibiting neurotransmitter release at peripheral nerve terminals. Previously, we found that neurons derived from the murine P19 embryonal carcinoma cell line exhibited high sensitivity to botulinum neurotoxin type C. In order to prove the utility of P19 cells for the study of the intracellular mechanism of botulinum neurotoxins, ganglioside-knockout neurons were generated by deletion of the gene encoding beta-1,4 N-acetylgalactosaminyltransferase 1 in P19 cells using the clustered regularly interspaced short palindromic repeats combined with Cas9 (CRISPR/Cas9) system. By using this system, knockout cells could be generated more easily than with previous methods. The sensitivity of the generated beta-1,4 N-acetylgalactosaminyltransferase 1-depleted P19 neurons to botulinum neurotoxin type C was decreased considerably, and the exogenous addition of the gangliosides GD1a, GD1b, and GT1b restored the susceptibility of P19 cells to botulinum neurotoxin type C. In particular, addition of a mixture of these three ganglioside more effectively recovered the sensitivity of knockout cells compared to independent addition of GD1a, GD1b, or GT1b. Consequently, the genome-edited P19 cells generated by the CRISPR/Cas9 system were useful for identifying and defining the intracellular molecules involved in the toxic action of botulinum neurotoxins.

  17. Induction of a melanoma-specific antibody response by a monovalent, but not a divalent, synthetic GM2 neoglycopeptide.

    PubMed

    Bay, S; Fort, S; Birikaki, L; Ganneau, C; Samain, E; Coïc, Y-M; Bonhomme, F; Dériaud, E; Leclerc, C; Lo-Man, R

    2009-04-01

    The GM2 ganglioside represents an important target for specific anticancer immunotherapy. We designed and synthesized a neoglycopeptide immunogen displaying one or two copies of the GM2 tetrasaccharidic moiety. These glycopeptides were prepared using the Huisgen cycloaddition, which enables the efficient ligation of the alkyne-functionalized biosynthesized GM2 with an azido CD4(+) T cell epitope peptide. It is worth noting that the GM2 can be produced on a gram scale in bacteria, which can be advantageous for a scale-up of the process. We show here for the first time that a fully synthetic glycopeptide, which is based on a ganglioside carbohydrate moiety, can induce human tumor cell-specific antibodies after immunization in mice. Interestingly, the monovalent, but not the divalent, form of GM2 peptide construct induced antimelanoma antibodies. Unlike traditional vaccines, this vaccine is a pure chemically-defined entity, a key quality for consistent studies and safe clinical evaluation. Therefore, such carbohydrate-peptide conjugate represents a promising cancer vaccine strategy for active immunotherapy targeting gangliosides.

  18. Novel insights into the lipidome of glioblastoma cells based on a combined PLSR and DD-HDS computational analysis

    NASA Astrophysics Data System (ADS)

    Lespinats, S.; Meyer-Bäse, Anke; He, Huan; Marshall, Alan G.; Conrad, Charles A.; Emmett, Mark R.

    2009-05-01

    Partial Least Square Regression (PLSR) and Data-Driven High Dimensional Scaling (DD-HDS) are employed for the prediction and the visualization of changes in polar lipid expression induced by different combinations of wild-type (wt) p53 gene therapy and SN38 chemotherapy of U87 MG glioblastoma cells. A very detailed analysis of the gangliosides reveals that certain gangliosides of GM3 or GD1-type have unique properties not shared by the others. In summary, this preliminary work shows that data mining techniques are able to determine the modulation of gangliosides by different treatment combinations.

  19. Ganglioside GT1b protects human spermatozoa from hydrogen peroxide-induced DNA and membrane damage.

    PubMed

    Gavella, Mirjana; Garaj-Vrhovac, Verica; Lipovac, Vaskresenija; Antica, Mariastefania; Gajski, Goran; Car, Nikica

    2010-06-01

    We have reported previously that various gangliosides, the sialic acid containing glycosphingolipids, provide protection against sperm injury caused by reactive oxygen species (ROS). In this study, we investigated the effect of treatment of human spermatozoa with ganglioside GT1b on hydrogen peroxide (H(2)O(2))-induced DNA fragmentation and plasma membrane damage. Single-cell gel electrophoresis (Comet assay) used in the assessment of sperm DNA integrity showed that in vitro supplemented GT1b (100 microm) significantly reduced DNA damage induced by H(2)O(2) (200 microm) (p < 0.05). Measurements of Annexin V binding in combination with the propidium iodide vital dye labelling demonstrated that the spermatozoa pre-treated with GT1b exhibited a significant increase (p < 0.05) in the percentage of live cells with intact membrane and decreased phosphatidylserine translocation after exposure to H(2)O(2). Flow cytometry using the intracellular ROS-sensitive fluorescence dichlorodihydrofluorescein diacetate dye employed to investigate the transport of the extracellularly supplied H(2)O(2) into the cell interior revealed that ganglioside GT1b completely inhibited the passage of H(2)O(2) through the sperm membrane. These results suggest that ganglioside GT1b may protect human spermatozoa from H(2)O(2)-induced damage by rendering sperm membrane more hydrophobic, thus inhibiting the diffusion of H(2)O(2) across the membrane.

  20. Major and c-series gangliosides in lenticular tissues: mammals to molluscs.

    PubMed

    Saito, M; Sugiyama, K

    2001-10-01

    Gangliosides of eye lenses were examined in mammals (rat, rabbits, pig, cow), bird (chicken), reptile (terrapin), amphibian (bullfrog), bony fish (red sea bream, bluefin tuna, bonito, Pacific mackerel) and molluscs (common squid, Pacific octopus). Besides the fact that GM3 was the common ganglioside species, the composition of major gangliosides in mammalian eye lenses significantly differed from each other. While gangliotetraose gangliosides were abundant in rat eye lens, they did not constitute major components in porcine and bovine tissues. The c-series ganglioside GT3 was expressed in rat eye lenses but were practically absent in other mammalian tissues. The composition of major gangliosides in eye lenses of lower animals varied from species to species, whereas c-series gangliosides were consistently expressed, showing similar compositional profiles. Our results demonstrate the species-specific compositions of lenticular gangliosides. Evidence was also provided suggesting that eye lenses of common squid (Todarodes pacificus) and Pacific octopus (Octopus vulgaris) express gangliosides including gangliotetraose species and c-series gangliosides.

  1. Distinct Immunoglobulin Class and Immunoglobulin G Subclass Patterns against Ganglioside GQ1b in Miller Fisher Syndrome following Different Types of Infection

    PubMed Central

    Schwerer, Beatrix; Neisser, Andrea; Bernheimer, Hanno

    1999-01-01

    We studied serum antibodies against gangliosides GQ1b and GM1 in 13 patients with Miller Fisher syndrome (MFS) and in 18 patients with Guillain-Barré syndrome (GBS) with cranial nerve involvement. Anti-GQ1b titers were elevated in all patients with MFS cases (immunoglobulin G [IgG] > IgA, IgM), and in 8 of the 18 with GBS. Lower frequencies of increased anti-GM1 titers were observed in MFS patients (3 of 13), as well as in GBS patients (5 of 18). During the course of MFS, anti-GQ1b titers of all Ig classes decreased within 3 weeks after onset. By contrast, anti-GM1 titers (mainly IgM) transiently increased during the course of MFS in five of six patients, suggesting a nonspecific secondary immune response. In patients with MFS following respiratory infections, IgG was the major anti-GQ1b Ig class (six of six patients) and IgG3 was the major subclass (five of six). In contrast, four of five patients with MFS following gastrointestinal infections showed predominance of anti-GQ1b IgA or IgM over IgG and predominance of the IgG2 subclass; anti-GQ1b IgG (IgG3) prevailed in one patient only. These distinct Ig patterns strongly suggest that different infections may trigger different mechanisms of anti-GQ1b production, such as via T-cell-dependent as opposed to T-cell-independent pathways. Thus, the origin of antibodies against GQ1b in MFS may be determined by the type of infectious agent that precipitates the disease. PMID:10225903

  2. Biochemical characterization of the interactions between doxorubicin and lipidic GM1 micelles with or without paclitaxel loading

    PubMed Central

    Leonhard, Victoria; Alasino, Roxana V; Bianco, Ismael D; Garro, Ariel G; Heredia, Valeria; Beltramo, Dante M

    2015-01-01

    Doxorubicin (Dox) is an anthracycline anticancer drug with high water solubility, whose use is limited primarily due to significant side effects. In this study it is shown that Dox interacts with monosialoglycosphingolipid (GM1) ganglioside micelles primarily through hydrophobic interactions independent of pH and ionic strength. In addition, Dox can be incorporated even into GM1 micelles already containing highly hydrophobic paclitaxel (Ptx). However, it was not possible to incorporate Ptx into Dox-containing GM1 micelles, suggesting that Dox could be occupying a more external position in the micelles. This result is in agreement with a higher hydrolysis of Dox than of Ptx when micelles were incubated at alkaline pH. The loading of Dox into GM1 micelles was observed over a broad range of temperature (4°C–55°C). Furthermore, Dox-loaded micelles were stable in aqueous solutions exhibiting no aggregation or precipitation for up to 2 months when kept at 4°C–25°C and even after freeze–thawing cycles. Upon exposure to blood components, Dox-containing micelles were observed to interact with human serum albumin. However, the amount of human serum albumin that ended up being associated to the micelles was inversely related to the amount of Dox, suggesting that both could share their binding sites. In vitro studies on Hep2 cells showed that the cellular uptake and cytotoxic activity of Dox and Ptx from the micellar complexes were similar to those of the free form of these drugs, even when the micelle was covered with albumin. These results support the idea of the existence of different nano-domains in a single micelle and the fact that this micellar model could be used as a platform for loading and delivering hydrophobic and hydrophilic active pharmaceutical ingredients. PMID:26005348

  3. The Pathogenic Role of Ganglioside Metabolism in Alzheimer's Disease-Cholinergic Neuron-Specific Gangliosides and Neurogenesis.

    PubMed

    Ariga, Toshio

    2017-01-01

    Alzheimer's disease (AD) is the most common type of dementia with clinical symptoms that include deficits in memory, judgment, thinking, and behavior. Gangliosides are present on the outer surface of plasma membranes and are especially abundant in the nervous tissues of vertebrates. Ganglioside metabolism, especially the cholinergic neuron-specific gangliosides, GQ1bα and GT1aα, is altered in mouse model of AD and patients with AD. Thus, alterations in ganglioside metabolism may participate in several events related to the pathogenesis of AD. Increased expressions of GT1aα may reflect cholinergic neurogenesis. Most changes in ganglioside metabolism occur in the specific brain areas and their lipid rafts. Targeting ganglioside metabolism in lipid rafts may represent an underexploited opportunity to design novel therapeutic strategies for AD.

  4. Molecular recognition and colorimetric detection of cholera toxin by poly(diacetylene) liposomes incorporating G{sub m1} ganglioside

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, J.J.; Charych, D.

    1997-03-19

    Molecular recognition sites on cell membranes serve as the main communication channels between the inside of a cell and its surroundings. Upon receptor binding, cellular messages such as ion channel opening or activation of enzymes are triggered. In this report, we demonstrate that artificial cell membranes made from conjugated lipid polymers (poly(diacetylene)) can, on a simple level, mimic membrane processes of molecular recognition and signal transduction. The ganglioside GM1 was incorporated into poly(diacetylene) liposomes. Molecular recognition of cholera toxin at the interface of the liposome resulted in a change of the membrane color due to conformational charges in the conjugatedmore » (ene-yne) polymer backbone. The `colored liposomes` might be used as simple colorimetric sensors for drug screening or as new tools to study membrane-membrane or membrane-receptor interactions. 21 refs., 3 figs.« less

  5. Ganglioside GM1 protects against high altitude cerebral edema in rats by suppressing the oxidative stress and inflammatory response via the PI3K/AKT-Nrf2 pathway.

    PubMed

    Gong, Gu; Yin, Liang; Yuan, Libang; Sui, Daming; Sun, Yangyang; Fu, Haiyu; Chen, Liang; Wang, Xiaowu

    2018-03-01

    High altitude cerebral edema (HACE) is a severe type of acute mountain sickness (AMS) that occurs in response to a high altitude hypobaric hypoxic (HH) environment. GM1 monosialoganglioside can alleviate brain injury under adverse conditions including amyloid-β-peptide, ischemia and trauma. However, its role in HACE-induced brain damage remains poorly elucidated. In this study, GM1 supplementation dose-dependently attenuated increase in rat brain water content (BWC) induced by hypobaric chamber (7600 m) exposurefor 24 h. Compared with the HH-treated group, rats injected with GM1 exhibited less brain vascular leakage, lower aquaporin-4 and higher occludin expression, but they also showed increase in Na+/K+-ATPase pump activities. Importantly, HH-incurred consciousness impairment and coordination loss also were ameliorated following GM1 administration. Furthermore, the increased oxidative stress and decrease in anti-oxidant stress system under the HH condition were also reversely abrogated by GM1 treatment via suppressing accumulation of ROS, MDA and elevating the levels of SOD and GSH. Simultaneously, GM1 administration also counteracted the enhanced inflammation in HH-exposed rats by muting pro-inflammatory cytokines IL-1β, TNF-α, and IL-6 levels in serum and brain tissues. Subsequently, GM1 potentiated the activation of the PI3K/AKT-Nrf2 pathway. Cessation of this pathway by LY294002 reversed GM1-mediated inhibitory effects on oxidative stress and inflammation, and ultimately abrogated the protective role of GM1 in abating brain edema, cognitive and motor dysfunction. Overall, GM1 may afford a protective intervention in HACE by suppressing oxidative stress and inflammatory response via activating the PI3K/AKT-Nrf2 pathway, implying a promising agent for the treatment of HACE. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Tetanus toxin interaction with human erythrocytes. II. Kinetic properties of toxin association and evidence for a ganglioside-toxin macromolecular complex formation.

    PubMed

    Lazarovici, P; Yavin, E

    1985-01-25

    The properties of tetanus toxin interaction with human erythrocytes supplemented with disialo- and trisialo-gangliosides have been investigated. Binding of toxin is linear with time for 1 h and is 3-4-fold higher at 37 degrees C than at 4 degrees C during incubation of long duration. It exhibits saturation at toxin concentrations between 0.1 and 1 microgram/ml; however, it is nonsaturable between 1 and up to 50 micrograms/ml. It is effectively prevented by free gangliosides and antibodies or by pretreatment with sialidase but is unaffected by a number of closely related ligands including toxoid and toxin fragments. NaCl (1 M) removes a great portion (86%) of cell-associated toxin while Triton X-100 extracts an additional fraction (30%) of the salt-resistant cell-bound toxin. The residual sequestred toxin after detergent extraction is sensitive to proteolytic degradation. The trypsin-stable fraction (1.5%) is biotoxic and may be indicative of internalization of toxin. A macromolecular complex of about 700 kDa containing toxin and gangliosides has been isolated and characterized by Sephacryl S-300 gel permeation chromatography, SDS-gel electrophoresis, immunoprecipitability and biotoxicity. This complex is obtained only in ganglioside-supplemented cells and not when free 3H-labeled GD1b is reacted with 125I-labeled toxin in solution in the absence of cells. The hydrophobicity properties acquired as a result of ganglioside-toxin interaction, presumably at the cell surface, suggest a conformational change of the toxin which may enable its penetration into the bilayer.

  7. Constituents of ophiuroidea. 1. Isolation and structure of three ganglioside molecular species from the brittle star Ophiocoma scolopendrina.

    PubMed

    Inagaki, M; Shibai, M; Isobe, R; Higuchi, R

    2001-12-01

    Three ganglioside molecular species, OSG-0 (1), OSG-1 (2), and OSG-2 (3) have been obtained from the polar lipid fraction of the chloroform/methanol extract of the brittle star Ophiocoma scolopendrina. The structures of these gangliosides have been determined on the basis of chemical and spectroscopic evidence as 1-O-[(N-glycolyl-alpha-D-neuraminosyl)-(2-->6)-beta-D-glucopyranosyl]-ceramide (1), 1-O-[8-O-sulfo-(N-acetyl-alpha-D-neuraminosyl)-(2-->6)-beta-D-glucopyranosyll-ceramide (2) and 1-O-[(N-glycolyl-alpha-D-neuraminosyl)-(2-->8)-(N-acetyl- and N-glycolyl-alpha-D-neuraminosyl)-(2-->6)-beta-D-glucopyranosyl]-ceramide (3). The ceramide moieties were composed of heterogeneous unsubstituted fatty acid, 2-hydroxy fatty acid and phytosphingosine units. Compounds 2 and 3 represent new ganglioside molecular species.

  8. Over-expression of mammalian sialidase NEU3 reduces Newcastle disease virus entry and propagation in COS7 cells.

    PubMed

    Anastasia, Luigi; Holguera, Javier; Bianchi, Anna; D'Avila, Francesca; Papini, Nadia; Tringali, Cristina; Monti, Eugenio; Villar, Enrique; Venerando, Bruno; Muñoz-Barroso, Isabel; Tettamanti, Guido

    2008-03-01

    The paramyxovirus Newcastle Disease Virus (NDV) binds to sialic acid-containing glycoconjugates, sialoglycoproteins and sialoglycolipids (gangliosides) of host cell plasma membrane through its hemagglutinin-neuraminidase (sialidase) HN glycoprotein. We hypothesized that the modifications of the cell surface ganglioside pattern determined by over-expression of the mammalian plasma-membrane associated, ganglioside specific, sialidase NEU3 would affect the virus-host cell interactions. Using COS7 cells as a model system, we observed that over-expression of the murine MmNEU3 did not affect NDV binding but caused a marked reduction in NDV infection and virus propagation through cell-cell fusion. Moreover, since GD1a was greatly reduced in COS7 cells following NEU3-over-expression, we added [(3)H]-labelled GD1a to COS7 cells under conditions that block intralysosomal metabolic processing, and we observed a marked increase of GD1a cleavage to GM1 during NDV infection, indicating a direct involvement of the virus sialidase and host cell GD1a in NDV infectivity. Therefore, the decrease of GD1a in COS7 cell membrane upon MmNEU3 over-expression is likely to be instrumental to NDV reduced infection. Evidence was also provided for the preferential association of NDV-HN at 4 degrees C to detergent resistant microdomains (DRMs) of COS7 cells plasma membranes.

  9. Anti-GM2 gangliosides IgM paraprotein induces neuromuscular block without neuromuscular damage.

    PubMed

    Santafé, Manel M; Sabaté, M Mar; Garcia, Neus; Ortiz, Nico; Lanuza, M Angel; Tomàs, Josep

    2008-11-15

    We analyzed the effect on the mouse neuromuscular synapses of a human monoclonal IgM, which binds specifically to gangliosides with the common epitope [GalNAc beta 1-4Gal(3-2 alpha NeuAc)beta 1-]. We focused on the role of the complement. Evoked neurotransmission was partially blocked by IgM both acutely (1 h) and chronically (10 days). Transmission electron microscopy shows important nerve terminal growth and retraction remodelling though axonal injury can be ruled out. Synapses did not show mouse C5b-9 immunofluorescence and were only immunolabelled when human complement was added. Therefore, the IgM-induced synaptic changes occur without complement-mediated membrane attack.

  10. Systemic Gene Transfer of a Hexosaminidase Variant Using an scAAV9.47 Vector Corrects GM2 Gangliosidosis in Sandhoff Mice.

    PubMed

    Osmon, Karlaina J L; Woodley, Evan; Thompson, Patrick; Ong, Katalina; Karumuthil-Melethil, Subha; Keimel, John G; Mark, Brian L; Mahuran, Don; Gray, Steven J; Walia, Jagdeep S

    2016-07-01

    GM2 gangliosidosis is a group of neurodegenerative diseases caused by β-hexosaminidase A (HexA) enzyme deficiency. There is currently no cure. HexA is composed of two similar, nonidentical subunits, α and β, which must interact with the GM2 activator protein (GM2AP), a substrate-specific cofactor, to hydrolyze GM2 ganglioside. Mutations in either subunit or the activator can result in the accumulation of GM2 ganglioside within neurons throughout the central nervous system. The resulting neuronal cell death induces the primary symptoms of the disease: motor impairment, seizures, and sensory impairments. This study assesses the long-term effects of gene transfer in a Sandhoff (β-subunit knockout) mouse model. The study utilized a modified human β-hexosaminidase α-subunit (μ-subunit) that contains critical sequences from the β-subunit that enables formation of a stable homodimer (HexM) and interaction with GM2AP to hydrolyze GM2 ganglioside. We investigated a self-complementary adeno-associated viral (scAAV) vector expressing HexM, through intravenous injections of the neonatal mice. We monitored one cohort for 8 weeks and another cohort long-term for survival benefit, behavioral, biochemical, and molecular analyses. Untreated Sandhoff disease (SD) control mice reached a humane endpoint at approximately 15 weeks, whereas treated mice had a median survival age of 40 weeks, an approximate 2.5-fold survival advantage. On behavioral tests, the treated mice outperformed their knockout age-matched controls and perform similarly to the heterozygous controls. Through the enzymatic and GM2 ganglioside analyses, we observed a significant decrease in the GM2 ganglioside level, even though the enzyme levels were not significantly increased. Molecular analyses revealed a global distribution of the vector between brain and spinal cord regions. In conclusion, the neonatal delivery of a novel viral vector expressing the human HexM enzyme is effective in ameliorating the SD

  11. A profile of sphingolipids and related compounds tentatively identified in yak milk.

    PubMed

    Qu, S; Barrett-Wilt, G; Fonseca, L M; Rankin, S A

    2016-07-01

    This work characterized a fraction of constituents in yak milk within the realm of approximately 1,000 to 3,000 Da using matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectrometry. Eleven samples of yak milk powder from the Sichuan province of China were received by the Department of Food Science, University of Wisconsin-Madison, and stored at room temperature until analysis. Sample preparation involved delipidation and deproteinization of yak milk samples and cold ethanol precipitation. Subsequently, MALDI time-of-flight mass spectrometry was performed in positive ion, reflector mode (AB Sciex TOF/TOF 4800 MALDI; AB Sciex, Foster City, CA). The instrument was first calibrated with the manufacturer's 6-peptide mixture, and each spectrum was internally calibrated using the accurate mass of ACTH Fragment 18-39 standard peptide (protonated mass at m/z 2464.199) present in each sample. Laser power was adjusted for the calibration standards and for each sample so that the signal obtained for the most-abundant ion in each spectrum could be maximized, or kept below ~2×10(4) to preserve spectral quality. Structure and name based on mass were matched using the Metlin metabolite database (https://metlin.scripps.edu/index.php). Results of the current work for yak milk powder showed a large variety of sphingolipid structures with clusters around 1,200, 1,600, and 2,000 Da. The profiling matched several glycosphingolipids, such as gangliosides GA1, GD1a, GD1b, GD3, GM1, GM2, GM3, and GT2 and several other unique moieties, including deaminated neuraminic acid (KDN) oligosaccharides, and fucose containing gangliosides. Matrix preparation and MALDI time-of-flight parameters were important factors established in this work to allow high resolution profiling of complex sphingolipids in yak powder milk. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. Distribution of GD3 in DPPC Monolayers: A Thermodynamic and Atomic Force Microscopy Combined Study

    PubMed Central

    Diociaiuti, Marco; Ruspantini, Irene; Giordani, Cristiano; Bordi, Federico; Chistolini, Pietro

    2004-01-01

    Gangliosides are the main component of lipid rafts. These microdomains, floating in the outer leaflet of cellular membrane, play a key role in fundamental cellular functions. Little is still known about ganglioside and phospholipid interaction. We studied mixtures of dipalmitoylphosphatidylcholine and GD3 (molar fraction of 0.2, 0.4, 0.6, 0.8) using complementary techniques: 1), thermodynamic properties of the Langmuir-Blodgett films were assessed at the air-water interface (surface tension, surface potential); and 2), three-dimensional morphology of deposited films on mica substrates were imaged by atomic force microscopy. Mixture thermodynamics were consistent with data in the literature. In particular, excess free energy was negative at each molar fraction, thus ruling out GD3 segregation. Atomic force microscopy showed that the height of liquid-condensed domains in deposited films varied with GD3 molar fraction, as compatible with a lipid aggregation model proposed by Maggio. No distinct GD3-rich domain was observed inside the films, suggesting that GD3 molecules gradually mix with dipalmitoylphosphatidylcholine molecules, confirming ΔG data. Morphological analysis revealed that the shape of liquid-condensed domains is strongly influenced by the amount of GD3, and an interesting stripe-formation phenomenon was observed. These data were combined with the thermodynamic results and interpreted in the light of McConnell's model. PMID:14695273

  13. Neuroradiological findings in GM2 gangliosidosis variant B1.

    PubMed

    Bano, Shahina; Prasad, Akhila; Yadav, Sachchida Nand; Chaudhary, Vikas; Garga, Umesh Chandra

    2011-07-01

    GM2 gangliosidosis variant B1 is a very rare lysosomal disorder. As per our knowledge, to date, only one article depicting the magnetic resonance imaging (MRI) findings of GM2 gangliosidosis variant B1 is available in the literature. We are the first to describe the neuroradiological findings in an Indian patient diagnosed with GM2 gangliosidosis variant B1.

  14. Enzyme replacement for GM1-gangliosidosis: Uptake, lysosomal activation, and cellular disease correction using a novel β-galactosidase:RTB lectin fusion.

    PubMed

    Condori, Jose; Acosta, Walter; Ayala, Jorge; Katta, Varun; Flory, Ashley; Martin, Reid; Radin, Jonathan; Cramer, Carole L; Radin, David N

    2016-02-01

    New enzyme delivery technologies are required for treatment of lysosomal storage disorders with significant pathologies associated with the so-called "hard-to-treat" tissues and organs. Genetic deficiencies in the GLB1 gene encoding acid β-galactosidase lead to GM1-gangliosidosis or Morquio B, lysosomal diseases with predominant disease manifestation associated with the central nervous system or skeletal system, respectively. Current lysosomal ERTs are delivered into cells based on receptor-mediated endocytosis and do not effectively address several hard-to-treat organs including those critical for GM1-gangliosidosis patients. Lectins provide alternative cell-uptake mechanisms based on adsorptive-mediated endocytosis and thus may provide unique biodistribution for lysosomal disease therapeutics. In the current study, genetic fusions of the plant galactose/galactosamine-binding lectin, RTB, and the human acid β-galactosidase enzyme were produced using a plant-based bioproduction platform. β-gal:RTB and RTB:β-gal fusion products retained both lectin activity and β-galactosidase activity. Purified proteins representing both fusion orientations were efficiently taken up into GM1 patient fibroblasts and mediated the reduction of GM1 ganglioside substrate with activities matching mammalian cell-derived β-galactosidase. In contrast, plant-derived β-gal alone was enzymatically active but did not mediate uptake or correction indicating the need for either lectin-based (plant product) or mannose-6-phosphate-based (mammalian product) delivery. Native β-galactosidase undergoes catalytic activation (cleavage within the C-terminal region) in lysosomes and is stabilized by association with protective protein/cathepsin A. Enzymatic activity and lysosomal protein processing of the RTB fusions were assessed following internalization into GM1 fibroblasts. Within 1-4h, both β-gal:RTB and RTB:β-gal were processed to the ~64kDa "activated" β-gal form; the RTB lectin was

  15. Murine Sialidase Neu3 facilitates GM2 degradation and bypass in mouse model of Tay-Sachs disease.

    PubMed

    Seyrantepe, Volkan; Demir, Secil Akyildiz; Timur, Zehra Kevser; Von Gerichten, Johanna; Marsching, Christian; Erdemli, Esra; Oztas, Emin; Takahashi, Kohta; Yamaguchi, Kazunori; Ates, Nurselin; Dönmez Demir, Buket; Dalkara, Turgay; Erich, Katrin; Hopf, Carsten; Sandhoff, Roger; Miyagi, Taeko

    2018-01-01

    Tay-Sachs disease is a severe lysosomal storage disorder caused by mutations in Hexa, the gene that encodes for the α subunit of lysosomal β-hexosaminidase A (HEXA), which converts GM2 to GM3 ganglioside. Unexpectedly, Hexa -/- mice have a normal lifespan and show no obvious neurological impairment until at least one year of age. These mice catabolize stored GM2 ganglioside using sialidase(s) to remove sialic acid and form the glycolipid GA2, which is further processed by β-hexosaminidase B. Therefore, the presence of the sialidase (s) allows the consequences of the Hexa defect to be bypassed. To determine if the sialidase NEU3 contributes to GM2 ganglioside degradation, we generated a mouse model with combined deficiencies of HEXA and NEU3. The Hexa -/- Neu3 -/- mice were healthy at birth, but died at 1.5 to 4.5months of age. Thin-layer chromatography and mass spectrometric analysis of the brains of Hexa -/- Neu3 -/- mice revealed the abnormal accumulation of GM2 ganglioside. Histological and immunohistochemical analysis demonstrated cytoplasmic vacuolation in the neurons. Electron microscopic examination of the brain, kidneys and testes revealed pleomorphic inclusions of many small vesicles and complex lamellar structures. The Hexa -/- Neu3 -/- mice exhibited progressive neurodegeneration with neuronal loss, Purkinje cell depletion, and astrogliosis. Slow movement, ataxia, and tremors were the prominent neurological abnormalities observed in these mice. Furthermore, radiographs revealed abnormalities in the skeletal bones of the Hexa -/- Neu3 -/- mice. Thus, the Hexa -/- Neu3 -/- mice mimic the neuropathological and clinical abnormalities of the classical early-onset Tay-Sachs patients, and provide a suitable model for the future pre-clinical testing of potential treatments for this condition. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Soybean (Glycine max) WRINKLED1 transcription factor, GmWRI1a, positively regulates seed oil accumulation.

    PubMed

    Chen, Liang; Zheng, Yuhong; Dong, Zhimin; Meng, Fanfan; Sun, Xingmiao; Fan, Xuhong; Zhang, Yunfeng; Wang, Mingliang; Wang, Shuming

    2018-04-01

    Soybean is the world's most important leguminous crop producing high-quality protein and oil. Elevating oil accumulation in soybean seed is always many researchers' goal. WRINKLED1 (WRI1) encodes a transcription factor of the APETALA2/ethylene responsive element-binding protein (AP2/EREBP) family that plays important roles during plant seed oil accumulation. In this study, we isolated and characterized three distinct orthologues of WRI1 in soybean (Glycine max) that display different organ-specific expression patterns, among which GmWRI1a was highly expressed in maturing soybean seed. Electrophoretic mobility shift assays and yeast one-hybrid experiments demonstrated that the GmWRI1a protein was capable of binding to AW-box, a conserved sequence in the proximal upstream regions of many genes involved in various steps of oil biosynthesis. Transgenic soybean seeds overexpressing GmWRI1a under the control of the seed-specific napin promoter showed the increased total oil and fatty acid content and the changed fatty acid composition. Furthermore, basing on the activated expressions in transgenic soybean seeds and existence of AW-box element in the promoter regions, direct downstream genes of GmWRI1a were identified, and their products were responsible for fatty acid production, elongation, desaturation and export from plastid. We conclude that GmWRI1a transcription factor can positively regulate oil accumulation in soybean seed by a complex gene expression network related to fatty acid biosynthesis.

  17. TNF-alpha induction of GM2 expression on renal cell carcinomas promotes T cell dysfunction.

    PubMed

    Raval, Gira; Biswas, Soumika; Rayman, Patricia; Biswas, Kaushik; Sa, Gaurisankar; Ghosh, Sankar; Thornton, Mark; Hilston, Cynthia; Das, Tanya; Bukowski, Ronald; Finke, James; Tannenbaum, Charles S

    2007-05-15

    Previous studies from our laboratory demonstrated the role of tumor-derived gangliosides as important mediators of T cell apoptosis, and hence, as one mechanism by which tumors evade immune destruction. In this study, we report that TNF-alpha secreted by infiltrating inflammatory cells and/or genetically modified tumors augments tumor-associated GM2 levels, which leads to T cell death and immune dysfunction. The conversion of weakly apoptogenic renal cell carcinoma (RCC) clones to lines that can induce T cell death requires 3-5 days of TNF-alpha pretreatment, a time frame paralleling that needed for TNF-alpha to stimulate GM2 accumulation by SK-RC-45, SK-RC-54, and SK-RC-13. RCC tumor cell lines permanently transfected with the TNF-alpha transgene are similarly toxic for T lymphocytes, which correlates with their constitutively elevated levels of GM2. TNF-alpha increases GM2 ganglioside expression by enhancing the mRNA levels encoding its synthetic enzyme, GM2 synthase, as demonstrated by both RT-PCR and Southern analysis. The contribution of GM2 gangliosides to tumor-induced T cell death was supported by the finding that anti-GM2 Abs significantly blocked T cell apoptosis mediated by TNF-alpha-treated tumor cells, and by the observation that small interfering RNA directed against TNF-alpha abrogated GM2 synthase expression by TNF-transfected SK-RC-45, diminished its GM2 accumulation, and inhibited its apoptogenicity for T lymphocytes. Our results indicate that TNF-alpha signaling promotes RCC-induced killing of T cells by stimulating the acquisition of a distinct ganglioside assembly in RCC tumor cells.

  18. Curative effects of GM1 in the treatment of severe ischemic brain injury and its effects on serum TNF-α and NDS.

    PubMed

    Liu, Fang; Sun, Xiaoling; Zhang, Yunxia; Zhao, Guoliang; Liu, Yancang; Zhang, Yiwu

    2018-06-01

    The curative effects of monosialotetrahexosyl ganglioside (GM1) in the treatment of severe ischemic brain injury and its effects on tumor necrosis factor-α (TNF-α) and neuropathy disability score (NDS). Sixty patients with severe ischemic brain injury admitted to The First People's Hospital of Jining (Jining, China) from June 2014 to March 2016 were selected. They were randomly divided into the control group (n=30) and the experimental group (n=30). The patients in the control group were treated with routine therapy while those in the experimental group were treated with GM1. The level of TNF-α in the serum was measured by the enzyme-linked immunosorbent assay. The NDS was used to grade the two groups; Pearson's correlation coefficient was applied to analyze the correlation between the content of TNF-α and NDS; the content of superoxide dismutase (SOD) was detected using xanthine oxidase assay, and the content of malondialdehyde (MDA) was detected by thiobarbituric acid method. The clinical recovery time of two groups of patients was recorded. At 14 days after GM1 treatment, the serum TNF-α content and the NDS in the experimental group were significantly lower than those in the control group (P<0.05). The content of TNF-α in the patients was positively correlated with the NDS. After treatment, the serum MDA content of patients in the experimental group was lower, while the SOD content was significantly higher than that in the control group (P<0.05). After GM1 treatment, hemodynamic parameters of patients in the experimental group were significantly improved compared with those in the control group. The total effective rate of GM1 treatment in the experimental group was higher than that in the control group (P<0.05). GM1 has a good clinical significance in the treatment of patients with severe ischemic brain injury and is worthy of clinical promotion and application.

  19. GmDREB1 overexpression affects the expression of microRNAs in GM wheat seeds.

    PubMed

    Jiang, Qiyan; Sun, Xianjun; Niu, Fengjuan; Hu, Zheng; Chen, Rui; Zhang, Hui

    2017-01-01

    MicroRNAs (miRNAs) are small regulators of gene expression that act on many different molecular and biochemical processes in eukaryotes. To date, miRNAs have not been considered in the current evaluation system for GM crops. In this study, small RNAs from the dry seeds of a GM wheat line overexpressing GmDREB1 and non-GM wheat cultivars were investigated using deep sequencing technology and bioinformatic approaches. As a result, 23 differentially expressed miRNAs in dry seeds were identified and confirmed between GM wheat and a non-GM acceptor. Notably, more differentially expressed tae-miRNAs between non-GM wheat varieties were found, indicating that the degree of variance between non-GM cultivars was considerably higher than that induced by the transgenic event. Most of the target genes of these differentially expressed miRNAs between GM wheat and a non-GM acceptor were associated with abiotic stress, in accordance with the product concept of GM wheat in improving drought and salt tolerance. Our data provided useful information and insights into the evaluation of miRNA expression in edible GM crops.

  20. Biochemical characterization of GM1 micelles-Amphotericin B interaction.

    PubMed

    Leonhard, Victoria; Alasino, Roxana V; Bianco, Ismael D; Garro, Ariel G; Heredia, Valeria; Beltramo, Dante M

    2015-01-01

    In this work a thorough characterization of the GM1 micelle-Amphotericin B (AmB) interaction was performed. The micelle formation as well as the drug loading occurs spontaneously, although influenced by the physicochemical conditions, pH and temperature. The chromatographic profile of GM1-AmB complexes at different molar ratios shows the existence of two populations. The differential absorbance of GM1, monomeric and aggregate AmB, allowed us to discriminate the presence of all of them in both fractions. Thus, we noted that at higher proportion of AmB in the complex, increases the larger population which is composed mainly of aggregated AmB. The physical behavior of these micelles shows that both GM1- AmB complexes were stable in solution for at least 30 days. However upon freeze-thawing or lyophilization-solubilization cycles, only the smallest population, enriched in monomeric AmB, showed a complete solubilization. In vitro, GM1-AmB micelles were significantly less toxic on cultured cells than other commercial micellar formulations as Fungizone, but had a similar behavior to liposomal formulations as Ambisome. Regarding the antifungal activity of the new formulation, it was very similar to that of other formulations. The characterization of these GM1-AmB complexes is discussed as a potential new formulation able to improve the antifungal therapeutic efficiency of AmB.

  1. GmDREB1 overexpression affects the expression of microRNAs in GM wheat seeds

    PubMed Central

    Niu, Fengjuan; Hu, Zheng; Chen, Rui; Zhang, Hui

    2017-01-01

    MicroRNAs (miRNAs) are small regulators of gene expression that act on many different molecular and biochemical processes in eukaryotes. To date, miRNAs have not been considered in the current evaluation system for GM crops. In this study, small RNAs from the dry seeds of a GM wheat line overexpressing GmDREB1 and non-GM wheat cultivars were investigated using deep sequencing technology and bioinformatic approaches. As a result, 23 differentially expressed miRNAs in dry seeds were identified and confirmed between GM wheat and a non-GM acceptor. Notably, more differentially expressed tae-miRNAs between non-GM wheat varieties were found, indicating that the degree of variance between non-GM cultivars was considerably higher than that induced by the transgenic event. Most of the target genes of these differentially expressed miRNAs between GM wheat and a non-GM acceptor were associated with abiotic stress, in accordance with the product concept of GM wheat in improving drought and salt tolerance. Our data provided useful information and insights into the evaluation of miRNA expression in edible GM crops. PMID:28459812

  2. Inefficiency in GM2 ganglioside elimination by human lysosomal beta-hexosaminidase beta-subunit gene transfer to fibroblastic cell line derived from Sandhoff disease model mice.

    PubMed

    Itakura, Tomohiro; Kuroki, Aya; Ishibashi, Yasuhiro; Tsuji, Daisuke; Kawashita, Eri; Higashine, Yukari; Sakuraba, Hitoshi; Yamanaka, Shoji; Itoh, Kohji

    2006-08-01

    Sandhoff disease (SD) is an autosomal recessive GM2 gangliosidosis caused by the defect of lysosomal beta-hexosaminidase (Hex) beta-subunit gene associated with neurosomatic manifestations. Therapeutic effects of Hex subunit gene transduction have been examined on Sandhoff disease model mice (SD mice) produced by the allelic disruption of Hexb gene encoding the murine beta-subunit. We demonstrate here that elimination of GM2 ganglioside (GM2) accumulated in the fibroblastic cell line derived from SD mice (FSD) did not occur when the HEXB gene only was transfected. In contrast, a significant increase in the HexB (betabeta homodimer) activity toward neutral substrates, including GA2 (asialo-GM2) and oligosaccharides carrying the terminal N-acetylglucosamine residues at their non-reducing ends (GlcNAc-oligosaccharides) was observed. Immunoblotting with anti-human HexA (alphabeta heterodimer) serum after native polyacrylamide gel electrophoresis (Native-PAGE) revealed that the human HEXB gene product could hardly form the chimeric HexA through associating with the murine alpha-subunit. However, co-introduction of the HEXA encoding the human alpha-subunit and HEXB genes caused significant corrective effect on the GM2 degradation by producing the human HexA. These results indicate that the recombinant human HexA could interspeciesly associate with the murine GM2 activator protein to degrade GM2 accumulated in the FSD cells. Thus, therapeutic effects of the recombinant human HexA isozyme but not human HEXB gene product could be evaluated by using the SD mice.

  3. Functional characterisation of ganglioside-induced differentiation-associated protein 1 as a glutathione transferase.

    PubMed

    Shield, Alison J; Murray, Tracy P; Board, Philip G

    2006-09-08

    Mutations in the ganglioside-induced differentiation-associated protein 1 (GDAP1) gene have been linked with Charcot-Marie-Tooth (CMT) disease. This protein, and its paralogue GDAP1L1, appear to be structurally related to the cytosolic glutathione S-transferases (GST) including an N-terminal thioredoxin fold domain with conserved active site residues. The specific function, of GDAP1 remains unknown. To further characterise their structure and function we purified recombinant human GDAP1 and GDAP1L1 proteins using bacterial expression and immobilised metal affinity chromatography. Like other cytosolic GSTs, GDAP1 protein has a dimeric structure. Although the full-length proteins were largely insoluble, the deletion of a proposed C-terminal transmembrane domain allowed the preparation of soluble protein. The purified proteins were assayed for glutathione-dependent activity against a library of 'prototypic' GST substrates. No evidence of glutathione-dependent activity or an ability to bind glutathione immobilised on agarose was found.

  4. Acetylation Suppresses the Proapoptotic Activity of GD3 Ganglioside

    PubMed Central

    Malisan, Florence; Franchi, Luigi; Tomassini, Barbara; Ventura, Natascia; Condò, Ivano; Rippo, Maria Rita; Rufini, Alessandra; Liberati, Laura; Nachtigall, Claudia; Kniep, Bernhard; Testi, Roberto

    2002-01-01

    GD3 synthase is rapidly activated in different cell types after specific apoptotic stimuli. De novo synthesized GD3 accumulates and contributes to the apoptotic program by relocating to mitochondrial membranes and inducing the release of apoptogenic factors. We found that sialic acid acetylation suppresses the proapoptotic activity of GD3. In fact, unlike GD3, 9-O-acetyl-GD3 is completely ineffective in inducing cytochrome c release and caspase-9 activation on isolated mitochondria and fails to induce the collapse of mitochondrial transmembrane potential and cellular apoptosis. Moreover, cells which are resistant to the overexpression of the GD3 synthase, actively convert de novo synthesized GD3 to 9-O-acetyl-GD3. The coexpression of GD3 synthase with a viral 9-O-acetyl esterase, which prevents 9-O-acetyl-GD3 accumulation, reconstitutes GD3 responsiveness and apoptosis. Finally, the expression of the 9-O-acetyl esterase is sufficient to induce apoptosis of glioblastomas which express high levels of 9-O-acetyl-GD3. Thus, sialic acid acetylation critically controls the proapoptotic activity of GD3. PMID:12486096

  5. GM2 gangliosidosis associated with a HEXA missense mutation in Japanese Chin dogs: a potential model for Tay Sachs disease.

    PubMed

    Sanders, Douglas N; Zeng, Rong; Wenger, David A; Johnson, Gary S; Johnson, Gayle C; Decker, Jared E; Katz, Martin L; Platt, Simon R; O'Brien, Dennis P

    2013-01-01

    GM2 gangliosidosis is a fatal lysosomal storage disease caused by a deficiency of β-hexosaminidase (EC 3.2.1.52). There are two major isoforms of the enzyme: hexosaminidase A composed of an α and a β subunit (encoded by HEXA and HEXB genes, respectively); and, hexosaminidase B composed of two β subunits. Hexosaminidase A requires an activator protein encoded by GM2A to catabolize GM2 ganglioside, but even in the absence of the activator protein, it can hydrolyze the synthetic substrates commonly used to assess enzyme activity. GM2 gangliosidosis has been reported in Japanese Chin dogs, and we identified the disease in two related Japanese Chin dogs based on clinical signs, histopathology and elevated brain GM2 gangliosides. As in previous reports, we found normal or elevated hexosaminidase activity when measured with the synthetic substrates. This suggested that the canine disease is analogous to human AB variant of G(M2) gangliosidosis, which results from mutations in GM2A. However, only common neutral single nucleotide polymorphisms were found upon sequence analysis of the canine ortholog of GM2A from the affected Japanese Chins. When the same DNA samples were used to sequence HEXA, we identified a homozygous HEXA:c967G>A transition which predicts a p.E323K substitution. The glutamyl moiety at 323 is known to make an essential contribution to the active site of hexosaminidase A, and none of the 128 normal Japanese Chins and 92 normal dogs of other breeds that we tested was homozygous for HEXA:c967A. Thus it appears that the HEXA:c967G>A transition is responsible for the GM2 gangliosidosis in Japanese Chins. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Synthesis and enzymatic susceptibility of a series of novel GM2 analogs.

    PubMed

    Fuse, Tomoaki; Ando, Hiromune; Imamura, Akihiro; Sawada, Naoki; Ishida, Hideharu; Kiso, Makoto; Ando, Takayuki; Li, Su-Chen; Li, Yu-Teh

    2006-07-01

    A series of GM2 analogs in which GM2 epitope was coupled to a variety of glycosyl lipids were designed and synthesized to investigate the mechanism of enzymatic hydrolysis of GM2 ganglioside. The coupling of N-Troc-protected sialic acid and p-methoxyphenyl galactoside acceptor gave the crystalline disaccharide, which was further coupled with galactosamine donor to give the desired GM2 epitope trisaccharide. After conversion into the corresponding glycosyl donor, the trisaccharide was coupled with galactose, glucose and artificial ceramide (B30) to give the final compounds. The result on hydrolysis of GM2 analogs indicates that GM2 activator protein requires one spacer sugar between GM2 epitope and the lipid moiety to assist the hydrolysis of the terminal GalNAc residue.

  7. Stimulation of a Ca sup 2+ -dependent protein kinase by G sub M1 ganglioside in nerve growth factor-treated PC12 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hilbush, B.S.; Levine, J.M.

    1991-07-01

    The authors have investigated the ability of exogenous gangliosides to modulate nerve growth factor (NGF) signal transduction in PC12 cells. The effects of exogenous ganglioside G{sub M1} on multiple protein kinase activities were assayed by analyzing site-specific serine phosphorylation of tyrosine hydroxylase (TyrOHase) by two-dimensional phosphopeptide mapping. In the presence of NGF, exogenous G{sub M1} increased {sup 32}P incorporation into TyrOHase phosphopeptide T2, a Ca{sup 2+}/calmodulin-dependent protein kinase substrate whose phosphorylation is not normally affected by NGF treatment. In the absence of NGF, G{sub M1} treatment had no significant effects on TyrOHase phosphorylation. The removal of extracellular Ca{sup 2+} ormore » blockade of dihydropyridine-sensitive Ca{sup 2+} channels prevented the G{sub M1}-induced increases in {sup 32}P incorporation into phosphopeptide T2. Exogenous G{sub M1} also potentiated K{sup +} depolarization-induced increases in the phosphorylation of TyrOHase. These results suggest that the stimulatory effects of exogenous G{sub M1} ganglioside on NGF actions may be due to its ability to potentiate a Ca{sup 2+}-dependent signaling pathway.« less

  8. Chemical Synthesis of GM2 Glycans, Bioconjugation with Bacteriophage Qβ, and the Induction of Anticancer Antibodies

    PubMed Central

    Yin, Zhaojun; Dulaney, Steven; McKay, Craig S.; Baniel, Claire; Kaczanowska, Katarzyna; Ramadan, Sherif; Finn, M. G.

    2016-01-01

    The development of carbohydrate-based antitumor vaccines is an attractive approach towards tumor prevention and treatment. Herein, we focused on the ganglioside GM2 tumor-associated carbohydrate antigen (TACA), which is overexpressed in a wide range of tumor cells. GM2 was synthesized chemically and conjugated with a virus-like particle derived from bacteriophage Qβ. Although the copper-catalyzed azide–alkyne cyclo-addition reaction efficiently introduced 237 copies of GM2 per Qβ, this construct failed to induce significant amounts of anti-GM2 antibodies compared to the Qβ control. In contrast, GM2 immobilized on Qβ through a thiourea linker elicited high titers of IgG antibodies that recognized GM2-positive tumor cells and effectively induced cell lysis through complement-mediated cytotoxicity. Thus, bacteriophage Qβ is a suitable platform to boost antibody responses towards GM2, a representative member of an important class of TACA: the ganglioside. PMID:26538065

  9. 1-25-Derived Sphingolipid-Domain Tracer Peptide SBD Interacts with Membrane Ganglioside Clusters via a Coil-Helix-Coil Motif

    PubMed Central

    Wang, Yaofeng; Kraut, Rachel; Mu, Yuguang

    2015-01-01

    The Amyloid-β (Aβ)-derived, sphingolipid binding domain (SBD) peptide is a fluorescently tagged probe used to trace the diffusion behavior of sphingolipid-containing microdomains in cell membranes through binding to a constellation of glycosphingolipids, sphingomyelin, and cholesterol. However, the molecular details of the binding mechanism between SBD and plasma membrane domains remain unclear. Here, to investigate how the peptide recognizes the lipid surface at an atomically detailed level, SBD peptides in the environment of raft-like bilayers were examined in micro-seconds-long molecular dynamics simulations. We found that SBD adopted a coil-helix-coil structural motif, which binds to multiple GT1b gangliosides via salt bridges and CH–π interactions. Our simulation results demonstrate that the CH–π and electrostatic forces between SBD monomers and GT1b gangliosides clusters are the main driving forces in the binding process. The presence of the fluorescent dye and linker molecules do not change the binding mechanism of SBD probes with gangliosides, which involves the helix-turn-helix structural motif that was suggested to constitute a glycolipid binding domain common to some sphingolipid interacting proteins, including HIV gp120, prion, and Aβ. PMID:26540054

  10. Functional analysis of the GmESR1 gene associated with soybean regeneration

    PubMed Central

    Chen, Qingshan; Liu, Ming; Xin, Dawei; Qi, Zhaoming; Li, Sinan; Ma, Yanlong; Wang, Lingshuang; Jin, Yangmei; Li, Wenbin; Wu, Xiaoxia; Su, An-yu

    2017-01-01

    Plant regeneration can occur via in vitro tissue culture through somatic embryogenesis or de novo shoot organogenesis. Transformation of soybean (Glycine max) is difficult, hence optimization of the transformation system for soybean regeneration is required. This study investigated ENHANCER OF SHOOT REGENERATION 1 (GmESR1), a soybean transcription factor that targets regeneration-associated genes. Sequence analysis showed that GmESR1 contained a conserved 57 amino acid APETALA 2 (AP2)/ETHYLENE RESPONSE FACTOR (ERF) DNA-binding domain. The relative expression level of GmESR1 was highest in young embryos, flowers and stems in the soybean cultivar ‘Dongnong 50’. To examine the function of GmESR1, transgenic Arabidopsis (Arabidopsis thaliana) and soybean plants overexpressing GmESR1 were generated. In Arabidopsis, overexpression of GmESR1 resulted in accelerated seed germination, and seedling shoot and root elongation. In soybean overexpression of GmESR1 also led to faster seed germination, and shoot and root elongation. GmESR1 specifically bound to the GCC-box. The results provide a foundation for the establishment of an efficient and stable transformation system for soybean. PMID:28403182

  11. Chemical Synthesis of GM2 Glycans, Bioconjugation with Bacteriophage Qβ, and the Induction of Anticancer Antibodies.

    PubMed

    Yin, Zhaojun; Dulaney, Steven; McKay, Craig S; Baniel, Claire; Kaczanowska, Katarzyna; Ramadan, Sherif; Finn, M G; Huang, Xuefei

    2016-01-01

    The development of carbohydrate-based antitumor vaccines is an attractive approach towards tumor prevention and treatment. Herein, we focused on the ganglioside GM2 tumor-associated carbohydrate antigen (TACA), which is overexpressed in a wide range of tumor cells. GM2 was synthesized chemically and conjugated with a virus-like particle derived from bacteriophage Qβ. Although the copper-catalyzed azide-alkyne cycloaddition reaction efficiently introduced 237 copies of GM2 per Qβ, this construct failed to induce significant amounts of anti-GM2 antibodies compared to the Qβ control. In contrast, GM2 immobilized on Qβ through a thiourea linker elicited high titers of IgG antibodies that recognized GM2-positive tumor cells and effectively induced cell lysis through complement-mediated cytotoxicity. Thus, bacteriophage Qβ is a suitable platform to boost antibody responses towards GM2, a representative member of an important class of TACA: the ganglioside. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Gangliosides and Ceramides Change in a Mouse Model of Blast Induced Traumatic Brain Injury

    PubMed Central

    2013-01-01

    Explosive detonations generate atmospheric pressure changes that produce nonpenetrating blast induced “mild” traumatic brain injury (bTBI). The structural basis for mild bTBI has been extremely controversial. The present study applies matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging to track the distribution of gangliosides in mouse brain tissue that were exposed to very low level of explosive detonations (2.5–5.5 psi peak overpressure). We observed major increases of the ganglioside GM2 in the hippocampus, thalamus, and hypothalamus after a single blast exposure. Moreover, these changes were accompanied by depletion of ceramides. No neurological or brain structural signs of injury could be inferred using standard light microscopic techniques. The first source of variability is generated by the Latency between blast and tissue sampling (peak intensity of the blast wave). These findings suggest that subtle molecular changes in intracellular membranes and plasmalemma compartments may be biomarkers for biological responses to mild bTBI. This is also the first report of a GM2 increase in the brains of mature mice from a nongenetic etiology. PMID:23590251

  13. Anti-GM1 antibodies as a model of the immune response to self-glycans.

    PubMed

    Nores, Gustavo A; Lardone, Ricardo D; Comín, Romina; Alaniz, María E; Moyano, Ana L; Irazoqui, Fernando J

    2008-03-01

    Glycans are a class of molecules with high structural variability, frequently found in the plasma membrane facing the extracellular space. Because of these characteristics, glycans are often considered as recognition molecules involved in cell social functions, and as targets of pathogenic factors. Induction of anti-glycan antibodies is one of the early events in immunological defense against bacteria that colonize the body. Because of this natural infection, antibodies recognizing a variety of bacterial glycans are found in sera of adult humans and animals. The immune response to glycans is restricted by self-tolerance, and no antibodies to self-glycans should exist in normal subjects. However, antibodies recognizing structures closely related to self-glycans do exist, and can lead to production of harmful anti-self antibodies. Normal human sera contain low-affinity anti-GM1 IgM-antibodies. Similar antibodies with higher affinity or different isotype are found in some neuropathy patients. Two hypotheses have been developed to explain the origin of disease-associated anti-GM1 antibodies. According to the "molecular mimicry" hypothesis, similarity between GM1 and Campylobacter jejuni lipopolysaccharide carrying a GM1-like glycan is the cause of Guillain-Barré syndrome associated with anti-GM1 IgG-antibodies. According to the "binding site drift" hypothesis, IgM-antibodies associated with disease originate through changes in the binding site of normally occurring anti-GM1 antibodies. We now present an "integrated" hypothesis, combining the "mimicry" and "drift" concepts, which satisfactorily explains most of the published data on anti-GM1 antibodies.

  14. GM1 antibodies in post-polio syndrome and previous paralytic polio.

    PubMed

    Farbu, E; Rekand, T; Tysnes, O-B; Aarli, J A; Gilhus, N E; Vedeler, C A

    2003-06-01

    We studied the relationship between post-polio syndrome (PPS) and GM1 antibodies, since such antibodies have been associated with PPS and motor neuron disorders. Sera from 144 patients with previous poliomyelitis (105 paralytic, 22 nonparalytic and 17 PPS), 60 with previous Guillain-Barré syndrome, 44 with amyotrophic lateral sclerosis (ALS) and 22 healthy blood donors were analyzed with ELISA for GM1 IgM, IgG and IgA antibodies. GM1 antibodies were present in 14% of the PPS patients, but the prevalence did not differ significantly from that of the other groups. Our study does not support the hypothesis that GM1 antibodies are involved in the pathogenesis of PPS.

  15. Molecular analysis of a GM2-activator deficiency in two patients with GM2-gangliosidosis AB variant.

    PubMed Central

    Schepers, U.; Glombitza, G.; Lemm, T.; Hoffmann, A.; Chabas, A.; Ozand, P.; Sandhoff, K.

    1996-01-01

    Lysosomal degradation of ganglioside GM2 by beta-hexosaminidase A (hex A) requires the presence of the GM2 activator protein (GM2AP) as an essential cofactor. A deficiency of the GM2 activator causes the AB variant of GM2 gangliosidosis, a recessively inherited disorder characterized by excessive neuronal accumulation of GM2 and related glycolipids. Two novel mutations in the GM2 activator gene (GM2A) have been identified by the reverse-transcriptase-PCR method--a three-base deletion, AAG262-264, resulting in a deletion of Lys88, and a single-base deletion, A410, that causes a frameshift. The latter results in substitution of 33 amino acids and the loss of another 24 amino acid residues. Both patients are homoallelic for their respective mutations inherited from their parents, who are heteroallelic at the GM2A locus. Although the cultured fibroblasts of both patients produce normal levels of activator mRNA, they lack a lysosomal form of GM2AP. Pulse/chase labeling of cultured fibroblasts of the patients, in presence and absence of brefeldin A, indicates a premature degradation of both--mutant and truncated--GM2APs in the endoplasmic reticulum or Golgi. These results were supported by in vitro translation experiments and expression of the mutated proteins. When the mutated GM2APs were expressed in Escherichia coli, both mature GM2AP forms turned proved to exhibit only residual activities in an in vitro assay. Images Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:8900233

  16. Molecular analysis of a GM2-activator deficiency in two patients with GM2-gangliosidosis AB variant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schepers, U.; Glombitza, G.; Lemm, T.

    1996-11-01

    Lysosomal degradation of ganglioside GM2 by {beta}-hexosaminidase A (hex A) requires the presence of the GM2 activator protein (GM2AP) as an essential cofactor. A deficiency of the GM2 activator causes the AB variant of GM2 gangliosidosis, a recessively inherited disorder characterized by excessive neuronal accumulation of GM2 and related glycolipids. Two novel mutations in the GM2 activator gene (GM2A) have been identified by the reverse-transcriptase-PCR method - a three-base deletion, AAG{sup 262-264}, resulting in a deletion of Lys{sup 88}, and a single-base deletion, A{sup 410}, that causes a frameshift. The latter results in substitution of 33 amino acids and themore » loss of another 24 amino acid residues. Both patients are homoallelic for their respective mutations inherited from their parents, who are heteroallelic at the GM2A locus. Although the cultured fibroblasts of both patients produce normal levels of activator mRNA, they lack a lysosomal form of GM2AP. Pulse/chase labeling of cultured fibroblasts of the patients, in presence and absence of brefeldin A, indicates a premature degradation of both-mutant and truncated-GM2APs in the endoplasmic reticulum or Golgi. These results were supported by in vitro translation experiments and expression of the mutated proteins. When the mutated GM2APs were expressed in Escherichia coli, both mature GM2AP forms turned proved to exhibit only residual activities in an in vitro assay. 26 refs., 7 figs.« less

  17. Isoflavone Malonyltransferases GmIMaT1 and GmIMaT3 Differently Modify Isoflavone Glucosides in Soybean (Glycine max) under Various Stresses

    PubMed Central

    Ahmad, Muhammad Z.; Li, Penghui; Wang, Junjie; Rehman, Naveed Ur; Zhao, Jian

    2017-01-01

    Malonylated isoflavones are the major forms of isoflavonoids in soybean plants, the genes responsible for their biosyntheses are not well understood, nor their physiological functions. Here we report a new benzylalcohol O-acetyltransferase, anthocyanin O-hydroxycinnamoyltransferase, anthranilate N-hydroxycinnamoyl/benzoyltransferase, deacetylvindoline 4-O-acetyltransferase (BAHD) family isoflavone glucoside malonyltransferase GmIMaT1, and GmIMaT3, which is allelic to the previously characterized GmMT7 and GmIF7MaT. Biochemical studies showed that recombinant GmIMaT1 and GmIMaT3 enzymes used malonyl-CoA and several isoflavone 7-O-glucosides as substrates. The Km values of GmIMaT1 for glycitin, genistin, and daidzin were 13.11, 23.04, and 36.28 μM, respectively, while these of GmIMaT3 were 12.94, 26.67, and 30.12 μM, respectively. Transgenic hairy roots overexpressing both GmIMaTs had increased levels of malonyldaidzin and malonylgenistin, and contents of daidzin and glycitin increased only in GmIMaT1-overexpression lines. The increased daidzein and genistein contents were detected only in GmIMaT3-overexpression lines. Knockdown of GmIMaT1 and GmIMaT3 reduced malonyldaidzin and malonylgenistin contents, and affected other isoflavonoids differently. GmIMaT1 is primarily localized to the endoplasmic reticulum while GmIMaT3 is primarily in the cytosol. By examining their transcript changes corresponding to the altered isoflavone metabolic profiles under various environmental and hormonal stresses, we probed the possible functions of GmIMaTs. Two GmIMaTs displayed distinct tissue expression patterns and respond differently to various factors in modifying isoflavone 7-O-glucosides under various stresses. PMID:28559900

  18. A deeper look at the GD1 stream: density variations and wiggles

    NASA Astrophysics Data System (ADS)

    de Boer, T. J. L.; Belokurov, V.; Koposov, S. E.; Ferrarese, L.; Erkal, D.; Côté, P.; Navarro, J. F.

    2018-06-01

    Using deep photometric data from Canada-France-Hawaii Telescope/Megacam, we study the morphology and density of the GD-1 stream, one of the longest and coldest stellar streams in the Milky Way. Our deep data recovers the lower main sequence of the stream with unprecedented quality, clearly separating it from Milky Way foreground and background stars. An analysis of the distance to different parts of the stream shows that GD-1 lies at a heliocentric distance between 8 and 10 kpc, with only a shallow gradient across 45° on the sky. Matched filter maps of the stream density show clear density variations, such as deviations from a single orbital track and tentative evidence for stream fanning. We also detect a clear underdensity in the middle of the stream track at φ1 = -45° surrounded by overdense stream segments on either side. This location is a promising candidate for the elusive missing progenitor of the GD-1 stream. We conclude that the GD-1 stream has clearly been disturbed by interactions with the Milky Way disc or other subhaloes.

  19. Soybean Salt Tolerance 1 (GmST1) Reduces ROS Production, Enhances ABA Sensitivity, and Abiotic Stress Tolerance in Arabidopsis thaliana.

    PubMed

    Ren, Shuxin; Lyle, Chimera; Jiang, Guo-Liang; Penumala, Abhishek

    2016-01-01

    Abiotic stresses, including high soil salinity, significantly reduce crop production worldwide. Salt tolerance in plants is a complex trait and is regulated by multiple mechanisms. Understanding the mechanisms and dissecting the components on their regulatory pathways will provide new insights, leading to novel strategies for the improvement of salt tolerance in agricultural and economic crops of importance. Here we report that soybean salt tolerance 1, named GmST1, exhibited strong tolerance to salt stress in the Arabidopsis transgenic lines. The GmST1-overexpressed Arabidopsis also increased sensitivity to ABA and decreased production of reactive oxygen species under salt stress. In addition, GmST1 significantly improved drought tolerance in Arabidopsis transgenic lines. GmST1 belongs to a 3-prime part of Glyma.03g171600 gene in the current version of soybean genome sequence annotation. However, comparative reverse transcription-polymerase chain reaction analysis around Glyma.03g171600 genomic region confirmed that GmST1 might serve as an intact gene in soybean leaf tissues. Unlike Glyma.03g171600 which was not expressed in leaves, GmST1 was strongly induced by salt treatment in the leaf tissues. By promoter analysis, a TATA box was detected to be positioned close to GmST1 start codon and a putative ABRE and a DRE cis-acting elements were identified at about 1 kb upstream of GmST1 gene. The data also indicated that GmST1-transgenic lines survived under drought stress and showed a significantly lower water loss than non-transgenic lines. In summary, our results suggest that overexpression of GmST1 significantly improves Arabidopsis tolerance to both salt and drought stresses and the gene may be a potential candidate for genetic engineering of salt- and drought-tolerant crops.

  20. An α-subunit loop structure is required for GM2 activator protein binding by β-hexosaminidase A

    PubMed Central

    Zarghooni, Maryam; Bukovac, Scott; Tropak, Michael; Callahan, John; Mahuran, Don

    2010-01-01

    The α- and/or β-subunits of human β-hexosaminidase A (αβ) and B (ββ) are ~60% identical. In vivo only β-hexosaminidase A can utilize GM2 ganglioside as a substrate, but requires the GM2 activator protein to bind GM2 ganglioside and then interact with the enzyme, placing the terminal GalNAc residue in the active site of the α-subunit. A model for this interaction suggests that two loop structures, present only in the α-subunit, may be critical to this binding. Three amino acids in one of these loops are not encoded in the HEXB gene, while four from the other are removed posttranslationally from the pro-β-subunit. Natural substrate assays with forms of hexosaminidase A containing mutant α-subunits demonstrate that only the site that is removed from the β-subunit during its maturation is critical for the interaction. Our data suggest an unexpected biological role for such proteolytic processing events. PMID:15485660

  1. INF-gamma rearranges membrane topography of MHC-I and ICAM-1 in colon carcinoma cells.

    PubMed

    Bacsó, Zsolt; Bene, László; Damjanovich, László; Damjanovich, Sándor

    2002-01-18

    Flow-cytometric fluorescence energy transfer (FCET) measurements between fluorescently labeled cell surface MHC-I and ICAM-1 molecules indicated similar receptor patterns in the plasma membrane of interferon-gamma (INF-gamma)-treated colon carcinoma cells as those observed earlier at the surface of lymphoid cells. INF-gamma activation significantly increased the density of MHC-I and ICAM-1 proteins in the membrane. This increase in receptor density was accompanied by decreased proximity level of the homo-associated MHC-I receptors. Hetero-association of MHC-I and ICAM-1 molecules was increased by INF-gamma treatment. INF-gamma changed neither hetero- nor homo-association of transferrin receptors. By staining the sphingomyelin/cholesterol-enriched lipid microdomains with fluorescently labeled cholera toxin B subunit, we found an increase in the amount of lipid-raft associated G(M1)-gangliosides due to INF-gamma treatment. Confocal microscopic results and FCET measurements show that MHC-I and ICAM-1 are components of G(M1)-ganglioside containing lipid-rafts and also support an increase in the size of these lipid-rafts upon INF-gamma treatment.

  2. GM2-gangliosidosis variant 0 (Sandhoff-like disease) in a family of Japanese domestic cats.

    PubMed

    Yamato, O; Matsunaga, S; Takata, K; Uetsuka, K; Satoh, H; Shoda, T; Baba, Y; Yasoshima, A; Kato, K; Takahashi, K; Yamasaki, M; Nakayama, H; Doi, K; Maede, Y; Ogawa, H

    2004-12-04

    A five-month-old, female Japanese domestic shorthair cat with proportionate dwarfism developed neurological disorders, including ataxia, decreased postural responses and generalised body and head tremors, at between two and five months of age. Leucocytosis due to lymphocytosis with abnormal cytoplasmic vacuolations was observed. The concentration of G(M2)-ganglioside in its cerebrospinal fluid was markedly higher than in normal cats, and the activities of beta-hexosaminidases A and B in its leucocytes were markedly reduced. On the basis of these biochemical data, the cat was diagnosed antemortem with G(M2)-gangliosidosis variant 0 (Sandhoff-like disease). The neurological signs became more severe and the cat died at 10 months of age. Histopathologically, neurons throughout the central nervous system were distended, and an ultrastructural study revealed membranous cytoplasmic bodies in these distended neurons. The compound which accumulated in the brain was identified as G(M2)-ganglioside, confirming G(M2)-gangliosidosis. A family study revealed that there were probable heterozygous carriers in which the activities of leucocyte beta-hexosaminidases A and B were less than half the normal value. The Sandhoff-like disease observed in this family of Japanese domestic cats is the first occurrence reported in Japan.

  3. An inversion of 25 base pairs causes feline GM2 gangliosidosis variant.

    PubMed

    Martin, Douglas R; Krum, Barbara K; Varadarajan, G S; Hathcock, Terri L; Smith, Bruce F; Baker, Henry J

    2004-05-01

    In G(M2) gangliosidosis variant 0, a defect in the beta-subunit of lysosomal beta-N-acetylhexosaminidase (EC 3.2.1.52) causes abnormal accumulation of G(M2) ganglioside and severe neurodegeneration. Distinct feline models of G(M2) gangliosidosis variant 0 have been described in both domestic shorthair and Korat cats. In this study, we determined that the causative mutation of G(M2) gangliosidosis in the domestic shorthair cat is a 25-base-pair inversion at the extreme 3' end of the beta-subunit (HEXB) coding sequence, which introduces three amino acid substitutions at the carboxyl terminus of the protein and a translational stop that is eight amino acids premature. Cats homozygous for the 25-base-pair inversion express levels of beta-subunit mRNA approximately 190% of normal and protein levels only 10-20% of normal. Because the 25-base-pair inversion is similar to mutations in the terminal exon of human HEXB, the domestic shorthair cat should serve as an appropriate model to study the molecular pathogenesis of human G(M2) gangliosidosis variant 0 (Sandhoff disease).

  4. Thermal behaviour of GdCo1-xMnxO3 cobaltates

    NASA Astrophysics Data System (ADS)

    Thakur, Rasna; Thakur, Rajesh K.; Gaur, N. K.

    2018-05-01

    With the objective of exploring the unknown thermodynamic behavior of GdCo1-xMnxO3 family, we present here an investigation of the temperature-dependent (10K≤T≤1000K) thermodynamic properties of GdCo1-xMnxO3 (x=0.1 to 0.8). The specific heat of GdCoO3 with Mn doping in the perovskite structure at B-site has been studied by means of a Modified Rigid Ion Model (MRIM). The cohesive energy, specific heat (C), volume thermal expansion (α) and Gruneisen parameter (γ) of GdCo1-xMnxO3 compounds are also discussed.

  5. Imbalance in Fatty-Acid-Chain Length of Gangliosides Triggers Alzheimer Amyloid Deposition in the Precuneus

    PubMed Central

    Oikawa, Naoto; Matsubara, Teruhiko; Fukuda, Ryoto; Yasumori, Hanaki; Hatsuta, Hiroyuki; Murayama, Shigeo; Sato, Toshinori; Suzuki, Akemi; Yanagisawa, Katsuhiko

    2015-01-01

    Amyloid deposition, a crucial event of Alzheimer’s disease (AD), emerges in distinct brain regions. A key question is what triggers the assembly of the monomeric amyloid ß-protein (Aß) into fibrils in the regions. On the basis of our previous findings that gangliosides facilitate the initiation of Aß assembly at presynaptic neuritic terminals, we investigated how lipids, including gangliosides, cholesterol and sphingomyelin, extracted from synaptic plasma membranes (SPMs) isolated from autopsy brains were involved in the Aß assembly. We focused on two regions of the cerebral cortex; precuneus and calcarine cortex, one of the most vulnerable and one of the most resistant regions to amyloid deposition, respectively. Here, we show that lipids extracted from SPMs isolated from the amyloid-bearing precuneus, but neither the amyloid-free precuneus nor the calcarine cortex, markedly accelerate the Aß assembly in vitro. Through liquid chromatography-mass spectrometry of the lipids, we identified an increase in the ratio of the level of GD1b-ganglioside containing C20:0 fatty acid to that containing C18:0 as a cause of the enhanced Aß assembly in the precuneus. Our results suggest that the local glycolipid environment play a critical role in the initiation of Alzheimer amyloid deposition. PMID:25798597

  6. Structural, magnetic and Mossbauer studies of TI doped Gd2Fe17-xTix and Gd2Fe16Ga1-xTix (0≤x≤1)

    NASA Astrophysics Data System (ADS)

    Pokharel, G.; Syed Ali, K. S.; Mishra, S. R.

    2015-05-01

    Magnetic compounds of the type Gd2Fe17-xTix and Gd2Fe16Ga1-xTix (x=0.0-1.0) were prepared by arc melting and their structural and magnetic properties were studied by X-ray diffraction (XRD), magnetometery and Mossbauer spectroscopy. The Rietveld analysis of X-ray data shows that these α-Fe free solid-solutions crystallize with Th2Ni17-type structure as main phase along with GdFe2 and TiFe2 as additional phases at higher, x≥0.5 contents. The unit cell volume expands with Ga and Ti content. The Rietveld analysis indicate that both Ti and Ga atoms prefer 12j and 12k sites in both compounds. The effect of Ti and co-substituted Ga-Ti on the bond length are quite different. The saturation magnetization Ms, at 300 K for Gd2Fe17-xTix and Gd2Fe16Ga1-xTix was found to decrease linearly with increasing Ti content. The Ms in both compounds at x=1 reduced by 9% as compared to their parent compounds at x=0. The Curie temperature, Tc, for Gd2Fe17-xTix increased from 513 K (x=0) to 544 K (x=1) while Tc for Gd2Fe16Ga1-xTix reduced from 560 (x=0) to 544 K (x=1) with increase in Ti content. Thus the observed variation in Tc follows Gd2Fe17<Gd2Fe16Ti<Gd2Fe16Ga. The observed changes in Tc with Ti substitution may result from the variation in the unit cell volume of compounds which has direct effect on the strength of Fe-Fe exchange-interaction. The Mossbauer results indicate decrease in hyperfine fields and increase in the isomer shifts with the increase in Ti content. Overall co-substituted Ga-Ti, Gd2Fe16Ga1-xTix show high Tc with marginal decline in saturation magnetization. Thus α-Fe free Gd2Fe16Ga1-xTix compounds can be potential candidate for high temperature permanent magnet industrial applications.

  7. Thymic involution and corticosterone level in Sandhoff disease model mice: new aspects the pathogenesis of GM2 gangliosidosis.

    PubMed

    Matsuoka, Kazuhiko; Tsuji, Daisuke; Taki, Takao; Itoh, Kohji

    2011-10-01

    Sandhoff disease (SD) is a lysosomal disease caused by a mutation of the HEXB gene associated with excessive accumulation of GM2 ganglioside (GM2) in lysosomes and neurological manifestations. Production of autoantibodies against the accumulated gangliosides has been reported to be involved in the progressive pathogenesis of GM2 gangliosidosis, although the underlying mechanism has not been fully elucidated. The thymus is the key organ in the acquired immune system including the development of autoantibodies. We showed here that thymic involution and an increase in cell death in the organ occur in SD model mice at a late stage of the pathogenesis. Dramatic increases in the populations of Annexin-V(+) cells and terminal deoxynucletidyl transferase dUTP nick end labeling (TUNEL) (+) cells were observed throughout the thymuses of 15-week old SD mice. Enhanced caspase-3/7 activation, but not that of caspase-1/4, -6 ,-8, or -9, was also demonstrated. Furthermore, the serum level of corticosterone, a potent inducer of apoptosis of thymocytes, was elevated during the same period of apoptosis. Our studies suggested that an increase in endocrine corticosterone may be one of the causes that accelerate the apoptosis of thymocytes leading to thymic involution in GM2 gangliosidosis, and thus can be used as a disease marker for evaluation of the thymic condition and disease progression.

  8. GM2 gangliosidosis in an adult pet rabbit.

    PubMed

    Rickmeyer, T; Schöniger, S; Petermann, A; Harzer, K; Kustermann-Kuhn, B; Fuhrmann, H; Schoon, H-A

    2013-02-01

    A 1.5-year-old neutered male rabbit was presented with chronic nasal discharge and ataxia. Rapid progression of neurological signs was noted subsequent to general anaesthesia and the rabbit was humanely destroyed due to the poor prognosis. At necropsy examination there were no gross changes affecting the brain or spinal cord. Microscopical examination revealed that the perikarya of numerous neurons in the brain and spinal cord were distended by the intracytoplasmic accumulation of pale, finely granular to vacuolar material. Transmission electron microscopy showed this to be composed of concentric membranous cytoplasmic bodies. Thin layer chromatography revealed elevation of GM2 ganglioside in the brain of this rabbit compared with that of an unaffected control rabbit. Enzymatically, there was markedly reduced activity of tissue β-hexosaminidase A in brain and liver tissue from the rabbit. This was a result of an almost complete absence of the enzymatic activity of the α-subunit of that enzyme. These findings are consistent with sphingolipidosis comparable with human GM2 gangliosidosis variant B1. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Structure of ganglioside with CAD blood group antigen activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gillard, B.K.; Blanchard, D.; Cartron, J.P.

    1986-05-01

    The novel erythrocyte ganglioside which carries the blood group Cad determinant has been isolated, and its structure has been determined. The ganglioside contained Glu:Gal:GalNAc:GlcNAc in a molar ratio of 1.00:1.94:0.93:0.95. The ganglioside binds Helix pomatia lectin and its chromatographic mobility is similar to G/sub D3/. After treatment with ..beta..-hexosaminidase (human placenta HexA) the product migrated with sialosylparagloboside (SPG), no longer binds Helix lectin, and binds a human anti-SPG antibody. Treatment of this material with neuraminidase (V. cholera) yielded a product with the mobility of paragloboside that bound monoclonal antibody 1B2. NMR analysis revealed that the terminal GalNAc is linked ..beta..1-4more » to Gal, and confirms the structure proposed previously: GalNAc..beta..1-4(NeuAc..cap alpha..2-3)Gal..beta..1-4GlcNAc..beta..1-3Gal..beta..1-4Glc-Cer. This structure is consistent with the previous demonstration that a compound with the same chromatographic mobility as the Cad ganglioside could be synthesized by enzymatic transfer of GalNAc to sialosylparagloboside.« less

  10. Botulinum neurotoxin serotype C associates with dual ganglioside receptors to facilitate cell entry.

    PubMed

    Karalewitz, Andrew P-A; Fu, Zhuji; Baldwin, Michael R; Kim, Jung-Ja P; Barbieri, Joseph T

    2012-11-23

    How botulinum neurotoxin serotype C (BoNT/C) enters neurons is unclear. BoNT/C utilizes dual gangliosides as host cell receptors. BoNT/C accesses gangliosides on the plasma membrane. Plasma membrane accessibility of the dual ganglioside receptors suggests synaptic vesicle exocytosis may not be necessary to expose BoNT/C receptors. Botulinum neurotoxins (BoNTs) cleave SNARE proteins in motor neurons that inhibits synaptic vesicle (SV) exocytosis, resulting in flaccid paralysis. There are seven BoNT serotypes (A-G). In current models, BoNTs initially bind gangliosides on resting neurons and upon SV exocytosis associate with the luminal domains of SV-associated proteins as a second receptor. The entry of BoNT/C is less clear. Characterizing the heavy chain receptor binding domain (HCR), BoNT/C was shown to utilize gangliosides as dual host receptors. Crystallographic and biochemical studies showed that the two ganglioside binding sites, termed GBP2 and Sia-1, were independent and utilized unique mechanisms to bind complex gangliosides. The GBP2 binding site recognized gangliosides that contained a sia5 sialic acid, whereas the Sia-1 binding site recognized gangliosides that contained a sia7 sialic acid and sugars within the backbone of the ganglioside. Utilizing gangliosides that uniquely recognized the GBP2 and Sia-1 binding sites, HCR/C entry into Neuro-2A cells required both functional ganglioside binding sites. HCR/C entered cells differently than the HCR of tetanus toxin, which also utilizes dual gangliosides as host receptors. A point-mutated HCR/C that lacked GBP2 binding potential retained the ability to bind and enter Neuro-2A cells. This showed that ganglioside binding at the Sia-1 site was accessible on the plasma membrane, suggesting that SV exocytosis may not be required to expose BoNT/C receptors. These studies highlight the utility of BoNT HCRs as probes to study the role of gangliosides in neurotransmission.

  11. Serial 1H-MRS in GM2 gangliosidoses.

    PubMed

    Assadi, Mitra; Baseman, Susan; Janson, Christopher; Wang, Dah-Jyuu; Bilaniuk, Larissa; Leone, Paola

    2008-03-01

    GM2 gangliosidoses are a group of neuronal storage disorders caused by deficiency in the lysosomal enzyme hexosaminidase A. Clinically, the disease is marked by a relentless encephalopathy. Proton magnetic resonance spectroscopy (1H-MRS) provides in-vivo measurement of various brain metabolites including N-acetyl aspartate+N-acetyl aspartate glutamate (NAA), myo-inositol (mI), choline (Cho) and creatine (Cr). The NAA represents neuronal integrity while elevation in the mI reflects abnormal inflammation and gliosis in the brain tissue. An elevation in the Cho levels suggest cell membrane breakdown and demyelination. We report the clinical and laboratory data in two patients with GM2 gangliosidoses. Serial 1H-MRS evaluations were performed to drive metabolite ratios of NAA/Cr, mI/Cr and Cho/Cr. We acquired the data from four regions of interest (ROI) according to a standard protocol. The results documented a progressive elevation in mI/Cr in all four ROI in patient one and only one ROI (occipital gray matter) in patient 2. We also documented a decline in the NAA/Cr ratios in both cases in most ROI. These results were compared to six age-matched controls and confirmed statistically significant elevation in the mI in our cases. In conclusion, 1H-MRS alterations were suggestive of neuronal loss and inflammation in these patients. 1H-MRS may be a valuable tool in monitoring the disease progress and response to therapy in GM2 gangliosidoses. Elevation in the mI may prove to be more sensitive than the other metabolite alterations.

  12. Therapeutic potential of intracerebroventricular replacement of modified human β-hexosaminidase B for GM2 gangliosidosis.

    PubMed

    Matsuoka, Kazuhiko; Tamura, Tomomi; Tsuji, Daisuke; Dohzono, Yukie; Kitakaze, Keisuke; Ohno, Kazuki; Saito, Seiji; Sakuraba, Hitoshi; Itoh, Kohji

    2011-06-01

    To develop a novel enzyme replacement therapy for neurodegenerative Tay-Sachs disease (TSD) and Sandhoff disease (SD), which are caused by deficiency of β-hexosaminidase (Hex) A, we designed a genetically engineered HEXB encoding the chimeric human β-subunit containing partial amino acid sequence of the α-subunit by structure-based homology modeling. We succeeded in producing the modified HexB by a Chinese hamster ovary (CHO) cell line stably expressing the chimeric HEXB, which can degrade artificial anionic substrates and GM2 ganglioside in vitro, and also retain the wild-type (WT) HexB-like thermostability in the presence of plasma. The modified HexB was efficiently incorporated via cation-independent mannose 6-phosphate receptor into fibroblasts derived from Tay-Sachs patients, and reduced the GM2 ganglioside accumulated in the cultured cells. Furthermore, intracerebroventricular administration of the modified HexB to Sandhoff mode mice restored the Hex activity in the brains, and reduced the GM2 ganglioside storage in the parenchyma. These results suggest that the intracerebroventricular enzyme replacement therapy involving the modified HexB should be more effective for Tay-Sachs and Sandhoff than that utilizing the HexA, especially as a low-antigenic enzyme replacement therapy for Tay-Sachs patients who have endogenous WT HexB.

  13. Therapeutic Potential of Intracerebroventricular Replacement of Modified Human β-Hexosaminidase B for GM2 Gangliosidosis

    PubMed Central

    Matsuoka, Kazuhiko; Tamura, Tomomi; Tsuji, Daisuke; Dohzono, Yukie; Kitakaze, Keisuke; Ohno, Kazuki; Saito, Seiji; Sakuraba, Hitoshi; Itoh, Kohji

    2011-01-01

    To develop a novel enzyme replacement therapy for neurodegenerative Tay-Sachs disease (TSD) and Sandhoff disease (SD), which are caused by deficiency of β-hexosaminidase (Hex) A, we designed a genetically engineered HEXB encoding the chimeric human β-subunit containing partial amino acid sequence of the α-subunit by structure-based homology modeling. We succeeded in producing the modified HexB by a Chinese hamster ovary (CHO) cell line stably expressing the chimeric HEXB, which can degrade artificial anionic substrates and GM2 ganglioside in vitro, and also retain the wild-type (WT) HexB-like thermostability in the presence of plasma. The modified HexB was efficiently incorporated via cation-independent mannose 6-phosphate receptor into fibroblasts derived from Tay-Sachs patients, and reduced the GM2 ganglioside accumulated in the cultured cells. Furthermore, intracerebroventricular administration of the modified HexB to Sandhoff mode mice restored the Hex activity in the brains, and reduced the GM2 ganglioside storage in the parenchyma. These results suggest that the intracerebroventricular enzyme replacement therapy involving the modified HexB should be more effective for Tay-Sachs and Sandhoff than that utilizing the HexA, especially as a low-antigenic enzyme replacement therapy for Tay-Sachs patients who have endogenous WT HexB. PMID:21487393

  14. Novel Biomarkers of Human GM1 Gangliosidosis Reflect the Clinical Efficacy of Gene Therapy in a Feline Model.

    PubMed

    Gray-Edwards, Heather L; Regier, Debra S; Shirley, Jamie L; Randle, Ashley N; Salibi, Nouha; Thomas, Sarah E; Latour, Yvonne L; Johnston, Jean; Golas, Gretchen; Maguire, Annie S; Taylor, Amanda R; Sorjonen, Donald C; McCurdy, Victoria J; Christopherson, Peter W; Bradbury, Allison M; Beyers, Ronald J; Johnson, Aime K; Brunson, Brandon L; Cox, Nancy R; Baker, Henry J; Denney, Thomas S; Sena-Esteves, Miguel; Tifft, Cynthia J; Martin, Douglas R

    2017-04-05

    GM1 gangliosidosis is a fatal neurodegenerative disease that affects individuals of all ages. Favorable outcomes using adeno-associated viral (AAV) gene therapy in GM1 mice and cats have prompted consideration of human clinical trials, yet there remains a paucity of objective biomarkers to track disease status. We developed a panel of biomarkers using blood, urine, cerebrospinal fluid (CSF), electrodiagnostics, 7 T MRI, and magnetic resonance spectroscopy in GM1 cats-either untreated or AAV treated for more than 5 years-and compared them to markers in human GM1 patients where possible. Significant alterations were noted in CSF and blood of GM1 humans and cats, with partial or full normalization after gene therapy in cats. Gene therapy improved the rhythmic slowing of electroencephalograms (EEGs) in GM1 cats, a phenomenon present also in GM1 patients, but nonetheless the epileptiform activity persisted. After gene therapy, MR-based analyses revealed remarkable preservation of brain architecture and correction of brain metabolites associated with microgliosis, neuroaxonal loss, and demyelination. Therapeutic benefit of AAV gene therapy in GM1 cats, many of which maintain near-normal function >5 years post-treatment, supports the strong consideration of human clinical trials, for which the biomarkers described herein will be essential for outcome assessment. Copyright © 2017 The American Society of Gene and Cell Therapy. All rights reserved.

  15. STREAMFINDER II: A possible fanning structure parallel to the GD-1 stream in Pan-STARRS1

    NASA Astrophysics Data System (ADS)

    Malhan, Khyati; Ibata, Rodrigo A.; Goldman, Bertrand; Martin, Nicolas F.; Magnier, Eugene; Chambers, Kenneth

    2018-05-01

    STREAMFINDER is a new algorithm that we have built to detect stellar streams in an automated and systematic way in astrophysical datasets that possess any combination of positional and kinematic information. In Paper I, we introduced the methodology and the workings of our algorithm and showed that it is capable of detecting ultra-faint and distant halo stream structures containing as few as ˜15 members (ΣG ˜ 33.6 mag arcsec-2) in the Gaia dataset. Here, we test the method with real proper motion data from the Pan-STARRS1 survey, and by selecting targets down to r0 = 18.5 mag we show that it is able to detect the GD-1 stellar stream, whereas the structure remains below a useful detection limit when using a Matched Filter technique. The radial velocity solutions provided by STREAMFINDER for GD-1 candidate members are found to be in good agreement with observations. Furthermore, our algorithm detects a ˜ {40}° long structure approximately parallel to GD-1, and which fans out from it, possibly a sign of stream-fanning due to the triaxiality of the Galactic potential. This analysis shows the promise of this method for detecting and analysing stellar streams in the upcoming Gaia DR2 catalogue.

  16. The glycosaminoglycan content of the liver in bovine GM1 gangliosidosis.

    PubMed

    Johnson, A H; Donnelly, W J; Sheahan, B J

    1977-03-01

    Chemical analysis of the livers from four calves with GM1 gangliosidosis was negative for significantly elevated levels of glycosaminoglycans. The chemical findings confirmed morphological studies in which hepatic changes were minimal or absent. The findings were compared with the published evidence for the hepatic storage of glycosaminoglycans in human GM1 gangliosidosis.

  17. Magnetocaloric effect in Gd1-x Ndx Zn2

    NASA Astrophysics Data System (ADS)

    Matsumoto, Keisuke T.; Hiraoka, Koichi

    2017-09-01

    The magnetization of Gd1-xNdxZn2 (0 < x ⩽ 1) was measured to study the effect of Nd substitution in GdZn2 with a Curie temperature of 85 K and a spin-reorientation transition temperature of 58 K on the magnetocaloric effect. The Nd counterpart NdZn2 shows antiferromagnetic order at 23 K. Samples of Gd1-xNdxZn2 (0 < x ⩽ 1) were prepared by the melt-growth method. In Nd-substituted systems, the anomaly due to spin-reorientation disappeared. For x ⩾ 0.6 , field-induced metamagnetic transitions were observed, indicating an antiferromagnetic ground state. This complex magnetism may originate from competition between ferromagnetic and antiferromagnetic interactions. Magnetic entropy change ΔSm was calculated based on the magnetization measurements. ΔSm was suppressed by Nd substitution for x values up to 0.6. For x = 1 (NdZn2), the maximum value of ΔSm was -9 J/K kg, which is almost the same as those of other Nd-based magnetocaloric materials.

  18. The interplay of T1- and T2-relaxation on T1-weighted MRI of hMSCs induced by Gd-DOTA-peptides.

    PubMed

    Cao, Limin; Li, Binbin; Yi, Peiwei; Zhang, Hailu; Dai, Jianwu; Tan, Bo; Deng, Zongwu

    2014-04-01

    Three Gd-DOTA-peptide complexes with different peptide sequence are synthesized and used as T1 contrast agent to label human mesenchymal stem cells (hMSCs) for magnetic resonance imaging study. The peptides include a universal cell penetrating peptide TAT, a linear MSC-specific peptide EM7, and a cyclic MSC-specific peptide CC9. A significant difference in labeling efficacy is observed between the Gd-DOTA-peptides as well as a control Dotarem. All Gd-DOTA-peptides as well as Dotarem induce significant increase in T1 relaxation rate which is in favor of T1-weighted MR imaging. Gd-DOTA-CC9 yields the maximum labeling efficacy but poor T1 contrast enhancement. Gd-DOTA-EM7 yields the minimum labeling efficacy but better T1 contrast enhancement. Gd-DOTA-TAT yields a similar labeling efficacy as Gd-DOTA-CC9 and similar T1 contrast enhancement as Gd-DOTA-EM7. The underlying mechanism that governs T1 contrast enhancement effect is discussed. Our results suggest that T1 contrast enhancement induced by Gd-DOTA-peptides depends not only on the introduced cellular Gd content, but more importantly on the effect that Gd-DOTA-peptides exert on the T1-relaxation and T2-relaxation processes/rates. Both T1 and particularly T2 relaxation rate have to be taken into account to interpret T1 contrast enhancement. In addition, the interpretation has to be based on cellular instead of aqueous longitudinal and transverse relaxivities of Gd-DOTA-peptides. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Broad neutralization of calcium-permeable amyloid pore channels with a chimeric Alzheimer/Parkinson peptide targeting brain gangliosides.

    PubMed

    Di Scala, Coralie; Yahi, Nouara; Flores, Alessandra; Boutemeur, Sonia; Kourdougli, Nazim; Chahinian, Henri; Fantini, Jacques

    2016-02-01

    Growing evidence supports a role for brain gangliosides in the pathogenesis of neurodegenerative diseases including Alzheimer's and Parkinson's. Recently we deciphered the ganglioside-recognition code controlling specific ganglioside binding to Alzheimer's β-amyloid (Aβ1-42) peptide and Parkinson's disease-associated protein α-synuclein. Cracking this code allowed us to engineer a short chimeric Aβ/α-synuclein peptide that recognizes all brain gangliosides. Here we show that ganglioside-deprived neural cells do no longer sustain the formation of zinc-sensitive amyloid pore channels induced by either Aβ1-42 or α-synuclein, as assessed by single-cell Ca(2+) fluorescence microscopy. Thus, amyloid channel formation, now considered a key step in neurodegeneration, is a ganglioside-dependent process. Nanomolar concentrations of chimeric peptide competitively inhibited amyloid pore formation induced by Aβ1-42 or α-synuclein in cultured neural cells. Moreover, this peptide abrogated the intracellular calcium increases induced by Parkinson's-associated mutant forms of α-synuclein (A30P, E46K and A53T). The chimeric peptide also prevented the deleterious effects of Aβ1-42 on synaptic vesicle trafficking and decreased the Aβ1-42-induced impairment of spontaneous activity in rat hippocampal slices. Taken together, these data show that the chimeric peptide has broad anti-amyloid pore activity, suggesting that a common therapeutic strategy based on the prevention of amyloid-ganglioside interactions is a reachable goal for both Alzheimer's and Parkinson's diseases. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Mutation analysis of GM1 gangliosidosis in a Siamese cat from Japan in the 1960s.

    PubMed

    Uddin, Mohammad M; Tanimoto, Takeshi; Yabuki, Akira; Kotani, Takao; Kuwamura, Mitsuru; Chang, Hye-Sook; Yamato, Osamu

    2012-12-01

    GM1 gangliosidosis is a fatal, progressive neurodegenerative lysosomal storage disease caused by mutations of the β-galactosidase (GLB1) gene. In feline GM1 gangliosidosis, a pathogenic mutation (c.1448G>C) of the feline GLB1 gene was identified in Siamese and Korat cats previously diagnosed with the disease in the USA and Italy, respectively. The present study demonstrated the same mutation in a Siamese cat that had been diagnosed with GM1 gangliosidosis in Japan in the 1960s. The mutation was confirmed using DNA extracted from stored paraffin-embedded brain tissue by a direct sequencing method and a polymerase chain reaction-restriction fragment length polymorphism assay. This pathogenic mutation seems to have been distributed around the world.

  1. The bHLH transcription factor GmPIB1 facilitates resistance to Phytophthora sojae in Glycine max

    PubMed Central

    Cheng, Qun; Dong, Lidong; Gao, Tianjiao; Liu, Tengfei; Li, Ninghui; Wang, Le; Chang, Xin; Wu, Junjiang; Xu, Pengfei

    2018-01-01

    Abstract Phytophthora sojae Kaufmann and Gerdemann causes Phytophthora root rot, a destructive soybean disease worldwide. A basic helix–loop–helix (bHLH) transcription factor is thought to be involved in the response to P. sojae infection in soybean, as revealed by RNA sequencing (RNA-seq). However, the molecular mechanism underlying this response is currently unclear. Here, we explored the function and underlying mechanisms of a bHLH transcription factor in soybean, designated GmPIB1 (P. sojae-inducible bHLH transcription factor), during host responses to P. sojae. GmPIB1 was significantly induced by P. sojae in the resistant soybean cultivar ‘L77-1863’. Analysis of transgenic soybean hairy roots with elevated or reduced expression of GmPIB1 demonstrated that GmPIB1 enhances resistance to P. sojae and reduces reactive oxygen species (ROS) accumulation. Quantitative reverse transcription PCR and chromatin immunoprecipitation–quantitative PCR assays revealed that GmPIB1 binds directly to the promoter of GmSPOD1 and represses its expression; this gene encodes a key enzyme in ROS production. Moreover, transgenic soybean hairy roots with GmSPOD1 silencing through RNA interference exhibited improved resistance to P. sojae and reduced ROS generation. These findings suggest that GmPIB1 enhances resistance to P. sojae by repressing the expression of GmSPOD1. PMID:29579245

  2. Case reports of juvenile GM1 gangliosidosisis type II caused by mutation in GLB1 gene.

    PubMed

    Karimzadeh, Parvaneh; Naderi, Samaneh; Modarresi, Farzaneh; Dastsooz, Hassan; Nemati, Hamid; Farokhashtiani, Tayebeh; Shamsian, Bibi Shahin; Inaloo, Soroor; Faghihi, Mohammad Ali

    2017-07-17

    Type II or juvenile GM1-gangliosidosis is an autosomal recessive lysosomal storage disorder, which is clinically distinct from infantile form of the disease by the lack of characteristic cherry-red spot and hepatosplenomegaly. The disease is characterized by slowly progressive neurodegeneration and mild skeletal changes. Due to the later age of onset and uncharacteristic presentation, diagnosis is frequently puzzled with other ataxic and purely neurological disorders. Up to now, 3-4 types of GM1-gangliosidosis have been reported and among them type I is the most common phenotype with the age of onset around 6 months. Various forms of GM1-gangliosidosis are caused by GLB1 gene mutations but severity of the disease and age of onset are directly related to the position and the nature of deleterious mutations. However, due to its unique genetic cause and overlapping clinical features, some researchers believe that GM1 gangliosidosis represents an overlapped disease spectrum instead of four distinct types. Here, we report a less frequent type of autosomal recessive GM1 gangliosidosis with perplexing clinical presentation in three families in the southwest part of Iran, who are unrelated but all from "Lurs" ethnic background. To identify disease-causing mutations, Whole Exome Sequencing (WES) utilizing next generation sequencing was performed. Four patients from three families were investigated with the age of onset around 3 years old. Clinical presentations were ataxia, gate disturbances and dystonia leading to wheelchair-dependent disability, regression of intellectual abilities, and general developmental regression. They all were born in consanguineous families with no previous documented similar disease in their parents. A homozygote missense mutation in GLB1 gene (c. 601 G > A, p.R201C) was found in all patients. Using Sanger sequencing this identified mutation was confirmed in the proband, their parents, grandparents, and extended family members, confirming

  3. Application of Grey Model GM(1, 1) to Ultra Short-Term Predictions of Universal Time

    NASA Astrophysics Data System (ADS)

    Lei, Yu; Guo, Min; Zhao, Danning; Cai, Hongbing; Hu, Dandan

    2016-03-01

    A mathematical model known as one-order one-variable grey differential equation model GM(1, 1) has been herein employed successfully for the ultra short-term (<10days) predictions of universal time (UT1-UTC). The results of predictions are analyzed and compared with those obtained by other methods. It is shown that the accuracy of the predictions is comparable with that obtained by other prediction methods. The proposed method is able to yield an exact prediction even though only a few observations are provided. Hence it is very valuable in the case of a small size dataset since traditional methods, e.g., least-squares (LS) extrapolation, require longer data span to make a good forecast. In addition, these results can be obtained without making any assumption about an original dataset, and thus is of high reliability. Another advantage is that the developed method is easy to use. All these reveal a great potential of the GM(1, 1) model for UT1-UTC predictions.

  4. Functional interaction analysis of GM1-related carbohydrates and Vibrio cholerae toxins using carbohydrate microarray.

    PubMed

    Kim, Chang Sup; Seo, Jeong Hyun; Cha, Hyung Joon

    2012-08-07

    The development of analytical tools is important for understanding the infection mechanisms of pathogenic bacteria or viruses. In the present work, a functional carbohydrate microarray combined with a fluorescence immunoassay was developed to analyze the interactions of Vibrio cholerae toxin (ctx) proteins and GM1-related carbohydrates. Ctx proteins were loaded onto the surface-immobilized GM1 pentasaccharide and six related carbohydrates, and their binding affinities were detected immunologically. The analysis of the ctx-carbohydrate interactions revealed that the intrinsic selectivity of ctx was GM1 pentasaccharide ≫ GM2 tetrasaccharide > asialo GM1 tetrasaccharide ≥ GM3trisaccharide, indicating that a two-finger grip formation and the terminal monosaccharides play important roles in the ctx-GM1 interaction. In addition, whole cholera toxin (ctxAB(5)) had a stricter substrate specificity and a stronger binding affinity than only the cholera toxin B subunit (ctxB). On the basis of the quantitative analysis, the carbohydrate microarray showed the sensitivity of detection of the ctxAB(5)-GM1 interaction with a limit-of-detection (LOD) of 2 ng mL(-1) (23 pM), which is comparable to other reported high sensitivity assay tools. In addition, the carbohydrate microarray successfully detected the actual toxin directly secreted from V. cholerae, without showing cross-reactivity to other bacteria. Collectively, these results demonstrate that the functional carbohydrate microarray is suitable for analyzing toxin protein-carbohydrate interactions and can be applied as a biosensor for toxin detection.

  5. GM-CSF ameliorates microvascular barrier integrity via pericyte-derived Ang-1 in wound healing.

    PubMed

    Yan, Min; Hu, Yange; Yao, Min; Bao, Shisan; Fang, Yong

    2017-11-01

    Skin wound healing involves complex coordinated interactions of cells, tissues, and mediators. Maintaining microvascular barrier integrity is one of the key events for endothelial homeostasis during wound healing. Vasodilation is observed after vasoconstriction, which causes blood vessels to become porous, facilitates leukocyte infiltration and aids angiogenesis at the wound-area, postinjury. Eventually, vessel integrity has to be reestablished for vascular maturation. Numerous studies have found that granulocyte macrophage colony-stimulating factor (GM-CSF) accelerates wound healing by inducing recruitment of repair cells into the injury area and releases of cytokines. However, whether GM-CSF is involving in the maintaining of microvascular barrier integrity and the underlying mechanism remain still unclear. Aim of this study was to investigate the effects of GM-CSF on modulation of microvascular permeability in wound healing and underlying mechanisms. Wound closure and microvascular leakage was investigated using a full-thickness skin wound mouse model after GM-CSF intervention. The endothelial permeability was measured by Evans blue assay in vivo and in vitro endothelium/pericyte co-culture system using a FITC-Dextran permeability assay. To identify the source of angiopoietin-1 (Ang-1), double staining is used in vivo and ELISA and qPCR are used in vitro. To determine the specific effect of Ang-1 on GM-CSF maintaining microvascular stabilization, Ang-1 siRNA was applied to inhibit Ang-1 production in vivo and in vitro. Wound closure was significantly accelerated and microvascular leakage was ameliorated after GM-CSF treatment in mouse wound sites. GM-CSF decreased endothelial permeability through tightening endothelial junctions and increased Ang-1 protein level that was derived by perictye. Furthermore, applications of siRNAAng-1 inhibited GM-CSF mediated protection of microvascular barrier integrity both in vivo and in vitro. Our data indicate that GM

  6. Identification of a new B4GalNAcT1 (GM2/GD2/GA2 synthase) isoform, and regulation of enzyme stability and intracellular transport by arginine-based motif.

    PubMed

    Shishido, Fumi; Uemura, Satoshi; Kashimura, Madoka; Inokuchi, Jin-Ichi

    2017-10-01

    Glycosphingolipids (GSLs) are abundant in plasma membranes of mammalian cells, and their synthesis is strictly regulated in the Golgi apparatus. Disruption of GSL homeostasis is the cause of numerous diseases. Hundreds of molecular species of GSLs exist, and the detailed mechanisms underlying their homeostasis remain unclear. We investigated the physiological significance of isoform production for β1,4-N-acetyl-galactosaminyl transferase 1/B4GALNT1 (B4GN1), an enzyme involved in synthesis of ganglio-series GSLs GM2/GD2/GA2. We discovered a new mRNA variant (termed variant 2) of B4GN1 through EST clone search. A new isoform, M1-B4GN1, which has an NH 2 -terminal cytoplasmic tail longer than that of previously-known isoform M2-B4GN1, is translated from variant 2. M1-B4GN1 has R-based motif (a retrograde transport signal) in the cytoplasmic tail. M1-B4GN1 is partially localized in the endoplasmic reticulum (ER) depending on the R-based motif, whereas M2-B4GN1 is localized in the Golgi. Stability of M1-B4GN1 is higher than that of M2-B4GN1 because of the R-based motif. M2-B4GN1 forms a homodimer via disulfide bonding. When M1-B4GN1 and M2-B4GN1 were co-expressed in CHO-K1 cells, the two isoforms formed a heterodimer. The M1/M2-B4GN1 heterodimer was more stable than the M2-B4GN1 homodimer, but the heterodimer was not transported from the Golgi to the ER. Our findings indicate that stabilization of M1-B4GN1 homodimer and M1/M2-B4GN1 heterodimer by R-based motif is related to prolongation of Golgi retention, but not to retrograde transport from the Golgi to the ER. Coexistence of several B4GN1 isoforms having distinctive characteristics presumably helps maintain overall enzyme stability and GSL homeostasis. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Defective macroautophagic turnover of brain lipids in the TgCRND8 Alzheimer mouse model: prevention by correcting lysosomal proteolytic deficits

    PubMed Central

    Stavrides, Philip; Saito, Mitsuo; Kumar, Asok; Rodriguez-Navarro, Jose A.; Pawlik, Monika; Huo, Chunfeng; Walkley, Steven U.; Saito, Mariko; Cuervo, Ana M.

    2014-01-01

    Autophagy, the major lysosomal pathway for the turnover of intracellular organelles is markedly impaired in neurons in Alzheimer’s disease and Alzheimer mouse models. We have previously reported that severe lysosomal and amyloid neuropathology and associated cognitive deficits in the TgCRND8 Alzheimer mouse model can be ameliorated by restoring lysosomal proteolytic capacity and autophagy flux via genetic deletion of the lysosomal protease inhibitor, cystatin B. Here we present evidence that macroautophagy is a significant pathway for lipid turnover, which is defective in TgCRND8 brain where lipids accumulate as membranous structures and lipid droplets within giant neuronal autolysosomes. Levels of multiple lipid species including several sphingolipids (ceramide, ganglioside GM3, GM2, GM1, GD3 and GD1a), cardiolipin, cholesterol and cholesteryl esters are elevated in autophagic vacuole fractions and lysosomes isolated from TgCRND8 brain. Lipids are localized in autophagosomes and autolysosomes by double immunofluorescence analyses in wild-type mice and colocalization is increased in TgCRND8 mice where abnormally abundant GM2 ganglioside-positive granules are detected in neuronal lysosomes. Cystatin B deletion in TgCRND8 significantly reduces the number of GM2-positive granules and lowers the levels of GM2 and GM3 in lysosomes, decreases lipofuscin-related autofluorescence, and eliminates giant lipid-containing autolysosomes while increasing numbers of normal-sized autolysosomes/lysosomes with reduced content of undigested components. These findings have identified macroautophagy as a previously unappreciated route for delivering membrane lipids to lysosomes for turnover, a function that has so far been considered to be mediated exclusively through the endocytic pathway, and revealed that autophagic-lysosomal dysfunction in TgCRND8 brain impedes lysosomal turnover of lipids as well as proteins. The amelioration of lipid accumulation in TgCRND8 by removing cystatin

  8. Overexpression of a GmGBP1 ortholog of soybean enhances the responses to flowering, stem elongation and heat tolerance in transgenic tobaccos.

    PubMed

    Zhao, Lin; Wang, Zhixin; Lu, Qingyao; Wang, Pengpeng; Li, Yongguang; Lv, Qingxue; Song, Xianping; Li, Dongmei; Gu, Yuejiao; Liu, Lixue; Li, Wenbin

    2013-06-01

    Soybean is a typical short-day crop, and its photoperiodic and gibberellin (GA) responses for the control of flowering are critical to seed yield. The GmGBP1 mRNA abundance in leaves was dramatically increased in short-days (SDs) compared to that in long-days in which it was consistently low at all time points from 0 to 6 days (days after transfer to SDs). GmGBP1 was highly expressed in leaves and exhibited a circadian rhythm in SDs. Ectopic overexpression of GmGBP1 in tobaccos caused photoperiod-insensitive early flowering by increasing NtCO mRNA levels. GmGBP1 mRNA abundance was also increased by GAs. Transgenic GmGBP1 overexpressing (-ox) tobacco plants exhibited increased GA signaling-related phenotypes including flowering and plant height promotion. Furthermore, the hypocotyl elongation, early-flowering and longer internode phenotypes were largely accelerated by GA3 application in the GmGBP1-ox tobacco seedlings. Being consistent, overexpression of GmGBP1 resulted in significantly enhanced GA signaling (evidenced suppressed expression of NtGA20ox) both with and without GA treatments. GmGBP1 was a positive regulator of both photoperiod and GA-mediated flowering responses. In addition, GmGBP1-ox tobaccos were hypersensitive to ABA, salt and osmotic stresses during seed germination. Heat-inducible GmGBP1 also enhanced thermotolerance in transgenic GmGBP1-ox tobaccos during seed germination and growth. GmGBP1 protein was localized in the nucleus. Analyses of a series of 5'-deletions of the GmGBP1 promoter suggested that several cis-acting elements, including P-BOX, TCA-motif and three HSE elements necessary to induce gene expression by GA, salicic acid and heat stress, were specifically localized in the GmGBP1 promoter region.

  9. Low pH, Aluminum, and Phosphorus Coordinately Regulate Malate Exudation through GmALMT1 to Improve Soybean Adaptation to Acid Soils1[W][OA

    PubMed Central

    Liang, Cuiyue; Piñeros, Miguel A.; Tian, Jiang; Yao, Zhufang; Sun, Lili; Liu, Jiping; Shaff, Jon; Coluccio, Alison; Kochian, Leon V.; Liao, Hong

    2013-01-01

    Low pH, aluminum (Al) toxicity, and low phosphorus (P) often coexist and are heterogeneously distributed in acid soils. To date, the underlying mechanisms of crop adaptation to these multiple factors on acid soils remain poorly understood. In this study, we found that P addition to acid soils could stimulate Al tolerance, especially for the P-efficient genotype HN89. Subsequent hydroponic studies demonstrated that solution pH, Al, and P levels coordinately altered soybean (Glycine max) root growth and malate exudation. Interestingly, HN89 released more malate under conditions mimicking acid soils (low pH, +P, and +Al), suggesting that root malate exudation might be critical for soybean adaptation to both Al toxicity and P deficiency on acid soils. GmALMT1, a soybean malate transporter gene, was cloned from the Al-treated root tips of HN89. Like root malate exudation, GmALMT1 expression was also pH dependent, being suppressed by low pH but enhanced by Al plus P addition in roots of HN89. Quantitative real-time PCR, transient expression of a GmALMT1-yellow fluorescent protein chimera in Arabidopsis protoplasts, and electrophysiological analysis of Xenopus laevis oocytes expressing GmALMT1 demonstrated that GmALMT1 encodes a root cell plasma membrane transporter that mediates malate efflux in an extracellular pH-dependent and Al-independent manner. Overexpression of GmALMT1 in transgenic Arabidopsis, as well as overexpression and knockdown of GmALMT1 in transgenic soybean hairy roots, indicated that GmALMT1-mediated root malate efflux does underlie soybean Al tolerance. Taken together, our results suggest that malate exudation is an important component of soybean adaptation to acid soils and is coordinately regulated by three factors, pH, Al, and P, through the regulation of GmALMT1 expression and GmALMT1 function. PMID:23341359

  10. Comparative Proteomic Analysis of Two Varieties of Genetically Modified (GM) Embrapa 5.1 Common Bean (Phaseolus vulgaris L.) and Their Non-GM Counterparts.

    PubMed

    Balsamo, Geisi M; Valentim-Neto, Pedro A; Mello, Carla S; Arisi, Ana C M

    2015-12-09

    The genetically modified (GM) common bean event Embrapa 5.1 was commercially approved in Brazil in 2011; it is resistant to golden mosaic virus infection. In the present work grain proteome profiles of two Embrapa 5.1 common bean varieties, Pérola and Pontal, and their non-GM counterparts were compared by two-dimensional gel electrophoresis (2-DE) followed by mass spectrometry (MS). Analyses detected 23 spots differentially accumulated between GM Pérola and non-GM Pérola and 21 spots between GM Pontal and non-GM Pontal, although they were not the same proteins in Pérola and Pontal varieties, indicating that the variability observed may not be due to the genetic transformation. Among them, eight proteins were identified in Pérola varieties, and four proteins were identified in Pontal. Moreover, we applied principal component analysis (PCA) on 2-DE data, and variation between varieties was explained in the first two principal components. This work provides a first 2-DE-MS/MS-based analysis of Embrapa 5.1 common bean grains.

  11. Combined replacement effects of human modified β-hexosaminidase B and GM2 activator protein on GM2 gangliosidoses fibroblasts.

    PubMed

    Kitakaze, Keisuke; Tasaki, Chikako; Tajima, Youichi; Hirokawa, Takatsugu; Tsuji, Daisuke; Sakuraba, Hitoshi; Itoh, Kohji

    2016-09-01

    GM2 gangliosidoses are autosomal recessive lysosomal storage diseases (LSDs) caused by mutations in the HEXA , HEXB and GM2A genes, which encode the human lysosomal β-hexosaminidase (Hex) α- and β-subunits, and GM2 activator protein (GM2A), respectively. These diseases are associated with excessive accumulation of GM2 ganglioside (GM2) in the brains of patients with neurological symptoms. Here we established a CHO cell line overexpressing human GM2A, and purified GM2A from the conditioned medium, which was taken up by fibroblasts derived from a patient with GM2A deficiency, and had the therapeutic effects of reducing the GM2 accumulated in fibroblasts when added to the culture medium. We also demonstrated for the first time that recombinant GM2A could enhance the replacement effect of human modified HexB (modB) with GM2-degrading activity, which is composed of homodimeric altered β-subunits containing a partial amino acid sequence of the α-subunit, including the GSEP loop necessary for binding to GM2A, on reduction of the GM2 accumulated in fibroblasts derived from a patient with Tay-Sachs disease, a HexA (αβ heterodimer) deficiency, caused by HEXA mutations. We predicted the same manner of binding of GM2A to the GSEP loop located in the modified HexB β-subunit to that in the native HexA α-subunit on the basis of the x-ray crystal structures. These findings suggest the effectiveness of combinational replacement therapy involving the human modified HexB and GM2A for GM2 gangliosidoses.

  12. Comparison of the glycosphingolipids of human-induced pluripotent stem cells and human embryonic stem cells.

    PubMed

    Säljö, Karin; Barone, Angela; Vizlin-Hodzic, Dzeneta; Johansson, Bengt R; Breimer, Michael E; Funa, Keiko; Teneberg, Susann

    2017-04-01

    High expectations are held for human-induced pluripotent stem cells (hiPSC) since they are established from autologous tissues thus overcoming the risk of allogeneic immune rejection when used in regenerative medicine. However, little is known regarding the cell-surface carbohydrate antigen profile of hiPSC compared with human embryonic stem cells (hESC). Here, glycosphingolipids were isolated from an adipocyte-derived hiPSC line, and hiPSC and hESC glycosphingolipids were compared by concurrent characterization by binding assays with carbohydrate-recognizing ligands and mass spectrometry. A high similarity between the nonacid glycosphingolipids of hiPSC and hESC was found. The nonacid glycosphingolipids P1 pentaosylceramide, x2 pentaosylceramide and H type 1 heptaosylceramide, not previously described in human pluripotent stem cells (hPSC), were characterized in both hiPSC and hESC. The composition of acid glycosphingolipids differed, with increased levels of GM3 ganglioside, and reduced levels of GD1a/GD1b in hiPSC when compared with hESC. In addition, the hESC glycosphingolipids sulf-globopentaosylceramide and sialyl-globotetraosylceramide were lacking in hiPSC. Neural stem cells differentiating from hiPSC had a reduced expression of sialyl-lactotetra, whereas expression of the GD1a ganglioside was significantly increased. Thus, while sialyl-lactotetra is a marker of undifferentiated hPSC, GD1a is a novel marker of neural differentiation. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Antitumor activity and carrier properties of novel hemocyanins coupled to a mimotope of GD2 ganglioside.

    PubMed

    Palacios, Miriam; Tampe, Ricardo; Del Campo, Miguel; Zhong, Ta-Ying; López, Mercedes N; Salazar-Onfray, Flavio; Becker, María Inés

    2018-04-25

    Conjugation to carrier proteins is a way to improve the immunogenicity of peptides. Such is the case for peptides mimicking carbohydrate tumor-associated antigens in cancer vaccine development. The most used protein for this purpose is the keyhole limpet hemocyanin (KLH) from Megathura crenulata. Its limited bioavailability has prompted interest in finding new candidates; nevertheless, it is not known whether other hemocyanins might be equally efficient as carrier of carbohydrate peptide mimotopes to promotes anti-tumor responses. Here, we evaluated the carrier and antitumor activity of novel hemocyanins with documented immunogenicity obtained from Concholepas concholepas (CCH) and Fissurella latimarginata (FLH), coupled through sulfo-SMCC to P10, a mimetic peptide of GD2, the major ganglioside constituent of neuroectodermal tumors, and incorporating AddaVax as an adjuvant. The humoral immune responses of mice showed that CCH-P10 and FLH-P10 conjugates elicited specific IgM and IgG antibodies against P10 mimotope, similar to those obtained with KLH-P10, which was used as a positive control. The CCH-P10 and FLH-P10 antisera, exhibited cross-reactivity with murine and human melanoma cells, like anti-CCH and anti-FLH sera suggesting a cross-reaction of CCH and FLH glycosylations with carbohydrate epitopes on the tumor cell surfaces, similar to the KLH antisera. When mice were primed with each hemocyanin-P10 and challenged with melanoma cells, better antitumor effects were observed for FLH-P10 than for CCH-P10 and, as for KLH-P10, irrespective of conjugation. These data demonstrate that CCH and FLH are useful carriers of carbohydrate mimotopes; however, the best antitumor activity of FLH preparations, indicate that is a suitable candidate for further cancer vaccines research. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  14. Expression of the GM2 activator protein in mouse testis.

    PubMed

    Li, Yu-Teh; Li, Su-Chen; Chen, I-Li

    2017-12-01

    The GM2-activator protein (GM2-AP), revealed by Li et al. in 1973 in human liver, was initially identified as a protein cofactor that stimulated β-hexosaminidase A to hydrolyze N-acetylgalactosamine from GM2 ganglioside. This cofactor was found to be missing in human variant AB Tay-Sachs disease. Over the years, the GM2-AP has also been shown to be involved in kidney vesicular transport, lipid presentation by CD1 molecule to T-cells, and interaction of human sperm with zona pellucida. Since the expression of the GM2-AP via mRNA detection in mouse tissues was found to be the highest in testis, we became interested in the localization of the GM2-AP at cellular level in mouse testis during spermatogenesis. Using immunohistochemical analysis and electron microscopy, we found that the GM2-AP was predominantly localized in the basal cytoplasm and the attenuated processes of Sertoli cells. The stained structure appeared to be lysosomes. The most interesting finding was the association of the GM2-AP with the acrosomal apparatus in early spermatids. A modest to intense staining was observed in some acrosomal granules and acrosomal caps. The GM2-AP seemed to disappear from acrosomal caps in the later stage of spermatids, in which the nucleus became elongated and condensed. These results suggest that the GM2-AP may be involved in the normal functions of Sertoli cells and play important roles during the development of acrosomal caps in the early spermatids. Copyright © 2017 Society for Biology of Reproduction & the Institute of Animal Reproduction and Food Research of Polish Academy of Sciences in Olsztyn. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  15. Chimeric HIV-1 Envelope Glycoproteins with Potent Intrinsic Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF) Activity*

    PubMed Central

    Boot, Maikel; Cobos Jiménez, Viviana; Kootstra, Neeltje A.; Sanders, Rogier W.

    2013-01-01

    HIV-1 acquisition can be prevented by broadly neutralizing antibodies (BrNAbs) that target the envelope glycoprotein complex (Env). An ideal vaccine should therefore be able to induce BrNAbs that can provide immunity over a prolonged period of time, but the low intrinsic immunogenicity of HIV-1 Env makes the elicitation of such BrNAbs challenging. Co-stimulatory molecules can increase the immunogenicity of Env and we have engineered a soluble chimeric Env trimer with an embedded granulocyte-macrophage colony-stimulating factor (GM-CSF) domain. This chimeric molecule induced enhanced B and helper T cell responses in mice compared to Env without GM-CSF. We studied whether we could optimize the activity of the embedded GM-CSF as well as the antigenic structure of the Env component of the chimeric molecule. We assessed the effect of truncating GM-CSF, removing glycosylation-sites in GM-CSF, and adjusting the linker length between GM-CSF and Env. One of our designed EnvGM-CSF chimeras improved GM-CSF-dependent cell proliferation by 6-fold, reaching the same activity as soluble recombinant GM-CSF. In addition, we incorporated GM-CSF into a cleavable Env trimer and found that insertion of GM-CSF did not compromise Env cleavage, while Env cleavage did not compromise GM-CSF activity. Importantly, these optimized EnvGM-CSF proteins were able to differentiate human monocytes into cells with a macrophage-like phenotype. Chimeric EnvGM-CSF should be useful for improving humoral immunity against HIV-1 and these studies should inform the design of other chimeric proteins. PMID:23565193

  16. Complete localization of disulfide bonds in GM2 activator protein.

    PubMed Central

    Schütte, C. G.; Lemm, T.; Glombitza, G. J.; Sandhoff, K.

    1998-01-01

    Lysosomal degradation of ganglioside GM2 by hexosaminidase A requires the presence of a small, non-enzymatic cofactor, the GM2-activator protein (GM2AP). Lack of functional protein leads to the AB variant of GM2-gangliosidosis, a fatal lysosomal storage disease. Although its possible mode of action and functional domains have been discussed frequently in the past, no structural information about GM2AP is available so far. Here, we determine the complete disulfide bond pattern of the protein. Two of the four disulfide bonds present in the protein were open to classical determination by enzymatic cleavage and mass spectrometry. The direct localization of the remaining two bonds was impeded by the close vicinity of cysteines 136 and 138. We determined the arrangement of these disulfide bonds by MALDI-PSD analysis of disulfide linked peptides and by partial reduction, cyanylation and fragmentation in basic solution, as described recently (Wu F, Watson JT, 1997, Protein Sci 6:391-398). PMID:9568910

  17. [The therapeutic effect of HSV1-hGM-CSF combined with doxorubicin on the mouse breast cancer model].

    PubMed

    Zhuang, X F; Zhang, S R; Liu, B L; Wu, J L; Li, X Q; Gu, H G; Shu, Y

    2018-03-23

    Objective: To evaluate the oncolytic effect of herpes simplex virus type 1 which carried recombined human granulocyte-macrophage colony-stimulating factor (HSV1-hGM-CSF) on the mouse breast cancer cell line 4T1 and compare the anticancer effects of HSV1-hGM-CSF, doxorubicin alone or combination on the breast cancer in mice. Methods: We investigated the cytotoxic effect on 4T1 cells in vitro, the cell growth, cell apoptosis and cell cycle of 4T1 cells treated with oncolytic HSV1-hGM-CSF at different MOIs (0, 0.5, 1 and 2) and doxorubicin at different concentrations (0, 2, 4 and 8 μg/ml). The effects of oncolytic HSV1-hGM-CSF and doxorubicin on the tumor growth, survival time and their side effects on the mouse breast cancer model were observed. Results: Both oncolytic HSV1-hGM-CSF and doxorubicin significantly inhibited the proliferation of 4T1 cells in vitro . Doxorubicin induced the G(2)/M phase arrest of 4T1 cells, while the cytotoxicity of oncolytic HSV1-hGM-CSF was no cell cycle-dependent.At day 16 after treatment with doxorubicin and HSV1-hGM-CSF, the tumor volume of 4T1 tumor bearing mice were (144.40±27.68)mm(3,) (216.80±57.18)mm(3,) (246.10±21.90)mm(3,) (327.50±44.24)mm(3,) (213.30±32.31)mm(3) and (495.80±75.87)mm(3) in the groups of doxorubicin combined with high dose HSV1-hGM-CSF, doxorubicin combined with low dose HSV1-hGM-CSF, doxorubicin alone, high dose HSV1-hGM-CSF alone, low dose HSV1-hGM-CSF alone and control, respectively.Compared with the control group, both doxorubicin and HSV1-hGM-CSF treatment exhibited significant reduction of primary tumor volume in vivo ( P <0.001). The median survival times were 48, 50, 40, 42, 43 and 37 days in the six groups mentioned above, respectively. The median survival period of doxorubicin alone, high dose HSV1-hGM-CSF alone and low dose HSV1-hGM-CSF alone were significantly longer than that of control ( P <0.05). Conclusion: Synergistic effect of sequential treatment with doxorubicin and oncolytic HSV1-hGM

  18. Glypican-1-antibody-conjugated Gd-Au nanoclusters for FI/MRI dual-modal targeted detection of pancreatic cancer.

    PubMed

    Huang, Xin; Fan, Chengqi; Zhu, Huanhuan; Le, Wenjun; Cui, Shaobin; Chen, Xin; Li, Wei; Zhang, Fulei; Huang, Yong; Sh, Donglu; Cui, Zheng; Shao, Chengwei; Chen, Bingdi

    2018-01-01

    Pancreatic cancer (PC) has a poor prognosis with high mortality, due to the lack of effective early diagnostic and prognostic tools. In order to target and diagnose PC, we developed a dual-modal imaging probe using Glypican-1 (GPC-1) antibody conjugated with Gd-Au nanoclusters (NCs; Gd-Au-NC-GPC-1). GPC-1 is a type of cell surface heparan sulfate proteoglycan, which is often highly expressed in PC. The probe was successfully prepared with a hydrodynamic diameter ranging from 13.5 to 24.4 nm. Spectral characteristics showed absorption at 280 nm and prominent emission at 650 nm. Confocal microscopic imaging showed effective detection of GPC-1 highly expressed PC cells by Gd-Au-NC-GPC-1, which was consistent with flow cytometry results. In vitro relaxivity characterization demonstrated that the r1 value of the probe was 17.722 s -1 mM -1 Gd, which was almost 4 times higher compared with that of Gd-diethylenetriaminepentacetate (DTPA; r1 value =4.6 s -1 mM -1 Gd). Gd-Au-NC-GPC-1 exhibited similar magnetic resonance (MR) signals when compared to Gd-DTPA even at lower Gd concentrations. Much higher MR signals were registered in PC cells (COLO-357) compared with normal cells (293T). Furthermore, Gd-Au-NC-GPC-1 could effectively detect PC cells in vivo by dual-modal fluorescence imaging/magnetic resonance imaging (FI/MRI) at 30 minutes postinjection. In addition, Gd-Au-NC-GPC-1 did not show significant biotoxicity to normal cells at tested concentrations both in vitro and in vivo. Gd-Au-NC-GPC-1 has demonstrated to be a promising dual-modal FI/MRI contrast agent for targeted diagnosis of PC.

  19. A VVWBO-BVO-based GM (1,1) and its parameter optimization by GRA-IGSA integration algorithm for annual power load forecasting

    PubMed Central

    Wang, Hongguang

    2018-01-01

    Annual power load forecasting is not only the premise of formulating reasonable macro power planning, but also an important guarantee for the safety and economic operation of power system. In view of the characteristics of annual power load forecasting, the grey model of GM (1,1) are widely applied. Introducing buffer operator into GM (1,1) to pre-process the historical annual power load data is an approach to improve the forecasting accuracy. To solve the problem of nonadjustable action intensity of traditional weakening buffer operator, variable-weight weakening buffer operator (VWWBO) and background value optimization (BVO) are used to dynamically pre-process the historical annual power load data and a VWWBO-BVO-based GM (1,1) is proposed. To find the optimal value of variable-weight buffer coefficient and background value weight generating coefficient of the proposed model, grey relational analysis (GRA) and improved gravitational search algorithm (IGSA) are integrated and a GRA-IGSA integration algorithm is constructed aiming to maximize the grey relativity between simulating value sequence and actual value sequence. By the adjustable action intensity of buffer operator, the proposed model optimized by GRA-IGSA integration algorithm can obtain a better forecasting accuracy which is demonstrated by the case studies and can provide an optimized solution for annual power load forecasting. PMID:29768450

  20. Hydrogels incorporating GdDOTA: towards highly efficient dual T1/T2 MRI contrast agents.

    PubMed

    Courant, Thomas; Roullin, Valérie Gaëlle; Cadiou, Cyril; Callewaert, Maïté; Andry, Marie Christine; Portefaix, Christophe; Hoeffel, Christine; de Goltstein, Marie Christine; Port, Marc; Laurent, Sophie; Elst, Luce Vander; Muller, Robert; Molinari, Michaël; Chuburu, Françoise

    2012-09-03

    Do not tumble dry: Gadolinium-DOTA encapsulated into polysaccharide nanoparticles (GdDOTA NPs) exhibited high relaxivity (r(1) =101.7 s(-1) mM(-1) per Gd(3+) ion at 37 °C and 20 MHz). This high relaxation rate is due to efficient Gd loading, reduced tumbling of the Gd complex, and the hydrogel nature of the nanoparticles. The efficacy of the nanoparticles as a T(1)/T(2) dual-mode contrast agent was studied in C6 cells. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Glycosphingolipid-functionalized nanoparticles recapitulate CD169-dependent HIV-1 uptake and trafficking in dendritic cells

    NASA Astrophysics Data System (ADS)

    Yu, Xinwei; Feizpour, Amin; Ramirez, Nora-Guadalupe P.; Wu, Linxi; Akiyama, Hisashi; Xu, Fangda; Gummuluru, Suryaram; Reinhard, Björn M.

    2014-06-01

    Ganglioside GM3, a host-derived glycosphingolipid incorporated in the membrane of human immunodeficiency virus-1 (HIV-1) viral particles, mediates interactions between HIV-1 and Siglec1/CD169, a protein expressed on dendritic cells (DCs). Such interactions, which seem to be independent of viral envelope glycoprotein gp120, are poorly understood. Here we develop a model system consisting of self-assembled artificial virus nanoparticles (AVNs) that are free of viral glycoproteins or other host-derived glycolipids and glycoproteins. These plasmonic AVNs contain a membrane of defined composition wrapped around a solid metal core. GM3-containing AVNs are captured by CD169-expressing HeLa cells or mature DCs, and are sequestered within non-lysosomal tetraspanin-positive compartments. This distribution is reminiscent of CD169-dependent HIV-1 sequestration in mature DCs. Our results highlight GM3-CD169 binding as a gp120-independent signal for sequestration and preservation of HIV-1 infectivity. They also indicate that plasmonic AVNs offer improved features over liposome-based systems and represent a versatile tool for probing specific virus-cell interactions.

  2. Highly phosphomannosylated enzyme replacement therapy for GM2 gangliosidosis.

    PubMed

    Tsuji, Daisuke; Akeboshi, Hiromi; Matsuoka, Kazuhiko; Yasuoka, Hiroko; Miyasaki, Eri; Kasahara, Yoshiko; Kawashima, Ikuo; Chiba, Yasunori; Jigami, Yoshifumi; Taki, Takao; Sakuraba, Hitoshi; Itoh, Kohji

    2011-04-01

    Novel recombinant human lysosomal β-hexosaminidase A (HexA) was developed for enzyme replacement therapy (ERT) for Tay-Sachs and Sandhoff diseases, ie, autosomal recessive GM2 gangliosidoses, caused by HexA deficiency. A recombinant human HexA (Om4HexA) with a high mannose 6-phosphate (M6P)-type-N-glycan content, which was produced by a methylotrophic yeast strain, Ogataea minuta, overexpressing the OmMNN4 gene, was intracerebroventricularly (ICV) administered to Sandhoff disease model mice (Hexb⁻/⁻ mice) at different doses (0.5-2.5 mg/kg), and then the replacement and therapeutic effects were examined. The Om4HexA was widely distributed across the ependymal cell layer, dose-dependently restored the enzyme activity due to uptake via cell surface cation-independent M6P receptor (CI-M6PR) on neural cells, and reduced substrates, including GM2 ganglioside (GM2), asialo GM2 (GA2), and oligosaccharides with terminal N-acetylglucosamine residues (GlcNAc-oligosaccharides), accumulated in brain parenchyma. A significant inhibition of chemokine macrophage inflammatory protein-1 α (MIP-1α) induction was also revealed, especially in the hindbrain (< 63%). The decrease in central neural storage correlated with an improvement of motor dysfunction as well as prolongation of the lifespan. This lysosome-directed recombinant human enzyme drug derived from methylotrophic yeast has the high therapeutic potential to improve the motor dysfunction and quality of life of the lysosomal storage diseases (LSDs) patients with neurological manifestations. We emphasize the importance of neural cell surface M6P receptor as a delivery target of neural cell-directed enzyme replacement therapy (NCDERT) for neurodegenerative metabolic diseases. Copyright © 2010 American Neurological Association.

  3. Formation of Gd coordination polymer with 1D chains mediated by Bronsted acidic ionic liquids

    NASA Astrophysics Data System (ADS)

    Luo, Qianqian; Han, Ying; Lin, Hechun; Zhang, Yuanyuan; Duan, Chungang; Peng, Hui

    2017-03-01

    One dimensional coordination polymer Gd[(SO4)(NO3)(C2H6SO)2] (1) is prepared through the mediation of Bronsted acid ionic liquid, which crystallized in the monoclinic space of C2/c. In this polymer, adjacent Gd atoms are linked by two SO42- ions to generate a 1-D chain, and all oxygen atoms in SO42- groups are connected to three nearest Gd atoms in μ3:η11:η2 fashion. Gd, S and N from SO42- and NO3- are precisely coplanar. The planar is coordinated by a pair of DMSO molecules, which is parallel and linked by hydrogen bonding to form a three-dimensional supramolecular network. Magnetic susceptibility measurement of 1 reveals weak antiferromagnetic interactions between the Gd (III) ions. It exhibits relatively large magneto-caloric effect with -ΔSm=28.8 J Kg-1 K-1 for ΔH=7 T.

  4. The role of gangliosides in brain development and the potential benefits of perinatal supplementation.

    PubMed

    Ryan, Jennifer M; Rice, Gregory E; Mitchell, Murray D

    2013-11-01

    The maternal diet provides critical nutrients that can influence fetal and infant brain development and function. This review highlights the potential benefits of maternal dietary ganglioside supplementation on fetal and infant brain development. English-language systematic reviews, preclinical studies, and clinical studies were obtained through searches on PubMed. Reports were selected if they included benefits and harms of maternal ganglioside supplementation during pregnancy or ganglioside-supplemented formula after pregnancy. The potential benefits of ganglioside supplementation were explored by investigating the following: (1) their role in neural development, (2) their therapeutic use in neural injury and disease, (3) their presence in human breast milk, and (4) their use as a dietary supplement during or after pregnancy. Preclinical studies indicate that ganglioside supplementation at high doses (1% of total dietary intake) can significantly increase cognitive development and body weight when given prenatally. However, lower ganglioside supplementation doses have no beneficial cognitive effects, even when given throughout pregnancy and lactation. In human clinical trials, infants given formula supplemented with gangliosides showed increased cognitive development and an increase in ganglioside content. Ganglioside supplementation may promote brain development and function in offspring when administered at the optimum dosage. We propose that prenatal maternal dietary supplementation with gangliosides throughout pregnancy may promote greater long-term effects on brain development and function. Before this concept can be encouraged in preconception clinics, future research and clinical trials are needed to confirm the ability of dietary gangliosides to improve cognitive development, but available results already encourage this area of research. © 2013.

  5. Helicobacter pylori and Complex Gangliosides

    PubMed Central

    Roche, Niamh; Ångström, Jonas; Hurtig, Marina; Larsson, Thomas; Borén, Thomas; Teneberg, Susann

    2004-01-01

    Recognition of sialic acid-containing glycoconjugates by the human gastric pathogen Helicobacter pylori has been repeatedly demonstrated. To investigate the structural requirements for H. pylori binding to complex gangliosides, a large number of gangliosides were isolated and characterized by mass spectrometry and proton nuclear magnetic resonance. Ganglioside binding of sialic acid-recognizing H. pylori strains (strains J99 and CCUG 17874) and knockout mutant strains with the sialic acid binding adhesin SabA or the NeuAcα3Galβ4GlcNAcβ3Galβ4GlcNAcβ-binding neutrophil-activating protein HPNAP deleted was investigated using the thin-layer chromatogram binding assay. The wild-type bacteria bound to N-acetyllactosamine-based gangliosides with terminal α3-linked NeuAc, while gangliosides with terminal NeuGcα3, NeuAcα6, or NeuAcα8NeuAcα3 were not recognized. The factors affecting binding affinity were identified as (i) the length of the N-acetyllactosamine carbohydrate chain, (ii) the branches of the carbohydrate chain, and (iii) fucose substitution of the N-acetyllactosamine core chain. While the J99/NAP− mutant strain displayed a ganglioside binding pattern identical to that of the parent J99 wild-type strain, no ganglioside binding was obtained with the J99/SabA− mutant strain, demonstrating that the SabA adhesin is the sole factor responsible for the binding of H. pylori bacterial cells to gangliosides. PMID:14977958

  6. Gd-complexes of macrocyclic DTPA conjugates of 1,1'-bis(amino)ferrocenes as high relaxivity MRI blood-pool contrast agents (BPCAs).

    PubMed

    Kim, Hee-Kyung; Park, Ji-Ae; Kim, Kyeong Min; Nasiruzzaman, Sk Md; Kang, Duk-Sik; Lee, Jongmin; Chang, Yongmin; Kim, Tae-Jeong

    2010-11-28

    We report the synthesis of macrocyclic DTPA conjugates of 1,1'-bis(amino)ferrocenes (1a-b) and their Gd-complexes [Gd(L)(H(2)O)] (2a-b, L = 1a-b) for use as new MRI blood-pool contrast agents. High R(1) relaxivity in HSA as well as high thermodynamic and kinetic stabilities is observed for 2a.

  7. Overexpression of the Transcription Factors GmSHN1 and GmSHN9 Differentially Regulates Wax and Cutin Biosynthesis, Alters Cuticle Properties, and Changes Leaf Phenotypes in Arabidopsis.

    PubMed

    Xu, Yangyang; Wu, Hanying; Zhao, Mingming; Wu, Wang; Xu, Yinong; Gu, Dan

    2016-04-21

    SHINE (SHN/WIN) clade proteins, transcription factors of the plant-specific APETALA 2/ethylene-responsive element binding factor (AP2/ERF) family, have been proven to be involved in wax and cutin biosynthesis. Glycine max is an important economic crop, but its molecular mechanism of wax biosynthesis is rarely characterized. In this study, 10 homologs of Arabidopsis SHN genes were identified from soybean. These homologs were different in gene structures and organ expression patterns. Constitutive expression of each of the soybean SHN genes in Arabidopsis led to different leaf phenotypes, as well as different levels of glossiness on leaf surfaces. Overexpression of GmSHN1 and GmSHN9 in Arabidopsis exhibited 7.8-fold and 9.9-fold up-regulation of leaf cuticle wax productions, respectively. C31 and C29 alkanes contributed most to the increased wax contents. Total cutin contents of leaves were increased 11.4-fold in GmSHN1 overexpressors and 5.7-fold in GmSHN9 overexpressors, mainly through increasing C16:0 di-OH and dioic acids. GmSHN1 and GmSHN9 also altered leaf cuticle membrane ultrastructure and increased water loss rate in transgenic Arabidopsis plants. Transcript levels of many wax and cutin biosynthesis and leaf development related genes were altered in GmSHN1 and GmSHN9 overexpressors. Overall, these results suggest that GmSHN1 and GmSHN9 may differentially regulate the leaf development process as well as wax and cutin biosynthesis.

  8. Scientific literature on monosialoganglioside in the Science Citation Index-Expanded: A bibliometric analysis of articles from 1942 to 2011 by each decade.

    PubMed

    Xu, Yanli; Li, Miaojing; Liu, Zhijun; Liu, Ruichun; Zhang, Jianzhong

    2012-01-05

    The monosialoganglioside (GM1) is a popular topic of research but the bibliometric analysis of GM1 over the decades in Science Citation Index-Expanded (SCI-E) remains poorly understood. To identify the global research and to improve the understanding of research trends in the GM1 field from 1942 to 2011. A bibliometric study. We performed a bibliometric analysis based on the SCI-E published by the Institute of Scientific Information. Articles closely related to GM1 were included. Exclusive criteria: (1) Articles related to gangliosidosis, disialo-ganglioside, trisialo-ganglioside or ganglioside GQIb. (2) Document types such as meeting abstracts, reviews, proceedings papers, notes, and letters. (1) Type of publication output; (2) number of author outputs; (3) distribution of output in subject categories; (4) publication distribution of countries; (5) distribution of output in journals, and (6) distribution of citations in each decade. During 1942 to 2011, there were 10 126 papers on GM1 that were added to the SCI. Articles (8 004) were the most frequently used document type comprising 79.0%, followed by meeting abstracts, reviews and proceedings papers. Research on GM1 could be found in the SCI from 1942, it was developed in the 1970s, greatly increased in the 1980s, and reached a peak in the 1990s, and it was slightly decreased in 2000. The distribution of subject categories showed that GM1 research covered both clinical and basic science research. The USA, Japan, and Germany were the three most productive countries, and the publication numbers in the USA were highest in all decades. The Journal of Biological Chemistry, Journal of Neurochemistry and Biochemistry were core subject journals in GM1 studies in each decade. This study highlights the topics in GM1 research that are being published around the world.

  9. ZO-1 expression is suppressed by GM-CSF via miR-96/ERG in brain microvascular endothelial cells.

    PubMed

    Zhang, Hu; Zhang, Shuhong; Zhang, Jilin; Liu, Dongxin; Wei, Jiayi; Fang, Wengang; Zhao, Weidong; Chen, Yuhua; Shang, Deshu

    2018-05-01

    The level of granulocyte-macrophage colony-stimulating factor (GM-CSF) increases in some disorders such as vascular dementia, Alzheimer's disease, and multiple sclerosis. We previously reported that in Alzheimer's disease patients, a high level of GM-CSF in the brain parenchyma downregulated expression of ZO-1, a blood-brain barrier tight junction protein, and facilitated the infiltration of peripheral monocytes across the blood-brain barrier. However, the molecular mechanism underlying regulation of ZO-1 expression by GM-CSF is unclear. Herein, we found that the erythroblast transformation-specific (ETS) transcription factor ERG cooperated with the proto-oncogene protein c-MYC in regulation of ZO-1 transcription in brain microvascular endothelial cells (BMECs). The ERG expression was suppressed by miR-96 which was increased by GM-CSF through the phosphoinositide-3 kinase (PI3K)/Akt pathway. Inhibition of miR-96 prevented ZO-1 down-regulation induced by GM-CSF both in vitro and in vivo. Our results revealed the mechanism of ZO-1 expression reduced by GM-CSF, and provided a potential target, miR-96, which could block ZO-1 down-regulation caused by GM-CSF in BMECs.

  10. Overexpression of the Transcription Factors GmSHN1 and GmSHN9 Differentially Regulates Wax and Cutin Biosynthesis, Alters Cuticle Properties, and Changes Leaf Phenotypes in Arabidopsis

    PubMed Central

    Xu, Yangyang; Wu, Hanying; Zhao, Mingming; Wu, Wang; Xu, Yinong; Gu, Dan

    2016-01-01

    SHINE (SHN/WIN) clade proteins, transcription factors of the plant-specific APETALA 2/ethylene-responsive element binding factor (AP2/ERF) family, have been proven to be involved in wax and cutin biosynthesis. Glycine max is an important economic crop, but its molecular mechanism of wax biosynthesis is rarely characterized. In this study, 10 homologs of Arabidopsis SHN genes were identified from soybean. These homologs were different in gene structures and organ expression patterns. Constitutive expression of each of the soybean SHN genes in Arabidopsis led to different leaf phenotypes, as well as different levels of glossiness on leaf surfaces. Overexpression of GmSHN1 and GmSHN9 in Arabidopsis exhibited 7.8-fold and 9.9-fold up-regulation of leaf cuticle wax productions, respectively. C31 and C29 alkanes contributed most to the increased wax contents. Total cutin contents of leaves were increased 11.4-fold in GmSHN1 overexpressors and 5.7-fold in GmSHN9 overexpressors, mainly through increasing C16:0 di-OH and dioic acids. GmSHN1 and GmSHN9 also altered leaf cuticle membrane ultrastructure and increased water loss rate in transgenic Arabidopsis plants. Transcript levels of many wax and cutin biosynthesis and leaf development related genes were altered in GmSHN1 and GmSHN9 overexpressors. Overall, these results suggest that GmSHN1 and GmSHN9 may differentially regulate the leaf development process as well as wax and cutin biosynthesis. PMID:27110768

  11. T1-T2 dual-modal MRI of brain gliomas using PEGylated Gd-doped iron oxide nanoparticles.

    PubMed

    Xiao, Ning; Gu, Wei; Wang, Hao; Deng, Yunlong; Shi, Xin; Ye, Ling

    2014-03-01

    To overcome the negative contrast limitations of iron oxide-based contrast agents and to improve the biocompatibility of Gd-chelate contrast agents, PEGylated Gd-doped iron oxide (PEG-GdIO) NPs as a T1-T2 dual-modal contrast agent were synthesized by the polyol method. The transverse relaxivity (r2) and longitudinal relaxivity (r1) of PEG-GdIO were determined to be 66.9 and 65.9 mM(-1) s(-1), respectively. The high r1 value and low r2/r1 ratio make PEG-GdIO NPs suitable as a T1-T2 dual-modal contrast agent. The in vivo MRI demonstrated a brighter contrast enhancement in T1-weighted image and a simultaneous darken effect in T2-weighted MR image compared to the pre-contrast image in the region of glioma. Furthermore, the biocompatibility of PEG-GdIO NPs was confirmed by the in vitro MTT cytotoxicity and in vivo histological analyses (H&E). Therefore, PEG-GdIO NPs hold great potential in T1-T2 dual-modal imaging for the diagnosis of brain glioma. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Isolation and structure of a monomethylated ganglioside possessing neuritogenic activity from the ovary of the sea urchin Diadema setosum.

    PubMed

    Yamada, Koji; Tanabe, Kaoru; Miyamoto, Tomofumi; Kusumoto, Toshihide; Inagaki, Masanori; Higuchi, Ryuichi

    2008-05-01

    A new monomethylated ganglioside, DSG-A (3), was obtained, together with four known gangliosides, compounds (1, 2, 4, 5), from the lipid fraction of the chloroform/methanol extract of the ovary of the sea urchin Diadema setosum. The structures of the new ganglioside was determined on the basis of chemical and spectroscopic evidence to be 1-O-[9-O-methyl-(N-acetyl-alpha-D-neuraminosyl)-(2-->6)-beta-D-glucopyranosyl]-ceramide (3). The ceramide moiety of 3 was composed of C18-phytosphingosine base, and 2-hydroxy and nonhydroxylated fatty acid units. These gangliosides showed neuritogenic activity toward the rat pheochromocytoma cell line PC-12 in the presence of nerve growth factor, in which compound 3 showed the most potent activity.

  13. Natural History of Infantile GM2 Gangliosidosis

    PubMed Central

    Bley, Annette E.; Giannikopoulos, Ourania A.; Hayden, Doug; Kubilus, Kim; Tifft, Cynthia J.

    2011-01-01

    OBJECTIVE: GM2 gangliosidoses are caused by an inherited deficiency of lysosomal β-hexosaminidase and result in ganglioside accumulation in the brain. Onset during infancy leads to rapid neurodegeneration and death before 4 years of age. We set out to quantify the rate of functional decline in infantile GM2 gangliosidosis on the basis of patient surveys and a comprehensive review of existing literature. METHODS: Patients with infantile GM2 gangliosidosis (N = 237) were surveyed via questionnaire by the National Tay Sachs & Allied Diseases Association (NTSAD). These data were supplemented by survival data from the NTSAD database and a literature survey. Detailed retrospective surveys from 97 patients were available. Five patients who had received hematopoietic stem cell transplantation were evaluated separately. The mortality rate of the remaining 92 patients was comparable to that of the 103 patients from the NTSAD database and 121 patients reported in the literature. RESULTS: Common symptoms at onset were developmental arrest (83%), startling (65%), and hypotonia (60%). All 55 patients who had learned to sit without support lost that ability within 1 year. Individual functional measures correlated with each other but not with survival. Gastric tube placement was associated with prolonged survival. Tay Sachs and Sandhoff variants did not differ. Hematopoietic stem cell transplantation was not associated with prolonged survival. CONCLUSIONS: We studied the timing of regression in 97 cases of infantile GM2 gangliosidosis and conclude that clinical disease progression does not correlate with survival, likely because of the impact of improved supportive care over time. However, functional measures are quantifiable and can inform power calculations and study design of future interventions. PMID:22025593

  14. In silico Driven Redesign of a Clinically Relevant Antibody for the Treatment of GD2 Positive Tumors

    PubMed Central

    Ahmed, Mahiuddin; Goldgur, Yehuda; Hu, Jian; Guo, Hong-Fen; Cheung, Nai-Kong V.

    2013-01-01

    Ganglioside GD2 is a cell surface glycolipid that is highly expressed on cancer cells of neuroectodermal origin, including neuroblastoma, retinoblastoma, melanoma, sarcomas, brain tumors and small cell lung cancer. Monoclonal antibodies (MoAb) that target GD2 have shown clinical efficacy in the treatment of GD2 expressing tumors, and are expected to be the new standard of care for the treatment of pediatric neuroblastoma. In this study, the crystal structure of anti-GD2 murine MoAb 3F8 was solved to 1.65 Å resolution and used as a template for molecular docking simulations of its antigen, the penta-saccharide head group of GD2. Molecular docking revealed a binding motif composed of 12 key interacting amino acid side-chains, involving an extensive network of interactions involving main-chain and side-chain hydrogen bonding, two Pi – CH interactions, and an important charged interaction between Arg95 of the H3 loop with the penultimate sialic acid residue of GD2. Based on in silico scanning mutagenesis of the 12 interacting amino acids from the docked 3F8:GD2 model, a single point mutation (Heavy Chain: Gly54Ile) was engineered into a humanized 3F8 (hu3F8) MoAb and found to have a 6–9 fold enhancement in antibody-dependent cell-mediated cytotoxicity of neuroblastoma and melanoma cell lines. With enhanced tumor-killing properties, the re-engineered hu3F8 has the potential be a more effective antibody for the treatment of GD2-positive tumors. PMID:23696816

  15. Magnetic and magnetocaloric properties in Gd1-yPryNi2 compounds

    NASA Astrophysics Data System (ADS)

    Alho, B. P.; Lopes, P. H. O.; Ribeiro, P. O.; Alvarenga, T. S. T.; Nóbrega, E. P.; de Sousa, V. S. R.; Carvalho, A. M. G.; Caldas, A.; Tedesco, J. C. G.; Coelho, A. A.; de Oliveira, N. A.; von Ranke, P. J.

    2018-03-01

    In this work, we report the magnetic and magnetocaloric properties of the Gd1-yPryNi2 compounds from both experimental and theoretical points of view. It is worth noting that this series shows a variety of magnetic arrangements depending on the Pr concentration, including paramagnetism, ferrimagnetism and ferromagnetism. Our experimental work consists of the systematic analysis of the magnetic properties of the compounds with y = 0.0, 0.25, 0.5, 0.75 and 1.0, which includes temperature and magnetic field dependence of the magnetization, heat capacity and isothermal entropy change obtained by isothermal magnetization curves. Also, we developed a model Hamiltonian, which takes into account the exchange interactions among Gd-Gd, Gd-Pr and Pr-Pr ions, the Zeeman interaction for both ions and the crystalline electrical field interaction for the Pr ions. We systematically investigated the magnetic properties of the series and obtained a good agreement when compared with our experimental data.

  16. Frog brain uridine diphosphate galactose–N-acetylgalactosaminyl-N-acetylneuraminylgalactosylglucosylceramide galactosyltransferase

    PubMed Central

    Yip, Morris C. M.; Dain, Joel A.

    1970-01-01

    1. The enzyme that catalyses the transfer of galactose from UDP-galactose to N-acetylgalactosaminyl-(1→4)-N-acetylneuraminyl-(2→3)-galactosyl-(1→4)-glucosylceramide (GM2) was found mainly in the heavy- and light-microsomal fractions of the adult frog brain. 2. The subcellular distribution of the enzyme, UDP-galactose–GM2 galactosyltransferase, parallels that of gangliosides in adult frog brain. 3. The enzymic activity was first detected at late gastrulation (Shumway stage 11½) and increased until the completion of the operculum (Shumway stage 25) and then decreased in the tadpoles. 4. In adult frog brain, the enzyme exhibited a pH optimum of 7.2–7.3 in both cacodylate and tris buffers. The enzyme required 10mm-Mn2+ for maximal activity and the Km for Mn2+ was determined as 2.2mm. The half-maximal velocity was obtained at a GM2 concentration of 0.18mm. Inhibition of the enzymic reaction was found when the GM2 concentration was greater than 1.38mm. 5. The enzymic activity was also inhibited by the products in the pathway of ganglioside synthesis, i.e. either by a mixture of gangliosides or by individual ganglioside components. The most active inhibitor was disialoganglioside. The degree of inhibition is a function of the individual ganglioside concentration. 6. A product-inhibition mechanism for the regulation of ganglioside biosynthesis is discussed. PMID:5484669

  17. Research of Coal Resources Reserves Prediction Based on GM (1, 1) Model

    NASA Astrophysics Data System (ADS)

    Xiao, Jiancheng

    2018-01-01

    Based on the forecast of China’s coal reserves, this paper uses the GM (1, 1) gray forecasting theory to establish the gray forecasting model of China’s coal reserves based on the data of China’s coal reserves from 2002 to 2009, and obtained the trend of coal resources reserves with the current economic and social development situation, and the residual test model is established, so the prediction model is more accurate. The results show that China’s coal reserves can ensure the use of production at least 300 years of use. And the results are similar to the mainstream forecast results, and that are in line with objective reality.

  18. Defective macroautophagic turnover of brain lipids in the TgCRND8 Alzheimer mouse model: prevention by correcting lysosomal proteolytic deficits.

    PubMed

    Yang, Dun-Sheng; Stavrides, Philip; Saito, Mitsuo; Kumar, Asok; Rodriguez-Navarro, Jose A; Pawlik, Monika; Huo, Chunfeng; Walkley, Steven U; Saito, Mariko; Cuervo, Ana M; Nixon, Ralph A

    2014-12-01

    Autophagy, the major lysosomal pathway for the turnover of intracellular organelles is markedly impaired in neurons in Alzheimer's disease and Alzheimer mouse models. We have previously reported that severe lysosomal and amyloid neuropathology and associated cognitive deficits in the TgCRND8 Alzheimer mouse model can be ameliorated by restoring lysosomal proteolytic capacity and autophagy flux via genetic deletion of the lysosomal protease inhibitor, cystatin B. Here we present evidence that macroautophagy is a significant pathway for lipid turnover, which is defective in TgCRND8 brain where lipids accumulate as membranous structures and lipid droplets within giant neuronal autolysosomes. Levels of multiple lipid species including several sphingolipids (ceramide, ganglioside GM3, GM2, GM1, GD3 and GD1a), cardiolipin, cholesterol and cholesteryl esters are elevated in autophagic vacuole fractions and lysosomes isolated from TgCRND8 brain. Lipids are localized in autophagosomes and autolysosomes by double immunofluorescence analyses in wild-type mice and colocalization is increased in TgCRND8 mice where abnormally abundant GM2 ganglioside-positive granules are detected in neuronal lysosomes. Cystatin B deletion in TgCRND8 significantly reduces the number of GM2-positive granules and lowers the levels of GM2 and GM3 in lysosomes, decreases lipofuscin-related autofluorescence, and eliminates giant lipid-containing autolysosomes while increasing numbers of normal-sized autolysosomes/lysosomes with reduced content of undigested components. These findings have identified macroautophagy as a previously unappreciated route for delivering membrane lipids to lysosomes for turnover, a function that has so far been considered to be mediated exclusively through the endocytic pathway, and revealed that autophagic-lysosomal dysfunction in TgCRND8 brain impedes lysosomal turnover of lipids as well as proteins. The amelioration of lipid accumulation in TgCRND8 by removing cystatin B

  19. Phospatidylserine or ganglioside--which of anionic lipids determines the effect of cationic dextran on lipid membrane?

    PubMed

    Hąc-Wydro, Katarzyna; Wydro, Paweł; Cetnar, Andrzej; Włodarczyk, Grzegorz

    2015-02-01

    In this work the influence of cationic polymer, namely diethylaminoethyl DEAE-dextran on model lipid membranes was investigated. This polymer is of a wide application as a biomaterial and a drug carrier and its cytotoxicity toward various cancer cells was also confirmed. It was suggested that anticancer effect of cationic dextran is connected with the binding of the polymer to the negatively charged sialic acid residues overexpressed in cancer membrane. This fact encouraged us to perform the studies aimed at verifying whether the effect of cationic DEAE-dextran on membrane is determined only by the presence of the negatively charged lipid in the system or the kind of anionic lipid is also important. To reach this goal systematic investigations on the effect of dextran on various one-component lipid monolayers and multicomponent hepatoma cell model membranes differing in the level and the kind of anionic lipids (phosphatidylserine, sialic acid-containing ganglioside GM3 or their mixture) were done. As evidenced the results the effect of DEAE-dextran on the model system is determined by anionic lipid-polymer electrostatic interactions. However, the magnitude of the effect of cationic polymer is strongly dependent on the kind of anionic lipid in the model system. Namely, the packing and ordering of the mixtures containing ganglioside GM3 were more affected by DEAE-dextran than phosphatidylserine-containing monolayers. Although the experiments were done on model systems and therefore further studies are highly needed, the collected data may indicate that ganglioside may be important in the differentiation of the effect of cationic dextran on membranes. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Integration of Ganglioside GT1b Receptor into DPPE and DPPC Phospholipid Monolayers: An X-Ray Reflectivity and Grazing-Incidence Diffraction Study

    PubMed Central

    Miller, C. E.; Busath, D. D.; Strongin, B.; Majewski, J.

    2008-01-01

    Using synchrotron grazing-incidence x-ray diffraction (GIXD) and reflectivity, the in-plane and out-of-plane structures of mixed-ganglioside GT1b-phospholipid monolayers were investigated at the air-liquid interface and compared with monolayers of the pure components. The receptor GT1b is involved in the binding of lectins and toxins, including botulinum neurotoxin, to cell membranes. Monolayers composed of 20 mol % ganglioside GT1b, the phospholipid dipalmitoyl phosphatidylethanolamine (DPPE), and the phospholipid dipalmitoyl phosphatidylcholine (DPPC) were studied in the gel phase at 23°C and at surface pressures of 20 and 40 mN/m, and at pH 7.4 and 5. Under these conditions, the two components did not phase-separate, and no evidence of domain formation was observed. The x-ray scattering measurements revealed that GT1b was intercalated within the host DPPE/DPPC monolayers, and slightly expanded DPPE but condensed the DPPC matrix. The oligosaccharide headgroups extended normally from the monolayer surfaces into the subphase. This study demonstrated that these monolayers can serve as platforms for investigating toxin membrane binding and penetration. PMID:18599631

  1. Methylphenidate disrupts cytoskeletal homeostasis and reduces membrane-associated lipid content in juvenile rat hippocampus.

    PubMed

    Schmitz, Felipe; Pierozan, Paula; Biasibetti-Brendler, Helena; Ferreira, Fernanda Silva; Dos Santos Petry, Fernanda; Trindade, Vera Maria Treis; Pessoa-Pureur, Regina; Wyse, Angela T S

    2017-12-29

    Although methylphenidate (MPH) is ubiquitously prescribed to children and adolescents, the consequences of chronic utilization of this psychostimulant are poorly understood. In this study, we investigated the effects of MPH on cytoskeletal homeostasis and lipid content in rat hippocampus. Wistar rats received intraperitoneal injections of MPH (2.0 mg/kg) or saline solution (controls), once a day, from the 15th to the 44th day of age. Results showed that MPH provoked hypophosphorylation of glial fibrillary acidic protein (GFAP) and reduced its immunocontent. Middle and high molecular weight neurofilament subunits (NF-M, NF-H) were hypophosphorylated by MPH on KSP repeat tail domains, while NFL, NFM and NFH immunocontents were not altered. MPH increased protein phosphatase 1 (PP1) and 2A (PP2A) immunocontents. MPH also decreased the total content of ganglioside and phospholipid, as well as the main brain gangliosides (GM1, GD1a, and GD1b) and the major brain phospholipids (sphingomyelin, phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, and phosphatidylserine). Total cholesterol content was also reduced in the hippocampi of juvenile rats treated with MPH. These results provide evidence that disruptions of cytoskeletal and lipid homeostasis in hippocampus of juvenile rats are triggers by chronic MPH treatment and present a new basis for understanding the effects and consequences associated with chronic use of this psychostimulant during the development of the central nervous system.

  2. Analysis of Select Herpes Simplex Virus 1 (HSV-1) Proteins for Restriction of Human Immunodeficiency Virus Type 1 (HIV-1): HSV-1 gM Protein Potently Restricts HIV-1 by Preventing Intracellular Transport and Processing of Env gp160.

    PubMed

    Polpitiya Arachchige, Sachith; Henke, Wyatt; Pramanik, Ankita; Kalamvoki, Maria; Stephens, Edward B

    2018-01-15

    Virus-encoded proteins that impair or shut down specific host cell functions during replication can be used as probes to identify potential proteins/pathways used in the replication of viruses from other families. We screened nine proteins from herpes simplex virus 1 (HSV-1) for the ability to enhance or restrict human immunodeficiency virus type 1 (HIV-1) replication. We show that several HSV-1 proteins (glycoprotein M [gM], US3, and UL24) potently restricted the replication of HIV-1. Unlike UL24 and US3, which reduced viral protein synthesis, we observed that gM restriction of HIV-1 occurred through interference with the processing and transport of gp160, resulting in a significantly reduced level of mature gp120/gp41 released from cells. Finally, we show that an HSV-1 gM mutant lacking the majority of the C-terminal domain (HA-gM[Δ345-473]) restricted neither gp160 processing nor the release of infectious virus. These studies identify proteins from heterologous viruses that can restrict viruses through novel pathways. IMPORTANCE HIV-1 infection of humans results in AIDS, characterized by the loss of CD4 + T cells and increased susceptibility to opportunistic infections. Both HIV-1 and HSV-1 can infect astrocytes and microglia of the central nervous system (CNS). Thus, the identification of HSV-1 proteins that directly restrict HIV-1 or interfere with pathways required for HIV-1 replication could lead to novel antiretroviral strategies. The results of this study show that select viral proteins from HSV-1 can potently restrict HIV-1. Further, our results indicate that the gM protein of HSV-1 restricts HIV-1 through a novel pathway by interfering with the processing of gp160 and its incorporation into virus maturing from the cell. Copyright © 2018 American Society for Microbiology.

  3. Lentivirus-ABCG1 instillation reduces lipid accumulation and improves lung compliance in GM-CSF knock-out mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malur, Anagha; Huizar, Isham; Wells, Greg

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer Lentivirus-ABCG1 reduces lipid accumulation in lungs of GM-CSF knock-out mice. Black-Right-Pointing-Pointer Up-regulation of ABCG1 improves lung function. Black-Right-Pointing-Pointer Upregulation of ABCG1 improves surfactant metabolism. -- Abstract: We have shown decreased expression of the nuclear transcription factor, peroxisome proliferator-activated receptor-gamma (PPAR{gamma}) and the PPAR{gamma}-regulated ATP-binding cassette transporter G1 (ABCG1) in alveolar macrophages from patients with pulmonary alveolar proteinosis (PAP). PAP patients also exhibit neutralizing antibodies to granulocyte-macrophage colony stimulating factor (GM-CSF), an upregulator of PPAR{gamma}. In association with functional GM-CSF deficiency, PAP lung is characterized by surfactant-filled alveolar spaces and lipid-filled alveolar macrophages. Similar pathology characterizes GM-CSF knock-out (KO)more » mice. We reported previously that intratracheal instillation of a lentivirus (lenti)-PPAR{gamma} plasmid into GM-CSF KO animals elevated ABCG1 and reduced alveolar macrophage lipid accumulation. Here, we hypothesized that instillation of lenti-ABCG1 might be sufficient to decrease lipid accumulation and improve pulmonary function in GM-CSF KO mice. Animals received intratracheal instillation of lenti-ABCG1 or control lenti-enhanced Green Fluorescent Protein (eGFP) plasmids and alveolar macrophages were harvested 10 days later. Alveolar macrophage transduction efficiency was 79% as shown by lenti-eGFP fluorescence. Quantitative PCR analyses indicated a threefold (p = 0.0005) increase in ABCG1 expression with no change of PPAR{gamma} or ABCA1 in alveolar macrophages of lenti-ABCG1 treated mice. ABCG1 was unchanged in control lenti-eGFP and PBS-instilled groups. Oil Red O staining detected reduced intracellular neutral lipid in alveolar macrophages from lenti-ABCG1 treated mice. Extracellular cholesterol and phospholipids were also decreased as

  4. Interactions of the GM2 activator protein with phosphatidylcholine bilayers: a site-directed spin-labeling power saturation study.

    PubMed

    Mathias, Jordan D; Ran, Yong; Carter, Jeffery D; Fanucci, Gail E

    2009-09-02

    The GM2 activator protein (GM2AP) is an accessory protein that is an essential component in the catabolism of the ganglioside GM2. A function of GM2AP is to bind and extract GM2 from intralysosomal vesicles, forming a soluble protein-lipid complex, which interacts with the hydrolase Hexosaminidase A, the enzyme that cleaves the terminal sugar group of GM2. Here, we used site-directed spin labeling with power saturation electron paramagnetic resonance to determine the surface-bound orientation of GM2AP upon phosphatidylcholine vesicles. Because GM2AP extracts lipid ligands from the vesicle and is undergoing exchange on and off the vesicle surface, we utilized a nickel-chelating lipid to localize the paramagnetic metal collider to the lipid bilayer-aqueous interface. Spin-labeled sites that collide with the lipid-bound metal relaxing agent provide a means for mapping sites of the protein that interact with the lipid bilayer interface. Results show that GM2AP binds to lipid bilayers such that the residues lining the lipid-binding cavity lie on the vesicle surface. This orientation creates a favorable microenvironment that can allow for the lipid tails to flip out of the bilayer directly into the hydrophobic pocket of GM2AP.

  5. GmSBH1, a homeobox transcription factor gene, relates to growth and development and involves in response to high temperature and humidity stress in soybean.

    PubMed

    Shu, Yingjie; Tao, Yuan; Wang, Shuang; Huang, Liyan; Yu, Xingwang; Wang, Zhankui; Chen, Ming; Gu, Weihong; Ma, Hao

    2015-11-01

    GmSBH1 involves in response to high temperature and humidity stress. Homeobox transcription factors are key switches that control plant development processes. Glycine max H1 Sbh1 (GmSBH1) was the first homeobox gene isolated from soybean. In the present study, the full ORF of GmSBH1 was isolated, and the encoded protein was found to be a typical class I KNOX homeobox transcription factor. Subcellular localization and transcriptional activation assays showed that GmSBH1 is a nuclear protein and possesses transcriptional activation activity in the homeodomain. The KNOX1 domain was found to play a clear role in suppressing the transcriptional activation activity of GmSBH1. GmSBH1 showed different expression levels among different soybean tissues and was involved in response to high temperature and humidity (HTH) stress in developing soybean seeds. The overexpression of GmSBH1 in Arabidopsis altered leaf and stoma phenotypes and enhanced seed tolerance to HTH stress. Overall, our results indicated that GmSBH1 is involved in growth, development, and enhances tolerance to pre-harvest seed deterioration caused by HTH stress in soybean.

  6. Functional characterization of GmBZL2 (AtBZR1 like gene) reveals the conserved BR signaling regulation in Glycine max

    PubMed Central

    Zhang, Yu; Zhang, Yan-Jie; Yang, Bao-Jun; Yu, Xian-Xian; Wang, Dun; Zu, Song-Hao; Xue, Hong-Wei; Lin, Wen-Hui

    2016-01-01

    Brassinosteroids (BRs) play key roles in plant growth and development, and regulate various agricultural traits. Enhanced BR signaling leads to increased seed number and yield in Arabidopsis bzr1-1D (AtBZR1P234L, gain-of-function mutant of the important transcription factor in BR signaling/effects). BR signal transduction pathway is well elucidated in Arabidopsis but less known in other species. Soybean is an important dicot crop producing edible oil and protein. Phylogenetic analysis reveals AtBZR1-like genes are highly conserved in angiosperm and there are 4 orthologues in soybean (GmBZL1-4). We here report the functional characterization of GmBZL2 (relatively highly expresses in flowers). The P234 site in AtBZR1 is conserved in GmBZL2 (P216) and mutation of GmBZL2P216L leads to GmBZL2 accumulation. GmBZL2P216L (GmBZL2*) in Arabidopsis results in enhanced BR signaling; including increased seed number per silique. GmBZL2* partially rescued the defects of bri1-5, further demonstrating the conserved function of GmBZL2 with AtBZR1. BR treatment promotes the accumulation, nuclear localization and dephosphorylation/phosphorylation ratio of GmBZL2, revealing that GmBZL2 activity is regulated conservatively by BR signaling. Our studies not only indicate the conserved regulatory mechanism of GmBZL2 and BR signaling pathway in soybean, but also suggest the potential application of GmBZL2 in soybean seed yield. PMID:27498784

  7. Functional characterization of GmBZL2 (AtBZR1 like gene) reveals the conserved BR signaling regulation in Glycine max.

    PubMed

    Zhang, Yu; Zhang, Yan-Jie; Yang, Bao-Jun; Yu, Xian-Xian; Wang, Dun; Zu, Song-Hao; Xue, Hong-Wei; Lin, Wen-Hui

    2016-08-08

    Brassinosteroids (BRs) play key roles in plant growth and development, and regulate various agricultural traits. Enhanced BR signaling leads to increased seed number and yield in Arabidopsis bzr1-1D (AtBZR1(P234L), gain-of-function mutant of the important transcription factor in BR signaling/effects). BR signal transduction pathway is well elucidated in Arabidopsis but less known in other species. Soybean is an important dicot crop producing edible oil and protein. Phylogenetic analysis reveals AtBZR1-like genes are highly conserved in angiosperm and there are 4 orthologues in soybean (GmBZL1-4). We here report the functional characterization of GmBZL2 (relatively highly expresses in flowers). The P234 site in AtBZR1 is conserved in GmBZL2 (P216) and mutation of GmBZL2(P216L) leads to GmBZL2 accumulation. GmBZL2(P216L) (GmBZL2*) in Arabidopsis results in enhanced BR signaling; including increased seed number per silique. GmBZL2* partially rescued the defects of bri1-5, further demonstrating the conserved function of GmBZL2 with AtBZR1. BR treatment promotes the accumulation, nuclear localization and dephosphorylation/phosphorylation ratio of GmBZL2, revealing that GmBZL2 activity is regulated conservatively by BR signaling. Our studies not only indicate the conserved regulatory mechanism of GmBZL2 and BR signaling pathway in soybean, but also suggest the potential application of GmBZL2 in soybean seed yield.

  8. Receptor Structure for F1C Fimbriae of Uropathogenic Escherichia coli

    PubMed Central

    Khan, A. Salam; Kniep, Bernhard; Oelschlaeger, Tobias A.; Van Die, Irma; Korhonen, Timo; Hacker, Jörg

    2000-01-01

    F1C fimbriae are correlated with uropathogenic Escherichia coli strains. Although F1C fimbriae mediate binding to kidney tubular cells, their receptor is not known. In this paper, we demonstrate for the first time specific carbohydrate residues as receptor structure for F1C-fimbria-expressing E. coli. The binding of the F1C fimbriated recombinant E. coli strain HB101(pPIL110-54) and purified F1C fimbriae to reference glycolipids of different carbohydrate compositions was evaluated by using thin-layer chromatography (TLC) overlay and solid-phase binding assays. TLC fimbrial overlay analysis revealed the binding ability of purified F1C fimbriae only to glucosylceramide (GlcCer), β1-linked galactosylceramide 2 (GalCer2) with nonhydroxy fatty acids, lactosylceramide, globotriaosylceramide, paragloboside (nLc4Cer), lactotriaosylceramide, gangliotriaosylceramide (asialo-GM2 [GgO3Cer]) and gangliotetraosylceramide (asialo-GM1 [GgO4Cer]). The binding of purified F1C fimbriae as well as F1C fimbriated recombinant E. coli strain HB101(pPIL110-54) was optimal to microtiter plates coated with asialo-GM2 (GgO3Cer). The bacterial interaction with asialo-GM1 (GgO4Cer) and asialo-GM2 (GgO3Cer) was strongly inhibited only by disaccharide GalNAcβ1-4Galβ linked to bovine serum albumin. We observed no binding to globotetraosylceramide or Forssman antigen (Gb5Cer) glycosphingolipids or to sialic-acid-containing gangliosides. It was demonstrated that the presence of a GalCer or GlcCer residue alone is not sufficient for optimal binding, and additional carbohydrate residues are required for high-affinity adherence. Indeed, the binding efficiency of F1C fimbriated recombinant bacteria increased by 19-fold when disaccharide sequence GalNAcβ1-4Galβ is linked to glucosylceramide as in asialo-GM2 (GgO3Cer). Thus, it is suggested that the disaccharide sequence GalNAcβ1-4Galβ of asialo-GM2 (GgO3Cer) which is positioned internally in asialo-GM1 (GgO4Cer) is the high-affinity binding

  9. Cell to cell contact through ICAM-1-LFA-1 and TNF-alpha synergistically contributes to GM-CSF and subsequent cytokine synthesis in DBA/2 mice induced by 1,3-beta-D-Glucan SCG.

    PubMed

    Harada, Toshie; Kawaminami, Hiromi; Miura, Noriko N; Adachi, Yoshiyuki; Nakajima, Mitsuhiro; Yadomae, Toshiro; Ohno, Naohito

    2006-04-01

    SCG is a major 6-branched 1,3-beta-D-glucan in Sparassis crispa Fr. showing antitumor activity. We recently found that the splenocytes from naive DBA/1 and DBA/2 mice are potently induced by SCG to produce interferon- gamma (IFN-gamma), tumor necrosis factor-alpha (TNF-alpha), granulocyte-macrophage colony-stimulating factor (GM-CSF), and interleukin-12p70 (IL-12p70), and that GM-CSF plays a key biologic role among these cytokines. In this study, we investigated the contribution of cell-cell contact and soluble factors to cytokine induction by SCG in DBA/2 mice. Cell-cell contact involving intercellular adhesion molecule-1 (ICAM-1) and lymphocyte function-associated antigen-1 (LFA-1) was an essential step for the induction of GM-CSF and IFN-gamma by SCG but not for the induction of TNF-alpha or IL-12p70 by SCG. SCG directly induced adherent splenocytes to produce TNF-alpha and IL-12p70. GM-CSF was required for the induction of TNF-alpha by SCG, and in turn, TNF-alpha enhanced the release of GM-CSF and thereby augmented the induction of IL-12p70 and IFN-gamma by SCG. Neutralization of IL-12 significantly inhibited the induction of IFN-gamma by SCG. We concluded that induction of GM-CSF production by SCG was mediated through ICAM-1 and LFA-1 interaction, GM-CSF subsequently contributed to further cytokine induction by SCG, and reciprocal actions of the cytokines were essential for enhancement of the overall response to SCG in DBA/2 mice.

  10. Genetics and Therapies for GM2 Gangliosidosis.

    PubMed

    Cachon-Gonzalez, María Begona; Zaccariotto, Eva; Cox, Timothy Martin

    2018-04-04

    Tay-Sachs disease, caused by impaired β-N-acetylhexosaminidase activity, was the first GM2 gangliosidosis to be studied and one of the most severe and earliest lysosomal diseases to be described. The condition, associated with the pathological build-up of GM2 ganglioside, has acquired almost iconic status and serves as a paradigm in the study of lysosomal storage diseases. Inherited as a classical autosomal recessive disorder, this global disease of the nervous system induces developmental arrest with regression of attained milestones; neurodegeneration progresses rapidly to cause premature death in young children. There is no effective treatment beyond palliative care, and while the genetic basis of GM2 gangliosidosis is well established, the molecular and cellular events, from disease-causing mutations and glycosphingolipid storage to disease manifestations, remain to be fully delineated. Several therapeutic approaches has been attempted in patients, including enzymatic augmentation, bone marrow transplantation, enzyme enhancement, and substrate reduction therapy. Hitherto, none of these stratagems has materially altered the course of the disease. Authentic animal models of GM2 gangliodidosis have facilitated in-depth evaluation of innovative applications such as gene transfer, which in contrast to other interventions, shows great promise. This review outlines current knowledge pertaining the pathobiology as well as potential innovative treatments for the GM2 gangliosidoses. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Normally Occurring Human Anti-GM1 Immunoglobulin M Antibodies and the Immune Response to Bacteria

    PubMed Central

    Alaniz, María E.; Lardone, Ricardo D.; Yudowski, Silvia L.; Farace, María I.; Nores, Gustavo A.

    2004-01-01

    Anti-GM1 antibodies of the immunoglobulin M (IgM) isotype are normal components of the antibody repertoire of adult human serum. Using a sensitive high-performance thin-layer chromatography (HPTLC) immunostaining assay, we found that these antibodies were absent in the umbilical vein and children <1 month of age but could be detected after 1 month of age. Although most of the children older than 6 months of age were positive, there were still a few negative children. The appearance of anti-GM1 IgM antibodies showed a perfect concordance with two well-characterized antibacterial antibodies, anti-Forssman and anti-blood group A, which indicates a similar origin. We also studied IgM reactivity with lipopolysaccharides (LPSs) from gram-negative bacteria isolated from stool samples from healthy babies and from Escherichia coli HB101 in serum from individuals of different ages. We found a positive reaction with both LPSs in all the children more than 1 month of age analyzed, even in those that were negative for anti-GM1 antibodies. Anti-GM1 IgM antibodies were purified from adult serum by affinity chromatography and tested for the ability to bind LPSs from different bacteria. This highly specific preparation showed reactivity only with LPS from a strain of Campylobacter jejuni isolated from a patient with diarrhea. We conclude that normally occurring IgM antibodies are generated after birth, probably during the immune defense against specific bacterial strains. PMID:15039337

  12. Altered lipid raft–associated signaling and ganglioside expression in T lymphocytes from patients with systemic lupus erythematosus

    PubMed Central

    Jury, Elizabeth C.; Kabouridis, Panagiotis S.; Flores-Borja, Fabian; Mageed, Rizgar A.; Isenberg, David A.

    2004-01-01

    Systemic lupus erythematosus (SLE) is characterized by abnormalities in T lymphocyte receptor–mediated signal transduction pathways. Our previous studies have established that lymphocyte-specific protein tyrosine kinase (LCK) is reduced in T lymphocytes from patients with SLE and that this reduction is associated with disease activity and parallels an increase in LCK ubiquitination independent of T cell activation. This study investigated the expression of molecules that regulate LCK homeostasis, such as CD45, C-terminal Src kinase (CSK), and c-Cbl, in lipid raft domains from SLE T cells and investigated the localization of these proteins during T cell receptor (TCR) triggering. Our results indicate that the expression of raft-associated ganglioside, GM1, is increased in T cells from SLE patients and LCK may be differentially regulated due to an alteration in the association of CD45 with lipid raft domains. CD45 tyrosine phosphatase, which regulates LCK activity, was differentially expressed and its localization into lipid rafts was increased in T cells from patients with SLE. Furthermore, T cells allowed to “rest” in vitro showed a reversal of the changes in LCK, CD45, and GM1 expression. The results also revealed that alterations in the level of GM1 expression and lipid raft occupancy cannot be induced by serum factors from patients with SLE but indicated that cell-cell contact, activating aberrant proximal signaling pathways, may be important in influencing abnormalities in T cell signaling and, therefore, function in patients with SLE. PMID:15085197

  13. Positive MRI contrast enhancement in THP-1 cells with Gd2O3 nanoparticles.

    PubMed

    Klasson, Anna; Ahrén, Maria; Hellqvist, Eva; Söderlind, Fredrik; Rosén, Anders; Käll, Per-Olov; Uvdal, Kajsa; Engström, Maria

    2008-01-01

    There is a demand for more efficient and tissue-specific MRI contrast agents and recent developments involve the design of substances useful as molecular markers and magnetic tracers. In this study, nanoparticles of gadolinium oxide (Gd2O3) have been investigated for cell labeling and capacity to generate a positive contrast. THP-1, a monocytic cell line that is phagocytic, was used and results were compared with relaxivity of particles in cell culture medium (RPMI 1640). The results showed that Gd2O3-labeled cells have shorter T1 and T2 relaxation times compared with untreated cells. A prominent difference in signal intensity was observed, indicating that Gd2O3 nanoparticles can be used as a positive contrast agent for cell labeling. The r1 for cell samples was 4.1 and 3.6 s(-1) mm(-1) for cell culture medium. The r2 was 17.4 and 12.9 s(-1) mm(-1), respectively. For r1, there was no significant difference in relaxivity between particles in cells compared to particles in cell culture medium, (p(r1) = 0.36), but r2 was significantly different for the two different series (p(r2) = 0.02). Viability results indicate that THP-1 cells endure treatment with Gd2O3 nanoparticles for an extended period of time and it is therefore concluded that results in this study are based on viable cells. Copyright 2008 John Wiley & Sons, Ltd.

  14. GM-CSF overexpression after influenza a virus infection prevents mortality and moderates M1-like airway monocyte/macrophage polarization.

    PubMed

    Halstead, E Scott; Umstead, Todd M; Davies, Michael L; Kawasawa, Yuka Imamura; Silveyra, Patricia; Howyrlak, Judie; Yang, Linlin; Guo, Weichao; Hu, Sanmei; Hewage, Eranda Kurundu; Chroneos, Zissis C

    2018-01-05

    Influenza A viruses cause life-threatening pneumonia and lung injury in the lower respiratory tract. Application of high GM-CSF levels prior to infection has been shown to reduce morbidity and mortality from pathogenic influenza infection in mice, but the mechanisms of protection and treatment efficacy have not been established. Mice were infected intranasally with influenza A virus (PR8 strain). Supra-physiologic levels of GM-CSF were induced in the airways using the double transgenic GM-CSF (DTGM) or littermate control mice starting on 3 days post-infection (dpi). Assessment of respiratory mechanical parameters was performed using the flexiVent rodent ventilator. RNA sequence analysis was performed on FACS-sorted airway macrophage subsets at 8 dpi. Supra-physiologic levels of GM-CSF conferred a survival benefit, arrested the deterioration of lung mechanics, and reduced the abundance of protein exudates in bronchoalveolar (BAL) fluid to near baseline levels. Transcriptome analysis, and subsequent validation ELISA assays, revealed that excess GM-CSF re-directs macrophages from an "M1-like" to a more "M2-like" activation state as revealed by alterations in the ratios of CXCL9 and CCL17 in BAL fluid, respectively. Ingenuity pathway analysis predicted that GM-CSF surplus during IAV infection elicits expression of anti-inflammatory mediators and moderates M1 macrophage pro-inflammatory signaling by Type II interferon (IFN-γ). Our data indicate that application of high levels of GM-CSF in the lung after influenza A virus infection alters pathogenic "M1-like" macrophage inflammation. These results indicate a possible therapeutic strategy for respiratory virus-associated pneumonia and acute lung injury.

  15. M1 distributions for 163Dy and 157Gd in the SUBFsdg(3) and SUBFsd(3) × 1g limits of pn-sdgIBFM

    NASA Astrophysics Data System (ADS)

    Devi, Y. D.; Kota, V. K. B.

    1996-02-01

    The SU sdgBF(3) limit of pn-sdgIBFM, which was developed earlier, is applied with success in analyzing the recently observed M1 data in the 163Dy nucleus. As new experiments are being planned for 157Gd nucleus and that 156Gd is known to be a good SU sd(3)×1g nucleus, in the second part of the paper a formalism for M1 distributions in the SU sdBF(3)×1g limit is developed. In both these analytically solvable limiting situations, predictions are made for M1 distributions in the 157Gd nucleus.

  16. Growth and structural characterization of single crystals of the magnetic superconductor Ru1-xSr2-yGd1+yCu2+xO8-δ (RuGd-1212) obtained by the partial melting technique

    NASA Astrophysics Data System (ADS)

    Yamaki, K.; Bamba, Y.; Mochiku, T.; Funahashi, S.; Matsushita, Y.; Irie, A.

    2018-05-01

    In this study, cubic single crystals of the magnetic superconductor Ru1-xSr2-yGd1+yCu2+xO8-δ (RuGd-1212) with typical dimensions of 100-150 μm in length were grown by the partial melting technique. Multiple 00l reflections were first observed by XRD measurements of the bulk RuGd-1212 single crystals. The resistivity of the obtained crystals was roughly estimated to be ∼24-80 mΩ cm and no superconducting transition was observed down to 4.2 K. From the XRD measurements and refinement of the crystal structure, it was apparent that the Ru and Sr sites of the single-crystal RuGd-1212 were partially substituted by Cu and Gd, respectively. Oxygen defects were found to be minor (δ ≈ 0.1). The lattice parameters a and c of the single crystals were found to be larger and smaller, respectively, than those of a polycrystalline sample.

  17. Phase I Study of Anti-GM2 Ganglioside Monoclonal Antibody BIW-8962 as Monotherapy in Patients with Previously Treated Multiple Myeloma.

    PubMed

    Baz, Rachid C; Zonder, Jeffrey A; Gasparetto, Cristina; Reu, Frederic J; Strout, Vincent

    2016-01-01

    BIW-8962 is a monoclonal antibody to GM2 ganglioside that shows preclinical activity towards multiple myeloma (MM) cell lines and in animal models bearing MM xenografts. The objective of this study was to determine the safety, tolerability, maximum tolerated dose (MTD), pharmacokinetics, potential immunogenicity, and preliminary clinical efficacy of BIW-8962 in patients with heavily pretreated MM. Patients ( n  = 23) received escalating doses of BIW-8962 (0.03-3 mg/kg) intravenously every 2 weeks in phase Ia. The highest anticipated dose (10 mg/kg) was not tested and the study was discontinued without proceeding to phases Ib and II. The MTD of BIW-8962 was not established and BIW-8962 was relatively well tolerated. No pattern of consistent toxicity could be inferred from treatment-related AEs grade ≥3 and only two dose-limiting toxicities were recorded (atrial thrombosis + cardiomyopathy and chest pain, respectively). In the efficacy evaluable population ( n  = 22), no patient had a response (complete or partial) and 16 (72.7%) had a best response of stable disease, which was generally not durable. BIW-8962 did not show evidence of clinical activity. The study was therefore stopped and further development of BIW-8962 in MM was halted. This work was funded by Kyowa Kirin Pharmaceutical Development, Inc. ClinicalTrials.gov identifier, NCT00775502.

  18. Protective Role of Endogenous Gangliosides for Lysosomal Pathology in a Cellular Model of Synucleinopathies

    PubMed Central

    Wei, Jianshe; Fujita, Masayo; Nakai, Masaaki; Waragai, Masaaki; Sekigawa, Akio; Sugama, Shuei; Takenouchi, Takato; Masliah, Eliezer; Hashimoto, Makoto

    2009-01-01

    Gangliosides may be involved in the pathogenesis of Parkinson’s disease and related disorders, although the precise mechanisms governing this involvement remain unknown. In this study, we determined whether changes in endogenous ganglioside levels affect lysosomal pathology in a cellular model of synucleinopathy. For this purpose, dementia with Lewy body-linked P123H β-synuclein (β-syn) neuroblastoma cells transfected with α-synuclein were used as a model system because these cells were characterized as having extensive formation of lysosomal inclusions bodies. Treatment of these cells with d-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP), an inhibitor of glycosyl ceramide synthase, resulted in various features of lysosomal pathology, including compromised lysosomal activity, enhanced lysosomal membrane permeabilization, and increased cytotoxicity. Consistent with these findings, expression levels of lysosomal membrane proteins, ATP13A2 and LAMP-2, were significantly decreased, and electron microscopy demonstrated alterations in the lysosomal membrane structures. Furthermore, the accumulation of both P123H β-syn and α-synuclein proteins was significant in PDMP-treated cells because of the suppressive effect of PDMP on the autophagy pathway. Finally, the detrimental effects of PDMP on lysosomal pathology were significantly ameliorated by the addition of gangliosides to the cultured cells. These data suggest that endogenous gangliosides may play protective roles against the lysosomal pathology of synucleinopathies. PMID:19349362

  19. An application of Galactic parallax: the distance to the tidal stream GD-1

    NASA Astrophysics Data System (ADS)

    Eyre, Andy

    2010-04-01

    We assess the practicality of computing the distance to stellar streams in our Galaxy, using the method of Galactic parallax suggested by Eyre & Binney. We find that the uncertainty in Galactic parallax is dependent upon the specific geometry of the problem in question. In the case of the tidal stream GD-1, the problem geometry indicates that available proper-motion data, with individual accuracy ~4masyr-1, should allow estimation of its distance with about 50 per cent uncertainty. Proper motions accurate to ~1masyr-1, which are expected from the forthcoming Pan-STARRS PS-1 survey, will allow estimation of its distance to about 10 per cent uncertainty. Proper motions from the future Large Synoptic Survey Telescope (LSST) and Gaia projects will be more accurate still, and will allow the parallax for a stream 30 kpc distant to be measured with ~14 per cent uncertainty. We demonstrate the feasibility of the method and show that our uncertainty estimates are accurate by computing Galactic parallax using simulated data for the GD-1 stream. We also apply the method to actual data for the GD-1 stream, published by Koposov, Rix & Hogg. With the exception of one datum, the distances estimated using Galactic parallax match photometric estimates with less than 1 kpc discrepancy. The scatter in the distances recovered using Galactic parallax is very low, suggesting that the proper-motion uncertainty reported by Koposov et al. is in fact overestimated. We conclude that the GD-1 stream is (8 +/- 1)kpc distant, on a retrograde orbit inclined 37° to the plane, and that the visible portion of the stream is likely to be near pericentre.

  20. Dietary lipids containing gangliosides reduce Giardia muris infection in vivo and survival of Giardia lamblia trophozoites in vitro.

    PubMed

    Suh, M; Belosevic, M; Clandinin, M T

    2004-06-01

    We examined whether a ganglioside supplemented diet affected the course of Giardia muris infection in mice and survival of Giardia lamblia trophozoites in vitro. Female CD-1 mice were fed 1 of 5 experimental diets: standard lab chow as a control diet; semi-synthetic diets containing 20% (w/w) triglyceride based on the fat composition of a conventional infant formula; triglyceride diet; triglyceride diet containing a low level of ganglioside (0.1% w/w); and triglyceride diet containing a high level of ganglioside (1.0% w/w of diet). After 2 weeks of feeding, mice were inoculated with G. muris by gastric intubation and fed the experimental diets during the course of the infection. Cysts released in the faeces and trophozoites present in the small intestine were enumerated at various times post-infection. The average cyst output and the number of trophozoites during the course of the infection in mice fed ganglioside-containing diet were found to be significantly lower (3-log10 reduction) compared to animals fed control diets. The results of in vitro growth studies indicated that gangliosides may be directly toxic to the parasites. Thus, gangliosides have a protective effect against G. muris infection in vivo and affect the survival of G. lamblia trophozoites in vitro.

  1. GM2 Gangliosidosis in Shiba Inu Dogs with an In-Frame Deletion in HEXB.

    PubMed

    Kolicheski, A; Johnson, G S; Villani, N A; O'Brien, D P; Mhlanga-Mutangadura, T; Wenger, D A; Mikoloski, K; Eagleson, J S; Taylor, J F; Schnabel, R D; Katz, M L

    2017-09-01

    Consistent with a tentative diagnosis of neuronal ceroid lipofuscinosis (NCL), autofluorescent cytoplasmic storage bodies were found in neurons from the brains of 2 related Shiba Inu dogs with a young-adult onset, progressive neurodegenerative disease. Unexpectedly, no potentially causal NCL-related variants were identified in a whole-genome sequence generated with DNA from 1 of the affected dogs. Instead, the whole-genome sequence contained a homozygous 3 base pair (bp) deletion in a coding region of HEXB. The other affected dog also was homozygous for this 3-bp deletion. Mutations in the human HEXB ortholog cause Sandhoff disease, a type of GM2 gangliosidosis. Thin-layer chromatography confirmed that GM2 ganglioside had accumulated in an affected Shiba Inu brain. Enzymatic analysis confirmed that the GM2 gangliosidosis resulted from a deficiency in the HEXB encoded protein and not from a deficiency in products from HEXA or GM2A, which are known alternative causes of GM2 gangliosidosis. We conclude that the homozygous 3-bp deletion in HEXB is the likely cause of the Shiba Inu neurodegenerative disease and that whole-genome sequencing can lead to the early identification of potentially disease-causing DNA variants thereby refocusing subsequent diagnostic analyses toward confirming or refuting candidate variant causality. Copyright © 2017 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  2. Association between Immunoglobulin GM and KM Genotypes and Placental Malaria in HIV-1 Negative and Positive Women in Western Kenya

    PubMed Central

    Iriemenam, Nnaemeka C.; Pandey, Janardan P.; Williamson, John; Blackstock, Anna J.; Yesupriya, Ajay; Namboodiri, Aryan M.; Rocca, Keith M.; van Eijk, Anna Maria; Ayisi, John; Oteino, Juliana; Lal, Renu B.; ter Kuile, Feiko O.; Steketee, Richard; Nahlen, Bernard; Slutsker, Laurence; Shi, Ya Ping

    2013-01-01

    Immunoglobulin (Ig) GM and KM allotypes, genetic markers of γ and κ chains, are associated with humoral immune responsiveness. Previous studies have shown the relationships between GM6-carrying haplotypes and susceptibility to malaria infection in children and adults; however, the role of the genetic markers in placental malaria (PM) infection and PM with HIV co-infection during pregnancy has not been investigated. We examined the relationship between the gene polymorphisms of Ig GM6 and KM allotypes and the risk of PM infection in pregnant women with known HIV status. DNA samples from 728 pregnant women were genotyped for GM6 and KM alleles using polymerase chain reaction-restriction fragment length polymorphism method. Individual GM6 and KM genotypes and the combined GM6 and KM genotypes were assessed in relation to PM in HIV-1 negative and positive women, respectively. There was no significant effect of individual GM6 and KM genotypes on the risk of PM infection in HIV-1 negative and positive women. However, the combination of homozygosity for GM6(+) and KM3 was associated with decreased risk of PM (adjusted OR, 0.25; 95% CI, 0.08–0.8; P = 0.019) in HIV-1 negative women while in HIV-1 positive women the combination of GM6(+/−) with either KM1-3 or KM1 was associated with increased risk of PM infection (adjusted OR, 2.10; 95% CI, 1.18–3.73; P = 0.011). Hardy-Weinberg Equilibrium (HWE) tests further showed an overall significant positive F(is) (indication of deficit in heterozygotes) for GM6 while there was no deviation for KM genotype frequency from HWE in the same population. These findings suggest that the combination of homozygous GM6(+) and KM3 may protect against PM in HIV-1 negative women while the HIV-1 positive women with heterozygous GM6(+/−) combined with KM1-3 or KM1 may be more susceptible to PM infection. The deficit in heterozygotes for GM6 further suggests that GM6 could be under selection likely by malaria infection. PMID

  3. Variation and Grey GM(1, 1) Prediction of Melting Peak Temperature of Polypropylene During Ultraviolet Radiation Aging

    NASA Astrophysics Data System (ADS)

    Chen, K.; Y Zhang, T.; Zhang, F.; Zhang, Z. R.

    2017-12-01

    Grey system theory regards uncertain system in which information is known partly and unknown partly as research object, extracts useful information from part known, and thereby revealing the potential variation rule of the system. In order to research the applicability of data-driven modelling method in melting peak temperature (T m) fitting and prediction of polypropylene (PP) during ultraviolet radiation aging, the T m of homo-polypropylene after different ultraviolet radiation exposure time investigated by differential scanning calorimeter was fitted and predicted by grey GM(1, 1) model based on grey system theory. The results show that the T m of PP declines with the prolong of aging time, and fitting and prediction equation obtained by grey GM(1, 1) model is T m = 166.567472exp(-0.00012t). Fitting effect of the above equation is excellent and the maximum relative error between prediction value and actual value of T m is 0.32%. Grey system theory needs less original data, has high prediction accuracy, and can be used to predict aging behaviour of PP.

  4. A mucosally targeted subunit vaccine candidate eliciting HIV-1 transcytosis-blocking Abs

    PubMed Central

    Matoba, Nobuyuki; Magérus, Aude; Geyer, Brian C.; Zhang, Yunfang; Muralidharan, Mrinalini; Alfsen, Annette; Arntzen, Charles J.; Bomsel, Morgane; Mor, Tsafrir S.

    2004-01-01

    A vaccine that would engage the mucosal immune system against a broad range of HIV-1 subtypes and prevent epithelial transmission is highly desirable. Here we report fusing the mucosal targeting B subunit of cholera toxin to the conserved galactosylceramide-binding domain (including the ELDKWA-neutralizing epitope) of the HIV-1 gp41 envelope protein, which mediates the transcytosis of HIV-1 across the mucosal epithelia. Chimeric protein expressed in bacteria or plants assembled into oligomers that were capable of binding galactosyl-ceramide and GM1 gangliosides. Mucosal (intranasal) administration in mice of the purified chimeric protein followed by an i.p. boost resulted in transcytosis-neutralizing serum IgG and mucosal IgA responses and induced immunological memory. Plant production of mucosally targeted immunogens could be particularly useful for immunization programs in developing countries, where desirable product traits include low cost of manufacture, heat stability, and needle-free delivery. PMID:15347807

  5. Neuraminidases 3 and 4 regulate neuronal function by catabolizing brain gangliosides.

    PubMed

    Pan, Xuefang; De Aragão, Camila De Britto Pará; Velasco-Martin, Juan P; Priestman, David A; Wu, Harry Y; Takahashi, Kohta; Yamaguchi, Kazunori; Sturiale, Luisella; Garozzo, Domenico; Platt, Frances M; Lamarche-Vane, Nathalie; Morales, Carlos R; Miyagi, Taeko; Pshezhetsky, Alexey V

    2017-08-01

    Gangliosides (sialylated glycolipids) play an essential role in the CNS by regulating recognition and signaling in neurons. Metabolic blocks in processing and catabolism of gangliosides result in the development of severe neurologic disorders, including gangliosidoses manifesting with neurodegeneration and neuroinflammation. We demonstrate that 2 mammalian enzymes, neuraminidases 3 and 4, play important roles in catabolic processing of brain gangliosides by cleaving terminal sialic acid residues in their glycan chains. In neuraminidase 3 and 4 double-knockout mice, G M3 ganglioside is stored in microglia, vascular pericytes, and neurons, causing micro- and astrogliosis, neuroinflammation, accumulation of lipofuscin bodies, and memory loss, whereas their cortical and hippocampal neurons have lower rate of neuritogenesis in vitro Double-knockout mice also have reduced levels of G M1 ganglioside and myelin in neuronal axons. Furthermore, neuraminidase 3 deficiency drastically increased storage of G M2 in the brain tissues of an asymptomatic mouse model of Tay-Sachs disease, a severe human gangliosidosis, indicating that this enzyme is responsible for the metabolic bypass of β-hexosaminidase A deficiency. Together, our results provide the first in vivo evidence that neuraminidases 3 and 4 have important roles in CNS function by catabolizing gangliosides and preventing their storage in lipofuscin bodies.-Pan, X., De Britto Pará De Aragão, C., Velasco-Martin, J. P., Priestman, D. A., Wu, H. Y., Takahashi, K., Yamaguchi, K., Sturiale, L., Garozzo, D., Platt, F. M., Lamarche-Vane, N., Morales, C. R., Miyagi, T., Pshezhetsky, A. V. Neuraminidases 3 and 4 regulate neuronal function by catabolizing brain gangliosides. © FASEB.

  6. Transgenic soybean overexpressing GmSAMT1 exhibits resistance to multiple-HG types of soybean cyst nematode Heterodera glycines

    DOE PAGES

    Lin, Jingyu; Mazarei, Mitra; Zhao, Nan; ...

    2016-05-23

    Soybean ( Glycine max (L.) Merr.) salicylic acid methyl transferase (GmSAMT1) catalyses the conversion of salicylic acid to methyl salicylate. Prior results showed that when GmSAMT1 was overexpressed in transgenic soybean hairy roots, resistance is conferred against soybean cyst nematode (SCN), Heterodera glycines Ichinohe. In this study, we produced transgenic soybean overexpressing GmSAMT1 and characterized their response to various SCN races. Transgenic plants conferred a significant reduction in the development of SCN HG type 1.2.5.7 (race 2), HG type 0 (race 3) and HG type 2.5.7 (race 5). Among transgenic lines, GmSAMT1 expression in roots was positively associated with SCNmore » resistance. In some transgenic lines, there was a significant decrease in salicylic acid titer relative to control plants. No significant seed yield differences were observed between transgenics and control soybean plants grown in one greenhouse with 22 °C day/night temperature, whereas transgenic soybean had higher yield than controls grown a warmer greenhouse (27 °C day/23 °C night) temperature. In a 1-year field experiment in Knoxville, TN, there was no significant difference in seed yield between the transgenic and nontransgenic soybean under conditions with negligible SCN infection. We hypothesize that GmSAMT1 expression affects salicylic acid biosynthesis, which, in turn, attenuates SCN development, without negative consequences to soybean yield or other morphological traits. Furthermore, we conclude that GmSAMT1 overexpression confers broad resistance to multiple SCN races, which would be potentially applicable to commercial production.« less

  7. Transgenic soybean overexpressing GmSAMT1 exhibits resistance to multiple-HG types of soybean cyst nematode Heterodera glycines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Jingyu; Mazarei, Mitra; Zhao, Nan

    Soybean ( Glycine max (L.) Merr.) salicylic acid methyl transferase (GmSAMT1) catalyses the conversion of salicylic acid to methyl salicylate. Prior results showed that when GmSAMT1 was overexpressed in transgenic soybean hairy roots, resistance is conferred against soybean cyst nematode (SCN), Heterodera glycines Ichinohe. In this study, we produced transgenic soybean overexpressing GmSAMT1 and characterized their response to various SCN races. Transgenic plants conferred a significant reduction in the development of SCN HG type 1.2.5.7 (race 2), HG type 0 (race 3) and HG type 2.5.7 (race 5). Among transgenic lines, GmSAMT1 expression in roots was positively associated with SCNmore » resistance. In some transgenic lines, there was a significant decrease in salicylic acid titer relative to control plants. No significant seed yield differences were observed between transgenics and control soybean plants grown in one greenhouse with 22 °C day/night temperature, whereas transgenic soybean had higher yield than controls grown a warmer greenhouse (27 °C day/23 °C night) temperature. In a 1-year field experiment in Knoxville, TN, there was no significant difference in seed yield between the transgenic and nontransgenic soybean under conditions with negligible SCN infection. We hypothesize that GmSAMT1 expression affects salicylic acid biosynthesis, which, in turn, attenuates SCN development, without negative consequences to soybean yield or other morphological traits. Furthermore, we conclude that GmSAMT1 overexpression confers broad resistance to multiple SCN races, which would be potentially applicable to commercial production.« less

  8. Structure of dual receptor binding to botulinum neurotoxin B.

    PubMed

    Berntsson, Ronnie P-A; Peng, Lisheng; Dong, Min; Stenmark, Pål

    2013-01-01

    Botulinum neurotoxins are highly toxic, and bind two receptors to achieve their high affinity and specificity for neurons. Here we present the first structure of a botulinum neurotoxin bound to both its receptors. We determine the 2.3-Å structure of a ternary complex of botulinum neurotoxin type B bound to both its protein receptor synaptotagmin II and its ganglioside receptor GD1a. We show that there is no direct contact between the two receptors, and that the binding affinity towards synaptotagmin II is not influenced by the presence of GD1a. The interactions of botulinum neurotoxin type B with the sialic acid 5 moiety of GD1a are important for the ganglioside selectivity. The structure demonstrates that the protein receptor and the ganglioside receptor occupy nearby but separate binding sites, thus providing two independent anchoring points.

  9. Mice lacking sialyltransferase ST3Gal-II develop late-onset obesity and insulin resistance

    PubMed Central

    Lopez, Pablo HH; Aja, Susan; Aoki, Kazuhiro; Seldin, Marcus M; Lei, Xia; Ronnett, Gabriele V; Wong, G William; Schnaar, Ronald L

    2017-01-01

    Sialyltransferases are a family of 20 gene products in mice and humans that transfer sialic acid from its activated precursor, CMP-sialic acid, to the terminus of glycoprotein and glycolipid acceptors. ST3Gal-II (coded by the St3gal2 gene) transfers sialic acid preferentially to the three positions of galactose on the Galβ1-3GalNAc terminus of gangliosides GM1 and GD1b to synthesize GD1a and GT1b, respectively. Mice with a targeted disruption of St3gal2 unexpectedly displayed late-onset obesity and insulin resistance. At 3 months of age, St3gal2-null mice were the same weight as their wild type (WT) counterparts, but by 13 months on standard chow they were visibly obese, 22% heavier and with 37% greater fat/lean ratio than WT mice. St3gal2-null mice became hyperglycemic and displayed impaired glucose tolerance by 9 months of age. They had sharply reduced insulin responsiveness despite equivalent pancreatic islet morphology. Analyses of insulin receptor (IR) tyrosine kinase substrate IRS-1 and downstream target Akt revealed decreased insulin-induced phosphorylation in adipose tissue but not liver or skeletal muscle of St3gal2-null mice. Thin-layer chromatography and mass spectrometry revealed altered ganglioside profiles in the adipose tissue of St3gal2-null mice compared to WT littermates. Metabolically, St3gal2-null mice display a reduced respiratory exchange ratio compared to WT mice, indicating a preference for lipid oxidation as an energy source. Despite their altered metabolism, St3gal2-null mice were hyperactive. We conclude that altered ganglioside expression in adipose tissue results in diminished IR sensitivity and late-onset obesity. PMID:27683310

  10. Identification of Bangladeshi domestic cats with GM1 gangliosidosis caused by the c.1448G>C mutation of the feline GLB1 gene: case study.

    PubMed

    Uddin, Mohammad Mejbah; Hossain, Mohammad Alamgir; Rahman, Mohammad Mahbubur; Chowdhury, Morshedul Alam; Tanimoto, Takeshi; Yabuki, Akira; Mizukami, Keijiro; Chang, Hye-Sook; Yamato, Osamu

    2013-01-01

    GM1 gangliosidosis is a fatal, progressive neurodegenerative lysosomal storage disease caused by mutations in the β-galactosidase (GLB1) gene. In feline GM1 gangliosidosis, a pathogenic mutation (c.1448G>C) in the feline GLB1 gene was identified in Siamese cats in the United States and Japan and in Korat cats in Western countries. The present study found the homozygous c.1448G>C mutation in 2 apparent littermate native kittens in Bangladesh that were exhibiting neurological signs. This is the first identification of GM1 gangliosidosis in native domestic cats in Southeast Asia. This pathogenic mutation seems to have been present in the domestic cat population in the Siamese region and may have been transferred to pure breeds such as Siamese and Korat cats originating in this region.

  11. Low pH, aluminum, and phosphorus coordinately regulate malate exudation through GmALMT1 to improve soybean adaptation to acid soils.

    PubMed

    Liang, Cuiyue; Piñeros, Miguel A; Tian, Jiang; Yao, Zhufang; Sun, Lili; Liu, Jiping; Shaff, Jon; Coluccio, Alison; Kochian, Leon V; Liao, Hong

    2013-03-01

    Low pH, aluminum (Al) toxicity, and low phosphorus (P) often coexist and are heterogeneously distributed in acid soils. To date, the underlying mechanisms of crop adaptation to these multiple factors on acid soils remain poorly understood. In this study, we found that P addition to acid soils could stimulate Al tolerance, especially for the P-efficient genotype HN89. Subsequent hydroponic studies demonstrated that solution pH, Al, and P levels coordinately altered soybean (Glycine max) root growth and malate exudation. Interestingly, HN89 released more malate under conditions mimicking acid soils (low pH, +P, and +Al), suggesting that root malate exudation might be critical for soybean adaptation to both Al toxicity and P deficiency on acid soils. GmALMT1, a soybean malate transporter gene, was cloned from the Al-treated root tips of HN89. Like root malate exudation, GmALMT1 expression was also pH dependent, being suppressed by low pH but enhanced by Al plus P addition in roots of HN89. Quantitative real-time PCR, transient expression of a GmALMT1-yellow fluorescent protein chimera in Arabidopsis protoplasts, and electrophysiological analysis of Xenopus laevis oocytes expressing GmALMT1 demonstrated that GmALMT1 encodes a root cell plasma membrane transporter that mediates malate efflux in an extracellular pH-dependent and Al-independent manner. Overexpression of GmALMT1 in transgenic Arabidopsis, as well as overexpression and knockdown of GmALMT1 in transgenic soybean hairy roots, indicated that GmALMT1-mediated root malate efflux does underlie soybean Al tolerance. Taken together, our results suggest that malate exudation is an important component of soybean adaptation to acid soils and is coordinately regulated by three factors, pH, Al, and P, through the regulation of GmALMT1 expression and GmALMT1 function.

  12. Current controversies in Niemann-Pick C1 disease: steroids or gangliosides; neurons or neurons and glia.

    PubMed

    Erickson, Robert P

    2013-05-01

    There has been a recent explosion in research on Niemann-Pick type C disease. Much of the work has used mouse models or cells in culture to elucidate the pathophysiological mechanisms resulting in the phenotype of the disease. This work has generated several contrasting views on the mechanism, which are labeled 'controversies' here. In this review, two of these controversies are explored. The first concerns which stored materials are causative in the disease: cholesterol, gangliosides and sphingolipids, or something else? The second concerns which cells in the body require Npc1 in order to function properly: somatic cells, neurons only, or neurons and glia? For the first controversy, a clear answer has emerged. More research will be needed in order to definitively solve the second controversy.

  13. Role of gangliosides in active immunotherapy with melanoma vaccine.

    PubMed

    Ravindranath, M H; Morton, D L

    1991-01-01

    Among various tumor associated cell surface antigens, gangliosides, the glycosphingolipids that contain sialic acids, offer a variety of epitopes, some of which are preferentially expressed on melanoma cells. These surface components of the bilayered lipid membrane of tumor cells are the targets of active immunotherapy with melanoma vaccine. Purified gangliosides in aqueous solution form micelles and, at high density, form lactones. Their antigenic expression (physical conformation and orientation) on the cell surface is governed by the nature of the sphingosine and the fatty acids they contain. Evidence is accruing to show that the nature of the fatty acid moiety of gangliosides differs in normal and neoplastic cells. Gangliosides per se are not immunogenic and require extrinsic adjuvanticity. Preparation of a melanoma cell vaccine for active immunotherapy requires an understanding of the ganglioside profile of melanoma, the ganglioside-associated heterogeneity of melanoma, and the role of shed melanoma gangliosides in the immunosuppression of cell mediated and humoral immunity. In addition, the role of some of the anti-ganglioside antibodies in the elimination of shed gangliosides, the cytotoxic killing of tumor cells, as well as in the down-regulation of lymphocyte functions must be considered in the formulation of vaccine. Different strategies for augmenting the immunogenicity of melanoma associated gangliosides with melanoma vaccine are evaluated.

  14. C1q-targeted inhibition of the classical complement pathway prevents injury in a novel mouse model of acute motor axonal neuropathy.

    PubMed

    McGonigal, Rhona; Cunningham, Madeleine E; Yao, Denggao; Barrie, Jennifer A; Sankaranarayanan, Sethu; Fewou, Simon N; Furukawa, Koichi; Yednock, Ted A; Willison, Hugh J

    2016-03-02

    Guillain-Barré syndrome (GBS) is an autoimmune disease that results in acute paralysis through inflammatory attack on peripheral nerves, and currently has limited, non-specific treatment options. The pathogenesis of the acute motor axonal neuropathy (AMAN) variant is mediated by complement-fixing anti-ganglioside antibodies that directly bind and injure the axon at sites of vulnerability such as nodes of Ranvier and nerve terminals. Consequently, the complement cascade is an attractive target to reduce disease severity. Recently, C5 complement component inhibitors that block the formation of the membrane attack complex and subsequent downstream injury have been shown to be efficacious in an in vivo anti-GQ1b antibody-mediated mouse model of the GBS variant Miller Fisher syndrome (MFS). However, since gangliosides are widely expressed in neurons and glial cells, injury in this model was not targeted exclusively to the axon and there are currently no pure mouse models for AMAN. Additionally, C5 inhibition does not prevent the production of early complement fragments such as C3a and C3b that can be deleterious via their known role in immune cell and macrophage recruitment to sites of neuronal damage. In this study, we first developed a new in vivo transgenic mouse model of AMAN using mice that express complex gangliosides exclusively in neurons, thereby enabling specific targeting of axons with anti-ganglioside antibodies. Secondly, we have evaluated the efficacy of a novel anti-C1q antibody (M1) that blocks initiation of the classical complement cascade, in both the newly developed anti-GM1 antibody-mediated AMAN model and our established MFS model in vivo. Anti-C1q monoclonal antibody treatment attenuated complement cascade activation and deposition, reduced immune cell recruitment and axonal injury, in both mouse models of GBS, along with improvement in respiratory function. These results demonstrate that neutralising C1q function attenuates injury with a

  15. The Acid Phosphatase-Encoding Gene GmACP1 Contributes to Soybean Tolerance to Low-Phosphorus Stress

    PubMed Central

    Hao, Derong; Wang, Hui; Kan, Guizhen; Jin, Hangxia; Yu, Deyue

    2014-01-01

    Phosphorus (P) is essential for all living cells and organisms, and low-P stress is a major factor constraining plant growth and yield worldwide. In plants, P efficiency is a complex quantitative trait involving multiple genes, and the mechanisms underlying P efficiency are largely unknown. Combining linkage analysis, genome-wide and candidate-gene association analyses, and plant transformation, we identified a soybean gene related to P efficiency, determined its favorable haplotypes and developed valuable functional markers. First, six major genomic regions associated with P efficiency were detected by performing genome-wide associations (GWAs) in various environments. A highly significant region located on chromosome 8, qPE8, was identified by both GWAs and linkage mapping and explained 41% of the phenotypic variation. Then, a regional mapping study was performed with 40 surrounding markers in 192 diverse soybean accessions. A strongly associated haplotype (P = 10−7) consisting of the markers Sat_233 and BARC-039899-07603 was identified, and qPE8 was located in a region of approximately 250 kb, which contained a candidate gene GmACP1 that encoded an acid phosphatase. GmACP1 overexpression in soybean hairy roots increased P efficiency by 11–20% relative to the control. A candidate-gene association analysis indicated that six natural GmACP1 polymorphisms explained 33% of the phenotypic variation. The favorable alleles and haplotypes of GmACP1 associated with increased transcript expression correlated with higher enzyme activity. The discovery of the optimal haplotype of GmACP1 will now enable the accurate selection of soybeans with higher P efficiencies and improve our understanding of the molecular mechanisms underlying P efficiency in plants. PMID:24391523

  16. CONSTRAINING THE MILKY WAY POTENTIAL WITH A SIX-DIMENSIONAL PHASE-SPACE MAP OF THE GD-1 STELLAR STREAM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koposov, Sergey E.; Rix, Hans-Walter; Hogg, David W., E-mail: koposov@ast.cam.ac.u

    2010-03-20

    The narrow GD-1 stream of stars, spanning 60{sup 0} on the sky at a distance of {approx}10 kpc from the Sun and {approx}15 kpc from the Galactic center, is presumed to be debris from a tidally disrupted star cluster that traces out a test-particle orbit in the Milky Way halo. We combine Sloan Digital Sky Survey (SDSS) photometry, USNO-B astrometry, and SDSS and Calar Alto spectroscopy to construct a complete, empirical six-dimensional (6D) phase-space map of the stream. We find that an eccentric orbit in a flattened isothermal potential describes this phase-space map well. Even after marginalizing over the streammore » orbital parameters and the distance from the Sun to the Galactic center, the orbital fit to GD-1 places strong constraints on the circular velocity at the Sun's radius V{sub c} = 224 +- 13 km s{sup -1} and total potential flattening q{sub P}HI = 0.87{sup +0.07}{sub -0.04}. When we drop any informative priors on V{sub c} , the GD-1 constraint becomes V{sub c} = 221 +- 18 km s{sup -1}. Our 6D map of GD-1, therefore, yields the best current constraint on V{sub c} and the only strong constraint on q{sub P}HI at Galactocentric radii near R {approx} 15 kpc. Much, if not all, of the total potential flattening may be attributed to the mass in the stellar disk, so the GD-1 constraints on the flattening of the halo itself are weak: q{sub P}HI{sub ,halo} > 0.89 at 90% confidence. The greatest uncertainty in the 6D map and the orbital analysis stems from the photometric distances, which will be obviated by GAIA.« less

  17. Structural and magnetic properties of morphotropic phase boundary involved Tb 1-xGd xFe 2 compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murtaza, Adil; Yang, Sen; Zhou, Chao

    2016-09-01

    In the present paper, structural, magnetic and magnetostrictive properties of Tb 1-xGd xFe 2 (0 <= x <= 1.0) were studied. Synchrotron x-ray diffraction (XRD) results show the non-cubic symmetry of Tb 1-xGd xFe 2 at room temperature and composition-induced crystallographic phase transition from rhombohedral phase to tetragonal phase. The Gd concentration dependent lattice parameters, lattice distortion and change of easy magnetic direction were detected by synchrotron XRD. With the Gd concentration increases, Curie temperature Tc increases while room temperature magnetization and magnetostriction coefficient lambda(111) and the anisotropy of TbFe 2 decrease. The decrease in spontaneous magnetostriction coefficient lambda(111) withmore » increasing Gd substitution can be understood on the basis of the single-ion model; the corresponding decrease of magnetostriction for Tb 1-xGd xFe 2, and the large magnetostriction value occurs on the Tb-rich side, are ascribed to decrease of lambda(111)« less

  18. Immunoglobulin GM and KM allotypes and prevalence of anti-LKM1 autoantibodies in patients with hepatitis C virus infection.

    PubMed

    Muratori, Paolo; Sutherland, Susan E; Muratori, Luigi; Granito, Alessandro; Guidi, Marcello; Pappas, Georges; Lenzi, Marco; Bianchi, Francesco B; Pandey, Janardan P

    2006-05-01

    GM and KM allotypes-genetic markers of immunoglobulin (Ig) gamma and kappa chains, respectively-are associated with humoral immunity to several infection- and autoimmunity-related epitopes. We hypothesized that GM and KM allotypes contribute to the generation of autoantibodies to liver/kidney microsomal antigen 1 (LKM1) in hepatitis C virus (HCV)-infected persons. To test this hypothesis, we characterized 129 persons with persistent HCV infection for several GM and KM markers and for anti-LKM1 antibodies. The heterozygous GM 1,3,17 23 5,13,21 phenotype was significantly associated with the prevalence of anti-LKM1 antibodies (odds ratio, 5.13; P=0.002), suggesting its involvement in this autoimmune phenomenon in HCV infection.

  19. Immunoglobulin GM and KM Allotypes and Prevalence of Anti-LKM1 Autoantibodies in Patients with Hepatitis C Virus Infection

    PubMed Central

    Muratori, Paolo; Sutherland, Susan E.; Muratori, Luigi; Granito, Alessandro; Guidi, Marcello; Pappas, Georges; Lenzi, Marco; Bianchi, Francesco B.; Pandey, Janardan P.

    2006-01-01

    GM and KM allotypes—genetic markers of immunoglobulin (Ig) γ and κ chains, respectively—are associated with humoral immunity to several infection- and autoimmunity-related epitopes. We hypothesized that GM and KM allotypes contribute to the generation of autoantibodies to liver/kidney microsomal antigen 1 (LKM1) in hepatitis C virus (HCV)-infected persons. To test this hypothesis, we characterized 129 persons with persistent HCV infection for several GM and KM markers and for anti-LKM1 antibodies. The heterozygous GM 1,3,17 23 5,13,21 phenotype was significantly associated with the prevalence of anti-LKM1 antibodies (odds ratio, 5.13; P = 0.002), suggesting its involvement in this autoimmune phenomenon in HCV infection. PMID:16641304

  20. Significant role of antiferromagnetic GdFeO3 on multiferroism of bilayer thin films

    NASA Astrophysics Data System (ADS)

    Shah, Jyoti; Bhatt, Priyanka; Dayas, K. Diana Diana; Kotnala, R. K.

    2018-02-01

    Inversion of BaTiO3 and GdFeO3 thin films in bilayer configuration has been deposited by pulsed laser deposition technique. A significant effect of strain on thin film has been observed by X-ray diffraction analysis. Tensile strain of 1.04% and 0.23% has been calculated by X-ray diffraction results. Higher polarization value 70.4 μC cm-2 has been observed by strained BaTiO3 film in GdFeO3/BaTiO3 bilayer film. Strained GdFeO3 film in BaTiO3/GdFeO3 bilayer configuration exhibited ferromagnetic behaviour showed maximum magnetization value of 50 emu gm-1. Magnetoelectric coupling coefficient of bilayer films have been carried out by dynamic method. Room temperature magnetoelectric coupling 2500 mV cm-1-Oe has been obtained for BaTiO3/GdFeO3 bilayer film. The high ME coupling of the BaTiO3/GdFeO3 bilayer film reveals strong interfacial coupling between ferroelectric and ferromagnetic dipoles. On magnetoelectric coupling coefficient effect of ferromagnetic GdFeO3 layer has a significant role. Such high value of ME coupling may be useful in realization of magnetoelectric RAM (MeRAM) application.

  1. Measuring Positive Cooperativity Using the Direct ESI-MS Assay. Cholera Toxin B Subunit Homopentamer Binding to GM1 Pentasaccharide

    NASA Astrophysics Data System (ADS)

    Lin, Hong; Kitova, Elena N.; Klassen, John S.

    2014-01-01

    Direct electrospray ionization mass spectrometry (ESI-MS) assay was used to investigate the stepwise binding of the GM1 pentasaccharide β- D-Gal p-(1→3)-β-D-Gal pNAc-(1→4)[α-D-Neu5Ac-(2→3)]-β- D-Gal p-(1→4)-β-D-Glc p (GM1os) to the cholera toxin B subunit homopentamer (CTB5) and to establish conclusively whether GM1os binding is cooperative. Apparent association constants were measured for the stepwise addition of one to five GM1os to CTB5 at pH 6.9 and 22 °C. The intrinsic association constant, which was established from the apparent association constant for the addition of a single GM1os to CTB5, was found to be (3.2 ± 0.2) × 106 M-1. This is in reasonable agreement with the reported value of (6.4 ± 0.3) × 106 M-1, which was measured at pH 7.4 and 25 °C using isothermal titration calorimetry (ITC). Analysis of the apparent association constants provides direct and unambiguous evidence that GM1os binding exhibits small positive cooperativity. Binding was found to be sensitive to the number of ligand-bound nearest neighbor subunits, with the affinities enhanced by a factor of 1.7 and 2.9 when binding occurs next to one or two ligand-bound subunits, respectively. These findings, which provide quantitative support for the binding model proposed by Homans and coworkers [14], highlight the unique strengths of the direct ESI-MS assay for measuring cooperative ligand binding.

  2. Transgenic soybean overexpressing GmSAMT1 exhibits resistance to multiple-HG types of soybean cyst nematode Heterodera glycines.

    PubMed

    Lin, Jingyu; Mazarei, Mitra; Zhao, Nan; Hatcher, Catherine N; Wuddineh, Wegi A; Rudis, Mary; Tschaplinski, Timothy J; Pantalone, Vincent R; Arelli, Prakash R; Hewezi, Tarek; Chen, Feng; Stewart, Charles Neal

    2016-11-01

    Soybean (Glycine max (L.) Merr.) salicylic acid methyl transferase (GmSAMT1) catalyses the conversion of salicylic acid to methyl salicylate. Prior results showed that when GmSAMT1 was overexpressed in transgenic soybean hairy roots, resistance is conferred against soybean cyst nematode (SCN), Heterodera glycines Ichinohe. In this study, we produced transgenic soybean overexpressing GmSAMT1 and characterized their response to various SCN races. Transgenic plants conferred a significant reduction in the development of SCN HG type 1.2.5.7 (race 2), HG type 0 (race 3) and HG type 2.5.7 (race 5). Among transgenic lines, GmSAMT1 expression in roots was positively associated with SCN resistance. In some transgenic lines, there was a significant decrease in salicylic acid titer relative to control plants. No significant seed yield differences were observed between transgenics and control soybean plants grown in one greenhouse with 22 °C day/night temperature, whereas transgenic soybean had higher yield than controls grown a warmer greenhouse (27 °C day/23 °C night) temperature. In a 1-year field experiment in Knoxville, TN, there was no significant difference in seed yield between the transgenic and nontransgenic soybean under conditions with negligible SCN infection. We hypothesize that GmSAMT1 expression affects salicylic acid biosynthesis, which, in turn, attenuates SCN development, without negative consequences to soybean yield or other morphological traits. Thus, we conclude that GmSAMT1 overexpression confers broad resistance to multiple SCN races, which would be potentially applicable to commercial production. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  3. NEU3 sialidase strictly modulates GM3 levels in skeletal myoblasts C2C12 thus favoring their differentiation and protecting them from apoptosis.

    PubMed

    Anastasia, Luigi; Papini, Nadia; Colazzo, Francesca; Palazzolo, Giacomo; Tringali, Cristina; Dileo, Loredana; Piccoli, Marco; Conforti, Erika; Sitzia, Clementina; Monti, Eugenio; Sampaolesi, Maurilio; Tettamanti, Guido; Venerando, Bruno

    2008-12-26

    Membrane-bound sialidase NEU3, often referred to as the "ganglioside sialidase," has a critical regulatory function on the sialoglycosphingolipid pattern of the cell membrane, with an anti-apoptotic function, especially in cancer cells. Although other sialidases have been shown to be involved in skeletal muscle differentiation, the role of NEU3 had yet to be disclosed. Herein we report that NEU3 plays a key role in skeletal muscle differentiation by strictly modulating the ganglioside content of adjacent cells, with special regard to GM3. Induced down-regulation of NEU3 in murine C2C12 myoblasts, even when partial, totally inhibits their capability to differentiate by increasing the GM3 level above a critical point, which causes epidermal growth factor receptor inhibition (and ultimately its down-regulation) and an higher responsiveness of myoblasts to the apoptotic stimuli.

  4. N-butyldeoxynojirimycin treatment restores the innate fear response and improves learning in mucopolysaccharidosis IIIA mice.

    PubMed

    Kaidonis, Xenia; Byers, Sharon; Ranieri, Enzo; Sharp, Peter; Fletcher, Janice; Derrick-Roberts, Ainslie

    2016-06-01

    Mucopolysaccharidosis IIIA is a heritable neurodegenerative disorder resulting from the dysfunction of the lysosomal hydrolase sulphamidase. This leads to the primary accumulation of the complex carbohydrate heparan sulphate in a wide range of tissues and the secondary neuronal storage of gangliosides GM2 and GM3 in the brain. GM2 storage is associated with CNS deterioration in the GM2 gangliosidosis group of lysosomal storage disorders and may also contribute to MPS CNS disease. N-butyldeoxynojirimycin, an inhibitor of ceramide glucosyltransferase activity and therefore of ganglioside synthesis, was administered to MPS IIIA mice both prior to maximal GM2 and GM3 accumulation (early treatment) and after the maximum level of ganglioside had accumulated in the brain (late treatment) to determine if behaviour was altered by ganglioside level. Ceramide glucosyltransferase activity was decreased in both treatment groups; however, brain ganglioside levels were only decreased in the late treatment group. Learning in the water cross maze was improved in both groups and the innate fear response was also restored in both groups. A reduction in the expression of inflammatory gene Ccl3 was observed in the early treatment group, while IL1β expression was reduced in both treatment groups. Thus, it appears that NB-DNJ elicits a transient decrease in brain ganglioside levels, some modulation of inflammatory cytokines and a functional improvement in behaviour that can be elicited both before and after overt neurological changes manifest. NB-DNJ improves learning and restores the innate fear response in MPS IIIA mice by decreasing ceramide glucosyltransferase activity and transiently reducing ganglioside storage and/or modulating inflammatory signals. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Specific Contributions of CSF-1 and GM-CSF to the Dynamics of the Mononuclear Phagocyte System.

    PubMed

    Louis, Cynthia; Cook, Andrew D; Lacey, Derek; Fleetwood, Andrew J; Vlahos, Ross; Anderson, Gary P; Hamilton, John A

    2015-07-01

    M-CSF (or CSF-1) and GM-CSF can regulate the development and function of the mononuclear phagocyte system (MPS). To address some of the outstanding and sometimes conflicting issues surrounding this biology, we undertook a comparative analysis of the effects of neutralizing mAbs to these CSFs on murine MPS populations in the steady-state and during acute inflammatory reactions. CSF-1 neutralization, but not of GM-CSF, in normal mice rapidly reduced the numbers of more mature Ly6C(-) monocytes in blood and bone marrow, without any effect on proliferating precursors, and also the numbers of the resident peritoneal macrophages, observations consistent with CSF-1 signaling being essential only at a relatively late state in steady-state MPS development; in contrast, GM-CSF neutralization had no effect on the numbers of these particular populations. In Ag-induced peritonitis (AIP), thioglycolate-induced peritonitis, and LPS-induced lung inflammation, CSF-1 neutralization lowered inflammatory macrophage number; in the AIP model, this reduced number was not due to suppressed proliferation. More detailed studies with the convenient AIP model indicated that CSF-1 neutralization led to a relatively uniform reduction in all inflammatory cell populations; GM-CSF neutralization, in contrast, was more selective, resulting in the preferential loss among the MPS populations of a cycling, monocyte-derived inflammatory dendritic cell population. Some mechanistic options for the specific CSF-dependent biologies enumerated are discussed. Copyright © 2015 by The American Association of Immunologists, Inc.

  6. GM1 gangliosidosis in a Japanese domestic cat: a new variant identified in Hokkaido, Japan

    PubMed Central

    UENO, Hiroshi; YAMATO, Osamu; SUGIURA, Takeshi; KOHYAMA, Moeko; YABUKI, Akira; MIYOSHI, Kenjiro; MATSUDA, Kazuya; UCHIDE, Tsuyoshi

    2015-01-01

    A male Japanese domestic cat with retarded growth in Hokkaido, Japan, showed progressive motor dysfunction, such as ataxia starting at 3 months of age and tremors, visual disorder and seizure after 4 months of age. Finally, the cat died of neurological deterioration at 9 months of age. Approximately half of the peripheral blood lymphocytes had multiple abnormal vacuoles. Magnetic resonance imaging showed bisymmetrical hyperintensity in the white matter of the parietal and occipital lobes in the forebrain on T2-weighted and fluid-attenuated inversion recovery images, and mild encephalatrophy of the olfactory bulbs and temporal lobes. The activity of lysosomal acid β-galactosidase in leukocytes was negligible, resulting in the biochemical diagnosis of GM1 gangliosidosis. Histologically, swollen neurons characterized by accumulation of pale, slightly granular cytoplasmic materials were observed throughout the central nervous system. Dysmyelination or demyelination and gemistocytic astrocytosis were observed in the white matter. Ultrastructually, membranous cytoplasmic bodies were detected in the lysosomes of neurons. However, genetic analysis did not identify the c.1448G>C mutation, which is the single known mutation of feline GM1 gangliosidosis, suggesting that the cat was affected with a new variant of the feline disease. PMID:26234889

  7. Ocular Pharmacokinetic Study Using T1 Mapping and Gd-Chelate-Labeled Polymers

    PubMed Central

    Shi, Xianfeng; Liu, Xin; Wu, Xueming; Lu, Zheng-Rong; Li, S. Kevin

    2011-01-01

    Purpose Recent advances in drug discovery have led to the development of a number of therapeutic macromolecules for treatment of posterior eye diseases. We aimed to investigate the clearance of macromolecular contrast probes (polymers conjugated with Gd-chelate) in the vitreous after intravitreal injections with the recently developed ms-DSEPI-T12 MRI and to examine the degradation of disulfide-containing biodegradable polymers in the vitreous humor in vivo. Methods Intravitreal injections of model contrast agents poly[N-(2-hydroxypropyl)methacrylamide]-GG-1,6-hexanediamine-(Gd-DO3A), biodegradable (Gd-DTPA)-cystine copolymers, and MultiHance were performed in rabbits; their distribution and elimination from the vitreous after injections were determined by MRI. Results Times for macromolecular contrast agents to decrease to half their initial concentrations in the vitreous ranged from 0.4–1.3 days post-injection. Non-biodegradable polymers demonstrated slower vitreal clearance than those of disulfide-biodegradable polymers. Biodegradable polymers had similar clearance as MultiHance. Conclusions Usefulness of T1 mapping and ms-DSEPI-T12 MRI to study ocular pharmacokinetics was demonstrated. Results suggest an enzymatic degradation mechanism for the disulfide linkage in polymers in the vitreous leading to breakup of polymers in vitreous humor over time. PMID:21691891

  8. Phosphinic derivative of DTPA conjugated to a G5 PAMAM dendrimer: an 17O and 1H relaxation study of its Gd(III) complex.

    PubMed

    Lebdusková, Petra; Sour, Angélique; Helm, Lothar; Tóth, Eva; Kotek, Jan; Lukes, Ivan; Merbach, André E

    2006-07-28

    A DTPA-based chelate containing one phosphinate group was conjugated to a generation 5 polyamidoamine (PAMAM) dendrimer via a benzylthiourea linkage. The Gd(III) complex of this novel conjugate has potential as a contrast agent for magnetic resonance imaging (MRI). The chelates bind Gd3+via three nitrogen atoms, four carboxylates and one phosphinate oxygen, and one water molecule completes the inner coordination sphere. The monomer Gd(III) chelates bearing nitrobenzyl and aminobenzyl groups ([Gd(DTTAP-bz-NO2)(H2O)]2- and [Gd(DTTAP-bz-NH2)(H2O)]2-) as well as the dendrimeric Gd(III) complex G5-(Gd(DTTAP))63) were studied by multiple-field, variable temperature 17O and 1H NMR. The rate of water exchange is faster than that of [Gd(DTPA)(H2O)]2- and very similar on the two monomeric complexes (8.9 and 8.3 x 10(6) s-1 for [Gd(DTTAP-bz-NO2)(H2O)]2- and [Gd(DTTAP-bz-NH2)(H2O)]2-, respectively), while it is decreased on the dendrimeric conjugate (5.0 x 10(6) s-1). The Gd(III) complex of the dendrimer conjugate has a relaxivity of 26.8 mM-1 s-1 at 37 degrees C and 0.47 T (corresponding to 1H Larmor frequency of 20 MHz). Given the contribution of the second sphere water molecules to the overall relaxivity, this value is slightly higher than those reported for similar size dendrimers. The experimental 17O and 1H NMR data were fitted to the Solomon-Bloembergen-Morgan equations extended with a contribution from second coordination sphere water molecules. The rotational dynamics of the dendrimeric conjugate was described in terms of global and local motions with the Lipari-Szabo approach.

  9. The viscosity and temperature dependence of 1H T1-NMRD of the Gd(H 2O) 83+ complex

    NASA Astrophysics Data System (ADS)

    Zhou, Xiangzhi; Westlund, Per-Olof

    2005-11-01

    Water proton T1-NMRD profiles of the Gd(H 2O) 83+ complex have been recorded at three temperatures and at four concentrations of glycerol. The analysis is performed using both the generalized Solomon-Bloembergen-Morgan (GSBM) theory [J. Magn. Reson. 167(2004), 147-160], and the stochastic Liouville approach (SLA). The GSBM approach uses a two processes dynamic model of the zero-field splitting (ZFS) correlation function whereas SLA uses a single process model. Both models reproduce the proton T1-NMRD profiles well. However, the model parameters extracted from the two analyses, yield different ESR X-band spectra which moreover do not reproduce the experimental ESR spectra. It is shown that the analyses of the proton T1-NMRD profiles recorded for a solution Gd(H 2O) 83+ ions are relatively insensitive to the slow modulation part of dynamic model of the ZFS interaction correlation function. The description of the electron spin system results in a very small static ZFS, while recent ESR lineshape analysis indicates that the contribution from the static ZFS is important. Analysis of proton T1-NMRD profiles of Gd(H 2O) 83+ complex do result in a description of the electron spin system but these microscopic parameters are uncertain unless they also are tested in a ESR-lineshape analysis.

  10. Neoglycolipid analogues of ganglioside G sub M1 as functional receptors of cholera toxin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pacuszka, T.; Bradley, R.M.; Fishman, P.H.

    1991-03-12

    The authors synthesized several lipid analogues of ganglioside G{sub M1} by attaching its oligosaccharide moiety (G{sub M1}OS) to aminophospholipids, aliphatic amines, and cholesteryl hemisuccinate. They incubated G{sub M1}-deficient rat glioma C6 cells with each of the derivatives as well as native G{sub M1} and assayed the cells for their ability to bind and respond to cholera toxin. On the basis of the observed increase in binding of {sup 125}I-labeled cholera toxin, it was apparent that the cells took up and initially incorporated most of the derivatives into the plasma membrane. In the case of the aliphatic amine derivatives, the abilitymore » to generate new toxin binding sites was dependent on chain length; whereas the C{sub 10} derivative was ineffective, C{sub 12} and higher analogues were effective. Increased binding was dependent on both the concentration of the neoglycolipid in the medium and the time of exposure. Cells pretreated with the various derivatives accumulated cyclic AMP in response to cholera toxin, but there were differences in their effectiveness. The cholesterol and long-chain aliphatic amine derivatives were more effective than native G{sub M1}, whereas the phospholipid derivatives were less effective. The distance between G{sub M1}OS and the phospholipid also appeared to influence its functional activity. The results indicate that although G{sub M1}OS provides the recognition site for the binding of cholera toxin, the nature of the lipid moiety plays an important role in the action of the toxin.« less

  11. Application of RBFN network and GM (1, 1) for groundwater level simulation

    NASA Astrophysics Data System (ADS)

    Li, Zijun; Yang, Qingchun; Wang, Luchen; Martín, Jordi Delgado

    2017-10-01

    Groundwater is a prominent resource of drinking and domestic water in the world. In this context, a feasible water resources management plan necessitates acceptable predictions of groundwater table depth fluctuations, which can help ensure the sustainable use of a watershed's aquifers for urban and rural water supply. Due to the difficulties of identifying non-linear model structure and estimating the associated parameters, in this study radial basis function neural network (RBFNN) and GM (1, 1) models are used for the prediction of monthly groundwater level fluctuations in the city of Longyan, Fujian Province (South China). The monthly groundwater level data monitored from January 2003 to December 2011 are used in both models. The error criteria are estimated using the coefficient of determination ( R 2), mean absolute error (E) and root mean squared error (RMSE). The results show that both the models can forecast the groundwater level with fairly high accuracy, but the RBFN network model can be a promising tool to simulate and forecast groundwater level since it has a relatively smaller RMSE and MAE.

  12. Campylobacter jejuni chromosomal sequences that hybridize to Vibrio cholerae and Escherichia coli LT enterotoxin genes.

    PubMed

    Calva, E; Torres, J; Vázquez, M; Angeles, V; de la Vega, H; Ruíz-Palacios, G M

    1989-02-20

    Campylobacter jejuni is one of the main etiologic agents of gastrointestinal illness in developing and developed areas throughout the world. Isolation of enterotoxin-producing C. jejuni has been associated with clinical symptoms of a watery-secretory type of diarrhea. Although physiological and immunological relatedness has been demonstrated between the C. jejuni enterotoxin (CJT), the Vibrio cholerae enterotoxin (CT), and the heat-labile cholera-like Escherichia coli enterotoxin (LT), nucleotide sequence similarity between C. jejuni DNA and either the toxA, toxB, eltA or eltB genes remained to be shown. We found that binding to ganglioside GM1 prevented recognition of CJT by monoclonal antibodies directed to either CT or LT. This indicates antigenic similarity between the three enterotoxins in the ganglioside GM1-binding site. Therefore we searched for corresponding similarities at the DNA level and found, by oligodeoxynucleotide hybridization, C. jejuni chromosomal nucleotide sequences similar to the coding region for a postulated ganglioside GM1-binding site on toxB and eltB.

  13. Axonal Guillain-Barré syndrome: concepts and controversies.

    PubMed

    Kuwabara, Satoshi; Yuki, Nobuhiro

    2013-12-01

    Acute motor axonal neuropathy (AMAN) is a pure motor axonal subtype of Guillain-Barré syndrome (GBS) that was identified in the late 1990s. In Asia and Central and South America, it is the major subtype of GBS, seen in 30-65% of patients. AMAN progresses more rapidly and has an earlier peak than demyelinating GBS; tendon reflexes are relatively preserved or even exaggerated, and autonomic dysfunction is rare. One of the main causes is molecular mimicry of human gangliosides by Campylobacter jejuni lipo-oligosaccharides. In addition to axonal degeneration, electrophysiology shows rapidly reversible nerve conduction blockade or slowing, presumably due to pathological changes at the nodes or paranodes. Autoantibodies that bind to GM1 or GD1a gangliosides at the nodes of Ranvier activate complement and disrupt sodium-channel clusters and axoglial junctions, which leads to nerve conduction failure and muscle weakness. Improved understanding of the disease mechanism and pathophysiology might lead to new treatment options and improve the outlook for patients with AMAN. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Detection by real-time PCR and pyrosequencing of the cry1Ab and cry1Ac genes introduced in genetically modified (GM) constructs.

    PubMed

    Debode, Frederic; Janssen, Eric; Bragard, Claude; Berben, Gilbert

    2017-08-01

    The presence of genetically modified organisms (GMOs) in food and feed is mainly detected by the use of targets focusing on promoters and terminators. As some genes are frequently used in genetically modified (GM) construction, they also constitute excellent screening elements and their use is increasing. In this paper we propose a new target for the detection of cry1Ab and cry1Ac genes by real-time polymerase chain reaction (PCR) and pyrosequencing. The specificity, sensitivity and robustness of the real-time PCR method were tested following the recommendations of international guidelines and the method met the expected performance criteria. This paper also shows how the robustness testing was assessed. This new cry1Ab/Ac method can provide a positive signal with a larger number of GM events than do the other existing methods using double dye-probes. The method permits the analysis of results with less ambiguity than the SYBRGreen method recommended by the European Reference Laboratory (EURL) GM Food and Feed (GMFF). A pyrosequencing method was also developed to gain additional information thanks to the sequence of the amplicon. This method of sequencing-by-synthesis can determine the sequence between the primers used for PCR. Pyrosequencing showed that the sequences internal to the primers present differences following the GM events considered and three different sequences were observed. The sensitivity of the pyrosequencing was tested on reference flours with a low percentage GM content and different copy numbers. Improvements in the pyrosequencing protocol provided correct sequences with 50 copies of the target. Below this copy number, the quality of the sequence was more random.

  15. Gangliosides in the Nervous System: Biosynthesis and Degradation

    NASA Astrophysics Data System (ADS)

    Yu, Robert K.; Ariga, Toshio; Yanagisawa, Makoto; Zeng, Guichao

    Gangliosides, abundant in the nervous system, are known to play crucial modulatory roles in cellular recognition, interaction, adhesion, and signal transduction, particularly during early developmental stages. The expression of gangliosides in the nervous system is developmentally regulated and is closely related to the differentiation state of the cell. Ganglioside biosynthesis occurs in intracellular organelles, from which gangliosides are transported to the plasma membrane. During brain development, the ganglioside composition of the nervous system undergoes remarkable changes and is strictly regulated by the activities of glycosyltransferases, which can occur at different levels of control, including glycosyltransferase gene transcription and posttranslational modification. Genes for glycosyltransferase involved in ganglioside biosynthesis have been cloned and classified into families of glycosyltransferases based on their amino acid sequence similarities. The donor and acceptor substrate specificities are determined by enzymatic analysis of the glycosyltransferase gene products. Cell-type specific regulation of these genes has also been studied. Gangliosides are degraded by lysosomal exoglycosidases. The action of these enzymes occurs frequently in cooperation with activator proteins. Several human diseases are caused by defects of degradative enzymes, resulting in massive accumulation of certain glycolipids, including gangliosides in the lysosomal compartment and other organelles in the brain and visceral organs. Some of the representative lysosomal storage diseases (LSDs) caused by the accumulation of lipids in late endosomes and lysosomes will be discussed.

  16. [Molecular pathogenesis and therapeutic approach of GM2 gangliosidosis].

    PubMed

    Tsuji, Daisuke

    2013-01-01

    Tay-Sachs and Sandhoff diseases (GM2 gangliosidoses) are autosomal recessive lysosomal storage diseases caused by gene mutations in HEXA and HEXB, each encoding human lysosomal β-hexosaminidase α-subunits and β-subunits, respectively. In Tay-Sachs disease, excessive accumulation of GM2 ganglioside (GM2), mainly in the central nervous system, is caused by a deficiency of the HexA isozyme (αβ heterodimer), resulting in progressive neurologic disorders. In Sandhoff disease, combined deficiencies of HexA and HexB (ββ homodimer) cause not only the accumulation of GM2 but also of oligosaccharides carrying terminal N-acetylhexosamine residues (GlcNAc-oligosaccharides), resulting in systemic manifestations including hepatosplenomegaly as well as neurologic symptoms. Hence there is little clinically effective treatment for these GM2 gangliosidoses. Recent studies on the molecular pathogenesis in Sandhoff disease patients and disease model mice have shown the involvement of microglial activation and chemokine induction in neuroinflammation and neurodegeneration in this disease. Experimental and therapeutic approaches, including recombinant enzyme replacement, have been performed using Sandhoff disease model mice, suggesting the future application of novel techniques to treat GM2 gangliosidoses (Hex deficiencies), including Sandhoff disease as well as Tay-Sachs disease. In this study, we isolated astrocytes and microglia from the neonatal brain of Sandhoff disease model mice and demonstrated abnormalities of glial cells. Moreover, we demonstrated the therapeutic effect of an intracerebroventricular administration of novel recombinant human HexA carrying a high content of M6P residue in Sandhoff disease model mice.

  17. Polyethylene glycol-covered ultra-small Gd2O3 nanoparticles for positive contrast at 1.5 T magnetic resonance clinical scanning

    NASA Astrophysics Data System (ADS)

    Fortin, Marc-André; Petoral, Rodrigo M., Jr.; Söderlind, Fredrik; Klasson, A.; Engström, Maria; Veres, Teodor; Käll, Per-Olof; Uvdal, Kajsa

    2007-10-01

    The size distribution and magnetic properties of ultra-small gadolinium oxide crystals (US-Gd2O3) were studied, and the impact of polyethylene glycol capping on the relaxivity constants (r1, r2) and signal intensity with this contrast agent was investigated. Size distribution and magnetic properties of US-Gd2O3 nanocrystals were measured with a TEM and PPMS magnetometer. For relaxation studies, diethylene glycol (DEG)-capped US-Gd2O3 nanocrystals were reacted with PEG-silane (MW 5000). Suspensions were adequately dialyzed in water to eliminate traces of Gd3+ and surfactants. The particle hydrodynamic radius was measured with dynamic light scattering (DLS) and the proton relaxation times were measured with a 1.5 T MRI scanner. Parallel studies were performed with DEG-Gd2O3 and PEG-silane-SPGO (Gd2O3,< 40 nm diameter). The small and narrow size distribution of US-Gd2O3 was confirmed with TEM (~3 nm) and DLS. PEG-silane-US-Gd2O3 relaxation parameters were twice as high as for Gd-DTPA and the r2/r1 ratio was 1.4. PEG-silane-SPGO gave low r1 relaxivities and high r2/r1 ratios, less compatible with positive contrast agent requirements. Higher r1 were obtained with PEG-silane in comparison to DEG-Gd2O3. Treatment of DEG-US-Gd2O3 with PEG-silane provides enhanced relaxivity while preventing aggregation of the oxide cores. This study confirms that PEG-covered Gd2O3 nanoparticles can be used for positively contrasted MR applications requiring stability, biocompatible coatings and nanocrystal functionalization.

  18. Galactosylation of IgA1 Is Associated with Common Variation in C1GALT1.

    PubMed

    Gale, Daniel P; Molyneux, Karen; Wimbury, David; Higgins, Patricia; Levine, Adam P; Caplin, Ben; Ferlin, Anna; Yin, Peiran; Nelson, Christopher P; Stanescu, Horia; Samani, Nilesh J; Kleta, Robert; Yu, Xueqing; Barratt, Jonathan

    2017-07-01

    IgA nephropathy (IgAN), an important cause of kidney failure, is characterized by glomerular IgA deposition and is associated with changes in O -glycosylation of the IgA1 molecule. Here, we sought to identify genetic factors contributing to levels of galactose-deficient IgA1 (Gd-IgA1) in white and Chinese populations. Gd-IgA1 levels were elevated in IgAN patients compared with ethnically matched healthy subjects and correlated with evidence of disease progression. White patients with IgAN exhibited significantly higher Gd-IgA1 levels than did Chinese patients. Among individuals without IgAN, Gd-IgA1 levels did not correlate with kidney function. Gd-IgA1 level heritability (h 2 ), estimated by comparing midparental and offspring Gd-IgA1 levels, was 0.39. Genome-wide association analysis by linear regression identified alleles at a single locus spanning the C1GALT1 gene that strongly associated with Gd-IgA1 level ( β =0.26; P =2.35×10 -9 ). This association was replicated in a genome-wide association study of separate cohorts comprising 308 patients with membranous GN from the UK ( P <1.00×10 -6 ) and 622 controls with normal kidney function from the UK ( P <1.00×10 -10 ), and in a candidate gene study of 704 Chinese patients with IgAN ( P <1.00×10 -5 ). The same extended haplotype associated with elevated Gd-IgA1 levels in all cohorts studied. C1GALT1 encodes a galactosyltransferase enzyme that is important in O -galactosylation of glycoproteins. These findings demonstrate that common variation at C1GALT1 influences Gd-IgA1 level in the population, which independently associates with risk of progressive IgAN, and that the pathogenic importance of changes in IgA1 O -glycosylation may vary between white and Chinese patients with IgAN. Copyright © 2017 by the American Society of Nephrology.

  19. The investigation of topological phase of Gd1-xYxAuPb (x = 0, 0.25, 0.5, 0.75, 1) alloys under hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    Saeidi, Parviz; Nourbakhsh, Zahra

    2018-04-01

    Topological phase of Gd1-xYxAuPb (x = 0, 0.25, 0.5, 0.75, 1) alloys have been studied utilizing density function theory by WIEN2k code. The generalized gradient approximation (GGA), generalized gradient approximation plus Hubbard parameter (GGA + U), Modified Becke and Johnson (MBJ) and GGA Engel-vosko in the presence of spin orbit coupling have been used to investigate the topological band structure of Gd1-xYxAuPb alloys at zero pressure. The topological phase and band order of these alloys within GGA and GGA + U approaches under hydrostatic pressure are also investigated. We find that under hydrostatic pressure in some percentages of Gd1-xYxAuPb (x = 0, 0.25, 0.5, 0.75, 1) alloys in both GGA and GGA + U approaches, the trivial topological phase is converted into nontrivial topological phase. In addition, the band inversion strength versus lattice constant of these alloys is studied. Moreover, the schematic plan is represented in order to show the trivial and nontrivial topological phase of Gd1-xYxAuPb (x = 0, 0.25, 0.5, 0.75, 1) alloys in both GGA and GGA + U approaches.

  20. Nanoparticles, [Gd@C82(OH)22]n, induces dendritic cell maturation and activates Th1 immune responses

    PubMed Central

    Yang, De; Zhao, Yuliang; Guo, Hua; Li, Yana; Tewary, Poonam; Xing, Gengmei; Hou, Wei; Oppenheim, Joost J.; Zhang, Ning

    2010-01-01

    Dendritic cells play a pivotal role in host immune defense, such as elimination of foreign pathogen and inhibition of tumorigenesis. In this paper, we report that [Gd@C82(OH)22]n could induce phenotypic maturation of dendritic cells by stimulating DC production of cytokines including IL-12p70, upregulating DC costimulatory (CD80, CD83, and CD86) and MHC (HLA-A,B,C and HLA-DR) molecules, and switching DCs from a CCL5-responsive to a CCL19-responsive phenotype. We found that [Gd@C82(OH)22]n can induce dendritic cells to become functionally mature as illustrated by their capacity to activate allogeneic T cells. Mice immunized with ovalbumin in the presence of [Gd@C82(OH)22]n exhibit enhanced ovalbumin-specific Th1-polarized immune response as evidenced by the predominantly increased production of IFNγ, IL-1β, and IL-2. The [Gd@C82(OH)22]n nanoparticle is a potent activator of dendritic cells and Th1 immune responses. These new findings also provide a rational understanding of the potent anticancer activities of [Gd@C82(OH)22]n nanoparticles reported previously. PMID:20121217

  1. Gd3+ spin-lattice relaxation via multi-band conduction electrons in Y(1-x)Gd(x)In3: an electron spin resonance study.

    PubMed

    Cabrera-Baez, M; Iwamoto, W; Magnavita, E T; Osorio-Guillén, J M; Ribeiro, R A; Avila, M A; Rettori, C

    2014-04-30

    Interest in the electronic structure of the intermetallic compound YIn3 has been renewed with the recent discovery of superconductivity at T ∼ 1 K, which may be filamentary in nature. In this work we perform electron spin resonance (ESR) experiments on Gd(3+) doped YIn3 (Y1-xGdxIn3; 0.001 ⪅ x ⩽̸ 0.08), showing that the spin-lattice relaxation of the Gd(3+) ions, due to the exchange interaction between the Gd(3+) localized magnetic moment and the conduction electrons (ce), is processed via the presence of s-, p- and d-type ce at the YIn3 Fermi level. These findings are revealed by the Gd(3+) concentration dependence of the Korringa-like relaxation rate d(ΔH)/dT and g-shift (Δg = g - 1.993), that display bottleneck relaxation behavior for the s-electrons and unbottleneck behavior for the p- and d-electrons. The Korringa-like relaxation rates vary from 22(2) Oe/K for x ⪅ 0.001 to 8(2) Oe/K for x = 0.08 and the g-shift values change, respectively, from a positive Δg = +0.047(10) to a negative Δg = -0.008(4). Analysis in terms of a three-band ce model allows the extraction of the corresponding exchange interaction parameters Jfs, Jfp and Jfd.

  2. Long non-coding RNA Gm2199 rescues liver injury and promotes hepatocyte proliferation through the upregulation of ERK1/2.

    PubMed

    Gao, Qiang; Gu, Yunyan; Jiang, Yanan; Fan, Li; Wei, Zixiang; Jin, Haobin; Yang, Xirui; Wang, Lijuan; Li, Xuguang; Tai, Sheng; Yang, Baofeng; Liu, Yan

    2018-05-22

    Long non-coding RNAs (lncRNAs) are a new class of regulators of various human diseases. This study was designed to explore the potential role of lncRNAs in experimental hepatic damage. In vivo hepatic damage in mice and in vitro hepatocyte damage in AML12 and NCTC1469 cells were induced by carbon tetrachloride (CCl 4 ) treatments. Expression profiles of lncRNAs and mRNAs were analyzed by microarray. Bioinformatics analyses were conducted to predict the potential functions of differentially expressed lncRNAs with respect to hepatic damage. Overexpression of lncRNA Gm2199 was achieved by transfection of the pEGFP-N1-Gm2199 plasmid in vitro and adeno-associated virus-Gm2199 in vivo. Cell proliferation and viability was detected by cell counting kit-8 and 5-ethynyl-2'-deoxyuridine assay. Protein and mRNA expressions of extracellular signal-regulated kinase-1/2 (ERK1/2) were detected by western blot and quantitative real-time reverse-transcription PCR (qRT-PCR). Microarray analysis identified 190 and 148 significantly differentially expressed lncRNAs and mRNAs, respectively. The analyses of lncRNA-mRNA co-expression and lncRNA-biological process networks unraveled potential roles of the differentially expressed lncRNAs including Gm2199 in the pathophysiological processes leading to hepatic damage. Gm2199 was downregulated in both damaged livers and hepatocyte lines. Overexpression of Gm2199 restored the reduced proliferation of damaged hepatocyte lines and increased the expression of ERK1/2. Overexpression of Gm2199 also promoted the proliferation and viability of normal hepatocyte lines and increased the level of p-ERK1/2. Overexpression of Gm2199 in vivo also protected mouse liver injury induced by CCl 4 , evidenced by more proliferating hepatocytes, less serum alanine aminotransferase, less serum aspartate aminotransferase, and decreased hepatic hydroxyproline. The ability of Gm2199 to maintain hepatic proliferation capacity indicates it as a novel anti-liver damage

  3. Therapeutic activity of glycoengineered anti-GM2 antibodies against malignant pleural mesothelioma

    PubMed Central

    Li, Qi; Wang, Wei; Machino, Yusuke; Yamada, Tadaaki; Kita, Kenji; Oshima, Masanobu; Sekido, Yoshitaka; Tsuchiya, Mami; Suzuki, Yui; Nan-ya, Ken-ichiro; Iida, Shigeru; Nakamura, Kazuyasu; Iwakiri, Shotaro; Itoi, Kazumi; Yano, Seiji

    2015-01-01

    Malignant pleural mesothelioma (MPM) is a rare and highly aggressive neoplasm that arises from the pleural, pericardial, or peritoneal lining. Although surgery, chemotherapy, radiotherapy, and combinations of these therapies are used to treat MPM, the median survival of such patients is dismal. Therefore, there is a compelling need to develop novel therapeutics with different modes of action. Ganglioside GM2 is a glycolipid that has been shown to be overexpressed in various types of cancer. However, there are no published reports regarding the use of GM2 as a potential therapeutic target in cases of MPM. In this study, we evaluated the efficacy of the anti-GM2 antibody BIW-8962 as an anti-MPM therapeutic using in vitro and in vivo assays. Consequently, the GM2 expression in the MPM cell lines was confirmed using flow cytometry. In addition, eight of 11 cell lines were GM2-positive (73%), although the GM2 expression was variable. BIW-8962 showed a significant antibody-dependent cellular cytotoxicity activity against the GM2-expressing MPM cell line MSTO-211H, the effect of which depended on the antibody concentration and effector/target ratio. In an in vivo orthotropic mouse model using MSTO-211H cells, BIW-8962 significantly decreased the incidence and size of tumors. Additionally, the GM2 expression was confirmed in the MPM clinical specimens. Fifty-eight percent of the MPM tumors were positive for GM2, with individual variation in the intensity and frequency of staining. These data suggest that anti-GM2 antibodies may become a therapeutic option for MPM patients. PMID:25421609

  4. Synthesis and luminescence behavior of SrGd1.76Eu0.24O4 host for display and dosimetric applications

    NASA Astrophysics Data System (ADS)

    Singh, Jyoti; Manam, J.; Singh, Fouran

    2018-05-01

    Novel SrGd1.76Eu0.24O4 materials were synthesized by conventional high-temperature solid-state reaction method in air ambiance. The structural and luminescence properties of as-prepared phosphors were explored by XRD, FESEM, TEM, PL and TL techniques. The confirmation of orthorhombic phase formation was obtained by XRD studies. The agglomerated ginger-like morphology of as-synthesized SrGd1.76Eu0.24O4 samples was unfolded by FESEM and TEM studies. Upon 276 and 395 nm UV excitation, SrGd1.76Eu0.24O4 phosphors showed intense red emission. The TL glow curve of SrGd1.76Eu0.24O4 irradiated with γ-rays exhibits two well-resolved peaks at 393 K and 598 K having a shoulder at 537 K. Linearity in a wide dose range 500 Gy-3 kGy are observed in the as-formed SrGd1.76Eu0.24O4 samples. Intense red emission, linear dose response and high reproducibility of SrGd1.76Eu0.24O4 samples broadly indicated its suitability for display and TL dosimetry applications.

  5. Transgenic soybean overexpressing GmSamT1 exhibits resistance to multiple-HG types of soybean cyst nematode Heterodera glycines

    USDA-ARS?s Scientific Manuscript database

    Soybean (Glycine max (L.) Merr.) salicylic acid methyl transferase (GmSAMT1) catalyzes the conversion of salicylic acid to methyl salicylate. Prior results showed that when GmSAMT1 was overexpressed in transgenic soybean hairy roots, resistance is conferred against soybean cyst nematode (SCN), Heter...

  6. Evaluating impact level of different factors in environmental impact assessment for incinerator plants using GM (1, N) model.

    PubMed

    Pai, T Y; Chiou, R J; Wen, H H

    2008-01-01

    In this study, the impact levels in environmental impact assessment (EIA) reports of 10 incinerator plants were quantified and discussed. The relationship between the quantified impact levels and the plant scale factors of BeiTou, LiZe, BaLi, LuTsao, RenWu, PingTung, SiJhou and HsinChu were constructed, and the impact levels of the GangShan (GS) and YongKong (YK) plants were predicted using grey model GM (1, N). Finally, the effects of plant scale factors on impact levels were evaluated using grey model GM (1, N) too. According to the predicted results of GM, the relative errors of topography/geology/soil, air quality, hydrology/water quality, solid waste, noise, terrestrial fauna/flora, aquatic fauna/flora and traffic in the GS plant were 17%, 14%, 15%, 17%, 75%, 16%, 13%, and 37%, respectively. The relative errors of the same environmental items in the YK plant were 1%, 18%, 10%, 40%, 37%, 3%, 25% and 33%, respectively. According to GM (1, N), design capacity (DC) and heat value (HV) were the plant scale factors that affected the impact levels significantly in each environmental item, and thus were the most significant plant scale factors. GM (1, N) was effective in predicting the environmental impact and analyzing the reasonableness of the impact. If there is an EIA for a new incinerator plant to be reviewed in the future, the official committee of the Taiwan EPA could review the reasonableness of impact levels in EIA reports quickly.

  7. Targeting the GD3 acetylation pathway selectively induces apoptosis in glioblastoma

    PubMed Central

    Birks, Suzanne M.; Danquah, John Owusu; King, Linda; Vlasak, Reinhardt; Gorecki, Dariusz C.; Pilkington, Geoffrey J.

    2011-01-01

    The expression of ganglioside GD3, which plays crucial roles in normal brain development, decreases in adults but is upregulated in neoplastic cells, where it regulates tumor invasion and survival. Normally a buildup of GD3 induces apoptosis, but this does not occur in gliomas due to formation of 9-O-acetyl GD3 by the addition of an acetyl group to the terminal sialic acid of GD3; this renders GD3 unable to induce apoptosis. Using human biopsy-derived glioblastoma cell cultures, we have carried out a series of molecular manipulations targeting GD3 acetylation pathways. Using immunocytochemistry, flow cytometry, western blotting, and transwell assays, we have shown the existence of a critical ratio between GD3 and 9-O-acetyl GD3, which promotes tumor survival. Thus, we have demonstrated for the first time in primary glioblastoma that cleaving the acetyl group restores GD3, resulting in a reduction in tumor cell viability while normal astrocytes remain unaffected. Additionally, we have shown that glioblastoma viability is reduced due to the induction of mitochondrially mediated apoptosis and that this occurs after mitochondrial membrane depolarization. Three methods of cleaving the acetyl group using hemagglutinin esterase were investigated, and we have shown that the baculovirus vector transduces glioma cells as well as normal astroctyes with a relatively high efficacy. A recombinant baculovirus containing hemagglutinin esterase could be developed for the clinic as an adjuvant therapy for glioma. PMID:21807667

  8. Gd-DTPA T1 relaxivity in brain tissue obtained by convection-enhanced delivery, magnetic resonance imaging and emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Haar, Peter J.; Broaddus, William C.; Chen, Zhi-jian; Fatouros, Panos P.; Gillies, George T.; Corwin, Frank D.

    2010-06-01

    A common approach to quantify gadolinium (Gd) contrast agents involves measuring the post-contrast change in T1 rate and then using the constant T1 relaxivity R to determine the contrast agent concentration. Because this method is fast and non-invasive, it could be potentially valuable in many areas of brain research. However, to accurately measure contrast agent concentrations in the brain, the T1 relaxivity R of the specific agent must be accurately known. Furthermore, the macromolecular content and compartmentalization of the brain extracellular space (ECS) are expected to significantly alter R from values measured in aqueous solutions. In this study, the T1 relaxivity R of gadolinium-diethylene-triamine penta-acetic acid (Gd-DTPA) was measured following direct interstitial infusions of three different contrast agent concentrations to the parenchyma of rat brains. Changes in magnetic resonance (MR) T1 values were compared to brain slice concentrations determined with inductively coupled plasma atomic emission spectroscopy (ICP-AES) to determine R in 15 rats. Additionally, samples of cerebrospinal fluid, blood and urine were analyzed to evaluate possible Gd-DTPA clearance from the brain. The T1 relaxivity R of Gd-DTPA in the brain ECS was measured to be 5.35 (mM s)-1 in a 2.4 T field. This value is considerably higher than estimations used in studies by other groups. Measurements of brain Gd-DTPA tissue concentrations using MRI and ICP-AES demonstrated a high degree of coincidence. Clearance of Gd-DTPA was minimal at the time point immediately after infusion. These results suggest that the environment of the brain does in fact significantly affect Gd T1 relaxivity, and that MRI can accurately measure contrast agent concentrations when this relaxivity is well characterized.

  9. Liposomal gD Ectodomain (gD1-306) Vaccine Protects Against HSV2 Genital or Rectal Infection of Female and Male Mice

    PubMed Central

    Olson, K.; Macias, P.; Hutton, S.; Ernst, W. A.; Fujii, G.; Adler-Moore, J. P.

    2009-01-01

    Herpes simplex virus type 2 (HSV2) is the most common causative agent of genital herpes, with infection rates as high as 1 in 6 adults. The present studies were done to evaluate the efficacy of a liposomal HSV2 gD1-306 vaccine (L-gD1-306-HD) in an acute murine HSV2 infection model of intravaginal (female) or intrarectal (male or female) challenge. Two doses of L-gD1-306-HD containing 60μg gD1-306-HD and 15μg monophosphoryl lipid A (MPL) per dose provided protection against HSV2 intravaginal challenge (86-100% survival, P≤0.0003 vs control liposomes; P=0.06 vs L-gD1-306-HD without MPL). Both male and female mice (BALB/c and C57BL/6) immunized with L-gD1-306-HD/MPL were significantly protected against HSV2 intrarectal challenge, with higher survival rates compared to controls (71-100%, P≤0.007). L-gD1-306-HD/MPL also provided increased survival when compared to a liposomal peptide vaccine, L-gD264-285-HD/MPL (male BALB/c, P≤0.001; female BALB/c and male C57BL/6, P=0.06). Mice given L-gD1-306-HD/MPL also had minimal disease signs, reduced viral burden in their spinal cords and elevated neutralizing antibody titers in the females. The vaccine also stimulated gD1-306-HD specific splenocytes of both male and female mice with significantly elevated levels of IFN-γ compared to IL-4 (P≤0.01) indicating that there was an enhanced Th1 response. These results provide the first evidence that the L-gD1-306–HD vaccine can protect both male and female mice against intrarectal HSV2 challenge. PMID:19835825

  10. Liposomal gD ectodomain (gD1-306) vaccine protects against HSV2 genital or rectal infection of female and male mice.

    PubMed

    Olson, K; Macias, P; Hutton, S; Ernst, W A; Fujii, G; Adler-Moore, J P

    2009-12-11

    Herpes simplex virus type 2 (HSV2) is the most common causative agent of genital herpes, with infection rates as high as 1 in 6 adults. The present studies were done to evaluate the efficacy of a liposomal HSV2 gD(1-306) vaccine (L-gD(1-306)-HD) in an acute murine HSV2 infection model of intravaginal (female) or intrarectal (male or female) challenge. Two doses of L-gD(1-306)-HD containing 60 microg gD(1-306)-HD and 15 microg monophosphoryl lipid A (MPL) per dose provided protection against HSV2 intravaginal challenge (86-100% survival, P< or =0.0003 vs. control liposomes; P=0.06 vs. L-gD(1-306)-HD without MPL). Both male and female mice (BALB/c and C57BL/6) immunized with L-gD(1-306)-HD/MPL were significantly protected against HSV2 intrarectal challenge, with higher survival rates compared to controls (71-100%, P< or =0.007). L-gD(1-306)-HD/MPL also provided increased survival when compared to a liposomal peptide vaccine, L-gD(264-285)-HD/MPL (male BALB/c, P1-306)-HD/MPL also had minimal disease signs, reduced viral burden in their spinal cords and elevated neutralizing antibody titers in the females. The vaccine also stimulated gD(1-306)-HD specific splenocytes of both male and female mice with significantly elevated levels of IFN-gamma compared to IL-4 (P< or =0.01) indicating that there was an enhanced Th1 response. These results provide the first evidence that the L-gD(1-306)-HD vaccine can protect both male and female mice against intrarectal HSV2 challenge.

  11. Avidin-dendrimer-(1B4M-Gd)(254): a tumor-targeting therapeutic agent for gadolinium neutron capture therapy of intraperitoneal disseminated tumor which can be monitored by MRI.

    PubMed

    Kobayashi, H; Kawamoto, S; Saga, T; Sato, N; Ishimori, T; Konishi, J; Ono, K; Togashi, K; Brechbiel, M W

    2001-01-01

    Peritoneal carcinomatosis is a late stage in cancer progress, for which no effective therapeutic modality exists. Targeting therapeutic agents to disseminated lesions may be a promising modality for treating peritoneal carcinomatosis. Gadolinium ((157,155)Gd) is known to generate Auger and internal conversion electrons efficiently by irradiation with a neutron beam. Auger electrons from neutron-activated Gd(III) are strongly cytotoxic, but only when Gd(III) atoms have been internalized into the cells. In the present investigation, we have developed a quickly internalizing tumor-targeting system to deliver large quantities of Gd(III) atoms into tumor cells to generate the Auger emission with an external neutron beam. Simultaneously, one would be able to image its biodistribution by MRI with a shortened T1 relaxation time. Avidin-G6-(1B4M-Gd)(254) (Av-G6Gd) was synthesized from generation-6 polyamidoamine dendrimer, biotin, avidin, and 2-(p-isothiocyanatobenzyl)-6-methyl-diethylenetriaminepentaacetic acid (1B4M). The Av-G6Gd was radiolabeled with Gd(III) doped with (153)Gd. All of the 1B4M's on the conjugate were fully saturated with Gd(III) atoms. An in vitro internalization study showed that Av-G6Gd accumulated and was internalized into SHIN3 cells (a human ovarian cancer) 50- and 3.5-fold greater than Gd-DTPA (Magnevist) and G6-(1B4M-Gd)(256) (G6Gd). In addition, accumulation of Gd(III) in the cells was detected by the increased signal on T1-weighted MRI. A biodistribution study was performed in nude mice bearing intraperitoneally disseminated SHIN3 tumors. Av-G6Gd showed specific accumulation in the SHIN3 tumor (103% ID/g) 366- and 3.4-fold greater than Gd-DTPA (0.28% ID/g, p < 0.001) and G6Gd (30% ID/g, p < 0.001) 1 day after i.p. injection. Seventy-eight percent of the tumor-related radioactivity of Av-G6Gd in the SHIN3 tumor was located inside the cells. The SHIN3 tumor-to-normal tissue ratio was greater than 17:1 in all organs and increased up to 638:1 at 1

  12. GM1-gangliosidosis in Alaskan huskies: clinical and pathologic findings.

    PubMed

    Müller, G; Alldinger, S; Moritz, A; Zurbriggen, A; Kirchhof, N; Sewell, A; Baumgärtner, W

    2001-05-01

    Three Alaskan Huskies, two females and one male, were diagnosed with GM1-gangliosidosis. Clinically, diseased animals exhibited proportional dwarfism and developed progressive neurologic impairment with signs of cerebellar dysfunction at the age of 5-7 months. Skeletal lesions characterized by retarded enchondral ossification of vertebral epiphyses were revealed by radiographs of the male dog at 5.5 months of age. Histologic examination of the central nervous system (CNS) revealed that most neurons were enlarged with a foamy to granular cytoplasm due to tightly packed vacuoles that displaced the Nissl substance. Vacuoles in paraffin-embedded sections stained positively with Luxol fast blue and Grocott's method, and in frozen sections vacuoles were periodic acid-Schiff positive. Foamy vacuolation also occurred within neurons of the autonomic ganglia. Extracerebral cells such as macrophages and peripheral lymphocytes also displayed foamy cytoplasm and vacuolation. In the CNS of diseased animals, a mild demyelination and axonal degeneration was accompanied by a significant astrogliosis (P < 0.05) in the gray matter as compared with age- and sex-matched control dogs. There was also a significant loss (P < 0.05) of oligodendrocytes in the gray and white matter of affected animals as compared with controls. Ultrastructurally, the neuronal storage material consisted of numerous circular to concentric whorls of lamellated membranes or stacks of membranes in parallel arrays. GM1-gangliosidosis in Alaskan Huskies resembles beta-galactosidase deficiency in other canine breeds, and these CNS disorders may be a consequence of neuronal storage and disturbed myelin processing.

  13. Zinc oxide nanoparticles provide anti-cholera activity by disrupting the interaction of cholera toxin with the human GM1 receptor.

    PubMed

    Sarwar, Shamila; Ali, Asif; Pal, Mahadeb; Chakrabarti, Pinak

    2017-11-03

    Vibrio cholerae causes cholera and is the leading cause of diarrhea in developing countries, highlighting the need for the development of new treatment strategies to combat this disease agent. While exploring the possibility of using zinc oxide (ZnO) nanoparticles (NPs) in cholera treatment, we previously found that ZnO NPs reduce fluid accumulation in mouse ileum induced by the cholera toxin (CT) protein. To uncover the mechanism of action of ZnO NPs on CT activity, here we used classical (O395) and El Tor (C6706) V. cholerae biotypes in growth and biochemical assays. We found that a ZnO NP concentration of 10 μg/ml did not affect the growth rates of these two strains, nor did we observe that ZnO NPs reduce the expression levels of CT mRNA and protein. It was observed that ZnO NPs form a complex with CT, appear to disrupt the CT secondary structure, and block its interaction with the GM1 ganglioside receptor in the outer leaflet of the plasma membrane in intestinal (HT-29) cells and thereby reduce CT uptake into the cells. In the range of 2.5-10 μg/ml, ZnO NPs exhibited no cytotoxicity on kidney (HEK293) and HT-29 cells. We conclude that ZnO NPs prevent the first step in the translocation of cholera toxin into intestinal epithelial cells without exerting measurable toxic effects on HEK293 and HT-29 cells. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Mechanism of abnormal growth in astrocytes derived from a mouse model of GM2 gangliosidosis.

    PubMed

    Kawashima, Nagako; Tsuji, Daisuke; Okuda, Tetsuya; Itoh, Kohji; Nakayama, Ken-ichi

    2009-11-01

    Sandhoff disease is a progressive neurodegenerative disorder caused by mutations in the HEXB gene which encodes the beta-subunit of N-acetyl-beta-hexosaminidase A and B, resulting in the accumulation of the ganglioside GM2. We isolated astrocytes from the neonatal brain of Sandhoff disease model mice in which the N-acetyl-beta-hexosaminidase beta-subunit gene is genetically disrupted (ASD). Glycolipid profiles revealed that GM2/GA2 accumulated in the lysosomes and not on the cell surface of ASD astrocytes. In addition, GM3 was increased on the cell surface. We found remarkable differences in the cell proliferation of ASD astrocytes when compared with cells isolated from wild-type mice, with a faster growth rate of ASD cells. In addition, we observed increased extracellular, signal-regulated kinase (ERK) phosphorylation in ASD cells, but Akt phosphorylation was decreased. Furthermore, the phosphorylation of ERK in ASD cells was not dependent upon extracellular growth factors. Treatment of ASD astrocytes with recombinant N-acetyl-beta-hexosaminidase A resulted in a decrease of their growth rate and ERK phosphorylation. These results indicated that the up-regulation of ERK phosphorylation and the increase in proliferation of ASD astrocytes were dependent upon GM2/GA2 accumulation. These findings may represent a mechanism in linking the nerve cell death and reactive gliosis observed in Sandhoff disease.

  15. Ganglioside biochemistry.

    PubMed

    Kolter, Thomas

    2012-01-01

    Gangliosides are sialic acid-containing glycosphingolipids. They occur especially on the cellular surfaces of neuronal cells, where they form a complex pattern, but are also found in many other cell types. The paper provides a general overview on their structures, occurrence, and metabolism. Key functional, biochemical, and pathobiochemical aspects are summarized.

  16. Sol-gel synthesis of red-phosphors [Na xGd 1-x/3-zEu z]Mo yW 1-yO 4 powers and luminescence properties

    NASA Astrophysics Data System (ADS)

    Cao, Fa-Bin; Li, Liao-Sha; Tian, Yan-Wen; Gao, Zhi-Fang; Chen, Yong-Jie; Xiao, Lin-Jiu; Wu, Xing-Rong

    2011-04-01

    In this work, we report on the sol-gel synthesis of red-phosphors [Na xGd 1-x/3-zEu z]Mo yW 1-yO 4 powders doped with several dopants and its luminescence properties at room temperature. X-ray diffraction patters indicated that red-phosphors powders present tetragonal symmetry and cubic structure. The red-phosphors [Na xGd 1-x/3-zEu z]Mo yW 1-yO 4 powders doped exhibit characteristic of a ultraviolet visible-light emission diode. The SEM images for [ NaGdEu0.043+]Mo 0.4W 0.6O 4 phosphor exhibits irregular morphology and cottonlike shape. The size of the particles is estimated to be about 1 μm. Luminescence properties showed that the maximum emission in red region lies in the arrange of 613 nm and 617 nm.

  17. GM2 gangliosidosis variant 0 (Sandhoff-like disease) in a family of toy poodles.

    PubMed

    Tamura, S; Tamura, Y; Uchida, K; Nibe, K; Nakaichi, M; Hossain, M A; Chang, H S; Rahman, M M; Yabuki, A; Yamato, O

    2010-01-01

    GM2 gangliosidosis variant 0 (human Sandhoff disease) is a lysosomal storage disorder caused by deficiencies of acid β-hexosaminidase (Hex) A and Hex B because of an abnormality of the β-subunit, a common component in these enzyme molecules, which is coded by the HEXB gene. To describe the clinical, pathological, biochemical, and magnetic resonance imaging (MRI) findings of Sandhoff-like disease identified in a family of Toy Poodles. Three red-haired Toy Poodles demonstrated clinical signs including motor disorders and tremor starting between 9 and 12 months of age. The animals finally died of neurological deterioration between 18 and 23 months of age. There were some lymphocytes with abnormal cytoplasmic vacuoles detected. Observational case study. The common MRI finding was diffuse T2-hyperintensity of the subcortical white matter in the cerebrum. Bilateral T2-hyperintensity and T1-hypointensity in the nucleus caudatus, and atrophic findings of the cerebrum and cerebellum, were observed in a dog in the late stage. Histopathologically, swollen neurons with pale to eosinophilic granular materials in the cytoplasm were observed throughout the central nervous system. Biochemically, GM2 ganglioside had accumulated in the brain, and Hex A and Hex B were deficient in the brain and liver. Pedigree analysis demonstrated that the 3 affected dogs were from the same family line. The Sandhoff-like disease observed in this family of Toy Poodles is the 2nd occurrence of the canine form of this disease and the 1st report of its identification in a family of dogs. Copyright © 2010 by the American College of Veterinary Internal Medicine.

  18. High-Affinity GD2-Specific CAR T Cells Induce Fatal Encephalitis in a Preclinical Neuroblastoma Model

    PubMed Central

    Richman, Sarah A.; Nunez-Cruz, Selene; Moghimi, Babak; Li, Lucy Z.; Gershenson, Zachary T.; Mourelatos, Zissimos; Barrett, David M.; Grupp, Stephan A.; Milone, Michael C.

    2018-01-01

    The GD2 ganglioside, which is abundant on the surface of neuroblastoma cells, is targeted by an FDA-approved therapeutic monoclonal antibody and is an attractive tumor-associated antigen for cellular immunotherapy. Chimeric antigen receptor (CAR)–modified T cells can have potent antitumor activity in B-cell malignancies, and trials to harness this cytolytic activity toward GD2 in neuroblastoma are under way. In an effort to enhance the antitumor activity of CAR T cells that target GD2, we generated variant CAR constructs predicted to improve the stability and the affinity of the GD2-binding, 14G2a-based, single-chain variable fragment (scFv) of the CAR and compared their properties in vivo. We included the E101K mutation of GD2 scFv (GD2-E101K) that has enhanced antitumor activity against a GD2+ human neuroblastoma xenograft in vivo. However, this enhanced antitumor efficacy in vivo was concomitantly associated with lethal central nervous system (CNS) toxicity comprised of extensive CAR T-cell infiltration and proliferation within the brain and neuronal destruction. The encephalitis was localized to the cerebellum and basal regions of the brain that display low amounts of GD2. Our results highlight the challenges associated with target antigens that exhibit shared expression on critical normal tissues. Despite the success of GD2-specific antibody therapies in the treatment of neuroblastoma, the fatal neurotoxicity of GD2-specific CAR T-cell therapy observed in our studies suggests that GD2 may be a difficult target antigen for CAR T-cell therapy without additional strategies that can control CAR T-cell function within the CNS. PMID:29180536

  19. The treatment of juvenile/adult GM1-gangliosidosis with Miglustat may reverse disease progression.

    PubMed

    Deodato, Federica; Procopio, Elena; Rampazzo, Angelica; Taurisano, Roberta; Donati, Maria Alice; Dionisi-Vici, Carlo; Caciotti, Anna; Morrone, Amelia; Scarpa, Maurizio

    2017-10-01

    Juvenile and adult GM1-gangliosidosis are invariably characterized by progressive neurological deterioration. To date only symptomatic therapies are available. We report for the first time the positive results of Miglustat (OGT 918, N-butyl-deoxynojirimycin) treatment on three Italian GM1-gangliosidosis patients. The first two patients had a juvenile form (enzyme activity ≤5%, GLB1 genotype p.R201H/c.1068 + 1G > T; p.R201H/p.I51N), while the third patient had an adult form (enzyme activity about 7%, p.T329A/p.R442Q). Treatment with Miglustat at the dose of 600 mg/day was started at the age of 10, 17 and 28 years; age at last evaluation was 21, 20 and 38 respectively. Response to treatment was evaluated using neurological examinations in all three patients every 4-6 months, the assessment of Movement Disorder-Childhood Rating Scale (MD-CRS) in the second patient, and the 6-Minute Walking Test (6-MWT) in the third patient. The baseline neurological status was severely impaired, with loss of autonomous ambulation and speech in the first two patients, and gait and language difficulties in the third patient. All three patients showed gradual improvement while being treated; both juvenile patients regained the ability to walk without assistance for few meters, and increased alertness and vocalization. The MD-CRS class score in the second patient decreased from 4 to 2. The third patient improved in movement and speech control, the distance covered during the 6-MWT increased from 338 to 475 m. These results suggest that Miglustat may help slow down or reverse the disease progression in juvenile/adult GM1-gangliosidosis.

  20. Ganglioside Biochemistry

    PubMed Central

    Kolter, Thomas

    2012-01-01

    Gangliosides are sialic acid-containing glycosphingolipids. They occur especially on the cellular surfaces of neuronal cells, where they form a complex pattern, but are also found in many other cell types. The paper provides a general overview on their structures, occurrence, and metabolism. Key functional, biochemical, and pathobiochemical aspects are summarized. PMID:25969757

  1. 1 ATM subcooled liquid nitrogen cryogenic system with GM-refrigerator for a HTS power transformer

    NASA Astrophysics Data System (ADS)

    Yoshida, S.; Ohashi, K.; Umeno, T.; Suzuki, Y.; Kamioka, Y.; Kimura, H.; Tsutsumi, K.; Iwakuma, M.; Funaki, K.; Bhono, T.; Yagi, Y.

    2002-05-01

    A subcooled liquid nitrogen cryogenic system with GM-refrigerators was developed. The system was operated successfully in a commercial distribution power grid for three consecutive weeks without additional liquid nitrogen supply. The system consists of two main units. One is a HTS transformer unit and the HTS transformer is installed in a G-FRP cryostat. The other one is a pump unit. The pump unit has a liquid nitrogen pump and two GM-refrigerators of 290 W at 64 K for 50 Hz operation in a stainless steel dewar. The refrigerator cold heads are immersed in liquid nitrogen and produce directly subcooled liquid nitrogen in the pump unit. Those two units are connected by transfer-tubes and 1 atmosphere (0.1 MPa) subcooled liquid nitrogen is circulated through the system. In the field test, the refrigerators were operated at 60 Hz and it took 12 hours to cool the transformer down to 70 K and 26 hours to 66 K. The refrigerator cold heads were controlled not to be below 64 K during operation. In spite of a heat generation by the HTS transformer, the subcooled liquid nitrogen temperature in the HTS transformer unit was kept lower than 68 K.

  2. Guillain Barré Syndrome is induced in Non-Obese Diabetic (NOD) mice following Campylobacter jejuni infection and is exacerbated by antibiotics.

    PubMed

    St Charles, J L; Bell, J A; Gadsden, B J; Malik, A; Cooke, H; Van de Grift, L K; Kim, H Y; Smith, E J; Mansfield, L S

    2017-02-01

    Campylobacter jejuni is a leading cause of bacterial gastroenteritis linked to several serious autoimmune sequelae such as the peripheral neuropathies Guillain Barré syndrome (GBS) and Miller Fisher syndrome (MFS). We hypothesized that GBS and MFS can result in NOD wild type (WT) mice or their congenic interleukin (IL)-10 or B7-2 knockouts secondary to C. jejuni infection. Mice were gavaged orally with C. jejuni strains HB93-13 and 260.94 from patients with GBS or CF93-6 from a patient with MFS and assessed for clinical neurological signs and phenotypes, anti-ganglioside antibodies, and cellular infiltrates and lesions in gut and peripheral nerve tissues. Significant increases in autoantibodies against single gangliosides (GM1, GQ1b, GD1a) occurred in infected NOD mice of all genotypes, although the isotypes varied (NOD WT had IgG1, IgG3; NOD B7-2 -/- had IgG3; NOD IL-10 -/- had IgG1, IgG3, IgG2a). Infected NOD WT and NOD IL-10 -/- mice also produced anti-ganglioside antibodies of the IgG1 isotype directed against a mixture of GM1/GQ1b gangliosides. Phenotypic tests showed significant differences between treatment groups of all mouse genotypes. Peripheral nerve lesions with macrophage infiltrates were significantly increased in infected mice of NOD WT and IL-10 -/- genotypes compared to sham-inoculated controls, while lesions with T cell infiltrates were significantly increased in infected mice of the NOD B7-2 -/- genotype compared to sham-inoculated controls. In both infected and sham inoculated NOD IL-10 -/- mice, antibiotic treatment exacerbated neurological signs, lesions and the amount and number of different isotypes of antiganglioside autoantibodies produced. Thus, inducible mouse models of post-C. jejuni GBS are feasible and can be characterized based on evaluation of three factors-onset of GBS clinical signs/phenotypes, anti-ganglioside autoantibodies and nerve lesions. Based on these factors we characterized 1) NOD B-7 -/- mice as an acute

  3. Excretion into feces of asialo GM1 in the murine digestive tract and Lactobacillus johnsonii exhibiting binding ability toward asialo GM1. A possible role of epithelial glycolipids in the discharge of intestinal bacteria.

    PubMed

    Iwamori, Masao; Iwamori, Yuriko; Adachi, Shigeki; Nomura, Taisei

    2011-01-01

    In the digestive tract of mice (HR-1, 5 months old, ♀), asialo GM1 (GA1) exhibiting receptor activity toward several intestinal bacteria was preferentially expressed in the small intestine. Also, less than 10% of GA1 in the small intestine was converted into fucosylated and sulfated derivatives, but it was completely converted to fucosyl GA1 (FGA1) in the stomach, cecum and colon. Among the lipid components in these tissues, glycolipids other than Forssman antigen and cholesterol sulfate (CS) were present in the digestive tract contents. However, sulfated GA1, sulfatide and fucosyl GM1 in the gastro-intestinal contents were not present in the cecal and colonic contents, in which the major glycolipids were ceramide monohexoside (CMH), GA1 and FGA1. The total amount of GA1 in the whole contents was 20% of that in the tissues. Thus, glycolipids were stable during the process of digestion, and excreted from the body together with cholesterol and CS. On the other hand, Lactobacillus johnsonii (LJ), whose receptor is GA1, was detected in the cecal and colonic contents on sequential analysis of 16S-ribosomal RNA and TLC-immunostaining of antigenic glycolipids with anti-LJ antiserum. LJ was found to comprise 20% of the total bacteria cultured in the lactobacillus medium under aerobic conditions, and to be present in the cecal and colonic contents, 9.8 × 10(7) cells versus 37 μg GA1 and 1.4 × 10(8) cells versus 49 μg GA1, respectively. Thus, GA1 in the contents might facilitate the discharge of intestinal bacteria by becoming attached them to prevent their irregular diffusion.

  4. Therapeutic activity of glycoengineered anti-GM2 antibodies against malignant pleural mesothelioma.

    PubMed

    Li, Qi; Wang, Wei; Machino, Yusuke; Yamada, Tadaaki; Kita, Kenji; Oshima, Masanobu; Sekido, Yoshitaka; Tsuchiya, Mami; Suzuki, Yui; Nan-Ya, Ken-ichiro; Iida, Shigeru; Nakamura, Kazuyasu; Iwakiri, Shotaro; Itoi, Kazumi; Yano, Seiji

    2015-01-01

    Malignant pleural mesothelioma (MPM) is a rare and highly aggressive neoplasm that arises from the pleural, pericardial, or peritoneal lining. Although surgery, chemotherapy, radiotherapy, and combinations of these therapies are used to treat MPM, the median survival of such patients is dismal. Therefore, there is a compelling need to develop novel therapeutics with different modes of action. Ganglioside GM2 is a glycolipid that has been shown to be overexpressed in various types of cancer. However, there are no published reports regarding the use of GM2 as a potential therapeutic target in cases of MPM. In this study, we evaluated the efficacy of the anti-GM2 antibody BIW-8962 as an anti-MPM therapeutic using in vitro and in vivo assays. Consequently, the GM2 expression in the MPM cell lines was confirmed using flow cytometry. In addition, eight of 11 cell lines were GM2-positive (73%), although the GM2 expression was variable. BIW-8962 showed a significant antibody-dependent cellular cytotoxicity activity against the GM2-expressing MPM cell line MSTO-211H, the effect of which depended on the antibody concentration and effector/target ratio. In an in vivo orthotropic mouse model using MSTO-211H cells, BIW-8962 significantly decreased the incidence and size of tumors. Additionally, the GM2 expression was confirmed in the MPM clinical specimens. Fifty-eight percent of the MPM tumors were positive for GM2, with individual variation in the intensity and frequency of staining. These data suggest that anti-GM2 antibodies may become a therapeutic option for MPM patients. © 2014 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.

  5. Hydrogen calibration of GD-spectrometer using Zr-1Nb alloy

    NASA Astrophysics Data System (ADS)

    Mikhaylov, Andrey A.; Priamushko, Tatiana S.; Babikhina, Maria N.; Kudiiarov, Victor N.; Heller, Rene; Laptev, Roman S.; Lider, Andrey M.

    2018-02-01

    To study the hydrogen distribution in Zr-1Nb alloy (Э110 alloy) GD-OES was applied in this work. Qualitative analysis needs the standard samples with hydrogen. However, the standard samples with high concentrations of hydrogen in the zirconium alloy which would meet the requirements of the shape, size are absent. In this work method of Zr + H calibration samples production was performed at the first time. Automated Complex Gas Reaction Controller was used for samples hydrogenation. To calculate the parameters of post-hydrogenation incubation of the samples in an inert gas atmosphere the diffusion equations were used. Absolute hydrogen concentrations in the samples were determined by melting in the inert gas atmosphere using RHEN602 analyzer (LECO Company). Hydrogen distribution was studied using nuclear reaction analysis (HZDR, Dresden, Germany). RF GD-OES was used for calibration. The depth of the craters was measured with the help of a Hommel-Etamic profilometer by Jenoptik, Germany.

  6. Tay-Sachs disease

    MedlinePlus

    GM2 gangliosidosis - Tay-Sachs; Lysosomal storage disease - Tay-Sachs disease ... called gangliosides. Without this protein, gangliosides, particularly ganglioside GM2, build up in cells, often nerve cells in ...

  7. Core/shell Fe3O4/Gd2O3 nanocubes as T1-T2 dual modal MRI contrast agents

    NASA Astrophysics Data System (ADS)

    Li, Fenfen; Zhi, Debo; Luo, Yufeng; Zhang, Jiqian; Nan, Xiang; Zhang, Yunjiao; Zhou, Wei; Qiu, Bensheng; Wen, Longping; Liang, Gaolin

    2016-06-01

    T1-T2 dual modal magnetic resonance imaging (MRI) has attracted considerable interest because it offers complementary diagnostic information, leading to more precise diagnosis. To date, a number of nanostructures have been reported as T1-T2 dual modal MR contrast agents (CAs). However, hybrids of nanocubes with both iron and gadolinium (Gd) elements as T1-T2 dual modal CAs have not been reported. Herein, we report the synthesis of novel core/shell Fe3O4/Gd2O3 nanocubes as T1-T2 dual-modal CAs and their application for enhanced T1-T2 MR imaging of rat livers. A relaxivity study at 1.5 T indicated that our Fe3O4/Gd2O3 nanocubes have an r1 value of 45.24 mM-1 s-1 and an r2 value of 186.51 mM-1 s-1, which were about two folds of those of Gd2O3 nanoparticles and Fe3O4 nanocubes, respectively. In vivo MR imaging of rats showed both T1-positive and T2-negative contrast enhancements in the livers. We envision that our Fe3O4/Gd2O3 nanocubes could be applied as T1-T2 dual modal MR CAs for a wide range of theranostic applications in the near future.T1-T2 dual modal magnetic resonance imaging (MRI) has attracted considerable interest because it offers complementary diagnostic information, leading to more precise diagnosis. To date, a number of nanostructures have been reported as T1-T2 dual modal MR contrast agents (CAs). However, hybrids of nanocubes with both iron and gadolinium (Gd) elements as T1-T2 dual modal CAs have not been reported. Herein, we report the synthesis of novel core/shell Fe3O4/Gd2O3 nanocubes as T1-T2 dual-modal CAs and their application for enhanced T1-T2 MR imaging of rat livers. A relaxivity study at 1.5 T indicated that our Fe3O4/Gd2O3 nanocubes have an r1 value of 45.24 mM-1 s-1 and an r2 value of 186.51 mM-1 s-1, which were about two folds of those of Gd2O3 nanoparticles and Fe3O4 nanocubes, respectively. In vivo MR imaging of rats showed both T1-positive and T2-negative contrast enhancements in the livers. We envision that our Fe3O4/Gd2O3 nanocubes

  8. Gm1-MMP is involved in growth and development of leaf and seed, and enhances tolerance to high temperature and humidity stress in transgenic Arabidopsis.

    PubMed

    Liu, Sushuang; Liu, Yanmin; Jia, Yanhong; Wei, Jiaping; Wang, Shuang; Liu, Xiaolin; Zhou, Yali; Zhu, Yajing; Gu, Weihong; Ma, Hao

    2017-06-01

    Matrix metalloproteinases (MMPs) are a family of zinc- and calcium-dependent endopeptidases. Gm1-MMP was found to play an important role in soybean tissue remodeling during leaf expansion. In this study, Gm1-MMP was isolated and characterized. Its encoding protein had a relatively low phylogenetic relationship with the MMPs in other plant species. Subcellular localization indicated that Gm1-MMP was a plasma membrane protein. Gm1-MMP showed higher expression levels in mature leaves, old leaves, pods, and mature seeds, as well as was involved in the development of soybean seed. Additionally, it was involved in response to high temperature and humidity (HTH) stress in R7 leaves and seeds in soybean. The analysis of promoter of Gm1-MMP suggested that the fragment from -399 to -299 was essential for its promoter activity in response to HTH stress. The overexpression of Gm1-MMP in Arabidopsis affected the growth and development of leaves, enhanced leaf and developing seed tolerance to HTH stress and improved seed vitality. The levels of hydrogen peroxide (H 2 O 2 ) and ROS in transgenic Arabidopsis seeds were lower than those in wild type seeds under HTH stress. Gm1-MMP could interact with soybean metallothionein-II (GmMT-II), which was confirmed by analysis of yeast two-hybrid assay and BiFC assays. All the results indicated that Gm1-MMP plays an important role in the growth and development of leaves and seeds as well as in tolerance to HTH stress. It will be helpful for us understanding the functions of Gm1-MMP in plant growth and development, and in response to abiotic stresses. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Magnetostructural phase transitions and magnetocaloric effect in (Gd 5-xSc x)Si 1.8Ge 2.2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudolph, Kirk; Pathak, Arjun K.; Mudryk, Yaroslav

    Future advancements in magnetocaloric refrigeration/heat pumping technologies depend on the discovery of new materials that demonstrate large, tunable magnetocaloric effects (MCEs) in the vicinity of coupled magnetic and structural phase transitions that occur reversibly with minimum hysteresis. Here, with this in mind, we investigate phase transitions, microstructure, magnetic, thermal, magnetocaloric, and transport properties of (Gd 5-xSc x)Si 1.8Ge 2.2 compounds. Replacement of magnetic Gd with non-magnetic Sc in Gd 5-xSc xSi 1.8Ge 2.2 increases the ferromagnetic to paramagnetic first order phase transition temperature, T C, with only a minor reduction in MCE when x ≤ 0.2. We also demonstrate thatmore » hydrostatic pressure further increases T C and reduces the hysteresis of the first order phase transition in Gd 4.8Sc 0.2Si 1.8Ge 2.2 from 7 to 4 K. Temperature-dependent x-ray powder diffraction study of Gd 4.8Sc 0.2Si 1.8Ge 2.2 confirms the monoclinic ↔ orthorhombic structural transformation at T C, in agreement with magnetic, calorimetric, and electrical transport measurements. In addition to the substantial magnetocaloric effect, a large magnetoresistance of ~20% is also observed in Gd 4.8Sc 0.2Si 1.8Ge 2.2 for ΔH = 50 kOe in the vicinity of the magnetostructural transition. Finally, in a drastic reversal of the initial doping behavior further additions of Sc (x > 0.2) suppress formation of the monoclinic phase, change the nature of the transition from first-to second-order, and reduce both the transition temperature and magnetocaloric effect.« less

  10. Magnetostructural phase transitions and magnetocaloric effect in (Gd 5-xSc x)Si 1.8Ge 2.2

    DOE PAGES

    Rudolph, Kirk; Pathak, Arjun K.; Mudryk, Yaroslav; ...

    2017-12-21

    Future advancements in magnetocaloric refrigeration/heat pumping technologies depend on the discovery of new materials that demonstrate large, tunable magnetocaloric effects (MCEs) in the vicinity of coupled magnetic and structural phase transitions that occur reversibly with minimum hysteresis. Here, with this in mind, we investigate phase transitions, microstructure, magnetic, thermal, magnetocaloric, and transport properties of (Gd 5-xSc x)Si 1.8Ge 2.2 compounds. Replacement of magnetic Gd with non-magnetic Sc in Gd 5-xSc xSi 1.8Ge 2.2 increases the ferromagnetic to paramagnetic first order phase transition temperature, T C, with only a minor reduction in MCE when x ≤ 0.2. We also demonstrate thatmore » hydrostatic pressure further increases T C and reduces the hysteresis of the first order phase transition in Gd 4.8Sc 0.2Si 1.8Ge 2.2 from 7 to 4 K. Temperature-dependent x-ray powder diffraction study of Gd 4.8Sc 0.2Si 1.8Ge 2.2 confirms the monoclinic ↔ orthorhombic structural transformation at T C, in agreement with magnetic, calorimetric, and electrical transport measurements. In addition to the substantial magnetocaloric effect, a large magnetoresistance of ~20% is also observed in Gd 4.8Sc 0.2Si 1.8Ge 2.2 for ΔH = 50 kOe in the vicinity of the magnetostructural transition. Finally, in a drastic reversal of the initial doping behavior further additions of Sc (x > 0.2) suppress formation of the monoclinic phase, change the nature of the transition from first-to second-order, and reduce both the transition temperature and magnetocaloric effect.« less

  11. Immunogenicity of a novel Clade B HIV-1 vaccine combination: Results of phase 1 randomized placebo controlled trial of an HIV-1 GM-CSF-expressing DNA prime with a modified vaccinia Ankara vaccine boost in healthy HIV-1 uninfected adults

    PubMed Central

    Grunenberg, Nicole A.; Sanchez, Brittany J.; Seaton, Kelly E.; Ferrari, Guido; Moody, M. Anthony; Frahm, Nicole; Montefiori, David C.; Hay, Christine M.; Goepfert, Paul A.; Baden, Lindsey R.; Robinson, Harriet L.; Yu, Xuesong; Gilbert, Peter B.; McElrath, M. Juliana; Huang, Yunda; Tomaras, Georgia D.

    2017-01-01

    Background A phase 1 trial of a clade B HIV vaccine in HIV-uninfected adults evaluated the safety and immunogenicity of a DNA prime co-expressing GM-CSF (Dg) followed by different numbers and intervals of modified vaccinia Ankara Boosts (M). Both vaccines produce virus-like particles presenting membrane-bound Env. Methods Four US sites randomized 48 participants to receiving 1/10th the DNA dose as DgDgMMM given at 0, 2, 4, 6 and 8 months, or full dose DgDgM_M or DgDgMM_M regimens, given at 0, 2, 4, and 8 months, and 0, 2, 4, 6, and 10 months, respectively. Peak immunogenicity was measured 2 weeks post-last vaccination. Results All regimens were well tolerated and safe. Full dose DgDgM_M and DgDgMM_M regimens generated Env-specific IgG to HIV-1 Env in >90%, IgG3 in >80%, and IgA in <20% of participants. Responses to gp140 and gp41 targets were more common and of higher magnitude than to gp120 and V1V2. The gp41 antibody included reactivity to the conserved immunodominant region with specificities known to mediate virus capture and phagocytosis and did not cross-react with a panel of intestinal flora antigens. The 3rd dose of MVA increased the avidity of elicited antibody (7.5% to 39%), the ADCC response to Bal gp120 (14% to 64%), and the one-year durability of the IgG3 responses to gp41 by 4-fold (13% vs. 3.5% retention of peak response). The co-expressed GM-CSF did not enhance responses over those in trials testing this vaccine without GM-CSF. Conclusion This DNA/MVA prime-boost regimen induced durable, functional humoral responses that included ADCC, high antibody avidity, and Env IgG1 and IgG3 binding responses to the immunodominant region of gp41. The third, spaced MVA boost improved the overall quality of the antibody response. These products without co-expressed GM-CSF but combined with protein boosts will be considered for efficacy evaluation. Trial registration ClinicalTrials.gov NCT01571960 PMID:28727817

  12. Immunogenicity of a novel Clade B HIV-1 vaccine combination: Results of phase 1 randomized placebo controlled trial of an HIV-1 GM-CSF-expressing DNA prime with a modified vaccinia Ankara vaccine boost in healthy HIV-1 uninfected adults.

    PubMed

    Buchbinder, Susan P; Grunenberg, Nicole A; Sanchez, Brittany J; Seaton, Kelly E; Ferrari, Guido; Moody, M Anthony; Frahm, Nicole; Montefiori, David C; Hay, Christine M; Goepfert, Paul A; Baden, Lindsey R; Robinson, Harriet L; Yu, Xuesong; Gilbert, Peter B; McElrath, M Juliana; Huang, Yunda; Tomaras, Georgia D

    2017-01-01

    A phase 1 trial of a clade B HIV vaccine in HIV-uninfected adults evaluated the safety and immunogenicity of a DNA prime co-expressing GM-CSF (Dg) followed by different numbers and intervals of modified vaccinia Ankara Boosts (M). Both vaccines produce virus-like particles presenting membrane-bound Env. Four US sites randomized 48 participants to receiving 1/10th the DNA dose as DgDgMMM given at 0, 2, 4, 6 and 8 months, or full dose DgDgM_M or DgDgMM_M regimens, given at 0, 2, 4, and 8 months, and 0, 2, 4, 6, and 10 months, respectively. Peak immunogenicity was measured 2 weeks post-last vaccination. All regimens were well tolerated and safe. Full dose DgDgM_M and DgDgMM_M regimens generated Env-specific IgG to HIV-1 Env in >90%, IgG3 in >80%, and IgA in <20% of participants. Responses to gp140 and gp41 targets were more common and of higher magnitude than to gp120 and V1V2. The gp41 antibody included reactivity to the conserved immunodominant region with specificities known to mediate virus capture and phagocytosis and did not cross-react with a panel of intestinal flora antigens. The 3rd dose of MVA increased the avidity of elicited antibody (7.5% to 39%), the ADCC response to Bal gp120 (14% to 64%), and the one-year durability of the IgG3 responses to gp41 by 4-fold (13% vs. 3.5% retention of peak response). The co-expressed GM-CSF did not enhance responses over those in trials testing this vaccine without GM-CSF. This DNA/MVA prime-boost regimen induced durable, functional humoral responses that included ADCC, high antibody avidity, and Env IgG1 and IgG3 binding responses to the immunodominant region of gp41. The third, spaced MVA boost improved the overall quality of the antibody response. These products without co-expressed GM-CSF but combined with protein boosts will be considered for efficacy evaluation. ClinicalTrials.gov NCT01571960.

  13. Effect of compounds with antibacterial activities in human milk on respiratory syncytial virus and cytomegalovirus in vitro.

    PubMed

    Portelli, J; Gordon, A; May, J T

    1998-11-01

    The effect of some antibacterial compounds present in human milk were tested for antiviral activity against respiratory syncytial virus, Semliki Forest virus and cytomegalovirus. These included the gangliosides GM1, GM2 and GM3, sialyl-lactose, lactoferrin and chondroitin sulphate A, B and C, which were all tested for their ability to inhibit the viruses in cell culture. Of the compounds tested, only the ganglioside GM2, chondroitin sulphate B and lactoferrin inhibited the absorption and growth of respiratory syncytial virus in cell culture, and none inhibited the growth of Semliki Forest virus, indicating that lipid antiviral activity was not associated with any of the gangliosides. While the concentrations of these two compounds required to inhibit respiratory syncytial virus were in excess of those present in human milk, sialyl-lactose concentrations similar to those present in human milk increased the growth of cytomegalovirus. Lactoferrin was confirmed as inhibiting both respiratory syncytial virus and cytomegalovirus growth in culture even when used at lower concentrations than those present in human milk. The antiviral activities of GM2, chondroitin sulphate B and lactoferrin were tested when added to an infant formula. Lactoferrin continued to have antiviral activity against cytomegalovirus, but a lower activity against respiratory syncytial virus; ganglioside GM2 and chondroitin sulphate B still maintained antiviral activity against respiratory syncytial virus.

  14. Dual-wavelength and efficient continuous-wave operation of a Yb:CaGd0.1Y0.9AlO4 laser

    NASA Astrophysics Data System (ADS)

    Di, J. Q.; Sai, Q. L.; Sun, X. H.; Xu, X. D.; Kong, L. C.; Xie, G. Q.; Liu, Y. L.; Teng, F.; Zhu, L.

    2018-05-01

    The spectra and laser properties of single crystalline Yb:CaGd0.1Y0.9AlO4 were investigated for the first time. The peak absorption cross-sections of 4.01 cm2 and 1.39  ×  10‑20 cm2 with full width at half maximum of 17 and 32 nm, and the maximum emission cross-sections of 2.11 and 1.53  ×  10‑20 cm2 were obtained for π and σ polarizations, respectively. The fluorescence decay time was 638 µs. The maximum continuous-wave laser achieved was 1.60 W with a slope efficiency of 23.4% for an a-cut Yb:CaGd0.1Y0.9AlO4 crystal. Dual-wavelength lasers at 1041.7 and 1044.9 nm were also demonstrated. The results show that Yb:CaGd0.1Y0.9AlO4 crystal is a promising ultra-short and dual-wavelength laser medium.

  15. Protease-resistant modified human β-hexosaminidase B ameliorates symptoms in GM2 gangliosidosis model.

    PubMed

    Kitakaze, Keisuke; Mizutani, Yasumichi; Sugiyama, Eiji; Tasaki, Chikako; Tsuji, Daisuke; Maita, Nobuo; Hirokawa, Takatsugu; Asanuma, Daisuke; Kamiya, Mako; Sato, Kohei; Setou, Mitsutoshi; Urano, Yasuteru; Togawa, Tadayasu; Otaka, Akira; Sakuraba, Hitoshi; Itoh, Kohji

    2016-05-02

    GM2 gangliosidoses, including Tay-Sachs and Sandhoff diseases, are neurodegenerative lysosomal storage diseases that are caused by deficiency of β-hexosaminidase A, which comprises an αβ heterodimer. There are no effective treatments for these diseases; however, various strategies aimed at restoring β-hexosaminidase A have been explored. Here, we produced a modified human hexosaminidase subunit β (HexB), which we have termed mod2B, composed of homodimeric β subunits that contain amino acid sequences from the α subunit that confer GM2 ganglioside-degrading activity and protease resistance. We also developed fluorescent probes that allow visualization of endocytosis of mod2B via mannose 6-phosphate receptors and delivery of mod2B to lysosomes in GM2 gangliosidosis models. In addition, we applied imaging mass spectrometry to monitor efficacy of this approach in Sandhoff disease model mice. Following i.c.v. administration, mod2B was widely distributed and reduced accumulation of GM2, asialo-GM2, and bis(monoacylglycero)phosphate in brain regions including the hypothalamus, hippocampus, and cerebellum. Moreover, mod2B administration markedly improved motor dysfunction and a prolonged lifespan in Sandhoff disease mice. Together, the results of our study indicate that mod2B has potential for intracerebrospinal fluid enzyme replacement therapy and should be further explored as a gene therapy for GM2 gangliosidoses.

  16. Monospecific high-affinity and complement activating anti-GM1 antibodies are determinants in experimental axonal neuropathy.

    PubMed

    Notturno, Francesca; Del Boccio, Piero; Luciani, Mirella; Caporale, Christina Michaela; Pieragostino, Damiana; Prencipe, Vincenza; Sacchetta, Paolo; Uncini, Antonino

    2010-06-15

    It has been difficult to replicate consistently the experimental model of axonal Guillain-Barré syndrome (GBS). We immunized rabbits with two lipo-oligosaccharides (LOS1 and LOS2) derived from the same C. jejuni strain and purified in a slightly different way. LOS1 did not contain proteins whereas several proteins were present in LOS2. In spite of a robust anti-GM1 antibody response in all animals the neuropathy developed only in rabbits immunized with LOS1. To explain this discrepancy we investigated fine specificity, affinity and ability to activate the complement of anti-GM1 antibodies. Only rabbits immunized with LOS1 showed monospecific high-affinity antibodies which activated more effectively the complement. Although it is not well understood how monospecific high-affinity antibodies are induced these are crucial for the induction of experimental axonal neuropathy. Only a strict adherence to the protocols demonstrated to be successful may guarantee the reproducibility and increase the confidence in the animal model as a reliable tool for the study of the human axonal GBS. Copyright 2010 Elsevier B.V. All rights reserved.

  17. Animal models of GM2 gangliosidosis: utility and limitations.

    PubMed

    Lawson, Cheryl A; Martin, Douglas R

    2016-01-01

    GM2 gangliosidosis, a subset of lysosomal storage disorders, is caused by a deficiency of the glycohydrolase, β-N-acetylhexosaminidase, and includes the closely related Tay-Sachs and Sandhoff diseases. The enzyme deficiency prevents the normal, stepwise degradation of ganglioside, which accumulates unchecked within the cellular lysosome, particularly in neurons. As a result, individuals with GM2 gangliosidosis experience progressive neurological diseases including motor deficits, progressive weakness and hypotonia, decreased responsiveness, vision deterioration, and seizures. Mice and cats are well-established animal models for Sandhoff disease, whereas Jacob sheep are the only known laboratory animal model of Tay-Sachs disease to exhibit clinical symptoms. Since the human diseases are relatively rare, animal models are indispensable tools for further study of pathogenesis and for development of potential treatments. Though no effective treatments for gangliosidoses currently exist, animal models have been used to test promising experimental therapies. Herein, the utility and limitations of gangliosidosis animal models and how they have contributed to the development of potential new treatments are described.

  18. Animal models of GM2 gangliosidosis: utility and limitations

    PubMed Central

    Lawson, Cheryl A; Martin, Douglas R

    2016-01-01

    GM2 gangliosidosis, a subset of lysosomal storage disorders, is caused by a deficiency of the glycohydrolase, β-N-acetylhexosaminidase, and includes the closely related Tay–Sachs and Sandhoff diseases. The enzyme deficiency prevents the normal, stepwise degradation of ganglioside, which accumulates unchecked within the cellular lysosome, particularly in neurons. As a result, individuals with GM2 gangliosidosis experience progressive neurological diseases including motor deficits, progressive weakness and hypotonia, decreased responsiveness, vision deterioration, and seizures. Mice and cats are well-established animal models for Sandhoff disease, whereas Jacob sheep are the only known laboratory animal model of Tay–Sachs disease to exhibit clinical symptoms. Since the human diseases are relatively rare, animal models are indispensable tools for further study of pathogenesis and for development of potential treatments. Though no effective treatments for gangliosidoses currently exist, animal models have been used to test promising experimental therapies. Herein, the utility and limitations of gangliosidosis animal models and how they have contributed to the development of potential new treatments are described. PMID:27499644

  19. Binding of CFA/I Pili of Enterotoxigenic Escherichia coli to Asialo-GM1 Is Mediated by the Minor Pilin CfaE

    PubMed Central

    Madhavan, T. P. Vipin; Riches, James D.; Scanlon, Martin J.

    2016-01-01

    CFA/I pili are representatives of a large family of related pili that mediate the adherence of enterotoxigenic Escherichia coli to intestinal epithelial cells. They are assembled via the alternate chaperone-usher pathway and consist of two subunits, CfaB, which makes up the pilus shaft and a single pilus tip-associated subunit, CfaE. The current model of pilus-mediated adherence proposes that CFA/I has two distinct binding activities; the CfaE subunit is responsible for binding to receptors of unknown structure on erythrocyte and intestinal epithelial cell surfaces, while CfaB binds to various glycosphingolipids, including asialo-GM1. In this report, we present two independent lines of evidence that, contrary to the existing model, CfaB does not bind to asialo-GM1 independently of CfaE. Neither purified CfaB subunits nor CfaB assembled into pili bind to asialo-GM1. Instead, we demonstrate that binding activity toward asialo-GM1 resides in CfaE and this is essential for pilus binding to Caco-2 intestinal epithelial cells. We conclude that the binding activities of CFA/I pili for asialo-GM1, erythrocytes, and intestinal cells are inseparable, require the same amino acid residues in CfaE, and therefore depend on the same or very similar binding mechanisms. PMID:26975993

  20. Binding of CFA/I Pili of Enterotoxigenic Escherichia coli to Asialo-GM1 Is Mediated by the Minor Pilin CfaE.

    PubMed

    Madhavan, T P Vipin; Riches, James D; Scanlon, Martin J; Ulett, Glen C; Sakellaris, Harry

    2016-05-01

    CFA/I pili are representatives of a large family of related pili that mediate the adherence of enterotoxigenic Escherichia coli to intestinal epithelial cells. They are assembled via the alternate chaperone-usher pathway and consist of two subunits, CfaB, which makes up the pilus shaft and a single pilus tip-associated subunit, CfaE. The current model of pilus-mediated adherence proposes that CFA/I has two distinct binding activities; the CfaE subunit is responsible for binding to receptors of unknown structure on erythrocyte and intestinal epithelial cell surfaces, while CfaB binds to various glycosphingolipids, including asialo-GM1. In this report, we present two independent lines of evidence that, contrary to the existing model, CfaB does not bind to asialo-GM1 independently of CfaE. Neither purified CfaB subunits nor CfaB assembled into pili bind to asialo-GM1. Instead, we demonstrate that binding activity toward asialo-GM1 resides in CfaE and this is essential for pilus binding to Caco-2 intestinal epithelial cells. We conclude that the binding activities of CFA/I pili for asialo-GM1, erythrocytes, and intestinal cells are inseparable, require the same amino acid residues in CfaE, and therefore depend on the same or very similar binding mechanisms. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  1. Late onset GM2 gangliosidosis presenting with motor neuron disease: an autopsy case.

    PubMed

    Yokoyama, Teruo; Nakamura, Seigo; Horiuchi, Emiko; Ishiyama, Miyako; Kawashima, Rei; Nakamura, Kazuo; Hasegawa, Kazuko; Yagishita, Saburo

    2014-06-01

    Adult-onset GM2 gangliosidosis is very rare and only three autopsy cases have been reported up to now. We report herein an autopsy case of adult-onset GM2 gangliosidosis. The patient developed slowly progressive motor neuron disease-like symptoms after longstanding mood disorder and cognitive dysfunction. He developed gait disturbance and weakness of lower limbs at age 52 years. Because of progressive muscle weakness and atrophy, he became bed-ridden at age 65. At age of 68, he died. His neurological findings presented slight cognitive disturbance, slight manic state, severe muscle weakness, atrophy of four limbs and no extrapyramidal signs and symptoms, and cerebellar ataxia. Neuropathologically, mild neuronal loss and abundant lipid deposits were noted in the neuronal cytoplasm throughout the nervous system, including peripheral autonomic neurons. The most outstanding findings were marked neuronal loss and distended neurons in the anterior horn of the spinal cord, which supports his clinical symptomatology of lower motor neuron disease in this case. The presence of lipofuscin, zebra bodies and membranous cytoplasmic bodies (MCB) and the increase of GM2 ganglioside by biochemistry led to diagnosis of GM2 gangliosidosis. © 2013 Japanese Society of Neuropathology.

  2. Analyzing the soybean transcriptome during autoregulation of mycorrhization identifies the transcription factors GmNF-YA1a/b as positive regulators of arbuscular mycorrhization.

    PubMed

    Schaarschmidt, Sara; Gresshoff, Peter M; Hause, Bettina

    2013-06-18

    Similarly to the legume-rhizobia symbiosis, the arbuscular mycorrhiza interaction is controlled by autoregulation representing a feedback inhibition involving the CLAVATA1-like receptor kinase NARK in shoots. However, little is known about signals and targets down-stream of NARK. To find NARK-related transcriptional changes in mycorrhizal soybean (Glycine max) plants, we analyzed wild-type and two nark mutant lines interacting with the arbuscular mycorrhiza fungus Rhizophagus irregularis. Affymetrix GeneChip analysis of non-inoculated and partially inoculated plants in a split-root system identified genes with potential regulation by arbuscular mycorrhiza or NARK. Most transcriptional changes occur locally during arbuscular mycorrhiza symbiosis and independently of NARK. RT-qPCR analysis verified nine genes as NARK-dependently regulated. Most of them have lower expression in roots or shoots of wild type compared to nark mutants, including genes encoding the receptor kinase GmSIK1, proteins with putative function as ornithine acetyl transferase, and a DEAD box RNA helicase. A predicted annexin named GmAnnx1a is differentially regulated by NARK and arbuscular mycorrhiza in distinct plant organs. Two putative CCAAT-binding transcription factor genes named GmNF-YA1a and GmNF-YA1b are down-regulated NARK-dependently in non-infected roots of mycorrhizal wild-type plants and functional gene analysis confirmed a positive role for these genes in the development of an arbuscular mycorrhiza symbiosis. Our results indicate GmNF-YA1a/b as positive regulators in arbuscular mycorrhiza establishment, whose expression is down-regulated by NARK in the autoregulated root tissue thereby diminishing subsequent infections. Genes regulated independently of arbuscular mycorrhization by NARK support an additional function of NARK in symbioses-independent mechanisms.

  3. Thermal data from well GD-1, Gibson dome, Paradox Valley, Utah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sass, J.H.; Lachenbruch, A.H.; Smith, E.P.

    Temperature data were obtained to a depth of approx. 1900 m (6300 ft) in well GD-1, W. longitude 109/sup 0/ 36.9', N. latitude 38/sup 0/ 09.8', elevation 1503 m at Gibson Dome in the Paradox Basin, southeastern Utah. Thermal conductivities were measured on 15 specimens representative of the major formations. With the possible exception of some minor perturbations within the Molas and Leadville Limestone formations near the bottom of the well, no evidence exists for vertical water movement with seepage velocities exceeding a few mm y/sup -1/ within the well or formation.

  4. In vivo characterization of fusion protein comprising of A1 subunit of Shiga toxin and human GM-CSF: Assessment of its immunogenicity and toxicity.

    PubMed

    Oloomi, Mana; Bouzari, Saeid; Shariati, Elaheh

    2010-10-01

    Most cancer cells become resistant to anti-cancer agents. In the last few years, a new approach for targeted therapy of human cancer has been developed using immunotoxins which comprise both the cell targeting and the cell killing moieties. In the present study, the recombinant Shiga toxin A1 subunit fused to human granulocyte-macrophage colony stimulating factor (A1-GM-CSF), previously produced in E. coli, was further characterized. The recombinant protein could cause 50% cytotoxicity and induced apoptosis in cells bearing GM-CSF receptors. The non-specific toxicity of the fusion protein was assessed in C57BL/6 and BALB/c mice. No mortality was observed in either group of mice, with different concentration of fusion protein. The lymphocyte proliferation assay, induction of specific IgG response and a mixed (Th1/Th2) response were observed only in BALB/c mice. The mixed response in BALB/c mice (Th1/Th2) could be explained on the basis of the two components of the fusion protein i.e. A1 and GM-CSF.

  5. Characterization of magnetic and dielectric properties of Bi(1-x)Gd(x)FeO3 nanoparticles by local structure analyses.

    PubMed

    Yanoh, Takuya; Kurokawa, Akinobu; Takeuchi, Hiromasa; Yano, Shinya; Onuma, Kazuki; Kondo, Takaya; Miike, Kazunari; Miyasaka, Toshiki; Mibu, Ko; Ichiyanagi, Yuko

    2014-03-01

    Bi(1-x)Gd(x)FeO3 (0 < or = x < or = 1.0) nanoparticles were synthesized by a wet chemical method. The annealing temperatures were controlled to obtain single-phase Bi(1-x)Gd(x)FeO3 nanoparticles. The crystal diameters decreased as the number of doped Gd ions increased. The crystal structure changed, as the number of Gd ions increased, from rhombohedral to orthorhombic perovskite, at x = 0.2. The behavior of the magnetization curves observed at various values of x (x = 0.05, 0.1, 0.15) of the rhombohedral structure suggested that the canted antiferromagnetism and remanent magnetization (M(r)) drastically increased, compared with those at x = 0 (BiFeO3). It is suggested that the spin-canting angle of the Fe ions increased with the increase in the number of Gd ions. The dielectric properties at x = 0.1 showed that the dielectric loss (tan delta) was improved, compared with that at x = 0 (BiFeO3), by approximately 90%, while the real part of the dielectric constant epsilon' was reduced by approximately 15%. The reason is that the doping impurities restrained the reduction in the leakage current. It was found, from the X-ray absorption fine structure (XAFS) spectra, that Gd ions were doped accurately and that the symmetry of the B site was improved. The Mössbauer analysis suggested the existence of magnetic cycloid spiral ordering.

  6. Gangliosides inhibit bee venom melittin cytotoxicity but not phospholipase A{sub 2}-induced degranulation in mast cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishikawa, Hirofumi; Kitani, Seiichi, E-mail: drkitani@kaiyodai.ac.jp

    Sting accident by honeybee causes severe pain, inflammation and allergic reaction through IgE-mediated anaphylaxis. In addition to this hypersensitivity, an anaphylactoid reaction occurs by toxic effects even in a non-allergic person via cytolysis followed by similar clinical manifestations. Auto-injectable epinephrine might be effective for bee stings, but cannot inhibit mast cell lysis and degranulation by venom toxins. We used connective tissue type canine mast cell line (CM-MC) for finding an effective measure that might inhibit bee venom toxicity. We evaluated degranulation and cytotoxicity by measurement of {beta}-hexosaminidase release and MTT assay. Melittin and crude bee venom induced the degranulation andmore » cytotoxicity, which were strongly inhibited by mono-sialoganglioside (G{sub M1}), di-sialoganglioside (G{sub D1a}) and tri-sialoganglioside (G{sub T1b}). In contrast, honeybee venom-derived phospholipase A{sub 2} induced the net degranulation directly without cytotoxicity, which was not inhibited by G{sub M1}, G{sub D1a} and G{sub T1b}. For analysis of distribution of G{alpha}{sub q} and G{alpha}{sub i} protein by western blotting, lipid rafts were isolated by using discontinuous sucrose gradient centrifuge. Melittin disrupted the localization of G{alpha}{sub q} and G{alpha}{sub i} at lipid raft, but gangliosides stabilized the rafts. As a result from this cell-based study, bee venom-induced anaphylactoid reaction can be explained with melittin cytotoxicity and phospholipase A{sub 2}-induced degranulation. Taken together, gangliosides inhibit the effect of melittin such as degranulation, cytotoxicity and lipid raft disruption but not phospholipase A{sub 2}-induced degranulation in mast cells. Our study shows a potential of gangliosides as a therapeutic tool for anaphylactoid reaction by honeybee sting.« less

  7. GmWRKY31 and GmHDL56 Enhances Resistance to Phytophthora sojae by Regulating Defense-Related Gene Expression in Soybean.

    PubMed

    Fan, Sujie; Dong, Lidong; Han, Dan; Zhang, Feng; Wu, Junjiang; Jiang, Liangyu; Cheng, Qun; Li, Rongpeng; Lu, Wencheng; Meng, Fanshan; Zhang, Shuzhen; Xu, Pengfei

    2017-01-01

    Phytophthora root and stem rot of soybean [ Glycine max (L.) Merr.] caused by the oomycete Phytophthora sojae , is a destructive disease worldwide. The molecular mechanism of the soybean response to P. sojae is largely unclear. We report a novel WRKY transcription factor (TF) in soybean, GmWRKY31, in the host response to P. sojae . Overexpression and RNA interference analysis demonstrated that GmWRKY31 enhanced resistance to P. sojae in transgenic soybean plants. GmWRKY31 was targeted to the nucleus, where it bound to the W-box and acted as an activator of gene transcription. Moreover, we determined that GmWRKY31 physically interacted with GmHDL56, which improved resistance to P. sojae in transgenic soybean roots. GmWRKY31 and GmHDL56 shared a common target GmNPR1 which was induced by P. sojae . Overexpression and RNA interference analysis demonstrated that GmNPR1 enhanced resistance to P. sojae in transgenic soybean plants. Several pathogenesis-related ( PR ) genes were constitutively activated, including GmPR1a , GmPR2 , GmPR3 , GmPR4 , GmPR5a , and GmPR10 , in soybean plants overexpressing GmNPR1 transcripts. By contrast, the induction of PR genes was compromised in transgenic GmNPR1 -RNAi lines. Taken together, these findings suggested that the interaction between GmWRKY31 and GmHDL56 enhances resistance to P. sojae by regulating defense-related gene expression in soybean.

  8. GmWRKY31 and GmHDL56 Enhances Resistance to Phytophthora sojae by Regulating Defense-Related Gene Expression in Soybean

    PubMed Central

    Fan, Sujie; Dong, Lidong; Han, Dan; Zhang, Feng; Wu, Junjiang; Jiang, Liangyu; Cheng, Qun; Li, Rongpeng; Lu, Wencheng; Meng, Fanshan; Zhang, Shuzhen; Xu, Pengfei

    2017-01-01

    Phytophthora root and stem rot of soybean [Glycine max (L.) Merr.] caused by the oomycete Phytophthora sojae, is a destructive disease worldwide. The molecular mechanism of the soybean response to P. sojae is largely unclear. We report a novel WRKY transcription factor (TF) in soybean, GmWRKY31, in the host response to P. sojae. Overexpression and RNA interference analysis demonstrated that GmWRKY31 enhanced resistance to P. sojae in transgenic soybean plants. GmWRKY31 was targeted to the nucleus, where it bound to the W-box and acted as an activator of gene transcription. Moreover, we determined that GmWRKY31 physically interacted with GmHDL56, which improved resistance to P. sojae in transgenic soybean roots. GmWRKY31 and GmHDL56 shared a common target GmNPR1 which was induced by P. sojae. Overexpression and RNA interference analysis demonstrated that GmNPR1 enhanced resistance to P. sojae in transgenic soybean plants. Several pathogenesis-related (PR) genes were constitutively activated, including GmPR1a, GmPR2, GmPR3, GmPR4, GmPR5a, and GmPR10, in soybean plants overexpressing GmNPR1 transcripts. By contrast, the induction of PR genes was compromised in transgenic GmNPR1-RNAi lines. Taken together, these findings suggested that the interaction between GmWRKY31 and GmHDL56 enhances resistance to P. sojae by regulating defense-related gene expression in soybean. PMID:28553307

  9. Composition-property relationships in (Gd3-xLux)(GayAl5-y)O12:Ce (x = 0, 1, 2, 3 and y = 0, 1, 2, 3, 4) multicomponent garnet scintillators

    NASA Astrophysics Data System (ADS)

    Luo, Jialiang; Wu, Yuntao; Zhang, Guoqing; Zhang, Huaijin; Ren, Guohao

    2013-12-01

    The (LuxGd3-x)(GayAl5-y)O12:Ce (x = 0, 1, 2, 3 and y = 0, 1, 2, 3, 4) scintillating polycrystalline powders were prepared by high temperature solid state reaction method. A pure cubic phase was confirmed in all samples by X-ray diffraction (XRD). X-ray excited luminescence (XEL), photoluminescence excitation and emission spectra were employed to study the influence of Gd3+-Ga3+ admixture on the luminescent mechanism of Ce3+ as well as the energy transfer from Gd3+ to Ce3+. The band-gap structures with varying Gd3+ and Ga3+ content were constructed to understand the luminescence behaviors. In addition, thermoluminescence spectra (TL) were utilized to identify the moving of conduction band (CB) by monitoring the shift of the corresponding TL peaks. Finally, it was found that incorporation of 40 mol% (y = 2) Ga3+ and 33.3-66.7 mol% (x = 1-2) Gd3+ could secure enough energy-separation between CB and 5d1 of Ce3+ avoiding thermal ionization effect at utmost, and bury the antisite defect traps into CB, and in turn achieving the optimum scintillation efficiency.

  10. GdCl3 reduces hyperglycaemia through Akt/FoxO1-induced suppression of hepatic gluconeogenesis in Type 2 diabetic mice.

    PubMed

    Wang, Qian; Wang, Ning; Dong, Mei; Chen, Fang; Li, Zhong; Chen, Yuanyuan

    2014-07-01

    GdCl3 (gadolinium chloride) has been shown to reduce blood glucose; however, the underlying mechanism remains unclear. Liver gluconeogenesis is an important pathway involved in the maintenance of glucose homoeostasis. The aim of the present study was to investigate the role of GdCl3 in hepatic gluconeogenesis and explore the precise molecular mechanism. Animals from a classical Type 2 diabetic mouse model, created by exposing C57BL/6J mice to a high-fat diet for 4 months, were treated with GdCl3 or saline. Body weight, blood glucose and insulin sensitivity were monitored. It was observed that GdCl3 significantly reduced blood glucose levels and improved insulin sensitivity. A pyruvate tolerance test showed further that GdCl3 suppressed gluconeogenesis in diabetic mice. In the livers of GdCl3-treated mice, the expression of Pepck (phosphoenolpyruvate carboxykinase) and G6pase (glucose-6-phosphatase), the key enzymes in gluconeogenesis, were dramatically reduced. Furthermore, experiments in hepatocarcinoma cells revealed that GdCl3 activated the Akt pathway to promote the phosphorylation of FoxO1 (forkhead box O1), leading to the suppression of gluconeogenesis by reducing the expression of PEPCK and G6Pase and resulting in decreased cellular production of glucose. Comparable results were observed in the livers of GdCl3-treated mice. In addition, we have shown that GdCl3 augmented the role of insulin to control hepatic glucose production. We conclude that GdCl3 reduces hyperglycaemia via the Akt/FoxO1-induced suppression of hepatic gluconeogenesis, both in Type 2 diabetic mice (in vivo) and in hepatocarcinoma cells (in vitro), suggesting that GdCl3 may be a potential therapeutic agent for diabetes.

  11. Electronegative L5-LDL induces the production of G-CSF and GM-CSF in human macrophages through LOX-1 involving NF-κB and ERK2 activation.

    PubMed

    Yang, Tzu-Ching; Chang, Po-Yuan; Kuo, Tzu-Ling; Lu, Shao-Chun

    2017-12-01

    Circulating levels of granulocyte colony-stimulating factor (G-CSF) and granulocyte macrophage colony-stimulating factor (GM-CSF) are associated with the severity of acute myocardial infarction (AMI). However, what causes increases in G-CSF and GM-CSF is unclear. In this study, we investigated whether L5-low-density lipoprotein (LDL), a mildly oxidized LDL from AMI, can induce G-CSF and GM-CSF production in human macrophages. L1-LDL and L5-LDL were isolated through anion-exchange chromatography from AMI plasma. Human macrophages derived from THP-1 and peripheral blood mononuclear cells were treated with L1-LDL, L5-LDL, or copper-oxidized LDL (Cu-oxLDL) and G-CSF and GM-CSF protein levels in the medium were determined. In addition, the effects of L5-LDL on G-CSF and GM-CSF production were tested in lectin-type oxidized LDL receptor-1 (LOX-1), CD36, extracellular signal-regulated kinase (ERK) 1, and ERK2 knockdown THP-1 macrophages. L5-LDL but not L1-LDL or Cu-oxLDL significantly induced production of G-CSF and GM-CSF in macrophages. In vitro oxidation of L1-LDL and L5-LDL altered their ability to induce G-CSF and GM-CSF, suggesting that the degree of oxidation is critical for the effects. Knockdown and antibody neutralization experiments suggested that the effects were caused by LOX-1. In addition, nuclear factor (NF)-κB and ERK1/2 inhibition resulted in marked reductions of L5-LDL-induced G-CSF and GM-CSF production. Moreover, knockdown of ERK2, but not ERK1, hindered L5-LDL-induced G-CSF and GM-CSF production. The results indicate that L5-LDL, a naturally occurring mild oxidized LDL, induced G-CSF and GM-CSF production in human macrophages through LOX-1, ERK2, and NF-κB dependent pathways. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Essential roles of integrin-mediated signaling for the enhancement of malignant properties of melanomas based on the expression of GD3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohkawa, Yuki; Miyazaki, Sayaka; Miyata, Maiko

    2008-08-15

    We reported that ganglioside GD3 enhances cell proliferation and invasion of melanomas causing stronger tyrosine-phosphorylation of p130Cas and paxillin after stimulation with fetal calf serum. Besides signals via growth factor/receptor, adhesion signals via integrin might be also enhanced by GD3. Here, roles of integrin-mediated signaling in the cell proliferation and invasion, and in the activation of adaptor molecules were examined, showing that integrin was also important for the cell growth and invasion. p130Cas and paxillin underwent stronger tyrosine-phosphorylation in GD3+ cells than in GD3- cells during the adhesion in the absence of serum. On the other hand, no proteins underwentmore » tyrosine phosphorylation in GD3+ and GD3- cells in a suspension state when stimulated with fetal calf serum. These results suggested that integrin-mediated signaling is essential in the effects of GD3 on the malignant properties of melanomas. Co-localization of GD3 and integrin at the focal adhesion supported these results.« less

  13. GM(1,N) method for the prediction of anaerobic digestion system and sensitivity analysis of influential factors.

    PubMed

    Ren, Jingzheng

    2018-01-01

    Anaerobic digestion process has been recognized as a promising way for waste treatment and energy recovery in a sustainable way. Modelling of anaerobic digestion system is significantly important for effectively and accurately controlling, adjusting, and predicting the system for higher methane yield. The GM(1,N) approach which does not need the mechanism or a large number of samples was employed to model the anaerobic digestion system to predict methane yield. In order to illustrate the proposed model, an illustrative case about anaerobic digestion of municipal solid waste for methane yield was studied, and the results demonstrate that GM(1,N) model can effectively simulate anaerobic digestion system at the cases of poor information with less computational expense. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Highly efficient passive mode locking of Nd:Lu2.9Gd0.1Al5O12 garnet crystal

    NASA Astrophysics Data System (ADS)

    Di, J. Q.; Xu, X. D.; Xia, C. T.; Tan, W. D.; Zhang, J.; Tang, D. Y.; Li, D. Z.; Zhou, D. H.; Wu, F.; Xu, J.

    2013-05-01

    Passive mode locking of Nd:Lu2.9Gd0.1Al5O12 (Nd:LuGdAG) crystal lasers was experimentally investigated. Stable mode-locked pulses with pulse widths as short as 9.7 ps were obtained for the Nd:LuGdAG crystal; the corresponding maximum output powers were 0.93 W while the mode-locked slope efficiencies were 43%, among the highest efficiencies ever reported for Nd3+ ps lasers. The results demonstrate that Nd:LuGdAG garnet crystal is a promising gain medium for efficient picosecond laser use.

  15. 5 CFR 531.243 - Promotion of a GM employee.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Promotion of a GM employee. 531.243... Promotion of a GM employee. (a) Upon promotion, an employee's status as a GM employee ends, as provided in § 531.241(b). (b) When an employee loses status as a GM employee because of a temporary promotion and is...

  16. Enhanced Disease Susceptibility1 Mediates Pathogen Resistance and Virulence Function of a Bacterial Effector in Soybean1[C][W][OPEN

    PubMed Central

    Wang, Jialin; Shine, M.B.; Gao, Qing-Ming; Navarre, Duroy; Jiang, Wei; Liu, Chunyan; Chen, Qingshan; Hu, Guohua; Kachroo, Aardra

    2014-01-01

    Enhanced disease susceptibility1 (EDS1) and phytoalexin deficient4 (PAD4) are well-known regulators of both basal and resistance (R) protein-mediated plant defense. We identified two EDS1-like (GmEDS1a/GmEDS1b) proteins and one PAD4-like (GmPAD4) protein that are required for resistance signaling in soybean (Glycine max). Consistent with their significant structural conservation to Arabidopsis (Arabidopsis thaliana) counterparts, constitutive expression of GmEDS1 or GmPAD4 complemented the pathogen resistance defects of Arabidopsis eds1 and pad4 mutants, respectively. Interestingly, however, the GmEDS1 and GmPAD4 did not complement pathogen-inducible salicylic acid accumulation in the eds1/pad4 mutants. Furthermore, the GmEDS1a/GmEDS1b proteins were unable to complement the turnip crinkle virus coat protein-mediated activation of the Arabidopsis R protein Hypersensitive reaction to Turnip crinkle virus (HRT), even though both interacted with HRT. Silencing GmEDS1a/GmEDS1b or GmPAD4 reduced basal and pathogen-inducible salicylic acid accumulation and enhanced soybean susceptibility to virulent pathogens. The GmEDS1a/GmEDS1b and GmPAD4 genes were also required for Resistance to Pseudomonas syringae pv glycinea2 (Rpg2)-mediated resistance to Pseudomonas syringae. Notably, the GmEDS1a/GmEDS1b proteins interacted with the cognate bacterial effector AvrA1 and were required for its virulence function in rpg2 plants. Together, these results show that despite significant structural similarities, conserved defense signaling components from diverse plants can differ in their functionalities. In addition, we demonstrate a role for GmEDS1 in regulating the virulence function of a bacterial effector. PMID:24872380

  17. Long-term effect of rituximab in a case with late-onset Rasmussen´s encephalitis with anti-ganglioside IgGQ1b and anti-GAD antibodies positivity. Case Report.

    PubMed

    Timarova, Gabriela; Lisa, Iveta; Kukumberg, Peter

    2016-07-01

    Rasmussen's encephalitis is a rare autoimmune encephalitis usually involving one brain hemisphere, presenting with refractory epileptic seizures, and neurological and cognitive decline. Only 10% of cases start later in adolescence/adulthood. The only effective treatment for refractory seizures in childhood is hemispherectomy. For late-onset cases with mild neurological deficit the hemispherectomy is usually postponed because of its severe consequences. Immunotherapy shows some temporal effect for seizure control and slowing the brain atrophy, mainly in late onset Rasmussen's encephalitis. We report a patient with late onset Rasmussen´s encephalitis with anti-ganglioside IgGQ1b and anti-GAD antibodies positivity, who failed immunotherapy with cytostatics, immunoglobulins and steroids. Anti-ganglioside IgGQ1b antibodies are typically associated with a Miller-Fisher variant of Guillain-Barre syndrome and Bickerstaff's brainstem encephalitis. The association with Rasmussen´s encephalitis was not described before. Patient´s neurological deficit was mild and hemispherectomy was refused. The treatment with rituximab, an anti-CD20+ monoclonal antibody, led to 36-month control of seizures without any signs of progression of neurological deficit and MRI brain atrophy. Although the treatment is associated with long term B-cells depletion, patient doesn´t suffer from any clinically relevant infection. The biological treatment with monoclonal antibodies might be the way to stabilize patients with Rasmussen´s encephalitis, mainly late-onset, to prevent them from harmful and devastating hemispherectomy.

  18. Fluorescence-tagged amphiphilic brush copolymer encapsulated Gd2O3 core-shell nanostructures for enhanced T 1 contrast effect and fluorescent imaging

    NASA Astrophysics Data System (ADS)

    Wang, Fenghe; Peng, Erwin; Liu, Feng; Li, Pingjing; Fong Yau Li, Sam; Xue, Jun Min

    2016-10-01

    To obtain suitable T 1 contrast agents for magnetic resonance imaging (MRI) application, aqueous Gd2O3 nanoparticles (NPs) with high longitudinal relativity (r 1) are demanded. High quality Gd2O3 NPs are usually synthesized through a non-hydrolytic route which requires post-synthetic modification to render the NPs water soluble. The current challenge is to obtain aqueous Gd2O3 NPs with high colloidal stability and enhanced r 1 relaxivity. To overcome this challenge, fluorescence-tagged amphiphilic brush copolymer (AFCP) encapsulated Gd2O3 NPs were proposed as suitable T 1 contrast agents. Such a coating layer provided (i) superior aqueous stability, (ii) biocompatibility, as well as (iii) multi-modality (conjugation with fluorescence dye). The polymeric coating layer thickness was simply adjusted by varying the phase-transfer parameters. By reducing the coating thickness, i.e. the distance between the paramagnetic centre and surrounding water protons, the r 1 relaxivity could be enhanced. In contrast, a thicker polymeric layer coating prevents Gd3+ ions leakage, thus improving its biocompatibility. Therefore, it is important to strike a balance between the biocompatibility and the r 1 relaxivity behaviour. Lastly, by conjugating fluorescence moiety, an additional imaging modality was enabled, as demonstrated from the cell-labelling experiment.

  19. Detecting Protein-Glycolipid Interactions Using CaR-ESI-MS and Model Membranes: Comparison of Pre-loaded and Passively Loaded Picodiscs.

    PubMed

    Li, Jun; Han, Ling; Li, Jianing; Kitova, Elena N; Xiong, Zi Jian; Privé, Gilbert G; Klassen, John S

    2018-04-13

    Catch-and-release electrospray ionization mass spectrometry (CaR-ESI-MS), implemented using model membranes (MMs), is a promising approach for the discovery of glycolipid ligands of glycan-binding proteins (GBPs). Picodiscs (PDs), which are lipid-transporting complexes composed of the human sphingolipid activator protein saposin A and phospholipids, have proven to be useful MMs for such studies. The present work compares the use of conventional (pre-loaded) PDs with passively loaded PDs ( PL PDs) for CaR-ESI-MS screening of glycolipids against cholera toxin B subunit homopentamer (CTB 5 ). The pre-loaded PDs were prepared from a mixture of purified glycolipid and phospholipid or a mixture of lipids extracted from tissue, while the PL PDs were prepared by incubating PDs containing only phospholipid with glycolipid-containing lipid mixtures in aqueous solution. Time-dependent changes in the composition of the PL PDs produced by incubation with glycomicelles of the ganglioside GM1 were monitored using collision-induced dissociation of the gaseous PD ions and from the extent of ganglioside binding to CTB 5 measured by ESI-MS. GM1 incorporation into PDs was evident within a few hours of incubation. At incubation times ≥ 10 days, GM1 binding to CTB 5 was indistinguishable from that observed with pre-loaded PDs produced directly from GM1 at the same concentration. Comparison of ganglioside binding to CTB 5 measured for pre-loaded PDs and PL PDs prepared from glycolipids extracted from pig and mouse brain revealed that the PL PDs allow for the detection of a greater number of ganglioside ligands. Together, the results of this study suggest PL PDs may have advantages over conventionally prepared PDs for screening glycolipids against GBPs using CaR-ESI-MS. Graphical Abstract ᅟ.

  20. Detecting Protein-Glycolipid Interactions Using CaR-ESI-MS and Model Membranes: Comparison of Pre-loaded and Passively Loaded Picodiscs

    NASA Astrophysics Data System (ADS)

    Li, Jun; Han, Ling; Li, Jianing; Kitova, Elena N.; Xiong, Zi Jian; Privé, Gilbert G.; Klassen, John S.

    2018-04-01

    Catch-and-release electrospray ionization mass spectrometry (CaR-ESI-MS), implemented using model membranes (MMs), is a promising approach for the discovery of glycolipid ligands of glycan-binding proteins (GBPs). Picodiscs (PDs), which are lipid-transporting complexes composed of the human sphingolipid activator protein saposin A and phospholipids, have proven to be useful MMs for such studies. The present work compares the use of conventional (pre-loaded) PDs with passively loaded PDs (PLPDs) for CaR-ESI-MS screening of glycolipids against cholera toxin B subunit homopentamer (CTB5). The pre-loaded PDs were prepared from a mixture of purified glycolipid and phospholipid or a mixture of lipids extracted from tissue, while the PLPDs were prepared by incubating PDs containing only phospholipid with glycolipid-containing lipid mixtures in aqueous solution. Time-dependent changes in the composition of the PLPDs produced by incubation with glycomicelles of the ganglioside GM1 were monitored using collision-induced dissociation of the gaseous PD ions and from the extent of ganglioside binding to CTB5 measured by ESI-MS. GM1 incorporation into PDs was evident within a few hours of incubation. At incubation times ≥ 10 days, GM1 binding to CTB5 was indistinguishable from that observed with pre-loaded PDs produced directly from GM1 at the same concentration. Comparison of ganglioside binding to CTB5 measured for pre-loaded PDs and PLPDs prepared from glycolipids extracted from pig and mouse brain revealed that the PLPDs allow for the detection of a greater number of ganglioside ligands. Together, the results of this study suggest PLPDs may have advantages over conventionally prepared PDs for screening glycolipids against GBPs using CaR-ESI-MS. [Figure not available: see fulltext.

  1. The regulation of ER export and Golgi retention of ST3Gal5 (GM3/GM4 synthase) and B4GalNAcT1 (GM2/GD2/GA2 synthase) by arginine/lysine-based motif adjacent to the transmembrane domain.

    PubMed

    Uemura, Satoshi; Shishido, Fumi; Kashimura, Madoka; Inokuchi, Jin-ichi

    2015-12-01

    In the Golgi maturation model, the Golgi cisternae dynamically mature along a secretory pathway. In this dynamic process, glycosyltransferases are transported from the endoplasmic reticulum (ER) to the Golgi apparatus where they remain and function. The precise mechanism behind this maturation process remains unclear. We investigated two glycosyltransferases, ST3Gal5 (ST3G5) and B4GalNAcT1 (B4GN1), involved in ganglioside synthesis and examined their signal sequences for ER export and Golgi retention. Reports have suggested that the [R/K](X)[R/K] motif functions as an ER exporting signal; however, this signal sequence is insufficient in stably expressed, full-length ST3G5. Through further analysis, we have clarified that the (2)R(3)R(X)(5) (9)K(X)(3) (13)K sequence in ST3G5 is essential for ER export. We have named the sequence the R/K-based motif. On the other hand, for ER export of B4GN1, the homodimer formation in addition to the R/K-based motif is required for ER export suggesting the importance of unidentified lumenal side interaction. We found that ST3G5 R2A/R3A and K9A/K13A mutants localized not only in Golgi apparatus but also in endosomes. Furthermore, the amounts of mature type asparagine-linked (N)-glycans in ST3G5 R2A/R3A and K9A/K13A mutants were decreased compared with those in wild-type proteins, and the stability of the mutants was lower. These results suggest that the R/K-based motif is necessary for the Golgi retention of ST3G5 and that the retention is involved in the maturation of N-glycans and in stability. Thus, several basic amino acids located on the cytoplasmic tail of ST3G5 play important roles in both ER export and Golgi retention. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Enhanced synergistic anti-Lewis lung carcinoma effect of a DNA vaccine harboring a MUC1-VEGFR2 fusion gene used with GM-CSF as an adjuvant.

    PubMed

    Ruan, Junzhong; Duan, Yong; Li, Fugen; Wang, Zitong

    2017-01-01

    In order to achieve a synergistic effect on anti-tumour and anti-angiogenesis activity, we designed and constructed a DNA vaccine that expresses MUC1and VEGFR2 in the same reading frame. The aim of this study was to investigate the anti-tumour activity of this DNA vaccine. Furthermore, we also investigated the enhanced synergistic anti-Lewis lung carcinoma effect of this DNA vaccine by using GM-CSF as an adjuvant. A series of DNA plasmids encoding MUC1, VEGFR2, GM-CSF, and their conjugates were constructed and injected into mice intramuscularly (i.m.) followed by an electric pulse. The humoral and cellular immune responses after immunization were detected by enzyme-linked immunosorbent assay (ELISA) and enzyme-linked immunospot (ELISPOT), respectively. To evaluate the anti-tumour efficacy of these plasmids, murine models with MUC1-expressing tumours were generated. After injection into the tumour-bearing mouse model, the plasmid carrying the fusion gene of MUC1 and VEGFR2 showed stronger inhibition of tumour growth than the plasmid expressing MUC1 or VEGFR2 alone, which indicated that MUC1 and VEGFR2 could exert a synergistic anti-tumour effect. Furthermore, mice vaccinated with the combination of the GM-CSF expressing plasmid and the plasmid carrying the fusion gene of MUC1 and VEGFR2 showed an increased inhibition in the growth of MUC1-expressing tumours and prolonged mouse survival. These observations emphasize the potential of the synergistic anti-tumour and anti-angiogenesis strategy used in DNA vaccines, and the potential of the GM-CSF gene as an adjuvant for DNA vaccines, which could represent a promising approach for tumour immunotherapy. © 2016 John Wiley & Sons Australia, Ltd.

  3. Granulocyte-macrophage colony-stimulating factor (GM-CSF) regulates cytokine induction by 1,3-beta-D-glucan SCG in DBA/2 mice in vitro.

    PubMed

    Harada, Toshie; Miura, Noriko N; Adachi, Yoshiyuki; Nakajima, Mitsuhiro; Yadomae, Toshiro; Ohno, Naohito

    2004-08-01

    Sparassis crispa Fr. is an edible/medicinal mushroom that recently became cultivable in Japan. SCG is a major 6-branched 1,3-beta-D-glucan in S. crispa showing antitumor activity. We recently found that the splenocytes from naive DBA/1 and DBA/2 mice strongly react with SCG to produce interferon-gamma (IFN-gamma). In this study, cytokines induced by SCG were screened and found to be IFN-gamma, tumor necrosis factor-alpha (TNF-alpha), granulocyte-macrophage colony-stimulating factor (GM-CSF), and interleukin-12 (IL-12p70). The addition of recombinant murine GM-CSF (rMuGM-CSF) to spleen cell cultures from various strains of mice synergistically enhanced IFN-gamma, TNF-alpha and IL-12p70 in the presence of SCG. In contrast, neutralizing GM-CSF using anti-GM-CSF monoclonal antibody (mAb) significantly inhibited IFN-gamma, TNF-alpha, and IL-12p70 elicited by SCG. We conclude that GM-CSF is a key molecule for cytokine induction by beta-glucan, and GM-CSF induction by SCG is the specific step in DBA/2 mice in vitro.

  4. Physicochemical and biological characterization of 1E10 Anti-Idiotype vaccine

    PubMed Central

    2011-01-01

    Background 1E10 monoclonal antibody is a murine anti-idiotypic antibody that mimics N-glycolyl-GM3 gangliosides. This antibody has been tested as an anti-idiotypic cancer vaccine, adjuvated in Al(OH)3, in several clinical trials for melanoma, breast, and lung cancer. During early clinical development this mAb was obtained in vivo from mice ascites fluid. Currently, the production process of 1E10 is being transferred from the in vivo to a bioreactor-based method. Results Here, we present a comprehensive molecular and immunological characterization of 1E10 produced by the two different production processes in order to determine the impact of the manufacturing process in vaccine performance. We observed differences in glycosylation pattern, charge heterogeneity and structural stability between in vivo-produced 1E10 and bioreactor-obtained 1E10. Interestingly, these modifications had no significant impact on the immune responses elicited in two different animal models. Conclusions Changes in 1E10 primary structure like glycosylation; asparagine deamidation and oxidation affected 1E10 structural stability but did not affect the immune response elicited in mice and chickens when compared to 1E10 produced in mice. PMID:22108317

  5. Possible role of autoantibodies in the pathophysiology of GM2 gangliosidoses

    PubMed Central

    Yamaguchi, Akira; Katsuyama, Kayoko; Nagahama, Kiyotaka; Takai, Toshiyuki; Aoki, Ichiro; Yamanaka, Shoji

    2004-01-01

    Mice containing a disruption of the Hexb gene have provided a useful model system for the study of the human lysosomal storage disorder known as Sandhoff disease (SD). Hexb–/– mice rapidly develop a progressive neurologic disease of ganglioside GM2 and GA2 storage. Our study revealed that the disease states in this model are associated with the appearance of antiganglioside autoantibodies. Both elevation of serum antiganglioside autoantibodies and IgG deposition to CNS neurons were found in the advanced stages of the disease in Hexb–/– mice; serum transfer from these mice showed IgG binding to neurons. To determine the role of these autoantibodies, the Fc receptor γ gene (FcRγ) was additionally disrupted in Hexb–/– mice, as it plays a key role in immune complex–mediated autoimmune diseases. Clinical symptoms were improved and life spans were extended in the Hexb–/–FcRγ–/– mice; the number of apoptotic cells was also decreased. The level of ganglioside accumulation, however, did not change. IgG deposition was also confirmed in the brain of an autopsied SD patient. Taken together, these findings suggest that the production of autoantibodies plays an important role in the pathogenesis of neuropathy in SD and therefore provides a target for novel therapies. PMID:14722612

  6. Synthesis of a novel 'smart' bifunctional chelating agent 1-(2-[beta,D-galactopyranosyloxy]ethyl)-7-(1-carboxy-3-[4-aminophenyl]propyl)-4,10-bis(carboxymethyl)-1,4,7,10-tetraazacyclododecane (Gal-PA-DO3A-NH2) and its Gd(III) complex.

    PubMed

    Wardle, Nick J; Herlihy, Amy H; So, Po-Wah; Bell, Jimmy D; Bligh, S W Annie

    2007-07-15

    A new synthetic pathway to 1-(2-[beta,D-galactopyranosyloxy]ethyl)-7-(1-carboxy-3-[4-aminophenyl]propyl)-4,10-bis(carboxymethyl)-1,4,7,10-tetraazacyclododecane (Gal-PA-DO3A-NH2) and 1-(2-[beta,D-galactopyranosyloxy]ethyl)-4,7,10-tris(carboxymethyl)-1, 4,7,10-tetraazacyclododecane (Gal-DO3A) chelating agents was developed involving full hydroxyl- and carboxyl-group protection in precursors to product. Two sequences of cyclen-N-functionalisation were subsequently investigated, one successfully, towards synthesis of the novel 'smart' bifunctional Gal-PA-DO3A-NH2 chelate. The longitudinal proton relaxivities of the neutral [Gd-(Gal-PA-DO3A-NH2)] and [Gd-(Gal-DO3A)] complexes were increased by 28% and 37% in the presence of beta-galactosidase, respectively.

  7. Thermal, spectroscopic properties and laser performance at 1.06 and 1.33 μm of Nd : Ca 4YO(BO 3) 3 and Nd : Ca 4GdO(BO 3) 3 crystals

    NASA Astrophysics Data System (ADS)

    Wang, Changqing; Zhang, Huaijin; Meng, Xianlin; Zhu, Li; Chow, Y. T.; Liu, Xuesong; Cheng, Ruiping; Yang, Zhaohe; Zhang, Shaojun; Sun, Lianke

    2000-11-01

    Nd : Ca 4YO(BO 3) 3 (Nd : YCOB) and Nd : Ca 4GdO(BO 3) 3 (Nd : GdCOB) crystals were grown by Czochralski method. Thermal expansion and specific heat of these two crystals were experimentally determined. Their fluorescence spectra were measured within the range from 1000 to 1500 nm. Laser output experiments at 1.06 and 1.33 μm of Nd : YCOB and Nd : GdCOB crystals were performed with a cw Ti : sapphire laser as the pump source.

  8. Luminescent properties of Cr-doped (GdX, Y1-X)3Al5O12 infra-red scintillator crystals

    NASA Astrophysics Data System (ADS)

    Suzuki, Akira; Kurosawa, Shunsuke; Yamaji, Akihiro; Shoji, Yasuhiro; Pejchal, Jan; Kamada, Kei; Yokota, Yuui; Yoshikawa, Akira

    2014-10-01

    Cr-doped (GdX Y1-X)3Al5O12 (X = 0, 0.25, 0.50) crystals prepared by the micro-pulling down method were investigated to develop a infra-red scintillator for implantable patient dosimeter in radiation therapy. In order to evaluate their optical and scintillation performance, the following properties were measured: (i) transmittance between ultra-violet and near-infra red region, (ii) photoluminescence spectra under Xe-lamp excitation, and (iii) X-ray excited radio-luminescence spectra. Cr:Y3Al5O12 and Cr:(Gd0.25 Y0.75)3Al5O12 crystals showed increased transmittance of 80%, while Cr:(Gd0.50 Y0.50)3Al5O12 had a lower transmittance of 40% due to its polycrystalline structure. In addition, all the Cr:(GdX Y1-X)3Al5O12 crystals showed sharp scintillation luminescence peaks ascribed to Cr3+ d-d transitions. Therefore, these results suggested that Cr:Y3Al5O12 and Cr:(Gd0.25 Y0.75)3Al5O12 crystals can be candidate materials for the dosimeter use.

  9. Molecular Dynamics Simulation of the Structure and Ion Transport in the Ce1 - x Gd x O2 - δ|YSZ Heterosystem

    NASA Astrophysics Data System (ADS)

    Galin, M. Z.; Ivanov-Schitz, A. K.; Mazo, G. N.

    2018-01-01

    Molecular dynamics simulation has been used to develop a realistic atomistic model of two-layer Ce1 - x Gd x O2 - δ|YSZ heterosystem. It is shown that Ce1 - x Gd x O2 - δ and YSZ layers (about 15 and 16 Å thick, respectively) retain their crystal structure on the whole. The main structural distortions are found to occur near the Ce1 - x Gd x O2 - δ|YSZ geometric interface, within a narrow interfacial region of few angstroms thick. Both the generalized diffusion characteristics of the system as a whole and the oxygen diffusion coefficients in the layers are calculated, and the diffusion activation energies are determined.

  10. Neuroprotective Ganglioside Derivatives

    DTIC Science & Technology

    2006-09-01

    SH - SY5Y human neuroblastoma cell line . Derivatives determined to have therapeutic potential are tested in vitro for their...to be cytoprotective in in vitro models using the dopaminergic neurotoxin, 1-methyl-4-phenylpyridinium (MPP+) and the SH - SY5Y cell line . Derivatives...action of these two compounds remains unknown. The ability of GM1 (no preincubation) to protect RA- differentiated SH - SY5Y cells from MPP+

  11. Magnetism and 155Gd Mössbauer spectroscopy of GdAuMg

    NASA Astrophysics Data System (ADS)

    Łątka, Kazimierz; Kmieć, Roman; Pacyna, Andrzej W.; Fickenscher, Thomas; Hoffmann, Rolf-Dieter; Pöttgen, Rainer

    2004-03-01

    GdAuMg was synthesized by reaction of the elements in a sealed tantalum ampule in a high-frequency furnace. The structure was investigated by X-ray diffraction on both powders and single crystals: ZrNiAl type, P 6¯2m , a=756.3(1), c=412.71(7) pm, wR2=0.0285 for 308 F2 values, 14 variables. Geometrical motifs of the GdAuMg structure are gold centered tricapped trigonal prisms [Au1Mg 3Gd 6] and [Au2Mg 6Gd 3]. Together the gold and magnesium atoms form a three-dimensional [AuMg] network in which the gadolinium atoms fill distorted hexagonal channels. Bulk magnetic properties have been investigated by means of AC and DC magnetic susceptibility measurements and 155Gd Mössbauer spectroscopy was used to monitor the local electronic and magnetic structure. Two magnetic phase transitions were found. One transition, at T1= TN=81.1(1) K, is from a paramagnetic to an antiferromagnetic state of collinear character and the other at T2=19.0(1) from the antiferromagnetic to a kind of canted magnetic ordering characterized by a very narrow hysteresis loop.

  12. T1 mapping combined with Gd-EOB-DTPA-enhanced magnetic resonance imaging in predicting the pathologic grading of hepatocellular carcinoma.

    PubMed

    Chen, C Y; Chen, J; Xia, C C; Huang, Z X; Song, B

    2017-01-01

    The aim of this study was to investigate the value of Gd-EOB-DTPA-enhanced MRI on hepatobiliary phase (HBP) imaging and T1 mapping sequence in the differentiation of hepatocellular carcinoma (HCC). A total of 45 patients with HCC who were to undergo a resection were enrolled in this study. Gd-EOB-DTPA-enhanced magnetic resonance examination was performed prior to resection. T1 mapping was performed before and 20 min after injection of Gd-EOB-DTPA. T1 values of the lesions were measured on pre-contrast (T1p) and during HBP (T1-HBP) on T1 maps. The signal intensity, the diameter and the margin of HCC lesions on HBP images were analyzed. The reduction in T1 value (T1d) and the reduction rate (ΔT1%) of T1 mapping between pre-contrast and HBP were calculated. The Edmondson-Steiner classification of each lesion was made after surgery. The SPSS software package was used for statistical analysis and the analysis of receiver operator characteristic (ROC) curve and area under the curve (AUC) were carried out by using MedCalc software package. Mean values of T1p and T1-HBP were 1935.4±730.8 ms and 1257.1±529.1 ms, respectively. T1p accuracy (AUC = 0.685, p = 0.037) in predicting pathological grading was similar to that of T1-HBP (AUC = 0.751, p = 0.005). A T1p of 1648.2 ms or greater had a sensitivity and specificity of 85.19% and 61.11%, respectively. A T1-HBP of 1006 ms or greater had a sensitivity and specificity of 81.84% and 61.11%, respectively. The number of HCCs with a non-smooth tumor margin was 20 (44.4%), and a non-smooth tumor margin correlated moderately with the Edmondson-Steiner grade (Spearman r = 0.491, p = 0.041). There was no significant correlation between T1d, ΔT1%, HCC signal intensity on HBP image and lesion diameter with pathologic grading. T1 mapping in pre-contrast and HBP of Gd-EOB-DTPA-enhanced MRI, a non-smooth tumor margin in the HBP of Gd-EOB-DTPA-enhanced MRI, are useful in predicting the pathologic grading of HCC.

  13. An Efficient Method for Electroporation of Small Interfering RNAs into ENCODE Project Tier 1 GM12878 and K562 Cell Lines.

    PubMed

    Muller, Ryan Y; Hammond, Ming C; Rio, Donald C; Lee, Yeon J

    2015-12-01

    The Encyclopedia of DNA Elements (ENCODE) Project aims to identify all functional sequence elements in the human genome sequence by use of high-throughput DNA/cDNA sequencing approaches. To aid the standardization, comparison, and integration of data sets produced from different technologies and platforms, the ENCODE Consortium selected several standard human cell lines to be used by the ENCODE Projects. The Tier 1 ENCODE cell lines include GM12878, K562, and H1 human embryonic stem cell lines. GM12878 is a lymphoblastoid cell line, transformed with the Epstein-Barr virus, that was selected by the International HapMap Project for whole genome and transcriptome sequencing by use of the Illumina platform. K562 is an immortalized myelogenous leukemia cell line. The GM12878 cell line is attractive for the ENCODE Projects, as it offers potential synergy with the International HapMap Project. Despite the vast amount of sequencing data available on the GM12878 cell line through the ENCODE Project, including transcriptome, chromatin immunoprecipitation-sequencing for histone marks, and transcription factors, no small interfering siRNA-mediated knockdown studies have been performed in the GM12878 cell line, as cationic lipid-mediated transfection methods are inefficient for lymphoid cell lines. Here, we present an efficient and reproducible method for transfection of a variety of siRNAs into the GM12878 and K562 cell lines, which subsequently results in targeted protein depletion.

  14. The administration of IL-12/GM-CSF and Ig-4-1BB ligand markedly decreases murine floor of mouth squamous cell cancer.

    PubMed

    Adappa, Nithin D; Sung, Chi-Kwang; Choi, Bryan; Huang, Tian-Gui; Genden, Eric M; Shin, Edward J

    2008-09-01

    To assess immune-based gene therapy in a murine floor of mouth (FOM) squamous cell carcinoma (SCC) model. In vitro and in vivo testing of immune therapy for SCC. Multiple SCC lines were infected by using advRSV-interleukin-12 (IL-12) and advCMV-interleukin-12/granulocyte macrophage colony-stimulating factor (IL-12/GM-CSF) and monitored for production of IL-12 and GM-CSF. Intratumoral injections of viral vectors were administered with systemic Ig-4-1BB ligand in an orthotopic murine FOM SCC model and followed for tumor size and survival. In vitro, all cell lines produced substantial levels of IL-12 and GM-CSF. In vivo, tumors treated with advCMV-IL-12/GM-CSF and Ig-4-1BBL showed a striking reduction in tumor volume (vs control P<0.0001) and improved median survival (38 days vs 19 days for control, P<0.0001). Combination immune-based therapies effectively improve survival in mice bearing FOM SCC over single-modality therapy.

  15. Characterization of a new model of GM2-gangliosidosis (Sandhoff's disease) in Korat cats.

    PubMed Central

    Neuwelt, E A; Johnson, W G; Blank, N K; Pagel, M A; Maslen-McClure, C; McClure, M J; Wu, P M

    1985-01-01

    We have detected a disorder in Korat cats (initially imported from Thailand) that is analogous to human Sandhoff's disease. Pedigree analysis indicates that this disease in an autosomal recessive disorder in the American Korat. Postmortem studies on one affected cat showed hepatomegaly that was not reported in the only other known feline model of GM2-gangliosidosis type II. Histologic and ultra-structural evaluation revealed typical storage vacuoles. There was a marked deficiency in the activity of hexosaminidase (HEX) A and B in affected brain and liver as compared to controls. Electrophoresis of a liver extract revealed a deficiency of normal HEX A and B in the affected animals. The blocking primary enzyme immunoassay verified the presence of antigenically reactive HEX present in affected cat livers in quantities slightly elevated with respect to the normal HEX concentration in control cats. In leukocytes, obligate heterozygotes had intermediate levels of total HEX activity with a slight increase in the percent activity due to HEX A. Indeed, 4 of 11 phenotypically normal animals in addition to four obligate heterozygotes appear to be carriers using this assay. Affected brain and liver compared with control brain and liver contained a great excess of bound N-acetylneuraminic acid in the Folch upper-phase solids; thin-layer chromatography showed a marked increase in GM2-ganglioside. In summary, we have characterized the pedigree, pathology, and biochemistry of a new feline model of GM2-gangliosidosis which is similar to but different from the only other known feline model. Images PMID:4040927

  16. Characterization of a new model of GM2-gangliosidosis (Sandhoff's disease) in Korat cats.

    PubMed

    Neuwelt, E A; Johnson, W G; Blank, N K; Pagel, M A; Maslen-McClure, C; McClure, M J; Wu, P M

    1985-08-01

    We have detected a disorder in Korat cats (initially imported from Thailand) that is analogous to human Sandhoff's disease. Pedigree analysis indicates that this disease in an autosomal recessive disorder in the American Korat. Postmortem studies on one affected cat showed hepatomegaly that was not reported in the only other known feline model of GM2-gangliosidosis type II. Histologic and ultra-structural evaluation revealed typical storage vacuoles. There was a marked deficiency in the activity of hexosaminidase (HEX) A and B in affected brain and liver as compared to controls. Electrophoresis of a liver extract revealed a deficiency of normal HEX A and B in the affected animals. The blocking primary enzyme immunoassay verified the presence of antigenically reactive HEX present in affected cat livers in quantities slightly elevated with respect to the normal HEX concentration in control cats. In leukocytes, obligate heterozygotes had intermediate levels of total HEX activity with a slight increase in the percent activity due to HEX A. Indeed, 4 of 11 phenotypically normal animals in addition to four obligate heterozygotes appear to be carriers using this assay. Affected brain and liver compared with control brain and liver contained a great excess of bound N-acetylneuraminic acid in the Folch upper-phase solids; thin-layer chromatography showed a marked increase in GM2-ganglioside. In summary, we have characterized the pedigree, pathology, and biochemistry of a new feline model of GM2-gangliosidosis which is similar to but different from the only other known feline model.

  17. A study of the strategic alliance for EMS industry: the application of a hybrid DEA and GM (1, 1) approach.

    PubMed

    Wang, Chia Nan; Nguyen, Nhu Ty; Tran, Thanh Tuyen; Huong, Bui Bich

    2015-01-01

    Choosing a partner is a critical factor for success in international strategic alliances, although criteria for partner selection vary between developed and transitional markets. This study aims to develop effective methods to assist enterprise to measure the firms' operation efficiency, find out the candidate priority under several different inputs and outputs, and forecast the values of those variables in the future. The methodologies are constructed by the concepts of Data Envelopment Analysis (DEA) and grey model (GM). Realistic data in four consecutive years (2009-2012) a total of 20 companies of the Electronic Manufacturing Service (EMS) industry that went public are completely collected. This paper tries to help target company-DMU1-to find the right alliance partners. By our proposed approach, the results show the priority in the recent years. The research study is hopefully of interest to managers who are in manufacturing industry in general and EMS enterprises in particular.

  18. Effect of anti-GM2 antibodies on rat sciatic nerve: electrophysiological and morphological study.

    PubMed

    Ortiz, Nicolau; Sabaté, M Mar; Garcia, Neus; Santafe, Manel M; Lanuza, M Angel; Tomàs, Marta; Tomàs, Josep

    2009-03-31

    We found that a monoclonal human IgM anti-GM2 was fixed in rat sciatic axons and Schwann cells and was able to activate human complement. The passive transfer of IgM and complement in sciatic nerves can induce an acute alteration in nerve conduction. When the transfer of IgM plus complement was repeated for 10 days, the compound action motor potential amplitude was very low and the morphological study showed axons and myelin damage. Without human complement, IgM can only slightly disorganize the myelin by separating some layers, probably by interfering with the functional role of gangliosides in the myelin package.

  19. A Drosophila protein family implicated in pheromone perception is related to Tay-Sachs GM2-activator protein.

    PubMed

    Starostina, Elena; Xu, Aiguo; Lin, Heping; Pikielny, Claudio W

    2009-01-02

    Low volatility, lipid-like cuticular hydrocarbon pheromones produced by Drosophila melanogaster females play an essential role in triggering and modulating mating behavior, but the chemosensory mechanisms involved remain poorly understood. Recently, we showed that the CheB42a protein, which is expressed in only 10 pheromone-sensing taste hairs on the front legs of males, modulates progression to late stages of male courtship behavior in response to female-specific cuticular hydrocarbons. Here we report that expression of all 12 genes in the CheB gene family is predominantly or exclusively gustatory-specific, and occurs in many different, often non-overlapping patterns. Only the Gr family of gustatory receptor genes displays a comparable variety of gustatory-specific expression patterns. Unlike Grs, however, expression of all but one CheB gene is sexually dimorphic. Like CheB42a, other CheBs may therefore function specifically in gustatory perception of pheromones. We also show that CheBs belong to the ML superfamily of lipid-binding proteins, and are most similar to human GM2-activator protein (GM2-AP). In particular, GM2-AP residues involved in ligand binding are conserved in CheBs but not in other ML proteins. Finally, CheB42a is specifically secreted into the inner lumen of pheromone-sensing taste hairs, where pheromones interact with membrane-bound receptors. We propose that CheB proteins interact directly with lipid-like Drosophila pheromones and modulate their detection by the gustatory signal transduction machinery. Furthermore, as loss of GM2-AP in Tay-Sachs disease prevents degradation of GM2 gangliosides and results in neurodegeneration, the function of CheBs in pheromone response may involve biochemical mechanisms critical for lipid metabolism in human neurons.

  20. Efficacy of a high-growth reassortant H1N1 influenza virus vaccine against the classical swine H1N1 subtype influenza virus in mice and pigs.

    PubMed

    Wen, Feng; Yu, Hai; Yang, Fu-Ru; Huang, Meng; Yang, Sheng; Zhou, Yan-Jun; Li, Ze-Jun; Tong, Guang-Zhi

    2014-11-01

    Swine influenza (SI) is an acute, highly contagious respiratory disease caused by swine influenza A viruses (SwIVs), and it poses a potential global threat to human health. Classical H1N1 (cH1N1) SwIVs are still circulating and remain the predominant subtype in the swine population in China. In this study, a high-growth reassortant virus (GD/PR8) harboring the hemagglutinin (HA) and neuraminidase (NA) genes from a novel cH1N1 isolate in China, A/Swine/Guangdong/1/2011 (GD/11) and six internal genes from the high-growth A/Puerto Rico/8/34(PR8) virus was generated by plasmid-based reverse genetics and tested as a candidate seed virus for the preparation of an inactivated vaccine. The protective efficacy of this vaccine was evaluated in mice and pigs challenged with GD/11 virus. Prime and boost inoculation of GD/PR8 vaccine yielded high-titer serum hemagglutination inhibiting (HI) antibodies and IgG antibodies for GD/11 in both mice and pigs. Complete protection of mice and pigs against cH1N1 SIV challenge was observed, with significantly fewer lung lesions and reduced viral shedding in vaccine-inoculated animals compared with unvaccinated control animals. Our data demonstrated that the GD/PR8 may serve as the seed virus for a promising SwIVs vaccine to protect the swine population.

  1. Electron spin resonance of Gd3+ in the intermetallic Gd1-xYxNi3Ga9 (0 ≤ x ≤ 0.90) compounds

    NASA Astrophysics Data System (ADS)

    Mendonça, E. C.; Silva, L. S.; Mercena, S. G.; Meneses, C. T.; Jesus, C. B. R.; Duque, J. G. S.; Souza, J. C.; Pagliuso, P. G.; Lora-Serrano, R.; Teixeira-Neto, A. A.

    2017-10-01

    In this work, experiments of X-ray diffraction, magnetic susceptibility, heat capacitance, and Electron Spin Resonance (ESR) carried out in the Gd1-xYxNi3Ga9 (0 ≤ x ≤ 0.90) compounds grown through a Ga self flux method are reported. The X-ray diffraction data indicate that these compounds crystallize in a trigonal crystal structure with a space group R32. This crystal structure is unaffected by Y-substitution, which produces a monotonic decrease of the lattice parameters. For the x = 0 compound, an antiferromagnetic phase transition is observed at TN = 19.2 K, which is continuously suppressed as a function of the Y-doping and extrapolates to zero at x ≈ 0.85. The ESR data, taken in the temperature range 15 ≤ T ≤ 300 K, show a single Dysonian Gd3+ line with nearly temperature independent g-values. The linewidth follows a Korringa-like behavior as a function of temperature for all samples. The Korringa rates (b = ΔH /ΔT ) are Y-concentration-dependent indicating a "bottleneck" regime. For the most diluted sample (x = 0.90), when it is believed that the "bottleneck" effect is minimized, we have calculated the q-dependent effective exchange interactions between Gd3+ local moments and the c-e of 〈Jf-ce 2(q ) 〉 1 /2 = 18(2) meV and Jf -c e(q =0 ) = 90(10) meV.

  2. Redox cycling induced Ni exsolution in Gd0.1Ce0.8Ni0.1O2 - (Sr0.9La0.1)0.9Ti0.9Ni0.1O3 composite solid oxide fuel cell anodes

    NASA Astrophysics Data System (ADS)

    Shen, X.; Chen, T.; Bishop, S. R.; Perry, N. H.; Tuller, H. L.; Sasaki, K.

    2017-12-01

    Oxide anodes composed of 60 wt% Gd0.1Ce0.8Ni0.1O2 (GDCN)- 40 wt% (Sr0.9La0.1)0.9Ti0.9Ni0.1O3 (SLTN) composites were prepared and tested on (ZrO2)0.89(Sc2O3)0.1(CeO2)0.01 (SSZ) electrolyte-supported SOFC cells utilizing a (La0.75Sr0.25)0.98MnO3 (LSM)-SSZ cathode, in 3%-humidified hydrogen fuel at 800 °C. Improved electrochemical performance was found compared to the cell using Ni-free 60 wt% Gd0.1Ce0.9O2 (GDC) - 40 wt % Sr0.9La0.1TiO3 (SLT) that was attributed to the exsolution of nano-sized Ni particles from the Ni-doped system. This exsolution process represents a simpler, more attractive method to improve performance than the more conventional but more complicated infiltration method for introducing catalytic nanoparticles. Redox cycling testing was performed to investigate the performance and structural stability of the Ni-doped GDC-SLT anode. The results indicated that the Ni exsolution and aggregation occurred while redox cycling proceeded, resulting in a gradually reduced anodic overvoltage. Symmetric cells with dense thin film Gd0.1Ce0.9-xNixO2 (x = 0, 0.05, 0.1, 0.15) electrodes were also tested, demonstrating lower area-specific resistances with increasing Ni content on the surface under reducing conditions. The steady improvement during redox cycling, despite Ni agglomeration, is related to the continuous increase in the overall Ni content on the anode surface, which may be enabled by kinetic limitations to Ni re-dissolving under oxidizing transients.

  3. Tuning the non-covalent confinement of Gd(III) complexes in silica nanoparticles for high T1-weighted MR imaging capability.

    PubMed

    Fedorenko, Svetlana V; Grechkina, Svetlana L; Mustafina, Asiya R; Kholin, Kirill V; Stepanov, Alexey S; Nizameev, Irek R; Ismaev, Ildus E; Kadirov, Marsil K; Zairov, Rustem R; Fattakhova, Alfia N; Amirov, Rustem R; Soloveva, Svetlana E

    2017-01-01

    The present work introduces deliberate synthesis of Gd(III)-doped silica nanoparticles with high relaxivity at magnetic field strengths below 1.5T. Modified microemulsion water-in-oil procedure was used in order to achieve superficial localization of Gd(III) complexes within 40-55nm sized silica spheres. The relaxivities of the prepared nanoparticles were measured at 0.47, 1.41 and 1.5T with the use of both NMR analyzer and whole body NMR scanner. Longitudinal relaxivities of the obtained silica nanoparticles reveal significant dependence on the confinement mode, changing from 4.1 to 49.6mM -1 s -1 at 0.47T when the localization of Gd(III) complexes changes from core to superficial zones of the silica spheres. The results highlight predominant contribution of the complexes located close to silica/water interface to the relaxivity of the nanoparticles. Low effect of blood proteins on the relaxivity in the aqueous colloids of the nanoparticles was exemplified by serum bovine albumin. T 1 - weighted MRI data indicate that the nanoparticles provide strong positive contrast at 1.5T, which along with low cytotoxicity effect make a good basis for their application as contrast agents. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. A case study to determine the geographical origin of unknown GM papaya in routine food sample analysis, followed by identification of papaya events 16-0-1 and 18-2-4.

    PubMed

    Prins, Theo W; Scholtens, Ingrid M J; Bak, Arno W; van Dijk, Jeroen P; Voorhuijzen, Marleen M; Laurensse, Emile J; Kok, Esther J

    2016-12-15

    During routine monitoring for GMOs in food in the Netherlands, papaya-containing food supplements were found positive for the genetically modified (GM) elements P-35S and T-nos. The goal of this study was to identify the unknown and EU unauthorised GM papaya event(s). A screening strategy was applied using additional GM screening elements including a newly developed PRSV coat protein PCR. The detected PRSV coat protein PCR product was sequenced and the nucleotide sequence showed identity to PRSV YK strains indigenous to China and Taiwan. The GM events 16-0-1 and 18-2-4 could be identified by amplifying and sequencing events-specific sequences. Further analyses showed that both papaya event 16-0-1 and event 18-2-4 were transformed with the same construct. For use in routine analysis, derived TaqMan qPCR methods for events 16-0-1 and 18-2-4 were developed. Event 16-0-1 was detected in all samples tested whereas event 18-2-4 was detected in one sample. This study presents a strategy for combining information from different sources (literature, patent databases) and novel sequence data to identify unknown GM papaya events. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. E2 decay strength of the M1 scissors mode of ^{156}Gd and its first excited rotational state.

    PubMed

    Beck, T; Beller, J; Pietralla, N; Bhike, M; Birkhan, J; Derya, V; Gayer, U; Hennig, A; Isaak, J; Löher, B; Ponomarev, V Yu; Richter, A; Romig, C; Savran, D; Scheck, M; Tornow, W; Werner, V; Zilges, A; Zweidinger, M

    2017-05-26

    The E2/M1 multipole mixing ratio δ_{1→2} of the 1_{sc}^{+}→2_{1}^{+} γ-ray decay in ^{156}Gd and hence the isovector E2 transition rate of the scissors mode of a well-deformed rotational nucleus has been measured for the first time. It has been obtained from the angular distribution of an artificial quasimonochromatic linearly polarized γ-ray beam of energy 3.07(6) MeV scattered inelastically off an isotopically highly enriched ^{156}Gd target. The data yield first direct support for the deformation dependence of effective proton and neutron quadrupole boson charges in the framework of algebraic nuclear models. First evidence for a low-lying J^{π}=2^{+} member of the rotational band of states on top of the 1^{+} band head is obtained, too, indicating a significant signature splitting in the K=1 scissors mode rotational band.

  6. Design of High Voltage Electrical Breakdown Strength measuring system at 1.8K with a G-M cryocooler

    NASA Astrophysics Data System (ADS)

    Li, Jian; Huang, Rongjin; Li, Xu; Xu, Dong; Liu, Huiming; Li, Laifeng

    2017-09-01

    Impregnating resins as electrical insulation materials for use in ITER magnets and feeder system are required to be radiation stable, good mechanical performance and high voltage electrical breakdown strength. In present ITER project, the breakdown strength need over 30 kV/mm, for future DEMO reactor, it will be greater than this value. In order to develop good property insulation materials to satisfy the requirements of future fusion reactor, high voltage breakdown strength measurement system at low temperature is necessary. In this paper, we will introduce our work on the design of this system. This measuring system has two parts: one is an electrical supply system which provides the high voltage from a high voltage power between two electrodes; the other is a cooling system which consists of a G-M cryocooler, a superfluid chamber and a heat switch. The two stage G-M cryocooler pre-cool down the system to 4K, the superfluid helium pot is used for a container to depress the helium to superfluid helium which cool down the sample to 1.8K and a mechanical heat switch connect or disconnect the cryocooler and the pot. In order to provide the sufficient time for the test, the cooling system is designed to keep the sample at 1.8K for 300 seconds.

  7. Coadministration of Recombinant Adenovirus Expressing GM-CSF with Inactivated H5N1 Avian Influenza Vaccine Increased the Immune Responses and Protective Efficacy Against a Wild Bird Source of H5N1 Challenge.

    PubMed

    Wang, Xiangwei; Wang, Xinglong; Jia, Yanqing; Wang, Chongyang; Tang, Qiuxia; Han, Qingsong; Xiao, Sa; Yang, Zengqi

    2017-10-01

    Wild birds play a key role in the spread of avian influenza virus (AIV). There is a continual urgent requirement for AIV vaccines to address the ongoing genetic changes of AIV. In the current study, we trialed a novel AIV vaccine against the wild bird source of H5N1 type AIV with recombinant adenovirus expressing granulocyte monocyte colony-stimulating factor (GM-CSF) as an adjuvant. A total of 150-day-old commercial chicks, with AIV-maternal-derived antibody, were divided into 6 groups. The primary vaccination was performed at day 14 followed by a subsequent boosting and intramuscular challenge on day 28 and 42, respectively. Recombinant GM-CSF (rGM-CSF) expressed by adenovirus, named as rAd-GM-CSF, raised the hemagglutination inhibition (HI) titers (log 2 ) against AIV from 7.0 (vaccinate with inactivated vaccine alone) to 8.4 after booster immunization. Moreover, the rGM-CSF addition markedly increased the expression of interferon-γ, interleukin-4, and major histocompatibility complex-II in the lungs, compared with those immunized with inactivated vaccine alone on day 29, that is, 18 h post booster immunization. Following challenge, chicks inoculated with the inactivated AIV vaccine and rAd-GM-CSF together exhibited mild clinical signs and 62% survivals compared to 33% in the group immunized with inactivated AIV vaccine alone. Higher level of HI titers, immune related molecule expressions, and protection ratio demonstrates a good potential of rGM-CSF in improving humoral and cell mediated immune responses of inactivated AIV vaccines.

  8. Inhibition of Lysosome Membrane Recycling Causes Accumulation of Gangliosides that Contribute to Neurodegeneration.

    PubMed

    Boutry, Maxime; Branchu, Julien; Lustremant, Céline; Pujol, Claire; Pernelle, Julie; Matusiak, Raphaël; Seyer, Alexandre; Poirel, Marion; Chu-Van, Emeline; Pierga, Alexandre; Dobrenis, Kostantin; Puech, Jean-Philippe; Caillaud, Catherine; Durr, Alexandra; Brice, Alexis; Colsch, Benoit; Mochel, Fanny; El Hachimi, Khalid Hamid; Stevanin, Giovanni; Darios, Frédéric

    2018-06-26

    Lysosome membrane recycling occurs at the end of the autophagic pathway and requires proteins that are mostly encoded by genes mutated in neurodegenerative diseases. However, its implication in neuronal death is still unclear. Here, we show that spatacsin, which is required for lysosome recycling and whose loss of function leads to hereditary spastic paraplegia 11 (SPG11), promotes clearance of gangliosides from lysosomes in mouse and human SPG11 models. We demonstrate that spatacsin acts downstream of clathrin and recruits dynamin to allow lysosome membrane recycling and clearance of gangliosides from lysosomes. Gangliosides contributed to the accumulation of autophagy markers in lysosomes and to neuronal death. In contrast, decreasing ganglioside synthesis prevented neurodegeneration and improved motor phenotype in a SPG11 zebrafish model. Our work reveals how inhibition of lysosome membrane recycling leads to the deleterious accumulation of gangliosides, linking lysosome recycling to neurodegeneration. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  9. Thymic alterations in GM2 gangliosidoses model mice.

    PubMed

    Kanzaki, Seiichi; Yamaguchi, Akira; Yamaguchi, Kayoko; Kojima, Yoshitsugu; Suzuki, Kyoko; Koumitsu, Noriko; Nagashima, Yoji; Nagahama, Kiyotaka; Ehara, Michiko; Hirayasu, Yoshio; Ryo, Akihide; Aoki, Ichiro; Yamanaka, Shoji

    2010-08-10

    Sandhoff disease is a lysosomal storage disorder characterized by the absence of β-hexosaminidase and storage of GM2 ganglioside and related glycolipids. We have previously found that the progressive neurologic disease induced in Hexb(-/-) mice, an animal model for Sandhoff disease, is associated with the production of pathogenic anti-glycolipid autoantibodies. In our current study, we report on the alterations in the thymus during the development of mild to severe progressive neurologic disease. The thymus from Hexb(-/-) mice of greater than 15 weeks of age showed a marked decrease in the percentage of immature CD4(+)/CD8(+) T cells and a significantly increased number of CD4(+)/CD8(-) T cells. During involution, the levels of both apoptotic thymic cells and IgG deposits to T cells were found to have increased, whilst swollen macrophages were prominently observed, particularly in the cortex. We employed cDNA microarray analysis to monitor gene expression during the involution process and found that genes associated with the immune responses were upregulated, particularly those expressed in macrophages. CXCL13 was one of these upregulated genes and is expressed specifically in the thymus. B1 cells were also found to have increased in the thy mus. It is significant that these alterations in the thymus were reduced in FcRγ additionally disrupted Hexb(-/-) mice. These results suggest that the FcRγ chain may render the usually poorly immunogenic thymus into an organ prone to autoimmune responses, including the chemotaxis of B1 cells toward CXCL13.

  10. Effects of Ganglioside on Working Memory and the Default Mode Network in Individuals with Subjective Cognitive Impairment: A Randomized Controlled Trial.

    PubMed

    Jeon, Yujin; Kim, Binna; Kim, Jieun E; Kim, Bori R; Ban, Soonhyun; Jeong, Jee Hyang; Kwon, Oran; Rhie, Sandy Jeong; Ahn, Chang-Won; Kim, Jong-Hoon; Jung, Sung Ug; Park, Soo-Hyun; Lyoo, In Kyoon; Yoon, Sujung

    2016-01-01

    This randomized, double-blind, placebo-controlled trial examined whether the administration of ganglioside, an active ingredient of deer bone extract, can improve working memory performance by increasing gray matter volume and functional connectivity in the default mode network (DMN) in individuals with subjective cognitive impairment. Seventy-five individuals with subjective cognitive impairment were chosen to receive either ganglioside (330[Formula: see text][Formula: see text]g/day or 660[Formula: see text][Formula: see text]g/day) or a placebo for 8 weeks. Changes in working memory performance with treatment of either ganglioside or placebo were assessed as cognitive outcome measures. Using voxel-based morphometry and functional connectivity analyses, changes in gray matter volume and functional connectivity in the DMN were also assessed as brain outcome measures. Improvement in working memory performance was greater in the ganglioside group than in the placebo group. The ganglioside group, relative to the placebo group, showed greater increases in gray matter volume and functional connectivity in the DMN. A significant relationship between increased functional connectivity of the precuneus and improved working memory performance was observed in the ganglioside group. The current findings suggest that ganglioside has cognitive-enhancing effects in individuals with subjective cognitive impairment. Ganglioside-induced increases in gray matter volume and functional connectivity in the DMN may partly be responsible for the potential nootropic effects of ganglioside. The clinical trial was registered with ClinicalTrials.gov (identifier: NCT02379481).

  11. A Study of the Strategic Alliance for EMS Industry: The Application of a Hybrid DEA and GM (1, 1) Approach

    PubMed Central

    Wang, Chia Nan; Tran, Thanh Tuyen; Huong, Bui Bich

    2015-01-01

    Choosing a partner is a critical factor for success in international strategic alliances, although criteria for partner selection vary between developed and transitional markets. This study aims to develop effective methods to assist enterprise to measure the firms' operation efficiency, find out the candidate priority under several different inputs and outputs, and forecast the values of those variables in the future. The methodologies are constructed by the concepts of Data Envelopment Analysis (DEA) and grey model (GM). Realistic data in four consecutive years (2009–2012) a total of 20 companies of the Electronic Manufacturing Service (EMS) industry that went public are completely collected. This paper tries to help target company—DMU1—to find the right alliance partners. By our proposed approach, the results show the priority in the recent years. The research study is hopefully of interest to managers who are in manufacturing industry in general and EMS enterprises in particular. PMID:25821859

  12. Nitrogen dioxide-induced alterations in ganglioside content and structure of pulmonary artery endothelial cell plasma membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sekharam, M.; Patel, J.M.; Block, E.R.

    1990-02-26

    Nitrogen dioxide (NO{sub 2}), an environmental oxidant, is known to cause injury to the surface of pulmonary artery endothelial cells (PAEC). Because gangliosides are present in the outer leaflet of plasma membranes, the authors hypothesize that NO{sub 2} exposure may alter the ganglioside content and structure of PAEC plasma membranes. To test this, confluent porcine PAEC were exposed to 5 ppm NO{sub 2} containing 5% CO{sub 2} for 48 hours at 37 C in a CO{sub 2} incubator. Controls were exposed to air containing 5% Co{sub 2} under identical conditions. After exposure: (1) total lipids were extracted and ganglioside basesmore » were separated and estimated by fluorescamine, (2) the sialic acid content of intact cells was measured by the resorcinol method, and (3) freeze-fracture analysis of the intact cell plasma membrane was done by propane jet freezing and shadowing with platinum and carbon to form a replica. The ganglioside and sialic acid/{mu}g protein, respectively. In No{sub 2}-exposed cells, ganglioside content was reduced by 45% and sialic acid content was increased by 30%. Freeze-fracture analysis of the plasma membrane of control cells showed the presence of 160{+-}12 particles/cm area at 45000x. In contrast, the number of particles on the No{sub 2}-exposed plasma membrane was reduced to 68{+-}5 particles/cm at 45000x (p < 0.05). These results demonstrate that NO{sub 2} causes structural changes in the surface of PAEC plasma membranes, and these are temporally associated with a reduction in the number of gagliosides in these cells.« less

  13. E 2 decay strength of the M 1 scissors mode of 156Gd and its first excited rotational state

    NASA Astrophysics Data System (ADS)

    Beck, T.; Beller, J.; Pietralla, N.; Bhike, M.; Birkhan, J.; Derya, V.; Gayer, U.; Hennig, A.; Isaak, J.; Löher, B.; Ponomarev, V. Yu.; Richter, A.; Romig, C.; Savran, D.; Scheck, M.; Tornow, W.; Werner, V.; Zilges, A.; Zweidinger, M.

    2017-05-01

    The E 2 /M 1 multipole mixing ratio δ1 →2 of the 1sc+→21+ γ -ray decay in 156Gd and hence the isovector E 2 transition rate of the scissors mode of a well-deformed rotational nucleus has been measured for the first time. It has been obtained from the angular distribution of an artificial quasimonochromatic linearly polarized γ -ray beam of energy 3.07(6) MeV scattered inelastically off an isotopically highly enriched 156Gd target. The data yield first direct support for the deformation dependence of effective proton and neutron quadrupole boson charges in the framework of algebraic nuclear models. First evidence for a low-lying Jπ=2+ member of the rotational band of states on top of the 1+ band head is obtained, too, indicating a significant signature splitting in the K =1 scissors mode rotational band.

  14. Penetration of blood-brain barrier and antitumor activity and nerve repair in glioma by doxorubicin-loaded monosialoganglioside micelles system.

    PubMed

    Zou, Dan; Wang, Wei; Lei, Daoxi; Yin, Ying; Ren, Peng; Chen, Jinju; Yin, Tieying; Wang, Bochu; Wang, Guixue; Wang, Yazhou

    2017-01-01

    For the treatment of glioma and other central nervous system diseases, one of the biggest challenges is that most therapeutic drugs cannot be delivered to the brain tumor tissue due to the blood-brain barrier (BBB). The goal of this study was to construct a nanodelivery vehicle system with capabilities to overcome the BBB for central nervous system administration. Doxorubicin as a model drug encapsulated in ganglioside GM1 micelles was able to achieve up to 9.33% loading efficiency and 97.05% encapsulation efficiency by orthogonal experimental design. The in vitro study demonstrated a slow and sustainable drug release in physiological conditions. In the cellular uptake studies, mixed micelles could effectively transport into both human umbilical vein endothelial cells and C6 cells. Furthermore, biodistribution imaging of mice showed that the DiR/GM1 mixed micelles were accumulated sustainably and distributed centrally in the brain. Experiments on zebrafish confirmed that drug-loaded GM1 micelles can overcome the BBB and enter the brain. Among all the treatment groups, the median survival time of C6-bearing rats after administering DOX/GM1 micelles was significantly prolonged. In conclusion, the ganglioside nanomicelles developed in this work can not only penetrate BBB effectively but also repair nerves and kill tumor cells at the same time.

  15. Targeting Ewing sarcoma with activated and GD2-specific chimeric antigen receptor-engineered human NK cells induces upregulation of immune-inhibitory HLA-G

    PubMed Central

    Kailayangiri, Sareetha; Jamitzky, Silke; Schelhaas, Sonja; Jacobs, Andreas H.; Wiek, Constanze; Hanenberg, Helmut; Hartmann, Wolfgang; Wiendl, Heinz; Pankratz, Susann; Meltzer, Jutta; Farwick, Nicole; Greune, Lea; Fluegge, Maike; Rossig, Claudia

    2017-01-01

    ABSTRACT Activated and in vitro expanded natural killer (NK) cells have substantial cytotoxicity against many tumor cells, but their in vivo efficacy to eliminate solid cancers is limited. Here, we used chimeric antigen receptors (CARs) to enhance the activity of NK cells against Ewing sarcomas (EwS) in a tumor antigen-specific manner. Expression of CARs directed against the ganglioside antigen GD2 in activated NK cells increased their responses to GD2+ allogeneic EwS cells in vitro and overcame resistance of individual cell lines to NK cell lysis. Second-generation CARs with 4-1BB and 2B4 co-stimulatory signaling and third-generation CARs combining both co-stimulatory domains were all equally effective. By contrast, adoptive transfer of GD2-specific CAR gene-modified NK cells both by intratumoral and intraperitoneal delivery failed to eliminate GD2-expressing EwS xenografts. Histopathology review revealed upregulation of the immunosuppressive ligand HLA-G in tumor autopsies from mice treated with NK cells compared to untreated control mice. Supporting the relevance of this finding, in vitro co-incubation of NK cells with allogeneic EwS cells induced upregulation of the HLA-G receptor CD85j, and HLA-G1 expressed by EwS cells suppressed the activity of NK cells from three of five allogeneic donors against the tumor cells in vitro. We conclude that HLA-G is a candidate immune checkpoint in EwS where it can contribute to resistance to NK cell therapy. HLA-G deserves evaluation as a potential target for more effective immunotherapeutic combination regimens in this and other cancers. PMID:28197367

  16. Methylmercury causes neuronal cell death through the suppression of the TrkA pathway: In vitro and in vivo effects of TrkA pathway activators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujimura, Masatake, E-mail: fujimura@nimd.go.jp; Usuki, Fusako

    Methylmercury (MeHg) is an environmental toxin which induces cell death specific for the nervous systems. Here we show that MeHg causes neuronal cell death through the suppression of the tropomyosin receptor kinase A (TrkA) pathway, and that compounds activating the TrkA pathway prevent MeHg-induced nerve damage in vitro and in vivo. We first investigated the mechanism of MeHg-induced neurotoxicity in differentiating neurons using PC12 cells. Exposure to 100 nM MeHg for 1 day induced apoptosis in differentiating PC12 cells. Further, MeHg-induced apoptosis was preceded by inhibition of neurite extension, as determined by ELISA analyses of the neurite-specific protein neurofilament tripletmore » H protein (NF-H). To determine the mechanism of MeHg-induced apoptosis, we evaluated the effects of MeHg on the TrkA pathway, which is known to regulate neuronal differentiation and viability. Western blot analysis demonstrated that, like the TrkA phosphorylation inhibitor K252a, MeHg inhibited phosphorylation of TrkA and its downstream effectors. Furthermore, GM1 ganglioside and its analog MCC-257, which enhance TrkA phosphorylation, overcame the effect of MeHg in neurons, supporting the involvement of the TrkA pathway in MeHg-induced nerve damage. Finally, we demonstrated that MCC-257 rescued the clinical sign and pathological changes in MeHg-exposed rats. These findings indicate that MeHg-induced apoptosis in neuron is triggered by inhibition of the TrkA pathway, and that GM1 ganglioside and MCC-257 effectively prevent MeHg-induced nerve damage. - Highlights: • Exposure to 100 nM MeHg for 1 day induced apoptosis in differentiating PC12 cells. • Inhibition of neurite extension was involved in MeHg-induced apoptosis. • Like the TrkA phosphorylation inhibitor, MeHg inhibited phosphorylation of TrkA. • GM1 ganglioside and its analog effectively prevented MeHg-induced nerve damage.« less

  17. Structural annotation of Beta-1,4-N-acetyl galactosaminyltransferase 1 (B4GALNT1) causing Hereditary Spastic Paraplegia 26.

    PubMed

    Dad, Rubina; Malik, Uzma; Javed, Aneela; Minassian, Berge A; Hassan, Muhammad Jawad

    2017-08-30

    Beta-1,4-N-acetyl galactosaminyltransferase 1, B4GALNT1, is a GM2/GD2 synthase, involved in the expression of glycosphingolipids (GSLs) containing sialic acid. Mutations in the gene B4GALNT1 cause Hereditary Spastic Paraplegia 26 (HSP26). In present study we have made attempt to predict the potential structural of the human B4GALNT1 protein. The results illustrated that the amino acid sequences of B4GALNT1 are not 100% conserved among selected twenty species. One signal peptide and one transmembrane domain predicted in human wild type B4GALNT1 protein with aliphatic index of 92.76 and theoretical (iso-electric point) pI of 8.93. It was a kind of unstable protein with Grand average of hydropathicity (GRAVY) of -0.127. Various post-translational modifications were also predicted to exist in B4GALNT1 and predicted to interact with different proteins including ST8SIA5, SLC33A1, GLB1 and others. In the final round, reported missense mutations have shown the further decrease in stability of the protein. This in-silico analysis of B4GALNT1 protein will provide the basis for the further studies on structural variations and biological pathways involving B4GALNT1 in the HSP26. Copyright © 2017. Published by Elsevier B.V.

  18. Type-I non-critically phase-matched second-harmonic generation in Gd1-xYxCa4O(BO3)3

    NASA Astrophysics Data System (ADS)

    Burmester, P. B. W.; Kellner, T.; Petermann, K.; Huber, G.; Uecker, R.; Reiche, P.

    Second-harmonic generation was z-cut observed Gd1-xYxCa4O(BO3)3 (Gd1-xYxCOB) and the dependence of the phase-matching wavelength on the mixing ratio x has been investigated. The dependence on both temperature and angle tuning was examined as well. We found the suitable composition for noncritical frequency doubling at 930 nm, which is the lasing wavelength of Nd:YAlO3 on the 4F3/2?4I9/2 transition.

  19. 1.34 µm picosecond self-mode-locked Nd:GdVO4 watt-level laser

    NASA Astrophysics Data System (ADS)

    Han, Ming; Peng, Jiying; Li, Zuohan; Cao, Qiuyuan; Yuan, Ruixia

    2017-01-01

    With a simple linear configuration, a diode-pumped, self-mode-locked Nd:GdVO4 laser at 1.34 µm is experimentally demonstrated for the first time. Based on the aberrationless theory of self-focusing and thermal lensing effect, through designing and optimizing the resonator, a pulse width as short as 9.1 ps is generated at a repetition rate of 2.0 GHz and the average output power is 2.51 W. The optical conversion efficiency and the slope efficiency for the stable mode-locked operation are approximately 16.7% and 19.2%, respectively.

  20. Evidence for Lipid Packaging in the Crystal Structure of the GM2-Activator Complex with Platelet Activating Factor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, Christine S.; Mi, Li-Zhi; Rastinejad, Fraydoon

    2010-11-16

    GM2-activator protein (GM2-AP) is a lipid transfer protein that has the ability to stimulate the enzymatic processing of gangliosides as well as T-cell activation through lipid presentation. Our previous X-ray crystallographic studies of GM2-AP have revealed a large lipid binding pocket as the central overall feature of the structure with non-protein electron density within this pocket suggesting bound lipid. To extend these studies, we present here the 2 {angstrom} crystal structure of GM2-AP complexed with platelet activating factor (PAF). PAF is a potent phosphoacylglycerol whose toxic patho-physiological effects can be inhibited by GM2-AP. The structure shows an ordered arrangement ofmore » two bound lipids and a fatty acid molecule. One PAF molecule binds in an extended conformation within the hydrophobic channel that has an open and closed conformation, and was seen to contain bound phospholipid in the low pH apo structure. The second molecule is submerged inside the pocket in a U-shaped conformation with its head group near the single polar residue S141. It was refined as lyso-PAF as it lacks electron density for the sn-2 acetate group. The alkyl chains of PAF interact through van der Waals contacts, while the head groups bind in different environments with their phosphocholine moieties in contact with aromatic rings (Y137, F80). The structure has revealed further insights into the lipid binding properties of GM2-AP, suggesting an unexpected unique mode of lipid packaging that may explain the efficiency of GM2-AP in inhibiting the detrimental biological effects of PAF.« less

  1. Self-patterning Gd nano-fibers in Mg-Gd alloys

    DOE PAGES

    Li, Yangxin; Wang, Jian; Chen, Kaiguo; ...

    2016-12-07

    Manipulating the shape and distribution of strengthening units, e.g. particles, fibers, and precipitates, in a bulk metal, has been a widely applied strategy of tailoring their mechanical properties. Here, we report self-assembled patterns of Gd nano-fibers in Mg-Gd alloys for the purpose of improving their strength and deformability. 1-nm Gd nano-fibers, with amore » $$\\langle$$c$$\\rangle$$ -rod shape, are formed and hexagonally patterned in association with Gd segregations along dislocations that nucleated during hot extrusion. Such Gd-fiber patterns are able to regulate the relative activities of slips and twinning, as a result, overcome the inherent limitations in strength and ductility of Mg alloys. Finally, this nano-fiber patterning approach could be an effective method to engineer hexagonal metals.« less

  2. Self-patterning Gd nano-fibers in Mg-Gd alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yangxin; Wang, Jian; Chen, Kaiguo

    Manipulating the shape and distribution of strengthening units, e.g. particles, fibers, and precipitates, in a bulk metal, has been a widely applied strategy of tailoring their mechanical properties. Here, we report self-assembled patterns of Gd nano-fibers in Mg-Gd alloys for the purpose of improving their strength and deformability. 1-nm Gd nano-fibers, with amore » $$\\langle$$c$$\\rangle$$ -rod shape, are formed and hexagonally patterned in association with Gd segregations along dislocations that nucleated during hot extrusion. Such Gd-fiber patterns are able to regulate the relative activities of slips and twinning, as a result, overcome the inherent limitations in strength and ductility of Mg alloys. Finally, this nano-fiber patterning approach could be an effective method to engineer hexagonal metals.« less

  3. MISR Level 1A CCD, 1B1, 1B2, and Browse Products

    Atmospheric Science Data Center

    2013-04-01

    ... ESDT Product File Name Prefix Current Quality Designations MI1B2E MISR_AM1_GRP_ELLIPSOID_GM, ... should be used. All calibration files for the life of the mission have been reprocessed using the best available calibration. ...

  4. Time domain simulation of Gd3+-Gd3+ distance measurements by EPR

    NASA Astrophysics Data System (ADS)

    Manukovsky, Nurit; Feintuch, Akiva; Kuprov, Ilya; Goldfarb, Daniella

    2017-07-01

    Gd3+-based spin labels are useful as an alternative to nitroxides for intramolecular distance measurements at high fields in biological systems. However, double electron-electron resonance (DEER) measurements using model Gd3+ complexes featured a low modulation depth and an unexpected broadening of the distance distribution for short Gd3+-Gd3+ distances, when analysed using the software designed for S = 1/2 pairs. It appears that these effects result from the different spectroscopic characteristics of Gd3+—the high spin, the zero field splitting (ZFS), and the flip-flop terms in the dipolar Hamiltonian that are often ignored for spin-1/2 systems. An understanding of the factors affecting the modulation frequency and amplitude is essential for the correct analysis of Gd3+-Gd3+ DEER data and for the educated choice of experimental settings, such as Gd3+ spin label type and the pulse parameters. This work uses time-domain simulations of Gd3+-Gd3+ DEER by explicit density matrix propagation to elucidate the factors shaping Gd3+ DEER traces. The simulations show that mixing between the |+½, -½> and |-½, +½> states of the two spins, caused by the flip-flop term in the dipolar Hamiltonian, leads to dampening of the dipolar modulation. This effect may be mitigated by a large ZFS or by pulse frequency settings allowing for a decreased contribution of the central transition and the one adjacent to it. The simulations reproduce both the experimental line shapes of the Fourier-transforms of the DEER time domain traces and the trends in the behaviour of the modulation depth, thus enabling a more systematic design and analysis of Gd3+ DEER experiments.

  5. The biological activity of botulinum neurotoxin type C is dependent upon novel types of ganglioside binding sites.

    PubMed

    Strotmeier, Jasmin; Gu, Shenyan; Jutzi, Stephan; Mahrhold, Stefan; Zhou, Jie; Pich, Andreas; Eichner, Timo; Bigalke, Hans; Rummel, Andreas; Jin, Rongsheng; Binz, Thomas

    2011-07-01

    The seven botulinum neurotoxins (BoNT) cause muscle paralysis by selectively cleaving core components of the vesicular fusion machinery. Their extraordinary activity primarily relies on highly specific entry into neurons. Data on BoNT/A, B, E, F and G suggest that entry follows a dual receptor interaction with complex gangliosides via an established ganglioside binding region and a synaptic vesicle protein. Here, we report high resolution crystal structures of the BoNT/C cell binding fragment alone and in complex with sialic acid. The WY-motif characteristic of the established ganglioside binding region was located on an exposed loop. Sialic acid was co-ordinated at a novel position neighbouring the binding pocket for synaptotagmin in BoNT/B and G and the sialic acid binding site in BoNT/D and TeNT respectively. Employing synaptosomes and immobilized gangliosides binding studies with BoNT/C mutants showed that the ganglioside binding WY-loop, the newly identified sialic acid-co-ordinating pocket and the area corresponding to the established ganglioside binding region of other BoNTs are involved in ganglioside interaction. Phrenic nerve hemidiaphragm activity tests employing ganglioside deficient mice furthermore evidenced that the biological activity of BoNT/C depends on ganglioside interaction with at least two binding sites. These data suggest a unique cell binding and entry mechanism for BoNT/C among clostridial neurotoxins. © 2011 Blackwell Publishing Ltd.

  6. Proteoliposomal formulations of an HIV-1 gp41-based miniprotein elicit a lipid-dependent immunodominant response overlapping the 2F5 binding motif.

    PubMed

    Molinos-Albert, Luis M; Bilbao, Eneritz; Agulló, Luis; Marfil, Silvia; García, Elisabet; Rodríguez de la Concepción, Maria Luisa; Izquierdo-Useros, Nuria; Vilaplana, Cristina; Nieto-Garai, Jon A; Contreras, F-Xabier; Floor, Martin; Cardona, Pere J; Martinez-Picado, Javier; Clotet, Bonaventura; Villà-Freixa, Jordi; Lorizate, Maier; Carrillo, Jorge; Blanco, Julià

    2017-01-13

    The HIV-1 gp41 Membrane Proximal External Region (MPER) is recognized by broadly neutralizing antibodies and represents a promising vaccine target. However, MPER immunogenicity and antibody activity are influenced by membrane lipids. To evaluate lipid modulation of MPER immunogenicity, we generated a 1-Palmitoyl-2-oleoylphosphatidylcholine (POPC)-based proteoliposome collection containing combinations of phosphatidylserine (PS), GM3 ganglioside, cholesterol (CHOL), sphingomyelin (SM) and the TLR4 agonist monophosphoryl lipid A (MPLA). A recombinant gp41-derived miniprotein (gp41-MinTT) exposing the MPER and a tetanus toxoid (TT) peptide that favors MHC-II presentation, was successfully incorporated into lipid mixtures (>85%). Immunization of mice with soluble gp41-MinTT exclusively induced responses against the TT peptide, while POPC proteoliposomes generated potent anti-gp41 IgG responses using lower protein doses. The combined addition of PS and GM3 or CHOL/SM to POPC liposomes greatly increased gp41 immunogenicity, which was further enhanced by the addition of MPLA. Responses generated by all proteoliposomes targeted the N-terminal moiety of MPER overlapping the 2F5 neutralizing epitope. Our data show that lipids impact both, the epitope targeted and the magnitude of the response to membrane-dependent antigens, helping to improve MPER-based lipid carriers. Moreover, the identification of immunodominant epitopes allows for the redesign of immunogens targeting MPER neutralizing determinants.

  7. Proteoliposomal formulations of an HIV-1 gp41-based miniprotein elicit a lipid-dependent immunodominant response overlapping the 2F5 binding motif

    PubMed Central

    Molinos-Albert, Luis M.; Bilbao, Eneritz; Agulló, Luis; Marfil, Silvia; García, Elisabet; Concepción, Maria Luisa Rodríguez de la; Izquierdo-Useros, Nuria; Vilaplana, Cristina; Nieto-Garai, Jon A.; Contreras, F.-Xabier; Floor, Martin; Cardona, Pere J.; Martinez-Picado, Javier; Clotet, Bonaventura; Villà-Freixa, Jordi; Lorizate, Maier; Carrillo, Jorge; Blanco, Julià

    2017-01-01

    The HIV-1 gp41 Membrane Proximal External Region (MPER) is recognized by broadly neutralizing antibodies and represents a promising vaccine target. However, MPER immunogenicity and antibody activity are influenced by membrane lipids. To evaluate lipid modulation of MPER immunogenicity, we generated a 1-Palmitoyl-2-oleoylphosphatidylcholine (POPC)-based proteoliposome collection containing combinations of phosphatidylserine (PS), GM3 ganglioside, cholesterol (CHOL), sphingomyelin (SM) and the TLR4 agonist monophosphoryl lipid A (MPLA). A recombinant gp41-derived miniprotein (gp41-MinTT) exposing the MPER and a tetanus toxoid (TT) peptide that favors MHC-II presentation, was successfully incorporated into lipid mixtures (>85%). Immunization of mice with soluble gp41-MinTT exclusively induced responses against the TT peptide, while POPC proteoliposomes generated potent anti-gp41 IgG responses using lower protein doses. The combined addition of PS and GM3 or CHOL/SM to POPC liposomes greatly increased gp41 immunogenicity, which was further enhanced by the addition of MPLA. Responses generated by all proteoliposomes targeted the N-terminal moiety of MPER overlapping the 2F5 neutralizing epitope. Our data show that lipids impact both, the epitope targeted and the magnitude of the response to membrane-dependent antigens, helping to improve MPER-based lipid carriers. Moreover, the identification of immunodominant epitopes allows for the redesign of immunogens targeting MPER neutralizing determinants. PMID:28084464

  8. A novel subset of helper T cells promotes immune responses by secreting GM-CSF

    PubMed Central

    Zhang, J; Roberts, A I; Liu, C; Ren, G; Xu, G; Zhang, L; Devadas, S; Shi, Yufang

    2013-01-01

    Helper T cells are crucial for maintaining proper immune responses. Yet, they have an undefined relationship with one of the most potent immune stimulatory cytokines, granulocyte macrophage-colony-stimulating factor (GM-CSF). By depleting major cytokines during the differentiation of CD4+ T cells in vitro, we derived cells that were found to produce large amounts of GM-CSF, but little of the cytokines produced by other helper T subsets. By their secretion of GM-CSF, this novel subset of helper T cells (which we have termed ThGM cells) promoted the production of cytokines by other T-cell subtypes, including type 1 helper T cell (Th1), type 2 helper T cell (Th2), type 1 cytotoxic T cell (Tc1), type 2 cytotoxic T cell (Tc2), and naive T cells, as evidenced by the fact that antibody neutralization of GM-CSF abolished this effect. ThGM cells were found to be highly prone to activation-induced cell death (AICD). Inhibitors of TRAIL or granzymes could not block AICD in ThGM cells, whereas inhibition of FasL/Fas interaction partially rescued ThGM cells from AICD. Thus, ThGM cells are a novel subpopulation of T helper cells that produce abundant GM-CSF, exhibit exquisite susceptibility to apoptosis, and therefore play a pivotal role in the regulation of the early stages of immune responses. PMID:24076588

  9. Cooperative Protein Folding by Two Protein Thiol Disulfide Oxidoreductases and ERO1 in Soybean1[OPEN

    PubMed Central

    Okuda, Aya; Masuda, Taro; Koishihara, Katsunori; Mita, Ryuta; Iwasaki, Kensuke; Hara, Kumiko; Naruo, Yurika; Hirose, Akiho; Tsuchi, Yuichiro

    2016-01-01

    Most proteins produced in the endoplasmic reticulum (ER) of eukaryotic cells fold via disulfide formation (oxidative folding). Oxidative folding is catalyzed by protein disulfide isomerase (PDI) and PDI-related ER protein thiol disulfide oxidoreductases (ER oxidoreductases). In yeast and mammals, ER oxidoreductin-1s (Ero1s) supply oxidizing equivalent to the active centers of PDI. In this study, we expressed recombinant soybean Ero1 (GmERO1a) and found that GmERO1a oxidized multiple soybean ER oxidoreductases, in contrast to mammalian Ero1s having a high specificity for PDI. One of these ER oxidoreductases, GmPDIM, associated in vivo and in vitro with GmPDIL-2, was unable to be oxidized by GmERO1a. We therefore pursued the possible cooperative oxidative folding by GmPDIM, GmERO1a, and GmPDIL-2 in vitro and found that GmPDIL-2 synergistically accelerated oxidative refolding. In this process, GmERO1a preferentially oxidized the active center in the a′ domain among the a, a′, and b domains of GmPDIM. A disulfide bond introduced into the active center of the a′ domain of GmPDIM was shown to be transferred to the active center of the a domain of GmPDIM and the a domain of GmPDIM directly oxidized the active centers of both the a or a′ domain of GmPDIL-2. Therefore, we propose that the relay of an oxidizing equivalent from one ER oxidoreductase to another may play an essential role in cooperative oxidative folding by multiple ER oxidoreductases in plants. PMID:26645455

  10. Spectroscopy of Gd 153 and Gd 157 using the ( p , d γ ) reaction

    DOE PAGES

    Ross, T. J.; Hughes, R. O.; Allmond, J. M.; ...

    2014-10-31

    Low-spin single quasineutron levels in 153Gd and 157Gd have been studied following the 154Gd(p,d-γ ) 153Gd and 158Gd(p,d-γ ) 157Gd reactions. A combined Si telescope and high-purity germanium array was utilized, allowing d-γ and d-γ-γ coincidence measurements. Almost all of the established low-excitation-energy, low-spin structures were confirmed in both 153Gd and 157Gd. Several new levels and numerous new rays are observed in both nuclei, particularly for E x ≥1 MeV. Lastly, residual effects of a neutron subshell closure at N = 64 are observed in the form of a large excitation energy gap in the single quasineutron level schemes.

  11. Spectroscopy of Gd 153 and Gd 157 using the ( p , d γ ) reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ross, T. J.; Hughes, R. O.; Allmond, J. M.

    Low-spin single quasineutron levels in 153Gd and 157Gd have been studied following the 154Gd(p,d-γ ) 153Gd and 158Gd(p,d-γ ) 157Gd reactions. A combined Si telescope and high-purity germanium array was utilized, allowing d-γ and d-γ-γ coincidence measurements. Almost all of the established low-excitation-energy, low-spin structures were confirmed in both 153Gd and 157Gd. Several new levels and numerous new rays are observed in both nuclei, particularly for E x ≥1 MeV. Lastly, residual effects of a neutron subshell closure at N = 64 are observed in the form of a large excitation energy gap in the single quasineutron level schemes.

  12. Novel lectin-independent approach to detect galactose-deficient IgA1 in IgA nephropathy.

    PubMed

    Yasutake, Junichi; Suzuki, Yusuke; Suzuki, Hitoshi; Hiura, Naoko; Yanagawa, Hiroyuki; Makita, Yuko; Kaneko, Etsuji; Tomino, Yasuhiko

    2015-08-01

    Galactose-deficient IgA1 (Gd-IgA1) is a critical effector molecule in the pathogenesis of IgA nephropathy (IgAN). Although many researchers have measured serum levels of Gd-IgA1 using snail helix aspersa agglutinin (HAA) lectin-based assay, the lectin-dependent assay has some serious problems in robustness. In this study, we aimed to establish a more robust and stable enzyme-linked immunosorbent assay (ELISA) method that uses a specific monoclonal antibody to recognize a hinge region in human Gd-IgA1 (Gd-IgA1 ELISA). Rats were immunized with human Gd-IgA1 hinge region peptide to obtain Gd-IgA1-specific monoclonal antibody KM55. Gd-IgA1 ELISA for specifically detecting serum Gd-IgA1 was consequently constructed. Serum Gd-IgA1 concentrations in human subjects were measured using KM55 ELISA assay. To further confirm specificity of the Gd-IgA1-specific antibody, KM55 was also applied for immunofluorescence staining of glomerular Gd-IgA1 in paraffin-embedded sections of renal biopsy specimens. Measurement of serum levels of Gd-IgA1 in human subjects by Gd-IgA1 ELISA revealed increased serum Gd-IgA1 level in patients with IgAN compared with patients with other renal diseases or non-renal diseases. Importantly, the results obtained from Gd-IgA1 ELISA positively correlated with those from the HAA lectin-based assay (R = 0.75). Immunofluorescence staining of renal biopsy specimens with KM55 detected glomerular co-localization of Gd-IgA1 and IgA. This novel lectin-independent method with KM55 for measuring serum levels of Gd-IgA1 can pave the way for more convincing diagnosis and activity assessment of IgAN, and can expedite clinical research to better understand this difficult disease. © The Author 2015. Published by Oxford University Press on behalf of ERA-EDTA.

  13. Novel lectin-independent approach to detect galactose-deficient IgA1 in IgA nephropathy

    PubMed Central

    Yasutake, Junichi; Suzuki, Yusuke; Suzuki, Hitoshi; Hiura, Naoko; Yanagawa, Hiroyuki; Makita, Yuko; Kaneko, Etsuji; Tomino, Yasuhiko

    2015-01-01

    Background Galactose-deficient IgA1 (Gd-IgA1) is a critical effector molecule in the pathogenesis of IgA nephropathy (IgAN). Although many researchers have measured serum levels of Gd-IgA1 using snail helix aspersa agglutinin (HAA) lectin-based assay, the lectin-dependent assay has some serious problems in robustness. In this study, we aimed to establish a more robust and stable enzyme-linked immunosorbent assay (ELISA) method that uses a specific monoclonal antibody to recognize a hinge region in human Gd-IgA1 (Gd-IgA1 ELISA). Methods Rats were immunized with human Gd-IgA1 hinge region peptide to obtain Gd-IgA1-specific monoclonal antibody KM55. Gd-IgA1 ELISA for specifically detecting serum Gd-IgA1 was consequently constructed. Serum Gd-IgA1 concentrations in human subjects were measured using KM55 ELISA assay. To further confirm specificity of the Gd-IgA1-specific antibody, KM55 was also applied for immunofluorescence staining of glomerular Gd-IgA1 in paraffin-embedded sections of renal biopsy specimens. Results Measurement of serum levels of Gd-IgA1 in human subjects by Gd-IgA1 ELISA revealed increased serum Gd-IgA1 level in patients with IgAN compared with patients with other renal diseases or non-renal diseases. Importantly, the results obtained from Gd-IgA1 ELISA positively correlated with those from the HAA lectin-based assay (R = 0.75). Immunofluorescence staining of renal biopsy specimens with KM55 detected glomerular co-localization of Gd-IgA1 and IgA. Conclusion This novel lectin-independent method with KM55 for measuring serum levels of Gd-IgA1 can pave the way for more convincing diagnosis and activity assessment of IgAN, and can expedite clinical research to better understand this difficult disease. PMID:26109484

  14. Effect of gangliosides in the autoimmune response induced by liposome-associated antigens.

    PubMed

    Correa, S G; Rivero, V E; Yranzo-Volonté, N; Romero-Piffiguer, M; Ferro, M E; Riera, C M

    1993-01-01

    A model of autoimmunity to rat male accessory glands (RAG) was recently developed by intraperitoneal administration of three doses of native RAG associated with liposomes. In this work we analysed the effects of gangliosides in the cellular response to RAG when they were intraperitoneally administrated prior to the second dose of liposome-associated RAG. Results show that the ganglioside treatment could modify an established DTH response. Also, gangliosides markedly reduced the number of Ia antigen-positive peritoneal exudated cells (PEC). However, they modified neither the processing of liposomes through PEC nor their viability. Moreover, we obtained cellular response by transferring PEC from immunized donors into naive receptors.

  15. Detection of Sendai virus receptor, the ganglioside GDla, in target tissue (mouse lung)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Markwell, M.A.K.; Sato, E.

    1986-05-01

    Previously the authors had shown that the gangliosides GDla, GTlb, and GQlb derived from brain function as receptors for the paramyxovirus Sendai virus by their ability to induce infection when incubated with receptor-deficient cells. Analyses of MDBK, HeLa, and MDCK cells in culture demonstrated that these putative receptors were present in host cells in the quantities required for infection. The primary site of infection for Sendai virus in the whole animal is the respiratory tract, culminating in the lung. Therefore, the ganglioside content of this target organ was analyzed to determine the endogenous receptor population available to Sendai virus. Themore » total ganglioside fraction of lung was resolved into individual species by HPTLC. Gangliosides of the gangliotetraose series were identified by the specific binding of /sup 125/I-labeled tetanus and cholera toxins before and after exposure with sialidase. In this manner one of the major resorcinol-positive bands was identified as GDla. Evidence of the more complex ganglioside receptors for Sendai virus was also seen.« less

  16. Salt and cadmium stress tolerance caused by overexpression of the Glycine Max Na+/H+ Antiporter (GmNHX1) gene in duckweed (Lemna turionifera 5511).

    PubMed

    Yang, Lin; Han, Yujie; Wu, Di; Yong, Wang; Liu, Miaomiao; Wang, Sutong; Liu, Wenxin; Lu, Meiyi; Wei, Ying; Sun, Jinsheng

    2017-11-01

    Cadmium (Cd) pollution has aroused increasing attention due to its toxicity. It has been proved that Na + /H + Antiporter (NHX1) encodes a well-documented protein in Na + /H + trafficking, which leads to salt tolerance. This study showed that Glycine max Na + /H + Antiporter (GmNHX1) improved short-term cadmium and salt resistance in Lemna turionifera 5511. Expression of GmNHX1 prevented root from abscission and cell membrane damage, which also can enhance antioxidant system, inhibited of reactive oxygen species (ROS) accumulation and cause a less absorption of Cd under cadmium and salt stress. The cadmium tolerance suggested that NHX1 was involved under the cadmium stress. Copyright © 2017. Published by Elsevier B.V.

  17. Ultrahigh-resolution γ-ray spectroscopy of 156Gd: a test of tetrahedral symmetry.

    PubMed

    Jentschel, M; Urban, W; Krempel, J; Tonev, D; Dudek, J; Curien, D; Lauss, B; de Angelis, G; Petkov, P

    2010-06-04

    Tetrahedral symmetry in strongly interacting systems would establish a new class of quantum effects at subatomic scale. Excited states in 156Gd that could carry the information about the tetrahedral symmetry were populated in the 155Gd(n,γ)156Gd reaction and studied using the GAMS4/5 Bragg spectrometers at the Institut Laue-Langevin. We have identified the 5(1)- → 3(1)- transition of 131.983(12) keV in 156Gd and determined its intensity to be 1.9(3)x10(-6) per neutron capture. The lifetime τ=220(-30)(+180) fs of the 5(1)- state in 156Gd has been measured using the GRID technique. The resulting B(E2)=293(-134)(+6) Weisskopf unit rate of the 131.983 keV transition provides the intrinsic quadrupole moment of the 5(1)- state in 156Gd to be Q0=7.1(-1.6)(+0.7) b. This large value, comparable to the quadrupole moment of the ground state in 156Gd, gives strong evidence against tetrahedral symmetry in the lowest odd-spin, negative-parity band of 156Gd.

  18. The Plasma Membrane Sialidase NEU3 Regulates the Malignancy of Renal Carcinoma Cells by Controlling β1 Integrin Internalization and Recycling*

    PubMed Central

    Tringali, Cristina; Lupo, Barbara; Silvestri, Ilaria; Papini, Nadia; Anastasia, Luigi; Tettamanti, Guido; Venerando, Bruno

    2012-01-01

    The human plasma membrane sialidase NEU3 is a key enzyme in the catabolism of membrane gangliosides, is crucial in the regulation of cell surface processes, and has been demonstrated to be significantly up-regulated in renal cell carcinomas (RCCs). In this report, we show that NEU3 regulates β1 integrin trafficking in RCC cells by controlling β1 integrin recycling to the plasma membrane and controlling activation of the epidermal growth factor receptor (EGFR) and focal adhesion kinase (FAK)/protein kinase B (AKT) signaling. NEU3 silencing in RCC cells increased the membrane ganglioside content, in particular the GD1a content, and changed the expression of key regulators of the integrin recycling pathway. In addition, NEU3 silencing up-regulated the Ras-related protein RAB25, which directs internalized integrins to lysosomes, and down-regulated the chloride intracellular channel protein 3 (CLIC3), which induces the recycling of internalized integrins to the plasma membrane. In this manner, NEU3 silencing enhanced the caveolar endocytosis of β1 integrin, blocked its recycling and reduced its levels at the plasma membrane, and, consequently, inhibited EGFR and FAK/AKT. These events had the following effects on the behavior of RCC cells: they (a) decreased drug resistance mediated by the block of autophagy and the induction of apoptosis; (b) decreased metastatic potential mediated by down-regulation of the metalloproteinases MMP1 and MMP7; and (c) decreased adhesion to collagen and fibronectin. Therefore, our data identify NEU3 as a key regulator of the β1 integrin-recycling pathway and FAK/AKT signaling and demonstrate its crucial role in RCC malignancy. PMID:23139422

  19. The Protective Effect of Gangliosides on Lead (Pb)-Induced Neurotoxicity Is Mediated by Autophagic Pathways.

    PubMed

    Meng, Hongtao; Wang, Lan; He, Junhong; Wang, Zhufeng

    2016-03-25

    Lead (Pb) is a ubiquitous environmental and industrial pollutant and can affect intelligence development and the learning ability and memory of children. Therefore, necessary measures should be taken to protect the central nervous system (CNS) from Pb toxicity. Gangliosides are sialic acid-containing glycosphingolipids that are constituents of mammalian cell membranes and are more abundantly expressed in the CNS. Studies have shown that gangliosides constitute a useful tool in the attempt to promote functional recovery of CNS and can reverse Pb-induced impairments of synaptic plasticity in rats. However, the detailed mechanisms have yet to be fully understood. In our present study, we tried to investigate the role of gangliosides in Pb-induced injury in hippocampus neurons and to further confirm the detailed mechanism. Our results show that Pb-induced injuries in the spatial reference memory were associated with a reduction of cell viability and cell apoptosis, and treatment with gangliosides markedly ameliorated the Pb-induced injury by inhibition of apoptosis action. Gangliosides further attenuated Pb-induced the abnormal autophagic process by regulation of mTOR pathways. In summary, our study establishes the efficacy of gangliosides as neuroprotective agents and provides a strong rationale for further studies on the underlying mechanisms of their neuroprotective functions.

  20. Unusual Differentiation to Pheochromocytoma-Like Cells in an Adrenal Neuroblastoma After Chemotherapy: A Case Report and Literature Review.

    PubMed

    Tatekawa, Yukihiro

    2015-01-01

    The authors present a case of 3-year-old female with Stage 4 neuroblastoma originating from the left adrenal gland. Biopsy of the left adrenal tumor showed neuroblastoma. After three courses of chemotherapy, the left adrenal gland including the left adrenal tumor was surgically removed. Pathological findings of the resected tumor revealed that most of the neuroblastoma tissues changed to pheochromocytoma-like cells. The tumor cells were arranged in well-defined nests surrounded by a delicate fibrovascular stroma and had granular eosinophilic cytoplasm, and round to oval nuclei. Immunohistological analysis of the biopsy samples showed strongly positive Ganglioside GD2-staining cells, whereas almost all of the tumor cells in the resected specimen were Ganglioside GD2-negative; cells were very weakly stained. The authors suggest that a part of the neuroblastoma in the left adrenal gland exhibited unusual differentiation toward pheochromocytic lineage Ganglioside GD2-negative neuroblastoma in a patient who had been treated with intensive chemotherapy.

  1. Fano Resonance of Eu1">2+ and Eu1">3+ in (Eu,Gd)Te MBE Layers

    NASA Astrophysics Data System (ADS)

    Orlowski, B. A.; Kowalski, B. J.; Dziawa, P.; Pietrzyk, M.; Mickievicius, S.; Osinniy, V.; Taliashvili, B.; Kowalik, I. A.; Story, T.; Johnson, R. L.

    2006-11-01

    Resonant photoemission spectroscopy, with application of synchrotron radiation, was used to study the valence band electronic structure of clean surface of (EuGd)Te layers. Fano-type resonant photoemission spectra corresponding to the Eu 4d-4f transition were measured to determine the contribution of 4f electrons of Eu1">2+ and Eu1">3+ ions to the valence band. The resonant and antiresonant photon energies of Eu1">2+ ions were found as equal to 141 V and 132 eV, respectively and for Eu1">3+ ions were found as equal to 146 eV and 132 eV, respectively. Contribution of Eu1">2+4f electrons was found at the valence band edge while for Eu1">3+ it was located in the region between 3.5 eV and 8.5 eV below the valence band edge.

  2. Detection of hepatocellular carcinoma in transgenic mice by Gd-DTPA- and rhodamine 123-conjugated human serum albumin nanoparticles in T1 magnetic resonance imaging.

    PubMed

    Watcharin, Waralee; Schmithals, Christian; Pleli, Thomas; Köberle, Verena; Korkusuz, Hüdayi; Hübner, Frank; Waidmann, Oliver; Zeuzem, Stefan; Korf, Horst-Werner; Terfort, Andreas; Gelperina, Svetlana; Vogl, Thomas J; Kreuter, Jörg; Piiper, Albrecht

    2015-02-10

    Nanoparticle (NP)-based contrast agents that enable high resolution anatomic T1-weighted magnetic resonance imaging (MRI) offer the prospect of improving differential diagnosis of liver tumors such as hepatocellular carcinoma (HCC). In the present study, we investigated the possibility of employing novel non-toxic human serum albumin nanoparticles conjugated with Gd-DTPA and rhodamine 123 (Gd-Rho-HSA-NPs) for the detection of HCC by T1-weighted MRI. In addition, the influence of surface coating of the NPs with poloxamine 908, which alters the absorptive behavior of NPs and changes their distribution between the liver and tumor was examined. MRI of transgenic mice with endogenously formed HCCs following intravenous injection of Gd-Rho-HSA-NPs revealed a strong negative contrast of the tumors. Contrasting of the HCCs by NP-enhanced MRI required less Gd as compared to gadolinium-ethoxybenzyl-diethylenetriaminepentaacetic acid-enhanced MRI, which currently provides the most sensitive detection of HCC in patients. Immunohistochemical analyses revealed that the Gd-Rho-HSA-NPs were localized to macrophages, which were - similar to HCC in patients - fewer in number in HCC as compared to the liver tissue, which is in agreement with the negative contrasting of HCC in Gd-Rho-HSA-NP-enhanced MRI. Poloxamine-coated NPs showed lower accumulation in the tumor macrophages and caused a longer lasting enhancement of the MRI signal. These data indicate that Gd-Rho-HSA-NPs enable sensitive detection of HCC by T1-weighted MRI in mice with endogenous HCC through their uptake by macrophages. Poloxamine coating of the NPs delayed the tumor localization of the NPs. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Enhanced emission of encaged-OH--free Ca12(1-x)Sr12xAl14O33:0.1%Gd3+ conductive phosphors via tuning the encaged-electron concentration for low-voltage FEDs.

    PubMed

    Zhang, Meng; Liu, Yuxue; Yang, Jian; Zhu, Hancheng; Yan, Duanting; Zhang, Xinyang; Liu, Chunguang; Xu, Changshan; Zhang, Hong

    2017-05-24

    Encaged-OH - -free Ca 12(1-x) Sr 12x Al 14 O 33 :0.1%Gd 3+ conductive phosphors were prepared through a melt-solidification process in combination with a subsequent heat treatment. Absorption spectra showed that the maximum encaged-electron concentration was increased to 1.08 × 10 21 cm -3 through optimizing the doping amount of Sr 2+ (x = 0.005). Meanwhile, FTIR and Raman spectra indicated that pure Ca 11.94 Sr 0.06 Al 14 O 33 :0.1%Gd 3+ conductive phosphor without encaged OH - and C 2 2- anions was acquired. For the conductive powders heat-treated in air for different times, the encaged-electron concentrations were tuned from 1.02 × 10 21 to 8.3 × 10 20 cm -3 . ESR, photoluminescence, and luminescence kinetics analyses indicated that the emission at 312 nm mainly originated from Gd 3+ ions surrounded by encaged O 2- anions, while Gd 3+ ions surrounded by encaged electrons had a negative contribution to the UV emission due to the existence of an energy transfer process. Under low-voltage electron-beam excitation (3 kV), enhanced cathodoluminescence (CL) of the conductive phosphors could be achieved by tuning the encaged-electron concentrations. In particular, for the encaged-OH - -free conductive phosphor, the emission intensity of the CL was about one order of magnitude higher than that of the conductive phosphor containing encaged OH - anions. Our results suggested that the encaged-OH - -free conductive phosphors have potential application in low-voltage FEDs.

  4. A murine model of acute myeloid leukemia with Evi1 overexpression and autocrine stimulation by an intracellular form of GM-CSF in DA-3 cells.

    PubMed

    Cardona, Maria E; Simonson, Oscar E; Oprea, Iulian I; Moreno, Pedro M D; Silva-Lara, Maria F; Mohamed, Abdalla J; Christensson, Birger; Gahrton, Gösta; Dilber, M Sirac; Smith, C I Edvard; Arteaga, H Jose

    2016-01-01

    The poor treatment response of acute myeloid leukemia (AML) overexpressing high-risk oncogenes such as EVI1, demands specific animal models for new treatment evaluations. Evi1 is a common site of activating integrations in murine leukemia virus (MLV)-induced AML and in retroviral and lentiviral gene-modified HCS. Still, a model of overt AML induced by Evi1 has not been generated. Cell lines from MLV-induced AML are growth factor-dependent and non-transplantable. Hence, for the leukemia maintenance in the infected animals, a growth factor source such as chronic immune response has been suggested. We have investigated whether these leukemias are transplantable if provided with growth factors. We show that the Evi1(+)DA-3 cells modified to express an intracellular form of GM-CSF, acquired growth factor independence and transplantability and caused an overt leukemia in syngeneic hosts, without increasing serum GM-CSF levels. We propose this as a general approach for modeling different forms of high-risk human AML using similar cell lines.

  5. Magnetic Field Driven Change of the Density of States of Amorphous Gd_xSi_1-x at the Metal Insulator Transition

    NASA Astrophysics Data System (ADS)

    Teizer, W.; Hellman, F.; Dynes, R. C.; Ucsd Physics Department Collaboration

    2000-03-01

    We have determined the density of states of amorphous Gd_xSi_1-x, N(E), through the Metal-Insulator transition by tunneling measurements. Gd_xSi_1-x shows a strong negative magnetoresistance at low temperature [1] and can be driven through the Metal-Insulator transition by applying a magnetic field [2]. In H=0, the conductance dI/dV across a Gd_xSi_1-x/oxide/Pb tunnel junction is dominated by a sharp superconducting Pb gap edge and Pb phonons indicating the presence of single step quantum tunneling. As a small magnetic field (H=1kOe) is applied, effects of the superconductivity of Pb disappear and at low voltages it is reasonable to approximate dI/dV N(E). We find that N(E) increases with magnetic field. On the metallic side of the Metal-Insulator transition, the density of states at zero bias, N(0), approximately scales with the extrapolated T=0 transport conductivity σ_0. A change of N(0) thus causes a change in σ_0. The Metal-Insulator transition occurs when N(0) goes to 0. [1] F. Hellman, M. Q. Tran, A. E. Gebala, E. M. Wilcox and R. C. Dynes. Phys. Rev. Lett. bf77, 4652 (1996). P. Xiong, B. I. Zink, S. I. Applebaum, F. Hellman and R. C. Dynes. Phys. Rev. B bf59, 3929 (1999). [2] W. Teizer, F. Hellman and R. C. Dynes. To be published.

  6. Influence of one-year neurologic outcome of treatment on newborns with moderate and severe hypoxic-ischemic encephalopathy by rhuEP0 combined with ganglioside (GM1).

    PubMed

    Zhu, X-Y; Ye, M-Y; Zhang, A-M; Wang, W-D; Zeng, F; Li, J-L; Fang, F

    2015-10-01

    To observe the one-year neurologic prognostic outcome of newborns with moderate and severe hypoxic-ischemic encephalopathy (HIE) who received recombinant human erythropoietin (rhuEPO) combined with exogenous monosialotetrahexosylganglioside (GM1) treatment to provide new guidelines for clinical treatment. Seventy-six newborns with moderate and severe HIE were selected from February 2011 to February 2014 in our hospital. This study received the informed consent of our hospital's Ethics Committee and the newborns' guardians. The newborns were divided to an observation group (n = 34 cases) and a control group (n = 42 cases). All newborns underwent hypothermia and conventional treatment for their conditions. The control group received GMl treatment and observation group received rhuEPO combined with GMl treatment. The curative differences and neural behavior from these two groups were compared. The excellent, efficient proportion and total effective rate of the newborns from the observation group were higher than the control group. The death rate, cerebral palsy and the invalid ratio of the newborns from the observation group were lower than that of the control group. Awareness, muscle tension, primitive reflex and increased intracranial pressure recovery time of the newborns in the observation group were less than those of the control group. The Neonatal Behavior Neurological Assessment (NBNA) score of both groups after the treatment of 7, 14 and 28 days were significantly higher and increased with time (p < 0.05). The MDI, PDI and DQ score of newborns from the two groups all increased after treatment of 3, 6 and 12 months than those of before, which increased with time (p < 0.05). The rhuEPO + GMl treatment in newborns with HIE improves short-term clinical effects and long-term neurological symptoms.

  7. Expression of cholera toxin B subunit in transgenic tomato plants.

    PubMed

    Jani, Dewal; Meena, Laxman Singh; Rizwan-ul-Haq, Quazi Mohammad; Singh, Yogendra; Sharma, Arun K; Tyagi, Akhilesh K

    2002-10-01

    Cholera toxin, secreted by Vibrio cholerae, consists of A and B subunits. The latter binds to G(M1)-ganglioside receptors as a pentamer (approximately 55 kDa). Tomato plants were transformed with the gene encoding cholera toxin B subunit (ctxB) along with an endoplasmic reticulum retention signal (SEKDEL) under the control of the CaMV 35S promoter via Agrobacterium-mediated transformation. PCR and Southern analysis confirmed the presence of the ctxB gene in transformed tomato plants. Northern analysis showed the presence of the ctxB-specific transcript. Immunoblot assays of the plant-derived protein extract showed the presence of cholera toxin subunit B (CTB) with mobility similar to purified CTB from V. cholerae. Both tomato leaves and fruits expressed CTB at levels up to 0.02 and 0.04% of total soluble protein, respectively. The G(M1)-ELISA showed that the plant-derived CTB bound specifically to G(M1)-ganglioside receptor, suggesting that it retained its native pentameric form. This study forms a basis for exploring the utility of CTB to develop tomato-based edible vaccines against cholera.

  8. Extensive Analysis of GmFTL and GmCOL Expression in Northern Soybean Cultivars in Field Conditions

    PubMed Central

    Zhu, Jinlong; Lu, Mingyang; Chen, Fulu; Liu, Linpo; Xi, Zhang-Ying; Bachmair, Andreas; Chen, Qingshan; Fu, Yong-Fu

    2015-01-01

    The FLOWERING LOCUS T (FT) gene is a highly conserved florigen gene among flowering plants. Soybean genome encodes six homologs of FT, which display flowering activity in Arabidopsis thaliana. However, their contributions to flowering time in different soybean cultivars, especially in field conditions, are unclear. We employed six soybean cultivars with different maturities to extensively investigate expression patterns of GmFTLs (Glycine max FT-like) and GmCOLs (Glycine max CO-like) in the field conditions. The results show that GmFTL3 is an FT homolog with the highest transcript abundance in soybean, but other GmFTLs may also contribute to flower induction with different extents, because they have more or less similar expression patterns in developmental-, leaf-, and circadian-specific modes. And four GmCOL genes (GmCOL1/2/5/13) may confer to the expression of GmFTL genes. Artificial manipulation of GmFTL expression by transgenic strategy (overexpression and RNAi) results in a distinct change in soybean flowering time, indicating that GmFTLs not only impact on the control of flowering time, but have potential applications in the manipulation of photoperiodic adaptation in soybean. Additionally, transgenic plants show that GmFTLs play a role in formation of the first flowers and in vegetative growth. PMID:26371882

  9. Extensive Analysis of GmFTL and GmCOL Expression in Northern Soybean Cultivars in Field Conditions.

    PubMed

    Guo, Guangyu; Xu, Kun; Zhang, Xiaomei; Zhu, Jinlong; Lu, Mingyang; Chen, Fulu; Liu, Linpo; Xi, Zhang-Ying; Bachmair, Andreas; Chen, Qingshan; Fu, Yong-Fu

    2015-01-01

    The FLOWERING LOCUS T (FT) gene is a highly conserved florigen gene among flowering plants. Soybean genome encodes six homologs of FT, which display flowering activity in Arabidopsis thaliana. However, their contributions to flowering time in different soybean cultivars, especially in field conditions, are unclear. We employed six soybean cultivars with different maturities to extensively investigate expression patterns of GmFTLs (Glycine max FT-like) and GmCOLs (Glycine max CO-like) in the field conditions. The results show that GmFTL3 is an FT homolog with the highest transcript abundance in soybean, but other GmFTLs may also contribute to flower induction with different extents, because they have more or less similar expression patterns in developmental-, leaf-, and circadian-specific modes. And four GmCOL genes (GmCOL1/2/5/13) may confer to the expression of GmFTL genes. Artificial manipulation of GmFTL expression by transgenic strategy (overexpression and RNAi) results in a distinct change in soybean flowering time, indicating that GmFTLs not only impact on the control of flowering time, but have potential applications in the manipulation of photoperiodic adaptation in soybean. Additionally, transgenic plants show that GmFTLs play a role in formation of the first flowers and in vegetative growth.

  10. Characteristics of a 1.6 W Gifford-McMahon Cryocooler with a Double Pipe Regenerator

    NASA Astrophysics Data System (ADS)

    Masuyama, S.; Numazawa, T.

    2017-12-01

    This paper focuses on the second stage regenerator of a 4 K Gifford-McMahon (G-M) cryocooler. A three-layer layout of lead (Pb), HoCu2 and Gd2O2S spheres in the second stage regenerator derives a good performance at 4 K. After some modifications, we confirmed that the cooling power of 1.60 W at 4.2 K was achieved by using this three-layer layout. A two-stage G-M cryocooler is RDK-408D2 (SHI) and a compressor is C300G (SUZUKISHOKAN) with a rated electric input power of 7.3 kW at 60 Hz. In order to further improve, a double pipe regenerator was applied to the second stage regenerator. As a double pipe, a stainless steel pipe with thin wall was inserted in the coaxial direction into the second stage regenerator. The helium flow in the second stage regenerator is expected to be non-uniform flow because of the distribution of helium density and the imperfect packing of regenerator material. The double pipe regenerator is considered to have an effect of restraining the non-uniform flow. From the experimental results, the second stage cooling power of 1.67 W at 4.2 K and the first stage cooling power of 64.9 W at 50 K were achieved.

  11. Dissecting the Role of Anti-ganglioside Antibodies in Guillain-Barré Syndrome: an Animal Model Approach.

    PubMed

    Asthana, Pallavi; Vong, Joaquim Si Long; Kumar, Gajendra; Chang, Raymond Chuen-Chung; Zhang, Gang; Sheikh, Kazim A; Ma, Chi Him Eddie

    2016-09-01

    Guillain-Barré syndrome (GBS) is an autoimmune polyneuropathy disease affecting the peripheral nervous system (PNS). Most of the GBS patients experienced neurological symptoms such as paresthesia, weakness, pain, and areflexia. There are also combinations of non-neurological symptoms which include upper respiratory tract infection and diarrhea. One of the major causes of GBS is due largely to the autoantibodies against gangliosides located on the peripheral nerves. Gangliosides are sialic acid-bearing glycosphingolipids consisting of a ceramide lipid anchor with one or more sialic acids attached to a neutral sugar backbone. Molecular mimicry between the outer components of oligosaccharide of gangliosides on nerve membrane and lipo-oligosaccharide of microbes is thought to trigger the autoimmunity. Intra-peritoneal implantation of monoclonal ganglioside antibodies secreting hybridoma into animals induced peripheral neuropathy. Recent studies demonstrated that injection of synthesized anti-ganglioside antibodies raised by hybridoma cells into mice initiates immune response against peripheral nerves, and eventually failure in peripheral nerve regeneration. Accumulating evidences indicate that the conjugation of anti-ganglioside monoclonal antibodies to activating FcγRIII present on the circulating macrophages inhibits axonal regeneration. The activation of RhoA signaling pathways is also involved in neurite outgrowth inhibition. However, the link between these two molecular events remains unresolved and requires further investigation. Development of anti-ganglioside antagonists can serve as targeted therapy for the treatment of GBS and will open a new approach of drug development with maximum efficacy and specificity.

  12. GD2-targeted immunotherapy and potential value of circulating microRNAs in neuroblastoma.

    PubMed

    Gholamin, Sharareh; Mirzaei, Hamed; Razavi, Seyed-Mostafa; Hassanian, Seyed Mahdi; Saadatpour, Leila; Masoudifar, Aria; ShahidSales, Soodabeh; Avan, Amir

    2018-02-01

    Neuroblastoma (NB) with various clinical presentation is a known childhood malignancy. Despite significant progress in treatment of NB afflicted patients, high risk disease is usually associated with poor outcome, resulting in long-term survival of less that 50%. Known as a disease most commonly originated form the nerve roots, the variants involved in NB imitation and progression remain to be elucidated. The outcome of low to intermediate risk disease is favorable whereas the high risk NB disease with dismal prognosis, positing the necessity of novel approaches for early detection and prognostication of advanced disease. Tailored immunotherapy approaches have shown significant improvement in high-risk NB patients. It has found a link between Gangliosides and progression of NB. The vast majority of neuroblastoma tumors express elevated levels of GD2, opening new insight into using anti-GD2 drugs as potential treatments for NBs. Implication of anti-GD2 monoclonal antibodies for treatment of high risk NBs triggers further investigation to unearth novel biomarkers as prognostic and response biomarker to guide additional multimodal tailored treatment approaches. A growing body of evidence supports the usefulness of miRNAs to evaluate high risk NBs response to anti-GD2 drugs and further prevent drug-related toxicities in refractory or recurrent NBs. miRNAs and circulating proteins in body fluids (plasma and serum) present as potential biomarkers in early detection of NBs. Here, we summarize various biomarkers involved in diagnosis, prognosis and response to treatment in patients with NB. We further attempted to overview prognostic biomarkers in response to treatment with anti-GD2 drugs. © 2017 Wiley Periodicals, Inc.

  13. A DFT+U study of Pu immobilization in Gd2Zr2O7

    NASA Astrophysics Data System (ADS)

    Zhao, F. A.; Xiao, H. Y.; Jiang, M.; Liu, Z. J.; Zu, X. T.

    2015-12-01

    The solubility of Pu in Gd2Zr2O7 has been investigated by the density functional theory plus Hubbard U correction. It is found that the formation of PuGdZr2O7, Gd2PuZrO7 and Gd2Pu1.5Zr0.5O7 are exothermic, whereas Pu0.5Gd1.5Zr2O7, Pu1.5Gd0.5Zr2O7 and Gd2Pu0.5Zr1.5O7 are energetically less stable than their respective separated states. The calculations show that both the Gd and Zr lattice sites can be substituted by the Pu, which is consistent with the immobilization behavior of uranium in Gd2Zr2O7 observed experimentally. The site preference of Pu in Gd2Zr2O7 is found to be dependent on the chemical environment, i.e., Pu prefers to substitute for Gd-site under Gd-rich and O2-rich conditions and for Zr-site under Zr-rich and O2-rich conditions.

  14. Absence of LTB4/BLT1 axis facilitates generation of mouse GM-CSF-induced long-lasting antitumor immunologic memory by enhancing innate and adaptive immune systems.

    PubMed

    Yokota, Yosuke; Inoue, Hiroyuki; Matsumura, Yumiko; Nabeta, Haruka; Narusawa, Megumi; Watanabe, Ayumi; Sakamoto, Chika; Hijikata, Yasuki; Iga-Murahashi, Mutsunori; Takayama, Koichi; Sasaki, Fumiyuki; Nakanishi, Yoichi; Yokomizo, Takehiko; Tani, Kenzaburo

    2012-10-25

    BLT1 is a high-affinity receptor for leukotriene B4 (LTB4) that is a potent lipid chemoattractant for myeloid leukocytes. The role of LTB4/BLT1 axis in tumor immunology, including cytokine-based tumor vaccine, however, remains unknown. We here demonstrated that BLT1-deficient mice rejected subcutaneous tumor challenge of GM-CSF gene-transduced WEHI3B (WGM) leukemia cells (KO/WGM) and elicited robust antitumor responses against second tumor challenge with WEHI3B cells. During GM-CSF-induced tumor regression, the defective LTB4/BLT1 signaling significantly reduced tumor-infiltrating myeloid-derived suppressor cells, increased the maturation status of dendritic cells in tumor tissues, enhanced their CD4(+) T-cell stimulation capacity and migration rate of dendritic cells that had phagocytosed tumor-associated antigens into tumor-draining lymph nodes, suggesting a positive impact on GM-CSF-sensitized innate immunity. Furthermore, KO/WGM mice displayed activated adaptive immunity by attenuating regulatory CD4(+) T subsets and increasing numbers of Th17 and memory CD44(hi)CD4(+) T subsets, both of which elicited superior antitumor effects as evidenced by adoptive cell transfer. In vivo depletion assays also revealed that CD4(+) T cells were the main effectors of the persistent antitumor immunity. Our data collectively underscore a negative role of LTB4/BLT1 signaling in effective generation and maintenance of GM-CSF-induced antitumor memory CD4(+) T cells.

  15. Investigation of cyano-bridged coordination nanoparticles Gd3+/[Fe(CN)6]3-/d-mannitol as T1-weighted MRI contrast agents

    NASA Astrophysics Data System (ADS)

    Perrier, M.; Gallud, A.; Ayadi, A.; Kennouche, S.; Porredon, C.; Gary-Bobo, M.; Larionova, J.; Goze-Bac, Ch.; Zanca, M.; Garcia, M.; Basile, I.; Long, J.; de Lapuente, J.; Borras, M.; Guari, Y.

    2015-07-01

    Cyano-bridged Gd3+/[Fe(CN)6]3- coordination polymer nanoparticles of 3-4 nm stabilized with d-mannitol presenting a high r1 relaxivity value of 11.4 mM-1 s-1 were investigated in vivo as contrast agents (CA) for Magnetic Resonance Imaging (MRI). They allow an increase of the MR image contrast and can act as an efficient intravascular T1 CA with a relatively long blood-circulation lifetime (60 min) without specific toxicity.Cyano-bridged Gd3+/[Fe(CN)6]3- coordination polymer nanoparticles of 3-4 nm stabilized with d-mannitol presenting a high r1 relaxivity value of 11.4 mM-1 s-1 were investigated in vivo as contrast agents (CA) for Magnetic Resonance Imaging (MRI). They allow an increase of the MR image contrast and can act as an efficient intravascular T1 CA with a relatively long blood-circulation lifetime (60 min) without specific toxicity. Electronic supplementary information (ESI) available: Experimental details and procedures, toxicological data, physical characterization. See DOI: 10.1039/c5nr01557j

  16. FURTHER STUDIES ON THE γG-HEAVY CHAIN GENE COMPLEXES, WITH PARTICULAR REFERENCE TO THE GENETIC MARKERS Gm(g) AND Gm(n)

    PubMed Central

    Natvig, J. B.; Kunkel, H. G.; Yount, W. J.; Nielsen, J. C.

    1968-01-01

    The recently described Gm (g) and Gm (n) genetic markers of the γG3- and γG2-subgroups of γ-globulin were characterized in detail primarily through studies of myeloma proteins, their polypeptide chains and fragments. Antisera derived from rabbits, non-human primates and rheumatoid arthritis patients gave identical results. This contrasted with the Gm (b) system where the rabbit antisera react with a different genetic determinant (b0) than the sera from rheumatoid arthritis patients (b). The Gm (g) and Gm (n) antigens were detected both by precipitin analysis and by hemagglutination inhibition. The Gm (g) antigen was not associated with any of the other genetic antigens of the γG3-proteins which all belonged in the Gm (b) class. The genes for the latter were always allelic to the gene coding for Gm (g), with that for Gm (b0) constantly present when that for Gm (g) was absent. The Gm (g) and Gm (n) markers were of particular value in tracing the various gene complexes made up of the closely linked subgroup genes. Further support was gained for the concept that the different gene complexes of various population groups arose primarily through crossing-over. The Gm g and Gm b genes for the γG3-subgroup were extremely closely linked to those for the γG1-subgroup. However the Gm (n) marker indicated that the γG2-subgroup genes were probably further separated on the chromosome. Additional evidence was obtained for the γG2-γG3-γG1-order of the subgroup cistrons. Among the wide range of gene complexes a new type (γG2,—,γ/G1) was described. This complex appeared to have a deletion of the γG3-cistron. Lower levels of γG3-globulin were found in the sera of the individuals with this gene in the heterozygous state. The possibility that this unusual complex arose through an unequal nonhomologous crossing-over is discussed. PMID:19867305

  17. Modulated visible spectra properties of Pr:Ca1-xRxF2+x(R=Y, La, Gd) crystals

    NASA Astrophysics Data System (ADS)

    Yu, Hao; Qian, Xiaobo; Wu, Qinghui; Ma, Fengkai; Wang, Jingya; Xu, Jun; Su, Liangbi

    2017-10-01

    The spectroscopic properties of the 1.0 at.%Pr:Ca0.97R0.02F2.03(R=Y, La, Gd) crystals are investigated. X-diffraction and room temperature absorption spectra have been registered and analyzed. The emission spectra and decay curves of the crystals were obtained at room temperature. The photoluminescence intensity in the visible region is significantly enhanced by co-doping R3+ ions in Pr:CaF2 crystal. The different effects among the R3+ (Y3+, La3+ and Gd3+) regulating ions on the crystals were observed and compared. Pr:Ca0.97La0.02F2.03 and Pr:Ca0.97Y0.02F2.03 crystals have substantially strong emission at blue and orange region, while the Pr:Ca0.97Gd0.02F2.03 crystal is more suitable for the red emission emitting.

  18. Annealing influence on the magnetostructural transition in Gd 5Si 1.3Ge 2.7 thin films

    DOE PAGES

    Pires, A. L.; Belo, J. H.; Gomes, I. T.; ...

    2015-05-19

    Due to the emerging cooling possibilities at the micro and nanoscale, such as the fast heat exchange rate, the effort to synthesize and optimize the magnetocaloric materials at these scales is rapidly growing. Here, we report the effect of different thermal treatments on Gd 5Si 1.3Ge 2.7 thin film in order to evaluate the correlation between the crystal structure, magnetic phase transition and magnetocaloric effect. For annealing temperatures higher than 500ºC, the samples showed a typical paramagnetic behavior. On the other hand, thermal treatments below 500ºC promoted the suppression of the magnetostructural transition at 190 K, while the magnetic transitionmore » around 249 K is not affected. This magnetostructural transition extinction was reflected in the magnetocaloric behavior and resulted in a drastic decrease in the entropy change peak value (of about 68%). An increase in T C was reported, proving that at the nanoscale, heat treatments may be a useful tool to optimize the magnetocaloric properties in Gd 5(Si xGe 1-x) 4 thin films.« less

  19. A comparative study of human IgE binding to proteins of a genetically modified (GM) soybean and six non-GM soybeans grown in multiple locations.

    PubMed

    Lu, Mei; Jin, Yuan; Ballmer-Weber, Barbara; Goodman, Richard E

    2018-02-01

    Prior to commercialization, genetically modified (GM) crops are evaluated to determine the allergenicity of the newly expressed protein. Some regulators require an evaluation of endogenous allergens in commonly allergenic crops including soybean to determine if genetic transformation increased endogenous allergen concentrations, even asking for IgE testing using sera from individual sensitized subjects. Little is known about the variability of the expression of endogenous allergens among non-GM varieties or under different environmental conditions. We tested IgE binding to endogenous allergenic proteins in an experimental non-commercial GM line, a non-GM near-isoline control, and five non-GM commercial soybean lines replicated at three geographically separated locations. One-dimensional (1D) and two-dimensional (2D) immunoblotting and ELISA were performed using serum or plasma from eleven soybean allergic patients. The results of immunoblots and ELISA showed no significant differences in IgE binding between the GM line and its non-GM near-isoline control. However, some distinct differences in IgE binding patterns were observed among the non-GM commercial soybean lines and between different locations, highlighting the inherent variability in endogenous allergenic proteins. Understanding the potential variability in the levels of endogenous allergens is necessary to establish a standard of acceptance for GM soybeans compared to non-GM soybean events and lines. Copyright © 2018. Published by Elsevier Ltd.

  20. Hole-to-surface resistivity measurements at Gibson Dome (drill hole GD-1) Paradox basin, Utah

    USGS Publications Warehouse

    Daniels, J.J.

    1984-01-01

    Hole-to-surface resistivity measurements were made in a deep drill hole (GD-1), in San Juan County, Utah, which penetrated a sequence of sandstone, shale, and evaporite. These measurements were made as part of a larger investigation to study the suitability of an area centered around the Gibson Dome structure for nuclear waste disposal. The magnitude and direction of the total electric field resulting from a current source placed in a drill hole is calculated from potential difference measurements for a grid of closely-spaced stations. A contour map of these data provides a detailed map of the distribution of the electric field away from the drill hole. Computation of the apparent resistivity from the total electric field helps to interpret the data with respect to the ideal situation of a layered earth. Repeating the surface measurements for different source depths gives an indication of variations in the geoelectric section with depth. The quantitative interpretation of the field data at Gibson Dome was hindered by the pressure of a conductive borehole fluid. However, a qualitative interpretation of the field data indicates the geoelectric section around drill hole GD-1 is not perfectly layered. The geoelectric section appears to dip to the northwest, and contains anomalies in the resistivity distribution that may be representative of localized thickening or folding of the salt layers.

  1. IL-3 specifically inhibits GM-CSF binding to the higher affinity receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taketazu, F.; Chiba, S.; Shibuya, K.

    1991-02-01

    The inhibition of binding between human granulocyte-macrophage colony-stimulating factor (GM-CSF) and its receptor by human interleukin-3 (IL-3) was observed in myelogenous leukemia cell line KG-1 which bore the receptors both for GM-CSF and IL-3. In contrast, this phenomenon was not observed in histiocytic lymphoma cell line U-937 or in gastric carcinoma cell line KATO III, both of which have apparent GM-CSF receptor but an undetectable IL-3 receptor. In KG-1 cells, the cross-inhibition was preferentially observed when the binding of GM-CSF was performed under the high-affinity binding condition; i.e., a low concentration of 125I-GM-CSF was incubated. Scatchard analysis of 125I-GM-CSF bindingmore » to KG-1 cells in the absence and in the presence of unlabeled IL-3 demonstrated that IL-3 inhibited GM-CSF binding to the higher-affinity component of GM-CSF receptor on KG-1 cells. Moreover, a chemical cross-linking study has revealed that the cross-inhibition of the GM-CSF binding observed in KG-1 cells is specific for the beta-chain, Mr 135,000 binding protein which has been identified as a component forming the high-affinity GM-CSF receptor existing specifically on hemopoietic cells.« less

  2. Resonant excited UV luminescence of the Gd3+ centres in borate glasses, co-doped with Gd and Ag

    NASA Astrophysics Data System (ADS)

    Padlyak, B. V.; Drzewiecki, A.; Padlyak, T. B.; Adamiv, V. T.; Teslyuk, I. M.

    2018-05-01

    The Li2B4O7:Gd, CaB4O7:Gd, LiCaBO3:Gd, and Li2B4O7:Gd, Ag glasses of high optical quality, obtained by standard technology, have been investigated by electron paramagnetic resonance (EPR) and optical spectroscopy at room temperature. The Gd impurity was added in the raw materials as Gd2O3 oxide in amounts 0.5 and 1.0 mol.%. The Ag impurity was introduced into the Li2B4O7 composition as AgNO3 and as highly dispersed metallic Ag in amount 2.0 mol.%. In all Gd-doped glasses was observed typical for glasses EPR U-spectrum of the Gd3+ (8S7/2, 4f7) ions. In the Gd-doped glasses upon the 273 nm excitation was observed weak UV emission line at 311 nm that is attributed to the 6P7/2 → 8S7/2 intraconfiguration 4f - 4f transition of the Gd3+ ions. In the Li2B4O7:Gd, Ag glass has been observed significant (∼100 times) increasing of peak intensity of the Gd3+ emission line at 311 nm in comparison with this line in CaB4O7:Gd glass. In luminescence excitation spectra of the CaB4O7:Gd and Li2B4O7:Gd, Ag glasses are observed characteristic groups of lines corresponding to the 8S7/2 → 6IJ, 6DJ transitions of the Gd3+ ions. Significant increasing of the Gd3+ emission line at 311 nm in the Li2B4O7:Gd, Ag glass is explained by energy transfer from Ag+ (4d10) to Gd3+ (4f7) upon 273 nm excitation that is resonant for 4d10 → 4d9 5s1 (1S0 → 1D2) and 8S7/2 → 6IJ transitions of the Ag+ and Gd3+ ions. Luminescence kinetics of the Gd3+ and Ag+ centres was investigated and analysed. Obtained results show that the borate glasses, co-activated by Gd3+ and Ag+, can be promising materials for effective UVB light sources for biomedical applications.

  3. GM2-activator protein: a new biomarker for lung cancer.

    PubMed

    Potprommanee, Laddawan; Ma, Haou-Tzong; Shank, Lalida; Juan, Yi-Hsiu; Liao, Wei-Yu; Chen, Shui-Tein; Yu, Chong-Jen

    2015-01-01

    Effective biomarkers for early diagnosis of lung cancer are needed. A recent study demonstrated that urinary GM2-activator protein (GM2AP) level was increased in lung cancer patients. This study aims to validate the potential application of GM2AP as a biomarker for diagnosis of lung cancer. Serum and urine samples were obtained from 189 participants (133 patients for treatment naive lung cancer, 26 healthy volunteers for urine, and 30 healthy volunteers for serum). GM2AP level was detected by Western blotting and quantified using enzyme-linked immunosorbent assay (ELISA). The GM2AP expression in tumors and nontumor parts of lung tissues from 143 nonsmall cell lung cancers was detected by immunohistochemical stains. There was an 8.11 ± 1.36 folds increase in urine and a 5.41 ± 0.73 folds increase in serum level of GM2AP in lung cancer patients compared with healthy volunteers (p < 0.0001), achieving a 0.89 AUC value in urine and 0.90 AUC value in serum for the receiver-operating characteristic curves. Both serum and urine levels of GM2AP correlated significantly with pathology stages (urine, p = 0.009; serum, p < 0.0001). Using immunohistochemical, positive expression of GM2AP was found at 83.9% of nonsmall cell lung cancers patients and none in normal tissue. The GM2AP expression was significantly correlated with pathology stage (p = 0.0001). Patients with higher GM2AP expression had shorter overall survival (p = 0.045) and disease-free survival (p = 0.049) than lower GM2AP expression. Moreover, the multivariate analysis suggested GM2AP as an independent predictors of disease-free survival and overall survival. Our study demonstrates that GM2AP might serve as potential diagnostic and prognostic biomarkers in patients with lung cancer.

  4. The synthesis and the magnetic properties of Gd 3+-doped Fe xCo 1-x/Co yFe 3-yO 4 micro-octahedrons composites

    NASA Astrophysics Data System (ADS)

    Wang, Qin; Li, Shuiming; Wu, Aibing; Yang, Hua

    2009-09-01

    Gd 3+-substituted micro-octahedron composites (Fe xCo 1-x/Co yGd zFe 3-y-zO 4) in which the Fe-Co alloy has either a bcc or fcc structure and the oxide is a spinel phase were fabricated by the hydrothermal method. The X-ray diffraction (XRD) patterns indicate that the as-synthesized Gd 3+-substituted micro-octahedron composites are well crystallized. Scanning electron microscopy (SEM) images show that the final product consists of larger numbers of micro-octahedrons with the size ranging from 1.3 to 5 μm, and the size of products are increased with increasing the concentration of KOH. The effect of the Co 2+/Fe 2+ ratio (0⩽Co 2+/Fe 2+⩽1) and substitution Fe 3+ ions by Gd 3+ ions on structure, magnetic properties of the micro-octahedrons composites were investigated, and a possible growth mechanism is suggested to explain the formation of micro-octahedrons composites. The magnetic properties of the structure show the maximal saturation magnetization (107 emu/g) and the maximal coercivity (1192 Oe) detected by a vibrating sample magnetometer.

  5. Temperature effects on separation of Gd3+ from Gd-DTPA-folate using nanofiltration method

    NASA Astrophysics Data System (ADS)

    Rahayu, I.; Indraneli, R. P.; Yuliyati, Y. B.; Anggraeni, A.; Soedjanaatmadja, U. M. S.; Bahti, H. H.

    2018-05-01

    MRI is one of the best techniques in medical diagnostics. Contrast agents are used to improve the visual of organs that are difficult to distinguish through MRI. Gd-DTPA-folate is one of the specific contrast agents against cancer diagnosis, because it has a high affinity to folate receptors. In the complexing Gd-DTPA-folate, does not rule out the complexity step runs imperfectly, so there is still Gd3+ in the Gd-DTPA-folate complex. The separation of Gd3+ from the Gd-DTPA-folate complex is important to eliminate toxic effects on the contrast agent. This study aims to determine the effect of temperature on the separation of Gd-DTPA-folate from Gd3+ with nanofiltration. The method are preparation Gd-DTPA-folate from GdCl3.6H2O and DTPA-folate by reflux method, then separated Gd-DTPA-folate complex from Gd3+ with nanofiltration at variation temperature (40, 41, 42, 43, 44oC ). Then, the values of flux and rejection coefficients were analyzed. The results showed that the optimum temperature for the separation of Gd3+ from Gd-DTPA-folate was achieved at 42.6°C with the rejection coefficient of 24% and the permeate flux of 403 L.m-2.h-1.

  6. A new ~1 μm laser crystal Nd:Gd2SrAl2O7: growth, thermal, spectral and lasing properties

    NASA Astrophysics Data System (ADS)

    Yuan, Feifei; Liao, Wenbin; Huang, Yisheng; Zhang, Lizhen; Sun, Shijia; Wang, Yeqing; Lin, Zhoubin; Wang, Guofu; Zhang, Ge

    2018-03-01

    Nd:Gd2SrAl2O7 crystals were grown by the Czochralski technique; thermal, spectral and laser properties were investigated in detail. The average thermal expansion coefficients along a- and c-axis are 12.6  ×  10-6 K-1 and 14.9  ×  10-6 K-1, respectively. At room temperature, the thermal conductivities are 4.98 and 5.24 W (m-1 * K-1) along the a- and c-axis, respectively. The absorption cross sections at ~808 nm are 13.7  ×  10-20 cm2 with a FWHM of 3.3 nm for π-polarization and 11.84  ×  10-20 cm2 with a FWHM of 3.4 nm for σ-polarization. The emission cross sections at ~1080 nm are 15  ×  10-20 cm2 and 12.7  ×  10-20 cm2 with a FWHM of about 5.1 nm and 12.5 nm for π- and σ-polarization, respectively. The fluorescence lifetime for the 4F3/2  →  4I11/2 transition was fitted to be 118 µs. Pumped by a fiber-coupled 808 nm laser diode, the maximum 1.55 W continuous-wave laser output at ~1.08 µm was achieved with a slope efficiency of 30.5%. All the results show that Nd:Gd2SrAl2O7 crystal is a promising laser material.

  7. Standardization of the CFU-GM assay: Advantages of plating a fixed number of CD34+ cells in collagen gels.

    PubMed

    Dobo, Irène; Pineau, Danielle; Robillard, Nelly; Geneviève, Frank; Piard, Nicole; Zandecki, Marc; Hermouet, Sylvie

    2003-10-01

    We investigated whether plating a stable amount of CD34(+) cells improves the CFU-GM assay. Data of CFU-GM assays performed with leukaphereses products in two transplant centers using a commercial collagen-based medium and unified CFU-GM scoring criteria were pooled and analyzed according to the numbers of CD34(+) cells plated. A first series of 113 CFU-GM assays was performed with a fixed number of mononuclear cells (i.e., a variable number of CD34(+) cells). In these cultures the CFU-GM/CD34 ratio varied according to the number of CD34(+) cells plated: median CFUGM/CD34 ratios were 1/6.2 to 1/6.6 for grafts containing <2% CD34(+) cells, vs. 1/10.2 for grafts containing > or =2% CD34(+) cells. The median CFU-GM/CD34 ratio also varied depending on pathology: 1/9.3 for multiple myeloma (MM), 1/6.8 for Hodgkin's disease (HD), 1/6.5 for non-Hodgkin lymphoma (NHL), and 1/4.5 for solid tumors (ST). A second series of 95 CFU-GM assays was performed with a fixed number of CD34(+) cells (220/ml). The range of median CFU-GM/CD34 ratios was narrowed to 1/7.0 to 1/5.2, and coefficients of variation for CFU-GM counts decreased by half to 38.1% (NHL), 36.1% (MM), 49.9% (HD), and 22.4% (ST). In addition, CFU-GM scoring was facilitated as the percentages of cultures with >50 CFU/GM/ml decreased from 6.7% to 43.8% when a variable number of CD34(+) cells was plated, to 4.5% to 16.7% when 220 CD34(+) cells/ml were plated. Hence, plating a fixed number of CD34(+) cells in collagen gels improves the CFU-GM assay by eliminating cell number-related variability and reducing pathology-related variability in colony growth.

  8. Optical and scintillation properties of ce-doped (Gd2Y1)Ga2.7Al2.3O12 single crystal grown by Czochralski method

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Wu, Yuntao; Ding, Dongzhou; Li, Huanying; Chen, Xiaofeng; Shi, Jian; Ren, Guohao

    2016-06-01

    Multicomponent garnets, due to their excellent light yield and energy resolution, become one of the most promising scintillators used for homeland security and nuclear non-proliferation applications. This work focuses on the optimization of Ce-doped (Gd,Y)3(Ga,Al)5O12 scintillators using a combination strategy of pre-screening and scale-up. Ce-doped GdxY1-xGayAl5-yO12 (x=1, 2 and y=2, 2.2, 2.5, 2.7, 3) polycrystalline powders were prepared by high-temperature solid state reaction method. The desired garnet phase in all the samples was confirmed using X-ray diffraction measurement. By comparing the radioluminescence intensity, the highest scintillation efficiency was achieved at a component of Gd2Y1Ga2.7Al2.3O12:Ce powders. A (Gd2Y1)Ga2.7Al2.3O12 doped with 1% Ce single crystal with dimensions of Ø35×40 mm was grown by Czochralski method using a <111> oriented seed. Luminescence and scintillation properties were measured. An optical transmittance of 84% was achieved in the concerned wavelength from 500 to 800 nm. Its 5d-4f emission of Ce3+ is at 530 nm. The light yield of a Ce1%: Gd2Y1Ga2.7Al2.3O12 single crystal slab at a size of 5×5×1 mm3 can reach about 65,000±3000 Ph/MeV along with two decay components of 94 and 615 ns under 137Cs source irradiation.

  9. Self-propagating plus quick pressing synthesis and characterizations of Gd2-xNdxTi1.3Zr0.7O7 (0 ≤ x ≤ 1.4) pyrochlores

    NASA Astrophysics Data System (ADS)

    He, Zongsheng; Zhang, Kuibao; Peng, Le; Zhao, Wenwen; Xue, Jiali; Zhang, Haibin

    2018-06-01

    Synroc is recognized as an ideal matrice for the immobilization of high-level radioactive waste (HLW). In this study, the Synroc mineral of pyrochlore was employed as host phase for the immobilization of Nd2O3, which was selected as surrogate of trivalent actinide nuclides. Gd2-xNdxTi1.3Zr0.7O7/Cu composites were rapidly synthesized by self-propagating high-temperature synthesis plus quick pressing (SHS/QP) using CuO as the oxidant and Ti as the reductant. The result shows that the Nd2O3 doped reactions could be ignited as x ≤ 1.4 and Gd2-xNdxTi1.3Zr0.7O7 pyrochlores were successfully prepared with Cu as the secondary phase. The synthesized pyrochlore-based waste form exhibits density of 4.93 g/cm3 and Vickers hardness of 14.90 GPa, as well as promising aqueous durability. The LRGd and LRNd value of the x = 1.4 sample are as low as 3.28 × 10-5 and 2.27 × 10-5 g m-2·d-1 after 42 days leaching.

  10. Photo-cured PMMA/PEI core/shell nanoparticles surface-modified with Gd-DTPA for T1 MR imaging.

    PubMed

    Ratanajanchai, Montri; Lee, Don Haeng; Sunintaboon, Panya; Yang, Su-Geun

    2014-02-01

    Herein, we introduced amine-functionalized core-shell nanoparticles (Polymethyl methacrylate/Polyethyleneimine; PMMA/PEI) with surface primary amines (3.15×10(5) groups/particle) and uniform size distribution (150-200nm) that were prepared by one-step photo-induced emulsion polymerization. Further PEI-surface was modified with diethylenetriamine pentaacetic acid (DTPA) and introduced with Gd(III). The modified particles possessing DTPA can entrap a high content of Gd(III) ions of over 5.5×10(4)Gd/particle with stable chelation (no release of free Gd) at least 7h. The Gd-DTPA-conjugated core-shell nanoparticles (PMMA/PEI-DTPA-Gd NPs) enhanced the MRI intensity more than Primovist (a commercial hepatic contrast agent). Moreover, the PMMA/PEI-DTPA-Gd NPs showed non-cytotoxicity up to 250μM in normal liver cells. Thus, in vitro data suggested the PMMA/PEI-DTPA-Gd NPs is promising delivery system as a superior MRI contrast agent, especially for hepatic lesion targeted MR imaging. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Will GM animals follow the GM plant fate?

    PubMed

    Vàzquez-Salat, Núria; Houdebine, Louis-Marie

    2013-02-01

    Despite being both Genetically Modified Organisms (GMOs), GM plants and GM animals share few similarities outside the laboratory premises. Whilst GM plants were soon embraced by industry and became a commercial success, only recently have GM animals reached the market. However, an area where GM animals are likely to follow the GM plant path is on their potential to cause social unrest. One of the major flaws of the 90s GMO crisis was the underestimation of the influence that different players can have in the adoption of new biotechnological applications. In this article we describe the unique evolution of GM animals in two of the most important fields: the pharmaceutical and the breeding sectors. For our analysis, we have subdivided the production chain into three governance domains: Science, Market and Public. We describe the influence and interaction of each of these domains as a vehicle for predicting the future adoptability of GM animals and to highlight conflicting areas.

  12. HETEROCLITIC POLYCLONAL AND MONOCLONAL ANTI-Gm(a) AND ANTI-Gm(g) HUMAN RHEUMATOID FACTORS REACT WITH EPITOPES INDUCED IN Gm(a−) Gm(g−) IgG BY INTERACTION WITH ANTIGEN OR BY NONSPECIFIC AGGREGATION

    PubMed Central

    WILLIAMS, RALPH C.; MALONE, CHRISTINE C.; CASALI, PAOLO

    2015-01-01

    Heteroclitic rheumatoid factors (RF) are specific for allotypic determinants, e.g., Gm(a) or Gm(g) on allogeneic, but not autologous IgG. All polyclonal RF we isolated from nine rheumatoid arthritis patients with circulating Gm(a−), (b+), (g−), (f+) IgG displayed dual heteroclitic activity for the Gm(a) and Gm(g) allotypes, as shown by using appropriate RBC agglutination assays and affinity columns bearing Gm(a+) or Gm(g+) IgG. To investigate possible mechanisms underlying the in vivo generation of heteroclitic RF, we tested the ability of non-specifically and immune-specifically aggregated Gm(a−), (g−) IgG to function as targets for RF from Gm(a−), (g−) patients with rheumatoid arthritis. Heat aggregation (63°C for 20 min) or binding to Ag (as in tetanus toxoid-antitetanus toxoid complexes) induced a “functional” Gm(a+) and/or (g+) phenotype in Gm(a−), (g−) IgG from five healthy subjects and five rheumatoid patients, as suggested by the ability of these altered IgG to function as efficient targets for six heteroclitic RF in direct binding and competitive inhibition experiments. That heterocliticity and dual Gm(a), Gm(g) specificity can be features of a single antibody molecule was formally demonstrated by analysis of a monoclonal RF (IgM mAb 61) generated from a Gm(a−), (g−) rheumatoid patient. RF mAb 61 displayed a high affinity (Kd, 10−7 M) for IgG Fc fragment of Gm(a+) and (g+) IgG or aggregated autologous Gm(a−), (g−) IgG but did not bind to native autologous IgG. To investigate the molecular basis of the acquired Gm(a) phenotype, PBMC from five Gm(a−) patients with rheumatoid arthritis and two Gm(a−) normal subjects were cultured in vitro after activation with PWM. In most instances, these PBMC produced IgG that behaved as Gm(a+) in sensitive ELISA. Application of the polymerase chain reaction (PCR), using probes specific for the nucleotide sequence coding for the Gm(a) tetrapeptide, to the amplification of DNA from the in

  13. [Effect of non-genetically modified (non-GM) soy varieties on the measured value of GM soy by a quantitative PCR method].

    PubMed

    Watanabe, Takahiro; Sekino, Ayako; Shiramasa, Yuko; Matsuda, Rieko; Maitani, Tamio

    2008-08-01

    It is very important to examine the effect of non-genetically modified (non-GM) soy varieties, which constitute the matrix of the testing sample used to quantify GM soy (RRS), on the measured value of RRS by quantitative PCR methods. Therefore, we quantified the amount of RRS in powder-mixed samples containing 1 or 5% RRS prepared by using 10 different varieties of non-GM soy as the matrix. The results revealed that the measured values were not in agreement with the powder-mixing levels and that the extent of the difference depended on the variety of non-GM soy used as the matrix. The yields of DNA extracted differed among the soy varieties. On the other hand, analysis of DNA-mixed samples, that were prepared with the DNAs extracted from RRS and non-GM soy varieties, showed that the measured values of RRS were in agreement with the DNA-mixing levels. These results strongly suggest that the proportions of DNA derived from RRS and non-GM soy were not consistent with the powder-mixing ratio in the case of some non-GM soy varieties used as a matrix, resulting in the discrepancy between the measured values and the powder-mixing levels.

  14. A Conformational Change of C Fragment of Tetanus Neurotoxin Reduces Its Ganglioside-Binding Activity but Does Not Destroy Its Immunogenicity ▿

    PubMed Central

    Yu, Rui; Yi, Shaoqiong; Yu, Changming; Fang, Ting; Liu, Shuling; Yu, Ting; Song, Xiaohong; Fu, Ling; Hou, Lihua; Chen, Wei

    2011-01-01

    The C fragment of tetanus neurotoxin (TeNT-Hc) with different conformations was observed due to the four cysteine residues within it which could form different intramolecular disulfide bonds. In this study, we prepared and compared three types of monomeric TeNT-Hc with different conformational components: free sulfhydryls (50 kDa), bound sulfhydryls (44 kDa), and a mixture of the two conformational proteins (half 50 kDa and half 44 kDa). TeNT-Hc with bound sulfhydryls reduced its binding activity to ganglioside GT1b and neuronal PC-12 cells compared to what was seen for TeNT-Hc with free sulfhydryls. However, there was no significant difference among their immunogenicities in mice, including induction of antitetanus toxoid IgG titers, antibody types, and protective capacities against tetanus neurotoxin challenge. Our results showed that the conformational changes of TeNT-Hc resulting from disulfide bond formation reduced its ganglioside-binding activity but did not destroy its immunogenicity, and the protein still retained continuous B cell and T cell epitopes; that is, the presence of the ganglioside-binding site within TeNT-Hc may be not essential for the induction of a fully protective antitetanus response. TeNT-Hc with bound sulfhydryls may be developed into an ideal human vaccine with a lower potential for side effects. PMID:21813664

  15. CDP-choline liposomes provide significant reduction in infarction over free CDP-choline in stroke

    PubMed Central

    Adibhatla, Rao Muralikrishna; Hatcher, J.F.; Tureyen, K.

    2007-01-01

    Cytidine-5′-diphosphocholine (CDP-choline, Citicoline, Somazina) is in clinical use (intravenous administration) for stroke treatment in Europe and Japan, while USA phase III stroke clinical trials (oral administration) were disappointing. Others showed that CDP-choline liposomes significantly increased brain uptake over the free drug in cerebral ischemia models. Liposomes were formulated as DPPC, DPPS, cholesterol, GM1 ganglioside; 7/4/7/1.57 molar ratio or 35.8/20.4/35.8/8.0 mol%. GM1 ganglioside confers long-circulating properties to the liposomes by suppressing phagocytosis. CDP-choline liposomes deliver the agent intact to the brain, circumventing the rate-limiting, cytidine triphosphate:phosphocholine cytidylyltransferase in phosphatidylcholine synthesis. Our data show that CDP-choline liposomes significantly ( P < 0.01) decreased cerebral infarction (by 62%) compared to the equivalent dose of free CDP-choline (by 26%) after 1 h focal cerebral ischemia and 24 h reperfusion in spontaneously hypertensive rats. Beneficial effects of CDP-choline liposomes in stroke may derive from a synergistic effect between the phospholipid components of the liposomes and the encapsulated CDP-choline. PMID:16153613

  16. Expression of non-toxic mutant of Escherichia coli heat-labile enterotoxin in tobacco chloroplasts.

    PubMed

    Kang, Tae-Jin; Han, So-Chon; Kim, Mi-Young; Kim, Young-Sook; Yang, Moon-Sik

    2004-11-01

    Chloroplast transformation systems offer unique advantages in biotechnology, including high level of foreign gene expression, maternal inheritance, and polycistronic expression. We studied chloroplast expression of LTK63 (change Ser-->Lys at position 63 in the A subunit) which is the mutant of Escherichia coli heat-labile toxin. LTK63 is devoid of any toxic activity, but still retains its mucosal adjuvanticity. The LTK63 was cloned into chloroplast targeting vector and transformed to tobacco chloroplasts by particle bombardment. PCR and Southern blot analyses confirmed stable homologous recombination of the LTK63 gene into the chloroplast genome. The amount of LTK63 protein detected in tobacco chloroplasts was approximately 3.7% of the total soluble protein. The GM1-ganglioside binding assay confirmed that chloroplast-synthesized LTB of LTK63 binds to the intestinal membrane GM1-ganglioside receptor. Thus, the expression of LTK63 in chloroplasts provides a potential route toward the development of a plant-based edible vaccine for high expression system and environmentally friendly approach.

  17. Fucosylation and protein glycosylation create functional receptors for cholera toxin

    PubMed Central

    Wands, Amberlyn M; Fujita, Akiko; McCombs, Janet E; Cervin, Jakob; Dedic, Benjamin; Rodriguez, Andrea C; Nischan, Nicole; Bond, Michelle R; Mettlen, Marcel; Trudgian, David C; Lemoff, Andrew; Quiding-Järbrink, Marianne; Gustavsson, Bengt; Steentoft, Catharina; Clausen, Henrik; Mirzaei, Hamid; Teneberg, Susann; Yrlid, Ulf; Kohler, Jennifer J

    2015-01-01

    Cholera toxin (CT) enters and intoxicates host cells after binding cell surface receptors using its B subunit (CTB). The ganglioside (glycolipid) GM1 is thought to be the sole CT receptor; however, the mechanism by which CTB binding to GM1 mediates internalization of CT remains enigmatic. Here we report that CTB binds cell surface glycoproteins. Relative contributions of gangliosides and glycoproteins to CTB binding depend on cell type, and CTB binds primarily to glycoproteins in colonic epithelial cell lines. Using a metabolically incorporated photocrosslinking sugar, we identified one CTB-binding glycoprotein and demonstrated that the glycan portion of the molecule, not the protein, provides the CTB interaction motif. We further show that fucosylated structures promote CTB entry into a colonic epithelial cell line and subsequent host cell intoxication. CTB-binding fucosylated glycoproteins are present in normal human intestinal epithelia and could play a role in cholera. DOI: http://dx.doi.org/10.7554/eLife.09545.001 PMID:26512888

  18. Improved sensitivity for W-band Gd(III)-Gd(III) and nitroxide-nitroxide DEER measurements with shaped pulses

    NASA Astrophysics Data System (ADS)

    Bahrenberg, Thorsten; Rosenski, Yael; Carmieli, Raanan; Zibzener, Koby; Qi, Mian; Frydman, Veronica; Godt, Adelheid; Goldfarb, Daniella; Feintuch, Akiva

    2017-10-01

    Chirp and shaped pulses have been recently shown to be highly advantageous for improving sensitivity in DEER (double electron-electron resonance, also called PELDOR) measurements due to their large excitation bandwidth. The implementation of such pulses for pulse EPR has become feasible due to the availability of arbitrary waveform generators (AWG) with high sampling rates to support pulse shaping for pulses with tens of nanoseconds duration. Here we present a setup for obtaining chirp pulses on our home-built W-band (95 GHz) spectrometer and demonstrate its performance on Gd(III)-Gd(III) and nitroxide-nitroxide DEER measurements. We carried out an extensive optimization procedure on two model systems, Gd(III)-PyMTA-spacer-Gd(III)-PyMTA (Gd-PyMTA ruler; zero-field splitting parameter (ZFS) D ∼ 1150 MHz) as well as nitroxide-spacer-nitroxide (nitroxide ruler) to evaluate the applicability of shaped pulses to Gd(III) complexes and nitroxides, which are two important classes of spin labels used in modern DEER/EPR experiments. We applied our findings to ubiquitin, doubly labeled with Gd-DOTA-monoamide (D ∼ 550 MHz) as a model for a system with a small ZFS. Our experiments were focused on the questions (i) what are the best conditions for positioning of the detection frequency, (ii) which pump pulse parameters (bandwidth, positioning in the spectrum, length) yield the best signal-to-noise ratio (SNR) improvements when compared to classical DEER, and (iii) how do the sample's spectral parameters influence the experiment. For the nitroxide ruler, we report an improvement of up to 1.9 in total SNR, while for the Gd-PyMTA ruler the improvement was 3.1-3.4 and for Gd-DOTA-monoamide labeled ubiquitin it was a factor of 1.8. Whereas for the Gd-PyMTA ruler the two setups pump on maximum and observe on maximum gave about the same improvement, for Gd-DOTA-monoamide a significant difference was found. In general the choice of the best set of parameters depends on the D

  19. Tailored Synthesis of 162-Residue S-Monoglycosylated GM2-Activator Protein (GM2AP) Analogues that Allows Facile Access to a Protein Library.

    PubMed

    Nakamura, Takahiro; Sato, Kohei; Naruse, Naoto; Kitakaze, Keisuke; Inokuma, Tsubasa; Hirokawa, Takatsugu; Shigenaga, Akira; Itoh, Kohji; Otaka, Akira

    2016-10-17

    A synthetic protocol for the preparation of 162-residue S-monoglycosylated GM2-activator protein (GM2AP) analogues bearing various amino acid substitutions for Thr69 has been developed. The facile incorporation of the replacements into the protein was achieved by means of a one-pot/N-to-C-directed sequential ligation strategy using readily accessible middle N-sulfanylethylanilide (SEAlide) peptides each consisting of seven amino acid residues. A kinetically controlled ligation protocol was successfully applied to the assembly of three peptide segments covering the GM2AP. The native chemical ligation (NCL) reactivities of the SEAlide peptides can be tuned by the presence or absence of phosphate salts. Furthermore, NCL of the alkyl thioester fragment [GM2AP (1-31)] with the N-terminal cysteinyl prolyl thioester [GM2AP (32-67)] proceeded smoothly to yield the 67-residue prolyl thioester, with the prolyl thioester moiety remaining intact. This newly developed strategy enabled the facile synthesis of GM2AP analogues. Thus, we refer to this synthetic protocol as "tailored synthesis" for the construction of a GM2AP library. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Synthesis of Tumor-avid Photosensitizer-Gd(III)DTPA conjugates: impact of the number of gadolinium units in T1/T2 relaxivity, intracellular localization, and photosensitizing efficacy.

    PubMed

    Goswami, Lalit N; White, William H; Spernyak, Joseph A; Ethirajan, Manivannan; Chen, Yihui; Missert, Joseph R; Morgan, Janet; Mazurchuk, Richard; Pandey, Ravindra K

    2010-05-19

    To develop novel bifunctional agents for tumor imaging (MR) and photodynamic therapy (PDT), certain tumor-avid photosensitizers derived from chlorophyll-a were conjugated with variable number of Gd(III)aminobenzyl DTPA moieties. All the conjugates containing three or six gadolinium units showed significant T(1) and T(2) relaxivities. However, as a bifunctional agent, the 3-(1'-hexyloxyethyl)pyropheophorbide-a (HPPH) containing 3Gd(III) aminophenyl DTPA was most promising with possible applications in tumor-imaging and PDT. Compared to HPPH, the corresponding 3- and 6Gd(III)aminobenzyl DTPA conjugates exhibited similar electronic absorption characteristics with a slightly decreased intensity of the absorption band at 660 nm. However, compared to HPPH, the excitation of the broad "Soret" band (near 400 nm) of the corresponding 3Gd(III)aminobenzyl-DTPA analogues showed a significant decrease in the fluorescence intensity at 667 nm.