Sample records for gap chambers produced

  1. Signal enhancement due to high-Z nanofilm electrodes in parallel plate ionization chambers with variable microgaps.

    PubMed

    Brivio, Davide; Sajo, Erno; Zygmanski, Piotr

    2017-12-01

    We developed a method for measuring signal enhancement produced by high-Z nanofilm electrodes in parallel plate ionization chambers with variable thickness microgaps. We used a laboratory-made variable gap parallel plate ionization chamber with nanofilm electrodes made of aluminum-aluminum (Al-Al) and aluminum-tantalum (Al-Ta). The electrodes were evaporated on 1 mm thick glass substrates. The interelectrode air gap was varied from 3 μm to 1 cm. The gap size was measured using a digital micrometer and it was confirmed by capacitance measurements. The electric field in the chamber was kept between 0.1 kV/cm and 1 kV/cm for all the gap sizes by applying appropriate compensating voltages. The chamber was exposed to 120 kVp X-rays. The current was measured using a commercial data acquisition system with temporal resolution of 600 Hz. In addition, radiation transport simulations were carried out to characterize the dose, D(x), high-energy electron current, J(x), and deposited charge, Q(x), as a function of distance, x, from the electrodes. A deterministic method was selected over Monte Carlo due to its ability to produce results with 10 nm spatial resolution without stochastic uncertainties. Experimental signal enhancement ratio, SER(G) which we defined as the ratio of signal for Al-air-Ta to signal for Al-air-Al for each gap size, was compared to computations. The individual contributions of dose, electron current, and charge deposition to the signal enhancement were determined. Experimental signals matched computed data for all gap sizes after accounting for several contributions to the signal: (a) charge carrier generated via ionization due to the energy deposited in the air gap, D(x); (b) high-energy electron current, J(x), leaking from high-Z electrode (Ta) toward low-Z electrode (Al); (c) deposited charge in the air gap, Q(x); and (d) the decreased collection efficiency for large gaps (>~500 μm). Q(x) accounts for the electrons below 100 eV, which are regarded as stopped by the radiation transport code but which can move and form electron current in small gaps (<100 μm). While the total energy deposited in the air gap increases with gap size for both samples, the average high-energy current and deposited charge are moderately decreasing with the air gap. When gap sizes are smaller than ~20 μm, the contribution to signal from dose approaches zero while contributions from high-energy current and deposited charges give rise to an offset signal. The measured signal enhancement ratio (SER) was 40.0 ± 5.0 for the 3 μm gap and rapidly decreasing with gap size down to 9.9 ± 1.2 for the 21 μm gap and to 6.6 ± 0.3 for the 100 μm gap. The uncertainties in SER were mostly due to uncertainties in gap size and data acquisition system. We developed an experimental method to determine the signal enhancement due to high-Z nanolayers in parallel plate ionization chambers with micrometer spatial resolution. As the water-equivalent thicknesses of these air gaps are 3 nm to 10 μm, the method may also be applicable for nanoscopic spatial resolution of other gap materials. The method may be extended to solid insulator materials with low Z. © 2017 American Association of Physicists in Medicine.

  2. Efficiency arcjet thruster with controlled arc startup and steady state attachment

    NASA Technical Reports Server (NTRS)

    Smith, William W. (Inventor); Knowles, Steven C. (Inventor)

    1989-01-01

    An improved efficiency arcjet thruster has a constrictor and electrically-conductive nozzle anode defining an arc chamber, and an electrically-conductive rod having a tip spaced upstream from the constrictor and defining a cathode spaced from the anode by a gap generally coextensive with the arc chamber. An electrical potential is applied to the anode and cathode to generate an electrical arc in the arc chamber from the cathode to anode. Catalytically decomposed hydrazine is supplied to the arc chamber with generation of the arc so as to produce thermal heating and expansion thereof through the nozzle. The constrictor can have a electrically insulative portion disposed between the cathode tip and the nozzle anode, and an electrically-conductive anode extension disposed along the insulative portion so as to define an auxiliary gap with the cathode tip substantially smaller than the gap defined between the cathode and nozzle anode for facilitating startup of arc generation. The constrictor can also include an electrically-conductive electrode with a variable electrical potential to vary the shape of the arc generated in the arc chamber. Also, the cathode is mounted for axial movement such that the gap between its tip and the nozzle anode can be varied to facilitate a generally nonerosive generation of the electrical arc at startup and reliable steady state operation. Further, the arc chamber can have a nonparallel subsonic-to-supersonic transition configuration, or alternatively solely a nonparallel supersonic configuration, for improved arc attachment.

  3. Timing and charge measurement of single gap resistive plate chamber detectors for INO-ICAL experiment

    NASA Astrophysics Data System (ADS)

    Gaur, Ankit; Kumar, Ashok; Naimuddin, Md.

    2018-01-01

    The recently approved India-based Neutrino Observatory will use the world's largest magnet to study atmospheric muon neutrinos. The 50 kiloton Iron Calorimeter consists of iron alternating with single-gap resistive plate chambers. A uniform magnetic field of ∼1.5 T is produced in the iron using toroidal-shaped copper coils. Muon neutrinos interact with the iron target to produce charged muons, which are detected by the resistive plate chambers, and tracked using orthogonal pick up strips. Timing information for each layer is used to discriminate between upward and downward traveling muons. The design of the readout electronics for the detector depends critically on an accurate model of the charge induced by the muons, and the dependence on bias voltages. In this paper, we present timing and charge response measurements using prototype detectors under different operating conditions. We also report the effect of varying gas mixture, particularly SF6, on the timing response.

  4. Testing Mylar Multi-Gap Resistive Plate Chambers

    NASA Astrophysics Data System (ADS)

    Towell, Cecily; EIC PID Consortium Collaboration

    2016-09-01

    Quantum Chromodynamics (QCD) is the fundamental theory that successfully explains strong force interactions. To continue the effective study of QCD in nuclear structure, plans are being made to construct an Electron Ion Collider (EIC). Part of the preparation for the EIC includes continued detector development to push beyond their current capabilities. This includes Time of Flight (TOF) detectors, which are used for particle identification. Multi-Gap Resistive Plate Chambers (mRPCs) are a type of TOF detector that typically use glass to make small gas gaps within the detector to produce fast signals when a high energy particle goes through the detector. These extremely thin gaps of 0.2mm are key in achieving the excellent timing resolution capability of these detectors. A new mRPC design is being tested with the goal of reaching a timing resolution of 10ps. This design uses sheets of mylar in place of the glass so that the width of the dividers is smaller, thus vastly increasing the number of gas gaps. Multiple versions of this mylar mRPC have been made and tested. The methods for producing these mRPCs and their performance will be discussed. This research was supported by US DOE MENP Grant DE-FG02-03ER41243.

  5. Development of a High Resolution Liquid Xenon Imaging Telescope for Medium Energy Gamma Ray Astrophysics

    NASA Technical Reports Server (NTRS)

    Aprile, Elena

    1992-01-01

    In the third year of the research project, we have (1) tested a 3.5 liter prototype of the Liquid Xenon Time Projection Chamber, (2) used a prototype having a 4.4 cm drift gap to study the charge and energy resolution response of the 3.5 liter chamber, (3) obtained an energy resolution as good as that previously measured by us using chambers with drift gaps of the order of millimeters, (4) observed the induction signals produced by MeV gamma rays, (4) used the 20 hybrid charge sensitive preamplifiers for a nondestructive readout of the electron image on the induction wires, (5) performed extensive Monte Carlo simulations to obtain results on efficiency, background rejection capability, and source flux sensitivity, and (6) developed a reconstruction algorithm for events with multiple interaction points.

  6. Design of the free-air ionization chamber, FAC-IR-150, for X-ray dosimetry

    NASA Astrophysics Data System (ADS)

    Mohammadi, Seyed Mostafa; Tavakoli-Anbaran, Hossein

    2018-03-01

    The primary standard for X-ray dosimetry is based on the free-air ionization chamber (FAC). Therefore, the Atomic Energy Organization of Iran (AEOI) designed the free-air ionization chamber, FAC-IR-150, for low and medium energy X-ray dosimetry. The purpose of this work is the study of the free-air ionization chamber characteristics and the design of the FAC-IR-150. The FAC-IR-150 dosimeter has two parallel plates, a high voltage plate and a collector plate. A guard electrode surrounds the collector and is separated by an air gap. A group of guard strips is used between up and down electrodes to produce a uniform electric field in all the ion chamber volume. This design involves introducing the correction factors and determining the exact dimensions of the ionization chamber by using Monte Carlo simulation.

  7. Note: Voltage and intensity dependence of the saturation curves of free-air ionization chambers irradiated with chopped synchrotron radiation beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nariyama, Nobuteru

    2012-01-15

    Current saturation characteristics of free-air ionization chambers with electrode gaps of 4.2 and 8.4 mm were investigated using pulsed photon beam obtained by periodically interrupting synchrotron radiation beams with a chopper. Pulsed photon beams of 10 and 15 keV with pulse duration of 2.5 {mu}s and a frequency of 230 Hz were produced by chopping the beam. The measured recombination rate was found to be proportional to the intensity and inversely proportional to the applied voltage.

  8. Performance of timing resistive plate chambers with relativistic neutrons from 300 to 1500 MeV

    NASA Astrophysics Data System (ADS)

    Blanco, A.; Adamczewski-Musch, J.; Boretzky, K.; Cabanelas, P.; Cartegni, L.; Ferreira Marques, R.; Fonte, P.; Fruehauf, J.; Galaviz, D.; Heil, M.; Henriques, A.; Ickert, G.; Körper, D.; Lopes, L.; Palka, M.; Pereira, A.; Rossi, D.; Simon, H.; Teubig, P.; Traxler, M.; Velho, P.; Altstadt, S.; Atar, L.; Aumann, T.; Bemmerer, D.; Caesar, C.; Charpy, A.; Elekes, Z.; Fiori, E.; Gasparic, I.; Gerbig, J.; Göbel, K.; Heftrich, T.; Heine, M.; Heinz, A.; Holl, M.; Ignatov, A.; Isaak, J.; Johansson, H.; Kelic-Heil, A.; Lederer, C.; Lindberg, S.; Löher, B.; Machado, J.; Marganiec, J.; Martensson, M.; Nilsson, T.; Panin, V.; Paschalis, S.; Petri, M.; Plag, R.; Pohl, M.; Rastrepina, G.; Reifarth, R.; Reinhardt, T. P.; Röder, M.; Savran, D.; Scheit, H.; Schrock, P.; Silva, J.; Stach, D.; Strannerdahl, F.; Thies, R.; Wagner, A.; Wamers, F.; Weigand, M.

    2015-02-01

    A prototype composed of four resistive plate chamber layers has been exposed to quasi-monoenergetic neutrons produced from a deuteron beam of varying energy (300 to 1500 AMeV) in experiment S406 at GSI, Darmstad, Germany. Each layer, with an active area of about 2000 × 500 mm2, is made of modules containing the active gaps, all in multigap construction. Each gap is defined by 0.3 mm nylon mono-filaments positioned between 2.85 mm thick float glass electrodes. The modules are operated in avalanche mode with a non-flammable gas mixture composed of 90% C2H2F4 and 10% SF6. The signals are readout by a pick-up electrode formed by 15 copper strips (per layer), spaced at a pitch of 30 mm, connected at both sides to timing front end electronics. Measurements of the time of flight jitter of neutrons, in the mentioned energy range, point to a contribution of the resistive plate chamber in the order of 150 ps, independent of the neutron energy.

  9. Experimental study of the vidicon system for information recording using the wide-gap spark chamber of gamma - telescope gamma-I

    NASA Technical Reports Server (NTRS)

    Akimov, V. V.; Bazer-Bashv, R.; Voronov, S. A.; Galper, A. M.; Gro, M.; Kalinkin, L. F.; Kerl, P.; Kozlov, V. D.; Koten, F.; Kretol, D.

    1979-01-01

    The development of the gamma ray telescope is investigated. The wide gap spark chambers, used to identify the gamma quanta and to determine the directions of their arrival, are examined. Two systems of information recording with the spark chambers photographic and vidicon system are compared.

  10. Leaders and Laggards: A State-by-State Report Card on Educational Innovation

    ERIC Educational Resources Information Center

    Hess, Frederick M.; Boser, Ulrich

    2009-01-01

    This report, produced jointly by the U.S. Chamber of Commerce, the Center for American Progress, and Frederick M. Hess of the American Enterprise Institute, is a call to action in response to how poorly states measured up on key indicators of educational innovation. The report is the first-ever attempt to evaluate the innovation gap in American…

  11. Technical Note: An investigation of polarity effects for wide-angle free-air chambers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, H., E-mail: Hong.Shen@nrc-cnrc.gc.ca; Ross,

    2016-07-15

    Purpose: Wide-angle free-air chambers (WAFACs) are used as primary standard measurement devices for establishing the air-kerma strength of low-energy, low-dose rate brachytherapy seeds. The National Research Council of Canada (NRC) is commissioning a primary standard wide-angle free-air chamber (NRC WAFAC) to serve the calibration needs of Canadian clients. The University of Wisconsin has developed a similar variable-aperture free-air chamber (UW VAFAC) to be used as a research tool. As part of the NRC commissioning, measurements were carried out for both polarities of the applied bias voltage and the resulting effects were observed to be very large. Similar effects were identifiedmore » with the UW VAFAC. The authors describe the measurements carried out to determine the underlying causes of the polarity effect and the approach used to eliminate it. Methods: The NRC WAFAC is based on the WAFAC design developed at the National Institute of Standards and Technology in the USA. Charge measurements for {sup 125}I and {sup 241}Am sources were carried out for both negative and positive polarities on the NRC WAFAC and UW VAFAC. Two aperture sizes were also investigated with the UW VAFAC. In addition, measurements on the NRC WAFAC were carried out with a small bias between the collecting electrode and the shield foil at the downstream end of the chamber. To mitigate all of the polarity effects, the downstream surface of the collecting electrode was covered with a thin layer of graphite on both the NRC and UW chambers. Results: Both chamber designs showed a difference of more than 30 % between the charge collected with positive and negative bias voltages for the smallest electrode separation. It was shown for the NRC WAFAC that charge could be collected in the small gap downstream of the collecting volume by applying a voltage between the shield foil and the collecting electrode, even though an insulating foil (Mylar or polyimide film) separated the conducting surface from the small gap region. The unwanted additional current was shown to be proportional to the size of the aperture for the UW VAFAC. The extra ionization produced in the small gap region was eliminated for both chambers by covering the insulating side of the collecting electrode with a grounded conducting layer. Conclusions: The small gap region downstream of the collecting electrode in the NRC WAFAC and UW VAFAC can serve as an unwanted source of ion current. It is concluded that a residual electric field in the small gap region may lead to ion transport and to charge being trapped on the surface of the foil. The foil then acts as a capacitor with an equal charge, but of opposite sign, being attracted to the conducting surface. Covering the back of the collecting electrode surface with a grounded conducting layer eliminated the polarity effect.« less

  12. Estimation of VOC emissions from produced-water treatment ponds in Uintah Basin oil and gas field using modeling techniques

    NASA Astrophysics Data System (ADS)

    Tran, H.; Mansfield, M. L.; Lyman, S. N.; O'Neil, T.; Jones, C. P.

    2015-12-01

    Emissions from produced-water treatment ponds are poorly characterized sources in oil and gas emission inventories that play a critical role in studying elevated winter ozone events in the Uintah Basin, Utah, U.S. Information gaps include un-quantified amounts and compositions of gases emitted from these facilities. The emitted gases are often known as volatile organic compounds (VOCs) which, beside nitrogen oxides (NOX), are major precursors for ozone formation in the near-surface layer. Field measurement campaigns using the flux-chamber technique have been performed to measure VOC emissions from a limited number of produced water ponds in the Uintah Basin of eastern Utah. Although the flux chamber provides accurate measurements at the point of sampling, it covers just a limited area of the ponds and is prone to altering environmental conditions (e.g., temperature, pressure). This fact raises the need to validate flux chamber measurements. In this study, we apply an inverse-dispersion modeling technique with evacuated canister sampling to validate the flux-chamber measurements. This modeling technique applies an initial and arbitrary emission rate to estimate pollutant concentrations at pre-defined receptors, and adjusts the emission rate until the estimated pollutant concentrations approximates measured concentrations at the receptors. The derived emission rates are then compared with flux-chamber measurements and differences are analyzed. Additionally, we investigate the applicability of the WATER9 wastewater emission model for the estimation of VOC emissions from produced-water ponds in the Uintah Basin. WATER9 estimates the emission of each gas based on properties of the gas, its concentration in the waste water, and the characteristics of the influent and treatment units. Results of VOC emission estimations using inverse-dispersion and WATER9 modeling techniques will be reported.

  13. A Possible Method for the Discrimination of Spurious Events in Scintillation Chambers--Preliminary Results. Note No. 215; UN POSSIBILE METODO PER LA DISCRIMINAZIONE DI EVENTI SPURI IN CAMERA A SCINTILLE--RISULTATI PRELIMINARI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habel, R.; Letardi, T.

    1963-10-30

    In some studies with scintillation chambers, the problem of discriminating between the events generated by one or more ionizing particles and a spontaneous shower between the gaps of the chamber is presented. One element of difference between the two events is the delay of the spurious scintillation with respect to that produced by passage of a particle. The use of a fast shutter whose open time is of the order of the delay would provide a possible method for the discrimination between true and spurious events. The experimental apparatus used and the types of measurements made to determine if suchmore » a shutter arrangement would be feasible are described. (J.S.R.)« less

  14. Modular, multi-level groundwater sampler

    DOEpatents

    Nichols, Ralph L.; Widdowson, Mark A.; Mullinex, Harry; Orne, William H.; Looney, Brian B.

    1994-01-01

    Apparatus for taking a multiple of samples of groundwater or pressure measurements from a well simultaneously. The apparatus comprises a series of chambers arranged in an axial array, each of which is dimensioned to fit into a perforated well casing and leave a small gap between the well casing and the exterior of the chamber. Seals at each end of the container define the limits to the axial portion of the well to be sampled. A submersible pump in each chamber pumps the groundwater that passes through the well casing perforations into the gap from the gap to the surface for analysis. The power lines and hoses for the chambers farther down the array pass through each chamber above them in the array. The seals are solid, water-proof, non-reactive, resilient disks supported to engage the inside surface of the well casing. Because of the modular design, the apparatus provides flexibility for use in a variety of well configurations.

  15. WE-DE-201-05: Evaluation of a Windowless Extrapolation Chamber Design and Monte Carlo Based Corrections for the Calibration of Ophthalmic Applicators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, J; Culberson, W; DeWerd, L

    Purpose: To test the validity of a windowless extrapolation chamber used to measure surface dose rate from planar ophthalmic applicators and to compare different Monte Carlo based codes for deriving correction factors. Methods: Dose rate measurements were performed using a windowless, planar extrapolation chamber with a {sup 90}Sr/{sup 90}Y Tracerlab RA-1 ophthalmic applicator previously calibrated at the National Institute of Standards and Technology (NIST). Capacitance measurements were performed to estimate the initial air gap width between the source face and collecting electrode. Current was measured as a function of air gap, and Bragg-Gray cavity theory was used to calculate themore » absorbed dose rate to water. To determine correction factors for backscatter, divergence, and attenuation from the Mylar entrance window found in the NIST extrapolation chamber, both EGSnrc Monte Carlo user code and Monte Carlo N-Particle Transport Code (MCNP) were utilized. Simulation results were compared with experimental current readings from the windowless extrapolation chamber as a function of air gap. Additionally, measured dose rate values were compared with the expected result from the NIST source calibration to test the validity of the windowless chamber design. Results: Better agreement was seen between EGSnrc simulated dose results and experimental current readings at very small air gaps (<100 µm) for the windowless extrapolation chamber, while MCNP results demonstrated divergence at these small gap widths. Three separate dose rate measurements were performed with the RA-1 applicator. The average observed difference from the expected result based on the NIST calibration was −1.88% with a statistical standard deviation of 0.39% (k=1). Conclusion: EGSnrc user code will be used during future work to derive correction factors for extrapolation chamber measurements. Additionally, experiment results suggest that an entrance window is not needed in order for an extrapolation chamber to provide accurate dose rate measurements for a planar ophthalmic applicator.« less

  16. The fluid mechanics of continuous flow electrophoresis in perspective

    NASA Technical Reports Server (NTRS)

    Saville, D. A.

    1980-01-01

    Buoyancy alters the flow in continuous flow electrophoresis chambers through the mechanism of hydrodynamic instability and, when the instability is supressed by careful cooling of the chamber boundaries, by restructuring the axial flow. The expanded roles of buoyancy follow upon adapting the size of the chamber and the electric field so as to fractionate certain sorts of cell populations. Scale-up problems, hydrodynamic stability and the altered flow fields are discussed to show how phenomena overlooked in the design and operations of narrow-gap devices take on an overwhelming importance in wide-gap chambers

  17. Cooled airfoil in a turbine engine

    DOEpatents

    Vitt, Paul H; Kemp, David A; Lee, Ching-Pang; Marra, John J

    2015-04-21

    An airfoil in a gas turbine engine includes an outer wall and an inner wall. The outer wall includes a leading edge, a trailing edge opposed from the leading edge in a chordal direction, a pressure side, and a suction side. The inner wall is coupled to the outer wall at a single chordal location and includes portions spaced from the pressure and suction sides of the outer wall so as to form first and second gaps between the inner wall and the respective pressure and suction sides. The inner wall defines a chamber therein and includes openings that provide fluid communication between the respective gaps and the chamber. The gaps receive cooling fluid that provides cooling to the outer wall as it flows through the gaps. The cooling fluid, after traversing at least substantial portions of the gaps, passes into the chamber through the openings in the inner wall.

  18. Onset of space charge effects in liquid argon ionization chambers

    NASA Astrophysics Data System (ADS)

    Toggerson, B.; Newcomer, A.; Rutherfoord, J.; Walker, R. B.

    2009-09-01

    Using a thin-gap liquid argon ionization chamber and Strontium-90 beta sources we have measured ionization currents over a wide range of gap potentials. These precision "HV plateau curves" advance the understanding of liquid argon sampling calorimeter signals, particularly at high ionization rates. The order of magnitude differences in the activities of the beta sources allow us to estimate where the ionization chamber is driven into the space-charge dominated regime.

  19. Cooking utensil with improved heat retention

    DOEpatents

    Potter, Thomas F.; Benson, David K.; Burch, Steven D.

    1997-01-01

    A cooking utensil with improved heat retention includes an inner pot received within an outer pot and separated in a closely spaced-apart relationship to form a volume or chamber therebetween. The chamber is evacuated and sealed with foil leaves at the upper edges of the inner and outer pot. The vacuum created between the inner and outer pot, along with the minimum of thermal contact between the inner and outer pot, and the reduced radiative heat transfer due to low emissivity coatings on the inner and outer pot, provide for a highly insulated cooking utensil. Any combination of a plurality of mechanisms for selectively disabling and re-enabling the insulating properties of the pot are provided within the chamber. These mechanisms may include: a hydrogen gas producing and reabsorbing device such as a metal hydride, a plurality of metal contacts which can be adjusted to bridge the gap between the inner and outer pot, and a plurality of bimetallic switches which can selectively bridge the gap between the inner and outer pot. In addition, phase change materials with superior heat retention characteristics may be provided within the cooking utensil. Further, automatic and programmable control of the cooking utensil can be provided through a microprocessor and associated hardware for controlling the vacuum disable/enable mechanisms to automatically cook and save food.

  20. Cooking utensil with improved heat retention

    DOEpatents

    Potter, T.F.; Benson, D.K.; Burch, S.D.

    1997-07-01

    A cooking utensil with improved heat retention includes an inner pot received within an outer pot and separated in a closely spaced-apart relationship to form a volume or chamber there between. The chamber is evacuated and sealed with foil leaves at the upper edges of the inner and outer pot. The vacuum created between the inner and outer pot, along with the minimum of thermal contact between the inner and outer pot, and the reduced radiative heat transfer due to low emissivity coatings on the inner and outer pot, provide for a highly insulated cooking utensil. Any combination of a plurality of mechanisms for selectively disabling and re-enabling the insulating properties of the pot are provided within the chamber. These mechanisms may include: a hydrogen gas producing and reabsorbing device such as a metal hydride, a plurality of metal contacts which can be adjusted to bridge the gap between the inner and outer pot, and a plurality of bimetallic switches which can selectively bridge the gap between the inner and outer pot. In addition, phase change materials with superior heat retention characteristics may be provided within the cooking utensil. Further, automatic and programmable control of the cooking utensil can be provided through a microprocessor and associated hardware for controlling the vacuum disable/enable mechanisms to automatically cook and save food. 26 figs.

  1. Modular, multi-level groundwater sampler

    DOEpatents

    Nichols, R.L.; Widdowson, M.A.; Mullinex, H.; Orne, W.H.; Looney, B.B.

    1994-03-15

    An apparatus is described for taking a multiple of samples of groundwater or pressure measurements from a well simultaneously. The apparatus comprises a series of chambers arranged in an axial array, each of which is dimensioned to fit into a perforated well casing and leave a small gap between the well casing and the exterior of the chamber. Seals at each end of the container define the limits to the axial portion of the well to be sampled. A submersible pump in each chamber pumps the groundwater that passes through the well casing perforations into the gap from the gap to the surface for analysis. The power lines and hoses for the chambers farther down the array pass through each chamber above them in the array. The seals are solid, water-proof, non-reactive, resilient disks supported to engage the inside surface of the well casing. Because of the modular design, the apparatus provides flexibility for use in a variety of well configurations. 3 figures.

  2. Comparing Novel Multi-Gap Resistive Plate Chamber Models

    NASA Astrophysics Data System (ADS)

    Stien, Haley; EIC PID Consortium Collaboration

    2016-09-01

    Investigating nuclear structure has led to the fundamental theory of Quantum Chromodynamics. An Electron Ion Collider (EIC) is a proposed accelerator that would further these investigations. In order to prepare for the EIC, there is an active detector research and development effort. One specific goal is to achieve better particle identification via improved Time of Flight (TOF) detectors. A promising option is the Multi-Gap Resistive Plate Chamber (mRPC). These detectors are similar to the more traditional RPCs, but their active gas gaps have dividers to form several thinner gas gaps. These very thin and accurately defined gas gaps improve the timing resolution of the chamber, so the goal is to build an mRPC with the thinnest gaps to achieve the best possible timing resolution. Two different construction techniques have been employed to make two mRPCs. The first technique is to physically separate the gas gaps with sheets of glass that are .2mm thick. The second technique is to 3D print the layered gas gaps. A comparison of these mRPCs and their performances will be discussed and the latest data presented. This research was supported by US DOE MENP Grant DE-FG02-03ER41243.

  3. Construction of a solenoid used on a magnetized plasma experiment

    DOE PAGES

    Klein, S. R.; Manuel, M. J. -E.; Pollock, B. B.; ...

    2014-10-30

    Creating magnetized jets in the laboratory is relevant to studying young stellar objects, but generating these types of plasmas within the laboratory setting has proven to be challenging. Here, we present the construction of a solenoid designed to produce an axial magnetic field with strengths in the gap of up to 5 T. This novel design was a compact 75 mm × 63 mm × 88 mm, allowing it to be placed in the Titan target chamber. As a result, it was robust, surviving over 50 discharges producing fields ≲ 5 T, reaching a peak magnetic field of 12.5 T.

  4. Three-dimensional numerical simulation of a continuously rotating detonation in the annular combustion chamber with a wide gap and separate delivery of fuel and oxidizer

    NASA Astrophysics Data System (ADS)

    Frolov, S. M.; Dubrovskii, A. V.; Ivanov, V. S.

    2016-07-01

    The possibility of integrating the Continuous Detonation Chamber (CDC) in a gas turbine engine (GTE) is demonstrated by means of three-dimensional (3D) numerical simulations, i. e., the feasibility of the operation process in the annular combustion chamber with a wide gap and with separate feeding of fuel (hydrogen) and oxidizer (air) is proved computationally. The CDC with an upstream isolator damping pressure disturbances propagating towards the compressor is shown to exhibit a gain in the total pressure of 15% as compared with the same combustion chamber operating in the deflagration mode.

  5. Design and construction of a DC high-brightness laser driven electron gun

    NASA Astrophysics Data System (ADS)

    Zhao, K.; Geng, R. L.; Wang, L. F.; Zhang, B. C.; Yu, J.; Wang, T.; Wu, G. F.; Song, J. H.; Chen, J. E.

    1996-02-01

    A DC high-brightness laser driven photoemissive electron gun is being developed at Peking University, in order to produce 50-100 ps electron bunches of high quality. The gun consists of a photocathode preparation chamber and a DC acceleration cavity. Different ways of fabricating photocathodes, such as chemical vapor deposition, ion beam implantation and ion beam enhanced deposition, can be adopted. The acceleration gap is designed with the aid of simulation codes EGUN and POISSON. The laser system is a mode-locked Nd-YAG oscillator proceeded by an amplifier at 10 Hz repetition rate, which can deliver three different wavelengths (1064/532/266 nm). The combination of a superconducting cavity with the photocathode preparation chamber is also discussed in this paper.

  6. Plasma Spray-Physical Vapor Deposition (PS-PVD) of Ceramics for Protective Coatings

    NASA Technical Reports Server (NTRS)

    Harder, Bryan J.; Zhu, Dongming

    2011-01-01

    In order to generate advanced multilayer thermal and environmental protection systems, a new deposition process is needed to bridge the gap between conventional plasma spray, which produces relatively thick coatings on the order of 125-250 microns, and conventional vapor phase processes such as electron beam physical vapor deposition (EB-PVD) which are limited by relatively slow deposition rates, high investment costs, and coating material vapor pressure requirements. The use of Plasma Spray - Physical Vapor Deposition (PS-PVD) processing fills this gap and allows thin (< 10 microns) single layers to be deposited and multilayer coatings of less than 100 microns to be generated with the flexibility to tailor microstructures by changing processing conditions. Coatings of yttria-stabilized zirconia (YSZ) were applied to NiCrAlY bond coated superalloy substrates using the PS-PVD coater at NASA Glenn Research Center. A design-of-experiments was used to examine the effects of process variables (Ar/He plasma gas ratio, the total plasma gas flow, and the torch current) on chamber pressure and torch power. Coating thickness, phase and microstructure were evaluated for each set of deposition conditions. Low chamber pressures and high power were shown to increase coating thickness and create columnar-like structures. Likewise, high chamber pressures and low power had lower growth rates, but resulted in flatter, more homogeneous layers

  7. ATLAS 10 GHz ECR ions source upgrade project.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moehs, D. P.; Pardo, R. C.; Vondrasek, R.

    1999-08-10

    A major upgrade of the first ATLAS 10 GHz ECR ion source, which began operations in 1987, is in the planning and procurement phase. The new design will convert the old two-stage source into a single-stage source with an electron donor disk and high gradient magnetic field that preserves radial access for solid material feeds and pumping of the plasma chamber. The new magnetic field profile allows for the possibility of a second ECR zone at a frequency of 14 GHz. An open hexapole configuration, using a high energy-product Nd-Fe-B magnet material, having an inner diameter of 8.8 cm andmore » pole gaps of 2.4 cm has been adopted. Models indicate that the field strengths at the chamber wall, 4 cm in radius, will be 9.3 kG along the magnet poles and 5.6 kG along the pole gaps. The individual magnet bars will be housed in austenitic stainless steel allowing the magnet housing within the aluminum plasma chamber to be used as a water channel for direct cooling of the magnets. Eight solenoid coils from the existing ECR will be enclosed in an iron yoke to produce the axial mirror. Based on a current of 500 A, the final model predicts a minimum B field of 3 kG with injection and extraction mirror ratios of 4.4 and 2.9 respectively.« less

  8. Innexin2 gap junctions in somatic support cells are required for cyst formation and for egg chamber formation in Drosophila.

    PubMed

    Mukai, Masanori; Kato, Hirotaka; Hira, Seiji; Nakamura, Katsuhiro; Kita, Hiroaki; Kobayashi, Satoru

    2011-01-01

    Germ cells require intimate associations with surrounding somatic cells during gametogenesis. During oogenesis, gap junctions mediate communication between germ cells and somatic support cells. However, the molecular mechanisms by which gap junctions regulate the developmental processes during oogenesis are poorly understood. We have identified a female sterile allele of innexin2 (inx2), which encodes a gap junction protein in Drosophila. In females bearing this inx2 allele, cyst formation and egg chamber formation are impaired. In wild-type germaria, Inx2 is strongly expressed in escort cells and follicle cells, both of which make close contact with germline cells. We show that inx2 function in germarial somatic cells is required for the survival of early germ cells and promotes cyst formation, probably downstream of EGFR pathway, and that inx2 function in follicle cells promotes egg chamber formation through the regulation of DE-cadherin and Bazooka (Baz) at the boundary between germ cells and follicle cells. Furthermore, genetic experiments demonstrate that inx2 interacts with the zero population growth (zpg) gene, which encodes a germline-specific gap junction protein. These results indicate a multifunctional role for Inx2 gap junctions in somatic support cells in the regulation of early germ cell survival, cyst formation and egg chamber formation. Inx2 gap junctions may mediate the transfer of nutrients and signal molecules between germ cells and somatic support cells, as well as play a role in the regulation of cell adhesion. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  9. NOVEL CHAMBER DESIGN FOR AN IN-VACUUM CRYO-COOLED MINI-GAP UNDULATOR.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HU, J.-P.; FOERSTER, C.L.; SKARITKA, J.R.

    2006-05-24

    A stainless steel, Ultra-High Vacuum (UHV) chamber, featuring a large vertical rectangular port (53''W by 16''H), has been fabricated to house the one-meter magnet assembly of a newly installed undulator insertion device for beamline X-25 at the National Synchrotron Light Source. To achieve UHV, the new chamber is equipped with a differential ion pump, NEG pump, nude ion gauge, residual gas analyzer, and an all metal roughing valve. Temperature of the magnet assembly is maintained below 90 C during vacuum bake. The large rectangular port cover is sealed to the main flange of the chamber using a one-piece flat aluminummore » gasket and special sealing surfaces developed exclusively by Nor-Cal Products, Inc. The large flange provides easy access to the gap of the installed magnet girders for in situ magnetic measurements and shimming. Special window ports were designed into the cover and chamber for manipulation of optical micrometers external to the chamber to provide precise measurements of the in-vacuum magnet gap. The vacuum chamber assembly features independently vacuum-isolated feedthroughs that can be used for either water-or-cryogenic refrigeration-cooling of the monolithic magnet girders. This would allow for cryogenic-cooled permanent magnet operation and has been successfully tested within temperature range of +100 C to -150 C. Details of the undulator assembly for beamline X-25 is described in the paper.« less

  10. The reason for a Daly gap in magmatic series of large igneous provinces: geological and petrological evidences

    NASA Astrophysics Data System (ADS)

    Sharkov, Evgenii; Bogina, Maria; Chistyakov, Alexeii

    2017-04-01

    One of the most important problems of magmatic petrology over the past century is a «Daly Gap» [Daly, 1914]. It describes the lack of intermediate compositions (i.e., andesite, trachyandesite) in volcanic provinces like ocean islands, LIPs, & arcs, giving rise to "bimodal" basalt-rhyolite, basalt-trachyte or basanite-phonolite suites (Menzies, 2016). At the same time, the origin of the bimodal distribution still remains unclear. Among models proposed to explain the origin of the bimodal series are liquid immiscibility (Charlier et al 2011), physico-chemical specifics of melts (Mungal, Martin,1995), high water content in a primary melt (Melekhova et al., 2012), influence of latent heat production (Nelson et al., 2011), appearance of differentiated transitional chambers with hawaiites below and trachytes on top (Ferla et al., 2006), etc. In this case, the bimodal series are characterized by similar geochemical and isotopic-geochemical features of mafic and sialic members. At the same time, some bimodal series are produced by melting of sialic crust over basaltic chambers (Philpottas and Ague, 2009). This results in the essentially different isotopic characteristics of mafic and sialic members, as exemplified by the bimodal rapakivi granites-anorthosite complexes (Ramo, 1991; Sharkov, 2010). In addition, the bimodal basalt-trachyte series are widely spread in oceanic islands where sialic crust is absent. Thus, it is generally accepted that two contrasting melts were formed in magma chambers beneath volcanoes. Such chambers survived as intrusions and are available for geological study and deciphering their role in the formation of the bimodal magmatic series. We discuss this problem by the example of alkali Fe-Ti basalts and trachytes usually developed in LIPs. Transitional magmatic chambers of such series are represented by bimodal syenite-gabbro intrusions, in particular, by the Elet'ozero intrusion (2086±30 Ma) in Northern Karelia (Russia). The intrusion intruded Archean granite-gneisses and, like syenite-gabbro intrusive complexes everywhere, was formed in two intrusive phases. The first phase is represented by mafic-ultramafic layered intrusion derived from alkali Fe-Ti basalt. The second phase is made up of alkali syenites, which are close in composition to alkali trachyte. At the same time, syenite and gabbro have close ɛNd(2080) (2.99 and 3.09, respectively). So, we faced the intrusive version of alkali basalt-trachyte series. We believe that neither crystallization differentiation, nor immiscible splitting, nor other within-chamber processes were responsible for a Daly Gap. The formation of the latter is rather related to the generation of two compositionally different independent partial melts from the same mantle plume head: (1) alkali Fe-Ti basalts derived from plume head owing to adiabatic melting, and (2) trachytes produced by incongruent melting of upper cooled margin of the head under the influence of fluids, which percolated from underlying adiabatic melting zone. The existence of primary trachyte melts is supported by the finds of "melt pockets" in mantle xenoliths in basalts.

  11. Surface dose measurements from air gaps under a bolus by using a MOSFET dosimeter in clinical oblique photon beams

    NASA Astrophysics Data System (ADS)

    Chung, Jin-Beom; Kim, Jae-Sung; Kim, In-Ah; Lee, Jeong-Woo

    2012-10-01

    This study is intended to investigate the effects of surface dose from air gaps under the bolus in clinically used oblique photon beams by using a Markus parallel-plate chamber and a metal-oxide semiconductor field-effect transistor (MOSFET) dosimeter. To evaluate the performances of the two detectors, the percentage surface doses of the MOSFET dosimeters in without an air gap under the bolus material were measured and compared with those of the Markus parallel-plate chamber. MOSFET dosimeters at the surface provided results mostly in good agreement with the parallelplate chamber. The MOSFET dosimeters seemed suitable for surface dose measurements having excellent accuracy for clinical used photon beams. The relative surface doses were measured with air gaps (2, 5, 10 mm) and without an air gap under 3 different bolus setups: (1) unbolused (no bolus), (2) 5-mm bolus, and (3) 10-mm bolus. The reductions in the surface dose substantially increased with small field size, thick bolus, and large air gap. The absolute difference in the reductions of the surface dose between the MOSFET dosimeter and the Markus parallel-plate chamber was less than 1.1%. Results at oblique angles of incidence showed larger reductions in surface dose with increasing angle of incidence. The largest reduction in surface dose was recorded for a 6 × 6 cm2 field at a 60° angle of incidence with an 10-mm air gap under a 10-mm bolus. When a 10-mm bolus was used, a reduction in the surface dose with an air gap of up to 10.5% could be achieved by varying the field size and the incident angle. Therefore, air gaps under the bolus should be avoided in radiotherapy treatment, especially for photon beam with highly oblique angles of incidence.

  12. Lateral distortions of electromagnetic cascades in emulsion chambers

    NASA Technical Reports Server (NTRS)

    Porter, L. G.; Levit, L. B.; Jones, W. V.; Huggett, R. W.; Barrowes, S. C.

    1975-01-01

    Electromagnetic cascades in a lead-emulsion chamber have been studied to determine the effect of air gaps on the upstream sides of the emulsions. Such air gaps cause a change in the form of the radial distribution of electron tracks, making cascades appear older and giving incorrect energy estimates. The number of tracks remaining within a radius r was found to vary as exp(-g/G), where g is the gap thickness. The characteristic gap thickness in mm is G = 3.04 + 1.30 ln (Err per GeV per sq mm) where E is the energy of the initiating gamma ray. Use of this relation provides a significant correction to cascade-energy estimates and allows one to calculate the effect of different gap thicknesses on the energy threshold for visual detection of cascades.

  13. Performance of timing Resistive Plate Chambers with protons from 200 to 800 MeV

    NASA Astrophysics Data System (ADS)

    Machado, J.; Adamczewski-Musch, J.; Blanco, A.; Boretzky, K.; Cabanelas, P.; Cartegni, L.; Ferreira Marques, R.; Fonte, P.; Fruehauf, J.; Galaviz, D.; Heil, M.; Henriques, A.; . Ickert, G.; Körper, D.; Lopes, L.; Palka, M.; Pereira, A.; Rossi, D.; Simon, H.; Teubig, P.; Traxler, M.; Velho, P.; Altstadt, S.; Atar, L.; Aumann, T.; Bemmerer, D.; Caesar, C.; Charpy, A.; Elekes, Z.; Fiori, E.; Gasparic, I.; Gerbig, J.; Göbel, K.; Heftrich, T.; Heine, M.; Heinz, A.; Holl, M.; Ignatov, A.; Isaak, J.; Johansson, H.; Kelic-Heil, A.; Lederer, C.; Lindberg, S.; Löher, B.; Marganiec, J.; Martensson, M.; Nilsson, T.; Panin, V.; Paschalis, S.; Petri, M.; Plag, R.; Pohl, M.; Rastrepina, G.; Reifarth, R.; Reinhardt, T. P.; Röder, M.; Savran, D.; Scheit, H.; Schrock, P.; Silva, J.; Stach, D.; Strannerdahl, F.; Thies, R.; Wagner, A.; Wamers, F.; Weigand, M.

    2015-01-01

    A prototype composed of four resistive plate chamber layers has been exposed to quasi-monoenergetic protons produced from a deuteron beam of varying energy (200 to 800 AMeV) in experiment S406 at GSI, Darmstadt, Germany. The aim of the experiment is to characterize the response of the prototype to protons in this energy range, which deposit from 1.75 to 6 times more energy than minimum ionizing particles. Each layer, with an active area of about 2000 × 500 mm2, is made of modules containing the active gaps, all in multigap construction. Each gap is defined by 0.3 mm nylon mono-filaments positioned between 2.85 mm thick float glass electrodes. The modules are operated in avalanche mode with a non-flammable gas mixture composed of 90% C2H2F4 and 10% SF6. The signals are readout by a pick-up electrode formed by 15 copper strips (per layer), spaced at a pitch of 30 mm, connected at both sides to timing front end electronics. Results show an uniform efficiency close to 100% along with a timing resolution of around 60 ps on the entire 2000 × 500 mm2 area.

  14. Measurements of CO2 exchange with an automated chamber system throughout the year: challenges in measuring night-time respiration on porous peat soil

    NASA Astrophysics Data System (ADS)

    Koskinen, M.; Minkkinen, K.; Ojanen, P.; Kämäräinen, M.; Laurila, T.; Lohila, A.

    2014-01-01

    We built an automatic chamber system to measure greenhouse gas (GHG) exchange in forested peatland ecosystems. We aimed to build a system robust enough which would work throughout the year and could measure through a changing snowpack in addition to producing annual GHG fluxes by integrating the measurements without the need of using models. The system worked rather well throughout the year, but it was not service free. Gap filling of data was still necessary. We observed problems in carbon dioxide (CO2) respiration flux estimation during calm summer nights, when a CO2 concentration gradient from soil/moss system to atmosphere builds up. Chambers greatly overestimated the night-time respiration. This was due to the disturbance caused by the chamber to the soil-moss CO2 gradient and consequent initial pulse of CO2 to the chamber headspace. We tested different flux calculation and measurement methods to solve this problem. The estimated flux was strongly dependent on (1) the starting point of the fit after closing the chamber, (2) the length of the fit, (3) the type of the fit (linear and polynomial), (4) the speed of the fan mixing the air inside the chamber, and (5) atmospheric turbulence (friction velocity, u*). The best fitting method (the most robust, least random variation) for respiration measurements on our sites was linear fitting with the period of 120-240 s after chamber closure. Furthermore, the fan should be adjusted to spin at minimum speed to avoid the pulse-effect, but it should be kept on to ensure mixing. If night-time problems cannot be solved, emissions can be estimated using daytime data from opaque chambers.

  15. Directed Growth of Carbon Nanotubes Across Gaps

    NASA Technical Reports Server (NTRS)

    Delzeit, Lance; Meyyapan, Meyya

    2008-01-01

    An experiment has shown that when single-walled carbon nanotubes (SWNTs) are grown by chemical vapor deposition in the presence of an electric field of suitable strength, the nanotubes become aligned along the electric field. In an important class of contemplated applications, one would exploit this finding in fabricating nanotube transistors; one would grow SWNTs across gaps between electrodes that would serve, subsequently, as source and drain contacts during operation of the transistors. In preparation for the experiment, a multilayer catalyst comprising a 20-nmthick underlayer of iridium (platinum group), a 1-nm-thick middle layer of iron, and a 0.2-nm-thick outer layer of molybdenum was ion-beam sputtered onto a quartz substrate. A 25 micrometers-diameter iron wire was used as a shadow mask during the sputtering to create a 25 micrometers gap in the catalyst. Then electrical leads were connected to the catalyst areas separated by the gap so that these catalyst areas would also serve as electrodes. The substrate as thus prepared was placed in a growth chamber that consisted of a quartz tube of 1-in. (2.54-cm) diameter enclosed in a furnace. SWNTs of acceptably high quantity and quality were grown in 10 minutes with methane at atmospheric pressure flowing through the chamber at a rate of 1,000 standard cubic centimeters per minute at a temperature of 900 C. To prevent oxidation of the SWNTs, the chamber was purged with 99.999-percent pure argon before and after growth, and the chamber was cooled to less than 300 C before opening it to the atmosphere after growth. When no voltage was applied across the gap, the SWNTs grew in random directions extending out from the edges of the catalyst at the gap. When a potential of 10 V was applied between the catalyst/electrode areas to create an electric field across the gap, the SWNTs grew across the gap, as shown in the figure.

  16. Fluid mechanics of continuous flow electrophoresis

    NASA Technical Reports Server (NTRS)

    Saville, D. A.; Ostrach, S.

    1978-01-01

    The following aspects of continuous flow electrophoresis were studied: (1) flow and temperature fields; (2) hydrodynamic stability; (3) separation efficiency, and (4) characteristics of wide gap chambers (the SPAR apparatus). Simplified mathematical models were developed so as to furnish a basis for understanding the phenomena and comparison of different chambers and operating conditions. Studies of the hydrodynamic stability disclosed that a wide gap chamber may be particularly sensitive to axial temperature variations which could be due to uneven heating or cooling. The mathematical model of the separation process includes effects due to the axial velocity, electro-osmotic cross flow and electrophoretic migration, all including the effects of temperature dependent properties.

  17. SU-E-T-104: An Examination of Dose in the Buildup and Build-Down Regions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tome, W; Kuo, H; Phillips, J

    2015-06-15

    Purpose: To examine dose in the buildup and build-down regions and compare measurements made with various models and dosimeters Methods: Dose was examined in a 30×30cm {sup 2} phantom of water-equivalent plastic with 10cm of backscatter for various field sizes. Examination was performed with radiochromic film and optically-stimulated-luminescent-dosimeter (OSLD) chips, and compared against a plane-parallel chamber with a correction factor applied to approximate the response of an extrapolation chamber. For the build-down region, a correction factor to account for table absorption and chamber orientation in the posterior-anterior direction was applied. The measurement depths used for the film were halfway throughmore » their sensitive volumes, and a polynomial best fit curve was used to determine the dose to their surfaces. This chamber was also compared with the dose expected in a clinical kernel-based computer model, and a clinical Boltzmann-transport-equation-based (BTE) computer model. The two models were also compared against each other for cases with air gaps in the buildup region. Results: Within 3mm, all dosimeters and models agreed with the chamber within 10% for all field sizes. At the entrance surface, film differed in comparison with the chamber from +90% to +15%, the BTE-model by +140 to +3%, and the kernel-based model by +20% to −25%, decreasing with increasing field size. At the exit surface, film differed in comparison with the chamber from −10% to −15%, the BTE-model by −53% to −50%, the kernel-based model by −55% to −57%, mostly independent of field size. Conclusion: The largest differences compared with the chamber were found at the surface for all field sizes. Differences decreased with increasing field size and increasing depth in phantom. Air gaps in the buildup region cause dose buildup to occur again post-gap, but the effect decreases with increasing phantom thickness prior to the gap.« less

  18. High-voltage spark atomic emission detector for gas chromatography

    NASA Technical Reports Server (NTRS)

    Calkin, C. L.; Koeplin, S. M.; Crouch, S. R.

    1982-01-01

    A dc-powered, double-gap, miniature nanosecond spark source for emission spectrochemical analysis of gas chromatographic effluents is described. The spark is formed between two thoriated tungsten electrodes by the discharge of a coaxial capacitor. The spark detector is coupled to the gas chromatograph by a heated transfer line. The gas chromatographic effluent is introduced into the heated spark chamber where atomization and excitation of the effluent occurs upon breakdown of the analytical gap. A microcomputer-controlled data acquisition system allows the implementation of time-resolution techniques to distinguish between the analyte emission and the background continuum produced by the spark discharge. Multiple sparks are computer averaged to improve the signal-to-noise ratio. The application of the spark detector for element-selective detection of metals and nonmetals is reported.

  19. Force on a storage ring vacuum chamber after sudden turn-off of a magnet power supply

    NASA Astrophysics Data System (ADS)

    Sinha, Gautam; Prabhu, S. S.

    2011-10-01

    We are commissioning a 2.5 GeV synchrotron radiation source (SRS) where electrons travel in high vacuum inside the vacuum chambers made of aluminum alloys. These chambers are kept between the pole gaps of magnets and are made to facilitate the radiation coming out of the storage ring to the experimental station. These chambers are connected by metallic bellows. During the commissioning phase of the SRS, the metallic bellows became ruptured due to the frequent tripping of the dipole magnet power supply. The machine was down for quite some time. In the case of a power supply trip, the current in the magnets decays exponentially. It was observed experimentally that the fast B field decay generates a large eddy current in the chambers and consequently the chambers are subjected to a huge Lorentz force. This motivated us to develop a theoretical model to study the force acting on a metallic plate when exposed to an exponentially decaying field and then to extend it for a rectangular vacuum chamber. The problem is formulated using Maxwell’s equations and converted to the inhomogeneous Helmholtz equation. After taking the Laplace transform, the equation is solved with appropriate boundary conditions. Final results are obtained after taking the appropriate inverse Laplace transform. The expressions for eddy current contour and magnetic field produced by the eddy current are also derived. Variations of the force on chambers of different wall thickness due to spatially varying and exponentially time decaying field are presented. The result is a general theory which can be applied to different geometries and calculation of power loss as well. Comparisons are made with results obtained by simulation using a finite element based code, for quick verification of the theoretical model.

  20. Catheterized plasma X-ray source

    DOEpatents

    Derzon, Mark S.; Robinson, Alex; Galambos, Paul C.

    2017-06-20

    A radiation generator useful for medical applications, among others, is provided. The radiation generator includes a catheter; a plasma discharge chamber situated within a terminal portion of the catheter, a cathode and an anode positioned within the plasma discharge chamber and separated by a gap, and a high-voltage transmission line extensive through the interior of the catheter and terminating on the cathode and anode so as to deliver, in operation, one or more voltage pulses across the gap.

  1. Thermal casting of polymers in centrifuge for producing X-ray optics

    DOEpatents

    Hill, Randy M [Livermore, CA; Decker, Todd A [Livermore, CA

    2012-03-27

    An optic is produced by the steps of placing a polymer inside a rotateable cylindrical chamber, the rotateable cylindrical chamber having an outside wall, rotating the cylindrical chamber, heating the rotating chamber forcing the polymer to the outside wall of the cylindrical chamber, allowing the rotateable cylindrical chamber to cool while rotating producing an optic substrate with a substrate surface, sizing the optic substrate, and coating the substrate surface of the optic substrate to produce the optic with an optic surface.

  2. Nuclear reactor building

    DOEpatents

    Gou, P.F.; Townsend, H.E.; Barbanti, G.

    1994-04-05

    A reactor building for enclosing a nuclear reactor includes a containment vessel having a wetwell disposed therein. The wetwell includes inner and outer walls, a floor, and a roof defining a wetwell pool and a suppression chamber disposed there above. The wetwell and containment vessel define a drywell surrounding the reactor. A plurality of vents are disposed in the wetwell pool in flow communication with the drywell for channeling into the wetwell pool steam released in the drywell from the reactor during a LOCA for example, for condensing the steam. A shell is disposed inside the wetwell and extends into the wetwell pool to define a dry gap devoid of wetwell water and disposed in flow communication with the suppression chamber. In a preferred embodiment, the wetwell roof is in the form of a slab disposed on spaced apart support beams which define there between an auxiliary chamber. The dry gap, and additionally the auxiliary chamber, provide increased volume to the suppression chamber for improving pressure margin. 4 figures.

  3. Nuclear reactor building

    DOEpatents

    Gou, Perng-Fei; Townsend, Harold E.; Barbanti, Giancarlo

    1994-01-01

    A reactor building for enclosing a nuclear reactor includes a containment vessel having a wetwell disposed therein. The wetwell includes inner and outer walls, a floor, and a roof defining a wetwell pool and a suppression chamber disposed thereabove. The wetwell and containment vessel define a drywell surrounding the reactor. A plurality of vents are disposed in the wetwell pool in flow communication with the drywell for channeling into the wetwell pool steam released in the drywell from the reactor during a LOCA for example, for condensing the steam. A shell is disposed inside the wetwell and extends into the wetwell pool to define a dry gap devoid of wetwell water and disposed in flow communication with the suppression chamber. In a preferred embodiment, the wetwell roof is in the form of a slab disposed on spaced apart support beams which define therebetween an auxiliary chamber. The dry gap, and additionally the auxiliary chamber, provide increased volume to the suppression chamber for improving pressure margin.

  4. Thermal stresses investigation of a gas turbine blade

    NASA Astrophysics Data System (ADS)

    Gowreesh, S.; Pravin, V. K.; Rajagopal, K.; Veena, P. H.

    2012-06-01

    The analysis of structural and thermal stress values that are produced while the turbine is operating are the key factors of study while designing the next generation gas turbines. The present study examines structural, thermal, modal analysis of the first stage rotor blade of a two stage gas turbine. The design features of the turbine segment of the gas turbine have been taken from the preliminary design of a power turbine for maximization of an existing turbojet engine with optimized dump gap of the combustion chamber, since the allowable temperature on the turbine blade dependents on the hot gas temperatures from the combustion chamber. In the present paper simplified 3-D Finite Element models are developed with governing boundary conditions and solved using the commercial FEA software ANSYS. As the temperature has a significant effect on the overall stress on the rotor blades, a detail study on mechanical and thermal stresses are estimated and evaluated with the experimental values.

  5. Catalytic converter for purifying exhaust gases of internal combustion engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kakinuma, A.; Oya, H.

    1980-06-24

    A catalytic converter for purifying the exhaust gases of internal combustion engines is comprised of a cylindrical shell comprising a pair of half shells which form an inlet chamber, a catalyst chamber, and an outlet chamber, a catalyst element provided in the catalyst chamber, a cylindrical sealing member provided in the inlet chamber, and a damper member provided between the cylindrical shell and the sealing member. The sealing member engages to the cylindrical shell for sealing the gap between the cylindrical shell and the catalyst element.

  6. Methods of conducting simultaneous exothermic and endothermic reactions

    DOEpatents

    Tonkovich, Anna Lee [Marysville, OH; Roberts, Gary L [West Richland, WA; Perry, Steven T [Galloway, OH; Fitzgerald, Sean P [Columbus, OH

    2005-11-29

    Integrated Combustion Reactors (ICRs) and methods of making ICRs are described in which combustion chambers (or channels) are in direct thermal contact to reaction chambers for an endothermic reaction. Superior results were achieved for combustion chambers which contained a gap for free flow through the chamber. Particular reactor designs are also described. Processes of conducting reactions in integrated combustion reactors are described and results presented. Some of these processes are characterized by unexpected and superior results.

  7. Long term performance studies of large oil-free bakelite resistive plate chamber

    NASA Astrophysics Data System (ADS)

    Ganai, R.; Roy, A.; Shiroya, M. K.; Agarwal, K.; Ahammed, Z.; Choudhury, S.; Chattopadhyay, S.

    2016-09-01

    Several high energy physics and neutrino physics experiments worldwide require large-size RPCs to cover wide acceptances. The muon tracking systems in the Iron calorimeter (ICAL) experiment in the India based Neutrino Observatory (INO), India and the near detector in Deep Underground Neutrino Experiment (DUNE) at Fermilab are two such examples. A single gap bakelite RPC of dimension 240 cm × 120 cm, with gas gap of 0.2 cm, has been built and tested at Variable Energy Cyclotron Centre, Kolkata, using indigenous materials procured from the local market. No additional lubricant, like oil has been used on the electrode surfaces for smoothening. The chamber is in operation for > 365 days. We have tested the chamber for its long term operation. The leakage current, bulk resistivity, efficiency, noise rate and time resolution of the chamber have been found to be quite stable during the testing peroid. It has shown an efficiency > 95% with an average time resolution of ~ 0.83 ns at the point of measurement at ~ 8700 V throughout the testing period. Details of the long term performance of the chamber have been discussed.

  8. Effect of electron divergence in air gaps on the measurement of the energy of cascades in emulsion chambers

    NASA Technical Reports Server (NTRS)

    Apanasenko, A. V.; Baradzey, L. T.; Kanevskaya, Y. A.; Smorodin, Y. A.

    1975-01-01

    The effect of an increase in electron density in the vicinity of the cascade axis caused by an avalanche passing through the gap between lead filters of the emulsion chamber was investigated experimentally. Optical densities were measured in three X-ray films spaced at 400, 800 and 1200 micrometer from the filter surface having a thickness of 6 cascade units. The optical densities of blackening spots caused by electron photon cascades of 1 to 2, 2 to 7 and greater than 7 BeV energies were measured. The results prove the presence of a gap between the filter and the nuclear emulsion which results in the underestimation of energy by several tenths of a percent.

  9. Influence of the electrode gap separation on the pseudospark-sourced electron beam generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, J., E-mail: junping.zhao@qq.com; State Key Laboratory of Electrical Insulation and Power Equipment, West Xianning Road, Xi'an 710049; Department of Physics, SUPA, University of Strathclyde, Glasgow, G4 0NG Scotland

    Pseudospark-sourced electron beam is a self-focused intense electron beam which can propagate without any external focusing magnetic field. This electron beam can drive a beam-wave interaction directly or after being post-accelerated. It is especially suitable for terahertz radiation generation due to the ability of a pseudospark discharge to produce small size in the micron range and very high current density and bright electron beams. In this paper, a single-gap pseudospark discharge chamber has been built and tested with several electrode gap separations to explore the dependence of the pseudospark-sourced electron beam current on the discharge voltage and the electrode gapmore » separation. Experimental results show that the beam pulses have similar pulse width and delay time from the distinct drop of the applied voltage for smaller electrode gap separations but longer delay time for the largest gap separation used in the experiment. It has been found that the electron beam only starts to occur when the charging voltage is above a certain value, which is defined as the starting voltage of the electron beam. The starting voltage is different for different electrode gap separations and decreases with increasing electrode gap separation in our pseudospark discharge configuration. The electron beam current increases with the increasing discharge voltage following two tendencies. Under the same discharge voltage, the configuration with the larger electrode gap separation will generate higher electron beam current. When the discharge voltage is higher than 10 kV, the beam current generated at the electrode gap separation of 17.0 mm, is much higher than that generated at smaller gap separations. The ionization of the neutral gas in the main gap is inferred to contribute more to the current increase with increasing electrode gap separation.« less

  10. Molecular-beam gas-sampling system

    NASA Technical Reports Server (NTRS)

    Young, W. S.; Knuth, E. L.

    1972-01-01

    A molecular beam mass spectrometer system for rocket motor combustion chamber sampling is described. The history of the sampling system is reviewed. The problems associated with rocket motor combustion chamber sampling are reported. Several design equations are presented. The results of the experiments include the effects of cooling water flow rates, the optimum separation gap between the end plate and sampling nozzle, and preliminary data on compositions in a rocket motor combustion chamber.

  11. Low pressure drop, multi-slit virtual impactor

    DOEpatents

    Bergman, Werner

    2002-01-01

    Fluid flow is directed into a multiplicity of slit nozzles positioned so that the fluid flow is directed into a gap between the nozzles and (a) a number of receiving chambers and (b) a number of exhaust chambers. The nozzles and chambers are select so that the fluid flow will be separated into a first particle flow component with larger and a second particle flow component with the smaller particles.

  12. Integrated-magnetic apparatus

    NASA Technical Reports Server (NTRS)

    Bloom, Gordon E. (Inventor)

    1998-01-01

    Disclosure is made of an integrated-magnetic apparatus, comprising: winding structure for insulatingly carrying at least two generally flat, laterally offset and spaced apart electrical windings of a power converter around an aperture; a core having a flat exterior face, an interior cavity and an un-gapped core-column that is located within the cavity and that passes through the aperture of the winding structure; flat-sided surface carried by the core and forming an interior chamber that is located adjacent to the flat face of the core and forming a core-column that has a gap and that is located within the chamber; and structure, located around the gapped core-column, for carrying a third electrical winding of the power converter. The first two electrical windings are substantially located within the cavity and are adapted to be transformingly coupled together through the core. The third electrical winding is adapted to be inductively coupled through the gapped core-column to the other electrical windings, and is phased to have the magnetic flux passing through the gapped core-column substantially in the same direction as the magnetic flux passing through the un-gapped core-column and to have substantially the same AC components of flux in the gapped core-column and in the un-gapped core-column.

  13. High-power, high-brightness pseudospark-produced electron beam driven by improved pulse line accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Junbino Zhu; Mingchang Wang; Zhijiang Wang

    1995-12-31

    A high power (200KV), intense current density, low emittance (71mmmrad), high brightness (8x10{sup 10}A/m rad) electron beam was generated in the 10cm long, high-voltage-resistive multi-gap hollow cathode pseudospark chamber filled with 15pa nitrogen and driven by an improved pulse line accelerator. The beam was ejected with the 1mm diameter, the 2.2KA beam current, and the 400ns pulse length, and could propagated 20cm in the drift tube. At a distance of 5cm from the anode it penetrated consecutively an acid-sensitive discoloring film and a 0.05mm-thick copper foil both stuck closely, left 0.6mm and 0.3mm holes on them, respectively. That 10 shotsmore » on an acid-sensitive film produced a hole of 1.6mm at 7cm downstream of anode showed its good repeatability. After 60 shots the pseudospark discharge chamber was disassembled and observed that almost no destructive damage traces left on the surfaces of its various electrodes and insulators. But on almost all the surfaces of changeable central hole parts installed on intermediate electrodes there are traces of electron emission from the sides facing the anode and of bombardment on the sides facing the cathode, in contrast with which on the front- and back-surfaces of hollow cathode no visible traces of electron emission from then was observed. In addition, there were different tints, strip-like regions on the side of anode facing the cathode. Another interesting phenomenon was that there were a set of concentric circular or elliptical ring pattern on the acid-sensitive discoloring film got at 5cm from the anode and observed tinder a metallograph. It seems that the pseudospark electron beam is Laminar beam i.e, being possessed of a multi-layer structure, at least in the case of multi-gap pseudospark discharge chamber. It was found experimentally that the quality of pseudospark electron beam is much better than that of the cold-cathode electron beam.« less

  14. Note: The design of thin gap chamber simulation signal source based on field programmable gate array.

    PubMed

    Hu, Kun; Lu, Houbing; Wang, Xu; Li, Feng; Liang, Futian; Jin, Ge

    2015-01-01

    The Thin Gap Chamber (TGC) is an important part of ATLAS detector and LHC accelerator. Targeting the feature of the output signal of TGC detector, we have designed a simulation signal source. The core of the design is based on field programmable gate array, randomly outputting 256-channel simulation signals. The signal is generated by true random number generator. The source of randomness originates from the timing jitter in ring oscillators. The experimental results show that the random number is uniform in histogram, and the whole system has high reliability.

  15. Note: The design of thin gap chamber simulation signal source based on field programmable gate array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Kun; Wang, Xu; Li, Feng

    The Thin Gap Chamber (TGC) is an important part of ATLAS detector and LHC accelerator. Targeting the feature of the output signal of TGC detector, we have designed a simulation signal source. The core of the design is based on field programmable gate array, randomly outputting 256-channel simulation signals. The signal is generated by true random number generator. The source of randomness originates from the timing jitter in ring oscillators. The experimental results show that the random number is uniform in histogram, and the whole system has high reliability.

  16. Calibration and Use of B Dot Probes for Electromagnetic Measuring

    DTIC Science & Technology

    1977-08-09

    response. E. Time Domain Reflectometry Measurements Pulse impedance measurements for the 1.75-in. diameter double-gap probe design were first performed...Far Field (Radiation) Patterns of a B Dot Probe 1. Anechoic Chamber The facility utilized for the probe patterns was the NASA 120-ft chamber at

  17. Apparatus for preparing a sample for mass spectrometry

    DOEpatents

    Villa-Aleman, Eliel

    1994-01-01

    An apparatus for preparing a sample for analysis by a mass spectrometer system. The apparatus has an entry chamber and an ionization chamber separated by a skimmer. A capacitor having two space-apart electrodes followed by one or more ion-imaging lenses is disposed in the ionization chamber. The chamber is evacuated and the capacitor is charged. A valve injects a sample gas in the form of sample pulses into the entry chamber. The pulse is collimated by the skimmer and enters the ionization chamber. When the sample pulse passes through the gap between the electrodes, it discharges the capacitor and is thereby ionized. The ions are focused by the imaging lenses and enter the mass analyzer, where their mass and charge are analyzed.

  18. Turbocharger apparatus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leavesley, M.G.

    1993-08-03

    Variable turbocharger apparatus is described comprising a compressor housing, a compressor mounted for rotation in the compressor housing, a turbine housing, a turbine mounted for rotation in the turbine housing, a first inlet for enabling air to be conducted to the compressor, an outlet for air from the compressor, a second inlet for enabling exhaust gases from an engine to be conducted to the turbine, a chamber which surrounds the turbine and which receives the exhaust gases from the second inlet before the exhaust gases are conducted to the turbine, a piston which is positioned between the turbine and themore » turbine housing and which is slidable backwards and forwards to form a movable wall separating the turbine from the chamber which surrounds the turbine, a bearing assembly for allowing the rotation of the compressor and the turbine, and a heat shield for shielding the bearing assembly from the exhaust gases, the piston having a plurality of vanes, the piston being such that in its closed position it terminates short of an adjacent part of the turbine housing so that there is always a gap between the end of the piston and the adjacent part of the turbine housing whereby exhaust gases from the chamber can always pass through the gap to act on the turbine, the piston being such that in its open position the gap is increased, and the piston being biased to its closed position against pressure from exhaust gases in the chamber during use of the variable turbocharger apparatus whereby the piston slides backwards and forwards to vary the gap in dependence upon engine operating conditions, and the variable turbocharger apparatus being such that the vanes on the piston enter into slots in the heat shield.« less

  19. A T0/Trigger detector for the External Target Experiment at CSR

    NASA Astrophysics Data System (ADS)

    Hu, D.; Shao, M.; Sun, Y.; Li, C.; Chen, H.; Tang, Z.; Zhang, Y.; Zhou, J.; Zeng, H.; Zhao, X.; You, W.; Song, G.; Deng, P.; Lu, J.; Zhao, L.

    2017-06-01

    A new T0/Trigger detector based on multi-gap resistive plate chamber (MRPC) technology has been constructed and tested for the external target experiment (ETE) at HIRFL-CSR. It measures the multiplicity and timing information of particles produced in heavy-ion collisions at the target region, providing necessary event collision time (T0) and collision centrality with high precision. Monte-Carlo simulation shows a time resolution of several tens of picosecond can be achieved at central collisions. The experimental tests have been performed for this prototype detector at the CSR-ETE. The preliminary results are shown to demonstrate the performance of the T0/Trigger detector.

  20. Quality control and batch testing of MRPC modules for BESIII ETOF upgrade

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Li, X.; Sun, Y. J.; Li, C.; Heng, Y. K.; Chen, T. X.; Dai, H. L.; Shao, M.; Sun, S. S.; Tang, Z. B.; Yang, R. X.; Wu, Z.; Wang, X. Z.

    2017-12-01

    The end-cap time-of-flight (ETOF) system for the Beijing Spectrometer III (BESIII) has been upgraded using the Multi-gap Resistive Plate Chamber (MRPC) technology (Williams et al., 1999; Li et al., 2001; Blanco et al., 2003; Fonte et al., 2013, [1-4]). A set of quality-assurance procedures has been developed to guarantee the performances of the 72 mass-produced MRPC modules installed. The cosmic ray batch testing show that the average detection efficiency of the MRPC modules is about 95%. Two different calibration methods indicate that MRPCs' time resolution can reach 60 ps in the cosmic ray test.

  1. Time resolution of resistive plate chambers investigated with 10 MeV electrons

    NASA Astrophysics Data System (ADS)

    Paradela, C.; Ayyad, Y.; Benlliure, J.; Casarejos, E.; Duran, I.

    2014-01-01

    The time resolution of double-gap timing resistive plate chambers (tRPC) has been measured with 10 MeV electron bunches of variable intensity. The use of electrons delivered in bunches of a few picoseconds was an attempt to mimic the energy deposition of heavy ions in the tRPC gas gap. The measurements show a clear dependence of the time resolution with the number of electrons per bunch, reaching 21 ps (standard deviation) for the highest beam intensity. The signal charge distribution and the time resolution are compared to data obtained with the same detectors for cosmic rays and 238U ions at 1 AGeV.

  2. Influence of in-situ ion-beam sputter cleaning on the conditioning effect of vacuum gaps

    NASA Astrophysics Data System (ADS)

    Kobayashi, Shinichi; Kojima, Hiroyuki; Saito, Yoshio

    1994-05-01

    An ion beam sputtering technique was used to clean the electrode surfaces of vacuum gaps. Ions of the sputtering gas were irradiated by means of an ion gun in a vacuum chamber attached to a breakdown measurement chamber. By providing in situ ion-beam sputter cleaning, this system makes it possible to make measurements free from contamination due to exposure to the air. The sputtering gas was He or Ar, and the electrodes were made of oxygen-free copper (purity more than 99.96%). An impulse voltage with the wave form of 64/700 microsecond(s) was applied to the test gap, and the pressure in the breakdown measurement chamber at the beginning of breakdown tests was 1.3 X 10-8 Pa. These experiments showed that ion-beam sputter cleaning results in higher breakdown fields after a repetitive breakdown conditioning procedure, and that He is more effective in improving hold- off voltages after the conditioning (under the same ion current density, the breakdown field was 300 MV/m for He sputtering and 200 MV/m for Ar sputtering). The breakdown fields at the first voltage application after the sputtering cleaning, on the other hand, were not improved.

  3. High-voltage pulse generator developed for wide-gap spark chambers

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Walschon, E. G.

    1968-01-01

    Low-inductance, high-capacitance Marx pulse generator provides for minimization of internal inductance and suppression of external electromagnetic radiation. The spark gaps of the generator are enclosed in a pressurized nitrogen atmosphere which allows the charging voltage to be varied by changing the nitrogen pressure.

  4. Apparatus for preparing a sample for mass spectrometry

    DOEpatents

    Villa-Aleman, E.

    1994-05-10

    An apparatus is described for preparing a sample for analysis by a mass spectrometer system. The apparatus has an entry chamber and an ionization chamber separated by a skimmer. A capacitor having two space-apart electrodes followed by one or more ion-imaging lenses is disposed in the ionization chamber. The chamber is evacuated and the capacitor is charged. A valve injects a sample gas in the form of sample pulses into the entry chamber. The pulse is collimated by the skimmer and enters the ionization chamber. When the sample pulse passes through the gap between the electrodes, it discharges the capacitor and is thereby ionized. The ions are focused by the imaging lenses and enter the mass analyzer, where their mass and charge are analyzed. 1 figures.

  5. Two-statge sorption type cryogenic refrigerator including heat regeneration system

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor); Wen, Liang-Chi (Inventor); Bard, Steven (Inventor)

    1989-01-01

    A lower stage chemisorption refrigeration system physically and functionally coupled to an upper stage physical adsorption refrigeration system. Waste heat generated by the lower stage cycle is regenerated to fuel the upper stage cycle thereby greatly improving the energy efficiency of a two-stage sorption refrigerator. The two stages are joined by disposing a first pressurization chamber providing a high pressure flow of a first refrigerant for the lower stage refrigeration cycle within a second pressurization chamber providing a high pressure flow of a second refrigerant for the upper stage refrigeration cycle. The first pressurization chamber is separated from the second pressurization chamber by a gas-gap thermal switch which at times is filled with a thermoconductive fluid to allow conduction of heat from the first pressurization chamber to the second pressurization chamber.

  6. Gas laser with dual plasma mixing

    DOEpatents

    Pinnaduwage, L.A.

    1999-04-06

    A gas laser includes an enclosure forming a first chamber, a second chamber and a lasing chamber which communicates through a first opening to the first chamber and through a second opening to the second chamber. The lasing chamber has a pair of reflectors defining a Fabry-Perot cavity. Separate inlets enable different gases to be introduced into the first and second chambers. A first cathode within the first chamber is provided to produce positive ions which travel into the lasing chamber and a second cathode of a pin-hollow type within the second chamber is provided to produce negative ions which travel into the lasing chamber. A third inlet introduces a molecular gas into the lasing chamber, where the molecular gas becomes excited by the positive and negative ions and emits light which lases in the Fabry-Perot cavity. 2 figs.

  7. Gas laser with dual plasma mixing

    DOEpatents

    Pinnaduwage, Lal A.

    1999-01-01

    A gas laser includes an enclosure forming a first chamber, a second chamber and a lasing chamber which communicates through a first opening to the first chamber and through a second opening to the second chamber. The lasing chamber has a pair of reflectors defining a Fabry-Perot cavity. Separate inlets enable different gases to be introduced into the first and second chambers. A first cathode within the first chamber is provided to produce positive ions which travel into the lasing chamber and a second cathode of a pin-hollow type within the second chamber is provided to produce negative ions which travel into the lasing chamber. A third inlet introduces a molecular gas into the lasing chamber, where the molecular gas becomes excited by the positive and negative ions and emits light which lases in the Fabry-Perot cavity.

  8. Spatial Variation of Pressure in the Lyophilization Product Chamber Part 1: Computational Modeling.

    PubMed

    Ganguly, Arnab; Varma, Nikhil; Sane, Pooja; Bogner, Robin; Pikal, Michael; Alexeenko, Alina

    2017-04-01

    The flow physics in the product chamber of a freeze dryer involves coupled heat and mass transfer at different length and time scales. The low-pressure environment and the relatively small flow velocities make it difficult to quantify the flow structure experimentally. The current work presents the three-dimensional computational fluid dynamics (CFD) modeling for vapor flow in a laboratory scale freeze dryer validated with experimental data and theory. The model accounts for the presence of a non-condensable gas such as nitrogen or air using a continuum multi-species model. The flow structure at different sublimation rates, chamber pressures, and shelf-gaps are systematically investigated. Emphasis has been placed on accurately predicting the pressure variation across the subliming front. At a chamber set pressure of 115 mtorr and a sublimation rate of 1.3 kg/h/m 2 , the pressure variation reaches about 9 mtorr. The pressure variation increased linearly with sublimation rate in the range of 0.5 to 1.3 kg/h/m 2 . The dependence of pressure variation on the shelf-gap was also studied both computationally and experimentally. The CFD modeling results are found to agree within 10% with the experimental measurements. The computational model was also compared to analytical solution valid for small shelf-gaps. Thus, the current work presents validation study motivating broader use of CFD in optimizing freeze-drying process and equipment design.

  9. A review of chamber experiments for determining specific emission rates and investigating migration pathways of flame retardants

    NASA Astrophysics Data System (ADS)

    Rauert, Cassandra; Lazarov, Borislav; Harrad, Stuart; Covaci, Adrian; Stranger, Marianne

    2014-01-01

    The widespread use of flame retardants (FRs) in indoor products has led to their ubiquitous distribution within indoor microenvironments with many studies reporting concentrations in indoor air and dust. Little information is available however on emission of these compounds to air, particularly the measurement of specific emission rates (SERs), or the migration pathways leading to dust contamination. Such knowledge gaps hamper efforts to develop understanding of human exposure. This review summarizes published data on SERs of the following FRs released from treated products: polybrominated diphenyl ethers (PBDEs), hexabromocyclododecanes (HBCDs), tetrabromobisphenol-A (TBBPA), novel brominated flame retardants (NBFRs) and organophosphate flame retardants (PFRs), including a brief discussion of the methods used to derive these SERs. Also reviewed are published studies that utilize emission chambers for investigations/measurements of mass transfer of FRs to dust, discussing the chamber configurations and methods used for these experiments. A brief review of studies investigating correlations between concentrations detected in indoor air/dust and possible sources in the microenvironment is included along with efforts to model contamination of indoor environments. Critical analysis of the literature reveals that the major limitations with utilizing chambers to derive SERs for FRs arise due to the physicochemical properties of FRs. In particular, increased partitioning to chamber surfaces, airborne particles and dust, causes loss through “sink” effects and results in long times to reach steady state conditions inside the chamber. The limitations of chamber experiments are discussed as well as their potential for filling gaps in knowledge in this area.

  10. Potential and field produced by a uniform or non-uniform elliptical beam inside a confocal elliptic vacuum chamber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Regenstreif, E.

    The potential produced by an isolated beam of elliptic cross-section seems to have been considered first by L.C. Teng. Image effects of line charges in elliptic vacuum chambers were introduced into accelerator theory by L. J. Laslett. Various approximate solutions for elliptic beams of finite cross-section coasting inside an elliptic vacuum chamber were subsequently proposed by P. Lapostolle and C. Bovet. A rigorous expression is derived for the potential produced by an elliptic beam inside an elliptic vacuum chamber, provided the beam envelope and the vacuum chamber can be assimilated to confocal ellipses.

  11. Spark gap device for precise switching

    DOEpatents

    Boettcher, Gordon E.

    1984-01-01

    A spark gap device for precise switching of an energy storage capacitor into an exploding bridge wire load is disclosed. Niobium electrodes having a melting point of 2,415 degrees centrigrade are spaced apart by an insulating cylinder to define a spark gap. The electrodes are supported by conductive end caps which, together with the insulating cylinder, form a hermetically sealed chamber filled with an inert, ionizable gas, such as pure xenon. A quantity of solid radioactive carbon-14 within the chamber adjacent the spark gap serves as a radiation stabilizer. The sides of the electrodes and the inner wall of the insulating cylinder are spaced apart a sufficient distance to prevent unwanted breakdown initiation. A conductive sleeve may envelop the outside of the insulating member from the midpoint of the spark gap to the cap adjacent the cathode. The outer metallic surfaces of the device may be coated with a hydrogen-impermeable coating to lengthen the shelf life and operating life of the device. The device breaks down at about 1,700 volts for input voltage rates up to 570 volts/millisecond and allows peak discharge currents of up to 3,000 amperes from a 0.3 microfarad energy storage capacitor for more than 1,000 operations.

  12. System for sterilizing objects. [cleaning space vehicle systems

    NASA Technical Reports Server (NTRS)

    Bryan, C. J.; Wright, E. E., Jr.; Moyers, C. V. (Inventor)

    1981-01-01

    A system for producing a stream of humidified sterilizing gas for sterilizing objects such as the water systems of space vehicles and the like includes a source of sterilant gas which is fed to a mixing chamber which has inlet and outlet ports. The level of the water only partially fills the mixing chamber so as to provide an empty space adjacent the top of the chamber. A heater is provided for heating the water in the chamber so as to produce a humidified atmosphere. The sterilant gas is fed through an arcuate shaped tubular member connected to the inlet port of the mixing chamber for producing a vortex type of flow of sterilant gas into the chamber for humidification. A tubular member extends from the mixing chamber for supplying the humidified sterilant gas to the object for being sterilized. Scrubbers are provided for removing the sterilant gas after use.

  13. Two stage sorption type cryogenic refrigerator including heat regeneration system

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor); Wen, Liang-Chi (Inventor); Bard, Steven (Inventor)

    1989-01-01

    A lower stage chemisorption refrigeration system physically and functionally coupled to an upper stage physical adsorption refrigeration system is disclosed. Waste heat generated by the lower stage cycle is regenerated to fuel the upper stage cycle thereby greatly improving the energy efficiency of a two-stage sorption refrigerator. The two stages are joined by disposing a first pressurization chamber providing a high pressure flow of a first refrigerant for the lower stage refrigeration cycle within a second pressurization chamber providing a high pressure flow of a second refrigerant for the upper stage refrigeration cycle. The first pressurization chamber is separated from the second pressurization chamber by a gas-gap thermal switch which at times is filled with a thermoconductive fluid to allow conduction of heat from the first pressurization chamber to the second pressurization chamber.

  14. A chamber investigation of the IR and visible wavelength obscuration properties of pyrotechnically generated smokes

    NASA Astrophysics Data System (ADS)

    Hanley, J. T.; Mack, E. J.

    1985-05-01

    The overall objective of the program is the development of an effective screening agent to both visible and IR wavelengths utilizing pyrotechnically-generated hygroscopic aerosol. In pursuit of an effective IR wavelength screen and an increased understanding of the particle formation mechanisms and resultant size distribution, the primary objective of this year's effort was to evaluate the influence of an energetic binder (GAP) on the performance of two pyrotechnics, one which produced a KCL aerosol, the other a mixed aerosol, the other a mixed aerosol of MgCl2 and carbon. Comparison tests were run, in Calspan's 600 cu m test chamber, in which the performance of the energetic vs. non-energetic pyrotechnics was compared in terms of mass yield, payload mass extinction coefficient, aerosol decay rate and size distribution. A secondary objective of limited scope was to investigate the potential of using IR absorbing surface active agents to coat the smoke aerosol so as to enhance the smoke's IR wavelength absorption as well as inhibit subsequent aerosol evaporation upon exposure to decreasing humidity.

  15. Environmental chamber for in situ dynamic control of temperature and relative humidity during x-ray scattering

    NASA Astrophysics Data System (ADS)

    Salas-de la Cruz, David; Denis, Jeffrey G.; Griffith, Matthew D.; King, Daniel R.; Heiney, Paul A.; Winey, Karen I.

    2012-02-01

    We have designed, constructed, and evaluated an environmental chamber that has in situ dynamic control of temperature (25 to 90 °C) and relative humidity (0% to 95%). The compact specimen chamber is designed for x-ray scattering in transmission with an escape angle of 2θ = ±30°. The specimen chamber is compatible with a completely evacuated system such as the Rigaku PSAXS system, in which the specimen chamber is placed inside a larger evacuated chamber (flight path). It is also compatible with x-ray systems consisting of evacuated flight tubes separated by small air gaps for sample placement. When attached to a linear motor (vertical displacement), the environmental chamber can access multiple sample positions. The temperature and relative humidity inside the specimen chamber are controlled by passing a mixture of dry and saturated gas through the chamber and by heating the chamber walls. Alternatively, the chamber can be used to control the gaseous environment without humidity. To illustrate the value of this apparatus, we have probed morphology transformations in Nafion® membranes and a polymerized ionic liquid as a function of relative humidity in nitrogen.

  16. Free-air ionization chamber, FAC-IR-300, designed for medium energy X-ray dosimetry

    NASA Astrophysics Data System (ADS)

    Mohammadi, S. M.; Tavakoli-Anbaran, H.; Zeinali, H. Z.

    2017-01-01

    The primary standard for X-ray photons is based on parallel-plate free-air ionization chamber (FAC). Therefore, the Atomic Energy Organization of Iran (AEOI) is tried to design and build the free-air ionization chamber, FAC-IR-300, for low and medium energy X-ray dosimetry. The main aim of the present work is to investigate specification of the FAC-IR-300 ionization chamber and design it. FAC-IR-300 dosimeter is composed of two parallel plates, a high voltage (HV) plate and a collector plate, along with a guard electrode that surrounds the collector plate. The guard plate and the collector were separated by an air gap. For obtaining uniformity in the electric field distribution, a group of guard strips was used around the ionization chamber. These characterizations involve determining the exact dimensions of the ionization chamber by using Monte Carlo simulation and introducing correction factors.

  17. Capillary Flow Experiment in Node 2

    NASA Image and Video Library

    2013-06-15

    Astronaut Karen Nyberg,Expedition 36 flight engineer,works on the Capillary Flow Experiment (CFE) Vane Gap-1 (VG-1) setup in the Node 2/Harmony. The CFE-2 vessel is used to observe fluid interface and critical wetting behavior in a cylindrical chamber with elliptic cross-section and an adjustable central perforated vane. The primary objective of the Vane Gap experiments is to determine equilibrium interface configurations and critical wetting conditions for interfaces between interior corners separated by a gap.

  18. Construction and performance of the sTGC and MicroMegas chambers for ATLAS NSW upgrade

    NASA Astrophysics Data System (ADS)

    Sekhniaidze, G.

    2017-03-01

    The innermost stations of the current ATLAS muon end-cap system, the Small Wheels, must be upgraded in 2019 to retain their good precision tracking and trigger capabilities in the high background environment expected with the upcoming luminosity increase of the LHC. The New Small Wheels (NSW) will employ two chamber technologies: eight layers of MicroMegas (MM) arranged in two quadruplets, sandwiched between two quadruplets of small-strip Thin Gap Chambers (sTGC) for a total of about 2400 m2 of detection planes. All quadruplets have trapezoidal shapes with surface areas between 1 and 3 m2. Both MM and sTGC systems will independently provide trigger and tracking capabilities. The readout boards are industrially produced for both technologies and an accurate quality control is needed. In order to achieve a 15% transverse momentum resolution for 1 TeV muons, in addition to an excellent intrinsic resolution (010 μm), the mechanical precision of each plane of the assembled modules must be as good as 30 μm along the precision coordinate and 80 μm perpendicular to the chamber. In 2016 the milestone to build the first module-0 prototypes for both technologies has been reached. The construction procedure of the module-0 detectors will be reviewed, along with the results of the quality control checks performed during construction. The module-0 have been measured and subjected to a thorough validation. Results obtained with high-energy particle beams, with cosmic rays and with X-rays will be presented.

  19. Small-strip Thin Gap Chambers for the muon spectrometer upgrade of the ATLAS experiment

    NASA Astrophysics Data System (ADS)

    Perez Codina, E.; ATLAS Muon Collaboration

    2016-07-01

    The ATLAS muon system upgrade to be installed during the LHC long shutdown in 2018/19, the so-called New Small Wheel (NSW), is designed to cope with the increased instantaneous luminosity in LHC Run 3. The small-strip Thin Gap Chambers (sTGC) will provide the NSW with a fast trigger and high precision tracking. The construction protocol has been validated by test beam experiments on a full-size prototype sTGC detector, showing the performance requirements are met. The intrinsic spatial resolution for a single layer has been found to be about 45 μm for a perpendicular incident angle, and the transition region between pads has been measured to be about 4 mm.

  20. Spark gap device for precise switching

    DOEpatents

    Boettcher, G.E.

    1984-10-02

    A spark gap device for precise switching of an energy storage capacitor into an exploding bridge wire load is disclosed. Niobium electrodes having a melting point of 2,415 degrees centigrade are spaced apart by an insulating cylinder to define a spark gap. The electrodes are supported by conductive end caps which, together with the insulating cylinder, form a hermetically sealed chamber filled with an inert, ionizable gas, such as pure xenon. A quantity of solid radioactive carbon-14 within the chamber adjacent the spark gap serves as a radiation stabilizer. The sides of the electrodes and the inner wall of the insulating cylinder are spaced apart a sufficient distance to prevent unwanted breakdown initiation. A conductive sleeve may envelop the outside of the insulating member from the midpoint of the spark gap to the cap adjacent the cathode. The outer metallic surfaces of the device may be coated with a hydrogen-impermeable coating to lengthen the shelf life and operating life of the device. The device breaks down at about 1,700 volts for input voltage rates up to 570 volts/millisecond and allows peak discharge currents of up to 3,000 amperes from a 0.3 microfarad energy storage capacitor for more than 1,000 operations. 3 figs.

  1. Piston manometer as an absolute standard for vacuum gage calibration in the range 10 to 700 microtorr

    NASA Technical Reports Server (NTRS)

    Warshawsky, I.

    1972-01-01

    Total pressure in a calibration chamber is determined by measuring the force on a disk suspended in an orifice in the baseplate of the chamber. The disk forms a narrow annular gap with the orifice. A continuous flow of calibration gas passes through the chamber and annulus to a downstream pumping system. The ratio of pressures on the two faces of the disk exceeds 100:1, so that chamber pressure is substantially equal to the product of disk area and net force on the disk. This force is measured with an electrodynamometer that can be calibrated in situ with dead weights. Probable error in pressure measurement is plus or minus (0.5 microtorr + 0.6 percent).

  2. Permeability of Iris germanica’s multiseriate exodermis to water, NaCl, and ethanol

    PubMed Central

    Meyer, Chris J.; Steudle, Ernst

    2011-01-01

    The exodermis of Iris germanica roots is multiseriate. Its outermost layer matures first with typical Casparian bands and suberin lamellae. But as subsequent layers mature, the Casparian band extends into the tangential and anticlinal walls of their cells. Compared with roots in which the endodermis represents the major transport barrier, the multiseriate exodermis (MEX) was expected to reduce markedly radial water and solute transport. To test this idea, precocious maturation of the exodermis was induced with a humid air gap inside a hydroponic chamber. Hydraulic conductivity (Lppc) was measured on completely submerged roots (with an immature exodermis) and on air-gap-exposed root regions (with two mature exodermal layers) using a pressure chamber. Compared with regions of roots with no mature exodermal layers, the mature MEX reduced Lppc from 8.5×10−8 to 3.9×10−8 m s−1 MPa−1. Puncturing the MEX increased Lppc to 19×10−8 m s−1 MPa−1, indicating that this layer constituted a substantial hydraulic resistance within the root (75% of the total). Alternatively, a root pressure probe was used to produce pressure transients from which hydraulic conductivity was determined, but this device measured mainly flow through the endodermis in these wide-diameter roots. The permeability of roots to NaCl and ethanol was also reduced in the presence of two mature MEX layers. The data are discussed in terms of the validity of current root models and in terms of a potential role for I. germanica MEX during conditions of drought and salt stress. PMID:21131546

  3. Method for gas-metal arc deposition

    DOEpatents

    Buhrmaster, C.L.; Clark, D.E.; Smartt, H.B.

    1990-11-13

    Method and apparatus for gas-metal arc deposition of metal, metal alloys, and metal matrix composites are disclosed. The apparatus contains an arc chamber for confining a D.C. electrical arc discharge, the arc chamber containing an outlet orifice in fluid communication with a deposition chamber having a deposition opening in alignment with the orifice for depositing metal droplets on a coatable substrate. Metal wire is passed continuously into the arc chamber in alignment with the orifice. Electric arcing between the metal wire anode and the orifice cathode produces droplets of molten metal from the wire which pass through the orifice and into the deposition chamber for coating a substrate exposed at the deposition opening. When producing metal matrix composites, a suspension of particulates in an inert gas enters the deposition chamber via a plurality of feed openings below and around the orifice so that reinforcing particulates join the metal droplets to produce a uniform mixture which then coats the exposed substrate with a uniform metal matrix composite. 1 fig.

  4. Method for gas-metal arc deposition

    DOEpatents

    Buhrmaster, Carol L.; Clark, Denis E.; Smartt, Herschel B.

    1990-01-01

    Method and apparatus for gas-metal arc deposition of metal, metal alloys, and metal matrix composites. The apparatus contains an arc chamber for confining a D.C. electrical arc discharge, the arc chamber containing an outlet orifice in fluid communication with a deposition chamber having a deposition opening in alignment wiht the orifice for depositing metal droplets on a coatable substrate. Metal wire is passed continuously into the arc chamber in alignment with the orifice. Electric arcing between the metal wire anode and the orifice cathode produces droplets of molten metal from the wire which pass through the orifice and into the deposition chamber for coating a substrate exposed at the deposition opening. When producing metal matrix composites, a suspension of particulates in an inert gas enters the deposition chamber via a plurality of feed openings below and around the orifice so that reinforcing particulates join the metal droplets to produce a uniform mixture which then coats the exposed substrate with a uniform metal matrix composite.

  5. Apparatus for gas-metal arc deposition

    DOEpatents

    Buhrmaster, Carol L.; Clark, Denis E.; Smartt, Herschel B.

    1991-01-01

    Apparatus for gas-metal arc deposition of metal, metal alloys, and metal matrix composites. The apparatus contains an arc chamber for confining a D.C. electrical arc discharge, the arc chamber containing an outlet orifice in fluid communication with a deposition chamber having a deposition opening in alignment with the orifice for depositing metal droplets on a coatable substrate. Metal wire is passed continuously into the arc chamber in alignment with the orifice. Electric arcing between the metal wire anode and the orifice cathode produces droplets of molten metal from the wire which pass through the orifice and into the deposition chamber for coating a substrate exposed at the deposition opening. When producing metal matrix composites, a suspenion of particulates in an inert gas enters the deposition chamber via a plurality of feed openings below and around the orifice so that reinforcing particulates join the metal droplets to produce a uniform mixture which then coats the exposed substrate with a uniform metal matrix composite.

  6. Improved Rhenium Thrust Chambers

    NASA Technical Reports Server (NTRS)

    O'Dell, John Scott

    2015-01-01

    Radiation-cooled bipropellant thrust chambers are being considered for ascent/ descent engines and reaction control systems on various NASA missions and spacecraft, such as the Mars Sample Return and Orion Multi-Purpose Crew Vehicle (MPCV). Currently, iridium (Ir)-lined rhenium (Re) combustion chambers are the state of the art for in-space engines. NASA's Advanced Materials Bipropellant Rocket (AMBR) engine, a 150-lbf Ir-Re chamber produced by Plasma Processes and Aerojet Rocketdyne, recently set a hydrazine specific impulse record of 333.5 seconds. To withstand the high loads during terrestrial launch, Re chambers with improved mechanical properties are needed. Recent electrochemical forming (EL-Form"TM") results have shown considerable promise for improving Re's mechanical properties by producing a multilayered deposit composed of a tailored microstructure (i.e., Engineered Re). The Engineered Re processing techniques were optimized, and detailed characterization and mechanical properties tests were performed. The most promising techniques were selected and used to produce an Engineered Re AMBR-sized combustion chamber for testing at Aerojet Rocketdyne.

  7. Installation for burning-out scrap metal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gutschmidt, P.

    1982-08-24

    Disclosed is an installation for burning-out scrap metal goods for the purpose of reclaiming scrap metal, comprising at least one furnace wagon, which is capable of being loaded with the scrap metal goods to be burned out; at least one burning-out chamber into which the furnace wagon is movable for burning-out the scrap metal goods to produce scrap steel; means for heating the burning-out chamber to a temperature of at least about 600* C.; at least one afterburning chamber communicating with the burning-out chamber for afterburning flue gases produced in the burning-out chamber at a temperature from about 1100* tomore » 1200* C.; a waste gas purifying plant communicating with the afterburning chamber for eliminating the flue gas impurities and for the scrubbing of the flue-gases originating from the afterburning chamber; and at least one cooling chamber arranged adjacent to and in selective communication with the burning-out chamber for cooling the burned-out material.« less

  8. An encoding readout method used for Multi-gap Resistive Plate Chambers (MRPCs) for muon tomography

    NASA Astrophysics Data System (ADS)

    Yue, X.; Zeng, M.; Wang, Y.; Wang, X.; Zeng, Z.; Zhao, Z.; Cheng, J.

    2014-09-01

    A muon tomography facility has been built in Tsinghua University. Because of the low flux of cosmic muon, an encoding readout method, based on the fine-fine configuration, was implemented for the 2880 channels induced signals from the Multi-gap Resistive Plate Chamber (MRPC) detectors. With the encoding method, the number of the readout electronics was dramatically reduced and thus the complexity and the cost of the facility was reduced, too. In this paper, the details of the encoding method, and the overall readout system setup in the muon tomography facility are described. With the commissioning of the facility, the readout method works well. The spatial resolution of all MRPC detectors are measured with cosmic muon and the preliminary imaging result are also given.

  9. Root-soil air gap and resistance to water flow at the soil-root interface of Robinia pseudoacacia.

    PubMed

    Liu, X P; Zhang, W J; Wang, X Y; Cai, Y J; Chang, J G

    2015-12-01

    During periods of water deficit, growing roots may shrink, retaining only partial contact with the soil. In this study, known mathematical models were used to calculate the root-soil air gap and water flow resistance at the soil-root interface, respectively, of Robinia pseudoacacia L. under different water conditions. Using a digital camera, the root-soil air gap of R. pseudoacacia was investigated in a root growth chamber; this root-soil air gap and the model-inferred water flow resistance at the soil-root interface were compared with predictions based on a separate outdoor experiment. The results indicated progressively greater root shrinkage and loss of root-soil contact with decreasing soil water potential. The average widths of the root-soil air gap for R. pseudoacacia in open fields and in the root growth chamber were 0.24 and 0.39 mm, respectively. The resistance to water flow at the soil-root interface in both environments increased with decreasing soil water potential. Stepwise regression analysis demonstrated that soil water potential and soil temperature were the best predictors of variation in the root-soil air gap. A combination of soil water potential, soil temperature, root-air water potential difference and soil-root water potential difference best predicted the resistance to water flow at the soil-root interface. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. SU-E-T-72: Commissioning of a Standardized SRS Cone Set: Determination of the Bolus Gap Factors in a Passively Scattered Proton Beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, R; Gordon, I; Ghebremedhin, A

    2014-06-01

    Purpose: To determine the proton output factors for an SRS cone set using standardized apertures and varied range compensators (bolus blanks); specifically, to determine the best method for modeling the bolus gap factor (BGF) and eliminate the need for patient specific calibrations. Methods: A Standard Imaging A-16 chamber was placed in a Plastic Water phantom to measure the change in dose/MU with different treatment combinations for a proton SRS cone, using standardized apertures and range compensators. Measurements were made with all apertures in the SRS cone set, with four different range compensator thicknesses and five different air gaps between themore » end of the SRS cone and the surface of the phantom. The chamber was located at iso-center and maintained at a constant depth at the center of modulation for all measurements. Each aperture was placed in the cone to measure the change in MU needed to maintain constant dose at the chamber, as the air gap was increased with different thicknesses of bolus. Results: The dose/MU varied significantly with decreasing aperture size, increasing bolus thickness, or increasing air gap. The measured data was fitted with the lowest order polynomials that accurately described the data, to create a model for determining the change in output for any potential combination of devices used to treat a patient. For a given standardized aperture, the BGF could be described by its constituent factors: the bolus thickness factor (BTF) and the nozzle extension factor (NEF). Conclusion: The methods used to model the dose at the calibration point could be used to accurately predict the change in output for SRS proton beams due to the BGF, eliminating the need for patient specific calibrations. This method for modeling SRS treatments could also be applied to model other treatments using passively scattered proton beams.« less

  11. Studies with cathode drift chambers for the GlueX experiment at Jefferson Lab

    DOE PAGES

    Pentchev, L.; Barbosa, F.; Berdnikov, V.; ...

    2017-04-22

    A drift chamber system consisting of 24 1 m-diameter chambers with both cathode and wire readout (total of 12,672 channels) is operational in Hall D at Jefferson Lab (Virginia). Two cathode strip planes and one wire plane in each chamber register the same avalanche allowing the study of avalanche development, charge induction process, and strip resolution. We demonstrate a method for reconstructing the two-dimensional distribution of the avalanche “center-of-gravity” position around the wire from an 55Fe source with resolutions down to 30 μm. We estimate the azimuthal extent of the avalanche around the wire as a function of the totalmore » charge for an Ar/CO 2 gas mixture. By means of cluster counting using a modified 3 cm-gap chamber, we observe significant space charge effects within the same track, resulting in an extent of the avalanche along the wire.« less

  12. Ultra-thin plasma radiation detector

    DOEpatents

    Friedman, Peter S.

    2017-01-24

    A position-sensitive ionizing-radiation counting detector includes a radiation detector gas chamber having at least one ultra-thin chamber window and an ultra-thin first substrate contained within the gas chamber. The detector further includes a second substrate generally parallel to and coupled to the first substrate and defining a gas gap between the first substrate and the second substrate. The detector further includes a discharge gas between the substrates and contained within the gas chamber, where the discharge gas is free to circulate within the gas chamber and between the first and second substrates at a given gas pressure. The detector further includes a first electrode coupled to one of the substrates and a second electrode electrically coupled to the first electrode. The detector further includes a first discharge event detector coupled to at least one of the electrodes for detecting a gas discharge counting event in the electrode.

  13. Ultra-thin plasma panel radiation detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedman, Peter S.

    An ultra-thin radiation detector includes a radiation detector gas chamber having at least one ultra-thin chamber window and an ultra-thin first substrate contained within the gas chamber. The detector further includes a second substrate generally parallel to and coupled to the first substrate and defining a gas gap between the first substrate and the second substrate. The detector further includes a discharge gas between the substrates and contained within the gas chamber, where the discharge gas is free to circulate within the gas chamber and between the first and second substrates at a given gas pressure. The detector further includesmore » a first electrode coupled to one of the substrates and a second electrode electrically coupled to the first electrode. The detector further includes a first discharge event detector coupled to at least one of the electrodes for detecting a gas discharge counting event in the electrode.« less

  14. 38. VIEW OF COTTRELL MAGNETIC IMPULSE GENERATOR ADJACENT TO SIX ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    38. VIEW OF COTTRELL MAGNETIC IMPULSE GENERATOR ADJACENT TO SIX GAP ROTARY RECTIFIER. THIS UNIT GENERATED A MAGNETIC PULSE WHICH WAS TRANSMITTED TO THE COLLECTION PLATES IN THE ELECTROSTATIC PRECIPITATOR CHAMBER. THESE PERIODIC PULSES VIBRATE THE PLATES AND CAUSE PRECIPITATED ARTICLES OF SMOKE AND FLY ASH TO FALL TO THE BOTTOM OF THE PRECIPITATOR CHAMBER. - New York, New Haven & Hartford Railroad, Cos Cob Power Plant, Sound Shore Drive, Greenwich, Fairfield County, CT

  15. Axisymmetric single shear element combustion instability experiment

    NASA Technical Reports Server (NTRS)

    Breisacher, Kevin J.

    1993-01-01

    The combustion stability characteristics of a combustor consisting of a single shear element and a cylindrical chamber utilizing LOX and gaseous hydrogen as propellants are presented. The combustor geometry and the resulting longitudinal mode instability are axisymmetric. Hydrogen injection temperature and pyrotechnic pulsing were used to determine stability boundaries. Mixture ratio, fuel annulus gap, and LOX post configuration were varied. Performance and stability data were obtained for chamber pressures of 300 and 1000 psia.

  16. Axisymmetric single shear element combustion instability experiment

    NASA Technical Reports Server (NTRS)

    Breisacher, Kevin J.

    1993-01-01

    The combustion stability characteristics of a combustor consisting of a single shear element and a cylindrical chamber utilizing LOX and gaseous hydrogen as propellants are presented. The combustor geometry and the resulting longitudinal mode instability are axisymmetric. Hydrogen injection temperature and pyrotechnic pulsing were used to determine stability boundaries. Mixture ratio, fuel annulus gap, and LOX post configuration were varied. Performance and stability data are presented for chamber pressures of 300 and 1000 psia.

  17. 37. VIEW OF SIX GAP ROTARY RECTIFIER FOR MAINTAINING CORONA ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    37. VIEW OF SIX GAP ROTARY RECTIFIER FOR MAINTAINING CORONA DISCHARGE IN THE COTTRELL ELECTROSTATIC GENERATORS. THE SYSTEM WAS CAPABLE OF PROVIDING 88,000 VOLTS TO THE ELECTRODES WITHIN THE PRECIPITATOR CHAMBER THE UNIT WAS LOCATED TO THE REAR OF BOILER 904 IN AN ENCLOSED ROOM. - New York, New Haven & Hartford Railroad, Cos Cob Power Plant, Sound Shore Drive, Greenwich, Fairfield County, CT

  18. Miniature ceramic fuel cell

    DOEpatents

    Lessing, Paul A.; Zuppero, Anthony C.

    1997-06-24

    A miniature power source assembly capable of providing portable electricity is provided. A preferred embodiment of the power source assembly employing a fuel tank, fuel pump and control, air pump, heat management system, power chamber, power conditioning and power storage. The power chamber utilizes a ceramic fuel cell to produce the electricity. Incoming hydro carbon fuel is automatically reformed within the power chamber. Electrochemical combustion of hydrogen then produces electricity.

  19. Luminosity limits for liquid argon calorimetry

    NASA Astrophysics Data System (ADS)

    J, Rutherfoord; B, Walker R.

    2012-12-01

    We have irradiated liquid argon ionization chambers with betas using high-activity Strontium-90 sources. The radiation environment is comparable to that in the liquid argon calorimeters which are part of the ATLAS detector installed at CERN's Large Hadron Collider. We measure the ionization current over a wide range of applied potential for two different source activities and for three different chamber gaps. These studies provide operating experience at exceptionally high ionization rates. We can operate these chambers either in the normal mode or in the space-charge limited regime and thereby determine the transition point between the two. From the transition point we indirectly extract the positive argon ion mobility.

  20. Emissions of organic compounds from produced water ponds II: Evaluation of flux chamber measurements with inverse-modeling techniques.

    PubMed

    Tran, Huy N Q; Lyman, Seth N; Mansfield, Marc L; O'Neil, Trevor; Bowers, Richard L; Smith, Ann P; Keslar, Cara

    2018-07-01

    In this study, the authors apply two different dispersion models to evaluate flux chamber measurements of emissions of 58 organic compounds, including C2-C11 hydrocarbons and methanol, ethanol, and isopropanol from oil- and gas-produced water ponds in the Uintah Basin. Field measurement campaigns using the flux chamber technique were performed at a limited number of produced water ponds in the basin throughout 2013-2016. Inverse-modeling results showed significantly higher emissions than were measured by the flux chamber. Discrepancies between the two methods vary across hydrocarbon compounds and are largest in alcohols due to their physical chemistries. This finding, in combination with findings in a related study using the WATER9 wastewater emission model, suggests that the flux chamber technique may underestimate organic compound emissions, especially alcohols, due to its limited coverage of the pond area and alteration of environmental conditions, especially wind speed. Comparisons of inverse-model estimations with flux chamber measurements varied significantly with the complexity of pond facilities and geometries. Both model results and flux chamber measurements suggest significant contributions from produced water ponds to total organic compound emission from oil and gas productions in the basin. This research is a component of an extensive study that showed significant amount of hydrocarbon emissions from produced water ponds in the Uintah Basin, Utah. Such findings have important meanings to air quality management agencies in developing control strategies for air pollution in oil and gas fields, especially for the Uintah Basin in which ozone pollutions frequently occurred in winter seasons.

  1. Method and apparatus for producing thermal vapor stream

    DOEpatents

    Cradeur, Robert R.; Sperry, John S.; Krajicek, Richard W.

    1979-01-01

    Method and apparatus for producing a thermal vapor stream for injecting into a subterranean formation for the recovery of liquefiable minerals therefrom, including a pressure vessel containing a high pressure combustion chamber for producing a heating gas for introduction into a heating gas injector. The heating gas injector is partly immersed in a steam generating section of the pressure vessel such that the heating gas is passed through the steam generating section to produce steam and combustion products which are directed between the pressure vessel and the combustion chamber for simultaneously cooling of the combustion chamber by further heating of the steam and combustion gases.

  2. Parasitic load control system for exhaust temperature control

    DOEpatents

    Strauser, Aaron D.; Coleman, Gerald N.; Coldren, Dana R.

    2009-04-28

    A parasitic load control system is provided. The system may include an exhaust producing engine and a fuel pumping mechanism configured to pressurize fuel in a pressure chamber. The system may also include an injection valve configured to cause fuel pressure to build within the pressure chamber when in a first position and allow injection of fuel from the pressure chamber into one or more combustion chambers of the engine when in a second position. The system may further include a controller configured to independently regulate the pressure in the pressure chamber and the injection of fuel into the one or more combustion chambers, to increase a load on the fuel pumping mechanism, increasing parasitic load on the engine, thereby increasing a temperature of the exhaust produced by the engine.

  3. Method oil shale pollutant sorption/NO.sub.x reburning multi-pollutant control

    DOEpatents

    Boardman, Richard D [Idaho Falls, ID; Carrington, Robert A [Idaho Falls, ID

    2008-06-10

    A method of decreasing pollutants produced in a combustion process. The method comprises combusting coal in a combustion chamber to produce at least one pollutant selected from the group consisting of a nitrogen-containing pollutant, sulfuric acid, sulfur trioxide, carbonyl sulfide, carbon disulfide, chlorine, hydroiodic acid, iodine, hydrofluoric acid, fluorine, hydrobromic acid, bromine, phosphoric acid, phosphorous pentaoxide, elemental mercury, and mercuric chloride. Oil shale particles are introduced into the combustion chamber and are combusted to produce sorbent particulates and a reductant. The at least one pollutant is contacted with at least one of the sorbent particulates and the reductant to decrease an amount of the at least one pollutant in the combustion chamber. The reductant may chemically reduce the at least one pollutant to a benign species. The sorbent particulates may adsorb or absorb the at least one pollutant. A combustion chamber that produces decreased pollutants in a combustion process is also disclosed.

  4. Assembling Resistive Plate Chambers for the PHENIX Detector

    NASA Astrophysics Data System (ADS)

    Drummond, Kirk

    2009-10-01

    A fast muon trigger for the Pioneering High Energy Nuclear Interaction eXperiment (PHENIX) will enable the study of flavor separated quark and anti-quark spin polarizations in the proton through the analysis of single spin asymmetries for W-boson production in proton-proton collisions. The Phenix experiment is capable of measuring high momentum muons at forward rapidity, but the current online trigger does not have sufficient rejection to sample rare leptons from W-decay at the highest luminosities at the Relativistic Heavy Ion Collider. This upgrade will enhance our ability to collect and analyze muons that decay from W-bosons produced in polarized proton-proton collisions. This upgrade is comprised of half-octants which encompass three different Resistive Plate Chamber (RPCs) modules that encase a sandwich of copper, mylar, gas gaps, and a signal plane. The summer of 2009 marked the start of this full production, with teams from many institutions contributing to the production in the assembly tent at Brookhaven National Lab. The North Arm Station 3 part of the upgrade is scheduled to be installed in the fall of 2009, and the remaining stations will be installed by the fall of 2011.

  5. Low pressure cooling seal system for a gas turbine engine

    DOEpatents

    Marra, John J

    2014-04-01

    A low pressure cooling system for a turbine engine for directing cooling fluids at low pressure, such as at ambient pressure, through at least one cooling fluid supply channel and into a cooling fluid mixing chamber positioned immediately downstream from a row of turbine blades extending radially outward from a rotor assembly to prevent ingestion of hot gases into internal aspects of the rotor assembly. The low pressure cooling system may also include at least one bleed channel that may extend through the rotor assembly and exhaust cooling fluids into the cooling fluid mixing chamber to seal a gap between rotational turbine blades and a downstream, stationary turbine component. Use of ambient pressure cooling fluids by the low pressure cooling system results in tremendous efficiencies by eliminating the need for pressurized cooling fluids for sealing this gap.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elizondo-Decanini, Juan M.

    Short pulse neutron generators are described herein. In a general embodiment, the short pulse neutron generator includes a Blumlein structure. The Blumlein structure includes a first conductive plate, a second conductive plate, a third conductive plate, at least one of an inductor or a resistor, a switch, and a dielectric material. The first conductive plate is positioned relative to the second conductive plate such that a gap separates these plates. A vacuum chamber is positioned in the gap, and an ion source is positioned to emit ions in the vacuum chamber. The third conductive plate is electrically grounded, and themore » switch is operable to electrically connect and disconnect the second conductive plate and the third conductive plate. The at least one of the resistor or the inductor is coupled to the first conductive plate and the second conductive plate.« less

  7. Pretreatment of aqueous ammonia on oil palm empty fruit fiber (OPEFB) in production of sugar

    NASA Astrophysics Data System (ADS)

    Zulkiple, Nursyafiqah; Maskat, Mohamad Yusof; Hassan, Osman

    2015-09-01

    Oil Palm Empty Fruit Bunch (OPEFB) is an agricultural residue that has the potential to become a good source for renewable feedstock for production of sugar. This work evaluated the effectiveness of aqueous ammonia as pretreatment at low (soaking, SAA) and elevated temperature (pressurized chamber) to deconstruct the lignocellulosic feedstock, prior to enzymatic hydrolysis. The ammonia pretreatments were compared against the standard NaOH method. The best tested pressurized chamber method conditions were at 100°C with 3 hour retention time, 12.5% ammonium hydroxide and 1:30 solid loading. The digestibility of the feedstock is determined with enzymatic hydrolysis using Cellic Ctech2 and Cellic Htech2. The sugars produced by pressurized chamber method within 24 hour of enzyme hydrolysis are similar to that produced by NaOH method which is 439.90 mg/ml and 351.61 mg/ml, respectively. Compared with optimum SAA method (24 hour, 6.25% of ammonium hydroxide at room temperature), pressurized chamber method was capable of producing enhanced delignification and higher production of sugar upon hydrolysis. These findings were supported by the disappearance peak at 1732, 1512 and 1243 on Fourier Transform Infrared (FTIR spectrum) of treated OPEFB by pressurized chamber method. XRD determination showed reduced crystallinity of OPEFB (37.23%) after treatment by pressurized chamber, suggesting higher accessibility toward enzyme hydrolysis. The data obtained suggest that the pressurized chamber pre-treatment method are suitable for OPEFB deconstruction to produce high yield of sugar.

  8. Biomass shock pretreatment

    DOEpatents

    Holtzapple, Mark T.; Madison, Maxine Jones; Ramirez, Rocio Sierra; Deimund, Mark A.; Falls, Matthew; Dunkelman, John J.

    2014-07-01

    Methods and apparatus for treating biomass that may include introducing a biomass to a chamber; exposing the biomass in the chamber to a shock event to produce a shocked biomass; and transferring the shocked biomass from the chamber. In some aspects, the method may include pretreating the biomass with a chemical before introducing the biomass to the chamber and/or after transferring shocked biomass from the chamber.

  9. Acoustic system for material transport

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Trinh, E. H.; Wang, T. G.; Elleman, D. D.; Jacobi, N. (Inventor)

    1983-01-01

    An object within a chamber is acoustically moved by applying wavelengths of different modes to the chamber to move the object between pressure wells formed by the modes. In one system, the object is placed in one end of the chamber while a resonant mode, applied along the length of the chamber, produces a pressure well at the location. The frequency is then switched to a second mode that produces a pressure well at the center of the chamber, to draw the object. When the object reaches the second pressure well and is still traveling towards the second end of the chamber, the acoustic frequency is again shifted to a third mode (which may equal the first model) that has a pressure well in the second end portion of the chamber, to draw the object. A heat source may be located near the second end of the chamber to heat the sample, and after the sample is heated it can be cooled by moving it in a corresponding manner back to the first end of the chamber. The transducers for levitating and moving the object may be all located at the cool first end of the chamber.

  10. Vibrating-chamber levitation systems

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Granett, D.; Lee, M. C. (Inventor)

    1985-01-01

    Systems are described for the acoustic levitation of objects, which enable the use of a sealed rigid chamber to avoid contamination of the levitated object. The apparatus includes a housing forming a substantially closed chamber, and means for vibrating the entire housing at a frequency that produces an acoustic standing wave pattern within the chamber.

  11. Charge exchange molecular ion source

    DOEpatents

    Vella, Michael C.

    2003-06-03

    Ions, particularly molecular ions with multiple dopant nucleons per ion, are produced by charge exchange. An ion source contains a minimum of two regions separated by a physical barrier and utilizes charge exchange to enhance production of a desired ion species. The essential elements are a plasma chamber for production of ions of a first species, a physical separator, and a charge transfer chamber where ions of the first species from the plasma chamber undergo charge exchange or transfer with the reactant atom or molecules to produce ions of a second species. Molecular ions may be produced which are useful for ion implantation.

  12. Purified silicon production system

    DOEpatents

    Wang, Tihu; Ciszek, Theodore F.

    2004-03-30

    Method and apparatus for producing purified bulk silicon from highly impure metallurgical-grade silicon source material at atmospheric pressure. Method involves: (1) initially reacting iodine and metallurgical-grade silicon to create silicon tetraiodide and impurity iodide byproducts in a cold-wall reactor chamber; (2) isolating silicon tetraiodide from the impurity iodide byproducts and purifying it by distillation in a distillation chamber; and (3) transferring the purified silicon tetraiodide back to the cold-wall reactor chamber, reacting it with additional iodine and metallurgical-grade silicon to produce silicon diiodide and depositing the silicon diiodide onto a substrate within the cold-wall reactor chamber. The two chambers are at atmospheric pressure and the system is open to allow the introduction of additional source material and to remove and replace finished substrates.

  13. Plasma driven neutron/gamma generator

    DOEpatents

    Leung, Ka-Ngo; Antolak, Arlyn

    2015-03-03

    An apparatus for the generation of neutron/gamma rays is described including a chamber which defines an ion source, said apparatus including an RF antenna positioned outside of or within the chamber. Positioned within the chamber is a target material. One or more sets of confining magnets are also provided to create a cross B magnetic field directly above the target. To generate neutrons/gamma rays, the appropriate source gas is first introduced into the chamber, the RF antenna energized and a plasma formed. A series of high voltage pulses are then applied to the target. A plasma sheath, which serves as an accelerating gap, is formed upon application of the high voltage pulse to the target. Depending upon the selected combination of source gas and target material, either neutrons or gamma rays are generated, which may be used for cargo inspection, and the like.

  14. Compact cryogenic system with mechanical cryocoolers for antihydrogen synthesis.

    PubMed

    Shibata, M; Mohri, A; Kanai, Y; Enomoto, Y; Yamazaki, Y

    2008-01-01

    We have developed a compact cryogenic system which cools a vacuum chamber housing multi-ring trap electrodes (MRTs) of an antihydrogen synthesis trap using mechanical cryocoolers to achieve background pressure less than 10(-12) Torr. The vacuum chamber and the cryocoolers are thermally connected by copper strips of 99.9999% in purity. All components are installed within a diametric gap between the MRT of phi108 mm and a magnet bore of phi160 mm. An adjusting mechanism is prepared to align the MRT axis to the magnet axis. The vacuum chamber was successfully cooled down to 4.0 K after 14 h of cooling with heat load of 0.8 W.

  15. Oxygen-reducing biocathodes operating with passive oxygen transfer in microbial fuel cells.

    PubMed

    Xia, Xue; Tokash, Justin C; Zhang, Fang; Liang, Peng; Huang, Xia; Logan, Bruce E

    2013-02-19

    Oxygen-reducing biocathodes previously developed for microbial fuel cells (MFCs) have required energy-intensive aeration of the catholyte. To avoid the need for aeration, the ability of biocathodes to function with passive oxygen transfer was examined here using air cathode MFCs. Two-chamber, air cathode MFCs with biocathodes produced a maximum power density of 554 ± 0 mW/m(2), which was comparable to that obtained with a Pt cathode (576 ± 16 mW/m(2)), and 38 times higher than that produced without a catalyst (14 ± 3 mW/m(2)). The maximum current density with biocathodes in this air-cathode MFC was 1.0 A/m(2), compared to 0.49 A/m(2) originally produced in a two-chamber MFC with an aqueous cathode (with cathode chamber aeration). Single-chamber, air-cathode MFCs with the same biocathodes initially produced higher voltages than those with Pt cathodes, but after several cycles the catalytic activity of the biocathodes was lost. This change in cathode performance resulted from direct exposure of the cathodes to solutions containing high concentrations of organic matter in the single-chamber configuration. Biocathode performance was not impaired in two-chamber designs where the cathode was kept separated from the anode solution. These results demonstrate that direct-air biocathodes can work very well, but only under conditions that minimize heterotrophic growth of microorganisms on the cathodes.

  16. BPM Breakdown Potential in the PEP-II B-factory Storage Ring Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weathersby, Stephen; Novokhatski, Alexander; /SLAC

    2010-02-10

    High current B-Factory BPM designs incorporate a button type electrode which introduces a small gap between the button and the beam chamber. For achievable currents and bunch lengths, simulations indicate that electric potentials can be induced in this gap which are comparable to the breakdown voltage. This study characterizes beam induced voltages in the existing PEP-II storage ring collider BPM as a function of bunch length and beam current.

  17. Simulation and experimental study of an AGMD membrane distillation pilot for the desalination of seawater or brackish water with zero liquid discharged

    NASA Astrophysics Data System (ADS)

    Boukhriss, Mokhless; Khemili, Sofiene; Ben Hamida, Mohamed Bechir; Ben Bacha, Habib

    2018-05-01

    Our work consists in presenting the results of an invention for a membrane distillation system coupled to an efficient and robust water solar collector. This system produces potable water with high quality and a small percentage of brackish discharge independent of salinity of the water source. To optimize and characterize experimentally the installation unit of the air gap membrane distillation (AGMD). During the tests, brackish water was used, ranging from 4.2 to 12.5 g/l of salt. The results show that the permeate flux increases as the temperature and feed rate an increase, and the thickness of the air gap decreases (from 5.12 to 1.5 mm). Our AGMD system was modelled using Matlab programming on heat and mass transfer aspects. The 1D model is based on the transfer equations and correlations of the literature present in the membrane distillation pilot. The maximum permeate flux obtained was 7.4 kg /m2 h with the temperature of the hot fluid of 80 °C, a gap of 1.5 mm and water flow rates of 4.8 l/min for the hot chamber and cold. For all measurements, the maximum relative difference between the experimental results and the simulated results is observed at 10% errors. The results of low temperature hot fluids can be interested in the solar energy coupling project.

  18. ELECTRICAL PROTECTIVE DEVICE

    DOEpatents

    Baker, W.R.

    1958-05-01

    A protective system for high-energy resonant cavities is described. It is particularly directed to the discharging of resonant cavities for preventing energy back flow through associated equipment as a result of faults. The invention in general provides means defining a spark gap communicating with the interior of a cavity or waveguide adapted for high-power energization or an evacuated chamber containing an electrode having a large power differential from the wall or other electrode. A control or trigger circuit is connected between a power supply energizing the cavity and the spark gap whereby reverse current flow in the power supply circuit instantaneously triggers the spark gap to initiate discharge within the cavity, whereupon cavity energy discharges across the gap, or with an electrode present the electrode discharges to one of the spark gap elements.

  19. The use of three-dimensional printing to produce in vitro slice chambers

    PubMed Central

    Hyde, James; MacNicol, Melanie; Odle, Angela; Garcia-Rill, Edgar

    2014-01-01

    Background In recent years, 3D printing technology has become inexpensive and simple enough that any lab can own and use one of these printers. New Method We explored the potential use of 3D printers for quickly and easily producing in vitro slice chambers for patch clamp electrophysiology. Slice chambers were produced using five available plastics: ABS, PLA, Nylon 618, Nylon 680, and T-glase. These “lab-made” chambers were also made using stereolithography through a professional printing service (Shapeways). This study measured intrinsic membrane properties of neurons in the brain stem pedunculopontine nucleus (PPN) and layer V pyramidal neurons in retrosplenial cortex. Results Nylon 680 and T-glase significantly hyperpolarized PPN neurons. ABS increased input resistance, decreased action potential amplitude, and increased firing frequency in pyramidal cortical neurons. To test long term exposure to each plastic, human neuroblastoma SHSY5Y cell cultures were exposed to each plastic for 1 week. ABS decreased cell counts while Nylon 618 and Shapeways plastics eliminated cells. Primary mouse pituitary cultures were also tested for 24-hour exposure. ABS decreased cell counts while Nylon 618 and Shapeways plastics decreased cell counts. Comparison to Existing Methods Chambers can be quickly and inexpensively printed in the lab. ABS, PLA, Nylon 680, and T-glase plastics would suffice for many experiments instead of commercially produced slice chambers. Conclusions While these technologies are still in their infancy, they represent a powerful addition to the lab environment. With careful selection of print material, slice chambers can be quickly and inexpensively manufactured in the lab. PMID:25251556

  20. Optical fiber F-P magnetic field sensor based on magnetostrictive effect of magnetic fluid

    NASA Astrophysics Data System (ADS)

    Shi, Fuquan; Luo, Yan; Che, Jiajia; Ren, Zhijun; peng, Baojin

    2018-07-01

    magnetic field sensor of air-gap Fabry-Perot fiber interferometersis proposed based on magnetostrictive effect. The sensor is consisted of single-model fiber (SMF), air-gap, no-core fiber (NCF) and magnetic fluid. Those are sealed in the capillary, SMF and NCF are connect with air chamber and magnetic fluid column. With the presence of an external magnetic field, air chamber cavity length changes because of the magneto-volume variation of magnetic fluids. This situation causes a change in the optical path difference. Detection of the drift of interference spectrum leads to the detection of the change in magnetic field. When the magnetic field is parallel to the direction in which the capillary is placed, the sensitivity is 0.2347 nm/mT; when the magnetic fluid is perpendicular to the direction in which the capillary is placed, the sensitivity is 0.325 nm/http://mT.%20In.

  1. ION SOURCE

    DOEpatents

    Bell, W.A. Jr.; Love, L.O.; Prater, W.K.

    1958-01-28

    An ion source is presented capable of producing ions of elements which vaporize only at exceedingly high temperatures, i.e.,--1500 degrees to 3000 deg C. The ion source utilizes beams of electrons focused into a first chamber housing the material to be ionized to heat the material and thereby cause it to vaporize. An adjacent second chamber receives the vaporized material through an interconnecting passage, and ionization of the vaporized material occurs in this chamber. The ionization action is produced by an arc discharge sustained between a second clectron emitting filament and the walls of the chamber which are at different potentials. The resultant ionized material egresses from a passageway in the second chamber. Using this device, materials which in the past could not be processed in mass spectometers may be satisfactorily ionized for such applications.

  2. Purification and deposition of silicon by an iodide disproportionation reaction

    DOEpatents

    Wang, Tihu; Ciszek, Theodore F.

    2002-01-01

    Method and apparatus for producing purified bulk silicon from highly impure metallurgical-grade silicon source material at atmospheric pressure. Method involves: (1) initially reacting iodine and metallurgical-grade silicon to create silicon tetraiodide and impurity iodide byproducts in a cold-wall reactor chamber; (2) isolating silicon tetraiodide from the impurity iodide byproducts and purifying it by distillation in a distillation chamber; and (3) transferring the purified silicon tetraiodide back to the cold-wall reactor chamber, reacting it with additional iodine and metallurgical-grade silicon to produce silicon diiodide and depositing the silicon diiodide onto a substrate within the cold-wall reactor chamber. The two chambers are at atmospheric pressure and the system is open to allow the introduction of additional source material and to remove and replace finished substrates.

  3. CONTINUOUS ROTATION SCATTERING CHAMBER

    DOEpatents

    Verba, J.W.; Hawrylak, R.A.

    1963-08-01

    An evacuated scattering chamber for use in observing nuclear reaction products produced therein over a wide range of scattering angles from an incoming horizontal beam that bombards a target in the chamber is described. A helically moving member that couples the chamber to a detector permits a rapid and broad change of observation angles without breaching the vacuum in the chamber. Also, small inlet and outlet openings are provided whose size remains substantially constant. (auth)

  4. A watertight acrylic-free titanium recording chamber for electrophysiology in behaving monkeys

    PubMed Central

    Economides, John R.; Jocson, Cristina M.; Parker, John M.; Horton, Jonathan C.

    2011-01-01

    Neurophysiological recording in alert monkeys requires the creation of a permanent aperture in the skull for repeated insertion of microelectrodes. Most laboratories use polymethyl methacrylate to attach a recording chamber over the skull opening. Here, we describe a titanium chamber that fastens to the skull with screws, using no polymethyl methacrylate. The gap between the base of the chamber and the skull is filled with hydroxyapatite, forming a watertight gasket. As the chamber base osseointegates with the skull, the hydroxyapatite is replaced with bone. Rather than having a finite lifetime, the recording chamber becomes more firmly anchored the longer it is in place. It has a small footprint, low profile, and needs little maintenance to control infection. Toilette consists of occasional application of betadine to clean the scalp margin, followed by application of neomycin, polymyxin, and bacitracin ointment. Antibiotic is also placed inside the chamber to suppress bacterial proliferation. Thickening of the dura within the chamber can be prevented by regular application of mitocycin C and/or bevacizumab, an antibody against vascular endothelial growth factor. By conducting an e-mail survey, this protocol for chamber maintenance was compared with procedures used in 37 other vision research laboratories. Refinement of appliances and techniques used for recordings in awake monkeys promises to increase the pace of scientific discovery and to benefit animal welfare. PMID:21676928

  5. Method for the hydrogenation of poly-si

    DOEpatents

    Wang, Qi

    2013-11-12

    A method for hydrogenating poly-si. Poly-si is placed into the interior of a chamber. A filament is placed into the interior of a chamber. The base pressure of the interior of the chamber is evacuated, preferably to 10.sup.-6 Torr or less. The poly-si is heated for a predetermined poly-si heating time. The filament is heated by providing an electrical power to the filament. Hydrogen is supplied into the pressurized interior of the chamber comprising the heated poly-si and the heated filament. Atomic hydrogen is produced by the filament at a rate whereby the atomic hydrogen surface density at the poly-si is less than the poly-si surface density. Preferably, the poly-si is covered from the atomic hydrogen produced by the heated filament for a first predetermined covering time. Preferably, the poly-si is then uncovered from the atomic hydrogen produced by the heated filament for a first hydrogenation time.

  6. Experimental study on surface properties of the PMMA used in high power spark gaps

    NASA Astrophysics Data System (ADS)

    Han, Ruoyu; Wu, Jiawei; Ding, Weidong; Liu, Yunfei; Gou, Yang

    2017-10-01

    This paper studies the surface properties of the Polymethylmethacrylate (PMMA) insulator samples used in high power spark gaps. Experiments on surface morphology, surface profile, surface chemical composition and surface leakage current were performed. Metal particles ejected in tangent direction of discharge spots were researched on the sample surface. Three kinds of distinct bands were found on the surface after 1500 shots: colorless and transparent sinking band, black band, and grey powdered coating band. The thickness of the coating band was tens of microns and the maximum radial erosion rate was about 10 μm/C. Surface content analysis indicated that the powdered coating was a mixture of decomposed insulator material and electrode material oxides. In addition, leakage current significantly depended on water content in the chamber and presented an U-shape curve distribution along the insulator surface, in keeping with the amount of powdered coating due to shock waves. Possible reasons of the surface property changes were discussed. Electroconductive oxides of low valence states of Cu and W produced by the reactions between electrode materials and arc plasmas were considered to be the cause of dielectric performance degradation.

  7. APPARATUS FOR PRODUCING SHADOWGRAPHS

    DOEpatents

    Wilson, R.R.

    1959-08-11

    An apparatus is presented for obtaining shadowgraphs or radiographs of an object exposed to x rays or the like. The device includes the combination of a cloud chamber having the interior illuminated and a portion thereof transparent to light rays and x'rays, a controlled source of x rays spaced therefrom, photographic recording disposed laterally of the linear path intermediate the source and the chamber portion in oblique angularity in aspect to the path. The object to be studied is disposed intermediate the x-ray source and chamber in the linear path to provide an x-ray transmission barrier therebetween. The shadowgraph is produced in the cloud chamber in response to initiation of the x- ray source and recorded photographically.

  8. Near-Net Shape Powder Metallurgy Rhenium Thruster

    NASA Technical Reports Server (NTRS)

    Leonhardt, Todd; Hamister, Mark; Carlen, Jan C.; Biaglow, James; Reed, Brian

    2001-01-01

    This paper describes the development of a method to produce a near-net shape (NNS) powder metallurgy (PM) rhenium combustion chamber of the size 445 N (100 lbf) used in a high performance liquid apogee engine. These engines are used in low earth Orbit and geostationary orbit for satellite positioning systems. The developments in near-net shape powder metallurgy rhenium combustion chambers reported in this paper will reduce manufacturing cost of the rhenium chambers by 25 percent, and reduce the manufacturing time by 30 to 40 percent. The quantity of rhenium metal powder used to produce a rhenium chamber is reduced by approximately 70 percent and the subsequent reduction in machining schedule and costs is nearly 50 percent.

  9. Liquid argon scintillation detection utilizing wavelength-shifting plates and light guides

    NASA Astrophysics Data System (ADS)

    Howard, B.

    2018-02-01

    In DUNE, the event timing provided by the detection of the relatively prompt scintillation photons will improve spatial resolution in the drift direction of the time-projection chamber (TPC) and is especially useful for non-beam physics topics such as supernova neutrinos and nucleon decay. The baseline design for the first 10kt single phase TPC fits the photon detector system in the natural gap between the wire planes of adjacent TPC volumes. A prototype photon detector design utilizes wavelength-shifter coated plates to convert the vacuum ultraviolet scintillation light to the optical and commercially-produced wavelength-shifting light guides to trap some of this light and transport it to an array of silicon photomultipliers at the end. This system and the testing performed to characterize the system and determine the efficiency are discussed.

  10. Liquid Argon Scintillation Detection Utilizing Wavelength-Shifting Plates and Light Guides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howard, B.

    In DUNE, the event timing provided by the detection of the relatively prompt scintillation photons will improve spatial resolution in the drift direction of the time-projection chamber (TPC) and is especially useful for non-beam physics topics such as supernova neutrinos and nucleon decay. The baseline design for the first 10kt single phase TPC fits the photon detector system in the natural gap between the wire planes of adjacent TPC volumes. A prototype photon detector design utilizes wavelength-shifter coated plates to convert the vacuum ultraviolet scintillation light to the optical and commercially-produced wavelength-shifting light guides to trap some of this lightmore » and transport it to an array of silicon photomultipliers at the end. This system and the testing performed to characterize the system and determine the efficiency are discussed.« less

  11. Means for obtaining a metal ion beam from a heavy-ion cyclotron source

    DOEpatents

    Hudson, E.D.; Mallory, M.L.

    1975-08-01

    A description is given of a modification to a cyclotron ion source used in producing a high intensity metal ion beam. A small amount of an inert support gas maintains the usual plasma arc, except that it is necessary for the support gas to have a heavy mass, e.g., xenon or krypton as opposed to neon. A plate, fabricated from the metal (or anything that can be sputtered) to be ionized, is mounted on the back wall of the ion source arc chamber and is bombarded by returning energetic low-charged gas ions that fail to cross the initial accelerating gap between the ion source and the accelerating electrode. Some of the atoms that are dislodged from the plate by the returning gas ions become ionized and are extracted as a useful beam of heavy ions. (auth)

  12. Revelation of graphene-Au for direct write deposition and characterization

    NASA Astrophysics Data System (ADS)

    Bhandari, Shweta; Deepa, Melepurath; Joshi, Amish G.; Saxena, Aditya P.; Srivastava, Avanish K.

    2011-06-01

    Graphene nanosheets were prepared using a modified Hummer's method, and Au-graphene nanocomposites were fabricated by in situ reduction of a gold salt. The as-produced graphene was characterized by X-ray photoelectron spectroscopy, ultraviolet-visible spectroscopy, scanning electron microscopy, and high-resolution transmission electron microscopy (HR-TEM). In particular, the HR-TEM demonstrated the layered crystallites of graphene with fringe spacing of about 0.32 nm in individual sheets and the ultrafine facetted structure of about 20 to 50 nm of Au particles in graphene composite. Scanning helium ion microscopy (HIM) technique was employed to demonstrate direct write deposition on graphene by lettering with gaps down to 7 nm within the chamber of the microscope. Bare graphene and graphene-gold nanocomposites were further characterized in terms of their composition and optical and electrical properties.

  13. Outgassing measurement of the aluminum alloy UHV chamber

    NASA Technical Reports Server (NTRS)

    Miyamoto, M.; Itoh, T.; Komaki, S.; Narushima, K.; Ishimaru, H.

    1986-01-01

    A large vacuum chamber (580 mm diameter) was fabricated from an aluminum alloy surface treated by a special process normally used on small chambers. The chamber was tested unbaked and baked at various temperatures, pressures, and holding periods. The chamber was filled with N2 gas, and the outgassing rate was measured after one hour. Then the ultimate pressure was measured. Outgassing rates for baked and unbaked groups were compared. It is concluded that the same surface treatment technique can be used on both large and small chambers produced by the same special extrusion process.

  14. Optical switching system and method

    DOEpatents

    Ranganathan, Radha; Gal, Michael; Taylor, P. Craig

    1992-01-01

    An optically bistable device is disclosed. The device includes a uniformly thick layer of amorphous silicon to constitute a Fabry-Perot chamber positioned to provide a target area for a probe beam. The probe beam has a maximum energy less than the energy band gap of the amorphous semiconductor. In a preferred embodiment, a multilayer dielectric mirror is positioned on the Fabry-Perot chamber to increase the finesse of switching of the device. The index of refraction of the amorphous material is thermally altered to alter the transmission of the probe beam.

  15. A DUST-SETTLING CHAMBER FOR SAMPLING-INSTRUMENT COMPARISON STUDIES

    EPA Science Inventory

    Introduction: Few methods exist that can evenly and reproducibly deposit dusts onto surfaces for surface-sampling methodological studies. A dust-deposition chamber was designed for that purpose.

    Methods: A 1-m3 Rochester-type chamber was modified to produce high airborne d...

  16. Cyclic hot firing results of tungsten-wire-reinforced, copper-lined thrust chambers

    NASA Technical Reports Server (NTRS)

    Kazaroff, John M.; Jankovsky, Robert S.

    1990-01-01

    An advanced thrust liner material for potential long life reusable rocket engines is described. This liner material was produced with the intent of improving the reusable life of high pressure thrust chambers by strengthening the chamber in the hoop direction, thus avoiding the longitudinal cracking due to low cycle fatigue that is observed in conventional homogeneous copper chambers, but yet not reducing the high thermal conductivity that is essential when operating with high heat fluxes. The liner material produced was a tungsten wire reinforced copper composite. Incorporating this composite into two hydrogen-oxygen test rocket chambers was done so that its performance as a reusable liner material could be evaluated. Testing results showed that both chambers failed prematurely, but the crack sites were perpendicular to the normal direction of cracking indicating a degree of success in containing the tremendous thermal strain associated with high temperature rocket engines. The failures, in all cases, were associated with drilled instrumentation ports and no other damages or deformations were found elsewhere in the composite liners.

  17. Effects of discharge chamber length on the negative ion generation in volume-produced negative hydrogen ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Kyoung-Jae; Jung, Bong-Ki; An, YoungHwa

    2014-02-15

    In a volume-produced negative hydrogen ion source, control of electron temperature is essential due to its close correlation with the generation of highly vibrationally excited hydrogen molecules in the heating region as well as the generation of negative hydrogen ions by dissociative attachment in the extraction region. In this study, geometric effects of the cylindrical discharge chamber on negative ion generation via electron temperature changes are investigated in two discharge chambers with different lengths of 7.5 cm and 11 cm. Measurements with a radio-frequency-compensated Langmuir probe show that the electron temperature in the heating region is significantly increased by reducingmore » the length of the discharge chamber due to the reduced effective plasma size. A particle balance model which is modified to consider the effects of discharge chamber configuration on the plasma parameters explains the variation of the electron temperature with the chamber geometry and gas pressure quite well. Accordingly, H{sup −} ion density measurement with laser photo-detachment in the short chamber shows a few times increase compared to the longer one at the same heating power depending on gas pressure. However, the increase drops significantly as operating gas pressure decreases, indicating increased electron temperatures in the extraction region degrade dissociative attachment significantly especially in the low pressure regime. It is concluded that the increase of electron temperature by adjusting the discharge chamber geometry is efficient to increase H{sup −} ion production as long as low electron temperatures are maintained in the extraction region in volume-produced negative hydrogen ion sources.« less

  18. Combustion chamber struts can be effectively transpiration cooled

    NASA Technical Reports Server (NTRS)

    Palmer, G. H.

    1966-01-01

    Vapor-deposited sintering technique increases the feasible temperature range of transpiration-cooled structural members in combustion chambers. This technique produces a porous mass of refractory metal wires around a combustion chamber structural member. This mass acts as a transpiration-cooled surface for a thick-walled tube.

  19. Simple Cloud Chambers Using a Freezing Mixture of Ice and Cooking Salt

    ERIC Educational Resources Information Center

    Yoshinaga, Kyohei; Kubota, Miki; Kamata, Masahiro

    2015-01-01

    We have developed much simpler cloud chambers that use only ice and cooking salt instead of the dry ice or ice gel pack needed for the cloud chambers produced in our previous work. The observed alpha-ray particle tracks are as clear as those observed using our previous cloud chambers. The tracks can be observed continuously for about 20?min, and…

  20. Development of a novel digestion chamber for human and porcine islet isolation.

    PubMed

    Gray, D W R; Sudhakaran, N; Titus, T T; McShane, P; Johnson, P

    2004-05-01

    The current technique of human pancreas digestion for islet isolation relies on selective distribution of collagenase delivered via the pancreatic duct to produce digestion and removal of peri-acinar fibrous tissue. However, the collagenase has relatively little effect on the interlobular fibrous tissue, which must therefore be broken down by mechanical means within the digestion chamber so as to release the contained acini and islets. The current way of achieving this in the Ricordi chamber is to place five or six stainless steel balls within the chamber and shake vigorously. The shaking presumably breaks down the interlobular fibrous tissue by a combination of shear force induced by the movement of tissue through the shaking process, assisted by numerous blows from the steel balls. Intuitively, one would expect some islets would be destroyed rather than released by such a battering. In an attempt to improve the efficiency of islet isolation we have designed a new digestion/filtration chamber that consists of a glass cylinder, sealed with Teflon plates holding in mesh filters at each end, secured in place by a central threaded tie-rod and external knurled nuts. A ring-shaped piston within the cylinder can be pushed up and down the travel by two rods passing out through sealed ports in the Teflon disk at one end and connected to an external handle. The handle is used to gently push the piston up and down the travel of the cylinder, which pushes the fluid and tissue through the central lumen of the ring-piston. A series of hooks attached to the central tie-rod catch the fibrous strands of the passing tissue; the shearing forces produced cause disruption by a process thought to be similar to teasing the tissue apart with fine forceps. A series of initial experiments with human pancreas showed the prototype to be too large, causing temperature control problems, and a redesigned smaller chamber was produced, maintaining the crucial design features. Experience processing five human pancreata has now demonstrated that in three of five pancreata the new chamber produced a good yield (>200,000 I.E.) of remarkably well separated and intact islets, the entire dispersion process being under 1 hour. However, in two isolations the collagenase digestion was poor, with few free islets. A copy of the new chamber (reserved for porcine work only) has been produced, as well as a copy of the Ricordi chamber. We have confirmed that the new chamber can isolate porcine islets in large numbers (>5000 islets/g pancreas [n = 2], but note that pig islets are small). These preliminary studies are sufficiently encouraging to justify further direct comparison with the Ricordi chamber for the purpose of animal and human islet isolation.

  1. Charged particle transport in magnetic fields in EGSnrc.

    PubMed

    Malkov, V N; Rogers, D W O

    2016-07-01

    To accurately and efficiently implement charged particle transport in a magnetic field in EGSnrc and validate the code for the use in phantom and ion chamber simulations. The effect of the magnetic field on the particle motion and position is determined using one- and three-point numerical integrations of the Lorentz force on the charged particle and is added to the condensed history calculation performed by the EGSnrc PRESTA-II algorithm. The code is tested with a Fano test adapted for the presence of magnetic fields. The code is compatible with all EGSnrc based applications, including egs++. Ion chamber calculations are compared to experimental measurements and the effect of the code on the efficiency and timing is determined. Agreement with the Fano test's theoretical value is obtained at the 0.1% level for large step-sizes and in magnetic fields as strong as 5 T. The NE2571 dose calculations achieve agreement with the experiment within 0.5% up to 1 T beyond which deviations up to 1.2% are observed. Uniform air gaps of 0.5 and 1 mm and a misalignment of the incoming photon beam with the magnetic field are found to produce variations in the normalized dose on the order of 1%. These findings necessitate a clear definition of all experimental conditions to allow for accurate Monte Carlo simulations. It is found that ion chamber simulation times are increased by only 38%, and a 10 × 10 × 6 cm(3) water phantom with (3 mm)(3) voxels experiences a 48% increase in simulation time as compared to the default EGSnrc with no magnetic field. The incorporation of the effect of the magnetic fields in EGSnrc provides the capability to calculate high accuracy ion chamber and phantom doses for the use in MRI-radiation systems. Further, the effect of apparently insignificant experimental details is found to be accentuated by the presence of the magnetic field.

  2. Method for plasma formation for extreme ultraviolet lithography-theta pinch

    DOEpatents

    Hassanein, Ahmed [Naperville, IL; Konkashbaev, Isak [Bolingbrook, IL; Rice, Bryan [Hillsboro, OR

    2007-02-20

    A device and method for generating extremely short-wave ultraviolet electromagnetic wave, utilizing a theta pinch plasma generator to produce electromagnetic radiation in the range of 10 to 20 nm. The device comprises an axially aligned open-ended pinch chamber defining a plasma zone adapted to contain a plasma generating gas within the plasma zone; a means for generating a magnetic field radially outward of the open-ended pinch chamber to produce a discharge plasma from the plasma generating gas, thereby producing a electromagnetic wave in the extreme ultraviolet range; a collecting means in optical communication with the pinch chamber to collect the electromagnetic radiation; and focusing means in optical communication with the collecting means to concentrate the electromagnetic radiation.

  3. Plasma generators, reactor systems and related methods

    DOEpatents

    Kong, Peter C [Idaho Falls, ID; Pink, Robert J [Pocatello, ID; Lee, James E [Idaho Falls, ID

    2007-06-19

    A plasma generator, reactor and associated systems and methods are provided in accordance with the present invention. A plasma reactor may include multiple sections or modules which are removably coupled together to form a chamber. Associated with each section is an electrode set including three electrodes with each electrode being coupled to a single phase of a three-phase alternating current (AC) power supply. The electrodes are disposed about a longitudinal centerline of the chamber and are arranged to provide and extended arc and generate an extended body of plasma. The electrodes are displaceable relative to the longitudinal centerline of the chamber. A control system may be utilized so as to automatically displace the electrodes and define an electrode gap responsive to measure voltage or current levels of the associated power supply.

  4. Closed loop adaptive control of spectrum-producing step using neural networks

    DOEpatents

    Fu, Chi Yung

    1998-01-01

    Characteristics of the plasma in a plasma-based manufacturing process step are monitored directly and in real time by observing the spectrum which it produces. An artificial neural network analyzes the plasma spectrum and generates control signals to control one or more of the process input parameters in response to any deviation of the spectrum beyond a narrow range. In an embodiment, a plasma reaction chamber forms a plasma in response to input parameters such as gas flow, pressure and power. The chamber includes a window through which the electromagnetic spectrum produced by a plasma in the chamber, just above the subject surface, may be viewed. The spectrum is conducted to an optical spectrometer which measures the intensity of the incoming optical spectrum at different wavelengths. The output of optical spectrometer is provided to an analyzer which produces a plurality of error signals, each indicating whether a respective one of the input parameters to the chamber is to be increased or decreased. The microcontroller provides signals to control respective controls, but these lines are intercepted and first added to the error signals, before being provided to the controls for the chamber. The analyzer can include a neural network and an optional spectrum preprocessor to reduce background noise, as well as a comparator which compares the parameter values predicted by the neural network with a set of desired values provided by the microcontroller.

  5. Closed loop adaptive control of spectrum-producing step using neural networks

    DOEpatents

    Fu, C.Y.

    1998-11-24

    Characteristics of the plasma in a plasma-based manufacturing process step are monitored directly and in real time by observing the spectrum which it produces. An artificial neural network analyzes the plasma spectrum and generates control signals to control one or more of the process input parameters in response to any deviation of the spectrum beyond a narrow range. In an embodiment, a plasma reaction chamber forms a plasma in response to input parameters such as gas flow, pressure and power. The chamber includes a window through which the electromagnetic spectrum produced by a plasma in the chamber, just above the subject surface, may be viewed. The spectrum is conducted to an optical spectrometer which measures the intensity of the incoming optical spectrum at different wavelengths. The output of optical spectrometer is provided to an analyzer which produces a plurality of error signals, each indicating whether a respective one of the input parameters to the chamber is to be increased or decreased. The microcontroller provides signals to control respective controls, but these lines are intercepted and first added to the error signals, before being provided to the controls for the chamber. The analyzer can include a neural network and an optional spectrum preprocessor to reduce background noise, as well as a comparator which compares the parameter values predicted by the neural network with a set of desired values provided by the microcontroller. 7 figs.

  6. Determination of relative ion chamber calibration coefficients from depth-ionization measurements in clinical electron beams

    NASA Astrophysics Data System (ADS)

    Muir, B. R.; McEwen, M. R.; Rogers, D. W. O.

    2014-10-01

    A method is presented to obtain ion chamber calibration coefficients relative to secondary standard reference chambers in electron beams using depth-ionization measurements. Results are obtained as a function of depth and average electron energy at depth in 4, 8, 12 and 18 MeV electron beams from the NRC Elekta Precise linac. The PTW Roos, Scanditronix NACP-02, PTW Advanced Markus and NE 2571 ion chambers are investigated. The challenges and limitations of the method are discussed. The proposed method produces useful data at shallow depths. At depths past the reference depth, small shifts in positioning or drifts in the incident beam energy affect the results, thereby providing a built-in test of incident electron energy drifts and/or chamber set-up. Polarity corrections for ion chambers as a function of average electron energy at depth agree with literature data. The proposed method produces results consistent with those obtained using the conventional calibration procedure while gaining much more information about the behavior of the ion chamber with similar data acquisition time. Measurement uncertainties in calibration coefficients obtained with this method are estimated to be less than 0.5%. These results open up the possibility of using depth-ionization measurements to yield chamber ratios which may be suitable for primary standards-level dissemination.

  7. Ethylene monitoring and control system

    NASA Technical Reports Server (NTRS)

    Nelson, Bruce N. (Inventor); Kanc, James A. (Inventor); Richard, II, Roy V. (Inventor)

    2000-01-01

    A system that can accurately monitor and control low concentrations of ethylene gas includes a test chamber configured to receive sample gas potentially containing an ethylene concentration and ozone, a detector configured to receive light produced during a reaction between the ethylene and ozone and to produce signals related thereto, and a computer connected to the detector to process the signals to determine therefrom a value of the concentration of ethylene in the sample gas. The supply for the system can include a four way valve configured to receive pressurized gas at one input and a test chamber. A piston is journaled in the test chamber with a drive end disposed in a drive chamber and a reaction end defining with walls of the test chamber a variable volume reaction chamber. The drive end of the piston is pneumatically connected to two ports of the four way valve to provide motive force to the piston. A manifold is connected to the variable volume reaction chamber, and is configured to receive sample gasses from at least one of a plurality of ports connectable to degreening rooms and to supply the sample gas to the reactive chamber for reaction with ozone. The apparatus can be used to monitor and control the ethylene concentration in multiple degreening rooms.

  8. Ethylene monitoring and control system

    NASA Technical Reports Server (NTRS)

    Nelson, Bruce N. (Inventor); Kane, James A. (Inventor); Richard, II, Roy V. (Inventor)

    2001-01-01

    A system that can accurately monitor and control low concentrations of ethylene gas includes a test chamber configured to receive sample gas potentially containing an ethylene concentration and ozone, a detector configured to receive light produced during a reaction between the ethylene and ozone and to produce signals related thereto, and a computer connected to the detector to process the signals to determine therefrom a value of the concentration of ethylene in the sample gas. The supply for the system can include a four way valve configured to receive pressurized gas at one input and a test chamber. A piston is journaled in the test chamber with a drive end disposed in a drive chamber and a reaction end defining with walls of the test chamber a variable volume reaction chamber. The drive end of the piston is pneumatically connected to two ports of the four way valve to provide motive force to the piston. A manifold is connected to the variable volume reaction chamber, and is configured to receive sample gasses from at least one of a plurality of ports connectable to degreening rooms and to supply the sample gas to the reactive chamber for reaction with ozone. The apparatus can be used to monitor and control the ethylene concentration in multiple degreening rooms.

  9. Device for producing a fluid stream of varying composition

    DOEpatents

    Moss, Owen R.; Clark, Mark L.; Rossignol, E. John

    1982-01-01

    A device for producing a fluid stream of varying composition comprises a chamber having an inlet at one end and outlet at the other. Between the inlet and outlet there are substantially planar pans or baffles positioned normal to the bulk flow of fluid between the inlet and the outlet. These pans are arranged in pairs. Each pan, except those of the pair most remote from the inlet, is spaced from the walls of the chamber to permit air to flow past it. The pans of each pair are also spaced from each other, in a direction parallel to their planes, leaving an empty space along the mid-plane of the chamber. This produces a circulation and mixing of fluid between the pairs of pans or baffles. A secondary stream of fluid is introduced between two pairs of baffles in the intermediate portion of the chamber, so that the composition of the fluid is different in the portion adjacent to the outlet and the portion adjacent to the inlet. In a specific embodiment, the device is an exposure chamber for experimental animals, and the pans or baffles are catch pans for excrement.

  10. CFD Modeling of Chamber Filling in a Micro-Biosensor for Protein Detection

    PubMed Central

    Islamov, Meiirbek; Sypabekova, Marzhan; Kanayeva, Damira; Rojas-Solórzano, Luis

    2017-01-01

    Tuberculosis (TB) remains one of the main causes of human death around the globe. The mortality rate for patients infected with active TB goes beyond 50% when not diagnosed. Rapid and accurate diagnostics coupled with further prompt treatment of the disease is the cornerstone for controlling TB outbreaks. To reduce this burden, the existing gap between detection and treatment must be addressed, and dedicated diagnostic tools such as biosensors should be developed. A biosensor is a sensing micro-device that consists of a biological sensing element and a transducer part to produce signals in proportion to quantitative information about the binding event. The micro-biosensor cell considered in this investigation is designed to operate based on aptamers as recognition elements against Mycobacterium tuberculosis secreted protein MPT64, combined in a microfluidic-chamber with inlet and outlet connections. The microfluidic cell is a miniaturized platform with valuable advantages such as low cost of analysis with low reagent consumption, reduced sample volume, and shortened processing time with enhanced analytical capability. The main purpose of this study is to assess the flooding characteristics of the encapsulated microfluidic cell of an existing micro-biosensor using Computational Fluid Dynamics (CFD) techniques. The main challenge in the design of the microfluidic cell lies in the extraction of entrained air bubbles, which may remain after the filling process is completed, dramatically affecting the performance of the sensing element. In this work, a CFD model was developed on the platform ANSYS-CFX using the finite volume method to discretize the domain and solving the Navier–Stokes equations for both air and water in a Eulerian framework. Second-order space discretization scheme and second-order Euler Backward time discretization were used in the numerical treatment of the equations. For a given inlet–outlet diameter and dimensions of an in-house built cell chamber, different inlet liquid flow rates were explored to determine an appropriate flow condition to guarantee an effective venting of the air while filling the chamber. The numerical model depicted free surface waves as promoters of air entrainment that ultimately may explain the significant amount of air content in the chamber observed in preliminary tests after the filling process is completed. Results demonstrated that for the present design, against the intuition, the chamber must be filled with liquid at a modest flow rate to minimize free surface waviness during the flooding stage of the chamber. PMID:28972568

  11. CFD Modeling of Chamber Filling in a Micro-Biosensor for Protein Detection.

    PubMed

    Islamov, Meiirbek; Sypabekova, Marzhan; Kanayeva, Damira; Rojas-Solórzano, Luis

    2017-10-03

    Tuberculosis (TB) remains one of the main causes of human death around the globe. The mortality rate for patients infected with active TB goes beyond 50% when not diagnosed. Rapid and accurate diagnostics coupled with further prompt treatment of the disease is the cornerstone for controlling TB outbreaks. To reduce this burden, the existing gap between detection and treatment must be addressed, and dedicated diagnostic tools such as biosensors should be developed. A biosensor is a sensing micro-device that consists of a biological sensing element and a transducer part to produce signals in proportion to quantitative information about the binding event. The micro-biosensor cell considered in this investigation is designed to operate based on aptamers as recognition elements against Mycobacterium tuberculosis secreted protein MPT64, combined in a microfluidic-chamber with inlet and outlet connections. The microfluidic cell is a miniaturized platform with valuable advantages such as low cost of analysis with low reagent consumption, reduced sample volume, and shortened processing time with enhanced analytical capability. The main purpose of this study is to assess the flooding characteristics of the encapsulated microfluidic cell of an existing micro-biosensor using Computational Fluid Dynamics (CFD) techniques. The main challenge in the design of the microfluidic cell lies in the extraction of entrained air bubbles, which may remain after the filling process is completed, dramatically affecting the performance of the sensing element. In this work, a CFD model was developed on the platform ANSYS-CFX using the finite volume method to discretize the domain and solving the Navier-Stokes equations for both air and water in a Eulerian framework. Second-order space discretization scheme and second-order Euler Backward time discretization were used in the numerical treatment of the equations. For a given inlet-outlet diameter and dimensions of an in-house built cell chamber, different inlet liquid flow rates were explored to determine an appropriate flow condition to guarantee an effective venting of the air while filling the chamber. The numerical model depicted free surface waves as promoters of air entrainment that ultimately may explain the significant amount of air content in the chamber observed in preliminary tests after the filling process is completed. Results demonstrated that for the present design, against the intuition, the chamber must be filled with liquid at a modest flow rate to minimize free surface waviness during the flooding stage of the chamber.

  12. Petrology of the zoned calcalkaline magma chamber of Mount Mazama, Crater Lake, Oregon

    USGS Publications Warehouse

    Druitt, T.H.; Bacon, C.R.

    1989-01-01

    Evolution of the magma chamber at Mount Mazama involved repeated recharge by two types of andesite (high-Sr and low-Sr), crystal fractionation, crystal accumulation, assimilation, and magma mixing (Bacon and Druitt 1988). This paper addresses the modal compositions, textures, mineral chemistry and magmatic temperatures of (i) products of the 6845??50 BP climactic eruption, (ii) blocks of partially fused granitoid wallrock found in the ejecta, and (iii) preclimactic rhyodacitic lavas leaked from the chamber in late Pleistocene and early Holocene time. Immediately prior to the climactic eruption the chamber contained ??? 40 km3 of rhyodacite (10 vol% plag + opx + aug + hb + mt + ilm, ???880?? C) overlying high-Sr andesite and cumulus-crystal mush (28-51 vol% plag + hb ?? opx ?? aug + mt ?? ilm, 880?? to ???950?? C), which in turn overlay low-Sr crystal mush (50-66 vol% plag + opx + aug ?? hb ?? ol + mt + ilm, 890?? to ???950??? C). Despite the well known compositional gap in the ejecta, no thermal discontinuity existed in the chamber. Pre-eruptive water contents of pore liquids in most high-Sr and low-Sr mushes were 4-6 wt%, but on average the high-Sr mushes were slightly richer in water. Although parental magmas of the crystal mushes were andesitic, xenocrysts of bytownite and Ni-rich magnesian olivine in some scoriae record the one-time injection of basalt into the chamber. Textures in ol-bearing scoriae preserve evidence for the reactions ol + liq = opx and ol + aug + liq(+ plag?) = hb, which occurred in andesitic liquids at Mount Mazama. Strontium abundances in plagioclase phenocrysts constrain the petrogenesis of preclimactic and climactic rhyodacites. Phenocryst cores derived from high-Sr and low-Sr magmas have different Sr contents which can be resolved by microprobe. Partition coefficients for plagioclase in andesitic to rhyolitic glasses range from 2 to 7, and increase as glass %SiO2 increases. Evolved Pleistocene rhyodacites (???30-25,000 BP) and rhyodacites of the Holocene Llao Rock center (7015??45 BP) contain Sr-poor plagioclase and are derivatives from low-Sr magma. Rhyodacites of the Pleistocene Sharp Peak domes, Holocene Cleetwood flow (???6850 BP), and climactic ejecta contain discrete Sr-rich and Sr-poor plagioclase phenocryst populations and are hybrids produced by mixing low-Sr rhyodacite (containing Sr-poor plag + opx + aug) with a more mafic high-Sr magma (with Sr-rich plag [ + hb?]). The data reinforce the conclusions of crystal-liquid mixing calculations (Bacon and Druitt 1988), and suggest some important refinements to the magma chamber model. ?? 1989 Springer-Verlag.

  13. SEPARATION OF GASES BY DIFFUSIION

    DOEpatents

    Peierls, R.E.; Simon, F.E.; Arms, H.S.

    1960-12-13

    A method and apparatus are given for the separation of mixtures of gaseous or vaporous media by diffusion through a permeable membrane. The apparatus consists principally of a housing member having an elongated internal chamber dissected longitudinally by a permeable membrane. Means are provided for producing a pressure difference between opposite sides of the membrane to cause a flow of the media in the chamber therethrough. This pressure difference is alternated between opposite sides of the membrane to produce an oscillating flow through the membrane. Additional means is provided for producing flow parallel to the membrane in opposite directions on the two sides thereof and of the same frequency and in phase with the alternating pressure difference. The lighter molecules diffuse through the membrane more readily than the heavier molecules and the parallel flow effects a net transport of the lighter molecules in one direction and the heavier molecules in the opposite direction within the chamber. By these means a concentration gradient along the chamber is established.

  14. Separation of gases by diffusion

    DOEpatents

    Peieris, R. E.; Simon, F. E.; Arms, H. S.

    1960-12-13

    An apparatus is described for the separation of mixtures of gaseous or vaporous media by diffusion through a permeable membrane. The apparatus consists principally of a housing member having an elongated internal chamber dissected longitudinally by a permeable membrane. Means are provided for producing a pressure difference between opposite sides of the membrane to cause a flow of the media in the chamber therethrough. This pressure difference is alternated between opposite sides of the membrane to produce an oscillating flow through the membrane. Additional means is provided for producing flow parallel to the membrane in opposite directions on the two sides thereof and of the same frequency and in phase wlth the alternating pressure difference. The lighter molecules diffuse through the membrane more readily than the heavier molecules and the parallel flow effects a net transport of the lighter molecules in one direction and the heavier molecules in the opposite direction wlthin the chamber. By these means a concentration gradient along the chamber is established. (auth)

  15. Extreme ultraviolet lithography machine

    DOEpatents

    Tichenor, Daniel A.; Kubiak, Glenn D.; Haney, Steven J.; Sweeney, Donald W.

    2000-01-01

    An extreme ultraviolet lithography (EUVL) machine or system for producing integrated circuit (IC) components, such as transistors, formed on a substrate. The EUVL machine utilizes a laser plasma point source directed via an optical arrangement onto a mask or reticle which is reflected by a multiple mirror system onto the substrate or target. The EUVL machine operates in the 10-14 nm wavelength soft x-ray photon. Basically the EUV machine includes an evacuated source chamber, an evacuated main or project chamber interconnected by a transport tube arrangement, wherein a laser beam is directed into a plasma generator which produces an illumination beam which is directed by optics from the source chamber through the connecting tube, into the projection chamber, and onto the reticle or mask, from which a patterned beam is reflected by optics in a projection optics (PO) box mounted in the main or projection chamber onto the substrate. In one embodiment of a EUVL machine, nine optical components are utilized, with four of the optical components located in the PO box. The main or projection chamber includes vibration isolators for the PO box and a vibration isolator mounting for the substrate, with the main or projection chamber being mounted on a support structure and being isolated.

  16. Multi-Thruster Propulsion Apparatus

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J. (Inventor)

    2016-01-01

    An electric propulsion machine includes an ion thruster having a discharge chamber housing a large surface area anode. The ion thruster includes flat annular ion optics with a small span to gap ratio. Optionally, at least a second thruster may be disposed radially offset from the ion thruster.

  17. System to continuously produce carbon fiber via microwave assisted plasma processing

    DOEpatents

    White, Terry L [Knoxville, TN; Paulauskas, Felix L [Knoxville, TN; Bigelow, Timothy S [Knoxville, TN

    2010-11-02

    A system to continuously produce fully carbonized or graphitized carbon fibers using microwave-assisted plasma (MAP) processing comprises an elongated chamber in which a microwave plasma is excited in a selected gas atmosphere. Fiber is drawn continuously through the chamber, entering and exiting through openings designed to minimize in-leakage of air. There is a gradient of microwave power within the chamber with generally higher power near where the fiber exits and lower power near where the fiber enters. Polyacrylonitrile (PAN), pitch, or any other suitable organic/polymeric precursor fibers can be used as a feedstock for the inventive system. Oxidized or partially oxidized PAN or pitch or other polymeric fiber precursors are run continuously through a MAP reactor in an inert, non-oxidizing atmosphere to heat the fibers, drive off the unwanted elements such as oxygen, nitrogen, and hydrogen, and produce carbon or graphite fibers faster than conventionally produced carbon fibers.

  18. Method and apparatus to produce high specific impulse and moderate thrust from a fusion-powered rocket engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohen, Samuel A.; Pajer, Gary A.; Paluszek, Michael A.

    A system and method for producing and controlling high thrust and desirable specific impulse from a continuous fusion reaction is disclosed. The resultant relatively small rocket engine will have lower cost to develop, test, and operate that the prior art, allowing spacecraft missions throughout the planetary system and beyond. The rocket engine method and system includes a reactor chamber and a heating system for heating a stable plasma to produce fusion reactions in the stable plasma. Magnets produce a magnetic field that confines the stable plasma. A fuel injection system and a propellant injection system are included. The propellant injectionmore » system injects cold propellant into a gas box at one end of the reactor chamber, where the propellant is ionized into a plasma. The propellant and fusion products are directed out of the reactor chamber through a magnetic nozzle and are detached from the magnetic field lines producing thrust.« less

  19. Fire environmental test chamber: its design and development

    Treesearch

    Clifford J. Auvil

    1973-01-01

    The Fire Environmental Test Chamber at the Forest Fire Laboratory, Riverside, California, can duplicate under controlled conditions the key factors that affect the flammability of wildland fuels. Within certain limits, it can produce air flow, solar radiation, temperatures, and relative humidity. First developed in 1962, the test chamber has since then undergoneseveral...

  20. High-density plasma deposition manufacturing productivity improvement

    NASA Astrophysics Data System (ADS)

    Olmer, Leonard J.; Hudson, Chris P.

    1999-09-01

    High Density Plasma (HDP) deposition provides a means to deposit high quality dielectrics meeting submicron gap fill requirements. But, compared to traditional PECVD processing, HDP is relatively expensive due to the higher capital cost of the equipment. In order to keep processing costs low, it became necessary to maximize the wafer throughput of HDP processing without degrading the film properties. The approach taken was to optimize the post deposition microwave in-situ clean efficiency. A regression model, based on actual data, indicated that number of wafers processed before a chamber clean was the dominant factor. Furthermore, a design change in the ceramic hardware, surrounding the electrostatic chuck, provided thermal isolation resulting in an enhanced clean rate of the chamber process kit. An infra-red detector located in the chamber exhaust line provided a means to endpoint the clean and in-film particle data confirmed the infra-red results. The combination of increased chamber clean frequency, optimized clean time and improved process.

  1. Use of relativistic rise in ionization chambers for measurement of high energy heavy nuclei

    NASA Technical Reports Server (NTRS)

    Barthelmy, S. D.; Israel, M. H.; Klarmann, J.; Vogel, J. S.

    1983-01-01

    A balloon-borne instrument has been constructed to measure the energy spectra of cosmic-ray heavy nuclei in the range of about 0.3 to about 100 GeV/amu. It makes use of the relativistic rise portion of the Bethe-Bloch curve in ionization chambers for energy determination in the 10- to 100-GeV/amu interval. The instrument consists of six layers of dual-gap ionization chambers for energy determination above 10 GeV/amu. Charge is determined with a NE114 scintillator and a Pilot 425 plastic Cerenkov counter. A CO2 gas Cerenkov detector (1 atm; threshold of 30 GeV/amu) calibrates the ion chambers in the relativistic rise region. The main emphasis of the instrument is the determination of the change of the ratio of Iron (26) to the Iron secondaries (21-25) in the energy range of 10 to 100 GeV/amu. Preliminary data from a balloon flight in the fall of 1982 from Palestine, TX is presented.

  2. Acoustic Levitation With Less Equipment

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Jacobi, N.

    1983-01-01

    Certain chamber shapes require fewer than three acoustic drivers. Levitation at center of spherical chamber attained using only one acoustic driver. Exitation of lowest spherical mode produces asymmetric acoustic potential well.

  3. Process and system for producing high-density pellets from a gaseous medium

    DOEpatents

    Foster, Christopher A.

    1999-01-01

    A process and system for producing pellets of high density carbon dioxide or other gases utilize a chamber containing a plurality of cell-like freezing compartments within which ice is to be formed. A gas desired to be frozen into ice is introduced into the chamber while the internal pressure of the chamber is maintained at a level which is below the equilibrium triple pressure of the gas. The temperature of the freezing compartments is lowered to a temperature which is below the equilibrium vapor pressure temperature of the gas at the chamber pressure so that the gas condenses into ice within the compartments. The temperature of the freezing compartments is thereafter raised so that the ice is thereby released from and falls out of the compartments as pellets for collection.

  4. Space shuttle orbit maneuvering engine reusable thrust chamber program

    NASA Technical Reports Server (NTRS)

    Senneff, J. M.

    1975-01-01

    The feasibility of potential reusable thrust chamber concepts is studied. Propellant condidates were examined and analytically combined with potential cooling schemes. A data base of engine data which would assist in a configuration selection was produced. The data base verification was performed by the demonstration of a thrust chamber of a selected coolant scheme design. A full scale insulated columbium thrust chamber was used for propellant coolant configurations. Combustion stability of the injectors and a reduced size thrust chamber were experimentally verified as proof of concept demonstrations of the design and study results.

  5. High-efficiency, thin-film cadmium telluride photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Compaan, A. D.; Bohn, R. G.; Rajakarunanayake, Y.

    1995-08-01

    This report describes work performed to develop and optimize the process of radio frequency (RF) sputtering for the fabrication of thin-film solar cells on glass. The emphasis is on CdTe-related materials including CdTe, CdS, ZnTe, and ternary alloy semiconductors. Pulsed laser physical vapor deposition (LPVD) was used for exploratory work on these materials, especially where alloying or doping are involved, and for the deposition of cadmium chloride layers. For the sputtering work, a two-gun sputtering chamber was implemented, with optical access for monitoring temperature and growth rate. We studied the optical and electrical properties of the plasmas produced by two different kinds of planar magnetron sputter guns with different magnetic field configurations and strengths. Using LPVD, we studied alloy semiconductors such as CdZnTe and heavily doped semiconductors such as ZnTe:Cu for possible incorporation into graded band gap CdTe-based photovoltaic devices.

  6. Analysis of localized surface plasmon resonances in gold nanoparticles surrounded by copper oxides

    NASA Astrophysics Data System (ADS)

    Stamatelatos, A.; Sousanis, A.; Chronis, A. G.; Sigalas, M. M.; Grammatikopoulos, S.; Poulopoulos, P.

    2018-02-01

    Au-doped Cu thin films are produced by co-deposition of Au and Cu via radiofrequency magnetron sputtering in a vacuum chamber with a base pressure of 1 × 10-7 mbar. After post annealing in a furnace with air, one may obtain either Au-Cu2O or Au-CuO nanocomposite thin films. The presence of Au does not have any considerable influence on the position of the optical band gap of the oxides. Only the Au-CuO system shows well-formed localized surface plasmonic resonances with Gaussian shape. We study systematically the plasmonic behavior of the nanocomposites as a function of the gold concentration, annealing time, and film thickness. The intensity of the resonances, their position, and width are intensely affected by all these parameters. The experimental results are compared with respect to rigorous theoretical calculations. The similarities and differences between experiment and theory are discussed.

  7. Oxygen-consuming chlor alkali cell configured to minimize peroxide formation

    DOEpatents

    Chlistunoff, Jerzy B [Los Alamos, NM; Lipp, Ludwig [Brookfield, CT; Gottesfeld, Shimshon [Niskayuna, NY

    2006-08-01

    Oxygen-consuming zero gap chlor-alkali cell was configured to minimize peroxide formation. The cell included an ion-exchange membrane that divided the cell into an anode chamber including an anode and a cathode chamber including an oxygen gas diffusion cathode. The cathode included a single-piece of electrically conducting graphitized carbon cloth. Catalyst and polytetrafluoroethylene were attached to only one side of the cloth. When the cathode was positioned against the cation exchange membrane with the catalyst side away from the membrane, electrolysis of sodium chloride to chlorine and caustic (sodium hydroxide) proceeded with minimal peroxide formation.

  8. MICROMEGAS calibration for ACTAR TPC

    NASA Astrophysics Data System (ADS)

    Mauss, B.; Roger, T.; Pancin, J.; Damoy, S.; Grinyer, G. F.

    2018-02-01

    Active targets, such as the ACtive TARget and Time Projection Chamber (ACTAR TPC) being developed at GANIL, are detection systems that operate on the basis of a time projection chamber but where the filling gas also serves as a thick target for nuclear reactions. In nuclear physics experiments, the energy resolution is of primary importance to identify the reaction products and to precisely reconstruct level schemes of nuclei. These measurements are based on the energy deposited on a pixelated pad plane. A MICROMEGAS detector is used in ACTAR TPC for the ionization electron collection and amplification, and it is a major contributor to the energy dispersion through, for example, inhomogeneities of the amplification gap. A variation of one percent in the gap can lead to an amplitude variation of more than two percent which is of the same order as the resolution obtained with an energy deposition of 5 MeV. One way to calibrate the pad plane is through the use of a two dimensional source scanning table. It is used to calibrate the gain inhomogeneities and, using MAGBOLTZ calculations, deduce the corresponding gap variations. The inverse of this method would allow the relative gain variations to be calculated for the different gas mixtures and pressures used in experiments with ACTAR TPC.

  9. Methods for producing silicon carbide fibers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garnier, John E.; Griffith, George W.

    Methods of producing silicon carbide fibers. The method comprises reacting a continuous carbon fiber material and a silicon-containing gas in a reaction chamber at a temperature ranging from approximately 1500.degree. C. to approximately 2000.degree. C. A partial pressure of oxygen in the reaction chamber is maintained at less than approximately 1.01.times.10.sup.2 Pascal to produce continuous alpha silicon carbide fibers. Continuous alpha silicon carbide fibers and articles formed from the continuous alpha silicon carbide fibers are also disclosed.

  10. Method for producing high carrier concentration p-Type transparent conducting oxides

    DOEpatents

    Li, Xiaonan; Yan, Yanfa; Coutts, Timothy J.; Gessert, Timothy A.; Dehart, Clay M.

    2009-04-14

    A method for producing transparent p-type conducting oxide films without co-doping plasma enhancement or high temperature comprising: a) introducing a dialkyl metal at ambient temperature and a saturated pressure in a carrier gas into a low pressure deposition chamber, and b) introducing NO alone or with an oxidizer into the chamber under an environment sufficient to produce a metal-rich condition to enable NO decomposition and atomic nitrogen incorporation into the formed transparent metal conducting oxide.

  11. A Computational Study of the Hydrodynamics in the Nasal Region of a Hammerhead Shark (Sphyrna tudes): Implications for Olfaction

    PubMed Central

    Rygg, Alex D.; Cox, Jonathan P. L.; Abel, Richard; Webb, Andrew G.; Smith, Nadine B.; Craven, Brent A.

    2013-01-01

    The hammerhead shark possesses a unique head morphology that is thought to facilitate enhanced olfactory performance. The olfactory chambers, located at the distal ends of the cephalofoil, contain numerous lamellae that increase the surface area for olfaction. Functionally, for the shark to detect chemical stimuli, water-borne odors must reach the olfactory sensory epithelium that lines these lamellae. Thus, odorant transport from the aquatic environment to the sensory epithelium is the first critical step in olfaction. Here we investigate the hydrodynamics of olfaction in Sphyrna tudes based on an anatomically-accurate reconstruction of the head and olfactory chamber from high-resolution micro-CT and MRI scans of a cadaver specimen. Computational fluid dynamics simulations of water flow in the reconstructed model reveal the external and internal hydrodynamics of olfaction during swimming. Computed external flow patterns elucidate the occurrence of flow phenomena that result in high and low pressures at the incurrent and excurrent nostrils, respectively, which induces flow through the olfactory chamber. The major (prenarial) nasal groove along the cephalofoil is shown to facilitate sampling of a large spatial extent (i.e., an extended hydrodynamic “reach”) by directing oncoming flow towards the incurrent nostril. Further, both the major and minor nasal grooves redirect some flow away from the incurrent nostril, thereby limiting the amount of fluid that enters the olfactory chamber. Internal hydrodynamic flow patterns are also revealed, where we show that flow rates within the sensory channels between olfactory lamellae are passively regulated by the apical gap, which functions as a partial bypass for flow in the olfactory chamber. Consequently, the hammerhead shark appears to utilize external (major and minor nasal grooves) and internal (apical gap) flow regulation mechanisms to limit water flow between the olfactory lamellae, thus protecting these delicate structures from otherwise high flow rates incurred by sampling a larger area. PMID:23555780

  12. Large Scale Flame Spread Environmental Characterization Testing

    NASA Technical Reports Server (NTRS)

    Clayman, Lauren K.; Olson, Sandra L.; Gokoghi, Suleyman A.; Brooker, John E.; Ferkul, Paul V.; Kacher, Henry F.

    2013-01-01

    Under the Advanced Exploration Systems (AES) Spacecraft Fire Safety Demonstration Project (SFSDP), as a risk mitigation activity in support of the development of a large-scale fire demonstration experiment in microgravity, flame-spread tests were conducted in normal gravity on thin, cellulose-based fuels in a sealed chamber. The primary objective of the tests was to measure pressure rise in a chamber as sample material, burning direction (upward/downward), total heat release, heat release rate, and heat loss mechanisms were varied between tests. A Design of Experiments (DOE) method was imposed to produce an array of tests from a fixed set of constraints and a coupled response model was developed. Supplementary tests were run without experimental design to additionally vary select parameters such as initial chamber pressure. The starting chamber pressure for each test was set below atmospheric to prevent chamber overpressure. Bottom ignition, or upward propagating burns, produced rapid acceleratory turbulent flame spread. Pressure rise in the chamber increases as the amount of fuel burned increases mainly because of the larger amount of heat generation and, to a much smaller extent, due to the increase in gaseous number of moles. Top ignition, or downward propagating burns, produced a steady flame spread with a very small flat flame across the burning edge. Steady-state pressure is achieved during downward flame spread as the pressure rises and plateaus. This indicates that the heat generation by the flame matches the heat loss to surroundings during the longer, slower downward burns. One heat loss mechanism included mounting a heat exchanger directly above the burning sample in the path of the plume to act as a heat sink and more efficiently dissipate the heat due to the combustion event. This proved an effective means for chamber overpressure mitigation for those tests producing the most total heat release and thusly was determined to be a feasible mitigation strategy to incorporate into the microgravity experiment.

  13. Design and analysis of a hemi-anechoic chamber at Michigan Technological University

    NASA Astrophysics Data System (ADS)

    Dreyer, Jason; Jangale, Ashish; Rao, Mohan D.

    2005-09-01

    A four-wheel chassis roll dynamometer test facility was installed on the campus of Michigan Technological University (MTU). The chassis dynamometer was enclosed in a soundproof hem-anechoic room in order to conduct noise radiation measurements on test vehicles. All surfaces of the room, except the floor and control room window, were acoustically treated with donated tetrahedral acoustic cones and panels. The acoustic absorption properties of these materials were characterized through reverberation chamber and impedance tube testing, and the effects of air gaps, cone orientation, and cone mounting materials were qualitatively evaluated. The design of the wall, ceiling, and door treatments of the chamber was based on the sound absorption properties of these materials, in addition to spatial constraints and cost considerations. The treated chamber acoustics were predicted based on the amount of acoustic material that could be applied to given chamber dimensions and would still preserve the functionality of the room. These predictions were validated through evaluation of the actual room treatment based on average reverberation time at 100-Hz third-octave band, free sound field characteristic 6-dB reduction in sound pressure level (SPL) per doubling in distance from source, noise reduction at the chamber boundaries, and background SPL Noise Criteria (NC) Rating.

  14. ATLAS Large Scale Thin Gap Chambers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soha, Aria

    This is a technical scope of work (TSW) between the Fermi National Accelerator Laboratory (Fermilab) and the experimenters of the ATLAS sTGC New Small Wheel collaboration who have committed to participate in beam tests to be carried out during the FY2014 Fermilab Test Beam Facility program.

  15. Three chamber negative ion source

    DOEpatents

    Leung, Ka-Ngo; Ehlers, Kenneth W.; Hiskes, John R.

    1985-01-01

    A negative ion vessel is divided into an excitation chamber, a negative ionization chamber and an extraction chamber by two magnetic filters. Input means introduces neutral molecules into a first chamber where a first electron discharge means vibrationally excites the molecules which migrate to a second chamber. In the second chamber a second electron discharge means ionizes the molecules, producing negative ions which are extracted into or by a third chamber. A first magnetic filter prevents high energy electrons from entering the negative ionization chamber from the excitation chamber. A second magnetic filter prevents high energy electrons from entering the extraction chamber from the negative ionizing chamber. An extraction grid at the end of the negative ion vessel attracts negative ions into the third chamber and accelerates them. Another grid, located adjacent to the extraction grid, carries a small positive voltage in order to inhibit positive ions from migrating into the extraction chamber and contour the plasma potential. Additional electrons can be suppressed from the output flux using ExB forces provided by magnetic field means and the extractor grid electric potential.

  16. Characteristics of an aerosol photometer while automatically controlling chamber dilution-air flow rate.

    PubMed

    O'Shaughnessy, P T; Hemenway, D R

    2000-10-01

    Trials were conducted to determine those factors that affect the accuracy of a direct-reading aerosol photometer when automatically controlling airflow rate within an exposure chamber to regulate airborne dust concentrations. Photometer response was affected by a shift in the aerosol size distribution caused by changes in chamber flow rate. In addition to a dilution effect, flow rate also determined the relative amount of aerosol lost to sedimentation within the chamber. Additional calculations were added to a computer control algorithm to compensate for these effects when attempting to automatically regulate flow based on a proportional-integral-derivative (PID) feedback control algorithm. A comparison between PID-controlled trials and those performed with a constant generator output rate and dilution-air flow rate demonstrated that there was no significant decrease in photometer accuracy despite the many changes in flow rate produced when using PID control. Likewise, the PID-controlled trials produced chamber aerosol concentrations within 1% of a desired level.

  17. The General Aviation Propulsion (GAP) Program

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The General Aviation Propulsion (GAP) Program Turbine Engine Element focused on the development of an advanced small turbofan engine. Goals were good fuel consumption and thrust-to-weight ratio, and very low production cost. The resulting FJX-2 turbofan engine showed the potential to meet all of these goals. The development of the engine was carried through to proof of concept testing of a complete engine system. The proof of concept engine was ground tested at sea level and in altitude test chambers. A turboprop derivative was also sea-level tested.

  18. High precision electric gate for time-of-flight ion mass spectrometers

    NASA Technical Reports Server (NTRS)

    Sittler, Edward C. (Inventor)

    2011-01-01

    A time-of-flight mass spectrometer having a chamber with electrodes to generate an electric field in the chamber and electric gating for allowing ions with a predetermined mass and velocity into the electric field. The design uses a row of very thin parallel aligned wires that are pulsed in sequence so the ion can pass through the gap of two parallel plates, which are biased to prevent passage of the ion. This design by itself can provide a high mass resolution capability and a very precise start pulse for an ion mass spectrometer. Furthermore, the ion will only pass through the chamber if it is within a wire diameter of the first wire when it is pulsed and has the right speed so it is near all other wires when they are pulsed.

  19. Ion beam generating apparatus

    DOEpatents

    Brown, I.G.; Galvin, J.

    1987-12-22

    An ion generating apparatus utilizing a vacuum chamber, a cathode and an anode in the chamber. A source of electrical power produces an arc or discharge between the cathode and anode. The arc is sufficient to vaporize a portion of the cathode to form a plasma. The plasma is directed to an extractor which separates the electrons from the plasma, and accelerates the ions to produce an ion beam. 10 figs.

  20. Evidence for metabolic activity of airborne bacteria

    NASA Technical Reports Server (NTRS)

    Chatigny, M. A.; Wolochow, H.

    1974-01-01

    Aerosols of the bacterium Serratia marcescens, and of uniformly labeled C-14 glucose were produced simultaneously and mixed in tubing leading to an aerosol chamber. During a subsequent period of about 5 hrs, carbon dioxide was produced metabolically within the chamber, and labeled material incorporated within the suspended particles first increased then decreased. This constitutes the first direct evidence of microbial metabolism of bacteria suspended in the air.

  1. Tubular copper thrust chamber design study

    NASA Technical Reports Server (NTRS)

    Masters, A. I.; Galler, D. E.

    1992-01-01

    The use of copper tubular thrust chambers is particularly important in high performance expander cycle space engines. Tubular chambers have more surface area than flat wall chambers, and this extra surface area provides enhanced heat transfer for additional energy to power the cycle. This paper was divided into two sections: (1) a thermal analysis and sensitivity study; and (2) a preliminary design of a selected thrust chamber configuration. The thermal analysis consisted of a statistical optimization to determine the optimum tube geometry, tube booking, thrust chamber geometry, and cooling routing to achieve the maximum upper limit chamber pressure for a 25,000 pound thrust engine. The preliminary design effort produced a layout drawing of a tubular thrust chamber that is three inches shorter than the Advanced Expander Test Bed (AETB) milled channel chamber but is predicted to provide a five percent increase in heat transfer. Testing this chamber in the AETB would confirm the inherent advantages of tubular chamber construction and heat transfer.

  2. Electric Propulsion Apparatus

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J. (Inventor)

    2013-01-01

    An electric propulsion machine includes an ion thruster having an annular discharge chamber housing an anode having a large surface area. The ion thruster includes flat annular ion optics with a small span to gap ratio. Optionally, a second electric propulsion thruster may be disposed in a cylindrical space disposed within an interior of the annulus.

  3. Thermoacoustic enhancements for nuclear fuel rods and other high temperature applications

    DOEpatents

    Garrett, Steven L.; Smith, James A.; Kotter, Dale K.

    2017-05-09

    A nuclear thermoacoustic device includes a housing defining an interior chamber and a portion of nuclear fuel disposed in the interior chamber. A stack is disposed in the interior chamber and has a hot end and a cold end. The stack is spaced from the portion of nuclear fuel with the hot end directed toward the portion of nuclear fuel. The stack and portion of nuclear fuel are positioned such that an acoustic standing wave is produced in the interior chamber. A frequency of the acoustic standing wave depends on a temperature in the interior chamber.

  4. Flash water-window x-ray generator with a ferrite capillary

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Sagae, Michiaki; Ichimaru, Toshio; Takayama, Kazuyoshi; Sakamaki, Kimio; Tamakawa, Yoshiharu

    1997-12-01

    The fundamental study on a flash water-window x-ray generator is described. This generator is composed of a high-voltage power supply, a polarity-inversion high-voltage pulser, a krytron pulser as a trigger device, an oil-diffusion pump, and a vacuum chamber with a capillary. A combined ceramic condenser of about 5 nF in the pulser is charged up to 70 kV by the power supply, and the electric charges in the condenser are discharged to the capillary in the tube after closing a gap switch by the krytron pulser. In the present work, the chamber is evacuated by the pump with a pressure of about 1 by 10-3 Pa, and the titanium anode and cathode electrodes are employed to produce L-series characteristic x rays in the water-window range. The diameter and the length of the ferrite capillary are 2.0 and 30 mm, respectively. Both the cathode voltage and the discharge current displayed damped oscillations. The peak values of the voltage and current increased when the charging voltage was increased, and their maximum values were minus 24 kV and 2.8 kA, respectively. The pulse durations of the water-window x-rays were nearly equivalent to those of the damped oscillations of the voltage and current, and their values were less than 10 microseconds.

  5. Methods and apparatus for producing and storing positrons and protons

    DOEpatents

    Akers, Douglas W [Idaho Falls, ID

    2010-07-06

    Apparatus for producing and storing positrons may include a trap that defines an interior chamber therein and that contains an electric field and a magnetic field. The trap may further include a source material that includes atoms that, when activated by photon bombardment, become positron emitters to produce positrons. The trap may also include a moderator positioned adjacent the source material. A photon source is positioned adjacent the trap so that photons produced by the photon source bombard the source material to produce the positron emitters. Positrons from the positron emitters and moderated positrons from the moderator are confined within the interior chamber of the trap by the electric and magnetic fields. Apparatus for producing and storing protons are also disclosed.

  6. Comparison of secondary organic aerosol formed with an aerosol flow reactor and environmental reaction chambers: effect of oxidant concentration, exposure time and seed particles on chemical composition and yield

    NASA Astrophysics Data System (ADS)

    Lambe, A. T.; Chhabra, P. S.; Onasch, T. B.; Brune, W. H.; Hunter, J. F.; Kroll, J. H.; Cummings, M. J.; Brogan, J. F.; Parmar, Y.; Worsnop, D. R.; Kolb, C. E.; Davidovits, P.

    2014-12-01

    We performed a systematic intercomparison study of the chemistry and yields of SOA generated from OH oxidation of a common set of gas-phase precursors in a Potential Aerosol Mass (PAM) continuous flow reactor and several environmental chambers. In the flow reactor, SOA precursors were oxidized using OH concentrations ranging from 2.0×108 to 2.2×1010 molec cm-3 over exposure times of 100 s. In the environmental chambers, precursors were oxidized using OH concentrations ranging from 2×106 to 2×107 molec cm-3 over exposure times of several hours. The OH concentration in the chamber experiments is close to that found in the atmosphere, but the integrated OH exposure in the flow reactor can simulate atmospheric exposure times of multiple days compared to chamber exposure times of only a day or so. A linear correlation analysis of the mass spectra (m=0.91-0.92, r2=0.93-0.94) and carbon oxidation state (m=1.1, r2=0.58) of SOA produced in the flow reactor and environmental chambers for OH exposures of approximately 1011 molec cm-3 s suggests that the composition of SOA produced in the flow reactor and chambers is the same within experimental accuracy as measured with an aerosol mass spectrometer. This similarity in turn suggests that both in the flow reactor and in chambers, SOA chemical composition at low OH exposure is governed primarily by gas-phase OH oxidation of the precursors, rather than heterogeneous oxidation of the condensed particles. In general, SOA yields measured in the flow reactor are lower than measured in chambers for the range of equivalent OH exposures that can be measured in both the flow reactor and chambers. The influence of sulfate seed particles on isoprene SOA yield measurements was examined in the flow reactor. The studies show that seed particles increase the yield of SOA produced in flow reactors by a factor of 3 to 5 and may also account in part for higher SOA yields obtained in the chambers, where seed particles are routinely used.

  7. Apparatus and method to enhance X-ray production in laser produced plasmas

    DOEpatents

    Augustoni, Arnold L.; Gerardo, James B.; Raymond, Thomas D.

    1992-01-01

    Method and apparatus for generating x-rays for use in, for instance, x-ray photolithography. The method of generating x-rays includes the steps of providing a target and irradiating the target with a laser system which produces a train of sub-pulses to generate an x-ray producing plasma. The sub-pulses are of both high intensity and short duration. The apparatus for generating x-rays from a plasma includes a vacuum chamber, a target supported within the chamber and a laser system, including a short storage time laser.

  8. AXISYMMETRIC, THROTTLEABLE NON-GIMBALLED ROCKET ENGINE

    NASA Technical Reports Server (NTRS)

    Sackheim, Robert L. (Inventor); Hutt, John J. (Inventor); Anderson, William E. (Inventor); Dressler, Gordon A. (Inventor)

    2005-01-01

    A rocket engine assembly is provided for a vertically launched rocket vehicle. A rocket engine housing of the assembly includes two or more combustion chambers each including an outlet end defining a sonic throat area. A propellant supply for the combustion chambers includes a throttling injector, associated with each of the combustion chambers and located opposite to sonic throat area, which injects the propellant into the associated combustion chamber. A modulator, which may form part of the injector, and which is controlled by a controller, modulates the flow rate of the propellant to the combustion chambers so that the chambers provide a vectorable net thrust. An expansion nozzle or body located downstream of the throat area provides expansion of the combustion gases produced by the combustion chambers so as to increase the net thrust.

  9. Detecting management and fertilization effects on the carbon balance of winter oilseed rape with manual closed chamber measurements: Can we outrange gap-filling uncertainty and spatiotemporal variability?

    NASA Astrophysics Data System (ADS)

    Huth, Vytas; Moffat, Antje Maria; Calmet, Anna; Andres, Monique; Laufer, Judit; Pehle, Natalia; Rach, Bernd; Gundlach, Laura; Augustin, Jürgen

    2017-04-01

    Winter oilseed rape is the dominant biofuel crop in the young moraine landscape in North-Eastern Germany. However, studies on the effect of rapeseed cropping on net ecosystem exchange of CO2 (NEE) and the soil carbon (SC) balance are scarce. SC balance estimates are usually derived from long-term soil sampling field trials where rapeseed is part of different crop rotations. The estimated annual differences linked to rapeseed cropping are rather small (varying between losses of 40 g C m-2 and gains of up to 100 g C m-2). Testing management effects on the NEE and SC balance of cropping systems is best done by comparing plots with different treatments at the same site under the same climate. The soil sampling approach is in the need of field trials that run over decades, which has the disadvantage that management strategies of practical farming may have already changed when the results are derived. Continuous eddy covariance measurements of NEE would require large fields in flat terrain for each of the treatments, which is especially complicated in the heterogeneous landscapes of glacigenic origin of North-Eastern Germany. The common approach of using the chamber technique to derive NEE, however, is subject to the local soil and plant stand heterogeneities due to its tiny footprint. This technique might also disturb the ecosystem, the measurements are usually discontinuous requiring elaborate gap-filling techniques, and it has mostly been used on organic soils where large respiratory C losses occur. Therefore, our aim was to answer, if a combined approach of the eddy covariance and the chamber technique can detect the relatively small NEE and SC differences of rapeseed cropping on mineral soils within a shorter period of time than conventional soil sampling field trials can. We tested the new experimental design taking the advantages of both techniques into account: The eddy covariance tower measuring the NEE dynamics during the year; the chamber measurements to detect the flux differences between specific management practices - with additional chamber measurements installed close to the eddy tower as a reference linking the two techniques. In our experiment, we studied the effect of four different treatments of fertilization (mineral versus organic) and tillage (no-till versus mulch-till versus ploughing) on the NEE of rapeseed cropping for the climatic seasons 2013 to 2015. We compared the NEE of the treatments to the "background" NEE measured by the eddy covariance technique in the nearby reference field for the years 2013 and 2014. With this data, we estimated the uncertainty resulting from gap filling discontinuous chamber measurements and relate it to the observed effects of the four different treatments on the NEE. Here, we present first results on the applicability of the manual-chamber technique to derive the relatively small effects of rapeseed cropping on NEE and SC within a short period of three years of study.

  10. Peltier-based cloud chamber

    NASA Astrophysics Data System (ADS)

    Nar, Sevda Yeliz; Cakir, Altan

    2018-02-01

    Particles produced by nuclear decay, cosmic radiation and reactions can be identified through various methods. One of these methods that has been effective in the last century is the cloud chamber. The chamber makes visible cosmic particles that we are exposed to radiation per second. Diffusion cloud chamber is a kind of cloud chamber that is cooled by dry ice. This traditional model has some application difficulties. In this work, Peltier-based cloud chamber cooled by thermoelectric modules is studied. The new model provided uniformly cooled base of the chamber, moreover, it has longer lifetime than the traditional chamber in terms of observation time. This gain has reduced the costs which spent each time for cosmic particle observation. The chamber is an easy-to-use system according to traditional diffusion cloud chamber. The new model is portable, easier to make, and can be used in the nuclear physics experiments. In addition, it would be very useful to observe Muons which are the direct evidence for Lorentz contraction and time expansion predicted by Einsteins special relativity principle.

  11. Lactic acidosis occurrence during exercises in the smoke chamber in a 53-year-old firefighter with no significant medical history.

    PubMed

    Bronisz, Agata; Spychalska, Magdalena; Szafrańska, Małgorzata

    2014-04-01

    Lactic acidosis is a form of metabolic acidosis with a high anion gap, reduced rate of arterial blood pH under 7.35 mmol/l, and lactic acid concentration over 7 mmol/l. In the literature we can find some descriptions of the cases of lactic acidosis in patients with severe systemic diseases (cancer, acquired immunodeficiency syndrome, sepsis, diabetes with cardiovascular disease and after organ transplantations). We present the case of lactic acidosis in a patient with no chronic disease--a firefighter in whom lactic acidosis has developed during standard exercises in the smoke chamber.

  12. Investigation of electroforming techniques. [fabrication of regeneratively cooled thrust chambers

    NASA Technical Reports Server (NTRS)

    Malone, G. A.

    1975-01-01

    Copper and nickel electroforming was examined for the purpose of establishing the necessary processes and procedures for repeatable, successful fabrication of the outer structures of regeneratively cooled thrust chambers. The selection of electrolytes for copper and nickel deposition is described. The development studies performed to refine and complete the processes necessary for successful chamber shell fabrication and the testing employed to verify the applicability of the processes and procedures to small scale hardware are described. Specifications were developed to afford a guideline for the electroforming of high quality outer shells on regeneratively cooled thrust chamber liners. Test results indicated repeatable mechanical properties could be produced in copper deposits from the copper sulfate electrolyte with periodic current reversal and in nickel deposits from the sulfamate solution. Use of inert, removable channel fillers and the conductivizing of such is described. Techniques (verified by test) which produce high integrity bonds to copper and copper alloy liners are discussed.

  13. Results Of Insulation Resistance Between Solar Cell String Gaps Without RTV Adhesive Grout After Electrostatic Discharge Tests With Cover Glass Flashover

    NASA Astrophysics Data System (ADS)

    Hoang, Bao; Wong, Frankie; Redick, Tod; Masui, Hirokazu; Endo, Taishi; Toyoda, Kazuhiro; Cho, Mengu

    2011-10-01

    A series of electrostatic discharge (ESD) tests was performed on solar array test coupons consisting of Advanced Triple Junction InGaP2/InGaAs/Ge solar cells. The motivation for these tests was to evaluate the effects of ESD on solar array design without room temperature vulcanized (RTV) adhesive grout between the string-to-string parallel gaps. To investigate the threshold of permanently sustained secondary arcs, various combinations of gap width, load voltage and string current were tested in a vacuum chamber equipped with an electron beam gun. This ESD test program included the ESD test circuit with simulated panel coverglass flashover. Although ESD events did not result in permanent sustained arcs, the insulation resistance between strings was found to decrease as the number of secondary arcs accumulated in the gap.

  14. Experimental verification of the vaporization's contribution to the shock waves generated by underwater electrical wire explosion under micro-second timescale pulsed discharge

    NASA Astrophysics Data System (ADS)

    Han, Ruoyu; Zhou, Haibin; Wu, Jiawei; Clayson, Thomas; Ren, Hang; Wu, Jian; Zhang, Yongmin; Qiu, Aici

    2017-06-01

    This paper studies pressure waves generated by exploding a copper wire in a water medium, demonstrating the significant contribution of the vaporization process to the formation of shock waves. A test platform including a pulsed current source, wire load, chamber, and diagnostic system was developed to study the shock wave and optical emission characteristics during the explosion process. In the experiment, a total of 500 J was discharged through a copper wire load 0.2 mm in diameter and 4 cm in length. A water gap was installed adjacent to the load so that the current was diverted away from the load after breakdown occurred across the water gap. This allows the electrical energy injection into the load to be interrupted at different times and at different stages of the wire explosion process. Experimental results indicate that when the load was bypassed before the beginning of the vaporization phase, the measured peak pressure was less than 2.5 MPa. By contrast, the peak pressure increased significantly to over 6.5 MPa when the water gap broke down after the beginning of the vaporization phase. It was also found that when bypassing the load after the voltage peak, similar shock waves were produced to those from a non-bypassed load. However, the total optical emission of these bypassed loads was at least an order of magnitude smaller. These results clearly demonstrate that the vaporization process is vital to the formation of shock waves and the energy deposited after the voltage collapse may only have a limited effect.

  15. Hydrophilic strips for preventing air bubble formation in a microfluidic chamber.

    PubMed

    Choi, Munseok; Na, Yang; Kim, Sung-Jin

    2015-12-01

    In a microfluidic chamber, unwanted formation of air bubbles is a critical problem. Here, we present a hydrophilic strip array that prevents air bubble formation in a microfluidic chamber. The array is located on the top surface of the chamber, which has a large variation in width, and consists of a repeated arrangement of super- and moderately hydrophilic strips. This repeated arrangement allows a flat meniscus (i.e. liquid front) to form when various solutions consisting of a single stream or two parallel streams with different hydrophilicities move through the chamber. The flat meniscus produced by the array completely prevents the formation of bubbles. Without the array in the chamber, the meniscus shape is highly convex, and bubbles frequently form in the chamber. This hydrophilic strip array will facilitate the use of a microfluidic chamber with a large variation in width for various microfluidic applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. System to continuously produce carbon fiber via microwave assisted plasma processing

    DOEpatents

    White, Terry L; Paulauskas, Felix L; Bigelow, Timothy S

    2014-03-25

    A method for continuously processing carbon fiber including establishing a microwave plasma in a selected atmosphere contained in an elongated chamber having a microwave power gradient along its length defined by a lower microwave power at one end and a higher microwave power at the opposite end of the elongated chamber. The elongated chamber having an opening in each of the ends of the chamber that are adapted to allow the passage of the fiber tow while limiting incidental gas flow into or out of said chamber. A continuous fiber tow is introduced into the end of the chamber having the lower microwave power. The fiber tow is withdrawn from the opposite end of the chamber having the higher microwave power. The fiber to is subjected to progressively higher microwave energy as the fiber is being traversed through the elongated chamber.

  17. Laboratory study of PCBs transport from primary sources to ...

    EPA Pesticide Factsheets

    The sorption of airborne polychlorinated biphenyls (PCBs) by twenty building materials and their subsequent re-emission (desorption) from concrete were investigated using two 53-L environmental chambers connected in series with a field-collected caulk in the source chamber serving as a stable source of PCBs and building materials in the test chamber. During the tests, the PCB concentrations in the outlet air of the test chamber were monitored and the building materials were removed from the test chamber at different times to determine their PCB content. Among the materials tested, a petroleum-based paint, a latex paint, and a certain type of carpet were among the strongest sinks. Solvent-free epoxy coating, certain types of flooring materials, and brick were among the weakest sinks. For a given sink material, PCB congeners with lower vapor pressures were sorbed in larger quantities. Rough estimates of the partition and diffusion coefficients were obtained by applying a sink model to the data acquired from the chamber studies. A desorption test with the concrete panels showed that re-emission is a slow process, suggesting that PCB sinks, e.g. concrete, can release PCBs into the air for a prolonged period of time (years or decades). This study could fill some of the data gaps associated with the characterization of PCB sinks in contaminated buildings. This paper summarizes the laboratory research results for PCB transport from primary sources to PCB sinks, includ

  18. Workforce Gadsden. "Bridging the Gap." Section 353 Project Final Report.

    ERIC Educational Resources Information Center

    Gasden Adult and Community Education Program, Quincy, FL.

    A cooperative effort was made by the Chamber of Commerce and the Adult and Community Education Program to encourage and facilitate work force literacy in small and medium-sized businesses, industries, and government agencies in Gadsden County, Florida. Businesses that could benefit were identified through a business/industry questionnaire. Six…

  19. Preparative electrophoresis for space

    NASA Technical Reports Server (NTRS)

    Rhodes, Percy H.; Snyder, Robert S.

    1987-01-01

    A premise of continuous flow electrophoresis is that removal of buoyancy-induced thermal convection caused by axial and lateral temperature gradients results in ideal performance of these instruments in space. Although these gravity dependent phenomena disturb the rectilinear flow in the separation chamber when high voltage gradients or thick chambers are used, distortion of the injected sample stream due to electrohydrodynamic effects cause major broadening of the separated bands. The electrophoresis separation process is simple, however flow local to the sample filament produced by the applied electric field have not been considered. These electrohydrodynamic flows distort the sample stream and limit the separation. Also, electroosmosis and viscous flow combine to further distort the process. A moving wall concept is being proposed for space which will eliminate and control the disturbances. The moving wall entrains the fluid to move as a rigid body and produces a constant residence time for all samples distributed across the chamber thickness. The moving wall electrophoresis chamber can only be operated in space because there is no viscous flow in the chamber to stabilize against thermal convection.

  20. Preparative electrophoresis for space

    NASA Technical Reports Server (NTRS)

    Rhodes, Percy H.; Snyder, Robert S.

    1988-01-01

    A premise of continuous flow electrophoresis is that removal of buoyance-induced thermal convection caused by axial and lateral temperature gradients results in ideal performance of these instruments in space. Although these gravity dependent phenomena disturb the rectilinear flow in the separation chamber when high voltage gradients or thick chamber are used, distortion of the injected sample stream due to electrodynamic effects cause major broadening of the separated bands. The electrophoresis separation process is simple, however flow local to the sample filament produced by the applied electric field were not considered. These electrohydrodynamic flows distort the sample stream and limit the separation. Also, electroosmosis and viscous flow combine to further distort the process. A moving wall concept is being proposed for space which will eliminate and control the disturbances. The moving wall entrains the fluid to move as a rigid body and produces a constant residence time for all samples distributed across the chamber thickness. The moving wall electrophoresis chamber can only be operated in space because there is no viscous flow in the chamber to stabilize against thermal convection.

  1. Design Improvements and X-Ray Performance of a Time Projection Chamber Polarimeter for Persistent Astronomical Sources

    NASA Technical Reports Server (NTRS)

    Hill, Joanne E.; Black, J. Kevin; Emmett, Thomas J.; Enoto, Teruaki; Jahoda, Keith M.; Kaaret, Philip; Nolan, David S.; Tamagawa, Toru

    2014-01-01

    The design of the Time-Projection Chamber (TPC) Polarimeter for the Gravity and Extreme Magnetism Small Explorer (GEMS) was demonstrated to Technology Readiness Level 6 (TRL-6)3 and the flight detectors fabricated, assembled and performance tested. A single flight detector was characterized at the Brookhaven National Laboratory Synchrotron Light Source with polarized X-rays at 10 energies from 2.3-8.0 keV at five detector positions. The detector met all of the GEMS performance requirements. Lifetime measurements have shown that the existing flight design has 23 years of lifetime4, opening up the possibility of relaxing material requirements, in particular the consideration of the use of epoxy, to reduce risk elsewhere. We report on design improvements to the GEMS detector to enable a narrower transfer gap that, when operated with a lower transfer field, reduces asymmetries in the detector response. In addition, the new design reduces cost and risk by simplifying the assembly and reducing production time. Finally, we report on the performance of the narrow-gap detector in response to polarized and unpolarized X-rays.

  2. Methods and apparatus for the on-site production of hydrogen peroxide

    NASA Technical Reports Server (NTRS)

    Buschmann, Wayne E. (Inventor); James, Patrick I. (Inventor)

    2010-01-01

    Methods, apparatus, and applications for the on-site production of hydrogen peroxide are described. An embodiment of the apparatus comprises at least one anolyte chamber coupled to at least one anode, at least one catholyte chamber, wherein the at least one catholyte chamber is coupled to at least one cathode, at least one anode membrane and at least one cathode membrane, wherein the anode membrane is adjacent to the at least one anode, wherein the cathode membrane is adjacent to the at least one cathode, at least one central chamber disposed between the at least one anolyte chamber and the at least one catholyte chamber. Hydrogen peroxide is produced by reduction of an oxygen-containing gas at the cathode.

  3. RF Sputtering for preparing substantially pure amorphous silicon monohydride

    DOEpatents

    Jeffrey, Frank R.; Shanks, Howard R.

    1982-10-12

    A process for controlling the dihydride and monohydride bond densities in hydrogenated amorphous silicon produced by reactive rf sputtering of an amorphous silicon target. There is provided a chamber with an amorphous silicon target and a substrate therein with the substrate and the target positioned such that when rf power is applied to the target the substrate is in contact with the sputtering plasma produced thereby. Hydrogen and argon are fed to the chamber and the pressure is reduced in the chamber to a value sufficient to maintain a sputtering plasma therein, and then rf power is applied to the silicon target to provide a power density in the range of from about 7 watts per square inch to about 22 watts per square inch to sputter an amorphous silicon hydride onto the substrate, the dihydride bond density decreasing with an increase in the rf power density. Substantially pure monohydride films may be produced.

  4. Design of a High-Reynolds Number Recirculating Water Tunnel

    NASA Astrophysics Data System (ADS)

    Daniel, Libin; Elbing, Brian

    2014-11-01

    An experimental fluid mechanics laboratory focused on turbulent boundary layers, drag reduction techniques, multiphase flows and fluid-structure interactions has recently been established at Oklahoma State University. This laboratory has three primary components; (1) a recirculating water tunnel, (2) a multiphase pipe flow loop, and (3) a multi-scale flow visualization system. The design of the water tunnel is the focus of this talk. The criteria used for the water tunnel design was that it had to produce a momentum-thickness based Reynolds number in excess of 104, negligible flow acceleration due to boundary layer growth, maximize optical access for use of the flow visualization system, and minimize inlet flow non-uniformity. This Reynolds number was targeted to bridge the gap between typical university/commercial water tunnels (103) and the world's largest water tunnel facilities (105) . These objectives were achieved with a 152 mm (6-inch) square test section that is 1 m long and has a maximum flow speed of 10 m/s. The flow non-uniformity was mitigated with the use of a tandem honeycomb configuration, a settling chamber and an 8.5:1 contraction. The design process that produced this final design will be presented along with its current status.

  5. Experimental investigations of argon spark gap recovery times by developing a high voltage double pulse generator.

    PubMed

    Reddy, C S; Patel, A S; Naresh, P; Sharma, Archana; Mittal, K C

    2014-06-01

    The voltage recovery in a spark gap for repetitive switching has been a long research interest. A two-pulse technique is used to determine the voltage recovery times of gas spark gap switch with argon gas. First pulse is applied to the spark gap to over-volt the gap and initiate the breakdown and second pulse is used to determine the recovery voltage of the gap. A pulse transformer based double pulse generator capable of generating 40 kV peak pulses with rise time of 300 ns and 1.5 μs FWHM and with a delay of 10 μs-1 s was developed. A matrix transformer topology is used to get fast rise times by reducing L(l)C(d) product in the circuit. Recovery Experiments have been conducted for 2 mm, 3 mm, and 4 mm gap length with 0-2 bars pressure for argon gas. Electrodes of a sparkgap chamber are of rogowsky profile type, made up of stainless steel material, and thickness of 15 mm are used in the recovery study. The variation in the distance and pressure effects the recovery rate of the spark gap. An intermediate plateu is observed in the spark gap recovery curves. Recovery time decreases with increase in pressure and shorter gaps in length are recovering faster than longer gaps.

  6. Production of muons for fusion catalysis using a migma configuration

    NASA Astrophysics Data System (ADS)

    Chapline, George F.; Moir, Ralph W.

    1988-08-01

    Muon-catalyzed fusion requires a very efficient means of producing muons. We describe a muon-producing magnetic-mirror scheme with triton migma that may be more energy efficient than any heretofore proposed. If one could catalyze 200 fusions per muon and employ a uranium blanket that would multiply the neutron energy by a factor of 10, one might produce electricity with an overall plant efficiency (ratio of electric energy produced to nuclear energy released) approaching 30%. The self-colliding arrangement of triton orbits will result in many π-'s being produced near the axis of the magnetic mirror. The pions quickly decay into muons, which are transported into a small (few cm diameter) reactor chamber producing approximately 1 MW/m2 neutron flux on the chamber walls.

  7. IONIZATION CHAMBER

    DOEpatents

    Redman, W.C.; Shonka, F.R.

    1958-02-18

    This patent describes a novel ionization chamber which is well suited to measuring the radioactivity of the various portions of a wire as the wire is moved at a uniform speed, in order to produce the neutron flux traverse pattern of a reactor in which the wire was previously exposed to neutron radiation. The ionization chamber of the present invention is characterized by the construction wherein the wire is passed through a tubular, straight electrode and radiation shielding material is disposed along the wire except at an intermediate, narrow area where the second electrode of the chamber is located.

  8. Single-stage separation and esterification of cation salt carboxylates using electrodeionization

    DOEpatents

    Lin, YuPo J.; Henry, Michael; Hestekin, Jamie; Snyder, Seth W.; St. Martin, Edward J.

    2006-11-28

    A method of and apparatus for continuously making an organic ester from a lower alcohol and an organic acid is disclosed. An organic acid or salt is introduced or produced in an electrode ionization (EDI) stack with a plurality of reaction chambers each formed from a porous solid ion exchange resin wafer interleaved between anion exchange membranes or an anion exchange membrane and a cation exchange membrane or an anion exchange membrane and a bipolar exchange membranes. At least some reaction chambers are esterification chambers and/or bioreactor chambers and/or chambers containing an organic acid or salt. A lower alcohol in the esterification chamber reacts with an anion to form an organic ester and water with at least some of the water splitting with the ions leaving the chamber to drive the reaction.

  9. Heat driven pulse pump

    NASA Technical Reports Server (NTRS)

    Benner, Steve M (Inventor); Martins, Mario S. (Inventor)

    2000-01-01

    A heat driven pulse pump includes a chamber having an inlet port, an outlet port, two check valves, a wick, and a heater. The chamber may include a plurality of grooves inside wall of the chamber. When heated within the chamber, a liquid to be pumped vaporizes and creates pressure head that expels the liquid through the outlet port. As liquid separating means, the wick, disposed within the chamber, is to allow, when saturated with the liquid, the passage of only liquid being forced by the pressure head in the chamber, preventing the vapor from exiting from the chamber through the outlet port. A plurality of grooves along the inside surface wall of the chamber can sustain the liquid, which is amount enough to produce vapor for the pressure head in the chamber. With only two simple moving parts, two check valves, the heat driven pulse pump can effectively function over the long lifetimes without maintenance or replacement. For continuous flow of the liquid to be pumped a plurality of pumps may be connected in parallel.

  10. Forward conditioning with wheel running causes place aversion in rats.

    PubMed

    Masaki, Takahisa; Nakajima, Sadahiko

    2008-09-01

    Backward pairings of a distinctive chamber as a conditioned stimulus and wheel running as an unconditioned stimulus (i.e., running-then-chamber) can produce a conditioned place preference in rats. The present study explored whether a forward conditioning procedure with these stimuli (i.e., chamber-then-running) would yield place preference or aversion. Confinement of a rat in one of two distinctive chambers was followed by a 20- or 60-min running opportunity, but confinement in the other was not. After four repetitions of this treatment (i.e., differential conditioning), a choice preference test was given in which the rat had free access to both chambers. This choice test showed that the rats given 60-min running opportunities spent less time in the running-paired chamber than in the unpaired chamber. Namely, a 60-min running opportunity after confinement in a distinctive chamber caused conditioned aversion to that chamber after four paired trials. This result was discussed with regard to the opponent-process theory of motivation.

  11. Design and Construction of an Inexpensive Homemade Plant Growth Chamber

    PubMed Central

    Katagiri, Fumiaki; Canelon-Suarez, Dario; Griffin, Kelsey; Petersen, John; Meyer, Rachel K.; Siegle, Megan; Mase, Keisuke

    2015-01-01

    Plant growth chambers produce controlled environments, which are crucial in making reproducible observations in experimental plant biology research. Commercial plant growth chambers can provide precise controls of environmental parameters, such as temperature, humidity, and light cycle, and the capability via complex programming to regulate these environmental parameters. But they are expensive. The high cost of maintaining a controlled growth environment is often a limiting factor when determining experiment size and feasibility. To overcome the limitation of commercial growth chambers, we designed and constructed an inexpensive plant growth chamber with consumer products for a material cost of $2,300. For a comparable growth space, a commercial plant growth chamber could cost $40,000 or more. Our plant growth chamber had outside dimensions of 1.5 m (W) x 1.8 m (D) x 2 m (H), providing a total growth area of 4.5 m2 with 40-cm high clearance. The dimensions of the growth area and height can be flexibly changed. Fluorescent lights with large reflectors provided a relatively spatially uniform photosynthetically active radiation intensity of 140–250 μmoles/m2/sec. A portable air conditioner provided an ample cooling capacity, and a cooling water mister acted as a powerful humidifier. Temperature, relative humidity, and light cycle inside the chamber were controlled via a z-wave home automation system, which allowed the environmental parameters to be monitored and programmed through the internet. In our setting, the temperature was tightly controlled: 22.2°C±0.8°C. The one-hour average relative humidity was maintained at 75%±7% with short spikes up to ±15%. Using the interaction between Arabidopsis and one of its bacterial pathogens as a test experimental system, we demonstrate that experimental results produced in our chamber were highly comparable to those obtained in a commercial growth chamber. In summary, our design of an inexpensive plant growth chamber will tremendously increase research opportunities in experimental plant biology. PMID:25965420

  12. Design and construction of an inexpensive homemade plant growth chamber.

    PubMed

    Katagiri, Fumiaki; Canelon-Suarez, Dario; Griffin, Kelsey; Petersen, John; Meyer, Rachel K; Siegle, Megan; Mase, Keisuke

    2015-01-01

    Plant growth chambers produce controlled environments, which are crucial in making reproducible observations in experimental plant biology research. Commercial plant growth chambers can provide precise controls of environmental parameters, such as temperature, humidity, and light cycle, and the capability via complex programming to regulate these environmental parameters. But they are expensive. The high cost of maintaining a controlled growth environment is often a limiting factor when determining experiment size and feasibility. To overcome the limitation of commercial growth chambers, we designed and constructed an inexpensive plant growth chamber with consumer products for a material cost of $2,300. For a comparable growth space, a commercial plant growth chamber could cost $40,000 or more. Our plant growth chamber had outside dimensions of 1.5 m (W) x 1.8 m (D) x 2 m (H), providing a total growth area of 4.5 m2 with 40-cm high clearance. The dimensions of the growth area and height can be flexibly changed. Fluorescent lights with large reflectors provided a relatively spatially uniform photosynthetically active radiation intensity of 140-250 μmoles/m2/sec. A portable air conditioner provided an ample cooling capacity, and a cooling water mister acted as a powerful humidifier. Temperature, relative humidity, and light cycle inside the chamber were controlled via a z-wave home automation system, which allowed the environmental parameters to be monitored and programmed through the internet. In our setting, the temperature was tightly controlled: 22.2°C±0.8°C. The one-hour average relative humidity was maintained at 75%±7% with short spikes up to ±15%. Using the interaction between Arabidopsis and one of its bacterial pathogens as a test experimental system, we demonstrate that experimental results produced in our chamber were highly comparable to those obtained in a commercial growth chamber. In summary, our design of an inexpensive plant growth chamber will tremendously increase research opportunities in experimental plant biology.

  13. Towards a consistent approach of measuring and modelling CO2 exchange with manual chambers

    NASA Astrophysics Data System (ADS)

    Huth, Vytas; Vaidya, Shrijana; Hoffmann, Mathias; Jurisch, Nicole; Günther, Anke; Gundlach, Laura; Hagemann, Ulrike; Elsgaard, Lars; Augustin, Jürgen

    2016-04-01

    Determining ecosystem CO2 exchange with the manual closed chamber method has been applied in the past for e.g. plant, soil or treatment on a wide range of terrestrial ecosystems. Its major limitation is the discontinuous data acquisation challenging any gap-filling procedures. In addition, both data acquisition and gap-filling of closed chamber data have been carried out in different ways in the past. The reliability and comparability of the derived results from different closed chamber studies has therefore remained unclear. Hence, this study compares two different approaches of obtaining fluxes of gross primary production (GPP) either via sunrise to noon or via gradually-shaded mid-day measurements of transparent chamber fluxes (i.e. net ecosystem exchange, NEE) and opaque chamber fluxes (i.e., ecosystem respiration, RECO) on a field experiment plot in NE Germany cropped with a lucerne-clover-grass mix. Additionally, we compare three approaches of pooling RECO data for consecutive modelling of annual balances of NEE, i.e. campaign-wise (single measurement day RECO models), seasonal-wise (one RECO model for the entire study period), and cluster-wise (two RECO models representing low-/high-vegetation-stage data) modelling. The annual NEE balances of the sunrise to noon measurements are insensitive towards differing RECO modelling approaches (-101 to -131 g C m-2), whereas the choice of modelling annual NEE balances with the shaded mid-day measurements must be taken carefully (-200 to 425 g C m-2). In addition, the campaign-wise RECO modelling approach is very sensitive to daily data pooling (sunrise vs. mid-day) and only advisable when the diurnal variability of CO2 fluxes and environmental parameters (i.e. photosynthetically active radiation, temperature) is sufficiently covered. The seasonal- and cluster-wise approaches lead to robust NEE balances with only little variation in terms of daily data collection. We therefore recommend sunrise to noon measurements and data pooling from adjacent measurement campaigns as long as pooling over e.g. harvest events and significant changes in plant development can be omitted. If, e.g. for extensive treatment comparisons, the sunrise to noon measurements are not feasible due to their higher workload, data pooling accounting for plant development is necessary.

  14. Apparatus and method to enhance X-ray production in laser produced plasmas

    DOEpatents

    Augustoni, A.L.; Gerardo, J.B.; Raymond, T.D.

    1992-12-29

    Method and apparatus for generating x-rays for use in, for instance, x-ray photolithography is disclosed. The method of generating x-rays includes the steps of providing a target and irradiating the target with a laser system which produces a train of sub-pulses to generate an x-ray producing plasma. The sub-pulses are of both high intensity and short duration. The apparatus for generating x-rays from a plasma includes a vacuum chamber, a target supported within the chamber and a laser system, including a short storage time laser. 8 figs.

  15. IMPROVED ION-PRODUCING MECHANISM FOR CALUTRONS

    DOEpatents

    Bell, W.A. Jr.; Prater, W.K.

    1963-12-24

    An ion source for electromagnetically operated equipment for the separation of isotopes, such as the Calutron, wherein a unitized construction is employed to house both the arc chamber and the oven chamber to facilitate assembly and maintenance and to improve operation. ( LAMBDA EC)

  16. Combustion Science

    NASA Image and Video Library

    2003-04-01

    This photograph depicts one of over thirty tests conducted on the Vortex Combustion Chamber Engine at Marshall Space Flight Center's (MSFC) test stand 115, a joint effort between NASA's MSFC and the U.S. Army AMCOM of Redstone Arsenal. The engine tests were conducted to evaluate an irnovative, "self-cooled", vortex combustion chamber, which relies on tangentially injected propellants from the chamber wall producing centrifugal forces that keep the relatively cold liquid propellants near the wall.

  17. ION PRODUCING MECHANISM

    DOEpatents

    Oppenheimer, F.F.

    1959-04-14

    This patent pertains to calutrons and more particularly to means for introducing gas at selected points in the arc chamber of a calutron source to remedy unsteadiness in the arc, The disclosed ion source has a baffle at the gas entrance in the arc chamber for directing part of the gas fiow toward the anodc end of the chamber. The resulting arc is much steadier, resulting in an ion beam of increased current.

  18. Ion producing mechanism

    DOEpatents

    Oppenheimer, F. F.

    1959-04-14

    This patent pertains to calutrons and more particularly to means for introducing gas at selected points in the arc chamber of a calutron source to remedy unsteadiness in the arc. The disclosed ion source has a baffle at the gas entrance in the arc chamber for directing part of the gas flow toward the anode end of the chamber. The resulting arc is much steadier, resulting in an ion beam of increased current.

  19. Development & Characterization of a Whole Plant Chamber for the Investigation of Environmental Perturbations on Biogenic VOC Emissions

    NASA Astrophysics Data System (ADS)

    Holder, J.; Riches, M.; Abeleira, A.; Farmer, D.

    2017-12-01

    Accurate prediction of both climate and air quality under a changing earth system requires a full understanding of the sources, feedbacks, and ultimate fate of all atmospherically relevant chemical species, including volatile organic compounds (VOCs). Biogenic VOCs (BVOC) from plant emissions are the main source of VOCs to the atmosphere. However, the impact of global change on BVOC emissions is poorly understood. For example, while short-term increases in temperature are typically associated with increased BVOC emissions, the impact of long-term temperature increases are less clear. Our study aims to investigate the effects of long-term, singular and combined environmental perturbations on plant BVOC emissions through the use of whole plant chambers in order to better understand the effects of global change on BVOC-climate-air quality feedbacks. To fill this knowledge gap and provide a fundamental understanding of how BVOC emissions respond to environmental perturbations, specifically elevated temperature, CO2, and drought, whole citrus trees were placed in home-built chambers and monitored for monoterpene and other BVOC emissions utilizing thermal desorption gas chromatography mass spectrometry (TD-GC-MS). Designing and building a robust whole plant chamber to study atmospherically relevant chemical species while accommodating the needs of live plants over timescales of days to weeks is not a trivial task. The environmental conditions within the chamber must be carefully controlled and monitored. The inter-plant and chamber variability must be characterized. Finally, target BVOCs need to be sampled and detected from the chamber. Thus, the chamber design, control and characterization considerations along with preliminary BVOC results will be presented and discussed.

  20. Apparatus for investigating the reactions of soft-bodied invertebrates to controlled humidity gradients

    PubMed Central

    Russell, Joshua; Pierce-Shimomura, Jonathan T.

    2015-01-01

    Background While many studies have assayed behavioral responses of animals to chemical, temperature and light gradients, fewer studies have assayed how animals respond to humidity gradients. Our novel humidity chamber has allowed us to study the neuromolecular basis of humidity sensation in the nematode Caenorhabditis elegans (Russell et al. 2014). New Method We describe an easy-to-construct, low-cost humidity chamber to assay the behavior of small animals, including soft-bodied invertebrates, in controlled humidity gradients. Results We show that our humidity-chamber design is amenable to soft-bodied invertebrates and can produce reliable gradients ranging 0.3–8% RH/cm across a 9-cm long x 7.5-cm wide gel-covered arena. Comparison with Existing Method(s) Previous humidity chambers relied on circulating dry and moist air to produce a steep humidity gradient in a small arena (e.g. Sayeed & Benzer, 1996). To remove the confound of moving air that may elicit mechanical responses independent of humidity responses, our chamber controlled the humidity gradient using reservoirs of hygroscopic materials. Additionally, to better observe the behavioral mechanisms for humidity responses, our chamber provided a larger arena. Although similar chambers have been described previously, these approaches were not suitable for soft-bodied invertebrates or for easy imaging of behavior because they required that animals move across wire or fabric mesh. Conclusion The general applicability of our humidity chamber overcomes limitations of previous designs and opens the door to observe the behavioral responses of soft-bodied invertebrates, including genetically powerful C. elegans and Drosophila larvae. PMID:25176025

  1. Phakic iris-fixated intraocular lens placement in the anterior chamber: effects on aqueous flow.

    PubMed

    Repetto, Rodolfo; Pralits, Jan O; Siggers, Jennifer H; Soleri, Paolo

    2015-05-01

    Phakic intraocular lenses (pIOLs) are used for correcting vision; in this paper we investigate the fluid dynamical effects of an iris-fixated lens in the anterior chamber. In particular, we focus on changes in the wall shear stress (WSS) on the cornea and iris, which could be responsible for endothelial and pigment cell loss, respectively, and also on the possible increase of the intraocular pressure, which is known to correlate with the incidence of secondary glaucoma. We use a mathematical model to study fluid flow in the anterior chamber in the presence of a pIOL. The governing equations are solved numerically using the open source software OpenFOAM. We use an idealized standard geometry for the anterior chamber and a realistic geometric description of the pIOL. We consider separately the main mechanisms that produce fluid flow in the anterior chamber. The numerical simulations allow us to obtain a detailed description of the velocity and pressure distribution in the anterior chamber, and indicated that implantation of the pIOL significantly modifies the fluid dynamics in the anterior chamber. However, lens implantation has negligible influence on the intraocular pressure and does not produce a significant increase of the shear stress on the cornea, while the shear stress on the iris, although increased, is not enough to cause detachment of cells. We conclude that alterations in the fluid dynamics in the anterior chamber as a result of lens implantation are unlikely to be the cause of medical complications associated with its use.

  2. Thin-channel electrospray emitter

    DOEpatents

    Van Berkel, Gary J.

    2004-08-31

    An electrospray device includes a high voltage electrode chamber. The high voltage electrode chamber includes an inlet for receiving a fluid to be ionized and for directing the fluid into the chamber and at least one electrode having an exposed surface within the chamber. A flow channel directs fluid over a surface of the electrode and out of the chamber. The length of the flow channel over the electrode is greater than the height of the flow channel over the electrode, thereby producing enhanced mass transport to the working electrode resulting in improved electrolysis efficiency. An outlet is provided for transmitting the fluid out from the electrode chamber. A method of creating charged droplets includes flowing a fluid over an electrode where the length over the electrode is greater than the height of the fluid flowing over the electrode.

  3. Application of the Ta liner technique to produce Ca beams at INFN-Legnaro National Laboratories (INFN-LNL)

    NASA Astrophysics Data System (ADS)

    Galatà, A.; Sattin, M.; Manzolaro, M.; Martini, D.; Facco, A.; Tinschert, K.; Spaedtke, P.; Lang, R.; Kulevoy, T.

    2014-02-01

    The ECR ion sources are able to produce a wide variety of highly charged metallic ion beams thanks to the development of different techniques (ovens, sputtering, direct insertion, metal ions from volatile compounds (MIVOC)). In the case of the ovens, the sticking of the hot vapors on the surface of the plasma chamber leads to high material consumption rates. For elements like Ca, a tantalum liner inserted inside the chamber can be used to limit this phenomenon. The modeling of temperature distribution inside the chamber with and without the liner was carried out with COMSOL-multiphysics code. Results of simulation and the comparison with experiments performed at INFN-Legnaro National Laboratories with Ca beams are discussed.

  4. A liquid hydrocarbon deuteron source for neutron generators

    NASA Astrophysics Data System (ADS)

    Schwoebel, P. R.

    2017-06-01

    Experimental studies of a deuteron spark source for neutron generators using hydrogen isotope fusion reactions are reported. The ion source uses a spark discharge between electrodes coated with a deuterated hydrocarbon liquid, here Santovac 5, to inhibit permanent electrode erosion and extend the lifetime of high-output neutron generator spark ion sources. Thompson parabola mass spectra show that principally hydrogen and deuterium ions are extracted from the ion source. Hydrogen is the chief residual gas phase species produced due to source operation in a stainless-steel vacuum chamber. The prominent features of the optical emission spectra of the discharge are C+ lines, the hydrogen Balmer Hα-line, and the C2 Swan bands. Operation of the ion source was studied in a conventional laboratory neutron generator. The source delivered an average deuteron current of ˜0.5 A nominal to the target in a 5 μs duration pulse at 1 Hz with target voltages of -80 to -100 kV. The thickness of the hydrocarbon liquid in the spark gap and the consistency thereof from spark to spark influences the deuteron yield and plays a role in determining the beam-focusing characteristics through the applied voltage necessary to break down the spark gap. Higher breakdown voltages result in larger ion beam spots on the target and vice-versa. Because the liquid self-heals and thereby inhibits permanent electrode erosion, the liquid-based source provides long life, with 104 pulses to date, and without clear evidence that, in principle, the lifetime could not be much longer. Initial experiments suggest that an alternative cylindrical target-type generator design can extract approximately 10 times the deuteron current from the source. Preliminary data using the deuterated source liquid as a neutron-producing target are also presented.

  5. Apparatus and process for passivating an SRF cavity

    DOEpatents

    Myneni, Ganapati Rao; Wallace, John P

    2014-12-02

    An apparatus and process for the production of a niobium cavity exhibiting high quality factors at high gradients is provided. The apparatus comprises a first chamber positioned within a second chamber, an RF generator and vacuum pumping systems. The process comprises placing the niobium cavity in a first chamber of the apparatus; thermally treating the cavity by high temperature in the first chamber while maintaining high vacuum in the first and second chambers; and applying a passivating thin film layer to a surface of the cavity in the presence of a gaseous mixture and an RF field. Further a niobium cavity exhibiting high quality factors at high gradients produced by the method of the invention is provided.

  6. Aging of biogenic secondary organic aerosol via gas-phase OH radical reactions

    PubMed Central

    Donahue, Neil M.; Henry, Kaytlin M.; Mentel, Thomas F.; Kiendler-Scharr, Astrid; Spindler, Christian; Bohn, Birger; Brauers, Theo; Dorn, Hans P.; Fuchs, Hendrik; Tillmann, Ralf; Wahner, Andreas; Saathoff, Harald; Naumann, Karl-Heinz; Möhler, Ottmar; Leisner, Thomas; Müller, Lars; Reinnig, Marc-Christopher; Hoffmann, Thorsten; Salo, Kent; Hallquist, Mattias; Frosch, Mia; Bilde, Merete; Tritscher, Torsten; Barmet, Peter; Praplan, Arnaud P.; DeCarlo, Peter F.; Dommen, Josef; Prévôt, Andre S.H.; Baltensperger, Urs

    2012-01-01

    The Multiple Chamber Aerosol Chemical Aging Study (MUCHACHAS) tested the hypothesis that hydroxyl radical (OH) aging significantly increases the concentration of first-generation biogenic secondary organic aerosol (SOA). OH is the dominant atmospheric oxidant, and MUCHACHAS employed environmental chambers of very different designs, using multiple OH sources to explore a range of chemical conditions and potential sources of systematic error. We isolated the effect of OH aging, confirming our hypothesis while observing corresponding changes in SOA properties. The mass increases are consistent with an existing gap between global SOA sources and those predicted in models, and can be described by a mechanism suitable for implementation in those models. PMID:22869714

  7. Comparing simple respiration models for eddy flux and dynamic chamber data

    Treesearch

    Andrew D. Richardson; Bobby H. Braswell; David Y. Hollinger; Prabir Burman; Eric A. Davidson; Robert S. Evans; Lawrence B. Flanagan; J. William Munger; Kathleen Savage; Shawn P. Urbanski; Steven C. Wofsy

    2006-01-01

    Selection of an appropriate model for respiration (R) is important for accurate gap-filling of CO2 flux data, and for partitioning measurements of net ecosystem exchange (NEE) to respiration and gross ecosystem exchange (GEE). Using cross-validation methods and a version of Akaike's Information Criterion (AIC), we evaluate a wide range of...

  8. Air ion exposure system for plants

    NASA Technical Reports Server (NTRS)

    Morrow, R. C.; Tibbitts, T. W.

    1987-01-01

    A system was developed for subjecting plants to elevated air ion levels. This system consisted of a rectangular Plexiglas chamber lined with a Faraday cage. Air ions were generated by corona discharge from frayed stainless steel fibers placed at one end of the chamber. This source was capable of producing varying levels of either positive or negative air ions. During plant exposures, environmental conditions were controlled by operating the unit in a growth chamber.

  9. Air ion exposure system for plants.

    PubMed

    Morrow, R C; Tibbitts, T W

    1987-02-01

    A system was developed for subjecting plants to elevated air ion levels. This system consisted of a rectangular Plexiglas chamber lined with a Faraday cage. Air ions were generated by corona discharge from frayed stainless steel fibers placed at one end of the chamber. This source was capable of producing varying levels of either positive or negative air ions. During plant exposures, environmental conditions were controlled by operating the unit in a growth chamber.

  10. Autoignition Chamber for Remote Testing of Pyrotechnic Devices

    NASA Technical Reports Server (NTRS)

    Harrington, Maureen L.; Steward, Gerald R.; Dartez, Toby W.

    2009-01-01

    The autoignition chamber (AIC) performs by remotely heating pyrotechnic devices that can fit the inner diameter of the tube furnace. Two methods, a cold start or a hot start, can be used with this device in autoignition testing of pyrotechnics. A cold start means extending a pyrotechnic device into the cold autoignition chamber and then heating the device until autoignition occurs. A hot start means heating the autoignition chamber to a specified temperature, and then extending the device into a hot autoignition chamber until autoignition occurs. Personnel are remote from the chamber during the extension into the hot chamber. The autoignition chamber, a commercially produced tubular furnace, has a 230-V, single-phase, 60-Hz electrical supply, with a total power output of 2,400 W. It has a 6-in. (15.2-cm) inner diameter, a 12-in. (30.4-cm) outer diameter and a 12-in.- long (30.4-cm), single-zone, solid tubular furnace (element) capable of heating to temperatures up to 2,012 F (1,100 C) in air.

  11. Performance of Several Combustion Chambers Designed for Aircraft Oil Engines

    NASA Technical Reports Server (NTRS)

    Joachim, William F; Kemper, Carlton

    1928-01-01

    Several investigations have been made on single-cylinder test engines to determine the performance characteristics of four types of combustion chambers designed for aircraft oil engines. Two of the combustion chambers studied were bulb-type precombustion chambers, the connecting orifice of one having been designed to produce high turbulence by tangential air flow in both the precombustion chamber and the cylinder. The other two were integral combustion chambers, one being dome-shaped and the other pent-roof shaped. The injection systems used included cam and eccentric driven fuel pumps, and diaphragm and spring-loaded fuel-injection valves. A diaphragm type maximum cylinder pressure indicator was used in part of these investigations with which the cylinder pressures were controlled to definite valves. The performance of the engines when equipped with each of the combustion chambers is discussed. The best performance for the tests reported was obtained with a bulb-type combustion chamber designed to give a high degree of turbulence within the bulb and cylinder. (author)

  12. Sintering of beta-type alumina bodies using alpha-alumina encapsulation

    DOEpatents

    McEntire, Bryan J.; Virkar, Anil V.

    1981-01-01

    A method of sintering a shaped green, beta-type alumina body comprising: (A) inserting said body into an open chamber prepared by exposing the interior surface of a container consisting essentially of at least about 50 weight percent of alpha-alumina and a remainder of other refractory material to a sodium oxide or sodium oxide producing environment; (B) sealing the chamber; and heating the chamber with the shaped body encapsulated therein to a temperature and for a time necessary to sinter said body to the desired density. The encapsulation chamber prepared as described above is also claimed.

  13. Modeling of thermal mode of drying special purposes ceramic products in batch action chamber dryers

    NASA Astrophysics Data System (ADS)

    Lukianov, E. S.; Lozovaya, S. Yu; Lozovoy, N. M.

    2018-03-01

    The article is devoted to the modeling of batch action chamber dryers in the processing line for producing shaped ceramic products. At the drying stage, for various reasons, most of these products are warped and cracked due to the occurrence of irregular shrinkage deformations due to the action of capillary forces. The primary cause is an untruly organized drying mode due to imperfection of chamber dryers design specifically because of the heat-transfer agent supply method and the possibility of creating a uniform temperature field in the whole volume of the chamber.

  14. Silicon carbide fibers and articles including same

    DOEpatents

    Garnier, John E; Griffith, George W

    2015-01-27

    Methods of producing silicon carbide fibers. The method comprises reacting a continuous carbon fiber material and a silicon-containing gas in a reaction chamber at a temperature ranging from approximately 1500.degree. C. to approximately 2000.degree. C. A partial pressure of oxygen in the reaction chamber is maintained at less than approximately 1.01.times.10.sup.2 Pascal to produce continuous alpha silicon carbide fibers. Continuous alpha silicon carbide fibers and articles formed from the continuous alpha silicon carbide fibers are also disclosed.

  15. Multi-cathode metal vapor arc ion source

    DOEpatents

    Brown, Ian G.; MacGill, Robert A.

    1988-01-01

    An ion generating apparatus utilizing a vacuum chamber, a cathode and an anode in the chamber. A source of electrical power produces an arc or discharge between the cathode and anode. The arc is sufficient to vaporize a portion of the cathode to form a plasma. The plasma is directed to an extractor which separates the electrons from the plasma, and accelerates the ions to produce an ion beam. One embodiment of the appaatus utilizes a multi-cathode arrangement for interaction with the anode.

  16. Hypersonic ignition and thrust production in a scramjet

    NASA Technical Reports Server (NTRS)

    Paull, A.

    1993-01-01

    Experimental results are given for the specific impulse produced by a two-dimensional scramjet at flight speeds ranging between 2.5 and 5.5 km/s with a combustion chamber Mach number of 4.5. Both hydrogen and ethane fuels were used. Results show that provided sufficiently high pressures and sufficiently long combustion chambers are used specific impulses in excess of 1500 s can be obtained with hydrogen. Ethane produced specific impulses less than 600 s with the same conditions and model configuration.

  17. Combustor oscillation attenuation via the control of fuel-supply line dynamics

    DOEpatents

    Richards, George A.; Gemmen, Randall S.

    1998-01-01

    Combustion oscillation control in combustion systems using hydrocarbon fuels is provided by acoustically tuning a fuel-delivery line to a desired phase of the combustion oscillations for providing a pulse of a fuel-rich region at the oscillating flame front at each time when the oscillation produced pressure in the combustion chamber is in a low pressure phase. The additional heat release produced by burning such fuel-rich regions during low combustion chamber pressure effectively attenuates the combustion oscillations to a selected value.

  18. Corona-discharge air-purification system

    NASA Technical Reports Server (NTRS)

    Wydeven, T. J.; Flamm, D. L.

    1979-01-01

    Plasma reaction chamber removes trace contaminants from spacecraft, submarines, and other closed environments by oxidizing contaminants to produce carbon dioxide and water. Contaminants are alcohols, esters, hydrogen sulfide, and ammonia. Others are lubricant solvents such as Freons, aromatics, and Ketones. Contaminants are removed from chamber by scrubber.

  19. Polarity effects and apparent ion recombination in microionization chambers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Jessica R., E-mail: miller@humonc.wisc.edu; Hooten, Brian D.; Micka, John A.

    Purpose: Microchambers demonstrate anomalous voltage-dependent polarity effects. Existing polarity and ion recombination correction factors do not account for these effects. As a result, many commercial microchamber models do not meet the specification of a reference-class ionization chamber as defined by the American Association of Physicists in Medicine. The purpose of this investigation is to determine the cause of these voltage-dependent polarity effects. Methods: A series of microchamber prototypes were produced to isolate the source of the voltage-dependent polarity effects. Parameters including ionization-chamber collecting-volume size, stem and cable irradiation, chamber assembly, contaminants, high-Z materials, and individual chamber components were investigated. Measurementsmore » were performed with electrodes coated with graphite to isolate electrode conductivity. Chamber response was measured as the potential bias of the guard electrode was altered with respect to the collecting electrode, through the integration of additional power supplies. Ionization chamber models were also simulated using COMSOL Multiphysics software to investigate the effect of a potential difference between electrodes on electric field lines and collecting volume definition. Results: Investigations with microchamber prototypes demonstrated that the significant source of the voltage-dependent polarity effects was a potential difference between the guard and collecting electrodes of the chambers. The voltage-dependent polarity effects for each prototype were primarily isolated to either the guard or collecting electrode. Polarity effects were reduced by coating the isolated electrode with a conductive layer of graphite. Polarity effects were increased by introducing a potential difference between the electrodes. COMSOL simulations further demonstrated that for a given potential difference between electrodes, the collecting volume of the chamber changed as the applied voltage was altered, producing voltage-dependent polarity effects in the chamber response. Ionization chamber measurements and COMSOL simulations demonstrated an inverse relationship between the chamber collecting volume size and the severity of voltage-dependent polarity effects on chamber response. The effect of a given potential difference on chamber polarity effects was roughly ten times greater for microchambers as compared to Farmer-type chambers. Stem and cable irradiations, chamber assembly, contaminants, and high-Z materials were not found to be a significant source of the voltage-dependent polarity effects. Conclusions: A potential difference between the guard and collecting electrodes was found to be the primary source of the voltage-dependent polarity effects demonstrated by microchambers. For a given potential difference between electrodes, the relative change in the collecting volume is smaller for larger-volume chambers, illustrating why these polarity effects are not seen in larger-volume chambers with similar guard and collecting electrode designs. Thus, for small-volume chambers, it is necessary to reduce the potential difference between the guard and collecting electrodes in order to reduce polarity effects for reference dosimetry measurements.« less

  20. GridPix detectors: Production and beam test results

    NASA Astrophysics Data System (ADS)

    Koppert, W. J. C.; van Bakel, N.; Bilevych, Y.; Colas, P.; Desch, K.; Fransen, M.; van der Graaf, H.; Hartjes, F.; Hessey, N. P.; Kaminski, J.; Schmitz, J.; Schön, R.; Zappon, F.

    2013-12-01

    The innovative GridPix detector is a Time Projection Chamber (TPC) that is read out with a Timepix-1 pixel chip. By using wafer post-processing techniques an aluminium grid is placed on top of the chip. When operated, the electric field between the grid and the chip is sufficient to create electron induced avalanches which are detected by the pixels. The time-to-digital converter (TDC) records the drift time enabling the reconstruction of high precision 3D track segments. Recently GridPixes were produced on full wafer scale, to meet the demand for more reliable and cheaper devices in large quantities. In a recent beam test the contribution of both diffusion and time walk to the spatial and angular resolutions of a GridPix detector with a 1.2 mm drift gap are studied in detail. In addition long term tests show that in a significant fraction of the chips the protection layer successfully quenches discharges, preventing harm to the chip.

  1. Advanced ion thruster research

    NASA Technical Reports Server (NTRS)

    Wilbur, P. J.

    1984-01-01

    A simple model describing the discharge chamber performance of high strength, cusped magnetic field ion thrusters is developed. The model is formulated in terms of the energy cost of producing ions in the discharge chamber and the fraction of ions produced in the discharge chamber that are extracted to form the ion beam. The accuracy of the model is verified experimentally in a series of tests wherein the discharge voltage, propellant, grid transparency to neutral atoms, beam diameter and discharge chamber wall temperature are varied. The model is exercised to demonstrate what variations in performance might be expected by varying discharge chamber parameters. The results of a study of xenon and argon orificed hollow cathodes are reported. These results suggest that a hollow cathode model developed from research conducted on mercury cathodes can also be applied to xenon and argon. Primary electron mean free paths observed in argon and xenon cathodes that are larger than those found in mercury cathodes are identified as a cause of performance differences between mercury and inert gas cathodes. Data required as inputs to the inert gas cathode model are presented so it can be used as an aid in cathode design.

  2. A two dimensional finite difference time domain analysis of the quiet zone fields of an anechoic chamber

    NASA Technical Reports Server (NTRS)

    Ryan, Deirdre A.; Luebbers, Raymond J.; Nguyen, Truong X.; Kunz, Karl S.; Steich, David J.

    1992-01-01

    Prediction of anechoic chamber performance is a difficult problem. Electromagnetic anechoic chambers exist for a wide range of frequencies but are typically very large when measured in wavelengths. Three dimensional finite difference time domain (FDTD) modeling of anechoic chambers is possible with current computers but at frequencies lower than most chamber design frequencies. However, two dimensional FDTD (2D-FTD) modeling enables much greater detail at higher frequencies and offers significant insight into compact anechoic chamber design and performance. A major subsystem of an anechoic chamber for which computational electromagnetic analyses exist is the reflector. First, an analysis of the quiet zone fields of a low frequency anechoic chamber produced by a uniform source and a reflector in two dimensions using the FDTD method is presented. The 2D-FDTD results are compared with results from a three dimensional corrected physical optics calculation and show good agreement. Next, a directional source is substituted for the uniform radiator. Finally, a two dimensional anechoic chamber geometry, including absorbing materials, is considered, and the 2D-FDTD results for these geometries appear reasonable.

  3. A System for Controlling the Oxygen Content of a Gas Produced by Combustion

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Davis, W. T.; Puster, R. L. (Inventor)

    1984-01-01

    A mixture of air, CH4 and OH(2) is burned in a combustion chamber to produce a product gas in the test section. The OH(2) content of the product gas is compared with the OH(2) content of reference air in an OH(2) sensor. If there is a difference an error signal is produced at the output of a control circuit which by the means of a solenoid valve, regulates the flow of OH(2) into the combustion chamber to make the error signal zero. The product gas in the test section has the same oxygen content as air.

  4. Combustion chamber and thermal vapor stream producing apparatus and method

    DOEpatents

    Sperry, John S.; Krajicek, Richard W.; Cradeur, Robert R.

    1978-01-01

    A new and improved method and apparatus for burning a hydrocarbon fuel for producing a high pressure thermal vapor stream comprising steam and combustion gases for injecting into a subterranean formation for the recovery of liquefiable minerals therefrom, wherein a high pressure combustion chamber having multiple refractory lined combustion zones of varying diameters is provided for burning a hydrocarbon fuel and pressurized air in predetermined ratios injected into the chamber for producing hot combustion gases essentially free of oxidizing components and solid carbonaceous particles. The combustion zones are formed by zones of increasing diameters up a final zone of decreasing diameter to provide expansion zones which cause turbulence through controlled thorough mixing of the air and fuel to facilitate complete combustion. The high pressure air and fuel is injected into the first of the multiple zones where ignition occurs with a portion of the air injected at or near the point of ignition to further provide turbulence and more complete combustion.

  5. RF sputtering for controlling dihydride and monohydride bond densities in amorphous silicon hydride

    DOEpatents

    Jeffery, F.R.; Shanks, H.R.

    1980-08-26

    A process is described for controlling the dihydride and monohydride bond densities in hydrogenated amorphous silicone produced by reactive rf sputtering of an amorphous silicon target. There is provided a chamber with an amorphous silicon target and a substrate therein with the substrate and the target positioned such that when rf power is applied to the target the substrate is in contact with the sputtering plasma produced thereby. Hydrogen and argon are fed to the chamber and the pressure is reduced in the chamber to a value sufficient to maintain a sputtering plasma therein, and then rf power is applied to the silicon target to provide a power density in the range of from about 7 watts per square inch to about 22 watts per square inch to sputter an amorphous solicone hydride onto the substrate, the dihydride bond density decreasing with an increase in the rf power density. Substantially pure monohydride films may be produced.

  6. PLASMA GENERATOR

    DOEpatents

    Foster, J.S. Jr.

    1958-03-11

    This patent describes apparatus for producing an electricity neutral ionized gas discharge, termed a plasma, substantially free from contamination with neutral gas particles. The plasma generator of the present invention comprises a plasma chamber wherein gas introduced into the chamber is ionized by a radiofrequency source. A magnetic field is used to focus the plasma in line with an exit. This magnetic field cooperates with a differential pressure created across the exit to draw a uniform and uncontaminated plasma from the plasma chamber.

  7. Deposition of device quality, low hydrogen content, hydrogenated amorphous silicon at high deposition rates with increased stability using the hot wire filament technique

    DOEpatents

    Molenbroek, Edith C.; Mahan, Archie Harvin; Gallagher, Alan C.

    2000-09-26

    A method or producing hydrogenated amorphous silicon on a substrate, comprising the steps of: positioning the substrate in a deposition chamber at a distance of about 0.5 to 3.0 cm from a heatable filament in the deposition chamber; maintaining a pressure in said deposition chamber in the range of about 10 to 100 millitorr and pressure times substrate-filament spacing in the range of about 10 to 100 millitorr-cm, heating the filament to a temperature in the range of about 1,500 to 2,000.degree. C., and heating the substrate to a surface temperature in the range of about 280 to 475.degree. C.; and flowing silicohydride gas into the deposition chamber with said heated filament, decomposing said silicohydride gas into silicon and hydrogen atomic species and allowing products of gas reactions between said atomic species and the silicohydride gas to migrate to and deposit on said substrate while adjusting and maintaining said pressure times substrate-filament spacing in said deposition chamber at a value in said 10 to 100 millitorr range to produce statistically about 3 to 50 atomic collisions between the silicon and hydrogen atomic species migrating to said substrate and undecomposed molecules of the silane or other silicohydride gas in the deposition chamber.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The ATLAS collaboration at LHC has chosen the Micromegas (Micro Mesh Gaseous Structure) technology along with the small-strip Thin Gap Chambers (sTGC) for the high luminosity upgrade of the inner muon station in the high-rapidity region, the so called New Small Wheel (NSW). It employs eight layers of Micromegas detectors and eight layers of sTGC. The NSW project requires fully efficient Micromegas chambers with spatial resolution down to 100 μm in the precision coordinate for momentum reconstruction, and at mm level in the azimuthal (second) coordinate, over a total active area of 1200 m{sup 2}, with a rate capability upmore » to about 15 kHz/cm{sup 2} and operation in a moderate magnetic field up to B = 0.4 T. The required tracking capability is provided by the intrinsic space resolution combined with a mechanical precision at the level of 30 μm along the precision coordinate. Together with the precise tracking capability the Micromegas chambers should provide a trigger signal. Several tests have been performed on small (10x10 cm{sup 2}) and large (1 x 1 m{sup 2}) size single gap chambers prototypes using high energy hadron beams at CERN, low and intermediate energy (0.5-5 GeV) electron beams at Frascati and DESY, neutron beams at Demokritos (Athens) and Garching (Munich) and cosmic rays. More recently two quadruplets with dimensions 1.2 x 0.5 m{sup 2} and the same configuration and structure foreseen for the NSW upgrade have been built at CERN and tested with high energy pions/muons beam. Results obtained in the most recent tests, in different configurations and operating conditions, in dependence with the magnetic field, will be presented, along with a comparison between different read-out electronics, either based on the APV25 chips, or based on a new digital front-end ASIC developed in its second version (VMM2) as a new prototype of the final chip that will be employed in the NSW upgrade. (authors)« less

  9. Method and apparatuses for ion cyclotron spectrometry

    DOEpatents

    Dahl, David A [Idaho Falls, ID; Scott, Jill R [Idaho Falls, ID; McJunkin, Timothy R [Idaho Falls, ID

    2012-03-06

    An ion cyclotron spectrometer may include a vacuum chamber that extends at least along a z-axis and means for producing a magnetic field within the vacuum chamber so that a magnetic field vector is generally parallel to the z-axis. The ion cyclotron spectrometer may also include means for producing a trapping electric field within the vacuum chamber. The trapping electric field may comprise a field potential that, when taken in cross-section along the z-axis, includes at least one section that is concave down and at least one section that is concave up so that ions traversing the field potential experience a net magnetron effect on a cyclotron frequency of the ions that is substantially equal to zero. Other apparatuses and a method for performing ion cyclotron spectrometry are also disclosed herein.

  10. Method and apparatus for ion cyclotron spectrometry

    DOEpatents

    Dahl, David A [Idaho Falls, ID; Scott, Jill R [Idaho Falls, ID; McJunkin, Timothy R [Idaho Falls, ID

    2010-08-17

    An ion cyclotron spectrometer may include a vacuum chamber that extends at least along a z-axis and means for producing a magnetic field within the vacuum chamber so that a magnetic field vector is generally parallel to the z-axis. The ion cyclotron spectrometer may also include means for producing a trapping electric field within the vacuum chamber that includes at least a first section that induces a first magnetron effect that increases a cyclotron frequency of an ion and at least a second section that induces a second magnetron effect that decreases the cyclotron frequency of an ion. The cyclotron frequency changes induced by the first and second magnetron effects substantially cancel one another so that an ion traversing the at least first and second sections will experience no net change in cyclotron frequency.

  11. Method and system for low-NO.sub.x dual-fuel combustion of liquid and/or gaseous fuels

    DOEpatents

    Gard, Vincent; Chojnacki, Dennis A; Rabovitser, Ioseph K

    2014-12-02

    A method and apparatus for combustion in which a pressurized preheated liquid fuel is atomized and a portion thereof flash vaporized, creating a mixture of fuel vapor and liquid droplets. The mixture is mixed with primary combustion oxidant, producing a fuel/primary oxidant mixture which is then injected into a primary combustion chamber in which the fuel/primary oxidant mixture is partially combusted, producing a secondary gaseous fuel containing hydrogen and carbon oxides. The secondary gaseous fuel is mixed with a secondary combustion oxidant and injected into the second combustion chamber wherein complete combustion of the secondary gaseous fuel is carried out. The resulting second stage flue gas containing very low amounts of NO.sub.x is then vented from the second combustion chamber.

  12. Measurement of velocity distribution and turbulence in a special wind tunnel using a laser Doppler velocimeter

    NASA Astrophysics Data System (ADS)

    Mueller, J.; Petersen, J. C.; Pilz, E.; Wiegand, H.

    1981-06-01

    The flow behavior in a jet mixing visualization chamber for turbulent fuel spray mixing with air under compression, e.g., at top dead center in diesel engines, was investigated with a laser Doppler velocimeter. The measurements were performed in two cuts in the profile perpendicular to the flow direction. The range of flow conditions in the measuring chamber was tested. The measurements were conducted with and without turbulence grids and shear flow grids behind the inlet nozzle. Wire grids did not enhance the turbulence in the measuring chamber. One of the tested shear flow grids produced shear flow as expected. A turbulence grid whose design was based on experimental results, produced a turbulence degree of up to 30% over the whole measuring cross section.

  13. Highly selective dry etching of GaP in the presence of AlxGa1–xP with a SiCl4/SF6 plasma

    NASA Astrophysics Data System (ADS)

    Hönl, Simon; Hahn, Herwig; Baumgartner, Yannick; Czornomaz, Lukas; Seidler, Paul

    2018-05-01

    We present an inductively coupled-plasma reactive-ion etching process that simultaneously provides both a high etch rate and unprecedented selectivity for gallium phosphide (GaP) in the presence of aluminum gallium phosphide (AlxGa1–xP). Utilizing mixtures of silicon tetrachloride (SiCl4) and sulfur hexafluoride (SF6), selectivities exceeding 2700:1 are achieved at GaP etch rates above 3000 nm min‑1. A design of experiments has been employed to investigate the influence of the inductively coupled-plasma power, the chamber pressure, the DC bias and the ratio of SiCl4 to SF6. The process enables the use of thin AlxGa1–xP stop layers even at aluminum contents of a few percent.

  14. Measurement Of Gas Electron Multiplier (GEM) Detector Characteristics

    NASA Astrophysics Data System (ADS)

    Park, Seongtae; Baldelomar, Edwin; Park, Kwangjune; Sosebee, Mark; White, Andy; Yu, Jaehoon

    2011-06-01

    The High Energy Physics group of the University of Texas at Arlington has been developing gas electron multiplier detectors to use them as sensitive gap detectors in digital hadron calorimeters for the International Linear Collider, a future high energy particle accelerator. For this purpose, we constructed numerous GEM detectors that employ double GEM layers. In this study, two kinds of prototype GEM detectors were tested; one with 28×28 cm2 active area double GEM structure with a 3 mm drift gap, a 1 mm transfer gap and a 1 mm induction gap and the other with two 3×3 cm2 GEM foils in the amplifier stage with a 5 mm drift gap, a 2 mm transfer gap and a 1 mm induction gap. The detectors' characteristics from exposure to high-energy charged particles and other radiations were measured using cosmic rays and 55Fe radioactive source. From the 55Fe tests, we observed two well separated characteristic X-ray emission peaks and confirmed the detectors' functionality. We also measured chamber gains to be over 6000 at a high voltage of 395 V across each GEM electrode. The responses to cosmic rays show the spectra that fit well to Landau distributions as expected from minimum ionizing particles.

  15. EVALUATION OF A TEST METHOD FOR MEASURING INDOOR AIR EMISSIONS FROM DRY-PROCESS PHOTOCOPIERS

    EPA Science Inventory

    A large chamber test method for measuring indoor air emissions from office equipment was developed, evaluated, and revised based on the initial testing of four dry-process photocopiers. Because all chambers may not necessarily produce similar results (e.g., due to differences in ...

  16. Recent results and performance of the multi-gap resistive plate chambers network for the EEE Project

    NASA Astrophysics Data System (ADS)

    Abbrescia, M.; Avanzini, C.; Baldini, L.; Baldini Ferroli, R.; Batignani, G.; Bencivenni, G.; Bossini, E.; Chiavassa, A.; Cicalò, C.; Cifarelli, L.; Coccia, E.; Corvaglia, A.; De Gruttola, D.; De Pasquale, S.; Di Giovanni, A.; D`Incecco, M.; Dreucci, M.; Fabbri, F. L.; Fattibene, E.; Ferraro, A.; Frolov, V.; Galeotti, P.; Garbini, M.; Gemme, G.; Gnesi, I.; Grazzi, S.; Gustavino, C.; Hatzifotiadou, D.; La Rocca, P.; Licciulli, F.; Maggiora, A.; Maragoto Rodriguez, O.; Maron, G.; Martelli, B.; Mazziotta, M. N.; Miozzi, S.; Nania, R.; Noferini, F.; Nozzoli, F.; Panareo, M.; Panetta, M. P.; Paoletti, R.; Park, W.; Perasso, L.; Pilo, F.; Piragino, G.; Riggi, F.; Righini, G. C.; Sartorelli, G.; Scapparone, E.; Schioppa, M.; Scribano, A.; Selvi, M.; Serci, S.; Siddi, E.; Squarcia, S.; Stori, L.; Taiuti, M.; Terreni, G.; Visnyei, O. B.; Vistoli, M. C.; Votano, L.; Williams, M. C. S.; Zani, S.; Zichichi, A.; Zuyeusky, R.

    2016-11-01

    The Extreme Energy Events (EEE) Project is devoted to the study of Extensive Atmospheric Showers through a network of muon telescopes, installed in High Schools, with the further aim of introducing young students to particle and astroparticle physics. Each telescope is a tracking detector composed of three Multi-gap Resistive Plate Chambers (MRPC) with an active area of 1.60 × 0.80 m2. Their characteristics are similar to the ones built for the Time Of Flight array of the ALICE Experimentat LHC . The EEE Project started with a few pilot towns, where the telescopes have been taking data since 2008, and it has been constantly extended, reaching at present more than 50 MRPCs telescopes. They are spread across Italy with two additional stations at CERN, covering an area of around 3 × 105 km2, with a total surface area for all the MRPCs of 190 m2. A comprehensive description of the MRPCs network is reported here: efficiency, time and spatial resolution measured using cosmic rays hitting the telescopes. The most recent results on the detector and physics performance from a series of coordinated data acquisition periods are also presented.

  17. The Southwest Research Institute ultraviolet reflectance chamber (SwURC): a far ultraviolet reflectometer

    NASA Astrophysics Data System (ADS)

    Winters, Gregory S.; Retherford, Kurt D.; Davis, Michael W.; Escobedo, Stephen M.; Bassett, Eric C.; Patrick, Edward L.; Nagengast, Maggie E.; Fairbanks, Matthew H.; Miles, Paul F.; Parker, Joel W.; Gladstone, G. Randall; Slater, David C.; Stern, S. Alan

    2012-10-01

    We designed and assembled a highly capable UV reflectometer chamber and data acquisition system to provide bidirectional scattering data of various surfaces and materials. This chamber was initially conceived to create laboratory-based UV reflectance measurements of water frost on lunar soil/regolith simulants, to support interpretation of UV reflectance data from the Lyman Alpha Mapping Project ("LAMP") instrument on-board the NASA Lunar Reconnaissance Orbiter spacecraft. A deuterium lamp illuminates surfaces and materials at a fixed 45° incident beam angle over the 115 to 200 nm range via a monochromator, while a photomultiplier tube detector is scanned to cover emission angles -85° to +85° (with a gap from -60° to -30°, due to the detector blocking the incident beam). Liquid nitrogen cools the material/sample mount when desired. The chamber can be configured to test a wide range of samples and materials using sample trays and holders. Test surfaces to date include aluminum mirrors, water ice, reflectance standards, and frozen mixtures of water and lunar soil/regolith stimulant. Future UV measurements planned include Apollo lunar samples, meteorite samples, other ices, minerals, and optical surfaces. Since this chamber may well be able to provide useful research data for groups outside Southwest Research Institute, we plan to take requests from and collaborate with others in the UV and surface reflection research community.

  18. Design of large vacuum chamber for VEC superconducting cyclotron beam line switching magnet

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Sumantra; Nandi, Chinmoy; Gayen, Subhasis; Roy, Suvadeep; Mishra, Santosh Kumar; Ramrao Bajirao, Sanjay; Pal, Gautam; Mallik, C.

    2012-11-01

    VEC K500 superconducting cyclotron will be used to accelerate heavy ion. The accelerated beam will be transported to different beam halls by using large switching magnets. The vacuum chamber for the switching magnet is around 1000 mm long. It has a height of 85 mm and width varying from 100 mm to 360 mm. The material for the chamber has been chosen as SS304.The material for the vacuum chamber for the switching magnet has been chosen as SS304. Design of the vessel was done as per ASME Boiler and Pressure Vessel Code, Section VIII, Division 1. It was observed that primary stress values exceed the allowable limit. Since, the magnet was already designed with a fixed pole gap; increase of the vacuum chamber plate thickness restricts the space for beam transport. Design was optimized using stress analysis software ANSYS. Analysis was started using plate thickness of 4 mm. The stress was found higher than the allowable level. The analysis was repeated by increasing plate thickness to 6 mm, resulting in the reduction of stress level below the allowable level. In order to reduce the stress concentration due to sharp bend, chamfering was done at the corner, where the stress level was higher. The thickness of the plate at the corner was increased from 6 mm to 10 mm. These measures resulted in reduction of localized stress.

  19. Inert gas ion thruster

    NASA Technical Reports Server (NTRS)

    Ramsey, W. D.

    1980-01-01

    Inert gas performance with three types of 12 cm diameter magnetoelectrostatic containment (MESC) ion thrusters was tested. The types tested included: (1) a hemispherical shaped discharge chamber with platinum cobalt magnets; (2) three different lengths of the hemispherical chambers with samarium cobalt magnets; and (3) three lengths of the conical shaped chambers with aluminum nickel cobalt magnets. The best argon performance was produced by a 8.0 cm long conical chamber with alnico magnets. The best xenon high mass utilization performance was obtained with the same 8.0 cm long conical thruster. The hemispherical thruster obtained 75 to 87% mass utilization at 185 to 205 eV/ion of singly charged ion equivalent beam.

  20. Hot wire production of single-wall and multi-wall carbon nanotubes

    DOEpatents

    Dillon, Anne C.; Mahan, Archie H.; Alleman, Jeffrey L.

    2010-10-26

    Apparatus (210) for producing a multi-wall carbon nanotube (213) may comprise a process chamber (216), a furnace (217) operatively associated with the process chamber (216), and at least one filament (218) positioned within the process chamber (216). At least one power supply (220) operatively associated with the at least one filament (218) heats the at least one filament (218) to a process temperature. A gaseous carbon precursor material (214) operatively associated with the process chamber (216) provides carbon for forming the multi-wall carbon nanotube (213). A metal catalyst material (224) operatively associated with the process (216) catalyzes the formation of the multi-wall carbon nanotube (213).

  1. Fiber optics interface for a dye laser oscillator and method

    DOEpatents

    Johnson, Steve A.; Seppala, Lynn G.

    1986-01-01

    A dye laser oscillator in which one light beam is used to pump a continuous tream of dye within a cooperating dye chamber for producing a second, different beam is generally disclosed herein along with a specific arrangement including an optical fiber and a fiber optics interface for directing the pumping beam into the dye chamber. The specific fiber optics interface illustrated includes three cooperating lenses which together image one particular dimension of the pumping beam into the dye chamber from the output end of the optical fiber in order to insure that the dye chamber is properly illuminated by the pumping beam.

  2. Method and apparatus for melting metals

    DOEpatents

    Moore, Alan F.; Schechter, Donald E.; Morrow, Marvin Stanley

    2006-03-14

    A method and apparatus for melting metals uses microwave energy as the primary source of heat. The metal or mixture of metals are placed in a ceramic crucible which couples, at least partially, with the microwaves to be used. The crucible is encased in a ceramic casket for insulation and placed within a microwave chamber. The chamber may be evacuated and refilled to exclude oxygen. After melting, the crucible may be removed for pouring or poured within the chamber by dripping or running into a heated mold within the chamber. Apparent coupling of the microwaves with softened or molten metal produces high temperatures with great energy savings.

  3. Fiber optics interface for a dye laser oscillator and method

    DOEpatents

    Johnson, S.A.; Seppala, L.G.

    1984-06-13

    A dye laser oscillator in which one light beam is used to pump a continuous stream of dye within a cooperating dye chamber for producing a second, different beam is generally disclosed herein along with a specific arrangement including an optical fiber and a fiber optics interface for directing the pumping beam into the dye chamber. The specific fiber optics interface illustrated includes three cooperating lenses which together image one particular dimension of the pumping beam into the dye chamber from the output end of the optical fiber in order to insure that the dye chamber is properly illuminated by the pumping beam.

  4. Preparation of membranes using solvent-less vapor deposition followed by in-situ polymerization

    DOEpatents

    O'Brien, Kevin C [San Ramon, CA; Letts, Stephan A [San Ramon, CA; Spadaccini, Christopher M [Oakland, CA; Morse, Jeffrey C [Pleasant Hill, CA; Buckley, Steven R [Modesto, CA; Fischer, Larry E [Los Gatos, CA; Wilson, Keith B [San Ramon, CA

    2012-01-24

    A system of fabricating a composite membrane from a membrane substrate using solvent-less vapor deposition followed by in-situ polymerization. A first monomer and a second monomer are directed into a mixing chamber in a deposition chamber. The first monomer and the second monomer are mixed in the mixing chamber providing a mixed first monomer and second monomer. The mixed first monomer and second monomer are solvent-less vapor deposited onto the membrane substrate in the deposition chamber. The membrane substrate and the mixed first monomer and second monomer are heated to produce in-situ polymerization and provide the composite membrane.

  5. Preparation of membranes using solvent-less vapor deposition followed by in-situ polymerization

    DOEpatents

    O'Brien, Kevin C [San Ramon, CA; Letts, Stephan A [San Ramon, CA; Spadaccini, Christopher M [Oakland, CA; Morse, Jeffrey C [Pleasant Hill, CA; Buckley, Steven R [Modesto, CA; Fischer, Larry E [Los Gatos, CA; Wilson, Keith B [San Ramon, CA

    2010-07-13

    A system of fabricating a composite membrane from a membrane substrate using solvent-less vapor deposition followed by in-situ polymerization. A first monomer and a second monomer are directed into a mixing chamber in a deposition chamber. The first monomer and the second monomer are mixed in the mixing chamber providing a mixed first monomer and second monomer. The mixed first monomer and second monomer are solvent-less vapor deposited onto the membrane substrate in the deposition chamber. The membrane substrate and the mixed first monomer and second monomer are heated to produce in-situ polymerization and provide the composite membrane.

  6. Effects of Mycorrhizae on Carbon Cycling in Response to Extreme Drought

    NASA Astrophysics Data System (ADS)

    Ficken, C. D.; Warren, J.

    2016-12-01

    Plant-mycorrhizal symbioses are being increasingly accepted as drivers of ecosystem-level biogeochemical patterns and play an important role plant resource acquisition. Although some evidence suggests that mycorrhizal association increases plant drought-tolerance, direct comparisons of drought-resilience between mycorrhizal groups (i.e. arbuscular and ectomycorrhizal) are lacking. Indeed, soil CO2 pulses following dry-wet cycles are detectable at the ecosystem scale, but it remains unclear whether these pulses are driven by the activity of mycorrhizae or free-living microbes. These knowledge gaps hinder our ability to predict CO2 fluxes in the face of increased precipitation variability and have broad implications for understanding plant performance during, and recovery following, drought. We predicted that arbuscular mycorrhizae (AM) would be more resilient to drought than ectomycorrhizae (ECM) because narrower AM hyphae may access water from smaller soil pores and because AM produce a glycoprotein that increases soil aggregation. To compare the functioning of AM and ECM throughout drought, we examined soil respiration dynamics between AM- and ECM-dominated mesocosms throughout moderate and extreme drought. Mesocosms were partitioned with mesh dividers into chambers (roots+hyphae+microbes; hyphae+microbes; microbes only) to compare the relative functioning of biotic pools throughout drought. We found that respiration responses to drought differed substantially between AM and ECM-dominated systems. Under dry conditions, respiration from both root- and hyphal-exclusion chambers did not differ between AM and ECM mesocosms. In contrast, under wet conditions, respiration was significantly greater from AM than ECM mesocosms. Following rewetting, the respiration pulse in AM systems was largely due to to free-living microbes (+330% C flux above dry conditions), whereas in ECM systems there was a proportionally greater increase from mycorrhizal chambers (+130%). This suggests, in contrast to our predictions, that ECM fungi are more resilient to drought and are an important driver of C flux following rewetting.

  7. Dependence with air density of the response of the PTW SourceCheck ionization chamber for low energy brachytherapy sources.

    PubMed

    Tornero-López, Ana M; Guirado, Damián; Perez-Calatayud, Jose; Ruiz-Arrebola, Samuel; Simancas, Fernando; Gazdic-Santic, Maja; Lallena, Antonio M

    2013-12-01

    Air-communicating well ionization chambers are commonly used to assess air kerma strength of sources used in brachytherapy. The signal produced is supposed to be proportional to the air density within the chamber and, therefore, a density-independent air kerma strength is obtained when the measurement is corrected to standard atmospheric conditions using the usual temperature and pressure correction factor. Nevertheless, when assessing low energy sources, the ionization chambers may not fulfill that condition and a residual density dependence still remains after correction. In this work, the authors examined the behavior of the PTW 34051 SourceCheck ionization chamber when measuring the air kerma strength of (125)I seeds. Four different SourceCheck chambers were analyzed. With each one of them, two series of measurements of the air kerma strength for (125)I selectSeed(TM) brachytherapy sources were performed inside a pressure chamber and varying the pressure in a range from 747 to 1040 hPa (560 to 780 mm Hg). The temperature and relative humidity were kept basically constant. An analogous experiment was performed by taking measurements at different altitudes above sea level. Contrary to other well-known ionization chambers, like the HDR1000 PLUS, in which the temperature-pressure correction factor overcorrects the measurements, in the SourceCheck ionization chamber they are undercorrected. At a typical atmospheric situation of 933 hPa (700 mm Hg) and 20 °C, this undercorrection turns out to be 1.5%. Corrected measurements show a residual linear dependence on the density and, as a consequence, an additional density dependent correction must be applied. The slope of this residual linear density dependence is different for each SourceCheck chamber investigated. The results obtained by taking measurements at different altitudes are compatible with those obtained with the pressure chamber. Variations of the altitude and changes in the weather conditions may produce significant density corrections, and that effect should be taken into account. This effect is chamber-dependent, indicating that a specific calibration is necessary for each particular chamber. To our knowledge, this correction has not been considered so far for SourceCheck ionization chambers, but its magnitude cannot be neglected in clinical practice. The atmospheric pressure and temperature at which the chamber was calibrated need to be taken into account, and they should be reported in the calibration certificate. In addition, each institution should analyze the particular response of its SourceCheck ionization chamber and compute the adequate correction factors. In the absence of a suitable pressure chamber, a possibility for this assessment is to take measurements at different altitudes, spanning a wide enough air density range.

  8. Dependence with air density of the response of the PTW SourceCheck ionization chamber for low energy brachytherapy sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tornero-López, Ana M.; Guirado, Damián; Ruiz-Arrebola, Samuel

    2013-12-15

    Purpose: Air-communicating well ionization chambers are commonly used to assess air kerma strength of sources used in brachytherapy. The signal produced is supposed to be proportional to the air density within the chamber and, therefore, a density-independent air kerma strength is obtained when the measurement is corrected to standard atmospheric conditions using the usual temperature and pressure correction factor. Nevertheless, when assessing low energy sources, the ionization chambers may not fulfill that condition and a residual density dependence still remains after correction. In this work, the authors examined the behavior of the PTW 34051 SourceCheck ionization chamber when measuring themore » air kerma strength of {sup 125}I seeds.Methods: Four different SourceCheck chambers were analyzed. With each one of them, two series of measurements of the air kerma strength for {sup 125}I selectSeed{sup TM} brachytherapy sources were performed inside a pressure chamber and varying the pressure in a range from 747 to 1040 hPa (560 to 780 mm Hg). The temperature and relative humidity were kept basically constant. An analogous experiment was performed by taking measurements at different altitudes above sea level.Results: Contrary to other well-known ionization chambers, like the HDR1000 PLUS, in which the temperature-pressure correction factor overcorrects the measurements, in the SourceCheck ionization chamber they are undercorrected. At a typical atmospheric situation of 933 hPa (700 mm Hg) and 20 °C, this undercorrection turns out to be 1.5%. Corrected measurements show a residual linear dependence on the density and, as a consequence, an additional density dependent correction must be applied. The slope of this residual linear density dependence is different for each SourceCheck chamber investigated. The results obtained by taking measurements at different altitudes are compatible with those obtained with the pressure chamber.Conclusions: Variations of the altitude and changes in the weather conditions may produce significant density corrections, and that effect should be taken into account. This effect is chamber-dependent, indicating that a specific calibration is necessary for each particular chamber. To our knowledge, this correction has not been considered so far for SourceCheck ionization chambers, but its magnitude cannot be neglected in clinical practice. The atmospheric pressure and temperature at which the chamber was calibrated need to be taken into account, and they should be reported in the calibration certificate. In addition, each institution should analyze the particular response of its SourceCheck ionization chamber and compute the adequate correction factors. In the absence of a suitable pressure chamber, a possibility for this assessment is to take measurements at different altitudes, spanning a wide enough air density range.« less

  9. Device for precision measurement of speed of sound in a gas

    DOEpatents

    Kelner, Eric; Minachi, Ali; Owen, Thomas E.; Burzynski, Jr., Marion; Petullo, Steven P.

    2004-11-30

    A sensor for measuring the speed of sound in a gas. The sensor has a helical coil, through which the gas flows before entering an inner chamber. Flow through the coil brings the gas into thermal equilibrium with the test chamber body. After the gas enters the chamber, a transducer produces an ultrasonic pulse, which is reflected from each of two faces of a target. The time difference between the two reflected signals is used to determine the speed of sound in the gas.

  10. Charged particle mobility refrigerant analyzer

    DOEpatents

    Allman, S.L.; Chunghsuan Chen; Chen, F.C.

    1993-02-02

    A method for analyzing a gaseous electronegative species comprises the steps of providing an analysis chamber; providing an electric field of known potential within the analysis chamber; admitting into the analysis chamber a gaseous sample containing the gaseous electronegative species; providing a pulse of free electrons within the electric field so that the pulse of free electrons interacts with the gaseous electronegative species so that a swarm of electrically charged particles is produced within the electric field; and, measuring the mobility of the electrically charged particles within the electric field.

  11. Charged particle mobility refrigerant analyzer

    DOEpatents

    Allman, Steve L.; Chen, Chung-Hsuan; Chen, Fang C.

    1993-01-01

    A method for analyzing a gaseous electronegative species comprises the steps of providing an analysis chamber; providing an electric field of known potential within the analysis chamber; admitting into the analysis chamber a gaseous sample containing the gaseous electronegative species; providing a pulse of free electrons within the electric field so that the pulse of free electrons interacts with the gaseous electronegative species so that a swarm of electrically charged particles is produced within the electric field; and, measuring the mobility of the electrically charged particles within the electric field.

  12. Tokamak reactor for treating fertile material or waste nuclear by-products

    DOEpatents

    Kotschenreuther, Michael T.; Mahajan, Swadesh M.; Valanju, Prashant M.

    2012-10-02

    Disclosed is a tokamak reactor. The reactor includes a first toroidal chamber, current carrying conductors, at least one divertor plate within the first toroidal chamber and a second chamber adjacent to the first toroidal chamber surrounded by a section that insulates the reactor from neutrons. The current carrying conductors are configured to confine a core plasma within enclosed walls of the first toroidal chamber such that the core plasma has an elongation of 1.5 to 4 and produce within the first toroidal chamber at least one stagnation point at a perpendicular distance from an equatorial plane through the core plasma that is greater than the plasma minor radius. The at least one divertor plate and current carrying conductors are configured relative to one another such that the current carrying conductors expand the open magnetic field lines at the divertor plate.

  13. An atmospheric exposure chamber for small animals

    NASA Technical Reports Server (NTRS)

    Glaser, R. M.; Weiss, H. S.; Pitt, J. F.; Grimard, M.

    1982-01-01

    The purpose of this project was to design a long-term environmental exposure chamber for small animals. This chamber is capable of producing hypoxic, normoxic and hyperoxic atmospheres which are closely regulated. The chamber, which is of the recycling type, is fashioned after clear plastic germ-free isolators. Oxygen concentration is set and controlled by a paramagnetic O2 analyzer and a 3-way solenoid valve. In this way either O2 or N2 may be provided to the system by way of negative O2 feedback. Relative humidity is maintained at 40-50 percent by a refrigeration type dryer. Carbon dioxide is absorbed by indicating soda lime. A diaphragm pump continuously circulates chamber gas at a high enough flow rate to prevent buildup of CO2 and humidity. This chamber has been used for numerous studies which involve prolonged exposure of small animals to various O2 concentrations.

  14. Cor triatriatum or divided atriums: which approach provides the better understanding?

    PubMed

    Bharucha, Tara; Spicer, Diane E; Mohun, Timothy J; Black, David; Henry, G William; Anderson, Robert H

    2015-02-01

    It is frequent, in the current era, to encounter congenital cardiac malformations described in terms of "cor triatriatum". But can hearts be truly found with three atrial chambers? The morphological method, emphasised by Van Praagh et al, states that structures within the heart should be defined on the basis of their most constant components. In the atrial chambers, it is the appendages that are the most constant components, and to the best of our knowledge, hearts can only possess two appendages, which can be of either right or left morphology. The hearts described on the basis of "cor triatriatum", nonetheless, can also be analysed on the basis of division of either the morphologically right or the morphologically left atriums. In this review, we provide a description of cardiac embryology, showing how each of the atrial chambers possesses part of the embryological body, along with an appendage, a vestibule, a venous component, and a septum that separates them. We then show how it is, indeed, the case that the hearts described in terms of "cor triatriatum" can be readily understood on the basis of division of these atrial components. In the right atrium, it is the venous valves that divide the chamber. In the left atrium, it is harder to provide an explanation for the shelf that produces atrial division. We also contrast the classic examples of the divided atrial chambers with the vestibular shelf that produces supravalvar stenosis in the morphologically left atrium, showing that this form of obstruction needs to be distinguished from the fibrous shelves producing intravalvar obstruction.

  15. Integrated thruster assembly program

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The program is reported which has provided technology for a long life, high performing, integrated ACPS thruster assembly suitable for use in 100 typical flights of a space shuttle vehicle over a ten year period. The four integrated thruster assemblies (ITA) fabricated consisted of: propellant injector; a capacitive discharge, air gap torch type igniter assembly; fast response igniter and main propellant valves; and a combined regen-dump film cooled chamber. These flightweight 6672 N (1500 lb) thruster assemblies employed GH2/GO2 as propellants at a chamber pressure of 207 N/sq cm (300 psia). Test data were obtained on thrusted performance, thermal and hydraulic characteristics, dynamic response in pulsing, and cycle life. One thruster was fired in excess of 42,000 times.

  16. New fossil remains of Homo naledi from the Lesedi Chamber, South Africa.

    PubMed

    Hawks, John; Elliott, Marina; Schmid, Peter; Churchill, Steven E; Ruiter, Darryl J de; Roberts, Eric M; Hilbert-Wolf, Hannah; Garvin, Heather M; Williams, Scott A; Delezene, Lucas K; Feuerriegel, Elen M; Randolph-Quinney, Patrick; Kivell, Tracy L; Laird, Myra F; Tawane, Gaokgatlhe; DeSilva, Jeremy M; Bailey, Shara E; Brophy, Juliet K; Meyer, Marc R; Skinner, Matthew M; Tocheri, Matthew W; VanSickle, Caroline; Walker, Christopher S; Campbell, Timothy L; Kuhn, Brian; Kruger, Ashley; Tucker, Steven; Gurtov, Alia; Hlophe, Nompumelelo; Hunter, Rick; Morris, Hannah; Peixotto, Becca; Ramalepa, Maropeng; Rooyen, Dirk van; Tsikoane, Mathabela; Boshoff, Pedro; Dirks, Paul Hgm; Berger, Lee R

    2017-05-09

    The Rising Star cave system has produced abundant fossil hominin remains within the Dinaledi Chamber, representing a minimum of 15 individuals attributed to Homo naledi . Further exploration led to the discovery of hominin material, now comprising 131 hominin specimens, within a second chamber, the Lesedi Chamber. The Lesedi Chamber is far separated from the Dinaledi Chamber within the Rising Star cave system, and represents a second depositional context for hominin remains. In each of three collection areas within the Lesedi Chamber, diagnostic skeletal material allows a clear attribution to H. naledi . Both adult and immature material is present. The hominin remains represent at least three individuals based upon duplication of elements, but more individuals are likely present based upon the spatial context. The most significant specimen is the near-complete cranium of a large individual, designated LES1, with an endocranial volume of approximately 610 ml and associated postcranial remains. The Lesedi Chamber skeletal sample extends our knowledge of the morphology and variation of H. naledi , and evidence of H. naledi from both recovery localities shows a consistent pattern of differentiation from other hominin species.

  17. Conventionally cast and forged copper alloy for high-heat-flux thrust chambers

    NASA Technical Reports Server (NTRS)

    Kazaroff, John M.; Repas, George A.

    1987-01-01

    The combustion chamber liner of the space shuttle main engine is made of NARloy-Z, a copper-silver-zirconium alloy. This alloy was produced by vacuum melting and vacuum centrifugal casting; a production method that is currently now available. Using conventional melting, casting, and forging methods, NASA has produced an alloy of the same composition called NASA-Z. This report compares the composition, microstructure, tensile properties, low-cycle fatigue life, and hot-firing life of these two materials. The results show that the materials have similar characteristics.

  18. Vaporizing particle velocimeter

    NASA Technical Reports Server (NTRS)

    Weinstein, Leonard M. (Inventor)

    1992-01-01

    A velocimeter measures flow characteristics of a flow traveling through a chamber in a given direction. Tracer particles are entrained in the flow and a source of radiant energy produces an output stream directed transversely to the chamber, having a sufficient intensity to vaporize the particles as they pass through the output stream. Each of the vaporized particles explodes to produce a shock wave and a hot core, and a flow visualization system tracks the motion of the hot cores and shock waves to measure the velocity of each tracer particle and the temperature of the flow around the tracer.

  19. ARC DISCHARGE AND METHOD OF PRODUCING THE SAME

    DOEpatents

    Neidigh, R.V.

    1960-03-15

    A device for producing an energetic gas arc discharge between spaced electrodes in an evacuated chamber and within a magnetic field is described. Gas is fed into the arc in a direction normal to a refluxing stream of electrons and at a pressure higher than the pressure within the chamber to establish a pressure gradient along the arc discharge formed between the electrodes. This pressure gradient establishes rotating, time varying, radial electrical fields in the volume surroundimg the discharge, causing the discharge to rotate about the arc center line.

  20. Combustor oscillation attenuation via the control of fuel-supply line dynamics

    DOEpatents

    Richards, G.A.; Gemmen, R.S.

    1998-09-22

    Combustion oscillation control in combustion systems using hydrocarbon fuels is provided by acoustically tuning a fuel-delivery line to a desired phase of the combustion oscillations for providing a pulse of a fuel-rich region at the oscillating flame front at each time when the oscillation produced pressure in the combustion chamber is in a low pressure phase. The additional heat release produced by burning such fuel-rich regions during low combustion chamber pressure effectively attenuates the combustion oscillations to a selected value. 9 figs.

  1. Pulsed discharge ionization source for miniature ion mobility spectrometers

    DOEpatents

    Xu, Jun; Ramsey, J. Michael; Whitten, William B.

    2004-11-23

    A method and apparatus is disclosed for flowing a sample gas and a reactant gas (38, 43) past a corona discharge electrode (26) situated at a first location in an ion drift chamber (24), applying a pulsed voltage waveform comprising a varying pulse component and a dc bias component to the corona discharge electrode (26) to cause a corona which in turn produces ions from the sample gas and the reactant gas, applying a dc bias to the ion drift chamber (24) to cause the ions to drift to a second location (25) in the ion drift chamber (24), detecting the ions at the second location (25) in the drift chamber (24), and timing the period for the ions to drift from the corona discharge electrode to the selected location in the drift chamber.

  2. Long stroke jar bumper sub with safety sleeve

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Downen, J.L.; Sutliff, W.N.

    1981-04-14

    A hydraulic jar apparatus to be disposed in a drilling string embodying inner and outer telescopically arranged elements. Overlapping portions of the elements provide an annual chamber confining an operating liquid by an annular seal fixed to the outer element at the lower end of the chamber and an annular polly pack seal fixed to the outer element at the upper end of the chamber. A piston is extended radially from the inner element into the chamber and the chamber is divided by a cylinder on the outer element into low and high pressure sections. Impact shoulders are provided onmore » the elements in axially opposed relation to produce a jarring blow and the elements are telescopically coupled by a hexagonal spline sub assembly.« less

  3. Moving bed reactor for solar thermochemical fuel production

    DOEpatents

    Ermanoski, Ivan

    2013-04-16

    Reactors and methods for solar thermochemical reactions are disclosed. Embodiments of reactors include at least two distinct reactor chambers between which there is at least a pressure differential. In embodiments, reactive particles are exchanged between chambers during a reaction cycle to thermally reduce the particles at first conditions and oxidize the particles at second conditions to produce chemical work from heat. In embodiments, chambers of a reactor are coupled to a heat exchanger to pre-heat the reactive particles prior to direct exposure to thermal energy with heat transferred from reduced reactive particles as the particles are oppositely conveyed between the thermal reduction chamber and the fuel production chamber. In an embodiment, particle conveyance is in part provided by an elevator which may further function as a heat exchanger.

  4. Flex-flame burner and combustion method

    DOEpatents

    Soupos, Vasilios; Zelepouga, Serguei; Rue, David M.; Abbasi, Hamid A.

    2010-08-24

    A combustion method and apparatus which produce a hybrid flame for heating metals and metal alloys, which hybrid flame has the characteristic of having an oxidant-lean portion proximate the metal or metal alloy and having an oxidant-rich portion disposed above the oxidant lean portion. This hybrid flame is produced by introducing fuel and primary combustion oxidant into the furnace chamber containing the metal or metal alloy in a substoichiometric ratio to produce a fuel-rich flame and by introducing a secondary combustion oxidant into the furnace chamber above the fuel-rich flame in a manner whereby mixing of the secondary combustion oxidant with the fuel-rich flame is delayed for a portion of the length of the flame.

  5. Pulverized fuel-oxygen burner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Curtis; Patterson, Brad; Perdue, Jayson

    A burner assembly combines oxygen and fuel to produce a flame. The burner assembly includes an oxygen supply tube adapted to receive a stream of oxygen and a solid fuel conduit arranged to extend through the oxygen tube to convey a stream of fluidized, pulverized, solid fuel into a flame chamber. Oxygen flowing through the oxygen supply tube passes generally tangentially through a first set of oxygen-injection holes formed in the solid fuel conduit and off-tangentially from a second set of oxygen-injection holes formed in the solid fuel conduit and then mixes with fluidized, pulverized, solid fuel passing through themore » solid fuel conduit to create an oxygen-fuel mixture in a downstream portion of the solid fuel conduit. This mixture is discharged into a flame chamber and ignited in the flame chamber to produce a flame.« less

  6. House hold unit for the treatment of fluoride, iron, arsenic and microorganism contaminated drinking water.

    PubMed

    Dhadge, Vijaykumar L; Medhi, Chitta Ranjan; Changmai, Murchana; Purkait, Mihir Kumar

    2018-05-01

    A first of its kind hybrid electrocoagulation-filtration prototype unit was fabricated for the removal of fluoride, iron, arsenic and microorganisms contaminated drinking water. The unit comprised of 3 chambers, chamber A consisting of an inlet for the water to be treated and an outlet for the treated water along with one block of aluminum electrodes. Chamber B consisted of ceramic membrane filtration assembly at the bottom over a metallic support which filters the flocs so produced in chamber A and chamber C consisting of space to collect the treated water. Operating parameters were maintained as current density of 625 A m -2 and an electrode distance of 0.005 m. Contaminated drinking water containing mixture of fluoride (10 mg L -1 ), iron (25 mg L -1 ), arsenic (200 μg L -1 ) and microorganisms (35 CFU ml -1 ) was used for the experiment. A removal of 98.74%, 95.65%, 93.2% and 100% were obtained for iron, arsenic, fluoride and microorganisms, respectively. The apparatus and method made it possible to efficiently treat contaminated drinking water to produce drinkable water as per WHO specification. By-products obtained from the electrocoagulation bath were analyzed using SEM, EDX and XRD and explained. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Solar Collector With Image-Forming Mirror Cavity to Irradiate Small Central Volume

    NASA Technical Reports Server (NTRS)

    Buchele, Don; Castle, Charles; Bonoetti, Joseph A.

    2001-01-01

    A unique solar thermal chamber has been designed and fabricated to produce the maximum concentration of solar energy and higher temperature possible. Its primary purpose was for solar plasma propulsion experiments and related material specimen testing above 3000 K. The design not only maximized solar concentration, but also, minimized infrared heat loss. This paper provides the underlying theory and operation of the chamber and initial optical correlation to the actual fabricated hardware. The chamber is placed at the focal point of an existing primary concentrator with a 2.74 m (9 ft) focal length. A quartz lens focuses a small sun image at the inlet hole of the mirrored cavity. The lens focuses two image planes at prescribed positions; the sun at the cavity's entrance hole and the primary concentrator at the junction plane of two surfaces that form the cavity chamber. The back half is an ellipsoid reflector that produces a 1.27 cm diameter final sun image. The image is "suspended in space," 7.1 cm away from the nearest cavity surface, to minimize thermal and contaminate damage to the mirror surfaces. A hemisphere mirror makes up the front chamber and has its center of curvature at the target image, where rays leaving the target are reflected back upon themselves, minimizing radiation losses.

  8. Evidence for metabolic activity of airborne bacteria

    NASA Technical Reports Server (NTRS)

    Dimmick, R. L.; Wolochow, H.; Chatigny, M. A.; Straat, P. A.; Schrot, J. R.; Levin, G. V.

    1974-01-01

    Aerosols of the bacterium Serratia marcescens, and of uniformly labelled C-14 glucose, were created simultaneously and mixed in tubing leading to an aerosol chamber. During a subsequent period of about 5 hrs, C-14O2 was produced unequivocally within the chamber, and insoluble, labelled material within the suspended particles first increased, then decreased.

  9. Growth of antiphase-domain-free GaP on Si substrates by metalorganic chemical vapor deposition using an in situ AsH{sub 3} surface preparation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warren, Emily L., E-mail: emily.warren@nrel.gov; Kibbler, Alan E.; France, Ryan M.

    2015-08-24

    Antiphase-domain (APD) free GaP films were grown on Si(100) substrates prepared by annealing under dilute AsH{sub 3} in situ in an MOCVD reactor. LEED and AES surface analysis of Si(100) surfaces prepared by this treatment show that AsH{sub 3} etching quickly removes O and C contaminants at a relatively low temperature (690–740 °C), and creates a single-domain “A-type” As/Si surface reconstruction. The resulting GaP epilayers grown at the same temperature are APD-free, and could thereby serve as templates for direct growth of III-V semiconductors on Si. This single chamber process has a low thermal budget, and can enable heteroepitaxial integration ofmore » III-Vs and Si at an industrial scale.« less

  10. Effect of elevated CO2 on coarse-root biomass in Florida scrub detected by ground-penetrating radar

    Treesearch

    Daniel B. Stover; Frank P. Day; John R Butnor; Bert G. Drake

    2007-01-01

    Growth and distribution of coarse roots in time and space represent a gap in our understanding of belowground ecology. Large roots may play a critical role in carbon sequestration belowground. Using ground-penetrating radar (GPR), we quantified coarseroot biomass from an open-top chamber experiment in a scrub-oak ecosystem at Kennedy Space Center, Florida, USA. GPR...

  11. Resistive-strips micromegas detectors with two-dimensional readout

    NASA Astrophysics Data System (ADS)

    Byszewski, M.; Wotschack, J.

    2012-02-01

    Micromegas detectors show very good performance for charged particle tracking in high rate environments as for example at the LHC. It is shown that two coordinates can be extracted from a single gas gap in these detectors. Several micromegas chambers with spark protection by resistive strips and two-dimensional readout have been tested in the context of the R&D work for the ATLAS Muon System upgrade.

  12. Thermionic converter

    DOEpatents

    Fitzpatrick, G.O.

    1987-05-19

    A thermionic converter is set forth which includes an envelope having an electron collector structure attached adjacent to a wall. An electron emitter structure is positioned adjacent the collector structure and spaced apart from opposite wall. The emitter and collector structures are in a common chamber. The emitter structure is heated substantially only by thermal radiation. Very small interelectrode gaps can be maintained utilizing the thermionic converter whereby increased efficiency results. 10 figs.

  13. Low pressure spark gap triggered by an ion diode

    DOEpatents

    Prono, Daniel S.

    1985-01-01

    Spark gap apparatus for use as an electric switch operating at high voltage, high current and high repetition rate. Mounted inside a housing are an anode, cathode and ion plate. An ionizable fluid is pumped through the chamber of the housing. A pulse of current to the ion plate causes ions to be emitted by the ion plate, which ions move into and ionize the fluid. Electric current supplied to the anode discharges through the ionized fluid and flows to the cathode. Current stops flowing when the current source has been drained. The ionized fluid recombines into its initial dielectric ionizable state. The switch is now open and ready for another cycle.

  14. Low-pressure spark gap triggered by an ion diode

    DOEpatents

    Prono, D.S.

    1982-08-31

    Spark gap apparatus for use as an electric switch operating at high voltage, high current and high repetition rate. Mounted inside a housing are an anode, cathode and ion plate. An ionizable fluid is pumped through the chamber of the housing. A pulse of current to the ion plate causes ions to be emitted by the ion plate, which ions move into and ionize the fluid. Electric current supplied to the anode discharges through the ionized fluid and flows to the cathode. Current stops flowing when the current source has been drained. The ionized fluid recombines into its initial dielectric ionizable state. The switch is now open and ready for another cycle.

  15. Calculation of Ophthalmic Viscoelastic Device–Induced Focus Shift During Femtosecond Laser–Assisted Cataract Surgery

    PubMed Central

    de Freitas, Carolina P.; Cabot, Florence; Manns, Fabrice; Culbertson, William; Yoo, Sonia H.; Parel, Jean-Marie

    2015-01-01

    Purpose. To assess if a change in refractive index of the anterior chamber during femtosecond laser-assisted cataract surgery can affect the laser beam focus position. Methods. The index of refraction and chromatic dispersion of six ophthalmic viscoelastic devices (OVDs) was measured with an Abbe refractometer. Using the Gullstrand eye model, the index values were used to predict the error in the depth of a femtosecond laser cut when the anterior chamber is filled with OVD. Two sources of error produced by the change in refractive index were evaluated: the error in anterior capsule position measured with optical coherence tomography biometry and the shift in femtosecond laser beam focus depth. Results. The refractive indices of the OVDs measured ranged from 1.335 to 1.341 in the visible light (at 587 nm). The error in depth measurement of the refilled anterior chamber ranged from −5 to +7 μm. The OVD produced a shift of the femtosecond laser focus ranging from −1 to +6 μm. Replacement of the aqueous humor with OVDs with the densest compound produced a predicted error in cut depth of 13 μm anterior to the expected cut. Conclusions. Our calculations show that the change in refractive index due to anterior chamber refilling does not sufficiently shift the laser beam focus position to cause the incomplete capsulotomies reported during femtosecond laser–assisted cataract surgery. PMID:25626971

  16. NOTE: Calibration of low-energy electron beams from a mobile linear accelerator with plane-parallel chambers using both TG-51 and TG-21 protocols

    NASA Astrophysics Data System (ADS)

    Beddar, A. S.; Tailor, R. C.

    2004-04-01

    A new approach to intraoperative radiation therapy led to the development of mobile linear electron accelerators that provide lower electron energy beams than the usual conventional accelerators commonly encountered in radiotherapy. Such mobile electron accelerators produce electron beams that have nominal energies of 4, 6, 9 and 12 MeV. This work compares the absorbed dose output calibrations using both the AAPM TG-51 and TG-21 dose calibration protocols for two types of ion chambers: a plane-parallel (PP) ionization chamber and a cylindrical ionization chamber. Our results indicate that the use of a 'Markus' PP chamber causes 2 3% overestimation in dose output determination if accredited dosimetry-calibration laboratory based chamber factors \\big(N_{{\\rm D},{\\rm w}}^{{}^{60}{\\rm Co}}, N_x\\big) are used. However, if the ionization chamber factors are derived using a cross-comparison at a high-energy electron beam, then a good agreement is obtained (within 1%) with a calibrated cylindrical chamber over the entire energy range down to 4 MeV. Furthermore, even though the TG-51 does not recommend using cylindrical chambers at the low energies, our results show that the cylindrical chamber has a good agreement with the PP chamber not only at 6 MeV but also down to 4 MeV electron beams.

  17. Corrosion test cell for bipolar plates

    DOEpatents

    Weisbrod, Kirk R.

    2002-01-01

    A corrosion test cell for evaluating corrosion resistance in fuel cell bipolar plates is described. The cell has a transparent or translucent cell body having a pair of identical cell body members that seal against opposite sides of a bipolar plate. The cell includes an anode chamber and an cathode chamber, each on opposite sides of the plate. Each chamber contains a pair of mesh platinum current collectors and a catalyst layer pressed between current collectors and the plate. Each chamber is filled with an electrolyte solution that is replenished with fluid from a much larger electrolyte reservoir. The cell includes gas inlets to each chamber for hydrogen gas and air. As the gases flow into a chamber, they pass along the platinum mesh, through the catalyst layer, and to the bipolar plate. The gas exits the chamber through passageways that provide fluid communication between the anode and cathode chambers and the reservoir, and exits the test cell through an exit port in the reservoir. The flow of gas into the cell produces a constant flow of fresh electrolyte into each chamber. Openings in each cell body is member allow electrodes to enter the cell body and contact the electrolyte in the reservoir therein. During operation, while hydrogen gas is passed into one chamber and air into the other chamber, the cell resistance is measured, which is used to evaluate the corrosion properties of the bipolar plate.

  18. Volume-based characterization of postocclusion surge.

    PubMed

    Zacharias, Jaime; Zacharias, Sergio

    2005-10-01

    To propose an alternative method to characterize postocclusion surge using a collapsible artificial anterior chamber to replace the currently used rigid anterior chamber model. Fundación Oftamológica Los Andes, Santiago, Chile. The distal end of a phacoemulsification handpiece was placed inside a compliant artificial anterior chamber. Digital recordings of chamber pressure, chamber volume, inflow, and outflow were performed during occlusion break of the phacoemulsification tip. The occlusion break profile of 2 different consoles was compared. Occlusion break while using a rigid anterior chamber model produced a simultaneous increase of chamber inflow and outflow. In the rigid chamber model, pressure decreased sharply, reaching negative pressure values. Alternatively, with the collapsible chamber model, a delay was observed in the inflow that occurs to compensate the outflow surge. Also, the chamber pressure drop was smaller in magnitude, never undershooting below atmospheric pressure into negative values. Using 500 mm Hg as vacuum limit, the Infiniti System (Alcon) performed better that the Legacy (Alcon), showing an 18% reduction in peak volume variation. The collapsible anterior chamber model provides a more realistic representation of the postocclusion surge events that occur in the real eye during cataract surgery. Peak volume fluctuation (mL), half volume recovery time(s), and volume fluctuation integral value (mL x s) are proposed as realistic indicators to characterize the postocclusion surge performance. These indicators show that the Infiniti System has a better postocclusion surge behavior than the Legacy System.

  19. Preliminary analysis of a membrane-based atmosphere-control subsystem

    NASA Technical Reports Server (NTRS)

    Mccray, Scott B.; Newbold, David D.; Ray, Rod; Ogle, Kathryn

    1993-01-01

    Controlled ecological life supprot systems will require subsystems for maintaining the consentrations of atmospheric gases within acceptable ranges in human habitat chambers and plant growth chambers. The goal of this work was to develop a membrane-based atmosphere comntrol (MBAC) subsystem that allows the controlled exchange of atmospheric componets (e.g., oxygen, carbon dioxide, and water vapor) between these chambers. The MBAC subsystem promises to offer a simple, nonenergy intensive method to separate, store and exchange atmospheric components, producing optimal concentrations of components in each chamber. In this paper, the results of a preliminary analysis of the MBAC subsystem for control of oxygen and nitrogen are presented. Additionally, the MBAC subsystem and its operation are described.

  20. A novel design for a dual stable isotope continuous labeling chamber: results on labeling efficiency and C and N allocation in Andropogon gerardii

    NASA Astrophysics Data System (ADS)

    Soong, J.; Stewart, C.; Reuss, D.; Pinney, C.; Cotrufo, F. M.

    2010-12-01

    The use of stable isotope enriched plant material can provide an unobstructed method of studying ecosystem nutrient dynamics between plants, soil, and atmosphere. However, the production of uniformly labeled perennial plant material is challenging due to plant physiological constraints and the mechanics of building and operating an isotope labeling system. In this study we present the design of a novel dual 13C and 15N continuous isotope labeling chamber located at Colorado State University. The chamber is equipped with automatic controls for CO2 concentration, temperature, and humidity, and has successfully been used to grow and label the tallgrass perennial Andropogon gerardii in pots from rhizomes. Three different nitrogen fertilization levels were applied to assess how substrate availability may alter growth and overall performance in the system. The efficiency of the 13C and 15N labeling chamber, its design and overall performance, as well as a full C, N, 13C, and 15N budget of the aboveground biomass, belowground biomass, and soil will be presented. Solid samples were analyzed on an EA-IRMS, while air samples from the chamber were analyzed using a precon-GC-IRMS system. The dual stable isotope labeled A. gerardii produced from this chamber will be used in a decomposition experiment to quantify the relative contribution of aboveground litter derived C to soil respiration, dissolved organic carbon, and various soil organic matter pools. Based on the results of our A. gerardii 13C and 15N labeling experiment we believe that this chamber design can be used to successfully produce dual stable isotope labeled plants for a wide variety of terrestrial nutrient flux experiments.

  1. System for drying and heating particulate coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Offergeld, E.; Wischniewski, M.

    1978-04-04

    Wet particulate coal and a current of hot dry gas at superatmospheric pressure are introduced into a substantially closed drying chamber to contact the material with the gas while maintaining the drying chamber under superatmospheric pressure so that the material is dried by the gas. The dried material is withdrawn from the drying chamber and the gas is withdrawn from the drying chamber and itself mixed with a stream of hot dry gas produced by burning a combustible and a combustion-supporting gas. This mixture is then reintroduced into the drying chamber as the current of hot gas used to drymore » the coal. The burner is operated at superatmospheric pressure and is formed of a jet-pump type injector, and a diffusor is provided downstream of this injector in the circulation path.« less

  2. Role of electron temperature on charging of dust grains

    NASA Astrophysics Data System (ADS)

    Kausik, S. S.; Chakraborty, M.; Saikia, B. K.

    2007-02-01

    Dust grains are produced by evaporation of silver in an experimental setup consisting of a dust chamber, a plasma chamber, and a deflection chamber. Due to differential pressure between the dust and plasma chambers, the dust grains move upward and after passing through plasma they become negatively charged. These charged dust grains are then deflected by a dc field applied across a pair of deflector plates in the deflection chamber. Both from the amount of deflection and also from the floating potential, the number of charges collected on the dust grains is calculated. As the gas pressure is changed, the plasma density and the electron temperature changes. Dust charge is then calculated at each value of pressure from the deflection and floating potential. It is found that the electron temperature has a profound effect in the accumulation of charge on dust grains.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, Cyril V.; Whitten, William B.

    This report describes Oak Ridge National Laboratory’s (ORNL) FY15 progress in support of National Nuclear Security Administration’s (NNSA) Portable Mass Spectrometer project. A retrofit PolarisQ ion trap mass spectrometer (RPMS) has been assembled from components of two PolarisQ ion trap mass spectrometers used in previous isotope ratio programs. The retrofit mass spectrometer includes a custom Hastelloy vacuum chamber which is about ¼ the size of the standard aluminum vacuum chamber and reduces the instrument weight from the original by nine pounds. In addition, the new vacuum chamber can be independently heated to reduce impurities such as water, which reacts withmore » UF 6 to produce HF in the vacuum chamber. The analyzer and all components requiring service are mounted on the chamber lid, facilitating quick and easy replacement of consumable components such as the filament and electron multiplier.« less

  4. Investigation of atmospheric pressure glow microdischarge between flat cathode and needle anode in helium and argon

    NASA Astrophysics Data System (ADS)

    Astafiev, Alexander; Belyaev, Vladimir; Zamchii, Roman; Kudryavtsev, Anatoly; Stepanova, Olga; Chen, Zhaoquan

    2016-09-01

    DC atmospheric-pressure glow microdischarge was generated between a flat cathode and needle anode with a diameter of 100 μm in a special chamber with helium or argon. Dependences of discharge parameters on an interelectrode gap was investigated with an original experimental setup based on a movable arm on the hinge joint which allowed changing the gap with a step of 5 μm. The gap was varied from 5 to 700 μm. Discharge current was 1-21 mA. Such discharge cell has a very low interelectrode capacitance and provides increasing the stability of the discharge against arc formation (transition to RC oscillations mode) at low currents of 1 mA. A weak dependence of discharge voltage across the gap was revealed in helium at 100-250 μm between the electrodes (normal discharge). In contrast to this, glow microdischarge in argon has a descending current-voltage characteristic and unstable nature. The discharge voltage depending on the gap changes significantly slower than in helium. According to our estimations, the strength of electrical field of positive glow in argon is 5 times lower than in helium. Saint Petersburg State University (Grant No. 0.37.218.2016).

  5. Remote control for anode-cathode adjustment

    DOEpatents

    Roose, Lars D.

    1991-01-01

    An apparatus for remotely adjusting the anode-cathode gap in a pulse power machine has an electric motor located within a hollow cathode inside the vacuum chamber of the pulse power machine. Input information for controlling the motor for adjusting the anode-cathode gap is fed into the apparatus using optical waveguides. The motor, controlled by the input information, drives a worm gear that moves a cathode tip. When the motor drives in one rotational direction, the cathode is moved toward the anode and the size of the anode-cathode gap is diminished. When the motor drives in the other direction, the cathode is moved away from the anode and the size of the anode-cathode gap is increased. The motor is powered by batteries housed in the hollow cathode. The batteries may be rechargeable, and they may be recharged by a photovoltaic cell in combination with an optical waveguide that receives recharging energy from outside the hollow cathode. Alternatively, the anode-cathode gap can be remotely adjusted by a manually-turned handle connected to mechanical linkage which is connected to a jack assembly. The jack assembly converts rotational motion of the handle and mechanical linkage to linear motion of the cathode moving toward or away from the anode.

  6. Design and performance of an ionisation chamber for the measurement of low alpha-activities

    NASA Astrophysics Data System (ADS)

    Hartmann, A.; Hutsch, J.; Krüger, F.; Sobiella, M.; Wilsenach, H.; Zuber, K.

    2016-04-01

    A new ionisation chamber for alpha-spectroscopy has been built from radio-pure materials for the purpose of investigating long lived alpha-decays. The measurement makes use of pulse shape analysis to discriminate between signal and background events. The design and performance of the chamber is described in this paper. A background rate of (10.9 ± 0.6) counts per day in the energy region of 1-9 MeV was achieved with a run period of 30.8 days. The background is dominantly produced by radon daughters.

  7. Suppressor for reducing the muzzle blast and flash of a firearm

    DOEpatents

    Klett, James W

    2014-09-30

    Disclosed are several examples of apparatuses for suppressing the blast and flash produced as a projectile is expelled by gases from a firearm. In some examples, gases are diverted away from the central chamber to an expansion chamber by baffles. The gases are absorbed by the expansion chamber and desorbed slowly, thus decreasing pressure and increasing residence time of the gases. In other examples, the gases impinge against a plurality of rods before expanding through passages between the rods to decrease the pressure and increase the residence time of the gases.

  8. Fast electrochemical membrane actuator: Design, fabrication and preliminary testing

    NASA Astrophysics Data System (ADS)

    Uvarov, I. V.; Postnikov, A. V.; Shlepakov, P. S.; Naumov, V. V.; Koroleva, O. M.; Izyumov, M. O.; Svetovoy, V. B.

    2017-11-01

    An actuator based on water electrolysis with a fast change of voltage polarity is presented. It demonstrates a new actuation principle allowing significant increase the operation frequency of the device due to fast termination of the produced gas. The actuator consists of a working chamber with metallic electrodes and supplying channels filled with an electrolyte. The chamber is formed in a layer of SU-8 and covered by a flexible polydimethylsiloxane membrane, which deforms as the pressure in the chamber increases. Design, fabrication procedure, and first tests of the actuator are described.

  9. MEANS AND METHOD FOR PRODUCING A VACUUM

    DOEpatents

    Otavka, M.A.

    1960-08-01

    A new method is given for starting the operation of evapor-ion vacuum pumps. Ordinarily this type of pump is started by inducing an electric field with the vacuum chamber; however, by placing such an electric field in the chamber at the outset, a glow discharge may be initiated which is harmful to the pump. The procedure consists of using a negative electric field during which time only gettering action takes place; subsequently when the field reverses after a sufficient reduction of the number of gaseous particles in the chamber both gettering and ionizing takes place.

  10. A new method for water desalination using microbial desalination cells.

    PubMed

    Cao, Xiaoxin; Huang, Xia; Liang, Peng; Xiao, Kang; Zhou, Yingjun; Zhang, Xiaoyuan; Logan, Bruce E

    2009-09-15

    Current water desalination techniques are energy intensive and some use membranes operated at high pressures. It is shown here that water desalination can be accomplished without electrical energy input or high water pressure by using a source of organic matter as the fuel to desalinate water. A microbial fuel cell was modified by placing two membranes between the anode and cathode, creating a middle chamber for water desalination between the membranes. An anion exchange membrane was placed adjacent to the anode, and a cation exchange membrane was positioned next to the cathode. When current was produced by bacteria on the anode, ionic species in the middle chamber were transferred into the two electrode chambers, desalinating the water in the middle chamber. Proof-of-concept experiments for this approach, using what we call a microbial desalination cell (MDC), was demonstrated using water at different initial salt concentrations (5, 20, and 35 g/L) with acetate used as the substrate for the bacteria. The MDC produced a maximum of 2 W/m2 (31 W/m3) while at the same time removing about 90% of the salt in a single desalination cycle. As the salt was removed from the middle chamber the ohmic resistance of the MDC (measured using electrochemical impedance spectroscopy) increased from 25 Omega to 970 Omega at the end of the cycle. This increased resistance was reflected by a continuous decrease in the voltage produced over the cycle. These results demonstrate for the first time the possibility for a new method for water desalination and power production that uses only a source of biodegradable organic matter and bacteria.

  11. Nondestructive tests of regenerative chambers. [evaluating nondestructive methods of determining metal bond integrity

    NASA Technical Reports Server (NTRS)

    Malone, G. A.; Vecchies, L.; Wood, R.

    1974-01-01

    The capabilities and limitations of nondestructive evaluation methods were studied to detect and locate bond deficiencies in regeneratively cooled thrust chambers for rocket engines. Flat test panels and a cylinder were produced to simulate regeneratively cooled thrust chamber walls. Planned defects with various bond integrities were produced in the panels to evaluate the sensitivity, accuracy, and limitations of nondestructive methods to define and locate bond anomalies. Holography, acoustic emission, and ultrasonic scan were found to yield sufficient data to discern bond quality when used in combination and in selected sequences. Bonding techniques included electroforming and brazing. Materials of construction included electroformed nickel bonded to Nickel 200 and OFHC copper, electroformed copper bonded to OFHC copper, and 300 series stainless steel brazed to OFHC copper. Variations in outer wall strength, wall thickness, and defect size were evaluated for nondestructive test response.

  12. Thin-layer chromatography and colorimetric analysis of multi-component explosive mixtures

    DOEpatents

    Pagoria, Philip F.; Mitchell, Alexander R.; Whipple, Richard E.; Carman, M. Leslie

    2014-08-26

    A thin-layer chromatography method for detection and identification of common military and peroxide explosives in samples includes the steps of provide a reverse-phase thin-layer chromatography plate; prepare the plate by marking spots on which to deposit the samples by touching the plate with a marker; spot one micro liter of a first standard onto one of the spots, spot one micro liter of a second standard onto another of the spots, and spot samples onto other of spots producing a spotted plate; add eluent to a developing chamber; add the spotted plate to the developing chamber; remove the spotted plate from the developing chamber producing a developed plate; place the developed plate in an ultraviolet light box; add a visualization agent to a dip tank; dip the developed plate in the dip tank and remove the developed plate quickly; and detect explosives by viewing said developed plate.

  13. Apparatus for laser assisted thin film deposition

    DOEpatents

    Warner, B.E.; McLean, W. II

    1996-02-13

    A pulsed laser deposition apparatus uses fiber optics to deliver visible output beams. One or more optical fibers are coupled to one or more laser sources, and delivers visible output beams to a single chamber, to multiple targets in the chamber or to multiple chambers. The laser can run uninterrupted if one of the deposition chambers ceases to operate because other chambers can continue their laser deposition processes. The laser source can be positioned at a remote location relative to the deposition chamber. The use of fiber optics permits multi-plexing. A pulsed visible laser beam is directed at a generally non-perpendicular angle upon the target in the chamber, generating a plume of ions and energetic neutral species. A portion of the plume is deposited on a substrate as a thin film. A pulsed visible output beam with a high pulse repetition frequency is used. The high pulse repetition frequency is greater than 500 Hz, and more preferably, greater than about 1000 Hz. Diamond-like-carbon (DLC) is one of the thin films produced using the apparatus. 9 figs.

  14. Apparatus for laser assisted thin film deposition

    DOEpatents

    Warner, Bruce E.; McLean, II, William

    1996-01-01

    A pulsed laser deposition apparatus uses fiber optics to deliver visible output beams. One or more optical fibers are coupled to one or more laser sources, and delivers visible output beams to a single chamber, to multiple targets in the chamber or to multiple chambers. The laser can run uninterrupted if one of the deposition chambers ceases to operate because other chambers can continue their laser deposition processes. The laser source can be positioned at a remote location relative to the deposition chamber. The use of fiber optics permits multi-plexing. A pulsed visible laser beam is directed at a generally non-perpendicular angle upon the target in the chamber, generating a plume of ions and energetic neutral species. A portion of the plume is deposited on a substrate as a thin film. A pulsed visible output beam with a high pulse repetition frequency is used. The high pulse repetition frequency is greater than 500 Hz, and more preferably, greater than about 1000 Hz. Diamond-like-carbon (DLC) is one of the thin films produced using the apparatus.

  15. New fossil remains of Homo naledi from the Lesedi Chamber, South Africa

    PubMed Central

    Hawks, John; Elliott, Marina; Schmid, Peter; Churchill, Steven E; de Ruiter, Darryl J; Roberts, Eric M; Hilbert-Wolf, Hannah; Garvin, Heather M; Williams, Scott A; Delezene, Lucas K; Feuerriegel, Elen M; Randolph-Quinney, Patrick; Kivell, Tracy L; Laird, Myra F; Tawane, Gaokgatlhe; DeSilva, Jeremy M; Bailey, Shara E; Brophy, Juliet K; Meyer, Marc R; Skinner, Matthew M; Tocheri, Matthew W; VanSickle, Caroline; Walker, Christopher S; Campbell, Timothy L; Kuhn, Brian; Kruger, Ashley; Tucker, Steven; Gurtov, Alia; Hlophe, Nompumelelo; Hunter, Rick; Morris, Hannah; Peixotto, Becca; Ramalepa, Maropeng; van Rooyen, Dirk; Tsikoane, Mathabela; Boshoff, Pedro; Dirks, Paul HGM; Berger, Lee R

    2017-01-01

    The Rising Star cave system has produced abundant fossil hominin remains within the Dinaledi Chamber, representing a minimum of 15 individuals attributed to Homo naledi. Further exploration led to the discovery of hominin material, now comprising 131 hominin specimens, within a second chamber, the Lesedi Chamber. The Lesedi Chamber is far separated from the Dinaledi Chamber within the Rising Star cave system, and represents a second depositional context for hominin remains. In each of three collection areas within the Lesedi Chamber, diagnostic skeletal material allows a clear attribution to H. naledi. Both adult and immature material is present. The hominin remains represent at least three individuals based upon duplication of elements, but more individuals are likely present based upon the spatial context. The most significant specimen is the near-complete cranium of a large individual, designated LES1, with an endocranial volume of approximately 610 ml and associated postcranial remains. The Lesedi Chamber skeletal sample extends our knowledge of the morphology and variation of H. naledi, and evidence of H. naledi from both recovery localities shows a consistent pattern of differentiation from other hominin species. DOI: http://dx.doi.org/10.7554/eLife.24232.001 PMID:28483039

  16. Graphene Calisthenics: Modeling the Polymer-induced Graphene Stretching for Next Generation Electronics

    NASA Astrophysics Data System (ADS)

    Huo, Mandy; Meaker, Kacey; Chong, Su-Ann; Crommie, Michael

    2014-03-01

    Graphene is one atomic layer of graphite. It is stronger than steel yet very elastic. Although graphene is a semiconductor with no band gap, we can introduce a gap using various methods in order to make it useful in next-generation electronics. One way to do this is to strain graphene. While we can easily strain graphene uniaxially, this type of strain does not produce appreciable band gaps until relatively high strain percentages close to the fracture point of graphene. However, with a special strain geometry we can produce band gaps well before reaching the breaking point of graphene. This has been done experimentally, but not in a controlled manner. From previous research, strain percentages around 10 percent produce appreciable band gaps. Increasing the strain will increase the size of these gaps, but graphene breaks at around 20 percent strain. We propose to control the amount by which we strain graphene by placing it on a special polymer which expands when light is shone on it. In this project we use COMSOL, a finite element analysis software, to estimate the strain resulting in graphene due to stretching it with a given polymer geometry to find the shapes which will produce the specified strain.

  17. An approach to the parametric design of ion thrusters

    NASA Technical Reports Server (NTRS)

    Wilbur, Paul J.; Beattie, John R.; Hyman, Jay, Jr.

    1988-01-01

    A methodology that can be used to determine which of several physical constraints can limit ion thruster power and thrust, under various design and operating conditions, is presented. The methodology is exercised to demonstrate typical limitations imposed by grid system span-to-gap ratio, intragrid electric field, discharge chamber power per unit beam area, screen grid lifetime, and accelerator grid lifetime constraints. Limitations on power and thrust for a thruster defined by typical discharge chamber and grid system parameters when it is operated at maximum thrust-to-power are discussed. It is pointed out that other operational objectives such as optimization of payload fraction or mission duration can be substituted for the thrust-to-power objective and that the methodology can be used as a tool for mission analysis.

  18. Ventilation for an enclosure of a gas turbine and related method

    DOEpatents

    Schroeder, Troy Joseph; Leach, David; O'Toole, Michael Anthony

    2002-01-01

    A ventilation scheme for a rotary machine supported on pedestals within an enclosure having a roof, end walls and side walls with the machine arranged parallel to the side walls, includes ventilation air inlets located in a first end wall of the enclosure; a barrier wall located within the enclosure, proximate the first end wall to thereby create a plenum chamber. The barrier wall is constructed to provide a substantially annular gap between the barrier wall and a casing of the turbine to thereby direct ventilation air axially along the turbine; one or more ventilation air outlets located proximate a second, opposite end wall on the roof of the enclosure. In addition, one or more fans are provided for pulling ventilating air into said plenum chamber via the ventilation air inlets.

  19. Initial Back-to-Back Fission Chamber Testing in ATRC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benjamin Chase; Troy Unruh; Joy Rempe

    2014-06-01

    Development and testing of in-pile, real-time neutron sensors for use in Materials Test Reactor experiments is an ongoing project at Idaho National Laboratory. The Advanced Test Reactor National Scientific User Facility has sponsored a series of projects to evaluate neutron detector options in the Advanced Test Reactor Critical Facility (ATRC). Special hardware was designed and fabricated to enable testing of the detectors in the ATRC. Initial testing of Self-Powered Neutron Detectors and miniature fission chambers produced promising results. Follow-on testing required more experiment hardware to be developed. The follow-on testing used a Back-to-Back fission chamber with the intent to providemore » calibration data, and a means of measuring spectral indices. As indicated within this document, this is the first time in decades that BTB fission chambers have been used in INL facilities. Results from these fission chamber measurements provide a baseline reference for future measurements with Back-to-Back fission chambers.« less

  20. Acute shallowing of the anterior chamber.

    PubMed Central

    Mapstone, R

    1981-01-01

    In aging eyes phenylephrine drops have no significant effect on the depth of the anterior chamber, whereas pilocarpine drops produce a significant shallowing. If both drugs are instilled simultaneously, a significantly greater decrease in anterior chamber depth occurs. The effect is seen in normal, glaucomatous, and hypertensive eyes, and in eyes with shallow anterior chambers. It did not occur in eyes that had had an iridectomy. During the course of a positive provocative test an acute reduction in anterior depth occurs which is reversed when the angle opens and pressure returns to normal levels. It is concluded that the depth of the anterior chamber is not a static dimension but that changes can occur which are rapid and transient. The mechanism of shallowing and deepening depends on an increase or a decrease in the pupil block force. It is a necessary consequence too that eyes with nonshallow anterior chambers can get closed-angle glaucoma and that this possibility cannot be detected by a conventional gonioscopic approach. PMID:6455153

  1. A drift chamber with a new type of straws for operation in vacuum

    NASA Astrophysics Data System (ADS)

    Azorskiy, N.; Glonti, L.; Gusakov, Yu.; Elsha, V.; Enik, T.; Kakurin, S.; Kekelidze, V.; Kislov, E.; Kolesnikov, A.; Madigozhin, D.; Movchan, S.; Polenkevich, I.; Potrebenikov, Yu.; Samsonov, V.; Shkarovskiy, S.; Sotnikov, S.; Zinchenko, A.; Danielsson, H.; Bendotti, J.; Degrange, J.; Dixon, N.; Lichard, P.; Morant, J.; Palladino, V.; Gomez, F. Perez; Ruggiero, G.; Vergain, M.

    2016-07-01

    A 2150×2150 mm2 registration area drift chamber capable of working in vacuum is presented. Thin-wall tubes (straws) of a new type are used in the chamber. A large share of these 9.80 mm diameter drift tubes are made in Dubna from metalized 36 μm Mylar film welded along the generatrix using an ultrasonic welding machine created at JINR. The main features of the chamber and some characteristics of the drift tubes are described. Four such chambers with the X, Y, U, V coordinates each, containing 7168 straws in total, are designed and produced at JINR and CERN. They are installed in the vacuum volume of the NA62 setup in order to study the ultra-rare decay K+ →π+ vv bar and to search for and study rare meson decays. In autumn 2014 the chambers were used for the first time for the data taking in the experimental run of the NA62 at CERN's SPS.

  2. Design, fabrication and test of the RL10 derivative II chamber/primary nozzle

    NASA Technical Reports Server (NTRS)

    Marable, R. W.

    1989-01-01

    The design, fabrication and test of the RL10-II chamber/primary nozzle was accomplished as part of the RL10 Product Improvement Program (PIP). The overall goal of the RL10 PIP was to gain the knowledge and experience necessary to develop new cryogenic upper stage engines to fulfill future NASA requirements. The goal would be reached by producing an RL10 engine designed to be reusable, operate at several thrust levels, and have increased performance. The goals for the chamber/primary nozzle task were: (1) to design a reusable assembly capable of operation at increased mixture ratio and low thrust; (2) to fabricate three assemblies using new or updated techniques where possible; and (3) to test one assembly to verify the design and construction. The design and fabrication phases produced an assembly having improved features such as single piece reinforcing band segments (i.e., Mae West segments) and relocated tube exit braze joints (i.e., hooked tube exit). In addition, a computer program was developed to design the chamber tubes to meet both performance and heat transfer requirements. The test phase showed the specific impulse of the test bed engine system to be as predicted. These results, along with the heat transfer data obtained, sufficiently proved the overall design of the RL10-II recontoured and shortened chamber/primary nozzle assembly.

  3. Knowledge Gained from Good Agricultural Practices Courses for Iowa Growers

    ERIC Educational Resources Information Center

    Shaw, Angela; Strohbehn, Catherine; Naeve, Linda; Domoto, Paul; Wilson, Lester

    2015-01-01

    Good Agricultural Practices (GAP) educational courses provide produce growers with the fundamental information for producing and processing safe produce. To determine the effectiveness of the current 7-hour GAP course provided in Iowa, growers were surveyed before and 7-14 days after the course to determine changes in knowledge and opinions.…

  4. Fuel Regression Characteristics of Cascaded Multistage Impinging-Jet (CAMUI) Type Hybrid Rocket

    NASA Astrophysics Data System (ADS)

    Itoh, Mitsunori; Maeda, Takenori; Kakikura, Akihito; Kaneko, Yudai; Mori, Kazuhiro; Nakashima, Takuji; Wakita, Masashi; Uematsu, Tsutomu; Totani, Tsuyoshi; Oshima, Nobuyuki; Nagata, Harunori

    A series of lab-scale firing tests was conducted to investigate the fuel regression characteristics of Cascaded Multistage Impinging-jet (CAMUI) type hybrid rocket. The alternative fuel grain used in this rocket consists of a number of cylindrical fuel blocks with two ports, which were aligned along the axis of the combustion chamber with a small gap. The ports are aligned staggered with respect to ones of neighboring blocks so that the combustion gas flow impinges on the forward-end surface of each block. In this fuel grain, forward-end surfaces, back-end surfaces and ports of fuel blocks contribute as burning surfaces. Polyethylene and LOX were used as a propellant, and the tests were conducted at the chamber pressure of 0.5 2MPa and the mass flux of 50 200kg/m2s. Main results obtained in this study are in the followings: The regression rate of each surface was obtained as a function of the propellant mass flux and local equivalent ratio of the combustion gas. At back-end surfaces the regression rate has a high sensitivity on the gap height of neighboring fuel blocks. These fuel regression characteristics will contribute as fundamental data to improve the optimum design of the fuel grain.

  5. Reactive Black 5 as electron donor and/or electron acceptor in dual chamber of solar photocatalytic fuel cell.

    PubMed

    Khalik, Wan Fadhilah; Ho, Li-Ngee; Ong, Soon-An; Voon, Chun-Hong; Wong, Yee-Shian; Yusuf, Sara Yasina; Yusoff, NikAthirah; Lee, Sin-Li

    2018-07-01

    The role of azo dye Reactive Black 5 (RB5) as an electron donor and/or electron acceptor could be distinguished in dual chamber of photocatalytic fuel cell (PFC). The introduction of RB5 in anode chamber increased the voltage generation in the system since degradation of RB5 might produce electrons which also would transfer through external circuit to the cathode chamber. The removal efficiency of RB5 with open and closed circuit was 8.5% and 13.6%, respectively and removal efficiency for open circuit was low due to the fact that recombination of electron-hole pairs might happen in anode chamber since without connection to the cathode, electron cannot be transferred. The degradation of RB5 in cathode chamber with absence of oxygen showed that electrons from anode chamber was accepted by dye molecules to break its azo bond. The presence of oxygen in cathode chamber would improve the oxygen reduction rate which occurred at Platinum-loaded carbon (Pt/C) cathode electrode. The V oc , J sc and P max for different condition of ultrapure water at cathode chamber also affected their fill factor. The transportation of protons to cathode chamber through Nafion membrane could decrease the pH of ultrapure water in cathode chamber and undergo hydrogen evolution reaction in the absence of oxygen which then increased degradation rate of RB5 as well as its electricity generation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Evaluation of the smoke density chamber as an apparatus for fire toxicity screening tests

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Labossiere, L. A.

    1976-01-01

    The smoke density chamber is perhaps the most widely used apparatus for smoke measurements. Because of its availability, it has been proposed as an apparatus for evaluating fire toxicity. The standard apparatus and procedure were not found suitable for toxicity screening tests using laboratory animals, because not enough materials of interest produced animal mortality or even incapacitation under standard test conditions. With modifications, the chamber offers greater promise as a screening tool, but other tests specifically designed to measure relative toxicity may be more cost-effective. Where one-dimensional heat flux is a requirement, the chamber is the most suitable apparatus available. It should be improved in regard to visibility of animals and ease of cleaning.

  7. Micromixer based on dielectric stack actuators for medical applications

    NASA Astrophysics Data System (ADS)

    Solano-Arana, Susana; Klug, Florian; Mößinger, Holger; Förster-Zügel, Florentine; Schlaak, Helmut F.

    2017-04-01

    Based on a previously developed microperistaltic pump, a micromixer made out of dielectric elastomer stack actuators (DESA) is proposed. The micromixer will be able to mix two fluids at the microscale, pumping both fluids in and out of the device. The device consists of three chambers. In the first and second chambers, fluids A and B are hosted, while in the third chamber, fluids A and B are mixed. The fluid flow regime is laminar. The application of voltage leads to an increase of the size of a gap in the z-axis direction, due to the actuators area expansion. This makes a channel open through which the fluid flows. The frequency of the actuation of the different actuators allows an increase of the flow rate. The micromixer can be used for applications such as drug delivery and synthesis of nucleic acids, the proposed device will be made of Polydimethylsiloxane (PDMS) as dielectric and graphite powder as electrode material. PDMS is a biocompatible material, widely used in the prosthesis field. Mixing fluids at a microscale is also in need in the lab-on-achip technology for complex chemical reactions.

  8. Coanda injection system for axially staged low emission combustors

    DOEpatents

    Evulet, Andrei Tristan [Clifton Park, NY; Varatharajan, Balachandar [Cincinnati, OH; Kraemer, Gilbert Otto [Greer, SC; ElKady, Ahmed Mostafa [Niskayuna, NY; Lacy, Benjamin Paul [Greer, SC

    2012-05-15

    The low emission combustor includes a combustor housing defining a combustion chamber having a plurality of combustion zones. A liner sleeve is disposed in the combustion housing with a gap formed between the liner sleeve and the combustor housing. A secondary nozzle is disposed along a centerline of the combustion chamber and configured to inject a first fluid comprising air, at least one diluent, fuel, or combinations thereof to a downstream side of a first combustion zone among the plurality of combustion zones. A plurality of primary fuel nozzles is disposed proximate to an upstream side of the combustion chamber and located around the secondary nozzle and configured to inject a second fluid comprising air and fuel to an upstream side of the first combustion zone. The combustor also includes a plurality of tertiary coanda nozzles. Each tertiary coanda nozzle is coupled to a respective dilution hole. The tertiary coanda nozzles are configured to inject a third fluid comprising air, at least one other diluent, fuel, or combinations thereof to one or more remaining combustion zones among the plurality of combustion zones.

  9. Magnetocumulative generator

    DOEpatents

    Pettibone, Joseph S.; Wheeler, Paul C.

    1983-01-01

    An improved magnetocumulative generator is described that is useful for producing magnetic fields of very high energy content over large spatial volumes. The polar directed pleated magnetocumulative generator has a housing (100, 101, 102, 103, 104, 105) providing a housing chamber (106) with an electrically conducting surface. The chamber (106) forms a coaxial system having a small radius portion and a large radius portion. When a magnetic field is injected into the chamber (106), from an external source, most of the magnetic flux associated therewith positions itself in the small radius portion. The propagation of an explosive detonation through high-explosive layers (107, 108) disposed adjacent to the housing causes a phased closure of the chamber (106) which sweeps most of the magnetic flux into the large radius portion of the coaxial system. The energy content of the magnetic field is greatly increased by flux stretching as well as by flux compression. The energy enhanced magnetic field is utilized within the housing chamber itself.

  10. Magnetocumulative generator

    DOEpatents

    Pettibone, J.S.; Wheeler, P.C.

    1981-06-08

    An improved magnetocumulative generator is described that is useful for producing magnetic fields of very high energy content over large spatial volumes. The polar directed pleated magnetocumulative generator has a housing providing a housing chamber with an electrically conducting surface. The chamber forms a coaxial system having a small radius portion and a large radius portion. When a magnetic field is injected into the chamber, from an external source, most of the magnetic flux associated therewith positions itself in the small radius portion. The propagation of an explosive detonation through high-explosive layers disposed adjacent to the housing causes a phased closure of the chamber which sweeps most of the magnetic flux into the large radius portion of the coaxial system. The energy content of the magnetic field is greatly increased by flux stretching as well as by flux compression. The energy enhanced magnetic field is utilized within the housing chamber itself.

  11. Stability analysis of a liquid fuel annular combustion chamber. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Mcdonald, G. H.

    1979-01-01

    The problems of combustion instability in an annular combustion chamber are investigated. A modified Galerkin method was used to produce a set of modal amplitude equations from the general nonlinear partial differential acoustic wave equation. From these modal amplitude equations, the two variable perturbation method was used to develop a set of approximate equations of a given order of magnitude. These equations were modeled to show the effects of velocity sensitive combustion instabilities by evaluating the effects of certain parameters in the given set of equations. By evaluating these effects, parameters which cause instabilities to occur in the combustion chamber can be ascertained. It is assumed that in the annular combustion chamber, the liquid propellants are injected uniformly across the injector face, the combustion processes are distributed throughout the combustion chamber, and that no time delay occurs in the combustion processes.

  12. Continuous-wave laser generated jets for needle free applications

    PubMed Central

    Visser, Claas Willem; Schlautmann, Stefan

    2016-01-01

    We designed and built a microfluidic device for the generation of liquid jets produced by thermocavitation. A continuous wave (CW) laser was focused inside a micro-chamber filled with a light-absorbing solution to create a rapidly expanding vapor bubble. The chamber is connected to a micro-channel which focuses and ejects the liquid jet through the exit. The bubble growth and the jet velocity were measured as a function of the devices geometry (channel diameter D and chamber width A). The fastest jets were those for relatively large chamber size with respect to the channel diameter. Elongated and focused jets up to 29 m/s for a channel diameter of 250 μm and chamber size of 700 μm were obtained. The proposed CW laser-based device is potentially a compact option for a practical and commercially feasible needle-free injector. PMID:26858816

  13. Biomimetic Unidirectional Capillary Action

    NASA Astrophysics Data System (ADS)

    Rupert, Eric; Moran, Patrick; Dahl, Jason

    2017-11-01

    In arid environments animals require specialized adaptations to collect adequate water. The Texas horned lizard (P. cornutum) has superhydrophylic skin which draws water out of moist soil or directly from water sources. The water then makes its way into the lizard's unidirectional capillary system, made of overlapping scales, which serves to channel water to its mouth. Testing different channel geometries, repeated ``D'' shaped chambers as in Commans et al. (2015) and truncated isosceles triangle chambers, as found in P. cornutum, we show the ability to have passive, unidirectional, fluid transport. Tests were carried out with the capillaries in a horizontal configuration. While both capillary geometries produced the desired traits, the triangular chambers showed superior unidirectionality, with no observed back flow, while ``D'' chambers showed back flow under testing conditions. The chambers provided similar flow rates. These types of channel systems will find use in microfluidics, notably in medical, printing, and lab-on-chip applications.

  14. Method of correcting eddy current magnetic fields in particle accelerator vacuum chambers

    DOEpatents

    Danby, G.T.; Jackson, J.W.

    1990-03-19

    A method for correcting magnetic field aberrations produced by eddy currents induced in a particle accelerator vacuum chamber housing is provided wherein correction windings are attached to selected positions on the housing and the windings are energized by transformer action from secondary coils, which coils are inductively coupled to the poles of electro-magnets that are powered to confine the charged particle beam within a desired orbit as the charged particles are accelerated through the vacuum chamber by a particle-driving rf field. The power inductively coupled to the secondary coils varies as a function of variations in the power supplied by the particle-accelerating rf field to a beam of particles accelerated through the vacuum chamber, so the current in the energized correction coils is effective to cancel eddy current flux fields that would otherwise be induced in the vacuum chamber by power variations (dB/dt) in the particle beam.

  15. Method of correcting eddy current magnetic fields in particle accelerator vacuum chambers

    DOEpatents

    Danby, Gordon T.; Jackson, John W.

    1991-01-01

    A method for correcting magnetic field aberrations produced by eddy currents induced in a particle accelerator vacuum chamber housing is provided wherein correction windings are attached to selected positions on the housing and the windings are energized by transformer action from secondary coils, which coils are inductively coupled to the poles of electro-magnets that are powered to confine the charged particle beam within a desired orbit as the charged particles are accelerated through the vacuum chamber by a particle-driving rf field. The power inductively coupled to the secondary coils varies as a function of variations in the power supplied by the particle-accelerating rf field to a beam of particles accelerated through the vacuum chamber, so the current in the energized correction coils is effective to cancel eddy current flux fields that would otherwise be induced in the vacuum chamber by power variations in the particle beam.

  16. Arc spray fabrication of metal matrix composite monotape

    NASA Technical Reports Server (NTRS)

    Westfall, L. J. (Inventor)

    1985-01-01

    Arc metal spraying is used to spray liquid metal onto an array of high strength fibers that were previously wound onto a large drum contained inside a controlled atmosphere chamber. This chamber is first evacuated to remove gaseous contaminants and then backfilled with a neutral gas up to atmospheric pressure. This process is used to produce a large size metal matrix composite monotape.

  17. First observation of low energy electron neutrinos in a liquid argon time projection chamber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acciarri, R.; Adams, C.; Asaadi, J.

    Liquid argon time projection chambers (LArTPCs) produce remarkable fidelity in the observation of neutrino interactions. The superior capabilities of such detectors to reconstruct the spatial and calorimetric information of neutrino events have made them the detectors of choice in a number of experiments, specifically those looking to observe electron neutrino (more » $$\

  18. Restricted exchange microenvironments for cell culture.

    PubMed

    Hoh, Jan H; Werbin, Jeffrey L; Heinz, William F

    2018-03-01

    Metabolite diffusion in tissues produces gradients and heterogeneous microenvironments that are not captured in standard 2D cell culture models. Here we describe restricted exchange environment chambers (REECs) in which diffusive gradients are formed and manipulated on length scales approximating those found in vivo. In REECs, cells are grown in 2D in an asymmetric chamber (<50 μL) formed between a coverglass and a glass bottom cell culture dish separated by a thin (~100 μm) gasket. Diffusive metabolite exchange between the chamber and bulk media occurs through one or more openings micromachined into the coverglass. Cell-generated concentration gradients form radially in REECs with a single round opening (~200 μm diameter). At steady state only cells within several hundred micrometers of the opening experience metabolite concentrations that permit survival which is analogous to diffusive exchange near a capillary in tissue. The chamber dimensions, the openings' shape, size, and number, and the cellular density and metabolic activity define the gradient structure. For example, two parallel slots above confluent cells produce the 1D equivalent of a spheroid. Using REECs, we found that fibroblasts align along the axis of diffusion while MDCK cells do not. MDCK cells do, however, exhibit significant morphological variations along the diffusive gradient.

  19. An economical model for simulating droplet spectrum evolution in turbulent cloud chambers and wind tunnels

    NASA Astrophysics Data System (ADS)

    Krueger, Steven; Cantrell, W.; Niedermeier, D.; Shaw, R.; Stratmann, F.

    2017-11-01

    Although airborne instruments provide detailed information about the microphysical structure of clouds, the measurements provide only a few snapshots of each cloud. Deducing the droplet spectrum evolution from such measurements is next to impossible. We are using two alternative approaches: laboratory studies and numerical simulations. The former relies on a new turbulent cloud chamber (the Pi Chamber) at Michigan Technical University, as well as the first humid turbulent wind tunnel (LACIS-T) at the Leibniz Institute for Tropospheric Research. Both produce conditions for droplet growth (i.e., supersaturation) by mixing saturated vapor at different temperatures. The Pi Chamber produces turbulence by inducing Rayleigh-Bénard convection, while the wind tunnel generates turbulence with a grid. We are using the Explicit Mixing Parcel Model (EMPM) to numerically simulate droplet spectrum evolution in these flows. The EMPM explicitly links turbulent mixing and droplet spectrum evolution by representing a turbulent flow in a 1D domain with the linear eddy model. The EMPM can economically span scales from those of the smallest turbulent eddies to those of the largest. The EMPM grows or evaporates thousands of individual cloud droplets according to their local environments.

  20. Fuel supply device for supplying fuel to an engine combustor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindsay, M.H.; Kerr, W.B.

    1990-05-29

    This patent describes a variable flow rate fuel supply device for supplying fuel to an engine combustor. It comprises: fuel metering means having a fuel valve means for controlling the flow rate of fuel to the combustor; piston means for dividing a first cooling fluid chamber from a second cooling fluid chamber; coupling means for coupling the piston means to the fuel valve means; and cooling fluid supply means in communication with the first and second cooling fluid chamber for producing a first pressure differential across the piston means for actuating the fuel valve means in a first direction, andmore » for producing a second pressure differential across the piston means for actuating the valve means in a second direction opposite the first direction, to control the flow rate of the fuel through the fuel metering means and into the engine combustor; and means for positioning the fuel metering means within the second cooling air chamber enabling the cooling air supply means to both cool the fuel metering means and control the fuel supply rate of fuel supplied by the fuel metering means to the combustor.« less

  1. Effects of open-top chambers on 'Valencia' orange trees

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olszyk, D.M.; Takemoto, B.K.; Kats, G.

    1992-01-01

    Young 'Valencia' orange trees (Citrus sinensis(L) Osbeck) were grown for four years in large open-top chambers with ambient (nonfiltered) air or in outside air to determine any effects of the chambers on the air pollutant susceptibility of the trees. Long-term ozone average concentrations (12 hours, growing season) were 8% lower, and cumulative ozone dose (hourly values >0.1 microL/L) was 29% lower in ambient chambers compared to outside air. Fruit yields were much higher (>39%) for ambient chamber trees than for outside trees over three harvests, due at least partly to less fruit drop during the growing season for ambient chambermore » trees. Ambient chamber trees were much larger than outside trees and produced over twice as much leaf material over four years of study. Leaves on ambient chamber trees were larger and less dense than on outside trees. Leaves on ambient chamber trees were under more stress than leaves on outside trees during summer months; with lower stomatal conductances (14% average) and transpiration rates (12%), and more negative leaf water pressure potentials (28%). In contrast, leaves on ambient chamber trees had higher net photosynthetic rates (13%) and higher leaf starch concentrations prior to tree flowering (31%), than leaves on outside trees. While these results indicated large long-term impacts on tree growth which must be considered when using open-top chambers, they did not indicate any net effect of chambers on the air pollutant susceptibility of trees which would limit the usefulness of chamber tree data for air quality impact assessment purposes.« less

  2. Hydrogen generation having CO2 removal with steam reforming

    DOEpatents

    Kandaswamy, Duraiswamy; Chellappa, Anand S.; Knobbe, Mack

    2015-07-28

    A method for producing hydrogen using fuel cell off gases, the method feeding hydrocarbon fuel to a sulfur adsorbent to produce a desulfurized fuel and a spent sulfur adsorbent; feeding said desulfurized fuel and water to an adsorption enhanced reformer that comprises of a plurality of reforming chambers or compartments; reforming said desulfurized fuel in the presence of a one or more of a reforming catalyst and one or more of a CO2 adsorbent to produce hydrogen and a spent CO2 adsorbent; feeding said hydrogen to the anode side of the fuel cell; regenerating said spent CO2 adsorbents using the fuel cell cathode off-gases, producing a flow of hydrogen by cycling between said plurality of reforming chambers or compartments in a predetermined timing sequence; and, replacing the spent sulfur adsorbent with a fresh sulfur adsorbent at a predetermined time.

  3. Laboratory study of microphysical and scattering properties of corona-producing cirrus clouds.

    PubMed

    Järvinen, E; Vochezer, P; Möhler, O; Schnaiter, M

    2014-11-01

    Corona-producing cirrus clouds were generated and measured under chamber conditions at the AIDA cloud chamber in Karlsruhe. We were able to measure the scattering properties as well as microphysical properties of these clouds under well-defined laboratory conditions in contrast with previous studies of corona-producing clouds, where the measurements were conducted by means of lidar and in situ aircraft measurements. Our results are in agreement with those of previous studies, confirming that corona-producing cirrus clouds consist of a narrow distribution of small (median Dp=19-32  μm) and compact ice crystals. We showed that the ice crystals in these clouds are most likely formed in homogeneous freezing processes. As a result of the homogeneous freezing process, the ice crystals grow uniformly in size; furthermore, the majority of the ice crystals have rough surface features.

  4. Thin film studies toward improving the performance of accelerator electron sources

    NASA Astrophysics Data System (ADS)

    Mamun, Md Abdullah Al

    Future electron accelerators require DC high voltage photoguns to operate beyond the present state of the art to conduct new experiments that require ultra-bright electron beams with high average current and higher bunch charge. To meet these demands, the accelerators must demonstrate improvements in a number of photogun areas including vacuum, field emission elimination in high voltage electrodes, and photocathodes. This dissertation illustrates how these improvements can be achieved by the application of suitable thin-films to the photogun structure for producing ultra-bright electron beams. This work is composed of three complementary studies. First, the outgassing rates of three nominally identical 304L stainless steel vacuum chambers were studied to determine the effects of chamber coatings (silicon and titanium nitride) and heat treatments. For an uncoated stainless steel chamber, the diffusion limited outgassing was taken over by the recombination limited process as soon as a low outgassing rate of ~1.79(+/-0.05) x 10--13 Torr L s--1 cm--2 was achieved. An amorphous silicon coating on the stainless steel chambers exhibited recombination limited behavior and any heat treatment became ineffective in reducing the outgassing rate. A TiN coated chamber yielded the smallest apparent outgassing rate of all the chambers: 6.44(+/-0.05) x 10--13 Torr L s--1 cm--2 following an initial 90 °C bake and 2(+/-20) x 10--16 Torr L s --1 cm--2 following the final bake in the series. This perceived low outgassing rate was attributed to the small pumping nature of TiN coating itself. Second, the high voltage performance of three TiN-coated aluminum electrodes, before and after gas conditioning with helium, were compared to that of bare aluminum electrodes and electrodes manufactured from titanium alloy (Ti-6Al-4V). This study suggests that aluminum electrodes, coated with TiN, could simplify the task of implementing photocathode cooling, which is required for future high current electron beam applications. The best performing TiN-coated aluminum electrode demonstrated less than 15 pA of field emission current at --175 kV for a 10 mm cathode/anode gap, which corresponds to a field strength of 22.5 MV/m. Third, the effect of antimony thickness on the performance of bialkali-antimonide photocathodes was studied. The high-capacity effusion source enabled us to successfully manufacture photocathodes having a maximum QE around 10% and extended low voltage 1/e lifetime (> 90 days) at 532 nm via the co-deposition method, with relatively thick layers of antimony (≥ 300 nm). We speculate that alkali co-deposition provides optimized stoichiometry for photocathodes manufactured using thick Sb layers, which could serve as a reservoir for the alkali. In summary, this research examined the effectiveness of thin films applied on photogun chamber components to achieve an extremely high vacuum, to eliminate high voltage induced field emission from electrodes, and to generate photocurrent with high quantum yield with an extended operational lifetime. Simultaneous implementation of these findings can meet the challenges of future ultra-bright photoguns.

  5. Thin film studies toward improving the performance of accelerator electron sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mamun, Md Abdullah

    Future electron accelerators require DC high voltage photoguns to operate beyond the present state of the art to conduct new experiments that require ultra-bright electron beams with high average current and higher bunch charge. To meet these demands, the accelerators must demonstrate improvements in a number of photogun areas including vacuum, field emission elimination in high voltage electrodes, and photocathodes. This dissertation illustrates how these improvements can be achieved by the application of suitable thin-films to the photogun structure for producing ultra-bright electron beams. This work is composed of three complementary studies. First, the outgassing rates of three nominally identicalmore » 304L stainless steel vacuum chambers were studied to determine the effects of chamber coatings (silicon and titanium nitride) and heat treatments. For an uncoated stainless steel chamber, the diffusion limited outgassing was taken over by the recombination limited process as soon as a low outgassing rate of ~1.79(±0.05) x 10- 13 Torr L s -1 cm -2 was achieved. An amorphous silicon coating on the stainless steel chambers exhibited recombination limited behavior and any heat treatment became ineffective in reducing the outgassing rate. A TiN coated chamber yielded the smallest apparent outgassing rate of all the chambers: 6.44(±0.05) x 10 -13 Torr L s -1 cm -2 following an initial 90 °C bake and 2(±20) x 10 -16 Torr L s -1 cm -2 following the final bake in the series. This perceived low outgassing rate was attributed to the small pumping nature of TiN coating itself. Second, the high voltage performance of three TiN-coated aluminum electrodes, before and after gas conditioning with helium, were compared to that of bare aluminum electrodes and electrodes manufactured from titanium alloy (Ti-6Al-4V). This study suggests that aluminum electrodes, coated with TiN, could simplify the task of implementing photocathode cooling, which is required for future high current electron beam applications. The best performing TiN-coated aluminum electrode demonstrated less than 15 pA of field emission current at -- 175 kV for a 10 mm cathode/anode gap, which corresponds to a field strength of 22.5 MV/m. Third, the effect of antimony thickness on the performance of bialkali-antimonide photocathodes was studied. The high-capacity effusion source enabled us to successfully manufacture photocathodes having a maximum QE around 10% and extended low voltage 1/e lifetime (> 90 days) at 532 nm via the co-deposition method, with relatively thick layers of antimony (≥ 300 nm). We speculate that alkali co-deposition provides optimized stoichiometry for photocathodes manufactured using thick Sb layers, which could serve as a reservoir for the alkali. In summary, this research examined the effectiveness of thin films applied on photogun chamber components to achieve an extremely high vacuum, to eliminate high voltage induced field emission from electrodes, and to generate photocurrent with high quantum yield with an extended operational lifetime. Simultaneous implementation of these findings can meet the challenges of future ultra-bright photoguns.« less

  6. Liquid-hydrogen rocket engine development at Aerojet, 1944 - 1950

    NASA Technical Reports Server (NTRS)

    Osborn, G. H.; Gordon, R.; Coplen, H. L.; James, G. S.

    1977-01-01

    This program demonstrated the feasibility of virtually all the components in present-day, high-energy, liquid-rocket engines. Transpiration and film-cooled thrust chambers were successfully operated. The first liquid-hydrogen tests of the coaxial injector was conducted and the first pump to successfully produce high pressures in pumping liquid hydrogen was tested. A 1,000-lb-thrust gaseous propellant and a 3,000-lb-thrust liquid-propellant thrust chamber were operated satisfactorily. Also, the first tests were conducted to evaluate the effects of jet overexpansion and separation on performance of rocket thrust chambers with hydrogen-oxygen propellants.

  7. Fabrication of liquid-rocket thrust chambers by electroforming

    NASA Technical Reports Server (NTRS)

    Duscha, R. A.; Kazaroff, J. M.

    1974-01-01

    Electroforming has proven to be an excellent fabrication method for building liquid rocket regeneratively cooled thrust chambers. NASA sponsored technology programs have investigated both common and advanced methods. Using common procedures, several cooled spool pieces and thrust chambers have been made and successfully tested. The designs were made possible through the versatility of the electroforming procedure, which is not limited to simple geometric shapes. An advanced method of electroforming was used to produce a wire-wrapped, composite, pressure-loaded electroformed structure, which greatly increased the strength of the structure while still retaining the advantages of electroforming.

  8. Almond Test Body. [for microwave anechoic chambers

    NASA Technical Reports Server (NTRS)

    Dominek, Allen K. (Inventor); Wood, Richard M. (Inventor); Gilreath, Melvin C. (Inventor)

    1989-01-01

    The invention is an almond shaped test body for use in measuring the performance characteristics of microwave anechoic chambers and for use as a support for components undergoing radar cross-section measurements. The novel aspect of this invention is its shape, which produces a large dynamic scattered field over large angular regions making the almond valuable for verifying the performance of microwave anechoic chambers. As a component mount, the almond exhibits a low return that does not perturb the measurement of the component and it simulates the backscatter characteristics of the component as if over an infinite ground plane.

  9. Selection of an Alternative Production Part Approval Process to Improve Weapon Systems Production Readiness

    DTIC Science & Technology

    2017-09-01

    production outcomes: 1) knowledge gaps in technology, 2) design instability and 3) manufacturing knowledge gaps. Only manufacturing knowledge gaps...ability to produce at a desired production rate. Each item produced under this manufacturing development is to meet that item’s design requirements. The...represented with respect to assessing manufacturing design and development with a verification and demonstration. DOD acquisition waits to assess production

  10. Amorphous semiconducting and conducting transparent metal oxide thin films and production thereof

    DOEpatents

    Perkins, John; Van Hest, Marinus Franciscus Antonius Maria; Ginley, David; Taylor, Matthew; Neuman, George A.; Luten, Henry A.; Forgette, Jeffrey A.; Anderson, John S.

    2010-07-13

    Metal oxide thin films and production thereof are disclosed. An exemplary method of producing a metal oxide thin film may comprise introducing at least two metallic elements and oxygen into a process chamber to form a metal oxide. The method may also comprise depositing the metal oxide on a substrate in the process chamber. The method may also comprise simultaneously controlling a ratio of the at least two metallic elements and a stoichiometry of the oxygen during deposition. Exemplary amorphous metal oxide thin films produced according to the methods herein may exhibit highly transparent properties, highly conductive properties, and/or other opto-electronic properties.

  11. Spherical neutron generator

    DOEpatents

    Leung, Ka-Ngo

    2006-11-21

    A spherical neutron generator is formed with a small spherical target and a spherical shell RF-driven plasma ion source surrounding the target. A deuterium (or deuterium and tritium) ion plasma is produced by RF excitation in the plasma ion source using an RF antenna. The plasma generation region is a spherical shell between an outer chamber and an inner extraction electrode. A spherical neutron generating target is at the center of the chamber and is biased negatively with respect to the extraction electrode which contains many holes. Ions passing through the holes in the extraction electrode are focused onto the target which produces neutrons by D-D or D-T reactions.

  12. Validation of Dosimetric Leaf Gap (DLG) prior to its implementation in Treatment Planning System (TPS): TrueBeam™ millennium 120 leaf MLC.

    PubMed

    Shende, Ravindra; Patel, Ganesh

    2017-01-01

    Objective of present study is to determine optimum value of DLG and its validation prior to being incorporated in TPS for Varian TrueBeam™ millennium 120 leaves MLC. Partial transmission through the rounded leaf ends of the Multi Leaf Collimator (MLC) causes a conflict between the edges of the light field and radiation field. Parameter account for this partial transmission is called Dosimetric Leaf Gap (DLG). The complex high precession technique, such as Intensity Modulated Radiation Therapy (IMRT), entails the modeling of optimum value of DLG inside Eclipse Treatment Planning System (TPS) for precise dose calculation. Distinct synchronized uniformed extension of sweeping dynamic MLC leaf gap fields created by Varian MLC shaper software were use to determine DLG. DLG measurements performed with both 0.13 cc semi-flex ionization chamber and 2D-Array I-Matrix were used to validate the DLG; similarly, values of DLG from TPS were estimated from predicted dose. Similar mathematical approaches were employed to determine DLG from delivered and TPS predicted dose. DLG determined from delivered dose measured with both ionization chamber (DLG Ion ) and I-Matrix (DLG I-Matrix ) compared with DLG estimate from TPS predicted dose (DLG TPS ). Measurements were carried out for all available 6MV, 10MV, 15MV, 6MVFFF and 10MVFFF beam energies. Maximum and minimum DLG deviation between measured and TPS calculated DLG was found to be 0.2 mm and 0.1 mm, respectively. Both of the measured DLGs (DLG Ion and DLG I-Matrix ) were found to be in a very good agreement with estimated DLG from TPS (DLG TPS ). Proposed method proved to be helpful in verifying and validating the DLG value prior to its clinical implementation in TPS.

  13. Understanding the digital divide in the clinical setting: the technology knowledge gap experienced by US safety net patients during teleretinal screening.

    PubMed

    George, Sheba; Moran, Erin; Fish, Allison; Ogunyemi, Lola

    2013-01-01

    Differential access to everyday technology and healthcare amongst safety net patients is associated with low technological and health literacies, respectively. These low rates of literacy produce a complex patient "knowledge gap" that influences the effectiveness of telehealth technologies. To understand this "knowledge gap", six focus groups (2 African-American and 4 Latino) were conducted with patients who received teleretinal screenings in U.S. urban safety-net settings. Findings indicate that patients' "knowledge gap" is primarily produced at three points: (1) when patients' preexisting personal barriers to care became exacerbated in the clinical setting; (2) through encounters with technology during screening; and (3) in doctor-patient follow-up. This "knowledge gap" can produce confusion and fear, potentially affecting patients' confidence in quality of care and limiting their disease management ability. In rethinking the digital divide to include the consequences of this knowledge gap faced by patients in the clinical setting, we suggest that patient education focus on both their disease and specific telehealth technologies deployed in care delivery.

  14. A Segmented Ion-Propulsion Engine

    NASA Technical Reports Server (NTRS)

    Brophy, John R.

    1992-01-01

    New design approach for high-power (100-kW class or greater) ion engines conceptually divides single engine into combination of smaller discharge chambers integrated to operate as single large engine. Analogous to multicylinder automobile engine, benefits include reduction in required accelerator system span-to-gap ratio for large-area engines, reduction in required hollow-cathode emission current, mitigation of plasma-uniformity problem, increased tolerance to accelerator system faults, and reduction in vacuum-system pumping speed.

  15. Design and Calibration of a X-Ray Millibeam

    DTIC Science & Technology

    2005-12-01

    developed for use in Fricke dosimetry , parallel-plate ionization chambers, Lithium Fluoride thermoluminescent dosimetry ( TLD ), and EBT GafChromic...thermoluminescent dosimetry ( TLD ), and EBT GafChromic film to characterize the spatial distribution and accuracy of the doses produced by the Faxitron. A...absorbed dose calibration factors for use in Fricke dosimetry , parallel-plate ionization chambers, Lithium Fluoride (LiF) TLD , and EBT GafChromic film. The

  16. Using reinforcement-based methods to enhance membership recruitment in a volunteer organization.

    PubMed Central

    Herndon, E J; Mikulas, W L

    1996-01-01

    The present study employed reinforcement-based methods to induce existing members to recruit new members to join a chamber of commerce. Three interventions took place during June and July of 3 successive years. The investigators trained chamber leaders to use reinforcement methods (e.g., contingent tokens) to reinforce recruitment and dues collections. All three interventions produced substantial increases in their targets. PMID:8995839

  17. Using reinforcement-based methods to enhance membership recruitment in a volunteer organization.

    PubMed

    Herndon, E J; Mikulas, W L

    1996-01-01

    The present study employed reinforcement-based methods to induce existing members to recruit new members to join a chamber of commerce. Three interventions took place during June and July of 3 successive years. The investigators trained chamber leaders to use reinforcement methods (e.g., contingent tokens) to reinforce recruitment and dues collections. All three interventions produced substantial increases in their targets.

  18. Solid state laser media driven by remote nuclear powered fluorescence

    DOEpatents

    Prelas, Mark A.

    1992-01-01

    An apparatus is provided for driving a solid state laser by a nuclear powered fluorescence source which is located remote from the fluorescence source. A nuclear reaction produced in a reaction chamber generates fluorescence or photons. The photons are collected from the chamber into a waveguide, such as a fiber optic waveguide. The waveguide transports the photons to the remote laser for exciting the laser.

  19. Spectra, composition, and interactions of nuclei with magnet interaction chambers

    NASA Astrophysics Data System (ADS)

    Parnell, T. A.; Burnett, T. H.; Cherry, M. C.; Dake, S.; Derrickson, J. H.; Fountain, W. F.; Fuki, M.; Gregory, J. C.; Hayashi, T.; Holynski, R.; Iwai, J.; Jurak, A.; Lord, J. J.; Miyamura, O.; Niwa, K.; Oda, H.; Ogata, T.; Roberts, F. E.; Shibata, T.; Strausz, S. C.; Tabuki, T.; Taira, T.; Takahashi, Y.; Tominaga, T.; Watts, J. W.; Wefel, J. P.; Wilczynska, B.; Wilczynski, H.; Wilkes, R. J.; Wolter, W.; Wosiek, T.; Yamamoto, A.; Yokomi, H.; Yuda, T.

    1990-03-01

    Emulsion chambers will be flown in the Astromag Facility to measure the cosmic ray composition and spectra to 10 exp 15 eV total energy and to definitively study the characteristics of nucleus-nucleus interactions above 10 exp 12 eV/n. Two configurations of emulsion chambers will be flown in the SCIN/MAGIC experiment. One chamber has an emulsion target and a calorimeter similar to those recently flown on balloons for composition and spectra measurements. The other has an identical calorimeter and a low-density target section optimized for performing rigidity measurements on charged particles produced in interactions. The transverse momenta of charged and neutral mesons, direct hadronic pairs from resonance decays and interference effects, and possible charge clustering in high-density states of matter will be studied.

  20. Determination of Local Experimental Heat-Transfer Coefficients on Combustion Side of an Ammonia-Oxygen Rocket

    NASA Technical Reports Server (NTRS)

    Liebert, Curt H.; Ehlers, Robert C.

    1961-01-01

    Local experimental heat-transfer coefficients were measured in the chamber and throat of a 2400-pound-thrust ammonia-oxygen rocket engine with a nominal chamber pressure of 600 pounds per square inch absolute. Three injector configurations were used. The rocket engine was run over a range of oxidant-fuel ratio and chamber pressure. The injector that achieved the best performance also produced the highest rates of heat flux at design conditions. The heat-transfer data from the best-performing injector agreed well with the simplified equation developed by Bartz at the throat region. A large spread of data was observed for the chamber. This spread was attributed generally to the variations of combustion processes. The spread was least evident, however, with the best-performing injector.

  1. Low resistance electrode construction

    DOEpatents

    Redey, Laszlo; Karell, Eric J.

    2002-01-01

    An electrochemical cell having a cathode and an anode in contact with an electrolyte. Both electrodes or one of them has an electrically conducting non-metal receptacle defining a chamber with a first metal having a melting point in the range of from about room temperature to about 800.degree. C. inside said receptacle chamber. A second metal with a melting point greater than about 800.degree. C. is in contact with the first metal inside the receptacle chamber and extends outside of the receptacle chamber to form a terminal for the anode. The electrolyte may include the oxides, halides or mixtures thereof of one or more of Li, V, U, Al and the lanthanides. Metal may be produced at the cathode during operation of the cell and oxygen or chlorine at the anode.

  2. Thermal comfort of dual-chamber ski gloves

    NASA Astrophysics Data System (ADS)

    Dotti, F.; Colonna, M.; Ferri, A.

    2017-10-01

    In this work, the special design of a pair of ski gloves has been assessed in terms of thermal comfort. The glove 2in1 Gore-Tex has a dual-chamber construction, with two possible wearing configurations: one called “grip” to maximize finger flexibility and one called “warm” to maximize thermal insulation in extremely cold conditions. The dual-chamber gloves has been compared with two regular ski gloves produced by the same company. An intermittent test on a treadmill was carried out in a climatic chamber: it was made of four intense activity phases, during which the volunteer ran at 9 km/h on a 5% slope for 4 minutes, spaced out by 5-min resting phases. Finger temperature measurements were compared with the thermal sensations expressed by two volunteers during the test.

  3. Multigap resistive plate chambers for EAS study in the EEE Project

    NASA Astrophysics Data System (ADS)

    An, S.; Antolini, R.; Badalà, A.; Baldini Ferroli, R.; Bencivenni, G.; Blanco, F.; Bressan, E.; Chiavassa, A.; Cifarelli, L.; Cindolo, F.; Coccia, E.; de Pasquale, S.; di Giovanni, A.; D'Incecco, M.; Fabbri, F. L.; Garbini, M.; Giuliano, A.; Gustavino, C.; Hatzifotiadou, D.; Imponente, G.; Kim, J.; La Rocca, P.; Librizzi, F.; Maggiora, A.; Menghetti, H.; Miozzi, S.; Moro, R.; Pace, E.; Panareo, M.; Pappalardo, G. S.; Piragino, G.; Riggi, F.; Sartorelli, G.; Sbarra, C.; Selvi, M.; Williams, C.; Zichichi, A.; Zuyeuski, R.

    2007-10-01

    The EEE (Extreme Energy Events) Project, conceived by its leader Antonino Zichichi, is an experiment to study very high-energetic air showers (EAS) through the detection of the shower's muon component using a network of tracking detectors, installed in Italian high schools. The single tracking telescope is composed of three large area (˜2m) Multi-gap Resistive Plate Chambers (MRPCs). The data collected by the telescopes will be used for studies of air showers and also for the search of time correlations between sites which are far apart. The first telescope, recently installed in the Liceo B. Touschek in Grottaferrata (Rome), is successfully running, and other telescopes are going to be installed in a short time in other towns, opening up the way for the first search of long-distance coincidences over a total area of ˜10km.

  4. Dose measurement in heterogeneous phantoms with an extrapolation chamber

    NASA Astrophysics Data System (ADS)

    Deblois, Francois

    A hybrid phantom-embedded extrapolation chamber (PEEC) made of Solid Water(TM) and bone-equivalent material was used for determining absolute dose in a bone-equivalent phantom irradiated with clinical radiation beams (cobalt-60 gamma rays; 6 and 18 MV x-rays; and 9 and 15 MeV electrons). The dose was determined with the Spencer-Attix cavity theory, using ionization gradient measurements and an indirect determination of the chamber air-mass through measurements of chamber capacitance. The air gaps used were between 2 and 3 mm and the sensitive air volume of the extrapolation chamber was remotely controlled through the motion of the motorized piston with a precision of +/-0.0025 mm. The collected charge was corrected for ionic recombination and diffusion in the chamber air volume following the standard two-voltage technique. Due to the hybrid chamber design, correction factors accounting for scatter deficit and electrode composition were determined and applied in the dose equation to obtain dose data for the equivalent homogeneous bone phantom. Correction factors for graphite electrodes were calculated with Monte Carlo techniques and the calculated results were verified through relative air cavity dose measurements for three different polarizing electrode materials: graphite, steel, and brass in conjunction with a graphite collecting electrode. Scatter deficit, due mainly to loss of lateral scatter in the hybrid chamber, reduces the dose to the air cavity in the hybrid PEEC in comparison with full bone PEEC from 0.7 to ˜2% depending on beam quality and energy. In megavoltage photon and electron beams, graphite electrodes do not affect the dose measurement in the Solid Water(TM) PEEC but decrease the cavity dose by up to 5% in the bone-equivalent PEEC even for very thin graphite electrodes (<0.0025 cm). The collecting electrode material in comparison with the polarizing electrode material has a larger effect on the electrode correction factor; the thickness of thin electrodes, on the other hand, has a negligible effect on dose determination. The uncalibrated hybrid PEEC is an accurate and absolute device for measuring the dose directly in bone material in conjunction with appropriate correction factors determined with Monte Carlo techniques.

  5. Robust Low Cost Aerospike/RLV Combustion Chamber by Advanced Vacuum Plasma Process

    NASA Technical Reports Server (NTRS)

    Holmes, Richard; Ellis, David; McKechnie

    1999-01-01

    Next-generation, regeneratively cooled rocket engines will require materials that can withstand high temperatures while retaining high thermal conductivity. At the same time, fabrication techniques must be cost efficient so that engine components can be manufactured within the constraints of a shrinking NASA budget. In recent years, combustion chambers of equivalent size to the Aerospike chamber have been fabricated at NASA-Marshall Space Flight Center (MSFC) using innovative, relatively low-cost, vacuum-plasma-spray (VPS) techniques. Typically, such combustion chambers are made of the copper alloy NARloy-Z. However, current research and development conducted by NASA-Lewis Research Center (LeRC) has identified a Cu-8Cr-4Nb alloy which possesses excellent high-temperature strength, creep resistance, and low cycle fatigue behavior combined with exceptional thermal stability. In fact, researchers at NASA-LeRC have demonstrated that powder metallurgy (P/M) Cu-8Cr-4Nb exhibits better mechanical properties at 1,200 F than NARloy-Z does at 1,000 F. The objective of this program was to develop and demonstrate the technology to fabricate high-performance, robust, inexpensive combustion chambers for advanced propulsion systems (such as Lockheed-Martin's VentureStar and NASA's Reusable Launch Vehicle, RLV) using the low-cost, VPS process to deposit Cu-8Cr-4Nb with mechanical properties that match or exceed those of P/M Cu-8Cr-4Nb. In addition, oxidation resistant and thermal barrier coatings can be incorporated as an integral part of the hot wall of the liner during the VPS process. Tensile properties of Cu-8Cr-4Nb material produced by VPS are reviewed and compared to material produced previously by extrusion. VPS formed combustion chamber liners have also been prepared and will be reported on following scheduled hot firing tests at NASA-Lewis.

  6. Method and device for producing a tactile display using an electrorheological fluid

    NASA Technical Reports Server (NTRS)

    Garner, H. Douglas (Inventor)

    1996-01-01

    A tactile display device utilizes an electrorheological fluid to activate a plurality of tactile dots. A voltage is selectively produced uniformly across an electrorheological fluid flowing between a common ground electrode and a plurality of conductive dot electrodes, thereby producing an increase in the fluid's viscosity to the extent that fluid flow between the two electrodes is restricted. The flow restriction produces a build-up of electrorheological fluid in a corresponding dot actuator chamber. The resulting pressure increase in the chamber displaces an elastic diaphragm fixed to a display surface to form a lump which can be perceived by the reader as one dot in a Braille character cell. A flow regulation system provides a continually pressurized flow system and provides for free flow of the electrorheological fluid through the plurality of dot actuator chambers when they are not activated. The device is adaptable to printed circuit techniques and can simultaneously display tactile dots representative of a full page of Braille characters stored on a medium such as a tape cassette or to display tactile dots representative of non-Braille data appearing on a computer monitor or contained on another data storage medium. In an alternate embodiment, the elastic diaphragm drives a plurality of spring-loaded pins provided with positive stops to maintain consistent displacements of the pins in both their actuated and nonactuated positions.

  7. The response of a scintillation counter below an emulsion chamber to heavy nucleus interactions in the chamber

    NASA Technical Reports Server (NTRS)

    Burnett, T. H.; Dake, S.; Derrickson, J. H.; Fountain, W. F.; Fuki, M.; Gregory, J. C.; Hayashi, T.; Hayashi, T.; Holynski, R.; Iwai, J.; hide

    1985-01-01

    In 1982 a hybrid electronic counter-emulsion chamber experiment was flown on a balloon to study heavy nucleus interactions in the 20 to approximately 100 GeV/AMU energy range. A gas Cerenkov counter, two solid Cerenkov counters, and a proportional counter hodoscope gave the primary energy, the primary charge and the trajectory of the particles, respectively. Using the trajectory information cosmic ray nuclei of Z 10 were found reliably and efficiently, and interaction characteristics of the Fe group nuclei were measured in the chamber. A plastic scintillator below the emulsion chamber responded to showers resulting from interactions in the chamber and to noninteracting nuclei. Data on the response of the counter have been compared with simulations of hadronic-electromagnetic cascades to derive the average neutral energy fraction released by the heavy interactions, and to predict the performance of this kind of counter at higher energies. For the interacting events of highest produced particles multiplicity comparison between various simulations and the shower counter signal have been made.

  8. Selective ion source

    DOEpatents

    Leung, K.N.

    1996-05-14

    A ion source is described wherein selected ions maybe extracted to the exclusion of unwanted ion species of higher ionization potential. Also described is a method of producing selected ions from a compound, such as P{sup +} from PH{sub 3}. The invention comprises a plasma chamber, an electron source, a means for introducing a gas to be ionized by electrons from the electron source, means for limiting electron energy from the electron source to a value between the ionization energy of the selected ion species and the greater ionization energy of an unwanted ion specie, and means for extracting the target ion specie from the plasma chamber. In one embodiment, the electrons are generated in a plasma cathode chamber immediately adjacent to the plasma chamber. A small extractor draws the electrons from the plasma cathode chamber into the relatively positive plasma chamber. The energy of the electrons extracted in this manner is easily controlled. The invention is particularly useful for doping silicon with P{sup +}, As{sup +}, and B{sup +} without the problematic presence of hydrogen, helium, water, or carbon oxide ions. Doped silicon is important for manufacture of semiconductors and semiconductor devices. 6 figs.

  9. Selective ion source

    DOEpatents

    Leung, Ka-Ngo

    1996-01-01

    A ion source is described wherein selected ions maybe extracted to the exclusion of unwanted ion species of higher ionization potential. Also described is a method of producing selected ions from a compound, such as P.sup.+ from PH.sub.3. The invention comprises a plasma chamber, an electron source, a means for introducing a gas to be ionized by electrons from the electron source, means for limiting electron energy from the electron source to a value between the ionization energy of the selected ion species and the greater ionization energy of an unwanted ion specie, and means for extracting the target ion specie from the plasma chamber. In one embodiment, the electrons are generated in a plasma cathode chamber immediately adjacent to the plasma chamber. A small extractor draws the electrons from the plasma cathode chamber into the relatively positive plasma chamber. The energy of the electrons extracted in this manner is easily controlled. The invention is particularly useful for doping silicon with P.sup.+, AS.sup.+, and B.sup.+ without the problematic presence of hydrogen, helium, water, or carbon oxide ions. Doped silicon is important for manufacture of semiconductors and semiconductor devices.

  10. The asymmetry of avian egg-shape: an adaptation for reproduction on dry land

    PubMed Central

    Mao, Kun-Ming; Murakami, Ayako; Iwasawa, Atsushi; Yoshizaki, Norio

    2007-01-01

    The present study describes the biological meaning of the asymmetrical shape in avian reproduction using quail. During the incubation of eggs, water was gradually lost and the air chamber which appeared in between the inner and outer shell membranes at the blunt end expanded, so that the angle made by the long egg-axis and the horizontal line increased, presumably because the centre of gravity of the egg contents moved toward the sharp end. The increase in angle occurred in both fertile and infertile eggs, suggesting that this phenomenon occurs irrespective of fertility and is due to the asymmetrical shape. The increase in the volume of the air chamber resulted in an increase in the area of the inner shell membrane at the chamber to satisfy the amount of gas exchange needed by the developing embryo for better hatching. We isolated a 300-kDa protein from the inner shell membrane. It was produced by cells in the luminal epithelium of the oviductal isthmus and was found in the cortex of the fibres of shell membranes and a lining surrounding the air chamber. The lining comprised a medial layer between the inner and outer shell membranes in uterine eggs. The asymmetrical ellipsoid produces the air chamber at the blunt end of the avian egg during its sojourn in the oviductal isthmus, to maintain the blunt end up after oviposition and to raise that end during incubation in a dry environment, leading to high hatchability. PMID:17523938

  11. Responses of sensitive and tolerant bush beans (Phaseolus vulgaris L.) to ozone in open-top chambers are influenced by phenotypic differences, morphological characteristics, and the chamber environment.

    PubMed

    Elagöz, Vahram; Manning, William J

    2005-08-01

    Responses of bush bean (Phaseolus vulgaris L.) lines 'S156' (O(3)-sensitive) and 'R123' (O(3)-tolerant), and cultivars 'BBL 290' (O(3)-sensitive) and 'BBL 274' (O(3)-tolerant) to ambient ozone (O(3)) were investigated during the 2001 and 2002 growing seasons. Seedlings were grown in pots inside open-top chambers (OTCs), with charcoal filtered (CF) and non-filtered (NF) ambient air, and in non-chambered ambient air (AA) plots. Growth parameters from individual plants were evaluated after harvests at the end of vegetative (V(4)) and reproductive (R(10)) growth phases. Results at V(4) indicated that CF did not provide additional benefits over NF in 'S156' in 2001 and 2002. In contrast, exposure to CF significantly impaired the growth of 'R123'. At the end of R(10), 'S156' produced more pods, most of which remained immature, and contained fewer seeds or were more frequently aborted, whereas pods produced in 'R123' reached pod maturation and senescence more consistently. Despite increased seed weights inside the OTCs, as observed in 'S156', differences between the two lines were insignificant when grown outside OTCs. Results from the 'BBL 290'/'BBL 274' pair, especially at V(4) phase, remained inconclusive. Plant morphological characteristics, variabilities in environmental conditions, and 'chamber effects' inside OTCs were influential in determining plant response to ambient O(3).

  12. Density evaluation of remotely-supplied hydrogen radicals produced via tungsten filament method for SiCl4 reduction

    NASA Astrophysics Data System (ADS)

    Zohra Dahmani, Fatima; Okamoto, Yuji; Tsutsumi, Daiki; Ishigaki, Takamasa; Koinuma, Hideomi; Hamzaoui, Saad; Flazi, Samir; Sumiya, Masatomo

    2018-05-01

    Effect of the hydrogen radical on the reduction of a silicon tetrachloride (SiCl4) source was studied. The hydrogen radicals were generated using a tungsten (W) filament in a generation chamber, and were remotely supplied to another reaction chamber. The density of the hydrogen radical was estimated from the optical transmittance of 600-nm-wavelength light through phosphate glass doped with tungsten oxide (WO3). Lifetime of the hydrogen radical seemed sufficiently long, and its density as supplied to the reaction chamber was estimated to be on the order of 1012 cm‑3. Signal intensity of the peak corresponding to SiCl4 (m/z = 170) detected by quadrupole-mass measurement was confirmed to decrease owing to the reaction with the remotely-supplied hydrogen radical. This indicates the possibility that chemically-stable SiCl4, as one of the by-products of the Siemens process, can be reduced to produce silicon.

  13. Process of breaking and rendering permeable a subterranean rock mass

    DOEpatents

    Lekas, Mitchell A.

    1980-01-01

    The process of the present invention involves the following steps: producing, as by hydrofracing, a substantially horizontal fracture in the subterranean rock mass to be processed; emplacing an explosive charge in the mass in spaced juxtaposed position to the fracture; enlarging the fracture to create a void space thereat, an initial lifting of the overburden, and to provide a free face juxtaposed to and arranged to cooperate with the emplaced explosive charge; and exploding the charge against the free face for fragmenting the rock and to distribute the space, thus providing fractured, pervious, rubble-ized rock in an enclosed subterranean chamber. Firing of the charge provides a further lifting of the overburden, an enlargement of the chamber and a larger void space to distribute throughout the rubble-ized rock within the chamber. In some forms of the invention an explosive charge is used to produce a transitory enlargement of the fracture, and the juxtaposed emplaced charge is fired during the critical period of enlargement of the fracture.

  14. A novel compact heat exchanger using gap flow mechanism.

    PubMed

    Liang, J S; Zhang, Y; Wang, D Z; Luo, T P; Ren, T Q

    2015-02-01

    A novel, compact gap-flow heat exchanger (GFHE) using heat-transfer fluid (HTF) was developed in this paper. The detail design of the GFHE coaxial structure which forms the annular gap passage for HTF is presented. Computational fluid dynamics simulations were introduced into the design to determine the impacts of the gap width and the HTF flow rate on the GFHE performance. A comparative study on the GFHE heating rate, with the gap widths ranged from 0.1 to 1.0 mm and the HTF flow rates ranged from 100 to 500 ml/min, was carried out. Results show that a narrower gap passage and a higher HTF flow rate can yield a higher average heating rate in GFHE. However, considering the compromise between the GFHE heating rate and the HTF pressure drop along the gap, a 0.4 mm gap width is preferred. A testing loop was also set up to experimentally evaluate the GFHE capability. The testing results show that, by using 0.4 mm gap width and 500 ml/min HTF flow rate, the maximum heating rate in the working chamber of the as-made GFHE can reach 18 °C/min, and the average temperature change rates in the heating and cooling processes of the thermal cycle test were recorded as 6.5 and 5.4 °C/min, respectively. These temperature change rates can well satisfy the standard of IEC 60068-2-14:2009 and show that the GFHE developed in this work has sufficient heat exchange capacity and can be used as an ideal compact heat exchanger in small volume desktop thermal fatigue test apparatus.

  15. Atmospheric pressure plasma processing of polymeric materials utilizing close proximity indirect exposure

    DOEpatents

    Paulauskas, Felix L.; Bonds, Truman

    2016-09-20

    A plasma treatment method that includes providing treatment chamber including an intermediate heating volume and an interior treatment volume. The interior treatment volume contains an electrode assembly for generating a plasma and the intermediate heating volume heats the interior treatment volume. A work piece is traversed through the treatment chamber. A process gas is introduced to the interior treatment volume of the treatment chamber. A plasma is formed with the electrode assembly from the process gas, wherein a reactive species of the plasma is accelerated towards the fiber tow by flow vortices produced in the interior treatment volume by the electrode assembly.

  16. Investigation of cables for ionization chambers.

    PubMed

    Spokas, J J; Meeker, R D

    1980-01-01

    Seven coaxial cables which are in use for carrying currents generated in ionization chambers have been critically studied with reference to their suitability to this application. Included in this study are four low-noise triaxial cables and three low-noise two-conductor cables. For each cable the following characteristics were considered: inherent noise currents, currents produced by cable movements, polarization currents, the degree of electrostatic shielding of the central signal-carrying conductor, and radiation-induced cable currents. The study indicated that of the seven cables, two low-noise triaxial cables, both employing solid Teflon dielectric surrounding the central conductor, appear to offer the best overall performance for use with ionization chambers.

  17. Suppressors made from intermetallic materials

    DOEpatents

    Klett, James W; Muth, Thomas R; Cler, Dan L

    2014-11-04

    Disclosed are several examples of apparatuses for suppressing the blast and flash produced as a projectile is expelled by gases from a firearm. In some examples, gases are diverted away from the central chamber to an expansion chamber by baffles. The gases are absorbed by the expansion chamber and desorbed slowly, thus decreasing pressure and increasing residence time of the gases. In other examples, the gases impinge against a plurality of rods before expanding through passages between the rods to decrease the pressure and increase the residence time of the gases. These and other exemplary suppressors are made from an intermetallic material composition for enhanced strength and oxidation resistance at high operational temperatures.

  18. Management of asymptomatic intracardiac missiles using echocardiography.

    PubMed

    Robison, R J; Brown, J W; Caldwell, R; Stone, K S; King, H

    1988-09-01

    A child sustained a low-velocity airgun pellet injury to the left ventricle. No cardiovascular compromise was produced. The foreign body was localized by two-dimensional echocardiography to the left ventricular chamber near the mitral valve, and subsequently removed through a left atriotomy incision. In asymptomatic patients, missiles clearly embedded within a chamber wall may be observed; all others should be removed. Two-dimensional echocardiography is recommended for localization.

  19. Acoustic Translation of an Acoustically Levitated Sample

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Allen, J. L.

    1986-01-01

    Acoustic-levitation apparatus uses only one acoustic mode to move sample from one region of chamber to another. Sample heated and cooled quickly by translation between hot and cold regions of levitation chamber. Levitated sample is raised into furnace region by raising plunger. Frequency of sound produced by transducers adjusted by feedback system to maintain (102) resonant mode, which levitates sample midway between transducers and plunger regardless of plunger position.

  20. Developing a Method for Operative Diagnostics and Appraisal of Working Capacity of a Combustion Chamber DG-90

    NASA Astrophysics Data System (ADS)

    Razboinikov, A. A.; Vashchilin, V. V.

    2016-10-01

    In the paper the problematics of gas transport system, main factors of an urgency of the development are described. Stages of a proposed reconstruction of combustion chamber DG-90 are introduced. Basic elements of the elaborated method for appraisal of risks of an emergency situation occurrence are given. The expected efficiency from implementation of the produced method is described.

  1. Transparent conducting oxides and production thereof

    DOEpatents

    Gessert, Timothy A.; Yoshida, Yuki; Coutts, Timothy J.

    2014-06-10

    Transparent conducting oxides and production thereof are disclosed. An exemplary method of producing a transparent conducting oxide (TCO) material may comprise: providing a TCO target doped with either a high-permittivity oxide or a low-permittivity oxide in a process chamber. The method may also comprise depositing a metal oxide on the target in the process chamber to form a thin film having enhanced optical properties without substantially decreasing electrical quality.

  2. Ion thruster performance model

    NASA Technical Reports Server (NTRS)

    Brophy, J. R.

    1984-01-01

    A model of ion thruster performance is developed for high flux density, cusped magnetic field thruster designs. This model is formulated in terms of the average energy required to produce an ion in the discharge chamber plasma and the fraction of these ions that are extracted to form the beam. The direct loss of high energy (primary) electrons from the plasma to the anode is shown to have a major effect on thruster performance. The model provides simple algebraic equations enabling one to calculate the beam ion energy cost, the average discharge chamber plasma ion energy cost, the primary electron density, the primary-to-Maxwellian electron density ratio and the Maxwellian electron temperature. Experiments indicate that the model correctly predicts the variation in plasma ion energy cost for changes in propellant gas (Ar, Kr and Xe), grid transparency to neutral atoms, beam extraction area, discharge voltage, and discharge chamber wall temperature. The model and experiments indicate that thruster performance may be described in terms of only four thruster configuration dependent parameters and two operating parameters. The model also suggests that improved performance should be exhibited by thruster designs which extract a large fraction of the ions produced in the discharge chamber, which have good primary electron and neutral atom containment and which operate at high propellant flow rates.

  3. Evaluation of electricity production from alkaline pretreated sludge using two-chamber microbial fuel cell.

    PubMed

    Xiao, Benyi; Yang, Fang; Liu, Junxin

    2013-06-15

    Electricity production from alkaline pretreated sludge was evaluated using a two-chamber microbial fuel cell (MFC). The electricity production was found to be stable over a long period of time (approximately 17 d) with voltage outputs and power densities of 0.47-0.52 V and 46.80-55.88 mW/m(2), respectively. The anode resistance was the main internal resistance (73.2%) of MFC in the stable stage. Most soluble organic matters (proteins and carbohydrates) in the anode chamber were first degraded and converted into volatile fatty acids (0-15 d), which were then degraded and converted into electricity and methane (15-29 d). The insoluble organics were solubilized thereby decreasing the sludge concentration and reducing the sludge mass. Methane was produced in the anode chamber owing to the growth of methanogens, which did not obviously affect the electricity production. The change in humic-like substances displayed a positive correlation with the electricity production of the MFC. Microbial analysis showed that methanogens and electricity-producing bacteria co-existed mostly on the surface as well as inside the anode. Decreasing the anode resistance and increasing the anode utilization could enhance the electricity production. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  4. Role of ion magnetization in formation of radial density profile in magnetically expanding plasma produced by helicon antenna

    NASA Astrophysics Data System (ADS)

    Yadav, Sonu; Ghosh, Soumen; Bose, Sayak; Barada, Kshitish K.; Pal, Rabindranath; Chattopadhyay, Prabal K.

    2018-04-01

    Experimentally, the density profile in the magnetic nozzle of a helicon antenna based plasma device is seen to be modified from being centrally peaked to that of hollow nature as the external magnetic field is increased. It occurs above a characteristic field value when the ions become magnetized in the expansion chamber. The density profile in the source chamber behind the nozzle, however, remains peaked on-axis irrespective of the magnetic field. The electron temperature there is observed to be hollow and this nature is carried to the expansion chamber along the field line. In the electron energy distribution near the off axis peak location, a high energy tail exists. Rotation of these tail electrons in the azimuthal direction due to the gradient-B drift in the expansion chamber leads to an additional off-axis ionization and forms the hollow density profile. It seems that if the ions are not magnetized, then the off-axially produced additional plasma is not confined and the density profile retains the on-axis peak nature. The present experiment successfully demonstrates how the knowledge of the ion magnetization together with tail electrons significantly contributes to the design of an efficient helicon plasma based thruster.

  5. The electrolysis time on electrosynthesis of hydroxyapatite with bipolar membrane

    NASA Astrophysics Data System (ADS)

    Nur, Adrian; Jumari, Arif; Budiman, Anatta Wahyu; Puspitaningtyas, Stella Febianti; Cahyaningrum, Suci; Nazriati, Nazriati; Fajaroh, Fauziatul

    2018-02-01

    The electrochemical method with bipolar membrane has been successfully used for the synthesis of hydroxyapatite. In this work, we have developed 2 chambers electrolysis system separated by a bipolar membrane. The membrane was used to separate cations (H+ ions produced by the oxidation of water at the anode) and anions (OH- ions produced by the reduction of water at the cathode). With this system, we have designed that OH- ions still stay in the anions chamber because OH- ions was very substantial in the hydroxyapatite particles formation. The aim of this paper was to compare the electrolysis time on electrosynthesis of hydroxyapatite with and without the bipolar membrane. The electrosynthesis was performed at 500 mA/cm2 for 0.5 to 2 hours at room temperature and under ultrasonic cleaner to void agglomeration with and without the bipolar membrane. The electrosynthesis of hydroxyapatite with the bipolar membrane more effective than without the bipolar membrane. The hydroxyapatite has been appeared at 0.5 h of the electrolysis time with the bipolar membrane (at the cathode chamber) while it hasn't been seen without the bipolar membrane. The bipolar membrane prevents OH- ions migrate to the cation chamber. The formation of HA becomes more effective because OH- ions just formed HA particle.

  6. ECR ion source with electron gun

    DOEpatents

    Xie, Z.Q.; Lyneis, C.M.

    1993-10-26

    An Advanced Electron Cyclotron Resonance ion source having an electron gun for introducing electrons into the plasma chamber of the ion source is described. The ion source has a injection enclosure and a plasma chamber tank. The plasma chamber is defined by a plurality of longitudinal magnets. The electron gun injects electrons axially into the plasma chamber such that ionization within the plasma chamber occurs in the presence of the additional electrons produced by the electron gun. The electron gun has a cathode for emitting electrons therefrom which is heated by current supplied from an AC power supply while bias potential is provided by a bias power supply. A concentric inner conductor and outer conductor carry heating current to a carbon chuck and carbon pusher which hold the cathode in place and also heat the cathode. In the Advanced Electron Cyclotron Resonance ion source, the electron gun replaces the conventional first stage used in prior electron cyclotron resonance ion generators. 5 figures.

  7. Ozone and Botrytis interactions in onion-leaf dieback: open-top chamber studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wukasch, R.T.; Hofstra, G.

    1977-09-01

    Paired open-top chambers were used to study interactions between Botrytis spp. and ozone in field-grown onions. Charcoal filters removed 35 to 65% of the ambient ozone, resulting in six-fold reduction of onion leaf dieback and a 28% increase in onion yield compared with unfiltered chambers. Symptoms of leaf injury appeared soon after ozone levels exceeded 294 ..mu..g/m/sup 3/ (0.15 ppm) for 4 hr. Lesions caused by Botrytis were few because no dew formed in the chambers. However, when leaves were wetted with foggers, inoculation with mycelial suspensions of B. sauamosa in late August produced significantly more lesions and leaf diebackmore » in the unfiltered chamber. Botrytis squamosa, B. cinerea, B. allii, and several genera of secondary fungi were isolated from these lesions. Botrytis squamosa was recovered from lesions only, whereas B. cinerea and B. allii were associated more generally with onion leaf tissue regardless of lesions. 25 references, 1 figure, 2 tables.« less

  8. High vacuum tip-enhanced Raman spectroscope based on a scanning tunneling microscope.

    PubMed

    Fang, Yurui; Zhang, Zhenglong; Sun, Mengtao

    2016-03-01

    In this paper, we present the construction of a high-vacuum tip-enhanced Raman spectroscopy (HV-TERS) system that allows in situ sample preparation and measurement. A detailed description of the prototype instrument is presented with experimental validation of its use and novel ex situ experimental results using the HV-TERS system. The HV-TERS system includes three chambers held under a 10(-7) Pa vacuum. The three chambers are an analysis chamber, a sample preparation chamber, and a fast loading chamber. The analysis chamber is the core chamber and contains a scanning tunneling microscope (STM) and a Raman detector coupled with a 50 × 0.5 numerical aperture objective. The sample preparation chamber is used to produce single-crystalline metal and sub-monolayer molecular films by molecular beam epitaxy. The fast loading chamber allows ex situ preparation of samples for HV-TERS analysis. Atomic resolution can be achieved by the STM on highly ordered pyrolytic graphite. We demonstrate the measurement of localized temperature using the Stokes and anti-Stokes TERS signals from a monolayer of 1,2-benzenedithiol on a gold film using a gold tip. Additionally, plasmonic catalysis can be monitored label-free at the nanoscale using our device. Moreover, the HV-TERS experiments show simultaneously activated infrared and Raman vibrational modes, Fermi resonance, and some other non-linear effects that are not observed in atmospheric TERS experiments. The high spatial and spectral resolution and pure environment of high vacuum are beneficial for basic surface studies.

  9. Apparatus and method for in-situ cleaning of resist outgassing windows

    DOEpatents

    Klebanoff, Leonard E.; Haney, Steven J.

    2001-01-01

    An apparatus and method for in-situ cleaning of resist outgassing windows. The apparatus includes a chamber located in a structure, with the chamber having an outgassing window to be cleaned positioned in alignment with a slot in the chamber, whereby radiation energy passes through the window, the chamber, and the slot onto a resist-coated wafer mounted in the structure. The chamber is connected to a gas supply and the structure is connected to a vacuum pump. Within the chamber are two cylindrical sector electrodes and a filament is electrically connected to one sector electrode and a power supply. In a first cleaning method the sector electrodes are maintained at the same voltage, the filament is unheated, the chamber is filled with argon (Ar) gas under pressure, and the window is maintained at a zero voltage, whereby Ar ions are accelerated onto the window surface, sputtering away carbon deposits that build up as a result of resist outgassing. A second cleaning method is similar except oxygen gas (O.sub.2) is admitted to the chamber instead of Ar. These two methods can be carried out during lithographic operation. A third method, carried out during a maintenance period, involves admitting CO.sub.2 into the chamber, heating the filament to a point of thermionic emission, the sector electrodes are at different voltages, excited CO.sub.2 gas molecules are created which impact the carbon contamination on the window, and gasify it, producing CO gaseous products that are pumped away.

  10. Method for producing labeled single-stranded nucleic acid probes

    DOEpatents

    Dunn, John J.; Quesada, Mark A.; Randesi, Matthew

    1999-10-19

    Disclosed is a method for the introduction of unidirectional deletions in a cloned DNA segment. More specifically, the method comprises providing a recombinant DNA construct comprising a DNA segment of interest inserted in a cloning vector, the cloning vector having an f1 endonuclease recognition sequence adjacent to the insertion site of the DNA segment of interest. The recombinant DNA construct is then contacted with the protein pII encoded by gene II of phage f1 thereby generating a single-stranded nick. The nicked DNA is then contacted with E. coli Exonuclease III thereby expanding the single-stranded nick into a single-stranded gap. The single-stranded gapped DNA is then contacted with a single-strand-specific endonuclease thereby producing a linearized DNA molecule containing a double-stranded deletion corresponding in size to the single-stranded gap. The DNA treated in this manner is then incubated with DNA ligase under conditions appropriate for ligation. Also disclosed is a method for producing single-stranded DNA probes. In this embodiment, single-stranded gapped DNA, produced as described above, is contacted with a DNA polymerase in the presence of labeled nucleotides to fill in the gap. This DNA is then linearized by digestion with a restriction enzyme which cuts outside the DNA segment of interest. The product of this digestion is then denatured to produce a labeled single-stranded nucleic acid probe.

  11. Apparatus and process for deposition of hard carbon films

    DOEpatents

    Nyaiesh, Ali R.; Garwin, Edward L.

    1989-01-01

    A process and an apparatus for depositing thin, amorphous carbon films having extreme hardness on a substrate is described. An enclosed chamber maintained at less than atmospheric pressure houses the substrate and plasma producing elements. A first electrode is comprised of a cavity enclosed within an RF coil which excites the plasma. A substrate located on a second electrode is excited by radio frequency power applied to the substrate. A magnetic field confines the plasma produced by the first electrode to the area away from the walls of the chamber and focuses the plasma onto the substrate thereby yielding film deposits having higher purity and having more rapid buildup than other methods of the prior art.

  12. Amorphous metal formulations and structured coatings for corrosion and wear resistance

    DOEpatents

    Farmer, Joseph C.

    2014-07-15

    A system for coating a surface comprising providing a source of amorphous metal that contains more than 11 elements and applying the amorphous metal that contains more than 11 elements to the surface by a spray. Also a coating comprising a composite material made of amorphous metal that contains more than 11 elements. An apparatus for producing a corrosion-resistant amorphous-metal coating on a structure comprises a deposition chamber, a deposition source in the deposition chamber that produces a deposition spray, the deposition source containing a composite material made of amorphous metal that contains more than 11 elements, and a system that directs the deposition spray onto the structure.

  13. Amorphous metal formulations and structured coatings for corrosion and wear resistance

    DOEpatents

    Farmer, Joseph C [Tracy, CA

    2011-12-13

    A system for coating a surface comprising providing a source of amorphous metal that contains more than 11 elements and applying the amorphous metal that contains more than 11 elements to the surface by a spray. Also a coating comprising a composite material made of amorphous metal that contains more than 11 elements. An apparatus for producing a corrosion-resistant amorphous-metal coating on a structure comprises a deposition chamber, a deposition source in the deposition chamber that produces a deposition spray, the deposition source containing a composite material made of amorphous metal that contains more than 11 elements, and a system that directs the deposition spray onto the structure.

  14. Apparatus and process for deposition of hard carbon films

    DOEpatents

    Nyaiesh, Ali R.; Garwin, Edward L.

    1989-01-03

    A process and an apparatus for depositing thin, amorphous carbon films having extreme hardness on a substrate is described. An enclosed chamber maintained at less than atmospheric pressure houses the substrate and plasma producing elements. A first electrode is comprised of a cavity enclosed within an RF coil which excites the plasma. A substrate located on a second electrode is excited by radio frequency power applied to the substrate. A magnetic field confines the plasma produced by the first electrode to the area away from the walls of the chamber and focuses the plasma onto the substrate thereby yielding film deposits having higher purity and having more rapid buildup than other methods of the prior art.

  15. On the characteristics of emulsion chamber family events produced in low heights

    NASA Technical Reports Server (NTRS)

    Jing, G.; Jing, C.; Zhu, Q.; Ding, L.

    1985-01-01

    The uncertainty of the primary cosmic ray composition at 10 to the 14th power -10 to the 16th power eV is well known to make the study of the nuclear interaction mechanism more difficult. Experimentally considering, if one can identify effectively the family events which are produced in low heights, then an event sample induced by primary protons might be able to be separated. It is undoubtedly very meaningful. In this paper an attempt is made to simulate the family events under the condition of mountain emulsion chamber experiments with a reasonable model. The aim is to search for the dependence of some experimentally observable quantities to the interaction height.

  16. Fast electrochemical actuator

    NASA Astrophysics Data System (ADS)

    Uvarov, I. V.; Postnikov, A. V.; Svetovoy, V. B.

    2016-03-01

    Lack of fast and strong microactuators is a well-recognized problem in MEMS community. Electrochemical actuators can develop high pressure but they are notoriously slow. Water electrolysis produced by short voltage pulses of alternating polarity can overcome the problem of slow gas termination. Here we demonstrate an actuation regime, for which the gas pressure is relaxed just for 10 μs or so. The actuator consists of a microchamber filled with the electrolyte and covered with a flexible membrane. The membrane bends outward when the pressure in the chamber increases. Fast termination of gas and high pressure developed in the chamber are related to a high density of nanobubbles in the chamber. The physical processes happening in the chamber are discussed so as problems that have to be resolved for practical applications of this actuation regime. The actuator can be used as a driving engine for microfluidics.

  17. Intermittently-fed high-pressure gasifier process

    DOEpatents

    Bailey, J.M.; Zadoks, A.L.

    1993-11-30

    An improved gasifier is described which is adapted for gasifying a predetermined charge of non-gaseous fuel into fuel gas. Each charge of non-gaseous fuel, which may have optional conditioning materials added to it, is intermittently fed to a gasifier chamber where each charge is partially burned with high-pressure air supplied thereto. High-pressure and temperature fuel gas is produced which is cleansed prior to passing out of the gasifier chamber. After gasification of the charge of fuel is ended, the gasifier chamber is vented. The residue of the burned charge in the gasifier chamber is removed, along with the contaminated or reacted conditioning materials, and replaced by a fresh charge. The subject invention provides a feasible way of continuously fueling an internal combustion engine with gasified fuel and is compact enough to be practical for even mobile applications. 3 figures.

  18. Materials screening chamber for testing materials resistance to atomic oxygen

    NASA Technical Reports Server (NTRS)

    Pippin, H. G.; Carruth, Ralph

    1989-01-01

    A unique test chamber for exposing material to a known flux of oxygen atoms is described. The capabilities and operating parameters of the apparatus include production of an oxygen atom flux in excess of 5 x 10 to the 16th atoms/sq cm-sec, controlled heating of the sample specimen, RF circuitry to contain the plasma within a small volume, and long exposure times. Flux measurement capabilities include a calorimetric probe and a light titration system. Accuracy and limitations of these techniques are discussed. An extension to the main chamber to allow simultaneous ultraviolet and atomic oxygen exposure is discussed. The oxygen atoms produced are at thermal energies. Sample specimens are maintained at any selected temperature between ambient and 200 C, to within + or - 2 C. A representative example of measurements made using the chamber is presented.

  19. Intermittently-fed high-pressure gasifier process

    DOEpatents

    Bailey, John M.; Zadoks, Abraham L.

    1993-11-30

    An improved gasifier adapted for gasifying a predetermined charge of non-gaseous fuel into fuel gas. Each charge of non-gaseous fuel, which may have optional conditioning materials added to it, is intermittently fed to a gasifier chamber where each charge is partially burned with high-pressure air supplied thereto. High-pressure and temperature fuel gas is produced which is cleansed prior to passing out of the gasifier chamber. After gasification of the charge of fuel is is ended, the gasifier chamber is vented. The residue of the burned charge in the gasifier chamber is removed, along with the contaminated or reacted conditioning materials, and replaced by a fresh charge. The subject invention provides a feasible way of continuously fueling an internal combustion engine with gasified fuel and is compact enough to be practical for even mobile applications.

  20. Thermionic converter

    DOEpatents

    Fitzpatrick, Gary O.

    1987-05-19

    A thermionic converter (10) is set forth which includes an envelope (12) having an electron collector structure (22) attached adjacent to a wall (16). An electron emitter structure (24) is positioned adjacent the collector structure (22) and spaced apart from opposite wall (14). The emitter (24) and collector (22) structures are in a common chamber (20). The emitter structure (24) is heated substantially only by thermal radiation. Very small interelectrode gaps (28) can be maintained utilizing the thermionic converter (10) whereby increased efficiency results.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Artem’ev, K. V.; Berezhetskaya, N. K.; Kossyi, I. A., E-mail: kossyi@fpl.gpi.ru

    Results are presented from experiments on the inflammation of a stoichiometric methane-oxygen mixture by a high-current multielectrode spark-gap in a closed cylindrical chamber. It is shown that, in both the preflame and well-developed flame stages, the gas medium is characterized by a high degree of ionization (n{sub e} ≈ 10{sup 12} cm{sup −3}) due to chemoionization processes and a high electron-neutral collision frequency (ν{sub e0} ≈ 10{sup 12} s{sup −1})

  2. A Front-End Electronics Prototype Based on Gigabit Ethernet for the ATLAS Small-Strip Thin Gap Chamber

    NASA Astrophysics Data System (ADS)

    Hu, Kun; Lu, Houbing; Wang, Xu; Li, Feng; Wang, Xinxin; Geng, Tianru; Yang, Hang; Liu, Shengquan; Han, Liang; Jin, Ge

    2017-06-01

    A front-end electronics prototype for the ATLAS small-strip Thin Gap Chamber (sTGC) based on gigabit Ethernet has been developed. The prototype is designed to read out signals of pads, wires, and strips of the sTGC detector. The prototype includes two VMM2 chips developed to read out the signals of the sTGC, a Xilinx Kintex-7 field-programmable gate array (FPGA) used for the VMM2 configuration and the events storage, and a gigabit Ethernet transceiver PHY chip for interfacing with a computer. The VMM2 chip is designed for the readout of the Micromegas detector and sTGC detector, which is composed of 64 linear front-end channels. Each channel integrates a charge-sensitive amplifier, a shaper, several analog-to-digital converters, and other digital functions. For a bunch-crossing interval of 25 ns, events are continuously read out by the FPGA and forwarded to the computer. The interface between the computer and the prototype has been measured to reach an error-free rate of 900 Mb/s, therefore making a very effective use of the available bandwidth. Additionally, the computer can control several prototypes of this kind simultaneously via the Ethernet interface. At present, the prototype will be used for the sTGC performance test. The features of the prototype are described in detail.

  3. Calculation of midplane dose for total body irradiation from entrance and exit dose MOSFET measurements.

    PubMed

    Satory, P R

    2012-03-01

    This work is the development of a MOSFET based surface in vivo dosimetry system for total body irradiation patients treated with bilateral extended SSD beams using PMMA missing tissue compensators adjacent to the patient. An empirical formula to calculate midplane dose from MOSFET measured entrance and exit doses has been derived. The dependency of surface dose on the air-gap between the spoiler and the surface was investigated by suspending a spoiler above a water phantom, and taking percentage depth dose measurements (PDD). Exit and entrances doses were measured with MOSFETs in conjunction with midplane doses measured with an ion chamber. The entrance and exit doses were combined using an exponential attenuation formula to give an estimate of midplane dose and were compared to the midplane ion chamber measurement for a range of phantom thicknesses. Having a maximum PDD at the surface simplifies the prediction of midplane dose, which is achieved by ensuring that the air gap between the compensator and the surface is less than 10 cm. The comparison of estimated midplane dose and measured midplane dose showed no dependence on phantom thickness and an average correction factor of 0.88 was found. If the missing tissue compensators are kept within 10 cm of the patient then MOSFET measurements of entrance and exit dose can predict the midplane dose for the patient.

  4. Lattice Matched Iii-V IV Semiconductor Heterostructures: Metalorganic Chemical Vapor Deposition and Remote Plasma Enhanced Chemical Vapor Deposition.

    NASA Astrophysics Data System (ADS)

    Choi, Sungwoo

    1992-01-01

    This thesis describes the growth and characterization of wide gap III-V compound semiconductors such as aluminum gallium arsenide (Al_{rm x} Ga_{rm 1-x}As), gallium nitride (GaN), and gallium phosphide (GaP), deposited by the metalorganic chemical vapor deposition (MOCVD) and remote plasma enhanced chemical vapor deposition (Remote PECVD). In the first part of the thesis, the optimization of GaAs and Al_{rm x}Ga _{rm 1-x}As hetero -epitaxial layers on Ge substrates is described in the context of the application in the construction of cascade solar cells. The emphasis on this study is on the trade-offs in the choice of the temperature related to increasing interdiffusion/autodoping and increasing perfection of the epilayer with increasing temperature. The structural, chemical, optical, and electrical properties of the heterostructures are characterized by x-ray rocking curve measurement, scanning electron microscopy (SEM), electron beam induced current (EBIC), cross-sectional transmission electron microscopy (X-TEM), Raman spectroscopy, secondary ion mass spectrometry (SIMS), and steady-state and time-resolved photoluminescence (PL). Based on the results of this work the optimum growth temperature is 720^circC. The second part of the thesis describes the growth of GaN and GaP layers on silicon and sapphire substrates and the homoepitaxy of GaP by remote PECVD. I have designed and built an ultra high vacuum (UHV) deposition system which includes: the gas supply system, the pumping system, the deposition chamber, the load-lock chamber, and the waste disposal system. The work on the deposition of GaN on Si and sapphire focuses onto the understanding of the growth kinetics. In addition, Auger electron spectroscopy (AES) for surface analysis, x-ray diffraction methods and microscopic analyses using SEM and TEM for structural characterization, infrared (IR) and ultraviolet (UV) absorption measurements for optical characterization, and electrical characterization results on the GaN films are presented. In the deposition GaP thin films by remote PECVD, trimethylgallium and in-situ generated phosphine precursors are employed as source gases which permits homo- and heteroepitaxial growth as substrate temperature of 590-620^ circC. Also, the growth kinetics of gallium phosphide is discussed. As in the case of GaN, the surface, structural, chemical, optical, and electrical properties are characterized and the results are discussed.

  5. Spectroscopy of reactive species produced by low-energy atmospheric-pressure plasma on conductive target material surface

    NASA Astrophysics Data System (ADS)

    Yamada, Hiromasa; Sakakita, Hajime; Kato, Susumu; Kim, Jaeho; Kiyama, Satoru; Fujiwara, Masanori; Itagaki, Hirotomo; Okazaki, Toshiya; Ikehara, Sanae; Nakanishi, Hayao; Shimizu, Nobuyuki; Ikehara, Yuzuru

    2016-10-01

    A method for blood coagulation using low-energy atmospheric-pressure plasma (LEAPP) is confirmed as an alternative procedure to reduce tissue damage caused by heat. Blood coagulation using LEAPP behaves differently depending on working gas species; helium is more effective than argon in promoting fast coagulation. To analyse the difference in reactive species produced by helium and argon plasma, spectroscopic measurements were conducted without and with a target material. To compare emissions, blood coagulation experiments using LEAPP for both plasmas were performed under almost identical conditions. Although many kinds of reactive species such as hydroxyl radicals and excited nitrogen molecules were observed with similar intensity in both plasmas, intensities of nitrogen ion molecules and nitric oxide molecules were extremely strong in the helium plasma. It is considered that nitrogen ion molecules were mainly produced by penning ionization by helium metastable. Near the target, a significant increase in the emissions of reactive species is observed. There is a possibility that electron acceleration was induced in a local electric field formed on the surface. However, in argon plasma, emissions from nitrogen ion were not measured even near the target surface. These differences between the two plasmas may be producing the difference in blood coagulation behaviour. To control the surrounding gas of the plasma, a gas-component-controllable chamber was assembled. Filling the chamber with O2/He or N2/He gas mixtures selectively produces either reactive oxygen species or reactive nitrogen species. Through selective treatments, this chamber would be useful in studying the effects of specific reactive species on blood coagulation.

  6. Review and bibliometric analysis of published literature citing data produced by the Gap Analysis Program (GAP)

    USGS Publications Warehouse

    Ratz, Joan M.; Conk, Shannon J.

    2014-01-01

    The Gap Analysis Program (GAP) of the U.S. Geological Survey (USGS) produces geospatial datasets providing information on land cover, predicted species distributions, stewardship (ownership and conservation status), and an analysis dataset which synthesizes the other three datasets. The intent in providing these datasets is to support the conservation of biodiversity. The datasets are made available at no cost. The initial datasets were created at the state level. More recent datasets have been assembled at regional and national levels. GAP entered an agreement with the Policy Analysis and Science Assistance branch of the USGS to conduct an evaluation to describe the effect that using GAP data has on those who utilize the datasets (GAP users). The evaluation project included multiple components: a discussion regarding use of GAP data conducted with participants at a GAP conference, a literature review of publications that cited use of GAP data, and a survey of GAP users. The findings of the published literature search were used to identify topics to include on the survey. This report summarizes the literature search, the characteristics of the resulting set of publications, the emergent themes from statements made regarding GAP data, and a bibliometric analysis of the publications. We cannot claim that this list includes all publications that have used GAP data. Given the time lapse that is common in the publishing process, more recent datasets may be cited less frequently in this list of publications. Reports or products that used GAP data may be produced but never published in print or released online. In that case, our search strategies would not have located those reports. Authors may have used GAP data but failed to cite it in such a way that the search strategies we used would have located those publications. These are common issues when using a literature search as part of an evaluation project. Although the final list of publications we identified is not comprehensive, this set of publications can be considered a sufficient sample of those citing GAP data and suitable for the descriptive analyses we conducted.

  7. Method for nanoencapsulation of aerogels and nanoencapsulated aerogels produced by such method

    NASA Technical Reports Server (NTRS)

    Sullivan, Thomas A. (Inventor)

    2007-01-01

    A method for increasing the compressive modulus of aerogels comprising: providing aerogel substrate comprising a bubble matrix in a chamber; providing monomer to the chamber, the monomer comprising vapor phase monomer which polymerizes substantially free of polymerization byproducts; depositing monomer from the vapor phase onto the surface of the aerogel substrate under deposition conditions effective to produce a vapor pressure sufficient to cause the vapor phase monomer to penetrate into the bubble matrix and deposit onto the surface of the aerogel substrate, producing a substantially uniform monomer film; and, polymerizing the substantially uniform monomer film under polymerization conditions effective to produce polymer coated aerogel comprising a substantially uniform polymer coating substantially free of polymerization byproducts.Polymer coated aerogel comprising aerogel substrate comprising a substantially uniform polymer coating, said polymer coated aerogel comprising porosity and having a compressive modulus greater than the compressive modulus of the aerogel substrate, as measured by a 100 lb. load cell at 1 mm/minute in the linear range of 20% to 40% compression.

  8. A boussinesq model of natural convection in the human eye and the formation of Krukenberg's spindle.

    PubMed

    Heys, Jeffrey J; Barocas, Victor H

    2002-03-01

    The cornea of the human eye is cooled by the surrounding air and by evaporation of the tear film. The temperature difference between the cornea and the iris (at core body temperature) causes circulation of the aqueous humor in the anterior chamber of the eye. Others have suggested that the circulation pattern governs the shape of the Krukenberg spindle, a distinctive vertical band of pigment on the posterior cornea surface in some pathologies. We modeled aqueous humor flow the human eye, treating the humor as a Boussinesq fluid and setting the corneal temperature based on infrared surface temperature measurements. The model predicts convection currents in the anterior chamber with velocities comparable to those resulting from forced flow through the gap between the iris and lens. When paths of pigment particles are calculated based on the predicted flow field, the particles circulate throughout the anterior chamber but tend to be near the vertical centerline of the eye for a greatest period of time. Further, the particles are usually in close proximity to the cornea only when they are near the vertical centerline. We conclude that the convective flow pattern of aqueous humor is consistent with a vertical pigment spindle.

  9. Produced water ponds are an important source of aromatics and alcohols in Rocky Mountain oil and gas basins

    NASA Astrophysics Data System (ADS)

    Lyman, S. N.

    2017-12-01

    Most of the water extracted with oil and natural gas (i.e., produced water) is disposed of by injection into the subsurface. In the arid western United States, however, a significant portion of produced water is discharged in ponds for evaporative disposal, and produced water is often stored in open ponds prior to subsurface injection. Even though they are common in the West (Utah's Uinta Basin has almost 200 ha), produced water ponds have been excluded from oil and gas emissions inventories because little information about their emission rates and speciation is available. We used flux chambers and inverse plume modeling to measure emissions of methane, C2-C11 hydrocarbons, light alcohols, carbonyls, and carbon dioxide from oil and gas produced water storage and disposal ponds in the Uinta Basin and the Upper Green River Basin, Wyoming, during 2013-2017. Methanol was the most abundant organic compound in produced water (91 ± 2% of the total volatile organic concentration; mean ± 95% confidence interval) but accounted for only 25 ± 30% of total organic compound emissions from produced water ponds. Non-methane hydrocarbons, especially C6-C9 alkanes and aromatics, accounted for the majority of emitted organics. We were able to predict emissions of individual compounds based on water concentrations, but only to within an order of magnitude. The speciation and magnitude of emissions varied strongly across facilities and was influenced by water age, the presence or absence of oil sheens, and with meteorological conditions (especially ice cover). Flux chamber measurements were lower than estimates from inverse modeling techniques.Based on our flux chamber measurements, we estimate that produced water ponds are responsible for between 3 and 9% of all non-methane organic compound emissions in the Uinta Basin (or as much as 18% if we rely on our inverse modeling results). Emissions from produced water ponds contain little methane and are more reactive (i.e., they have higher maximum incremental reactivity) than typical oil and gas-related emissions. Produced water ponds emit about 11% and 28%, respectively, of all aromatics and alcohols from the Uinta Basin oil and gas industry.

  10. CFD Modelling of a Quadrupole Vortex Inside a Cylindrical Channel for Research into Advanced Hybrid Rocket Designs

    NASA Astrophysics Data System (ADS)

    Godfrey, B.; Majdalani, J.

    2014-11-01

    This study relies on computational fluid dynamics (CFD) tools to analyse a possible method for creating a stable quadrupole vortex within a simulated, circular-port, cylindrical rocket chamber. A model of the vortex generator is created in a SolidWorks CAD program and then the grid is generated using the Pointwise mesh generation software. The non-reactive flowfield is simulated using an open source computational program, Stanford University Unstructured (SU2). Subsequent analysis and visualization are performed using ParaView. The vortex generation approach that we employ consists of four tangentially injected monopole vortex generators that are arranged symmetrically with respect to the center of the chamber in such a way to produce a quadrupole vortex with a common downwash. The present investigation focuses on characterizing the flow dynamics so that future investigations can be undertaken with increasing levels of complexity. Our CFD simulations help to elucidate the onset of vortex filaments within the monopole tubes, and the evolution of quadrupole vortices downstream of the injection faceplate. Our results indicate that the quadrupole vortices produced using the present injection pattern can become quickly unstable to the extent of dissipating soon after being introduced into simulated rocket chamber. We conclude that a change in the geometrical configuration will be necessary to produce more stable quadrupoles.

  11. Unconventional nozzle tradeoff study. [space tug propulsion

    NASA Technical Reports Server (NTRS)

    Obrien, C. J.

    1979-01-01

    Plug cluster engine design, performance, weight, envelope, operational characteristics, development cost, and payload capability, were evaluated and comparisons were made with other space tug engine candidates using oxygen/hydrogen propellants. Parametric performance data were generated for existing developed or high technology thrust chambers clustered around a plug nozzle of very large diameter. The uncertainties in the performance prediction of plug cluster engines with large gaps between the modules (thrust chambers) were evaluated. The major uncertainty involves, the aerodynamics of the flow from discrete nozzles, and the lack of this flow to achieve the pressure ratio corresponding to the defined area ratio for a plug cluster. This uncertainty was reduced through a cluster design that consists of a plug contour that is formed from the cluster of high area ratio bell nozzles that have been scarfed. Light-weight, high area ratio, bell nozzles were achieved through the use of AGCarb (carbon-carbon cloth) nozzle extensions.

  12. Atmospheric sampling glow discharge ionization source

    DOEpatents

    McLuckey, Scott A.; Glish, Gary L.

    1989-01-01

    An atmospheric sampling glow discharge ionization source that can be used in combination with an analytical instrument which operates at high vacuum, such as a mass spectrometer. The atmospheric sampling glow discharge ionization source comprises a chamber with at least one pair of electrodes disposed therein, an inlet for a gaseous sample to be analyzed and an outlet communicating with an analyzer which operates at subatmospheric pressure. The ionization chamber is maintained at a pressure below atmospheric pressure, and a voltage difference is applied across the electrodes to induce a glow discharge between the electrodes, so that molecules passing through the inlet are ionized by the glow discharge and directed into the analyzer. The ionization source accepts the sample under atmospheric pressure conditions and processes it directly into the high vacuum instrument, bridging the pressure gap and drawing off unwanted atmospheric gases. The invention also includes a method for analyzing a gaseous sample using the glow discharge ionization source described above.

  13. Particle identification with the ALICE Time-Of-Flight detector at the LHC

    NASA Astrophysics Data System (ADS)

    Alici, A.

    2014-12-01

    High performance Particle Identification system (PID) is a distinguishing characteristic of the ALICE experiment at the CERN Large Hadron Collider (LHC). Charged particles in the intermediate momentum range are identified in ALICE by the Time-Of-Flight (TOF) detector. The TOF exploits the Multi-gap Resistive Plate Chamber (MRPC) technology, capable of an intrinsic time resolution at the level of few tens of ps with an overall efficiency close to 100% and a large operation plateau. The full system is made of 1593 MRPC chambers with a total area of 141 m2, covering the pseudorapidity interval [-0.9,+0.9] and the full azimuthal angle. The ALICE TOF system has shown very stable operation during the first 3 years of collisions at the LHC. In this paper a summary of the system performance as well as main results with data from collisions will be reported.

  14. Mathematical Models of Continuous Flow Electrophoresis

    NASA Technical Reports Server (NTRS)

    Saville, D. A.; Snyder, R. S.

    1985-01-01

    Development of high resolution continuous flow electrophoresis devices ultimately requires comprehensive understanding of the ways various phenomena and processes facilitate or hinder separation. A comprehensive model of the actual three dimensional flow, temperature and electric fields was developed to provide guidance in the design of electrophoresis chambers for specific tasks and means of interpreting test data on a given chamber. Part of the process of model development includes experimental and theoretical studies of hydrodynamic stability. This is necessary to understand the origin of mixing flows observed with wide gap gravitational effects. To insure that the model accurately reflects the flow field and particle motion requires extensive experimental work. Another part of the investigation is concerned with the behavior of concentrated sample suspensions with regard to sample stream stability particle-particle interactions which might affect separation in an electric field, especially at high field strengths. Mathematical models will be developed and tested to establish the roles of the various interactions.

  15. Understanding the Knowledge Gap Experienced by U.S. Safety Net Patients in Teleretinal Screening.

    PubMed

    George, Sheba M; Hayes, Erin Moran; Fish, Allison; Daskivich, Lauren Patty; Ogunyemi, Omolola I

    2016-01-01

    Safety-net patients' socioeconomic barriers interact with limited digital and health literacies to produce a "knowledge gap" that impacts the delivery of healthcare via telehealth technologies. Six focus groups (2 African- American and 4 Latino) were conducted with patients who received teleretinal screening in a U.S. urban safety-net setting. Focus groups were analyzed using a modified grounded theory methodology. Findings indicate that patients' knowledge gap is primarily produced at three points during the delivery of care: (1) exacerbation of patients' pre-existing personal barriers in the clinical setting; (2) encounters with technology during screening; and (3) lack of follow up after the visit. This knowledge gap produces confusion, potentially limiting patients' perceptions of care and their ability to manage their own care. It may be ameliorated through delivery of patient education focused on both disease pathology and specific role of telehealth technologies in disease management.

  16. The mechanism of transient myopia induced by sulfonamide therapy.

    PubMed

    Bovino, J A; Marcus, D F

    1982-07-01

    We performed acute and convalescent A-scan echographic ocular measurements documenting the anterior chamber depth, lens thickness, and axial length of a patient with acute transient sulfamethoxazole-induced myopia. Shallowing of the anterior chamber, independent of changes in the thickness of the lens, was the only anatomic variation found that could explain the myopia. Swelling of the ciliary body, with forward movement of the lens-iris diaphragm, could produce this transient anatomic change.

  17. Cluster generator

    DOEpatents

    Donchev, Todor I [Urbana, IL; Petrov, Ivan G [Champaign, IL

    2011-05-31

    Described herein is an apparatus and a method for producing atom clusters based on a gas discharge within a hollow cathode. The hollow cathode includes one or more walls. The one or more walls define a sputtering chamber within the hollow cathode and include a material to be sputtered. A hollow anode is positioned at an end of the sputtering chamber, and atom clusters are formed when a gas discharge is generated between the hollow anode and the hollow cathode.

  18. Construction and evaluation of a modular biofilm-forming chamber for microbial recovery of neodymium and semi-continuous biofilm preparation. Tolerance of Serratia sp.N14 on acidic conditions and neutralized aqua regia.

    PubMed

    Vavlekas, Dimitrios A

    2017-02-01

    Recovery of neodymium from liquid metallic wastes and scrap leachates is a crucial step for its recycling, which can take place through the immobilized biofilms of Serratia sp. N14. These biofilms are produced in a fermentor vessel with a turnaround time of 10-14 days, which is unacceptable from an economic point of view for an industrial process. This study proposes the construction and evaluation of a modular system, whereby a biofilm-forming chamber is inserted into the continuous biomass outflow of the main chemostat vessel, for an alternative semi-continuous and economic production of biofilm. The activity of the biofilm from the outflow chamber was found to be the same as the one from the main chamber, which was stored in a cold room (4°C), for 9-12 months, depending on a 24 h nucleation step.Moreover, the ability of the biofilm to function in the presence of a leaching agent (aqua regia) or in acidic conditions was also evaluated. The biofilm of the main chamber can remain active even at 50% neutralized aqua regia (pH 3.0), while at acidic conditions, phosphate release of the cells is reduced to 50%. This strain proves to be very tolerant in low pH or high salt concentration solutions. The biofilm produced from the outflow of the main fermentor vessel is of acceptable activity, rather than being disposed.

  19. A long-term study of tree seedling recruitment in Southern Appalachian forests: the effects of canopy gaps and shrub understories

    Treesearch

    Brian Beckage; James S. Clark; Barton D. Clinton; Bruce L. Haines

    2000-01-01

    We examined the importance of intermediate-sized gaps and a dense shrub layer on tree seedling recruitment in a Southern Appalachian deciduous forest. We created 12 canopy gaps under two contrasting understory conditions: 6 gaps were dominated by the dense, shade-producing shrub, Rhododendron maximum L., while the remaining gaps were relatively open...

  20. Ozone curbs crown rust

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1970-01-01

    Crown rust, the most destructive disease of oats, was suppressed in laboratory fumigation chambers by ozone air pollution levels commonly surpassed in many areas. Whether the effects of air pollution on crown rust are of economic importance under field conditions is yet to be determined. Crown rust, caused by the fungus Puccinia coronata, is particularly destructive in Southern and North Central States, often reducing yields 20 percent or more. Rust pustules on oats were significantly smaller when plants were exposed to 10 parts per hundred million ozone for 6 hours in the light on the 10 days after infection. Aboutmore » half as many rust spores were produced in the ozone chamber as in one protected by carbon filters. Exposure to 10 pphm ozone did not affect viability of spores. Spores produced on exposed plants germinated and penetrated stomates of oat leaves as well as spores produced on unexposed leaves.« less

  1. Rapid, simple and inexpensive production of custom 3D printed equipment for large-volume fluorescence microscopy

    PubMed Central

    Tyson, Adam L.; Hilton, Stephen T.; Andreae, Laura C.

    2015-01-01

    The cost of 3D printing has reduced dramatically over the last few years and is now within reach of many scientific laboratories. This work presents an example of how 3D printing can be applied to the development of custom laboratory equipment that is specifically adapted for use with the novel brain tissue clearing technique, CLARITY. A simple, freely available online software tool was used, along with consumer-grade equipment, to produce a brain slicing chamber and a combined antibody staining and imaging chamber. Using standard 3D printers we were able to produce research-grade parts in an iterative manner at a fraction of the cost of commercial equipment. 3D printing provides a reproducible, flexible, simple and cost-effective method for researchers to produce the equipment needed to quickly adopt new methods. PMID:25797056

  2. An experimental study of recombination and polarity effect in a set of customized plane parallel ionization chambers.

    PubMed

    Kron, T; McNiven, A; Witruk, B; Kenny, M; Battista, J

    2006-12-01

    Plane parallel ionization chambers are an important tool for dosimetry and absolute calibration of electron beams used for radiotherapy. Most dosimetric protocols require corrections for recombination and polarity effects, which are to be determined experimentally as they depend on chamber design and radiation quality. Both effects were investigated in electron beams from a linear accelerator (Varian 21CD) for a set of four tissue equivalent plane parallel ionization chambers customized for the present research by Standard Imaging (Madison WI). All four chambers share the same design and air cavity dimensions, differing only in the diameter of their collecting electrode and the corresponding width of the guard ring. The diameters of the collecting electrodes were 2 mm, 4 mm, 10 mm and 20 mm. Measurements were taken using electron beams of nominal energy 6 to 20 MeV in a 10 cm x 10 cm field size with a SSD of 100 cm at various depths in a Solid Water slab phantom. No significant variation of recombination effect was found with radiation quality, depth of measurement or chamber design. However, the polarity effect exceeded 5% for the chambers with small collecting electrode for an effective electron energy below 4 MeV at the point of measurement. The magnitude of the effect increased with decreasing electron energy in the phantom. The polarity correction factor calculated following AAPM protocol TG51 ranged from approximately 1.00 for the 20.0 mm chamber to less than 0.95 for the 2 mm chamber at 4.1 cm depth in a electron beam of nominally 12 MeV. By inverting the chamber it could be shown that the polarity effect did not depend on the polarity of the electrode first traversed by the electron beam. Similarly, the introduction of an air gap between the overlying phantom layer and the chambers demonstrated that the angular distribution of the electrons at the point of measurement had a lesser effect on the polarity correction than the electron energy itself. The magnitude of the absolute difference between charge collected at positive and negative polarity was found to correlate with the area of the collecting electrode which is consistent with the explanation that differences in thickness of the collecting electrodes and the number of electrons stopped in them contribute significantly to the polarity effect. Overall, the polarity effects found in the present study would have a negligible effect on electron beam calibration at a measurement depth recommended by most calibration protocols. However, the present work tested the corrections under extreme conditions thereby aiming at greater understanding of the mechanism underlying the correction factors for these chambers. This may lead to better chamber design for absolute dosimetry and electron beam characterization with less reliance on empirical corrections.

  3. Forecasting magma-chamber rupture at Santorini volcano, Greece.

    PubMed

    Browning, John; Drymoni, Kyriaki; Gudmundsson, Agust

    2015-10-28

    How much magma needs to be added to a shallow magma chamber to cause rupture, dyke injection, and a potential eruption? Models that yield reliable answers to this question are needed in order to facilitate eruption forecasting. Development of a long-lived shallow magma chamber requires periodic influx of magmas from a parental body at depth. This redistribution process does not necessarily cause an eruption but produces a net volume change that can be measured geodetically by inversion techniques. Using continuum-mechanics and fracture-mechanics principles, we calculate the amount of magma contained at shallow depth beneath Santorini volcano, Greece. We demonstrate through structural analysis of dykes exposed within the Santorini caldera, previously published data on the volume of recent eruptions, and geodetic measurements of the 2011-2012 unrest period, that the measured 0.02% increase in volume of Santorini's shallow magma chamber was associated with magmatic excess pressure increase of around 1.1 MPa. This excess pressure was high enough to bring the chamber roof close to rupture and dyke injection. For volcanoes with known typical extrusion and intrusion (dyke) volumes, the new methodology presented here makes it possible to forecast the conditions for magma-chamber failure and dyke injection at any geodetically well-monitored volcano.

  4. A facility for long-term Mars simulation experiments: the Mars Environmental Simulation Chamber (MESCH).

    PubMed

    Jensen, Lars Liengaard; Merrison, Jonathan; Hansen, Aviaja Anna; Mikkelsen, Karina Aarup; Kristoffersen, Tommy; Nørnberg, Per; Lomstein, Bente Aagaard; Finster, Kai

    2008-06-01

    We describe the design, construction, and pilot operation of a Mars simulation facility comprised of a cryogenic environmental chamber, an atmospheric gas analyzer, and a xenon/mercury discharge source for UV generation. The Mars Environmental Simulation Chamber (MESCH) consists of a double-walled cylindrical chamber. The double wall provides a cooling mantle through which liquid N(2) can be circulated. A load-lock system that consists of a small pressure-exchange chamber, which can be evacuated, allows for the exchange of samples without changing the chamber environment. Fitted within the MESCH is a carousel, which holds up to 10 steel sample tubes. Rotation of the carousel is controlled by an external motor. Each sample in the carousel can be placed at any desired position. Environmental data, such as temperature, pressure, and UV exposure time, are computer logged and used in automated feedback mechanisms, enabling a wide variety of experiments that include time series. Tests of the simulation facility have successfully demonstrated its ability to produce temperature cycles and maintain low temperature (down to -140 degrees C), low atmospheric pressure (5-10 mbar), and a gas composition like that of Mars during long-term experiments.

  5. A Facility for Long-Term Mars Simulation Experiments: The Mars Environmental Simulation Chamber (MESCH)

    NASA Astrophysics Data System (ADS)

    Jensen, Lars Liengaard; Merrison, Jonathan; Hansen, Aviaja Anna; Mikkelsen, Karina Aarup; Kristoffersen, Tommy; Nørnberg, Per; Lomstein, Bente Aagaard; Finster, Kai

    2008-06-01

    We describe the design, construction, and pilot operation of a Mars simulation facility comprised of a cryogenic environmental chamber, an atmospheric gas analyzer, and a xenon/mercury discharge source for UV generation. The Mars Environmental Simulation Chamber (MESCH) consists of a double-walled cylindrical chamber. The double wall provides a cooling mantle through which liquid N2 can be circulated. A load-lock system that consists of a small pressure-exchange chamber, which can be evacuated, allows for the exchange of samples without changing the chamber environment. Fitted within the MESCH is a carousel, which holds up to 10 steel sample tubes. Rotation of the carousel is controlled by an external motor. Each sample in the carousel can be placed at any desired position. Environmental data, such as temperature, pressure, and UV exposure time, are computer logged and used in automated feedback mechanisms, enabling a wide variety of experiments that include time series. Tests of the simulation facility have successfully demonstrated its ability to produce temperature cycles and maintain low temperature (down to -140°C), low atmospheric pressure (5 10 mbar), and a gas composition like that of Mars during long-term experiments.

  6. Study of low speed flow cytometry for diffraction imaging with different chamber and nozzle designs.

    PubMed

    Sa, Yu; Feng, Yuanming; Jacobs, Kenneth M; Yang, Jun; Pan, Ran; Gkigkitzis, Ioannis; Lu, Jun Q; Hu, Xin-Hua

    2013-11-01

    Achieving effective hydrodynamic focusing and flow stability at low speed presents a challenging design task in flow cytometry for studying phenomena such as cell adhesion and diffraction imaging of cells with low-cost cameras. We have developed different designs of flow chamber and sheath nozzle to accomplish the above goal. A 3D computational model of the chambers has been established to simulate the fluid dynamics in different chamber designs and measurements have been performed to determine the velocity and size distributions of the core fluid from the nozzle. Comparison of the simulation data with experimental results shows good agreement. With the computational model significant insights were gained for optimization of the chamber design and improvement of the cell positioning accuracy for study of slow moving cells. The benefit of low flow speed has been demonstrated also by reduced blurring in the diffraction images of single cells. Based on these results, we concluded that the new designs of chamber and sheath nozzle produce stable hydrodynamic focusing of the core fluid at low speed and allow detailed study of cellular morphology under various rheological conditions using the diffraction imaging method. © 2013 International Society for Advancement of Cytometry.

  7. Performance studies of resistive Micromegas chambers for the upgrade of the ATLAS Muon Spectrometer

    NASA Astrophysics Data System (ADS)

    Ntekas, Konstantinos

    2018-02-01

    The ATLAS collaboration at LHC has endorsed the resistive Micromegas technology (MM), along with the small-strip Thin Gap Chambers (sTGC), for the high luminosity upgrade of the first muon station in the high-rapidity region, the so called New Small Wheel (NSW) project. The NSW requires fully efficient MM chambers, up to a particle rate of ˜ 15 kHz/cm2, with spatial resolution better than 100 μm independent of the track incidence angle and the magnetic field (B ≤ 0.3 T). Along with the precise tracking the MM should be able to provide a trigger signal, complementary to the sTGC, thus a decent timing resolution is required. Several tests have been performed on small (10 × 10 cm2) MM chambers using medium (10 GeV/c) and high (150 GeV/c) momentum hadron beams at CERN. Results on the efficiency and position resolution measured during these tests are presented demonstrating the excellent characteristics of the MM that fulfil the NSW requirements. Exploiting the ability of the MM to work as a Time Projection Chamber a novel method, called the μTPC, has been developed for the case of inclined tracks, allowing for a precise segment reconstruction using a single detection plane. A detailed description of the method along with thorough studies towards refining the method's performance are shown. Finally, during 2014 the first MM quadruplet (MMSW) following the NSW design scheme, comprising four detection planes in a stereo readout configuration, has been realised at CERN. Test-beam results of this prototype are discussed and compared to theoretical expectations.

  8. Echocardiographic nomograms for chamber diameters and areas in Caucasian children.

    PubMed

    Cantinotti, Massimiliano; Scalese, Marco; Murzi, Bruno; Assanta, Nadia; Spadoni, Isabella; De Lucia, Vittoria; Crocetti, Maura; Cresti, Alberto; Gallotta, Milena; Marotta, Marco; Tyack, Karin; Molinaro, Sabrina; Iervasi, Giorgio

    2014-12-01

    Although a quantitative evaluation of cardiac chamber dimensions in pediatric echocardiography is often important, nomograms for these structures are limited. The aim of this study was to establish reliable echocardiographic nomograms of cardiac chamber diameters and areas in a wide population of children. A total of 1,091 Caucasian Italian healthy children (age range, 0 days to 17 years; 44.8% female) with body surface areas (BSAs) ranging from 0.12 to 1.8 m(2) were prospectively enrolled. Twenty-two two-dimensional and M-mode measurements of atrial and ventricular chamber diameters and areas were performed. Models using linear, logarithmic, exponential, and square-root relationships were tested. Heteroscedasticity was tested by the White test and the Breusch-Pagan test. Age, weight, height, and BSA, calculated by the Haycock formula, were used as the independent variables in different analyses to predict the mean value of each echocardiographic measurement. The influence of various confounders, including gender, type of delivery, prematurity, and interobserver variability, was also evaluated. Structured Z scores were then computed. The Haycock formula provided the best fit and was used when presenting data as predicted values (mean ± 2 SDs) for a given BSA and within equations relating echocardiographic measurements to BSA. Confounders were not included in the final models, because they did not show significant effects for most of the measurements. Echocardiographic reference values are presented for chamber area and diameters, derived from a large population of healthy children. These data partly cover a gap in actual pediatric echocardiographic nomograms. Further studies are required to reinforce these data, as well as to evaluate other parameters and ethnicities. Copyright © 2014 American Society of Echocardiography. Published by Elsevier Inc. All rights reserved.

  9. Mechanisms Affecting Performance of the BaBar Resistive Plate Chambers and Searches for Remediation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Changguo

    2003-09-19

    The BaBar experiment at PEPII relies on the Instrumentation of the Flux Return (IFR) for both muon identification and KL detection. The active detector is composed of Resistive Plate Chambers (RPC's) operated in streamer mode. Since the start of operation the RPC's have suffered persistent efficiency deterioration and dark current increase problems. The ''autopsy'' of bad BaBar RPC's revealed that in many cases uncured Linseed oil droplets had formed on the inner surface of the Bakelite plates, leading to current paths from oil ''stalagmites'' bridging the 2 mm gap. In this paper a possible model of this ''stalagmite'' formation andmore » its effect on the dark current and efficiency of RPC chambers is presented. Laboratory test results strongly support this model. Based upon this model we are searching for solutions to eliminate the unfavorable effect of the oil stalagmites. The lab tests show that the stalagmite resistivity increases dramatically if exposed to the air, an observation that points to a possible way to remedy the damage and increase the efficiency. We have seen that flowing an oxygen gas mixture into the chamber helps to polymerize the uncured linseed oil. Consequently the resistivity of the bridged oil stalagmites increases, as does that of the oil coating on the frame edges and spacers, significantly reducing the RPC dark currents and low-efficiency regions. We have tested this idea on two chambers removed from BaBar because of their low efficiency and high dark current. These test results are reported in the paper, and two other remediation methods also mentioned. We continue to study this problem, and try to find new treatments with permanent improvement.« less

  10. Rotating Detonation Combustion: A Computational Study for Stationary Power Generation

    NASA Astrophysics Data System (ADS)

    Escobar, Sergio

    The increased availability of gaseous fossil fuels in The US has led to the substantial growth of stationary Gas Turbine (GT) usage for electrical power generation. In fact, from 2013 to 2104, out of the 11 Tera Watts-hour per day produced from fossil fuels, approximately 27% was generated through the combustion of natural gas in stationary GT. The thermodynamic efficiency for simple-cycle GT has increased from 20% to 40% during the last six decades, mainly due to research and development in the fields of combustion science, material science and machine design. However, additional improvements have become more costly and more difficult to obtain as technology is further refined. An alternative to improve GT thermal efficiency is the implementation of a combustion regime leading to pressure-gain; rather than pressure loss across the combustor. One concept being considered for such purpose is Rotating Detonation Combustion (RDC). RDC refers to a combustion regime in which a detonation wave propagates continuously in the azimuthal direction of a cylindrical annular chamber. In RDC, the fuel and oxidizer, injected from separated streams, are mixed near the injection plane and are then consumed by the detonation front traveling inside the annular gap of the combustion chamber. The detonation products then expand in the azimuthal and axial direction away from the detonation front and exit through the combustion chamber outlet. In the present study Computational Fluid Dynamics (CFD) is used to predict the performance of Rotating Detonation Combustion (RDC) at operating conditions relevant to GT applications. As part of this study, a modeling strategy for RDC simulations was developed. The validation of the model was performed using benchmark cases with different levels of complexity. First, 2D simulations of non-reactive shock tube and detonation tubes were performed. The numerical predictions that were obtained using different modeling parameters were compared with analytical solutions in order to quantify the numerical error in the simulations. Additionally, experimental data from laboratory scale combustors was used to validate 2D and 3D numerical simulations. The effects of different modeling parameters on RDC predictions was also studied. The validated simulation strategy was then used to assess the performance of RDC for different combustion chamber geometries and operating conditions relevant to GT applications. As a result, the limiting conditions for which continuous detonation and pressure gain combustion can be achieved were predicted and the effect of operating conditions on flow structures and RDC performance was assessed. The modeling strategy and the results from this study could be further used to design more efficient and more stable RDC systems.

  11. EUV laser produced and induced plasmas for nanolithography

    NASA Astrophysics Data System (ADS)

    Sizyuk, Tatyana; Hassanein, Ahmed

    2017-10-01

    EUV produced plasma sources are being extensively studied for the development of new technology for computer chips production. Challenging tasks include optimization of EUV source efficiency, producing powerful source in 2 percentage bandwidth around 13.5 nm for high volume manufacture (HVM), and increasing the lifetime of collecting optics. Mass-limited targets, such as small droplet, allow to reduce contamination of chamber environment and mirror surface damage. However, reducing droplet size limits EUV power output. Our analysis showed the requirement for the target parameters and chamber conditions to achieve 500 W EUV output for HVM. The HEIGHTS package was used for the simulations of laser produced plasma evolution starting from laser interaction with solid target, development and expansion of vapor/plasma plume with accurate optical data calculation, especially in narrow EUV region. Detailed 3D modeling of mix environment including evolution and interplay of plasma produced by lasers from Sn target and plasma produced by in-band and out-of-band EUV radiation in ambient gas, used for the collecting optics protection and cleaning, allowed predicting conditions in entire LPP system. Effect of these conditions on EUV photon absorption and collection was analyzed. This work is supported by the National Science Foundation, PIRE project.

  12. Advanced solar-propelled cargo spacecraft for Mars missions

    NASA Technical Reports Server (NTRS)

    Auziasdeturenne, J.; Beall, M.; Burianek, J.; Cinniger, A.; Dunmire, B.; Haberman, E.; Iwamoto, J.; Johnson, S.; Mccracken, S.; Miller, M.

    1989-01-01

    At the University of Washington, three concepts for an unmanned, solar powered, cargo spacecraft for Mars-support missions have been investigated. These spacecraft are designed to carry a 50,000 kg payload from a low Earth orbit to a low Mars orbit. Each design uses a distinctly different propulsion system: a solar radiation absorption (SRA) system, a solar-pumped laser (SPL) system, and a solar powered mangetoplasmadynamic (MPD) arc system. The SRA directly converts solar energy to thermal energy in the propellant through a novel process developed at the University of Washington. A solar concentrator focuses sunlight into an absorption chamber. A mixture of hydrogen and potassium vapor absorbs the incident radiation and is heated to approximately 3700 K. The hot propellant gas exhausts through a nozzle to produce thrust. The SRA has an I(sub sp) of approximately 1000 sec and produces a thrust of 2940 N using two thrust chambers. In the SPL system, a pair of solar-pumped, multi-megawatt, CO2 lasers in sun-synchronous Earth orbit converts solar energy to laser energy. The laser beams are transmitted to the spacecraft via laser relay satellites. The laser energy heats the hydrogen propellant through a plasma breakdown process in the center of an absorption chamber. Propellant flowing through the chamber, heated by the plasma core, expands through a nozzle to produce thrust. The SPL has an I(sub sp) of 1285 sec and produces a thrust of 1200 N using two thrust chambers. The MPD system uses indium phosphide solar cells to convert sunlight to electricity, which powers the propulsion system. In this system, the argon propellant is ionized and electromagnetically accelerated by a magnetoplasmadynamic arc to produce thrust. The MPD spacecraft has an I(sub sp) of 2490 sec and produces a thrust of 100 N. Various orbital transfer options are examined for these concepts. In the SRA system, the mother ship transfers the payload into a very high Earth orbit and a small auxiliary propulsion system boosts the payload into a Hohmann transfer to Mars. The SPL spacecraft releases the payload as the spacecraft passes by Mars. Both the SRA-powered spacecraft and the SPL-powered spacecraft return to Earth for subsequent missions. The MPD-propelled spacecraft, however, remains at Mars as an orbiting space station. A patched conic approximation was used to determine a heliocentric interplanetary transfer orbit for the MPD propelled spacecraft. All three solar-powered spacecraft use an aerobrake procedure to place the payload into a low Mars parking orbit. The payload delivery times range from 160 days to 873 days (2.39 years).

  13. Method of burning lightly loaded coal-water slurries

    DOEpatents

    Krishna, C.R.

    1984-07-27

    In a preferred arrangement of the method of the invention, a lightly loaded coal-water slurry, containing in the range of approximately 40% to 52% + 2% by weight coal, is atomized to strip water from coal particles in the mixture. Primary combustor air is forced around the atomized spray in a combustion chamber of a combustor to swirl the air in a helical path through the combustion chamber. A flame is established within the combustion chamber to ignite the stripped coal particles, and flame temperature regulating means are provided for maintaining the flame temperature within a desired predetermined range of temperatures that is effective to produce dry, essentially slag-free ash from the combustion process.

  14. Miniature microwave powered steam sterilization chamber

    NASA Astrophysics Data System (ADS)

    Atwater, James E.; Dahl, Roger W.; Garmon, Frank C.; Lunsford, Teddie D.; Michalek, William F.; Wheeler, Richard R., Jr.; Sauer, Richard L.

    1997-10-01

    A small device for the rapid ultrahigh temperature sterilization of surfaces is described. Microwave power generated by a 2.45 GHz magnetron is delivered via coaxial cable to a silicon carbide block housed within the chamber. Small quantities of water or aqueous hydrogen peroxide are introduced into the chamber. Upon application of power, the liquid flashes to vapor and superheats producing temperatures to 300 °C. The hot vapor permeates the enclosed space and contacts all exposed surfaces. Complete microbial kill of >10 6 colony forming units of the spore forming thermophile, Bacillus stearothermophilus, has been demonstrated using a variety of temperatures and exposure times in both steady state and thermal pulse modes of operation.

  15. A study to assess the long-term stability of the ionization chamber reference system in the LNMRI

    NASA Astrophysics Data System (ADS)

    Trindade Filho, O. L.; Conceição, D. A.; da Silva, C. J.; Delgado, J. U.; de Oliveira, A. E.; Iwahara, A.; Tauhata, L.

    2018-03-01

    Ionization chambers are used as secondary standard in order to maintain the calibration factors of radionuclides in the activity measurements in metrology laboratories. Used as radionuclide calibrator in nuclear medicine clinics to control dose in patients, its long-term performance is not evaluated systematically. A methodology for long-term evaluation for its stability is monitored and checked. Historical data produced monthly of 2012 until 2017, by an ionization chamber, electrometer and 226Ra, were analyzed via control chart, aiming to follow the long-term performance. Monitoring systematic errors were consistent within the limits of control, demonstrating the quality of measurements in compliance with ISO17025.

  16. Silicon microfabricated beam expander

    NASA Astrophysics Data System (ADS)

    Othman, A.; Ibrahim, M. N.; Hamzah, I. H.; Sulaiman, A. A.; Ain, M. F.

    2015-03-01

    The feasibility design and development methods of silicon microfabricated beam expander are described. Silicon bulk micromachining fabrication technology is used in producing features of the structure. A high-precision complex 3-D shape of the expander can be formed by exploiting the predictable anisotropic wet etching characteristics of single-crystal silicon in aqueous Potassium-Hydroxide (KOH) solution. The beam-expander consist of two elements, a micromachined silicon reflector chamber and micro-Fresnel zone plate. The micro-Fresnel element is patterned using lithographic methods. The reflector chamber element has a depth of 40 µm, a diameter of 15 mm and gold-coated surfaces. The impact on the depth, diameter of the chamber and absorption for improved performance are discussed.

  17. Nanostructures produced by phase-separation during growth of (III-V).sub.1-x(IV.sub.2).sub.x alloys

    DOEpatents

    Norman, Andrew G [Evergreen, CO; Olson, Jerry M [Lakewood, CO

    2007-06-12

    Nanostructures (18) and methods for production thereof by phase separation during metal organic vapor-phase epitaxy (MOVPE). An embodiment of one of the methods may comprise providing a growth surface in a reaction chamber and introducing a first mixture of precursor materials into the reaction chamber to form a buffer layer (12) thereon. A second mixture of precursor materials may be provided into the reaction chamber to form an active region (14) on the buffer layer (12), wherein the nanostructure (18) is embedded in a matrix (16) in the active region (14). Additional steps are also disclosed for preparing the nanostructure (18) product for various applications.

  18. Absolute dosimetry on a dynamically scanned sample for synchrotron radiotherapy using graphite calorimetry and ionization chambers

    NASA Astrophysics Data System (ADS)

    Lye, J. E.; Harty, P. D.; Butler, D. J.; Crosbie, J. C.; Livingstone, J.; Poole, C. M.; Ramanathan, G.; Wright, T.; Stevenson, A. W.

    2016-06-01

    The absolute dose delivered to a dynamically scanned sample in the Imaging and Medical Beamline (IMBL) on the Australian Synchrotron was measured with a graphite calorimeter anticipated to be established as a primary standard for synchrotron dosimetry. The calorimetry was compared to measurements using a free-air chamber (FAC), a PTW 31 014 Pinpoint ionization chamber, and a PTW 34 001 Roos ionization chamber. The IMBL beam height is limited to approximately 2 mm. To produce clinically useful beams of a few centimetres the beam must be scanned in the vertical direction. In practice it is the patient/detector that is scanned and the scanning velocity defines the dose that is delivered. The calorimeter, FAC, and Roos chamber measure the dose area product which is then converted to central axis dose with the scanned beam area derived from Monte Carlo (MC) simulations and film measurements. The Pinpoint chamber measures the central axis dose directly and does not require beam area measurements. The calorimeter and FAC measure dose from first principles. The calorimetry requires conversion of the measured absorbed dose to graphite to absorbed dose to water using MC calculations with the EGSnrc code. Air kerma measurements from the free air chamber were converted to absorbed dose to water using the AAPM TG-61 protocol. The two ionization chambers are secondary standards requiring calibration with kilovoltage x-ray tubes. The Roos and Pinpoint chambers were calibrated against the Australian primary standard for air kerma at the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA). Agreement of order 2% or better was obtained between the calorimetry and ionization chambers. The FAC measured a dose 3-5% higher than the calorimetry, within the stated uncertainties.

  19. Radiation detector

    DOEpatents

    Fultz, B.T.

    1980-12-05

    Apparatus is provided for detecting radiation such as gamma rays and x-rays generated in backscatter Moessbauer effect spectroscopy and x-ray spectrometry, which has a large window for detecting radiation emanating over a wide solid angle from a specimen and which generates substantially the same output pulse height for monoenergetic radiation that passes through any portion of the detection chamber. The apparatus includes a substantially toroidal chamber with conductive walls forming a cathode, and a wire anode extending in a circle within the chamber with the anode lying closer to the inner side of the toroid which has the least diameter than to the outer side. The placement of the anode produces an electric field, in a region close to the anode, which has substantially the same gradient in all directions extending radially from the anode, so that the number of avalanche electrons generated by ionizing radiation is independent of the path of the radiation through the chamber.

  20. Radiation detector

    DOEpatents

    Fultz, Brent T.

    1983-01-01

    Apparatus is provided for detecting radiation such as gamma rays and X-rays generated in backscatter Mossbauer effect spectroscopy and X-ray spectrometry, which has a large "window" for detecting radiation emanating over a wide solid angle from a specimen and which generates substantially the same output pulse height for monoenergetic radiation that passes through any portion of the detection chamber. The apparatus includes a substantially toroidal chamber with conductive walls forming a cathode, and a wire anode extending in a circle within the chamber with the anode lying closer to the inner side of the toroid which has the least diameter than to the outer side. The placement of the anode produces an electric field, in a region close to the anode, which has substantially the same gradient in all directions extending radially from the anode, so that the number of avalanche electrons generated by ionizing radiation is independent of the path of the radiation through the chamber.

  1. Methods and apparatus for measurement of a dimensional characteristic and methods of predictive modeling related thereto

    DOEpatents

    Robertson, Eric P [Idaho Falls, ID; Christiansen, Richard L [Littleton, CO

    2007-05-29

    A method of optically determining a change in magnitude of at least one dimensional characteristic of a sample in response to a selected chamber environment. A magnitude of at least one dimension of the at least one sample may be optically determined subsequent to altering the at least one environmental condition within the chamber. A maximum change in dimension of the at least one sample may be predicted. A dimensional measurement apparatus for indicating a change in at least one dimension of at least one sample. The dimensional measurement apparatus may include a housing with a chamber configured for accommodating pressure changes and an optical perception device for measuring a dimension of at least one sample disposed in the chamber. Methods of simulating injection of a gas into a subterranean formation, injecting gas into a subterranean formation, and producing methane from a coal bed are also disclosed.

  2. Methods for measurement of a dimensional characteristic and methods of predictive modeling related thereto

    DOEpatents

    Robertson, Eric P; Christiansen, Richard L.

    2007-10-23

    A method of optically determining a change in magnitude of at least one dimensional characteristic of a sample in response to a selected chamber environment. A magnitude of at least one dimension of the at least one sample may be optically determined subsequent to altering the at least one environmental condition within the chamber. A maximum change in dimension of the at least one sample may be predicted. A dimensional measurement apparatus for indicating a change in at least one dimension of at least one sample. The dimensional measurement apparatus may include a housing with a chamber configured for accommodating pressure changes and an optical perception device for measuring a dimension of at least one sample disposed in the chamber. Methods of simulating injection of a gas into a subterranean formation, injecting gas into a subterranean formation, and producing methane from a coal bed are also disclosed.

  3. Large area emulsion chamber experiments for the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Parnell, T. A.

    1985-01-01

    Emulsion-chamber experiments employing nuclear-track emulsions, etchable plastic detectors, metal plates, and X-ray films continue to demonstrate high productivity and potential in the study of cosmic-ray primaries and their interactions. Emulsions, with unsurpassed track-recording capability, provide an appropriate medium for the study of nucleus-nucleus interactions at high energy, which will likely produce observations of a phase change in nuclear matter. The many advantages of emulsion chambers (excellent multitrack recording capability, large geometry factor, low apparatus cost, simplicity of design and construction) are complemented by the major advantages of the Space Shuttle as an experiment carrier. A Shuttle experiment which could make a significant advance in both cosmic-ray primary and nucleus-nucleus interaction studies is described. Such an experiment would serve as a guide for use of emulsions during the Space Station era. Some practical factors that must be considered in planning a Shuttle exposure of emulsion chambers are discussed.

  4. Gas identification by dynamic measurements of SnO2 sensors

    NASA Astrophysics Data System (ADS)

    Vorobioff, Juan; Rodriguez, Daniel; Boselli, Alfredo; Lamagna, Alberto; Rinaldi, Carlos

    2011-09-01

    It is well know that the use of chambers with the sensors in the e-nose improves the measurements, due to a constant gas flow and the controlled temperature sensors[1]. Normally, the chamber temperature is above room temperature due to the heat generated by the heater of sensors. Also, the chamber takes a long time to reach a stable equilibrium temperature and it depends on enviromental conditions. Besides, the temperature variations modify the humidity producing variations in resistance measurements[2]. In this work using a heater system that controls the temperature of the chamber, the desorption process on SnO2 sensor array was study[3]. Also, it was fitted the data signal sensors using a two exponential decay functions in order to determine the desorbing constant process. These constants were used to classify and identify different alcohols and their concentrations.

  5. Competence assessment for vocational school students based on business and industry chamber to improve graduate entrepreneurship

    NASA Astrophysics Data System (ADS)

    Samsudi, Widodo, Joko; Margunani

    2017-03-01

    Vocational school's skill competence assessment is an important phase to complete learning process at vocational school. For vocational school this phase should be designed and implemented not only to measure learning objective target, but also to provide entrepreneurship experience for the graduates. Therefore competence assessment implementation should be done comprehensively in cooperation with Business and Industry Chamber. The implementation of skill competence aspect covering materials, methods, strategies, tools and assessors, need to be designed and optimized with respect to vocational school together with Business and Industry Chamber. This aims to measure the learning objective target and produce improved entrepreneurship graduates. 4M-S strategy in students' skill competence assessment could be done to ensure that the material, method, tool and assessor have been well designed and implemented in both institutions: vocational school and Business and Industry Chamber to improve entrepreneurship graduates.

  6. A ZigBee-based wireless system for monitoring vital signs in hyperbaric chambers: Technical report.

    PubMed

    Carmona, Cristian; Alorda, Bartomeu; Gracia, Luis; Perez-Vidal, Carlos; Salinas, Antonio

    2017-01-01

    This paper presents the replacement of a traditional wired communication link of the hyperbaric chambers with a wireless ZigBee-based system. This move allows a reduction in the costs of seals capable of withstanding the internal pressures and gives rise to a more versatile system. The new system is able to capture and process individual vital signs like the electrocardiography signal, and other analog sources, sending the data to an external computer and allowing analysis, representation and sharing with medical staff. This system solves such problems as the attenuation of the signal produced by the metal walls of the hyperbaric chamber and has a coverage area large enough to manage up to six patients with an effective data rate conversion of 2kHz. Furthermore, a battery-based and multiparameter platform is designed for multipatient hyperbaric chambers. Copyright© Undersea and Hyperbaric Medical Society.

  7. Secondary Organic Aerosol Formation in the Captive Aerosol Growth and Evolution (CAGE) Chambers during the Southern Oxidant and Aerosol Study (SOAS) in Centreville, AL

    NASA Astrophysics Data System (ADS)

    Leong, Y.; Karakurt Cevik, B.; Hernandez, C.; Griffin, R. J.; Taylor, N.; Matus, J.; Collins, D. R.

    2013-12-01

    Secondary organic aerosol (SOA) represents a large portion of sub-micron particulate matter on a global scale. The composition of SOA and its formation processes are heavily influenced by anthropogenic and biogenic activity. Volatile organic compounds (VOCs) that are emitted naturally from forests or from human activity serve as precursors to SOA formation. Biogenic SOA (BSOA) is formed from biogenic VOCs and is prevalent in forested regions like the Southeastern United States. The formation and enhancement of BSOA under anthropogenic influences such as nitrogen oxides (NOx), sulfur dioxide (SO2), and oxygen radicals are still not well understood. The lack of information on anthropogenic BSOA enhancement and the reversibility of SOA formation could explain the underprediction of SOA in current models. To address some of these gaps in knowledge, this study was conducted as part of the Southern Oxidant and Aerosol Study (SOAS) in Centreville, AL during the summer of 2013. SOA growth experiments were conducted in two Captive Aerosol Growth and Evolution (CAGE) outdoor chambers located at the SEARCH site. Ambient trace gas concentrations were maintained in these chambers using semi-permeable gas-exchange membranes, while studying the growth of injected monodisperse seed aerosol. The control chamber was operated under ambient conditions; the relative humidity and oxidant and NOx levels were perturbed in the second chamber. This design allows experiments to capture the natural BSOA formation processes in the southeastern atmosphere and to study the influence of anthropogenic activity on aerosol chemistry. Chamber experiments were periodically monitored with physical and chemical instrumentation including a scanning mobility particle sizer (SMPS), a cloud condensation nuclei counter (CCNC), a humidified tandem differential mobility analyzer (H-TDMA), and an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). The CAGE experiments focused on SOA reversibility and the sensitivity of SOA reactions to oxidant or NOx enhancement and aerosol liquid water content. Available ambient trace gas concentrations include VOCs, NOx, SO2, ozone, peroxyaxyl nitrates, and ammonia. Chamber data will also be compared to ambient aerosol measurements collected by the instruments mentioned above as well as those from other research groups.

  8. High vacuum tip-enhanced Raman spectroscope based on a scanning tunneling microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Yurui; Bionanophotonics, Department of Applied Physics, Chalmers University of Technology, Göteborg, SE 41296; Zhang, Zhenglong

    2016-03-15

    In this paper, we present the construction of a high-vacuum tip-enhanced Raman spectroscopy (HV-TERS) system that allows in situ sample preparation and measurement. A detailed description of the prototype instrument is presented with experimental validation of its use and novel ex situ experimental results using the HV-TERS system. The HV-TERS system includes three chambers held under a 10{sup −7} Pa vacuum. The three chambers are an analysis chamber, a sample preparation chamber, and a fast loading chamber. The analysis chamber is the core chamber and contains a scanning tunneling microscope (STM) and a Raman detector coupled with a 50 ×more » 0.5 numerical aperture objective. The sample preparation chamber is used to produce single-crystalline metal and sub-monolayer molecular films by molecular beam epitaxy. The fast loading chamber allows ex situ preparation of samples for HV-TERS analysis. Atomic resolution can be achieved by the STM on highly ordered pyrolytic graphite. We demonstrate the measurement of localized temperature using the Stokes and anti-Stokes TERS signals from a monolayer of 1,2-benzenedithiol on a gold film using a gold tip. Additionally, plasmonic catalysis can be monitored label-free at the nanoscale using our device. Moreover, the HV-TERS experiments show simultaneously activated infrared and Raman vibrational modes, Fermi resonance, and some other non-linear effects that are not observed in atmospheric TERS experiments. The high spatial and spectral resolution and pure environment of high vacuum are beneficial for basic surface studies.« less

  9. Size and shape of right heart chambers in mitral valve regurgitation in small-breed dogs.

    PubMed

    Carlsson, C; Häggström, J; Eriksson, A; Järvinen, A -K; Kvart, C; Lord, P

    2009-01-01

    The contribution of right heart (RH) chamber enlargement to general heart enlargement seen on thoracic radiographs in mitral regurgitation (MR) is not known. To determine the size and shape of the RH chambers in normal dogs and dogs with varying degrees of MR. Fifty-four privately owned dogs: 13 normal, 41 with varying degrees of MR including 25 with congestive heart failure (CHF). Archived first pass radionuclide angiocardiograms were used to produce static images of the RH and left heart (LH) chambers. Indexes of size and shape of the RH and LH chambers were related to severity of MR determined by heart rate-normalized pulmonary transit time (nPTT), vertebral heart scale (VHS), and clinical status. RH shape was measured by a circularity index of RH short axis/long axis. A 2nd degree polynomial fit best described the ratios; RH/LH dimension to nPTT (R(2)= 0.62) and to VHS (R(2)= 0.43), RH/LH area to nPTT (R(2)= 0.64) and to VHS (R(2)= 0.58), all P < .001. RH circularity was decreased in CHF, P < .001. In CHF, the RH chambers of 16 dogs were both flattened and enlarged, whereas 9 had convex septal borders. RH chambers are not significantly dilated in dogs with mild to moderate MR without CHF. In CHF, RH chambers enlarge and also may be compressed by the LH chambers. Pulmonary hypertension probably is present in some dogs with CHF. Increased sternal contact is not a useful sign of right-sided heart dilatation in MR.

  10. Developing Test Apparatus and Measurements of AC Loss of High Temperature Superconductors

    DTIC Science & Technology

    2012-11-01

    temperature of the coil is not raised significantly. The second system, a larger machine, designed with a long term prospective to serve a test bed for...four sample chambers inside the vacuum gap, LN2 – cooled sample holder (currently only one is in use), the laminated back iron, and the outer shell...machine. accommodate a variety of different small coils and linear tapes. This assembly is surrounded by the laminated back iron and the outer shell

  11. Search for 1/3e and 2/3e charged quarks in the cosmic radiation at 2750-m altitude.

    NASA Technical Reports Server (NTRS)

    Cox, A. J.; Beauchamp, W. T.; Bowen, T.; Kalbach, R. M.

    1972-01-01

    A scintillation counter telescope consisting of eight liquid scintillation counters and four wide-gap spark chambers was used to search for particles with electric charge 1/3e and 2/3e in cosmic rays at 2750 m above sea level. No such particles were detected during the 1500-hr experimental run. Upper limits on the vertical fluxes are established, and estimates of the corresponding sea-level fluxes are made for comparison with previous results.

  12. A method for sampling microbial aerosols using high altitude balloons.

    PubMed

    Bryan, N C; Stewart, M; Granger, D; Guzik, T G; Christner, B C

    2014-12-01

    Owing to the challenges posed to microbial aerosol sampling at high altitudes, very little is known about the abundance, diversity, and extent of microbial taxa in the Earth-atmosphere system. To directly address this knowledge gap, we designed, constructed, and tested a system that passively samples aerosols during ascent through the atmosphere while tethered to a helium-filled latex sounding balloon. The sampling payload is ~ 2.7 kg and comprised of an electronics box and three sampling chambers (one serving as a procedural control). Each chamber is sealed with retractable doors that can be commanded to open and close at designated altitudes. The payload is deployed together with radio beacons that transmit GPS coordinates (latitude, longitude and altitude) in real time for tracking and recovery. A cut mechanism separates the payload string from the balloon at any desired altitude, returning all equipment safely to the ground on a parachute. When the chambers are opened, aerosol sampling is performed using the Rotorod® collection method (40 rods per chamber), with each rod passing through 0.035 m3 per km of altitude sampled. Based on quality control measurements, the collection of ~ 100 cells rod(-1) provided a 3-sigma confidence level of detection. The payload system described can be mated with any type of balloon platform and provides a tool for characterizing the vertical distribution of microorganisms in the troposphere and stratosphere. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Methane Emission by Camelids

    PubMed Central

    Dittmann, Marie T.; Runge, Ullrich; Lang, Richard A.; Moser, Dario; Galeffi, Cordula; Kreuzer, Michael; Clauss, Marcus

    2014-01-01

    Methane emissions from ruminant livestock have been intensively studied in order to reduce contribution to the greenhouse effect. Ruminants were found to produce more enteric methane than other mammalian herbivores. As camelids share some features of their digestive anatomy and physiology with ruminants, it has been proposed that they produce similar amounts of methane per unit of body mass. This is of special relevance for countrywide greenhouse gas budgets of countries that harbor large populations of camelids like Australia. However, hardly any quantitative methane emission measurements have been performed in camelids. In order to fill this gap, we carried out respiration chamber measurements with three camelid species (Vicugna pacos, Lama glama, Camelus bactrianus; n = 16 in total), all kept on a diet consisting of food produced from alfalfa only. The camelids produced less methane expressed on the basis of body mass (0.32±0.11 L kg−1 d−1) when compared to literature data on domestic ruminants fed on roughage diets (0.58±0.16 L kg−1 d−1). However, there was no significant difference between the two suborders when methane emission was expressed on the basis of digestible neutral detergent fiber intake (92.7±33.9 L kg−1 in camelids vs. 86.2±12.1 L kg−1 in ruminants). This implies that the pathways of methanogenesis forming part of the microbial digestion of fiber in the foregut are similar between the groups, and that the lower methane emission of camelids can be explained by their generally lower relative food intake. Our results suggest that the methane emission of Australia's feral camels corresponds only to 1 to 2% of the methane amount produced by the countries' domestic ruminants and that calculations of greenhouse gas budgets of countries with large camelid populations based on equations developed for ruminants are generally overestimating the actual levels. PMID:24718604

  14. Evaluation of gaseous chlorine dioxide for the inactivation of tulane virus on blueberries

    USDA-ARS?s Scientific Manuscript database

    To determine the effectiveness of gaseous chlorine dioxide against a human norovirus surrogate on produce, chlorine dioxide was generated and applied to Tulane virus coated blueberries in a 240 ml treatment chamber. Chlorine dioxide was produced by acidifying sodium chlorite solution. Initial asse...

  15. Transparent electrical conducting films by activated reactive evaporation

    DOEpatents

    Bunshah, Rointan; Nath, Prem

    1982-01-01

    Process and apparatus for producing transparent electrical conducting thin films by activated reactive evaporation. Thin films of low melting point metals and alloys, such as indium oxide and indium oxide doped with tin, are produced by physical vapor deposition. The metal or alloy is vaporized by electrical resistance heating in a vacuum chamber, oxygen and an inert gas such as argon are introduced into the chamber, and vapor and gas are ionized by a beam of low energy electrons in a reaction zone between the resistance heater and the substrate. There is a reaction between the ionized oxygen and the metal vapor resulting in the metal oxide which deposits on the substrate as a thin film which is ready for use without requiring post deposition heat treatment.

  16. A novel ultrasonic aerosol generator.

    PubMed

    Davies, A; Hudson, N; Pirie, L

    1995-07-01

    An ultrasonic aerosol generator constructed from a domestic humidifier is described which has been used to produce liquid aerosols for physiological investigations. The instrument was constructed from a Pifco domestic humidifier modified to include an energy guide to direct the oscillations of the transducer through the coupling water, which would normally be aerosolized, onto a small membrane based sample chamber containing the liquid to be aerosolized. The size distribution of the aerosol produced was found to be between 2 and 6 mm, optimum for diffuse intrapulmonary deposition. Up to 4 ml/min of aqueous liquid was used; however the sample chamber could be made small enough to contain economic amounts of expensive material to administer by inhalation. The instrument has proved to be reliable over a period of three years.

  17. Plasma treatment for producing electron emitters

    DOEpatents

    Coates, Don Mayo; Walter, Kevin Carl

    2001-01-01

    Plasma treatment for producing carbonaceous field emission electron emitters is disclosed. A plasma of ions is generated in a closed chamber and used to surround the exposed surface of a carbonaceous material. A voltage is applied to an electrode that is in contact with the carbonaceous material. This voltage has a negative potential relative to a second electrode in the chamber and serves to accelerate the ions toward the carbonaceous material and provide an ion energy sufficient to etch the exposed surface of the carbonaceous material but not sufficient to result in the implantation of the ions within the carbonaceous material. Preferably, the ions used are those of an inert gas or an inert gas with a small amount of added nitrogen.

  18. Space station protective coating development

    NASA Technical Reports Server (NTRS)

    Pippin, H. G.; Hill, S. G.

    1989-01-01

    A generic list of Space Station surfaces and candidate material types is provided. Environmental exposures and performance requirements for the different Space Station surfaces are listed. Coating materials and the processing required to produce a viable system, and appropriate environmental simulation test facilities are being developed. Mass loss data from the original version of the atomic oxygen test chamber and the improved facility; additional environmental exposures performed on candidate materials; and materials properties measurements on candidate coatings to determine the effects of the exposures are discussed. Methodologies of production, and coating materials, used to produce the large scale demonstration articles are described. The electronic data base developed for the contract is also described. The test chamber to be used for exposure of materials to atomic oxygen was built.

  19. Heater-mixer for stored fluids

    NASA Technical Reports Server (NTRS)

    Canning, T. N. (Inventor)

    1974-01-01

    A fluid storage vessel for containing cryogenic fluids is described. The storage vessel contains an auxiliary chamber which is connected to the main container by a jet nozzle. The wall of the auxiliary vessel is heat cycled to produce a corresponding expansion and contraction of the fluid within the auxiliary chamber. This action causes heating and mixing of the stored fluid by means of jetting the expanded fluid to and from relative to the stored fluid contents of the vessel.

  20. Design issues for lunar in situ aluminum/oxygen propellant rocket engines

    NASA Technical Reports Server (NTRS)

    Meyer, Michael L.

    1992-01-01

    Design issues for lunar ascent and lunar descent rocket engines fueled by aluminum/oxygen propellant produced in situ at the lunar surface were evaluated. Key issues are discussed which impact the design of these rockets: aluminum combustion, throat erosion, and thrust chamber cooling. Four engine concepts are presented, and the impact of combustion performance, throat erosion and thrust chamber cooling on overall engine design are discussed. The advantages and disadvantages of each engine concept are presented.

  1. Method for Production of Powders

    NASA Technical Reports Server (NTRS)

    Stoltzfus, Joel M. (Inventor); Sircar, Subhasish (Inventor)

    1997-01-01

    Apparatus and method are disclosed for producing oxides of metals and of metal alloys. The metal or alloy is placed in an oxygen atmosphere in a combustion chamber and ignited. Products of the combustion include one or more oxides of the metal or alloy in powdered form. In one embodiment of the invention a feeder is provided whereby material to be oxidized by combustion can be achieved into a combustion chamber continuously. A product remover receives the powder product of the combustion.

  2. APPARATUS FOR CHARGING A RECEPTACLE WITH A DENSE SUBLIMATE FORM OF URANIUM CHLORIDE

    DOEpatents

    Davidson, P.H.

    1959-08-18

    An apparatus for filling a tubular storage receptacle with a dense massive form of uranium chloride is described. The apparatus includes an evacuated housing divided into a vaporizing chamber and a portion adapted to receive the receptacle. A nozzle conducts vaporized uranium chloride from the chamber to the interior of the receptacle. The nozzle is withdrawable to progressively deposit the uranium chloride under controlled conditions to produce a dense sublimate which fills the receptacle.

  3. Chamber music: an unusual Helmholtz resonator for song amplification in a Neotropical bush-cricket (Orthoptera, Tettigoniidae).

    PubMed

    Jonsson, Thorin; Chivers, Benedict D; Robson Brown, Kate; Sarria-S, Fabio A; Walker, Matthew; Montealegre-Z, Fernando

    2017-08-15

    Animals use sound for communication, with high-amplitude signals being selected for attracting mates or deterring rivals. High amplitudes are attained by employing primary resonators in sound-producing structures to amplify the signal (e.g. avian syrinx). Some species actively exploit acoustic properties of natural structures to enhance signal transmission by using these as secondary resonators (e.g. tree-hole frogs). Male bush-crickets produce sound by tegminal stridulation and often use specialised wing areas as primary resonators. Interestingly, Acanthacara acuta , a Neotropical bush-cricket, exhibits an unusual pronotal inflation, forming a chamber covering the wings. It has been suggested that such pronotal chambers enhance amplitude and tuning of the signal by constituting a (secondary) Helmholtz resonator. If true, the intact system - when stimulated sympathetically with broadband sound - should show clear resonance around the song carrier frequency which should be largely independent of pronotum material, and change when the system is destroyed. Using laser Doppler vibrometry on living and preserved specimens, microcomputed tomography, 3D-printed models and finite element modelling, we show that the pronotal chamber not only functions as a Helmholtz resonator owing to its intact morphology but also resonates at frequencies of the calling song on itself, making song production a three-resonator system. © 2017. Published by The Company of Biologists Ltd.

  4. A linear helicon plasma device with controllable magnetic field gradient.

    PubMed

    Barada, Kshitish K; Chattopadhyay, P K; Ghosh, J; Kumar, Sunil; Saxena, Y C

    2012-06-01

    Current free double layers (CFDLs) are localized potential structures having spatial dimensions - Debye lengths and potential drops of more than local electron temperature across them. CFDLs do not need a current for them to be sustained and hence they differ from the current driven double layers. Helicon antenna produced plasmas in an expanded chamber along with an expanding magnetic field have shown the existence of CFDL near the expansion region. A helicon plasma device has been designed, fabricated, and installed in the Institute for Plasma Research, India to study the role of maximum magnetic field gradient as well as its location with respect to the geometrical expansion region of the chamber in CFDL formation. The special feature of this machine consisting of two chambers of different radii is its capability of producing different magnetic field gradients near the physical boundary between the two chambers either by changing current in one particular coil in the direction opposite to that in other coils and/or by varying the position of this particular coil. Although, the machine is primarily designed for CFDL experiments, it is also capable of carrying out many basic plasma physics experiments such as wave propagation, wave coupling, and plasma instabilities in a varying magnetic field topology. In this paper, we will present the details of the machine construction, its specialties, and some preliminary results about the production and characterization of helicon plasma in this machine.

  5. Variable oxygen/nitrogen enriched intake air system for internal combustion engine applications

    DOEpatents

    Poola, Ramesh B.; Sekar, Ramanujam R.; Cole, Roger L.

    1997-01-01

    An air supply control system for selectively supplying ambient air, oxygen enriched air and nitrogen enriched air to an intake of an internal combustion engine includes an air mixing chamber that is in fluid communication with the air intake. At least a portion of the ambient air flowing to the mixing chamber is selectively diverted through a secondary path that includes a selectively permeable air separating membrane device due a differential pressure established across the air separating membrane. The permeable membrane device separates a portion of the nitrogen in the ambient air so that oxygen enriched air (permeate) and nitrogen enriched air (retentate) are produced. The oxygen enriched air and the nitrogen enriched air can be selectively supplied to the mixing chamber or expelled to atmosphere. Alternatively, a portion of the nitrogen enriched air can be supplied through another control valve to a monatomic-nitrogen plasma generator device so that atomic nitrogen produced from the nitrogen enriched air can be then injected into the exhaust of the engine. The oxygen enriched air or the nitrogen enriched air becomes mixed with the ambient air in the mixing chamber and then the mixed air is supplied to the intake of the engine. As a result, the air being supplied to the intake of the engine can be regulated with respect to the concentration of oxygen and/or nitrogen.

  6. Band gap engineering for graphene by using Na{sup +} ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sung, S. J.; Lee, P. R.; Kim, J. G.

    2014-08-25

    Despite the noble electronic properties of graphene, its industrial application has been hindered mainly by the absence of a stable means of producing a band gap at the Dirac point (DP). We report a new route to open a band gap (E{sub g}) at DP in a controlled way by depositing positively charged Na{sup +} ions on single layer graphene formed on 6H-SiC(0001) surface. The doping of low energy Na{sup +} ions is found to deplete the π* band of graphene above the DP, and simultaneously shift the DP downward away from Fermi energy indicating the opening of E{sub g}.more » The band gap increases with increasing Na{sup +} coverage with a maximum E{sub g}≥0.70 eV. Our core-level data, C 1s, Na 2p, and Si 2p, consistently suggest that Na{sup +} ions do not intercalate through graphene, but produce a significant charge asymmetry among the carbon atoms of graphene to cause the opening of a band gap. We thus provide a reliable way of producing and tuning the band gap of graphene by using Na{sup +} ions, which may play a vital role in utilizing graphene in future nano-electronic devices.« less

  7. Production of sugarcane bagasse-based activated carbon for formaldehyde gas removal from potted plants exposure chamber.

    PubMed

    Mohamed, Elham F; El-Hashemy, Mohammed A; Abdel-Latif, Nasser M; Shetaya, Waleed H

    2015-12-01

    Agricultural wastes such as rice straw, sugar beet, and sugarcane bagasse have become a critical environmental issue due to growing agriculture demand. This study aimed to investigate the valorization possibility of sugarcane bagasse waste for activated carbon preparation. It also aimed to fully characterize the prepared activated carbon (BET surface area) via scanning electron microscope (SEM) and in terms of surface functional groups to give a basic understanding of its structure and to study the adsorption capacity of the sugarcane bagasse-based activated carbon using aqueous methylene blue (MB). The second main objective was to evaluate the performance of sugarcane bagasse-based activated carbon for indoor volatile organic compounds removal using the formaldehyde gas (HCHO) as reference model in two potted plants chambers. The first chamber was labeled the polluted chamber (containing formaldehyde gas without activated carbon) and the second was taken as the treated chamber (containing formaldehyde gas with activated carbon). The results indicated that the sugarcane bagasse-based activated carbon has a moderate BET surface area (557 m2/g) with total mesoporous volume and microporous volume of 0.310 and 0.273 cm3/g, respectively. The prepared activated carbon had remarkable adsorption capacity for MB. Formaldehyde removal rate was then found to be more than 67% in the treated chamber with the sugarcane bagasse-based activated carbon. The plants' responses for this application as dry weight, chlorophyll contents, and protein concentration were also investigated. Preparation of activated carbon from sugarcane bagasse (SCBAC) is a promising approach to produce cheap and efficient adsorbent for gas pollutants removal. It may be also a solution for the agricultural wastes problems in big cities, particularly in Egypt. MB adsorption tests suggest that the SCBAC have high adsorption capacity. Formaldehyde gas removal in the plant chambers indicates that the SCBAC have potential to recover volatile gases. The results confirmed that the activated carbon produced from sugarcane bagasse waste raw materials can be used as an applicable adsorbent for treating a variety of gas pollutants from the indoor environment.

  8. Microgravity

    NASA Image and Video Library

    1998-10-01

    CGBA, a facility developed by BioServe Space Technologies, a NASA Commercial Generic Bioprocessing Space Center, allows a variety of sophisticated bioprocessing research to be performed using a common device. The Fluids Processing Apparatus is essentially a microgravity test tube that allows a variety of complex investigations to be performed in space. This is a glass barrel containing several chambers separated by rubber stoppers. Eight FPAs are placed together in a Group Activation Pack (GAP), which allows all of the research to be started simultaneously by turning a single crank. Eight GAPs, or similar-sized payloads, can be stored in a single CGBA temperature controlled locker, which now uses motor drives to automatically turn the cranks to start and stop experiments. On STS-95, research efforts cover eight major areas that will benefit Earth-based products ranging from the production of pharmaceuticals to fish hatcheries.

  9. Commercial Generic Bioprocessing Apparatus

    NASA Technical Reports Server (NTRS)

    1998-01-01

    CGBA, a facility developed by BioServe Space Technologies, a NASA Commercial Generic Bioprocessing Space Center, allows a variety of sophisticated bioprocessing research to be performed using a common device. The Fluids Processing Apparatus is essentially a microgravity test tube that allows a variety of complex investigations to be performed in space. This is a glass barrel containing several chambers separated by rubber stoppers. Eight FPAs are placed together in a Group Activation Pack (GAP), which allows all of the research to be started simultaneously by turning a single crank. Eight GAPs, or similar-sized payloads, can be stored in a single CGBA temperature controlled locker, which now uses motor drives to automatically turn the cranks to start and stop experiments. On STS-95, research efforts cover eight major areas that will benefit Earth-based products ranging from the production of pharmaceuticals to fish hatcheries.

  10. Sounding experiments of high pressure gas discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biele, Joachim K.

    A high pressure discharge experiment (200 MPa, 5{center_dot}10{sup 21} molecules/cm{sup 3}, 3000 K) has been set up to study electrically induced shock waves. The apparatus consists of the combustion chamber (4.2 cm{sup 3}) to produce high pressure gas by burning solid propellant grains to fill the electrical pump chamber (2.5 cm{sup 3}) containing an insulated coaxial electrode. Electrical pump energy up to 7.8 kJ at 10 kV, which is roughly three times of the gas energy in the pump chamber, was delivered by a capacitor bank. From the current-voltage relationship the discharge develops at rapidly decreasing voltage. Pressure at themore » combustion chamber indicating significant underpressure as well as overpressure peaks is followed by an increase of static pressure level. These data are not yet completely understood. However, Lorentz forces are believed to generate pinching with subsequent pinch heating, resulting in fast pressure variations to be propagated as rarefaction and shock waves, respectively. Utilizing pure axisymmetric electrode initiation rather than often used exploding wire technology in the pump chamber, repeatable experiments were achieved.« less

  11. Performance of the Satellite Test Assistant Robot in JPL's Space Simulation Facility

    NASA Technical Reports Server (NTRS)

    Mcaffee, Douglas; Long, Mark; Johnson, Ken; Siebes, Georg

    1995-01-01

    An innovative new telerobotic inspection system called STAR (the Satellite Test Assistant Robot) has been developed to assist engineers as they test new spacecraft designs in simulated space environments. STAR operates inside the ultra-cold, high-vacuum, test chambers and provides engineers seated at a remote Operator Control Station (OCS) with high resolution video and infrared (IR) images of the flight articles under test. STAR was successfully proof tested in JPL's 25-ft (7.6-m) Space Simulation Chamber where temperatures ranged from +85 C to -190 C and vacuum levels reached 5.1 x 10(exp -6) torr. STAR's IR Camera was used to thermally map the entire interior of the chamber for the first time. STAR also made several unexpected and important discoveries about the thermal processes occurring within the chamber. Using a calibrated test fixture arrayed with ten sample spacecraft materials, the IR camera was shown to produce highly accurate surface temperature data. This paper outlines STAR's design and reports on significant results from the thermal vacuum chamber test.

  12. ECR ion source with electron gun

    DOEpatents

    Xie, Zu Q.; Lyneis, Claude M.

    1993-01-01

    An Advanced Electron Cyclotron Resonance ion source (10) having an electron gun (52) for introducing electrons into the plasma chamber (18) of the ion source (10). The ion source (10) has a injection enclosure (12) and a plasma chamber tank (14). The plasma chamber (18) is defined by a plurality of longitudinal magnets (16). The electron gun (52) injects electrons axially into the plasma chamber (18) such that ionization within the plasma chamber (18) occurs in the presence of the additional electrons produced by the electron gun (52). The electron gun (52) has a cathode (116) for emitting electrons therefrom which is heated by current supplied from an AC power supply (96) while bias potential is provided by a bias power supply (118). A concentric inner conductor (60) and Outer conductor (62) carry heating current to a carbon chuck (104) and carbon pusher (114) Which hold the cathode (116) in place and also heat the cathode (16). In the Advanced Electron Cyclotron Resonance ion source (10), the electron gun (52) replaces the conventional first stage used in prior art electron cyclotron resonance ion generators.

  13. The effect of ambient pressure on well chamber response: Monte Carlo calculated results for the HDR 1000 plus.

    PubMed

    Bohm, Tim D; Griffin, Sheridan L; DeLuca, Paul M; DeWerd, Larry A

    2005-04-01

    The determination of the air kerma strength of a brachytherapy seed is necessary for effective treatment planning. Well ionization chambers are used on site at therapy clinics to determine the air kerma strength of seeds. In this work, the response of the Standard Imaging HDR 1000 Plus well chamber to ambient pressure is examined using Monte Carlo calculations. The experimental work examining the response of this chamber as well as other chambers is presented in a companion paper. The Monte Carlo results show that for low-energy photon sources, the application of the standard temperature pressure PTP correction factor produces an over-response at the reduced air densities/pressures corresponding to high elevations. With photon sources of 20 to 40 keV, the normalized PTP corrected chamber response is as much as 10% to 20% over unity for air densities/pressures corresponding to an elevation of 3048 m (10000 ft) above sea level. At air densities corresponding to an elevation of 1524 m (5000 ft), the normalized PTP-corrected chamber response is 5% to 10% over unity for these photon sources. With higher-energy photon sources (>100 keV), the normalized PTP corrected chamber response is near unity. For low-energy beta sources of 0.25 to 0.50 MeV, the normalized PTP-corrected chamber response is as much as 4% to 12% over unity for air densities/pressures corresponding to an elevation of 3048 m (10000 ft) above sea level. Higher-energy beta sources (>0.75 MeV) have a normalized PTP corrected chamber response near unity. Comparing calculated and measured chamber responses for common 103Pd- and 125I-based brachytherapy seeds show agreement to within 2.7% and 1.9%, respectively. Comparing MCNP calculated chamber responses with EGSnrc calculated chamber responses show agreement to within 3.1% at photon energies of 20 to 40 keV. We conclude that Monte Carlo transport calculations accurately model the response of this well chamber. Further, applying the standard PTP correction factor for this well chamber is insufficient in accounting for the change in chamber response with air pressure for low-energy (<100 keV) photon and low-energy (<0.75 MeV)beta sources.

  14. Production of dried shrimp mixed with turmeric and salt by Spouted Bed technique enter the rectangular chamber.

    NASA Astrophysics Data System (ADS)

    Thanthong, P.; Mustafa, Y.; Ngamrungroj, D.

    2017-09-01

    Today, dried shrimp in the market were refused food colour and drying until shrimp are colourful and tasty. Meanwhile, Community groups, women’s health trying to produce food products come from herbs. As an alternative to consumers. The production process is also a traditional way to dry. In order to extend the shelf life longer. Sometimes, potential risks, both in quality and quantity of products. As a result, consumers are enormous. Thus, this research aims to study the possibility to produce shrimp dried mixed with turmeric and salt. Then dried shrimp mixed with turmeric and salt to keep up the quality criteria of the Food and Drug Administration-FDA It can reduce the risk of the consumer and can keep up in a kitchen Thailand. When buying shrimp from the fisherman’s boat Will be made clear, clean impurities and shaking the sand to dry. Prepare a mixture of turmeric and salt. The shrimp were dipped into a beef with stirrer for 3 minutes. And scoop up centrifugal shrimp with dried. Measurement of initial moisture content averaging 78%wb. Then drying technique Spouted enter the rectangular chamber a continuous manner. Until average moisture content to 17%wb. The air temperature in the drying chamber at 180 °C and hot air speed 4.5 m/s, a state heat transfer Mass and moisture within the shrimp. In chamber when drying, the shrimp have moved freely behaviour can spit water out faster does not burn. Shaving legs of shrimp shell fragments lightweight is sorting out the top of drying chamber. Private shrimp were dried out to the front of the quad drying chamber. Power consumption 27.5 MJ/kg, divided into electrical energy 12.3 MJ/kg and thermal energy is 15.2 MJ/kg. The hot air comes from burning LPG gas burner with dual automatic. And can adjustable to room temperature drying characteristics modulation setting.

  15. Electricity generation and microbial community analysis of alcohol powered microbial fuel cells.

    PubMed

    Kim, Jung Rae; Jung, Sok Hee; Regan, John M; Logan, Bruce E

    2007-09-01

    Two different microbial fuel cell (MFC) configurations were investigated for electricity production from ethanol and methanol: a two-chambered, aqueous-cathode MFC; and a single-chamber direct-air cathode MFC. Electricity was generated in the two-chamber system at a maximum power density typical of this system (40+/-2 mW/m2) and a Coulombic efficiency (CE) ranging from 42% to 61% using ethanol. When bacteria were transferred into a single-chamber MFC known to produce higher power densities with different substrates, the maximum power density increased to 488+/-12 mW/m2 (CE = 10%) with ethanol. The voltage generated exhibited saturation kinetics as a function of ethanol concentration in the two-chambered MFC, with a half-saturation constant (Ks) of 4.86 mM. Methanol was also examined as a possible substrate, but it did not result in appreciable electricity generation. Analysis of the anode biofilm and suspension from a two-chamber MFC with ethanol using 16S rDNA-based techniques indicated that bacteria with sequences similar to Proteobacterium Core-1 (33.3% of clone library sequences), Azoarcus sp. (17.4%), and Desulfuromonas sp. M76 (15.9%) were significant members of the anode chamber community. These results indicate that ethanol can be used for sustained electricity generation at room temperature using bacteria on the anode in a MFC.

  16. Construction of vacuum system for Tristan accumulation ring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishimaru, H.; Horikoshi, G.; Kobayashi, M.

    1983-08-01

    An all aluminum-alloy vacuum system for the TRISTAN accumulation ring is now under construction. Aluminum and aluminum alloys are preferred materials for ultrahigh vacuum systems of large electron storage rings because of their good thermal conductivity, extremely low outgassing rate, and low residual radioactivity. Vacuum beam chambers for the dipole and quadrupole magnets are extruded using porthole dies. The aluminum alloy 6063-T6 provides superior performance in extrusion. For ultrahigh vacuum performance, a special extrusion technique is applied which, along with the outgassing procedure used, is described in detail. Aluminum alloy 3004 seamless elliptical bellows are inserted between the dipole andmore » quadrupole magnet chambers. These bellows are produced by the hydraulic forming of a seamless tube. The seamless bellows and the beam chambers are joined by fully automatic welding. The ceramic chambers for the kicker magnets, the fast bump magnets, and the slow beam intensity monitor are inserted in the aluminum alloy beam chambers. The ceramic chamber (98% alumina) and elliptical bellows are brazed with brazing sheets (4003-3003-4003) in a vacuum furnace. The brazing technique is described. The inner surface of the ceramic chamber is coated with a TiMo alloy by vacuum evaporation to permit a smooth flow of the RF wall current. Other suitable aluminum alloy components, including fittings, feedthroughs, gauges, optical windows, sputter ion pumps, turbomolecular pumps, and valves have been developed; their fabrication is described.« less

  17. Enhanced light absorption due to the mixing state of black carbon in fresh biomass burning emissions

    NASA Astrophysics Data System (ADS)

    Wang, Qiyuan; Cao, Junji; Han, Yongming; Tian, Jie; Zhang, Yue; Pongpiachan, Siwatt; Zhang, Yonggang; Li, Li; Niu, Xinyi; Shen, Zhenxing; Zhao, Zhuzi; Tipmanee, Danai; Bunsomboonsakul, Suratta; Chen, Yang; Sun, Jian

    2018-05-01

    A lack of information on the radiative effects of refractory black carbon (rBC) emitted from biomass burning is a significant gap in our understanding of climate change. A custom-made combustion chamber was used to simulate the open burning of crop residues and investigate the impacts of rBC size and mixing state on the particles' optical properties. Average rBC mass median diameters ranged from 141 to 162 nm for the rBC produced from different types of crop residues. The number fraction of thickly-coated rBC varied from 53 to 64%, suggesting that a majority of the freshly emitted rBC were internally mixed. By comparing the result of observed mass absorption cross-section to that calculated with Mie theory, large light absorption enhancement factors (1.7-1.9) were found for coated particles relative to uncoated cores. These effects were strongly positively correlated with the percentage of coated particles but independent of rBC core size. We suggest that rBC from open biomass burning may have strong impact on air pollution and radiative forcing immediately after their production.

  18. Method for introducing unidirectional nested deletions

    DOEpatents

    Dunn, J.J.; Quesada, M.A.; Randesi, M.

    1999-07-27

    Disclosed is a method for the introduction of unidirectional deletions in a cloned DNA segment. More specifically, the method comprises providing a recombinant DNA construct comprising a DNA segment of interest inserted in a cloning vector. The cloning vector has an f1 endonuclease recognition sequence adjacent to the insertion site of the DNA segment of interest. The recombinant DNA construct is then contacted with the protein pII encoded by gene II of phage f1 thereby generating a single-stranded nick. The nicked DNA is then contacted with E. coli Exonuclease III thereby expanding the single-stranded nick into a single-stranded gap. The single-stranded gapped DNA is then contacted with a single-strand-specific endonuclease thereby producing a linearized DNA molecule containing a double-stranded deletion corresponding in size to the single-stranded gap. The DNA treated in this manner is then incubated with DNA ligase under conditions appropriate for ligation. Also disclosed is a method for producing single-stranded DNA probes. In this embodiment, single-stranded gapped DNA, produced as described above, is contacted with a DNA polymerase in the presence of labeled nucleotides to fill in the gap. This DNA is then linearized by digestion with a restriction enzyme which cuts outside the DNA segment of interest. The product of this digestion is then denatured to produce a labeled single-stranded nucleic acid probe. 1 fig.

  19. Method for introducing unidirectional nested deletions

    DOEpatents

    Dunn, John J.; Quesada, Mark A.; Randesi, Matthew

    1999-07-27

    Disclosed is a method for the introduction of unidirectional deletions in a cloned DNA segment. More specifically, the method comprises providing a recombinant DNA construct comprising a DNA segment of interest inserted in a cloning vector, the cloning vector having an f1 endonuclease recognition sequence adjacent to the insertion site of the DNA segment of interest. The recombinant DNA construct is then contacted with the protein pII encoded by gene II of phage f1 thereby generating a single-stranded nick. The nicked DNA is then contacted with E. coli Exonuclease III thereby expanding the single-stranded nick into a single-stranded gap. The single-stranded gapped DNA is then contacted with a single-strand-specific endonuclease thereby producing a linearized DNA molecule containing a double-stranded deletion corresponding in size to the single-stranded gap. The DNA treated in this manner is then incubated with DNA ligase under conditions appropriate for ligation. Also disclosed is a method for producing single-stranded DNA probes. In this embodiment, single-stranded gapped DNA, produced as described above, is contacted with a DNA polymerase in the presence of labeled nucleotides to fill in the gap. This DNA is then linearized by digestion with a restriction enzyme which cuts outside the DNA segment of interest. The product of this digestion is then denatured to produce a labeled single-stranded nucleic acid probe.

  20. Method and apparatus for noble gas atom detection with isotopic selectivity

    DOEpatents

    Hurst, G. Samuel; Payne, Marvin G.; Chen, Chung-Hsuan; Parks, James E.

    1984-01-01

    Apparatus and methods of operation are described for determining, with isotopic selectivity, the number of noble gas atoms in a sample. The analysis is conducted within an evacuated chamber which can be isolated by a valve from a vacuum pumping system capable of producing a pressure of 10.sup.-8 Torr. Provision is made to pass pulses of laser beams through the chamber, these pulses having wavelengths appropriate for the resonance ionization of atoms of the noble gas under analysis. A mass filter within the chamber selects ions of a specific isotope of the noble gas, and means are provided to accelerate these selected ions sufficiently for implantation into a target. Specific types of targets are discussed. An electron measuring device produces a signal relatable to the number of ions implanted into the target and thus to the number of atoms of the selected isotope of the noble gas removed from the gas sample. The measurement can be continued until a substantial fraction, or all, of the atoms in the sample have been counted. Furthermore, additional embodiments of the apparatus are described for bunching the atoms of a noble gas for more rapid analysis, and for changing the target for repetitive cycling of the gas in the chamber. The number of repetitions of the cyclic steps depend upon the concentration of the isotope of interest, the separative efficiency of the mass filter, etc. The cycles are continued until a desired selectivity is achieved. Also described are components and a method of operation for a pre-enrichment operation for use when an introduction of a total sample would elevate the pressure within the chamber to levels in excess of those for operation of the mass filter, specifically a quadrupole mass filter. Specific examples of three noble gas isotope analyses are described.

  1. Tactile display device using an electrorheological fluid

    NASA Technical Reports Server (NTRS)

    Garner, H. Douglas (Inventor)

    1994-01-01

    A tactile display device utilizes an electrorheological fluid to activate a plurality of tactile dots. A voltage is selectively produced uniformly across an electrorheological fluid flowing between a common ground electrode and a plurality of conductive dot electrodes, thereby producing an increase in the fluid's viscosity to the extent that fluid flow between the two electrodes is restricted. The flow restriction produces a build-up of electrorheological fluid in a corresponding dot actuator chamber. The resulting pressure increase in the chamber displaces an elastic diaphragm fixed to a display surface to form a lump which can be perceived by the reader as one dot in a Braille character cell. A flow regulation system provides a continually pressurized flow system and provides for free flow of the electrorheological fluid through the plurality of dot actuator chambers when they are not activated. The device is adaptable to printed circuit techniques and can simultaneously display tactile dots representative of a full page of Braille characters stored on a medium such as a tape cassette or to display tactile dots representative of non-Braille data appearing on a computer monitor or contained on another data storage medium. In an alternate embodiment, the elastic diaphragm drives a plurality of spring-loaded pins provided with positive stops to maintain consistent displacements of the pins in both their actuated and nonactuated positions.

  2. Production of Nitrogen Oxides by Laboratory Simulated Transient Luminous Events

    NASA Astrophysics Data System (ADS)

    Peterson, H.; Bailey, M.; Hallett, J.; Beasley, W.

    2007-12-01

    Restoration of the polar stratospheric ozone layer has occurred at rates below those originally expected following reductions in chlorofluorocarbon (CFC) usage. Additional reactions affecting ozone depletion now must also be considered. This research examines nitrogen oxides (NOx) produced in the middle atmosphere by transient luminous events (TLEs), with NOx production in this layer contributing to the loss of stratospheric ozone. In particular, NOx produced by sprites in the mesosphere would be transported to the polar stratosphere via the global meridional circulation and downward diffusion. A pressure-controlled vacuum chamber was used to simulate middle atmosphere pressures, while a power supply and in-chamber electrodes were used to simulate TLEs in the pressure controlled environment. Chemiluminescence NOx analyzers were used to sample NOx produced by the chamber discharges- originally a Monitor Labs Model 8440E, later a Thermo Environment Model 42. Total NOx production for each discharge as well as NOx per ampere of current and NOx per Joule of discharge energy were plotted. Absolute NOx production was greatest for discharge environments with upper tropospheric pressures (100-380 torr), while NOx/J was greatest for discharge environments with stratospheric pressures (around 10 torr). The different production efficiencies in NOx/J as a function of pressure pointed to three different production regimes, each with its own reaction mechanisms: one for tropospheric pressures, one for stratospheric pressures, and one for upper stratospheric to mesospheric pressures (no greater than 1 torr).

  3. A novel percussion type droplet-on-demand generator

    NASA Astrophysics Data System (ADS)

    Hussain, Taaha; Patel, Priyesh; Balachandran, Ramanarayanan; Ladommatos, Nicos

    2015-01-01

    Numerous engineering applications require generation of droplets on demand which are of high uniformity and constant size. The common method to produce droplets is to drive liquid at high pressure through a small orifice/nozzle. The liquid stream disintegrates into small droplets. However this method normally requires large volumes of liquid and is not suitable for applications where single droplets of constant size is required. Such applications require droplet-on-demand generators which commonly employ piezoelectric or pneumatic actuation. It is well known that piezoelectric generators are hard to employ at high pressure and, high temperature applications, and the pneumatic generators often produce satellite (secondary) droplets. This paper describes the development of a novel percussion type droplet-on-demand generator, which overcomes some of the above difficulties and is capable of producing single droplets on demand. The generator consists of a cylindrical liquid filled chamber with a small orifice at the bottom. The top of the chamber is covered with a thin flexible metal disc. A small metal pin is employed to hammer/impact the top metal surface to generate a pressure pulse inside the liquid chamber. The movement and the momentum of the metal pin are controlled using a solenoid device. The pressure pulse generated overcomes the surface tension of the liquid meniscus at the exit of the orifice and ejects a single droplet. The work presented in this paper will demonstrate the capabilities of the droplet generator.

  4. High speed superconducting flywheel system for energy storage

    NASA Astrophysics Data System (ADS)

    Bornemann, H. J.; Urban, C.; Boegler, P.; Ritter, T.; Zaitsev, O.; Weber, K.; Rietschel, H.

    1994-12-01

    A prototype of a flywheel system with auto stable high temperature superconducting bearings was built and tested. The bearings offered good vertical and lateral stability. A metallic flywheel disk, ø 190 mm x 30 mm, was safely rotated at speeds up to 15000 rpm. The disk was driven by a 3 phase synchronous homopolar motor/generator. Maximum energy capacity was 3.8 Wh, maximum power was 1.5 KW. The dynamic behavior of the prototype was tested, characterized and evaluated with respect to axial and lateral stiffness, decay torques (bearing drag), vibrational modes and critical speeds. The bearings supports a maximum weight of 65 N at zero gap, axial and lateral stiffness at 1 mm gap were 440 N/cm and 130 N/cm, respectively. Spin down experiments were performed to investigate the energy efficiency of the system. The decay rate was found to depend upon background pressure in the vacuum chamber and upon the gap width in the bearing. At a background pressure of 5x10 -4 Torr, the coefficient of friction (drag-to-lift ratio) was measured to be 0.000009 at low speeds for 6 mm gap width in the bearing. Our results indicate that further refinement of this technology will allow operation of higly efficient superconducting flywheels in the kWh range.

  5. Advantages of microscope-integrated intraoperative online optical coherence tomography: usage in Boston keratoprosthesis type I surgery

    NASA Astrophysics Data System (ADS)

    Siebelmann, Sebastian; Steven, Philipp; Hos, Deniz; Hüttmann, Gereon; Lankenau, Eva; Bachmann, Björn; Cursiefen, Claus

    2016-01-01

    Boston keratoprosthesis (KPro) type I is a technique to treat patients with corneal diseases that are not amenable to conventional keratoplasty. Correct assembly and central implantation of the prosthesis are crucial for postoperative visual recovery. This study investigates the potential benefit of intraoperative optical coherence tomography (OCT) to monitor KPro surgery. Retrospective case series are presented for two patients who underwent Boston KPro type I implantation. The surgery in both patients was monitored intraoperatively using a commercially available intraoperative OCT (iOCT) device mounted on a surgical microscope. Microscope-integrated intraoperative OCT was able to evaluate the correct assembly and implantation of the KPro. All parts of the prosthesis were visible, and interfaces between the corneal graft and titanium backplate or anterior optics were clearly depictable. Moreover, iOCT visualized a gap between the backplate and graft in one case, and in the other case, a gap between the anterior optic and graft. Neither gap was visible with a conventional surgical microscope. The gap between the anterior optic and the graft could easily be corrected. Microscope-integrated iOCT delivers enhanced information, adding to the normal surgical microscope view during KPro surgery. Correct assembly can be controlled as well as the correct placement of the Boston KPro into the anterior chamber.

  6. Freeze drying apparatus

    DOEpatents

    Coppa, Nicholas V.; Stewart, Paul; Renzi, Ernesto

    2001-01-01

    The present invention provides methods and apparatus for freeze drying in which a solution, which can be a radioactive salt dissolved within an acid, is frozen into a solid on vertical plates provided within a freeze drying chamber. The solid is sublimated into vapor and condensed in a cold condenser positioned above the freeze drying chamber and connected thereto by a conduit. The vertical positioning of the cold condenser relative to the freeze dryer helps to help prevent substances such as radioactive materials separated from the solution from contaminating the cold condenser. Additionally, the system can be charged with an inert gas to produce a down rush of gas into the freeze drying chamber to also help prevent such substances from contaminating the cold condenser.

  7. Freeze drying method

    DOEpatents

    Coppa, Nicholas V.; Stewart, Paul; Renzi, Ernesto

    1999-01-01

    The present invention provides methods and apparatus for freeze drying in which a solution, which can be a radioactive salt dissolved within an acid, is frozen into a solid on vertical plates provided within a freeze drying chamber. The solid is sublimated into vapor and condensed in a cold condenser positioned above the freeze drying chamber and connected thereto by a conduit. The vertical positioning of the cold condenser relative to the freeze dryer helps to help prevent substances such as radioactive materials separated from the solution from contaminating the cold condenser. Additionally, the system can be charged with an inert gas to produce a down rush of gas into the freeze drying chamber to also help prevent such substances from contaminating the cold condenser.

  8. SU-F-T-194: Analyzing the Effect of Range Shifter Air Gap On TPS Dose Modeling Accuracy in Superficial PBS Proton Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shirey, R; Wu, H

    2016-06-15

    Purpose: Treatment planning systems (TPS) may not accurately model superficial dose distributions of range shifted proton pencil beam scanning (PBS) treatments. Numerous patient-specific QA tests performed on superficially treated PBS plans have shown a consistent overestimate of dose by the TPS. This study quantifies variations between TPS planned dose and measured dose as a function of range shifter air gap and treatment depths up to 5 cm. Methods: PBS treatment plans were created in the TPS to uniformly irradiate a volume of solid water. One plan was created for each range shifter position analyzed, and all plans utilized identical dosemore » optimization parameters. Each optimized plan was analyzed in the TPS to determine the planned dose at varying depths. A PBS proton therapy system with a 3.5 cm lucite range shifter delivered the treatment plans, and a parallel plate chamber embedded in RW3 solid water measured dose at shallow depths for each air gap. Differences between measured and planned doses were plotted and analyzed. Results: The data show that the TPS more accurately models superficial dose as the air gap between the range shifter and patient surface decreases. Air gaps less than 10 cm have an average dose difference of only 1.6%, whereas air gaps between 10 and 20 cm differ by 3.0% and gaps greater than 20 cm differ by 4.4%. Conclusion: This study has shown that the TPS is unable to accurately model superficial dose with a large range shifter air gap. Dose differences greater than 3% will likely cause QA failure, as many institutions analyze patient QA with a 3%/3mm gamma analysis. For superficial PBS therapy, range shifter positions should be chosen to keep the air gap less then 10 cm when patient setup and gantry geometry allow.« less

  9. Characterization of aerosols produced by cell sorters and evaluation of containment

    PubMed Central

    Holmes, Kevin L.

    2011-01-01

    In spite of the recognition by the flow cytometry community of potential aerosol hazards associated with cell sorting, there has been no previous study that has thoroughly characterized the aerosols that can be produced by cell sorters. In this study an Aerodynamic Particle Sizer was used to determine the concentration and aerodynamic diameter of aerosols produced by a FACS Aria II cell sorter under various conditions. Aerosol containment and evacuation was also evaluated using this novel methodology. The results showed that high concentrations of aerosols in the range of 1–3 μm can be produced in fail mode and that with decreased sheath pressure, aerosol concentration decreased and aerodynamic diameter increased. Although the engineering controls of the FACS Aria II for containment were effective, sort chamber evacuation of aerosols following a simulated nozzle obstruction was ineffective. However, simple modifications to the FACS Aria II are described that greatly improved sort chamber aerosol evacuation. The results of this study will facilitate the risk assessment of cell sorting potentially biohazardous samples by providing much needed data regarding aerosol production and containment. PMID:22052694

  10. From macro- to micro-single chamber solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Buergler, B. E.; Ochsner, M.; Vuillemin, S.; Gauckler, L. J.

    Single chamber solid oxide fuel cells (SC-SOFCs) with interdigitating electrodes were prepared and operated in CH 4/air mixtures. Both electrodes (Ni-Ce 0.8Gd 0.2O 1.9 cermet and Sm 0.5Sr 0.5CoO 3- δ perovskite) were placed on the same side of a Ce 0.8Gd 0.1O 1.95 electrolyte disc. The separating gap between the electrodes was varied from 1.2 to 0.27 mm and finally down to 10 μm. Screen-printing was used for the preparation of the cells with a gap in the millimetre range, whereas micromolding in capillaries (MIMIC) was used for the preparation of the micro-SC-SOFCs. The prepared micro-SC-SOFCs consisted of an array of 19 individual cells that were connected in parallel having 100 μm wide electrodes. An open circuit voltage of 0.65-0.75 V was measured in flowing mixtures of methane and air. The maximum power density of 17 mW cm -2 was limited by the ohmic resistance of the long conduction paths along the thin electrodes to the active sites of the individual cells. The feasibility of the micro-cell was demonstrated by comparing the performance with the performance of the cells having feature sizes in the millimetre range. The cell resistance of micro-SC-SOFCs may be significantly reduced when connecting the cells in series using interconnections between anode and cathodes of adjacent cells.

  11. Observation of direct hadronic pairs in nucleus-nucleus collisions in JACEE emulsion chambers

    NASA Technical Reports Server (NTRS)

    Burnett, T. H.; Dake, S.; Fuki, M.; Gregory, J. C.; Hayashi, T.; Hayashi, T.; Holynski, R.; Iwai, J.; Jones, W. V.; Jurak, A.

    1985-01-01

    In a number of high energy ( or = 1 TeV/amu) nucleus-nucleus collisions observed in Japanese-American Cooperative Emulsion Experiment (JACEE) emulsion chambers, nonrandom spatial association of produced charged particles, mostly hadronic pairs, are observed. Similar narrow pairs are observed in about 100 events at much low energy (20 to 60 GeV/amu). Analysis shows that 30 to 50% of Pair abundances are understood by the Hambury-Brown-Twiss effect, and the remainder seems to require other explanations.

  12. Vacuum Plasma Spraying Replaces Electrodeposition

    NASA Technical Reports Server (NTRS)

    Holmes, Richard R.; Power, Chris; Burns, David H.; Daniel, Ron; Mckechnie, Timothy N.

    1992-01-01

    Vacuum plasma spraying used to fabricate large parts with complicated contours and inner structures, without uninspectable welds. Reduces time, and expense of fabrication. Wall of combustion chamber built up inside of outer nickel-alloy jacket by plasma spraying. Particles of metal sprayed partially melted in plasma gun and thrown at supersonic speed toward deposition surface. Vacuum plasma-spray produces stronger bond between the grooves and covering layer completing channels and wall of combustion chamber. In tests, bond withstood pressure of 20 kpsi, three times allowable limit by old method.

  13. A Laboratory Investigation of Aerosol and Extinction Characteristics for SALTY DOG, NWC 29 and NWC 78 Pyrotechnics

    DTIC Science & Technology

    1980-10-01

    The artificial fogs are produced by 1’SALTY DOC,14 and phosphorus pentoxide smokeS~in Calspan’s 590 cubic meter chamber at controlled relative...the chamber experiments, an isokinetic sampling inlet was employed for minimizing aerosol losses during sampling. Instrumentation used to monitor...with a 1 cfm critical orifice and vacuum pump. Additionally, a flow meter , placed behind the filter, was monitored to assure that filter loading did

  14. Shallow Underground Tunnel/Chamber Explosion Test Program Summary Report

    DTIC Science & Technology

    1990-08-01

    TECHNICAL REPORT SL-90-10 SHALLOW UNDERGROUND TUNNEL /CHAMBERo ni neers= EXPLOSION TEST PROGRAM SUMMARY REPORT ~ by .11 ~ ~A.Charles E. Joachim N...hazardous et f ects produced by thle eXPlO.SiOll. Fhe prugrari was divided into four study areas; tunnel /c’hamber pressure, external ai rhlast...extern:il grounid motion, andl ejecta/debris. The tunnel /chamber pressure meaisurements 11roe i dell (LI La onl thle i nte rnalI explosion environment and the

  15. Method and apparatus for production of powders

    NASA Technical Reports Server (NTRS)

    Stolzfus, Joel M. (Inventor); Sircar, Subhasish (Inventor)

    1995-01-01

    Apparatus and method are disclosed for producing oxides of metals and of metal alloys. The metal or alloy is placed in an oxygen atmosphere in a combustion chamber and ignited. Products of the combustion include one or more oxides of the metal or alloy in powdered form. In one embodiment of the invention a feeder is provided whereby material to be oxidized by combustion can be advanced into a combustion chamber continuously. A product remover receives the powder product of the combustion.

  16. Characterization and testing of a new environmental chamber designed for emission aging studies

    NASA Astrophysics Data System (ADS)

    Leskinen, A.; Yli-Pirilä, P.; Kuuspalo, K.; Sippula, O.; Jalava, P.; Hirvonen, M.-R.; Jokiniemi, J.; Virtanen, A.; Komppula, M.; Lehtinen, K. E. J.

    2014-06-01

    A 29 m3 Teflon chamber, designed for aging studies of combustion aerosols, at the University of Eastern Finland is described and characterized. The chamber belongs to a research facility, called Ilmari, where small-scale combustion devices, a dynamometer for vehicle exhaust studies, dilution systems, the chamber, as well as cell and animal exposure devices are side by side under the same roof. The small surface-to-volume ratio of the chamber enables reasonably long experiment times, with particle wall loss rate constants of 0.088, 0.080, 0.045, and 0.040 h-1 for polydisperse, 50, 100, and 200 nm monodisperse aerosols, respectively. The NO2 photolysis rate can be adjusted from zero to 0.62 min-1. The irradiance spectrum is centered at 365 nm and the maximum irradiance, produced by 160 blacklight lamps, is 29.7 W m-2, which corresponds to the UV irradiance in Central Finland at noon on a sunny day in the midsummer. The temperature inside the chamber is uniform and can be kept at 25 ± 1 °C when half of the blacklights are on. The chamber is kept in an overpressure with a moving top frame, which prevents sample dilution and contamination from entering the chamber during an experiment. The functionality of the chamber was tested with oxidation experiments of toluene, resulting in secondary organic aerosol (SOA) yields of 33-44%, depending on the initial conditions, such as the NOx concentration. The highest gaseous oxidation product yields of 14.4-19.5% were detected with ions corresponding to 2-butenedial (m/z 73.029) and 4-oxo-2-pentenal (m/z 99.044). Overall, reasonable yields of SOA and gaseous reaction products, comparable to those obtained in other laboratories, were obtained.

  17. Fabrication of nano-gap electrode arrays by the construction and selective chemical etching of nano-crosswire stacks

    NASA Technical Reports Server (NTRS)

    Prokopuk, Nicholas (Inventor); Son, Kyung-Ah (Inventor)

    2008-01-01

    Methods of fabricating nano-gap electrode structures in array configurations, and the structures so produced. The fabrication method involves depositing first and second pluralities of electrodes comprising nanowires using processes such as lithography, deposition of metals, lift-off processes, and chemical etching that can be performed using conventional processing tools applicable to electronic materials processing. The gap spacing in the nano-gap electrode array is defined by the thickness of a sacrificial spacer layer that is deposited between the first and second pluralities of electrodes. The sacrificial spacer layer is removed by etching, thereby leaving a structure in which the distance between pairs of electrodes is substantially equal to the thickness of the sacrificial spacer layer. Electrode arrays with gaps measured in units of nanometers are produced. In one embodiment, the first and second pluralities of electrodes are aligned in mutually orthogonal orientations.

  18. Forecasting magma-chamber rupture at Santorini volcano, Greece

    PubMed Central

    Browning, John; Drymoni, Kyriaki; Gudmundsson, Agust

    2015-01-01

    How much magma needs to be added to a shallow magma chamber to cause rupture, dyke injection, and a potential eruption? Models that yield reliable answers to this question are needed in order to facilitate eruption forecasting. Development of a long-lived shallow magma chamber requires periodic influx of magmas from a parental body at depth. This redistribution process does not necessarily cause an eruption but produces a net volume change that can be measured geodetically by inversion techniques. Using continuum-mechanics and fracture-mechanics principles, we calculate the amount of magma contained at shallow depth beneath Santorini volcano, Greece. We demonstrate through structural analysis of dykes exposed within the Santorini caldera, previously published data on the volume of recent eruptions, and geodetic measurements of the 2011–2012 unrest period, that the measured 0.02% increase in volume of Santorini’s shallow magma chamber was associated with magmatic excess pressure increase of around 1.1 MPa. This excess pressure was high enough to bring the chamber roof close to rupture and dyke injection. For volcanoes with known typical extrusion and intrusion (dyke) volumes, the new methodology presented here makes it possible to forecast the conditions for magma-chamber failure and dyke injection at any geodetically well-monitored volcano. PMID:26507183

  19. Acoustic filtration and sedimentation of soot particles

    NASA Astrophysics Data System (ADS)

    Martin, K. M.; Ezekoye, O. A.

    Removal of soot particles from a static chamber by an intense acoustic field is investigated. Combustion of a solid fuel fills a rectangular chamber with small soot particles, which sediment very slowly. The chamber is then irradiated by an intense acoustic source to produce a three dimensional standing wave field in the chamber. The acoustic excitation causes the soot particles to agglomerate, forming larger particles which sediment faster from the system. The soot also forms 1-2 cm disks, with axes parallel to the axis of the acoustic source, which are levitated by the sound field at half-wavelength spacing within the chamber. Laser extinction measurements are made to determine soot volume fractions as a function of exposure time within the chamber. The volume fraction is reduced over time by sedimentation and by particle migration to the disks. The soot disks are considered to be a novel mechanism for particle removal from the air stream, and this mechanism has been dubbed acoustic filtration. An experimental method is developed for comparing the rate of soot removal by sedimentation alone with the rate of soot removal by sedimentation and acoustic filtration. Results show that acoustic filtration increases the rate of soot removal by a factor of two over acoustically-induced sedimentation alone.

  20. Implementation of Good Agricultural Practices Food Safety Standards on Mid-Atlantic States and New York Produce Farms

    ERIC Educational Resources Information Center

    Nayak, Roshan

    2016-01-01

    In the wake of multistate outbreaks and subsequent economic cost and health causalities, food industry stakeholders formulated policies for their produce suppliers. The U.S. Food and Drug Administration's guidance on Good Agricultural Practices (GAPs) have been the basis for most of the industry initiated GAP certifications or audit processes. In…

Top