Sample records for gap detection threshold

  1. Detection thresholds for gaps, overlaps, and no-gap-no-overlaps.

    PubMed

    Heldner, Mattias

    2011-07-01

    Detection thresholds for gaps and overlaps, that is acoustic and perceived silences and stretches of overlapping speech in speaker changes, were determined. Subliminal gaps and overlaps were categorized as no-gap-no-overlaps. The established gap and overlap detection thresholds both corresponded to the duration of a long vowel, or about 120 ms. These detection thresholds are valuable for mapping the perceptual speaker change categories gaps, overlaps, and no-gap-no-overlaps into the acoustic domain. Furthermore, the detection thresholds allow generation and understanding of gaps, overlaps, and no-gap-no-overlaps in human-like spoken dialogue systems. © 2011 Acoustical Society of America

  2. Electrophysiological gap detection thresholds: effects of age and comparison with a behavioral measure.

    PubMed

    Palmer, Shannon B; Musiek, Frank E

    2014-01-01

    Temporal processing ability has been linked to speech understanding ability and older adults often complain of difficulty understanding speech in difficult listening situations. Temporal processing can be evaluated using gap detection procedures. There is some research showing that gap detection can be evaluated using an electrophysiological procedure. However, there is currently no research establishing gap detection threshold using the N1-P2 response. The purposes of the current study were to 1) determine gap detection thresholds in younger and older normal-hearing adults using an electrophysiological measure, 2) compare the electrophysiological gap detection threshold and behavioral gap detection threshold within each group, and 3) investigate the effect of age on each gap detection measure. This study utilized an older adult group and younger adult group to compare performance on an electrophysiological and behavioral gap detection procedure. The subjects in this study were 11 younger, normal-hearing adults (mean = 22 yrs) and 11 older, normal-hearing adults (mean = 64.36 yrs). All subjects completed an adaptive behavioral gap detection procedure in order to determine their behavioral gap detection threshold (BGDT). Subjects also completed an electrophysiologic gap detection procedure to determine their electrophysiologic gap detection threshold (EGDT). Older adults demonstrated significantly larger gap detection thresholds than the younger adults. However, EGDT and BGDT were not significantly different in either group. The mean difference between EGDT and BGDT for all subjects was 0.43 msec. Older adults show poorer gap detection ability when compared to younger adults. However, this study shows that gap detection thresholds can be measured using evoked potential recordings and yield results similar to a behavioral measure. American Academy of Audiology.

  3. Event-related potential measures of gap detection threshold during natural sleep.

    PubMed

    Muller-Gass, Alexandra; Campbell, Kenneth

    2014-08-01

    The minimum time interval between two stimuli that can be reliably detected is called the gap detection threshold. The present study examines whether an unconscious state, natural sleep affects the gap detection threshold. Event-related potentials were recorded in 10 young adults while awake and during all-night sleep to provide an objective estimate of this threshold. These subjects were presented with 2, 4, 8 or 16ms gaps occurring in 1.5 duration white noise. During wakefulness, a significant N1 was elicited for the 8 and 16ms gaps. N1 was difficult to observe during stage N2 sleep, even for the longest gap. A large P2 was however elicited and was significant for the 8 and 16ms gaps. Also, a later, very large N350 was elicited by the 16ms gap. An N1 and P2 was significant only for the 16ms gap during REM sleep. ERPs to gaps occurring in noise segments can therefore be successfully elicited during natural sleep. The gap detection threshold is similar in the waking and sleeping states. Crown Copyright © 2014. Published by Elsevier Ireland Ltd. All rights reserved.

  4. Correlations among within-channel and between-channel auditory gap-detection thresholds in normal listeners.

    PubMed

    Phillips, Dennis P; Smith, Jennifer C

    2004-01-01

    We obtained data on within-channel and between-channel auditory temporal gap-detection acuity in the normal population. Ninety-five normal listeners were tested for gap-detection thresholds, for conditions in which the gap was bounded by spectrally identical, and by spectrally different, acoustic markers. Separate thresholds were obtained with the use of an adaptive tracking method, for gaps delimited by narrowband noise bursts centred on 1.0 kHz, noise bursts centred on 4.0 kHz, and for gaps bounded by a leading marker of 4.0 kHz noise and a trailing marker of 1.0 kHz noise. Gap thresholds were lowest for silent periods bounded by identical markers--'within-channel' stimuli. Gap thresholds were significantly longer for the between-channel stimulus--silent periods bounded by unidentical markers (p < 0.0001). Thresholds for the two within-channel tasks were highly correlated (R = 0.76). Thresholds for the between-channel stimulus were weakly correlated with thresholds for the within-channel stimuli (1.0 kHz, R = 0.39; and 4.0 kHz, R = 0.46). The relatively poor predictability of between-channel thresholds from the within-channel thresholds is new evidence on the separability of the mechanisms that mediate performance of the two tasks. The data confirm that the acuity difference for the tasks, which has previously been demonstrated in only small numbers of highly trained listeners, extends to a population of untrained listeners. The acuity of the between-channel mechanism may be relevant to the formation of voice-onset time-category boundaries in speech perception.

  5. Effect of gap detection threshold on consistency of speech in children with speech sound disorder.

    PubMed

    Sayyahi, Fateme; Soleymani, Zahra; Akbari, Mohammad; Bijankhan, Mahmood; Dolatshahi, Behrooz

    2017-02-01

    The present study examined the relationship between gap detection threshold and speech error consistency in children with speech sound disorder. The participants were children five to six years of age who were categorized into three groups of typical speech, consistent speech disorder (CSD) and inconsistent speech disorder (ISD).The phonetic gap detection threshold test was used for this study, which is a valid test comprised six syllables with inter-stimulus intervals between 20-300ms. The participants were asked to listen to the recorded stimuli three times and indicate whether they heard one or two sounds. There was no significant difference between the typical and CSD groups (p=0.55), but there were significant differences in performance between the ISD and CSD groups and the ISD and typical groups (p=0.00). The ISD group discriminated between speech sounds at a higher threshold. Children with inconsistent speech errors could not distinguish speech sounds during time-limited phonetic discrimination. It is suggested that inconsistency in speech is a representation of inconsistency in auditory perception, which causes by high gap detection threshold. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Salicylate-Induced Hearing Loss and Gap Detection Deficits in Rats

    PubMed Central

    Radziwon, Kelly E.; Stolzberg, Daniel J.; Urban, Maxwell E.; Bowler, Rachael A.; Salvi, Richard J.

    2015-01-01

    To test the “tinnitus gap-filling” hypothesis in an animal psychoacoustic paradigm, rats were tested using a go/no-go operant gap detection task in which silent intervals of various durations were embedded within a continuous noise. Gap detection thresholds were measured before and after treatment with a dose of sodium salicylate (200 mg/kg) that reliably induces tinnitus in rats. Noise-burst detection thresholds were also measured to document the amount of hearing loss and aid in interpreting the gap detection results. As in the previous human psychophysical experiments, salicylate had little or no effect on gap thresholds measured in broadband noise presented at high-stimulus levels (30–60 dB SPL); gap detection thresholds were always 10 ms or less. Salicylate also did not affect gap thresholds presented in narrowband noise at 60 dB SPL. Therefore, rats treated with a dose of salicylate that reliably induces tinnitus have no difficulty detecting silent gaps as long as the noise in which they are embedded is clearly audible. PMID:25750635

  7. The Gap Detection Test: Can It Be Used to Diagnose Tinnitus?

    PubMed Central

    Boyen, Kris; Başkent, Deniz

    2015-01-01

    Objectives: Animals with induced tinnitus showed difficulties in detecting silent gaps in sounds, suggesting that the tinnitus percept may be filling the gap. The main purpose of this study was to evaluate the applicability of this approach to detect tinnitus in human patients. The authors first hypothesized that gap detection would be impaired in patients with tinnitus, and second, that gap detection would be more impaired at frequencies close to the tinnitus frequency of the patient. Design: Twenty-two adults with bilateral tinnitus, 20 age-matched and hearing loss–matched subjects without tinnitus, and 10 young normal-hearing subjects participated in the study. To determine the characteristics of the tinnitus, subjects matched an external sound to their perceived tinnitus in pitch and loudness. To determine the minimum detectable gap, the gap threshold, an adaptive psychoacoustic test was performed three times by each subject. In this gap detection test, four different stimuli, with various frequencies and bandwidths, were presented at three intensity levels each. Results: Similar to previous reports of gap detection, increasing sensation level yielded shorter gap thresholds for all stimuli in all groups. Interestingly, the tinnitus group did not display elevated gap thresholds in any of the four stimuli. Moreover, visual inspection of the data revealed no relation between gap detection performance and perceived tinnitus pitch. Conclusions: These findings show that tinnitus in humans has no effect on the ability to detect gaps in auditory stimuli. Thus, the testing procedure in its present form is not suitable for clinical detection of tinnitus in humans. PMID:25822647

  8. The Gap Detection Test: Can It Be Used to Diagnose Tinnitus?

    PubMed

    Boyen, Kris; Başkent, Deniz; van Dijk, Pim

    2015-01-01

    Animals with induced tinnitus showed difficulties in detecting silent gaps in sounds, suggesting that the tinnitus percept may be filling the gap. The main purpose of this study was to evaluate the applicability of this approach to detect tinnitus in human patients. The authors first hypothesized that gap detection would be impaired in patients with tinnitus, and second, that gap detection would be more impaired at frequencies close to the tinnitus frequency of the patient. Twenty-two adults with bilateral tinnitus, 20 age-matched and hearing loss-matched subjects without tinnitus, and 10 young normal-hearing subjects participated in the study. To determine the characteristics of the tinnitus, subjects matched an external sound to their perceived tinnitus in pitch and loudness. To determine the minimum detectable gap, the gap threshold, an adaptive psychoacoustic test was performed three times by each subject. In this gap detection test, four different stimuli, with various frequencies and bandwidths, were presented at three intensity levels each. Similar to previous reports of gap detection, increasing sensation level yielded shorter gap thresholds for all stimuli in all groups. Interestingly, the tinnitus group did not display elevated gap thresholds in any of the four stimuli. Moreover, visual inspection of the data revealed no relation between gap detection performance and perceived tinnitus pitch. These findings show that tinnitus in humans has no effect on the ability to detect gaps in auditory stimuli. Thus, the testing procedure in its present form is not suitable for clinical detection of tinnitus in humans.

  9. Gap detection threshold in the rat before and after auditory cortex ablation.

    PubMed

    Syka, J; Rybalko, N; Mazelová, J; Druga, R

    2002-10-01

    Gap detection threshold (GDT) was measured in adult female pigmented rats (strain Long-Evans) by an operant conditioning technique with food reinforcement, before and after bilateral ablation of the auditory cortex. GDT was dependent on the frequency spectrum and intensity of the continuously present noise in which the gaps were embedded. The mean values of GDT for gaps embedded in white noise or low-frequency noise (upper cutoff frequency 3 kHz) at 70 dB sound pressure level (SPL) were 1.57+/-0.07 ms and 2.9+/-0.34 ms, respectively. Decreasing noise intensity from 80 dB SPL to 20 dB SPL produced a significant increase in GDT. The increase in GDT was relatively small in the range of 80-50 dB SPL for white noise and in the range of 80-60 dB for low-frequency noise. The minimal intensity level of the noise that enabled GDT measurement was 20 dB SPL for white noise and 30 dB SPL for low-frequency noise. Mean GDT values at these intensities were 10.6+/-3.9 ms and 31.3+/-4.2 ms, respectively. Bilateral ablation of the primary auditory cortex (complete destruction of the Te1 and partial destruction of the Te2 and Te3 areas) resulted in an increase in GDT values. The fifth day after surgery, the rats were able to detect gaps in the noise. The values of GDT observed at this time were 4.2+/-1.1 ms for white noise and 7.4+/-3.1 ms for low-frequency noise at 70 dB SPL. During the first month after cortical ablation, recovery of GDT was observed. However, 1 month after cortical ablation GDT still remained slightly higher than in controls (1.8+/-0.18 for white noise, 3.22+/-0.15 for low-frequency noise, P<0.05). A decrease in GDT values during the subsequent months was not observed.

  10. Age-related differences in gap detection: effects of task difficulty and cognitive ability.

    PubMed

    Harris, Kelly C; Eckert, Mark A; Ahlstrom, Jayne B; Dubno, Judy R

    2010-06-01

    Differences in gap detection for younger and older adults have been shown to vary with the complexity of the task or stimuli, but the factors that contribute to these differences remain unknown. To address this question, we examined the extent to which age-related differences in processing speed and workload predicted age-related differences in gap detection. Gap detection thresholds were measured for 10 younger and 11 older adults in two conditions that varied in task complexity but used identical stimuli: (1) gap location fixed at the beginning, middle, or end of a noise burst and (2) gap location varied randomly from trial to trial from the beginning, middle, or end of the noise. We hypothesized that gap location uncertainty would place increased demands on cognitive and attentional resources and result in significantly higher gap detection thresholds for older but not younger adults. Overall, gap detection thresholds were lower for the middle location as compared to beginning and end locations and were lower for the fixed than the random condition. In general, larger age-related differences in gap detection were observed for more challenging conditions. That is, gap detection thresholds for older adults were significantly larger for the random condition than for the fixed condition when the gap was at the beginning and end locations but not the middle. In contrast, gap detection thresholds for younger adults were not significantly different for the random and fixed condition at any location. Subjective ratings of workload indicated that older adults found the gap detection task more mentally demanding than younger adults. Consistent with these findings, results of the Purdue Pegboard and Connections tests revealed age-related slowing of processing speed. Moreover, age group differences in workload and processing speed predicted gap detection in younger and older adults when gap location varied from trial to trial; these associations were not observed when gap

  11. Age-related differences in gap detection: Effects of task difficulty and cognitive ability

    PubMed Central

    Harris, Kelly C.; Eckert, Mark A.; Ahlstrom, Jayne B.; Dubno, Judy R.

    2009-01-01

    Differences in gap detection for younger and older adults have been shown to vary with the complexity of the task or stimuli, but the factors that contribute to these differences remain unknown. To address this question, we examined the extent to which age-related differences in processing speed and workload predicted age-related differences in gap detection. Gap detection thresholds were measured for 10 younger and 11 older adults in two conditions that varied in task complexity but used identical stimuli: (1) gap location fixed at the beginning, middle, or end of a noise burst and (2) gap location varied randomly from trial to trial from the beginning, middle, or end of the noise. We hypothesized that gap location uncertainty would place increased demands on cognitive and attentional resources and result in significantly higher gap detection thresholds for older but not younger adults. Overall, gap detection thresholds were lower for the middle location as compared to beginning and end locations and were lower for the fixed than the random condition. In general, larger age-related differences in gap detection were observed for more challenging conditions. That is, gap detection thresholds for older adults were significantly larger for the random condition than for the fixed condition when the gap was at the beginning and end locations but not the middle. In contrast, gap detection thresholds for younger adults were not significantly different for the random and fixed condition at any location. Subjective ratings of workload indicated that older adults found the gap-detection task more mentally demanding than younger adults. Consistent with these findings, results of the Purdue Pegboard and Connections tests revealed age-related slowing of processing speed. Moreover, age group differences in workload and processing speed predicted gap detection in younger and older adults when gap location varied from trial to trial; these associations were not observed when gap

  12. Between-Frequency and Between-Ear Gap Detections and Their Relation to Perception of Stop Consonants.

    PubMed

    Mori, Shuji; Oyama, Kazuki; Kikuchi, Yousuke; Mitsudo, Takako; Hirose, Nobuyuki

    2015-01-01

    The objective of this study was to examine the hypothesis that between-channel gap detection, which includes between-frequency and between-ear gap detection, and perception of stop consonants, which is mediated by the length of voice-onset time (VOT), share common mechanisms, namely relative-timing operation in monitoring separate perceptual channels. The authors measured gap detection thresholds and identification functions of /ba/ and /pa/ along VOT in 49 native young adult Japanese listeners. There were three gap detection tasks. In the between-frequency task, the leading and trailing markers differed in terms of center frequency (Fc). The leading marker was a broadband noise of 10 to 20,000 Hz. The trailing marker was a 0.5-octave band-passed noise of 1000-, 2000-, 4000-, or 8000-Hz Fc. In the between-ear task, the two markers were spectrally identical but presented to separate ears. In the within-frequency task, the two spectrally identical markers were presented to the same ear. The /ba/-/pa/ identification functions were obtained in a task in which the listeners were presented synthesized speech stimuli of varying VOTs from 10 to 46 msec and asked to identify them as /ba/ or /pa/. The between-ear gap thresholds were significantly positively correlated with the between-frequency gap thresholds (except those obtained with the trailing marker of 4000-Hz Fc). The between-ear gap thresholds were not significantly correlated with the within-frequency gap thresholds, which were significantly correlated with all the between-frequency gap thresholds. The VOT boundaries and slopes of /ba/-/pa/ identification functions were not significantly correlated with any of these gap thresholds. There was a close relation between the between-ear and between-frequency gap detection, supporting the view that these two types of gap detection share common mechanisms of between-channel gap detection. However, there was no evidence for a relation between the perception of stop

  13. Auditory Gap-in-Noise Detection Behavior in Ferrets and Humans

    PubMed Central

    2015-01-01

    The precise encoding of temporal features of auditory stimuli by the mammalian auditory system is critical to the perception of biologically important sounds, including vocalizations, speech, and music. In this study, auditory gap-detection behavior was evaluated in adult pigmented ferrets (Mustelid putorius furo) using bandpassed stimuli designed to widely sample the ferret’s behavioral and physiological audiogram. Animals were tested under positive operant conditioning, with psychometric functions constructed in response to gap-in-noise lengths ranging from 3 to 270 ms. Using a modified version of this gap-detection task, with the same stimulus frequency parameters, we also tested a cohort of normal-hearing human subjects. Gap-detection thresholds were computed from psychometric curves transformed according to signal detection theory, revealing that for both ferrets and humans, detection sensitivity was worse for silent gaps embedded within low-frequency noise compared with high-frequency or broadband stimuli. Additional psychometric function analysis of ferret behavior indicated effects of stimulus spectral content on aspects of behavioral performance related to decision-making processes, with animals displaying improved sensitivity for broadband gap-in-noise detection. Reaction times derived from unconditioned head-orienting data and the time from stimulus onset to reward spout activation varied with the stimulus frequency content and gap length, as well as the approach-to-target choice and reward location. The present study represents a comprehensive evaluation of gap-detection behavior in ferrets, while similarities in performance with our human subjects confirm the use of the ferret as an appropriate model of temporal processing. PMID:26052794

  14. Gap Detection in School-Age Children and Adults: Center Frequency and Ramp Duration

    PubMed Central

    Porter, Heather L.; Hall, Joseph W.; Grose, John H.

    2017-01-01

    Purpose The age at which gap detection becomes adultlike differs, depending on the stimulus characteristics. The present study evaluated whether the developmental trajectory differs as a function of stimulus frequency region or duration of the onset and offset ramps bounding the gap. Method Thresholds were obtained for wideband noise (500–4500 Hz) with 4- or 40-ms raised-cosine ramps and for a 25-Hz-wide low-fluctuation narrowband noise centered on either 500 or 5000 Hz with 40-ms ramps. Stimuli were played continuously at 70 dB SPL, and the task was to indicate which of 3 intervals contained a gap. Listeners were 5.2- to 15.1-year-old children (n = 40) and adults (n = 10) with normal hearing. Results Regardless of listener age, gap detection thresholds for the wideband noise tended to be lower when gaps were shaped using 4-ms rather than 40-ms ramps. Thresholds also tended to be lower for the low-fluctuation narrowband noise centered on 5000 Hz than 500 Hz. Performance reached adult levels after 11 years of age for all 4 stimuli. Maturation was not uniform across individuals, however; a subset of young children performed like adults, including some 5-year-olds. Conclusion For these stimuli, the developmental trajectory was similar regardless of narrowband noise center frequency or wideband noise onset and offset ramp duration. PMID:28056469

  15. Gap Detection in School-Age Children and Adults: Center Frequency and Ramp Duration

    ERIC Educational Resources Information Center

    Buss, Emily; Porter, Heather L.; Hall, Joseph W., III; Grose, John H.

    2017-01-01

    Purpose: The age at which gap detection becomes adultlike differs, depending on the stimulus characteristics. The present study evaluated whether the developmental trajectory differs as a function of stimulus frequency region or duration of the onset and offset ramps bounding the gap. Method: Thresholds were obtained for wideband noise (500-4500…

  16. Gap Detection and Temporal Modulation Transfer Function as Behavioral Estimates of Auditory Temporal Acuity Using Band-Limited Stimuli in Young and Older Adults

    PubMed Central

    Shen, Yi

    2015-01-01

    Purpose Gap detection and the temporal modulation transfer function (TMTF) are 2 common methods to obtain behavioral estimates of auditory temporal acuity. However, the agreement between the 2 measures is not clear. This study compares results from these 2 methods and their dependencies on listener age and hearing status. Method Gap detection thresholds and the parameters that describe the TMTF (sensitivity and cutoff frequency) were estimated for young and older listeners who were naive to the experimental tasks. Stimuli were 800-Hz-wide noises with upper frequency limits of 2400 Hz, presented at 85 dB SPL. A 2-track procedure (Shen & Richards, 2013) was used for the efficient estimation of the TMTF. Results No significant correlation was found between gap detection threshold and the sensitivity or the cutoff frequency of the TMTF. No significant effect of age and hearing loss on either the gap detection threshold or the TMTF cutoff frequency was found, while the TMTF sensitivity improved with increasing hearing threshold and worsened with increasing age. Conclusion Estimates of temporal acuity using gap detection and TMTF paradigms do not seem to provide a consistent description of the effects of listener age and hearing status on temporal envelope processing. PMID:25087722

  17. The effect of gabapentin on gap detection and forward masking in young and old gerbils.

    PubMed

    Gleich, Otto; Strutz, Jürgen

    2011-01-01

    Auditory temporal processing frequently appears more affected in old subjects than would be predicted by the degree of peripheral hearing loss, pointing to an age-dependent central processing deficit. In parallel, an age-dependent decline of inhibitory function has been demonstrated in the auditory pathway, suggesting a causal relationship between temporal processing and inhibition. Gabapentin has been specifically synthesized as a potential gamma-amino-butyric-acid (GABA) mimetic with the capability to cross the blood-brain barrier. Gabapentin treatment ameliorated tinnitus in a rat model and improved tinnitus annoyance in humans with acoustic trauma. Consequently, the present study evaluated the effect of gabapentin on auditory temporal processing in the gerbil model. Psychometric functions were collected for different test paradigms. (A) "Gap detection": The detection of a gap in the middle of a 800 msec broadband noise pulse was determined either at 15 or at 30 dB SL. (B) "Forward masking": The detection of a 20 msec probe stimulus following 2.5 msec after a 400 msec 40 dB SPL masker was determined with masker and probe frequency at 2.85 kHz. The effect of gabapentin was evaluated by collecting gap detection and forward masking functions before, during, and after treating gerbils with gabapentin doses of 115 or 350 mg/kg/day administered via drinking water. Data under different experimental conditions were collected for groups of 3 to 5 young (<2 years) and 6 to 10 old (>2 years) gerbils. Two-way analyses of variance for the factors age groups and treatment groups with subsequent pairwise comparisons for significant effects were used for the statistical evaluation of the data. For gap detection, mean thresholds were significantly increased in the group of old as compared with the young gerbils at 30 dB SL (young 2.0 msec; old 3.2 msec) and at 15 dB SL (young 2.9 msec; old 9.1 msec). Gabapentin had no significant effect on gap detection, and there was no

  18. "Mind the gap!" Evaluation of the performance gap attributable to exception reporting and target thresholds in the new GMS contract: National database analysis.

    PubMed

    Fleetcroft, Robert; Steel, Nicholas; Cookson, Richard; Howe, Amanda

    2008-06-17

    The 2003 revision of the UK GMS contract rewards general practices for performance against clinical quality indicators. Practices can exempt patients from treatment, and can receive maximum payment for less than full coverage of eligible patients. This paper aims to estimate the gap between the percentage of maximum incentive gained and the percentage of patients receiving indicated care (the pay-performance gap), and to estimate how much of the gap is attributable respectively to thresholds and to exception reporting. Analysis of Quality Outcomes Framework data in the National Primary Care Database and exception reporting data from the Information Centre from 8407 practices in England in 2005 - 6. The main outcome measures were the gap between the percentage of maximum incentive gained and the percentage of patients receiving indicated care at the practice level, both for individual indicators and a combined composite score. An additional outcome was the percentage of that gap attributable respectively to exception reporting and maximum threshold targets set at less than 100%. The mean pay-performance gap for the 65 aggregated clinical indicators was 13.3% (range 2.9% to 48%). 52% of this gap (6.9% of eligible patients) is attributable to thresholds being set at less than 100%, and 48% to patients being exception reported. The gap was greater than 25% in 9 indicators: beta blockers and cholesterol control in heart disease; cholesterol control in stroke; influenza immunization in asthma; blood pressure, sugar and cholesterol control in diabetes; seizures in epilepsy and treatment of hypertension. Threshold targets and exception reporting introduce an incentive ceiling, which substantially reduces the percentage of eligible patients that UK practices need to treat in order to receive maximum incentive payments for delivering that care. There are good clinical reasons for exception reporting, but after unsuitable patients have been exempted from treatment, there is

  19. FDI technology spillover and threshold effect of the technology gap: regional differences in the Chinese industrial sector.

    PubMed

    Wang, Hui; Liu, Huifang; Cao, Zhiyong; Wang, Bowen

    2016-01-01

    This paper presents a new perspective that there is a double-threshold effect in terms of the technology gap existing in the foreign direct investment (FDI) technology spillover process in different regional Chinese industrial sectors. In this paper, a double-threshold regression model was established to examine the relation between the threshold effect of the technology gap and technology spillover. Based on the provincial panel data of Chinese industrial sectors from 2000 to 2011, the empirical results reveal that there are two threshold values, which are 1.254 and 2.163, in terms of the technology gap in the industrial sector in eastern China. There are also two threshold values in both the central and western industrial sector, which are 1.516, 2.694 and 1.635, 2.714, respectively. The technology spillover is a decreasing function of the technology gap in both the eastern and western industrial sectors, but a concave curve function of the technology gap is in the central industrial sectors. Furthermore, the FDI technology spillover has increased gradually in recent years. Based on the empirical results, suggestions were proposed to elucidate the introduction of the FDI and the improvement in the industrial added value in different regions of China.

  20. On computational Gestalt detection thresholds.

    PubMed

    Grompone von Gioi, Rafael; Jakubowicz, Jérémie

    2009-01-01

    The aim of this paper is to show some recent developments of computational Gestalt theory, as pioneered by Desolneux, Moisan and Morel. The new results allow to predict much more accurately the detection thresholds. This step is unavoidable if one wants to analyze visual detection thresholds in the light of computational Gestalt theory. The paper first recalls the main elements of computational Gestalt theory. It points out a precision issue in this theory, essentially due to the use of discrete probability distributions. It then proposes to overcome this issue by using continuous probability distributions and illustrates it on the meaningful alignment detector of Desolneux et al.

  1. Enhanced auditory temporal gap detection in listeners with musical training.

    PubMed

    Mishra, Srikanta K; Panda, Manas R; Herbert, Carolyn

    2014-08-01

    Many features of auditory perception are positively altered in musicians. Traditionally auditory mechanisms in musicians are investigated using the Western-classical musician model. The objective of the present study was to adopt an alternative model-Indian-classical music-to further investigate auditory temporal processing in musicians. This study presents that musicians have significantly lower across-channel gap detection thresholds compared to nonmusicians. Use of the South Indian musician model provides an increased external validity for the prediction, from studies on Western-classical musicians, that auditory temporal coding is enhanced in musicians.

  2. Effect of strong fragrance on olfactory detection threshold.

    PubMed

    Fasunla, Ayotunde James; Douglas, David Dayo; Adeosun, Aderemi Adeleke; Steinbach, Silke; Nwaorgu, Onyekwere George Benjamin

    2014-09-01

    To assess the olfactory threshold of healthy volunteers at the University College Hospital, Ibadan and to investigate the effect of perfume on their olfactory detection thresholds. A quasi-experimental study on olfactory detection thresholds of healthy volunteers from September 2013 to November 2013. Tertiary health institution. A structured questionniare was administered to the participants in order to obtain information on sociodemographics, occupation, ability to perceive smell, use of perfume, effects of perfume on appetite and self-confidence, history of allergy, and previous nasal surgery. Participants subjectively rated their olfactory performance. Subsequently, they had olfactory detection threshold testing done at baseline and after exposure to perfume with varied concentrations of n-butanol in a forced triple response and staircase fashion. Healthy volunteers, 37 males and 63 females, were evaluated. Their ages ranged from 19 to 59 years with a mean of 31 years ± 8. Subjectively, 94% of the participants had excellent olfactory function. In the pre-exposure forced triple response, 88% were able to detect the odor at ≤.25 mmol/l concentration while in the post-exposure forced triple response, only 66% were able to detect the odor at ≤.25 mmol/l concentration. There is also a statistical significant difference in the olfactory detection threshold score between the pre-exposure and post-exposure period in the participants (P < .05). Use of strong fragrances affects the olfactory detection threshold. Therefore patients and clinicians should be aware of this and its effects on the outcome of test of olfaction. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2014.

  3. Experimental and environmental factors affect spurious detection of ecological thresholds

    USGS Publications Warehouse

    Daily, Jonathan P.; Hitt, Nathaniel P.; Smith, David; Snyder, Craig D.

    2012-01-01

    Threshold detection methods are increasingly popular for assessing nonlinear responses to environmental change, but their statistical performance remains poorly understood. We simulated linear change in stream benthic macroinvertebrate communities and evaluated the performance of commonly used threshold detection methods based on model fitting (piecewise quantile regression [PQR]), data partitioning (nonparametric change point analysis [NCPA]), and a hybrid approach (significant zero crossings [SiZer]). We demonstrated that false detection of ecological thresholds (type I errors) and inferences on threshold locations are influenced by sample size, rate of linear change, and frequency of observations across the environmental gradient (i.e., sample-environment distribution, SED). However, the relative importance of these factors varied among statistical methods and between inference types. False detection rates were influenced primarily by user-selected parameters for PQR (τ) and SiZer (bandwidth) and secondarily by sample size (for PQR) and SED (for SiZer). In contrast, the location of reported thresholds was influenced primarily by SED. Bootstrapped confidence intervals for NCPA threshold locations revealed strong correspondence to SED. We conclude that the choice of statistical methods for threshold detection should be matched to experimental and environmental constraints to minimize false detection rates and avoid spurious inferences regarding threshold location.

  4. Variable threshold method for ECG R-peak detection.

    PubMed

    Kew, Hsein-Ping; Jeong, Do-Un

    2011-10-01

    In this paper, a wearable belt-type ECG electrode worn around the chest by measuring the real-time ECG is produced in order to minimize the inconvenient in wearing. ECG signal is detected using a potential instrument system. The measured ECG signal is transmits via an ultra low power consumption wireless data communications unit to personal computer using Zigbee-compatible wireless sensor node. ECG signals carry a lot of clinical information for a cardiologist especially the R-peak detection in ECG. R-peak detection generally uses the threshold value which is fixed. There will be errors in peak detection when the baseline changes due to motion artifacts and signal size changes. Preprocessing process which includes differentiation process and Hilbert transform is used as signal preprocessing algorithm. Thereafter, variable threshold method is used to detect the R-peak which is more accurate and efficient than fixed threshold value method. R-peak detection using MIT-BIH databases and Long Term Real-Time ECG is performed in this research in order to evaluate the performance analysis.

  5. Chemical sensing thresholds for mine detection dogs

    NASA Astrophysics Data System (ADS)

    Phelan, James M.; Barnett, James L.

    2002-08-01

    Mine detection dogs have been found to be an effective method to locate buried landmines. The capabilities of the canine olfaction method are from a complex combination of training and inherent capacity of the dog for odor detection. The purpose of this effort was to explore the detection thresholds of a limited group of dogs that were trained specifically for landmine detection. Soils were contaminated with TNT and 2,4-DNT to develop chemical vapor standards to present to the dogs. Soils contained ultra trace levels of TNT and DNT, which produce extremely low vapor levels. Three groups of dogs were presented the headspace vapors from the contaminated soils in work environments for each dog group. One positive sample was placed among several that contained clean soils and, the location and vapor source (strength, type) was frequently changed. The detection thresholds for the dogs were determined from measured and extrapolated dilution of soil chemical residues and, estimated soil vapor values using phase partitioning relationships. The results showed significant variances in dog sensing thresholds, where some dogs could sense the lowest levels and others had trouble with even the highest source. The remarkable ultra-trace levels detectable by the dogs are consistent with the ultra-trace chemical residues derived from buried landmines; however, poor performance may go unnoticed without periodic challenge tests at levels consistent with performance requirements.

  6. Automatic Road Gap Detection Using Fuzzy Inference System

    NASA Astrophysics Data System (ADS)

    Hashemi, S.; Valadan Zoej, M. J.; Mokhtarzadeh, M.

    2011-09-01

    Automatic feature extraction from aerial and satellite images is a high-level data processing which is still one of the most important research topics of the field. In this area, most of the researches are focused on the early step of road detection, where road tracking methods, morphological analysis, dynamic programming and snakes, multi-scale and multi-resolution methods, stereoscopic and multi-temporal analysis, hyper spectral experiments, are some of the mature methods in this field. Although most researches are focused on detection algorithms, none of them can extract road network perfectly. On the other hand, post processing algorithms accentuated on the refining of road detection results, are not developed as well. In this article, the main is to design an intelligent method to detect and compensate road gaps remained on the early result of road detection algorithms. The proposed algorithm consists of five main steps as follow: 1) Short gap coverage: In this step, a multi-scale morphological is designed that covers short gaps in a hierarchical scheme. 2) Long gap detection: In this step, the long gaps, could not be covered in the previous stage, are detected using a fuzzy inference system. for this reason, a knowledge base consisting of some expert rules are designed which are fired on some gap candidates of the road detection results. 3) Long gap coverage: In this stage, detected long gaps are compensated by two strategies of linear and polynomials for this reason, shorter gaps are filled by line fitting while longer ones are compensated by polynomials.4) Accuracy assessment: In order to evaluate the obtained results, some accuracy assessment criteria are proposed. These criteria are obtained by comparing the obtained results with truly compensated ones produced by a human expert. The complete evaluation of the obtained results whit their technical discussions are the materials of the full paper.

  7. Odor Detection Thresholds in a Population of Older Adults

    PubMed Central

    Schubert, Carla R.; Fischer, Mary E.; Pinto, A. Alex; Klein, Barbara E.K.; Klein, Ronald; Cruickshanks, Karen J.

    2016-01-01

    OBJECTIVE To measure odor detection thresholds and associated nasal and behavioral factors in an older adult population. STUDY DESIGN Cross-sectional cohort study METHODS Odor detection thresholds were obtained using an automated olfactometer on 832 participants, aged 68–99 (mean age 77) years in the 21-year (2013–2016) follow-up visit of the Epidemiology of Hearing Loss Study. RESULTS The mean odor detection threshold (ODT) score was 8.2 (range: 1–13; standard deviation = 2.54), corresponding to a n-butanol concentration of slightly less than 0.03%. Older participants were significantly more likely to have lower (worse) ODT scores than younger participants (p<0.001). There were no significant differences in mean ODT scores between men and women. Older age was significantly associated with worse performance in multivariable regression models and exercising at least once a week was associated with a reduced odds of having a low (≤5) ODT score. Cognitive impairment was also associated with poor performance while a history of allergies or a deviated septum were associated with better performance. CONCLUSION Odor detection threshold scores were worse in older age groups but similar between men and women in this large population of older adults. Regular exercise was associated with better odor detection thresholds adding to the evidence that decline in olfactory function with age may be partly preventable. PMID:28000220

  8. Threshold detection in an on-off binary communications channel with atmospheric scintillation

    NASA Technical Reports Server (NTRS)

    Webb, W. E.; Marino, J. T., Jr.

    1974-01-01

    The optimum detection threshold in an on-off binary optical communications system operating in the presence of atmospheric turbulence was investigated assuming a poisson detection process and log normal scintillation. The dependence of the probability of bit error on log amplitude variance and received signal strength was analyzed and semi-emperical relationships to predict the optimum detection threshold derived. On the basis of this analysis a piecewise linear model for an adaptive threshold detection system is presented. Bit error probabilities for non-optimum threshold detection system were also investigated.

  9. Threshold detection in an on-off binary communications channel with atmospheric scintillation

    NASA Technical Reports Server (NTRS)

    Webb, W. E.

    1975-01-01

    The optimum detection threshold in an on-off binary optical communications system operating in the presence of atmospheric turbulence was investigated assuming a poisson detection process and log normal scintillation. The dependence of the probability of bit error on log amplitude variance and received signal strength was analyzed and semi-empirical relationships to predict the optimum detection threshold derived. On the basis of this analysis a piecewise linear model for an adaptive threshold detection system is presented. The bit error probabilities for nonoptimum threshold detection systems were also investigated.

  10. Thresholding Based on Maximum Weighted Object Correlation for Rail Defect Detection

    NASA Astrophysics Data System (ADS)

    Li, Qingyong; Huang, Yaping; Liang, Zhengping; Luo, Siwei

    Automatic thresholding is an important technique for rail defect detection, but traditional methods are not competent enough to fit the characteristics of this application. This paper proposes the Maximum Weighted Object Correlation (MWOC) thresholding method, fitting the features that rail images are unimodal and defect proportion is small. MWOC selects a threshold by optimizing the product of object correlation and the weight term that expresses the proportion of thresholded defects. Our experimental results demonstrate that MWOC achieves misclassification error of 0.85%, and outperforms the other well-established thresholding methods, including Otsu, maximum correlation thresholding, maximum entropy thresholding and valley-emphasis method, for the application of rail defect detection.

  11. Detection thresholds for small haptic effects

    NASA Astrophysics Data System (ADS)

    Dosher, Jesse A.; Hannaford, Blake

    2002-02-01

    We are interested in finding out whether or not haptic interfaces will be useful in portable and hand held devices. Such systems will have severe constraints on force output. Our first step is to investigate the lower limits at which haptic effects can be perceived. In this paper we report on experiments studying the effects of varying the amplitude, size, shape, and pulse-duration of a haptic feature. Using a specific haptic device we measure the smallest detectable haptics effects, with active exploration of saw-tooth shaped icons sized 3, 4 and 5 mm, a sine-shaped icon 5 mm wide, and static pulses 50, 100, and 150 ms in width. Smooth shaped icons resulted in a detection threshold of approximately 55 mN, almost twice that of saw-tooth shaped icons which had a threshold of 31 mN.

  12. Sugar Detection Threshold After Laparoscopic Sleeve Gastrectomy in Adolescents.

    PubMed

    Abdeen, Ghalia N; Miras, Alexander D; Alqhatani, Aayed R; le Roux, Carel W

    2018-05-01

    Obesity in young people is one of the most serious public health problems worldwide. Moreover, the mechanisms preventing obese adolescents from losing and maintaining weight loss have been elusive. Laparoscopic sleeve gastrectomy (LSG) is successful at achieving long-term weight loss in patients across all age groups, including children and adolescents. Anecdotal clinical observation as well as evidence in rodents suggests that LSG induces a shift in preference of sugary foods. However, it is not known whether this shift is due to a change in the threshold for gustatory detection of sucrose, or whether LSG induces behavioral change without affecting the gustatory threshold for sugar. The objective of this study was to determine whether adolescents who undergo LSG experience a change in their threshold for detecting sweet taste. We studied the sucrose detection threshold of 14 obese adolescents (age 15.3 ± 0.5 years, range 12-18) who underwent LSG 2 weeks before surgery and at 12 and 52 weeks after surgery. Matched non-surgical subjects were tested on two occasions 12 weeks apart to control for potential learning of the test that may have confounded the results. Seven sucrose concentrations were used and were tested in eight blocks with each block consisting of a random seven sucrose and seven water stimuli. The subjects were asked to report whether the sample contained water or not after they tasted 15 ml of the fluid for 10 s. The bodyweight of the LSG group decreased from 136.7 ± 5.4 to 109.6 ± 5.1 and 86.5 ± 4.0 kg after 12 and 52 weeks, respectively (p < 0.001). There was no significant difference after surgery in taste detection threshold of patients after LSG (p = 0.60), and no difference was observed comparing the taste detection threshold of the LSG group with the non-surgical controls (p = 0.38). LSG did not affect the taste detection threshold for sucrose, suggesting that the shift in preference for sugary foods may be due to

  13. Multiratio fusion change detection with adaptive thresholding

    NASA Astrophysics Data System (ADS)

    Hytla, Patrick C.; Balster, Eric J.; Vasquez, Juan R.; Neuroth, Robert M.

    2017-04-01

    A ratio-based change detection method known as multiratio fusion (MRF) is proposed and tested. The MRF framework builds on other change detection components proposed in this work: dual ratio (DR) and multiratio (MR). The DR method involves two ratios coupled with adaptive thresholds to maximize detected changes and minimize false alarms. The use of two ratios is shown to outperform the single ratio case when the means of the image pairs are not equal. MR change detection builds on the DR method by including negative imagery to produce four total ratios with adaptive thresholds. Inclusion of negative imagery is shown to improve detection sensitivity and to boost detection performance in certain target and background cases. MRF further expands this concept by fusing together the ratio outputs using a routine in which detections must be verified by two or more ratios to be classified as a true changed pixel. The proposed method is tested with synthetically generated test imagery and real datasets with results compared to other methods found in the literature. DR is shown to significantly outperform the standard single ratio method. MRF produces excellent change detection results that exhibit up to a 22% performance improvement over other methods from the literature at low false-alarm rates.

  14. Effects of visual erotic stimulation on vibrotactile detection thresholds in men.

    PubMed

    Jiao, Chuanshu; Knight, Peter K; Weerakoon, Patricia; Turman, A Bulent

    2007-12-01

    This study examined the effects of sexual arousal on vibration detection thresholds in the right index finger of 30 healthy, heterosexual males who reported no sexual dysfunction. Vibrotactile detection thresholds at frequencies of 30, 60, and 100 Hz were assessed before and after watching erotic and control videos using a forced-choice, staircase method. A mechanical stimulator was used to produce the vibratory stimulus. Results were analyzed using repeated measures analysis of variance. After watching the erotic video, the vibrotactile detection thresholds at 30, 60, and 100 Hz were significantly reduced (p < .01). No changes in thresholds were detected at any frequency following exposure to the non-erotic stimulus. The results show that sexual arousal resulted in an increase in vibrotactile sensitivity to low frequency stimuli in the index finger of sexually functional men.

  15. Algorithmic detectability threshold of the stochastic block model

    NASA Astrophysics Data System (ADS)

    Kawamoto, Tatsuro

    2018-03-01

    The assumption that the values of model parameters are known or correctly learned, i.e., the Nishimori condition, is one of the requirements for the detectability analysis of the stochastic block model in statistical inference. In practice, however, there is no example demonstrating that we can know the model parameters beforehand, and there is no guarantee that the model parameters can be learned accurately. In this study, we consider the expectation-maximization (EM) algorithm with belief propagation (BP) and derive its algorithmic detectability threshold. Our analysis is not restricted to the community structure but includes general modular structures. Because the algorithm cannot always learn the planted model parameters correctly, the algorithmic detectability threshold is qualitatively different from the one with the Nishimori condition.

  16. Stress lowers the detection threshold for foul-smelling 2-mercaptoethanol.

    PubMed

    Pacharra, Marlene; Schäper, Michael; Kleinbeck, Stefan; Blaszkewicz, Meinolf; Wolf, Oliver T; van Thriel, Christoph

    2016-01-01

    Previous studies have reported enhanced vigilance for threat-related information in response to acute stress. While it is known that acute stress modulates sensory systems in humans, its impact on olfaction and the olfactory detection of potential threats is less clear. Two psychophysical experiments examined, if acute stress lowers the detection threshold for foul-smelling 2-mercaptoethanol. Participants in Experiment 1 (N = 30) and Experiment 2 (N = 32) were randomly allocated to a control group or a stress group. Participants in the stress group underwent a purely psychosocial stressor (public mental arithmetic) in Experiment 1 and a stressor that combined a physically demanding task with social-evaluative threat in Experiment 2 (socially evaluated cold-pressor test). In both experiments, olfactory detection thresholds were repeatedly assessed by means of dynamic dilution olfactometry. Each threshold measurement consisted of three trials conducted using an ascending method of limits. Participants in the stress groups showed the expected changes in heart rate, salivary cortisol, and mood measures in response to stress. About 20 min after the stressor, participants in the stress groups could detect 2-mercaptoethanol at a lower concentration than participants in the corresponding control groups. Our results show that acute stress lowers the detection threshold for a malodor.

  17. GLAST Deficiency in Mice Exacerbates Gap Detection Deficits in a Model of Salicylate-Induced Tinnitus

    PubMed Central

    Yu, Hong; Vikhe Patil, Kim; Han, Chul; Fabella, Brian; Canlon, Barbara; Someya, Shinichi; Cederroth, Christopher R.

    2016-01-01

    Gap detection or gap pre-pulse inhibition of the acoustic startle (GPIAS) has been successfully used in rat and guinea pig models of tinnitus, yet this system has been proven to have low efficacy in CBA mice, with low basal GPIAS and subtle tinnitus-like effects. Here, we tested five mouse strains (CBA, BalbC, CD-1, C57BL/6 and 129sv) for pre-pulse inhibition (PPI) and gap detection with varying interstimulus intervals (ISI) and found that mice from a CBA genetic background had the poorest capacities of suppressing the startle response in the presence of a pre-pulse or a gap. CD-1 mice displayed variable responses throughout all ISI. Interestingly, C57BL/6, 129sv and BalbC showed efficient suppression with either pre-pulses or gaps with shorter ISI. The glutamate aspartate transporter (GLAST) is expressed in support cells from the cochlea and buffers the excess of glutamate. We hypothesized that loss of GLAST function could sensitize the ear to tinnitus-inducing agents, such as salicylate. Using shorter ISI to obtain a greater dynamic range to assess tinnitus-like effects, we found that disruption of gap detection by salicylate was exacerbated across various intensities of a 32-kHz narrow band noise gap carrier in GLAST knockout (KO) mice when compared to their wild-type (WT) littermates. Auditory brainstem responses (ABR) and distortion-product otoacoustic emission (DPOAE) were performed to evaluate the effects on hearing functions. Salicylate caused greater auditory threshold shifts (near 15 dB) in GLAST KO mice than in WT mice across all tested frequencies, despite similarly reduced DPOAE. Despite these changes, inhibition using broad-band gap carriers and 32 kHz pre-pulses were not affected. Our study suggests that GLAST deficiency could become a useful experimental model to decipher the mechanisms underlying drug-induced tinnitus. Future studies addressing the neurological correlates of tinnitus in this model could provide additional insights into the

  18. GLAST Deficiency in Mice Exacerbates Gap Detection Deficits in a Model of Salicylate-Induced Tinnitus.

    PubMed

    Yu, Hong; Vikhe Patil, Kim; Han, Chul; Fabella, Brian; Canlon, Barbara; Someya, Shinichi; Cederroth, Christopher R

    2016-01-01

    Gap detection or gap pre-pulse inhibition of the acoustic startle (GPIAS) has been successfully used in rat and guinea pig models of tinnitus, yet this system has been proven to have low efficacy in CBA mice, with low basal GPIAS and subtle tinnitus-like effects. Here, we tested five mouse strains (CBA, BalbC, CD-1, C57BL/6 and 129sv) for pre-pulse inhibition (PPI) and gap detection with varying interstimulus intervals (ISI) and found that mice from a CBA genetic background had the poorest capacities of suppressing the startle response in the presence of a pre-pulse or a gap. CD-1 mice displayed variable responses throughout all ISI. Interestingly, C57BL/6, 129sv and BalbC showed efficient suppression with either pre-pulses or gaps with shorter ISI. The glutamate aspartate transporter (GLAST) is expressed in support cells from the cochlea and buffers the excess of glutamate. We hypothesized that loss of GLAST function could sensitize the ear to tinnitus-inducing agents, such as salicylate. Using shorter ISI to obtain a greater dynamic range to assess tinnitus-like effects, we found that disruption of gap detection by salicylate was exacerbated across various intensities of a 32-kHz narrow band noise gap carrier in GLAST knockout (KO) mice when compared to their wild-type (WT) littermates. Auditory brainstem responses (ABR) and distortion-product otoacoustic emission (DPOAE) were performed to evaluate the effects on hearing functions. Salicylate caused greater auditory threshold shifts (near 15 dB) in GLAST KO mice than in WT mice across all tested frequencies, despite similarly reduced DPOAE. Despite these changes, inhibition using broad-band gap carriers and 32 kHz pre-pulses were not affected. Our study suggests that GLAST deficiency could become a useful experimental model to decipher the mechanisms underlying drug-induced tinnitus. Future studies addressing the neurological correlates of tinnitus in this model could provide additional insights into the

  19. Comparing adaptive procedures for estimating the psychometric function for an auditory gap detection task.

    PubMed

    Shen, Yi

    2013-05-01

    A subject's sensitivity to a stimulus variation can be studied by estimating the psychometric function. Generally speaking, three parameters of the psychometric function are of interest: the performance threshold, the slope of the function, and the rate at which attention lapses occur. In the present study, three psychophysical procedures were used to estimate the three-parameter psychometric function for an auditory gap detection task. These were an up-down staircase (up-down) procedure, an entropy-based Bayesian (entropy) procedure, and an updated maximum-likelihood (UML) procedure. Data collected from four young, normal-hearing listeners showed that while all three procedures provided similar estimates of the threshold parameter, the up-down procedure performed slightly better in estimating the slope and lapse rate for 200 trials of data collection. When the lapse rate was increased by mixing in random responses for the three adaptive procedures, the larger lapse rate was especially detrimental to the efficiency of the up-down procedure, and the UML procedure provided better estimates of the threshold and slope than did the other two procedures.

  20. Attentional Capacity Limits Gap Detection during Concurrent Sound Segregation.

    PubMed

    Leung, Ada W S; Jolicoeur, Pierre; Alain, Claude

    2015-11-01

    Detecting a brief silent interval (i.e., a gap) is more difficult when listeners perceive two concurrent sounds rather than one in a sound containing a mistuned harmonic in otherwise in-tune harmonics. This impairment in gap detection may reflect the interaction of low-level encoding or the division of attention between two sound objects, both of which could interfere with signal detection. To distinguish between these two alternatives, we compared ERPs during active and passive listening with complex harmonic tones that could include a gap, a mistuned harmonic, both features, or neither. During active listening, participants indicated whether they heard a gap irrespective of mistuning. During passive listening, participants watched a subtitled muted movie of their choice while the same sounds were presented. Gap detection was impaired when the complex sounds included a mistuned harmonic that popped out as a separate object. The ERP analysis revealed an early gap-related activity that was little affected by mistuning during the active or passive listening condition. However, during active listening, there was a marked decrease in the late positive wave that was thought to index attention and response-related processes. These results suggest that the limitation in detecting the gap is related to attentional processing, possibly divided attention induced by the concurrent sound objects, rather than deficits in preattentional sensory encoding.

  1. Auditory Cortex Is Required for Fear Potentiation of Gap Detection

    PubMed Central

    Weible, Aldis P.; Liu, Christine; Niell, Cristopher M.

    2014-01-01

    Auditory cortex is necessary for the perceptual detection of brief gaps in noise, but is not necessary for many other auditory tasks such as frequency discrimination, prepulse inhibition of startle responses, or fear conditioning with pure tones. It remains unclear why auditory cortex should be necessary for some auditory tasks but not others. One possibility is that auditory cortex is causally involved in gap detection and other forms of temporal processing in order to associate meaning with temporally structured sounds. This predicts that auditory cortex should be necessary for associating meaning with gaps. To test this prediction, we developed a fear conditioning paradigm for mice based on gap detection. We found that pairing a 10 or 100 ms gap with an aversive stimulus caused a robust enhancement of gap detection measured 6 h later, which we refer to as fear potentiation of gap detection. Optogenetic suppression of auditory cortex during pairing abolished this fear potentiation, indicating that auditory cortex is critically involved in associating temporally structured sounds with emotionally salient events. PMID:25392510

  2. Detection and Modeling of High-Dimensional Thresholds for Fault Detection and Diagnosis

    NASA Technical Reports Server (NTRS)

    He, Yuning

    2015-01-01

    Many Fault Detection and Diagnosis (FDD) systems use discrete models for detection and reasoning. To obtain categorical values like oil pressure too high, analog sensor values need to be discretized using a suitablethreshold. Time series of analog and discrete sensor readings are processed and discretized as they come in. This task isusually performed by the wrapper code'' of the FDD system, together with signal preprocessing and filtering. In practice,selecting the right threshold is very difficult, because it heavily influences the quality of diagnosis. If a threshold causesthe alarm trigger even in nominal situations, false alarms will be the consequence. On the other hand, if threshold settingdoes not trigger in case of an off-nominal condition, important alarms might be missed, potentially causing hazardoussituations. In this paper, we will in detail describe the underlying statistical modeling techniques and algorithm as well as the Bayesian method for selecting the most likely shape and its parameters. Our approach will be illustrated by several examples from the Aerospace domain.

  3. Automatic threshold optimization in nonlinear energy operator based spike detection.

    PubMed

    Malik, Muhammad H; Saeed, Maryam; Kamboh, Awais M

    2016-08-01

    In neural spike sorting systems, the performance of the spike detector has to be maximized because it affects the performance of all subsequent blocks. Non-linear energy operator (NEO), is a popular spike detector due to its detection accuracy and its hardware friendly architecture. However, it involves a thresholding stage, whose value is usually approximated and is thus not optimal. This approximation deteriorates the performance in real-time systems where signal to noise ratio (SNR) estimation is a challenge, especially at lower SNRs. In this paper, we propose an automatic and robust threshold calculation method using an empirical gradient technique. The method is tested on two different datasets. The results show that our optimized threshold improves the detection accuracy in both high SNR and low SNR signals. Boxplots are presented that provide a statistical analysis of improvements in accuracy, for instance, the 75th percentile was at 98.7% and 93.5% for the optimized NEO threshold and traditional NEO threshold, respectively.

  4. Detection Thresholds of Falling Snow From Satellite-Borne Active and Passive Sensors

    NASA Technical Reports Server (NTRS)

    Skofronick-Jackson, Gail M.; Johnson, Benjamin T.; Munchak, S. Joseph

    2013-01-01

    There is an increased interest in detecting and estimating the amount of falling snow reaching the Earths surface in order to fully capture the global atmospheric water cycle. An initial step toward global spaceborne falling snow algorithms for current and future missions includes determining the thresholds of detection for various active and passive sensor channel configurations and falling snow events over land surfaces and lakes. In this paper, cloud resolving model simulations of lake effect and synoptic snow events were used to determine the minimum amount of snow (threshold) that could be detected by the following instruments: the W-band radar of CloudSat, Global Precipitation Measurement (GPM) Dual-Frequency Precipitation Radar (DPR)Ku- and Ka-bands, and the GPM Microwave Imager. Eleven different nonspherical snowflake shapes were used in the analysis. Notable results include the following: 1) The W-band radar has detection thresholds more than an order of magnitude lower than the future GPM radars; 2) the cloud structure macrophysics influences the thresholds of detection for passive channels (e.g., snow events with larger ice water paths and thicker clouds are easier to detect); 3) the snowflake microphysics (mainly shape and density)plays a large role in the detection threshold for active and passive instruments; 4) with reasonable assumptions, the passive 166-GHz channel has detection threshold values comparable to those of the GPM DPR Ku- and Ka-band radars with approximately 0.05 g *m(exp -3) detected at the surface, or an approximately 0.5-1.0-mm * h(exp -1) melted snow rate. This paper provides information on the light snowfall events missed by the sensors and not captured in global estimates.

  5. Orion MPCV Touchdown Detection Threshold Development and Testing

    NASA Technical Reports Server (NTRS)

    Daum, Jared; Gay, Robert

    2013-01-01

    A robust method of detecting Orion Multi-Purpose Crew Vehicle (MPCV) splashdown is necessary to ensure crew and hardware safety during descent and after touchdown. The proposed method uses a triple redundant system to inhibit Reaction Control System (RCS) thruster firings, detach parachute risers from the vehicle, and transition to the post-landing segment of the Flight Software (FSW). An in-depth trade study was completed to determine optimal characteristics of the touchdown detection method resulting in an algorithm monitoring filtered, lever-arm corrected, 200 Hz Inertial Measurement Unit (IMU) vehicle acceleration magnitude data against a tunable threshold using persistence counter logic. Following the design of the algorithm, high fidelity environment and vehicle simulations, coupled with the actual vehicle FSW, were used to tune the acceleration threshold and persistence counter value to result in adequate performance in detecting touchdown and sufficient safety margin against early detection while descending under parachutes. An analytical approach including Kriging and adaptive sampling allowed for a sufficient number of finite element analysis (FEA) impact simulations to be completed using minimal computation time. The combination of a persistence counter of 10 and an acceleration threshold of approximately 57.3 ft/s2 resulted in an impact performance factor of safety (FOS) of 1.0 and a safety FOS of approximately 2.6 for touchdown declaration. An RCS termination acceleration threshold of approximately 53.1 ft/s(exp)2 with a persistence counter of 10 resulted in an increased impact performance FOS of 1.2 at the expense of a lowered under-parachutes safety factor of 2.2. The resulting tuned algorithm was then tested on data from eight Capsule Parachute Assembly System (CPAS) flight tests, showing an experimental minimum safety FOS of 6.1. The formulated touchdown detection algorithm will be flown on the Orion MPCV FSW during the Exploration Flight Test 1

  6. Thermal detection thresholds in 5-year-old preterm born children; IQ does matter.

    PubMed

    de Graaf, Joke; Valkenburg, Abraham J; Tibboel, Dick; van Dijk, Monique

    2012-07-01

    Experiencing pain at newborn age may have consequences on one's somatosensory perception later in life. Children's perception for cold and warm stimuli may be determined with the Thermal Sensory Analyzer (TSA) device by two different methods. This pilot study in 5-year-old children born preterm aimed at establishing whether the TSA method of limits, which is dependent of reaction time, and the method of levels, which is independent of reaction time, would yield different cold and warm detection thresholds. The second aim was to establish possible associations between intellectual ability and the detection thresholds obtained with either method. A convenience sample was drawn from the participants in an ongoing 5-year follow-up study of a randomized controlled trial on effects of morphine during mechanical ventilation. Thresholds were assessed using both methods and statistically compared. Possible associations between the child's intelligence quotient (IQ) and threshold levels were analyzed. The method of levels yielded more sensitive thresholds than did the method of limits, i.e. mean (SD) cold detection thresholds: 30.3 (1.4) versus 28.4 (1.7) (Cohen'sd=1.2, P=0.001) and warm detection thresholds; 33.9 (1.9) versus 35.6 (2.1) (Cohen's d=0.8, P=0.04). IQ was statistically significantly associated only with the detection thresholds obtained with the method of limits (cold: r=0.64, warm: r=-0.52). The TSA method of levels, is to be preferred over the method of limits in 5-year-old preterm born children, as it establishes more sensitive detection thresholds and is independent of IQ. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Neurometric amplitude-modulation detection threshold in the guinea-pig ventral cochlear nucleus

    PubMed Central

    Sayles, Mark; Füllgrabe, Christian; Winter, Ian M

    2013-01-01

    Amplitude modulation (AM) is a pervasive feature of natural sounds. Neural detection and processing of modulation cues is behaviourally important across species. Although most ecologically relevant sounds are not fully modulated, physiological studies have usually concentrated on fully modulated (100% modulation depth) signals. Psychoacoustic experiments mainly operate at low modulation depths, around detection threshold (∼5% AM). We presented sinusoidal amplitude-modulated tones, systematically varying modulation depth between zero and 100%, at a range of modulation frequencies, to anaesthetised guinea-pigs while recording spikes from neurons in the ventral cochlear nucleus (VCN). The cochlear nucleus is the site of the first synapse in the central auditory system. At this locus significant signal processing occurs with respect to representation of AM signals. Spike trains were analysed in terms of the vector strength of spike synchrony to the amplitude envelope. Neurons showed either low-pass or band-pass temporal modulation transfer functions, with the proportion of band-pass responses increasing with increasing sound level. The proportion of units showing a band-pass response varies with unit type: sustained chopper (CS) > transient chopper (CT) > primary-like (PL). Spike synchrony increased with increasing modulation depth. At the lowest modulation depth (6%), significant spike synchrony was only observed near to the unit's best modulation frequency for all unit types tested. Modulation tuning therefore became sharper with decreasing modulation depth. AM detection threshold was calculated for each individual unit as a function of modulation frequency. Chopper units have significantly better AM detection thresholds than do primary-like units. AM detection threshold is significantly worse at 40 dB vs. 10 dB above pure-tone spike rate threshold. Mean modulation detection thresholds for sounds 10 dB above pure-tone spike rate threshold at best modulation

  8. Spatially Varying Spectrally Thresholds for MODIS Cloud Detection

    NASA Technical Reports Server (NTRS)

    Haines, S. L.; Jedlovec, G. J.; Lafontaine, F.

    2004-01-01

    The EOS science team has developed an elaborate global MODIS cloud detection procedure, and the resulting MODIS product (MOD35) is used in the retrieval process of several geophysical parameters to mask out clouds. While the global application of the cloud detection approach appears quite robust, the product has some shortcomings on the regional scale, often over determining clouds in a variety of settings, particularly at night. This over-determination of clouds can cause a reduction in the spatial coverage of MODIS derived clear-sky products. To minimize this problem, a new regional cloud detection method for use with MODIS data has been developed at NASA's Global Hydrology and Climate Center (GHCC). The approach is similar to that used by the GHCC for GOES data over the continental United States. Several spatially varying thresholds are applied to MODIS spectral data to produce a set of tests for detecting clouds. The thresholds are valid for each MODIS orbital pass, and are derived from 20-day composites of GOES channels with similar wavelengths to MODIS. This paper and accompanying poster will introduce the GHCC MODIS cloud mask, provide some examples, and present some preliminary validation.

  9. Electrochemical detection of microRNAs via gap hybridization assay.

    PubMed

    Pöhlmann, Christopher; Sprinzl, Mathias

    2010-06-01

    MicroRNAs have recently been associated with cancer development by acting as tumor suppressors or oncogenes and could therefore be applied as molecular markers for early diagnosis of cancer. In this work, we established a rapid, selective, and sensitive gap hybridization assay for detection of mature microRNAs based on four components DNA/RNA hybridization and electrochemical detection using esterase 2-oligodeoxynucleotide conjugates. Complementary binding of microRNA to a gap built of capture and detector oligodeoxynucleotide, the reporter enzyme is brought to the vicinity of the electrode and produces enzymatically an electrochemical signal. In the absence of microRNA, the gap between capture and detector oligodeoxynucleotide is not filled, and missing base stacking energy destabilizes the hybridization complex. The gap hybridization assay demonstrates selective detection of miR-16 within a mixture of other miRNAs, including the feasibility of single mismatch discrimination. Applying the biosensor assay, a detection limit of 2 pM or 2 amol of miR-16 was obtained. Using isolated total RNA from human breast adenocarcinoma MCF-7 cells, the assay detected specifically miR-21 and miR-16 in parallel, and higher expression of oncogene miR-21 compared to miR-16 was demonstrated. Including RNA isolation, the gap hybridization assay was developed with a total assay time of 60 min and without the need for reverse transcription PCR amplification of the sample. The characteristics of the assay developed in this work could satisfy the need for rapid and easy methods for early cancer marker detection in clinical diagnostics.

  10. Detecting fatigue thresholds from electromyographic signals: A systematic review on approaches and methodologies.

    PubMed

    Ertl, Peter; Kruse, Annika; Tilp, Markus

    2016-10-01

    The aim of the current paper was to systematically review the relevant existing electromyographic threshold concepts within the literature. The electronic databases MEDLINE and SCOPUS were screened for papers published between January 1980 and April 2015 including the keywords: neuromuscular fatigue threshold, anaerobic threshold, electromyographic threshold, muscular fatigue, aerobic-anaerobictransition, ventilatory threshold, exercise testing, and cycle-ergometer. 32 articles were assessed with regard to their electromyographic methodologies, description of results, statistical analysis and test protocols. Only one article was of very good quality. 21 were of good quality and two articles were of very low quality. The review process revealed that: (i) there is consistent evidence of one or two non-linear increases of EMG that might reflect the additional recruitment of motor units (MU) or different fiber types during fatiguing cycle ergometer exercise, (ii) most studies reported no statistically significant difference between electromyographic and metabolic thresholds, (iii) one minute protocols with increments between 10 and 25W appear most appropriate to detect muscular threshold, (iv) threshold detection from the vastus medialis, vastus lateralis, and rectus femoris is recommended, and (v) there is a great variety in study protocols, measurement techniques, and data processing. Therefore, we recommend further research and standardization in the detection of EMGTs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Electrophysiological and psychophysical asymmetries in sensitivity to interaural correlation gaps and implications for binaural integration time.

    PubMed

    Lüddemann, Helge; Kollmeier, Birger; Riedel, Helmut

    2016-02-01

    Brief deviations of interaural correlation (IAC) can provide valuable cues for detection, segregation and localization of acoustic signals. This study investigated the processing of such "binaural gaps" in continuously running noise (100-2000 Hz), in comparison to silent "monaural gaps", by measuring late auditory evoked potentials (LAEPs) and perceptual thresholds with novel, iteratively optimized stimuli. Mean perceptual binaural gap duration thresholds exhibited a major asymmetry: they were substantially shorter for uncorrelated gaps in correlated and anticorrelated reference noise (1.75 ms and 4.1 ms) than for correlated and anticorrelated gaps in uncorrelated reference noise (26.5 ms and 39.0 ms). The thresholds also showed a minor asymmetry: they were shorter in the positive than in the negative IAC range. The mean behavioral threshold for monaural gaps was 5.5 ms. For all five gap types, the amplitude of LAEP components N1 and P2 increased linearly with the logarithm of gap duration. While perceptual and electrophysiological thresholds matched for monaural gaps, LAEP thresholds were about twice as long as perceptual thresholds for uncorrelated gaps, but half as long for correlated and anticorrelated gaps. Nevertheless, LAEP thresholds showed the same asymmetries as perceptual thresholds. For gap durations below 30 ms, LAEPs were dominated by the processing of the leading edge of a gap. For longer gap durations, in contrast, both the leading and the lagging edge of a gap contributed to the evoked response. Formulae for the equivalent rectangular duration (ERD) of the binaural system's temporal window were derived for three common window shapes. The psychophysical ERD was 68 ms for diotic and about 40 ms for anti- and uncorrelated noise. After a nonlinear Z-transform of the stimulus IAC prior to temporal integration, ERDs were about 10 ms for reference correlations of ±1 and 80 ms for uncorrelated reference. Hence, a physiologically motivated

  12. Modern Adaptive Analytics Approach to Lowering Seismic Network Detection Thresholds

    NASA Astrophysics Data System (ADS)

    Johnson, C. E.

    2017-12-01

    Modern seismic networks present a number of challenges, but perhaps most notably are those related to 1) extreme variation in station density, 2) temporal variation in station availability, and 3) the need to achieve detectability for much smaller events of strategic importance. The first of these has been reasonably addressed in the development of modern seismic associators, such as GLASS 3.0 by the USGS/NEIC, though some work still remains to be done in this area. However, the latter two challenges demand special attention. Station availability is impacted by weather, equipment failure or the adding or removing of stations, and while thresholds have been pushed to increasingly smaller magnitudes, new algorithms are needed to achieve even lower thresholds. Station availability can be addressed by a modern, adaptive architecture that maintains specified performance envelopes using adaptive analytics coupled with complexity theory. Finally, detection thresholds can be lowered using a novel approach that tightly couples waveform analytics with the event detection and association processes based on a principled repicking algorithm that uses particle realignment for enhanced phase discrimination.

  13. Threshold detection of boar taint chemicals using parasitic wasps.

    PubMed

    Olson, Dawn; Wäckers, Felix; Haugen, John-Erik

    2012-10-01

    Surgical castration has been long used to prevent consumers from experiencing taint in meat from male pigs, which is a large problem in the pig husbandry industry. Due to obvious animal welfare issues, the EU now wants an alternative for castration, suggesting an urgent need for novel methods of boar taint detection. As boar taint is only a problem when taint chemicals exceed a well-defined threshold, detection methods should be concentration-specific. The wasp, Microplitis croceipes' ability to learn and respond to particular concentrations of the boar taint compounds, skatole, androstenone, and indole was tested. Also tested was the wasps' ability to discriminate between known concentrations of indole, skatole, and androstenone in real boar fat samples at room temperature. Wasps were trained using associative learning by providing food-deprived wasps with sucrose-water in the presence of specific odor concentrations. Trained wasps' responses were tested to a range of concentrations of 3 compounds. Wasps showed unidirectional generalization of learned concentration responses, whereby the direction of concentration generalization was shown to be chemical-dependent. Through both positive (sucrose) and negative feeding experiences (water only) with varying compound concentrations, the wasps can also be conditioned to respond to concentrations exceeding a defined threshold, and they were successful in reporting low, medium, and high concentrations of indole, skatole, and androstenone in boar fat at room temperature. The need for threshold detection rather than simple detection of absence/presence applies to many food quality issues, including the detection of spoilage or pest damage in crops or stored foods. An inexpensive and reliable means of detecting boar tainted pork at slaughter to avoid tainted meat on the market and dissatisfied consumers. Journal of Food Science © 2012 Institute of Food Technologists® No claim to original US government works.

  14. Detection Thresholds of Falling Snow from Satellite-Borne Active and Passive Sensors

    NASA Technical Reports Server (NTRS)

    Jackson, Gail

    2012-01-01

    Precipitation, including rain and snow, is a critical part of the Earth's energy and hydrology cycles. In order to collect information on the complete global precipitation cycle and to understand the energy budget in terms of precipitation, uniform global estimates of both liquid and frozen precipitation must be collected. Active observations of falling snow are somewhat easier to estimate since the radar will detect the precipitation particles and one only needs to know surface temperature to determine if it is liquid rain or snow. The challenges of estimating falling snow from passive spaceborne observations still exist though progress is being made. While these challenges are still being addressed, knowledge of their impact on expected retrieval results is an important key for understanding falling snow retrieval estimations. Important information to assess falling snow retrievals includes knowing thresholds of detection for active and passive sensors, various sensor channel configurations, snow event system characteristics, snowflake particle assumptions, and surface types. For example, can a lake effect snow system with low (2.5 km) cloud tops having an ice water content (Iwe) at the surface of 0.25 g m-3 and dendrite snowflakes be detected? If this information is known, we can focus retrieval efforts on detectable storms and concentrate advances on achievable results. Here, the focus is to determine thresholds of detection for falling snow for various snow conditions over land and lake surfaces. The analysis relies on simulated Weather Research Forecasting (WRF) simulations of falling snow cases since simulations provide all the information to determine the measurements from space and the ground truth. Results are presented for active radar at Ku, Ka, and W-band and for passive radiometer channels from 10 to 183 GHz (Skofronick-Jackson, et al. submitted to IEEE TGRS, April 2012). The notable results show: (1) the W-Band radar has detection thresholds more

  15. 30 CFR 62.174 - Follow-up corrective measures when a standard threshold shift is detected.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... threshold shift is detected. 62.174 Section 62.174 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... measures when a standard threshold shift is detected. The mine operator must, within 30 calendar days of receiving evidence or confirmation of a standard threshold shift, unless a physician or audiologist...

  16. Gap detection measured with electrically evoked auditory event-related potentials and speech-perception abilities in children with auditory neuropathy spectrum disorder.

    PubMed

    He, Shuman; Grose, John H; Teagle, Holly F B; Woodard, Jennifer; Park, Lisa R; Hatch, Debora R; Buchman, Craig A

    2013-01-01

    This study aimed (1) to investigate the feasibility of recording the electrically evoked auditory event-related potential (eERP), including the onset P1-N1-P2 complex and the electrically evoked auditory change complex (EACC) in response to temporal gaps, in children with auditory neuropathy spectrum disorder (ANSD); and (2) to evaluate the relationship between these measures and speech-perception abilities in these subjects. Fifteen ANSD children who are Cochlear Nucleus device users participated in this study. For each subject, the speech-processor microphone was bypassed and the eERPs were elicited by direct stimulation of one mid-array electrode (electrode 12). The stimulus was a train of biphasic current pulses 800 msec in duration. Two basic stimulation conditions were used to elicit the eERP. In the no-gap condition, the entire pulse train was delivered uninterrupted to electrode 12, and the onset P1-N1-P2 complex was measured relative to the stimulus onset. In the gapped condition, the stimulus consisted of two pulse train bursts, each being 400 msec in duration, presented sequentially on the same electrode and separated by one of five gaps (i.e., 5, 10, 20, 50, and 100 msec). Open-set speech-perception ability of these subjects with ANSD was assessed using the phonetically balanced kindergarten (PBK) word lists presented at 60 dB SPL, using monitored live voice in a sound booth. The eERPs were recorded from all subjects with ANSD who participated in this study. There were no significant differences in test-retest reliability, root mean square amplitude or P1 latency for the onset P1-N1-P2 complex between subjects with good (>70% correct on PBK words) and poorer speech-perception performance. In general, the EACC showed less mature morphological characteristics than the onset P1-N1-P2 response recorded from the same subject. There was a robust correlation between the PBK word scores and the EACC thresholds for gap detection. Subjects with poorer speech

  17. Detectability Thresholds and Optimal Algorithms for Community Structure in Dynamic Networks

    NASA Astrophysics Data System (ADS)

    Ghasemian, Amir; Zhang, Pan; Clauset, Aaron; Moore, Cristopher; Peel, Leto

    2016-07-01

    The detection of communities within a dynamic network is a common means for obtaining a coarse-grained view of a complex system and for investigating its underlying processes. While a number of methods have been proposed in the machine learning and physics literature, we lack a theoretical analysis of their strengths and weaknesses, or of the ultimate limits on when communities can be detected. Here, we study the fundamental limits of detecting community structure in dynamic networks. Specifically, we analyze the limits of detectability for a dynamic stochastic block model where nodes change their community memberships over time, but where edges are generated independently at each time step. Using the cavity method, we derive a precise detectability threshold as a function of the rate of change and the strength of the communities. Below this sharp threshold, we claim that no efficient algorithm can identify the communities better than chance. We then give two algorithms that are optimal in the sense that they succeed all the way down to this threshold. The first uses belief propagation, which gives asymptotically optimal accuracy, and the second is a fast spectral clustering algorithm, based on linearizing the belief propagation equations. These results extend our understanding of the limits of community detection in an important direction, and introduce new mathematical tools for similar extensions to networks with other types of auxiliary information.

  18. A threshold-based approach for muscle contraction detection from surface EMG signals

    NASA Astrophysics Data System (ADS)

    Morantes, Gaudi; Fernández, Gerardo; Altuve, Miguel

    2013-11-01

    Surface electromyographic (SEMG) signals are commonly used as control signals in prosthetic and orthotic devices. Super cial electrodes are placed on the skin of the subject to acquire its muscular activity through this signal. The muscle contraction episode is then in charge of activating and deactivating these devices. Nevertheless, there is no gold standard" to detect muscle contraction, leading to delayed responses and false and missed detections. This fact motivated us to propose a new approach that compares a smoothed version of the SEMG signal with a xed threshold, in order to detect muscle contraction episodes. After preprocessing the SEMG signal, the smoothed version is obtained using a moving average lter, where three di erent window lengths has been evaluated. The detector was tuned by maximizing sensitivity and speci city and evaluated using SEMG signals obtained from the anterior tibial and gastrocnemius muscles, taken during the walking of ve subjects. Compared with traditional detection methods, we obtain a reduction of 3 ms in the detection delay, an increase of 8% in sensitivity but a decrease of 15% in speci city. Future work is directed to the inclusion of a temporal threshold (a double-threshold approach) to minimize false detections and reduce detection delays.

  19. Detecting tree-fall gap disturbances in tropical rain forests with airborne lidar

    NASA Astrophysics Data System (ADS)

    Espirito-Santo, F. D. B.; Saatchi, S.; Keller, M.

    2017-12-01

    Forest inventory studies in the Amazon indicate a large terrestrial carbon sink. However, field plots may fail to represent forest mortality processes at landscape-scales of tropical forests. Here we characterize the frequency distribution of tree-fall gap disturbances in natural forests of tropical forests using a novel combination of forest inventory and airborne lidar data. We quantify gap size frequency distribution along vertical and horizontal dimensions in ten Neotropical forest canopies distributed across gradients of climate and landscapes using airborne lidar measurements. We assessed all canopy openings related to each class of tree height which yields a three dimensional structure of the distribution of canopy gaps. Gap frequency distributions from lidar CHM data vary markedly with minimum gap size thresholds, but we found that natural forest disturbances (tree-fall gaps) follow a power-law distribution with narrow range of power-law exponents (-1.2 to -1.3). These power-law exponents from gap frequency distributions provide insights into how natural forest disturbances are distributed over tropical forest landscape.

  20. Using pyramids to define local thresholds for blob detection.

    PubMed

    Shneier, M

    1983-03-01

    A method of detecting blobs in images is described. The method involves building a succession of lower resolution images and looking for spots in these images. A spot in a low resolution image corresponds to a distinguished compact region in a known position in the original image. Further, it is possible to calculate thresholds in the low resolution image, using very simple methods, and to apply those thresholds to the region of the original image corresponding to the spot. Examples are shown in which variations of the technique are applied to several images.

  1. The ecological impact of city lighting scenarios: exploring gap crossing thresholds for urban bats.

    PubMed

    Hale, James D; Fairbrass, Alison J; Matthews, Thomas J; Davies, Gemma; Sadler, Jon P

    2015-02-02

    As the global population urbanizes, dramatic changes are expected in city lighting and the urban form, which may threaten the functioning of urban ecosystems and the services they deliver. However, little is known about the ecological impact of lighting in different urban contexts. Movement is an important ecological process that can be disrupted by artificial lighting. We explored the impact of lighting on gap crossing for Pipistrellus pipistrellus, a species of bat (Chiroptera) common within UK cities. We aimed to determine whether the probability of crossing gaps in tree cover varied with crossing distance and lighting level, through stratified field surveys. We then used the resulting data on barrier thresholds to model the landscape resistance due to lighting across an entire city and explored the potential impact of scenarios for future changes to street lighting. The level of illumination required to create a barrier effect reduced as crossing distance increased. For those gaps where crossing was recorded, bats selected the darker parts of gaps. Heavily built parts of the case study city were associated with large and brightly lit gaps, and spatial models indicate movement would be highly restricted in these areas. Under a scenario for brighter street lighting, the area of accessible land cover was further reduced in heavily built parts of the city. We believe that this is the first study to demonstrate how lighting may create resistance to species movement throughout an entire city. That connectivity in urban areas is being disrupted for a relatively common species raises questions about the impacts on less tolerant groups and the resilience of bat communities in urban centres. However, this mechanistic approach raises the possibility that some ecological function could be restored in these areas through the strategic dimming of lighting and narrowing of gaps. © 2015 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  2. Determination of simple thresholds for accelerometry-based parameters for fall detection.

    PubMed

    Kangas, Maarit; Konttila, Antti; Winblad, Ilkka; Jämsä, Timo

    2007-01-01

    The increasing population of elderly people is mainly living in a home-dwelling environment and needs applications to support their independency and safety. Falls are one of the major health risks that affect the quality of life among older adults. Body attached accelerometers have been used to detect falls. The placement of the accelerometric sensor as well as the fall detection algorithms are still under investigation. The aim of the present pilot study was to determine acceleration thresholds for fall detection, using triaxial accelerometric measurements at the waist, wrist, and head. Intentional falls (forward, backward, and lateral) and activities of daily living (ADL) were performed by two voluntary subjects. The results showed that measurements from the waist and head have potential to distinguish between falls and ADL. Especially, when the simple threshold-based detection was combined with posture detection after the fall, the sensitivity and specificity of fall detection were up to 100 %. On the contrary, the wrist did not appear to be an optimal site for fall detection.

  3. Phosphatase activity tunes two-component system sensor detection threshold.

    PubMed

    Landry, Brian P; Palanki, Rohan; Dyulgyarov, Nikola; Hartsough, Lucas A; Tabor, Jeffrey J

    2018-04-12

    Two-component systems (TCSs) are the largest family of multi-step signal transduction pathways in biology, and a major source of sensors for biotechnology. However, the input concentrations to which biosensors respond are often mismatched with application requirements. Here, we utilize a mathematical model to show that TCS detection thresholds increase with the phosphatase activity of the sensor histidine kinase. We experimentally validate this result in engineered Bacillus subtilis nitrate and E. coli aspartate TCS sensors by tuning their detection threshold up to two orders of magnitude. We go on to apply our TCS tuning method to recently described tetrathionate and thiosulfate sensors by mutating a widely conserved residue previously shown to impact phosphatase activity. Finally, we apply TCS tuning to engineer B. subtilis to sense and report a wide range of fertilizer concentrations in soil. This work will enable the engineering of tailor-made biosensors for diverse synthetic biology applications.

  4. Impact of muon detection thresholds on the separability of primary cosmic rays

    NASA Astrophysics Data System (ADS)

    Müller, S.; Engel, R.; Pierog, T.; Roth, M.

    2018-01-01

    Knowledge of the mass composition of cosmic rays in the transition region of galactic to extragalactic cosmic rays is needed to discriminate different astrophysical models on their origin, acceleration, and propagation. An important observable to separate different mass groups of cosmic rays is the number of muons in extensive air showers. We performed a CORSIKA simulation study to analyze the impact of the detection threshold of muons on the separation quality of different primary cosmic rays in the energy region of the ankle. Using only the number of muons as the composition-sensitive observable, we find a clear dependence of the separation power on the detection threshold for ideal measurements. Although the number of detected muons increases when lowering the threshold, the discrimination power is reduced. If statistical fluctuations for muon detectors of limited size are taken into account, the threshold dependence remains qualitatively the same for small distances to the shower core but is reduced for large core distances. We interpret the impact of the detection threshold of muons on the composition sensitivity in terms of a change of the correlation of the number of muons nμ with the shower maximum Xmax as function of the muon energy as a result of the underlying hadronic interactions and the shower geometry. We further investigate the role of muons produced in a shower by photon-air interactions and conclude that, in addition to the effect of the nμ -Xmax correlation, the separability of primaries is reduced as a consequence of the presence of more muons from photonuclear reactions in proton than in iron showers.

  5. A Gap in Time: Extending our Knowledge of Temporal Processing Deficits in the HIV-1 Transgenic Rat.

    PubMed

    McLaurin, Kristen A; Moran, Landhing M; Li, Hailong; Booze, Rosemarie M; Mactutus, Charles F

    2017-03-01

    Approximately 50 % of HIV-1 seropositive individuals develop HIV-1 associated neurocognitive disorders (HAND), which commonly include alterations in executive functions, such as inhibition, set shifting, and complex problem solving. Executive function deficits in HIV-1 are fairly well characterized, however, relatively few studies have explored the elemental dimensions of neurocognitive impairment in HIV-1. Deficits in temporal processing, caused by HIV-1, may underlie the symptoms of impairment in higher level cognitive processes. Translational measures of temporal processing, including cross-modal prepulse inhibition (PPI), gap-prepulse inhibition (gap-PPI), and gap threshold detection, were studied in mature (ovariectomized) female HIV-1 transgenic (Tg) rats, which express 7 of the 9 HIV-1 genes constitutively throughout development. Cross-modal PPI revealed a relative insensitivity to the manipulation of interstimulus interval (ISI) in HIV-1 Tg animals in comparison to control animals, extending previously reported temporal processing deficits in HIV-1 Tg rats to a more advanced age, suggesting the permanence of temporal processing deficits. In gap-PPI, HIV-1 Tg animals exhibited a relative insensitivity to the manipulation of ISI in comparison to control animals. In gap-threshold detection, HIV-1 Tg animals displayed a profound differential sensitivity to the manipulation of gap duration. Presence of the HIV-1 transgene was diagnosed with 91.1 % accuracy using gap threshold detection measures. Understanding the generality and permanence of temporal processing deficits in the HIV-1 Tg rat is vital to modeling neurocognitive deficits observed in HAND and provides a key target for the development of a diagnostic screening tool.

  6. Novel wavelet threshold denoising method in axle press-fit zone ultrasonic detection

    NASA Astrophysics Data System (ADS)

    Peng, Chaoyong; Gao, Xiaorong; Peng, Jianping; Wang, Ai

    2017-02-01

    Axles are important part of railway locomotives and vehicles. Periodic ultrasonic inspection of axles can effectively detect and monitor axle fatigue cracks. However, in the axle press-fit zone, the complex interface contact condition reduces the signal-noise ratio (SNR). Therefore, the probability of false positives and false negatives increases. In this work, a novel wavelet threshold function is created to remove noise and suppress press-fit interface echoes in axle ultrasonic defect detection. The novel wavelet threshold function with two variables is designed to ensure the precision of optimum searching process. Based on the positive correlation between the correlation coefficient and SNR and with the experiment phenomenon that the defect and the press-fit interface echo have different axle-circumferential correlation characteristics, a discrete optimum searching process for two undetermined variables in novel wavelet threshold function is conducted. The performance of the proposed method is assessed by comparing it with traditional threshold methods using real data. The statistic results of the amplitude and the peak SNR of defect echoes show that the proposed wavelet threshold denoising method not only maintains the amplitude of defect echoes but also has a higher peak SNR.

  7. Self-Tuning Threshold Method for Real-Time Gait Phase Detection Based on Ground Contact Forces Using FSRs.

    PubMed

    Tang, Jing; Zheng, Jianbin; Wang, Yang; Yu, Lie; Zhan, Enqi; Song, Qiuzhi

    2018-02-06

    This paper presents a novel methodology for detecting the gait phase of human walking on level ground. The previous threshold method (TM) sets a threshold to divide the ground contact forces (GCFs) into on-ground and off-ground states. However, the previous methods for gait phase detection demonstrate no adaptability to different people and different walking speeds. Therefore, this paper presents a self-tuning triple threshold algorithm (STTTA) that calculates adjustable thresholds to adapt to human walking. Two force sensitive resistors (FSRs) were placed on the ball and heel to measure GCFs. Three thresholds (i.e., high-threshold, middle-threshold andlow-threshold) were used to search out the maximum and minimum GCFs for the self-adjustments of thresholds. The high-threshold was the main threshold used to divide the GCFs into on-ground and off-ground statuses. Then, the gait phases were obtained through the gait phase detection algorithm (GPDA), which provides the rules that determine calculations for STTTA. Finally, the STTTA reliability is determined by comparing the results between STTTA and Mariani method referenced as the timing analysis module (TAM) and Lopez-Meyer methods. Experimental results show that the proposed method can be used to detect gait phases in real time and obtain high reliability when compared with the previous methods in the literature. In addition, the proposed method exhibits strong adaptability to different wearers walking at different walking speeds.

  8. Neuronal detection thresholds during vestibular compensation: contributions of response variability and sensory substitution.

    PubMed

    Jamali, Mohsen; Mitchell, Diana E; Dale, Alexis; Carriot, Jerome; Sadeghi, Soroush G; Cullen, Kathleen E

    2014-04-01

    The vestibular system is responsible for processing self-motion, allowing normal subjects to discriminate the direction of rotational movements as slow as 1-2 deg s(-1). After unilateral vestibular injury patients' direction-discrimination thresholds worsen to ∼20 deg s(-1), and despite some improvement thresholds remain substantially elevated following compensation. To date, however, the underlying neural mechanisms of this recovery have not been addressed. Here, we recorded from first-order central neurons in the macaque monkey that provide vestibular information to higher brain areas for self-motion perception. Immediately following unilateral labyrinthectomy, neuronal detection thresholds increased by more than two-fold (from 14 to 30 deg s(-1)). While thresholds showed slight improvement by week 3 (25 deg s(-1)), they never recovered to control values - a trend mirroring the time course of perceptual thresholds in patients. We further discovered that changes in neuronal response variability paralleled changes in sensitivity for vestibular stimulation during compensation, thereby causing detection thresholds to remain elevated over time. However, we found that in a subset of neurons, the emergence of neck proprioceptive responses combined with residual vestibular modulation during head-on-body motion led to better neuronal detection thresholds. Taken together, our results emphasize that increases in response variability to vestibular inputs ultimately constrain neural thresholds and provide evidence that sensory substitution with extravestibular (i.e. proprioceptive) inputs at the first central stage of vestibular processing is a neural substrate for improvements in self-motion perception following vestibular loss. Thus, our results provide a neural correlate for the patient benefits provided by rehabilitative strategies that take advantage of the convergence of these multisensory cues.

  9. Neuronal detection thresholds during vestibular compensation: contributions of response variability and sensory substitution

    PubMed Central

    Jamali, Mohsen; Mitchell, Diana E; Dale, Alexis; Carriot, Jerome; Sadeghi, Soroush G; Cullen, Kathleen E

    2014-01-01

    The vestibular system is responsible for processing self-motion, allowing normal subjects to discriminate the direction of rotational movements as slow as 1–2 deg s−1. After unilateral vestibular injury patients’ direction–discrimination thresholds worsen to ∼20 deg s−1, and despite some improvement thresholds remain substantially elevated following compensation. To date, however, the underlying neural mechanisms of this recovery have not been addressed. Here, we recorded from first-order central neurons in the macaque monkey that provide vestibular information to higher brain areas for self-motion perception. Immediately following unilateral labyrinthectomy, neuronal detection thresholds increased by more than two-fold (from 14 to 30 deg s−1). While thresholds showed slight improvement by week 3 (25 deg s−1), they never recovered to control values – a trend mirroring the time course of perceptual thresholds in patients. We further discovered that changes in neuronal response variability paralleled changes in sensitivity for vestibular stimulation during compensation, thereby causing detection thresholds to remain elevated over time. However, we found that in a subset of neurons, the emergence of neck proprioceptive responses combined with residual vestibular modulation during head-on-body motion led to better neuronal detection thresholds. Taken together, our results emphasize that increases in response variability to vestibular inputs ultimately constrain neural thresholds and provide evidence that sensory substitution with extravestibular (i.e. proprioceptive) inputs at the first central stage of vestibular processing is a neural substrate for improvements in self-motion perception following vestibular loss. Thus, our results provide a neural correlate for the patient benefits provided by rehabilitative strategies that take advantage of the convergence of these multisensory cues. PMID:24366259

  10. Defect Detection of Steel Surfaces with Global Adaptive Percentile Thresholding of Gradient Image

    NASA Astrophysics Data System (ADS)

    Neogi, Nirbhar; Mohanta, Dusmanta K.; Dutta, Pranab K.

    2017-12-01

    Steel strips are used extensively for white goods, auto bodies and other purposes where surface defects are not acceptable. On-line surface inspection systems can effectively detect and classify defects and help in taking corrective actions. For detection of defects use of gradients is very popular in highlighting and subsequently segmenting areas of interest in a surface inspection system. Most of the time, segmentation by a fixed value threshold leads to unsatisfactory results. As defects can be both very small and large in size, segmentation of a gradient image based on percentile thresholding can lead to inadequate or excessive segmentation of defective regions. A global adaptive percentile thresholding of gradient image has been formulated for blister defect and water-deposit (a pseudo defect) in steel strips. The developed method adaptively changes the percentile value used for thresholding depending on the number of pixels above some specific values of gray level of the gradient image. The method is able to segment defective regions selectively preserving the characteristics of defects irrespective of the size of the defects. The developed method performs better than Otsu method of thresholding and an adaptive thresholding method based on local properties.

  11. Diffraction-controlled backscattering threshold and application to Raman gap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rose, Harvey A.; Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87544; Mounaix, Philippe

    2011-04-15

    In most classic analytical models of linear stimulated scatter, light diffraction is omitted, a priori. However, modern laser optic typically includes a variant of the random phase plate [Y. Kato et al., Phys. Rev. Lett. 53, 1057 (1984)], resulting in diffraction limited laser intensity fluctuations - or localized speckles - which may result in explosive reflectivity growth as the average laser intensity approaches a critical value [H. A. Rose and D. F. DuBois, Phys. Rev. Lett. 72, 2883 (1994)]. Among the differences between stimulated Raman scatter (SRS) and stimulated Brillouin scatter is that the SRS scattered light diffracts more stronglymore » than the laser light with increase of electron density. This weakens the tendency of the SRS light to closely follow the most amplified paths, diminishing gain. Let G{sub 0} be the one-dimensional power gain exponent of the stimulated scatter. In this paper we show that differential diffraction gives rise to an increase of G{sub 0} at the SRS physical threshold with increase of electron density up to a drastic disruption of SRS as electron density approaches one fourth of its critical value from below. For three wave interaction lengths not small compared to a speckle length, this is a physically robust Raman gap mechanism.« less

  12. Competitive behavior of photons contributing to junction voltage jump in narrow band-gap semiconductor multi-quantum-well laser diodes at lasing threshold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Liefeng, E-mail: fengliefeng@tju.edu.cn, E-mail: lihongru@nankai.edu.cn; Yang, Xiufang; Wang, Cunda

    2015-04-15

    The junction behavior of different narrow band-gap multi-quantum-well (MQW) laser diodes (LDs) confirmed that the jump in the junction voltage in the threshold region is a general characteristic of narrow band-gap LDs. The relative change in the 1310 nm LD is the most obvious. To analyze this sudden voltage change, the threshold region is divided into three stages by I{sub th}{sup l} and I{sub th}{sup u}, as shown in Fig. 2; I{sub th}{sup l} is the conventional threshold, and as long as the current is higher than this threshold, lasing exists and the IdV/dI-I plot drops suddenly; I{sub th}{sup u}more » is the steady lasing point, at which the separation of the quasi-Fermi levels of electron and holes across the active region (V{sub j}) is suddenly pinned. Based on the evolutionary model of dissipative structure theory, the rate equations of the photons in a single-mode LD were deduced in detail at I{sub th}{sup l} and I{sub th}{sup u}. The results proved that the observed behavior of stimulated emission suddenly substituting for spontaneous emission, in a manner similar to biological evolution, must lead to a sudden increase in the injection carriers in the threshold region, which then causes the sudden increase in the junction voltage in this region.« less

  13. Influence of intrinsic noise generated by a thermotesting device on thermal sensory detection and thermal pain detection thresholds.

    PubMed

    Pavlaković, G; Züchner, K; Zapf, A; Bachmann, C G; Graf, B M; Crozier, T A; Pavlaković, H

    2009-08-01

    Various factors can influence thermal perception threshold measurements and contribute significantly to unwanted variability of the tests. To minimize this variability, testing should be performed under strictly controlled conditions. Identifying the factors that increase the variability and eliminating their influence should increase reliability and reproducibility. Currently available thermotesting devices use a water-cooling system that generates a continuous noise of approximately 60 dB. In order to analyze whether this noise could influence the thermal threshold measurements we compared the thresholds obtained with a silent thermotesting device to those obtained with a commercially available device. The subjects were tested with one randomly chosen device on 1 day and with the other device 7 days later. At each session, heat, heat pain, cold, and cold pain thresholds were determined with three measurements. Bland-Altman analysis was used to assess agreement in measurements obtained with different devices and it was shown that the intersubject variability of the thresholds obtained with the two devices was comparable for all four thresholds tested. In contrast, the intrasubject variability of the thresholds for heat, heat pain, and cold pain detection was significantly lower with the silent device. Our results show that thermal sensory thresholds measured with the two devices are comparable. However, our data suggest that, for studies with repeated measurements on the same subjects, a silent thermotesting device may allow detection of smaller differences in the treatment effects and/or may permit the use of a smaller number of tested subjects. Muscle Nerve 40: 257-263, 2009.

  14. Detecting wood surface defects with fusion algorithm of visual saliency and local threshold segmentation

    NASA Astrophysics Data System (ADS)

    Wang, Xuejuan; Wu, Shuhang; Liu, Yunpeng

    2018-04-01

    This paper presents a new method for wood defect detection. It can solve the over-segmentation problem existing in local threshold segmentation methods. This method effectively takes advantages of visual saliency and local threshold segmentation. Firstly, defect areas are coarsely located by using spectral residual method to calculate global visual saliency of them. Then, the threshold segmentation of maximum inter-class variance method is adopted for positioning and segmenting the wood surface defects precisely around the coarse located areas. Lastly, we use mathematical morphology to process the binary images after segmentation, which reduces the noise and small false objects. Experiments on test images of insect hole, dead knot and sound knot show that the method we proposed obtains ideal segmentation results and is superior to the existing segmentation methods based on edge detection, OSTU and threshold segmentation.

  15. Differences in taste detection thresholds between normal-weight and obese young adults.

    PubMed

    Park, Dong Choon; Yeo, Joon Hyung; Ryu, In Yong; Kim, Sang Hoon; Jung, Junyang; Yeo, Seung Geun

    2015-05-01

    Compared with normal-weight individuals, obese young adults exhibited a significantly higher taste threshold for salty taste. Smoking also affected taste functions in this population. The aim of this study was to investigate the differences in taste detection thresholds between normal-weight and obese young adults. Taste threshold was measured using electrogustometry (EGM) and chemically with sucrose, NaCl, citric acid, and quinine hydrochloride in 41 volunteers in their twenties, 23 with body mass index (BMI) <23 kg/m(2) (normal-weight group) and 18 with BMI >25 kg/m(2) (obese group). BMI was significantly higher in the obese than in the normal-weight group (p < 0.05). The obese group exhibited significantly higher EGM thresholds than the normal-weight group on the right (p < 0.05) and left (p < 0.05) posterior tongue. In chemical taste tests, the obese group had higher thresholds for sweet, salty, sour, and bitter tastes than the normal-weight group, although the difference in threshold was significant only for salty taste (p < 0.05). Smoking had an impact on taste threshold, with smokers having higher thresholds than non-smokers, with significantly higher EGM thresholds on the right anterior and posterior and the left anterior tongue (p < 0.05 each).

  16. Oxytocin administration selectively improves olfactory detection thresholds for lyral in patients with schizophrenia

    PubMed Central

    Woolley, J.D.; Lam, O.; Chuang, B.; Ford, J.M.; Mathalon, D.H.; Vinogradov, S.

    2015-01-01

    Summary Background Olfaction plays an important role in mammalian social behavior. Olfactory deficits are common in schizophrenia and correlate with negative symptoms and low social drive. Despite their prominence and possible clinical relevance, little is understood about the pathological mechanisms underlying olfactory deficits in schizophrenia and there are currently no effective treatments for these deficits. The prosocial neuropeptide oxytocin may affect the olfactory system when administered intranasally to humans and there is growing interest in its therapeutic potential in schizophrenia. Methods To examine this model, we administered 40 IU of oxytocin and placebo intranasally to 31 patients with a schizophrenia spectrum illness and 34 age-matched healthy control participants in a randomized, double-blind, placebo-controlled, cross-over study. On each test day, participants completed an olfactory detection threshold test for two different odors: (1) lyral, a synthetic fragrance compound for which patients with schizophrenia have specific olfactory detection threshold deficits, possibly related to decreased cyclic adenosine 3′,5′-monophosphate (cAMP) signaling; and (2) anise, a compound for which olfactory detection thresholds change with menstrual cycle phase in women. Results On the placebo test day, patients with schizophrenia did not significantly differ from healthy controls in detection of either odor. We found that oxytocin administration significantly and selectively improved olfactory detection thresholds for lyral but not for anise in patients with schizophrenia. In contrast, oxytocin had no effect on detection of either odor in healthy controls. Discussion Our data indicate that oxytocin administration may ameliorate olfactory deficits in schizophrenia and suggest the effects of intranasal oxytocin may extend to influencing the olfactory system. Given that oxytocin has been found to increase cAMP signaling in vitro a possible mechanism for

  17. Oxytocin administration selectively improves olfactory detection thresholds for lyral in patients with schizophrenia.

    PubMed

    Woolley, J D; Lam, O; Chuang, B; Ford, J M; Mathalon, D H; Vinogradov, S

    2015-03-01

    Olfaction plays an important role in mammalian social behavior. Olfactory deficits are common in schizophrenia and correlate with negative symptoms and low social drive. Despite their prominence and possible clinical relevance, little is understood about the pathological mechanisms underlying olfactory deficits in schizophrenia and there are currently no effective treatments for these deficits. The prosocial neuropeptide oxytocin may affect the olfactory system when administered intranasally to humans and there is growing interest in its therapeutic potential in schizophrenia. To examine this model, we administered 40IU of oxytocin and placebo intranasally to 31 patients with a schizophrenia spectrum illness and 34 age-matched healthy control participants in a randomized, double-blind, placebo-controlled, cross-over study. On each test day, participants completed an olfactory detection threshold test for two different odors: (1) lyral, a synthetic fragrance compound for which patients with schizophrenia have specific olfactory detection threshold deficits, possibly related to decreased cyclic adenosine 3',5'-monophosphate (cAMP) signaling; and (2) anise, a compound for which olfactory detection thresholds change with menstrual cycle phase in women. On the placebo test day, patients with schizophrenia did not significantly differ from healthy controls in detection of either odor. We found that oxytocin administration significantly and selectively improved olfactory detection thresholds for lyral but not for anise in patients with schizophrenia. In contrast, oxytocin had no effect on detection of either odor in healthy controls. Our data indicate that oxytocin administration may ameliorate olfactory deficits in schizophrenia and suggest the effects of intranasal oxytocin may extend to influencing the olfactory system. Given that oxytocin has been found to increase cAMP signaling in vitro a possible mechanism for these effects is discussed. Published by Elsevier Ltd.

  18. Tunable sub-gap radiation detection with superconducting resonators

    NASA Astrophysics Data System (ADS)

    Dupré, O.; Benoît, A.; Calvo, M.; Catalano, A.; Goupy, J.; Hoarau, C.; Klein, T.; Le Calvez, K.; Sacépé, B.; Monfardini, A.; Levy-Bertrand, F.

    2017-04-01

    We have fabricated planar amorphous indium oxide superconducting resonators ({T}{{c}}˜ 2.8 K) that are sensitive to frequency-selective radiation in the range of 7-10 GHz. Those values lay far below twice the superconducting gap that is worth about 200 GHz. The photon detection consists in a shift of the fundamental resonance frequency. We show that the detected frequency can be adjusted by modulating the total length of the superconducting resonator. We attribute those observations to the excitation of higher-order resonance modes. The coupling between the fundamental lumped and the higher order distributed resonance is due to the kinetic inductance nonlinearity with current. These devices, that we have called sub-gap kinetic inductance detectors, are to be distinguished from the standard kinetic inductance detectors in which quasi-particles are generated when incident light breaks down Cooper pairs.

  19. Effects of threshold on single-target detection by using modified amplitude-modulated joint transform correlator

    NASA Astrophysics Data System (ADS)

    Kaewkasi, Pitchaya; Widjaja, Joewono; Uozumi, Jun

    2007-03-01

    Effects of threshold value on detection performance of the modified amplitude-modulated joint transform correlator are quantitatively studied using computer simulation. Fingerprint and human face images are used as test scenes in the presence of noise and a contrast difference. Simulation results demonstrate that this correlator improves detection performance for both types of image used, but moreso for human face images. Optimal detection of low-contrast human face images obscured by strong noise can be obtained by selecting an appropriate threshold value.

  20. Monopolar Detection Thresholds Predict Spatial Selectivity of Neural Excitation in Cochlear Implants: Implications for Speech Recognition

    PubMed Central

    2016-01-01

    The objectives of the study were to (1) investigate the potential of using monopolar psychophysical detection thresholds for estimating spatial selectivity of neural excitation with cochlear implants and to (2) examine the effect of site removal on speech recognition based on the threshold measure. Detection thresholds were measured in Cochlear Nucleus® device users using monopolar stimulation for pulse trains that were of (a) low rate and long duration, (b) high rate and short duration, and (c) high rate and long duration. Spatial selectivity of neural excitation was estimated by a forward-masking paradigm, where the probe threshold elevation in the presence of a forward masker was measured as a function of masker-probe separation. The strength of the correlation between the monopolar thresholds and the slopes of the masking patterns systematically reduced as neural response of the threshold stimulus involved interpulse interactions (refractoriness and sub-threshold adaptation), and spike-rate adaptation. Detection threshold for the low-rate stimulus most strongly correlated with the spread of forward masking patterns and the correlation reduced for long and high rate pulse trains. The low-rate thresholds were then measured for all electrodes across the array for each subject. Subsequently, speech recognition was tested with experimental maps that deactivated five stimulation sites with the highest thresholds and five randomly chosen ones. Performance with deactivating the high-threshold sites was better than performance with the subjects’ clinical map used every day with all electrodes active, in both quiet and background noise. Performance with random deactivation was on average poorer than that with the clinical map but the difference was not significant. These results suggested that the monopolar low-rate thresholds are related to the spatial neural excitation patterns in cochlear implant users and can be used to select sites for more optimal speech

  1. 3.5 GHz Environmental Sensing Capability Detection Thresholds and Deployment

    PubMed Central

    Nguyen, Thao T.; Souryal, Michael R.; Sahoo, Anirudha; Hall, Timothy A.

    2017-01-01

    Spectrum sharing in the 3.5 GHz band between commercial and government users along U.S. coastal areas depends on an environmental sensing capability (ESC)—that is, a network of radio frequency sensors and a decision system—to detect the presence of incumbent shipborne radar systems and trigger protective measures, as needed. It is well known that the sensitivity of these sensors depends on the aggregate interference generated by commercial systems to the incumbent radar receivers, but to date no comprehensive study has been made of the aggregate interference in realistic scenarios and its impact on the requirement for detection of the radar signal. This paper presents systematic methods for determining the placement of ESC sensors and their detection thresholds to adequately protect incumbent shipborne radar systems from harmful interference. Using terrain-based propagation models and a population-based deployment model, the analysis finds the offshore distances at which protection must be triggered and relates these to the detection levels of coastline sensors. We further show that sensor placement is a form of the well-known set cover problem, which has been shown to be NP-complete, and demonstrate practical solutions achieved with a greedy algorithm. Results show detection thresholds to be as much as 22 dB lower than required by current industry standards. The methodology and results presented in this paper can be used by ESC operators for planning and deployment of sensors and by regulators for testing sensor performance. PMID:29303162

  2. Untangling the effects of tinnitus and hypersensitivity to sound (hyperacusis) in the gap detection test.

    PubMed

    Salloum, R H; Sandridge, S; Patton, D J; Stillitano, G; Dawson, G; Niforatos, J; Santiago, L; Kaltenbach, J A

    2016-01-01

    In recent years, there has been increasing use of the gap detection reflex test to demonstrate induction of tinnitus in animals. Animals with tinnitus show weakened gap detection ability for background noise that matches the pitch of the tinnitus. The usual explanation is that the tinnitus 'fills in the gap'. It has recently been shown, however, that tinnitus is commonly associated with hyperacusis-like enhancements of the acoustic startle response, a change which might potentially alter responses in the gap detection test. We hypothesized that such enhancements could lead to an apparent reduction of gap suppression, resembling that caused by tinnitus, by altering responses to the startle stimulus or the background noise. To test this hypothesis, we compared gap detection abilities in 3 subsets of noise-exposed animals with those in unexposed controls. The results showed that exposed animals demonstrated altered gap detection abilities, but these alterations were sometimes explained as consequences of hyper-responsiveness to either the startle stimulus or to the background noise. Two of the three subsets of animals studied, however, displayed weakened gap detection abilities that could not be explained by enhanced responses to these stimuli or by reduced sound sensitivity or a reduction of temporal processing speed, consistent with the induction of tinnitus. These results demonstrate that not only hearing loss but also changes in sensitivity to background noise or to startle stimuli are potential confounds that, when present, can underlie changes in gap detection irrespective of tinnitus. We discuss how such confounds can be recognized and how they can be avoided. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Statistics of Fractionalized Excitations through Threshold Spectroscopy.

    PubMed

    Morampudi, Siddhardh C; Turner, Ari M; Pollmann, Frank; Wilczek, Frank

    2017-06-02

    We show that neutral anyonic excitations have a signature in spectroscopic measurements of materials: The low-energy onset of spectral functions near the threshold follows universal power laws with an exponent that depends only on the statistics of the anyons. This provides a route, using experimental techniques such as neutron scattering and tunneling spectroscopy, for detecting anyonic statistics in topologically ordered states such as gapped quantum spin liquids and hypothesized fractional Chern insulators. Our calculations also explain some recent theoretical results in spin systems.

  4. Histogram-based automatic thresholding for bruise detection of apples by structured-illumination reflectance imaging

    USDA-ARS?s Scientific Manuscript database

    Thresholding is an important step in the segmentation of image features, and the existing methods are not all effective when the image histogram exhibits a unimodal pattern, which is common in defect detection of fruit. This study was aimed at developing a general automatic thresholding methodology ...

  5. Mind the gap: the minimal detectable separation distance between two objects during active electrolocation.

    PubMed

    Fechler, K; Holtkamp, D; Neusel, G; Sanguinetti-Scheck, J I; Budelli, R; von der Emde, G

    2012-12-01

    In a food-rewarded two-alternative forced-choice procedure, it was determined how well the weakly electric elephantnose fish Gnathonemus petersii can sense gaps between two objects, some of which were placed in front of complex backgrounds. The results show that at close distances, G. petersii is able to detect gaps between two small metal cubes (2 cm × 2 cm × 2 cm) down to a width of c. 1·5 mm. When larger objects (3 cm × 3 cm × 3 cm) were used, gaps with a width of 2-3 mm could still be detected. Discrimination performance was better (c. 1 mm gap size) when the objects were placed in front of a moving background consisting of plastic stripes or plant leaves, indicating that movement in the environment plays an important role for object identification. In addition, the smallest gap size that could be detected at increasing distances was determined. A linear relationship between object distance and gap size existed. Minimal detectable gap sizes increased from c. 1·5 mm at a distance of 1 cm, to 20 mm at a distance of 7 cm. Measurements and simulations of the electric stimuli occurring during gap detection revealed that the electric images of two close objects influence each other and superimpose. A large gap of 20 mm between two objects induced two clearly separated peaks in the electric image, while a 2 mm gap caused just a slight indentation in the image. Therefore, the fusion of electric images limits spatial resolution during active electrolocation. Relative movements either between the fish and the objects or between object and background might improve spatial resolution by accentuating the fine details of the electric images. © 2012 The Authors. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.

  6. Comparisons between detection threshold and loudness perception for individual cochlear implant channels

    PubMed Central

    Bierer, Julie Arenberg; Nye, Amberly D

    2014-01-01

    Objective The objective of the present study, performed in cochlear implant listeners, was to examine how the level of current required to detect single-channel electrical pulse trains relates to loudness perception on the same channel. The working hypothesis was that channels with relatively high thresholds, when measured with a focused current pattern, interface poorly to the auditory nerve. For such channels a smaller dynamic range between perceptual threshold and the most comfortable loudness would result, in part, from a greater sensitivity to changes in electrical field spread compared to low-threshold channels. The narrower range of comfortable listening levels may have important implications for speech perception. Design Data were collected from eight, adult cochlear implant listeners implanted with the HiRes90k cochlear implant (Advanced Bionics Corp.). The partial tripolar (pTP) electrode configuration, consisting of one intracochlear active electrode, two flanking electrodes carrying a fraction (σ) of the return current, and an extracochlear ground, was used for stimulation. Single-channel detection thresholds and most comfortable listening levels were acquired using the most focused pTP configuration possible (σ ≥ 0.8) to identify three channels for further testing – those with the highest, median, and lowest thresholds – for each subject. Threshold, equal-loudness contours (at 50% of the monopolar dynamic range), and loudness growth functions were measured for each of these three test channels using various partial tripolar fractions. Results For all test channels, thresholds increased as the electrode configuration became more focused. The rate of increase with the focusing parameter σ was greatest for the high-threshold channel compared to the median- and low-threshold channels. The 50% equal-loudness contours exhibited similar rates of increase in level across test channels and subjects. Additionally, test channels with the highest

  7. Direction detection thresholds of passive self-motion in artistic gymnasts.

    PubMed

    Hartmann, Matthias; Haller, Katia; Moser, Ivan; Hossner, Ernst-Joachim; Mast, Fred W

    2014-04-01

    In this study, we compared direction detection thresholds of passive self-motion in the dark between artistic gymnasts and controls. Twenty-four professional female artistic gymnasts (ranging from 7 to 20 years) and age-matched controls were seated on a motion platform and asked to discriminate the direction of angular (yaw, pitch, roll) and linear (leftward-rightward) motion. Gymnasts showed lower thresholds for the linear leftward-rightward motion. Interestingly, there was no difference for the angular motions. These results show that the outstanding self-motion abilities in artistic gymnasts are not related to an overall higher sensitivity in self-motion perception. With respect to vestibular processing, our results suggest that gymnastic expertise is exclusively linked to superior interpretation of otolith signals when no change in canal signals is present. In addition, thresholds were overall lower for the older (14-20 years) than for the younger (7-13 years) participants, indicating the maturation of vestibular sensitivity from childhood to adolescence.

  8. Edge detection based on adaptive threshold b-spline wavelet for optical sub-aperture measuring

    NASA Astrophysics Data System (ADS)

    Zhang, Shiqi; Hui, Mei; Liu, Ming; Zhao, Zhu; Dong, Liquan; Liu, Xiaohua; Zhao, Yuejin

    2015-08-01

    In the research of optical synthetic aperture imaging system, phase congruency is the main problem and it is necessary to detect sub-aperture phase. The edge of the sub-aperture system is more complex than that in the traditional optical imaging system. And with the existence of steep slope for large-aperture optical component, interference fringe may be quite dense when interference imaging. Deep phase gradient may cause a loss of phase information. Therefore, it's urgent to search for an efficient edge detection method. Wavelet analysis as a powerful tool is widely used in the fields of image processing. Based on its properties of multi-scale transform, edge region is detected with high precision in small scale. Longing with the increase of scale, noise is reduced in contrary. So it has a certain suppression effect on noise. Otherwise, adaptive threshold method which sets different thresholds in various regions can detect edge points from noise. Firstly, fringe pattern is obtained and cubic b-spline wavelet is adopted as the smoothing function. After the multi-scale wavelet decomposition of the whole image, we figure out the local modulus maxima in gradient directions. However, it also contains noise, and thus adaptive threshold method is used to select the modulus maxima. The point which greater than threshold value is boundary point. Finally, we use corrosion and expansion deal with the resulting image to get the consecutive boundary of image.

  9. Prewhitening of Colored Noise Fields for Detection of Threshold Sources

    DTIC Science & Technology

    1993-11-07

    determines the noise covariance matrix, prewhitening techniques allow detection of threshold sources. The multiple signal classification ( MUSIC ...SUBJECT TERMS 1S. NUMBER OF PAGES AR Model, Colored Noise Field, Mixed Spectra Model, MUSIC , Noise Field, 52 Prewhitening, SNR, Standardized Test...EXAMPLE 2: COMPLEX AR COEFFICIENT .............................................. 5 EXAMPLE 3: MUSIC IN A COLORED BACKGROUND NOISE ...................... 6

  10. Oligonucleotide gap-fill ligation for mutation detection and sequencing in situ

    PubMed Central

    Mignardi, Marco; Mezger, Anja; Qian, Xiaoyan; La Fleur, Linnea; Botling, Johan; Larsson, Chatarina; Nilsson, Mats

    2015-01-01

    In clinical diagnostics a great need exists for targeted in situ multiplex nucleic acid analysis as the mutational status can offer guidance for effective treatment. One well-established method uses padlock probes for mutation detection and multiplex expression analysis directly in cells and tissues. Here, we use oligonucleotide gap-fill ligation to further increase specificity and to capture molecular substrates for in situ sequencing. Short oligonucleotides are joined at both ends of a padlock gap probe by two ligation events and are then locally amplified by target-primed rolling circle amplification (RCA) preserving spatial information. We demonstrate the specific detection of the A3243G mutation of mitochondrial DNA and we successfully characterize a single nucleotide variant in the ACTB mRNA in cells by in situ sequencing of RCA products generated by padlock gap-fill ligation. To demonstrate the clinical applicability of our assay, we show specific detection of a point mutation in the EGFR gene in fresh frozen and formalin-fixed, paraffin-embedded (FFPE) lung cancer samples and confirm the detected mutation by in situ sequencing. This approach presents several advantages over conventional padlock probes allowing simpler assay design for multiplexed mutation detection to screen for the presence of mutations in clinically relevant mutational hotspots directly in situ. PMID:26240388

  11. An objective method for measuring face detection thresholds using the sweep steady-state visual evoked response

    PubMed Central

    Ales, Justin M.; Farzin, Faraz; Rossion, Bruno; Norcia, Anthony M.

    2012-01-01

    We introduce a sensitive method for measuring face detection thresholds rapidly, objectively, and independently of low-level visual cues. The method is based on the swept parameter steady-state visual evoked potential (ssVEP), in which a stimulus is presented at a specific temporal frequency while parametrically varying (“sweeping”) the detectability of the stimulus. Here, the visibility of a face image was increased by progressive derandomization of the phase spectra of the image in a series of equally spaced steps. Alternations between face and fully randomized images at a constant rate (3/s) elicit a robust first harmonic response at 3 Hz specific to the structure of the face. High-density EEG was recorded from 10 human adult participants, who were asked to respond with a button-press as soon as they detected a face. The majority of participants produced an evoked response at the first harmonic (3 Hz) that emerged abruptly between 30% and 35% phase-coherence of the face, which was most prominent on right occipito-temporal sites. Thresholds for face detection were estimated reliably in single participants from 15 trials, or on each of the 15 individual face trials. The ssVEP-derived thresholds correlated with the concurrently measured perceptual face detection thresholds. This first application of the sweep VEP approach to high-level vision provides a sensitive and objective method that could be used to measure and compare visual perception thresholds for various object shapes and levels of categorization in different human populations, including infants and individuals with developmental delay. PMID:23024355

  12. Orion MPCV Touchdown Detection Threshold Development and Testing

    NASA Technical Reports Server (NTRS)

    Daum, Jared; Gay, Robert

    2013-01-01

    A robust method of detecting Orion Multi ]Purpose Crew Vehicle (MPCV) splashdown is necessary to ensure crew and hardware safety during descent and after touchdown. The proposed method uses a triple redundant system to inhibit Reaction Control System (RCS) thruster firings, detach parachute risers from the vehicle, and transition to the post ]landing segment of the Flight Software (FSW). The vehicle crew is the prime input for touchdown detection, followed by an autonomous FSW algorithm, and finally a strictly time based backup timer. RCS thrusters must be inhibited before submersion in water to protect against possible damage due to firing these jets under water. In addition, neglecting to declare touchdown will not allow the vehicle to transition to post ]landing activities such as activating the Crew Module Up ]righting System (CMUS), resulting in possible loss of communication and difficult recovery. A previous AIAA paper gAssessment of an Automated Touchdown Detection Algorithm for the Orion Crew Module h concluded that a strictly Inertial Measurement Unit (IMU) based detection method using an acceleration spike algorithm had the highest safety margins and shortest detection times of other methods considered. That study utilized finite element simulations of vehicle splashdown, generated by LS ]DYNA, which were expanded to a larger set of results using a Kriging surface fit. The study also used the Decelerator Systems Simulation (DSS) to generate flight dynamics during vehicle descent under parachutes. Proto ]type IMU and FSW MATLAB models provided the basis for initial algorithm development and testing. This paper documents an in ]depth trade study, using the same dynamics data and MATLAB simulations as the earlier work, to further develop the acceleration detection method. By studying the combined effects of data rate, filtering on the rotational acceleration correction, data persistence limits and values of acceleration thresholds, an optimal configuration

  13. Detection and Evaluation of Pre-Preg Gaps and Overlaps in Glare Laminates

    NASA Astrophysics Data System (ADS)

    Nardi, Davide; Abouhamzeh, Morteza; Leonard, Rob; Sinke, Jos

    2018-03-01

    Gaps and overlaps between pre-preg plies represent common flaws in composite materials that can be introduced easily in an automated fibre placement manufacturing process and are potentially detrimental for the mechanical performances of the final laminates. Whereas gaps and overlaps have been addressed for full composite material, the topic has not been extended to a hybrid composite material such as Glare, a member of the family of Fibre Metal Laminates (FMLs). In this paper/research, the manufacturing, the detection, and the optical evaluation of intraply gaps and overlaps in Glare laminates are investigated. As part of an initial assessment study on the effect of gaps and overlaps on Glare, only the most critical lay-up has been considered. The experimental investigation started with the manufacturing of specimens having gaps and overlaps with different widths, followed by a non-destructive ultrasonic-inspection. An optical evaluation of the gaps and overlaps was performed by means of microscope image analysis of the cross sections of the specimens. The results from the non-destructive evaluations show the effectiveness of the ultrasonic detection of gaps and overlaps both in position, shape, width, and severity. The optical inspections confirm the accuracy of the non-destructive evaluation also adding useful insights about the geometrical features due to the presence of gaps and overlaps in the final Glare laminates. All the results justify the need for a further investigation on the effect of gaps and overlaps on the mechanical properties.

  14. Pre-impact fall detection system using dynamic threshold and 3D bounding box

    NASA Astrophysics Data System (ADS)

    Otanasap, Nuth; Boonbrahm, Poonpong

    2017-02-01

    Fall prevention and detection system have to subjugate many challenges in order to develop an efficient those system. Some of the difficult problems are obtrusion, occlusion and overlay in vision based system. Other associated issues are privacy, cost, noise, computation complexity and definition of threshold values. Estimating human motion using vision based usually involves with partial overlay, caused either by direction of view point between objects or body parts and camera, and these issues have to be taken into consideration. This paper proposes the use of dynamic threshold based and bounding box posture analysis method with multiple Kinect cameras setting for human posture analysis and fall detection. The proposed work only uses two Kinect cameras for acquiring distributed values and differentiating activities between normal and falls. If the peak value of head velocity is greater than the dynamic threshold value, bounding box posture analysis will be used to confirm fall occurrence. Furthermore, information captured by multiple Kinect placed in right angle will address the skeleton overlay problem due to single Kinect. This work contributes on the fusion of multiple Kinect based skeletons, based on dynamic threshold and bounding box posture analysis which is the only research work reported so far.

  15. Single quantum dot analysis enables multiplexed point mutation detection by gap ligase chain reaction.

    PubMed

    Song, Yunke; Zhang, Yi; Wang, Tza-Huei

    2013-04-08

    Gene point mutations present important biomarkers for genetic diseases. However, existing point mutation detection methods suffer from low sensitivity, specificity, and a tedious assay processes. In this report, an assay technology is proposed which combines the outstanding specificity of gap ligase chain reaction (Gap-LCR), the high sensitivity of single-molecule coincidence detection, and the superior optical properties of quantum dots (QDs) for multiplexed detection of point mutations in genomic DNA. Mutant-specific ligation products are generated by Gap-LCR and subsequently captured by QDs to form DNA-QD nanocomplexes that are detected by single-molecule spectroscopy (SMS) through multi-color fluorescence burst coincidence analysis, allowing for multiplexed mutation detection in a separation-free format. The proposed assay is capable of detecting zeptomoles of KRAS codon 12 mutation variants with near 100% specificity. Its high sensitivity allows direct detection of KRAS mutation in crude genomic DNA without PCR pre-amplification. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Detection and Distribution of Natural Gaps in Tropical Rainforest

    NASA Astrophysics Data System (ADS)

    Goulamoussène, Y.; Linguet, L.; Hérault, B.

    2014-12-01

    Forest management is important to assess biodiversity and ecological processes. Requirements for disturbance information have also been motivated by the scientific community. Therefore, understanding and monitoring the distribution frequencies of treefall gaps is relevant to better understanding and predicting the carbon budget in response to global change and land use change. In this work we characterize and quantify the frequency distribution of natural canopy gaps. We observe then interaction between environment variables and gap formation across tropical rainforest of the French Guiana region by using high resolution airborne Light Detection and Ranging (LiDAR). We mapped gaps with canopy model distribution on 40000 ha of forest. We used a Bayesian modelling framework to estimate and select useful covariate model parameters. Topographic variables are included in a model to predict gap size distribution. We discuss results from the interaction between environment and gap size distribution, mainly topographic indexes. The use of both airborne and space-based techniques has improved our ability to supply needed disturbance information. This work is an approach at plot scale. The use of satellite data will allow us to work at forest scale. The inclusion of climate variables in our model will let us assess the impact of global change on tropical rainforest.

  17. The gap-startle paradigm to assess auditory temporal processing: Bridging animal and human research.

    PubMed

    Fournier, Philippe; Hébert, Sylvie

    2016-05-01

    The gap-prepulse inhibition of the acoustic startle (GPIAS) paradigm is the primary test used in animal research to identify gap detection thresholds and impairment. When a silent gap is presented shortly before a loud startling stimulus, the startle reflex is inhibited and the extent of inhibition is assumed to reflect detection. Here, we applied the same paradigm in humans. One hundred and fifty-seven normal-hearing participants were tested using one of five gap durations (5, 25, 50, 100, 200 ms) in one of the following two paradigms-gap-embedded in or gap-following-the continuous background noise. The duration-inhibition relationship was observable for both conditions but followed different patterns. In the gap-embedded paradigm, GPIAS increased significantly with gap duration up to 50 ms and then more slowly up to 200 ms (trend only). In contrast, in the gap-following paradigm, significant inhibition-different from 0--was observable only at gap durations from 50 to 200 ms. The finding that different patterns are found depending on gap position within the background noise is compatible with distinct mechanisms underlying each of the two paradigms. © 2016 Society for Psychophysiological Research.

  18. Electron Elevator: Excitations across the Band Gap via a Dynamical Gap State.

    PubMed

    Lim, A; Foulkes, W M C; Horsfield, A P; Mason, D R; Schleife, A; Draeger, E W; Correa, A A

    2016-01-29

    We use time-dependent density functional theory to study self-irradiated Si. We calculate the electronic stopping power of Si in Si by evaluating the energy transferred to the electrons per unit path length by an ion of kinetic energy from 1 eV to 100 keV moving through the host. Electronic stopping is found to be significant below the threshold velocity normally identified with transitions across the band gap. A structured crossover at low velocity exists in place of a hard threshold. An analysis of the time dependence of the transition rates using coupled linear rate equations enables one of the excitation mechanisms to be clearly identified: a defect state induced in the gap by the moving ion acts like an elevator and carries electrons across the band gap.

  19. Canal–Otolith Interactions and Detection Thresholds of Linear and Angular Components During Curved-Path Self-Motion

    PubMed Central

    MacNeilage, Paul R.; Turner, Amanda H.

    2010-01-01

    Gravitational signals arising from the otolith organs and vertical plane rotational signals arising from the semicircular canals interact extensively for accurate estimation of tilt and inertial acceleration. Here we used a classical signal detection paradigm to examine perceptual interactions between otolith and horizontal semicircular canal signals during simultaneous rotation and translation on a curved path. In a rotation detection experiment, blindfolded subjects were asked to detect the presence of angular motion in blocks where half of the trials were pure nasooccipital translation and half were simultaneous translation and yaw rotation (curved-path motion). In separate, translation detection experiments, subjects were also asked to detect either the presence or the absence of nasooccipital linear motion in blocks, in which half of the trials were pure yaw rotation and half were curved path. Rotation thresholds increased slightly, but not significantly, with concurrent linear velocity magnitude. Yaw rotation detection threshold, averaged across all conditions, was 1.45 ± 0.81°/s (3.49 ± 1.95°/s2). Translation thresholds, on the other hand, increased significantly with increasing magnitude of concurrent angular velocity. Absolute nasooccipital translation detection threshold, averaged across all conditions, was 2.93 ± 2.10 cm/s (7.07 ± 5.05 cm/s2). These findings suggest that conscious perception might not have independent access to separate estimates of linear and angular movement parameters during curved-path motion. Estimates of linear (and perhaps angular) components might instead rely on integrated information from canals and otoliths. Such interaction may underlie previously reported perceptual errors during curved-path motion and may originate from mechanisms that are specialized for tilt-translation processing during vertical plane rotation. PMID:20554843

  20. Olfactory Detection Thresholds and Adaptation in Adults with Autism Spectrum Condition

    ERIC Educational Resources Information Center

    Tavassoli, T.; Baron-Cohen, S.

    2012-01-01

    Sensory issues have been widely reported in Autism Spectrum Conditions (ASC). Since olfaction is one of the least investigated senses in ASC, the current studies explore olfactory detection thresholds and adaptation to olfactory stimuli in adults with ASC. 80 participants took part, 38 (18 females, 20 males) with ASC and 42 control participants…

  1. [A cloud detection algorithm for MODIS images combining Kmeans clustering and multi-spectral threshold method].

    PubMed

    Wang, Wei; Song, Wei-Guo; Liu, Shi-Xing; Zhang, Yong-Ming; Zheng, Hong-Yang; Tian, Wei

    2011-04-01

    An improved method for detecting cloud combining Kmeans clustering and the multi-spectral threshold approach is described. On the basis of landmark spectrum analysis, MODIS data is categorized into two major types initially by Kmeans method. The first class includes clouds, smoke and snow, and the second class includes vegetation, water and land. Then a multi-spectral threshold detection is applied to eliminate interference such as smoke and snow for the first class. The method is tested with MODIS data at different time under different underlying surface conditions. By visual method to test the performance of the algorithm, it was found that the algorithm can effectively detect smaller area of cloud pixels and exclude the interference of underlying surface, which provides a good foundation for the next fire detection approach.

  2. Estimation of the geochemical threshold and its statistical significance

    USGS Publications Warehouse

    Miesch, A.T.

    1981-01-01

    A statistic is proposed for estimating the geochemical threshold and its statistical significance, or it may be used to identify a group of extreme values that can be tested for significance by other means. The statistic is the maximum gap between adjacent values in an ordered array after each gap has been adjusted for the expected frequency. The values in the ordered array are geochemical values transformed by either ln(?? - ??) or ln(?? - ??) and then standardized so that the mean is zero and the variance is unity. The expected frequency is taken from a fitted normal curve with unit area. The midpoint of an adjusted gap that exceeds the corresponding critical value may be taken as an estimate of the geochemical threshold, and the associated probability indicates the likelihood that the threshold separates two geochemical populations. The adjusted gap test may fail to identify threshold values if the variation tends to be continuous from background values to the higher values that reflect mineralized ground. However, the test will serve to identify other anomalies that may be too subtle to have been noted by other means. ?? 1981.

  3. The ship edge feature detection based on high and low threshold for remote sensing image

    NASA Astrophysics Data System (ADS)

    Li, Xuan; Li, Shengyang

    2018-05-01

    In this paper, a method based on high and low threshold is proposed to detect the ship edge feature due to the low accuracy rate caused by the noise. Analyze the relationship between human vision system and the target features, and to determine the ship target by detecting the edge feature. Firstly, using the second-order differential method to enhance the quality of image; Secondly, to improvement the edge operator, we introduction of high and low threshold contrast to enhancement image edge and non-edge points, and the edge as the foreground image, non-edge as a background image using image segmentation to achieve edge detection, and remove the false edges; Finally, the edge features are described based on the result of edge features detection, and determine the ship target. The experimental results show that the proposed method can effectively reduce the number of false edges in edge detection, and has the high accuracy of remote sensing ship edge detection.

  4. Double Threshold Energy Detection Based Cooperative Spectrum Sensing for Cognitive Radio Networks with QoS Guarantee

    NASA Astrophysics Data System (ADS)

    Hu, Hang; Yu, Hong; Zhang, Yongzhi

    2013-03-01

    Cooperative spectrum sensing, which can greatly improve the ability of discovering the spectrum opportunities, is regarded as an enabling mechanism for cognitive radio (CR) networks. In this paper, we employ a double threshold detection method in energy detector to perform spectrum sensing, only the CR users with reliable sensing information are allowed to transmit one bit local decision to the fusion center. Simulation results will show that our proposed double threshold detection method could not only improve the sensing performance but also save the bandwidth of the reporting channel compared with the conventional detection method with one threshold. By weighting the sensing performance and the consumption of system resources in a utility function that is maximized with respect to the number of CR users, it has been shown that the optimal number of CR users is related to the price of these Quality-of-Service (QoS) requirements.

  5. Cool, warm, and heat-pain detection thresholds: testing methods and inferences about anatomic distribution of receptors.

    PubMed

    Dyck, P J; Zimmerman, I; Gillen, D A; Johnson, D; Karnes, J L; O'Brien, P C

    1993-08-01

    We recently found that vibratory detection threshold is greatly influenced by the algorithm of testing. Here, we study the influence of stimulus characteristics and algorithm of testing and estimating threshold on cool (CDT), warm (WDT), and heat-pain (HPDT) detection thresholds. We show that continuously decreasing (for CDT) or increasing (for WDT) thermode temperature to the point at which cooling or warming is perceived and signaled by depressing a response key ("appearance" threshold) overestimates threshold with rapid rates of thermal change. The mean of the appearance and disappearance thresholds also does not perform well for insensitive sites and patients. Pyramidal (or flat-topped pyramidal) stimuli ranging in magnitude, in 25 steps, from near skin temperature to 9 degrees C for 10 seconds (for CDT), from near skin temperature to 45 degrees C for 10 seconds (for WDT), and from near skin temperature to 49 degrees C for 10 seconds (for HPDT) provide ideal stimuli for use in several algorithms of testing and estimating threshold. Near threshold, only the initial direction of thermal change from skin temperature is perceived, and not its return to baseline. Use of steps of stimulus intensity allows the subject or patient to take the needed time to decide whether the stimulus was felt or not (in 4, 2, and 1 stepping algorithms), or whether it occurred in stimulus interval 1 or 2 (in two-alternative forced-choice testing). Thermal thresholds were generally significantly lower with a large (10 cm2) than with a small (2.7 cm2) thermode.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Comparison of alternatives to amplitude thresholding for onset detection of acoustic emission signals

    NASA Astrophysics Data System (ADS)

    Bai, F.; Gagar, D.; Foote, P.; Zhao, Y.

    2017-02-01

    Acoustic Emission (AE) monitoring can be used to detect the presence of damage as well as determine its location in Structural Health Monitoring (SHM) applications. Information on the time difference of the signal generated by the damage event arriving at different sensors in an array is essential in performing localisation. Currently, this is determined using a fixed threshold which is particularly prone to errors when not set to optimal values. This paper presents three new methods for determining the onset of AE signals without the need for a predetermined threshold. The performance of the techniques is evaluated using AE signals generated during fatigue crack growth and compared to the established Akaike Information Criterion (AIC) and fixed threshold methods. It was found that the 1D location accuracy of the new methods was within the range of < 1 - 7.1 % of the monitored region compared to 2.7% for the AIC method and a range of 1.8-9.4% for the conventional Fixed Threshold method at different threshold levels.

  7. Magnetotelluric Detection Thresholds as a Function of Leakage Plume Depth, TDS and Volume

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, X.; Buscheck, T. A.; Mansoor, K.

    We conducted a synthetic magnetotelluric (MT) data analysis to establish a set of specific thresholds of plume depth, TDS concentration and volume for detection of brine and CO 2 leakage from legacy wells into shallow aquifers in support of Strategic Monitoring Subtask 4.1 of the US DOE National Risk Assessment Partnership (NRAP Phase II), which is to develop geophysical forward modeling tools. 900 synthetic MT data sets span 9 plume depths, 10 TDS concentrations and 10 plume volumes. The monitoring protocol consisted of 10 MT stations in a 2×5 grid laid out along the flow direction. We model the MTmore » response in the audio frequency range of 1 Hz to 10 kHz with a 50 Ωm baseline resistivity and the maximum depth up to 2000 m. Scatter plots show the MT detection thresholds for a trio of plume depth, TDS concentration and volume. Plumes with a large volume and high TDS located at a shallow depth produce a strong MT signal. We demonstrate that the MT method with surface based sensors can detect a brine and CO 2 plume so long as the plume depth, TDS concentration and volume are above the thresholds. However, it is unlikely to detect a plume at a depth larger than 1000 m with the change of TDS concentration smaller than 10%. Simulated aquifer impact data based on the Kimberlina site provides a more realistic view of the leakage plume distribution than rectangular synthetic plumes in this sensitivity study, and it will be used to estimate MT responses over simulated brine and CO 2 plumes and to evaluate the leakage detectability. Integration of the simulated aquifer impact data and the MT method into the NRAP DREAM tool may provide an optimized MT survey configuration for MT data collection. This study presents a viable approach for sensitivity study of geophysical monitoring methods for leakage detection. The results come in handy for rapid assessment of leakage detectability.« less

  8. Electron elevator: Excitations across the band gap via a dynamical gap state

    DOE PAGES

    Lim, Anthony; Foulkes, W. M. C.; Horsfield, A. P.; ...

    2016-01-27

    We use time-dependent density functional theory to study self-irradiated Si. We calculate the electronic stopping power of Si in Si by evaluating the energy transferred to the electrons per unit path length by an ion of kinetic energy from 1 eV to 100 keV moving through the host. Electronic stopping is found to be significant below the threshold velocity normally identified with transitions across the band gap. A structured crossover at low velocity exists in place of a hard threshold. Lastly, an analysis of the time dependence of the transition rates using coupled linear rate equations enables one of themore » excitation mechanisms to be clearly identified: a defect state induced in the gap by the moving ion acts like an elevator and carries electrons across the band gap.« less

  9. Shape anomaly detection under strong measurement noise: An analytical approach to adaptive thresholding

    NASA Astrophysics Data System (ADS)

    Krasichkov, Alexander S.; Grigoriev, Eugene B.; Bogachev, Mikhail I.; Nifontov, Eugene M.

    2015-10-01

    We suggest an analytical approach to the adaptive thresholding in a shape anomaly detection problem. We find an analytical expression for the distribution of the cosine similarity score between a reference shape and an observational shape hindered by strong measurement noise that depends solely on the noise level and is independent of the particular shape analyzed. The analytical treatment is also confirmed by computer simulations and shows nearly perfect agreement. Using this analytical solution, we suggest an improved shape anomaly detection approach based on adaptive thresholding. We validate the noise robustness of our approach using typical shapes of normal and pathological electrocardiogram cycles hindered by additive white noise. We show explicitly that under high noise levels our approach considerably outperforms the conventional tactic that does not take into account variations in the noise level.

  10. The relationship between intelligence and creativity: New support for the threshold hypothesis by means of empirical breakpoint detection

    PubMed Central

    Jauk, Emanuel; Benedek, Mathias; Dunst, Beate; Neubauer, Aljoscha C.

    2013-01-01

    The relationship between intelligence and creativity has been subject to empirical research for decades. Nevertheless, there is yet no consensus on how these constructs are related. One of the most prominent notions concerning the interplay between intelligence and creativity is the threshold hypothesis, which assumes that above-average intelligence represents a necessary condition for high-level creativity. While earlier research mostly supported the threshold hypothesis, it has come under fire in recent investigations. The threshold hypothesis is commonly investigated by splitting a sample at a given threshold (e.g., at 120 IQ points) and estimating separate correlations for lower and upper IQ ranges. However, there is no compelling reason why the threshold should be fixed at an IQ of 120, and to date, no attempts have been made to detect the threshold empirically. Therefore, this study examined the relationship between intelligence and different indicators of creative potential and of creative achievement by means of segmented regression analysis in a sample of 297 participants. Segmented regression allows for the detection of a threshold in continuous data by means of iterative computational algorithms. We found thresholds only for measures of creative potential but not for creative achievement. For the former the thresholds varied as a function of criteria: When investigating a liberal criterion of ideational originality (i.e., two original ideas), a threshold was detected at around 100 IQ points. In contrast, a threshold of 120 IQ points emerged when the criterion was more demanding (i.e., many original ideas). Moreover, an IQ of around 85 IQ points was found to form the threshold for a purely quantitative measure of creative potential (i.e., ideational fluency). These results confirm the threshold hypothesis for qualitative indicators of creative potential and may explain some of the observed discrepancies in previous research. In addition, we obtained

  11. Changes in drug utilization during a gap in insurance coverage: an examination of the medicare Part D coverage gap.

    PubMed

    Polinski, Jennifer M; Shrank, William H; Huskamp, Haiden A; Glynn, Robert J; Liberman, Joshua N; Schneeweiss, Sebastian

    2011-08-01

    Nations are struggling to expand access to essential medications while curbing rising health and drug spending. While the US government's Medicare Part D drug insurance benefit expanded elderly citizens' access to drugs, it also includes a controversial period called the "coverage gap" during which beneficiaries are fully responsible for drug costs. We examined the impact of entering the coverage gap on drug discontinuation, switching to another drug for the same indication, and drug adherence. While increased discontinuation of and adherence to essential medications is a regrettable response, increased switching to less expensive but therapeutically interchangeable medications is a positive response to minimize costs. We followed 663,850 Medicare beneficiaries enrolled in Part D or retiree drug plans with prescription and health claims in 2006 and/or 2007 to determine who reached the gap spending threshold, n = 217,131 (33%). In multivariate Cox proportional hazards models, we compared drug discontinuation and switching rates in selected drug classes after reaching the threshold between all 1,993 who had no financial assistance during the coverage gap (exposed) versus 9,965 multivariate propensity score-matched comparators with financial assistance (unexposed). Multivariate logistic regressions compared drug adherence (≤ 80% versus >80% of days covered). Beneficiaries reached the gap spending threshold on average 222 d ±79. At the drug level, exposed beneficiaries were twice as likely to discontinue (hazard ratio [HR]  = 2.00, 95% confidence interval [CI] 1.64-2.43) but less likely to switch a drug (HR  = 0.60, 0.46-0.78) after reaching the threshold. Gap-exposed beneficiaries were slightly more likely to have reduced adherence (OR  = 1.07, 0.98-1.18). A lack of financial assistance after reaching the gap spending threshold was associated with a doubling in discontinuing essential medications but not switching drugs in 2006 and 2007. Blunt cost

  12. Algorithm for improving psychophysical threshold estimates by detecting sustained inattention in experiments using PEST.

    PubMed

    Rinderknecht, Mike D; Ranzani, Raffaele; Popp, Werner L; Lambercy, Olivier; Gassert, Roger

    2018-05-10

    Psychophysical procedures are applied in various fields to assess sensory thresholds. During experiments, sampled psychometric functions are usually assumed to be stationary. However, perception can be altered, for example by loss of attention to the presentation of stimuli, leading to biased data, which results in poor threshold estimates. The few existing approaches attempting to identify non-stationarities either detect only whether there was a change in perception, or are not suitable for experiments with a relatively small number of trials (e.g., [Formula: see text] 300). We present a method to detect inattention periods on a trial-by-trial basis with the aim of improving threshold estimates in psychophysical experiments using the adaptive sampling procedure Parameter Estimation by Sequential Testing (PEST). The performance of the algorithm was evaluated in computer simulations modeling inattention, and tested in a behavioral experiment on proprioceptive difference threshold assessment in 20 stroke patients, a population where attention deficits are likely to be present. Simulations showed that estimation errors could be reduced by up to 77% for inattentive subjects, even in sequences with less than 100 trials. In the behavioral data, inattention was detected in 14% of assessments, and applying the proposed algorithm resulted in reduced test-retest variability in 73% of these corrected assessments pairs. The novel algorithm complements existing approaches and, besides being applicable post hoc, could also be used online to prevent collection of biased data. This could have important implications in assessment practice by shortening experiments and improving estimates, especially for clinical settings.

  13. Changes in Blow-Off Velocity Observed in Two Explosives at the Threshold for Sustained Ignition Using the Modified Gap Test

    NASA Astrophysics Data System (ADS)

    Lee, R. J.; Forbes, J. W.; Tasker, D. G.; Orme, R. S.

    2009-12-01

    The Modified Gap Test was used to quantify different levels of partial reaction for various input stresses. This test configuration has been historically useful in highlighting thresholds for first reaction, sustained ignition, and detonation. Two different HMX based compositions were studied; a cast-cured composition with 87% HMX and a pressed composition with 92% HMX. Each explosive was prepared from large industrially produced batches consisting of different unreactive polymeric binder systems. Short samples (50.8 mm in diameter and 12.7 mm thick) were shock loaded using the standard large-scale gap test donor system. Product-cloud blow-off velocities at the opposite end of the sample were measured using a high-speed digital-camera. Velocity versus input pres sure plots provided changes in reactivity that had developed by the 12.7 mm run distance. Results appear consistent for the lower input stresses. In contrast, the results varied widely in a range of input stresses around the transition to detonation in both explosives. These results indicate that both explosives are subject to large variation in blow-off velocity in a range of input stresses near the threshold for prompt detonation. This is explained by localized variations of HMX particle size and density in industrially prepared samples. Approved for public release, Distribution unlimited, IHDIV Log No. 09-108.

  14. Detection of sub-threshold periodic signal by multiplicative and additive cross-correlated sine-Wiener noises in the FitzHugh-Nagumo neuron

    NASA Astrophysics Data System (ADS)

    Yao, Yuangen; Ma, Chengzhang; Wang, Canjun; Yi, Ming; Gui, Rong

    2018-02-01

    We study the effects of multiplicative and additive cross-correlated sine-Wiener (CCSW) noises on the performance of sub-threshold periodic signal detection in the FitzHugh-Nagumo (FHN) neuron by calculating Fourier coefficients Q for measuring synchronization between sub-threshold input signal and the response of system. CCSW noises-induced transitions of electrical activity in the FHN neuron model can be observed. Moreover, the performance of sub-threshold periodic signal detection is achieved at moderate noise strength, cross-correlation time and cross-correlation strength of CCSW noises, which indicate the occurrence of CCSW noises-induced stochastic resonance. Furthermore, the performance of sub-threshold signal detection is strongly sensitive to cross-correlation time of CCSW noises. Therefore, the performance can be effectively controlled by regulating cross-correlation time of CCSW noises. These results provide a possible mechanism for amplifying or detecting the sub-threshold signal in the nervous system.

  15. Correcting the anion gap for hypoalbuminaemia does not improve detection of hyperlactataemia

    PubMed Central

    Dinh, C H; Ng, R; Grandinetti, A; Joffe, A; Chow, D C

    2006-01-01

    Background An elevated lactate level reflects impaired tissue oxygenation and is a predictor of mortality. Studies have shown that the anion gap is inadequate as a screen for hyperlactataemia, particularly in critically ill and trauma patients. A proposed explanation for the anion gap's poor sensitivity and specificity in detecting hyperlactataemia is that the serum albumin is frequently low. This study therefore, sought to compare the predictive values of the anion gap and the anion gap corrected for albumin (cAG) as an indicator of hyperlactataemia as defined by a lactate ⩾2.5 mmol/l. Methods A retrospective review of 639 sets of laboratory values from a tertiary care hospital. Patients' laboratory results were included in the study if serum chemistries and lactate were drawn consecutively. The sensitivity, specificity, and predictive values were obtained. A receiver operator characteristics curve (ROC) was drawn and the area under the curve (AUC) was calculated. Results An anion gap ⩾12 provided a sensitivity, specificity, positive predictive value, and negative predictive value of 39%, 89%, 79%, and 58%, respectively, and a cAG ⩾12 provided a sensitivity, specificity, positive predictive value, and negative predictive value of 75%, 59%, 66%, and 69%, respectively. The ROC curves between anion gap and cAG as a predictor of hyperlactataemia were almost identical. The AUC was 0.757 and 0.750, respectively. Conclusions The sensitivities, specificities, and predictive values of the anion gap and cAG were inadequate in predicting the presence of hyperlactataemia. The cAG provides no additional advantage over the anion gap in the detection of hyperlactataemia. PMID:16858097

  16. Fast microcalcification detection in ultrasound images using image enhancement and threshold adjacency statistics

    NASA Astrophysics Data System (ADS)

    Cho, Baek Hwan; Chang, Chuho; Lee, Jong-Ha; Ko, Eun Young; Seong, Yeong Kyeong; Woo, Kyoung-Gu

    2013-02-01

    The existence of microcalcifications (MCs) is an important marker of malignancy in breast cancer. In spite of the benefits in mass detection for dense breasts, ultrasonography is believed that it might not reliably detect MCs. For computer aided diagnosis systems, however, accurate detection of MCs has the possibility of improving the performance in both Breast Imaging-Reporting and Data System (BI-RADS) lexicon description for calcifications and malignancy classification. We propose a new efficient and effective method for MC detection using image enhancement and threshold adjacency statistics (TAS). The main idea of TAS is to threshold an image and to count the number of white pixels with a given number of adjacent white pixels. Our contribution is to adopt TAS features and apply image enhancement to facilitate MC detection in ultrasound images. We employed fuzzy logic, tophat filter, and texture filter to enhance images for MCs. Using a total of 591 images, the classification accuracy of the proposed method in MC detection showed 82.75%, which is comparable to that of Haralick texture features (81.38%). When combined, the performance was as high as 85.11%. In addition, our method also showed the ability in mass classification when combined with existing features. In conclusion, the proposed method exploiting image enhancement and TAS features has the potential to deal with MC detection in ultrasound images efficiently and extend to the real-time localization and visualization of MCs.

  17. The asymmetry of U.S. monetary policy: Evidence from a threshold Taylor rule with time-varying threshold values

    NASA Astrophysics Data System (ADS)

    Zhu, Yanli; Chen, Haiqiang

    2017-05-01

    In this paper, we revisit the issue whether U.S. monetary policy is asymmetric by estimating a forward-looking threshold Taylor rule with quarterly data from 1955 to 2015. In order to capture the potential heterogeneity for regime shift mechanism under different economic conditions, we modify the threshold model by assuming the threshold value as a latent variable following an autoregressive (AR) dynamic process. We use the unemployment rate as the threshold variable and separate the sample into two periods: expansion periods and recession periods. Our findings support that the U.S. monetary policy operations are asymmetric in these two regimes. More precisely, the monetary authority tends to implement an active Taylor rule with a weaker response to the inflation gap (the deviation of inflation from its target) and a stronger response to the output gap (the deviation of output from its potential level) in recession periods. The threshold value, interpreted as the targeted unemployment rate of monetary authorities, exhibits significant time-varying properties, confirming the conjecture that policy makers may adjust their reference point for the unemployment rate accordingly to reflect their attitude on the health of general economy.

  18. Quantifying ecological thresholds from response surfaces

    Treesearch

    Heather E. Lintz; Bruce McCune; Andrew N. Gray; Katherine A. McCulloh

    2011-01-01

    Ecological thresholds are abrupt changes of ecological state. While an ecological threshold is a widely accepted concept, most empirical methods detect them in time or across geographic space. Although useful, these approaches do not quantify the direct drivers of threshold response. Causal understanding of thresholds detected empirically requires their investigation...

  19. Threshold quantum cryptography

    NASA Astrophysics Data System (ADS)

    Tokunaga, Yuuki; Okamoto, Tatsuaki; Imoto, Nobuyuki

    2005-01-01

    We present the concept of threshold collaborative unitary transformation or threshold quantum cryptography, which is a kind of quantum version of threshold cryptography. Threshold quantum cryptography states that classical shared secrets are distributed to several parties and a subset of them, whose number is greater than a threshold, collaborates to compute a quantum cryptographic function, while keeping each share secretly inside each party. The shared secrets are reusable if no cheating is detected. As a concrete example of this concept, we show a distributed protocol (with threshold) of conjugate coding.

  20. Mind the Gap: Two Dissociable Mechanisms of Temporal Processing in the Auditory System

    PubMed Central

    Anderson, Lucy A.

    2016-01-01

    High temporal acuity of auditory processing underlies perception of speech and other rapidly varying sounds. A common measure of auditory temporal acuity in humans is the threshold for detection of brief gaps in noise. Gap-detection deficits, observed in developmental disorders, are considered evidence for “sluggish” auditory processing. Here we show, in a mouse model of gap-detection deficits, that auditory brain sensitivity to brief gaps in noise can be impaired even without a general loss of central auditory temporal acuity. Extracellular recordings in three different subdivisions of the auditory thalamus in anesthetized mice revealed a stimulus-specific, subdivision-specific deficit in thalamic sensitivity to brief gaps in noise in experimental animals relative to controls. Neural responses to brief gaps in noise were reduced, but responses to other rapidly changing stimuli unaffected, in lemniscal and nonlemniscal (but not polysensory) subdivisions of the medial geniculate body. Through experiments and modeling, we demonstrate that the observed deficits in thalamic sensitivity to brief gaps in noise arise from reduced neural population activity following noise offsets, but not onsets. These results reveal dissociable sound-onset-sensitive and sound-offset-sensitive channels underlying auditory temporal processing, and suggest that gap-detection deficits can arise from specific impairment of the sound-offset-sensitive channel. SIGNIFICANCE STATEMENT The experimental and modeling results reported here suggest a new hypothesis regarding the mechanisms of temporal processing in the auditory system. Using a mouse model of auditory temporal processing deficits, we demonstrate the existence of specific abnormalities in auditory thalamic activity following sound offsets, but not sound onsets. These results reveal dissociable sound-onset-sensitive and sound-offset-sensitive mechanisms underlying auditory processing of temporally varying sounds. Furthermore, the

  1. Age-related changes in auditory nerve-inner hair cell connections, hair cell numbers, auditory brain stem response and gap detection in UM-HET4 mice.

    PubMed

    Altschuler, R A; Dolan, D F; Halsey, K; Kanicki, A; Deng, N; Martin, C; Eberle, J; Kohrman, D C; Miller, R A; Schacht, J

    2015-04-30

    This study compared the timing of appearance of three components of age-related hearing loss that determine the pattern and severity of presbycusis: the functional and structural pathologies of sensory cells and neurons and changes in gap detection (GD), the latter as an indicator of auditory temporal processing. Using UM-HET4 mice, genetically heterogeneous mice derived from four inbred strains, we studied the integrity of inner and outer hair cells by position along the cochlear spiral, inner hair cell-auditory nerve connections, spiral ganglion neurons (SGN), and determined auditory thresholds, as well as pre-pulse and gap inhibition of the acoustic startle reflex (ASR). Comparisons were made between mice of 5-7, 22-24 and 27-29 months of age. There was individual variability among mice in the onset and extent of age-related auditory pathology. At 22-24 months of age a moderate to large loss of outer hair cells was restricted to the apical third of the cochlea and threshold shifts in the auditory brain stem response were minimal. There was also a large and significant loss of inner hair cell-auditory nerve connections and a significant reduction in GD. The expression of Ntf3 in the cochlea was significantly reduced. At 27-29 months of age there was no further change in the mean number of synaptic connections per inner hair cell or in GD, but a moderate to large loss of outer hair cells was found across all cochlear turns as well as significantly increased ABR threshold shifts at 4, 12, 24 and 48 kHz. A statistical analysis of correlations on an individual animal basis revealed that neither the hair cell loss nor the ABR threshold shifts correlated with loss of GD or with the loss of connections, consistent with independent pathological mechanisms. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. Facial attractiveness impressions precede trustworthiness inferences: lower detection thresholds and faster decision latencies.

    PubMed

    Gutiérrez-García, Aida; Beltrán, David; Calvo, Manuel G

    2018-02-26

    Prior research has found a relationship between perceived facial attractiveness and perceived personal trustworthiness. We examined the time course of attractiveness relative to trustworthiness evaluation of emotional and neutral faces. This served to explore whether attractiveness might be used as an easily accessible cue and a quick shortcut for judging trustworthiness. Detection thresholds and judgment latencies as a function of expressive intensity were measured. Significant correlations between attractiveness and trustworthiness consistently held for six emotional expressions at four intensities, and neutral faces. Importantly, perceived attractiveness preceded perceived trustworthiness, with lower detection thresholds and shorter decision latencies. This reveals a time course advantage for attractiveness, and suggests that earlier attractiveness impressions could bias trustworthiness inferences. A heuristic cognitive mechanism is hypothesised to ease processing demands by relying on simple and observable clues (attractiveness) as a substitute for more complex and not easily accessible information (trustworthiness).

  3. PBX 9502 air-gap tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dickson, Peter; Novak, Alan M.; Foley, Timothy J.

    A small number of simple air-gap tests were performed on 1-inch diameter PBX 9502 cylinders to determine an approximate threshold for detonation failure. The primary diagnostics were streak imaging and dent measurements in a steel witness plate. Relight was found to occur, with negligible excess transit time, for air gaps up to 1 mm. Relight did not occur with a 3-mm air gap.

  4. Flavour and identification threshold detection overview of Slovak adepts for certified testing.

    PubMed

    Vietoris, VladimIr; Barborova, Petra; Jancovicova, Jana; Eliasova, Lucia; Karvaj, Marian

    2016-07-01

    During certification process of sensory assessors of Slovak certification body we obtained results for basic taste thresholds and lifestyle habits. 500 adult people were screened during experiment with food industry background. For analysis of basic and non basic tastes, we used standardized procedure of ISO 8586-1:1993. In flavour test experiment, group of (26-35 y.o) produced the lowest error ratio (1.438), highest is (56+ y.o.) group with result (2.0). Average error value based on gender for women was (1.510) in comparison to men (1.477). People with allergies have the average error ratio (1.437) in comparison to people without allergies (1.511). Non-smokers produced less errors (1.484) against the smokers (1.576). Another flavour threshold identification test detected differences among age groups (by age are values increased). The highest number of errors made by men in metallic taste was (24%) the same as made by women (22%). Higher error ratio made by men occurred in salty taste (19%) against women (10%). Analysis detected some differences between allergic/non-allergic, smokers/non-smokers groups.

  5. Assessment of thermotactile and vibrotactile thresholds for detecting sensorineural components of the hand-arm vibration syndrome (HAVS).

    PubMed

    Ye, Ying; Griffin, Michael J

    2018-01-01

    Thermotactile thresholds and vibrotactile thresholds are measured to assist the diagnosis of the sensorineural component of the hand-arm vibration syndrome (HAVS). This study investigates whether thermotactile and vibrotactile thresholds distinguish between fingers with and without numbness and tingling. In 60 males reporting symptoms of the hand-arm vibration syndrome, thermotactile thresholds for detecting hot and cold temperatures and vibrotactile thresholds at 31.5 and 125 Hz were measured on the index and little fingers of both hands. In fingers reported to suffer numbness or tingling, hot thresholds increased, cold thresholds decreased, and vibrotactile thresholds at both 31.5 and 125 Hz increased. With sensorineural symptoms on all three phalanges (i.e. numbness or tingling scores of 6), both thermotactile thresholds and both vibrotactile thresholds had sensitivities greater than 80% and specificities around 90%, with areas under the receiver operating characteristic curves around 0.9. There were correlations between all four thresholds, but cold thresholds had greater sensitivity and greater specificity on fingers with numbness or tingling on only the distal phalanx (i.e. numbness or tingling scores of 1) suggesting cold thresholds provide better indications of early sensorineural disorder. Thermotactile thresholds and vibrotactile thresholds can provide useful indications of sensorineural function in patients reporting symptoms of the sensorineural component of HAVS.

  6. Distribution Characteristics of Air-Bone Gaps – Evidence of Bias in Manual Audiometry

    PubMed Central

    Margolis, Robert H.; Wilson, Richard H.; Popelka, Gerald R.; Eikelboom, Robert H.; Swanepoel, De Wet; Saly, George L.

    2015-01-01

    Objective Five databases were mined to examine distributions of air-bone gaps obtained by automated and manual audiometry. Differences in distribution characteristics were examined for evidence of influences unrelated to the audibility of test signals. Design The databases provided air- and bone-conduction thresholds that permitted examination of air-bone gap distributions that were free of ceiling and floor effects. Cases with conductive hearing loss were eliminated based on air-bone gaps, tympanometry, and otoscopy, when available. The analysis is based on 2,378,921 threshold determinations from 721,831 subjects from five databases. Results Automated audiometry produced air-bone gaps that were normally distributed suggesting that air- and bone-conduction thresholds are normally distributed. Manual audiometry produced air-bone gaps that were not normally distributed and show evidence of biasing effects of assumptions of expected results. In one database, the form of the distributions showed evidence of inclusion of conductive hearing losses. Conclusions Thresholds obtained by manual audiometry show tester bias effects from assumptions of the patient’s hearing loss characteristics. Tester bias artificially reduces the variance of bone-conduction thresholds and the resulting air-bone gaps. Because the automated method is free of bias from assumptions of expected results, these distributions are hypothesized to reflect the true variability of air- and bone-conduction thresholds and the resulting air-bone gaps. PMID:26627469

  7. The Gap Procedure: for the identification of phylogenetic clusters in HIV-1 sequence data.

    PubMed

    Vrbik, Irene; Stephens, David A; Roger, Michel; Brenner, Bluma G

    2015-11-04

    In the context of infectious disease, sequence clustering can be used to provide important insights into the dynamics of transmission. Cluster analysis is usually performed using a phylogenetic approach whereby clusters are assigned on the basis of sufficiently small genetic distances and high bootstrap support (or posterior probabilities). The computational burden involved in this phylogenetic threshold approach is a major drawback, especially when a large number of sequences are being considered. In addition, this method requires a skilled user to specify the appropriate threshold values which may vary widely depending on the application. This paper presents the Gap Procedure, a distance-based clustering algorithm for the classification of DNA sequences sampled from individuals infected with the human immunodeficiency virus type 1 (HIV-1). Our heuristic algorithm bypasses the need for phylogenetic reconstruction, thereby supporting the quick analysis of large genetic data sets. Moreover, this fully automated procedure relies on data-driven gaps in sorted pairwise distances to infer clusters, thus no user-specified threshold values are required. The clustering results obtained by the Gap Procedure on both real and simulated data, closely agree with those found using the threshold approach, while only requiring a fraction of the time to complete the analysis. Apart from the dramatic gains in computational time, the Gap Procedure is highly effective in finding distinct groups of genetically similar sequences and obviates the need for subjective user-specified values. The clusters of genetically similar sequences returned by this procedure can be used to detect patterns in HIV-1 transmission and thereby aid in the prevention, treatment and containment of the disease.

  8. The relationship between stereoacuity and stereomotion thresholds.

    PubMed

    Cumming, B G

    1995-01-01

    There are in principle at least two binocular sources of information that could be used to determine the motion of an object towards or away from an observer; such motion produces changes in binocular disparities over time and also generates different image velocities in the two eyes. It has been argued in the past that stereomotion is detected by a mechanism that is independent of that which detects static disparities. More recently this conclusion has been questioned. If stereomotion detection in fact depends upon detecting disparities, there should be a clear correlation between static stereo-detection thresholds and stereomotion thresholds. If the systems are separate, there need be no such correlation. Four types of threshold measurement were performed by means of random-dot stereograms: (1) static stereo detection/discrimination; (2) stereomotion detection in random-dot stereograms (temporally uncorrelated); (3) stereomotion detection in temporally correlated random-dot stereograms; and (4) binocular detection of frontoparallel motion. Three normal subjects and five subjects with unusually high stereoacuities were studied. In addition, two manipulations were performed that altered stereomotion thresholds: changes in mean disparity, and image defocus produced by positive spectacle lenses. Across subjects and conditions, stereomotion thresholds were well correlated with stereo-discrimination thresholds. Stereomotion was poorly correlated with binocular frontoparallel-motion thresholds. These results suggest that stereomotion is detected by means of registering changes in the output of the same disparity detectors that are used to detect static disparities.

  9. Information transmission and detection thresholds in the vestibular nuclei: single neurons vs. population encoding

    PubMed Central

    Massot, Corentin; Chacron, Maurice J.

    2011-01-01

    Understanding how sensory neurons transmit information about relevant stimuli remains a major goal in neuroscience. Of particular relevance are the roles of neural variability and spike timing in neural coding. Peripheral vestibular afferents display differential variability that is correlated with the importance of spike timing; regular afferents display little variability and use a timing code to transmit information about sensory input. Irregular afferents, conversely, display greater variability and instead use a rate code. We studied how central neurons within the vestibular nuclei integrate information from both afferent classes by recording from a group of neurons termed vestibular only (VO) that are known to make contributions to vestibulospinal reflexes and project to higher-order centers. We found that, although individual central neurons had sensitivities that were greater than or equal to those of individual afferents, they transmitted less information. In addition, their velocity detection thresholds were significantly greater than those of individual afferents. This is because VO neurons display greater variability, which is detrimental to information transmission and signal detection. Combining activities from multiple VO neurons increased information transmission. However, the information rates were still much lower than those of equivalent afferent populations. Furthermore, combining responses from multiple VO neurons led to lower velocity detection threshold values approaching those measured from behavior (∼2.5 vs. 0.5–1°/s). Our results suggest that the detailed time course of vestibular stimuli encoded by afferents is not transmitted by VO neurons. Instead, they suggest that higher vestibular pathways must integrate information from central vestibular neuron populations to give rise to behaviorally observed detection thresholds. PMID:21307329

  10. Simulated performance of an order statistic threshold strategy for detection of narrowband signals

    NASA Technical Reports Server (NTRS)

    Satorius, E.; Brady, R.; Deich, W.; Gulkis, S.; Olsen, E.

    1988-01-01

    The application of order statistics to signal detection is becoming an increasingly active area of research. This is due to the inherent robustness of rank estimators in the presence of large outliers that would significantly degrade more conventional mean-level-based detection systems. A detection strategy is presented in which the threshold estimate is obtained using order statistics. The performance of this algorithm in the presence of simulated interference and broadband noise is evaluated. In this way, the robustness of the proposed strategy in the presence of the interference can be fully assessed as a function of the interference, noise, and detector parameters.

  11. Level-dependent changes in detection of temporal gaps in noise markers by adults with normal and impaired hearing

    PubMed Central

    Horwitz, Amy R.; Ahlstrom, Jayne B.; Dubno, Judy R.

    2011-01-01

    Compression in the basilar-membrane input–output response flattens the temporal envelope of a fluctuating signal when more gain is applied to lower level than higher level temporal components. As a result, level-dependent changes in gap detection for signals with different depths of envelope fluctuation and for subjects with normal and impaired hearing may reveal effects of compression. To test these assumptions, gap detection with and without a broadband noise was measured with 1 000-Hz-wide (flatter) and 50-Hz-wide (fluctuating) noise markers as a function of marker level. As marker level increased, background level also increased, maintaining a fixed acoustic signal-to-noise ratio (SNR) to minimize sensation-level effects on gap detection. Significant level-dependent changes in gap detection were observed, consistent with effects of cochlear compression. For the flatter marker, gap detection that declines with increases in level up to mid levels and improves with further increases in level may be explained by an effective flattening of the temporal envelope at mid levels, where compression effects are expected to be strongest. A flatter effective temporal envelope corresponds to a reduced effective SNR. The effects of a reduction in compression (resulting in larger effective SNRs) may contribute to better-than-normal gap detection observed for some hearing-impaired listeners. PMID:22087921

  12. Automatic video shot boundary detection using k-means clustering and improved adaptive dual threshold comparison

    NASA Astrophysics Data System (ADS)

    Sa, Qila; Wang, Zhihui

    2018-03-01

    At present, content-based video retrieval (CBVR) is the most mainstream video retrieval method, using the video features of its own to perform automatic identification and retrieval. This method involves a key technology, i.e. shot segmentation. In this paper, the method of automatic video shot boundary detection with K-means clustering and improved adaptive dual threshold comparison is proposed. First, extract the visual features of every frame and divide them into two categories using K-means clustering algorithm, namely, one with significant change and one with no significant change. Then, as to the classification results, utilize the improved adaptive dual threshold comparison method to determine the abrupt as well as gradual shot boundaries.Finally, achieve automatic video shot boundary detection system.

  13. Assessment of hearing threshold in adults with hearing loss using an automated system of cortical auditory evoked potential detection.

    PubMed

    Durante, Alessandra Spada; Wieselberg, Margarita Bernal; Roque, Nayara; Carvalho, Sheila; Pucci, Beatriz; Gudayol, Nicolly; de Almeida, Kátia

    The use of hearing aids by individuals with hearing loss brings a better quality of life. Access to and benefit from these devices may be compromised in patients who present difficulties or limitations in traditional behavioral audiological evaluation, such as newborns and small children, individuals with auditory neuropathy spectrum, autism, and intellectual deficits, and in adults and the elderly with dementia. These populations (or individuals) are unable to undergo a behavioral assessment, and generate a growing demand for objective methods to assess hearing. Cortical auditory evoked potentials have been used for decades to estimate hearing thresholds. Current technological advances have lead to the development of equipment that allows their clinical use, with features that enable greater accuracy, sensitivity, and specificity, and the possibility of automated detection, analysis, and recording of cortical responses. To determine and correlate behavioral auditory thresholds with cortical auditory thresholds obtained from an automated response analysis technique. The study included 52 adults, divided into two groups: 21 adults with moderate to severe hearing loss (study group); and 31 adults with normal hearing (control group). An automated system of detection, analysis, and recording of cortical responses (HEARLab ® ) was used to record the behavioral and cortical thresholds. The subjects remained awake in an acoustically treated environment. Altogether, 150 tone bursts at 500, 1000, 2000, and 4000Hz were presented through insert earphones in descending-ascending intensity. The lowest level at which the subject detected the sound stimulus was defined as the behavioral (hearing) threshold (BT). The lowest level at which a cortical response was observed was defined as the cortical electrophysiological threshold. These two responses were correlated using linear regression. The cortical electrophysiological threshold was, on average, 7.8dB higher than the

  14. A Bispectral Composite Threshold Approach for Automatic Cloud Detection in VIIRS Imagery

    NASA Technical Reports Server (NTRS)

    LaFontaine Frank J.; Jedlovec, Gary J.

    2015-01-01

    The detection of clouds in satellite imagery has a number of important applications in weather and climate studies. The presence of clouds can alter the energy budget of the Earth-atmosphere system through scattering and absorption of shortwave radiation and the absorption and re-emission of infrared radiation at longer wavelengths. The scattering and absorption characteristics of clouds vary with the microphysical properties of clouds, hence the cloud type. Thus, detecting the presence of clouds over a region in satellite imagery is important in order to derive atmospheric or surface parameters that give insight into weather and climate processes. For many applications however, clouds are a contaminant whose presence interferes with retrieving atmosphere or surface information. In these cases, is important to isolate cloud-free pixels, used to retrieve atmospheric thermodynamic information or surface geophysical parameters, from cloudy ones. This abstract describes an application of a two-channel bispectral composite threshold (BCT) approach applied to VIIRS imagery. The simplified BCT approach uses only the 10.76 and 3.75 micrometer spectral channels from VIIRS in two spectral tests; a straight-forward infrared threshold test with the longwave channel and a shortwave - longwave channel difference test. The key to the success of this approach as demonstrated in past applications to GOES and MODIS data is the generation of temporally and spatially dependent thresholds used in the tests from a previous number of days at similar observations to the current data. The paper and subsequent presentation will present an overview of the approach and intercomparison results with other satellites, methods, and against verification data.

  15. Perfect Detection of Spikes in the Linear Sub-threshold Dynamics of Point Neurons

    PubMed Central

    Krishnan, Jeyashree; Porta Mana, PierGianLuca; Helias, Moritz; Diesmann, Markus; Di Napoli, Edoardo

    2018-01-01

    Spiking neuronal networks are usually simulated with one of three main schemes: the classical time-driven and event-driven schemes, and the more recent hybrid scheme. All three schemes evolve the state of a neuron through a series of checkpoints: equally spaced in the first scheme and determined neuron-wise by spike events in the latter two. The time-driven and the hybrid scheme determine whether the membrane potential of a neuron crosses a threshold at the end of the time interval between consecutive checkpoints. Threshold crossing can, however, occur within the interval even if this test is negative. Spikes can therefore be missed. The present work offers an alternative geometric point of view on neuronal dynamics, and derives, implements, and benchmarks a method for perfect retrospective spike detection. This method can be applied to neuron models with affine or linear subthreshold dynamics. The idea behind the method is to propagate the threshold with a time-inverted dynamics, testing whether the threshold crosses the neuron state to be evolved, rather than vice versa. Algebraically this translates into a set of inequalities necessary and sufficient for threshold crossing. This test is slower than the imperfect one, but can be optimized in several ways. Comparison confirms earlier results that the imperfect tests rarely miss spikes (less than a fraction 1/108 of missed spikes) in biologically relevant settings. PMID:29379430

  16. DNAzyme based gap-LCR detection of single-nucleotide polymorphism.

    PubMed

    Zhou, Li; Du, Feng; Zhao, Yongyun; Yameen, Afshan; Chen, Haodong; Tang, Zhuo

    2013-07-15

    Fast and accurate detection of single-nucleotide polymorphism (SNP) is thought more and more important for understanding of human physiology and elucidating the molecular based diseases. A great deal of effort has been devoted to developing accurate, rapid, and cost-effective technologies for SNP analysis. However most of those methods developed to date incorporate complicated probe labeling and depend on advanced equipment. The DNAzyme based Gap-LCR detection method averts any chemical modification on probes and circumvents those problems by incorporating a short functional DNA sequence into one of LCR primers. Two kinds of exonuclease are utilized in our strategy to digest all the unreacted probes and release the DNAzymes embedded in the LCR product. The DNAzyme applied in our method is a versatile tool to report the result of SNP detection in colorimetric or fluorometric ways for different detection purposes. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Innovative qPCR using interfacial effects to enable low threshold cycle detection and inhibition relief

    PubMed Central

    Harshman, Dustin K.; Rao, Brianna M.; McLain, Jean E.; Watts, George S.; Yoon, Jeong-Yeol

    2015-01-01

    Molecular diagnostics offers quick access to information but fails to operate at a speed required for clinical decision-making. Our novel methodology, droplet-on-thermocouple silhouette real-time polymerase chain reaction (DOTS qPCR), uses interfacial effects for droplet actuation, inhibition relief, and amplification sensing. DOTS qPCR has sample-to-answer times as short as 3 min 30 s. In infective endocarditis diagnosis, DOTS qPCR demonstrates reproducibility, differentiation of antibiotic susceptibility, subpicogram limit of detection, and thermocycling speeds of up to 28 s/cycle in the presence of tissue contaminants. Langmuir and Gibbs adsorption isotherms are used to describe the decreasing interfacial tension upon amplification. Moreover, a log-linear relationship with low threshold cycles is presented for real-time quantification by imaging the droplet-on-thermocouple silhouette with a smartphone. DOTS qPCR resolves several limitations of commercially available real-time PCR systems, which rely on fluorescence detection, have substantially higher threshold cycles, and require expensive optical components and extensive sample preparation. Due to the advantages of low threshold cycle detection, we anticipate extending this technology to biological research applications such as single cell, single nucleus, and single DNA molecule analyses. Our work is the first demonstrated use of interfacial effects for sensing reaction progress, and it will enable point-of-care molecular diagnosis of infections. PMID:26601245

  18. Gap prepulse inhibition and auditory brainstem-evoked potentials as objective measures for tinnitus in guinea pigs

    PubMed Central

    Dehmel, Susanne; Eisinger, Daniel; Shore, Susan E.

    2012-01-01

    Tinnitus or ringing of the ears is a subjective phantom sensation necessitating behavioral models that objectively demonstrate the existence and quality of the tinnitus sensation. The gap detection test uses the acoustic startle response elicited by loud noise pulses and its gating or suppression by preceding sub-startling prepulses. Gaps in noise bands serve as prepulses, assuming that ongoing tinnitus masks the gap and results in impaired gap detection. This test has shown its reliability in rats, mice, and gerbils. No data exists for the guinea pig so far, although gap detection is similar across mammals and the acoustic startle response is a well-established tool in guinea pig studies of psychiatric disorders and in pharmacological studies. Here we investigated the startle behavior and prepulse inhibition (PPI) of the guinea pig and showed that guinea pigs have a reliable startle response that can be suppressed by 15 ms gaps embedded in narrow noise bands preceding the startle noise pulse. After recovery of auditory brainstem response (ABR) thresholds from a unilateral noise over-exposure centered at 7 kHz, guinea pigs showed diminished gap-induced reduction of the startle response in frequency bands between 8 and 18 kHz. This suggests the development of tinnitus in frequency regions that showed a temporary threshold shift (TTS) after noise over-exposure. Changes in discharge rate and synchrony, two neuronal correlates of tinnitus, should be reflected in altered ABR waveforms, which would be useful to objectively detect tinnitus and its localization to auditory brainstem structures. Therefore, we analyzed latencies and amplitudes of the first five ABR waves at suprathreshold sound intensities and correlated ABR abnormalities with the results of the behavioral tinnitus testing. Early ABR wave amplitudes up to N3 were increased for animals with tinnitus possibly stemming from hyperactivity and hypersynchrony underlying the tinnitus percept. Animals that did not

  19. Wavelet threshold method of resolving noise interference in periodic short-impulse signals chaotic detection

    NASA Astrophysics Data System (ADS)

    Deng, Ke; Zhang, Lu; Luo, Mao-Kang

    2010-03-01

    The chaotic oscillator has already been considered as a powerful method to detect weak signals, even weak signals accompanied with noises. However, many examples, analyses and simulations indicate that chaotic oscillator detection system cannot guarantee the immunity to noises (even white noise). In fact the randomness of noises has a serious or even a destructive effect on the detection results in many cases. To solve this problem, we present a new detecting method based on wavelet threshold processing that can detect the chaotic weak signal accompanied with noise. All theoretical analyses and simulation experiments indicate that the new method reduces the noise interferences to detection significantly, thereby making the corresponding chaotic oscillator that detects the weak signals accompanied with noises more stable and reliable.

  20. Detecting modulated signals in modulated noise: (II) neural thresholds in the songbird forebrain.

    PubMed

    Bee, Mark A; Buschermöhle, Michael; Klump, Georg M

    2007-10-01

    Sounds in the real world fluctuate in amplitude. The vertebrate auditory system exploits patterns of amplitude fluctuations to improve signal detection in noise. One experimental paradigm demonstrating these general effects has been used in psychophysical studies of 'comodulation detection difference' (CDD). The CDD effect refers to the fact that thresholds for detecting a modulated, narrowband noise signal are lower when the envelopes of flanking bands of modulated noise are comodulated with each other, but fluctuate independently of the signal compared with conditions in which the envelopes of the signal and flanking bands are all comodulated. Here, we report results from a study of the neural correlates of CDD in European starlings (Sturnus vulgaris). We manipulated: (i) the envelope correlations between a narrowband noise signal and a masker comprised of six flanking bands of noise; (ii) the signal onset delay relative to masker onset; (iii) signal duration; and (iv) masker spectrum level. Masked detection thresholds were determined from neural responses using signal detection theory. Across conditions, the magnitude of neural CDD ranged between 2 and 8 dB, which is similar to that reported in a companion psychophysical study of starlings [U. Langemann & G.M. Klump (2007) Eur. J. Neurosci., 26, 1969-1978]. We found little evidence to suggest that neural CDD resulted from the across-channel processing of auditory grouping cues related to common envelope fluctuations and synchronous onsets between the signal and flanking bands. We discuss a within-channel model of peripheral processing that explains many of our results.

  1. Sex differences in thermal detection and thermal pain threshold and the thermal grill illusion: a psychophysical study in young volunteers.

    PubMed

    Averbeck, Beate; Seitz, Lena; Kolb, Florian P; Kutz, Dieter F

    2017-09-01

    Sex-related differences in human thermal and pain sensitivity are the subject of controversial discussion. The goal of this study in a large number of subjects was to investigate sex differences in thermal and thermal pain perception and the thermal grill illusion (TGI) as a phenomenon reflecting crosstalk between the thermoreceptive and nociceptive systems. The thermal grill illusion is a sensation of strong, but not necessarily painful, heat often preceded by transient cold upon skin contact with spatially interlaced innocuous warm and cool stimuli. The TGI was studied in a group of 78 female and 58 male undergraduate students and was evoked by placing the palm of the right hand on the thermal grill (20/40 °C interleaved stimulus). Sex-related thermal perception was investigated by a retrospective analysis of thermal detection and thermal pain threshold data that had been measured in student laboratory courses over 5 years (776 female and 476 male undergraduate students) using the method of quantitative sensory testing (QST). To analyse correlations between thermal pain sensitivity and the TGI, thermal pain threshold and the TGI were determined in a group of 20 female and 20 male undergraduate students. The TGI was more pronounced in females than males. Females were more sensitive with respect to thermal detection and thermal pain thresholds. Independent of sex, thermal detection thresholds were dependent on the baseline temperature with a specific progression of an optimum curve for cold detection threshold versus baseline temperature. The distribution of cold pain thresholds was multi-modal and sex-dependent. The more pronounced TGI in females correlated with higher cold sensitivity and cold pain sensitivity in females than in males. Our finding that thermal detection threshold not only differs between the sexes but is also dependent on the baseline temperature reveals a complex processing of "cold" and "warm" inputs in thermal perception. The results of the

  2. ORIENTATION REQUIREMENT TO DETECT MAGNETIC FIELD-INDUCTED ALTERATION OF GAP JUNCTION COMMUNICATION IN EPITHELIAL CELLS

    EPA Science Inventory

    ORIENTATION REQUIREMENT TO DETECT MAGNETIC FIELD-INDUCED ALTERATION OF GAP JUNCTION COMMUNICATION IN EPITHELIAL CELLS.
    OBJECTIVE: We have shown that functional gap junction communication as measured by Lucifer yellow dye transfer (DT) in Clone-9 rat liver epithelial cells, c...

  3. Optimization of Second Fault Detection Thresholds to Maximize Mission POS

    NASA Technical Reports Server (NTRS)

    Anzalone, Evan

    2018-01-01

    both magnitude and time. As such, the Navigation team is taking advantage of the INS's capability to schedule and change fault detection thresholds in flight. These values are optimized along a nominal trajectory in order to maximize probability of mission success, and reducing the probability of false positives (defined as when the INS would report a second fault condition resulting in loss of mission, but the vehicle would still meet insertion requirements within system-level margins). This paper will describe an optimization approach using Genetic Algorithms to tune the threshold parameters to maximize vehicle resilience to second fault events as a function of potential fault magnitude and time of fault over an ascent mission profile. The analysis approach, and performance assessment of the results will be presented to demonstrate the applicability of this process to second fault detection to maximize mission probability of success.

  4. Comparison of edge detection techniques for M7 subtype Leukemic cell in terms of noise filters and threshold value

    NASA Astrophysics Data System (ADS)

    Salam, Afifah Salmi Abdul; Isa, Mohd. Nazrin Md.; Ahmad, Muhammad Imran; Che Ismail, Rizalafande

    2017-11-01

    This paper will focus on the study and identifying various threshold values for two commonly used edge detection techniques, which are Sobel and Canny Edge detection. The idea is to determine which values are apt in giving accurate results in identifying a particular leukemic cell. In addition, evaluating suitability of edge detectors are also essential as feature extraction of the cell depends greatly on image segmentation (edge detection). Firstly, an image of M7 subtype of Acute Myelocytic Leukemia (AML) is chosen due to its diagnosing which were found lacking. Next, for an enhancement in image quality, noise filters are applied. Hence, by comparing images with no filter, median and average filter, useful information can be acquired. Each threshold value is fixed with value 0, 0.25 and 0.5. From the investigation found, without any filter, Canny with a threshold value of 0.5 yields the best result.

  5. Detection Thresholds of Falling Snow from Satellite-Borne Active and Passive Sensors

    NASA Technical Reports Server (NTRS)

    Skofronick-Jackson, Gail; Johnson, Benjamin T.; Munchak, S. Joseph

    2012-01-01

    Precipitation, including rain and snow, is a critical part of the Earth's energy and hydrology cycles. Precipitation impacts latent heating profiles locally while global circulation patterns distribute precipitation and energy from the equator to the poles. For the hydrological cycle, falling snow is a primary contributor in northern latitudes during the winter seasons. Falling snow is the source of snow pack accumulations that provide fresh water resources for many communities in the world. Furthermore, falling snow impacts society by causing transportation disruptions during severe snow events. In order to collect information on the complete global precipitation cycle, both liquid and frozen precipitation must be collected. The challenges of estimating falling snow from space still exist though progress is being made. These challenges include weak falling snow signatures with respect to background (surface, water vapor) signatures for passive sensors over land surfaces, unknowns about the spherical and non-spherical shapes of the snowflakes, their particle size distributions (PSDs) and how the assumptions about the unknowns impact observed brightness temperatures or radar reflectivities, differences in near surface snowfall and total column snow amounts, and limited ground truth to validate against. While these challenges remain, knowledge of their impact on expected retrieval results is an important key for understanding falling snow retrieval estimations. Since falling snow from space is the next precipitation measurement challenge from space, information must be determined in order to guide retrieval algorithm development for these current and future missions. This information includes thresholds of detection for various sensor channel configurations, snow event system characteristics, snowflake particle assumptions, and surface types. For example, can a lake effect snow system with low (approx 2.5 km) cloud tops having an ice water content (IWC) at the

  6. Olfaction and Environment: Tsimane’ of Bolivian Rainforest Have Lower Threshold of Odor Detection Than Industrialized German People

    PubMed Central

    Sorokowska, Agnieszka; Sorokowski, Piotr; Hummel, Thomas; Huanca, Tomas

    2013-01-01

    Olfactory sensitivity varies between individuals. However, data regarding cross-cultural and inter-group differences are scarce. We compared the thresholds of odor detection of the traditional society of Tsimane’ (native Amazonians of the Bolivian rainforest; n = 151) and people living in Dresden (Germany; n = 286) using “Sniffin’ Sticks” threshold subtest. Tsimane’ detected n-butanol at significantly lower concentrations than the German subjects. The distribution of thresholds of the Tsimane’ was very specific, with 25% of Tsimane’ obtaining better results in the olfactory test than any member of the German group. These data suggest that differences in olfactory sensitivity seem to be especially salient between industrialized and non-industrialized populations inhabiting different environmental conditions. We hypothesize that the possible sources of such differences are: (i) the impact of pollution which impairs the olfactory abilities of people from industrialized countries; (ii) better training of olfaction because of the higher importance of smell in traditional populations; (iii) environmental pressures shaping olfactory abilities in these populations. PMID:23922693

  7. Olfaction and environment: Tsimane' of Bolivian rainforest have lower threshold of odor detection than industrialized German people.

    PubMed

    Sorokowska, Agnieszka; Sorokowski, Piotr; Hummel, Thomas; Huanca, Tomas

    2013-01-01

    Olfactory sensitivity varies between individuals. However, data regarding cross-cultural and inter-group differences are scarce. We compared the thresholds of odor detection of the traditional society of Tsimane' (native Amazonians of the Bolivian rainforest; n = 151) and people living in Dresden (Germany; n = 286) using "Sniffin' Sticks" threshold subtest. Tsimane' detected n-butanol at significantly lower concentrations than the German subjects. The distribution of thresholds of the Tsimane' was very specific, with 25% of Tsimane' obtaining better results in the olfactory test than any member of the German group. These data suggest that differences in olfactory sensitivity seem to be especially salient between industrialized and non-industrialized populations inhabiting different environmental conditions. We hypothesize that the possible sources of such differences are: (i) the impact of pollution which impairs the olfactory abilities of people from industrialized countries; (ii) better training of olfaction because of the higher importance of smell in traditional populations; (iii) environmental pressures shaping olfactory abilities in these populations.

  8. Should we expect population thresholds for wildlife disease?

    USGS Publications Warehouse

    Lloyd-Smith, James O.; Cross, P.C.; Briggs, C.J.; Daugherty, M.; Getz, W.M.; Latto, J.; Sanchez, M.; Smith, A.; Swei, A.

    2005-01-01

    Host population thresholds for invasion or persistence of infectious disease are core concepts of disease ecology, and underlie on-going and controversial disease control policies based on culling and vaccination. Empirical evidence for these thresholds in wildlife populations has been sparse, however, though recent studies have narrowed this gap. Here we review the theoretical bases for population thresholds for disease, revealing why they are difficult to measure and sometimes are not even expected, and identifying important facets of wildlife ecology left out of current theories. We discuss strengths and weaknesses of selected empirical studies that have reported disease thresholds for wildlife, identify recurring obstacles, and discuss implications of our imperfect understanding of wildlife thresholds for disease control policy.

  9. Influence of the chemical structure on odor qualities and odor thresholds of halogenated guaiacol-derived odorants

    NASA Astrophysics Data System (ADS)

    Juhlke, Florian; Lorber, Katja; Wagenstaller, Maria; Buettner, Andrea

    2017-12-01

    Chlorinated guaiacol derivatives are found in waste water of pulp mills using chlorine in the bleaching process of wood pulp. They can also be detected in fish tissue, possibly causing off-odors. To date, there is no systematic investigation on the odor properties of halogenated guaiacol derivatives. To close this gap, odor thresholds in air and odor qualities of 14 compounds were determined by gas chromatography-olfactometry. Overall, the investigated compounds elicited smells that are characteristic for guaiacol, namely smoky, sweet, vanilla-like, but also medicinal and plaster-like. Their odor thresholds in air were, however, very low, ranging from 0.00072 to 23 ng/Lair. The lowest thresholds were found for 5-chloro- and 5-bromoguaiacol, followed by 4,5-dichloro- and 6-chloroguaiacol. Moreover, some inter-individual differences in odor threshold values could be observed, with the highest variations having been recorded for the individual values of 5-iodo- and 4-bromoguaiacol.

  10. Threshold-based system for noise detection in multilead ECG recordings.

    PubMed

    Jekova, Irena; Krasteva, Vessela; Christov, Ivaylo; Abächerli, Roger

    2012-09-01

    This paper presents a system for detection of the most common noise types seen on the electrocardiogram (ECG) in order to evaluate whether an episode from 12-lead ECG is reliable for diagnosis. It implements criteria for estimation of the noise corruption level in specific frequency bands, aiming to identify the main sources of ECG quality disruption, such as missing signal or limited dynamics of the QRS components above 4 Hz; presence of high amplitude and steep artifacts seen above 1 Hz; baseline drift estimated at frequencies below 1 Hz; power-line interference in a band ±2 Hz around its central frequency; high-frequency and electromyographic noises above 20 Hz. All noise tests are designed to process the ECG series in the time domain, including 13 adjustable thresholds for amplitude and slope criteria which are evaluated in adjustable time intervals, as well as number of leads. The system allows flexible extension toward application-specific requirements for the noise levels in acceptable quality ECGs. Training of different thresholds' settings to determine different positive noise detection rates is performed with the annotated set of 1000 ECGs from the PhysioNet database created for the Computing in Cardiology Challenge 2011. Two implementations are highlighted on the receiver operating characteristic (area 0.968) to fit to different applications. The implementation with high sensitivity (Se = 98.7%, Sp = 80.9%) appears as a reliable alarm when there are any incidental problems with the ECG acquisition, while the implementation with high specificity (Sp = 97.8%, Se = 81.8%) is less susceptible to transient problems but rather validates noisy ECGs with acceptable quality during a small portion of the recording.

  11. Spatial and Temporal Varying Thresholds for Cloud Detection in Satellite Imagery

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary; Haines, Stephanie

    2007-01-01

    A new cloud detection technique has been developed and applied to both geostationary and polar orbiting satellite imagery having channels in the thermal infrared and short wave infrared spectral regions. The bispectral composite threshold (BCT) technique uses only the 11 micron and 3.9 micron channels, and composite imagery generated from these channels, in a four-step cloud detection procedure to produce a binary cloud mask at single pixel resolution. A unique aspect of this algorithm is the use of 20-day composites of the 11 micron and the 11 - 3.9 micron channel difference imagery to represent spatially and temporally varying clear-sky thresholds for the bispectral cloud tests. The BCT cloud detection algorithm has been applied to GOES and MODIS data over the continental United States over the last three years with good success. The resulting products have been validated against "truth" datasets (generated by the manual determination of the sky conditions from available satellite imagery) for various seasons from the 2003-2005 periods. The day and night algorithm has been shown to determine the correct sky conditions 80-90% of the time (on average) over land and ocean areas. Only a small variation in algorithm performance occurs between day-night, land-ocean, and between seasons. The algorithm performs least well. during he winter season with only 80% of the sky conditions determined correctly. The algorithm was found to under-determine clouds at night and during times of low sun angle (in geostationary satellite data) and tends to over-determine the presence of clouds during the day, particularly in the summertime. Since the spectral tests use only the short- and long-wave channels common to most multispectral scanners; the application of the BCT technique to a variety of satellite sensors including SEVERI should be straightforward and produce similar performance results.

  12. Flood Extent Mapping for Namibia Using Change Detection and Thresholding with SAR

    NASA Technical Reports Server (NTRS)

    Long, Stephanie; Fatoyinbo, Temilola E.; Policelli, Frederick

    2014-01-01

    A new method for flood detection change detection and thresholding (CDAT) was used with synthetic aperture radar (SAR) imagery to delineate the extent of flooding for the Chobe floodplain in the Caprivi region of Namibia. This region experiences annual seasonal flooding and has seen a recent renewal of severe flooding after a long dry period in the 1990s. Flooding in this area has caused loss of life and livelihoods for the surrounding communities and has caught the attention of disaster relief agencies. There is a need for flood extent mapping techniques that can be used to process images quickly, providing near real-time flooding information to relief agencies. ENVISAT/ASAR and Radarsat-2 images were acquired for several flooding seasons from February 2008 to March 2013. The CDAT method was used to determine flooding from these images and includes the use of image subtraction, decision based classification with threshold values, and segmentation of SAR images. The total extent of flooding determined for 2009, 2011 and 2012 was about 542 km2, 720 km2, and 673 km2 respectively. Pixels determined to be flooded in vegetation were typically <0.5 % of the entire scene, with the exception of 2009 where the detection of flooding in vegetation was much greater (almost one third of the total flooded area). The time to maximum flooding for the 2013 flood season was determined to be about 27 days. Landsat water classification was used to compare the results from the new CDAT with SAR method; the results show good spatial agreement with Landsat scenes.

  13. Location Performance and Detection Threshold of the Spanish National Seismic Network

    NASA Astrophysics Data System (ADS)

    D'Alessandro, Antonino; Badal, José; D'Anna, Giuseppe; Papanastassiou, Dimitris; Baskoutas, Ioannis; Özel, Nurcan M.

    2013-11-01

    Spain is a low-to-moderate seismicity area with relatively low seismic hazard. However, several strong shallow earthquakes have shaken the country causing casualties and extensive damage. Regional seismicity is monitored and surveyed by means of the Spanish National Seismic Network, maintenance and control of which are entrusted to the Instituto Geográfico Nacional. This array currently comprises 120 seismic stations distributed throughout Spanish territory (mainland and islands). Basically, we are interested in checking the noise conditions, reliability, and seismic detection capability of the Spanish network by analyzing the background noise level affecting the array stations, errors in hypocentral location, and detection threshold, which provides knowledge about network performance. It also enables testing of the suitability of the velocity model used in the routine process of earthquake location. To perform this study we use a method that relies on P and S wave travel times, which are computed by simulation of seismic rays from virtual seismic sources placed at the nodes of a regular grid covering the study area. Given the characteristics of the seismicity of Spain, we drew maps for M L magnitudes 2.0, 2.5, and 3.0, at a focal depth of 10 km and a confidence level 95 %. The results relate to the number of stations involved in the hypocentral location process, how these stations are distributed spatially, and the uncertainties of focal data (errors in origin time, longitude, latitude, and depth). To assess the extent to which principal seismogenic areas are well monitored by the network, we estimated the average error in the location of a seismic source from the semiaxes of the ellipsoid of confidence by calculating the radius of the equivalent sphere. Finally, the detection threshold was determined as the magnitude of the smallest seismic event detected at least by four stations. The northwest of the peninsula, the Pyrenees, especially the westernmost segment

  14. Neutron threshold activation detectors (TAD) for the detection of fissions

    NASA Astrophysics Data System (ADS)

    Gozani, Tsahi; Stevenson, John; King, Michael J.

    2011-10-01

    , called Threshold Activation Detection (TAD), is to utilize appropriate substances that can be selectively activated by the fission neutrons and not by the source radiation and then measure the radioactively decaying activation products (typically beta and gamma rays) well after the source pulse. The activation material should possess certain properties: a suitable half-life of the order of seconds; an energy threshold below which the numerous source neutrons will not activate it (e.g., 3 MeV); easily detectable activation products (typically >1 MeV beta and gamma rays) and have a usable cross-section for the selected reaction. Ideally the substance would be a part of the scintillator. There are several good material candidates for the TAD, including fluorine, which is a major constituent of available scintillators such as BaF 2, CaF 2 and hydrogen free liquid fluorocarbon. Thus the fluorine activation products, in particular the beta particles, can be measured with a very high efficiency in the detector. The principles, applications and experimental results obtained with the fluorine based TAD are discussed.

  15. Behavioral and Molecular Genetics of Reading-Related AM and FM Detection Thresholds.

    PubMed

    Bruni, Matthew; Flax, Judy F; Buyske, Steven; Shindhelm, Amber D; Witton, Caroline; Brzustowicz, Linda M; Bartlett, Christopher W

    2017-03-01

    Auditory detection thresholds for certain frequencies of both amplitude modulated (AM) and frequency modulated (FM) dynamic auditory stimuli are associated with reading in typically developing and dyslexic readers. We present the first behavioral and molecular genetic characterization of these two auditory traits. Two extant extended family datasets were given reading tasks and psychoacoustic tasks to determine FM 2 Hz and AM 20 Hz sensitivity thresholds. Univariate heritabilities were significant for both AM (h 2  = 0.20) and FM (h 2  = 0.29). Bayesian posterior probability of linkage (PPL) analysis found loci for AM (12q, PPL = 81 %) and FM (10p, PPL = 32 %; 20q, PPL = 65 %). Bivariate heritability analyses revealed that FM is genetically correlated with reading, while AM was not. Bivariate PPL analysis indicates that FM loci (10p, 20q) are not also associated with reading.

  16. Elevation of pain threshold by vaginal stimulation in women.

    PubMed

    Whipple, B; Komisaruk, B R

    1985-04-01

    In 2 studies with 10 women each, vaginal self-stimulation significantly increased the threshold to detect and tolerate painful finger compression, but did not significantly affect the threshold to detect innocuous tactile stimulation. The vaginal self-stimulation was applied with a specially designed pressure transducer assembly to produce a report of pressure or pleasure. In the first study, 6 of the women perceived the vaginal stimulation as producing pleasure. During that condition, the pain tolerance threshold increased significantly by 36.8% and the pain detection threshold increased significantly by 53%. A second study utilized other types of stimuli. Vaginal self-stimulation perceived as pressure significantly increased the pain tolerance threshold by 40.3% and the pain detection threshold by 47.4%. In the second study, when the vaginal stimulation was self-applied in a manner that produced orgasm, the pain tolerance threshold and pain detection threshold increased significantly by 74.6% and 106.7% respectively, while the tactile threshold remained unaffected. A variety of control conditions, including various types of distraction, did not significantly elevate pain or tactile thresholds. We conclude that in women, vaginal self-stimulation decreases pain sensitivity, but does not affect tactile sensitivity. This effect is apparently not due to painful or non-painful distraction.

  17. DEATH LINE OF GAMMA-RAY PULSARS WITH OUTER GAPS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Ren-Bo; Hirotani, Kouichi, E-mail: rbwang1225@gmail.com, E-mail: hirotani@tiara.sinica.edu.tw

    2011-08-01

    We analytically investigate the condition for a particle accelerator to be active in the outer magnetosphere of a rotation-powered pulsar. Within the accelerator (or the gap), the magnetic-field-aligned electric field accelerates electrons and positrons, which emit copious gamma-rays via the curvature process. If one of the gamma-rays emitted by a single pair materializes as a new pair on average, the gap is self-sustained. However, if the neutron-star spin-down rate decreases below a certain limit, the gap becomes no longer self-sustained and the gamma-ray emission ceases. We explicitly compute the multiplicity of cascading pairs and find that the obtained limit correspondsmore » to a modification of the previously derived outer-gap death line. In addition to this traditional death line, we find another death line, which becomes important for millisecond pulsars, by separately considering the threshold of photon-photon pair production. Combining these traditional and new death lines, we give predictions on the detectability of gamma-ray pulsars with Fermi and AGILE. An implication for X-ray observations of heated polar-cap emission is also discussed.« less

  18. Effect of temporal and spectral noise features on gap detection behavior by calling green treefrogs.

    PubMed

    Höbel, Gerlinde

    2014-10-01

    Communication plays a central role in the behavioral ecology of many animals, yet the background noise generated by large breeding aggregations may impair effective communication. A common behavioral strategy to ameliorate noise interference is gap detection, where signalers display primarily during lulls in the background noise. When attempting gap detection, signalers have to deal with the fact that the spacing and duration of silent gaps is often unpredictable, and that noise varies in its spectral composition and may thus vary in the degree in which it impacts communication. I conducted playback experiments to examine how male treefrogs deal with the problem that refraining from calling while waiting for a gap to appear limits a male's ability to attract females, yet producing calls during noise also interferes with effective sexual communication. I found that the temporal structure of noise (i.e., duration of noise and silent gap segments) had a stronger effect on male calling behavior than the spectral composition. Males placed calls predominantly during silent gaps and avoided call production during short, but not long, noise segments. This suggests that male treefrogs use a calling strategy that maximizes the production of calls without interference, yet allows for calling to persist if lulls in the background noise are infrequent. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. A Fiber Bragg Grating Interrogation System with Self-Adaption Threshold Peak Detection Algorithm.

    PubMed

    Zhang, Weifang; Li, Yingwu; Jin, Bo; Ren, Feifei; Wang, Hongxun; Dai, Wei

    2018-04-08

    A Fiber Bragg Grating (FBG) interrogation system with a self-adaption threshold peak detection algorithm is proposed and experimentally demonstrated in this study. This system is composed of a field programmable gate array (FPGA) and advanced RISC machine (ARM) platform, tunable Fabry-Perot (F-P) filter and optical switch. To improve system resolution, the F-P filter was employed. As this filter is non-linear, this causes the shifting of central wavelengths with the deviation compensated by the parts of the circuit. Time-division multiplexing (TDM) of FBG sensors is achieved by an optical switch, with the system able to realize the combination of 256 FBG sensors. The wavelength scanning speed of 800 Hz can be achieved by a FPGA+ARM platform. In addition, a peak detection algorithm based on a self-adaption threshold is designed and the peak recognition rate is 100%. Experiments with different temperatures were conducted to demonstrate the effectiveness of the system. Four FBG sensors were examined in the thermal chamber without stress. When the temperature changed from 0 °C to 100 °C, the degree of linearity between central wavelengths and temperature was about 0.999 with the temperature sensitivity being 10 pm/°C. The static interrogation precision was able to reach 0.5 pm. Through the comparison of different peak detection algorithms and interrogation approaches, the system was verified to have an optimum comprehensive performance in terms of precision, capacity and speed.

  20. A Fiber Bragg Grating Interrogation System with Self-Adaption Threshold Peak Detection Algorithm

    PubMed Central

    Zhang, Weifang; Li, Yingwu; Jin, Bo; Ren, Feifei

    2018-01-01

    A Fiber Bragg Grating (FBG) interrogation system with a self-adaption threshold peak detection algorithm is proposed and experimentally demonstrated in this study. This system is composed of a field programmable gate array (FPGA) and advanced RISC machine (ARM) platform, tunable Fabry–Perot (F–P) filter and optical switch. To improve system resolution, the F–P filter was employed. As this filter is non-linear, this causes the shifting of central wavelengths with the deviation compensated by the parts of the circuit. Time-division multiplexing (TDM) of FBG sensors is achieved by an optical switch, with the system able to realize the combination of 256 FBG sensors. The wavelength scanning speed of 800 Hz can be achieved by a FPGA+ARM platform. In addition, a peak detection algorithm based on a self-adaption threshold is designed and the peak recognition rate is 100%. Experiments with different temperatures were conducted to demonstrate the effectiveness of the system. Four FBG sensors were examined in the thermal chamber without stress. When the temperature changed from 0 °C to 100 °C, the degree of linearity between central wavelengths and temperature was about 0.999 with the temperature sensitivity being 10 pm/°C. The static interrogation precision was able to reach 0.5 pm. Through the comparison of different peak detection algorithms and interrogation approaches, the system was verified to have an optimum comprehensive performance in terms of precision, capacity and speed. PMID:29642507

  1. Effects of self-generated noise on estimates of detection threshold in quiet for school-age children and adults

    PubMed Central

    Buss, Emily; Porter, Heather L.; Leibold, Lori J.; Grose, John H.; Hall, Joseph W.

    2016-01-01

    Objectives Detection thresholds in quiet become adult-like earlier in childhood for high than low frequencies. When adults listen for sounds near threshold, they tend to engage in behaviors that reduce physiologic noise (e.g., quiet breathing), which is predominantly low frequency. Children may not suppress self-generated noise to the same extent as adults, such that low-frequency self-generated noise elevates thresholds in the associated frequency regions. This possibility was evaluated by measuring noise levels in the ear canal simultaneous with adaptive threshold estimation. Design Listeners were normal-hearing children (4.3-16.0 yrs) and adults. Detection thresholds were measured adaptively for 250-, 1000- and 4000-Hz pure tones using a three-alternative forced-choice procedure. Recordings of noise in the ear canal were made while the listeners performed this task, with the earphone and microphone routed through a single foam insert. Levels of self-generated noise were computed in octave-wide bands. Age effects were evaluated for four groups: 4- to 6-year-olds, 7- to 10-year-olds, 11- to 16-year-olds, and adults. Results Consistent with previous data, the effect of child age on thresholds was robust at 250 Hz and fell off at higher frequencies; thresholds of even the youngest listeners were similar to adults’ at 4000 Hz. Self-generated noise had a similar low-pass spectral shape for all age groups, although the magnitude of self-generated noise was higher in younger listeners. If self-generated noise impairs detection, then noise levels should be higher for trials associated with the wrong answer than the right answer. This association was observed for all listener groups at the 250-Hz signal frequency. For adults and older children, this association was limited to the noise band centered on the 250-Hz signal. For the two younger groups of children, this association was strongest at the signal frequency, but extended to bands spectrally remote from the 250-Hz

  2. Update on the recommended viewing protocol for FAXIL threshold contrast detail detectability test objects used in television fluoroscopy.

    PubMed

    Launders, J H; McArdle, S; Workman, A; Cowen, A R

    1995-01-01

    The significance of varying the viewing conditions that may affect the perceived threshold contrast of X-ray television fluoroscopy systems has been investigated. Factors investigated include the ambient room lighting and the viewing distance. The purpose of this study is to find the optimum viewing protocol with which to measure the threshold detection index. This is a particular problem when trying to compare the image quality of television fluoroscopy systems in different input field sizes. The results show that the viewing distance makes a significant difference to the perceived threshold contrast, whereas the ambient light conditions make no significant difference. Experienced observers were found to be capable of finding the optimum viewing distance for detecting details of each size, in effect using a flexible viewing distance. This allows the results from different field sizes to be normalized to account for both the magnification and the entrance air kerma rate differences, which in turn allow for a direct comparison of performance in different field sizes.

  3. An examination of fire spread thresholds in discontinuous fuel beds

    Treesearch

    Mark A. Finney; Jack D. Cohen; Isaac C. Grenfell; Kara M. Yedinak

    2010-01-01

    Many fuel beds, especially live vegetation canopies (conifer forests, shrub fields, bunch-grasses) contain gaps between vegetation clumps. Fires burning in these fuel types often display thresholds for spread that are observed to depend on environmental factors like wind, slope, and fuel moisture content. To investigate threshold spread behaviours, we conducted a set...

  4. Multifrequency Gap Solitons in Nonlinear Photonic Crystals

    NASA Astrophysics Data System (ADS)

    Xie, Ping; Zhang, Zhao-Qing

    2003-11-01

    We predict the existence of multifrequency gap solitons (MFGSs) in both one- and two-dimensional nonlinear photonic crystals. A MFGS is a single intrinsic mode possessing multiple frequencies inside the gap. Its existence is a result of synergic nonlinear coupling among solitons or soliton trains at different frequencies. Its formation can either lower the threshold fields of the respective frequency components or stabilize their excitations. These MFGSs form a new class of stable gap solitons.

  5. An integrative perspective of the anaerobic threshold.

    PubMed

    Sales, Marcelo Magalhães; Sousa, Caio Victor; da Silva Aguiar, Samuel; Knechtle, Beat; Nikolaidis, Pantelis Theodoros; Alves, Polissandro Mortoza; Simões, Herbert Gustavo

    2017-12-14

    The concept of anaerobic threshold (AT) was introduced during the nineteen sixties. Since then, several methods to identify the anaerobic threshold (AT) have been studied and suggested as novel 'thresholds' based upon the variable used for its detection (i.e. lactate threshold, ventilatory threshold, glucose threshold). These different techniques have brought some confusion about how we should name this parameter, for instance, anaerobic threshold or the physiological measure used (i.e. lactate, ventilation). On the other hand, the modernization of scientific methods and apparatus to detect AT, as well as the body of literature formed in the past decades, could provide a more cohesive understanding over the AT and the multiple physiological systems involved. Thus, the purpose of this review was to provide an integrative perspective of the methods to determine AT. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. A probabilistic Poisson-based model accounts for an extensive set of absolute auditory threshold measurements.

    PubMed

    Heil, Peter; Matysiak, Artur; Neubauer, Heinrich

    2017-09-01

    Thresholds for detecting sounds in quiet decrease with increasing sound duration in every species studied. The neural mechanisms underlying this trade-off, often referred to as temporal integration, are not fully understood. Here, we probe the human auditory system with a large set of tone stimuli differing in duration, shape of the temporal amplitude envelope, duration of silent gaps between bursts, and frequency. Duration was varied by varying the plateau duration of plateau-burst (PB) stimuli, the duration of the onsets and offsets of onset-offset (OO) stimuli, and the number of identical bursts of multiple-burst (MB) stimuli. Absolute thresholds for a large number of ears (>230) were measured using a 3-interval-3-alternative forced choice (3I-3AFC) procedure. Thresholds decreased with increasing sound duration in a manner that depended on the temporal envelope. Most commonly, thresholds for MB stimuli were highest followed by thresholds for OO and PB stimuli of corresponding durations. Differences in the thresholds for MB and OO stimuli and in the thresholds for MB and PB stimuli, however, varied widely across ears, were negative in some ears, and were tightly correlated. We show that the variation and correlation of MB-OO and MB-PB threshold differences are linked to threshold microstructure, which affects the relative detectability of the sidebands of the MB stimuli and affects estimates of the bandwidth of auditory filters. We also found that thresholds for MB stimuli increased with increasing duration of the silent gaps between bursts. We propose a new model and show that it accurately accounts for our results and does so considerably better than a leaky-integrator-of-intensity model and a probabilistic model proposed by others. Our model is based on the assumption that sensory events are generated by a Poisson point process with a low rate in the absence of stimulation and higher, time-varying rates in the presence of stimulation. A subject in a 3I-3AFC

  7. Aging and the 4 kHz Air-bone Gap

    PubMed Central

    Nondahl, David M.; Tweed, Ted S.; Cruickshanks, Karen J.; Wiley, Terry L.; Dalton, Dayna S.

    2011-01-01

    Purpose To assess age- and gender-related patterns in the prevalence and 10-year incidence of 4 kHz air-bone gaps, and associated factors. Method Data were obtained as part of the longitudinal, population-based Epidemiology of Hearing Loss Study. An air-bone gap at 4 kHz was defined as an air-conduction threshold ≥15 dB higher than the bone-conduction threshold in the right ear. Results Among 3,553 participants aged 48 to 92 years at baseline (1993-1995), 3.4% had a 4 kHz air-bone gap in the right ear. The prevalence increased with age. Among the 120 participants with an air-bone gap, 60.0% did not have a flat tympanogram or an air-bone gap at .5 kHz. Ten years later we assessed 2093 participants who did not have a 4 kHz air-bone gap at baseline; 9.2% had developed a 4 kHz air-bone gap in the right ear. The incidence increased with age. Among the 192 participants who had developed an air-bone gap, 60.9% did not have a flat tympanogram or air-bone gaps at other frequencies. Conclusions These results suggest that a finding of a 4 kHz air-bone gap may reflect a combination of aging and other factors and not necessarily exclusively abnormal middle ear function. PMID:22232408

  8. Spatial scale and sampling resolution affect measures of gap disturbance in a lowland tropical forest: implications for understanding forest regeneration and carbon storage

    PubMed Central

    Lobo, Elena; Dalling, James W.

    2014-01-01

    Treefall gaps play an important role in tropical forest dynamics and in determining above-ground biomass (AGB). However, our understanding of gap disturbance regimes is largely based either on surveys of forest plots that are small relative to spatial variation in gap disturbance, or on satellite imagery, which cannot accurately detect small gaps. We used high-resolution light detection and ranging data from a 1500 ha forest in Panama to: (i) determine how gap disturbance parameters are influenced by study area size, and the criteria used to define gaps; and (ii) to evaluate how accurately previous ground-based canopy height sampling can determine the size and location of gaps. We found that plot-scale disturbance parameters frequently differed significantly from those measured at the landscape-level, and that canopy height thresholds used to define gaps strongly influenced the gap-size distribution, an important metric influencing AGB. Furthermore, simulated ground surveys of canopy height frequently misrepresented the true location of gaps, which may affect conclusions about how relatively small canopy gaps affect successional processes and contribute to the maintenance of diversity. Across site comparisons need to consider how gap definition, scale and spatial resolution affect characterizations of gap disturbance, and its inferred importance for carbon storage and community composition. PMID:24452032

  9. Spatial scale and sampling resolution affect measures of gap disturbance in a lowland tropical forest: implications for understanding forest regeneration and carbon storage.

    PubMed

    Lobo, Elena; Dalling, James W

    2014-03-07

    Treefall gaps play an important role in tropical forest dynamics and in determining above-ground biomass (AGB). However, our understanding of gap disturbance regimes is largely based either on surveys of forest plots that are small relative to spatial variation in gap disturbance, or on satellite imagery, which cannot accurately detect small gaps. We used high-resolution light detection and ranging data from a 1500 ha forest in Panama to: (i) determine how gap disturbance parameters are influenced by study area size, and the criteria used to define gaps; and (ii) to evaluate how accurately previous ground-based canopy height sampling can determine the size and location of gaps. We found that plot-scale disturbance parameters frequently differed significantly from those measured at the landscape-level, and that canopy height thresholds used to define gaps strongly influenced the gap-size distribution, an important metric influencing AGB. Furthermore, simulated ground surveys of canopy height frequently misrepresented the true location of gaps, which may affect conclusions about how relatively small canopy gaps affect successional processes and contribute to the maintenance of diversity. Across site comparisons need to consider how gap definition, scale and spatial resolution affect characterizations of gap disturbance, and its inferred importance for carbon storage and community composition.

  10. Gap Test Calibrations And Their Scalin

    NASA Astrophysics Data System (ADS)

    Sandusky, Harold

    2012-03-01

    Common tests for measuring the threshold for shock initiation are the NOL large scale gap test (LSGT) with a 50.8-mm diameter donor/gap and the expanded large scale gap test (ELSGT) with a 95.3-mm diameter donor/gap. Despite the same specifications for the explosive donor and polymethyl methacrylate (PMMA) gap in both tests, calibration of shock pressure in the gap versus distance from the donor scales by a factor of 1.75, not the 1.875 difference in their sizes. Recently reported model calculations suggest that the scaling discrepancy results from the viscoelastic properties of PMMA in combination with different methods for obtaining shock pressure. This is supported by the consistent scaling of these donors when calibrated in water-filled aquariums. Calibrations and their scaling are compared for other donors with PMMA gaps and for various donors in water.

  11. In vivo transcranial cavitation threshold detection during ultrasound-induced blood-brain barrier opening in mice.

    PubMed

    Tung, Yao-Sheng; Vlachos, Fotios; Choi, James J; Deffieux, Thomas; Selert, Kirsten; Konofagou, Elisa E

    2010-10-21

    The in vivo cavitation response associated with blood-brain barrier (BBB) opening as induced by transcranial focused ultrasound (FUS) in conjunction with microbubbles was studied in order to better identify the underlying mechanism in its noninvasive application. A cylindrically focused hydrophone, confocal with the FUS transducer, was used as a passive cavitation detector (PCD) to identify the threshold of inertial cavitation (IC) in the presence of Definity® microbubbles (mean diameter range: 1.1-3.3 µm, Lantheus Medical Imaging, MA, USA). A vessel phantom was first used to determine the reliability of the PCD prior to in vivo use. A cerebral blood vessel was simulated by generating a cylindrical channel of 610 µm in diameter inside a polyacrylamide gel and by saturating its volume with microbubbles. The microbubbles were sonicated through an excised mouse skull. Second, the same PCD setup was employed for in vivo noninvasive (i.e. transdermal and transcranial) cavitation detection during BBB opening. After the intravenous administration of Definity® microbubbles, pulsed FUS was applied (frequency: 1.525 or 1.5 MHz, peak-rarefactional pressure: 0.15-0.60 MPa, duty cycle: 20%, PRF: 10 Hz, duration: 1 min with a 30 s interval) to the right hippocampus of twenty-six (n = 26) mice in vivo through intact scalp and skull. T1 and T2-weighted MR images were used to verify the BBB opening. A spectrogram was generated at each pressure in order to detect the IC onset and duration. The threshold of BBB opening was found to be at a 0.30 MPa peak-rarefactional pressure in vivo. Both the phantom and in vivo studies indicated that the IC pressure threshold had a peak-rarefactional amplitude of 0.45 MPa. This indicated that BBB opening may not require IC at or near the threshold. Histological analysis showed that BBB opening could be induced without any cellular damage at 0.30 and 0.45 MPa. In conclusion, the cavitation response could be detected without craniotomy in mice

  12. Gap Test Calibrations and Their Scaling

    NASA Astrophysics Data System (ADS)

    Sandusky, Harold

    2011-06-01

    Common tests for measuring the threshold for shock initiation are the NOL large scale gap test (LSGT) with a 50.8-mm diameter donor/gap and the expanded large scale gap test (ELSGT) with a 95.3-mm diameter donor/gap. Despite the same specifications for the explosive donor and polymethyl methacrylate (PMMA) gap in both tests, calibration of shock pressure in the gap versus distance from the donor scales by a factor of 1.75, not the 1.875 difference in their sizes. Recently reported model calculations suggest that the scaling discrepancy results from the viscoelastic properties of PMMA in combination with different methods for obtaining shock pressure. This is supported by the consistent scaling of these donors when calibrated in water-filled aquariums. Calibrations with water gaps will be provided and compared with PMMA gaps. Scaling for other donor systems will also be provided. Shock initiation data with water gaps will be reviewed.

  13. Simulations of the modified gap experiment

    NASA Astrophysics Data System (ADS)

    Sutherland, Gerrit T.; Benjamin, Richard; Kooker, Douglas

    2017-01-01

    Modified gap experiment (test) hydrocode simulations predict the trends seen in experimental excess free surface velocity versus input pressure curves for explosives with both large and modest failure diameters. Simulations were conducted for explosive "A", an explosive with a large failure diameter, and for cast TNT, which has a modest failure diameter. Using the best available reactive rate models, the simulations predicted sustained ignition thresholds similar to experiment. This is a threshold where detonation is likely given a long enough run distance. For input pressures greater than the sustained ignition threshold pressure, the simulations predicted too little velocity for explosive "A" and too much velocity for TNT. It was found that a better comparison of experiment and simulation requires additional experimental data for both explosives. It was observed that the choice of reactive rate model for cast TNT can lead to large differences in the predicted modified gap experiment result. The cause of the difference is that the same data was not used to parameterize both models; one set of data was more shock reactive than the other.

  14. 30 CFR 62.174 - Follow-up corrective measures when a standard threshold shift is detected.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Follow-up corrective measures when a standard threshold shift is detected. 62.174 Section 62.174 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR UNIFORM MINE HEALTH REGULATIONS OCCUPATIONAL NOISE EXPOSURE § 62.174 Follow-up corrective measures when a standard...

  15. 30 CFR 62.174 - Follow-up corrective measures when a standard threshold shift is detected.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Follow-up corrective measures when a standard threshold shift is detected. 62.174 Section 62.174 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR UNIFORM MINE HEALTH REGULATIONS OCCUPATIONAL NOISE EXPOSURE § 62.174 Follow-up corrective measures when a standard...

  16. 30 CFR 62.174 - Follow-up corrective measures when a standard threshold shift is detected.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Follow-up corrective measures when a standard threshold shift is detected. 62.174 Section 62.174 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR UNIFORM MINE HEALTH REGULATIONS OCCUPATIONAL NOISE EXPOSURE § 62.174 Follow-up corrective measures when a standard...

  17. 30 CFR 62.174 - Follow-up corrective measures when a standard threshold shift is detected.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Follow-up corrective measures when a standard threshold shift is detected. 62.174 Section 62.174 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR UNIFORM MINE HEALTH REGULATIONS OCCUPATIONAL NOISE EXPOSURE § 62.174 Follow-up corrective measures when a standard...

  18. Signal Detection Theory Applied to Helicopter Transmission Diagnostic Thresholds

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.; Keller, Jonathan A.; Wade, Daniel R.

    2008-01-01

    Helicopter Health Usage Monitoring Systems (HUMS) have potential for providing data to support increasing the service life of a dynamic mechanical component in the transmission of a helicopter. Data collected can demonstrate the HUMS condition indicator responds to a specific component fault with appropriate alert limits and minimal false alarms. Defining thresholds for specific faults requires a tradeoff between the sensitivity of the condition indicator (CI) limit to indicate damage and the number of false alarms. A method using Receiver Operating Characteristic (ROC) curves to assess CI performance was demonstrated using CI data collected from accelerometers installed on several UH60 Black Hawk and AH64 Apache helicopters and an AH64 helicopter component test stand. Results of the analysis indicate ROC curves can be used to reliably assess the performance of commercial HUMS condition indicators to detect damaged gears and bearings in a helicopter transmission.

  19. Signal Detection Theory Applied to Helicopter Transmission Diagnostic Thresholds

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.; Keller, Jonathan A.; Wade, Daniel R.

    2009-01-01

    Helicopter Health Usage Monitoring Systems (HUMS) have potential for providing data to support increasing the service life of a dynamic mechanical component in the transmission of a helicopter. Data collected can demonstrate the HUMS condition indicator responds to a specific component fault with appropriate alert limits and minimal false alarms. Defining thresholds for specific faults requires a tradeoff between the sensitivity of the condition indicator (CI) limit to indicate damage and the number of false alarms. A method using Receiver Operating Characteristic (ROC) curves to assess CI performance was demonstrated using CI data collected from accelerometers installed on several UH60 Black Hawk and AH64 Apache helicopters and an AH64 helicopter component test stand. Results of the analysis indicate ROC curves can be used to reliably assess the performance of commercial HUMS condition indicators to detect damaged gears and bearings in a helicopter transmission.

  20. Spontaneous non-volcanic tremor detected in the Anza Seismic Gap of San Jacinto Fault

    NASA Astrophysics Data System (ADS)

    Hutchison, A. A.; Ghosh, A.

    2017-12-01

    Non-volcanic tremor (NVT), a type of slow earthquake, is becoming more frequently detected along plate boundaries, particularly in subduction zones, and is also observed along the San Andreas Fault [e.g. Nadeau & Dolenc, 2005]. NVT is typically associated with transient deformation (i.e. slow slip) in the transition zone [e.g. Ide et al., 2007], and at times it is observed with deep creep along faults [e.g. Beroza & Ide, 2011]. Using several independent location and detection methods including multi-beam backprojection [Ghosh et al., 2009a; 2012], envelope cross correlation [Wech & Creager, 2008], spectral analyses and visual inspection of existing network stations and high-density mini seismic array data, we detect multiple discrete spontaneous tremor events in the Anza Gap of the San Jacinto Fault (SJF) in June, 2011. The events occur on the SJF where the Hot Springs Fault terminates, on the northwestern boundary of the Anza Gap, below the inferred seismogenic zone characterized by velocity weakening frictional behavior [e.g. Lindsay et al., 2014]. The location methods provide consistent locations for each event in our catalog. Low slowness values help rule-out surface noise that may result in false detections. Analyses of frequency spectra show these time windows are depleted in high frequency energy in the displacement amplitude spectrum compared to small local regular (fast) earthquakes. This spectral pattern is characteristic of tremor [Shelly et al., 2007]. We interpret this tremor to be a seismic manifestation of slow-slip events below the seismogenic zone. Recently, an independent geodetic study suggests that the 2010 El Mayor-Cucupah earthquake triggered a slow-slip event in the Anza Gap [Inbal et al., 2017]. In addition, multiple studies infer deep creep in the SJF [e.g. Meng & Peng et al., 2016; Jiang & Fialko, 2016] indicating that this fault is capable of producing slow slip events. Transient tectonic behavior like tremor and slow slip may be playing

  1. Mouse epileptic seizure detection with multiple EEG features and simple thresholding technique

    NASA Astrophysics Data System (ADS)

    Tieng, Quang M.; Anbazhagan, Ashwin; Chen, Min; Reutens, David C.

    2017-12-01

    Objective. Epilepsy is a common neurological disorder characterized by recurrent, unprovoked seizures. The search for new treatments for seizures and epilepsy relies upon studies in animal models of epilepsy. To capture data on seizures, many applications require prolonged electroencephalography (EEG) with recordings that generate voluminous data. The desire for efficient evaluation of these recordings motivates the development of automated seizure detection algorithms. Approach. A new seizure detection method is proposed, based on multiple features and a simple thresholding technique. The features are derived from chaos theory, information theory and the power spectrum of EEG recordings and optimally exploit both linear and nonlinear characteristics of EEG data. Main result. The proposed method was tested with real EEG data from an experimental mouse model of epilepsy and distinguished seizures from other patterns with high sensitivity and specificity. Significance. The proposed approach introduces two new features: negative logarithm of adaptive correlation integral and power spectral coherence ratio. The combination of these new features with two previously described features, entropy and phase coherence, improved seizure detection accuracy significantly. Negative logarithm of adaptive correlation integral can also be used to compute the duration of automatically detected seizures.

  2. Gastroenteritis outbreaks on cruise ships: contributing factors and thresholds for early outbreak detection

    PubMed Central

    Mouchtouri, Varvara A; Verykouki, Eleni; Zamfir, Dumitru; Hadjipetris, Christos; Lewis, Hannah C; Hadjichristodoulou, Christos

    2017-01-01

    When an increased number of acute gastroenteritis (AG) cases is detected among tourists staying at the same accommodation, outbreak management plans must be activated in a timely manner to prevent large outbreaks. Syndromic surveillance data collected between 1 January 2010 and 31 December 2013 by five seagoing cruise ships were analysed to identify attack rate thresholds for early outbreak detection. The overall incidence rate of AG was 2.81 cases per 10,000 traveller-days (95% confidence interval (CI): 0.00–17.60), while the attack rate was 19.37 cases per 10,000 travellers (95% CI: 0.00–127.69). The probability of an outbreak occurring was 11% if 4 per 1,000 passengers reported symptoms within the first 2 days of the voyage, and this increased to 23 % if 5 per 1,000 passengers reported such within the first 3 days. The risk ratio (RR) for outbreak occurrence was 2.35, 5.66 and 8.63 for 1, 2 and 3 days’ delay of symptoms reporting respectively, suggesting a dose–response relationship. Shipping companies’ policies and health authorities’ efforts may consider these thresholds for initiating outbreak response measures based on the number of cases according to day of cruise. Efforts should focus on ensuring travellers report symptoms immediately and comply with isolation measures. PMID:29162205

  3. Gastroenteritis outbreaks on cruise ships: contributing factors and thresholds for early outbreak detection.

    PubMed

    Mouchtouri, Varvara A; Verykouki, Eleni; Zamfir, Dumitru; Hadjipetris, Christos; Lewis, Hannah C; Hadjichristodoulou, Christos

    2017-11-01

    When an increased number of acute gastroenteritis (AG) cases is detected among tourists staying at the same accommodation, outbreak management plans must be activated in a timely manner to prevent large outbreaks. Syndromic surveillance data collected between 1 January 2010 and 31 December 2013 by five seagoing cruise ships were analysed to identify attack rate thresholds for early outbreak detection. The overall incidence rate of AG was 2.81 cases per 10,000 traveller-days (95% confidence interval (CI): 0.00-17.60), while the attack rate was 19.37 cases per 10,000 travellers (95% CI: 0.00-127.69). The probability of an outbreak occurring was 11% if 4 per 1,000 passengers reported symptoms within the first 2 days of the voyage, and this increased to 23 % if 5 per 1,000 passengers reported such within the first 3 days. The risk ratio (RR) for outbreak occurrence was 2.35, 5.66 and 8.63 for 1, 2 and 3 days' delay of symptoms reporting respectively, suggesting a dose-response relationship. Shipping companies' policies and health authorities' efforts may consider these thresholds for initiating outbreak response measures based on the number of cases according to day of cruise. Efforts should focus on ensuring travellers report symptoms immediately and comply with isolation measures.

  4. Mass Detection in Mammographic Images Using Wavelet Processing and Adaptive Threshold Technique.

    PubMed

    Vikhe, P S; Thool, V R

    2016-04-01

    Detection of mass in mammogram for early diagnosis of breast cancer is a significant assignment in the reduction of the mortality rate. However, in some cases, screening of mass is difficult task for radiologist, due to variation in contrast, fuzzy edges and noisy mammograms. Masses and micro-calcifications are the distinctive signs for diagnosis of breast cancer. This paper presents, a method for mass enhancement using piecewise linear operator in combination with wavelet processing from mammographic images. The method includes, artifact suppression and pectoral muscle removal based on morphological operations. Finally, mass segmentation for detection using adaptive threshold technique is carried out to separate the mass from background. The proposed method has been tested on 130 (45 + 85) images with 90.9 and 91 % True Positive Fraction (TPF) at 2.35 and 2.1 average False Positive Per Image(FP/I) from two different databases, namely Mammographic Image Analysis Society (MIAS) and Digital Database for Screening Mammography (DDSM). The obtained results show that, the proposed technique gives improved diagnosis in the early breast cancer detection.

  5. An incremental double-layer capacitance of a planar nano gap and its application in cardiac-troponin T detection.

    PubMed

    Hsueh, Hsiao-Ting; Lin, Chih-Ting

    2016-05-15

    Surface potential is one of the most important properties at solid-liquid interfaces. It can be modulated by the voltage applied on the electrode or by the surface properties. Hence, surface potential is a good indicator for surface modifications, such as biomolecular bindings. In this work, we proposed a planar nano-gap structure for surface-potential difference monitoring. Based on the proposed architecture, the variance of surface-potential difference can be determined by electrical double layer capacitance (EDLC) between the nano-gap electrodes. Using cyclic voltammetry method, in this work, we demonstrated a relationship between surface potential and EDLC by chemically modifying surface properties. Finally, we also showed the proposed planar nano-gap device provides the capability for cardiac-troponin T (cTnT) measurements with co-existed 10 µg/ml BSA interference. The detection dynamic range is from 100 pg/ml to 1 µg/ml. Based on experimental results and extrapolation, the detection limit is less than 100 pg/ml in diluted PBS buffer (0.01X PBS). These results demonstrated the planar nano-gap architecture having potentials on biomolecular detection through monitoring of surface-potential variation. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Association between the Part D coverage gap and adverse health outcomes.

    PubMed

    Polinski, Jennifer M; Shrank, William H; Glynn, Robert J; Huskamp, Haiden A; Christopher Roebuck, M; Schneeweiss, Sebastian

    2012-08-01

    To determine whether Part D coverage gap entry is associated with risk of death or hospitalization for cardiovascular outcomes. Prospective cohort study. Beneficiaries entered the study upon reaching the coverage gap spending threshold and were observed until an outcome reaching the threshold for catastrophic coverage occurred or year's end. Nine thousand four hundred thirty-six exposed individuals (those who were responsible for drug costs in the gap) were compared with 9,436 unexposed individuals (those who received financial assistance) based on propensity score (PS) or high-dimensional propensity score (hdPS). Medicare Part D drug insurance. Three hundred three thousand nine hundred seventy-eight Medicare beneficiaries aged 65 and older in 2006 and 2007 with linked prescription and medical claims who enrolled in stand-alone Part D or retiree drug plans and reached the gap spending threshold. Rates of death and hospitalization for any of five cardiovascular outcomes, including acute coronary syndrome with revascularization (ACS), after reaching the coverage gap spending threshold were compared using Cox proportional hazards models. In PS-matched analyses, exposed beneficiaries had higher, albeit not significantly so, hazard of death (hazard ratio (HR) = 1.25, 95% confidence interval (CI) = 0.98-1.59) and ACS (HR = 1.16, 95% CI = 0.83-1.62) than unexposed beneficiaries. hdPS-matched analyses minimized residual confounding and confirmed results (death: HR = 0.99, 95% CI = 0.78-1.24; ACS: HR = 1.07, 95% CI = 0.81-1.41). Exposed beneficiaries were no more or less likely to experience other outcomes than were those who were unexposed. During the short-term coverage gap period, having no financial assistance to pay for drugs was not associated with greater risk of death or hospitalization for cardiovascular causes, although long-term health consequences remain unclear. © 2012, Copyright the Authors Journal compilation © 2012, The American Geriatrics Society.

  7. Defining indoor heat thresholds for health in the UK.

    PubMed

    Anderson, Mindy; Carmichael, Catriona; Murray, Virginia; Dengel, Andy; Swainson, Michael

    2013-05-01

    It has been recognised that as outdoor ambient temperatures increase past a particular threshold, so do mortality/morbidity rates. However, similar thresholds for indoor temperatures have not yet been identified. Due to a warming climate, the non-sustainability of air conditioning as a solution, and the desire for more energy-efficient airtight homes, thresholds for indoor temperature should be defined as a public health issue. The aim of this paper is to outline the need for indoor heat thresholds and to establish if they can be identified. Our objectives include: describing how indoor temperature is measured; highlighting threshold measurements and indices; describing adaptation to heat; summary of the risk of susceptible groups to heat; reviewing the current evidence on the link between sleep, heat and health; exploring current heat and health warning systems and thresholds; exploring the built environment and the risk of overheating; and identifying the gaps in current knowledge and research. A global literature search of key databases was conducted using a pre-defined set of keywords to retrieve peer-reviewed and grey literature. The paper will apply the findings to the context of the UK. A summary of 96 articles, reports, government documents and textbooks were analysed and a gap analysis was conducted. Evidence on the effects of indoor heat on health implies that buildings are modifiers of the effect of climate on health outcomes. Personal exposure and place-based heat studies showed the most significant correlations between indoor heat and health outcomes. However, the data are sparse and inconclusive in terms of identifying evidence-based definitions for thresholds. Further research needs to be conducted in order to provide an evidence base for threshold determination. Indoor and outdoor heat are related but are different in terms of language and measurement. Future collaboration between the health and building sectors is needed to develop a common

  8. Congenital Hypothyroidism with Neurological and Respiratory Alterations: A Case Detected Using a Variable Diagnostic Threshold for TSH

    PubMed Central

    Barreiro, Jesús; Castro-Feijoo, Lidia; Colón, Cristóbal; Cabanas, Paloma; Heredia, Claudia; Castaño, Luis Antonio; Gómez-Lado, Carmen; Couce, M.Luz; Pombo, Manuel

    2011-01-01

    We report a case of congenital hypothyroidism (CH) with neurological and respiratory alterations due to a heterozygotic c.374-1G > A mutation of TITF1/NKX2-1. The hypothyroidism was detected using a neonatal screening protocol in which the thyroid stimulating hormone (TSH) threshold is re-set each day on the basis of within-day variability and between-day variation. In this case, the threshold on the day of the initial analysis was 8.2 mIU/L, and the measured TSH level in heel-prick blood was 8.3 mIU/L. Conflict of interest:None declared. PMID:22155464

  9. The locking and unlocking thresholds for tearing modes in a cylindrical tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Wenlong; Zhu, Ping, E-mail: pzhu@ustc.edu.cn; Department of Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706

    2016-03-15

    The locking and unlocking thresholds for tearing modes are in general different. In this work, the physics origin for this difference is illustrated from theory analysis, and a numerical procedure is developed to find both locking and unlocking thresholds. In particular, a new scaling law for the unlocking threshold that is valid in both weak and strong rotation regimes has been derived from the lowest amplitude of the RMP (resonant magnetic perturbation) allowed for the locked-mode solution. Above the unlocking threshold, the criterion for the phase-flip instability is extended to identify the entire locked-mode states. Two different regimes of themore » RMP amplitude in terms of the accessibility of the locked-mode states have been found. In the first regime, the locked-mode state may or may not be accessible depending on the initial conditions of an evolving island. In the second regime, the locked-mode state can always be reached regardless of the initial conditions of the tearing mode. The lowest RMP amplitude for the second regime is determined to be the mode-locking threshold. The different characteristics of the two regimes above the unlocking threshold reveal the underlying physics for the gap between the locking and unlocking thresholds and provide an explanation for the closely related and widely observed hysteresis phenomena in island evolution during the sweeping process of the RMP amplitude up and down across that threshold gap.« less

  10. Variable-Threshold Threshold Elements,

    DTIC Science & Technology

    A threshold element is a mathematical model of certain types of logic gates and of a biological neuron. Much work has been done on the subject of... threshold elements with fixed thresholds; this study concerns itself with elements in which the threshold may be varied, variable- threshold threshold ...elements. Physical realizations include resistor-transistor elements, in which the threshold is simply a voltage. Variation of the threshold causes the

  11. Two-Electron Correlations in e+H-->e+e+p Near Threshold

    NASA Astrophysics Data System (ADS)

    Kato, Daiji; Watanabe, Shinichi

    1995-03-01

    We present an ab initio calculation of the ionization cross section of atomic hydrogen near threshold with precision that compares excellently with the Shah-Elliot-Gilbody experiment [J. Phys. B 20, 3501 (1987)]. This fills the gap between theory and experiment down to 0.1 a.u. above threshold, complementing the recent spectacular work of Bray and Stelbovics [Phys. Rev. Lett. 70, 746 (1993)]. The angular momentum distributions of the secondary electron display an evolution in correlation patterns toward the threshold.

  12. Adaptive thresholding and dynamic windowing method for automatic centroid detection of digital Shack-Hartmann wavefront sensor.

    PubMed

    Yin, Xiaoming; Li, Xiang; Zhao, Liping; Fang, Zhongping

    2009-11-10

    A Shack-Hartmann wavefront sensor (SWHS) splits the incident wavefront into many subsections and transfers the distorted wavefront detection into the centroid measurement. The accuracy of the centroid measurement determines the accuracy of the SWHS. Many methods have been presented to improve the accuracy of the wavefront centroid measurement. However, most of these methods are discussed from the point of view of optics, based on the assumption that the spot intensity of the SHWS has a Gaussian distribution, which is not applicable to the digital SHWS. In this paper, we present a centroid measurement algorithm based on the adaptive thresholding and dynamic windowing method by utilizing image processing techniques for practical application of the digital SHWS in surface profile measurement. The method can detect the centroid of each focal spot precisely and robustly by eliminating the influence of various noises, such as diffraction of the digital SHWS, unevenness and instability of the light source, as well as deviation between the centroid of the focal spot and the center of the detection area. The experimental results demonstrate that the algorithm has better precision, repeatability, and stability compared with other commonly used centroid methods, such as the statistical averaging, thresholding, and windowing algorithms.

  13. New developments in supra-threshold perimetry.

    PubMed

    Henson, David B; Artes, Paul H

    2002-09-01

    To describe a series of recent enhancements to supra-threshold perimetry. Computer simulations were used to develop an improved algorithm (HEART) for the setting of the supra-threshold test intensity at the beginning of a field test, and to evaluate the relationship between various pass/fail criteria and the test's performance (sensitivity and specificity) and how they compare with modern threshold perimetry. Data were collected in optometric practices to evaluate HEART and to assess how the patient's response times can be analysed to detect false positive response errors in visual field test results. The HEART algorithm shows improved performance (reduced between-eye differences) over current algorithms. A pass/fail criterion of '3 stimuli seen of 3-5 presentations' at each test location reduces test/retest variability and combines high sensitivity and specificity. A large percentage of false positive responses can be detected by comparing their latencies to the average response time of a patient. Optimised supra-threshold visual field tests can perform as well as modern threshold techniques. Such tests may be easier to perform for novice patients, compared with the more demanding threshold tests.

  14. The Nature of Psychological Thresholds

    ERIC Educational Resources Information Center

    Rouder, Jeffrey N.; Morey, Richard D.

    2009-01-01

    Following G. T. Fechner (1966), thresholds have been conceptualized as the amount of intensity needed to transition between mental states, such as between a states of unconsciousness and consciousness. With the advent of the theory of signal detection, however, discrete-state theory and the corresponding notion of threshold have been discounted.…

  15. The dynamics of learning about a climate threshold

    NASA Astrophysics Data System (ADS)

    Keller, Klaus; McInerney, David

    2008-02-01

    Anthropogenic greenhouse gas emissions may trigger threshold responses of the climate system. One relevant example of such a potential threshold response is a shutdown of the North Atlantic meridional overturning circulation (MOC). Numerous studies have analyzed the problem of early MOC change detection (i.e., detection before the forcing has committed the system to a threshold response). Here we analyze the early MOC prediction problem. To this end, we virtually deploy an MOC observation system into a simple model that mimics potential future MOC responses and analyze the timing of confident detection and prediction. Our analysis suggests that a confident prediction of a potential threshold response can require century time scales, considerably longer that the time required for confident detection. The signal enabling early prediction of an approaching MOC threshold in our model study is associated with the rate at which the MOC intensity decreases for a given forcing. A faster MOC weakening implies a higher MOC sensitivity to forcing. An MOC sensitivity exceeding a critical level results in a threshold response. Determining whether an observed MOC trend in our model differs in a statistically significant way from an unforced scenario (the detection problem) imposes lower requirements on an observation system than the determination whether the MOC will shut down in the future (the prediction problem). As a result, the virtual observation systems designed in our model for early detection of MOC changes might well fail at the task of early and confident prediction. Transferring this conclusion to the real world requires a considerably refined MOC model, as well as a more complete consideration of relevant observational constraints.

  16. A comparison of signal detection theory to the objective threshold/strategic model of unconscious perception.

    PubMed

    Haase, Steven J; Fisk, Gary D

    2011-08-01

    A key problem in unconscious perception research is ruling out the possibility that weak conscious awareness of stimuli might explain the results. In the present study, signal detection theory was compared with the objective threshold/strategic model as explanations of results for detection and identification sensitivity in a commonly used unconscious perception task. In the task, 64 undergraduate participants detected and identified one of four briefly displayed, visually masked letters. Identification was significantly above baseline (i.e., proportion correct > .25) at the highest detection confidence rating. This result is most consistent with signal detection theory's continuum of sensory states and serves as a possible index of conscious perception. However, there was limited support for the other model in the form of a predicted "looker's inhibition" effect, which produced identification performance that was significantly below baseline. One additional result, an interaction between the target stimulus and type of mask, raised concerns for the generality of unconscious perception effects.

  17. Quantitative prediction of perceptual decisions during near-threshold fear detection

    NASA Astrophysics Data System (ADS)

    Pessoa, Luiz; Padmala, Srikanth

    2005-04-01

    A fundamental goal of cognitive neuroscience is to explain how mental decisions originate from basic neural mechanisms. The goal of the present study was to investigate the neural correlates of perceptual decisions in the context of emotional perception. To probe this question, we investigated how fluctuations in functional MRI (fMRI) signals were correlated with behavioral choice during a near-threshold fear detection task. fMRI signals predicted behavioral choice independently of stimulus properties and task accuracy in a network of brain regions linked to emotional processing: posterior cingulate cortex, medial prefrontal cortex, right inferior frontal gyrus, and left insula. We quantified the link between fMRI signals and behavioral choice in a whole-brain analysis by determining choice probabilities by means of signal-detection theory methods. Our results demonstrate that voxel-wise fMRI signals can reliably predict behavioral choice in a quantitative fashion (choice probabilities ranged from 0.63 to 0.78) at levels comparable to neuronal data. We suggest that the conscious decision that a fearful face has been seen is represented across a network of interconnected brain regions that prepare the organism to appropriately handle emotionally challenging stimuli and that regulate the associated emotional response. decision making | emotion | functional MRI

  18. Delimiting Species-Poor Data Sets using Single Molecular Markers: A Study of Barcode Gaps, Haplowebs and GMYC.

    PubMed

    Dellicour, Simon; Flot, Jean-François

    2015-11-01

    Most single-locus molecular approaches to species delimitation available to date have been designed and tested on data sets comprising at least tens of species, whereas the opposite case (species-poor data sets for which the hypothesis that all individuals are conspecific cannot by rejected beforehand) has rarely been the focus of such attempts. Here we compare the performance of barcode gap detection, haplowebs and generalized mixed Yule-coalescent (GMYC) models to delineate chimpanzees and bonobos using nuclear sequence markers, then apply these single-locus species delimitation methods to data sets of one, three, or six species simulated under a wide range of population sizes, speciation rates, mutation rates and sampling efforts. Our results show that barcode gap detection and GMYC models are unable to delineate species properly in data sets composed of one or two species, two situations in which haplowebs outperform them. For data sets composed of three or six species, bGMYC and haplowebs outperform the single-threshold and multiple-threshold versions of GMYC, whereas a clear barcode gap is only observed when population sizes and speciation rates are both small. The latter conditions represent a "sweet spot" for molecular taxonomy where all the single-locus approaches tested work well; however, the performance of these methods decreases strongly when population sizes and speciation rates are high, suggesting that multilocus approaches may be necessary to tackle such cases. © The Author(s) 2015. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Optimal Threshold for a Positive Hybrid Capture 2 Test for Detection of Human Papillomavirus: Data from the ARTISTIC Trial▿

    PubMed Central

    Sargent, A.; Bailey, A.; Turner, A.; Almonte, M.; Gilham, C.; Baysson, H.; Peto, J.; Roberts, C.; Thomson, C.; Desai, M.; Mather, J.; Kitchener, H.

    2010-01-01

    We present data on the use of the Hybrid Capture 2 (HC2) test for the detection of high-risk human papillomavirus (HR HPV) with different thresholds for positivity within a primary screening setting and as a method of triage for low-grade cytology. In the ARTISTIC population-based trial, 18,386 women were screened by cytology and for HPV. Cervical intraepithelial neoplasia lesions of grade two and higher (CIN2+ lesions) were identified for 453 women within 30 months of an abnormal baseline sample. When a relative light unit/cutoff (RLU/Co) ratio of ≥1 was used as the threshold for considering an HC2 result positive, 15.6% of results were positive, and the proportion of CIN2+ lesions in this group was 14.7%. The relative sensitivity for CIN2+ lesion detection was 93.4%. When an RLU/Co ratio of ≥2 was used as the threshold, there was a 2.5% reduction in positivity, with an increase in the proportion of CIN2+ lesions detected. The relative sensitivity decreased slightly, to 90.3%. Among women with low-grade cytology, HPV prevalences were 43.7% and 40.3% at RLU/Co ratios of ≥1 and ≥2, respectively. The proportions of CIN2+ lesions detected were 17.3% and 18.0%, with relative sensitivities of 87.7% at an RLU/Co ratio of ≥1 and 84.2% at an RLU/Co ratio of ≥2. At an RLU/Co ratio of ≥1, 68.3% of HC2-positive results were confirmed by the Roche line blot assay, compared to 77.2% of those at an RLU/Co ratio of ≥2. Fewer HC2-positive results were confirmed for 35- to 64-year-olds (50.3% at an RLU/Co ratio of ≥1 and 63.2% at an RLU/Co ratio of >2) than for 20- to 34-year-olds (78.7% at an RLU/Co ratio of ≥1 and 83.7% at an RLU/Co ratio of >2). If the HC2 test is used for routine screening as an initial test or as a method of triage for low-grade cytology, we would suggest increasing the threshold for positivity from the RLU/Co ratio of ≥1, recommended by the manufacturer, to an RLU/Co ratio of ≥2, since this study has shown that a beneficial balance

  20. Threshold-adaptive canny operator based on cross-zero points

    NASA Astrophysics Data System (ADS)

    Liu, Boqi; Zhang, Xiuhua; Hong, Hanyu

    2018-03-01

    Canny edge detection[1] is a technique to extract useful structural information from different vision objects and dramatically reduce the amount of data to be processed. It has been widely applied in various computer vision systems. There are two thresholds have to be settled before the edge is segregated from background. Usually, by the experience of developers, two static values are set as the thresholds[2]. In this paper, a novel automatic thresholding method is proposed. The relation between the thresholds and Cross-zero Points is analyzed, and an interpolation function is deduced to determine the thresholds. Comprehensive experimental results demonstrate the effectiveness of proposed method and advantageous for stable edge detection at changing illumination.

  1. Air Traffic Controller Acceptability of Unmanned Aircraft System Detect-and-Avoid Thresholds

    NASA Technical Reports Server (NTRS)

    Mueller, Eric R.; Isaacson, Douglas R.; Stevens, Derek

    2016-01-01

    A human-in-the-loop experiment was conducted with 15 retired air traffic controllers to investigate two research questions: (a) what procedures are appropriate for the use of unmanned aircraft system (UAS) detect-and-avoid systems, and (b) how long in advance of a predicted close encounter should pilots request or execute a separation maneuver. The controller participants managed a busy Oakland air route traffic control sector with mixed commercial/general aviation and manned/UAS traffic, providing separation services, miles-in-trail restrictions and issuing traffic advisories. Controllers filled out post-scenario and post-simulation questionnaires, and metrics were collected on the acceptability of procedural options and temporal thresholds. The states of aircraft were also recorded when controllers issued traffic advisories. Subjective feedback indicated a strong preference for pilots to request maneuvers to remain well clear from intruder aircraft rather than deviate from their IFR clearance. Controllers also reported that maneuvering at 120 seconds until closest point of approach (CPA) was too early; maneuvers executed with less than 90 seconds until CPA were more acceptable. The magnitudes of the requested maneuvers were frequently judged to be too large, indicating a possible discrepancy between the quantitative UAS well clear standard and the one employed subjectively by manned pilots. The ranges between pairs of aircraft and the times to CPA at which traffic advisories were issued were used to construct empirical probability distributions of those metrics. Given these distributions, we propose that UAS pilots wait until an intruder aircraft is approximately 80 seconds to CPA or 6 nmi away before requesting a maneuver, and maneuver immediately if the intruder is within 60 seconds and 4 nmi. These thresholds should make the use of UAS detect and avoid systems compatible with current airspace procedures and controller expectations.

  2. Automatic internal crack detection from a sequence of infrared images with a triple-threshold Canny edge detector

    NASA Astrophysics Data System (ADS)

    Wang, Gaochao; Tse, Peter W.; Yuan, Maodan

    2018-02-01

    Visual inspection and assessment of the condition of metal structures are essential for safety. Pulse thermography produces visible infrared images, which have been widely applied to detect and characterize defects in structures and materials. When active thermography, a non-destructive testing tool, is applied, the necessity of considerable manual checking can be avoided. However, detecting an internal crack with active thermography remains difficult, since it is usually invisible in the collected sequence of infrared images, which makes the automatic detection of internal cracks even harder. In addition, the detection of an internal crack can be hindered by a complicated inspection environment. With the purpose of putting forward a robust and automatic visual inspection method, a computer vision-based thresholding method is proposed. In this paper, the image signals are a sequence of infrared images collected from the experimental setup with a thermal camera and two flash lamps as stimulus. The contrast of pixels in each frame is enhanced by the Canny operator and then reconstructed by a triple-threshold system. Two features, mean value in the time domain and maximal amplitude in the frequency domain, are extracted from the reconstructed signal to help distinguish the crack pixels from others. Finally, a binary image indicating the location of the internal crack is generated by a K-means clustering method. The proposed procedure has been applied to an iron pipe, which contains two internal cracks and surface abrasion. Some improvements have been made for the computer vision-based automatic crack detection methods. In the future, the proposed method can be applied to realize the automatic detection of internal cracks from many infrared images for the industry.

  3. Effects of passive and active movement on vibrotactile detection thresholds of the Pacinian channel and forward masking.

    PubMed

    Yıldız, Mustafa Z; Toker, İpek; Özkan, Fatma B; Güçlü, Burak

    2015-01-01

    We investigated the gating effect of passive and active movement on the vibrotactile detection thresholds of the Pacinian (P) psychophysical channel and forward masking. Previous work on gating mostly used electrocutaneous stimulation and did not allow focusing on tactile submodalities. Ten healthy adults participated in our study. Passive movement was achieved by swinging a platform, on which the participant's stimulated hand was attached, manually by a trained operator. The root-mean-square value of the movement speed was kept in a narrow range (slow: 10-20 cm/s, fast: 50-60 cm/s). Active movement was performed by the participant him-/herself using the same apparatus. The tactile stimuli consisted of 250-Hz sinusoidal mechanical vibrations, which were generated by a shaker mounted on the movement platform and applied to the middle fingertip. In the forward-masking experiments, a high-level masking stimulus preceded the test stimulus. Each movement condition was tested separately in a two-interval forced-choice detection task. Both passive and active movement caused a robust gating effect, that is, elevation of thresholds, in the fast speed range. Statistically significant change of thresholds was not found in slow movement conditions. Passive movement yielded higher thresholds than those measured during active movement, but this could not be confirmed statistically. On the other hand, the effect of forward masking was approximately constant as the movement condition varied. These results imply that gating depends on both peripheral and central factors in the P channel. Active movement may have some facilitatory role and produce less gating. Additionally, the results support the hypothesis regarding a critical speed for gating, which may be relevant for daily situations involving vibrations transmitted through grasped objects and for manual exploration.

  4. Epidemic threshold in directed networks.

    PubMed

    Li, Cong; Wang, Huijuan; Van Mieghem, Piet

    2013-12-01

    Epidemics have so far been mostly studied in undirected networks. However, many real-world networks, such as the online social network Twitter and the world wide web, on which information, emotion, or malware spreads, are directed networks, composed of both unidirectional links and bidirectional links. We define the directionality ξ as the percentage of unidirectional links. The epidemic threshold τ(c) for the susceptible-infected-susceptible (SIS) epidemic is lower bounded by 1/λ(1) in directed networks, where λ(1), also called the spectral radius, is the largest eigenvalue of the adjacency matrix. In this work, we propose two algorithms to generate directed networks with a given directionality ξ. The effect of ξ on the spectral radius λ(1), principal eigenvector x(1), spectral gap (λ(1)-|λ(2)|), and algebraic connectivity μ(N-1) is studied. Important findings are that the spectral radius λ(1) decreases with the directionality ξ, whereas the spectral gap and the algebraic connectivity increase with the directionality ξ. The extent of the decrease of the spectral radius depends on both the degree distribution and the degree-degree correlation ρ(D). Hence, in directed networks, the epidemic threshold is larger and a random walk converges to its steady state faster than that in undirected networks with the same degree distribution.

  5. Epidemic threshold in directed networks

    NASA Astrophysics Data System (ADS)

    Li, Cong; Wang, Huijuan; Van Mieghem, Piet

    2013-12-01

    Epidemics have so far been mostly studied in undirected networks. However, many real-world networks, such as the online social network Twitter and the world wide web, on which information, emotion, or malware spreads, are directed networks, composed of both unidirectional links and bidirectional links. We define the directionality ξ as the percentage of unidirectional links. The epidemic threshold τc for the susceptible-infected-susceptible (SIS) epidemic is lower bounded by 1/λ1 in directed networks, where λ1, also called the spectral radius, is the largest eigenvalue of the adjacency matrix. In this work, we propose two algorithms to generate directed networks with a given directionality ξ. The effect of ξ on the spectral radius λ1, principal eigenvector x1, spectral gap (λ1-λ2), and algebraic connectivity μN-1 is studied. Important findings are that the spectral radius λ1 decreases with the directionality ξ, whereas the spectral gap and the algebraic connectivity increase with the directionality ξ. The extent of the decrease of the spectral radius depends on both the degree distribution and the degree-degree correlation ρD. Hence, in directed networks, the epidemic threshold is larger and a random walk converges to its steady state faster than that in undirected networks with the same degree distribution.

  6. Shifts in the relationship between motor unit recruitment thresholds versus derecruitment thresholds during fatigue.

    PubMed

    Stock, Matt S; Mota, Jacob A

    2017-12-01

    Muscle fatigue is associated with diminished twitch force amplitude. We examined changes in the motor unit recruitment versus derecruitment threshold relationship during fatigue. Nine men (mean age = 26 years) performed repeated isometric contractions at 50% maximal voluntary contraction (MVC) knee extensor force until exhaustion. Surface electromyographic signals were detected from the vastus lateralis, and were decomposed into their constituent motor unit action potential trains. Motor unit recruitment and derecruitment thresholds and firing rates at recruitment and derecruitment were evaluated at the beginning, middle, and end of the protocol. On average, 15 motor units were studied per contraction. For the initial contraction, three subjects showed greater recruitment thresholds than derecruitment thresholds for all motor units. Five subjects showed greater recruitment thresholds than derecruitment thresholds for only low-threshold motor units at the beginning, with a mean cross-over of 31.6% MVC. As the muscle fatigued, many motor units were derecruited at progressively higher forces. In turn, decreased slopes and increased y-intercepts were observed. These shifts were complemented by increased firing rates at derecruitment relative to recruitment. As the vastus lateralis fatigued, the central nervous system's compensatory adjustments resulted in a shift of the regression line of the recruitment versus derecruitment threshold relationship. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  7. Passive gas-gap heat switch for adiabatic demagnetization refrigerator

    NASA Technical Reports Server (NTRS)

    Shirron, Peter J. (Inventor); Di Pirro, Michael J. (Inventor)

    2005-01-01

    A passive gas-gap heat switch for use with a multi-stage continuous adiabatic demagnetization refrigerator (ADR). The passive gas-gap heat switch turns on automatically when the temperature of either side of the switch rises above a threshold value and turns off when the temperature on either side of the switch falls below this threshold value. One of the heat switches in this multistage process must be conductive in the 0.25? K to 0.3? K range. All of the heat switches must be capable of switching off in a short period of time (1-2 minutes), and when off to have a very low thermal conductance. This arrangement allows cyclic cooling cycles to be used without the need for separate heat switch controls.

  8. A new laser pain threshold model detects a faster onset of action from a liquid formulation of 1 g paracetamol than an equivalent tablet formulation

    PubMed Central

    Sutton, J A; Gillin, W P; Grattan, T J; Clarke, G D; Kilminster, S G

    2002-01-01

    Aims To discover whether a new infra-red laser method could detect a change in pain threshold after as mild an analgesic as paracetamol and whether an effervescent liquid formulation produced a faster onset of action than tablets. Methods This double-blind, placebo controlled randomized study used a portable, infra-red laser to measure ‘first pain’ thresholds on the nondominant forearm in 12 normal volunteers before and after 1 g of paracetamol or placebo. The mean of six recordings was determined three times before dosing, the first being used as a familiarization procedure, and 14 times after dosing. Results We detected a small (2%), statistically significant difference in pain threshold between a liquid formulation of paracetamol and placebo at 30 and 60 min (P = 0.004 and P = 0.001), but not between tablets and placebo. Liquid also increased the threshold significantly compared with tablets at 60 min (P = 0.01). Conclusions To detect such a small increase in pain threshold requires a highly consistent measure and the coefficient of variation was 2% for the study overall, surprisingly low for a subjective phenomenon. The reasons for this include minimizing reflectance by blacking the skin, using a nonhairy site, averaging six data points at each sample time and controlling closely the ambient conditions and the subjects’ preparation for studies. PMID:11849194

  9. Adaptive local thresholding for robust nucleus segmentation utilizing shape priors

    NASA Astrophysics Data System (ADS)

    Wang, Xiuzhong; Srinivas, Chukka

    2016-03-01

    This paper describes a novel local thresholding method for foreground detection. First, a Canny edge detection method is used for initial edge detection. Then, tensor voting is applied on the initial edge pixels, using a nonsymmetric tensor field tailored to encode prior information about nucleus size, shape, and intensity spatial distribution. Tensor analysis is then performed to generate the saliency image and, based on that, the refined edge. Next, the image domain is divided into blocks. In each block, at least one foreground and one background pixel are sampled for each refined edge pixel. The saliency weighted foreground histogram and background histogram are then created. These two histograms are used to calculate a threshold by minimizing the background and foreground pixel classification error. The block-wise thresholds are then used to generate the threshold for each pixel via interpolation. Finally, the foreground is obtained by comparing the original image with the threshold image. The effective use of prior information, combined with robust techniques, results in far more reliable foreground detection, which leads to robust nucleus segmentation.

  10. Olfactory Threshold of Chlorine in Oxygen.

    DTIC Science & Technology

    1977-09-01

    The odor threshold of chlorine in oxygen was determined. Measurements were conducted in an altitude chamber, which provided an odor-free and noise...free background. Human male volunteers, with no previous olfactory acuity testing experience, served as panelists. Threshold values were affected by...time intervals between trials and by age differences. The mean threshold value for 11 subjects was 0.08 ppm obtained by positive responses to the lowest detectable level of chlorine in oxygen, 50% of the time. (Author)

  11. How to select a proper early warning threshold to detect infectious disease outbreaks based on the China infectious disease automated alert and response system (CIDARS).

    PubMed

    Wang, Ruiping; Jiang, Yonggen; Michael, Engelgau; Zhao, Genming

    2017-06-12

    China Centre for Diseases Control and Prevention (CDC) developed the China Infectious Disease Automated Alert and Response System (CIDARS) in 2005. The CIDARS was used to strengthen infectious disease surveillance and aid in the early warning of outbreak. The CIDARS has been integrated into the routine outbreak monitoring efforts of the CDC at all levels in China. Early warning threshold is crucial for outbreak detection in the CIDARS, but CDCs at all level are currently using thresholds recommended by the China CDC, and these recommended thresholds have recognized limitations. Our study therefore seeks to explore an operational method to select the proper early warning threshold according to the epidemic features of local infectious diseases. The data used in this study were extracted from the web-based Nationwide Notifiable Infectious Diseases Reporting Information System (NIDRIS), and data for infectious disease cases were organized by calendar week (1-52) and year (2009-2015) in Excel format; Px was calculated using a percentile-based moving window (moving window [5 week*5 year], x), where x represents one of 12 centiles (0.40, 0.45, 0.50….0.95). Outbreak signals for the 12 Px were calculated using the moving percentile method (MPM) based on data from the CIDARS. When the outbreak signals generated by the 'mean + 2SD' gold standard were in line with a Px generated outbreak signal for each week during the year of 2014, this Px was then defined as the proper threshold for the infectious disease. Finally, the performance of new selected thresholds for each infectious disease was evaluated by simulated outbreak signals based on 2015 data. Six infectious diseases were selected in this study (chickenpox, mumps, hand foot and mouth diseases (HFMD), scarlet fever, influenza and rubella). Proper thresholds for chickenpox (P75), mumps (P80), influenza (P75), rubella (P45), HFMD (P75), and scarlet fever (P80) were identified. The selected proper thresholds for these

  12. Brain tumour classification and abnormality detection using neuro-fuzzy technique and Otsu thresholding.

    PubMed

    Renjith, Arokia; Manjula, P; Mohan Kumar, P

    2015-01-01

    Brain tumour is one of the main causes for an increase in transience among children and adults. This paper proposes an improved method based on Magnetic Resonance Imaging (MRI) brain image classification and image segmentation approach. Automated classification is encouraged by the need of high accuracy when dealing with a human life. The detection of the brain tumour is a challenging problem, due to high diversity in tumour appearance and ambiguous tumour boundaries. MRI images are chosen for detection of brain tumours, as they are used in soft tissue determinations. First of all, image pre-processing is used to enhance the image quality. Second, dual-tree complex wavelet transform multi-scale decomposition is used to analyse texture of an image. Feature extraction extracts features from an image using gray-level co-occurrence matrix (GLCM). Then, the Neuro-Fuzzy technique is used to classify the stages of brain tumour as benign, malignant or normal based on texture features. Finally, tumour location is detected using Otsu thresholding. The classifier performance is evaluated based on classification accuracies. The simulated results show that the proposed classifier provides better accuracy than previous method.

  13. Real-time detection of faecally contaminated drinking water with tryptophan-like fluorescence: defining threshold values.

    PubMed

    Sorensen, James P R; Baker, Andy; Cumberland, Susan A; Lapworth, Dan J; MacDonald, Alan M; Pedley, Steve; Taylor, Richard G; Ward, Jade S T

    2018-05-01

    We assess the use of fluorescent dissolved organic matter at excitation-emission wavelengths of 280nm and 360nm, termed tryptophan-like fluorescence (TLF), as an indicator of faecally contaminated drinking water. A significant logistic regression model was developed using TLF as a predictor of thermotolerant coliforms (TTCs) using data from groundwater- and surface water-derived drinking water sources in India, Malawi, South Africa and Zambia. A TLF threshold of 1.3ppb dissolved tryptophan was selected to classify TTC contamination. Validation of the TLF threshold indicated a false-negative error rate of 15% and a false-positive error rate of 18%. The threshold was unsuccessful at classifying contaminated sources containing <10 TTC cfu per 100mL, which we consider the current limit of detection. If only sources above this limit were classified, the false-negative error rate was very low at 4%. TLF intensity was very strongly correlated with TTC concentration (ρ s =0.80). A higher threshold of 6.9ppb dissolved tryptophan is proposed to indicate heavily contaminated sources (≥100 TTC cfu per 100mL). Current commercially available fluorimeters are easy-to-use, suitable for use online and in remote environments, require neither reagents nor consumables, and crucially provide an instantaneous reading. TLF measurements are not appreciably impaired by common intereferents, such as pH, turbidity and temperature, within typical natural ranges. The technology is a viable option for the real-time screening of faecally contaminated drinking water globally. Copyright © 2017 Natural Environment Research Council (NERC), as represented by the British Geological Survey (BGS. Published by Elsevier B.V. All rights reserved.

  14. Sensitivity and Specificity of Interictal EEG-fMRI for Detecting the Ictal Onset Zone at Different Statistical Thresholds

    PubMed Central

    Tousseyn, Simon; Dupont, Patrick; Goffin, Karolien; Sunaert, Stefan; Van Paesschen, Wim

    2014-01-01

    There is currently a lack of knowledge about electroencephalography (EEG)-functional magnetic resonance imaging (fMRI) specificity. Our aim was to define sensitivity and specificity of blood oxygen level dependent (BOLD) responses to interictal epileptic spikes during EEG-fMRI for detecting the ictal onset zone (IOZ). We studied 21 refractory focal epilepsy patients who had a well-defined IOZ after a full presurgical evaluation and interictal spikes during EEG-fMRI. Areas of spike-related BOLD changes overlapping the IOZ in patients were considered as true positives; if no overlap was found, they were treated as false-negatives. Matched healthy case-controls had undergone similar EEG-fMRI in order to determine true-negative and false-positive fractions. The spike-related regressor of the patient was used in the design matrix of the healthy case-control. Suprathreshold BOLD changes in the brain of controls were considered as false positives, absence of these changes as true negatives. Sensitivity and specificity were calculated for different statistical thresholds at the voxel level combined with different cluster size thresholds and represented in receiver operating characteristic (ROC)-curves. Additionally, we calculated the ROC-curves based on the cluster containing the maximal significant activation. We achieved a combination of 100% specificity and 62% sensitivity, using a Z-threshold in the interval 3.4–3.5 and cluster size threshold of 350 voxels. We could obtain higher sensitivity at the expense of specificity. Similar performance was found when using the cluster containing the maximal significant activation. Our data provide a guideline for different EEG-fMRI settings with their respective sensitivity and specificity for detecting the IOZ. The unique cluster containing the maximal significant BOLD activation was a sensitive and specific marker of the IOZ. PMID:25101049

  15. Deactivating stimulation sites based on low-rate thresholds improves spectral ripple and speech reception thresholds in cochlear implant users.

    PubMed

    Zhou, Ning

    2017-03-01

    The study examined whether the benefit of deactivating stimulation sites estimated to have broad neural excitation was attributed to improved spectral resolution in cochlear implant users. The subjects' spatial neural excitation pattern was estimated by measuring low-rate detection thresholds across the array [see Zhou (2016). PLoS One 11, e0165476]. Spectral resolution, as assessed by spectral-ripple discrimination thresholds, significantly improved after deactivation of five high-threshold sites. The magnitude of improvement in spectral-ripple discrimination thresholds predicted the magnitude of improvement in speech reception thresholds after deactivation. Results suggested that a smaller number of relatively independent channels provide a better outcome than using all channels that might interact.

  16. Threshold-dependent sample sizes for selenium assessment with stream fish tissue

    USGS Publications Warehouse

    Hitt, Nathaniel P.; Smith, David R.

    2015-01-01

    Natural resource managers are developing assessments of selenium (Se) contamination in freshwater ecosystems based on fish tissue concentrations. We evaluated the effects of sample size (i.e., number of fish per site) on the probability of correctly detecting mean whole-body Se values above a range of potential management thresholds. We modeled Se concentrations as gamma distributions with shape and scale parameters fitting an empirical mean-to-variance relationship in data from southwestern West Virginia, USA (63 collections, 382 individuals). We used parametric bootstrapping techniques to calculate statistical power as the probability of detecting true mean concentrations up to 3 mg Se/kg above management thresholds ranging from 4 to 8 mg Se/kg. Sample sizes required to achieve 80% power varied as a function of management thresholds and Type I error tolerance (α). Higher thresholds required more samples than lower thresholds because populations were more heterogeneous at higher mean Se levels. For instance, to assess a management threshold of 4 mg Se/kg, a sample of eight fish could detect an increase of approximately 1 mg Se/kg with 80% power (given α = 0.05), but this sample size would be unable to detect such an increase from a management threshold of 8 mg Se/kg with more than a coin-flip probability. Increasing α decreased sample size requirements to detect above-threshold mean Se concentrations with 80% power. For instance, at an α-level of 0.05, an 8-fish sample could detect an increase of approximately 2 units above a threshold of 8 mg Se/kg with 80% power, but when α was relaxed to 0.2, this sample size was more sensitive to increasing mean Se concentrations, allowing detection of an increase of approximately 1.2 units with equivalent power. Combining individuals into 2- and 4-fish composite samples for laboratory analysis did not decrease power because the reduced number of laboratory samples was compensated for by increased

  17. Detection of air-gap eccentricity and broken-rotor bar conditions in a squirrel-cage induction motor using the radial flux sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, Don-Ha; Woo, Byung-Chul; Sun, Jong-Ho

    2008-04-01

    A new method for detecting eccentricity and broken rotor bar conditions in a squirrel-cage induction motor is proposed. Air-gap flux variation analysis is done using search coils, which are inserted at stator slots. Using this method, the leakage flux in radial direction can be directly detected. Using finite element method, the air-gap flux variation is accurately modeled and analyzed. From the results of the simulation, a motor under normal condition shows maximum magnetic flux density of 1.3 T. On the other hand, the eccentric air-gap condition displays about 1.1 T at 60 deg. and 1.6 T at 240 deg. Amore » difference of flux density is 0.5 T in the abnormal condition, whereas no difference is detected in the normal motor. In the broken rotor bar conditions, the flux densities at 65 deg. and 155 deg. are about 0.4 T and 0.8 T, respectively. These simulation results are coincided with those of experiment. Consequently, the measurement of the magnetic flux at air gap is one of effective ways to discriminate the faulted conditions of the eccentricity and broken rotor bars.« less

  18. High-quality photonic crystals with a nearly complete band gap obtained by direct inversion of woodpile templates with titanium dioxide.

    PubMed

    Marichy, Catherine; Muller, Nicolas; Froufe-Pérez, Luis S; Scheffold, Frank

    2016-02-25

    Photonic crystal materials are based on a periodic modulation of the dielectric constant on length scales comparable to the wavelength of light. These materials can exhibit photonic band gaps; frequency regions for which the propagation of electromagnetic radiation is forbidden due to the depletion of the density of states. In order to exhibit a full band gap, 3D PCs must present a threshold refractive index contrast that depends on the crystal structure. In the case of the so-called woodpile photonic crystals this threshold is comparably low, approximately 1.9 for the direct structure. Therefore direct or inverted woodpiles made of high refractive index materials like silicon, germanium or titanium dioxide are sought after. Here we show that, by combining multiphoton lithography and atomic layer deposition, we can achieve a direct inversion of polymer templates into TiO2 based photonic crystals. The obtained structures show remarkable optical properties in the near-infrared region with almost perfect specular reflectance, a transmission dip close to the detection limit and a Bragg length comparable to the lattice constant.

  19. A study of FM threshold extension techniques

    NASA Technical Reports Server (NTRS)

    Arndt, G. D.; Loch, F. J.

    1972-01-01

    The characteristics of three postdetection threshold extension techniques are evaluated with respect to the ability of such techniques to improve the performance of a phase lock loop demodulator. These techniques include impulse-noise elimination, signal correlation for the detection of impulse noise, and delta modulation signal processing. Experimental results from signal to noise ratio data and bit error rate data indicate that a 2- to 3-decibel threshold extension is readily achievable by using the various techniques. This threshold improvement is in addition to the threshold extension that is usually achieved through the use of a phase lock loop demodulator.

  20. Scene text detection via extremal region based double threshold convolutional network classification

    PubMed Central

    Zhu, Wei; Lou, Jing; Chen, Longtao; Xia, Qingyuan

    2017-01-01

    In this paper, we present a robust text detection approach in natural images which is based on region proposal mechanism. A powerful low-level detector named saliency enhanced-MSER extended from the widely-used MSER is proposed by incorporating saliency detection methods, which ensures a high recall rate. Given a natural image, character candidates are extracted from three channels in a perception-based illumination invariant color space by saliency-enhanced MSER algorithm. A discriminative convolutional neural network (CNN) is jointly trained with multi-level information including pixel-level and character-level information as character candidate classifier. Each image patch is classified as strong text, weak text and non-text by double threshold filtering instead of conventional one-step classification, leveraging confident scores obtained via CNN. To further prune non-text regions, we develop a recursive neighborhood search algorithm to track credible texts from weak text set. Finally, characters are grouped into text lines using heuristic features such as spatial location, size, color, and stroke width. We compare our approach with several state-of-the-art methods, and experiments show that our method achieves competitive performance on public datasets ICDAR 2011 and ICDAR 2013. PMID:28820891

  1. A threshold-based fixed predictor for JPEG-LS image compression

    NASA Astrophysics Data System (ADS)

    Deng, Lihua; Huang, Zhenghua; Yao, Shoukui

    2018-03-01

    In JPEG-LS, fixed predictor based on median edge detector (MED) only detect horizontal and vertical edges, and thus produces large prediction errors in the locality of diagonal edges. In this paper, we propose a threshold-based edge detection scheme for the fixed predictor. The proposed scheme can detect not only the horizontal and vertical edges, but also diagonal edges. For some certain thresholds, the proposed scheme can be simplified to other existing schemes. So, it can also be regarded as the integration of these existing schemes. For a suitable threshold, the accuracy of horizontal and vertical edges detection is higher than the existing median edge detection in JPEG-LS. Thus, the proposed fixed predictor outperforms the existing JPEG-LS predictors for all images tested, while the complexity of the overall algorithm is maintained at a similar level.

  2. Colour detection thresholds in faces and colour patches.

    PubMed

    Tan, Kok Wei; Stephen, Ian D

    2013-01-01

    Human facial skin colour reflects individuals' underlying health (Stephen et al 2011 Evolution & Human Behavior 32 216-227); and enhanced facial skin CIELab b* (yellowness), a* (redness), and L* (lightness) are perceived as healthy (also Stephen et al 2009a International Journal of Primatology 30 845-857). Here, we examine Malaysian Chinese participants' detection thresholds for CIELab L* (lightness), a* (redness), and b* (yellowness) colour changes in Asian, African, and Caucasian faces and skin coloured patches. Twelve face photos and three skin coloured patches were transformed to produce four pairs of images of each individual face and colour patch with different amounts of red, yellow, or lightness, from very subtle (deltaE = 1.2) to quite large differences (deltaE = 9.6). Participants were asked to decide which of sequentially displayed, paired same-face images or colour patches were lighter, redder, or yellower. Changes in facial redness, followed by changes in yellowness, were more easily discriminated than changes in luminance. However, visual sensitivity was not greater for redness and yellowness in nonface stimuli, suggesting red facial skin colour special salience. Participants were also significantly better at recognizing colour differences in own-race (Asian) and Caucasian faces than in African faces, suggesting the existence of cross-race effect in discriminating facial colours. Humans' colour vision may have been selected for skin colour signalling (Changizi et al 2006 Biology Letters 2 217-221), enabling individuals to perceive subtle changes in skin colour, reflecting health and emotional status.

  3. The Patient Health Questionnaire-9 for detection of major depressive disorder in primary care: consequences of current thresholds in a crosssectional study.

    PubMed

    Zuithoff, Nicolaas P A; Vergouwe, Yvonne; King, Michael; Nazareth, Irwin; van Wezep, Manja J; Moons, Karel G M; Geerlings, Mirjam I

    2010-12-13

    There is a need for brief instruments to ascertain the diagnosis of major depressive disorder. In this study, we present the reliability, construct validity and accuracy of the PHQ-9 and PHQ-2 to detect major depressive disorder in primary care. Cross-sectional analyses within a large prospective cohort study (PREDICT-NL). Data was collected in seven large general practices in the centre of the Netherlands. 1338 subjects were recruited in the general practice waiting room, irrespective of their presenting complaint. The diagnostic accuracy (the area under the ROC curve and sensitivities and specificities for various thresholds) was calculated against a diagnosis of major depressive disorder determined with the Composite International Diagnostic Interview (CIDI). The PHQ-9 showed a high degree of internal consistency (ICC = 0.88) and test-retest reliability (correlation = 0.94). With respect to construct validity, it showed a clear association with functional status measurements, sick days and number of consultations. The discriminative ability was good for the PHQ-9 (area under the ROC curve = 0.87, 95% CI: 0.84-0.90) and the PHQ-2 (ROC area = 0.83, 95% CI 0.80-0.87). Sensitivities at the recommended thresholds were 0.49 for the PHQ-9 at a score of 10 and 0.28 for a categorical algorithm. Adjustment of the threshold and the algorithm improved sensitivities to 0.82 and 0.84 respectively but the specificity decreased from 0.95 to 0.82 (threshold) and from 0.98 to 0.81 (algorithm). Similar results were found for the PHQ-2: the recommended threshold of 3 had a sensitivity of 0.42 and lowering the threshold resulted in an improved sensitivity of 0.81. The PHQ-9 and the PHQ-2 are useful instruments to detect major depressive disorder in primary care, provided a high score is followed by an additional diagnostic work-up. However, often recommended thresholds for the PHQ-9 and the PHQ-2 resulted in many undetected major depressive disorders.

  4. Influenza surveillance in Europe: establishing epidemic thresholds by the Moving Epidemic Method

    PubMed Central

    Vega, Tomás; Lozano, Jose Eugenio; Meerhoff, Tamara; Snacken, René; Mott, Joshua; Ortiz de Lejarazu, Raul; Nunes, Baltazar

    2012-01-01

    Please cite this paper as: Vega et al. (2012) Influenza surveillance in Europe: establishing epidemic thresholds by the moving epidemic method. Influenza and Other Respiratory Viruses 7(4), 546–558. Background  Timely influenza surveillance is important to monitor influenza epidemics. Objectives  (i) To calculate the epidemic threshold for influenza‐like illness (ILI) and acute respiratory infections (ARI) in 19 countries, as well as the thresholds for different levels of intensity. (ii) To evaluate the performance of these thresholds. Methods  The moving epidemic method (MEM) has been developed to determine the baseline influenza activity and an epidemic threshold. False alerts, detection lags and timeliness of the detection of epidemics were calculated. The performance was evaluated using a cross‐validation procedure. Results  The overall sensitivity of the MEM threshold was 71·8% and the specificity was 95·5%. The median of the timeliness was 1 week (range: 0–4·5). Conclusions  The method produced a robust and specific signal to detect influenza epidemics. The good balance between the sensitivity and specificity of the epidemic threshold to detect seasonal epidemics and avoid false alerts has advantages for public health purposes. This method may serve as standard to define the start of the annual influenza epidemic in countries in Europe. PMID:22897919

  5. Dependence of cavitation, chemical effect, and mechanical effect thresholds on ultrasonic frequency.

    PubMed

    Thanh Nguyen, Tam; Asakura, Yoshiyuki; Koda, Shinobu; Yasuda, Keiji

    2017-11-01

    Cavitation, chemical effect, and mechanical effect thresholds were investigated in wide frequency ranges from 22 to 4880kHz. Each threshold was measured in terms of sound pressure at fundamental frequency. Broadband noise emitted from acoustic cavitation bubbles was detected by a hydrophone to determine the cavitation threshold. Potassium iodide oxidation caused by acoustic cavitation was used to quantify the chemical effect threshold. The ultrasonic erosion of aluminum foil was conducted to estimate the mechanical effect threshold. The cavitation, chemical effect, and mechanical effect thresholds increased with increasing frequency. The chemical effect threshold was close to the cavitation threshold for all frequencies. At low frequency below 98kHz, the mechanical effect threshold was nearly equal to the cavitation threshold. However, the mechanical effect threshold was greatly higher than the cavitation threshold at high frequency. In addition, the thresholds of the second harmonic and the first ultraharmonic signals were measured to detect bubble occurrence. The threshold of the second harmonic approximated to the cavitation threshold below 1000kHz. On the other hand, the threshold of the first ultraharmonic was higher than the cavitation threshold below 98kHz and near to the cavitation threshold at high frequency. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Field induced gap infrared detector

    NASA Technical Reports Server (NTRS)

    Elliott, C. Thomas (Inventor)

    1990-01-01

    A tunable infrared detector which employs a vanishing band gap semimetal material provided with an induced band gap by a magnetic field to allow intrinsic semiconductor type infrared detection capabilities is disclosed. The semimetal material may thus operate as a semiconductor type detector with a wavelength sensitivity corresponding to the induced band gap in a preferred embodiment of a diode structure. Preferred semimetal materials include Hg(1-x)Cd(x)Te, x is less than 0.15, HgCdSe, BiSb, alpha-Sn, HgMgTe, HgMnTe, HgZnTe, HgMnSe, HgMgSe, and HgZnSe. The magnetic field induces a band gap in the semimetal material proportional to the strength of the magnetic field allowing tunable detection cutoff wavelengths. For an applied magnetic field from 5 to 10 tesla, the wavelength detection cutoff will be in the range of 20 to 50 micrometers for Hg(1-x)Cd(x)Te alloys with x about 0.15. A similar approach may also be employed to generate infrared energy in a desired band gap and then operating the structure in a light emitting diode or semiconductor laser type of configuration.

  7. Different thresholds for detection and discrimination of odors in the honey bee (Apis mellifera).

    PubMed

    Wright, Geraldine A; Smith, Brian H

    2004-02-01

    Naturally occurring odors used by animals for mate recognition, food identification and other purposes must be detected at concentrations that vary across several orders of magnitude. Olfactory systems must therefore have the capacity to represent odors over a large range of concentrations regardless of dramatic changes in the salience, or perceived intensity, of a stimulus. The stability of the representation of an odor relative to other odors across concentration has not been extensively evaluated. We tested the ability of honey bees to discriminate pure odorants across a range of concentrations at and above their detection threshold. Our study showed that pure odorant compounds became progressively easier for honey bees to discriminate with increasing concentration. Discrimination is, therefore, a function of odorant concentration. We hypothesize that the recruitment of sensory cell populations across a range of concentrations may be important for odor coding, perhaps by changing its perceptual qualities or by increasing its salience against background stimuli, and that this mechanism is a general property of olfactory systems.

  8. STIMULUS AND TRANSDUCER EFFECTS ON THRESHOLD

    PubMed Central

    Flamme, Gregory A.; Geda, Kyle; McGregor, Kara; Wyllys, Krista; Deiters, Kristy K.; Murphy, William J.; Stephenson, Mark R.

    2015-01-01

    Objective This study examined differences in thresholds obtained under Sennheiser HDA200 circumaural earphones using pure tone, equivalent rectangular noise bands, and 1/3 octave noise bands relative to thresholds obtained using Telephonics TDH-39P supra-aural earphones. Design Thresholds were obtained via each transducer and stimulus condition six times within a 10-day period. Study Sample Forty-nine adults were selected from a prior study to represent low, moderate, and high threshold reliability. Results The results suggested that (1) only small adjustments were needed to reach equivalent TDH-39P thresholds, (2) pure-tone thresholds obtained with HDA200 circumaural earphones had reliability equal to or better than those obtained using TDH-39P earphones, (3) the reliability of noise-band thresholds improved with broader stimulus bandwidth and was either equal to or better than pure-tone thresholds, and (4) frequency-specificity declined with stimulus bandwidths greater than one Equivalent Rectangular Band, which could complicate early detection of hearing changes that occur within a narrow frequency range. Conclusions These data suggest that circumaural earphones such as the HDA200 headphones provide better reliability for audiometric testing as compared to the TDH-39P earphones. These data support the use of noise bands, preferably ERB noises, as stimuli for audiometric monitoring. PMID:25549164

  9. Reliability of TMS phosphene threshold estimation: Toward a standardized protocol.

    PubMed

    Mazzi, Chiara; Savazzi, Silvia; Abrahamyan, Arman; Ruzzoli, Manuela

    Phosphenes induced by transcranial magnetic stimulation (TMS) are a subjectively described visual phenomenon employed in basic and clinical research as index of the excitability of retinotopically organized areas in the brain. Phosphene threshold estimation is a preliminary step in many TMS experiments in visual cognition for setting the appropriate level of TMS doses; however, the lack of a direct comparison of the available methods for phosphene threshold estimation leaves unsolved the reliability of those methods in setting TMS doses. The present work aims at fulfilling this gap. We compared the most common methods for phosphene threshold calculation, namely the Method of Constant Stimuli (MOCS), the Modified Binary Search (MOBS) and the Rapid Estimation of Phosphene Threshold (REPT). In two experiments we tested the reliability of PT estimation under each of the three methods, considering the day of administration, participants' expertise in phosphene perception and the sensitivity of each method to the initial values used for the threshold calculation. We found that MOCS and REPT have comparable reliability when estimating phosphene thresholds, while MOBS estimations appear less stable. Based on our results, researchers and clinicians can estimate phosphene threshold according to MOCS or REPT equally reliably, depending on their specific investigation goals. We suggest several important factors for consideration when calculating phosphene thresholds and describe strategies to adopt in experimental procedures. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Corneal Mechanical Thresholds Negatively Associate With Dry Eye and Ocular Pain Symptoms.

    PubMed

    Spierer, Oriel; Felix, Elizabeth R; McClellan, Allison L; Parel, Jean Marie; Gonzalez, Alex; Feuer, William J; Sarantopoulos, Constantine D; Levitt, Roy C; Ehrmann, Klaus; Galor, Anat

    2016-02-01

    To examine associations between corneal mechanical thresholds and metrics of dry eye. This was a cross-sectional study of individuals seen in the Miami Veterans Affairs eye clinic. The evaluation consisted of questionnaires regarding dry eye symptoms and ocular pain, corneal mechanical detection and pain thresholds, and a comprehensive ocular surface examination. The main outcome measures were correlations between corneal thresholds and signs and symptoms of dry eye and ocular pain. A total of 129 subjects participated in the study (mean age 64 ± 10 years). Mechanical detection and pain thresholds on the cornea correlated with age (Spearman's ρ = 0.26, 0.23, respectively; both P < 0.05), implying decreased corneal sensitivity with age. Dry eye symptom severity scores and Neuropathic Pain Symptom Inventory (modified for the eye) scores negatively correlated with corneal detection and pain thresholds (range, r = -0.13 to -0.27, P < 0.05 for values between -0.18 and -0.27), suggesting increased corneal sensitivity in those with more severe ocular complaints. Ocular signs, on the other hand, correlated poorly and nonsignificantly with mechanical detection and pain thresholds on the cornea. A multivariable linear regression model found that both posttraumatic stress disorder (PTSD) score (β = 0.21, SE = 0.03) and corneal pain threshold (β = -0.03, SE = 0.01) were significantly associated with self-reported evoked eye pain (pain to wind, light, temperature) and explained approximately 32% of measurement variability (R = 0.57). Mechanical detection and pain thresholds measured on the cornea are correlated with dry eye symptoms and ocular pain. This suggests hypersensitivity within the corneal somatosensory pathways in patients with greater dry eye and ocular pain complaints.

  11. Methods for threshold determination in multiplexed assays

    DOEpatents

    Tammero, Lance F. Bentley; Dzenitis, John M; Hindson, Benjamin J

    2014-06-24

    Methods for determination of threshold values of signatures comprised in an assay are described. Each signature enables detection of a target. The methods determine a probability density function of negative samples and a corresponding false positive rate curve. A false positive criterion is established and a threshold for that signature is determined as a point at which the false positive rate curve intersects the false positive criterion. A method for quantitative analysis and interpretation of assay results together with a method for determination of a desired limit of detection of a signature in an assay are also described.

  12. Verification of threshold activation detection (TAD) technique in prompt fission neutron detection using scintillators containing 19F

    NASA Astrophysics Data System (ADS)

    Sibczynski, P.; Kownacki, J.; Moszyński, M.; Iwanowska-Hanke, J.; Syntfeld-Każuch, A.; Gójska, A.; Gierlik, M.; Kaźmierczak, Ł.; Jakubowska, E.; Kędzierski, G.; Kujawiński, Ł.; Wojnarowicz, J.; Carrel, F.; Ledieu, M.; Lainé, F.

    2015-09-01

    In the present study ⌀ 5''× 3'' and ⌀ 2''× 2'' EJ-313 liquid fluorocarbon as well as ⌀ 2'' × 3'' BaF2 scintillators were exposed to neutrons from a 252Cf neutron source and a Sodern Genie 16GT deuterium-tritium (D+T) neutron generator. The scintillators responses to β- particles with maximum endpoint energy of 10.4 MeV from the n+19F reactions were studied. Response of a ⌀ 5'' × 3'' BC-408 plastic scintillator was also studied as a reference. The β- particles are the products of interaction of fast neutrons with 19F which is a component of the EJ-313 and BaF2 scintillators. The method of fast neutron detection via fluorine activation is already known as Threshold Activation Detection (TAD) and was proposed for photofission prompt neutron detection from fissionable and Special Nuclear Materials (SNM) in the field of Homeland Security and Border Monitoring. Measurements of the number of counts between 6.0 and 10.5 MeV with a 252Cf source showed that the relative neutron detection efficiency ratio, defined as epsilonBaF2 / epsilonEJ-313-5'', is 32.0% ± 2.3% and 44.6% ± 3.4% for front-on and side-on orientation of the BaF2, respectively. Moreover, the ⌀ 5'' EJ-313 and side-on oriented BaF2 were also exposed to neutrons from the D+T neutron generator, and the relative efficiency epsilonBaF2 / epsilonEJ-313-5'' was estimated to be 39.3%. Measurements of prompt photofission neutrons with the BaF2 detector by means of data acquisition after irradiation (out-of-beam) of nuclear material and between the beam pulses (beam-off) techniques were also conducted on the 9 MeV LINAC of the SAPHIR facility.

  13. Setting objective thresholds for rare event detection in flow cytometry

    PubMed Central

    Richards, Adam J.; Staats, Janet; Enzor, Jennifer; McKinnon, Katherine; Frelinger, Jacob; Denny, Thomas N.; Weinhold, Kent J.; Chan, Cliburn

    2014-01-01

    The accurate identification of rare antigen-specific cytokine positive cells from peripheral blood mononuclear cells (PBMC) after antigenic stimulation in an intracellular staining (ICS) flow cytometry assay is challenging, as cytokine positive events may be fairly diffusely distributed and lack an obvious separation from the negative population. Traditionally, the approach by flow operators has been to manually set a positivity threshold to partition events into cytokine-positive and cytokine-negative. This approach suffers from subjectivity and inconsistency across different flow operators. The use of statistical clustering methods does not remove the need to find an objective threshold between between positive and negative events since consistent identification of rare event subsets is highly challenging for automated algorithms, especially when there is distributional overlap between the positive and negative events (“smear”). We present a new approach, based on the Fβ measure, that is similar to manual thresholding in providing a hard cutoff, but has the advantage of being determined objectively. The performance of this algorithm is compared with results obtained by expert visual gating. Several ICS data sets from the External Quality Assurance Program Oversight Laboratory (EQAPOL) proficiency program were used to make the comparisons. We first show that visually determined thresholds are difficult to reproduce and pose a problem when comparing results across operators or laboratories, as well as problems that occur with the use of commonly employed clustering algorithms. In contrast, a single parameterization for the Fβ method performs consistently across different centers, samples, and instruments because it optimizes the precision/recall tradeoff by using both negative and positive controls. PMID:24727143

  14. The absolute threshold of cone vision

    PubMed Central

    Koeing, Darran; Hofer, Heidi

    2013-01-01

    We report measurements of the absolute threshold of cone vision, which has been previously underestimated due to sub-optimal conditions or overly strict subjective response criteria. We avoided these limitations by using optimized stimuli and experimental conditions while having subjects respond within a rating scale framework. Small (1′ fwhm), brief (34 msec), monochromatic (550 nm) stimuli were foveally presented at multiple intensities in dark-adapted retina for 5 subjects. For comparison, 4 subjects underwent similar testing with rod-optimized stimuli. Cone absolute threshold, that is, the minimum light energy for which subjects were just able to detect a visual stimulus with any response criterion, was 203 ± 38 photons at the cornea, ∼0.47 log units lower than previously reported. Two-alternative forced-choice measurements in a subset of subjects yielded consistent results. Cone thresholds were less responsive to criterion changes than rod thresholds, suggesting a limit to the stimulus information recoverable from the cone mosaic in addition to the limit imposed by Poisson noise. Results were consistent with expectations for detection in the face of stimulus uncertainty. We discuss implications of these findings for modeling the first stages of human cone vision and interpreting psychophysical data acquired with adaptive optics at the spatial scale of the receptor mosaic. PMID:21270115

  15. Communication: Fragment-based Hamiltonian model of electronic charge-excitation gaps and gap closure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valone, Steven Michael; Pilania, Ghanshyam; Liu, Xiang-Yang

    Capturing key electronic properties such as charge excitation gaps within models at or above the atomic scale presents an ongoing challenge to understanding molecular, nanoscale, and condensed phase systems. One strategy is to describe the system in terms of properties of interacting material fragments, but it is unclear how to accomplish this for charge-excitation and charge-transfer phenomena. Hamiltonian models such as the Hubbard model provide formal frameworks for analyzing gap properties but are couched purely in terms of states of electrons, rather than the states of the fragments at the scale of interest. The recently introduced Fragment Hamiltonian (FH) modelmore » uses fragments in different charge states as its building blocks, enabling a uniform, quantum-mechanical treatment that captures the charge-excitation gap. These gaps are preserved in terms of inter-fragment charge-transferhopping integrals T and on-fragment parameters U (FH). The FH model generalizes the standard Hubbard model (a single intra-band hopping integral t and on-site repulsion U) from quantum states for electrons to quantum states for fragments. In this paper, we demonstrate that even for simple two-fragment and multi-fragment systems, gap closure is enabled once T exceeds the threshold set by U (FH), thus providing new insight into the nature of metal-insulator transitions. Finally, this result is in contrast to the standard Hubbard model for 1d rings, for which Lieb and Wu proved that gap closure was impossible, regardless of the choices for t and U.« less

  16. Communication: Fragment-based Hamiltonian model of electronic charge-excitation gaps and gap closure

    DOE PAGES

    Valone, Steven Michael; Pilania, Ghanshyam; Liu, Xiang-Yang; ...

    2015-11-13

    Capturing key electronic properties such as charge excitation gaps within models at or above the atomic scale presents an ongoing challenge to understanding molecular, nanoscale, and condensed phase systems. One strategy is to describe the system in terms of properties of interacting material fragments, but it is unclear how to accomplish this for charge-excitation and charge-transfer phenomena. Hamiltonian models such as the Hubbard model provide formal frameworks for analyzing gap properties but are couched purely in terms of states of electrons, rather than the states of the fragments at the scale of interest. The recently introduced Fragment Hamiltonian (FH) modelmore » uses fragments in different charge states as its building blocks, enabling a uniform, quantum-mechanical treatment that captures the charge-excitation gap. These gaps are preserved in terms of inter-fragment charge-transferhopping integrals T and on-fragment parameters U (FH). The FH model generalizes the standard Hubbard model (a single intra-band hopping integral t and on-site repulsion U) from quantum states for electrons to quantum states for fragments. In this paper, we demonstrate that even for simple two-fragment and multi-fragment systems, gap closure is enabled once T exceeds the threshold set by U (FH), thus providing new insight into the nature of metal-insulator transitions. Finally, this result is in contrast to the standard Hubbard model for 1d rings, for which Lieb and Wu proved that gap closure was impossible, regardless of the choices for t and U.« less

  17. Communication: Fragment-based Hamiltonian model of electronic charge-excitation gaps and gap closure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valone, S. M.; Pilania, G.; Liu, X. Y.

    2015-11-14

    Capturing key electronic properties such as charge excitation gaps within models at or above the atomic scale presents an ongoing challenge to understanding molecular, nanoscale, and condensed phase systems. One strategy is to describe the system in terms of properties of interacting material fragments, but it is unclear how to accomplish this for charge-excitation and charge-transfer phenomena. Hamiltonian models such as the Hubbard model provide formal frameworks for analyzing gap properties but are couched purely in terms of states of electrons, rather than the states of the fragments at the scale of interest. The recently introduced Fragment Hamiltonian (FH) modelmore » uses fragments in different charge states as its building blocks, enabling a uniform, quantum-mechanical treatment that captures the charge-excitation gap. These gaps are preserved in terms of inter-fragment charge-transfer hopping integrals T and on-fragment parameters U{sup (FH)}. The FH model generalizes the standard Hubbard model (a single intra-band hopping integral t and on-site repulsion U) from quantum states for electrons to quantum states for fragments. We demonstrate that even for simple two-fragment and multi-fragment systems, gap closure is enabled once T exceeds the threshold set by U{sup (FH)}, thus providing new insight into the nature of metal-insulator transitions. This result is in contrast to the standard Hubbard model for 1d rings, for which Lieb and Wu proved that gap closure was impossible, regardless of the choices for t and U.« less

  18. Determination of the measurement threshold in gamma-ray spectrometry.

    PubMed

    Korun, M; Vodenik, B; Zorko, B

    2017-03-01

    In gamma-ray spectrometry the measurement threshold describes the lover boundary of the interval of peak areas originating in the response of the spectrometer to gamma-rays from the sample measured. In this sense it presents a generalization of the net indication corresponding to the decision threshold, which is the measurement threshold at the quantity value zero for a predetermined probability for making errors of the first kind. Measurement thresholds were determined for peaks appearing in the spectra of radon daughters 214 Pb and 214 Bi by measuring the spectrum 35 times under repeatable conditions. For the calculation of the measurement threshold the probability for detection of the peaks and the mean relative uncertainty of the peak area were used. The relative measurement thresholds, the ratios between the measurement threshold and the mean peak area uncertainty, were determined for 54 peaks where the probability for detection varied between some percent and about 95% and the relative peak area uncertainty between 30% and 80%. The relative measurement thresholds vary considerably from peak to peak, although the nominal value of the sensitivity parameter defining the sensitivity for locating peaks was equal for all peaks. At the value of the sensitivity parameter used, the peak analysis does not locate peaks corresponding to the decision threshold with the probability in excess of 50%. This implies that peaks in the spectrum may not be located, although the true value of the measurand exceeds the decision threshold. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Raised visual detection thresholds depend on the level of complexity of cognitive foveal loading.

    PubMed

    Plainis, S; Murray, I J; Chauhan, K

    2001-01-01

    The objective of the study was to measure the interactions between visual thresholds for a simple light (the secondary task) presented peripherally and a simultaneously performed cognitive task (the primary task) presented foveally The primary task was highly visible but varied according to its cognitive complexity. Interactions between the tasks were determined by measuring detection thresholds for the peripheral task and accuracy of performance of the foveal task. Effects were measured for 5, 10, 20, and 30 deg eccentricity of the peripherally presented light and for three levels of cognitive complexity. Mesopic conditions (0.5 lx) were used. As expected, the concurrent presentation of the foveal cognitive task reduced peripheral sensitivity. Moreover, performance of the foveal task was adversely affected when conducting the peripheral task. Performance on both tasks was reduced as the level of complexity of the cognitive task increased. There were qualitative differences in task interactions between the central 10 deg and at greater eccentricities. Within 10 deg there was a disproportionate effect of eccentricity, previously interpreted as the 'tunnel-vision' model of visual field narrowing. Interactions outside 10 deg were less affected by eccentricity. These results are discussed in terms of the known neurophysiological characteristics of the primary visual pathway.

  20. Threshold concepts: implications for the management of natural resources

    USGS Publications Warehouse

    Guntenspergen, Glenn R.; Gross, John

    2014-01-01

    Threshold concepts can have broad relevance in natural resource management. However, the concept of ecological thresholds has not been widely incorporated or adopted in management goals. This largely stems from the uncertainty revolving around threshold levels and the post hoc analyses that have generally been used to identify them. Natural resource managers have a need for new tools and approaches that will help them assess the existence and detection of conditions that demand management actions. Recognition of additional threshold concepts include: utility thresholds (which are based on human values about ecological systems) and decision thresholds (which reflect management objectives and values and include ecological knowledge about a system) as well as ecological thresholds. All of these concepts provide a framework for considering the use of threshold concepts in natural resource decision making.

  1. Clinical use of vestibular evoked myogenic potentials in the evaluation of patients with air-bone gaps.

    PubMed

    Zhou, Guangwei; Poe, Dennis; Gopen, Quinton

    2012-10-01

    To determine the value of vestibular evoked myogenic potential (VEMP) test in clinical evaluation of air-bone gaps. Retrospective case review. Tertiary referral center. A total of 120 patients underwent VEMP testing during clinical investigation of significant air-bone gaps in their audiograms. Otologic examination and surgeries, high-resolution computerized tomography (CT), air and bone audiometry, tympanometry, acoustic reflex, and VEMP test. Imaging studies demonstrating structural anomalies in the temporal bone. Audiologic outcomes of air-bone gaps and VEMP thresholds. Surgical findings confirming imaging results. Middle ear pathologies, such as otosclerosis and chronic otitis media, were identified in 50 patients, and all of them had absent VEMP responses elicited by air-conduction stimuli. Moreover, 13 of them had successful middle ear surgeries with closures of the air-bone gaps. Abnormally low VEMP thresholds were found in 71 of 73 ears with inner ear anomalies, such as semicircular canal dehiscence and enlarged vestibular aqueduct. Seven patients with superior semicircular canal dehiscence underwent plugging procedure via middle fossa approach, and VEMP thresholds became normalized after the surgery in 3 of them. VEMP test failed to provide accurate diagnosis in only 3 cases. Air-bone gaps may be a result of various otologic pathologies, and the VEMP test is useful during clinical evaluation, better than tympanometry and acoustic reflexes. To avoid unnecessary middle ear surgery for air-bone gaps with unknown or unsure cause, VEMP test should be used in the differential diagnosis before an expensive imaging study.

  2. Critical review and hydrologic application of threshold detection methods for the generalized Pareto (GP) distribution

    NASA Astrophysics Data System (ADS)

    Mamalakis, Antonios; Langousis, Andreas; Deidda, Roberto

    2016-04-01

    Estimation of extreme rainfall from data constitutes one of the most important issues in statistical hydrology, as it is associated with the design of hydraulic structures and flood water management. To that extent, based on asymptotic arguments from Extreme Excess (EE) theory, several studies have focused on developing new, or improving existing methods to fit a generalized Pareto (GP) distribution model to rainfall excesses above a properly selected threshold u. The latter is generally determined using various approaches, such as non-parametric methods that are intended to locate the changing point between extreme and non-extreme regions of the data, graphical methods where one studies the dependence of GP distribution parameters (or related metrics) on the threshold level u, and Goodness of Fit (GoF) metrics that, for a certain level of significance, locate the lowest threshold u that a GP distribution model is applicable. In this work, we review representative methods for GP threshold detection, discuss fundamental differences in their theoretical bases, and apply them to 1714 daily rainfall records from the NOAA-NCDC open-access database, with more than 110 years of data. We find that non-parametric methods that are intended to locate the changing point between extreme and non-extreme regions of the data are generally not reliable, while methods that are based on asymptotic properties of the upper distribution tail lead to unrealistically high threshold and shape parameter estimates. The latter is justified by theoretical arguments, and it is especially the case in rainfall applications, where the shape parameter of the GP distribution is low; i.e. on the order of 0.1 ÷ 0.2. Better performance is demonstrated by graphical methods and GoF metrics that rely on pre-asymptotic properties of the GP distribution. For daily rainfall, we find that GP threshold estimates range between 2÷12 mm/d with a mean value of 6.5 mm/d, while the existence of quantization in the

  3. Extreme sub-threshold swing in tunnelling relays

    NASA Astrophysics Data System (ADS)

    AbdelGhany, M.; Szkopek, T.

    2014-01-01

    We propose and analyze the theory of the tunnelling relay, a nanoscale active device in which tunnelling current is modulated by electromechanical actuation of a suspended membrane above a fixed electrode. The tunnelling current is modulated exponentially with vacuum gap length, permitting an extreme sub-threshold swing of ˜10 mV/decade breaking the thermionic limit. The predicted performance suggests that a significant reduction in dynamic energy consumption over conventional field effect transistors is physically achievable.

  4. A decay of gap junctions associated with ganglion cell differentiation during retinal regeneration of the adult newt.

    PubMed

    Oi, Hanako; Chiba, Chikafumi; Saito, Takehiko

    2003-12-01

    Changes in the gap junctional coupling and maturation of voltage-activated Na(+) currents during regeneration of newt retinas were examined by whole-cell patch-clamping in slice preparations. Progenitor cells in regenerating retinas did not exhibit Na(+) currents but showed prominent electrical and tracer couplings. Cells identified by LY-fills were typically slender. Na(+) currents were detected in premature ganglion cells with round somata in the 'intermediate-II' regenerating retina. No electrical and tracer couplings were observed between these cells. Mature ganglion cells did not exhibit electrical coupling, but showed tracer coupling. On average, the maximum Na(+) current amplitude recorded from premature ganglion cells was roughly 2.5-fold smaller than that of mature ganglion cells. In addition, the activation threshold of the Na(+) current was nearly 11 mV more positive than that of mature cells. We provide morphological and physiological evidence showing that loss of gap junctions between progenitor cells is associated with ganglion cell differentiation during retinal regeneration and that new gap junctions are recreated between mature ganglion cells. Also we provide evidence suggesting that the loss of gap junctions correlates with the appearance of voltage-activated Na(+) currents in ganglion cells.

  5. Corneal Mechanical Thresholds Negatively Associate With Dry Eye and Ocular Pain Symptoms

    PubMed Central

    Spierer, Oriel; Felix, Elizabeth R.; McClellan, Allison L.; Parel, Jean Marie; Gonzalez, Alex; Feuer, William J.; Sarantopoulos, Constantine D.; Levitt, Roy C.; Ehrmann, Klaus; Galor, Anat

    2016-01-01

    Purpose To examine associations between corneal mechanical thresholds and metrics of dry eye. Methods This was a cross-sectional study of individuals seen in the Miami Veterans Affairs eye clinic. The evaluation consisted of questionnaires regarding dry eye symptoms and ocular pain, corneal mechanical detection and pain thresholds, and a comprehensive ocular surface examination. The main outcome measures were correlations between corneal thresholds and signs and symptoms of dry eye and ocular pain. Results A total of 129 subjects participated in the study (mean age 64 ± 10 years). Mechanical detection and pain thresholds on the cornea correlated with age (Spearman's ρ = 0.26, 0.23, respectively; both P < 0.05), implying decreased corneal sensitivity with age. Dry eye symptom severity scores and Neuropathic Pain Symptom Inventory (modified for the eye) scores negatively correlated with corneal detection and pain thresholds (range, r = −0.13 to −0.27, P < 0.05 for values between −0.18 and −0.27), suggesting increased corneal sensitivity in those with more severe ocular complaints. Ocular signs, on the other hand, correlated poorly and nonsignificantly with mechanical detection and pain thresholds on the cornea. A multivariable linear regression model found that both posttraumatic stress disorder (PTSD) score (β = 0.21, SE = 0.03) and corneal pain threshold (β = −0.03, SE = 0.01) were significantly associated with self-reported evoked eye pain (pain to wind, light, temperature) and explained approximately 32% of measurement variability (R = 0.57). Conclusions Mechanical detection and pain thresholds measured on the cornea are correlated with dry eye symptoms and ocular pain. This suggests hypersensitivity within the corneal somatosensory pathways in patients with greater dry eye and ocular pain complaints. PMID:26886896

  6. Lowering thresholds for speed limit enforcement impairs peripheral object detection and increases driver subjective workload.

    PubMed

    Bowden, Vanessa K; Loft, Shayne; Tatasciore, Monica; Visser, Troy A W

    2017-01-01

    Speed enforcement reduces incidences of speeding, thus reducing traffic accidents. Accordingly, it has been argued that stricter speed enforcement thresholds could further improve road safety. Effective speed monitoring however requires driver attention and effort, and human information-processing capacity is limited. Emphasizing speed monitoring may therefore reduce resource availability for other aspects of safe vehicle operation. We investigated whether lowering enforcement thresholds in a simulator setting would introduce further competition for limited cognitive and visual resources. Eighty-four young adult participants drove under conditions where they could be fined for travelling 1, 6, or 11km/h over a 50km/h speed-limit. Stricter speed enforcement led to greater subjective workload and significant decrements in peripheral object detection. These data indicate that the benefits of reduced speeding with stricter enforcement may be at least partially offset by greater mental demands on drivers, reducing their responses to safety-critical stimuli on the road. It is likely these results under-estimate the impact of stricter speed enforcement on real-world drivers who experience significantly greater pressures to drive at or above the speed limit. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Optimizing the rapid measurement of detection thresholds in infants

    PubMed Central

    Jones, Pete R.; Kalwarowsky, Sarah; Braddick, Oliver J.; Atkinson, Janette; Nardini, Marko

    2015-01-01

    Accurate measures of perceptual threshold are difficult to obtain in infants. In a clinical context, the challenges are particularly acute because the methods must yield meaningful results quickly and within a single individual. The present work considers how best to maximize speed, accuracy, and reliability when testing infants behaviorally and suggests some simple principles for improving test efficiency. Monte Carlo simulations, together with empirical (visual acuity) data from 65 infants, are used to demonstrate how psychophysical methods developed with adults can produce misleading results when applied to infants. The statistical properties of an effective clinical infant test are characterized, and based on these, it is shown that (a) a reduced (false-positive) guessing rate can greatly increase test efficiency, (b) the ideal threshold to target is often below 50% correct, and (c) simply taking the max correct response can often provide the best measure of an infant's perceptual sensitivity. PMID:26237298

  8. Exploiting Sub-threshold and above-threshold characteristics in a silver-enhanced gold nanoparticle based biochip.

    PubMed

    Liu, Yang; Alocilja, Evangelyn; Chakrabartty, Shantanu

    2009-01-01

    Silver-enhanced labeling is a technique used in immunochromatographic assays for improving the sensitivity of pathogen detection. In this paper, we employ the silver enhancement approach for constructing a biomolecular transistor that uses a high-density interdigitated electrode to detect rabbit IgG. We show that the response of the biomolecular transistor comprises of: (a) a sub-threshold region where the conductance change is an exponential function of the enhancement time and; (b) an above-threshold region where the conductance change is a linear function with respect to the enhancement time. By exploiting both these regions of operation, it is shown that the silver enhancing time is a reliable indicator of the IgG concentration. The method provides a relatively straightforward alternative to biomolecular signal amplification techniques. The measured results using a biochip prototype fabricated in silicon show that 240 pg/mL rabbit IgG can be detected at the silver enhancing time of 42 min. Also, the biomolecular transistor is compatible with silicon based processing making it ideal for designing integrated CMOS biosensors.

  9. Reflecting on explanatory ability: A mechanism for detecting gaps in causal knowledge.

    PubMed

    Johnson, Dan R; Murphy, Meredith P; Messer, Riley M

    2016-05-01

    People frequently overestimate their understanding-with a particularly large blind-spot for gaps in their causal knowledge. We introduce a metacognitive approach to reducing overestimation, termed reflecting on explanatory ability (REA), which is briefly thinking about how well one could explain something in a mechanistic, step-by-step, causally connected manner. Nine experiments demonstrated that engaging in REA just before estimating one's understanding substantially reduced overestimation. Moreover, REA reduced overestimation with nearly the same potency as generating full explanations, but did so 20 times faster (although only for high complexity objects). REA substantially reduced overestimation by inducing participants to quickly evaluate an object's inherent causal complexity (Experiments 4-7). REA reduced overestimation by also fostering step-by-step, causally connected processing (Experiments 2 and 3). Alternative explanations for REA's effects were ruled out including a general conservatism account (Experiments 4 and 5) and a covert explanation account (Experiment 8). REA's overestimation-reduction effect generalized beyond objects (Experiments 1-8) to sociopolitical policies (Experiment 9). REA efficiently detects gaps in our causal knowledge with implications for improving self-directed learning, enhancing self-insight into vocational and academic abilities, and even reducing extremist attitudes. (c) 2016 APA, all rights reserved).

  10. 64 x 64 thresholding photodetector array for optical pattern recognition

    NASA Astrophysics Data System (ADS)

    Langenbacher, Harry; Chao, Tien-Hsin; Shaw, Timothy; Yu, Jeffrey W.

    1993-10-01

    A high performance 32 X 32 peak detector array is introduced. This detector consists of a 32 X 32 array of thresholding photo-transistor cells, manufactured with a standard MOSIS digital 2-micron CMOS process. A built-in thresholding function that is able to perform 1024 thresholding operations in parallel strongly distinguishes this chip from available CCD detectors. This high speed detector offers responses from one to 10 milliseconds that is much higher than the commercially available CCD detectors operating at a TV frame rate. The parallel multiple peaks thresholding detection capability makes it particularly suitable for optical correlator and optoelectronically implemented neural networks. The principle of operation, circuit design and the performance characteristics are described. Experimental demonstration of correlation peak detection is also provided. Recently, we have also designed and built an advanced version of a 64 X 64 thresholding photodetector array chip. Experimental investigation of using this chip for pattern recognition is ongoing.

  11. Low sensitivity of anion gap to detect clinically significant lactic acidosis in the emergency department.

    PubMed

    Xu, Q; HowlettClyne, S; Fuezery, A; Cembrowski, G S

    2017-12-01

    Lactic acidosis represents the pathologic accumulation of lactate and hydrogen ions. It is important to efficiently diagnose lactic acidosis as delayed treatment will lead to poor patient outcomes. As plasma lactate levels may not be rapidly available, some physicians may use elevated anion gaps to test for the need to measure lactate. All Edmonton metropolitan hospitals have Radiometer blood gas/electrolyte instruments in the ED or close by. As lactate is measured for each set of electrolytes, we were able to determine the effectiveness of a screening anion gap for lactic acidosis. Two years of emergency department lactates and electrolytes from Edmonton's 5 metropolitan hospitals were analyzed. We determined the sensitivity, specificity and positive predictive value of detecting an elevated lactate, defined as ≥2.5mmol/L or ≥4mmol/L. Depending on the elevated anion gap cut-off and the definition of elevated lactate, between 40-80% of elevated lactates are missed. In general, the positive predictive value approaches 40% for AGs ≥12mmol/L and 60% for AGs ≥16mmol/L. Anion gap is an inadequate marker of lactic acidosis. We recommend that lactate be done with each set of electrolytes and/or blood gases. In this way lactic acidosis will not be missed. Copyright © 2017. Published by Elsevier Inc.

  12. Wavelet-based adaptive thresholding method for image segmentation

    NASA Astrophysics Data System (ADS)

    Chen, Zikuan; Tao, Yang; Chen, Xin; Griffis, Carl

    2001-05-01

    A nonuniform background distribution may cause a global thresholding method to fail to segment objects. One solution is using a local thresholding method that adapts to local surroundings. In this paper, we propose a novel local thresholding method for image segmentation, using multiscale threshold functions obtained by wavelet synthesis with weighted detail coefficients. In particular, the coarse-to- fine synthesis with attenuated detail coefficients produces a threshold function corresponding to a high-frequency- reduced signal. This wavelet-based local thresholding method adapts to both local size and local surroundings, and its implementation can take advantage of the fast wavelet algorithm. We applied this technique to physical contaminant detection for poultry meat inspection using x-ray imaging. Experiments showed that inclusion objects in deboned poultry could be extracted at multiple resolutions despite their irregular sizes and uneven backgrounds.

  13. Voltage and pace-capture mapping of linear ablation lesions overestimates chronic ablation gap size.

    PubMed

    O'Neill, Louisa; Harrison, James; Chubb, Henry; Whitaker, John; Mukherjee, Rahul K; Bloch, Lars Ølgaard; Andersen, Niels Peter; Dam, Høgni; Jensen, Henrik K; Niederer, Steven; Wright, Matthew; O'Neill, Mark; Williams, Steven E

    2018-04-26

    Conducting gaps in lesion sets are a major reason for failure of ablation procedures. Voltage mapping and pace-capture have been proposed for intra-procedural identification of gaps. We aimed to compare gap size measured acutely and chronically post-ablation to macroscopic gap size in a porcine model. Intercaval linear ablation was performed in eight Göttingen minipigs with a deliberate gap of ∼5 mm left in the ablation line. Gap size was measured by interpolating ablation contact force values between ablation tags and thresholding at a low force cut-off of 5 g. Bipolar voltage mapping and pace-capture mapping along the length of the line were performed immediately, and at 2 months, post-ablation. Animals were euthanized and gap sizes were measured macroscopically. Voltage thresholds to define scar were determined by receiver operating characteristic analysis as <0.56 mV (acutely) and <0.62 mV (chronically). Taking the macroscopic gap size as gold standard, error in gap measurements were determined for voltage, pace-capture, and ablation contact force maps. All modalities overestimated chronic gap size, by 1.4 ± 2.0 mm (ablation contact force map), 5.1 ± 3.4 mm (pace-capture), and 9.5 ± 3.8 mm (voltage mapping). Error on ablation contact force map gap measurements were significantly less than for voltage mapping (P = 0.003, Tukey's multiple comparisons test). Chronically, voltage mapping and pace-capture mapping overestimated macroscopic gap size by 11.9 ± 3.7 and 9.8 ± 3.5 mm, respectively. Bipolar voltage and pace-capture mapping overestimate the size of chronic gap formation in linear ablation lesions. The most accurate estimation of chronic gap size was achieved by analysis of catheter-myocardium contact force during ablation.

  14. Real-Time Analysis of the Heart Rate Variability During Incremental Exercise for the Detection of the Ventilatory Threshold.

    PubMed

    Shiraishi, Yasuyuki; Katsumata, Yoshinori; Sadahiro, Taketaro; Azuma, Koichiro; Akita, Keitaro; Isobe, Sarasa; Yashima, Fumiaki; Miyamoto, Kazutaka; Nishiyama, Takahiko; Tamura, Yuichi; Kimura, Takehiro; Nishiyama, Nobuhiro; Aizawa, Yoshiyasu; Fukuda, Keiichi; Takatsuki, Seiji

    2018-01-07

    It has never been possible to immediately evaluate heart rate variability (HRV) during exercise. We aimed to visualize the real-time changes in the power spectrum of HRV during exercise and to investigate its relationship to the ventilatory threshold (VT). Thirty healthy subjects (29.1±5.7 years of age) and 35 consecutive patients (59.0±13.2 years of age) with myocardial infarctions underwent cardiopulmonary exercise tests with an RAMP protocol ergometer. The HRV was continuously assessed with power spectral analyses using the maximum entropy method and projected on a screen without delay. During exercise, a significant decrease in the high frequency (HF) was followed by a drastic shift in the power spectrum of the HRV with a periodic augmentation in the low frequency/HF (L/H) and steady low HF. When the HRV threshold (HRVT) was defined as conversion from a predominant high frequency (HF) to a predominant low frequency/HF (L/H), the VO 2 at the HRVT (HRVT-VO 2 ) was substantially correlated with the VO 2 at the lactate threshold and VT) in the healthy subjects ( r =0.853 and 0.921, respectively). The mean difference between each threshold (0.65 mL/kg per minute for lactate threshold and HRVT, 0.53 mL/kg per minute for VT and HRVT) was nonsignificant ( P >0.05). Furthermore, the HRVT-VO 2 was also correlated with the VT-VO 2 in these myocardial infarction patients ( r =0.867), and the mean difference was -0.72 mL/kg per minute and was nonsignificant ( P >0.05). A HRV analysis with our method enabled real-time visualization of the changes in the power spectrum during exercise. This can provide additional information for detecting the VT. © 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  15. A critique of the use of indicator-species scores for identifying thresholds in species responses

    USGS Publications Warehouse

    Cuffney, Thomas F.; Qian, Song S.

    2013-01-01

    Identification of ecological thresholds is important both for theoretical and applied ecology. Recently, Baker and King (2010, King and Baker 2010) proposed a method, threshold indicator analysis (TITAN), to calculate species and community thresholds based on indicator species scores adapted from Dufrêne and Legendre (1997). We tested the ability of TITAN to detect thresholds using models with (broken-stick, disjointed broken-stick, dose-response, step-function, Gaussian) and without (linear) definitive thresholds. TITAN accurately and consistently detected thresholds in step-function models, but not in models characterized by abrupt changes in response slopes or response direction. Threshold detection in TITAN was very sensitive to the distribution of 0 values, which caused TITAN to identify thresholds associated with relatively small differences in the distribution of 0 values while ignoring thresholds associated with large changes in abundance. Threshold identification and tests of statistical significance were based on the same data permutations resulting in inflated estimates of statistical significance. Application of bootstrapping to the split-point problem that underlies TITAN led to underestimates of the confidence intervals of thresholds. Bias in the derivation of the z-scores used to identify TITAN thresholds and skewedness in the distribution of data along the gradient produced TITAN thresholds that were much more similar than the actual thresholds. This tendency may account for the synchronicity of thresholds reported in TITAN analyses. The thresholds identified by TITAN represented disparate characteristics of species responses that, when coupled with the inability of TITAN to identify thresholds accurately and consistently, does not support the aggregation of individual species thresholds into a community threshold.

  16. Olfactory dysfunction affects thresholds to trigeminal chemosensory sensations.

    PubMed

    Frasnelli, J; Schuster, B; Hummel, T

    2010-01-14

    Next to olfaction and gustation, the trigeminal system represents a third chemosensory system. These senses are interconnected; a loss of olfactory function also leads to a reduced sensitivity in the trigeminal chemosensory system. However, most studies so far focused on comparing trigeminal sensitivity to suprathreshold stimuli; much less data is available with regard to trigeminal sensitivity in the perithreshold range. Therefore we assessed detection thresholds for CO(2), a relatively pure trigeminal stimulus in controls and in patients with olfactory dysfunction (OD). We could show that OD patients exhibit higher detection thresholds than controls. In addition, we were able to explore the effects of different etiologies of smell loss on trigeminal detection thresholds. We could show that in younger subjects, patients suffering from olfactory loss due to head trauma are more severely impaired with regard to their trigeminal sensitivity than patients with isolated congenital anosmia. In older patients, we could not observe any differences between different etiologies, probably due to the well known age-related decrease of trigeminal sensitivity. Furthermore we could show that a betterment of the OD was accompanied by decreased thresholds. This was most evident in patients with postviral OD. In conclusion, factors such as age, olfactory status and etiology of olfactory disorder can affect responsiveness to perithreshold trigeminal chemosensory stimuli. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  17. Guidelines for Adolescent Preventive Services: the GAPS in practice.

    PubMed

    Gadomski, Anne; Bennett, Shannon; Young, Margaret; Wissow, Lawrence S

    2003-05-01

    Pre- and post-Guidelines for Adolescent Preventive Services (GAPS) comparison of outcomes gathered via chart audit. A rural hospital-based general pediatric clinic. Adolescents who underwent annual examinations between April 1, 1998, and March 31, 2001. A random sample of 441 medical records was reviewed. Training in the GAPS model and use of the questionnaire began in April 1998. Detection of, discussion of, and referrals for GAPS-related risk behavior. The medical records of 162 younger adolescents (aged 11-15 years) and 279 older adolescents (aged 16-19 years) were audited. Detection of risk behaviors increased from 19% at baseline to 95% with the initial GAPS and 87% with the periodic GAPS. The most prevalent risk factor was having a rifle or gun in the home (younger adolescents, 47% and older adolescents, 39%). The mean number of risk behaviors and health concerns documented was higher in the initial GAPS (4.8 and 1.3, respectively) than in the periodic GAPS (3.8 and 0.7) (P =.01 and.006). The GAPS questionnaires detected lower levels of risk behavior compared with a local Youth Risk Behavior Survey. Controlling for sex, age, and clinician, discussion of psychosocial topics increased during the study period; however, there was considerable variation among clinicians regarding the topics addressed. The GAPS-related referral rate did not change significantly. The GAPS model increases clinicians' detection and discussion of risk behaviors.

  18. State of the Art in HIV Drug Resistance: Science and Technology Knowledge Gap.

    PubMed

    Boucher, Charles A; Bobkova, Marina R; Geretti, Anna Maria; Hung, Chien-Ching; Kaiser, Rolf; Marcelin, Anne-Geneviève; Streinu-Cercel, Adrian; van Wyk, Jean; Dorr, Pat; Vandamme, Anne-Mieke

    2018-01-01

    Resistance to antiretroviral therapy (ART) threatens the efficacy of human immunodeficiency virus type 1 (HIV-1) treatment. We present a review of knowledge gaps in the science and technologies of acquired HIV-1 drug resistance (HIVDR) in an effort to facilitate research, scientific exchange, and progress in clinical management. The expert authorship of this review convened to identify data gaps that exist in the field of HIVDR and discuss their clinical implications. A subsequent literature review of trials and current practices was carried out to provide supporting evidence. Several gaps were identified across HIVDR science and technology. A summary of the major gaps is presented, with an expert discussion of their implications within the context of the wider field. Crucial to optimizing the use of ART will be improved understanding of protease inhibitors and, in particular, integrase strand transfer inhibitors (INSTI) in the context of HIVDR. Limited experience with INSTI represents an important knowledge gap in HIV resistance science. Utilizing such knowledge in a clinical setting relies on accurate testing and analysis of resistance-associated mutations. As next-generation sequencing becomes more widely available, a gap in the interpretation of data is the lack of a defined, clinically relevant threshold of minority variants. Further research will provide evidence on where such thresholds lie and how they can be most effectively applied. Expert discussion identified a series of gaps in our knowledge of HIVDR. Addressing prefsuch gaps through further research and characterization will facilitate the optimal use of ART therapies and technologies.

  19. Auditory enhancement of visual perception at threshold depends on visual abilities.

    PubMed

    Caclin, Anne; Bouchet, Patrick; Djoulah, Farida; Pirat, Elodie; Pernier, Jacques; Giard, Marie-Hélène

    2011-06-17

    Whether or not multisensory interactions can improve detection thresholds, and thus widen the range of perceptible events is a long-standing debate. Here we revisit this question, by testing the influence of auditory stimuli on visual detection threshold, in subjects exhibiting a wide range of visual-only performance. Above the perceptual threshold, crossmodal interactions have indeed been reported to depend on the subject's performance when the modalities are presented in isolation. We thus tested normal-seeing subjects and short-sighted subjects wearing their usual glasses. We used a paradigm limiting potential shortcomings of previous studies: we chose a criterion-free threshold measurement procedure and precluded exogenous cueing effects by systematically presenting a visual cue whenever a visual target (a faint Gabor patch) might occur. Using this carefully controlled procedure, we found that concurrent sounds only improved visual detection thresholds in the sub-group of subjects exhibiting the poorest performance in the visual-only conditions. In these subjects, for oblique orientations of the visual stimuli (but not for vertical or horizontal targets), the auditory improvement was still present when visual detection was already helped with flanking visual stimuli generating a collinear facilitation effect. These findings highlight that crossmodal interactions are most efficient to improve perceptual performance when an isolated modality is deficient. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Gap formation following climatic events in spatially structured plant communities

    PubMed Central

    Liao, Jinbao; De Boeck, Hans J.; Li, Zhenqing; Nijs, Ivan

    2015-01-01

    Gaps play a crucial role in maintaining species diversity, yet how community structure and composition influence gap formation is still poorly understood. We apply a spatially structured community model to predict how species diversity and intraspecific aggregation shape gap patterns emerging after climatic events, based on species-specific mortality responses. In multispecies communities, average gap size and gap-size diversity increased rapidly with increasing mean mortality once a mortality threshold was exceeded, greatly promoting gap recolonization opportunity. This result was observed at all levels of species richness. Increasing interspecific difference likewise enhanced these metrics, which may promote not only diversity maintenance but also community invasibility, since more diverse niches for both local and exotic species are provided. The richness effects on gap size and gap-size diversity were positive, but only expressed when species were sufficiently different. Surprisingly, while intraspecific clumping strongly promoted gap-size diversity, it hardly influenced average gap size. Species evenness generally reduced gap metrics induced by climatic events, so the typical assumption of maximum evenness in many experiments and models may underestimate community diversity and invasibility. Overall, understanding the factors driving gap formation in spatially structured assemblages can help predict community secondary succession after climatic events. PMID:26114803

  1. A New Vegetation Segmentation Approach for Cropped Fields Based on Threshold Detection from Hue Histograms

    PubMed Central

    Hassanein, Mohamed; El-Sheimy, Naser

    2018-01-01

    Over the last decade, the use of unmanned aerial vehicle (UAV) technology has evolved significantly in different applications as it provides a special platform capable of combining the benefits of terrestrial and aerial remote sensing. Therefore, such technology has been established as an important source of data collection for different precision agriculture (PA) applications such as crop health monitoring and weed management. Generally, these PA applications depend on performing a vegetation segmentation process as an initial step, which aims to detect the vegetation objects in collected agriculture fields’ images. The main result of the vegetation segmentation process is a binary image, where vegetations are presented in white color and the remaining objects are presented in black. Such process could easily be performed using different vegetation indexes derived from multispectral imagery. Recently, to expand the use of UAV imagery systems for PA applications, it was important to reduce the cost of such systems through using low-cost RGB cameras Thus, developing vegetation segmentation techniques for RGB images is a challenging problem. The proposed paper introduces a new vegetation segmentation methodology for low-cost UAV RGB images, which depends on using Hue color channel. The proposed methodology follows the assumption that the colors in any agriculture field image can be distributed into vegetation and non-vegetations colors. Therefore, four main steps are developed to detect five different threshold values using the hue histogram of the RGB image, these thresholds are capable to discriminate the dominant color, either vegetation or non-vegetation, within the agriculture field image. The achieved results for implementing the proposed methodology showed its ability to generate accurate and stable vegetation segmentation performance with mean accuracy equal to 87.29% and standard deviation as 12.5%. PMID:29670055

  2. Extracellular voltage threshold settings can be tuned for optimal encoding of movement and stimulus parameters

    NASA Astrophysics Data System (ADS)

    Oby, Emily R.; Perel, Sagi; Sadtler, Patrick T.; Ruff, Douglas A.; Mischel, Jessica L.; Montez, David F.; Cohen, Marlene R.; Batista, Aaron P.; Chase, Steven M.

    2016-06-01

    Objective. A traditional goal of neural recording with extracellular electrodes is to isolate action potential waveforms of an individual neuron. Recently, in brain-computer interfaces (BCIs), it has been recognized that threshold crossing events of the voltage waveform also convey rich information. To date, the threshold for detecting threshold crossings has been selected to preserve single-neuron isolation. However, the optimal threshold for single-neuron identification is not necessarily the optimal threshold for information extraction. Here we introduce a procedure to determine the best threshold for extracting information from extracellular recordings. We apply this procedure in two distinct contexts: the encoding of kinematic parameters from neural activity in primary motor cortex (M1), and visual stimulus parameters from neural activity in primary visual cortex (V1). Approach. We record extracellularly from multi-electrode arrays implanted in M1 or V1 in monkeys. Then, we systematically sweep the voltage detection threshold and quantify the information conveyed by the corresponding threshold crossings. Main Results. The optimal threshold depends on the desired information. In M1, velocity is optimally encoded at higher thresholds than speed; in both cases the optimal thresholds are lower than are typically used in BCI applications. In V1, information about the orientation of a visual stimulus is optimally encoded at higher thresholds than is visual contrast. A conceptual model explains these results as a consequence of cortical topography. Significance. How neural signals are processed impacts the information that can be extracted from them. Both the type and quality of information contained in threshold crossings depend on the threshold setting. There is more information available in these signals than is typically extracted. Adjusting the detection threshold to the parameter of interest in a BCI context should improve our ability to decode motor intent

  3. Extracellular voltage threshold settings can be tuned for optimal encoding of movement and stimulus parameters

    PubMed Central

    Oby, Emily R; Perel, Sagi; Sadtler, Patrick T; Ruff, Douglas A; Mischel, Jessica L; Montez, David F; Cohen, Marlene R; Batista, Aaron P; Chase, Steven M

    2018-01-01

    Objective A traditional goal of neural recording with extracellular electrodes is to isolate action potential waveforms of an individual neuron. Recently, in brain–computer interfaces (BCIs), it has been recognized that threshold crossing events of the voltage waveform also convey rich information. To date, the threshold for detecting threshold crossings has been selected to preserve single-neuron isolation. However, the optimal threshold for single-neuron identification is not necessarily the optimal threshold for information extraction. Here we introduce a procedure to determine the best threshold for extracting information from extracellular recordings. We apply this procedure in two distinct contexts: the encoding of kinematic parameters from neural activity in primary motor cortex (M1), and visual stimulus parameters from neural activity in primary visual cortex (V1). Approach We record extracellularly from multi-electrode arrays implanted in M1 or V1 in monkeys. Then, we systematically sweep the voltage detection threshold and quantify the information conveyed by the corresponding threshold crossings. Main Results The optimal threshold depends on the desired information. In M1, velocity is optimally encoded at higher thresholds than speed; in both cases the optimal thresholds are lower than are typically used in BCI applications. In V1, information about the orientation of a visual stimulus is optimally encoded at higher thresholds than is visual contrast. A conceptual model explains these results as a consequence of cortical topography. Significance How neural signals are processed impacts the information that can be extracted from them. Both the type and quality of information contained in threshold crossings depend on the threshold setting. There is more information available in these signals than is typically extracted. Adjusting the detection threshold to the parameter of interest in a BCI context should improve our ability to decode motor intent, and

  4. Extracellular voltage threshold settings can be tuned for optimal encoding of movement and stimulus parameters.

    PubMed

    Oby, Emily R; Perel, Sagi; Sadtler, Patrick T; Ruff, Douglas A; Mischel, Jessica L; Montez, David F; Cohen, Marlene R; Batista, Aaron P; Chase, Steven M

    2016-06-01

    A traditional goal of neural recording with extracellular electrodes is to isolate action potential waveforms of an individual neuron. Recently, in brain-computer interfaces (BCIs), it has been recognized that threshold crossing events of the voltage waveform also convey rich information. To date, the threshold for detecting threshold crossings has been selected to preserve single-neuron isolation. However, the optimal threshold for single-neuron identification is not necessarily the optimal threshold for information extraction. Here we introduce a procedure to determine the best threshold for extracting information from extracellular recordings. We apply this procedure in two distinct contexts: the encoding of kinematic parameters from neural activity in primary motor cortex (M1), and visual stimulus parameters from neural activity in primary visual cortex (V1). We record extracellularly from multi-electrode arrays implanted in M1 or V1 in monkeys. Then, we systematically sweep the voltage detection threshold and quantify the information conveyed by the corresponding threshold crossings. The optimal threshold depends on the desired information. In M1, velocity is optimally encoded at higher thresholds than speed; in both cases the optimal thresholds are lower than are typically used in BCI applications. In V1, information about the orientation of a visual stimulus is optimally encoded at higher thresholds than is visual contrast. A conceptual model explains these results as a consequence of cortical topography. How neural signals are processed impacts the information that can be extracted from them. Both the type and quality of information contained in threshold crossings depend on the threshold setting. There is more information available in these signals than is typically extracted. Adjusting the detection threshold to the parameter of interest in a BCI context should improve our ability to decode motor intent, and thus enhance BCI control. Further, by sweeping

  5. Threshold units: A correct metric for reaction time?

    PubMed Central

    Zele, Andrew J.; Cao, Dingcai; Pokorny, Joel

    2007-01-01

    Purpose To compare reaction time (RT) to rod incremental and decremental stimuli expressed in physical contrast units or psychophysical threshold units. Methods Rod contrast detection thresholds and suprathreshold RTs were measured for Rapid-On and Rapid-Off ramp stimuli. Results Threshold sensitivity to Rapid-Off stimuli was higher than to Rapid-On stimuli. Suprathreshold RTs specified in Weber contrast for Rapid-Off stimuli were shorter than for Rapid-On stimuli. Reaction time data expressed in multiples of threshold reversed the outcomes: Reaction times for Rapid-On stimuli were shorter than those for Rapid-Off stimuli. The use of alternative contrast metrics also failed to equate RTs. Conclusions A case is made that the interpretation of RT data may be confounded when expressed in threshold units. Stimulus energy or contrast is the only metric common to the response characteristics of the cells underlying speeded responses. The use of threshold metrics for RT can confuse the interpretation of an underlying physiological process. PMID:17240416

  6. Coloring geographical threshold graphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradonjic, Milan; Percus, Allon; Muller, Tobias

    We propose a coloring algorithm for sparse random graphs generated by the geographical threshold graph (GTG) model, a generalization of random geometric graphs (RGG). In a GTG, nodes are distributed in a Euclidean space, and edges are assigned according to a threshold function involving the distance between nodes as well as randomly chosen node weights. The motivation for analyzing this model is that many real networks (e.g., wireless networks, the Internet, etc.) need to be studied by using a 'richer' stochastic model (which in this case includes both a distance between nodes and weights on the nodes). Here, we analyzemore » the GTG coloring algorithm together with the graph's clique number, showing formally that in spite of the differences in structure between GTG and RGG, the asymptotic behavior of the chromatic number is identical: {chi}1n 1n n / 1n n (1 + {omicron}(1)). Finally, we consider the leading corrections to this expression, again using the coloring algorithm and clique number to provide bounds on the chromatic number. We show that the gap between the lower and upper bound is within C 1n n / (1n 1n n){sup 2}, and specify the constant C.« less

  7. Evidence for the contribution of a threshold retrieval process to semantic memory.

    PubMed

    Kempnich, Maria; Urquhart, Josephine A; O'Connor, Akira R; Moulin, Chris J A

    2017-10-01

    It is widely held that episodic retrieval can recruit two processes: a threshold context retrieval process (recollection) and a continuous signal strength process (familiarity). Conversely the processes recruited during semantic retrieval are less well specified. We developed a semantic task analogous to single-item episodic recognition to interrogate semantic recognition receiver-operating characteristics (ROCs) for a marker of a threshold retrieval process. We fitted observed ROC points to three signal detection models: two models typically used in episodic recognition (unequal variance and dual-process signal detection models) and a novel dual-process recollect-to-reject (DP-RR) signal detection model that allows a threshold recollection process to aid both target identification and lure rejection. Given the nature of most semantic questions, we anticipated the DP-RR model would best fit the semantic task data. Experiment 1 (506 participants) provided evidence for a threshold retrieval process in semantic memory, with overall best fits to the DP-RR model. Experiment 2 (316 participants) found within-subjects estimates of episodic and semantic threshold retrieval to be uncorrelated. Our findings add weight to the proposal that semantic and episodic memory are served by similar dual-process retrieval systems, though the relationship between the two threshold processes needs to be more fully elucidated.

  8. The winter gap effect in methane leak detection and repair with optical gas imaging cameras

    NASA Astrophysics Data System (ADS)

    Fox, T. A.; Barchyn, T.; Hugenholtz, C.

    2017-12-01

    Implementing effective leak detection and repair (LDAR) programs is essential for mitigating fugitive methane emissions from oil and gas operations. In Canada, newly proposed regulations will require that high-risk facilities be surveyed 3 times/yr for fugitive leaks. Like the United States, Canada promotes the use of Optical Gas Imaging cameras (OGIs) for detecting natural gas leaks during LDAR surveys. However, recent research suggests OGIs may perform poorly under adverse environmental conditions, especially in low temperatures. For regions like Canada that experience cold winters, OGIs may not be reliably used for months at a time, meaning that leaks may accumulate and emit for longer periods before being repaired. While considerable oil and gas activity occurs in high-latitude regions with cold winters, no research has explored how extended cold periods impact OGI-focused LDAR programs. To improve this understanding, we present a simple model exploring relationships among winter gap length, fugitive methane emissions, and investment input for LDAR programs employing OGI instruments in gas producing regions of different latitudes. Preliminary results suggest that longer gaps between LDAR surveys caused by cold temperatures result in either 1) higher total emissions for the year, or 2) greater time and equipment investment in LDAR programs to achieve emissions mitigation equivalent to LDAR programs operating under ideal conditions. When weather constraints are removed and LDAR surveys are evenly spaced throughout the year, emissions mitigation is optimized. However, as the winter gap duration and the size of the implicated area increases, fugitive leaks last longer. Furthermore, a spillover effect is observed as LDAR crews become overwhelmed with the high volume of work required as temperatures increase in the spring. Our model adds weight to the argument that LDAR programs should be tailored to regional needs, and that regulators should be more cognisant of

  9. Comparison of Threshold Detection Methods for the Generalized Pareto Distribution (GPD): Application to the NOAA-NCDC Daily Rainfall Dataset

    NASA Astrophysics Data System (ADS)

    Deidda, Roberto; Mamalakis, Antonis; Langousis, Andreas

    2015-04-01

    One of the most crucial issues in statistical hydrology is the estimation of extreme rainfall from data. To that extent, based on asymptotic arguments from Extreme Excess (EE) theory, several studies have focused on developing new, or improving existing methods to fit a Generalized Pareto Distribution (GPD) model to rainfall excesses above a properly selected threshold u. The latter is generally determined using various approaches that can be grouped into three basic classes: a) non-parametric methods that locate the changing point between extreme and non-extreme regions of the data, b) graphical methods where one studies the dependence of the GPD parameters (or related metrics) to the threshold level u, and c) Goodness of Fit (GoF) metrics that, for a certain level of significance, locate the lowest threshold u that a GPD model is applicable. In this work, we review representative methods for GPD threshold detection, discuss fundamental differences in their theoretical bases, and apply them to daily rainfall records from the NOAA-NCDC open-access database (http://www.ncdc.noaa.gov/oa/climate/ghcn-daily/). We find that non-parametric methods that locate the changing point between extreme and non-extreme regions of the data are generally not reliable, while graphical methods and GoF metrics that rely on limiting arguments for the upper distribution tail lead to unrealistically high thresholds u. The latter is expected, since one checks the validity of the limiting arguments rather than the applicability of a GPD distribution model. Better performance is demonstrated by graphical methods and GoF metrics that rely on GPD properties. Finally, we discuss the effects of data quantization (common in hydrologic applications) on the estimated thresholds. Acknowledgments: The research project is implemented within the framework of the Action «Supporting Postdoctoral Researchers» of the Operational Program "Education and Lifelong Learning" (Action's Beneficiary: General

  10. The effects of visual scenes on roll and pitch thresholds in pilots versus nonpilots.

    PubMed

    Otakeno, Shinji; Matthews, Roger S J; Folio, Les; Previc, Fred H; Lessard, Charles S

    2002-02-01

    Previous studies have indicated that, compared with nonpilots, pilots rely more on vision than "seat-of-the-pants" sensations when presented with visual-vestibular conflict. The objective of this study was to evaluate whether pilots and nonpilots differ in their thresholds for tilt perception while viewing visual scenes depicting simulated flight. This study was conducted in the Advanced Spatial Disorientation Demonstrator (ASDD) at Brooks AFB, TX. There were 14 subjects (7 pilots and 7 nonpilots) who recorded tilt detection thresholds in pitch and roll while exposed to sub-threshold movement in each axis. During each test run, subjects were presented with computer-generated visual scenes depicting accelerating forward flight by day or night, and a blank (control) condition. The only significant effect detected by an analysis of variance (ANOVA) was that all subjects were more sensitive to tilt in roll than in pitch [F (2,24) = 18.96, p < 0.001]. Overall, pilots had marginally higher tilt detection thresholds compared with nonpilots (p = 0.055), but the type of visual scene had no significant effect on thresholds. In this study, pilots did not demonstrate greater visual dominance over vestibular and proprioceptive cues than nonpilots, but appeared to have higher pitch and roll thresholds overall. The finding of significantly lower detection thresholds in the roll axis vs. the pitch axis was an incidental finding for both subject groups.

  11. The effect of signal duration on the underwater detection thresholds of a harbor porpoise (Phocoena phocoena) for single frequency-modulated tonal signals between 0.25 and 160 kHz.

    PubMed

    Kastelein, Ronald A; Hoek, Lean; de Jong, Christ A F; Wensveen, Paul J

    2010-11-01

    The underwater hearing sensitivity of a young male harbor porpoise for tonal signals of various signal durations was quantified by using a behavioral psychophysical technique. The animal was trained to respond only when it detected an acoustic signal. Fifty percent detection thresholds were obtained for tonal signals (15 frequencies between 0.25-160 kHz, durations 0.5-5000 ms depending on the frequency; 134 frequency-duration combinations in total). Detection thresholds were quantified by varying signal amplitude by the 1-up 1-down staircase method. The hearing thresholds increased when the signal duration fell below the time constant of integration. The time constants, derived from an exponential model of integration [Plomp and Bouman, J. Acoust. Soc. Am. 31, 749-758 (1959)], varied from 629 ms at 2 kHz to 39 ms at 64 kHz. The integration times of the porpoises were similar to those of other mammals including humans, even though the porpoise is a marine mammal and a hearing specialist. The results enable more accurate estimations of the distances at which porpoises can detect short-duration environmental tonal signals. The audiogram thresholds presented by Kastelein et al. [J. Acoust. Soc. Am. 112, 334-344 (2002)], after correction for the frequency bandwidth of the FM signals, are similar to the results of the present study for signals of 1500 ms duration. Harbor porpoise hearing is more sensitive between 2 and 10 kHz, and less sensitive above 10 kHz, than formerly believed.

  12. Optimum threshold selection method of centroid computation for Gaussian spot

    NASA Astrophysics Data System (ADS)

    Li, Xuxu; Li, Xinyang; Wang, Caixia

    2015-10-01

    Centroid computation of Gaussian spot is often conducted to get the exact position of a target or to measure wave-front slopes in the fields of target tracking and wave-front sensing. Center of Gravity (CoG) is the most traditional method of centroid computation, known as its low algorithmic complexity. However both electronic noise from the detector and photonic noise from the environment reduces its accuracy. In order to improve the accuracy, thresholding is unavoidable before centroid computation, and optimum threshold need to be selected. In this paper, the model of Gaussian spot is established to analyze the performance of optimum threshold under different Signal-to-Noise Ratio (SNR) conditions. Besides, two optimum threshold selection methods are introduced: TmCoG (using m % of the maximum intensity of spot as threshold), and TkCoG ( usingμn +κσ n as the threshold), μn and σn are the mean value and deviation of back noise. Firstly, their impact on the detection error under various SNR conditions is simulated respectively to find the way to decide the value of k or m. Then, a comparison between them is made. According to the simulation result, TmCoG is superior over TkCoG for the accuracy of selected threshold, and detection error is also lower.

  13. Multi-thresholds for fault isolation in the presence of uncertainties.

    PubMed

    Touati, Youcef; Mellal, Mohamed Arezki; Benazzouz, Djamel

    2016-05-01

    Monitoring of the faults is an important task in mechatronics. It involves the detection and isolation of faults which are performed by using the residuals. These residuals represent numerical values that define certain intervals called thresholds. In fact, the fault is detected if the residuals exceed the thresholds. In addition, each considered fault must activate a unique set of residuals to be isolated. However, in the presence of uncertainties, false decisions can occur due to the low sensitivity of certain residuals towards faults. In this paper, an efficient approach to make decision on fault isolation in the presence of uncertainties is proposed. Based on the bond graph tool, the approach is developed in order to generate systematically the relations between residuals and faults. The generated relations allow the estimation of the minimum detectable and isolable fault values. The latter is used to calculate the thresholds of isolation for each residual. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  14. Image overlay solution based on threshold detection for a compact near infrared fluorescence goggle system

    NASA Astrophysics Data System (ADS)

    Gao, Shengkui; Mondal, Suman B.; Zhu, Nan; Liang, RongGuang; Achilefu, Samuel; Gruev, Viktor

    2015-01-01

    Near infrared (NIR) fluorescence imaging has shown great potential for various clinical procedures, including intraoperative image guidance. However, existing NIR fluorescence imaging systems either have a large footprint or are handheld, which limits their usage in intraoperative applications. We present a compact NIR fluorescence imaging system (NFIS) with an image overlay solution based on threshold detection, which can be easily integrated with a goggle display system for intraoperative guidance. The proposed NFIS achieves compactness, light weight, hands-free operation, high-precision superimposition, and a real-time frame rate. In addition, the miniature and ultra-lightweight light-emitting diode tracking pod is easy to incorporate with NIR fluorescence imaging. Based on experimental evaluation, the proposed NFIS solution has a lower detection limit of 25 nM of indocyanine green at 27 fps and realizes a highly precise image overlay of NIR and visible images of mice in vivo. The overlay error is limited within a 2-mm scale at a 65-cm working distance, which is highly reliable for clinical study and surgical use.

  15. Atlantic bottlenose dolphin (Tursiops truncatus) hearing threshold for brief broadband signals.

    PubMed

    Au, Whitlow W L; Lemonds, David W; Vlachos, Stephanie; Nachtigall, Paul E; Roitblat, Herbert L

    2002-06-01

    The hearing sensitivity of an Atlantic bottlenose dolphin (Tursiops truncatus) to both pure tones and broadband signals simulating echoes from a 7.62-cm water-filled sphere was measured. Pure tones with frequencies between 40 and 140 kHz in increments of 20 kHz were measured along with broadband thresholds using a stimulus with a center frequency of 97.3 kHz and 88.2 kHz. The pure-tone thresholds were compared with the broadband thresholds by converting the pure-tone threshold intensity to energy flux density. The results indicated that dolphins can detect broadband signals slightly better than a pure-tone signal. The broadband results suggest that an echolocating bottlenose dolphin should be able to detect a 7.62-cm diameter water-filled sphere out to a range of 178 m in a quiet environment.

  16. Anomalous three-dimensional bulk ac conduction within the Kondo gap of SmB 6 single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laurita, N. J.; Morris, C. M.; Koohpayeh, S. M.

    The Kondo insulator SmB 6 has long been known to display anomalous transport behavior at low temperatures, T < 5 K. In this temperatures range, a plateau is observed in the dc resistivity, contrary to the exponential divergence expected for a gapped system. Some recent theoretical calculations suggest that SmB 6 may be the first topological Kondo insulator (TKI) and propose that the residual conductivity is due to topological surface states which reside within the Kondo gap. Since the TKI prediction many experiments have claimed to observe high mobility surface states within a perfectly insulating hybridization gap. We investigate themore » low energy optical conductivity within the hybridization gap of single crystals of SmB 6 via time domain terahertz spectroscopy. Samples grown by both optical floating zone and aluminum flux methods are investigated to probe for differences originating from sample growth techniques. We find that both samples display significant three-dimensional bulk conduction originating within the Kondo gap. Although SmB 6 may be a bulk dc insulator, it shows significant bulk ac conduction that is many orders of magnitude larger than any known impurity band conduction. The nature of these in-gap states and their coupling with the low energy spin excitons of SmB 6 is discussed. In addition, the well-defined conduction path geometry of our optical experiments allows us to show that any surface states, which lie below our detection threshold if present, must have a sheet resistance of R / square ≥ 1000 Ω .« less

  17. Anomalous three-dimensional bulk ac conduction within the Kondo gap of SmB 6 single crystals

    DOE PAGES

    Laurita, N. J.; Morris, C. M.; Koohpayeh, S. M.; ...

    2016-10-21

    The Kondo insulator SmB 6 has long been known to display anomalous transport behavior at low temperatures, T < 5 K. In this temperatures range, a plateau is observed in the dc resistivity, contrary to the exponential divergence expected for a gapped system. Some recent theoretical calculations suggest that SmB 6 may be the first topological Kondo insulator (TKI) and propose that the residual conductivity is due to topological surface states which reside within the Kondo gap. Since the TKI prediction many experiments have claimed to observe high mobility surface states within a perfectly insulating hybridization gap. We investigate themore » low energy optical conductivity within the hybridization gap of single crystals of SmB 6 via time domain terahertz spectroscopy. Samples grown by both optical floating zone and aluminum flux methods are investigated to probe for differences originating from sample growth techniques. We find that both samples display significant three-dimensional bulk conduction originating within the Kondo gap. Although SmB 6 may be a bulk dc insulator, it shows significant bulk ac conduction that is many orders of magnitude larger than any known impurity band conduction. The nature of these in-gap states and their coupling with the low energy spin excitons of SmB 6 is discussed. In addition, the well-defined conduction path geometry of our optical experiments allows us to show that any surface states, which lie below our detection threshold if present, must have a sheet resistance of R / square ≥ 1000 Ω .« less

  18. Detection of micro gap weld joint by using magneto-optical imaging and Kalman filtering compensated with RBF neural network

    NASA Astrophysics Data System (ADS)

    Gao, Xiangdong; Chen, Yuquan; You, Deyong; Xiao, Zhenlin; Chen, Xiaohui

    2017-02-01

    An approach for seam tracking of micro gap weld whose width is less than 0.1 mm based on magneto optical (MO) imaging technique during butt-joint laser welding of steel plates is investigated. Kalman filtering(KF) technology with radial basis function(RBF) neural network for weld detection by an MO sensor was applied to track the weld center position. Because the laser welding system process noises and the MO sensor measurement noises were colored noises, the estimation accuracy of traditional KF for seam tracking was degraded by the system model with extreme nonlinearities and could not be solved by the linear state-space model. Also, the statistics characteristics of noises could not be accurately obtained in actual welding. Thus, a RBF neural network was applied to the KF technique to compensate for the weld tracking errors. The neural network can restrain divergence filter and improve the system robustness. In comparison of traditional KF algorithm, the RBF with KF was not only more effectively in improving the weld tracking accuracy but also reduced noise disturbance. Experimental results showed that magneto optical imaging technique could be applied to detect micro gap weld accurately, which provides a novel approach for micro gap seam tracking.

  19. Detecting sign-changing superconducting gap in LiFeAs using quasiparticle interference

    NASA Astrophysics Data System (ADS)

    Altenfeld, D.; Hirschfeld, P. J.; Mazin, I. I.; Eremin, I.

    2018-02-01

    Using a realistic ten-orbital tight-binding model Hamiltonian fitted to the angle-resolved photoemission spectroscopy data on LiFeAs, we analyze the temperature, frequency, and momentum dependencies of quasiparticle interference to identify gap sign changes in a qualitative way, following our original proposal [Phys. Rev. B 92, 184513 (2015), 10.1103/PhysRevB.92.184513]. We show that all features present for the simple two-band model for the sign-changing s+--wave superconducting gap employed previously are still present in the realistic tight-binding approximation and gap values observed experimentally. We discuss various superconducting gap structures proposed for LiFeAs and identify various features of these superconducting gap functions in the quasiparticle interference patterns. On the other hand, we show that it will be difficult to identify the more complicated possible sign structures of the hole pocket gaps in LiFeAs due to the smallness of the pockets and the near proximity of two of the gap energies.

  20. Effect of Electron Seeding on Experimentally Measured Multipactor Discharge Threshold

    NASA Astrophysics Data System (ADS)

    Noland, Jonathan; Graves, Timothy; Lemon, Colby; Looper, Mark; Farkas, Alex

    2012-10-01

    Multipactor is a vacuum phenomenon in which electrons, moving in resonance with an externally applied electric field, impact material surfaces. If the number of secondary electrons created per primary electron impact averages more than unity, the resonant interaction can lead to an electron avalanche. Multipactor is a generally undesirable phenomenon, as it can cause local heating, absorb power, or cause detuning of RF circuits. In order to increase the probability of multipactor initiation, test facilities often employ various seeding sources such as radioactive sources (Cesium 137, Strontium 90), electron guns, or photon sources. Even with these sources, the voltage for multipactor initiation is not certain as parameters such as material type, RF pulse length, and device wall thickness can all affect seed electron flux and energy in critical gap regions, and hence the measured voltage threshold. This study investigates the effects of seed electron source type (e.g., photons versus beta particles), material type, gap size, and RF pulse length variation on multipactor threshold. In addition to the experimental work, GEANT4 simulations will be used to estimate the production rate of low energy electrons (< 5 keV) by high energy electrons and photons. A comparison of the experimental fluxes to the typical energetic photon and particle fluxes experienced by spacecraft in various orbits will also be made. Initial results indicate that for a simple, parallel plate device made of aluminum, there is no threshold variation (with seed electrons versus with no seed electrons) under continuous-wave RF exposure.

  1. Comparisons of Fatty Acid Taste Detection Thresholds in People Who Are Lean vs. Overweight or Obese: A Systematic Review and Meta-Analysis.

    PubMed

    Tucker, Robin M; Kaiser, Kathryn A; Parman, Mariel A; George, Brandon J; Allison, David B; Mattes, Richard D

    2017-01-01

    Given the increasing evidence that supports the ability of humans to taste non-esterified fatty acids (NEFA), recent studies have sought to determine if relationships exist between oral sensitivity to NEFA (measured as thresholds), food intake and obesity. Published findings suggest there is either no association or an inverse association. A systematic review and meta-analysis was conducted to determine if differences in fatty acid taste sensitivity or intensity ratings exist between individuals who are lean or obese. A total of 7 studies that reported measurement of taste sensations to non-esterified fatty acids by psychophysical methods (e.g.,studies using model systems rather than foods, detection thresholds as measured by a 3-alternative forced choice ascending methodology were included in the meta-analysis. Two other studies that measured intensity ratings to graded suprathreshold NEFA concentrations were evaluated qualitatively. No significant differences in fatty acid taste thresholds or intensity were observed. Thus, differences in fatty acid taste sensitivity do not appear to precede or result from obesity.

  2. Absolute auditory threshold: testing the absolute.

    PubMed

    Heil, Peter; Matysiak, Artur

    2017-11-02

    The mechanisms underlying the detection of sounds in quiet, one of the simplest tasks for auditory systems, are debated. Several models proposed to explain the threshold for sounds in quiet and its dependence on sound parameters include a minimum sound intensity ('hard threshold'), below which sound has no effect on the ear. Also, many models are based on the assumption that threshold is mediated by integration of a neural response proportional to sound intensity. Here, we test these ideas. Using an adaptive forced choice procedure, we obtained thresholds of 95 normal-hearing human ears for 18 tones (3.125 kHz carrier) in quiet, each with a different temporal amplitude envelope. Grand-mean thresholds and standard deviations were well described by a probabilistic model according to which sensory events are generated by a Poisson point process with a low rate in the absence, and higher, time-varying rates in the presence, of stimulation. The subject actively evaluates the process and bases the decision on the number of events observed. The sound-driven rate of events is proportional to the temporal amplitude envelope of the bandpass-filtered sound raised to an exponent. We find no evidence for a hard threshold: When the model is extended to include such a threshold, the fit does not improve. Furthermore, we find an exponent of 3, consistent with our previous studies and further challenging models that are based on the assumption of the integration of a neural response that, at threshold sound levels, is directly proportional to sound amplitude or intensity. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  3. Are all intertidal wetlands naturally created equal? Bottlenecks, thresholds and knowledge gaps to mangrove and saltmarsh ecosystems

    USGS Publications Warehouse

    Friess, Daniel A.; Krauss, Ken W.; Horstman, Erik M.; Balke, Thorsten; Bouma, Tjeerd J.; Galli, Demis; Webb, Edward L.

    2011-01-01

    Intertidal wetlands such as saltmarshes and mangroves provide numerous important ecological functions, though they are in rapid and global decline. To better conserve and restore these wetland ecosystems, we need an understanding of the fundamental natural bottlenecks and thresholds to their establishment and long-term ecological maintenance. Despite inhabiting similar intertidal positions, the biological traits of these systems differ markedly in structure, phenology, life history, phylogeny and dispersal, suggesting large differences in biophysical interactions. By providing the first systematic comparison between saltmarshes and mangroves, we unravel how the interplay between species-specific life-history traits, biophysical interactions and biogeomorphological feedback processes determine where, when and what wetland can establish, the thresholds to long-term ecosystem stability, and constraints to genetic connectivity between intertidal wetland populations at the landscape level. To understand these process interactions, research into the constraints to wetland development, and biological adaptations to overcome these critical bottlenecks and thresholds requires a truly interdisciplinary approach.

  4. Band gaps and Brekhovskikh attenuation of laser-generated surface acoustic waves in a patterned thin film structure on silicon

    NASA Astrophysics Data System (ADS)

    Maznev, A. A.

    2008-10-01

    Surface acoustic modes of a periodic array of copper and SiO2 lines on a silicon substrate are studied using a laser-induced transient grating technique. It is found that the band gap formed inside the Brillouin zone due to “avoided crossing” of Rayleigh and Sezawa modes is much greater than the band gap in the Rayleigh wave dispersion formed at the zone boundary. Another unexpected finding is that a very strong periodicity-induced attenuation is observed above the longitudinal threshold rather than above the transverse threshold.

  5. Single speckle SRS threshold as determined by electron trapping, collisions and speckle duration

    NASA Astrophysics Data System (ADS)

    Rose, Harvey; Daughton, William; Yin, Lin; Langdon, Bruce

    2008-11-01

    Speckle SRS intensity threshold has been shown to increase with spatial dimension, D, because both diffraction and trapped electron escape rate increase with D, though the net effect is to substantially decrease the threshold compared to 1D linear gain calculations. On the other hand, the apparent threshold appears to decrease with integration time in PIC simulations. We present an optimum nonlinearly resonant calculation of the SRS threshold, taking into account large fluctuations of the SRS seed reflectivity, R0. Such fluctuations, absent in 1D, are caused by a gap in the linear reflectivity gain spectrum which leads to an exponential probability distribution for R0. While the SRS threshold intensity is of course finite, these fluctuations lead to a decrease of apparent threshold with increasing speckle lifetime. L. Yin et al., Physics of Plasmas 15, 013109 (2008). D. S. Montgomery et al., 9, 2311(2002). Bruce Langdon et al., 38^th Anomalous Absorption Conference (2008). Harvey A. Rose, Physics of Plasmas 10, 1468 (2003). Harvey A. Rose and L. Yin, Physics of Plasmas 15, 042311 (2008)., Harvey A. Rose and David A. Russell, Phys. Plasma 8, 4784 (2001).

  6. Comparison of salt taste thresholds and salt usage behaviours between adults in Myanmar and Korea.

    PubMed

    Cho, Hyungjin; Kim, So Mi; Jeong, Seong Su; Kim, Soon Bae

    2016-12-01

    Excessive oral salt intake can induce hypertension. According to previous studies, the prevalence of hypertension is higher in Myanmar than in Korea. We postulated that Myanmar adults had higher salt taste thresholds and eat much saltier food. This study aimed to compare salt taste thresholds and salt usage behaviour scores between adults in Myanmar and Korea. This cross-sectional study enrolled patients who visited volunteer medical service clinics at Ansung in Korea and Hlegu and Bago in Myanmar in August 2014. We measured the vital signs, heights, and weights of each patient and evaluated detection thresholds, recognition thresholds, and salt preferences. All patients underwent urinalysis and spot urine Na tests. Additionally, they each completed a salt usage behaviour questionnaire. A total of 131 patients were enrolled, including 64 Myanmarese patients and 67 Korean patients. Blood pressure was significantly higher in the Myanmarese than in the Koreans. Detection and recognition thresholds, salt preferences, and spot urine sodium and salt usage behaviour scores were also higher in the Myanmarese than in the Korean subjects. We calculated correlation coefficients between systolic blood pressure and parameters that were related to salt intake. The detection and recognition thresholds were significantly correlated with systolic blood pressure. All parameters related to salt intake, including detection and recognition thresholds, salt preference, salt usage behaviour scores and spot urine sodium concentrations, are significantly higher in Myanmarese than in Korean individuals.

  7. Effect of density of localized states on the ovonic threshold switching characteristics of the amorphous GeSe films

    NASA Astrophysics Data System (ADS)

    Ahn, Hyung-Woo; Seok Jeong, Doo; Cheong, Byung-ki; Lee, Hosuk; Lee, Hosun; Kim, Su-dong; Shin, Sang-Yeol; Kim, Donghwan; Lee, Suyoun

    2013-07-01

    We investigated the effect of nitrogen (N) doping on the threshold voltage of an ovonic threshold switching device using amorphous GeSe. Using the spectroscopic ellipsometry, we found that the addition of N brought about significant changes in electronic structure of GeSe, such as the density of localized states and the band gap energy. Besides, it was observed that the characteristics of OTS devices strongly depended on the doping of N, which could be attributed to those changes in electronic structure suggesting a method to modulate the threshold voltage of the device.

  8. Correlation of Superior Canal Dehiscence Surface Area With Vestibular Evoked Myogenic Potentials, Audiometric Thresholds, and Dizziness Handicap.

    PubMed

    Hunter, Jacob B; O'Connell, Brendan P; Wang, Jianing; Chakravorti, Srijata; Makowiec, Katie; Carlson, Matthew L; Dawant, Benoit; McCaslin, Devin L; Noble, Jack H; Wanna, George B

    2016-09-01

    To correlate objective measures of vestibular and audiometric function as well as subjective measures of dizziness handicap with the surface area of the superior canal dehiscence (SCD). Retrospective chart review and radiological analysis. Single tertiary academic referral center. Preoperative computed tomography imaging, patient survey, audiometric thresholds, and vestibular evoked myogenic potential (VEMP) testing in patients with confirmed SCD. Image analysis techniques were developed to measure the surface area of each SCD in computed tomography imaging. Preoperative ocular and cervical VEMPs, air and bone conduction thresholds, air-bone gap, dizziness handicap inventory scores, and surface area of the SCD. Fifty-three patients (mean age 52.7 yr) with 84 SCD were analyzed. The median surface area of dehiscence was 1.44 mm (0.068-8.23 mm). Ocular VEMP amplitudes (r = 0.61, p <0.0001), cervical VEMP amplitudes (r = 0.62, p <0.0001), air conduction thresholds at 250 Hz (r = 0.25, p = 0.043), and air-bone gap at 500 Hz (r = 0.27, p = 0.01) positively correlated with increasing size of dehiscence. An inverse relationship between cervical VEMP thresholds (r = -0.56, p < 0.0001) and surface area of the dehiscence was observed. No association between dizziness handicap and surface area was identified. Among patients with confirmed SCD, ocular and cervical VEMP amplitudes, cervical VEMP thresholds, and air conduction thresholds at 250 Hz are significantly correlated with the surface area of the dehiscence.

  9. Monolayer semiconductor nanocavity lasers with ultralow thresholds.

    PubMed

    Wu, Sanfeng; Buckley, Sonia; Schaibley, John R; Feng, Liefeng; Yan, Jiaqiang; Mandrus, David G; Hatami, Fariba; Yao, Wang; Vučković, Jelena; Majumdar, Arka; Xu, Xiaodong

    2015-04-02

    Engineering the electromagnetic environment of a nanometre-scale light emitter by use of a photonic cavity can significantly enhance its spontaneous emission rate, through cavity quantum electrodynamics in the Purcell regime. This effect can greatly reduce the lasing threshold of the emitter, providing a low-threshold laser system with small footprint, low power consumption and ultrafast modulation. An ultralow-threshold nanoscale laser has been successfully developed by embedding quantum dots into a photonic crystal cavity (PCC). However, several challenges impede the practical application of this architecture, including the random positions and compositional fluctuations of the dots, extreme difficulty in current injection, and lack of compatibility with electronic circuits. Here we report a new lasing strategy: an atomically thin crystalline semiconductor--that is, a tungsten diselenide monolayer--is non-destructively and deterministically introduced as a gain medium at the surface of a pre-fabricated PCC. A continuous-wave nanolaser operating in the visible regime is thereby achieved with an optical pumping threshold as low as 27 nanowatts at 130 kelvin, similar to the value achieved in quantum-dot PCC lasers. The key to the lasing action lies in the monolayer nature of the gain medium, which confines direct-gap excitons to within one nanometre of the PCC surface. The surface-gain geometry gives unprecedented accessibility and hence the ability to tailor gain properties via external controls such as electrostatic gating and current injection, enabling electrically pumped operation. Our scheme is scalable and compatible with integrated photonics for on-chip optical communication technologies.

  10. Monolayer semiconductor nanocavity lasers with ultralow thresholds

    NASA Astrophysics Data System (ADS)

    Wu, Sanfeng; Buckley, Sonia; Schaibley, John R.; Feng, Liefeng; Yan, Jiaqiang; Mandrus, David G.; Hatami, Fariba; Yao, Wang; Vučković, Jelena; Majumdar, Arka; Xu, Xiaodong

    2015-04-01

    Engineering the electromagnetic environment of a nanometre-scale light emitter by use of a photonic cavity can significantly enhance its spontaneous emission rate, through cavity quantum electrodynamics in the Purcell regime. This effect can greatly reduce the lasing threshold of the emitter, providing a low-threshold laser system with small footprint, low power consumption and ultrafast modulation. An ultralow-threshold nanoscale laser has been successfully developed by embedding quantum dots into a photonic crystal cavity (PCC). However, several challenges impede the practical application of this architecture, including the random positions and compositional fluctuations of the dots, extreme difficulty in current injection, and lack of compatibility with electronic circuits. Here we report a new lasing strategy: an atomically thin crystalline semiconductor--that is, a tungsten diselenide monolayer--is non-destructively and deterministically introduced as a gain medium at the surface of a pre-fabricated PCC. A continuous-wave nanolaser operating in the visible regime is thereby achieved with an optical pumping threshold as low as 27 nanowatts at 130 kelvin, similar to the value achieved in quantum-dot PCC lasers. The key to the lasing action lies in the monolayer nature of the gain medium, which confines direct-gap excitons to within one nanometre of the PCC surface. The surface-gain geometry gives unprecedented accessibility and hence the ability to tailor gain properties via external controls such as electrostatic gating and current injection, enabling electrically pumped operation. Our scheme is scalable and compatible with integrated photonics for on-chip optical communication technologies.

  11. Evaluation of thresholding techniques for segmenting scaffold images in tissue engineering

    NASA Astrophysics Data System (ADS)

    Rajagopalan, Srinivasan; Yaszemski, Michael J.; Robb, Richard A.

    2004-05-01

    Tissue engineering attempts to address the ever widening gap between the demand and supply of organ and tissue transplants using natural and biomimetic scaffolds. The regeneration of specific tissues aided by synthetic materials is dependent on the structural and morphometric properties of the scaffold. These properties can be derived non-destructively using quantitative analysis of high resolution microCT scans of scaffolds. Thresholding of the scanned images into polymeric and porous phase is central to the outcome of the subsequent structural and morphometric analysis. Visual thresholding of scaffolds produced using stochastic processes is inaccurate. Depending on the algorithmic assumptions made, automatic thresholding might also be inaccurate. Hence there is a need to analyze the performance of different techniques and propose alternate ones, if needed. This paper provides a quantitative comparison of different thresholding techniques for segmenting scaffold images. The thresholding algorithms examined include those that exploit spatial information, locally adaptive characteristics, histogram entropy information, histogram shape information, and clustering of gray-level information. The performance of different techniques was evaluated using established criteria, including misclassification error, edge mismatch, relative foreground error, and region non-uniformity. Algorithms that exploit local image characteristics seem to perform much better than those using global information.

  12. Relative threshold of detection of active arterial bleeding: in vitro comparison of MDCT and digital subtraction angiography.

    PubMed

    Roy-Choudhury, Shuvro H; Gallacher, David J; Pilmer, John; Rankin, Sheila; Fowler, Geoff; Steers, Jeff; Dourado, Renato; Woodburn, Paul; Adam, Andreas

    2007-11-01

    The objective of our study was to determine the relative sensitivity and the lowest threshold of bleeding detectable with digital subtraction angiography (DSA) and with MDCT using an in vitro physiologic system. A closed pulsatile cardiopulmonary bypass circuit was connected to tubes traversing a water bath to simulate the abdominal aorta and inferior vena cava. Three smaller interconnecting acrylic plastic tubes were connected as branches to the aortic tubing to simulate branch vessels. One of the three tubes, the control, had no holes in it, one had a 100-microm hole, and one had a 280-microm hole. The leakage rates were predetermined with a cardiac output of 2 and 4 L/min and with a mean arterial pressure (MAP) ranging from 30 to 100 mm Hg for each hole size. The following studies were performed for each of the predetermined leakage rates. For study 1, 16-MDCT was performed using bolus tracking after 35 mL of contrast medium had been injected into a simulated peripheral vein. For study 2, DSA was performed using a 4-French straight catheter placed 10 cm proximal to the holes (selective first aortic branch cannulation). For study 3, DSA was performed with a catheter placed in the small branch at the site of the hole (highly superselective). For study 4, 16-MDCT was performed with a catheter placed as in study 2, 10 cm proximal to the holes, for the detection of lower leakage rates. Cine loops of MDCT and DSA images were examined by two blinded observers to detect extravasation from the holes in the tubes (i.e., the branch arteries). Interobserver agreement was studied using Cohen's kappa statistic. The threshold to detect bleeding was as follows for each study: For IV contrast-enhanced MDCT (study 1), it was 0.35 mL/min; DSA with a catheter 10 cm proximal to the holes (study 2), 0.96 mL/min; DSA with a catheter at the holes (study 3), 0.05 mL/min [corrected] or lower; and intraarterial selective MDCT (study 4), 0.05 mL/min [corrected] or lower. The ease of

  13. Disorder induced gap states as a cause of threshold voltage instabilities in Al2O3/AlGaN/GaN metal-oxide-semiconductor high-electron-mobility transistors

    NASA Astrophysics Data System (ADS)

    Matys, M.; Kaneki, S.; Nishiguchi, K.; Adamowicz, B.; Hashizume, T.

    2017-12-01

    We proposed that the disorder induced gap states (DIGS) can be responsible for the threshold voltage (Vth) instability in Al2O3/AlGaN/GaN metal-oxide-semiconductor high-electron-mobility transistors. In order to verify this hypothesis, we performed the theoretical calculations of the capacitance voltage (C-V) curves for the Al2O3/AlGaN/GaN structures using the DIGS model and compared them with measured ones. We found that the experimental C-V curves with a complex hysteresis behavior varied with the maximum forward bias and the sweeping rate can be well reproduced theoretically by assuming a particular distribution in energy and space of the DIGS continuum near the Al2O3/AlGaN interface, i.e., a U-shaped energy density distribution and exponential depth decay from the interface into Al2O3 layer (up to 4 nm), as well as suitable DIGS capture cross sections (the order of magnitude of 10-15 cm2). Finally, we showed that the DIGS model can also explain the negative bias induced threshold voltage instability. We believe that these results should be critical for the successful development of the passivation techniques, which allows to minimize the Vth instability related effects.

  14. Effects of Temperature on the Histotripsy Intrinsic Threshold for Cavitation.

    PubMed

    Vlaisavljevich, Eli; Xu, Zhen; Maxwell, Adam; Mancia, Lauren; Zhang, Xi; Lin, Kuang-Wei; Duryea, Alexander; Sukovich, Jonathan; Hall, Tim; Johnsen, Eric; Cain, Charles

    2016-05-10

    Histotripsy is an ultrasound ablation method that depends on the initiation of a dense cavitation bubble cloud to fractionate soft tissue. Previous work has demonstrated that a cavitation cloud can be formed by a single acoustic pulse with one high amplitude negative cycle, when the negative pressure amplitude exceeds a threshold intrinsic to the medium. The intrinsic thresholds in soft tissues and tissue phantoms that are water-based are similar to the intrinsic threshold of water over an experimentally verified frequency range of 0.3-3 MHz. Previous work studying the histotripsy intrinsic threshold has been limited to experiments performed at room temperature (~20°C). In this study, we investigate the effects of temperature on the histotripsy intrinsic threshold in water, which is essential to accurately predict the intrinsic thresholds expected over the full range of in vivo therapeutic temperatures. Based on previous work studying the histotripsy intrinsic threshold and classical nucleation theory, we hypothesize that the intrinsic threshold will decrease with increasing temperature. To test this hypothesis, the intrinsic threshold in water was investigated both experimentally and theoretically. The probability of generating cavitation bubbles was measured by applying a single pulse with one high amplitude negative cycle at 1 MHz to distilled, degassed water at temperatures ranging from 10°C-90°C. Cavitation was detected and characterized by passive cavitation detection and high-speed photography, from which the probability of cavitation was measured vs. pressure amplitude. The results indicate that the intrinsic threshold (the negative pressure at which the cavitation probability=0.5) significantly decreases with increasing temperature, showing a nearly linear decreasing trend from 29.8±0.4 MPa at 10˚C to 14.9±1.4 MPa at 90˚C. Overall, the results of this study support our hypothesis that the intrinsic threshold is highly dependent upon the temperature

  15. Effects of Temperature on the Histotripsy Intrinsic Threshold for Cavitation

    PubMed Central

    Vlaisavljevich, Eli; Xu, Zhen; Maxwell, Adam; Mancia, Lauren; Zhang, Xi; Lin, Kuang-Wei; Duryea, Alexander; Sukovich, Jonathan; Hall, Tim; Johnsen, Eric; Cain, Charles

    2018-01-01

    Histotripsy is an ultrasound ablation method that depends on the initiation of a dense cavitation bubble cloud to fractionate soft tissue. Previous work has demonstrated that a cavitation cloud can be formed by a single acoustic pulse with one high amplitude negative cycle, when the negative pressure amplitude exceeds a threshold intrinsic to the medium. The intrinsic thresholds in soft tissues and tissue phantoms that are water-based are similar to the intrinsic threshold of water over an experimentally verified frequency range of 0.3–3 MHz. Previous work studying the histotripsy intrinsic threshold has been limited to experiments performed at room temperature (~ 20°C). In this study, we investigate the effects of temperature on the histotripsy intrinsic threshold in water, which is essential to accurately predict the intrinsic thresholds expected over the full range of in vivo therapeutic temperatures. Based on previous work studying the histotripsy intrinsic threshold and classical nucleation theory, we hypothesize that the intrinsic threshold will decrease with increasing temperature. To test this hypothesis, the intrinsic threshold in water was investigated both experimentally and theoretically. The probability of generating cavitation bubbles was measured by applying a single pulse with one high amplitude negative cycle at 1 MHz to distilled, degassed water at temperatures ranging from 10°C–90°C. Cavitation was detected and characterized by passive cavitation detection and high-speed photography, from which the probability of cavitation was measured vs. pressure amplitude. The results indicate that the intrinsic threshold (the negative pressure at which the cavitation probability = 0.5) significantly decreases with increasing temperature, showing a nearly linear decreasing trend from 29.8±0.4 MPa at 10°C to 14.9±1.4 MPa at 90°C. Overall, the results of this study support our hypothesis that the intrinsic threshold is highly dependent upon the

  16. Automated cortical auditory evoked potentials threshold estimation in neonates.

    PubMed

    Oliveira, Lilian Sanches; Didoné, Dayane Domeneghini; Durante, Alessandra Spada

    2018-02-02

    The evaluation of Cortical Auditory Evoked Potential has been the focus of scientific studies in infants. Some authors have reported that automated response detection is effective in exploring these potentials in infants, but few have reported their efficacy in the search for thresholds. To analyze the latency, amplitude and thresholds of Cortical Auditory Evoked Potential using an automatic response detection device in a neonatal population. This is a cross-sectional, observational study. Cortical Auditory Evoked Potentials were recorded in response to pure-tone stimuli of the frequencies 500, 1000, 2000 and 4000Hz presented in an intensity range between 0 and 80dB HL using a single channel recording. P1 was performed in an exclusively automated fashion, using Hotelling's T 2 statistical test. The latency and amplitude were obtained manually by three examiners. The study comprised 39 neonates up to 28 days old of both sexes with presence of otoacoustic emissions and no risk factors for hearing loss. With the protocol used, Cortical Auditory Evoked Potential responses were detected in all subjects at high intensity and thresholds. The mean thresholds were 24.8±10.4dB NA, 25±9.0dB NA, 28±7.8dB NA and 29.4±6.6dB HL for 500, 1000, 2000 and 4000Hz, respectively. Reliable responses were obtained in the assessment of cortical auditory potentials in the neonates assessed with a device for automatic response detection. Copyright © 2018 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  17. Label-free okadaic acid detection using growth of gold nanoparticles in sensor gaps as a conductive tag.

    PubMed

    Pan, Yuxiang; Wan, Zijian; Zhong, Longjie; Li, Xueqin; Wu, Qi; Wang, Jun; Wang, Ping

    2017-06-01

    Okadaic acid (OA) is a marine toxin ingested by shellfish. In this work, a simple, sensitive and label-free gap-based electrical competitive bioassay has been developed for this biotoxin detection. The gap-electrical biosensor is constructed by modifying interdigitated microelectrodes with gold nanoparticles (AuNPs) and using the self-catalytic growth of AuNPs as conductive bridges. In this development, the AuNPs growth is realized in the solution of glucose and chloroauric acid, with glucose oxidation used as the catalysis for growth of the AuNPs. The catalytic reaction product H 2 O 2 in turn reduces chloroauric acid to make the AuNPs grow. The conductance signal amplification is directly determined by the growth efficiency of AuNPs and closely related to the catalytic activity of AuNPs upon their interaction with OA molecule and OA aptamer. In the absence of OA molecule, the OA aptamer can absorb onto the surfaces of AuNPs due to electrostatic interaction, and the catalytically active sites of AuNPs are fully blocked. Thus the AuNPs growth would not happen. In contrast, the presence of OA molecule can hinder the interaction of OA aptamer and AuNPs. Then the AuNPs sites are exposed and the catalytic growth induces the conductance signal change. The results demonstrated that developed biosensor was able to specifically respond to OA ranging from 5 ppb to 80 ppb, providing limit of detection of 1 ppb. The strategy is confirmed to be effective for OA detection, which indicates the label-free OA biosensor has great potential to offer promising alternatives to the traditional analytical and immunological methods for OA detection.

  18. A comparative analysis of frequency modulation threshold extension techniques

    NASA Technical Reports Server (NTRS)

    Arndt, G. D.; Loch, F. J.

    1970-01-01

    FM threshold extension for system performance improvement, comparing impulse noise elimination, correlation detection and delta modulation signal processing techniques implemented at demodulator output

  19. Developing Bayesian adaptive methods for estimating sensitivity thresholds (d′) in Yes-No and forced-choice tasks

    PubMed Central

    Lesmes, Luis A.; Lu, Zhong-Lin; Baek, Jongsoo; Tran, Nina; Dosher, Barbara A.; Albright, Thomas D.

    2015-01-01

    Motivated by Signal Detection Theory (SDT), we developed a family of novel adaptive methods that estimate the sensitivity threshold—the signal intensity corresponding to a pre-defined sensitivity level (d′ = 1)—in Yes-No (YN) and Forced-Choice (FC) detection tasks. Rather than focus stimulus sampling to estimate a single level of %Yes or %Correct, the current methods sample psychometric functions more broadly, to concurrently estimate sensitivity and decision factors, and thereby estimate thresholds that are independent of decision confounds. Developed for four tasks—(1) simple YN detection, (2) cued YN detection, which cues the observer's response state before each trial, (3) rated YN detection, which incorporates a Not Sure response, and (4) FC detection—the qYN and qFC methods yield sensitivity thresholds that are independent of the task's decision structure (YN or FC) and/or the observer's subjective response state. Results from simulation and psychophysics suggest that 25 trials (and sometimes less) are sufficient to estimate YN thresholds with reasonable precision (s.d. = 0.10–0.15 decimal log units), but more trials are needed for FC thresholds. When the same subjects were tested across tasks of simple, cued, rated, and FC detection, adaptive threshold estimates exhibited excellent agreement with the method of constant stimuli (MCS), and with each other. These YN adaptive methods deliver criterion-free thresholds that have previously been exclusive to FC methods. PMID:26300798

  20. Drop short control of electrode gap

    DOEpatents

    Fisher, Robert W.; Maroone, James P.; Tipping, Donald W.; Zanner, Frank J.

    1986-01-01

    During vacuum consumable arc remelting the electrode gap between a consumable electrode and a pool of molten metal is difficult to control. The present invention monitors drop shorts by detecting a decrease in the voltage between the consumable electrode and molten pool. The drop shorts and their associated voltage reductions occur as repetitive pulses which are closely correlated to the electrode gap. Thus, the method and apparatus of the present invention controls electrode gap based upon drop shorts detected from the monitored anode-cathode voltage. The number of drop shorts are accumulated, and each time the number of drop shorts reach a predetermined number, the average period between drop shorts is calculated from this predetermined number and the time in which this number is accumulated. This average drop short period is used in a drop short period electrode gap model which determines the actual electrode gap from the drop short. The actual electrode gap is then compared with a desired electrode gap which is selected to produce optimum operating conditions and the velocity of the consumable error is varied based upon the gap error. The consumable electrode is driven according to any prior art system at this velocity. In the preferred embodiment, a microprocessor system is utilized to perform the necessary calculations and further to monitor the duration of each drop short. If any drop short exceeds a preset duration period, the consumable electrode is rapidly retracted a predetermined distance to prevent bonding of the consumable electrode to the molten remelt.

  1. Fluctuation scaling in the visual cortex at threshold

    NASA Astrophysics Data System (ADS)

    Medina, José M.; Díaz, José A.

    2016-05-01

    Fluctuation scaling relates trial-to-trial variability to the average response by a power function in many physical processes. Here we address whether fluctuation scaling holds in sensory psychophysics and its functional role in visual processing. We report experimental evidence of fluctuation scaling in human color vision and form perception at threshold. Subjects detected thresholds in a psychophysical masking experiment that is considered a standard reference for studying suppression between neurons in the visual cortex. For all subjects, the analysis of threshold variability that results from the masking task indicates that fluctuation scaling is a global property that modulates detection thresholds with a scaling exponent that departs from 2, β =2.48 ±0.07 . We also examine a generalized version of fluctuation scaling between the sample kurtosis K and the sample skewness S of threshold distributions. We find that K and S are related and follow a unique quadratic form K =(1.19 ±0.04 ) S2+(2.68 ±0.06 ) that departs from the expected 4/3 power function regime. A random multiplicative process with weak additive noise is proposed based on a Langevin-type equation. The multiplicative process provides a unifying description of fluctuation scaling and the quadratic S -K relation and is related to on-off intermittency in sensory perception. Our findings provide an insight into how the human visual system interacts with the external environment. The theoretical methods open perspectives for investigating fluctuation scaling and intermittency effects in a wide variety of natural, economic, and cognitive phenomena.

  2. Mechanisms of myocardial capture and temporal excitable gap during spiral wave reentry in a bidomain model.

    PubMed

    Ashihara, Takashi; Namba, Tsunetoyo; Ikeda, Takanori; Ito, Makoto; Nakazawa, Kazuo; Trayanova, Natalia

    2004-02-24

    Recent studies have demonstrated that regional capture during cardiac fibrillation is associated with an elevated capture threshold. It is typically assumed that the temporal excitable gap (capture window) during fibrillation reflects the size of the spatial excitable gap (excitable tissue between fibrillation waves). Because capture threshold is high, virtual electrode polarization is expected to be involved in the process. However, little is known about the underlying mechanisms of myocardial capture during fibrillation. To clarify these issues, we conducted altogether 3168 simulations of single spiral wave capture in a bidomain sheet. Unipolar stimuli of strengths 4, 8, 16, and 24 mA and 2-ms duration were delivered at 99 locations in the sheet. We found that cathode-break rather than cathode-make excitation was the dominant mechanism of myocardial capture. When the stimulation site was located diagonally with respect to the core (upper left or lower right if the spiral wave rotates counterclockwise), the cathode-break excitation easily invaded the spatial excitable gap and resulted in a successful capture as a result of the formation of virtual anodes in the direction of the myocardial fibers. Thus, the spatial distribution of the temporal excitable gap did not reflect the spatial excitable gap. The areas exhibiting wide temporal excitable gaps were areas in which the cathode-break excitation wave fronts easily invaded the spatial excitable gap via the virtual anodes. This study provides mechanistic insight into myocardial capture.

  3. HMMER Cut-off Threshold Tool (HMMERCTTER): Supervised classification of superfamily protein sequences with a reliable cut-off threshold.

    PubMed

    Pagnuco, Inti Anabela; Revuelta, María Victoria; Bondino, Hernán Gabriel; Brun, Marcel; Ten Have, Arjen

    2018-01-01

    Protein superfamilies can be divided into subfamilies of proteins with different functional characteristics. Their sequences can be classified hierarchically, which is part of sequence function assignation. Typically, there are no clear subfamily hallmarks that would allow pattern-based function assignation by which this task is mostly achieved based on the similarity principle. This is hampered by the lack of a score cut-off that is both sensitive and specific. HMMER Cut-off Threshold Tool (HMMERCTTER) adds a reliable cut-off threshold to the popular HMMER. Using a high quality superfamily phylogeny, it clusters a set of training sequences such that the cluster-specific HMMER profiles show cluster or subfamily member detection with 100% precision and recall (P&R), thereby generating a specific threshold as inclusion cut-off. Profiles and thresholds are then used as classifiers to screen a target dataset. Iterative inclusion of novel sequences to groups and the corresponding HMMER profiles results in high sensitivity while specificity is maintained by imposing 100% P&R self detection. In three presented case studies of protein superfamilies, classification of large datasets with 100% precision was achieved with over 95% recall. Limits and caveats are presented and explained. HMMERCTTER is a promising protein superfamily sequence classifier provided high quality training datasets are used. It provides a decision support system that aids in the difficult task of sequence function assignation in the twilight zone of sequence similarity. All relevant data and source codes are available from the Github repository at the following URL: https://github.com/BBCMdP/HMMERCTTER.

  4. HMMER Cut-off Threshold Tool (HMMERCTTER): Supervised classification of superfamily protein sequences with a reliable cut-off threshold

    PubMed Central

    Pagnuco, Inti Anabela; Revuelta, María Victoria; Bondino, Hernán Gabriel; Brun, Marcel

    2018-01-01

    Background Protein superfamilies can be divided into subfamilies of proteins with different functional characteristics. Their sequences can be classified hierarchically, which is part of sequence function assignation. Typically, there are no clear subfamily hallmarks that would allow pattern-based function assignation by which this task is mostly achieved based on the similarity principle. This is hampered by the lack of a score cut-off that is both sensitive and specific. Results HMMER Cut-off Threshold Tool (HMMERCTTER) adds a reliable cut-off threshold to the popular HMMER. Using a high quality superfamily phylogeny, it clusters a set of training sequences such that the cluster-specific HMMER profiles show cluster or subfamily member detection with 100% precision and recall (P&R), thereby generating a specific threshold as inclusion cut-off. Profiles and thresholds are then used as classifiers to screen a target dataset. Iterative inclusion of novel sequences to groups and the corresponding HMMER profiles results in high sensitivity while specificity is maintained by imposing 100% P&R self detection. In three presented case studies of protein superfamilies, classification of large datasets with 100% precision was achieved with over 95% recall. Limits and caveats are presented and explained. Conclusions HMMERCTTER is a promising protein superfamily sequence classifier provided high quality training datasets are used. It provides a decision support system that aids in the difficult task of sequence function assignation in the twilight zone of sequence similarity. All relevant data and source codes are available from the Github repository at the following URL: https://github.com/BBCMdP/HMMERCTTER. PMID:29579071

  5. Evaluation of a Change Detection Methodology by Means of Binary Thresholding Algorithms and Informational Fusion Processes

    PubMed Central

    Molina, Iñigo; Martinez, Estibaliz; Arquero, Agueda; Pajares, Gonzalo; Sanchez, Javier

    2012-01-01

    Landcover is subject to continuous changes on a wide variety of temporal and spatial scales. Those changes produce significant effects in human and natural activities. Maintaining an updated spatial database with the occurred changes allows a better monitoring of the Earth’s resources and management of the environment. Change detection (CD) techniques using images from different sensors, such as satellite imagery, aerial photographs, etc., have proven to be suitable and secure data sources from which updated information can be extracted efficiently, so that changes can also be inventoried and monitored. In this paper, a multisource CD methodology for multiresolution datasets is applied. First, different change indices are processed, then different thresholding algorithms for change/no_change are applied to these indices in order to better estimate the statistical parameters of these categories, finally the indices are integrated into a change detection multisource fusion process, which allows generating a single CD result from several combination of indices. This methodology has been applied to datasets with different spectral and spatial resolution properties. Then, the obtained results are evaluated by means of a quality control analysis, as well as with complementary graphical representations. The suggested methodology has also been proved efficiently for identifying the change detection index with the higher contribution. PMID:22737023

  6. Evaluation of a change detection methodology by means of binary thresholding algorithms and informational fusion processes.

    PubMed

    Molina, Iñigo; Martinez, Estibaliz; Arquero, Agueda; Pajares, Gonzalo; Sanchez, Javier

    2012-01-01

    Landcover is subject to continuous changes on a wide variety of temporal and spatial scales. Those changes produce significant effects in human and natural activities. Maintaining an updated spatial database with the occurred changes allows a better monitoring of the Earth's resources and management of the environment. Change detection (CD) techniques using images from different sensors, such as satellite imagery, aerial photographs, etc., have proven to be suitable and secure data sources from which updated information can be extracted efficiently, so that changes can also be inventoried and monitored. In this paper, a multisource CD methodology for multiresolution datasets is applied. First, different change indices are processed, then different thresholding algorithms for change/no_change are applied to these indices in order to better estimate the statistical parameters of these categories, finally the indices are integrated into a change detection multisource fusion process, which allows generating a single CD result from several combination of indices. This methodology has been applied to datasets with different spectral and spatial resolution properties. Then, the obtained results are evaluated by means of a quality control analysis, as well as with complementary graphical representations. The suggested methodology has also been proved efficiently for identifying the change detection index with the higher contribution.

  7. Finding Platinum-Coating Gaps On Titanium Anodes

    NASA Technical Reports Server (NTRS)

    Bodemeijer, Ronnald; Flowers, Cecil E.

    1990-01-01

    Simple procedure makes gaps visible to eye. New gap-detection method consists of plating thin layer of non-silver-colored metal like copper or gold on anode. Contrast in color between plated metal and bare anode material makes gaps stand out. If anode passes inspection, copper or gold plate removable by reversal of test-plating current. Remains to be determined whether test plating and removal damages anode. New method simpler and more economical than previous attempts to identify gaps in platinum.

  8. Computational gestalts and perception thresholds.

    PubMed

    Desolneux, Agnès; Moisan, Lionel; Morel, Jean-Michel

    2003-01-01

    In 1923, Max Wertheimer proposed a research programme and method in visual perception. He conjectured the existence of a small set of geometric grouping laws governing the perceptual synthesis of phenomenal objects, or "gestalt" from the atomic retina input. In this paper, we review this set of geometric grouping laws, using the works of Metzger, Kanizsa and their schools. In continuation, we explain why the Gestalt theory research programme can be translated into a Computer Vision programme. This translation is not straightforward, since Gestalt theory never addressed two fundamental matters: image sampling and image information measurements. Using these advances, we shall show that gestalt grouping laws can be translated into quantitative laws allowing the automatic computation of gestalts in digital images. From the psychophysical viewpoint, a main issue is raised: the computer vision gestalt detection methods deliver predictable perception thresholds. Thus, we are set in a position where we can build artificial images and check whether some kind of agreement can be found between the computationally predicted thresholds and the psychophysical ones. We describe and discuss two preliminary sets of experiments, where we compared the gestalt detection performance of several subjects with the predictable detection curve. In our opinion, the results of this experimental comparison support the idea of a much more systematic interaction between computational predictions in Computer Vision and psychophysical experiments.

  9. Improvement of the Mutation-Discrimination Threshold for Rare Point Mutations by a Separation-Free Ligase Detection Reaction Assay Based on Fluorescence Resonance Energy Transfer.

    PubMed

    Hagihara, Kenta; Tsukagoshi, Kazuhiko; Nakajima, Chinami; Esaki, Shinsuke; Hashimoto, Masahiko

    2016-01-01

    We previously developed a separation-free ligase detection reaction assay based on fluorescence resonance energy transfer from a donor quantum dot to an acceptor fluorescent dye. This assay could successfully detect one cancer mutation among 10 wild-type templates. In the current study, the mutation-discrimination threshold was improved by one order of magnitude by replacing the original acceptor dye (Alexa Fluor 647) with another fluorescent dye (Cyanine 5) that was spectrally similar but more fluorescent.

  10. Oil-in-Water Emulsion Exhibits Bitterness-Suppressing Effects in a Sensory Threshold Study.

    PubMed

    Torrico, Damir Dennis; Sae-Eaw, Amporn; Sriwattana, Sujinda; Boeneke, Charles; Prinyawiwatkul, Witoon

    2015-06-01

    Little is known about how emulsion characteristics affect saltiness/bitterness perception. Sensory detection and recognition thresholds of NaCl, caffeine, and KCl in aqueous solution compared with oil-in-water emulsion systems were evaluated. For emulsions, NaCl, KCl, or caffeine were dissolved in water + emulsifier and mixed with canola oil (20% by weight). Two emulsions were prepared: emulsion 1 (viscosity = 257 cP) and emulsion 2 (viscosity = 59 cP). The forced-choice ascending concentration series method of limits (ASTM E-679-04) was used to determine detection and/or recognition thresholds at 25 °C. Group best estimate threshold (GBET) geometric means were expressed as g/100 mL. Comparing NaCl with KCl, there were no significant differences in detection GBET values for all systems (0.0197 - 0.0354). For saltiness recognition thresholds, KCl GBET values were higher compared with NaCl GBET (0.0822 - 0.1070 compared with 0.0471 - 0.0501). For NaCl and KCl, emulsion 1 and/or emulsion 2 did not significantly affect the saltiness recognition threshold compared with that of the aqueous solution. However, the bitterness recognition thresholds of caffeine and KCl in solution were significantly lower than in the emulsions (0.0242 - 0.0586 compared with 0.0754 - 0.1025). Gender generally had a marginal effect on threshold values. This study showed that, compared with the aqueous solutions, emulsions did not significantly affect the saltiness recognition threshold of NaCl and KCl, but exhibited bitterness-suppressing effects on KCl and/or caffeine. © 2015 Institute of Food Technologists®

  11. Model predictions for atmospheric air breakdown by radio-frequency excitation in large gaps

    NASA Astrophysics Data System (ADS)

    Nguyen, H. K.; Mankowski, J.; Dickens, J. C.; Neuber, A. A.; Joshi, R. P.

    2017-07-01

    The behavior of the breakdown electric field versus frequency (DC to 100 MHz) for different gap lengths has been studied numerically at atmospheric pressure. Unlike previous reports, the focus here is on much larger gap lengths in the 1-5 cm range. A numerical analysis, with transport coefficients obtained from Monte Carlo calculations, is used to ascertain the electric field thresholds at which the growth and extinction of the electron population over time are balanced. Our analysis is indicative of a U-shaped frequency dependence, lower breakdown fields with increasing gap lengths, and trends qualitatively similar to the frequency-dependent field behavior for microgaps. The low frequency value of ˜34 kV/cm for a 1 cm gap approaches the reported DC Paschen limit.

  12. Transformation of nonlinear behaviors: from bright- to dark-gap soliton in a one-dimensional photonic crystal containing a nonlinear indefinite metamaterial defect.

    PubMed

    Zhang, Wei; Chen, Yuanyuan; Hou, Peng; Shi, Jielong; Wang, Qi

    2010-12-01

    Nonlinear propagation characteristics are investigated theoretically in a one-dimensional photonic band-gap structure doped with a nonlinear indefinite metamaterial defect for five distinct frequency intervals. It is found from the electric field distribution that there exists the bright gap solitonlike when the nonlinear indefinite metamaterial defect is a cut-off medium, while the dark gap solitonlike can appear in the nonlinear never cut-off defect layer. It is also found that there exists corresponding bistable lateral shift the properties of which are strongly dependent on the permittivity and permeability of nonlinear indefinite metamaterials. Moreover, in contrast to the switch-down threshold value, the switch-up threshold value is more sensitive to the incident frequency.

  13. Monolayer semiconductor nanocavity lasers with ultralow thresholds

    DOE PAGES

    Wu, Sanfeng; Buckley, Sonia; Schaibley, John R.; ...

    2015-03-16

    Engineering the electromagnetic environment of a nanoscale light emitter by a photonic cavity can significantly enhance its spontaneous emission rate through cavity quantum electrodynamics in the Purcell regime. This effect can greatly reduce the lasing threshold of the emitter 1–5, providing the ultimate low-threshold laser system with small footprint, low power consumption and ultrafast modulation. A state-of-the-art ultra-low threshold nanolaser has been successfully developed though embedding quantum dots into photonic crystal cavity (PhCC) 6–8. However, several core challenges impede the practical applications of this architecture, including the random positions and compositional fluctuations of the dots 7, extreme difficulty in currentmore » injection8, and lack of compatibility with electronic circuits 7,8. Here, we report a new strategy to lase, where atomically thin crystalline semiconductor, i.e., a tungsten-diselenide (WSe 2) monolayer, is nondestructively and deterministically introduced as a gain medium at the surface of a pre-fabricated PhCC. A new type of continuous-wave nanolaser operating in the visible regime is achieved with an optical pumping threshold as low as 27 nW at 130 K, similar to the value achieved in quantum dot PhCC lasers 7. The key to the lasing action lies in the monolayer nature of the gain medium, which confines direct-gap excitons to within 1 nm of the PhCC surface. The surface-gain geometry allows unprecedented accessibilities to multi-functionalize the gain, enabling electrically pumped operation. Our scheme is scalable and compatible with integrated photonics for on-chip optical communication technologies.« less

  14. Bridging the semantic gap in sports

    NASA Astrophysics Data System (ADS)

    Li, Baoxin; Errico, James; Pan, Hao; Sezan, M. Ibrahim

    2003-01-01

    One of the major challenges facing current media management systems and the related applications is the so-called "semantic gap" between the rich meaning that a user desires and the shallowness of the content descriptions that are automatically extracted from the media. In this paper, we address the problem of bridging this gap in the sports domain. We propose a general framework for indexing and summarizing sports broadcast programs. The framework is based on a high-level model of sports broadcast video using the concept of an event, defined according to domain-specific knowledge for different types of sports. Within this general framework, we develop automatic event detection algorithms that are based on automatic analysis of the visual and aural signals in the media. We have successfully applied the event detection algorithms to different types of sports including American football, baseball, Japanese sumo wrestling, and soccer. Event modeling and detection contribute to the reduction of the semantic gap by providing rudimentary semantic information obtained through media analysis. We further propose a novel approach, which makes use of independently generated rich textual metadata, to fill the gap completely through synchronization of the information-laden textual data with the basic event segments. An MPEG-7 compliant prototype browsing system has been implemented to demonstrate semantic retrieval and summarization of sports video.

  15. Ku-band radar threshold analysis

    NASA Technical Reports Server (NTRS)

    Weber, C. L.; Polydoros, A.

    1979-01-01

    The statistics of the CFAR threshold for the Ku-band radar was determined. Exact analytical results were developed for both the mean and standard deviations in the designated search mode. The mean value is compared to the results of a previously reported simulation. The analytical results are more optimistic than the simulation results, for which no explanation is offered. The normalized standard deviation is shown to be very sensitive to signal-to-noise ratio and very insensitive to the noise correlation present in the range gates of the designated search mode. The substantial variation in the CFAR threshold is dominant at large values of SNR where the normalized standard deviation is greater than 0.3. Whether or not this significantly affects the resulting probability of detection is a matter which deserves additional attention.

  16. Cocaine Promotes Coincidence Detection and Lowers Induction Threshold during Hebbian Associative Synaptic Potentiation in Prefrontal Cortex.

    PubMed

    Ruan, Hongyu; Yao, Wei-Dong

    2017-01-25

    Addictive drugs usurp neural plasticity mechanisms that normally serve reward-related learning and memory, primarily by evoking changes in glutamatergic synaptic strength in the mesocorticolimbic dopamine circuitry. Here, we show that repeated cocaine exposure in vivo does not alter synaptic strength in the mouse prefrontal cortex during an early period of withdrawal, but instead modifies a Hebbian quantitative synaptic learning rule by broadening the temporal window and lowers the induction threshold for spike-timing-dependent LTP (t-LTP). After repeated, but not single, daily cocaine injections, t-LTP in layer V pyramidal neurons is induced at +30 ms, a normally ineffective timing interval for t-LTP induction in saline-exposed mice. This cocaine-induced, extended-timing t-LTP lasts for ∼1 week after terminating cocaine and is accompanied by an increased susceptibility to potentiation by fewer pre-post spike pairs, indicating a reduced t-LTP induction threshold. Basal synaptic strength and the maximal attainable t-LTP magnitude remain unchanged after cocaine exposure. We further show that the cocaine facilitation of t-LTP induction is caused by sensitized D1-cAMP/protein kinase A dopamine signaling in pyramidal neurons, which then pathologically recruits voltage-gated l-type Ca 2+ channels that synergize with GluN2A-containing NMDA receptors to drive t-LTP at extended timing. Our results illustrate a mechanism by which cocaine, acting on a key neuromodulation pathway, modifies the coincidence detection window during Hebbian plasticity to facilitate associative synaptic potentiation in prefrontal excitatory circuits. By modifying rules that govern activity-dependent synaptic plasticity, addictive drugs can derail the experience-driven neural circuit remodeling process important for executive control of reward and addiction. It is believed that addictive drugs often render an addict's brain reward system hypersensitive, leaving the individual more susceptible to

  17. Within-herd prevalence thresholds for herd-level detection of mastitis pathogens using multiplex real-time PCR in bulk tank milk samples.

    PubMed

    Soltau, J B; Einax, E; Klengel, K; Katholm, J; Failing, K; Wehrend, A; Donat, K

    2017-10-01

    The objective of the study was to assess the value of quantitative multiplex real-time PCR examination of bulk tank milk samples for bovine mastitis pathogens as a tool for herd level diagnosis. Using a logistic regression model, this study is aimed at calculating the threshold level of the apparent within-herd prevalence as determined by quarter milk sample cultivation of all lactating cows, thus allowing the detection of a herd positive for a specific pathogen within certain probability levels. A total of 6,335 quarter milk samples were collected and cultured from 1,615 cows on 51 farms in Germany. Bulk tank milk samples were taken from each farm and tested by bacterial culture as well as the commercial PCR assay Mastit 4A (DNA Diagnostic A/S, Risskov, Denmark) identifying Staphylococcus aureus, Streptococcus dysgalactiae, Streptococcus agalactiae, and Streptococcus uberis. In addition, PCR was performed on pooled herd milk samples containing milk aliquots from all lactating cows in each of the 51 herds. Only 1 out of the 51 herds was found PCR positive for Streptococcus agalactiae in bulk tank and pooled herd milk samples, and cultured quarter milk samples. Spearman's rank correlations between the cycle threshold value of bulk tank milk PCR and the apparent within-herd prevalence were calculated in regard to Staphylococcus aureus, Streptococcus dysgalactiae, and Streptococcus uberis. For these pathogens, significant correlations were found. If 1 bulk tank milk sample per herd was tested, the estimated within-herd prevalence thresholds for 90% probability of detection were 27.6% for Staphylococcus aureus, 9.2% for Streptococcus dysgalactiae, and 13.8% for Streptococcus uberis on the cow level. On the quarter level, the within-herd prevalence had to be at least 32.6% for Staphylococcus aureus, 1.7% for Streptococcus dysgalactiae, and 4.3% for Streptococcus uberis to detect a herd as positive using a single bulk milk sample. The results indicate that mastitis

  18. Workshop on Bridging Satellite Climate Data Gaps.

    PubMed

    Cooksey, Catherine; Datla, Raju

    2011-01-01

    Detecting the small signals of climate change for the most essential climate variables requires that satellite sensors make highly accurate and consistent measurements. Data gaps in the time series (such as gaps resulting from launch delay or failure) and inconsistencies in radiometric scales between satellites undermine the credibility of fundamental climate data records, and can lead to erroneous analysis in climate change detection. To address these issues, leading experts in Earth observations from National Aeronautics and Space Administration (NASA), National Oceanic and Atmospheric Adminstration (NOAA), United States Geological Survey (USGS), and academia assembled at the National Institute of Standards and Technology on December 10, 2009 for a workshop to prioritize strategies for bridging and mitigating data gaps in the climate record. This paper summarizes the priorities for ensuring data continuity of variables relevant to climate change in the areas of atmosphere, land, and ocean measurements and the recommendations made at the workshop for overcoming planned and unplanned gaps in the climate record.

  19. Energy thresholds of discrete breathers in thermal equilibrium and relaxation processes.

    PubMed

    Ming, Yi; Ling, Dong-Bo; Li, Hui-Min; Ding, Ze-Jun

    2017-06-01

    So far, only the energy thresholds of single discrete breathers in nonlinear Hamiltonian systems have been analytically obtained. In this work, the energy thresholds of discrete breathers in thermal equilibrium and the energy thresholds of long-lived discrete breathers which can remain after a long time relaxation are analytically estimated for nonlinear chains. These energy thresholds are size dependent. The energy thresholds of discrete breathers in thermal equilibrium are the same as the previous analytical results for single discrete breathers. The energy thresholds of long-lived discrete breathers in relaxation processes are different from the previous results for single discrete breathers but agree well with the published numerical results known to us. Because real systems are either in thermal equilibrium or in relaxation processes, the obtained results could be important for experimental detection of discrete breathers.

  20. Threshold Assessment of Gear Diagnostic Tools on Flight and Test Rig Data

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.; Mosher, Marianne; Huff, Edward M.

    2003-01-01

    A method for defining thresholds for vibration-based algorithms that provides the minimum number of false alarms while maintaining sensitivity to gear damage was developed. This analysis focused on two vibration based gear damage detection algorithms, FM4 and MSA. This method was developed using vibration data collected during surface fatigue tests performed in a spur gearbox rig. The thresholds were defined based on damage progression during tests with damage. The thresholds false alarm rates were then evaluated on spur gear tests without damage. Next, the same thresholds were applied to flight data from an OH-58 helicopter transmission. Results showed that thresholds defined in test rigs can be used to define thresholds in flight to correctly classify the transmission operation as normal.

  1. THRESHOLD LOGIC.

    DTIC Science & Technology

    synthesis procedures; a ’best’ method is definitely established. (2) ’Symmetry Types for Threshold Logic’ is a tutorial expositon including a careful...development of the Goto-Takahasi self-dual type ideas. (3) ’Best Threshold Gate Decisions’ reports a comparison, on the 2470 7-argument threshold ...interpretation is shown best. (4) ’ Threshold Gate Networks’ reviews the previously discussed 2-algorithm in geometric terms, describes our FORTRAN

  2. Detection-gap-independent optical sensor design using divergence-beam-controlled slit lasers for wearable devices

    NASA Astrophysics Data System (ADS)

    Yoon, Young Zoon; Kim, Hyochul; Park, Yeonsang; Kim, Jineun; Lee, Min Kyung; Kim, Un Jeong; Roh, Young-Geun; Hwang, Sung Woo

    2016-09-01

    Wearable devices often employ optical sensors, such as photoplethysmography sensors, for detecting heart rates or other biochemical factors. Pulse waveforms, rather than simply detecting heartbeats, can clarify arterial conditions. However, most optical sensor designs require close skin contact to reduce power consumption while obtaining good quality signals without distortion. We have designed a detection-gap-independent optical sensor array using divergence-beam-controlled slit lasers and distributed photodiodes in a pulse-detection device wearable over the wrist's radial artery. It achieves high biosignal quality and low power consumption. The top surface of a vertical-cavity surface-emitting laser of 850 nm wavelength was covered by Au film with an open slit of width between 500 nm and 1500 nm, which generated laser emissions across a large divergence angle along an axis orthogonal to the slit direction. The sensing coverage of the slit laser diode (LD) marks a 50% improvement over nonslit LD sensor coverage. The slit LD sensor consumes 100% more input power than the nonslit LD sensor to obtain similar optical output power. The slit laser sensor showed intermediate performance between LD and light-emitting diode sensors. Thus, designing sensors with multiple-slit LD arrays can provide useful and convenient ways for incorporating optical sensors in wrist-wearable devices.

  3. Speech-in-Noise Tests and Supra-threshold Auditory Evoked Potentials as Metrics for Noise Damage and Clinical Trial Outcome Measures.

    PubMed

    Le Prell, Colleen G; Brungart, Douglas S

    2016-09-01

    In humans, the accepted clinical standards for detecting hearing loss are the behavioral audiogram, based on the absolute detection threshold of pure-tones, and the threshold auditory brainstem response (ABR). The audiogram and the threshold ABR are reliable and sensitive measures of hearing thresholds in human listeners. However, recent results from noise-exposed animals demonstrate that noise exposure can cause substantial neurodegeneration in the peripheral auditory system without degrading pure-tone audiometric thresholds. It has been suggested that clinical measures of auditory performance conducted with stimuli presented above the detection threshold may be more sensitive than the behavioral audiogram in detecting early-stage noise-induced hearing loss in listeners with audiometric thresholds within normal limits. Supra-threshold speech-in-noise testing and supra-threshold ABR responses are reviewed here, given that they may be useful supplements to the behavioral audiogram for assessment of possible neurodegeneration in noise-exposed listeners. Supra-threshold tests may be useful for assessing the effects of noise on the human inner ear, and the effectiveness of interventions designed to prevent noise trauma. The current state of the science does not necessarily allow us to define a single set of best practice protocols. Nonetheless, we encourage investigators to incorporate these metrics into test batteries when feasible, with an effort to standardize procedures to the greatest extent possible as new reports emerge.

  4. Modeling Plasma Formation in a Micro-gap at Microwave Frequency

    NASA Astrophysics Data System (ADS)

    Bowman, Arthur; Remillard, Stephen

    2013-03-01

    In the presence of a strong electric field, gas molecules become ionized, forming a plasma. The study of this dielectric breakdown at microwave frequency has important applications in improving the operation of radio frequency (RF) devices, where the high electric fields present in small gaps can easily ionize gases like air. A cone and tuner resonant structure was used to induce breakdown of diatomic Nitrogen in adjustable micro-gaps ranging from 13 to 1,156 μm. The electric field for plasma formation exhibited strong pressure dependence in the larger gap sizes, as predicted by previous theoretical and experimental work. Pressure is proportional to the frequency of collision between electrons and molecules, which increases with pressure when the gap is large, but levels off in the micro-gap region. A separate model of the breakdown electric field based on the characteristic diffusion length of the plasma also fit the data poorly for these smaller gap sizes. This may be explained by a hypothesis that dielectric breakdown at and below the 100 μm gap size occurs outside the gap, an argument that is supported by the observation of very high breakdown threshold electric fields in this region. Optical emissions revealed that vibrational and rotational molecular transitions of the first positive electronic system are suppressed in micro-gaps, indicating that transitions into the molecular ground state do not occur in micro-gap plasmas. Acknowledgements: National Science Foundation under NSF-REU Grant No. PHY/DMR-1004811, the Provost's Office of Hope College, and the Hope College Division of Natural and Applied Sciences.

  5. The salt-taste threshold in untreated hypertensive patients.

    PubMed

    Kim, Chang-Yeon; Ye, Mi-Kyung; Lee, Young Soo

    2017-01-01

    The salt-taste threshold can influence the salt appetite, and is thought to be another marker of sodium intake. Many studies have mentioned the relationship between the sodium intake and blood pressure (BP). The aim of this study was to evaluate the relationship between the salt-taste threshold and urinary sodium excretion in normotensive and hypertensive groups. We analyzed 199 patients (mean age 52 years, male 47.3%) who underwent 24-h ambulatory BP monitoring (ABPM). Hypertension was diagnosed as an average daytime systolic BP of ≥135 mmHg or diastolic BP of ≥85 mmHg by the ABPM. We assessed the salt-taste threshold using graded saline solutions. The salt-taste threshold, 24-h urinary sodium and potassium excretion, and echocardiographic data were compared between the control and hypertensive groups. The detection and recognition threshold of the salt taste did not significantly differ between the control and hypertensive groups. The 24-h urinary sodium excretion of hypertensive patients was significantly higher than that of the control group (140.9 ± 59.8 vs. 117.9 ± 57.2 mEq/day, respectively, p  = 0.011). Also, the urinary sodium-potassium ratio was significantly higher in the hypertensive patients. There was no correlation between the salt-taste threshold and 24-h urinary sodium excretion. The salt-taste threshold might not be related to the BP status as well as the 24-h urinary sodium excretion.

  6. Dopamine sensing and measurement using threshold and spectral measurements in random lasers.

    PubMed

    Wan Ismail, Wan Zakiah; Liu, Guozhen; Zhang, Kai; Goldys, Ewa M; Dawes, Judith M

    2016-01-25

    We developed a novel dopamine sensing and measurement technique based on aggregation of gold nanoparticles in random lasers. Dopamine combined with copper ions triggers the aggregation of gold nanoparticles and thus affects the performance of random lasers. Dopamine sensing can be achieved using four parameters which are sensitive to the presence of dopamine, that is emission peak shift, emission linewidth, signal-to-noise ratio (peak emission intensity / noise) and random lasing threshold. The dopamine is most sensitively detected by a change in the emission linewidth with a limit of detection of 1 × 10(-7) M, as well as by an increase in the lasing threshold. The dopamine concentration from 1 × 10(-7) M to 1 × 10(-2) M can be determined by calibrating with the laser threshold.

  7. Threshold of the precedence effect in noise

    PubMed Central

    Freyman, Richard L.; Griffin, Amanda M.; Zurek, Patrick M.

    2014-01-01

    Three effects that show a temporal asymmetry in the influence of interaural cues were studied through the addition of masking noise: (1) The transient precedence effect—the perceptual dominance of a leading transient over a similar lagging transient; (2) the ongoing precedence effect—lead dominance with lead and lag components that extend in time; and (3) the onset capture effect—determination by an onset transient of the lateral position of an otherwise ambiguous extended trailing sound. These three effects were evoked with noise-burst stimuli and were compared in the presence of masking noise. Using a diotic noise masker, detection thresholds for stimuli with lead/lag interaural delays of 0/500 μs were compared to those with 500/0 μs delays. None of the three effects showed a masking difference between those conditions, suggesting that none of the effects is operative at masked threshold. A task requiring the discrimination between stimuli with 500/0 and 0/500 μs interaural delays was used to determine the threshold for each effect in noise. The results showed similar thresholds in noise (10–13 dB SL) for the transient and ongoing precedence effects, but a much higher threshold (33 dB SL) for onset capture of an ambiguous trailing sound. PMID:24815272

  8. Detection of muscle gap by L-BIA in muscle injuries: clinical prognosis.

    PubMed

    Nescolarde, L; Yanguas, J; Terricabras, J; Lukaski, H; Alomar, X; Rosell-Ferrer, J; Rodas, G

    2017-06-21

    Sport-related muscle injury classifications are based basically on imaging criteria such as ultrasound (US) and magnetic resonance imaging (MRI) without consensus because of a lack of clinical prognostics for return-to-play (RTP), which is conditioned upon the severity of the injury, and this in turn with the muscle gap (muscular fibers retraction). Recently, Futbol Club Barcelona's medical department proposed a new muscle injury classification in which muscle gap plays an important role, with the drawback that it is not always possible to identify by MRI. Localized bioimpedance measurement (L-BIA) has emerged as a non-invasive technique for supporting US and MRI to quantify the disrupted soft tissue structure in injured muscles. To correlate the severity of the injury according to the gap with the RTP, through the percent of change in resistance (R), reactance (Xc) and phase-angle (PA) by L-BIA measurements in 22 muscle injuries. After grouping the data according to the muscle gap (by MRI exam), there were significant differences in R between grade 1 and grade 2f (myotendinous or myofascial muscle injury with feather-like appearance), as well as between grade 2f and grade 2g (myotendinous or myofascial muscle injury with feather and gap). The Xc and PA values decrease significantly between each grade (i.e. 1 versus 2f, 1 versus 2g and 2f versus 2g). In addition, the severity of the muscle gap adversely affected the RTP with significant differences observed between 1 and 2g as well as between 2f and 2g. These results show that L-BIA could aid MRI and US in identifying the severity of an injured muscle according to muscle gap and therefore to accurately predict the RTP.

  9. Clinical Investigation and Mechanism of Air-Bone Gaps in LargeVestibular Aqueduct Syndrome

    PubMed Central

    Merchant, Saumil N.; Nakajima, Hideko H.; Halpin, Christopher; Nadol, Joseph B.; Lee, Daniel J.; Innis, William P.; Curtin, Hugh; Rosowski, John J.

    2008-01-01

    Objectives Patients with large vestibular aqueduct syndrome (LVAS) often demonstrate an air-bone gap at the low frequencies on audiometric testing. The mechanism causing such a gap has not been well elucidated. We investigated middle ear sound transmission in patients with LVAS, and present a hypothesis to explain the air-bone gap. Methods Observations were made on 8 ears from 5 individuals with LVAS. The diagnosis of LVAS was made by computed tomography in all cases. Investigations included standard audiometry and measurements of umbo velocity by laser Doppler vibrometry (LDV) in all cases, as well as tympanometry, acoustic reflex testing, vestibular evoked myogenic potential (VEMP) testing, distortion product otoacoustic emission (DPOAE) testing, and middle ear exploration in some ears. Results One ear with LVAS had anacusis. The other 7 ears demonstrated air-bone gaps at the low frequencies, with mean gaps of 51 dB at 250 Hz, 31 dB at 500 Hz, and 12 dB at 1,000 Hz. In these 7 ears with air-bone gaps, LDV showed the umbo velocity to be normal or high normal in all 7; tympanometry was normal in all 6 ears tested; acoustic reflexes were present in 3 of the 4 ears tested; VEMP responses were present in all 3 ears tested; DPOAEs were present in 1 of the 2 ears tested, and exploratory tympanotomy in 1 case showed a normal middle ear. The above data suggest that an air-bone gap in LVAS is not due to disease in the middle ear. The data are consistent with the hypothesis that a large vestibular aqueduct introduces a third mobile window into the inner ear, which can produce an air-bone gap by 1) shunting air-conducted sound away from the cochlea, thus elevating air conduction thresholds, and 2) increasing the difference in impedance between the scala vestibuli side and the scala tympani side of the cochlear partition during bone conduction testing, thus improving thresholds for bone-conducted sound. Conclusions We conclude that LVAS can present with an air-bone gap that

  10. Clinical investigation and mechanism of air-bone gaps in large vestibular aqueduct syndrome.

    PubMed

    Merchant, Saumil N; Nakajima, Hideko H; Halpin, Christopher; Nadol, Joseph B; Lee, Daniel J; Innis, William P; Curtin, Hugh; Rosowski, John J

    2007-07-01

    Patients with large vestibular aqueduct syndrome (LVAS) often demonstrate an air-bone gap at the low frequencies on audiometric testing. The mechanism causing such a gap has not been well elucidated. We investigated middle ear sound transmission in patients with LVAS, and present a hypothesis to explain the air-bone gap. Observations were made on 8 ears from 5 individuals with LVAS. The diagnosis of LVAS was made by computed tomography in all cases. Investigations included standard audiometry and measurements of umbo velocity by laser Doppler vibrometry (LDV) in all cases, as well as tympanometry, acoustic reflex testing, vestibular evoked myogenic potential (VEMP) testing, distortion product otoacoustic emission (DPOAE) testing, and middle ear exploration in some ears. One ear with LVAS had anacusis. The other 7 ears demonstrated air-bone gaps at the low frequencies, with mean gaps of 51 dB at 250 Hz, 31 dB at 500 Hz, and 12 dB at 1,000 Hz. In these 7 ears with air-bone gaps, LDV showed the umbo velocity to be normal or high normal in all 7; tympanometry was normal in all 6 ears tested; acoustic reflexes were present in 3 of the 4 ears tested; VEMP responses were present in all 3 ears tested; DPOAEs were present in 1 of the 2 ears tested, and exploratory tympanotomy in 1 case showed a normal middle ear. The above data suggest that an air-bone gap in LVAS is not due to disease in the middle ear. The data are consistent with the hypothesis that a large vestibular aqueduct introduces a third mobile window into the inner ear, which can produce an air-bone gap by 1) shunting air-conducted sound away from the cochlea, thus elevating air conduction thresholds, and 2) increasing the difference in impedance between the scala vestibuli side and the scala tympani side of the cochlear partition during bone conduction testing, thus improving thresholds for bone-conducted sound. We conclude that LVAS can present with an air-bone gap that can mimic middle ear disease. Diagnostic

  11. Identifying Thresholds for Ecosystem-Based Management

    PubMed Central

    Samhouri, Jameal F.; Levin, Phillip S.; Ainsworth, Cameron H.

    2010-01-01

    Background One of the greatest obstacles to moving ecosystem-based management (EBM) from concept to practice is the lack of a systematic approach to defining ecosystem-level decision criteria, or reference points that trigger management action. Methodology/Principal Findings To assist resource managers and policymakers in developing EBM decision criteria, we introduce a quantitative, transferable method for identifying utility thresholds. A utility threshold is the level of human-induced pressure (e.g., pollution) at which small changes produce substantial improvements toward the EBM goal of protecting an ecosystem's structural (e.g., diversity) and functional (e.g., resilience) attributes. The analytical approach is based on the detection of nonlinearities in relationships between ecosystem attributes and pressures. We illustrate the method with a hypothetical case study of (1) fishing and (2) nearshore habitat pressure using an empirically-validated marine ecosystem model for British Columbia, Canada, and derive numerical threshold values in terms of the density of two empirically-tractable indicator groups, sablefish and jellyfish. We also describe how to incorporate uncertainty into the estimation of utility thresholds and highlight their value in the context of understanding EBM trade-offs. Conclusions/Significance For any policy scenario, an understanding of utility thresholds provides insight into the amount and type of management intervention required to make significant progress toward improved ecosystem structure and function. The approach outlined in this paper can be applied in the context of single or multiple human-induced pressures, to any marine, freshwater, or terrestrial ecosystem, and should facilitate more effective management. PMID:20126647

  12. Reverse engineering the gap gene network of Drosophila melanogaster.

    PubMed

    Perkins, Theodore J; Jaeger, Johannes; Reinitz, John; Glass, Leon

    2006-05-01

    A fundamental problem in functional genomics is to determine the structure and dynamics of genetic networks based on expression data. We describe a new strategy for solving this problem and apply it to recently published data on early Drosophila melanogaster development. Our method is orders of magnitude faster than current fitting methods and allows us to fit different types of rules for expressing regulatory relationships. Specifically, we use our approach to fit models using a smooth nonlinear formalism for modeling gene regulation (gene circuits) as well as models using logical rules based on activation and repression thresholds for transcription factors. Our technique also allows us to infer regulatory relationships de novo or to test network structures suggested by the literature. We fit a series of models to test several outstanding questions about gap gene regulation, including regulation of and by hunchback and the role of autoactivation. Based on our modeling results and validation against the experimental literature, we propose a revised network structure for the gap gene system. Interestingly, some relationships in standard textbook models of gap gene regulation appear to be unnecessary for or even inconsistent with the details of gap gene expression during wild-type development.

  13. Gap Detection in School-Age Children and Adults: Effects of Inherent Envelope Modulation and the Availability of Cues across Frequency

    ERIC Educational Resources Information Center

    Buss, Emily; Hall, Joseph W., III; Porter, Heather; Grose, John H.

    2014-01-01

    Purpose: The present study evaluated the effects of inherent envelope modulation and the availability of cues across frequency on behavioral gap detection with noise-band stimuli in school-age children. Method: Listeners were 34 normal-hearing children (ages 5.2-15.6 years) and 12 normal-hearing adults (ages 18.5-28.8 years). Stimuli were…

  14. Comparison of electrochemical skin conductance and vibration perception threshold measurement in the detection of early diabetic neuropathy.

    PubMed

    Goel, Amit; Shivaprasad, Channabasappa; Kolly, Anish; Sarathi H A, Vijaya; Atluri, Sridevi

    2017-01-01

    The early diagnosis of diabetic peripheral neuropathy (DPN) is challenging. Sudomotor dysfunction is one of the earliest detectable abnormalities in DPN. The present study aimed to determine the diagnostic performance of the electrochemical skin conductance (ESC) test in detecting early DPN, compared with the vibration perception threshold (VPT) test and diabetic neuropathy symptom (DNS) score, using the modified neuropathy disability score (NDS) as the reference standard. Five hundred and twenty-three patients with type 2 diabetes underwent an NDS-based clinical assessment for neuropathy. Participants were classified into the DPN and non-DPN groups based on the NDS (≥ 6). Both groups were evaluated further using the DNS, and VPT and ESC testing. A receiver-operator characteristic (ROC) curve analysis was performed to compare the efficacy of ESC measurements with those of DNS and VPT testing in detecting DPN. The DPN group (n = 110, 21%) had significantly higher HbA1c levels and longer diabetes durations compared with the non-DPN group (n = 413). The sensitivity of feet ESC < 60 μS, VPT testing, and DNS in detecting DPN were 85%, 72%, and 52%, respectively. The specificity of feet ESC, VPT, and DNS in detecting DPN were 85%, 90% and 60% respectively. The areas under the curves of the ROC plots for feet ESC, VPT testing, and DNS were 0.88, 0.84, and 0.6, respectively. A significant inverse linear relationship was noted between VPT and feet ESC (r = -0.45, p = <0.0001). The odds ratios for having DPN, based on the mean feet ESC testing < 60 μS, VPT testing > 15 V, and DNS ≥ 1, were 16.4, 10.9 and 1.8, respectively. ESC measurement is an objective and sensitive technique for the early detection of DPN. Feet ESC measurement was superior to VPT testing for identifying patients with early DPN.

  15. Comparison of electrochemical skin conductance and vibration perception threshold measurement in the detection of early diabetic neuropathy

    PubMed Central

    Kolly, Anish; Sarathi H. A., Vijaya; Atluri, Sridevi

    2017-01-01

    The early diagnosis of diabetic peripheral neuropathy (DPN) is challenging. Sudomotor dysfunction is one of the earliest detectable abnormalities in DPN. The present study aimed to determine the diagnostic performance of the electrochemical skin conductance (ESC) test in detecting early DPN, compared with the vibration perception threshold (VPT) test and diabetic neuropathy symptom (DNS) score, using the modified neuropathy disability score (NDS) as the reference standard. Five hundred and twenty-three patients with type 2 diabetes underwent an NDS-based clinical assessment for neuropathy. Participants were classified into the DPN and non-DPN groups based on the NDS (≥ 6). Both groups were evaluated further using the DNS, and VPT and ESC testing. A receiver-operator characteristic (ROC) curve analysis was performed to compare the efficacy of ESC measurements with those of DNS and VPT testing in detecting DPN. The DPN group (n = 110, 21%) had significantly higher HbA1c levels and longer diabetes durations compared with the non-DPN group (n = 413). The sensitivity of feet ESC < 60 μS, VPT testing, and DNS in detecting DPN were 85%, 72%, and 52%, respectively. The specificity of feet ESC, VPT, and DNS in detecting DPN were 85%, 90% and 60% respectively. The areas under the curves of the ROC plots for feet ESC, VPT testing, and DNS were 0.88, 0.84, and 0.6, respectively. A significant inverse linear relationship was noted between VPT and feet ESC (r = -0.45, p = <0.0001). The odds ratios for having DPN, based on the mean feet ESC testing < 60 μS, VPT testing > 15 V, and DNS ≥ 1, were 16.4, 10.9 and 1.8, respectively. ESC measurement is an objective and sensitive technique for the early detection of DPN. Feet ESC measurement was superior to VPT testing for identifying patients with early DPN. PMID:28880907

  16. Wafer plane inspection with soft resist thresholding

    NASA Astrophysics Data System (ADS)

    Hess, Carl; Shi, Rui-fang; Wihl, Mark; Xiong, Yalin; Pang, Song

    2008-10-01

    Wafer Plane Inspection (WPI) is an inspection mode on the KLA-Tencor TeraScaTM platform that uses the high signalto- noise ratio images from the high numerical aperture microscope, and then models the entire lithographic process to enable defect detection on the wafer plane[1]. This technology meets the needs of some advanced mask manufacturers to identify the lithographically-significant defects while ignoring the other non-lithographically-significant defects. WPI accomplishes this goal by performing defect detection based on a modeled image of how the mask features would actually print in the photoresist. There are several advantages to this approach: (1) the high fidelity of the images provide a sensitivity advantage over competing approaches; (2) the ability to perform defect detection on the wafer plane allows one to only see those defects that have a printing impact on the wafer; (3) the use of modeling on the lithographic portion of the flow enables unprecedented flexibility to support arbitrary illumination profiles, process-window inspection in unit time, and combination modes to find both printing and non-printing defects. WPI is proving to be a valuable addition to the KLA-Tencor detection algorithm suite. The modeling portion of WPI uses a single resist threshold as the final step in the processing. This has been shown to be adequate on several advanced customer layers, but is not ideal for all layers. Actual resist chemistry has complicated processes including acid and base-diffusion and quench that are not consistently well-modeled with a single resist threshold. We have considered the use of an advanced resist model for WPI, but rejected it because the burdensome requirements for the calibration of the model were not practical for reticle inspection. This paper describes an alternative approach that allows for a "soft" resist threshold to be applied that provides a more robust solution for the most challenging processes. This approach is just

  17. Estimating the epidemic threshold on networks by deterministic connections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Kezan, E-mail: lkzzr@sohu.com; Zhu, Guanghu; Fu, Xinchu

    2014-12-15

    For many epidemic networks some connections between nodes are treated as deterministic, while the remainder are random and have different connection probabilities. By applying spectral analysis to several constructed models, we find that one can estimate the epidemic thresholds of these networks by investigating information from only the deterministic connections. Nonetheless, in these models, generic nonuniform stochastic connections and heterogeneous community structure are also considered. The estimation of epidemic thresholds is achieved via inequalities with upper and lower bounds, which are found to be in very good agreement with numerical simulations. Since these deterministic connections are easier to detect thanmore » those stochastic connections, this work provides a feasible and effective method to estimate the epidemic thresholds in real epidemic networks.« less

  18. in silico Surveillance: evaluating outbreak detection with simulation models

    PubMed Central

    2013-01-01

    Background Detecting outbreaks is a crucial task for public health officials, yet gaps remain in the systematic evaluation of outbreak detection protocols. The authors’ objectives were to design, implement, and test a flexible methodology for generating detailed synthetic surveillance data that provides realistic geographical and temporal clustering of cases and use to evaluate outbreak detection protocols. Methods A detailed representation of the Boston area was constructed, based on data about individuals, locations, and activity patterns. Influenza-like illness (ILI) transmission was simulated, producing 100 years of in silico ILI data. Six different surveillance systems were designed and developed using gathered cases from the simulated disease data. Performance was measured by inserting test outbreaks into the surveillance streams and analyzing the likelihood and timeliness of detection. Results Detection of outbreaks varied from 21% to 95%. Increased coverage did not linearly improve detection probability for all surveillance systems. Relaxing the decision threshold for signaling outbreaks greatly increased false-positives, improved outbreak detection slightly, and led to earlier outbreak detection. Conclusions Geographical distribution can be more important than coverage level. Detailed simulations of infectious disease transmission can be configured to represent nearly any conceivable scenario. They are a powerful tool for evaluating the performance of surveillance systems and methods used for outbreak detection. PMID:23343523

  19. Auditory and behavioral responses of California sea lions (Zalophus californianus) to single underwater impulses from an arc-gap transducer.

    PubMed

    Finneran, James J; Dear, Randall; Carder, Donald A; Ridgway, Sam H

    2003-09-01

    A behavioral response paradigm was used to measure underwater hearing thresholds in two California sea lions (Zalophus californianus) before and after exposure to underwater impulses from an arc-gap transducer. Preexposure and postexposure hearing thresholds were compared to determine if the subjects experienced temporary shifts in their masked hearing thresholds (MTTS). Hearing thresholds were measured at 1 and 10 kHz. Exposures consisted of single underwater impulses produced by an arc-gap transducer referred to as a "pulsed power device" (PPD). The electrical charge of the PPD was varied from 1.32 to 2.77 kJ; the distance between the subject and the PPD was varied over the range 3.4 to 25 m. No MTTS was observed in either subject at the highest received levels: peak pressures of approximately 6.8 and 14 kPa, rms pressures of approximately 178 and 183 dB re: 1 microPa, and total energy fluxes of 161 and 163 dB re: 1 microPa2s for the two subjects. Behavioral reactions to the tests were observed in both subjects. These reactions primarily consisted of temporary avoidance of the site where exposure to the PPD impulse had previously occurred.

  20. Detection of critical cerebral desaturation thresholds by three regional oximeters during hypoxia: a pilot study in healthy volunteers.

    PubMed

    Tomlin, Kerry L; Neitenbach, Anna-Maria; Borg, Ulf

    2017-01-13

    Regional oximetry is increasingly used to monitor post-extraction oxygen status of the brain during surgical procedures where hemodynamic fluctuations are expected. Particularly in cardiac surgery, clinicians employ an interventional algorithm to restore baseline regional oxygen saturation (rSO 2 ) when a patient reaches a critical desaturation threshold. Evidence suggests that monitoring cardiac surgery patients and intervening to maintain rSO 2 can improve postoperative outcomes; however, evidence generated with one manufacturer's device may not be applicable to others. We hypothesized that regional oximeters from different manufacturers respond uniquely to changes in oxygen saturation in healthy volunteers. Three devices were tested: INVOS™ 5100C (Medtronic), EQUANOX™ 7600 (Nonin), and FORE-SIGHT™ (CASMED) monitors. We divided ten healthy subjects into two cohorts wearing a single sensor each from INVOS and EQUANOX (n = 6), or INVOS and FORE-SIGHT (n = 4). We induced and reversed hypoxia by adjusting the fraction of inspired oxygen. We calculated the magnitude of absolute rSO 2 change and rate of rSO 2 change during desaturation and resaturation, and determined if and when each device reached a critical interventional rSO 2 threshold during hypoxia. All devices responded to changes in oxygen directionally as expected. The median absolute rSO 2 change and the rate of rSO 2 change was significantly greater during desaturation and resaturation for INVOS compared with EQUANOX (P = 0.04). A similar but nonsignificant trend was observed for INVOS compared with FORE-SIGHT; our study was underpowered to definitively conclude there was no difference. A 10% relative decrease in rSO 2 during desaturation was detected by all three devices across the ten subjects. INVOS met a 20% relative decrease threshold in all subjects of both cohorts, compared to 1 with EQUANOX and 2 with FORE-SIGHT. Neither EQUANOX nor FORE-SIGHT reached a 50% absolute rSO 2 threshold

  1. Persistence with biologic therapies in the Medicare coverage gap.

    PubMed

    Tamariz, Leonardo; Uribe, Claudia L; Luo, Jiacong; Hanna, John W; Ball, Daniel E; Krohn, Kelly; Meadows, Eric S

    2011-11-01

    To describe persistence with teriparatide and other biologic therapies in Medicare Part D plans with and without a coverage gap. Retrospective (2006) cohort study of Medicare Part D prescription drug plan beneficiaries from a large benefits company. Two plans with a coverage gap (defined as "basic") were combined and compared with a single plan with coverage for generic and branded medications (defined as "complete"). Patients taking alendronate (nonbiologic comparator), teriparatide, etanercept, adalimumab, interferon β-1a, or glatiramer acetate were selected for the study. For patients with complete coverage, equivalent financial thresholds were used to define the "gap."The definition of discontinuation was failure to fill the index prescription after reaching the gap. For alendronate, 27% of 133,260 patients had enrolled in the complete plan. Patients taking biologic therapies had more commonly enrolled in complete plans: teriparatide (66% of 6221), etanercept (58% of 1469), adalimumab (52% of 824), interferon β-1a (60% of 438), and glatiramer acetate (53% of 393). For patients taking either alendronate or teriparatide, discontinuation rates were higher in the basic, versus complete, plan (adjusted odds ratios, 2.02 and 3.56, respectively). Discontinuation did not significantly vary by plan type for etanercept, adalimumab, interferon β-1a, or glatiramer acetate. For patients who reached the coverage gap, discontinuation was more likely for patients taking osteoporosis (OP) medication. Not having a coverage gap was associated with improved persistence with OP treatment.

  2. Formation of moon induced gaps in dense planetary rings

    NASA Astrophysics Data System (ADS)

    Grätz, F.; Seiß, M.; Spahn, F.

    2017-09-01

    Recent works have shown that bodies embedded in planetary rings create S-shaped density modula- tions called propellers if their mass deceeds a certain threshold or cause a gap around the entire circumference of the disc if the embedded bodies mass exceeds it. Two counteracting physical processes govern the dynamics and determine what structure is created: The gravitational disturber excerts a torque on nearby disc particles, sweeping them away from itself on both sides thus depleting the discs density and forming a gap. Diffusive spreading of the disc material due to collisions counteracts the gravitational scattering and has the tendency to fill the gap. We develop a nonlinear diffusion model that accounts for those two counteracting processes and describes the azimutally averaged surface density profile an embedded moon creates in planetary rings. The gaps width depends on the moons mass, its radial position and the rings viscosity allowing us to estimate the rings viscosity in the vicinity of the Encke and Keeler gap in Saturns A-Ring and compare it to previous measurements. We show that for the Keeler gap the time derivative of the semi-major axis as derived by Goldreich and Tremaine 1980 is underestimated yielding an underestimated viscosity for the ring. We therefore derive a corrected expression for said time derivative by fitting the solutions of Hill's equations for an ensemble of test particles. Furthermore we estimate the masses for potentionally unseen moonlets in the C-Ring and Cassini division.

  3. Temporal resolution in children.

    PubMed

    Wightman, F; Allen, P; Dolan, T; Kistler, D; Jamieson, D

    1989-06-01

    The auditory temporal resolving power of young children was measured using an adaptive forced-choice psychophysical paradigm that was disguised as a video game. 20 children between 3 and 7 years of age and 5 adults were asked to detect the presence of a temporal gap in a burst of half-octave-band noise at band center frequencies of 400 and 2,000 Hz. The minimum detectable gap (gap threshold) was estimated adaptively in 20-trial runs. The mean gap thresholds in the 400-Hz condition were higher for the younger children than for the adults, with the 3-year-old children producing the highest thresholds. Gap thresholds in the 2,000-Hz condition were generally lower than in the 400-Hz condition and showed a similar age effect. All the individual adaptive runs were "adult-like," suggesting that the children were generally attentive to the task during each run. However, the variability of threshold estimates from run to run was substantial, especially in the 3-5-year-old children. Computer simulations suggested that this large within-subjects variability could have resulted from frequent, momentary lapses of attention, which would lead to "guessing" on a substantial portion of the trials.

  4. NaCl intake and preference threshold of spontaneously hypertensive rats.

    PubMed

    Fregly, M J

    1975-09-01

    Both male and female spontaneously hypertensive (SH) rats have an appetite for NaCl solution. The appetite is present when a choice is offered between distilled water and either isotonic or hypertonic (0.25 M) NaCl solution to drink. Total fluid intake (water plus NaCl solution) was greater for SH rats than for controls while food intakes (g/100 g body wt/day) of SH rats were not different from controls. Mean body weight of SH rats was always less than that of controls. The appetite for NaCl solution was accompanied by a significant reduction in preference (detection) threshold. SH rats could detect the difference between distilled water and NaCl solution when the concentration of the latter was 12 mEq/liter compared to a control threshold of 30 mEq/liter. The NaCl appetite and reduced NaCl preference threshold induced by spontaneous hypertension is in marked contrast to the NaCl aversion induced by other types of experimentally induced hypertension in rats. The mechanism or mechanisms responsible for these differences remain for further study.

  5. Human Evoked Cortical Activity to Silent Gaps in Noise: Effects of Age, Attention, and Cortical Processing Speed

    PubMed Central

    Harris, Kelly C.; Wilson, Sara; Eckert, Mark A.; Dubno, Judy R.

    2011-01-01

    Objectives The goal of this study was to examine the degree to which age-related differences in early or automatic levels of auditory processing and attention-related processes explain age-related differences in auditory temporal processing. We hypothesized that age-related differences in attention and cognition compound age-related differences at automatic levels of processing, contributing to the robust age effects observed during challenging listening tasks. Design We examined age-related and individual differences in cortical event-related potential (ERP) amplitudes and latencies, processing speed, and gap detection from twenty-five younger and twenty-five older adults with normal hearing. ERPs were elicited by brief silent periods (gaps) in an otherwise continuous broadband noise and were measured under two listening conditions, passive and active. During passive listening, participants ignored the stimulus and read quietly. During active listening, participants button pressed each time they detected a gap. Gap detection (percent detected) was calculated for each gap duration during active listening (3, 6, 9, 12 and 15 ms). Processing speed was assessed using the Purdue Pegboard test and the Connections Test. Repeated measures ANOVAs assessed effects of age on gap detection, processing speed, and ERP amplitudes and latencies. An “attention modulation” construct was created using linear regression to examine the effects of attention while controlling for age-related differences in auditory processing. Pearson correlation analyses assessed the extent to which attention modulation, ERPs, and processing speed predicted behavioral gap detection. Results: Older adults had significantly poorer gap detection and slower processing speed than younger adults. Even after adjusting for poorer gap detection, the neurophysiological response to gap onset was atypical in older adults with reduced P2 amplitudes and virtually absent N2 responses. Moreover, individual

  6. Cognitive Abilities, Monitoring Confidence, and Control Thresholds Explain Individual Differences in Heuristics and Biases

    PubMed Central

    Jackson, Simon A.; Kleitman, Sabina; Howie, Pauline; Stankov, Lazar

    2016-01-01

    In this paper, we investigate whether individual differences in performance on heuristic and biases tasks can be explained by cognitive abilities, monitoring confidence, and control thresholds. Current theories explain individual differences in these tasks by the ability to detect errors and override automatic but biased judgments, and deliberative cognitive abilities that help to construct the correct response. Here we retain cognitive abilities but disentangle error detection, proposing that lower monitoring confidence and higher control thresholds promote error checking. Participants (N = 250) completed tasks assessing their fluid reasoning abilities, stable monitoring confidence levels, and the control threshold they impose on their decisions. They also completed seven typical heuristic and biases tasks such as the cognitive reflection test and Resistance to Framing. Using structural equation modeling, we found that individuals with higher reasoning abilities, lower monitoring confidence, and higher control threshold performed significantly and, at times, substantially better on the heuristic and biases tasks. Individuals with higher control thresholds also showed lower preferences for risky alternatives in a gambling task. Furthermore, residual correlations among the heuristic and biases tasks were reduced to null, indicating that cognitive abilities, monitoring confidence, and control thresholds accounted for their shared variance. Implications include the proposal that the capacity to detect errors does not differ between individuals. Rather, individuals might adopt varied strategies that promote error checking to different degrees, regardless of whether they have made a mistake or not. The results support growing evidence that decision-making involves cognitive abilities that construct actions and monitoring and control processes that manage their initiation. PMID:27790170

  7. Cognitive Abilities, Monitoring Confidence, and Control Thresholds Explain Individual Differences in Heuristics and Biases.

    PubMed

    Jackson, Simon A; Kleitman, Sabina; Howie, Pauline; Stankov, Lazar

    2016-01-01

    In this paper, we investigate whether individual differences in performance on heuristic and biases tasks can be explained by cognitive abilities, monitoring confidence, and control thresholds. Current theories explain individual differences in these tasks by the ability to detect errors and override automatic but biased judgments, and deliberative cognitive abilities that help to construct the correct response. Here we retain cognitive abilities but disentangle error detection, proposing that lower monitoring confidence and higher control thresholds promote error checking. Participants ( N = 250) completed tasks assessing their fluid reasoning abilities, stable monitoring confidence levels, and the control threshold they impose on their decisions. They also completed seven typical heuristic and biases tasks such as the cognitive reflection test and Resistance to Framing. Using structural equation modeling, we found that individuals with higher reasoning abilities, lower monitoring confidence, and higher control threshold performed significantly and, at times, substantially better on the heuristic and biases tasks. Individuals with higher control thresholds also showed lower preferences for risky alternatives in a gambling task. Furthermore, residual correlations among the heuristic and biases tasks were reduced to null, indicating that cognitive abilities, monitoring confidence, and control thresholds accounted for their shared variance. Implications include the proposal that the capacity to detect errors does not differ between individuals. Rather, individuals might adopt varied strategies that promote error checking to different degrees, regardless of whether they have made a mistake or not. The results support growing evidence that decision-making involves cognitive abilities that construct actions and monitoring and control processes that manage their initiation.

  8. Understanding the Femtosecond Laser-Solid Interaction Near and Beyond the Material Damage Threshold

    DTIC Science & Technology

    2016-05-23

    study of the fundamentals of femtosecond laser damage as a function of various parameters, laser wavelength, pulsewidth, pulse number, experimental ... experimental observation without any free parameters. The brand new FSD Lab constructed under the BRI grant in the Physics Research Building at the Ohio... studied across a range of band-gaps for s- and p-polarized light and it is found that conventional theoretical prediction on laser damage threshold

  9. Non-human primate skull effects on the cavitation detection threshold of FUS-induced blood-brain barrier opening

    NASA Astrophysics Data System (ADS)

    Wu, Shih-Ying; Tung, Yao-Sheng; Marquet, Fabrice; Chen, Cherry C.; Konofagou, Elisa E.

    2012-11-01

    Microbubble (MB)-assisted focused ultrasound is a promising technique for delivering drugs to the brain by noninvasively and transiently opening the blood-brain barrier (BBB), and monitoring BBB opening using passive cavitation detection (PCD) is critical in detecting its occurrence, extent as well as assessing its mechanism. One of the main obstacles in achieving those objectives in large animals is the transcranial attenuation. To study the effects, the cavitation response through the in-vitro non-human primate (NHP) skull was investigated. In-house manufactured lipid-shelled MB (medium diameter: 4-5 um) were injected into a 4-mm channel of a phantom below a degassed monkey skull. A hydrophone confocally aligned with the FUS transducer served as PCD during sonication (frequency: 0.50 MHz, peak rarefactional pressures: 0.05-0.60 MPa, pulse length: 100 cycles, PRF: 10 Hz, duration: 2 s) for four cases: water without skull, water with skull, MB without skull and MB with skull. A 5.1-MHz linear-array transducer was also used to monitor the MB disruption. The frequency spectra, spectrograms, stable cavitation dose (SCD) and inertial cavitation dose (ICD) were quantified. Results showed that the onset of stable cavitation and inertial cavitation in the experiments occurred at 50 kPa, and was detectable throught the NHP skull since the both the detection thresholds for stable cavitation and inertial cavitation remained unchanged compared to the non-skull case, and the SCD and ICD acquired transcranially may not adequately represent the true extent of stable and inertial cavitation due to the skull attenuation.

  10. Noise Trauma-Induced Behavioral Gap Detection Deficits Correlate with Reorganization of Excitatory and Inhibitory Local Circuits in the Inferior Colliculus and Are Prevented by Acoustic Enrichment

    PubMed Central

    Zhang-Hooks, Ying-Xin; Roos, Hannah

    2017-01-01

    Hearing loss leads to a host of cellular and synaptic changes in auditory brain areas that are thought to give rise to auditory perception deficits such as temporal processing impairments, hyperacusis, and tinnitus. However, little is known about possible changes in synaptic circuit connectivity that may underlie these hearing deficits. Here, we show that mild hearing loss as a result of brief noise exposure leads to a pronounced reorganization of local excitatory and inhibitory circuits in the mouse inferior colliculus. The exact nature of these reorganizations correlated with the presence or absence of the animals' impairments in detecting brief sound gaps, a commonly used behavioral sign for tinnitus in animal models. Mice with gap detection deficits (GDDs) showed a shift in the balance of synaptic excitation and inhibition that was present in both glutamatergic and GABAergic neurons, whereas mice without GDDs showed stable excitation–inhibition balances. Acoustic enrichment (AE) with moderate intensity, pulsed white noise immediately after noise trauma prevented both circuit reorganization and GDDs, raising the possibility of using AE immediately after cochlear damage to prevent or alleviate the emergence of central auditory processing deficits. SIGNIFICANCE STATEMENT Noise overexposure is a major cause of central auditory processing disorders, including tinnitus, yet the changes in synaptic connectivity underlying these disorders remain poorly understood. Here, we find that brief noise overexposure leads to distinct reorganizations of excitatory and inhibitory synaptic inputs onto glutamatergic and GABAergic neurons and that the nature of these reorganizations correlates with animals' impairments in detecting brief sound gaps, which is often considered a sign of tinnitus. Acoustic enrichment immediately after noise trauma prevents circuit reorganizations and gap detection deficits, highlighting the potential for using sound therapy soon after cochlear damage

  11. CARA Risk Assessment Thresholds

    NASA Technical Reports Server (NTRS)

    Hejduk, M. D.

    2016-01-01

    Warning remediation threshold (Red threshold): Pc level at which warnings are issued, and active remediation considered and usually executed. Analysis threshold (Green to Yellow threshold): Pc level at which analysis of event is indicated, including seeking additional information if warranted. Post-remediation threshold: Pc level to which remediation maneuvers are sized in order to achieve event remediation and obviate any need for immediate follow-up maneuvers. Maneuver screening threshold: Pc compliance level for routine maneuver screenings (more demanding than regular Red threshold due to additional maneuver uncertainty).

  12. Noise adaptive wavelet thresholding for speckle noise removal in optical coherence tomography.

    PubMed

    Zaki, Farzana; Wang, Yahui; Su, Hao; Yuan, Xin; Liu, Xuan

    2017-05-01

    Optical coherence tomography (OCT) is based on coherence detection of interferometric signals and hence inevitably suffers from speckle noise. To remove speckle noise in OCT images, wavelet domain thresholding has demonstrated significant advantages in suppressing noise magnitude while preserving image sharpness. However, speckle noise in OCT images has different characteristics in different spatial scales, which has not been considered in previous applications of wavelet domain thresholding. In this study, we demonstrate a noise adaptive wavelet thresholding (NAWT) algorithm that exploits the difference of noise characteristics in different wavelet sub-bands. The algorithm is simple, fast, effective and is closely related to the physical origin of speckle noise in OCT image. Our results demonstrate that NAWT outperforms conventional wavelet thresholding.

  13. Impairment of retinal increment thresholds in Huntington's disease.

    PubMed

    Paulus, W; Schwarz, G; Werner, A; Lange, H; Bayer, A; Hofschuster, M; Müller, N; Zrenner, E

    1993-10-01

    We have investigated detection thresholds for a foveal blue test light using a Maxwellian view system in 61 normal subjects, 19 patients with Huntington's chorea, 14 patients with Tourette's syndrome, and 20 patients with schizophrenia. Ten measurements were made: The blue test light (1 degree diameter, 500 msec duration) was presented either superimposed on a yellow adaptation field (5 degree diameter) or 500 msec after switching off this field (transient tritanopia effect). In both cases five different background intensities were presented. The only abnormality found was in patients with Huntington's chorea. During adaptation these patients' thresholds are significantly higher than normal (p < 0.005). No change was found in the transient tritanopia effect. Huntington's disease causes degeneration of several different transmitter systems in the brain. Increment threshold testing allows for noninvasive investigation of patients and confirms the involvement of the retina in the degenerative process in Huntington's chorea.

  14. Relationship between left atrium catheter contact force and pacing threshold.

    PubMed

    Barrio-López, Teresa; Ortiz, Mercedes; Castellanos, Eduardo; Lázaro, Carla; Salas, Jefferson; Madero, Sergio; Almendral, Jesús

    2017-08-01

    The purpose of this study is to analyze the relationship between contact force (CF) and pacing threshold in left atrium (LA). Six to ten LA sites were studied in 28 consecutive patients with atrial fibrillation undergoing pulmonary vein isolation. Median CF, bipolar and unipolar electrogram voltage, impedance, and bipolar and unipolar thresholds for consistent constant capture and for consistent intermittent capture were measured at each site. Pacing threshold measurements were performed at 188 LA sites. Both unipolar and bipolar pacing thresholds correlated significantly with median CF; however, unipolar pacing threshold correlated better (unipolar: Pearson R -0.45; p < 0.001; Spearman Rho -0.62; p < 0.001, bipolar: Pearson R -0.39; p < 0.001; Spearman Rho -0.52; p < 0.001). Consistent constant capture threshold had better correlation with median CF than consistent intermittent capture threshold for both unipolar and bipolar pacing (Pearson R -0.45; p < 0.001 and Spearman Rho -0.62; p < 0.001 vs. Pearson R -0.35; p < 0.001; Spearman Rho -0.52; p < 0.001). The best pacing threshold cutoff point to detect a good CF (>10 g) was 3.25 mA for unipolar pacing with 69% specificity and 73% sensitivity. Both increased to 80% specificity and 74% sensitivity for sites with normal bipolar voltage and a pacing threshold cutoff value of 2.85 mA. Pacing thresholds correlate with CF in human not previously ablated LA. Since the combination of a normal bipolar voltage and a unipolar pacing threshold <2.85 mA provide reasonable parameters of validity, pacing threshold could be of interest as a surrogate for CF in LA.

  15. Near-infrared spectroscopic monitoring during cardiopulmonary exercise testing detects anaerobic threshold.

    PubMed

    Rao, Rohit P; Danduran, Michael J; Loomba, Rohit S; Dixon, Jennifer E; Hoffman, George M

    2012-06-01

    Cardiopulmonary exercise testing (CPET) provides assessment of the integrative responses involving the pulmonary, cardiovascular, and skeletal muscle systems. Application of exercise testing remains limited to children who are able to understand and cooperate with the exercise protocol. Near-infrared spectroscopy (NIRS) provides a noninvasive, continuous method to monitor regional tissue oxygenation (rSO2). Our specific aim was to predict anaerobic threshold (AT) during CPET noninvasively using two-site NIRS monitoring. Achievement of a practical noninvasive technology for estimating AT will increase the compatibility of CPET. Patients without structural or acquired heart disease were eligible for inclusion if they were ordered to undergo CPET by a cardiologist. Data from 51 subjects was analyzed. The ventilatory anaerobic threshold (VAT) was computed on [Formula: see text] and respiratory quotient post hoc using the standard V-slope method. The inflection points of the regional rSO2 time-series were identified as the noninvasive regional NIRS AT for each of the two monitored regions (cerebral and kidney). AT calculation made using an average of kidney and brain NIRS matched the calculation made by VAT for the same patient. Two-site NIRS monitoring of visceral organs is a predictor of AT.

  16. Variable Threshold Method for Determining the Boundaries of Imaged Subvisible Particles.

    PubMed

    Cavicchi, Richard E; Collett, Cayla; Telikepalli, Srivalli; Hu, Zhishang; Carrier, Michael; Ripple, Dean C

    2017-06-01

    An accurate assessment of particle characteristics and concentrations in pharmaceutical products by flow imaging requires accurate particle sizing and morphological analysis. Analysis of images begins with the definition of particle boundaries. Commonly a single threshold defines the level for a pixel in the image to be included in the detection of particles, but depending on the threshold level, this results in either missing translucent particles or oversizing of less transparent particles due to the halos and gradients in intensity near the particle boundaries. We have developed an imaging analysis algorithm that sets the threshold for a particle based on the maximum gray value of the particle. We show that this results in tighter boundaries for particles with high contrast, while conserving the number of highly translucent particles detected. The method is implemented as a plugin for FIJI, an open-source image analysis software. The method is tested for calibration beads in water and glycerol/water solutions, a suspension of microfabricated rods, and stir-stressed aggregates made from IgG. The result is that appropriate thresholds are automatically set for solutions with a range of particle properties, and that improved boundaries will allow for more accurate sizing results and potentially improved particle classification studies. Published by Elsevier Inc.

  17. Hydrodynamic sensory threshold in harbour seals (Phoca vitulina) for artificial flatfish breathing currents.

    PubMed

    Niesterok, Benedikt; Dehnhardt, Guido; Hanke, Wolf

    2017-07-01

    Harbour seals have the ability to detect benthic fish such as flatfish using the water currents these fish emit through their gills (breathing currents). We investigated the sensory threshold in harbour seals for this specific hydrodynamic stimulus under conditions which are realistic for seals hunting in the wild. We used an experimental platform where an artificial breathing current was emitted through one of eight different nozzles. Two seals were trained to search for the active nozzle. Each experimental session consisted of eight test trials of a particular stimulus intensity and 16 supra-threshold trials of high stimulus intensity. Test trials were conducted with the animals blindfolded. To determine the threshold, a series of breathing currents differing in intensity was used. For each intensity, three sessions were run. The threshold in terms of maximum water velocity within the breathing current was 4.2 cm s -1 for one seal and 3.7 cm s -1 for the other. We measured background flow velocities from 1.8 to 3.4 cm s -1 Typical swimming speeds for both animals were around 0.5 m s -1 Swimming speed differed between successful and unsuccessful trials. It appears that swimming speed is restricted for the successful detection of a breathing current close to the threshold. Our study is the first to assess a sensory threshold of the vibrissal system for a moving harbour seal under near-natural conditions. Furthermore, this threshold was defined for a natural type of stimulus differing from classical dipole stimuli which have been widely used in threshold determination so far. © 2017. Published by The Company of Biologists Ltd.

  18. A Pilot Study of Pedestrians with Visual Impairments Detecting Traffic Gaps and Surges Containing Hybrid Vehicles

    PubMed Central

    Emerson, Robert Wall; Naghshineh, Koorosh; Hapeman, Julie; Wiener, William

    2010-01-01

    The increasing number of hybrid and quiet internal combustion engine vehicles may impact the travel abilities of pedestrians who are blind. Pedestrians who rely on auditory cues for structuring their travel may face challenges in making crossing decisions in the presence of quiet vehicles. This article describes results of initial studies looking at the crossing decisions of pedestrians who are blind at an uncontrolled crossing (no traffic control) and a light controlled intersection. The presence of hybrid vehicles was a factor in each situation. At the uncontrolled crossing, Toyota hybrids were most difficult to detect but crossing decisions were made more often in small gaps ended by a Honda hybrid. These effects were seen only at speed under 20 mph. At the light controlled intersection, parallel surges of traffic were most difficult to detect when made up only of a Ford Escape hybrid. Results suggest that more controlled studies of vehicle characteristics impacting crossing decisions of pedestrians who are blind are warranted. PMID:21379367

  19. A Pilot Study of Pedestrians with Visual Impairments Detecting Traffic Gaps and Surges Containing Hybrid Vehicles.

    PubMed

    Emerson, Robert Wall; Naghshineh, Koorosh; Hapeman, Julie; Wiener, William

    2011-03-01

    The increasing number of hybrid and quiet internal combustion engine vehicles may impact the travel abilities of pedestrians who are blind. Pedestrians who rely on auditory cues for structuring their travel may face challenges in making crossing decisions in the presence of quiet vehicles. This article describes results of initial studies looking at the crossing decisions of pedestrians who are blind at an uncontrolled crossing (no traffic control) and a light controlled intersection. The presence of hybrid vehicles was a factor in each situation. At the uncontrolled crossing, Toyota hybrids were most difficult to detect but crossing decisions were made more often in small gaps ended by a Honda hybrid. These effects were seen only at speed under 20 mph. At the light controlled intersection, parallel surges of traffic were most difficult to detect when made up only of a Ford Escape hybrid. Results suggest that more controlled studies of vehicle characteristics impacting crossing decisions of pedestrians who are blind are warranted.

  20. Robust climate policies under uncertainty: a comparison of robust decision making and info-gap methods.

    PubMed

    Hall, Jim W; Lempert, Robert J; Keller, Klaus; Hackbarth, Andrew; Mijere, Christophe; McInerney, David J

    2012-10-01

    This study compares two widely used approaches for robustness analysis of decision problems: the info-gap method originally developed by Ben-Haim and the robust decision making (RDM) approach originally developed by Lempert, Popper, and Bankes. The study uses each approach to evaluate alternative paths for climate-altering greenhouse gas emissions given the potential for nonlinear threshold responses in the climate system, significant uncertainty about such a threshold response and a variety of other key parameters, as well as the ability to learn about any threshold responses over time. Info-gap and RDM share many similarities. Both represent uncertainty as sets of multiple plausible futures, and both seek to identify robust strategies whose performance is insensitive to uncertainties. Yet they also exhibit important differences, as they arrange their analyses in different orders, treat losses and gains in different ways, and take different approaches to imprecise probabilistic information. The study finds that the two approaches reach similar but not identical policy recommendations and that their differing attributes raise important questions about their appropriate roles in decision support applications. The comparison not only improves understanding of these specific methods, it also suggests some broader insights into robustness approaches and a framework for comparing them. © 2012 RAND Corporation.

  1. Multiple-Threshold Event Detection and Other Enhancements to the Virtual Seismologist (VS) Earthquake Early Warning Algorithm

    NASA Astrophysics Data System (ADS)

    Fischer, M.; Caprio, M.; Cua, G. B.; Heaton, T. H.; Clinton, J. F.; Wiemer, S.

    2009-12-01

    The Virtual Seismologist (VS) algorithm is a Bayesian approach to earthquake early warning (EEW) being implemented by the Swiss Seismological Service at ETH Zurich. The application of Bayes’ theorem in earthquake early warning states that the most probable source estimate at any given time is a combination of contributions from a likelihood function that evolves in response to incoming data from the on-going earthquake, and selected prior information, which can include factors such as network topology, the Gutenberg-Richter relationship or previously observed seismicity. The VS algorithm was one of three EEW algorithms involved in the California Integrated Seismic Network (CISN) real-time EEW testing and performance evaluation effort. Its compelling real-time performance in California over the last three years has led to its inclusion in the new USGS-funded effort to develop key components of CISN ShakeAlert, a prototype EEW system that could potentially be implemented in California. A significant portion of VS code development was supported by the SAFER EEW project in Europe. We discuss recent enhancements to the VS EEW algorithm. We developed and continue to test a multiple-threshold event detection scheme, which uses different association / location approaches depending on the peak amplitudes associated with an incoming P pick. With this scheme, an event with sufficiently high initial amplitudes can be declared on the basis of a single station, maximizing warning times for damaging events for which EEW is most relevant. Smaller, non-damaging events, which will have lower initial amplitudes, will require more picks to be declared an event to reduce false alarms. This transforms the VS codes from a regional EEW approach reliant on traditional location estimation (and it requirement of at least 4 picks as implemented by the Binder Earthworm phase associator) to a hybrid on-site/regional approach capable of providing a continuously evolving stream of EEW

  2. A robust threshold-based cloud mask for the HRV channel of MSG SEVIRI

    NASA Astrophysics Data System (ADS)

    Bley, S.; Deneke, H.

    2013-03-01

    A robust threshold-based cloud mask for the high-resolution visible (HRV) channel (1 × 1 km2) of the METEOSAT SEVIRI instrument is introduced and evaluated. It is based on operational EUMETSAT cloud mask for the low resolution channels of SEVIRI (3 × 3 km2), which is used for the selection of suitable thresholds to ensure consistency with its results. The aim of using the HRV channel is to resolve small-scale cloud structures which cannot be detected by the low resolution channels. We find that it is of advantage to apply thresholds relative to clear-sky reflectance composites, and to adapt the threshold regionally. Furthermore, the accuracy of the different spectral channels for thresholding and the suitability of the HRV channel are investigated for cloud detection. The case studies show different situations to demonstrate the behaviour for various surface and cloud conditions. Overall, between 4 and 24% of cloudy low-resolution SEVIRI pixels are found to contain broken clouds in our test dataset depending on considered region. Most of these broken pixels are classified as cloudy by EUMETSAT's cloud mask, which will likely result in an overestimate if the mask is used as estimate of cloud fraction.

  3. Rejection Thresholds in Solid Chocolate-Flavored Compound Coating

    PubMed Central

    Harwood, Meriel L.; Ziegler, Gregory R.; Hayes, John E.

    2012-01-01

    Classical detection thresholds do not predict liking, as they focus on the presence or absence of a sensation. Recently however, Prescott and colleagues described a new method, the rejection threshold, where a series of forced choice preference tasks are used to generate a dose-response function to determine hedonically acceptable concentrations. That is, how much is too much? To date, this approach has been used exclusively in liquid foods. Here, we determined group rejection thresholds in solid chocolate-flavored compound coating for bitterness. The influences of self-identified preferences for milk or dark chocolate, as well as eating style (chewers versus melters) on rejection thresholds were investigated. Stimuli included milk chocolate-flavored compound coating spiked with increasing amounts of sucrose octaacetate (SOA), a bitter GRAS additive. Paired preference tests (blank vs. spike) were used to determine the proportion of the group that preferred the blank. Across pairs, spiked samples were presented in ascending concentration. We were able to quantify and compare differences between two self-identified market segments. The rejection threshold for the dark chocolate preferring group was significantly higher than the milk chocolate preferring group (p = 0.01). Conversely, eating style did not affect group rejection thresholds (p = 0.14), although this may reflect the amount of chocolate given to participants. Additionally, there was no association between chocolate preference and eating style (p = 0.36). Present work supports the contention that this method can be used to examine preferences within specific market segments and potentially individual differences as they relate to ingestive behavior. PMID:22924788

  4. Enhanced detection threshold for in vivo cortical stimulation produced by Hebbian conditioning

    NASA Astrophysics Data System (ADS)

    Rebesco, James M.; Miller, Lee E.

    2011-02-01

    Normal brain function requires constant adaptation, as an organism learns to associate important sensory stimuli with the appropriate motor actions. Neurological disorders may disrupt these learned associations and require the nervous system to reorganize itself. As a consequence, neural plasticity is a crucial component of normal brain function and a critical mechanism for recovery from injury. Associative, or Hebbian, pairing of pre- and post-synaptic activity has been shown to alter stimulus-evoked responses in vivo; however, to date, such protocols have not been shown to affect the animal's subsequent behavior. We paired stimulus trains separated by a brief time delay to two electrodes in rat sensorimotor cortex, which changed the statistical pattern of spikes during subsequent behavior. These changes were consistent with strengthened functional connections from the leading electrode to the lagging electrode. We then trained rats to respond to a microstimulation cue, and repeated the paradigm using the cue electrode as the leading electrode. This pairing lowered the rat's ICMS-detection threshold, with the same dependence on intra-electrode time lag that we found for the functional connectivity changes. The timecourse of the behavioral effects was very similar to that of the connectivity changes. We propose that the behavioral changes were a consequence of strengthened functional connections from the cue electrode to other regions of sensorimotor cortex. Such paradigms might be used to augment recovery from a stroke, or to promote adaptation in a bidirectional brain-machine interface.

  5. The Fine Tuning of Pain Thresholds: A Sophisticated Double Alarm System

    PubMed Central

    Plaghki, Léon; Decruynaere, Céline; Van Dooren, Paul; Le Bars, Daniel

    2010-01-01

    Two distinctive features characterize the way in which sensations including pain, are evoked by heat: (1) a thermal stimulus is always progressive; (2) a painful stimulus activates two different types of nociceptors, connected to peripheral afferent fibers with medium and slow conduction velocities, namely Aδ- and C-fibers. In the light of a recent study in the rat, our objective was to develop an experimental paradigm in humans, based on the joint analysis of the stimulus and the response of the subject, to measure the thermal thresholds and latencies of pain elicited by Aδ- and C-fibers. For comparison, the same approach was applied to the sensation of warmth elicited by thermoreceptors. A CO2 laser beam raised the temperature of the skin filmed by an infrared camera. The subject stopped the beam when he/she perceived pain. The thermal images were analyzed to provide four variables: true thresholds and latencies of pain triggered by heat via Aδ- and C-fibers. The psychophysical threshold of pain triggered by Aδ-fibers was always higher (2.5–3°C) than that triggered by C-fibers. The initial skin temperature did not influence these thresholds. The mean conduction velocities of the corresponding fibers were 13 and 0.8 m/s, respectively. The triggering of pain either by C- or by Aδ-fibers was piloted by several factors including the low/high rate of stimulation, the low/high base temperature of the skin, the short/long peripheral nerve path and some pharmacological manipulations (e.g. Capsaicin). Warming a large skin area increased the pain thresholds. Considering the warmth detection gave a different picture: the threshold was strongly influenced by the initial skin temperature and the subjects detected an average variation of 2.7°C, whatever the initial temperature. This is the first time that thresholds and latencies for pain elicited by both Aδ- and C-fibers from a given body region have been measured in the same experimental run. Such an approach

  6. CISN ShakeAlert: Faster Warning Information Through Multiple Threshold Event Detection in the Virtual Seismologist (VS) Early Warning Algorithm

    NASA Astrophysics Data System (ADS)

    Cua, G. B.; Fischer, M.; Caprio, M.; Heaton, T. H.; Cisn Earthquake Early Warning Project Team

    2010-12-01

    The Virtual Seismologist (VS) earthquake early warning (EEW) algorithm is one of 3 EEW approaches being incorporated into the California Integrated Seismic Network (CISN) ShakeAlert system, a prototype EEW system that could potentially be implemented in California. The VS algorithm, implemented by the Swiss Seismological Service at ETH Zurich, is a Bayesian approach to EEW, wherein the most probable source estimate at any given time is a combination of contributions from a likehihood function that evolves in response to incoming data from the on-going earthquake, and selected prior information, which can include factors such as network topology, the Gutenberg-Richter relationship or previously observed seismicity. The VS codes have been running in real-time at the Southern California Seismic Network since July 2008, and at the Northern California Seismic Network since February 2009. We discuss recent enhancements to the VS EEW algorithm that are being integrated into CISN ShakeAlert. We developed and continue to test a multiple-threshold event detection scheme, which uses different association / location approaches depending on the peak amplitudes associated with an incoming P pick. With this scheme, an event with sufficiently high initial amplitudes can be declared on the basis of a single station, maximizing warning times for damaging events for which EEW is most relevant. Smaller, non-damaging events, which will have lower initial amplitudes, will require more picks to initiate an event declaration, with the goal of reducing false alarms. This transforms the VS codes from a regional EEW approach reliant on traditional location estimation (and the requirement of at least 4 picks as implemented by the Binder Earthworm phase associator) into an on-site/regional approach capable of providing a continuously evolving stream of EEW information starting from the first P-detection. Real-time and offline analysis on Swiss and California waveform datasets indicate that the

  7. Agreeable smellers and sensitive neurotics--correlations among personality traits and sensory thresholds.

    PubMed

    Croy, Ilona; Springborn, Maria; Lötsch, Jörn; Johnston, Amy N B; Hummel, Thomas

    2011-04-27

    Correlations between personality traits and a wide range of sensory thresholds were examined. Participants (N = 124) completed a personality inventory (NEO-FFI) and underwent assessment of olfactory, trigeminal, tactile and gustatory detection thresholds, as well as examination of trigeminal and tactile pain thresholds. Significantly enhanced odor sensitivity in socially agreeable people, significantly enhanced trigeminal sensitivity in neurotic subjects, and a tendency for enhanced pain tolerance in highly conscientious participants was revealed. It is postulated that varied sensory processing may influence an individual's perception of the environment; particularly their perception of socially relevant or potentially dangerous stimuli and thus, varied with personality.

  8. Constraining Gamma-Ray Pulsar Gap Models with a Simulated Pulsar Population

    NASA Technical Reports Server (NTRS)

    Pierbattista, Marco; Grenier, I. A.; Harding, A. K.; Gonthier, P. L.

    2012-01-01

    With the large sample of young gamma-ray pulsars discovered by the Fermi Large Area Telescope (LAT), population synthesis has become a powerful tool for comparing their collective properties with model predictions. We synthesised a pulsar population based on a radio emission model and four gamma-ray gap models (Polar Cap, Slot Gap, Outer Gap, and One Pole Caustic). Applying gamma-ray and radio visibility criteria, we normalise the simulation to the number of detected radio pulsars by a select group of ten radio surveys. The luminosity and the wide beams from the outer gaps can easily account for the number of Fermi detections in 2 years of observations. The wide slot-gap beam requires an increase by a factor of 10 of the predicted luminosity to produce a reasonable number of gamma-ray pulsars. Such large increases in the luminosity may be accommodated by implementing offset polar caps. The narrow polar-cap beams contribute at most only a handful of LAT pulsars. Using standard distributions in birth location and pulsar spin-down power (E), we skew the initial magnetic field and period distributions in a an attempt to account for the high E Fermi pulsars. While we compromise the agreement between simulated and detected distributions of radio pulsars, the simulations fail to reproduce the LAT findings: all models under-predict the number of LAT pulsars with high E , and they cannot explain the high probability of detecting both the radio and gamma-ray beams at high E. The beaming factor remains close to 1.0 over 4 decades in E evolution for the slot gap whereas it significantly decreases with increasing age for the outer gaps. The evolution of the enhanced slot-gap luminosity with E is compatible with the large dispersion of gamma-ray luminosity seen in the LAT data. The stronger evolution predicted for the outer gap, which is linked to the polar cap heating by the return current, is apparently not supported by the LAT data. The LAT sample of gamma-ray pulsars

  9. On the accurate estimation of gap fraction during daytime with digital cover photography

    NASA Astrophysics Data System (ADS)

    Hwang, Y. R.; Ryu, Y.; Kimm, H.; Macfarlane, C.; Lang, M.; Sonnentag, O.

    2015-12-01

    Digital cover photography (DCP) has emerged as an indirect method to obtain gap fraction accurately. Thus far, however, the intervention of subjectivity, such as determining the camera relative exposure value (REV) and threshold in the histogram, hindered computing accurate gap fraction. Here we propose a novel method that enables us to measure gap fraction accurately during daytime under various sky conditions by DCP. The novel method computes gap fraction using a single DCP unsaturated raw image which is corrected for scattering effects by canopies and a reconstructed sky image from the raw format image. To test the sensitivity of the novel method derived gap fraction to diverse REVs, solar zenith angles and canopy structures, we took photos in one hour interval between sunrise to midday under dense and sparse canopies with REV 0 to -5. The novel method showed little variation of gap fraction across different REVs in both dense and spares canopies across diverse range of solar zenith angles. The perforated panel experiment, which was used to test the accuracy of the estimated gap fraction, confirmed that the novel method resulted in the accurate and consistent gap fractions across different hole sizes, gap fractions and solar zenith angles. These findings highlight that the novel method opens new opportunities to estimate gap fraction accurately during daytime from sparse to dense canopies, which will be useful in monitoring LAI precisely and validating satellite remote sensing LAI products efficiently.

  10. Terahertz radiation-induced sub-cycle field electron emission across a split-gap dipole antenna

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jingdi; Averitt, Richard D., E-mail: xinz@bu.edu, E-mail: raveritt@ucsd.edu; Department of Physics, Boston University, Boston, Massachusetts 02215

    We use intense terahertz pulses to excite the resonant mode (0.6 THz) of a micro-fabricated dipole antenna with a vacuum gap. The dipole antenna structure enhances the peak amplitude of the in-gap THz electric field by a factor of ∼170. Above an in-gap E-field threshold amplitude of ∼10 MV/cm{sup −1}, THz-induced field electron emission is observed as indicated by the field-induced electric current across the dipole antenna gap. Field emission occurs within a fraction of the driving THz period. Our analysis of the current (I) and incident electric field (E) is in agreement with a Millikan-Lauritsen analysis where log (I) exhibits amore » linear dependence on 1/E. Numerical estimates indicate that the electrons are accelerated to a value of approximately one tenth of the speed of light.« less

  11. An Intelligent Harmonic Synthesis Technique for Air-Gap Eccentricity Fault Diagnosis in Induction Motors

    NASA Astrophysics Data System (ADS)

    Li, De Z.; Wang, Wilson; Ismail, Fathy

    2017-11-01

    Induction motors (IMs) are commonly used in various industrial applications. To improve energy consumption efficiency, a reliable IM health condition monitoring system is very useful to detect IM fault at its earliest stage to prevent operation degradation, and malfunction of IMs. An intelligent harmonic synthesis technique is proposed in this work to conduct incipient air-gap eccentricity fault detection in IMs. The fault harmonic series are synthesized to enhance fault features. Fault related local spectra are processed to derive fault indicators for IM air-gap eccentricity diagnosis. The effectiveness of the proposed harmonic synthesis technique is examined experimentally by IMs with static air-gap eccentricity and dynamic air-gap eccentricity states under different load conditions. Test results show that the developed harmonic synthesis technique can extract fault features effectively for initial IM air-gap eccentricity fault detection.

  12. You Spin my Head Right Round: Threshold of Limited Immersion for Rotation Gains in Redirected Walking.

    PubMed

    Schmitz, Patric; Hildebrandt, Julian; Valdez, Andre Calero; Kobbelt, Leif; Ziefle, Martina

    2018-04-01

    In virtual environments, the space that can be explored by real walking is limited by the size of the tracked area. To enable unimpeded walking through large virtual spaces in small real-world surroundings, redirection techniques are used. These unnoticeably manipulate the user's virtual walking trajectory. It is important to know how strongly such techniques can be applied without the user noticing the manipulation-or getting cybersick. Previously, this was estimated by measuring a detection threshold (DT) in highly-controlled psychophysical studies, which experimentally isolate the effect but do not aim for perceived immersion in the context of VR applications. While these studies suggest that only relatively low degrees of manipulation are tolerable, we claim that, besides establishing detection thresholds, it is important to know when the user's immersion breaks. We hypothesize that the degree of unnoticed manipulation is significantly different from the detection threshold when the user is immersed in a task. We conducted three studies: a) to devise an experimental paradigm to measure the threshold of limited immersion (TLI), b) to measure the TLI for slowly decreasing and increasing rotation gains, and c) to establish a baseline of cybersickness for our experimental setup. For rotation gains greater than 1.0, we found that immersion breaks quite late after the gain is detectable. However, for gains lesser than 1.0, some users reported a break of immersion even before established detection thresholds were reached. Apparently, the developed metric measures an additional quality of user experience. This article contributes to the development of effective spatial compression methods by utilizing the break of immersion as a benchmark for redirection techniques.

  13. Rejection Thresholds in Chocolate Milk: Evidence for Segmentation

    PubMed Central

    Harwood, Meriel L.; Ziegler, Gregory R.; Hayes, John E.

    2012-01-01

    Bitterness is generally considered a negative attribute in food, yet many individuals enjoy some bitterness in products like coffee or chocolate. In chocolate, bitterness arises from naturally occurring alkaloids and phenolics found in cacao. Fermentation and roasting help develop typical chocolate flavor and reduce the intense bitterness of raw cacao by modifying these bitter compounds. As it becomes increasingly common to fortify chocolate with `raw' cacao to increase the amount of healthful phytonutrients, it is important to identify the point at which the concentration of bitter compounds becomes objectionable, even to those who enjoy some bitterness. Classical threshold methods focus on the presence or absence of a sensation rather than acceptability or hedonics. A new alternative, the rejection threshold, was recently described in the literature. Here, we sought to quantify and compare differences in Rejection Thresholds (RjT) and Detection Thresholds (DT) in chocolate milk spiked with a food safe bitterant (sucrose octaacetate). In experiment 1, a series of paired preference tests was used to estimate the RjT for bitterness in chocolate milk. In a new group of participants (experiment 2), we determined the RjT and DT using the forced choice ascending method of limits. In both studies, participants were segmented on the basis of self-declared preference for milk or dark solid chocolate. Based on sigmoid fits of the indifference-preference function, the RjT was ~2.3 times higher for those preferring dark chocolate than the RjT for those preferring milk chocolate in both experiments. In contrast, the DT for both groups was functionally identical, suggesting that differential effects of bitterness on liking of chocolate products are not based on the ability to detect bitterness in these products. PMID:22754143

  14. Rejection Thresholds in Chocolate Milk: Evidence for Segmentation.

    PubMed

    Harwood, Meriel L; Ziegler, Gregory R; Hayes, John E

    2012-10-01

    Bitterness is generally considered a negative attribute in food, yet many individuals enjoy some bitterness in products like coffee or chocolate. In chocolate, bitterness arises from naturally occurring alkaloids and phenolics found in cacao. Fermentation and roasting help develop typical chocolate flavor and reduce the intense bitterness of raw cacao by modifying these bitter compounds. As it becomes increasingly common to fortify chocolate with `raw' cacao to increase the amount of healthful phytonutrients, it is important to identify the point at which the concentration of bitter compounds becomes objectionable, even to those who enjoy some bitterness. Classical threshold methods focus on the presence or absence of a sensation rather than acceptability or hedonics. A new alternative, the rejection threshold, was recently described in the literature. Here, we sought to quantify and compare differences in Rejection Thresholds (RjT) and Detection Thresholds (DT) in chocolate milk spiked with a food safe bitterant (sucrose octaacetate). In experiment 1, a series of paired preference tests was used to estimate the RjT for bitterness in chocolate milk. In a new group of participants (experiment 2), we determined the RjT and DT using the forced choice ascending method of limits. In both studies, participants were segmented on the basis of self-declared preference for milk or dark solid chocolate. Based on sigmoid fits of the indifference-preference function, the RjT was ~2.3 times higher for those preferring dark chocolate than the RjT for those preferring milk chocolate in both experiments. In contrast, the DT for both groups was functionally identical, suggesting that differential effects of bitterness on liking of chocolate products are not based on the ability to detect bitterness in these products.

  15. Knowledge-Base Semantic Gap Analysis for the Vulnerability Detection

    NASA Astrophysics Data System (ADS)

    Wu, Raymond; Seki, Keisuke; Sakamoto, Ryusuke; Hisada, Masayuki

    Web security became an alert in internet computing. To cope with ever-rising security complexity, semantic analysis is proposed to fill-in the gap that the current approaches fail to commit. Conventional methods limit their focus to the physical source codes instead of the abstraction of semantics. It bypasses new types of vulnerability and causes tremendous business loss.

  16. Electrospray ionization from a gap with adjustable width.

    PubMed

    Ek, Patrik; Sjödahl, Johan; Roeraade, Johan

    2006-01-01

    In this paper, we present a new concept for electrospray ionization mass spectrometry, where the sample is applied in a gap which is formed between the edges of two triangular-shaped tips. The size of the spray orifice can be changed by varying the gap width. The tips were fabricated from polyethylene terephthalate film with a thickness of 36 microm. To improve the wetting of the gap and sample confinement, the edges of the tips forming the gap were hydrophilized by means of silicon dioxide deposition. Electrospray was performed with gap widths between 1 and 36 microm and flow rates down to 75 nL/min. The gap width could be adjusted in situ during the mass spectrometry experiments and nozzle clogging could be managed by simply widening the gap. Using angiotensin I as analyte, the signal-to-noise ratio increased as the gap width was decreased, and a shift towards higher charge states was observed. The detection limit for angiotensin I was in the low nM range. Copyright (c) 2006 John Wiley & Sons, Ltd.

  17. Hyperspectral wide gap second derivative analysis for in vivo detection of cervical intraepithelial neoplasia

    NASA Astrophysics Data System (ADS)

    Zheng, Wenli; Wang, Chaojian; Chang, Shufang; Zhang, Shiwu; Xu, Ronald X.

    2015-12-01

    Hyperspectral reflectance imaging technique has been used for in vivo detection of cervical intraepithelial neoplasia. However, the clinical outcome of this technique is suboptimal owing to multiple limitations such as nonuniform illumination, high-cost and bulky setup, and time-consuming data acquisition and processing. To overcome these limitations, we acquired the hyperspectral data cube in a wavelength ranging from 600 to 800 nm and processed it by a wide gap second derivative analysis method. This method effectively reduced the image artifacts caused by nonuniform illumination and background absorption. Furthermore, with second derivative analysis, only three specific wavelengths (620, 696, and 772 nm) are needed for tissue classification with optimal separability. Clinical feasibility of the proposed image analysis and classification method was tested in a clinical trial where cervical hyperspectral images from three patients were used for classification analysis. Our proposed method successfully classified the cervix tissue into three categories of normal, inflammation and high-grade lesion. These classification results were coincident with those by an experienced gynecology oncologist after applying acetic acid. Our preliminary clinical study has demonstrated the technical feasibility for in vivo and noninvasive detection of cervical neoplasia without acetic acid. Further clinical research is needed in order to establish a large-scale diagnostic database and optimize the tissue classification technique.

  18. Hyperspectral wide gap second derivative analysis for in vivo detection of cervical intraepithelial neoplasia.

    PubMed

    Zheng, Wenli; Wang, Chaojian; Chang, Shufang; Zhang, Shiwu; Xu, Ronald X

    2015-12-01

    Hyperspectral reflectance imaging technique has been used for in vivo detection of cervical intraepithelial neoplasia. However, the clinical outcome of this technique is suboptimal owing to multiple limitations such as nonuniform illumination, high-cost and bulky setup, and time-consuming data acquisition and processing. To overcome these limitations, we acquired the hyperspectral data cube in a wavelength ranging from 600 to 800 nm and processed it by a wide gap second derivative analysis method. This method effectively reduced the image artifacts caused by nonuniform illumination and background absorption. Furthermore, with second derivative analysis, only three specific wavelengths (620, 696, and 772 nm) are needed for tissue classification with optimal separability. Clinical feasibility of the proposed image analysis and classification method was tested in a clinical trial where cervical hyperspectral images from three patients were used for classification analysis. Our proposed method successfully classified the cervix tissue into three categories of normal, inflammation and high-grade lesion. These classification results were coincident with those by an experienced gynecology oncologist after applying acetic acid. Our preliminary clinical study has demonstrated the technical feasibility for in vivo and noninvasive detection of cervical neoplasia without acetic acid. Further clinical research is needed in order to establish a large-scale diagnostic database and optimize the tissue classification technique.

  19. Detecting fragmentation extinction thresholds for forest understory plant species in peninsular Spain.

    PubMed

    Rueda, Marta; Moreno Saiz, Juan Carlos; Morales-Castilla, Ignacio; Albuquerque, Fabio S; Ferrero, Mila; Rodríguez, Miguel Á

    2015-01-01

    Ecological theory predicts that fragmentation aggravates the effects of habitat loss, yet empirical results show mixed evidences, which fail to support the theory instead reinforcing the primary importance of habitat loss. Fragmentation hypotheses have received much attention due to their potential implications for biodiversity conservation, however, animal studies have traditionally been their main focus. Here we assess variation in species sensitivity to forest amount and fragmentation and evaluate if fragmentation is related to extinction thresholds in forest understory herbs and ferns. Our expectation was that forest herbs would be more sensitive to fragmentation than ferns due to their lower dispersal capabilities. Using forest cover percentage and the proportion of this percentage occurring in the largest patch within UTM cells of 10-km resolution covering Peninsular Spain, we partitioned the effects of forest amount versus fragmentation and applied logistic regression to model occurrences of 16 species. For nine models showing robustness according to a set of quality criteria we subsequently defined two empirical fragmentation scenarios, minimum and maximum, and quantified species' sensitivity to forest contraction with no fragmentation, and to fragmentation under constant forest cover. We finally assessed how the extinction threshold of each species (the habitat amount below which it cannot persist) varies under no and maximum fragmentation. Consistent with their preference for forest habitats probability occurrences of all species decreased as forest cover contracted. On average, herbs did not show significant sensitivity to fragmentation whereas ferns were favored. In line with theory, fragmentation yielded higher extinction thresholds for two species. For the remaining species, fragmentation had either positive or non-significant effects. We interpret these differences as reflecting species-specific traits and conclude that although forest amount is of

  20. The impact of cochlear fine structure on hearing thresholds and DPOAE levels

    NASA Astrophysics Data System (ADS)

    Lee, Jungmee; Long, Glenis; Talmadge, Carrick L.

    2004-05-01

    Although otoacoustic emissions (OAE) are used as clinical and research tools, the correlation between OAE behavioral estimates of hearing status is not large. In normal-hearing individuals, the level of OAEs can vary as much as 30 dB when the frequency is changed less than 5%. These pseudoperiodic variations of OAE level with frequency are known as fine structure. Hearing thresholds measured with high-frequency resolution reveals a similar (up to 15 dB) fine structure. We examine the impact of OAE and threshold fine structures on the prediction of auditory thresholds from OAE levels. Distortion product otoacoustic emissions (DPOAEs) were measured with sweeping primary tones. Psychoacoustic detection thresholds were measured using pure tones, sweep tones, FM tones, and narrow-band noise. Sweep DPOAE and narrow-band threshold estimates provide estimates that are less influenced by cochlear fine structure and should lead to a higher correlation between OAE levels and psychoacoustic thresholds. [Research supported by PSC CUNY, NIDCD, National Institute on Disability and Rehabilitation Research in U.S. Department of Education, and The Ministry of Education in Korea.

  1. Evaluation of end-tidal CO2 pressure at the anaerobic threshold for detecting and assessing pulmonary hypertension.

    PubMed

    Higashi, Akifumi; Dohi, Yoshihiro; Yamabe, Sayuri; Kinoshita, Hiroki; Sada, Yoshiharu; Kitagawa, Toshiro; Hidaka, Takayuki; Kurisu, Satoshi; Yamamoto, Hideya; Yasunobu, Yuji; Kihara, Yasuki

    2017-11-01

    Cardiopulmonary exercise testing (CPET) is useful for the evaluation of patients with suspected or confirmed pulmonary hypertension (PH). End-tidal carbon dioxide pressure (PETCO 2 ) during exercise is reduced with elevated pulmonary artery pressure. However, the utility of ventilatory parameters such as CPET for detecting PH remains unclear. We conducted a review in 155 patients who underwent right heart catheterization and CPET. Fifty-nine patients had PH [mean pulmonary arterial pressure (mPAP) ≥25 mmHg]. There was an inverse correlation between PETCO 2 at the anaerobic threshold (AT) and mPAP (r = -0.66; P < 0.01). Multiple regression analysis showed that PETCO 2 at the AT was independently associated with an elevated mPAP (P = 0.04). The sensitivity and specificity of CPET for PH were 80 and 86%, respectively, when the cut-off value identified by receiver operating characteristic curve analysis for PETCO 2 at the AT was ≤34.7 mmHg. A combination of echocardiography and CPET improved the sensitivity in detecting PH without markedly reducing specificity (sensitivity 87%, specificity 85%). Evaluation of PETCO 2 at the AT is useful for estimating pulmonary pressure. A combination of CPET and previous screening algorithms for PH may enhance the diagnostic ability of PH.

  2. Multisampling suprathreshold perimetry: a comparison with conventional suprathreshold and full-threshold strategies by computer simulation.

    PubMed

    Artes, Paul H; Henson, David B; Harper, Robert; McLeod, David

    2003-06-01

    To compare a multisampling suprathreshold strategy with conventional suprathreshold and full-threshold strategies in detecting localized visual field defects and in quantifying the area of loss. Probability theory was applied to examine various suprathreshold pass criteria (i.e., the number of stimuli that have to be seen for a test location to be classified as normal). A suprathreshold strategy that requires three seen or three missed stimuli per test location (multisampling suprathreshold) was selected for further investigation. Simulation was used to determine how the multisampling suprathreshold, conventional suprathreshold, and full-threshold strategies detect localized field loss. To determine the systematic error and variability in estimates of loss area, artificial fields were generated with clustered defects (0-25 field locations with 8- and 16-dB loss) and, for each condition, the number of test locations classified as defective (suprathreshold strategies) and with pattern deviation probability less than 5% (full-threshold strategy), was derived from 1000 simulated test results. The full-threshold and multisampling suprathreshold strategies had similar sensitivity to field loss. Both detected defects earlier than the conventional suprathreshold strategy. The pattern deviation probability analyses of full-threshold results underestimated the area of field loss. The conventional suprathreshold perimetry also underestimated the defect area. With multisampling suprathreshold perimetry, the estimates of defect area were less variable and exhibited lower systematic error. Multisampling suprathreshold paradigms may be a powerful alternative to other strategies of visual field testing. Clinical trials are needed to verify these findings.

  3. Hour-glass ceilings: Work-hour thresholds, gendered health inequities.

    PubMed

    Dinh, Huong; Strazdins, Lyndall; Welsh, Jennifer

    2017-03-01

    Long workhours erode health, which the setting of maximum weekly hours aims to avert. This 48-h limit, and the evidence base to support it, has evolved from a workforce that was largely male, whose time in the labour force was enabled by women's domestic work and care giving. The gender composition of the workforce has now changed, and many women (as well as some men) combine care-giving with paid work, a change viewed as fundamental for gender equality. However, it raises questions on the suitability of the work time limit and the extent it is protective of health. We estimate workhour-mental health thresholds, testing if they vary for men and women due to gendered workloads and constraints on and off the job. Using six waves of data from a nationally representative sample of Australian adults (24-65 years), surveyed in the Household Income Labour Dynamics of Australia Survey (N = 3828 men; 4062 women), our study uses a longitudinal, simultaneous equation approach to address endogeneity. Averaging over the sample, we find an overall threshold of 39 h per week beyond which mental health declines. Separate curves then estimate thresholds for men and women, by high or low care and domestic time constraints, using stratified and pooled samples. We find gendered workhour-health limits (43.5 for men, 38 for women) which widen further once differences in resources on and off the job are considered. Only when time is 'unencumbered' and similar time constraints and contexts are assumed, do gender gaps narrow and thresholds approximate the 48-h limit. Our study reveals limits to contemporary workhour regulation which may be systematically disadvantaging women's health. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. A STATISTICAL MODELING METHODOLOGY FOR THE DETECTION, QUANTIFICATION, AND PREDICTION OF ECOLOGICAL THRESHOLDS

    EPA Science Inventory

    This study will provide a general methodology for integrating threshold information from multiple species ecological metrics, allow for prediction of changes of alternative stable states, and provide a risk assessment tool that can be applied to adaptive management. The integr...

  5. Thymic selection threshold defined by compartmentalization of Ras/MAPK signalling.

    PubMed

    Daniels, Mark A; Teixeiro, Emma; Gill, Jason; Hausmann, Barbara; Roubaty, Dominique; Holmberg, Kaisa; Werlen, Guy; Holländer, Georg A; Gascoigne, Nicholas R J; Palmer, Ed

    2006-12-07

    A healthy individual can mount an immune response to exogenous pathogens while avoiding an autoimmune attack on normal tissues. The ability to distinguish between self and non-self is called 'immunological tolerance' and, for T lymphocytes, involves the generation of a diverse pool of functional T cells through positive selection and the removal of overtly self-reactive thymocytes by negative selection during T-cell ontogeny. To elucidate how thymocytes arrive at these cell fate decisions, here we have identified ligands that define an extremely narrow gap spanning the threshold that distinguishes positive from negative selection. We show that, at the selection threshold, a small increase in ligand affinity for the T-cell antigen receptor leads to a marked change in the activation and subcellular localization of Ras and mitogen-activated protein kinase (MAPK) signalling intermediates and the induction of negative selection. The ability to compartmentalize signalling molecules differentially in the cell endows the thymocyte with the ability to convert a small change in analogue input (affinity) into a digital output (positive versus negative selection) and provides the basis for establishing central tolerance.

  6. Assessing regional and interspecific variation in threshold responses of forest breeding birds through broad scale analyses.

    PubMed

    van der Hoek, Yntze; Renfrew, Rosalind; Manne, Lisa L

    2013-01-01

    Identifying persistence and extinction thresholds in species-habitat relationships is a major focal point of ecological research and conservation. However, one major concern regarding the incorporation of threshold analyses in conservation is the lack of knowledge on the generality and transferability of results across species and regions. We present a multi-region, multi-species approach of modeling threshold responses, which we use to investigate whether threshold effects are similar across species and regions. We modeled local persistence and extinction dynamics of 25 forest-associated breeding birds based on detection/non-detection data, which were derived from repeated breeding bird atlases for the state of Vermont. We did not find threshold responses to be particularly well-supported, with 9 species supporting extinction thresholds and 5 supporting persistence thresholds. This contrasts with a previous study based on breeding bird atlas data from adjacent New York State, which showed that most species support persistence and extinction threshold models (15 and 22 of 25 study species respectively). In addition, species that supported a threshold model in both states had associated average threshold estimates of 61.41% (SE = 6.11, persistence) and 66.45% (SE = 9.15, extinction) in New York, compared to 51.08% (SE = 10.60, persistence) and 73.67% (SE = 5.70, extinction) in Vermont. Across species, thresholds were found at 19.45-87.96% forest cover for persistence and 50.82-91.02% for extinction dynamics. Through an approach that allows for broad-scale comparisons of threshold responses, we show that species vary in their threshold responses with regard to habitat amount, and that differences between even nearby regions can be pronounced. We present both ecological and methodological factors that may contribute to the different model results, but propose that regardless of the reasons behind these differences, our results merit a warning that

  7. Assessing Regional and Interspecific Variation in Threshold Responses of Forest Breeding Birds through Broad Scale Analyses

    PubMed Central

    van der Hoek, Yntze; Renfrew, Rosalind; Manne, Lisa L.

    2013-01-01

    Background Identifying persistence and extinction thresholds in species-habitat relationships is a major focal point of ecological research and conservation. However, one major concern regarding the incorporation of threshold analyses in conservation is the lack of knowledge on the generality and transferability of results across species and regions. We present a multi-region, multi-species approach of modeling threshold responses, which we use to investigate whether threshold effects are similar across species and regions. Methodology/Principal Findings We modeled local persistence and extinction dynamics of 25 forest-associated breeding birds based on detection/non-detection data, which were derived from repeated breeding bird atlases for the state of Vermont. We did not find threshold responses to be particularly well-supported, with 9 species supporting extinction thresholds and 5 supporting persistence thresholds. This contrasts with a previous study based on breeding bird atlas data from adjacent New York State, which showed that most species support persistence and extinction threshold models (15 and 22 of 25 study species respectively). In addition, species that supported a threshold model in both states had associated average threshold estimates of 61.41% (SE = 6.11, persistence) and 66.45% (SE = 9.15, extinction) in New York, compared to 51.08% (SE = 10.60, persistence) and 73.67% (SE = 5.70, extinction) in Vermont. Across species, thresholds were found at 19.45–87.96% forest cover for persistence and 50.82–91.02% for extinction dynamics. Conclusions/Significance Through an approach that allows for broad-scale comparisons of threshold responses, we show that species vary in their threshold responses with regard to habitat amount, and that differences between even nearby regions can be pronounced. We present both ecological and methodological factors that may contribute to the different model results, but propose that regardless of the

  8. ScanIndel: a hybrid framework for indel detection via gapped alignment, split reads and de novo assembly.

    PubMed

    Yang, Rendong; Nelson, Andrew C; Henzler, Christine; Thyagarajan, Bharat; Silverstein, Kevin A T

    2015-12-07

    Comprehensive identification of insertions/deletions (indels) across the full size spectrum from second generation sequencing is challenging due to the relatively short read length inherent in the technology. Different indel calling methods exist but are limited in detection to specific sizes with varying accuracy and resolution. We present ScanIndel, an integrated framework for detecting indels with multiple heuristics including gapped alignment, split reads and de novo assembly. Using simulation data, we demonstrate ScanIndel's superior sensitivity and specificity relative to several state-of-the-art indel callers across various coverage levels and indel sizes. ScanIndel yields higher predictive accuracy with lower computational cost compared with existing tools for both targeted resequencing data from tumor specimens and high coverage whole-genome sequencing data from the human NIST standard NA12878. Thus, we anticipate ScanIndel will improve indel analysis in both clinical and research settings. ScanIndel is implemented in Python, and is freely available for academic use at https://github.com/cauyrd/ScanIndel.

  9. Multiple input electrode gap controller

    DOEpatents

    Hysinger, Christopher L.; Beaman, Joseph J.; Melgaard, David K.; Williamson, Rodney L.

    1999-01-01

    A method and apparatus for controlling vacuum arc remelting (VAR) furnaces by estimation of electrode gap based on a plurality of secondary estimates derived from furnace outputs. The estimation is preferably performed by Kalman filter. Adaptive gain techniques may be employed, as well as detection of process anomalies such as glows.

  10. Properties of perimetric threshold estimates from Full Threshold, SITA Standard, and SITA Fast strategies.

    PubMed

    Artes, Paul H; Iwase, Aiko; Ohno, Yuko; Kitazawa, Yoshiaki; Chauhan, Balwantray C

    2002-08-01

    To investigate the distributions of threshold estimates with the Swedish Interactive Threshold Algorithms (SITA) Standard, SITA Fast, and the Full Threshold algorithm (Humphrey Field Analyzer; Zeiss-Humphrey Instruments, Dublin, CA) and to compare the pointwise test-retest variability of these strategies. One eye of 49 patients (mean age, 61.6 years; range, 22-81) with glaucoma (Mean Deviation mean, -7.13 dB; range, +1.8 to -23.9 dB) was examined four times with each of the three strategies. The mean and median SITA Standard and SITA Fast threshold estimates were compared with a "best available" estimate of sensitivity (mean results of three Full Threshold tests). Pointwise 90% retest limits (5th and 95th percentiles of retest thresholds) were derived to assess the reproducibility of individual threshold estimates. The differences between the threshold estimates of the SITA and Full Threshold strategies were largest ( approximately 3 dB) for midrange sensitivities ( approximately 15 dB). The threshold distributions of SITA were considerably different from those of the Full Threshold strategy. The differences remained of similar magnitude when the analysis was repeated on a subset of 20 locations that are examined early during the course of a Full Threshold examination. With sensitivities above 25 dB, both SITA strategies exhibited lower test-retest variability than the Full Threshold strategy. Below 25 dB, the retest intervals of SITA Standard were slightly smaller than those of the Full Threshold strategy, whereas those of SITA Fast were larger. SITA Standard may be superior to the Full Threshold strategy for monitoring patients with visual field loss. The greater test-retest variability of SITA Fast in areas of low sensitivity is likely to offset the benefit of even shorter test durations with this strategy. The sensitivity differences between the SITA and Full Threshold strategies may relate to factors other than reduced fatigue. They are, however, small in

  11. An Objective Estimation of Air-Bone-Gap in Cochlear Implant Recipients with Residual Hearing Using Electrocochleography.

    PubMed

    Koka, Kanthaiah; Saoji, Aniket A; Attias, Joseph; Litvak, Leonid M

    2017-01-01

    Although, cochlear implants (CI) traditionally have been used to treat individuals with bilateral profound sensorineural hearing loss, a recent trend is to implant individuals with residual low-frequency hearing. Notably, many of these individuals demonstrate an air-bone gap (ABG) in low-frequency, pure-tone thresholds following implantation. An ABG is the difference between audiometric thresholds measured using air conduction (AC) and bone conduction (BC) stimulation. Although, behavioral AC thresholds are straightforward to assess, BC thresholds can be difficult to measure in individuals with severe-to-profound hearing loss because of vibrotactile responses to high-level, low-frequency stimulation and the potential contribution of hearing in the contralateral ear. Because of these technical barriers to measuring behavioral BC thresholds in implanted patients with residual hearing, it would be helpful to have an objective method for determining ABG. This study evaluated an innovative technique for measuring electrocochleographic (ECochG) responses using the cochlear microphonic (CM) response to assess AC and BC thresholds in implanted patients with residual hearing. Results showed high correlations between CM thresholds and behavioral audiograms for AC and BC conditions, thereby demonstrating the feasibility of using ECochG as an objective tool for quantifying ABG in CI recipients.

  12. Threshold and non-threshold chemical carcinogens: A survey of the present regulatory landscape.

    PubMed

    Bevan, Ruth J; Harrison, Paul T C

    2017-08-01

    For the proper regulation of a carcinogenic material it is necessary to fully understand its mode of action, and in particular whether it demonstrates a threshold of effect. This paper explores our present understanding of carcinogenicity and the mechanisms underlying the carcinogenic response. The concepts of genotoxic and non-genotoxic and threshold and non-threshold carcinogens are fully described. We provide summary tables of the types of cancer considered to be associated with exposure to a number of carcinogens and the available evidence relating to whether carcinogenicity occurs through a threshold or non-threshold mechanism. In light of these observations we consider how different regulatory bodies approach the question of chemical carcinogenesis, looking in particular at the definitions and methodologies used to derive Occupational Exposure Levels (OELs) for carcinogens. We conclude that unless proper differentiation is made between threshold and non-threshold carcinogens, inappropriate risk management measures may be put in place - and lead also to difficulties in translating carcinogenicity research findings into appropriate health policies. We recommend that clear differentiation between threshold and non-threshold carcinogens should be made by all expert groups and regulatory bodies dealing with carcinogen classification and risk assessment. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Perceptual thresholds for non-ideal diffuse field reverberation.

    PubMed

    Romblom, David; Guastavino, Catherine; Depalle, Philippe

    2016-11-01

    The objective of this study is to understand listeners' sensitivity to directional variations in non-ideal diffuse field reverberation. An ABX discrimination test was conducted using a semi-spherical 28-loudspeaker array; perceptual thresholds were estimated by systematically varying the level of a segment of loudspeakers for lateral, height, and frontal conditions. The overall energy was held constant using a gain compensation scheme. When compared to an ideal diffuse field, the perceptual threshold for detection is -2.5 dB for the lateral condition, -6.8 dB for the height condition, and -3.2 dB for the frontal condition. Measurements of the experimental stimuli were analyzed using a Head and Torso Simulator as well as with opposing cardioid microphones aligned on the three Cartesian axes. Additionally, opposing cardioid measurements made in an acoustic space demonstrate that level differences corresponding to the perceptual thresholds can be found in practice. These results suggest that non-ideal diffuse field reverberation may be a previously unrecognized component of spatial impression.

  14. Differential equation models for sharp threshold dynamics.

    PubMed

    Schramm, Harrison C; Dimitrov, Nedialko B

    2014-01-01

    We develop an extension to differential equation models of dynamical systems to allow us to analyze probabilistic threshold dynamics that fundamentally and globally change system behavior. We apply our novel modeling approach to two cases of interest: a model of infectious disease modified for malware where a detection event drastically changes dynamics by introducing a new class in competition with the original infection; and the Lanchester model of armed conflict, where the loss of a key capability drastically changes the effectiveness of one of the sides. We derive and demonstrate a step-by-step, repeatable method for applying our novel modeling approach to an arbitrary system, and we compare the resulting differential equations to simulations of the system's random progression. Our work leads to a simple and easily implemented method for analyzing probabilistic threshold dynamics using differential equations. Published by Elsevier Inc.

  15. Threshold Determination for Local Instantaneous Sea Surface Height Derivation with Icebridge Data in Beaufort Sea

    NASA Astrophysics Data System (ADS)

    Zhu, C.; Zhang, S.; Xiao, F.; Li, J.; Yuan, L.; Zhang, Y.; Zhu, T.

    2018-05-01

    The NASA Operation IceBridge (OIB) mission is the largest program in the Earth's polar remote sensing science observation project currently, initiated in 2009, which collects airborne remote sensing measurements to bridge the gap between NASA's ICESat and the upcoming ICESat-2 mission. This paper develop an improved method that optimizing the selection method of Digital Mapping System (DMS) image and using the optimal threshold obtained by experiments in Beaufort Sea to calculate the local instantaneous sea surface height in this area. The optimal threshold determined by comparing manual selection with the lowest (Airborne Topographic Mapper) ATM L1B elevation threshold of 2 %, 1 %, 0.5 %, 0.2 %, 0.1 % and 0.05 % in A, B, C sections, the mean of mean difference are 0.166 m, 0.124 m, 0.083 m, 0.018 m, 0.002 m and -0.034 m. Our study shows the lowest L1B data of 0.1 % is the optimal threshold. The optimal threshold and manual selections are also used to calculate the instantaneous sea surface height over images with leads, we find that improved methods has closer agreement with those from L1B manual selections. For these images without leads, the local instantaneous sea surface height estimated by using the linear equations between distance and sea surface height calculated over images with leads.

  16. Effects of Ultrasound Frequency and Tissue Stiffness on the Histotripsy Intrinsic Threshold for Cavitation

    PubMed Central

    Vlaisavljevich, Eli; Lin, Kuang-Wei; Maxwell, Adam; Warnez, Matthew; Mancia, Lauren; Singh, Rahul; Putnam, Andrew J.; Fowlkes, Brian; Johnsen, Eric; Cain, Charles; Xu, Zhen

    2015-01-01

    Histotripsy is an ultrasound ablation method that depends on the initiation of a cavitation bubble cloud to fractionate soft tissue. Previous work has demonstrated a cavitation cloud can be formed by a single pulse with one high amplitude negative cycle, when the negative pressure amplitude directly exceeds a pressure threshold intrinsic to the medium. We hypothesize that the intrinsic threshold in water-based tissues is determined by the properties of the water inside the tissue and changes in tissue stiffness or ultrasound frequency will have a minimal impact on the histotripsy intrinsic threshold. To test this hypothesis, the histotripsy intrinsic threshold was investigated both experimentally and theoretically. The probability of cavitation was measured by subjecting tissue phantoms with adjustable mechanical properties and ex vivo tissues to a histotripsy pulse of 1–2 cycles produced by 345 kHz, 500 kHz, 1.5 MHz, and 3 MHz histotripsy transducers. Cavitation was detected and characterized by passive cavitation detection and high-speed photography, from which the probability of cavitation was measured vs. pressure amplitude. The results demonstrated that the intrinsic threshold (the negative pressure at which probability=0.5) is independent of stiffness for Young’s moduli (E) < 1 MPa with only a small increase (~2–3 MPa) in the intrinsic threshold for tendon (E=380 MPa). Additionally, results for all samples showed only a small increase of ~2–3 MPa when the frequency was increased from 345 kHz to 3 MHz. The intrinsic threshold was measured to be between 24.7–30.6 MPa for all samples and frequencies tested in this study. Overall, the results of this study indicate that the intrinsic threshold to initiate a histotripsy bubble cloud is not significantly impacted by tissue stiffness or ultrasound frequency in hundreds of kHz to MHz range. PMID:25766571

  17. Optimal thresholds for the estimation of area rain-rate moments by the threshold method

    NASA Technical Reports Server (NTRS)

    Short, David A.; Shimizu, Kunio; Kedem, Benjamin

    1993-01-01

    Optimization of the threshold method, achieved by determination of the threshold that maximizes the correlation between an area-average rain-rate moment and the area coverage of rain rates exceeding the threshold, is demonstrated empirically and theoretically. Empirical results for a sequence of GATE radar snapshots show optimal thresholds of 5 and 27 mm/h for the first and second moments, respectively. Theoretical optimization of the threshold method by the maximum-likelihood approach of Kedem and Pavlopoulos (1991) predicts optimal thresholds near 5 and 26 mm/h for lognormally distributed rain rates with GATE-like parameters. The agreement between theory and observations suggests that the optimal threshold can be understood as arising due to sampling variations, from snapshot to snapshot, of a parent rain-rate distribution. Optimal thresholds for gamma and inverse Gaussian distributions are also derived and compared.

  18. Specific features of a single-pulse sliding discharge in neon near the threshold for spark breakdown

    NASA Astrophysics Data System (ADS)

    Trusov, K. K.

    2017-08-01

    Experimental data on the spatial structure of a single-pulse sliding discharge in neon at voltages below, equal to, and above the threshold for spark breakdown are discussed. The experiments were carried at gas pressures of 30 and 100 kPa and different polarities of the discharge voltage. Photographs of the plasma structure in two discharge chambers with different dimensions of the discharge zone and different thicknesses of an alumina dielectric plate on the surface of which the discharge develops are inspected. Common features of the prebreakdown discharge and its specific features depending on the voltage polarity and gas pressure are analyzed. It is shown that, at voltages below the threshold for spark breakdown, a low-current glow discharge with cathode and anode spots develops in the electrode gap. Above the breakdown threshold, regardless of the voltage polarity, spark channels directed from the cathode to the anode develop against the background of a low-current discharge.

  19. Multiple input electrode gap controller

    DOEpatents

    Hysinger, C.L.; Beaman, J.J.; Melgaard, D.K.; Williamson, R.L.

    1999-07-27

    A method and apparatus for controlling vacuum arc remelting (VAR) furnaces by estimation of electrode gap based on a plurality of secondary estimates derived from furnace outputs. The estimation is preferably performed by Kalman filter. Adaptive gain techniques may be employed, as well as detection of process anomalies such as glows. 17 figs.

  20. Dual-threshold segmentation using Arimoto entropy based on chaotic bee colony optimization

    NASA Astrophysics Data System (ADS)

    Li, Li

    2018-03-01

    In order to extract target from complex background more quickly and accurately, and to further improve the detection effect of defects, a method of dual-threshold segmentation using Arimoto entropy based on chaotic bee colony optimization was proposed. Firstly, the method of single-threshold selection based on Arimoto entropy was extended to dual-threshold selection in order to separate the target from the background more accurately. Then intermediate variables in formulae of Arimoto entropy dual-threshold selection was calculated by recursion to eliminate redundant computation effectively and to reduce the amount of calculation. Finally, the local search phase of artificial bee colony algorithm was improved by chaotic sequence based on tent mapping. The fast search for two optimal thresholds was achieved using the improved bee colony optimization algorithm, thus the search could be accelerated obviously. A large number of experimental results show that, compared with the existing segmentation methods such as multi-threshold segmentation method using maximum Shannon entropy, two-dimensional Shannon entropy segmentation method, two-dimensional Tsallis gray entropy segmentation method and multi-threshold segmentation method using reciprocal gray entropy, the proposed method can segment target more quickly and accurately with superior segmentation effect. It proves to be an instant and effective method for image segmentation.

  1. Do Contemporary Randomized Controlled Trials Meet ESMO Thresholds for Meaningful Clinical Benefit?

    PubMed

    Del Paggio, J C; Azariah, B; Sullivan, R; Hopman, W M; James, F V; Roshni, S; Tannock, I F; Booth, C M

    2017-01-01

    The European Society for Medical Oncology (ESMO) recently released a magnitude of clinical benefit scale (ESMO-MCBS) for systemic therapies for solid cancers. Here, we evaluate contemporary randomized controlled trials (RCTs) against the proposed ESMO thresholds for meaningful clinical benefit. RCTs evaluating systemic therapy for breast cancer, nonsmall cell lung cancer (NSCLC), colorectal cancer (CRC), and pancreatic cancer published 2011-2015 were reviewed. Data were abstracted regarding trial characteristics and outcomes, and these were applied to the ESMO-MCBS. We also determined whether RCTs were designed to detect an effect that would meet clinical benefit as defined by the ESMO-MCBS. About 277 eligible RCTs were included (40% breast, 31% NSCLC, 22% CRC, 6% pancreas). Median sample size was 532 and 83% were funded by industry. Among all 277 RCTs, the experimental therapy was statistically superior to the control arm in 138 (50%) trials: results of only 31% (43/138) of these trials met the ESMO-MCBS clinical benefit threshold. RCTs with curative intent were more likely to meet clinically meaningful thresholds than those with palliative intent [61% (19/31) versus 22% (24/107), P < 0.001]. Among the 226 RCTs for which the ESMO-MCBS could be applied, 31% (70/226) were designed to detect an effect size that could meet ESMO-MCBS thresholds. Less than one-third of contemporary RCTs with statistically significant results meet ESMO thresholds for meaningful clinical benefit, and this represents only 15% of all published trials. Investigators, funding agencies, regulatory agencies, and industry should adopt more stringent thresholds for meaningful benefit in the design of future RCTs. © The Author 2016. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  2. Threshold changes of ABR results in toddlers and children.

    PubMed

    Louza, Julia; Polterauer, Daniel; Wittlinger, Natalie; Muzaini, Hanan Al; Scheckinger, Siiri; Hempel, Martin; Schuster, Maria

    2016-06-01

    Auditory brainstem response (ABR) is a clinically established method to identify the hearing threshold in young children and is regularly performed after hearing screening has failed. Some studies have shown that, after the first diagnosis of hearing impairment in ABR, further development takes place in a spectrum between progression of hearing loss and, surprisingly, hearing improvement. The aim of this study is to evaluate changes over time of auditory thresholds measured by ABR among young children. For this retrospective study, 459 auditory brainstem measurements were performed and analyzed between 2010 and 2014. Hearing loss was detected and assessed according to national guidelines. 104 right ears and 101 left ears of 116 children aged between 0 and 3 years with multiple ABR measurements were included. The auditory threshold was identified using click and/or NB-chirp-stimuli in natural sleep or in general anesthesia. The frequency of differences of at least more than 10dB between the measurements was identified. In 37 (35%) measurements of right ears and 38 (38%) of left ears there was an improvement of the auditory threshold of more than 10dB; in 27 of those measurements more than 20dB improvement was found. Deterioration was seen in 12% of the right ears and 10% of the left ears. Only half of the children had stable hearing thresholds in repeated measurements. The time between the measurements was on average 5 months (0 to 31 months). Hearing threshold changes are often seen in repeated ABR measurements. Therefore multiple measurements are necessary when ABR yields abnormal. Hearing threshold changes should be taken into account for hearing aid provision. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Threshold concepts as barriers to understanding climate science

    NASA Astrophysics Data System (ADS)

    Walton, P.

    2013-12-01

    Whilst the scientific case for current climate change is compelling, the consequences of climate change have largely failed to permeate through to individuals. This lack of public awareness of the science and the potential impacts could be considered a key obstacle to action. The possible reasons for such limited success centre on the issue that climate change is a complex subject, and that a wide ranging academic, political and social research literature on the science and wider implications of climate change has failed to communicate the key issues in an accessible way. These failures to adequately communicate both the science and the social science of climate change at a number of levels results in ';communication gaps' that act as fundamental barriers to both understanding and engagement with the issue. Meyer and Land (2003) suggest that learners can find certain ideas and concepts within a discipline difficult to understand and these act as a barrier to deeper understanding of a subject. To move beyond these threshold concepts, they suggest that the expert needs to support the learner through a range of learning experiences that allows the development of learning strategies particular to the individual. Meyer and Land's research into these threshold concepts has been situated within Economics, but has been suggested to be more widely applicable though there has been no attempt to either define or evaluate threshold concepts to climate change science. By identifying whether common threshold concepts exist specifically in climate science for cohorts of either formal or informal learners, scientists will be better able to support the public in understanding these concepts by changing how the knowledge is communicated to help overcome these barriers to learning. This paper reports on the findings of a study that examined the role of threshold concepts as barriers to understanding climate science in a UK University and considers its implications for wider

  4. Comparison between Silicon-Carbide and diamond for fast neutron detection at room temperature

    NASA Astrophysics Data System (ADS)

    Obraztsova, O.; Ottaviani, L.; Klix, A.; Döring, T.; Palais, O.; Lyoussi, A.

    2018-01-01

    Neutron radiation detector for nuclear reactor applications plays an important role in getting information about the actual neutron yield and reactor environment. Such detector must be able to operate at high temperature (up to 600° C) and high neutron flux levels. It is worth nothing that a detector for industrial environment applications must have fast and stable response over considerable long period of use as well as high energy resolution. Silicon Carbide is one of the most attractive materials for neutron detection. Thanks to its outstanding properties, such as high displacement threshold energy (20-35 eV), wide band gap energy (3.27 eV) and high thermal conductivity (4.9 W/cm·K), SiC can operate in harsh environment (high temperature, high pressure and high radiation level) without additional cooling system. Our previous analyses reveal that SiC detectors, under irradiation and at elevated temperature, respond to neutrons showing consistent counting rates as function of external reverse bias voltages and radiation intensity. The counting-rate of the thermal neutron-induced peak increases with the area of the detector, and appears to be linear with respect to the reactor power. Diamond is another semi-conductor considered as one of most promising materials for radiation detection. Diamond possesses several advantages in comparison to other semiconductors such as a wider band gap (5.5 eV), higher threshold displacement energy (40-50 eV) and thermal conductivity (22 W/cm·K), which leads to low leakage current values and make it more radiation resistant that its competitors. A comparison is proposed between these two semiconductors for the ability and efficiency to detect fast neutrons. For this purpose the deuterium-tritium neutron generator of Technical University of Dresden with 14 MeV neutron output of 1010 n·s-1 is used. In the present work, we interpret the first measurements and results with both 4H-SiC and chemical vapor deposition (CVD) diamond

  5. The stability of color discrimination threshold determined using pseudoisochromatic test plates

    NASA Astrophysics Data System (ADS)

    Zutere, B.; Jurasevska Luse, K.; Livzane, A.

    2014-09-01

    Congenital red-green color vision deficiency is one of the most common genetic disorders. A previously printed set of pseudoisochromatic plates (KAMS test, 2012) was created for individual discrimination threshold determination in case of mild congenital red-green color vision deficiency using neutral colors (colors confused with gray). The diagnostics of color blind subjects was performed with Richmond HRR (4th edition, 2002) test, Oculus HMC anomaloscope, and further the examination was made using the KAMS test. 4 male subjects aged 20 to 24 years old participated in the study: all of them were diagnosed with deuteranomalia. Due to the design of the plates, the threshold of every subject in each trial was defined as the plate total color difference value ΔE at which the stimulus was detected 75% of the time, so the just-noticeable difference (jnd) was calculated in CIE LAB DeltaE (ΔE) units. Authors performed repeated discrimination threshold measurements (5 times) for all four subjects under controlled illumination conditions. Psychophysical data were taken by sampling an observer's performance on a psychophysical task at a number of different stimulus saturation levels. Results show that a total color difference value ΔE threshold exists for each individual tested with the KAMS pseudoisochromatic plates, this threshold value does not change significantly in multiple measurements. Deuteranomal threshold values aquired using greenish plates of KAMS test are significantly higher than thresholds acquired using reddish plates. A strong positive correlation (R=0.94) exists between anomaloscope matching range (MR) and deuteranomal thresholds aquired by the KAMS test and (R=0.81) between error score in the Richmond HRR test and thresholds aquired by the KAMS test.

  6. A threshold-based cloud mask for the high-resolution visible channel of Meteosat Second Generation SEVIRI

    NASA Astrophysics Data System (ADS)

    Bley, S.; Deneke, H.

    2013-10-01

    A threshold-based cloud mask for the high-resolution visible (HRV) channel (1 × 1 km2) of the Meteosat SEVIRI (Spinning Enhanced Visible and Infrared Imager) instrument is introduced and evaluated. It is based on operational EUMETSAT cloud mask for the low-resolution channels of SEVIRI (3 × 3 km2), which is used for the selection of suitable thresholds to ensure consistency with its results. The aim of using the HRV channel is to resolve small-scale cloud structures that cannot be detected by the low-resolution channels. We find that it is of advantage to apply thresholds relative to clear-sky reflectance composites, and to adapt the threshold regionally. Furthermore, the accuracy of the different spectral channels for thresholding and the suitability of the HRV channel are investigated for cloud detection. The case studies show different situations to demonstrate the behavior for various surface and cloud conditions. Overall, between 4 and 24% of cloudy low-resolution SEVIRI pixels are found to contain broken clouds in our test data set depending on considered region. Most of these broken pixels are classified as cloudy by EUMETSAT's cloud mask, which will likely result in an overestimate if the mask is used as an estimate of cloud fraction. The HRV cloud mask aims for small-scale convective sub-pixel clouds that are missed by the EUMETSAT cloud mask. The major limit of the HRV cloud mask is the minimum cloud optical thickness (COT) that can be detected. This threshold COT was found to be about 0.8 over ocean and 2 over land and is highly related to the albedo of the underlying surface.

  7. Width-Dependent Band Gap in Armchair Graphene Nanoribbons Reveals Fermi Level Pinning on Au(111)

    PubMed Central

    2017-01-01

    We report the energy level alignment evolution of valence and conduction bands of armchair-oriented graphene nanoribbons (aGNR) as their band gap shrinks with increasing width. We use 4,4″-dibromo-para-terphenyl as the molecular precursor on Au(111) to form extended poly-para-phenylene nanowires, which can subsequently be fused sideways to form atomically precise aGNRs of varying widths. We measure the frontier bands by means of scanning tunneling spectroscopy, corroborating that the nanoribbon’s band gap is inversely proportional to their width. Interestingly, valence bands are found to show Fermi level pinning as the band gap decreases below a threshold value around 1.7 eV. Such behavior is of critical importance to understand the properties of potential contacts in GNR-based devices. Our measurements further reveal a particularly interesting system for studying Fermi level pinning by modifying an adsorbate’s band gap while maintaining an almost unchanged interface chemistry defined by substrate and adsorbate. PMID:29049879

  8. A Search for Laser Emission with Megawatt Thresholds from 5600 FGKM Stars

    NASA Astrophysics Data System (ADS)

    Tellis, Nathaniel K.; Marcy, Geoffrey W.

    2017-06-01

    We searched high-resolution spectra of 5600 nearby stars for emission lines that are both inconsistent with a natural origin and unresolved spatially, as would be expected from extraterrestrial optical lasers. The spectra were obtained with the Keck 10 m telescope, including light coming from within 0.5 arcsec of the star, corresponding typically to within a few to tens of astronomical units of the star, and covering nearly the entire visible wavelength range from 3640 to 7890 Å. We establish detection thresholds by injecting synthetic laser emission lines into our spectra and blindly analyzing them for detections. We compute flux density detection thresholds for all wavelengths and spectral types sampled. Our detection thresholds for the power of the lasers themselves range from 3 kW to 13 MW, independent of distance to the star but dependent on the competing “glare” of the spectral energy distribution of the star and on the wavelength of the laser light, launched from a benchmark, diffraction-limited 10 m class telescope. We found no such laser emission coming from the planetary region around any of the 5600 stars. Because they contain roughly 2000 lukewarm, Earth-size planets, we rule out models of the Milky Way in which over 0.1% of warm, Earth-size planets harbor technological civilizations that, intentionally or not, are beaming optical lasers toward us. A next-generation spectroscopic laser search will be done by the Breakthrough Listen initiative, targeting more stars, especially stellar types overlooked here including spectral types O, B, A, early F, late M, and brown dwarfs, and astrophysical exotica.

  9. Threshold selection for classification of MR brain images by clustering method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moldovanu, Simona; Dumitru Moţoc High School, 15 Milcov St., 800509, Galaţi; Obreja, Cristian

    Given a grey-intensity image, our method detects the optimal threshold for a suitable binarization of MR brain images. In MR brain image processing, the grey levels of pixels belonging to the object are not substantially different from the grey levels belonging to the background. Threshold optimization is an effective tool to separate objects from the background and further, in classification applications. This paper gives a detailed investigation on the selection of thresholds. Our method does not use the well-known method for binarization. Instead, we perform a simple threshold optimization which, in turn, will allow the best classification of the analyzedmore » images into healthy and multiple sclerosis disease. The dissimilarity (or the distance between classes) has been established using the clustering method based on dendrograms. We tested our method using two classes of images: the first consists of 20 T2-weighted and 20 proton density PD-weighted scans from two healthy subjects and from two patients with multiple sclerosis. For each image and for each threshold, the number of the white pixels (or the area of white objects in binary image) has been determined. These pixel numbers represent the objects in clustering operation. The following optimum threshold values are obtained, T = 80 for PD images and T = 30 for T2w images. Each mentioned threshold separate clearly the clusters that belonging of the studied groups, healthy patient and multiple sclerosis disease.« less

  10. Threshold selection for classification of MR brain images by clustering method

    NASA Astrophysics Data System (ADS)

    Moldovanu, Simona; Obreja, Cristian; Moraru, Luminita

    2015-12-01

    Given a grey-intensity image, our method detects the optimal threshold for a suitable binarization of MR brain images. In MR brain image processing, the grey levels of pixels belonging to the object are not substantially different from the grey levels belonging to the background. Threshold optimization is an effective tool to separate objects from the background and further, in classification applications. This paper gives a detailed investigation on the selection of thresholds. Our method does not use the well-known method for binarization. Instead, we perform a simple threshold optimization which, in turn, will allow the best classification of the analyzed images into healthy and multiple sclerosis disease. The dissimilarity (or the distance between classes) has been established using the clustering method based on dendrograms. We tested our method using two classes of images: the first consists of 20 T2-weighted and 20 proton density PD-weighted scans from two healthy subjects and from two patients with multiple sclerosis. For each image and for each threshold, the number of the white pixels (or the area of white objects in binary image) has been determined. These pixel numbers represent the objects in clustering operation. The following optimum threshold values are obtained, T = 80 for PD images and T = 30 for T2w images. Each mentioned threshold separate clearly the clusters that belonging of the studied groups, healthy patient and multiple sclerosis disease.

  11. Music students: conventional hearing thresholds and at high frequencies.

    PubMed

    Lüders, Débora; Gonçalves, Cláudia Giglio de Oliveira; Lacerda, Adriana Bender de Moreira; Ribas, Ângela; Conto, Juliana de

    2014-01-01

    Research has shown that hearing loss in musicians may cause difficulty in timbre recognition and tuning of instruments. To analyze the hearing thresholds from 250 Hz to 16,000 Hz in a group of music students and compare them to a non-musician group in order to determine whether high-frequency audiometry is a useful tool in the early detection of hearing impairment. Study design was a retrospective observational cohort. Conventional and high-frequency audiometry was performed in 42 music students (Madsen Itera II audiometer and TDH39P headphones for conventional audiometry, and HDA 200 headphones for high-frequency audiometry). Of the 42 students, 38.1% were female students and 61.9% were male students, with a mean age of 26 years. At conventional audiometry, 92.85% had hearing thresholds within normal limits; but even within the normal limits, the worst results were observed in the left ear for all frequencies, except for 4000 Hz; compared to the non-musician group, the worst results occurred at 500 Hz in the left ear, and at 250 Hz, 6000 Hz, 9000 Hz, 10,000 Hz, and 11,200 Hz in both the ears. The periodic evaluation of high-frequency thresholds may be useful in the early detection of hearing loss in musicians. Copyright © 2014 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  12. Agreeable Smellers and Sensitive Neurotics – Correlations among Personality Traits and Sensory Thresholds

    PubMed Central

    Croy, Ilona; Springborn, Maria; Lötsch, Jörn; Johnston, Amy N. B.; Hummel, Thomas

    2011-01-01

    Correlations between personality traits and a wide range of sensory thresholds were examined. Participants (N = 124) completed a personality inventory (NEO-FFI) and underwent assessment of olfactory, trigeminal, tactile and gustatory detection thresholds, as well as examination of trigeminal and tactile pain thresholds. Significantly enhanced odor sensitivity in socially agreeable people, significantly enhanced trigeminal sensitivity in neurotic subjects, and a tendency for enhanced pain tolerance in highly conscientious participants was revealed. It is postulated that varied sensory processing may influence an individual's perception of the environment; particularly their perception of socially relevant or potentially dangerous stimuli and thus, varied with personality. PMID:21556139

  13. Adaptive thresholding with inverted triangular area for real-time detection of the heart rate from photoplethysmogram traces on a smartphone.

    PubMed

    Jiang, Wen Jun; Wittek, Peter; Zhao, Li; Gao, Shi Chao

    2014-01-01

    Photoplethysmogram (PPG) signals acquired by smartphone cameras are weaker than those acquired by dedicated pulse oximeters. Furthermore, the signals have lower sampling rates, have notches in the waveform and are more severely affected by baseline drift, leading to specific morphological characteristics. This paper introduces a new feature, the inverted triangular area, to address these specific characteristics. The new feature enables real-time adaptive waveform detection using an algorithm of linear time complexity. It can also recognize notches in the waveform and it is inherently robust to baseline drift. An implementation of the algorithm on Android is available for free download. We collected data from 24 volunteers and compared our algorithm in peak detection with two competing algorithms designed for PPG signals, Incremental-Merge Segmentation (IMS) and Adaptive Thresholding (ADT). A sensitivity of 98.0% and a positive predictive value of 98.8% were obtained, which were 7.7% higher than the IMS algorithm in sensitivity, and 8.3% higher than the ADT algorithm in positive predictive value. The experimental results confirmed the applicability of the proposed method.

  14. The ability of GAP1IP4BP to function as a Rap1 GTPase-activating protein (GAP) requires its Ras GAP-related domain and an arginine finger rather than an asparagine thumb.

    PubMed

    Kupzig, Sabine; Bouyoucef-Cherchalli, Dalila; Yarwood, Sam; Sessions, Richard; Cullen, Peter J

    2009-07-01

    GAP1(IP4BP) is a member of the GAP1 family of Ras GTPase-activating proteins (GAPs) that includes GAP1(m), CAPRI, and RASAL. Composed of a central Ras GAP-related domain (RasGRD), surrounded by amino-terminal C2 domains and a carboxy-terminal PH/Btk domain, these proteins, with the notable exception of GAP1(m), possess an unexpected arginine finger-dependent GAP activity on the Ras-related protein Rap1 (S. Kupzig, D. Deaconescu, D. Bouyoucef, S. A. Walker, Q. Liu, C. L. Polte, O. Daumke, T. Ishizaki, P. J. Lockyer, A. Wittinghofer, and P. J. Cullen, J. Biol. Chem. 281:9891-9900, 2006). Here, we have examined the mechanism through which GAP1(IP4BP) can function as a Rap1 GAP. We show that deletion of domains on either side of the RasGRD, while not affecting Ras GAP activity, do dramatically perturb Rap1 GAP activity. By utilizing GAP1(IP4BP)/GAP1(m) chimeras, we establish that although the C2 and PH/Btk domains are required to stabilize the RasGRD, it is this domain which contains the catalytic machinery required for Rap1 GAP activity. Finally, a key residue in Rap1-specific GAPs is a catalytic asparagine, the so-called asparagine thumb. By generating a molecular model describing the predicted Rap1-binding site in the RasGRD of GAP1(IP4BP), we show that mutagenesis of individual asparagine or glutamine residues that lie in close proximity to the predicted binding site has no detectable effect on the in vivo Rap1 GAP activity of GAP1(IP4BP). In contrast, we present evidence consistent with a model in which the RasGRD of GAP1(IP4BP) functions to stabilize the switch II region of Rap1, allowing stabilization of the transition state during GTP hydrolysis initiated by the arginine finger.

  15. ADAPTIVE THRESHOLD LOGIC.

    DTIC Science & Technology

    The design and construction of a 16 variable threshold logic gate with adaptable weights is described. The operating characteristics of tape wound...and sizes as well as for the 16 input adaptive threshold logic gate. (Author)

  16. Detection and classification of alarm threshold violations in condition monitoring systems working in highly varying operational conditions

    NASA Astrophysics Data System (ADS)

    Strączkiewicz, M.; Barszcz, T.; Jabłoński, A.

    2015-07-01

    All commonly used condition monitoring systems (CMS) enable defining alarm thresholds that enhance efficient surveillance and maintenance of dynamic state of machinery. The thresholds are imposed on the measured values such as vibration-based indicators, temperature, pressure, etc. For complex machinery such as wind turbine (WT) the total number of thresholds might be counted in hundreds multiplied by the number of operational states. All the parameters vary not only due to possible machinery malfunctions, but also due to changes in operating conditions and these changes are typically much stronger than the former ones. Very often, such a behavior may lead to hundreds of false alarms. Therefore, authors propose a novel approach based on parameterized description of the threshold violation. For this purpose the novelty and severity factors are introduced. The first parameter refers to the time of violation occurrence while the second one describes the impact of the indicator-increase to the entire machine. Such approach increases reliability of the CMS by providing the operator with the most useful information of the system events. The idea of the procedure is presented on a simulated data similar to those from a wind turbine.

  17. Threshold Concepts in Biochemistry

    ERIC Educational Resources Information Center

    Loertscher, Jennifer

    2011-01-01

    Threshold concepts can be identified for any discipline and provide a framework for linking student learning to curricular design. Threshold concepts represent a transformed understanding of a discipline, without which the learner cannot progress and are therefore pivotal in learning in a discipline. Although threshold concepts have been…

  18. Sensitive detection of surface- and size-dependent direct and indirect band gap transitions in ferritin.

    PubMed

    Colton, J S; Erickson, S D; Smith, T J; Watt, R K

    2014-04-04

    Ferritin is a protein nano-cage that encapsulates minerals inside an 8 nm cavity. Previous band gap measurements on the native mineral, ferrihydrite, have reported gaps as low as 1.0 eV and as high as 2.5-3.5 eV. To resolve this discrepancy we have used optical absorption spectroscopy, a well-established technique for measuring both direct and indirect band gaps. Our studies included controls on the protein nano-cage, ferritin with the native ferrihydrite mineral, and ferritin with reconstituted ferrihydrite cores of different sizes. We report measurements of an indirect band gap for native ferritin of 2.140 ± 0.015 eV (579.7 nm), with a direct transition appearing at 3.053 ± 0.005 eV (406.1 nm). We also see evidence of a defect-related state having a binding energy of 0.220 ± 0.010 eV . Reconstituted ferrihydrite minerals of different sizes were also studied and showed band gap energies which increased with decreasing size due to quantum confinement effects. Molecules that interact with the surface of the mineral core also demonstrated a small influence following trends in ligand field theory, altering the native mineral's band gap up to 0.035 eV.

  19. Identifying optimal threshold statistics for elimination of hookworm using a stochastic simulation model.

    PubMed

    Truscott, James E; Werkman, Marleen; Wright, James E; Farrell, Sam H; Sarkar, Rajiv; Ásbjörnsdóttir, Kristjana; Anderson, Roy M

    2017-06-30

    There is an increased focus on whether mass drug administration (MDA) programmes alone can interrupt the transmission of soil-transmitted helminths (STH). Mathematical models can be used to model these interventions and are increasingly being implemented to inform investigators about expected trial outcome and the choice of optimum study design. One key factor is the choice of threshold for detecting elimination. However, there are currently no thresholds defined for STH regarding breaking transmission. We develop a simulation of an elimination study, based on the DeWorm3 project, using an individual-based stochastic disease transmission model in conjunction with models of MDA, sampling, diagnostics and the construction of study clusters. The simulation is then used to analyse the relationship between the study end-point elimination threshold and whether elimination is achieved in the long term within the model. We analyse the quality of a range of statistics in terms of the positive predictive values (PPV) and how they depend on a range of covariates, including threshold values, baseline prevalence, measurement time point and how clusters are constructed. End-point infection prevalence performs well in discriminating between villages that achieve interruption of transmission and those that do not, although the quality of the threshold is sensitive to baseline prevalence and threshold value. Optimal post-treatment prevalence threshold value for determining elimination is in the range 2% or less when the baseline prevalence range is broad. For multiple clusters of communities, both the probability of elimination and the ability of thresholds to detect it are strongly dependent on the size of the cluster and the size distribution of the constituent communities. Number of communities in a cluster is a key indicator of probability of elimination and PPV. Extending the time, post-study endpoint, at which the threshold statistic is measured improves PPV value in

  20. An odor-specific threshold deficit implicates abnormal cAMP signaling in youths at clinical risk for psychosis.

    PubMed

    Kamath, Vidyulata; Moberg, Paul J; Calkins, Monica E; Borgmann-Winter, Karin; Conroy, Catherine G; Gur, Raquel E; Kohler, Christian G; Turetsky, Bruce I

    2012-07-01

    While olfactory deficits have been reported in schizophrenia and youths at-risk for psychosis, few studies have linked these deficits to current pathophysiological models of the illness. There is evidence that disrupted cyclic adenosine 3',5'-monophosphate (cAMP) signaling may contribute to schizophrenia pathology. As cAMP mediates olfactory signal transduction, the degree to which this disruption could manifest in olfactory impairment was ascertained. Odor-detection thresholds to two odorants that differ in the degree to which they activate intracellular cAMP were assessed in clinical risk and low-risk participants. Birhinal assessments of odor-detection threshold sensitivity to lyral and citralva were acquired in youths experiencing prodromal symptoms (n=17) and controls at low risk for developing psychosis (n=15). Citralva and lyral are odorants that differ in cAMP activation; citralva is a strong cAMP activator and lyral is a weak cAMP activator. The overall group-by-odor interaction was statistically significant. At-risk youths showed significantly reduced odor detection thresholds for lyral, but showed intact detection thresholds for citralva. This odor-specific threshold deficit was uncorrelated with deficits in odor identification or discrimination, which were also present. ROC curve analysis revealed that olfactory performance correctly classified at-risk and low-risk youths with greater than 97% accuracy. This study extends prior findings of an odor-specific hyposmia implicating cAMP-mediated signal transduction in schizophrenia and unaffected first-degree relatives to include youths at clinical risk for developing the disorder. These results suggest that dysregulation of cAMP signaling may be present during the psychosis prodrome. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. An odor-specific threshold deficit implicates abnormal cAMP signaling in youths at clinical risk for psychosis

    PubMed Central

    Kamath, Vidyulata; Moberg, Paul J.; Calkins, Monica E.; Borgmann-Winter, Karin; Conroy, Catherine G.; Gur, Raquel E.; Kohler, Christian G.; Turetsky, Bruce I.

    2012-01-01

    Background While olfactory deficits have been reported in schizophrenia and youths at-risk for psychosis, few studies have linked these deficits to current pathophysiological models of the illness. There is evidence that disrupted cyclic adenosine 3’,5’-monophosphate (cAMP) signaling may contribute to schizophrenia pathology. As cAMP mediates olfactory signal transduction, the degree to which this disruption could manifest in olfactory impairment was ascertained. Odor-detection thresholds to two odorants that differ in the degree to which they activate intracellular cAMP were assessed in clinical risk and low-risk participants. Method Birhinal assessments of odor-detection threshold sensitivity to lyral and citralva were acquired in youths experiencing prodromal symptoms (n = 17) and controls at low risk for developing psychosis (n = 15). Citralva and lyral are odorants that differ in cAMP activation; citralva is a strong cAMP activator and lyral is a weak cAMP activator. Results The overall group-by-odor interaction was statistically significant. At-risk youths showed significantly reduced odor detection thresholds for lyral, but showed intact detection thresholds for citralva. This odor-specific threshold deficit was uncorrelated with deficits in odor identification or discrimination, which were also present. ROC curve analysis revealed that olfactory performance correctly classified at-risk and low-risk youths with greater than 97% accuracy. Conclusions This study extends prior findings of an odor-specific hyposmia implicating cAMP-mediated signal transduction in schizophrenia and unaffected first-degree relatives to include youths at clinical risk for developing the disorder. These results suggest that dysregulation of cAMP signaling may be present during the psychosis prodrome. PMID:22537567

  2. Detection of dilute sperm samples using photoacoustic flowmetry

    NASA Astrophysics Data System (ADS)

    Viator, J. A.; Sutovsky, P.; Weight, R. M.

    2008-02-01

    Detection of sperm cells in dilute samples may have application in forensic testing and diagnosis of male reproductive health. Due to the optically dense subcellular structures in sperm cells, irradiation by nanosecond laser pulses induces a photoacoustic response detectable using a custom flow cytometer. We determined the detection threshold of bull sperm using various concentrations, from 200 to 1,000,000 sperm cells per milliliter. Using a tunable laser system set to 450nm with a 5 ns pulse duration and 11-12 mJ/pulse, we obtained a detection threshold of 3 sperm cells. The flow rate was 4 ml/minute through the flow chamber. The acoustic sensor was a 100 μm PVDF film attached to the glass flow chamber. The acoustic signal was preamplified and sent to an oscilloscope. The threshold signal indicated a signal to noise ratio of approximately 6 to 1. Improved system design may decrease the threshold to single sperm cells.

  3. Mitochondrial threshold effects.

    PubMed Central

    Rossignol, Rodrigue; Faustin, Benjamin; Rocher, Christophe; Malgat, Monique; Mazat, Jean-Pierre; Letellier, Thierry

    2003-01-01

    The study of mitochondrial diseases has revealed dramatic variability in the phenotypic presentation of mitochondrial genetic defects. To attempt to understand this variability, different authors have studied energy metabolism in transmitochondrial cell lines carrying different proportions of various pathogenic mutations in their mitochondrial DNA. The same kinds of experiments have been performed on isolated mitochondria and on tissue biopsies taken from patients with mitochondrial diseases. The results have shown that, in most cases, phenotypic manifestation of the genetic defect occurs only when a threshold level is exceeded, and this phenomenon has been named the 'phenotypic threshold effect'. Subsequently, several authors showed that it was possible to inhibit considerably the activity of a respiratory chain complex, up to a critical value, without affecting the rate of mitochondrial respiration or ATP synthesis. This phenomenon was called the 'biochemical threshold effect'. More recently, quantitative analysis of the effects of various mutations in mitochondrial DNA on the rate of mitochondrial protein synthesis has revealed the existence of a 'translational threshold effect'. In this review these different mitochondrial threshold effects are discussed, along with their molecular bases and the roles that they play in the presentation of mitochondrial diseases. PMID:12467494

  4. Threshold magnitudes for a multichannel correlation detector in background seismicity

    DOE PAGES

    Carmichael, Joshua D.; Hartse, Hans

    2016-04-01

    Colocated explosive sources often produce correlated seismic waveforms. Multichannel correlation detectors identify these signals by scanning template waveforms recorded from known reference events against "target" data to find similar waveforms. This screening problem is challenged at thresholds required to monitor smaller explosions, often because non-target signals falsely trigger such detectors. Therefore, it is generally unclear what thresholds will reliably identify a target explosion while screening non-target background seismicity. Here, we estimate threshold magnitudes for hypothetical explosions located at the North Korean nuclear test site over six months of 2010, by processing International Monitoring System (IMS) array data with a multichannelmore » waveform correlation detector. Our method (1) accounts for low amplitude background seismicity that falsely triggers correlation detectors but is unidentifiable with conventional power beams, (2) adapts to diurnally variable noise levels and (3) uses source-receiver reciprocity concepts to estimate thresholds for explosions spatially separated from the template source. Furthermore, we find that underground explosions with body wave magnitudes m b = 1.66 are detectable at the IMS array USRK with probability 0.99, when using template waveforms consisting only of P -waves, without false alarms. We conservatively find that these thresholds also increase by up to a magnitude unit for sources located 4 km or more from the Feb.12, 2013 announced nuclear test.« less

  5. Superlinear threshold detectors in quantum cryptography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lydersen, Lars; Maroey, Oystein; Skaar, Johannes

    2011-09-15

    We introduce the concept of a superlinear threshold detector, a detector that has a higher probability to detect multiple photons if it receives them simultaneously rather than at separate times. Highly superlinear threshold detectors in quantum key distribution systems allow eavesdropping the full secret key without being revealed. Here, we generalize the detector control attack, and analyze how it performs against quantum key distribution systems with moderately superlinear detectors. We quantify the superlinearity in superconducting single-photon detectors based on earlier published data, and gated avalanche photodiode detectors based on our own measurements. The analysis shows that quantum key distribution systemsmore » using detector(s) of either type can be vulnerable to eavesdropping. The avalanche photodiode detector becomes superlinear toward the end of the gate. For systems expecting substantial loss, or for systems not monitoring loss, this would allow eavesdropping using trigger pulses containing less than 120 photons per pulse. Such an attack would be virtually impossible to catch with an optical power meter at the receiver entrance.« less

  6. Threshold concepts in prosthetics.

    PubMed

    Hill, Sophie

    2017-12-01

    Curriculum documents identify key concepts within learning prosthetics. Threshold concepts provide an alternative way of viewing the curriculum, focussing on the ways of thinking and practicing within prosthetics. Threshold concepts can be described as an opening to a different way of viewing a concept. This article forms part of a larger study exploring what students and staff experience as difficult in learning about prosthetics. To explore possible threshold concepts within prosthetics. Qualitative, interpretative phenomenological analysis. Data from 18 students and 8 staff at two universities with undergraduate prosthetics and orthotics programmes were generated through interviews and questionnaires. The data were analysed using an interpretative phenomenological analysis approach. Three possible threshold concepts arose from the data: 'how we walk', 'learning to talk' and 'considering the person'. Three potential threshold concepts in prosthetics are suggested with possible implications for prosthetics education. These possible threshold concepts involve changes in both conceptual and ontological knowledge, integrating into the persona of the individual. This integration occurs through the development of memories associated with procedural concepts that combine with disciplinary concepts. Considering the prosthetics curriculum through the lens of threshold concepts enables a focus on how students learn to become prosthetists. Clinical relevance This study provides new insights into how prosthetists learn. This has implications for curriculum design in prosthetics education.

  7. Evaluation of Earthquake Detection Performance in Terms of Quality and Speed in SEISCOMP3 Using New Modules Qceval, Npeval and Sceval

    NASA Astrophysics Data System (ADS)

    Roessler, D.; Weber, B.; Ellguth, E.; Spazier, J.

    2017-12-01

    The geometry of seismic monitoring networks, site conditions and data availability as well as monitoring targets and strategies typically impose trade-offs between data quality, earthquake detection sensitivity, false detections and alert times. Network detection capabilities typically change with alteration of the seismic noise level by human activity or by varying weather and sea conditions. To give helpful information to operators and maintenance coordinators, gempa developed a range of tools to evaluate earthquake detection and network performance including qceval, npeval and sceval. qceval is a module which analyzes waveform quality parameters in real-time and deactivates and reactivates data streams based on waveform quality thresholds for automatic processing. For example, thresholds can be defined for latency, delay, timing quality, spikes and gaps count and rms. As changes in the automatic processing have a direct influence on detection quality and speed, another tool called "npeval" was designed to calculate in real-time the expected time needed to detect and locate earthquakes by evaluating the effective network geometry. The effective network geometry is derived from the configuration of stations participating in the detection. The detection times are shown as an additional layer on the map and updated in real-time as soon as the effective network geometry changes. Yet another new tool, "sceval", is an automatic module which classifies located seismic events (Origins) in real-time. sceval evaluates the spatial distribution of the stations contributing to an Origin. It confirms or rejects the status of Origins, adds comments or leaves the Origin unclassified. The comments are passed to an additional sceval plug-in where the end user can customize event types. This unique identification of real and fake events in earthquake catalogues allows to lower network detection thresholds. In real-time monitoring situations operators can limit the processing to

  8. An adaptive threshold detector and channel parameter estimator for deep space optical communications

    NASA Technical Reports Server (NTRS)

    Arabshahi, P.; Mukai, R.; Yan, T. -Y.

    2001-01-01

    This paper presents a method for optimal adaptive setting of ulse-position-modulation pulse detection thresholds, which minimizes the total probability of error for the dynamically fading optical fee space channel.

  9. Threshold Monitoring Maps for Under-Water Explosions

    NASA Astrophysics Data System (ADS)

    Arora, N. S.

    2014-12-01

    Hydro-acoustic energy in the 1-100 Hz range from under-water explosions can easily spread for thousands of miles due to the unique properties of the deep sound channel. This channel, aka SOFAR channel, exists almost everywhere in the earth's oceans where the water has at least 1500m depth. Once the energy is trapped in this channel it spreads out cylindrically, and hence experiences very little loss, as long as there is an unblocked path from source to receiver. Other losses such as absorption due to chemicals in the ocean (mainly boric acid and magnesium sulphate) are also quite minimal at these low frequencies. It is not surprising then that the International Monitoring System (IMS) maintains a global network of hydrophone stations listening on this particular frequency range. The overall objective of our work is to build a probabilistic model to detect and locate under-water explosions using the IMS network. A number of critical pieces for this model, such as travel time predictions, are already well known. We are extending the existing knowledge-base by building the remaining pieces, most crucially the models for transmission losses and detection probabilities. With a complete model for detecting under-water explosions we are able to combine it with our existing model for seismic events, NET-VISA. In the conference we will present threshold monitoring maps for explosions in the earth's oceans. Our premise is that explosive sources release an unknown fraction of their total energy into the SOFAR channel, and this trapped energy determines their detection probability at each of the IMS hydrophone stations. Our threshold monitoring maps compute the minimum amount of energy at each location that must be released into the deep sound channel such that there is a ninety percent probability that at least two of the IMS stations detect the event. We will also present results of our effort to detect and locate hydro-acoustic events. In particular, we will show results

  10. All-Phononic Digital Transistor on the Basis of Gap-Soliton Dynamics in an Anharmonic Oscillator Ladder.

    PubMed

    Malishava, Merab; Khomeriki, Ramaz

    2015-09-04

    A conceptual mechanism of amplification of phonons by phonons on the basis of a nonlinear band-gap transmission (supratransmission) phenomenon is presented. As an example, a system of weakly coupled chains of anharmonic oscillators is considered. One (source) chain is driven harmonically by a boundary with a frequency located in the upper band close to the band edge of the ladder system. Amplification happens when a second (gate) chain is driven by a small signal in the counterphase and with the same frequency as the first chain. If the total driving of both chains overcomes the band-gap transmission threshold, the large amplitude band-gap soliton emerges and the amplification scenario is realized. The mechanism is interpreted as the nonlinear superposition of evanescent and propagating nonlinear modes manifesting in a single or double soliton generation working in band-gap or bandpass regimes, respectively. The results could be straightforwardly generalized for all-optical or all-magnonic contexts and have all the promise of logic gate operations.

  11. All-Phononic Digital Transistor on the Basis of Gap-Soliton Dynamics in an Anharmonic Oscillator Ladder

    NASA Astrophysics Data System (ADS)

    Malishava, Merab; Khomeriki, Ramaz

    2015-09-01

    A conceptual mechanism of amplification of phonons by phonons on the basis of a nonlinear band-gap transmission (supratransmission) phenomenon is presented. As an example, a system of weakly coupled chains of anharmonic oscillators is considered. One (source) chain is driven harmonically by a boundary with a frequency located in the upper band close to the band edge of the ladder system. Amplification happens when a second (gate) chain is driven by a small signal in the counterphase and with the same frequency as the first chain. If the total driving of both chains overcomes the band-gap transmission threshold, the large amplitude band-gap soliton emerges and the amplification scenario is realized. The mechanism is interpreted as the nonlinear superposition of evanescent and propagating nonlinear modes manifesting in a single or double soliton generation working in band-gap or bandpass regimes, respectively. The results could be straightforwardly generalized for all-optical or all-magnonic contexts and have all the promise of logic gate operations.

  12. Effects of ultrasound frequency and tissue stiffness on the histotripsy intrinsic threshold for cavitation.

    PubMed

    Vlaisavljevich, Eli; Lin, Kuang-Wei; Maxwell, Adam; Warnez, Matthew T; Mancia, Lauren; Singh, Rahul; Putnam, Andrew J; Fowlkes, Brian; Johnsen, Eric; Cain, Charles; Xu, Zhen

    2015-06-01

    Histotripsy is an ultrasound ablation method that depends on the initiation of a cavitation bubble cloud to fractionate soft tissue. Previous work has indicated that a cavitation cloud can be formed by a single pulse with one high-amplitude negative cycle, when the negative pressure amplitude directly exceeds a pressure threshold intrinsic to the medium. We hypothesize that the intrinsic threshold in water-based tissues is determined by the properties of the water inside the tissue, and changes in tissue stiffness or ultrasound frequency will have a minimal impact on the histotripsy intrinsic threshold. To test this hypothesis, the histotripsy intrinsic threshold was investigated both experimentally and theoretically. The probability of cavitation was measured by subjecting tissue phantoms with adjustable mechanical properties and ex vivo tissues to a histotripsy pulse of 1-2 cycles produced by 345-kHz, 500-kHz, 1.5-MHz and 3-MHz histotripsy transducers. Cavitation was detected and characterized by passive cavitation detection and high-speed photography, from which the probability of cavitation was measured versus pressure amplitude. The results revealed that the intrinsic threshold (the negative pressure at which probability = 0.5) is independent of stiffness for Young's moduli (E) <1 MPa, with only a small increase (∼2-3 MPa) in the intrinsic threshold for tendon (E = 380 MPa). Additionally, results for all samples revealed only a small increase of ∼2-3 MPa when the frequency was increased from 345 kHz to 3 MHz. The intrinsic threshold was measured to be between 24.7 and 30.6 MPa for all samples and frequencies tested in this study. Overall, the results of this study indicate that the intrinsic threshold to initiate a histotripsy bubble cloud is not significantly affected by tissue stiffness or ultrasound frequency in the hundreds of kilohertz to megahertz range. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier

  13. A novel automated instrument designed to determine photosensitivity thresholds (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Aguilar, Mariela C.; Gonzalez, Alex; Rowaan, Cornelis; De Freitas, Carolina; Rosa, Potyra R.; Alawa, Karam; Lam, Byron L.; Parel, Jean-Marie A.

    2016-03-01

    As there is no clinically available instrument to systematically and reliably determine the photosensitivity thresholds of patients with dry eyes, blepharospasms, migraines, traumatic brain injuries, and genetic disorders such as Achromatopsia, retinitis pigmentosa and other retinal dysfunctions, a computer-controlled optoelectronics system was designed. The BPEI Photosensitivity System provides a light stimuli emitted from a bi-cupola concave, 210 white LED array with varying intensity ranging from 1 to 32,000 lux. The system can either utilize a normal or an enhanced testing mode for subjects with low light tolerance. The automated instrument adjusts the intensity of each light stimulus. The subject is instructed to indicate discomfort by pressing a hand-held button. Reliability of the responses is tracked during the test. The photosensitivity threshold is then calculated after 10 response reversals. In a preliminary study, we demonstrated that subjects suffering from Achromatopsia experienced lower photosensitivity thresholds than normal subjects. Hence, the system can safely and reliably determine the photosensitivity thresholds of healthy and light sensitive subjects by detecting and quantifying the individual differences. Future studies will be performed with this system to determine the photosensitivity threshold differences between normal subjects and subjects suffering from other conditions that affect light sensitivity.

  14. Thresholds for the perception of whole-body linear sinusoidal motion in the horizontal plane

    NASA Technical Reports Server (NTRS)

    Mah, Robert W.; Young, Laurence R.; Steele, Charles R.; Schubert, Earl D.

    1989-01-01

    An improved linear sled has been developed to provide precise motion stimuli without generating perceptible extraneous motion cues (a noiseless environment). A modified adaptive forced-choice method was employed to determine perceptual thresholds to whole-body linear sinusoidal motion in 25 subjects. Thresholds for the detection of movement in the horizontal plane were found to be lower than those reported previously. At frequencies of 0.2 to 0.5 Hz, thresholds were shown to be independent of frequency, while at frequencies of 1.0 to 3.0 Hz, thresholds showed a decreasing sensitivity with increasing frequency, indicating that the perceptual process is not sensitive to the rate change of acceleration of the motion stimulus. The results suggest that the perception of motion behaves as an integrating accelerometer with a bandwidth of at least 3 Hz.

  15. A method of camera calibration with adaptive thresholding

    NASA Astrophysics Data System (ADS)

    Gao, Lei; Yan, Shu-hua; Wang, Guo-chao; Zhou, Chun-lei

    2009-07-01

    In order to calculate the parameters of the camera correctly, we must figure out the accurate coordinates of the certain points in the image plane. Corners are the important features in the 2D images. Generally speaking, they are the points that have high curvature and lie in the junction of different brightness regions of images. So corners detection has already widely used in many fields. In this paper we use the pinhole camera model and SUSAN corner detection algorithm to calibrate the camera. When using the SUSAN corner detection algorithm, we propose an approach to retrieve the gray difference threshold, adaptively. That makes it possible to pick up the right chessboard inner comers in all kinds of gray contrast. The experiment result based on this method was proved to be feasible.

  16. Rejection thresholds in solid chocolate-flavored compound coating.

    PubMed

    Harwood, Meriel L; Ziegler, Gregory R; Hayes, John E

    2012-10-01

    Classical detection thresholds do not predict liking, as they focus on the presence or absence of a sensation. Recently however, Prescott and colleagues described a new method, the rejection threshold, where a series of forced choice preference tasks are used to generate a dose-response function to determine hedonically acceptable concentrations. That is, how much is too much? To date, this approach has been used exclusively in liquid foods. Here, we determined group rejection thresholds in solid chocolate-flavored compound coating for bitterness. The influences of self-identified preferences for milk or dark chocolate, as well as eating style (chewers compared to melters) on rejection thresholds were investigated. Stimuli included milk chocolate-flavored compound coating spiked with increasing amounts of sucrose octaacetate, a bitter and generally recognized as safe additive. Paired preference tests (blank compared to spike) were used to determine the proportion of the group that preferred the blank. Across pairs, spiked samples were presented in ascending concentration. We were able to quantify and compare differences between 2 self-identified market segments. The rejection threshold for the dark chocolate preferring group was significantly higher than the milk chocolate preferring group (P= 0.01). Conversely, eating style did not affect group rejection thresholds (P= 0.14), although this may reflect the amount of chocolate given to participants. Additionally, there was no association between chocolate preference and eating style (P= 0.36). Present work supports the contention that this method can be used to examine preferences within specific market segments and potentially individual differences as they relate to ingestive behavior. This work makes use of the rejection threshold method to study market segmentation, extending its use to solid foods. We believe this method has broad applicability to the sensory specialist and product developer by providing a

  17. Development of a thresholding algorithm for calcium classification at multiple CT energies

    NASA Astrophysics Data System (ADS)

    Ng, LY.; Alssabbagh, M.; Tajuddin, A. A.; Shuaib, I. L.; Zainon, R.

    2017-05-01

    The objective of this study was to develop a thresholding method for calcium classification with different concentration using single-energy computed tomography. Five different concentrations of calcium chloride were filled in PMMA tubes and placed inside a water-filled PMMA phantom (diameter 10 cm). The phantom was scanned at 70, 80, 100, 120 and 140 kV using a SECT. CARE DOSE 4D was used and the slice thickness was set to 1 mm for all energies. ImageJ software inspired by the National Institute of Health (NIH) was used to measure the CT numbers for each calcium concentration from the CT images. The results were compared with a developed algorithm for verification. The percentage differences between the measured CT numbers obtained from the developed algorithm and the ImageJ show similar results. The multi-thresholding algorithm was found to be able to distinguish different concentrations of calcium chloride. However, it was unable to detect low concentrations of calcium chloride and iron (III) nitrate with CT numbers between 25 HU and 65 HU. The developed thresholding method used in this study may help to differentiate between calcium plaques and other types of plaques in blood vessels as it is proven to have a good ability to detect the high concentration of the calcium chloride. However, the algorithm needs to be improved to solve the limitations of detecting calcium chloride solution which has a similar CT number with iron (III) nitrate solution.

  18. Identification of ecological thresholds from variations in phytoplankton communities among lakes: contribution to the definition of environmental standards.

    PubMed

    Roubeix, Vincent; Danis, Pierre-Alain; Feret, Thibaut; Baudoin, Jean-Marc

    2016-04-01

    In aquatic ecosystems, the identification of ecological thresholds may be useful for managers as it can help to diagnose ecosystem health and to identify key levers to enable the success of preservation and restoration measures. A recent statistical method, gradient forest, based on random forests, was used to detect thresholds of phytoplankton community change in lakes along different environmental gradients. It performs exploratory analyses of multivariate biological and environmental data to estimate the location and importance of community thresholds along gradients. The method was applied to a data set of 224 French lakes which were characterized by 29 environmental variables and the mean abundances of 196 phytoplankton species. Results showed the high importance of geographic variables for the prediction of species abundances at the scale of the study. A second analysis was performed on a subset of lakes defined by geographic thresholds and presenting a higher biological homogeneity. Community thresholds were identified for the most important physico-chemical variables including water transparency, total phosphorus, ammonia, nitrates, and dissolved organic carbon. Gradient forest appeared as a powerful method at a first exploratory step, to detect ecological thresholds at large spatial scale. The thresholds that were identified here must be reinforced by the separate analysis of other aquatic communities and may be used then to set protective environmental standards after consideration of natural variability among lakes.

  19. Ground truth and detection threshold from WWII naval clean-up in Denmark

    NASA Astrophysics Data System (ADS)

    Larsen, Tine B.; Dahl-Jensen, Trine; Voss, Peter

    2013-04-01

    The sea bed below the Danish territorial waters is still littered with unexploded mines and other ammunition from World War II. The mines were air dropped by the RAF and the positions of the mines are unknown. As the mines still pose a potential threat to fishery and other marine activities, the Admiral Danish Fleet under the Danish Navy searches for the mines and destroy them by detonation, where they are found. The largest mines destroyed in this manner in 2012 are equivalent to 800 kg TNT each. The Seismological Service at the National Geological Survey of Denmark and Greenland is notified by the navy when ammunition in excess of 100 kg TNT is detonated. The notifications include information about position, detonation time and the estimated amount of explosives. The larger explosions are clearly registered not only on the Danish seismographs, but also on seismographs in the neighbouring countries. This includes the large seismograph arrays in Norway, Sweden, and Finland. Until recently the information from the Danish navy was only utilized to rid the Danish earthquake catalogue of explosions. But the high quality information provided by the navy enables us to use these ground truth events to assess the quality of our earthquake catalogue. The mines are scattered though out the Danish territorial waters, thus we can use the explosions to test the accuracy of the determined epicentres in all parts of the country. E.g. a detonation of 135 kg in Begstrup Vig in the central part of Denmark was located using Danish, Norwegian and Swedish stations with an accuracy of less than 2 km from ground truth. A systematic study of the explosions will sharpen our understanding of the seismicity in Denmark, and result in a more detailed understanding of the detection threshold. Furthermore the study will shed light on the sensitivity of the network to various seismograph outages.

  20. Continuum absorption in the vicinity of the toroidicity-induced Alfvén gap

    DOE PAGES

    Li, M.; Breizman, B. N.; Zheng, L. J.; ...

    2015-12-04

    Excitation of Alfvén modes is commonly viewed as a concern for energetic particle confinement in burning plasmas. The 3.5 MeValpha particles produced by fusion may be affected as well as other fast ions in both present and future devices. Continuum damping of such modes is one of the key factors that determine their excitation thresholds and saturation levels. This work examines the resonant dissipative response of the Alfvén continuum to an oscillating driving current when the driving frequency is slightly outside the edges of the toroidicity-induced spectral gap. The problem is largely motivated by the need to describe the continuummore » absorption in the frequency sweeping events. Akey element of this problem is the negative interference of the two closely spaced continuum crossing points.Weexplain why the lower and upper edges of the gap can have very different continuum absorption features. Lastly, the difference is associated with an eigenmode whose frequency can be arbitrarily close to the upper edge of the gap whereas the lower edge of the gap is always a finite distance away from the closest eigenmode.« less

  1. Critical ratios of beluga whales (Delphinapterus leucas) and masked signal duration.

    PubMed

    Erbe, Christine

    2008-10-01

    This article examines the masking of a complex beluga vocalization by natural and anthropogenic noise. The call consisted of six 150 ms pulses exhibiting spectral peaks between 800 Hz and 8 kHz. Comparing the spectra and spectrograms of the call and noises at detection threshold showed that the animal did not hear the entire call at threshold. It only heard parts of the call in frequency and time. From the masked hearing thresholds in broadband continuous noises, critical ratios were computed. Fletcher critical bands were narrower than either 15 or 111 of an octave at the low frequencies of the call (<2 kHz), depending on which frequency the animal cued on. From the masked hearing thresholds in intermittent noises, the audible signal duration at detection threshold was computed. The intermittent noises differed in gap length, gap number, and masking, but the total audible signal duration at threshold was the same: 660 ms. This observation supports a multiple-looks model. The two amplitude modulated noises exhibited weaker masking than the unmodulated noises hinting at a comodulation masking release.

  2. Estimation of signal coherence threshold and concealed spectral lines applied to detection of turbofan engine combustion noise.

    PubMed

    Miles, Jeffrey Hilton

    2011-05-01

    Combustion noise from turbofan engines has become important, as the noise from sources like the fan and jet are reduced. An aligned and un-aligned coherence technique has been developed to determine a threshold level for the coherence and thereby help to separate the coherent combustion noise source from other noise sources measured with far-field microphones. This method is compared with a statistics based coherence threshold estimation method. In addition, the un-aligned coherence procedure at the same time also reveals periodicities, spectral lines, and undamped sinusoids hidden by broadband turbofan engine noise. In calculating the coherence threshold using a statistical method, one may use either the number of independent records or a larger number corresponding to the number of overlapped records used to create the average. Using data from a turbofan engine and a simulation this paper shows that applying the Fisher z-transform to the un-aligned coherence can aid in making the proper selection of samples and produce a reasonable statistics based coherence threshold. Examples are presented showing that the underlying tonal and coherent broad band structure which is buried under random broadband noise and jet noise can be determined. The method also shows the possible presence of indirect combustion noise.

  3. Development of a landlside EWS based on rainfall thresholds for Tuscany Region, Italy

    NASA Astrophysics Data System (ADS)

    Rosi, Ascanio; Segoni, Samuele; Battistini, Alessandro; Rossi, Guglielmo; Catani, Filippo; Casagli, Nicola

    2017-04-01

    We present the set-up of a landslide EWS based on rainfall thresholds for the Tuscany region (central Italy), that shows a heterogeneous distribution of reliefs and precipitation. The work started with the definition of a single set of thresholds for the whole region, but it resulted unsuitable for EWS purposes, because of the heterogeneity of the Tuscan territory and non-repeatability of the analyses, that were affected by a high degree of subjectivity. To overcome this problem, the work started from the implementation of a software capable of objectively defining the rainfall thresholds, since some of the main issues of these thresholds are the subjectivity of the analysis and therefore their non-repeatability. This software, named MaCumBA, is largely automated and can analyze, in a short time, a high number of rainfall events to define several parameters of the threshold, such as the intensity (I) and the duration (D) of the rainfall event, the no-rain time gap (NRG: how many hours without rain are needed to consider two events as separated) and the equation describing the threshold. The possibility of quickly perform several analyses lead to the decision to divide the territory in 25 homogeneous areas (named alert zones, AZ), so as a single threshold for each AZ could be defined. For the definition of the thresholds two independent datasets (of joint rainfall-landslide occurrences) have been used: a calibration dataset (data from 2000 to 2007) and a validation dataset (2008-2009). Once the thresholds were defined, a WebGIS-based EWS has been implemented. In this system it is possible to focus both on monitoring of real-time data and on forecasting at different lead times up to 48 h; forecasting data are collected from LAMI (Limited Area Model Italy) rainfall forecasts. The EWS works on the basis of the threshold parameters defined by MaCumBA (I, D, NRG). An important feature of the warning system is that the visualization of the thresholds in the Web

  4. Automatic flatness detection system for micro part

    NASA Astrophysics Data System (ADS)

    Luo, Yi; Wang, Xiaodong; Shan, Zhendong; Li, Kehong

    2016-01-01

    An automatic flatness detection system for micro rings is developed. It is made up of machine vision module, ring supporting module and control system. An industry CCD camera with the resolution of 1628×1236 pixel, a telecentric with magnification of two, and light sources are used to collect the vision information. A rotary stage with a polished silicon wafer is used to support the ring. The silicon wafer provides a mirror image and doubles the gap caused by unevenness of the ring. The control system comprise an industry computer and software written in LabVIEW Get Kernel and Convolute Function are selected to reduce noise and distortion, Laplacian Operator is used to sharp the image, and IMAQ Threshold function is used to separate the target object from the background. Based on this software, system repeating precision is 2.19 μm, less than one pixel. The designed detection system can easily identify the ring warpage larger than 5 μm, and if the warpage is less than 25 μm, it can be used in ring assembly and satisfied the final positionary and perpendicularity error requirement of the component.

  5. Thermal Detection Thresholds of Aδ- and C-Fibre Afferents Activated by Brief CO2 Laser Pulses Applied onto the Human Hairy Skin

    PubMed Central

    Churyukanov, Maxim; Plaghki, Léon; Legrain, Valéry; Mouraux, André

    2012-01-01

    Brief high-power laser pulses applied onto the hairy skin of the distal end of a limb generate a double sensation related to the activation of Aδ- and C-fibres, referred to as first and second pain. However, neurophysiological and behavioural responses related to the activation of C-fibres can be studied reliably only if the concomitant activation of Aδ-fibres is avoided. Here, using a novel CO2 laser stimulator able to deliver constant-temperature heat pulses through a feedback regulation of laser power by an online measurement of skin temperature at target site, combined with an adaptive staircase algorithm using reaction-time to distinguish between responses triggered by Aδ- and C-fibre input, we show that it is possible to estimate robustly and independently the thermal detection thresholds of Aδ-fibres (46.9±1.7°C) and C-fibres (39.8±1.7°C). Furthermore, we show that both thresholds are dependent on the skin temperature preceding and/or surrounding the test stimulus, indicating that the Aδ- and C-fibre afferents triggering the behavioural responses to brief laser pulses behave, at least partially, as detectors of a change in skin temperature rather than as pure level detectors. Most importantly, our results show that the difference in threshold between Aδ- and C-fibre afferents activated by brief laser pulses can be exploited to activate C-fibres selectively and reliably, provided that the rise in skin temperature generated by the laser stimulator is well-controlled. Our approach could constitute a tool to explore, in humans, the physiological and pathophysiological mechanisms involved in processing C- and Aδ-fibre input, respectively. PMID:22558230

  6. Defining thresholds of sustainable impact on benthic communities in relation to fishing disturbance.

    PubMed

    Lambert, G I; Murray, L G; Hiddink, J G; Hinz, H; Lincoln, H; Hold, N; Cambiè, G; Kaiser, M J

    2017-07-14

    While the direct physical impact on seabed biota is well understood, no studies have defined thresholds to inform an ecosystem-based approach to managing fishing impacts. We addressed this knowledge gap using a large-scale experiment that created a controlled gradient of fishing intensity and assessed the immediate impacts and short-term recovery. We observed a mosaic of taxon-specific responses at various thresholds. The lowest threshold of significant lasting impact occurred between 1 and 3 times fished and elicited a decrease in abundance of 39 to 70% for some sessile epifaunal organisms (cnidarians, bryozoans). This contrasted with significant increases in abundance and/or biomass of scavenging species (epifaunal echinoderms, infaunal crustaceans) by two to four-fold in areas fished twice and more. In spite of these significant specific responses, the benthic community structure, biomass and abundance at the population level appeared resilient to fishing. Overall, natural temporal variation in community metrics exceeded the effects of fishing in this highly dynamic study site, suggesting that an acute level of disturbance (fished over six times) would match the level of natural variation. We discuss the implications of our findings for natural resources management with respect to context-specific human disturbance and provide guidance for best fishing practices.

  7. A new edge detection algorithm based on Canny idea

    NASA Astrophysics Data System (ADS)

    Feng, Yingke; Zhang, Jinmin; Wang, Siming

    2017-10-01

    The traditional Canny algorithm has poor self-adaptability threshold, and it is more sensitive to noise. In order to overcome these drawbacks, this paper proposed a new edge detection method based on Canny algorithm. Firstly, the media filtering and filtering based on the method of Euclidean distance are adopted to process it; secondly using the Frei-chen algorithm to calculate gradient amplitude; finally, using the Otsu algorithm to calculate partial gradient amplitude operation to get images of thresholds value, then find the average of all thresholds that had been calculated, half of the average is high threshold value, and the half of the high threshold value is low threshold value. Experiment results show that this new method can effectively suppress noise disturbance, keep the edge information, and also improve the edge detection accuracy.

  8. Inhibition of gap junction currents by the abused solvent toluene.

    PubMed

    Del Re, Angelo M; Woodward, John J

    2005-05-09

    Abused inhalants are a large class of compounds that are inhaled for their intoxicating and mood altering effects. They include chemicals with known therapeutic uses such as anesthetic gases as well as volatile organic solvents like toluene that are found in paint thinners and adhesives. Because of their widespread commercial use and availability, inhalants are often among the first drugs that children encounter and use of these compounds is often associated with adverse acute and long-term consequences. The cellular and molecular sites of action for abused inhalants is not well known although recent studies report that toluene and other organic solvents alter the activity of specific ligand- and voltage-gated ion channels that regulate cellular excitability. As part of an ongoing effort to define molecular sites of action for abused inhalants, this study examined the effect of toluene on the function of gap junction proteins endogenously expressed in human embryonic kidney (HEK 293) cells. Gap junctions allow cell-to-cell electrical communication as well as passage of small molecular weight substances and are critical for synchronizing cellular activity in certain tissues. Gap junction currents in HEK 293 cells were measured during brief voltage steps using patch-clamp electrophysiology and were blocked by known gap junction blockers confirming expression of connexin proteins in these cells. Toluene dose-dependently inhibited these conductances with threshold effects appearing at approximately 0.4 mM and near complete inhibition occurring at concentrations of 1 mM and higher. The estimated EC50 value for toluene inhibition of gap junction currents in HEK 293 cells was 0.57 mM. The results of these studies suggest that volatile solvents including toluene may produce some of their effects by disrupting inter-cellular communication mediated by gap junction proteins.

  9. Threshold factorization redux

    NASA Astrophysics Data System (ADS)

    Chay, Junegone; Kim, Chul

    2018-05-01

    We reanalyze the factorization theorems for the Drell-Yan process and for deep inelastic scattering near threshold, as constructed in the framework of the soft-collinear effective theory (SCET), from a new, consistent perspective. In order to formulate the factorization near threshold in SCET, we should include an additional degree of freedom with small energy, collinear to the beam direction. The corresponding collinear-soft mode is included to describe the parton distribution function (PDF) near threshold. The soft function is modified by subtracting the contribution of the collinear-soft modes in order to avoid double counting on the overlap region. As a result, the proper soft function becomes infrared finite, and all the factorized parts are free of rapidity divergence. Furthermore, the separation of the relevant scales in each factorized part becomes manifest. We apply the same idea to the dihadron production in e+e- annihilation near threshold, and show that the resultant soft function is also free of infrared and rapidity divergences.

  10. Cortical Local Field Potential Power Is Associated with Behavioral Detection of Near-threshold Stimuli in the Rat Whisker System: Dissociation between Orbitofrontal and Somatosensory Cortices.

    PubMed

    Rickard, Rachel E; Young, Andrew M J; Gerdjikov, Todor V

    2018-01-01

    There is growing evidence that ongoing brain oscillations may represent a key regulator of attentional processes and as such may contribute to behavioral performance in psychophysical tasks. OFC appears to be involved in the top-down modulation of sensory processing; however, the specific contribution of ongoing OFC oscillations to perception has not been characterized. Here we used the rat whiskers as a model system to further characterize the relationship between cortical state and tactile detection. Head-fixed rats were trained to report the presence of a vibrotactile stimulus (frequency = 60 Hz, duration = 2 sec, deflection amplitude = 0.01-0.5 mm) applied to a single vibrissa. We calculated power spectra of local field potentials preceding the onset of near-threshold stimuli from microelectrodes chronically implanted in OFC and somatosensory cortex. We found a dissociation between slow oscillation power in the two regions in relation to detection probability: Higher OFC but not somatosensory delta power was associated with increased detection probability. Furthermore, coherence between OFC and barrel cortex was reduced preceding successful detection. Consistent with the role of OFC in attention, our results identify a cortical network whose activity is differentially modulated before successful tactile detection.

  11. Seedling performance covaries with dormancy thresholds: maintaining cryptic seed heteromorphism in a fire-prone system.

    PubMed

    Liyanage, Ganesha S; Ayre, David J; Ooi, Mark K J

    2016-11-01

    The production of morphologically different seeds or fruits by the same individual plant is known as seed heteromorphism. Such variation is expected to be selected for in disturbance-prone environments to allow germination into inherently variable regeneration niches. However, there are few demonstrations that heteromorphic seed characteristics should be favored by selection or how they may be maintained. In fire-prone ecosystems, seed heteromorphism is found in the temperatures needed to break physical dormancy, with seeds responding to high or low temperatures, ensuring emergence under variable fire-regime-related soil heating. Because of the relationship between dormancy-breaking temperature thresholds and fire severity, we hypothesize that different post-fire resource conditions have selected for covarying seedling traits, which contribute to maintenance of such heteromorphism. Seeds with low thresholds emerge into competitive conditions, either after low-severity fire or in vegetation gaps, and are therefore likely to experience selection for seedling characteristics that make them good competitors. On the other hand, high-temperature-threshold seeds would emerge into less competitive environments, indicative of stand-clearing high-severity fires, and would not experience the same selective forces. We identified high and low-threshold seed morphs via dormancy-breaking heat treatments and germination trials for two study species and compared seed mass and other morphological characteristics between morphs. We then grew seedlings from the two different morphs, with and without competition, and measured growth and biomass allocation as indicators of seedling performance. Seedlings from low-threshold seeds of both species performed better than their high-threshold counterparts, growing more quickly under competitive conditions, confirming that different performance can result from this seed characteristic. Seed mass or appearance did not differ between morphs

  12. A study of the high-frequency hearing thresholds of dentistry professionals

    PubMed Central

    Lopes, Andréa Cintra; de Melo, Ana Dolores Passarelli; Santos, Cibele Carmelo

    2012-01-01

    Summary Introduction: In the dentistry practice, dentists are exposed to harmful effects caused by several factors, such as the noise produced by their work instruments. In 1959, the American Dental Association recommended periodical hearing assessments and the use of ear protectors. Aquiring more information regarding dentists', dental nurses', and prosthodontists' hearing abilities is necessary to propose prevention measures and early treatment strategies. Objective: To investigate the auditory thresholds of dentists, dental nurses, and prosthodontists. Method: In this clinical and experimental study, 44 dentists (Group I; GI), 36 dental nurses (Group II; GII), and 28 prosthodontists (Group III; GIII) were included, , with a total of 108 professionals. The procedures that were performed included a specific interview, ear canal inspection, conventional and high-frequency threshold audiometry, a speech reception threshold test, and an acoustic impedance test. Results: In the 3 groups that were tested, the comparison between the mean hearing thresholds provided evidence of worsened hearing ability relative to the increase in frequency. For the tritonal mean at 500 to 2,000 Hz and 3,000 to 6,000 Hz, GIII presented the worst thresholds. For the mean of the high frequencies (9,000 and 16,000 Hz), GII presented the worst thresholds. Conclusion: The conventional hearing threshold evaluation did not demonstrate alterations in the 3 groups that were tested; however, the complementary tests such as high-frequency audiometry provided greater efficacy in the early detection of hearing problems, since this population's hearing loss impaired hearing ability at frequencies that are not tested by the conventional tests. Therefore, we emphasize the need of utilizing high-frequency threshold audiometry in the hearing assessment routine in combination with other audiological tests. PMID:25991940

  13. Comparison between intensity- duration thresholds and cumulative rainfall thresholds for the forecasting of landslide

    NASA Astrophysics Data System (ADS)

    Lagomarsino, Daniela; Rosi, Ascanio; Rossi, Guglielmo; Segoni, Samuele; Catani, Filippo

    2014-05-01

    This work makes a quantitative comparison between the results of landslide forecasting obtained using two different rainfall threshold models, one using intensity-duration thresholds and the other based on cumulative rainfall thresholds in an area of northern Tuscany of 116 km2. The first methodology identifies rainfall intensity-duration thresholds by means a software called MaCumBA (Massive CUMulative Brisk Analyzer) that analyzes rain-gauge records, extracts the intensities (I) and durations (D) of the rainstorms associated with the initiation of landslides, plots these values on a diagram, and identifies thresholds that define the lower bounds of the I-D values. A back analysis using data from past events can be used to identify the threshold conditions associated with the least amount of false alarms. The second method (SIGMA) is based on the hypothesis that anomalous or extreme values of rainfall are responsible for landslide triggering: the statistical distribution of the rainfall series is analyzed, and multiples of the standard deviation (σ) are used as thresholds to discriminate between ordinary and extraordinary rainfall events. The name of the model, SIGMA, reflects the central role of the standard deviations in the proposed methodology. The definition of intensity-duration rainfall thresholds requires the combined use of rainfall measurements and an inventory of dated landslides, whereas SIGMA model can be implemented using only rainfall data. These two methodologies were applied in an area of 116 km2 where a database of 1200 landslides was available for the period 2000-2012. The results obtained are compared and discussed. Although several examples of visual comparisons between different intensity-duration rainfall thresholds are reported in the international literature, a quantitative comparison between thresholds obtained in the same area using different techniques and approaches is a relatively undebated research topic.

  14. Reaction πN → ππN near threshold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frlez, Emil

    1993-11-01

    The LAMPF E1179 experiment used the π 0 spectrometer and an array of charged particle range counters to detect and record π +π 0, π 0p, and π +π 0p coincidences following the reaction π +p → π 0π +p near threshold. The total cross sections for single pion production were measured at the incident pion kinetic energies 190, 200, 220, 240, and 260 MeV. Absolute normalizations were fixed by measuring π +p elastic scattering at 260 MeV. A detailed analysis of the π 0 detection efficiency was performed using cosmic ray calibrations and pion single charge exchange measurements with a 30 MeV π - beam. All published data on πN → ππN, including our results, are simultaneously fitted to yield a common chiral symmetry breaking parameter ξ =-0.25±0.10. The threshold matrix element |α 0(π 0π +p)| determined by linear extrapolation yields the value of the s-wave isospin-2 ππ scattering length αmore » $$2\\atop{0}$$(ππ) = -0.041±0.003 m$$-1\\atop{π}$$ -1, within the framework of soft-pion theory.« less

  15. Modeling spatially-varying landscape change points in species occurrence thresholds

    USGS Publications Warehouse

    Wagner, Tyler; Midway, Stephen R.

    2014-01-01

    Predicting species distributions at scales of regions to continents is often necessary, as large-scale phenomena influence the distributions of spatially structured populations. Land use and land cover are important large-scale drivers of species distributions, and landscapes are known to create species occurrence thresholds, where small changes in a landscape characteristic results in abrupt changes in occurrence. The value of the landscape characteristic at which this change occurs is referred to as a change point. We present a hierarchical Bayesian threshold model (HBTM) that allows for estimating spatially varying parameters, including change points. Our model also allows for modeling estimated parameters in an effort to understand large-scale drivers of variability in land use and land cover on species occurrence thresholds. We use range-wide detection/nondetection data for the eastern brook trout (Salvelinus fontinalis), a stream-dwelling salmonid, to illustrate our HBTM for estimating and modeling spatially varying threshold parameters in species occurrence. We parameterized the model for investigating thresholds in landscape predictor variables that are measured as proportions, and which are therefore restricted to values between 0 and 1. Our HBTM estimated spatially varying thresholds in brook trout occurrence for both the proportion agricultural and urban land uses. There was relatively little spatial variation in change point estimates, although there was spatial variability in the overall shape of the threshold response and associated uncertainty. In addition, regional mean stream water temperature was correlated to the change point parameters for the proportion of urban land use, with the change point value increasing with increasing mean stream water temperature. We present a framework for quantify macrosystem variability in spatially varying threshold model parameters in relation to important large-scale drivers such as land use and land cover

  16. A gap analysis approach to assess patient persistence with glaucoma medication.

    PubMed

    Lee, Paul P; Walt, John G; Chiang, Tina H; Guckian, Angela; Keener, John

    2007-10-01

    To develop an alternative method for analysis of patient persistence with prescribed medications using the prostaglandin class of intraocular pressure (IOP)-lowering drugs as a model. A retrospective study of prescription refill patterns. Patients with a pharmacy claim for a 2.5 ml bottle of latanoprost, travoprost, or bimatoprost between September 1, 2002 and December 31, 2002 were identified from a retail pharmacy database and were followed up for 12 months. Three separate analyses defined gaps in therapy as spans in excess of 45, 60, or 120 days without a refill for the same medication. Patients were categorized by the number of gaps in therapy and the cumulative length of gaps. A Kaplan-Meier analysis was conducted using a 120-day allowable refill period. For refill periods of 45, 60, and 120 days, 10.6%, 28.6%, and 77.5% of patients, respectively, had no gaps in therapy, and 32.6%, 53.4%, and 86.5%, respectively, had 30 days or fewer off therapy annually. According to the 45-day threshold analysis, 50.7% of patients had three or more gaps vs 18.5% in the 60-day analysis and none in the 120-day analysis. The Kaplan-Meier curve shows 88.6% and 76.1% of patients were persistent for 120 days and one year, respectively. Compared with Kaplan-Meier survival curves, the gap analysis approach may better parallel clinical experience with patient persistence, in which patients stop and restart medications for a variety of reasons over time. This method also may help to identify avenues for investigation of lack of persistency among many patients.

  17. 40 CFR 68.115 - Threshold determination.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 15 2011-07-01 2011-07-01 false Threshold determination. 68.115... § 68.115 Threshold determination. (a) A threshold quantity of a regulated substance listed in § 68.130... process exceeds the threshold. (b) For the purposes of determining whether more than a threshold quantity...

  18. Use of change-point detection for friction-velocity threshold evaluation in eddy-covariance studies

    Treesearch

    A.G. Barr; A.D. Richardson; D.Y. Hollinger; D. Papale; M.A. Arain; T.A. Black; G. Bohrer; D. Dragoni; M.L. Fischer; L. Gu; B.E. Law; H.A. Margolis; J.H. McCaughey; J.W. Munger; W. Oechel; K. Schaeffer

    2013-01-01

    The eddy-covariance method often underestimates fluxes under stable, low-wind conditions at night when turbulence is not well developed. The most common approach to resolve the problem of nighttime flux underestimation is to identify and remove the deficit periods using friction-velocity (u∗) threshold filters (u∗

  19. The effect of doping Sb on the electronic structure and the device characteristics of Ovonic Threshold Switches based on Ge-Se

    PubMed Central

    Shin, Sang-Yeol; Choi, J. M.; Seo, Juhee; Ahn, Hyung-Woo; Choi, Yong Gyu; Cheong, Byung-ki; Lee, Suyoun

    2014-01-01

    The Ovonic Threshold Switch (OTS) based on an amorphous chalcogenide material has attracted much interest as a promising candidate for a high-performance thin-film switching device enabling 3D-stacking of memory devices. In this work, we studied on the electronic structure of amorphous Sb-doped Ge0.6Se0.4 (in atomic mole fraction) film and its characteristics as to OTS devices. From the optical absorption spectroscopy measurement, the band gap (Eg) was found to decrease with increasing Sb content. In addition, as Sb content increased, the activation energy (Ea) for electrical conduction was found to decrease down to about one third of Eg from a half. As to the device characteristics, we found that the threshold switching voltage (Vth) drastically decreased with the Sb content. These results, being accountable in terms of the changes in the bonding configuration of constituent atoms as well as in the electronic structure such as the energy gap and trap states, advance an effective method of compositional adjustment to modulate Vth of an OTS device for various applications. PMID:25403772

  20. The effect of doping Sb on the electronic structure and the device characteristics of Ovonic Threshold Switches based on Ge-Se.

    PubMed

    Shin, Sang-Yeol; Choi, J M; Seo, Juhee; Ahn, Hyung-Woo; Choi, Yong Gyu; Cheong, Byung-ki; Lee, Suyoun

    2014-11-18

    The Ovonic Threshold Switch (OTS) based on an amorphous chalcogenide material has attracted much interest as a promising candidate for a high-performance thin-film switching device enabling 3D-stacking of memory devices. In this work, we studied on the electronic structure of amorphous Sb-doped Ge(0.6)Se(0.4) (in atomic mole fraction) film and its characteristics as to OTS devices. From the optical absorption spectroscopy measurement, the band gap (Eg) was found to decrease with increasing Sb content. In addition, as Sb content increased, the activation energy (Ea) for electrical conduction was found to decrease down to about one third of Eg from a half. As to the device characteristics, we found that the threshold switching voltage (Vth) drastically decreased with the Sb content. These results, being accountable in terms of the changes in the bonding configuration of constituent atoms as well as in the electronic structure such as the energy gap and trap states, advance an effective method of compositional adjustment to modulate Vth of an OTS device for various applications.

  1. Continuous Seismic Threshold Monitoring

    DTIC Science & Technology

    1992-05-31

    Continuous threshold monitoring is a technique for using a seismic network to monitor a geographical area continuously in time. The method provides...area. Two approaches are presented. Site-specific monitoring: By focusing a seismic network on a specific target site, continuous threshold monitoring...recorded events at the site. We define the threshold trace for the network as the continuous time trace of computed upper magnitude limits of seismic

  2. Masking of thresholds for the perception of fore-and-aft vibration of seat backrests.

    PubMed

    Morioka, Miyuki; Griffin, Michael J

    2015-09-01

    The detection of a vibration may be reduced by the presence of another vibration: a phenomenon known as 'masking'. This study investigated how the detection of one frequency of vibration is influenced by vibration at another frequency. With nine subjects, thresholds for detecting fore-and-aft backrest vibration were determined (for 4, 8, 16, and 31.5-Hz sinusoidal vibration) in the presence of a masker vibration (4-Hz random vibration, 1/3-octave bandwidth at six intensities). The masker vibration increased thresholds for perceiving vibration at each frequency by an amount that reduced with increasing difference between the frequency of the sinusoidal vibration and the frequency of the masker vibration. The 4-Hz random vibration almost completely masked 4-Hz sinusoidal vibration, partially masked 8- and 16-Hz vibration, and only slightly masked 31.5-Hz vibration. The findings might be explained by the involvement of different sensory systems and different body locations in the detection of different frequencies of vibration. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  3. Evaluation and comparison of 50 Hz current threshold of electrocutaneous sensations using different methods

    PubMed Central

    Lindenblatt, G.; Silny, J.

    2006-01-01

    Leakage currents, tiny currents flowing from an everyday-life appliance through the body to the ground, can cause a non-adequate perception (called electrocutaneous sensation, ECS) or even pain and should be avoided. Safety standards for low-frequency range are based on experimental results of current thresholds of electrocutaneous sensations, which however show a wide range between about 50 μA (rms) and 1000 μA (rms). In order to be able to explain these differences, the perception threshold was measured repeatedly in experiments with test persons under identical experimental setup, but by means of different methods (measuring strategies), namely: direct adjustment, classical threshold as amperage of 50% perception probability, and confidence rating procedure of signal detection theory. The current is injected using a 1 cm2 electrode at the highly touch sensitive part of the index fingertip. These investigations show for the first time that the threshold of electrocutaneous sensations is influenced both by adaptation to the non-adequate stimulus and individual, emotional factors. Therefore, classical methods, on which the majority of the safety investigations are based, cannot be used to determine a leakage current threshold. The confidence rating procedure of the modern signal detection theory yields a value of 179.5 μA (rms) at 50 Hz power supply net frequency as the lower end of the 95% confidence range considering the variance in the investigated group. This value is expected to be free of adaptation influences, and is distinctly lower than the European limits and supports the stricter regulations of Canada and USA. PMID:17111461

  4. The Relationship between MOC Reflex and Masked Threshold

    PubMed Central

    Garinis, Angela; Werner, Lynne; Abdala, Carolina

    2011-01-01

    Otoacoustic emission (OAE) amplitude can be reduced by acoustic stimulation. This effect is produced by the medial olivocochlear (MOC) reflex. Past studies have shown that the MOC reflex is related to listening in noise and attention. In the present study, the relationship between strength of the contralateral MOC reflex and masked threshold was investigated in 19 adults. Detection thresholds were determined for a 1000-Hz, 300-ms tone presented simultaneously with one repetition of a 300-ms masker in an ongoing train of 300-ms masker bursts at 600-ms intervals. Three masking conditions were tested: 1) broadband noise 2) a fixed-frequency 4-tone complex masker and 3) a random-frequency 4-tone complex masker. Broadband noise was expected to produce energetic masking and the tonal maskers were expected to produce informational masking in some listeners. DPOAEs were recorded at fine frequency interval from 500 to 4000 Hz, with and without contralateral acoustic stimulation. MOC reflex strength was estimated as a reduction in baseline level and a shift in frequency of DPOAE fine-structure maxima near 1000-Hz. MOC reflex and psychophysical testing were completed in separate sessions. Individuals with poorer thresholds in broadband noise and in random-frequency maskers were found to have stronger MOC reflexes. PMID:21878379

  5. Long-time cavitation threshold of silica water mixture under acoustic drive

    NASA Astrophysics Data System (ADS)

    Bussonniére, Adrien; Liu, Qingxia; Tsai, Peichun Amy

    2017-11-01

    The low cavitation threshold of water observed experimentally has been attributed to the presence of pre-existing tiny bubbles stabilized by impurities. However, the origin and stability of these cavitation nuclei remain unresolved. We therefore investigate the long-time cavitation evolution of water seeded with micron-sized silica particles under the influences of several parameters. Experimentally, cavitation is induced by a High Intensity Focused Ultrasound and subsequently detected by monitoring the backscattered sound. Degassed or aerated solutions of different concentrations are subjected to acoustic pulses (with the amplitude ranging from 0.1 to 1.7 MPa and a fixed repetition frequency between 0.1 and 6.5 Hz). The cavitation threshold was measured by fitting the cavitation probability curve, averaged over 1000 pulses. Surprisingly, our results shown that the cavitation threshold stabilizes at a reproducible value after a few thousand pulses. Moreover, this long-time threshold was found to decrease with increasing particle concentration, pulse period, and initial oxygen level. In contrast to the depletion of nuclei expected under long acoustic cavitation, the results suggest stabilized nuclei population depending on concentration, oxygen level, and driving period.

  6. GapBlaster-A Graphical Gap Filler for Prokaryote Genomes.

    PubMed

    de Sá, Pablo H C G; Miranda, Fábio; Veras, Adonney; de Melo, Diego Magalhães; Soares, Siomar; Pinheiro, Kenny; Guimarães, Luis; Azevedo, Vasco; Silva, Artur; Ramos, Rommel T J

    2016-01-01

    The advent of NGS (Next Generation Sequencing) technologies has resulted in an exponential increase in the number of complete genomes available in biological databases. This advance has allowed the development of several computational tools enabling analyses of large amounts of data in each of the various steps, from processing and quality filtering to gap filling and manual curation. The tools developed for gap closure are very useful as they result in more complete genomes, which will influence downstream analyses of genomic plasticity and comparative genomics. However, the gap filling step remains a challenge for genome assembly, often requiring manual intervention. Here, we present GapBlaster, a graphical application to evaluate and close gaps. GapBlaster was developed via Java programming language. The software uses contigs obtained in the assembly of the genome to perform an alignment against a draft of the genome/scaffold, using BLAST or Mummer to close gaps. Then, all identified alignments of contigs that extend through the gaps in the draft sequence are presented to the user for further evaluation via the GapBlaster graphical interface. GapBlaster presents significant results compared to other similar software and has the advantage of offering a graphical interface for manual curation of the gaps. GapBlaster program, the user guide and the test datasets are freely available at https://sourceforge.net/projects/gapblaster2015/. It requires Sun JDK 8 and Blast or Mummer.

  7. Hydrodynamics of sediment threshold

    NASA Astrophysics Data System (ADS)

    Ali, Sk Zeeshan; Dey, Subhasish

    2016-07-01

    A novel hydrodynamic model for the threshold of cohesionless sediment particle motion under a steady unidirectional streamflow is presented. The hydrodynamic forces (drag and lift) acting on a solitary sediment particle resting over a closely packed bed formed by the identical sediment particles are the primary motivating forces. The drag force comprises of the form drag and form induced drag. The lift force includes the Saffman lift, Magnus lift, centrifugal lift, and turbulent lift. The points of action of the force system are appropriately obtained, for the first time, from the basics of micro-mechanics. The sediment threshold is envisioned as the rolling mode, which is the plausible mode to initiate a particle motion on the bed. The moment balance of the force system on the solitary particle about the pivoting point of rolling yields the governing equation. The conditions of sediment threshold under the hydraulically smooth, transitional, and rough flow regimes are examined. The effects of velocity fluctuations are addressed by applying the statistical theory of turbulence. This study shows that for a hindrance coefficient of 0.3, the threshold curve (threshold Shields parameter versus shear Reynolds number) has an excellent agreement with the experimental data of uniform sediments. However, most of the experimental data are bounded by the upper and lower limiting threshold curves, corresponding to the hindrance coefficients of 0.2 and 0.4, respectively. The threshold curve of this study is compared with those of previous researchers. The present model also agrees satisfactorily with the experimental data of nonuniform sediments.

  8. I. RENAL THRESHOLDS FOR HEMOGLOBIN IN DOGS

    PubMed Central

    Lichty, John A.; Havill, William H.; Whipple, George H.

    1932-01-01

    We use the term "renal threshold for hemoglobin" to indicate the smallest amount of hemoglobin which given intravenously will effect the appearance of recognizable hemoglobin in the urine. The initial renal threshold level for dog hemoglobin is established by the methods employed at an average value of 155 mg. hemoglobin per kilo body weight with maximal values of 210 and minimal of 124. Repeated daily injections of hemoglobin will depress this initial renal threshold level on the average 46 per cent with maximal values of 110 and minimal values of 60 mg. hemoglobin per kilo body weight. This minimal or depression threshold is relatively constant if the injections are continued. Rest periods without injections cause a return of the renal threshold for hemoglobin toward the initial threshold levels—recovery threshold level. Injections of hemoglobin below the initial threshold level but above the minimal or depression threshold will eventually reduce the renal threshold for hemoglobin to its depression threshold level. We believe the depression threshold or minimal renal threshold level due to repeated hemoglobin injections is a little above the glomerular threshold which we assume is the base line threshold for hemoglobin. Our reasons for this belief in the glomerular threshold are given above and in the other papers of this series. PMID:19870016

  9. A low-threshold nanolaser based on hybrid plasmonic waveguides at the deep subwavelength scale

    NASA Astrophysics Data System (ADS)

    Li, Zhi-Quan; Piao, Rui-Qi; Zhao, Jing-Jing; Meng, Xiao-Yun; Tong, Kai

    2015-07-01

    A novel nanolaser structure based on a hybrid plasmonic waveguide is proposed and investigated. The coupling between the metal nanowire and the high-index semiconductor nanowire with optical gain leads to a strong field enhancement in the air gap region and low propagation loss, which enables the realization of lasing at the deep subwavelength scale. By optimizing the geometric parameters of the structure, a minimal lasing threshold is achieved while maintaining the capacity of ultra-deep subwavelength mode confinement. Compared with the previous coupled nanowire pair based hybrid plasmonic structure, a lower threshold can be obtained with the same geometric parameters. The proposed nanolaser can be integrated into a miniature chip as a nanoscale light source and has the potential to be widely used in optical communication and optical sensing technology. Project supported by the National Natural Science Foundation of China (Grant No. 61172044) and the Natural Science Foundation of Hebei Province, China (Grant No. F2014501150).

  10. Customization of Advia 120 thresholds for canine erythrocyte volume and hemoglobin concentration, and effects on morphology flagging results.

    PubMed

    Grimes, Carolyn N; Fry, Michael M

    2014-12-01

    This study sought to develop customized morphology flagging thresholds for canine erythrocyte volume and hemoglobin concentration [Hgb] on the ADVIA 120 hematology analyzer; compare automated morphology flagging with results of microscopic blood smear evaluation; and examine effects of customized thresholds on morphology flagging results. Customized thresholds were determined using data from 52 clinically healthy dogs. Blood smear evaluation and automated morphology flagging results were correlated with mean cell volume (MCV) and cellular hemoglobin concentration mean (CHCM) in 26 dogs. Customized thresholds were applied retroactively to complete blood (cell) count (CBC) data from 5 groups of dogs, including a reference sample group, clinical cases, and animals with experimentally induced iron deficiency anemia. Automated morphology flagging correlated more highly with MCV or CHCM than did blood smear evaluation; correlation with MCV was highest using customized thresholds. Customized morphology flagging thresholds resulted in more sensitive detection of microcytosis, macrocytosis, and hypochromasia than default thresholds.

  11. Bayesian Threshold Estimation

    ERIC Educational Resources Information Center

    Gustafson, S. C.; Costello, C. S.; Like, E. C.; Pierce, S. J.; Shenoy, K. N.

    2009-01-01

    Bayesian estimation of a threshold time (hereafter simply threshold) for the receipt of impulse signals is accomplished given the following: 1) data, consisting of the number of impulses received in a time interval from zero to one and the time of the largest time impulse; 2) a model, consisting of a uniform probability density of impulse time…

  12. Models and methods for in vitro testing of hepatic gap junctional communication.

    PubMed

    Maes, Michaël; Yanguas, Sara Crespo; Willebrords, Joost; Vinken, Mathieu

    2015-12-25

    Inherent to their pivotal roles in controlling all aspects of the liver cell life cycle, hepatocellular gap junctions are frequently disrupted upon impairment of the homeostatic balance, as occurs during liver toxicity. Hepatic gap junctions, which are mainly built up by connexin32, are specifically targeted by tumor promoters and epigenetic carcinogens. This renders inhibition of gap junction functionality a suitable indicator for the in vitro detection of nongenotoxic hepatocarcinogenicity. The establishment of a reliable liver gap junction inhibition assay for routine in vitro testing purposes requires a cellular system in which gap junctions are expressed at an in vivo-like level as well as an appropriate technique to probe gap junction activity. Both these models and methods are discussed in the current paper, thereby focusing on connexin32-based gap junctions. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Method and apparatus for controlling electrode gap during vacuum consumable arc remelting

    DOEpatents

    Fisher, R.W.; Maroone, J.P.; Tipping, D.W.; Zanner, F.J.

    During vacuum consumable arc remelting the electrode gap between a consumable electrode and a pool of molten metal is difficult to control. The present invention monitors drop shorts by detecting a decrease in the voltage between the consumable electrode and molten pool. The drop shorts and their associated voltage reductions occur as repetitive pulses which are closely correlated to the electrode gap. Thus, the method and apparatus of the present invention controls electrode gap based upon drop shorts detected from the monitored anode-cathode voltage. The number of drop shorts are accumulated, and each time the number of drop shorts reach a predetermined number, the average period between drop shorts is calculated from this predetermined number and the time in which this number is accumulated. This average drop short period is used in a drop short period electrode gap model which determines the actual electrode gap from the drop short. The actual electrode gap is then compared with a desired electrode gap which is selected to produce optimum operating conditions and the velocity of the consumable error is varied based upon the gap error. The consumable electrode is driven according to any prior art system at this velocity. In the preferred embodiment, a microprocessor system is utilized to perform the necessary calculations and further to monitor the duration of each drop short. If any drop short exceeds a preset duration period, the consumable electrode is rapidly retracted a predetermined distance to prevent bonding of the consumable electrode to the molten remelt.

  14. MRI-leukoaraiosis thresholds and the phenotypic expression of dementia

    PubMed Central

    Mitchell, Sandra M.; Brumback, Babette; Tanner, Jared J.; Schmalfuss, Ilona; Lamar, Melissa; Giovannetti, Tania; Heilman, Kenneth M.; Libon, David J.

    2012-01-01

    Objective: To examine the concept of leukoaraiosis thresholds on working memory, visuoconstruction, memory, and language in dementia. Methods: A consecutive series of 83 individuals with insidious onset/progressive dementia clinically diagnosed with Alzheimer disease (AD) or small vessel vascular dementia (VaD) completed neuropsychological measures assessing working memory, visuoconstruction, episodic memory, and language. A clinical MRI scan was used to quantify leukoaraiosis, total white matter, hippocampus, lacune, and intracranial volume. We performed analyses to detect the lowest level of leukoaraiosis associated with impairment on the neuropsychological measures. Results: Leukoaraiosis ranged from 0.63% to 23.74% of participants' white matter. Leukoaraiosis explained a significant amount of variance in working memory performance when it involved 3% or more of the white matter with curve estimations showing the relationship to be nonlinear in nature. Greater leukoaraiosis (13%) was implicated for impairment in visuoconstruction. Relationships between leukoaraiosis, episodic memory, and language measures were linear or flat. Conclusions: Leukoaraiosis involves specific threshold points for working memory and visuoconstructional tests in AD/VaD spectrum dementia. These data underscore the need to better understand the threshold at which leukoaraiosis affects and alters the phenotypic expression in insidious onset dementia syndromes. PMID:22843264

  15. Vibrotactile perception thresholds at the sole of the foot: effects of contact force and probe indentation.

    PubMed

    Gu, Cheng; Griffin, Michael J

    2012-05-01

    When using vibrotactile thresholds to investigate neuropathy in the fingers, the indentation of a vibrating probe, and the force applied to a static surround around a vibrating probe, affect thresholds. This study was designed to investigate the effects on vibrotactile perception thresholds at the sole of the foot of probe indentation (i.e. height of a vibrating probe relative to a static surround) and the force applied to the static surround. Thresholds at 20 Hz (expected to be mediated by the NP I channel) and at 160 Hz (expected to be mediated by the Pacinian channel) were obtained at the hallux (i.e. greater toe) and the ball of the foot on 14 healthy subjects. In one condition, the height of the vibrating probe was varied to 0, 1, 2, 3, and 4 mm above a static surround with 4-N force applied to the surround. In a second condition, the force applied to the surround was varied to 1, 2, 3, 4, 5, and 6 N while using a probe height of 1mm. Thresholds at 20 Hz decreased with increasing probe height from 0 to 1 mm but showed no significant variation between 2, 3, and 4mm at either the hallux or the ball of the foot. Thresholds at 160 Hz decreased with increasing probe height from 0 to 4 mm at both the hallux and the ball of the foot. Thresholds at 20 Hz obtained with 1-N surround force were higher than thresholds obtained with 2 N, but there was no significant difference with surround forces from 2 to 6 N at either the hallux or the ball of the foot. Thresholds at 160 Hz were unaffected by variations in surround force at the ball of the foot but tended to decrease with increasing force at the hallux. It is concluded that a vibrating probe flush with a static surround, and a surround force in the range 2-4 N, are appropriate when measuring vibrotactile thresholds at the hallux and the ball of the foot with a 6-mm diameter contactor and a 2-mm gap to the static surround. Copyright © 2011 IPEM. Published by Elsevier Ltd. All rights reserved.

  16. Higher criticism thresholding: Optimal feature selection when useful features are rare and weak.

    PubMed

    Donoho, David; Jin, Jiashun

    2008-09-30

    In important application fields today-genomics and proteomics are examples-selecting a small subset of useful features is crucial for success of Linear Classification Analysis. We study feature selection by thresholding of feature Z-scores and introduce a principle of threshold selection, based on the notion of higher criticism (HC). For i = 1, 2, ..., p, let pi(i) denote the two-sided P-value associated with the ith feature Z-score and pi((i)) denote the ith order statistic of the collection of P-values. The HC threshold is the absolute Z-score corresponding to the P-value maximizing the HC objective (i/p - pi((i)))/sqrt{i/p(1-i/p)}. We consider a rare/weak (RW) feature model, where the fraction of useful features is small and the useful features are each too weak to be of much use on their own. HC thresholding (HCT) has interesting behavior in this setting, with an intimate link between maximizing the HC objective and minimizing the error rate of the designed classifier, and very different behavior from popular threshold selection procedures such as false discovery rate thresholding (FDRT). In the most challenging RW settings, HCT uses an unconventionally low threshold; this keeps the missed-feature detection rate under better control than FDRT and yields a classifier with improved misclassification performance. Replacing cross-validated threshold selection in the popular Shrunken Centroid classifier with the computationally less expensive and simpler HCT reduces the variance of the selected threshold and the error rate of the constructed classifier. Results on standard real datasets and in asymptotic theory confirm the advantages of HCT.

  17. Higher criticism thresholding: Optimal feature selection when useful features are rare and weak

    PubMed Central

    Donoho, David; Jin, Jiashun

    2008-01-01

    In important application fields today—genomics and proteomics are examples—selecting a small subset of useful features is crucial for success of Linear Classification Analysis. We study feature selection by thresholding of feature Z-scores and introduce a principle of threshold selection, based on the notion of higher criticism (HC). For i = 1, 2, …, p, let πi denote the two-sided P-value associated with the ith feature Z-score and π(i) denote the ith order statistic of the collection of P-values. The HC threshold is the absolute Z-score corresponding to the P-value maximizing the HC objective (i/p − π(i))/i/p(1−i/p). We consider a rare/weak (RW) feature model, where the fraction of useful features is small and the useful features are each too weak to be of much use on their own. HC thresholding (HCT) has interesting behavior in this setting, with an intimate link between maximizing the HC objective and minimizing the error rate of the designed classifier, and very different behavior from popular threshold selection procedures such as false discovery rate thresholding (FDRT). In the most challenging RW settings, HCT uses an unconventionally low threshold; this keeps the missed-feature detection rate under better control than FDRT and yields a classifier with improved misclassification performance. Replacing cross-validated threshold selection in the popular Shrunken Centroid classifier with the computationally less expensive and simpler HCT reduces the variance of the selected threshold and the error rate of the constructed classifier. Results on standard real datasets and in asymptotic theory confirm the advantages of HCT. PMID:18815365

  18. Estimation of Signal Coherence Threshold and Concealed Spectral Lines Applied to Detection of Turbofan Engine Combustion Noise

    NASA Technical Reports Server (NTRS)

    Miles, Jeffrey Hilton

    2010-01-01

    Combustion noise from turbofan engines has become important, as the noise from sources like the fan and jet are reduced. An aligned and un-aligned coherence technique has been developed to determine a threshold level for the coherence and thereby help to separate the coherent combustion noise source from other noise sources measured with far-field microphones. This method is compared with a statistics based coherence threshold estimation method. In addition, the un-aligned coherence procedure at the same time also reveals periodicities, spectral lines, and undamped sinusoids hidden by broadband turbofan engine noise. In calculating the coherence threshold using a statistical method, one may use either the number of independent records or a larger number corresponding to the number of overlapped records used to create the average. Using data from a turbofan engine and a simulation this paper shows that applying the Fisher z-transform to the un-aligned coherence can aid in making the proper selection of samples and produce a reasonable statistics based coherence threshold. Examples are presented showing that the underlying tonal and coherent broad band structure which is buried under random broadband noise and jet noise can be determined. The method also shows the possible presence of indirect combustion noise. Copyright 2011 Acoustical Society of America. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the Acoustical Society of America.

  19. A comparison of accuracy of fall detection algorithms (threshold-based vs. machine learning) using waist-mounted tri-axial accelerometer signals from a comprehensive set of falls and non-fall trials.

    PubMed

    Aziz, Omar; Musngi, Magnus; Park, Edward J; Mori, Greg; Robinovitch, Stephen N

    2017-01-01

    Falls are the leading cause of injury-related morbidity and mortality among older adults. Over 90 % of hip and wrist fractures and 60 % of traumatic brain injuries in older adults are due to falls. Another serious consequence of falls among older adults is the 'long lie' experienced by individuals who are unable to get up and remain on the ground for an extended period of time after a fall. Considerable research has been conducted over the past decade on the design of wearable sensor systems that can automatically detect falls and send an alert to care providers to reduce the frequency and severity of long lies. While most systems described to date incorporate threshold-based algorithms, machine learning algorithms may offer increased accuracy in detecting falls. In the current study, we compared the accuracy of these two approaches in detecting falls by conducting a comprehensive set of falling experiments with 10 young participants. Participants wore waist-mounted tri-axial accelerometers and simulated the most common causes of falls observed in older adults, along with near-falls and activities of daily living. The overall performance of five machine learning algorithms was greater than the performance of five threshold-based algorithms described in the literature, with support vector machines providing the highest combination of sensitivity and specificity.

  20. V1 mechanisms underlying chromatic contrast detection

    PubMed Central

    Hass, Charles A.

    2013-01-01

    To elucidate the cortical mechanisms of color vision, we recorded from individual primary visual cortex (V1) neurons in macaque monkeys performing a chromatic detection task. Roughly 30% of the neurons that we encountered were unresponsive at the monkeys' psychophysical detection threshold (PT). The other 70% were responsive at threshold but on average, were slightly less sensitive than the monkey. For these neurons, the relationship between neurometric threshold (NT) and PT was consistent across the four isoluminant color directions tested. A corollary of this result is that NTs were roughly four times lower for stimuli that modulated the long- and middle-wavelength sensitive cones out of phase. Nearly one-half of the neurons that responded to chromatic stimuli at the monkeys' detection threshold also responded to high-contrast luminance modulations, suggesting a role for neurons that are jointly tuned to color and luminance in chromatic detection. Analysis of neuronal contrast-response functions and signal-to-noise ratios yielded no evidence for a special set of “cardinal color directions,” for which V1 neurons are particularly sensitive. We conclude that at detection threshold—as shown previously with high-contrast stimuli—V1 neurons are tuned for a diverse set of color directions and do not segregate naturally into red–green and blue–yellow categories. PMID:23446689

  1. Ultra-low threshold polariton condensation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steger, Mark; Fluegel, Brian; Alberi, Kirstin

    Here, we demonstrate the condensation of microcavity polaritons with a very sharp threshold occurring at a two orders of magnitude pump intensity lower than previous demonstrations of condensation. The long cavity lifetime and trapping and pumping geometries are crucial to the realization of this low threshold. Polariton condensation, or 'polariton lasing' has long been proposed as a promising source of coherent light at a lower threshold than traditional lasing, and these results indicate some considerations for optimizing designs for lower thresholds.

  2. Ultra-low threshold polariton condensation

    DOE PAGES

    Steger, Mark; Fluegel, Brian; Alberi, Kirstin; ...

    2017-03-13

    Here, we demonstrate the condensation of microcavity polaritons with a very sharp threshold occurring at a two orders of magnitude pump intensity lower than previous demonstrations of condensation. The long cavity lifetime and trapping and pumping geometries are crucial to the realization of this low threshold. Polariton condensation, or 'polariton lasing' has long been proposed as a promising source of coherent light at a lower threshold than traditional lasing, and these results indicate some considerations for optimizing designs for lower thresholds.

  3. Efficiency and Fidelity of Human DNA Polymerases λ and β during Gap-Filling DNA Synthesis

    PubMed Central

    Brown, Jessica A.; Pack, Lindsey R.; Sanman, Laura E.; Suo, Zucai

    2010-01-01

    The base excision repair (BER) pathway coordinates the replacement of 1 to 10 nucleotides at sites of single-base lesions. This process generates DNA substrates with various gap sizes which can alter the catalytic efficiency and fidelity of a DNA polymerase during gap-filling DNA synthesis. Here, we quantitatively determined the substrate specificity and base substitution fidelity of human DNA polymerase λ (Pol λ), an enzyme proposed to support the known BER DNA polymerase β (Pol β), as it filled 1- to 10-nucleotide gaps at 1-nucleotide intervals. Pol λ incorporated a correct nucleotide with relatively high efficiency until the gap size exceeded 9 nucleotides. Unlike Pol λ, Pol β did not have an absolute threshold on gap size as the catalytic efficiency for a correct dNTP gradually decreased as the gap size increased from 2 to 10 nucleotides and then recovered for non-gapped DNA. Surprisingly, an increase in gap size resulted in lower polymerase fidelity for Pol λ, and this downregulation of fidelity was controlled by its non-enzymatic N-terminal domains. Overall, Pol λ was up to 160-fold more error-prone than Pol β, thereby suggesting Pol λ would be more mutagenic during long gap-filling DNA synthesis. In addition, dCTP was the preferred misincorporation for Pol λ and its N-terminal domain truncation mutants. This nucleotide preference was shown to be dependent upon the identity of the adjacent 5′-template base. Our results suggested that both Pol λ and Pol β would catalyze nucleotide incorporation with the highest combination of efficiency and accuracy when the DNA substrate contains a single-nucleotide gap. Thus, Pol λ, like Pol β, is better suited to catalyze gap-filling DNA synthesis during short-patch BER in vivo, although, Pol λ may play a role in long-patch BER. PMID:20961817

  4. Integrating evolutionary game theory into an agent-based model of ductal carcinoma in situ: Role of gap junctions in cancer progression.

    PubMed

    Malekian, Negin; Habibi, Jafar; Zangooei, Mohammad Hossein; Aghakhani, Hojjat

    2016-11-01

    There are many cells with various phenotypic behaviors in cancer interacting with each other. For example, an apoptotic cell may induce apoptosis in adjacent cells. A living cell can also protect cells from undergoing apoptosis and necrosis. These survival and death signals are propagated through interaction pathways between adjacent cells called gap junctions. The function of these signals depends on the cellular context of the cell receiving them. For instance, a receiver cell experiencing a low level of oxygen may interpret a received survival signal as an apoptosis signal. In this study, we examine the effect of these signals on tumor growth. We make an evolutionary game theory component in order to model the signal propagation through gap junctions. The game payoffs are defined as a function of cellular context. Then, the game theory component is integrated into an agent-based model of tumor growth. After that, the integrated model is applied to ductal carcinoma in situ, a type of early stage breast cancer. Different scenarios are explored to observe the impact of the gap junction communication and parameters of the game theory component on cancer progression. We compare these scenarios by using the Wilcoxon signed-rank test. The Wilcoxon signed-rank test succeeds in proving a significant difference between the tumor growth of the model before and after considering the gap junction communication. The Wilcoxon signed-rank test also proves that the tumor growth significantly depends on the oxygen threshold of turning survival signals into apoptosis. In this study, the gap junction communication is modeled by using evolutionary game theory to illustrate its role at early stage cancers such as ductal carcinoma in situ. This work indicates that the gap junction communication and the oxygen threshold of turning survival signals into apoptosis can notably affect cancer progression. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Near-threshold equal-loudness contours for harbor seals (Phoca vitulina) derived from reaction times during underwater audiometry: a preliminary study.

    PubMed

    Kastelein, Ronald A; Wensveen, Paul J; Terhune, John M; de Jong, Christ A F

    2011-01-01

    Equal-loudness functions describe relationships between the frequencies of sounds and their perceived loudness. This pilot study investigated the possibility of deriving equal-loudness contours based on the assumption that sounds of equal perceived loudness elicit equal reaction times (RTs). During a psychoacoustic underwater hearing study, the responses of two young female harbor seals to tonal signals between 0.125 and 100 kHz were filmed. Frame-by-frame analysis was used to quantify RT (the time between the onset of the sound stimulus and the onset of movement of the seal away from the listening station). Near-threshold equal-latency contours, as surrogates for equal-loudness contours, were estimated from RT-level functions fitted to mean RT data. The closer the received sound pressure level was to the 50% detection hearing threshold, the more slowly the animals reacted to the signal (RT range: 188-982 ms). Equal-latency contours were calculated relative to the RTs shown by each seal at sound levels of 0, 10, and 20 dB above the detection threshold at 1 kHz. Fifty percent detection thresholds are obtained with well-trained subjects actively listening for faint familiar sounds. When calculating audibility ranges of sounds for harbor seals in nature, it may be appropriate to consider levels 20 dB above this threshold.

  6. Noise-induced tinnitus using individualized gap detection analysis and its relationship with hyperacusis, anxiety, and spatial cognition.

    PubMed

    Pace, Edward; Zhang, Jinsheng

    2013-01-01

    Tinnitus has a complex etiology that involves auditory and non-auditory factors and may be accompanied by hyperacusis, anxiety and cognitive changes. Thus far, investigations of the interrelationship between tinnitus and auditory and non-auditory impairment have yielded conflicting results. To further address this issue, we noise exposed rats and assessed them for tinnitus using a gap detection behavioral paradigm combined with statistically-driven analysis to diagnose tinnitus in individual rats. We also tested rats for hearing detection, responsivity, and loss using prepulse inhibition and auditory brainstem response, and for spatial cognition and anxiety using Morris water maze and elevated plus maze. We found that our tinnitus diagnosis method reliably separated noise-exposed rats into tinnitus((+)) and tinnitus((-)) groups and detected no evidence of tinnitus in tinnitus((-)) and control rats. In addition, the tinnitus((+)) group demonstrated enhanced startle amplitude, indicating hyperacusis-like behavior. Despite these results, neither tinnitus, hyperacusis nor hearing loss yielded any significant effects on spatial learning and memory or anxiety, though a majority of rats with the highest anxiety levels had tinnitus. These findings showed that we were able to develop a clinically relevant tinnitus((+)) group and that our diagnosis method is sound. At the same time, like clinical studies, we found that tinnitus does not always result in cognitive-emotional dysfunction, although tinnitus may predispose subjects to certain impairment like anxiety. Other behavioral assessments may be needed to further define the relationship between tinnitus and anxiety, cognitive deficits, and other impairments.

  7. Torque-onset determination: Unintended consequences of the threshold method.

    PubMed

    Dotan, Raffy; Jenkins, Glenn; O'Brien, Thomas D; Hansen, Steve; Falk, Bareket

    2016-12-01

    Compared with visual torque-onset-detection (TOD), threshold-based TOD produces onset bias, which increases with lower torques or rates of torque development (RTD). To compare the effects of differential TOD-bias on common contractile parameters in two torque-disparate groups. Fifteen boys and 12 men performed maximal, explosive, isometric knee-extensions. Torque and EMG were recorded for each contraction. Best contractions were selected by peak torque (MVC) and peak RTD. Visual-TOD-based torque-time traces, electromechanical delays (EMD), and times to peak RTD (tRTD) were compared with corresponding data derived from fixed 4-Nm- and relative 5%MVC-thresholds. The 5%MVC TOD-biases were similar for boys and men, but the corresponding 4-Nm-based biases were markedly different (40.3±14.1 vs. 18.4±7.1ms, respectively; p<0.001). Boys-men EMD differences were most affected, increasing from 5.0ms (visual) to 26.9ms (4Nm; p<0.01). Men's visually-based torque kinetics tended to be faster than the boys' (NS), but the 4-Nm-based kinetics erroneously depicted the boys as being much faster to any given %MVC (p<0.001). When comparing contractile properties of dissimilar groups, e.g., children vs. adults, threshold-based TOD methods can misrepresent reality and lead to erroneous conclusions. Relative-thresholds (e.g., 5% MVC) still introduce error, but group-comparisons are not confounded. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. GapFiller: a de novo assembly approach to fill the gap within paired reads

    PubMed Central

    2012-01-01

    Background Next Generation Sequencing technologies are able to provide high genome coverages at a relatively low cost. However, due to limited reads' length (from 30 bp up to 200 bp), specific bioinformatics problems have become even more difficult to solve. De novo assembly with short reads, for example, is more complicated at least for two reasons: first, the overall amount of "noisy" data to cope with increased and, second, as the reads' length decreases the number of unsolvable repeats grows. Our work's aim is to go at the root of the problem by providing a pre-processing tool capable to produce (in-silico) longer and highly accurate sequences from a collection of Next Generation Sequencing reads. Results In this paper a seed-and-extend local assembler is presented. The kernel algorithm is a loop that, starting from a read used as seed, keeps extending it using heuristics whose main goal is to produce a collection of error-free and longer sequences. In particular, GapFiller carefully detects reliable overlaps and operates clustering similar reads in order to reconstruct the missing part between the two ends of the same insert. Our tool's output has been validated on 24 experiments using both simulated and real paired reads datasets. The output sequences are declared correct when the seed-mate is found. In the experiments performed, GapFiller was able to extend high percentages of the processed seeds and find their mates, with a false positives rate that turned out to be nearly negligible. Conclusions GapFiller, starting from a sufficiently high short reads coverage, is able to produce high coverages of accurate longer sequences (from 300 bp up to 3500 bp). The procedure to perform safe extensions, together with the mate-found check, turned out to be a powerful criterion to guarantee contigs' correctness. GapFiller has further potential, as it could be applied in a number of different scenarios, including the post-processing validation of insertions

  9. Vehicle tracking using fuzzy-based vehicle detection window with adaptive parameters

    NASA Astrophysics Data System (ADS)

    Chitsobhuk, Orachat; Kasemsiri, Watjanapong; Glomglome, Sorayut; Lapamonpinyo, Pipatphon

    2018-04-01

    In this paper, fuzzy-based vehicle tracking system is proposed. The proposed system consists of two main processes: vehicle detection and vehicle tracking. In the first process, the Gradient-based Adaptive Threshold Estimation (GATE) algorithm is adopted to provide the suitable threshold value for the sobel edge detection. The estimated threshold can be adapted to the changes of diverse illumination conditions throughout the day. This leads to greater vehicle detection performance compared to a fixed user's defined threshold. In the second process, this paper proposes the novel vehicle tracking algorithms namely Fuzzy-based Vehicle Analysis (FBA) in order to reduce the false estimation of the vehicle tracking caused by uneven edges of the large vehicles and vehicle changing lanes. The proposed FBA algorithm employs the average edge density and the Horizontal Moving Edge Detection (HMED) algorithm to alleviate those problems by adopting fuzzy rule-based algorithms to rectify the vehicle tracking. The experimental results demonstrate that the proposed system provides the high accuracy of vehicle detection about 98.22%. In addition, it also offers the low false detection rates about 3.92%.

  10. Bounds of cavitation inception in a creeping flow between eccentric cylinders rotating with a small minimum gap

    NASA Astrophysics Data System (ADS)

    Monakhov, A. A.; Chernyavski, V. M.; Shtemler, Yu.

    2013-09-01

    Bounds of cavitation inception are experimentally determined in a creeping flow between eccentric cylinders, the inner one being static and the outer rotating at a constant angular velocity, Ω. The geometric configuration is additionally specified by a small minimum gap between cylinders, H, as compared with the radii of the inner and outer cylinders. For some values H and Ω, cavitation bubbles are observed, which are collected on the surface of the inner cylinder and equally distributed over the line parallel to its axis near the downstream minimum gap position. Cavitation occurs for the parameters {H,Ω} within a region bounded on the right by the cavitation inception curve that passes through the plane origin and cannot exceed the asymptotic threshold value of the minimum gap, Ha, in whose vicinity cavitation may occur at H < Ha only for high angular rotation velocities.

  11. The Dynamics and Implications of Gap Clearing via Planets in Planetesimal (Debris) Disks

    NASA Astrophysics Data System (ADS)

    Morrison, Sarah Jane

    Exoplanets and debris disks are examples of solar systems other than our own. As the dusty reservoirs of colliding planetesimals, debris disks provide indicators of planetary system evolution on orbital distance scales beyond those probed by the most prolific exoplanet detection methods, and on timescales 10 r to 10 Gyr. The Solar System possesses both planets and small bodies, and through studying the gravitational interactions between both, we gain insight into the Solar System's past. As we enter the era of resolved observations of debris disks residing around other stars, I add to our theoretical understanding of the dynamical interactions between debris, planets, and combinations thereof. I quantify how single planets clear material in their vicinity and how long this process takes for the entire planetary mass regime. I use these relationships to assess the lowest mass planet that could clear a gap in observed debris disks over the system's lifetime. In the distant outer reaches of gaps in young debris systems, this minimum planet mass can exceed Neptune's. To complement the discoveries of wide-orbit, massive, exoplanets by direct imaging surveys, I assess the dynamical stability of high mass multi-planet systems to estimate how many high mass planets could be packed into young, gapped debris disks. I compare these expectations to the planet detection rates of direct imaging surveys and find that high mass planets are not the primary culprits for forming gaps in young debris disk systems. As an alternative model for forming gaps in planetesimal disks with planets, I assess the efficacy of creating gaps with divergently migrating pairs of planets. I find that migrating planets could produce observed gaps and elude detection. Moreover, the inferred planet masses when neglecting migration for such gaps could be expected to be observable by direct imaging surveys for young, nearby systems. Wide gaps in young systems would likely still require more than two

  12. Threshold regression to accommodate a censored covariate.

    PubMed

    Qian, Jing; Chiou, Sy Han; Maye, Jacqueline E; Atem, Folefac; Johnson, Keith A; Betensky, Rebecca A

    2018-06-22

    In several common study designs, regression modeling is complicated by the presence of censored covariates. Examples of such covariates include maternal age of onset of dementia that may be right censored in an Alzheimer's amyloid imaging study of healthy subjects, metabolite measurements that are subject to limit of detection censoring in a case-control study of cardiovascular disease, and progressive biomarkers whose baseline values are of interest, but are measured post-baseline in longitudinal neuropsychological studies of Alzheimer's disease. We propose threshold regression approaches for linear regression models with a covariate that is subject to random censoring. Threshold regression methods allow for immediate testing of the significance of the effect of a censored covariate. In addition, they provide for unbiased estimation of the regression coefficient of the censored covariate. We derive the asymptotic properties of the resulting estimators under mild regularity conditions. Simulations demonstrate that the proposed estimators have good finite-sample performance, and often offer improved efficiency over existing methods. We also derive a principled method for selection of the threshold. We illustrate the approach in application to an Alzheimer's disease study that investigated brain amyloid levels in older individuals, as measured through positron emission tomography scans, as a function of maternal age of dementia onset, with adjustment for other covariates. We have developed an R package, censCov, for implementation of our method, available at CRAN. © 2018, The International Biometric Society.

  13. Universal phase transition in community detectability under a stochastic block model.

    PubMed

    Chen, Pin-Yu; Hero, Alfred O

    2015-03-01

    We prove the existence of an asymptotic phase-transition threshold on community detectability for the spectral modularity method [M. E. J. Newman, Phys. Rev. E 74, 036104 (2006) and Proc. Natl. Acad. Sci. (USA) 103, 8577 (2006)] under a stochastic block model. The phase transition on community detectability occurs as the intercommunity edge connection probability p grows. This phase transition separates a subcritical regime of small p, where modularity-based community detection successfully identifies the communities, from a supercritical regime of large p where successful community detection is impossible. We show that, as the community sizes become large, the asymptotic phase-transition threshold p* is equal to √[p1p2], where pi(i=1,2) is the within-community edge connection probability. Thus the phase-transition threshold is universal in the sense that it does not depend on the ratio of community sizes. The universal phase-transition phenomenon is validated by simulations for moderately sized communities. Using the derived expression for the phase-transition threshold, we propose an empirical method for estimating this threshold from real-world data.

  14. Taste detection and recognition thresholds in Japanese patients with Alzheimer-type dementia.

    PubMed

    Ogawa, Takao; Irikawa, Naoya; Yanagisawa, Daijiro; Shiino, Akihiko; Tooyama, Ikuo; Shimizu, Takeshi

    2017-04-01

    Alzheimer-type dementia (AD) is pathologically characterized by massive neuronal loss in the brain, and the taste cortex is thought to be affected. However, there are only a few reports regarding the gustatory function of AD patients, and the conclusions of this research are inconsistent. This prospective study enrolled 22 consecutive patients with mild to moderately severe Alzheimer-type dementia (AD) with mean age of 84.0 years, and 49 elderly volunteers without dementia with mean age of 71.0 years as control subjects. The control subjects were divided into two groups according to age: a younger group (N=28, mean age: 68.5) and an older group (N=21, mean age: 83.0). The gustatory function was investigated using the filter paper disc method (FPD) and electrogustometry (EGM). The gustatory function as measured by the FPD was significantly impaired in patients with AD as compared with age-matched control subjects; no such difference was found between the younger and the older control groups. On the other hand, as for the EGM thresholds, there were no differences between the AD patient group and the age-matched controls. The FPD method demonstrated decreased gustatory function in AD patients beyond that of aging. On the other hand, EGM thresholds did not differ between the AD patient group and the age-matched controls. These results suggest that failure of taste processing in the brain, but not taste transmission in the peripheral taste system, occurs in patients with AD. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Lane change warning threshold based on driver perception characteristics.

    PubMed

    Wang, Chang; Sun, Qinyu; Fu, Rui; Li, Zhen; Zhang, Qiong

    2018-08-01

    Lane Change Warning system (LCW) is exploited to alleviate driver workload and improve the safety performance of lane changes. Depending on the secure threshold, the lane change warning system could transmit caution to drivers. Although the system possesses substantial benefits, it may perturb the conventional operating of the driver and affect driver judgment if the warning threshold does not conform to the driver perception of safety. Therefore, it is essential to establish an appropriate warning threshold to enhance the accuracy rate and acceptability of the lane change warning system. This research aims to identify the threshold that conforms to the driver perception of the ability to safely change lanes with a rear vehicle fast approaching. We propose a theoretical warning model of lane change based on a safe minimum distance and deceleration of the rear vehicle. For the purpose of acquiring the different safety levels of lane changes, 30 licensed drivers are recruited and we obtain the extreme moments represented by driver perception characteristics from a Front Extremity Test and a Rear Extremity Test implemented on the freeway. The required deceleration of the rear vehicle corresponding to the extreme time is calculated according to the proposed model. In light of discrepancies in the deceleration in these extremity experiments, we determine two levels of a hierarchical warning system. The purpose of the primary warning is to remind drivers of the existence of potentially dangerous vehicles and the second warning is used to warn the driver to stop changing lanes immediately. We use the signal detection theory to analyze the data. Ultimately, we confirm that the first deceleration threshold is 1.5 m/s 2 and the second deceleration threshold is 2.7 m/s 2 . The findings provide the basis for the algorithm design of LCW and enhance the acceptability of the intelligent system. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Bayesian estimation of dose thresholds

    NASA Technical Reports Server (NTRS)

    Groer, P. G.; Carnes, B. A.

    2003-01-01

    An example is described of Bayesian estimation of radiation absorbed dose thresholds (subsequently simply referred to as dose thresholds) using a specific parametric model applied to a data set on mice exposed to 60Co gamma rays and fission neutrons. A Weibull based relative risk model with a dose threshold parameter was used to analyse, as an example, lung cancer mortality and determine the posterior density for the threshold dose after single exposures to 60Co gamma rays or fission neutrons from the JANUS reactor at Argonne National Laboratory. The data consisted of survival, censoring times and cause of death information for male B6CF1 unexposed and exposed mice. The 60Co gamma whole-body doses for the two exposed groups were 0.86 and 1.37 Gy. The neutron whole-body doses were 0.19 and 0.38 Gy. Marginal posterior densities for the dose thresholds for neutron and gamma radiation were calculated with numerical integration and found to have quite different shapes. The density of the threshold for 60Co is unimodal with a mode at about 0.50 Gy. The threshold density for fission neutrons declines monotonically from a maximum value at zero with increasing doses. The posterior densities for all other parameters were similar for the two radiation types.

  17. Nodal gap detection through polar angle-resolved density of states measurements in uniaxial superconductors

    NASA Astrophysics Data System (ADS)

    Tsutsumi, Yasumasa; Nomoto, Takuya; Ikeda, Hiroaki; Machida, Kazushige

    2016-12-01

    We propose a spectroscopic method to identify the nodal gap structure in unconventional superconductors. This method is best suited for locating the horizontal line node and for pinpointing the isolated point nodes by measuring polar angle (θ ) resolved zero-energy density of states N (θ ) . This is measured by specific heat or thermal conductivity at low temperatures under a magnetic field. We examine a variety of uniaxially symmetric nodal structures, including point and/or line nodes with linear and quadratic dispersions, by solving the Eilenberger equation in vortex states. It is found that (a) the maxima of N (θ ) continuously shift from the antinodal to the nodal direction (θn) as a field increases accompanying the oscillation pattern reversal at low and high fields. Furthermore, (b) local minima emerge next to θn on both sides, except for the case of the linear point node. These features are robust and detectable experimentally. Experimental results of N (θ ) performed on several superconductors, UPd2Al3,URu2Si2,CuxBi2Se3 , and UPt3, are examined and commented on in light of the present theory.

  18. Benefits of Stimulus Exposure: Developmental Learning Independent of Task Performance

    PubMed Central

    Green, David B.; Ohlemacher, Jocelyn; Rosen, Merri J.

    2016-01-01

    Perceptual learning (training-induced performance improvement) can be elicited by task-irrelevant stimulus exposure in humans. In contrast, task-irrelevant stimulus exposure in animals typically disrupts perception in juveniles while causing little to no effect in adults. This may be due to the extent of exposure, which is brief in humans while chronic in animals. Here we assessed the effects of short bouts of passive stimulus exposure on learning during development in gerbils, compared with non-passive stimulus exposure (i.e., during testing). We used prepulse inhibition of the acoustic startle response, a method that can be applied at any age, to measure gap detection thresholds across four age groups, spanning development. First, we showed that both gap detection thresholds and gap detection learning across sessions displayed a long developmental trajectory, improving throughout the juvenile period. Additionally, we demonstrated larger within- and across-animal performance variability in younger animals. These results are generally consistent with results in humans, where there are extended developmental trajectories for both the perception of temporally-varying signals, and the effects of perceptual training, as well as increased variability and poorer performance consistency in children. We then chose an age (mid-juveniles) that displayed clear learning over sessions in order to assess effects of brief passive stimulus exposure on this learning. We compared learning in mid-juveniles exposed to either gap detection testing (gaps paired with startles) or equivalent gap exposure without testing (gaps alone) for three sessions. Learning was equivalent in both these groups and better than both naïve age-matched animals and controls receiving no gap exposure but only startle testing. Thus, short bouts of exposure to gaps independent of task performance is sufficient to induce learning at this age, and is as effective as gap detection testing. PMID:27378837

  19. Antideuteron based dark matter search with GAPS: Current progress and future prospects

    NASA Astrophysics Data System (ADS)

    Hailey, C. J.; Aramaki, T.; Boggs, S. E.; Doetinchem, P. v.; Fuke, H.; Gahbauer, F.; Koglin, J. E.; Madden, N.; Mognet, S. A. I.; Ong, R.; Yoshida, T.; Zhang, T.; Zweerink, J. A.

    2013-01-01

    The General Antiparticle Spectrometer (GAPS) is a new approach to the indirect detection of dark matter. It relies on searching for primary antideuterons produced in the annihilation of dark matter in the galactic halo. Low energy antideuterons produced through Standard Model processes, such as collisions of cosmic-rays with interstellar baryons, are greatly suppressed compared to primary antideuterons. Thus a low energy antideuteron search provides a clean signature of dark matter. In GAPS antiparticles are slowed down and captured in target atoms. The resultant exotic atom deexcites with the emission of X-rays and annihilation pions, protons and other particles. A tracking geometry allows for the detection of the X-rays and particles, providing a unique signature to identify the mass of the antiparticle. A prototype detector was successfully tested at the KEK accelerator in 2005, and a prototype GAPS balloon flight is scheduled for 2011. This will be followed by a full scale experiment on a long duration balloon from Antarctica in 2014. We discuss the status and future plans for GAPS.

  20. Passive Gas-Gap Heat Switches for Use in Low-Temperature Cryogenic Systems

    NASA Technical Reports Server (NTRS)

    Kimball, M. O.; Shirron, P. J.; Canavan, E. R.; Tuttle, J. G.; Jahromi, A. E.; Dipirro, M. J.; James, B. L.; Sampson, M. A.; Letmate, R. V.

    2017-01-01

    We present the current state of development in passive gas-gap heat switches. This type of switch does not require a separate heater to activate heat transfer but, instead, relies upon the warming of one end due to an intrinsic step in a thermodynamic cycle to raise a getter above a threshold temperature. Above this temperature sequestered gas is released to couple both sides of the switch. This enhances the thermodynamic efficiency of the system and reduces the complexity of the control system. Various gas mixtures and getter configurations will be presented.