Sample records for gap energy increased

  1. Tuning the Energy Gap of SiCH3 Nanomaterials Under Elastic Strain

    NASA Astrophysics Data System (ADS)

    Ma, Shengqian; Li, Feng; Geng, Jiguo; Zhu, Mei; Li, Suyan; Han, Juguang

    2018-05-01

    SiCH3 nanomaterials have been studied using the density functional theory. When the nanosheets and nanoribbons (armchair and zigzag) are introduced, their energy gap is modulated under elastic strain and width. The results show that the band gap of SiCH3 nanomaterials can be easily tuned using elastic strains and widths. Surprisingly, the band gap can be modulated along two directions, namely, compressing and stretching. The band gap decreases when increasing stretching strain or decreasing compressing strain. In addition, the band gap decreases when increasing the nanoribbon width. For energy gap engineering, the band gap can be tuned by strains and widths. Therefore, the SiCH3 nanomaterials play important roles in potential applications for strain sensors, electronics, and optical electronics.

  2. Density-functional energy gaps of solids demystified

    NASA Astrophysics Data System (ADS)

    Perdew, John P.; Ruzsinszky, Adrienn

    2018-06-01

    The fundamental energy gap of a solid is a ground-state second energy difference. Can one find the fundamental gap from the gap in the band structure of Kohn-Sham density functional theory? An argument of Williams and von Barth (WB), 1983, suggests that one can. In fact, self-consistent band-structure calculations within the local density approximation or the generalized gradient approximation (GGA) yield the fundamental gap within the same approximation for the energy. Such a calculation with the exact density functional would yield a band gap that also underestimates the fundamental gap, because the exact Kohn-Sham potential in a solid jumps up by an additive constant when one electron is added, and the WB argument does not take this effect into account. The WB argument has been extended recently to generalized Kohn-Sham theory, the simplest way to implement meta-GGAs and hybrid functionals self-consistently, with an exchange-correlation potential that is a non-multiplication operator. Since this operator is continuous, the band gap is again the fundamental gap within the same approximation, but, because the approximations are more realistic, so is the band gap. What approximations might be even more realistic?

  3. Closing the energy gap through passive energy expenditure

    USDA-ARS?s Scientific Manuscript database

    Development of obesity is a gradual process occurring when daily energy intake persistently exceeds energy expenditure (EE). Typical daily weight gain is attributed to an energy gap or excess of stored energy of 15 to 50 kcal/day. Sedentary jobs likely promote weight gain. Standing may be a passive ...

  4. Energy loss in spark gap switches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oreshkin, V. I., E-mail: oreshkin@ovpe.hcei.tsc.ru; Lavrinovich, I. V.; National Research Tomsk Polytechnic University, Lenin Avenue 30, 634050 Tomsk

    2014-04-15

    The paper reports on numerical study of the energy loss in spark gap switches. The operation of the switches is analyzed using the Braginsky model which allows calculation of the time dependence of the spark channel resistance. The Braginsky equation is solved simultaneously with generator circuit equations for different load types. Based on the numerical solutions, expressions which determine both the energy released in a spark gap switch and the switching time are derived.

  5. Energy band gap and optical transition of metal ion modified double crossover DNA lattices.

    PubMed

    Dugasani, Sreekantha Reddy; Ha, Taewoo; Gnapareddy, Bramaramba; Choi, Kyujin; Lee, Junwye; Kim, Byeonghoon; Kim, Jae Hoon; Park, Sung Ha

    2014-10-22

    We report on the energy band gap and optical transition of a series of divalent metal ion (Cu(2+), Ni(2+), Zn(2+), and Co(2+)) modified DNA (M-DNA) double crossover (DX) lattices fabricated on fused silica by the substrate-assisted growth (SAG) method. We demonstrate how the degree of coverage of the DX lattices is influenced by the DX monomer concentration and also analyze the band gaps of the M-DNA lattices. The energy band gap of the M-DNA, between the lowest unoccupied molecular orbital (LUMO) and the highest occupied molecular orbital (HOMO), ranges from 4.67 to 4.98 eV as judged by optical transitions. Relative to the band gap of a pristine DNA molecule (4.69 eV), the band gap of the M-DNA lattices increases with metal ion doping up to a critical concentration and then decreases with further doping. Interestingly, except for the case of Ni(2+), the onset of the second absorption band shifts to a lower energy until a critical concentration and then shifts to a higher energy with further increasing the metal ion concentration, which is consistent with the evolution of electrical transport characteristics. Our results show that controllable metal ion doping is an effective method to tune the band gap energy of DNA-based nanostructures.

  6. Optical absorption spectra and energy band gap in manganese containing sodium zinc phosphate glasses

    NASA Astrophysics Data System (ADS)

    Sardarpasha, K. R.; Hanumantharaju, N.; Gowda, V. C. Veeranna

    2018-05-01

    Optical band gap energy in the system 25Na2O-(75-x)[0.6P2O5-0.4ZnO]-xMnO2 (where x = 0.5,1,5,10 and 20 mol.%) have been studied. The intensity of the absorption band found to increase with increase of MnO2 content. The decrease in the optical band gap energy with increase in MnO2 content in the investigated glasses is attributed to shifting of absorption edge to a longer wavelength region. The obtained results were discussed in view of the structure of phosphate glass network.

  7. Quasiparticle Energies and Band Gaps in Graphene Nanoribbons

    NASA Astrophysics Data System (ADS)

    Yang, Li; Park, Cheol-Hwan; Son, Young-Woo; Cohen, Marvin L.; Louie, Steven G.

    2007-11-01

    We present calculations of the quasiparticle energies and band gaps of graphene nanoribbons (GNRs) carried out using a first-principles many-electron Green’s function approach within the GW approximation. Because of the quasi-one-dimensional nature of a GNR, electron-electron interaction effects due to the enhanced screened Coulomb interaction and confinement geometry greatly influence the quasiparticle band gap. Compared with previous tight-binding and density functional theory studies, our calculated quasiparticle band gaps show significant self-energy corrections for both armchair and zigzag GNRs, in the range of 0.5 3.0 eV for ribbons of width 2.4 0.4 nm. The quasiparticle band gaps found here suggest that use of GNRs for electronic device components in ambient conditions may be viable.

  8. Energy Gap in the Aetiology of Body Weight Gain and Obesity: A Challenging Concept with a Complex Evaluation and Pitfalls

    PubMed Central

    Schutz, Yves; Byrne, Nuala M.; Dulloo, Abdul; Hills, Andrew P.

    2014-01-01

    The concept of energy gap(s) is useful for understanding the consequence of a small daily, weekly, or monthly positive energy balance and the inconspicuous shift in weight gain ultimately leading to overweight and obesity. Energy gap is a dynamic concept: an initial positive energy gap incurred via an increase in energy intake (or a decrease in physical activity) is not constant, may fade out with time if the initial conditions are maintained, and depends on the ‘efficiency’ with which the readjustment of the energy imbalance gap occurs with time. The metabolic response to an energy imbalance gap and the magnitude of the energy gap(s) can be estimated by at least two methods, i.e. i) assessment by longitudinal overfeeding studies, imposing (by design) an initial positive energy imbalance gap; ii) retrospective assessment based on epidemiological surveys, whereby the accumulated endogenous energy storage per unit of time is calculated from the change in body weight and body composition. In order to illustrate the difficulty of accurately assessing an energy gap we have used, as an illustrative example, a recent epidemiological study which tracked changes in total energy intake (estimated by gross food availability) and body weight over 3 decades in the US, combined with total energy expenditure prediction from body weight using doubly labelled water data. At the population level, the study attempted to assess the cause of the energy gap purported to be entirely due to increased food intake. Based on an estimate of change in energy intake judged to be more reliable (i.e. in the same study population) and together with calculations of simple energetic indices, our analysis suggests that conclusions about the fundamental causes of obesity development in a population (excess intake vs. low physical activity or both) is clouded by a high level of uncertainty. PMID:24457473

  9. Energy gap in the aetiology of body weight gain and obesity: a challenging concept with a complex evaluation and pitfalls.

    PubMed

    Schutz, Yves; Byrne, Nuala M; Dulloo, Abdul; Hills, Andrew P

    2014-01-01

    The concept of energy gap(s) is useful for understanding the consequence of a small daily, weekly, or monthly positive energy balance and the inconspicuous shift in weight gain ultimately leading to overweight and obesity. Energy gap is a dynamic concept: an initial positive energy gap incurred via an increase in energy intake (or a decrease in physical activity) is not constant, may fade out with time if the initial conditions are maintained, and depends on the 'efficiency' with which the readjustment of the energy imbalance gap occurs with time. The metabolic response to an energy imbalance gap and the magnitude of the energy gap(s) can be estimated by at least two methods, i.e. i) assessment by longitudinal overfeeding studies, imposing (by design) an initial positive energy imbalance gap; ii) retrospective assessment based on epidemiological surveys, whereby the accumulated endogenous energy storage per unit of time is calculated from the change in body weight and body composition. In order to illustrate the difficulty of accurately assessing an energy gap we have used, as an illustrative example, a recent epidemiological study which tracked changes in total energy intake (estimated by gross food availability) and body weight over 3 decades in the US, combined with total energy expenditure prediction from body weight using doubly labelled water data. At the population level, the study attempted to assess the cause of the energy gap purported to be entirely due to increased food intake. Based on an estimate of change in energy intake judged to be more reliable (i.e. in the same study population) and together with calculations of simple energetic indices, our analysis suggests that conclusions about the fundamental causes of obesity development in a population (excess intake vs. low physical activity or both) is clouded by a high level of uncertainty. © 2014 S. Karger GmbH, Freiburg.

  10. Tensile-strain effect of inducing the indirect-to-direct band-gap transition and reducing the band-gap energy of Ge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inaoka, Takeshi, E-mail: inaoka@phys.u-ryukyu.ac.jp; Furukawa, Takuro; Toma, Ryo

    By means of a hybrid density-functional method, we investigate the tensile-strain effect of inducing the indirect-to-direct band-gap transition and reducing the band-gap energy of Ge. We consider [001], [111], and [110] uniaxial tensility and (001), (111), and (110) biaxial tensility. Under the condition of no normal stress, we determine both normal compression and internal strain, namely, relative displacement of two atoms in the primitive unit cell, by minimizing the total energy. We identify those strain types which can induce the band-gap transition, and evaluate the critical strain coefficient where the gap transition occurs. Either normal compression or internal strain operatesmore » unfavorably to induce the gap transition, which raises the critical strain coefficient or even blocks the transition. We also examine how each type of tensile strain decreases the band-gap energy, depending on its orientation. Our analysis clearly shows that synergistic operation of strain orientation and band anisotropy has a great influence on the gap transition and the gap energy.« less

  11. Reaching the healthy people goals for reducing childhood obesity: closing the energy gap.

    PubMed

    Wang, Y Claire; Orleans, C Tracy; Gortmaker, Steven L

    2012-05-01

    The federal government has set measurable goals for reducing childhood obesity to 5% by 2010 (Healthy People 2010), and 10% lower than 2005-2008 levels by 2020 (Healthy People 2020). However, population-level estimates of the changes in daily energy balance needed to reach these goals are lacking. To estimate needed per capita reductions in youths' daily "energy gap" (calories consumed over calories expended) to achieve Healthy People goals by 2020. Analyses were conducted in 2010 to fit multivariate models using National Health and Nutrition Examination Surveys 1971-2008 (N=46,164) to extrapolate past trends in obesity prevalence, weight, and BMI among youth aged 2-19 years. Differences in average daily energy requirements between the extrapolated 2020 levels and Healthy People scenarios were estimated. During 1971-2008, mean BMI and weight among U.S. youth increased by 0.55 kg/m(2) and by 1.54 kg per decade, respectively. Extrapolating from these trends to 2020, the average weight among youth in 2020 would increase by ∼1.8 kg from 2007-2008 levels. Averting this increase will require an average reduction of 41 kcal/day in youth's daily energy gap. An additional reduction of 120 kcal/day and 23 kcal/day would be needed to reach Healthy People 2010 and Healthy People 2020 goals, respectively. Larger reductions are needed among adolescents and racial/ethnic minority youth. Aggressive efforts are needed to reverse the positive energy imbalance underlying the childhood obesity epidemic. The energy-gap metric provides a useful tool for goal setting, intervention planning, and charting progress. Copyright © 2012 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  12. Public perceptions and information gaps in solar energy in Texas

    NASA Astrophysics Data System (ADS)

    Rai, Varun; Beck, Ariane L.

    2015-07-01

    Studying the behavioral aspects of the individual decision-making process is important in identifying and addressing barriers in the adoption of residential solar photovoltaic (PV). However, there is little systematic research focusing on these aspects of residential PV in Texas, an important, large, populous state, with a range of challenges in the electricity sector including increasing demand, shrinking reserve margins, constrained water supply, and challenging emissions reduction targets under proposed federal regulations. This paper aims to address this gap through an empirical investigation of a new survey-based dataset collected in Texas on solar energy perceptions and behavior. The results of this analysis offer insights into the perceptions and motivations influencing intentions and behavior toward solar energy in a relatively untapped market and help identify information gaps that could be targeted to alleviate key barriers to adopting solar, thereby enabling significant emissions reductions in the residential sector in Texas.

  13. Spectral Gap Energy Transfer in Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Bhushan, S.; Walters, K.; Barros, A. P.; Nogueira, M.

    2012-12-01

    Experimental measurements of atmospheric turbulence energy spectra show E(k) ~ k-3 slopes at synoptic scales (~ 600 km - 2000 km) and k-5/3 slopes at the mesoscales (< 400 km). The -5/3 spectra is presumably related to 3D turbulence which is dominated by the classical Kolmogrov energy cascade. The -3 spectra is related to 2D turbulence, which is dominated by strong forward scatter of enstrophy and weak forward scatter of energy. In classical 2D turbulence theory, it is expected that a strong backward energy cascade would develop at the synoptic scale, and that circulation would grow infinitely. To limit this backward transfer, energy arrest at macroscales must be introduced. The most commonly used turbulence models developed to mimic the above energy transfer include the energy backscatter model for 2D turbulence in the horizontal plane via Large Eddy Simulation (LES) models, dissipative URANS models in the vertical plane, and Ekman friction for the energy arrest. One of the controversial issues surrounding the atmospheric turbulence spectra is the explanation of the generation of the 2D and 3D spectra and transition between them, for energy injection at the synoptic scales. Lilly (1989) proposed that the existence of 2D and 3D spectra can only be explained by the presence of an additional energy injection in the meso-scale region. A second issue is related to the observations of dual peak spectra with small variance in meso-scale, suggesting that the energy transfer occurs across a spectral gap (Van Der Hoven, 1957). Several studies have confirmed the spectral gap for the meso-scale circulations, and have suggested that they are enhanced by smaller scale vertical convection rather than by the synoptic scales. Further, the widely accepted energy arrest mechanism by boundary layer friction is closely related to the spectral gap transfer. This study proposes an energy transfer mechanism for atmospheric turbulence with synoptic scale injection, wherein the generation

  14. Pressure-Induced Structural Transition and Enhancement of Energy Gap of CuAlO2

    NASA Astrophysics Data System (ADS)

    Nakanishi, Akitaka

    2011-02-01

    By using first-principles calculations, we studied the stable crystal structures and energy gaps of CuAlO2 under high pressure. Our simulation shows that CuAlO2 transforms from a delafossite structure to a leaning delafossite structure. The critical pressure of the transition was determined to be 60 GPa. The energy gap of CuAlO2 increases through the structural transition due to the enhanced covalency of Cu 3d and O 2p states. We found that a chalcopyrite structure does not appear as a stable structure under high pressure.

  15. Energy-gap reduction in heavily doped silicon: Causes and consequences

    NASA Astrophysics Data System (ADS)

    Pantelides, Sokrates T.; Selloni, Annabella; Car, Roberto

    1985-02-01

    The authors review briefly the existing theoretical treatments of the various effects that contribute to the reduction of the energy gap in heavily doped Si, namely electron-electron and electron-impurity interactions and the effect of disorder in the impurity distribution. They then turn to the longstanding question why energy-gap reductions extracted from three different types of experiments have persistently produced values with substantial discrepancies, making it impossible to compare with theoretical values. First, they demonstrate that a meaningful comparison between theory and experiment can indeed be made if theoretical calculations are carried out for actual quantities that experiments measure, e.g. luminescence spectra, as recently done by Selloni and Pantelides. Then, they demonstrate that, independent of any theoretical calculations, the optical absorption spectra are fully consistent with the luminescence spectra and that the discrepancies in the energy-gap reductions extracted from the two sets of spectra are caused entirely by the curve-fitting procedures used in analyzing optical-absorption data. Finally, they show explicitly that, as already believed by many authors, energy-gap reductions extracted from electrical measurements on transistors do not correspond to true gap reductions. They identify two corrections that must be added to the values extracted from the electrical data in order to arrive at the true gap reductions and show that the resulting values are in good overall agreement with luminescence and absorption data. They, therefore, demonstrate that the observed reduction in emitter injection efficiency in bipolar transistors is not strictly due to a gap reduction, as generally believed, but to three very different effects.

  16. Development of Low Energy Gap and Fully Regioregular Polythienylenevinylene Derivative

    DOE PAGES

    David, Tanya M. S.; Zhang, Cheng; Sun, Sam-Shajing

    2014-01-01

    Low energy gap and fully regioregular conjugated polymers find its wide use in solar energy conversion applications. This paper will first briefly review this type of polymers and also report synthesis and characterization of a specific example new polymer, a low energy gap, fully regioregular, terminal functionalized, and processable conjugated polymer poly-(3-dodecyloxy-2,5-thienylene vinylene) or PDDTV. The polymer exhibited an optical energy gap of 1.46 eV based on the UV-vis-NIR absorption spectrum. The electrochemically measured highest occupied molecular orbital (HOMO) level is −4.79 eV, resulting in the lowest unoccupied molecular orbital (LUMO) level of −3.33 eV based on optical energy gap. The polymer wasmore » synthesized via Horner-Emmons condensation and is fairly soluble in common organic solvents such as tetrahydrofuran and chloroform with gentle heating. DSC showed two endothermic peaks at 67°C and 227°C that can be attributed to transitions between crystalline and liquid states. The polymer is thermally stable up to about 300°C. This polymer appears very promising for cost-effective solar cell applications.« less

  17. Parametric investigation of nano-gap thermophotovoltaic energy conversion

    NASA Astrophysics Data System (ADS)

    Lau, Japheth Z.-J.; Bong, Victor N.-S.; Wong, Basil T.

    2016-03-01

    Nano-gap thermophotovoltaic energy converters have the potential to be excellent generators of electrical power due to the near-field radiative effect which enhances the transfer of energy from one medium to another. However, there is still much to learn about this new form of energy converter. This paper seeks to investigate three parameters that affect the performance of nano-gap thermophotovoltaic devices: the emitter material, the thermophotovoltaic cell material, and the cell thickness. Furthermore, the temperature profiles in insulated thin films (cells exposed to below-band gap near-field radiation) are analysed. It was discovered that an effective emitter material is one that has a high generalised emissivity value and is also able to couple with the TPV cell material through surface polaritons while a cell material's electrical properties and its thickness has heavy bearing on its internal quantum efficiency. In regards to the temperature profile, the heat-flux absorbed causes a rise in temperature across the thin film, but is insufficient to generate a temperature gradient across the film.

  18. Tidal stresses and energy gaps in microstate geometries

    NASA Astrophysics Data System (ADS)

    Tyukov, Alexander; Walker, Robert; Warner, Nicholas P.

    2018-02-01

    We compute energy gaps and study infalling massive geodesic probes in the new families of scaling, microstate geometries that have been constructed recently and for which the holographic duals are known. We find that in the deepest geometries, which have the lowest energy gaps, the geodesic deviation shows that the stress reaches the Planck scale long before the probe reaches the cap of the geometry. Such probes must therefore undergo a stringy transition as they fall into microstate geometry. We discuss the scales associated with this transition and comment on the implications for scrambling in microstate geometries.

  19. Approach to the evaluation of a patient with an increased serum osmolal gap and high-anion-gap metabolic acidosis.

    PubMed

    Kraut, Jeffrey A; Xing, Shelly Xiaolei

    2011-09-01

    An increase in serum osmolality and serum osmolal gap with or without high-anion-gap metabolic acidosis is an important clue to exposure to one of the toxic alcohols, which include methanol, ethylene glycol, diethylene glycol, propylene glycol, or isopropanol. However, the increase in serum osmolal gap and metabolic acidosis can occur either together or alone depending on several factors, including baseline serum osmolal gap, molecular weight of the alcohol, and stage of metabolism of the alcohol. In addition, other disorders, including diabetic or alcoholic ketoacidosis, acute kidney injury, chronic kidney disease, and lactic acidosis, can cause high-anion-gap metabolic acidosis associated with an increased serum osmolal gap and therefore should be explored in the differential diagnosis. It is essential for clinicians to understand the value and limitations of osmolal gap to assist in reaching the correct diagnosis and initiating appropriate treatment. In this teaching case, we present a systematic approach to diagnosing high serum osmolality and increased serum osmolal gap with or without high-anion-gap metabolic acidosis. Published by Elsevier Inc.

  20. Energy gap in graphene nanoribbons with structured external electric potentials

    NASA Astrophysics Data System (ADS)

    Apel, W.; Pal, G.; Schweitzer, L.

    2011-03-01

    The electronic properties of graphene zigzag nanoribbons with electrostatic potentials along the edges are investigated. Using the Dirac-fermion approach, we calculate the energy spectrum of an infinitely long nanoribbon of finite width w, terminated by Dirichlet boundary conditions in the transverse direction. We show that a structured external potential that acts within the edge regions of the ribbon can induce a spectral gap and thus switch the nanoribbon from metallic to insulating behavior. The basic mechanism of this effect is the selective influence of the external potentials on the spinorial wave functions that are topological in nature and localized along the boundary of the graphene nanoribbon. Within this single-particle description, the maximal obtainable energy gap is Emax∝πℏvF/w, i.e., ≈0.12 eV for w=15 nm. The stability of the spectral gap against edge disorder and the effect of disorder on the two-terminal conductance is studied numerically within a tight-binding lattice model. We find that the energy gap persists as long as the applied external effective potential is larger than ≃0.55×W, where W is a measure of the disorder strength. We argue that there is a transport gap due to localization effects even in the absence of a spectral gap.

  1. Energy Impacts of Wide Band Gap Semiconductors in U.S. Light-Duty Electric Vehicle Fleet.

    PubMed

    Warren, Joshua A; Riddle, Matthew E; Graziano, Diane J; Das, Sujit; Upadhyayula, Venkata K K; Masanet, Eric; Cresko, Joe

    2015-09-01

    Silicon carbide and gallium nitride, two leading wide band gap semiconductors with significant potential in electric vehicle power electronics, are examined from a life cycle energy perspective and compared with incumbent silicon in U.S. light-duty electric vehicle fleet. Cradle-to-gate, silicon carbide is estimated to require more than twice the energy as silicon. However, the magnitude of vehicle use phase fuel savings potential is comparatively several orders of magnitude higher than the marginal increase in cradle-to-gate energy. Gallium nitride cradle-to-gate energy requirements are estimated to be similar to silicon, with use phase savings potential similar to or exceeding that of silicon carbide. Potential energy reductions in the United States vehicle fleet are examined through several scenarios that consider the market adoption potential of electric vehicles themselves, as well as the market adoption potential of wide band gap semiconductors in electric vehicles. For the 2015-2050 time frame, cumulative energy savings associated with the deployment of wide band gap semiconductors are estimated to range from 2-20 billion GJ depending on market adoption dynamics.

  2. The calculation of band gap energy in zinc oxide films

    NASA Astrophysics Data System (ADS)

    Arif, Ali; Belahssen, Okba; Gareh, Salim; Benramache, Said

    2015-01-01

    We investigated the optical properties of undoped zinc oxide thin films as the n-type semiconductor; the thin films were deposited at different precursor molarities by ultrasonic spray and spray pyrolysis techniques. The thin films were deposited at different substrate temperatures ranging between 200 and 500 °C. In this paper, we present a new approach to control the optical gap energy of ZnO thin films by concentration of the ZnO solution and substrate temperatures from experimental data, which were published in international journals. The model proposed to calculate the band gap energy with the Urbach energy was investigated. The relation between the experimental data and theoretical calculation suggests that the band gap energies are predominantly estimated by the Urbach energies, film transparency, and concentration of the ZnO solution and substrate temperatures. The measurements by these proposal models are in qualitative agreements with the experimental data; the correlation coefficient values were varied in the range 0.96-0.99999, indicating high quality representation of data based on Equation (2), so that the relative errors of all calculation are smaller than 4%. Thus, one can suppose that the undoped ZnO thin films are chemically purer and have many fewer defects and less disorder owing to an almost complete chemical decomposition and contained higher optical band gap energy.

  3. Energy gap law of electron transfer in nonpolar solvents.

    PubMed

    Tachiya, M; Seki, Kazuhiko

    2007-09-27

    We investigate the energy gap law of electron transfer in nonpolar solvents for charge separation and charge recombination reactions. In polar solvents, the reaction coordinate is given in terms of the electrostatic potentials from solvent permanent dipoles at solutes. In nonpolar solvents, the energy fluctuation due to solvent polarization is absent, but the energy of the ion pair state changes significantly with the distance between the ions as a result of the unscreened strong Coulomb potential. The electron transfer occurs when the final state energy coincides with the initial state energy. For charge separation reactions, the initial state is a neutral pair state, and its energy changes little with the distance between the reactants, whereas the final state is an ion pair state and its energy changes significantly with the mutual distance; for charge recombination reactions, vice versa. We show that the energy gap law of electron-transfer rates in nonpolar solvents significantly depends on the type of electron transfer.

  4. Theoretical and experimental evidence for a nodal energy gap in MgB2

    NASA Astrophysics Data System (ADS)

    Agassi, Y. Dan; Oates, Daniel E.

    2017-11-01

    We present a phenomenological model that strongly suggests that the smaller of the two energy gaps in MgB2, the so-called π gap, contains nodal lines with a six-fold symmetry (i-wave). The model also indicates that the larger gap, the so-called σ gap, is conventional s-wave. The model is an extension of the BCS gap equation that accounts for the elastic anisotropy in MgB2 and the Coulomb repulsion. It is based on a phononic pairing mechanism and assumes no coupling between the two energy gaps in MgB2 at zero temperature. All of the parameters of the model, such as sound velocities and masses, are independently determined material constants. The results agree with a previous ad-hoc hypothesis that the π energy gap has six nodal lines. That hypothesis was motivated by low-temperature measurements of the surface impedance and intermodulation distortion in high-quality thin films. We briefly review experimental evidence in the literature that is relevant to the energy-gap symmetry. We find that the evidence from the literature for s-wave is inconclusive. Our finding is that the π gap has six nodal lines.

  5. Gap length effect on electron energy distribution in capacitive radio frequency discharges

    NASA Astrophysics Data System (ADS)

    You, S. J.; Kim, S. S.; Kim, Jung-Hyung; Seong, Dae-Jin; Shin, Yong-Hyeon; Chang, H. Y.

    2007-11-01

    A study on the dependence of electron energy distribution function (EEDF) on discharge gap size in capacitive rf discharges was conducted. The evolution of the EEDF over a gap size range from 2.5to7cm in 65mTorr Ar discharges was investigated both experimentally and theoretically. The measured EEDFs exhibited typical bi-Maxwellian forms with low energy electron groups. A significant depletion in the low energy portion of the bi-Maxwellian was found with decreasing gap size. The results show that electron heating by bulk electric fields, which is the main heating process of the low-energy electrons, is greatly enhanced as the gap size decreases, resulting in the abrupt change of the EEDF. The calculated EEDFs based on nonlocal kinetic theory are in good agreement with the experiments.

  6. Calculation of Energy Diagram of Asymmetric Graded-Band-Gap Semiconductor Superlattices.

    PubMed

    Monastyrskii, Liubomyr S; Sokolovskii, Bogdan S; Alekseichyk, Mariya P

    2017-12-01

    The paper theoretically investigates the peculiarities of energy diagram of asymmetric graded-band-gap superlattices with linear coordinate dependences of band gap and electron affinity. For calculating the energy diagram of asymmetric graded-band-gap superlattices, linearized Poisson's equation has been solved for the two layers forming a period of the superlattice. The obtained coordinate dependences of edges of the conduction and valence bands demonstrate substantial transformation of the shape of the energy diagram at changing the period of the lattice and the ratio of width of the adjacent layers. The most marked changes in the energy diagram take place when the period of lattice is comparable with the Debye screening length. In the case when the lattice period is much smaller that the Debye screening length, the energy diagram has the shape of a sawtooth-like pattern.

  7. Energy Impacts of Wide Band Gap Semiconductors in U.S. Light-Duty Electric Vehicle Fleet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warren, Joshua A.; Riddle, Matthew E.; Graziano, Diane J.

    2015-08-12

    Silicon carbide and gallium nitride, two leading wide band gap semiconductors with significant potential in electric vehicle power electronics, are examined from a life cycle energy perspective and compared with incumbent silicon in U.S. light-duty electric vehicle fleet. Cradle-to-gate, silicon carbide is estimated to require more than twice the energy as silicon. However, the magnitude of vehicle use phase fuel savings potential is comparatively several orders of magnitude higher than the marginal increase in cradle-to-gate energy. Gallium nitride cradle-to-gate energy requirements are estimated to be similar to silicon, with use phase savings potential similar to or exceeding that of siliconmore » carbide. Potential energy reductions in the United States vehicle fleet are examined through several scenarios that consider the market adoption potential of electric vehicles themselves, as well as the market adoption potential of wide band gap semiconductors in electric vehicles. For the 2015–2050 time frame, cumulative energy savings associated with the deployment of wide band gap semiconductors are estimated to range from 2–20 billion GJ depending on market adoption dynamics.« less

  8. Energy-gap spectroscopy of superconductors using a tunneling microscope

    NASA Technical Reports Server (NTRS)

    Le Duc, H. G.; Kaiser, W. J.; Stern, J. A.

    1987-01-01

    A unique scanning tunneling microscope (STM) system has been developed for spectroscopy of the superconducting energy gap. High-resolution control of tunnel current and voltage allows for measurement of superconducting properties at tunnel resistance levels 100-1000 greater than that achieved in prior work. The previously used STM methods for superconductor spectroscopy are compared to those developed for the work reported here. Superconducting energy-gap spectra are reported for three superconductors, Pb, PbBi, and NbN, over a range of tunnel resistance. The measured spectra are compared directly to theory.

  9. Measurement of a superconducting energy gap in a homogeneously amorphous insulator.

    PubMed

    Sherman, D; Kopnov, G; Shahar, D; Frydman, A

    2012-04-27

    We present tunneling spectroscopy measurements that directly reveal the existence of a superconducting gap in the insulating state of homogenously disordered amorphous indium oxide films. Two films on both sides of the disorder induced superconductor to insulator transition show the same energy gap scale. This energy gap persists up to relatively high magnetic fields and is observed across the magnetoresistance peak typical of disordered superconductors. The results provide useful information for understanding the nature of the insulating state in the disorder induced superconductor to insulator transition.

  10. A novel theoretical model for the temperature dependence of band gap energy in semiconductors

    NASA Astrophysics Data System (ADS)

    Geng, Peiji; Li, Weiguo; Zhang, Xianhe; Zhang, Xuyao; Deng, Yong; Kou, Haibo

    2017-10-01

    We report a novel theoretical model without any fitting parameters for the temperature dependence of band gap energy in semiconductors. This model relates the band gap energy at the elevated temperature to that at the arbitrary reference temperature. As examples, the band gap energies of Si, Ge, AlN, GaN, InP, InAs, ZnO, ZnS, ZnSe and GaAs at temperatures below 400 K are calculated and are in good agreement with the experimental results. Meanwhile, the band gap energies at high temperatures (T  >  400 K) are predicted, which are greater than the experimental results, and the reasonable analysis is carried out as well. Under low temperatures, the effect of lattice expansion on the band gap energy is very small, but it has much influence on the band gap energy at high temperatures. Therefore, it is necessary to consider the effect of lattice expansion at high temperatures, and the method considering the effect of lattice expansion has also been given. The model has distinct advantages compared with the widely quoted Varshni’s semi-empirical equation from the aspect of modeling, physical meaning and application. The study provides a convenient method to determine the band gap energy under different temperatures.

  11. Energy splitting of excitons in gapped Dirac materials

    NASA Astrophysics Data System (ADS)

    Xiao, Di; Zhou, Jianhui; Shan, Wenyu; Yao, Wang; Okamoto, Satoshi

    2015-03-01

    We show that there is an energy splitting between excitons with opposite angular momentum in gapped Dirac materials, such as monolayers of transition metal dichalcogenides and gapped surface states of topological insulators. This splitting can be traced back to the chiral nature of Dirac electrons. We also discuss the optical selection rule of excitons in gap Dirac materials and clarify the relationship to its single-particle counterpart. A simple estimation of the splitting (~ 10 meV) in monolayer transition metal dichalcogenides is given . Our result reveals the limitation of the venerable hydrogenic model of excitons, and highlights the importance of the Berry phase in This work is supported by DOE (No. DE-SC0012509), and AFOSR (No. FA9550-14-1-0277).

  12. Minding the Gap: Synthetic Strategies for Tuning the Energy Gap in Conjugated Molecules

    ERIC Educational Resources Information Center

    Christensen, Dana; Cohn, Pamela G.

    2016-01-01

    While structure-property relationships are commonly developed in applications of physical organic chemistry to real-world problems at the graduate level, they have not been generally emphasized in the undergraduate chemistry curriculum. For instance, the ability to modify the energy gap between the highest occupied molecular orbital (HOMO) and the…

  13. An Increasing Socioeconomic Gap in Childhood Overweight and Obesity in China

    PubMed Central

    James, Sherman A.; Merli, M. Giovanna; Zheng, Hui

    2014-01-01

    We used a new conceptual framework that integrates tenets from health economics, social epidemiology, and health behavior to analyze the impact of socioeconomic forces on the temporal changes in the socioeconomic status (SES) gap in childhood overweight and obesity in China. In data from the China Health and Nutrition Survey for 1991 to 2006, we found increased prevalence of childhood overweight and obesity across all SES groups, but a greater increase among higher-SES children, especially after 1997, when income inequality dramatically increased. Our findings suggest that for China, the increasing SES gap in purchasing power for obesogenic goods, associated with rising income inequality, played a prominent role in the country’s increasing SES gap in childhood obesity and overweight. PMID:24228657

  14. Increased visible-light photocatalytic activity of TiO2 via band gap manipulation

    NASA Astrophysics Data System (ADS)

    Pennington, Ashley Marie

    Hydrogen gas is a clean burning fuel that has potential applications in stationary and mobile power generation and energy storage, but is commercially produced from non-renewable fossil natural gas. Using renewable biomass as the hydrocarbon feed instead could provide sustainable and carbon-neutral hydrogen. We focus on photocatalytic oxidation and reforming of methanol over modified titanium dioxide (TiO2) nanoparticles to produce hydrogen gas. Methanol is used as a model for biomass sugars. By using a photocatalyst, we aim to circumvent the high energy cost of carrying out endothermic reactions at commercial scale. TiO2 is a semiconductor metal oxide of particular interest in photocatalysis due to its photoactivity under ultraviolet illumination and its stability under catalytic reaction conditions. However, TiO2 primarily absorbs ultraviolet light, with little absorption of visible light. While an effective band gap for absorbance of photons from visible light is 1.7 eV, TiO2 polymorphs rutile and anatase, have band gaps of 3.03 eV and 3.20 eV respectively, which indicate ultraviolet light. As most of incident solar radiation is visible light, we hypothesize that decreasing the band gap of TiO2 will increase the efficiency of TiO2 as a visible-light active photocatalyst. We propose to modify the band gap of TiO2 by manipulating the catalyst structure and composition via metal nanoparticle deposition and heteroatom doping in order to more efficiently utilize solar radiation. Of the metal-modified Degussa P25 TiO2 samples (P25), the copper and nickel modified samples, 1%Cu/P25 and 1%Ni/P25 yielded the lowest band gap of 3.05 eV each. A difference of 0.22 eV from the unmodified P25. Under visible light illumination 1%Ni/P25 and 1%Pt/P25 had the highest conversion of methanol of 9.9% and 9.6%, respectively.

  15. Increase of gap junction activities in SW480 human colorectal cancer cells.

    PubMed

    Bigelow, Kristina; Nguyen, Thu A

    2014-07-09

    Colorectal cancer is one of the most common cancers in the United States with an early detection rate of only 39%. Colorectal cancer cells along with other cancer cells exhibit many deficiencies in cell-to-cell communication, particularly gap junctional intercellular communication (GJIC). GJIC has been reported to diminish as cancer cells progress. Gap junctions are intercellular channels composed of connexin proteins, which mediate the direct passage of small molecules from one cell to the next. They are involved in the regulation of the cell cycle, cell differentiation, and cell signaling. Since the regulation of gap junctions is lost in colorectal cancer cells, the goal of this study is to determine the effect of GJIC restoration in colorectal cancer cells. Gap Junction Activity Assay and protein analysis were performed to evaluate the effects of overexpression of connexin 43 (Cx43) and treatment of PQ1, a small molecule, on GJIC. Overexpression of Cx43 in SW480 colorectal cancer cells causes a 6-fold increase of gap junction activity compared to control. This suggests that overexpressing Cx43 can restore GJIC. Furthermore, small molecule like PQ1 directly targeting gap junction channel was used to increase GJIC. Gap junction enhancers, PQ1, at 200 nM showed a 4-fold increase of gap junction activity in SW480 cells. A shift from the P0 to the P2 isoform of Cx43 was seen after 1 hour treatment with 200 nM PQ1. Overexpression of Cx43 and treatment of PQ1 can directly increase gap junction activity. The findings provide an important implication in which restoration of gap junction activity can be targeted for drug development.

  16. Simple Experimental Verification of the Relation between the Band-Gap Energy and the Energy of Photons Emitted by LEDs

    ERIC Educational Resources Information Center

    Precker, Jurgen W.

    2007-01-01

    The wavelength of the light emitted by a light-emitting diode (LED) is intimately related to the band-gap energy of the semiconductor from which the LED is made. We experimentally estimate the band-gap energies of several types of LEDs, and compare them with the energies of the emitted light, which ranges from infrared to white. In spite of…

  17. Tracing the evolution of the two energy gaps in magnesium diboride under pressure

    NASA Astrophysics Data System (ADS)

    Kononenko, V.; Tarenkov, V.; Belogolovskii, M.; Döring, S.; Schmidt, S.; Seidel, P.

    2015-04-01

    We have studied transport characteristics of mesoscopic multiple-mode superconducting contacts formed between two grains in bulk two-gap magnesium diboride. The experimental setup was realized by driving a normal-metal tip into MgB2 polycrystalline sample and proved to be extremely stable, providing possibility to perform pressure experiments at low temperatures. It is argued that in our procedure a small piece of the superconducting electrode is captured by the tip apex and, as a result, two junctions in series are formed: a junction between a tip and MgB2 grain and a mesoscopic disordered contact between two superconducting pellets. Although the relative weight of the first junction resistance was considerably less, its contribution is shown to be important for the comparison of measured data with expected gap values. Two hallmarks of multiple Andreev reflections inside the MgB2-c-MgB2 contact (c stands for a high-transparent constriction), a zero-bias 1/ √{|V | } -like singularity of the dc differential conductance and peaks connected to the two gap values, have been revealed. Finally, we report results of a hydrostatic compression experiment showing the evolution of the MgB2 gap values with pressure. In contrast to the theoretical expectations, we have observed an increase of the smaller gap Δπ whereas the larger gap Δσ decreased with increasing pressure as it should be for the electron-phonon pairing mechanism. We argue that the so-called separable model of anisotropy effects is insufficient to describe such changes and only improved two-band versions are capable to reproduce the pressure effect on the energy gaps in magnesium diboride.

  18. Energy Band Gap Dependence of Valley Polarization of the Hexagonal Lattice

    NASA Astrophysics Data System (ADS)

    Ghalamkari, Kazu; Tatsumi, Yuki; Saito, Riichiro

    2018-02-01

    The origin of valley polarization of the hexagonal lattice is analytically discussed by tight binding method as a function of energy band gap. When the energy gap decreases to zero, the intensity of optical absorption becomes sharp as a function of k near the K (or K') point in the hexagonal Brillouin zone, while the peak intensity at the K (or K') point keeps constant with decreasing the energy gap. When the dipole vector as a function of k can have both real and imaginary parts that are perpendicular to each other in the k space, the valley polarization occurs. When the dipole vector has only real values by selecting a proper phase of wave functions, the valley polarization does not occur. The degree of the valley polarization may show a discrete change that can be relaxed to a continuous change of the degree of valley polarization when we consider the life time of photo-excited carrier.

  19. Formation of quantum spin Hall state on Si surface and energy gap scaling with strength of spin orbit coupling.

    PubMed

    Zhou, Miao; Ming, Wenmei; Liu, Zheng; Wang, Zhengfei; Yao, Yugui; Liu, Feng

    2014-11-19

    For potential applications in spintronics and quantum computing, it is desirable to place a quantum spin Hall insulator [i.e., a 2D topological insulator (TI)] on a substrate while maintaining a large energy gap. Here, we demonstrate a unique approach to create the large-gap 2D TI state on a semiconductor surface, based on first-principles calculations and effective Hamiltonian analysis. We show that when heavy elements with strong spin orbit coupling (SOC) such as Bi and Pb atoms are deposited on a patterned H-Si(111) surface into a hexagonal lattice, they exhibit a 2D TI state with a large energy gap of ≥ 0.5 eV. The TI state arises from an intriguing substrate orbital filtering effect that selects a suitable orbital composition around the Fermi level, so that the system can be matched onto a four-band effective model Hamiltonian. Furthermore, it is found that within this model, the SOC gap does not increase monotonically with the increasing strength of SOC. These interesting results may shed new light in future design and fabrication of large-gap topological quantum states.

  20. Formation of quantum spin Hall state on Si surface and energy gap scaling with strength of spin orbit coupling

    DOE PAGES

    Zhou, Miao; Ming, Wenmei; Liu, Zheng; ...

    2014-11-19

    For potential applications in spintronics and quantum computing, it is desirable to place a quantum spin Hall insulator [i.e., a 2D topological insulator (TI)] on a substrate while maintaining a large energy gap. Here, we demonstrate a unique approach to create the large-gap 2D TI state on a semiconductor surface, based on first-principles calculations and effective Hamiltonian analysis. We show that when heavy elements with strong spin orbit coupling (SOC) such as Bi and Pb atoms are deposited on a patterned H-Si(111) surface into a hexagonal lattice, they exhibit a 2D TI state with a large energy gap of ≥0.5more » eV. The TI state arises from an intriguing substrate orbital filtering effect that selects a suitable orbital composition around the Fermi level, so that the system can be matched onto a four-band effective model Hamiltonian. Furthermore, it is found that within this model, the SOC gap does not increase monotonically with the increasing strength of SOC. These interesting results may shed new light in future design and fabrication of large-gap topological quantum states.« less

  1. Quantum spin Hall insulator in halogenated arsenene films with sizable energy gaps

    PubMed Central

    Wang, Dongchao; Chen, Li; Shi, Changmin; Wang, Xiaoli; Cui, Guangliang; Zhang, Pinhua; Chen, Yeqing

    2016-01-01

    Based on first-principles calculations, the electronic and topological properties of halogenated (F-, Cl-, Br- and I-) arsenene are investigated in detail. It is found that the halogenated arsenene sheets show Dirac type characteristic in the absence of spin-orbital coupling (SOC), whereas energy gap will be induced by SOC with the values ranging from 0.194 eV for F-arsenene to 0.255 eV for I-arsenene. Noticeably, these four newly proposed two-dimensional (2D) systems are verified to be quantum spin Hall (QSH) insulators by calculating the edge states with obvious linear cross inside bulk energy gap. It should be pointed out that the large energy gap in these 2D materials consisted of commonly used element is quite promising for practical applications of QSH insulators at room temperature. PMID:27340091

  2. NREL Tests Energy Storage System to Fill Renewable Gaps | News | NREL

    Science.gov Websites

    Tests Energy Storage System to Fill Renewable Gaps NREL Tests Energy Storage System to Fill -megawatt energy storage system from Renewable Energy Systems (RES) Americas will assist research that aims to optimize the grid for wind and solar plants. The system arrived at NREL's National Wind Technology

  3. Extended Acceleration in Slot Gaps and Pulsar High-Energy Emission

    NASA Technical Reports Server (NTRS)

    White, Nicholas E. (Technical Monitor); Muslimov, Alex G.; Harding, Alice K.

    2003-01-01

    We revise the physics of primary electron acceleration in the "slot gap" (SG) above the pulsar polar caps (PCs), a regime originally proposed by Arons and Scharlemann (1979) in their electrodynamic model of pulsar PCs. We employ the standard definition of the SG as a pair-free space between the last open field lines and the boundary of the pair plasma column which is expected to develop above the bulk of the PC. The rationale for our revision is that the proper treatment of primary acceleration within the pulsar SGs should take into account the effect of the narrow geometry of the gap on the electrodynamics within the gap and also to include the effect of inertial frame dragging on the particle acceleration. We show that the accelerating electric field within the gap, being significantly boosted by the effect of frame dragging, becomes reduced because of the gap geometry by a factor proportional to the square of the SG width. The combination of the effects of frame dragging and geometrical screening in the gap region naturally gives rise to a regime of extended acceleration, that is not limited to favorably curved field lines as in earlier models, and the possibility of multiple-pair production by curvature photons at very high altitudes, up to several stellar radii. We present our estimates of the characteristic SG thickness across the PC, energetics of primaries accelerated within the gap, high-energy bolometric luminosities emitted from the high altitudes in the gaps, and maximum heating luminosities produced by positrons returning from the elevated pair fronts. The estimated theoretical high-energy luminosities are in good agreement with the corresponding empirical relationships for gamma-ray pulsars. We illustrate the results of our modeling of the pair cascades and gamma-ray emission from the high altitudes in the SG for the Crab pulsar. The combination of the frame-dragging field and high-altitude SG emission enables both acceleration at the smaller

  4. Modeling US Adult Obesity Trends: A System Dynamics Model for Estimating Energy Imbalance Gap

    PubMed Central

    Rahmandad, Hazhir; Huang, Terry T.-K.; Bures, Regina M.; Glass, Thomas A.

    2014-01-01

    Objectives. We present a system dynamics model that quantifies the energy imbalance gap responsible for the US adult obesity epidemic among gender and racial subpopulations. Methods. We divided the adult population into gender–race/ethnicity subpopulations and body mass index (BMI) classes. We defined transition rates between classes as a function of metabolic dynamics of individuals within each class. We estimated energy intake in each BMI class within the past 4 decades as a multiplication of the equilibrium energy intake of individuals in that class. Through calibration, we estimated the energy gap multiplier for each gender–race–BMI group by matching simulated BMI distributions for each subpopulation against national data with maximum likelihood estimation. Results. No subpopulation showed a negative or zero energy gap, suggesting that the obesity epidemic continues to worsen, albeit at a slower rate. In the past decade the epidemic has slowed for non-Hispanic Whites, is starting to slow for non-Hispanic Blacks, but continues to accelerate among Mexican Americans. Conclusions. The differential energy balance gap across subpopulations and over time suggests that interventions should be tailored to subpopulations’ needs. PMID:24832405

  5. Machine Learning Prediction of the Energy Gap of Graphene Nanoflakes Using Topological Autocorrelation Vectors.

    PubMed

    Fernandez, Michael; Abreu, Jose I; Shi, Hongqing; Barnard, Amanda S

    2016-11-14

    The possibility of band gap engineering in graphene opens countless new opportunities for application in nanoelectronics. In this work, the energy gaps of 622 computationally optimized graphene nanoflakes were mapped to topological autocorrelation vectors using machine learning techniques. Machine learning modeling revealed that the most relevant correlations appear at topological distances in the range of 1 to 42 with prediction accuracy higher than 80%. The data-driven model can statistically discriminate between graphene nanoflakes with different energy gaps on the basis of their molecular topology.

  6. The refractive index and electronic gap of water and ice increase with increasing pressure

    PubMed Central

    Pan, Ding; Wan, Quan; Galli, Giulia

    2014-01-01

    Determining the electronic and dielectric properties of water at high pressure and temperature is an essential prerequisite to understand the physical and chemical properties of aqueous environments under supercritical conditions, for example, in the Earth interior. However, optical measurements of compressed ice and water remain challenging, and it has been common practice to assume that their band gap is inversely correlated with the measured refractive index, consistent with observations reported for hundreds of materials. Here we report ab initio molecular dynamics and electronic structure calculations showing that both the refractive index and the electronic gap of water and ice increase with increasing pressure, at least up to 30 GPa. Subtle electronic effects, related to the nature of interband transitions and band edge localization under pressure, are responsible for this apparently anomalous behaviour. PMID:24861665

  7. The Wind Energy Workforce Gap in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tegen, Suzanne I; Keyser, David J

    There are more than 100,000 jobs in the U.S. wind industry today, and the second-fastest growing job in the United States in 2017 was wind technician. A vibrant wind industry needs workers, and students who graduate from wind energy education and training programs need jobs. The goal of this research is to better understand the needs of wind-related businesses, education and training requirements, and the make-up of current and future domestic workforces. Educators are developing and training future workers. Educational institutions need to know which courses to provide to connect students with potential employers and to justify their wind energymore » programs by being able to place graduates into well-paying jobs. In interviews with 250 wind energy firms and 50 educational institutions, many respondents reported difficulty hiring qualified candidates, while many educational institutions reported graduates not finding jobs in the wind industry. We refer to this mismatch as the 'workforce gap.' This conference poster explores this gap.« less

  8. The effect of solvent relaxation time constants on free energy gap law for ultrafast charge recombination following photoinduced charge separation.

    PubMed

    Mikhailova, Valentina A; Malykhin, Roman E; Ivanov, Anatoly I

    2018-05-16

    To elucidate the regularities inherent in the kinetics of ultrafast charge recombination following photoinduced charge separation in donor-acceptor dyads in solutions, the simulations of the kinetics have been performed within the stochastic multichannel point-transition model. Increasing the solvent relaxation time scales has been shown to strongly vary the dependence of the charge recombination rate constant on the free energy gap. In slow relaxing solvents the non-equilibrium charge recombination occurring in parallel with solvent relaxation is very effective so that the charge recombination terminates at the non-equilibrium stage. This results in a crucial difference between the free energy gap laws for the ultrafast charge recombination and the thermal charge transfer. For the thermal reactions the well-known Marcus bell-shaped dependence of the rate constant on the free energy gap is realized while for the ultrafast charge recombination only a descending branch is predicted in the whole area of the free energy gap exceeding 0.2 eV. From the available experimental data on the population kinetics of the second and first excited states for a series of Zn-porphyrin-imide dyads in toluene and tetrahydrofuran solutions, an effective rate constant of the charge recombination into the first excited state has been calculated. The obtained rate constant being very high is nearly invariable in the area of the charge recombination free energy gap from 0.2 to 0.6 eV that supports the theoretical prediction.

  9. Two-dimensional topological insulators with large bulk energy gap

    NASA Astrophysics Data System (ADS)

    Yang, Z. Q.; Jia, Jin-Feng; Qian, Dong

    2016-11-01

    Two-dimensional (2D) topological insulators (TIs, or quantum spin Hall insulators) are special insulators that possess bulk 2D electronic energy gap and time-reversal symmetry protected one-dimensional (1D) edge state. Carriers in the edge state have the property of spin-momentum locking, enabling dissipation-free conduction along the 1D edge. The existence of 2D TIs was confirmed by experiments in semiconductor quantum wells. However, the 2D bulk gaps in those quantum wells are extremely small, greatly limiting potential application in future electronics and spintronics. Despite this limitation, 2D TIs with a large bulk gap attracted plenty of interest. In this paper, recent progress in searching for TIs with a large bulk gap is reviewed briefly. We start by introducing some theoretical predictions of these new materials and then discuss some recent important achievements in crystal growth and characterization. Project supported by the National Natural Science Foundation of China (Grant Nos. U1632272, 11574201, and 11521404). D. Q. acknowledges support from the Changjiang Scholars Program, China and the Program for Professor of Special Appointment (Eastern Scholar), China.

  10. Development of an Abort Gap Monitor for High-Energy Proton Rings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beche, J.-F.; Byrd, J.; De Santis, S.

    2004-11-10

    The fill pattern in proton synchrotrons usually features an empty gap, longer than the abort kicker raise time, for machine protection. This gap is referred to as the 'abort gap', and any particles, which may accumulate in it due to injection errors and diffusion between RF buckets, would be lost inside the ring, rather than in the beam dump, during the kicker firing. In large proton rings, due to the high energies involved, it is vital to monitor the build up of charges in the abort gap with a high sensitivity. We present a study of an abort gap monitormore » based on a photomultiplier with a gated microchannel plate, which would allow for detecting low charge densities by monitoring the synchrotron radiation emitted. We show results of beam test experiments at the Advanced Light Source using a Hamamatsu 5916U MCP-PMT and compare them to the specifications for the Large Hadron Collider.« less

  11. Development of an abort gap monitor for high-energy proton rings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beche, Jean-Francois; Byrd, John; De Santis, Stefano

    2004-05-03

    The fill pattern in proton synchrotrons usually features an empty gap, longer than the abort kicker raise time, for machine protection. This gap is referred to as the ''abort gap'' and any particles, which may accumulate in it due to injection errors and diffusion between RF buckets, would be lost inside the ring, rather than in the beam dump, during the kicker firing. In large proton rings, due to the high energies involved, it is vital to monitor the build up of charges in the abort gap with a high sensitivity. We present a study of an abort gap monitormore » based on a photomultiplier with a gated microchannel plate, which would allow for detecting low charge densities by monitoring the synchrotron radiation emitted. We show results of beam test experiments at the Advanced Light Source using a Hamamatsu 5916U MCP-PMT and compare them to the specifications for the Large Hadron Collider« less

  12. Effect of electron divergence in air gaps on the measurement of the energy of cascades in emulsion chambers

    NASA Technical Reports Server (NTRS)

    Apanasenko, A. V.; Baradzey, L. T.; Kanevskaya, Y. A.; Smorodin, Y. A.

    1975-01-01

    The effect of an increase in electron density in the vicinity of the cascade axis caused by an avalanche passing through the gap between lead filters of the emulsion chamber was investigated experimentally. Optical densities were measured in three X-ray films spaced at 400, 800 and 1200 micrometer from the filter surface having a thickness of 6 cascade units. The optical densities of blackening spots caused by electron photon cascades of 1 to 2, 2 to 7 and greater than 7 BeV energies were measured. The results prove the presence of a gap between the filter and the nuclear emulsion which results in the underestimation of energy by several tenths of a percent.

  13. Comparison of energy flows in deep inelastic scattering events with and without a large rapidity gap

    NASA Astrophysics Data System (ADS)

    Derrick, M.; Krakauer, D.; Magill, S.; Musgrave, B.; Repond, J.; Schlereth, J.; Stanek, R.; Talaga, R. L.; Thron, J.; Arzarello, F.; Ayad, R.; Bari, G.; Basile, M.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruni, P.; Romeo, G. Cara; Castellini, G.; Chiarini, M.; Cifarelli, L.; Cindolo, F.; Ciralli, F.; Contin, A.; D'Auria, S.; Del Papa, C.; Frasconi, F.; Giusti, P.; Iacobucci, G.; Laurenti, G.; Levi, G.; Maccarrone, G.; Margotti, A.; Massam, T.; Nania, R.; Nemoz, C.; Palmonari, F.; Polini, A.; Sartorelli, G.; Timellini, R.; Garcia, Y. Zamora; Zichichi, A.; Bargende, A.; Crittenden, J.; Desch, K.; Diekmann, B.; Doeker, T.; Feld, L.; Frey, A.; Geerts, M.; Geitz, G.; Grothe, M.; Hartmann, H.; Haun, D.; Heinloth, K.; Hilger, E.; Jakob, H.-P.; Katz, U. F.; Mari, S. M.; Mass, A.; Mengel, S.; Mollen, J.; Paul, E.; Rembser, Ch.; Schattevoy, R.; Schneider, J.-L.; Schramm, D.; Stamm, J.; Wedemeyer, R.; Campbell-Robson, S.; Cassidy, A.; Dyce, N.; Foster, B.; George, S.; Gilmore, R.; Heath, G. P.; Heath, H. F.; Llewellyn, T. J.; Morgado, C. J. S.; Norman, D. J. P.; O'Mara, J. A.; Tapper, R. J.; Wilson, S. S.; Yoshida, R.; Rau, R. R.; Arneodo, M.; Iannotti, L.; Schioppa, M.; Susinno, G.; Bernstein, A.; Caldwell, A.; Gialas, I.; Parsons, J. A.; Ritz, S.; Sciulli, F.; Straub, P. B.; Wai, L.; Yang, S.; Borzemski, P.; Chwastowski, J.; Eskreys, A.; Piotrzkowski, K.; Zachara, M.; Zawiejski, L.; Adamczyk, L.; Bednarek, B.; Eskreys, K.; Jeleń, K.; Kisielewska, D.; Kowalski, T.; Rulikowska-Zarȩbska, E.; Suszycki, L.; Zajaç, J.; Kȩdzierski, T.; Kotański, A.; Przybycień, M.; Bauerdick, L. A. T.; Behrens, U.; Bienlein, J. K.; Böttcher, S.; Coldewey, C.; Drews, G.; Flasiński, M.; Gilkinson, D. J.; Göttlicher, P.; Gutjahr, B.; Haas, T.; Hagge, L.; Hain, W.; Hasell, D.; Heßling, H.; Hultschig, H.; Iga, Y.; Joos, P.; Kasemann, M.; Klanner, R.; Koch, W.; Köpke, L.; Kötz, U.; Kowalski, H.; Kröger, W.; Krüger, J.; Labs, J.; Ladage, A.; Löhr, B.; Löwe, M.; Lüke, D.; Mainusch, J.; Mańczak, O.; Ng, J. S. T.; Nickel, S.; Notz, D.; Ohrenberg, K.; Roco, M.; Rohde, M.; Roldán, J.; Schneekloth, U.; Schroeder, J.; Schulz, W.; Selonke, F.; Stiliaris, E.; Voß, T.; Westphal, D.; Wolf, G.; Youngman, C.; Grabosch, H. J.; Leich, A.; Meyer, A.; Rethfeldt, C.; Schlenstedt, S.; Barbagli, G.; Pelfer, P.; Anzivino, G.; De Pasquale, S.; Qian, S.; Votano, L.; Bamberger, A.; Freidhof, A.; Poser, T.; Söldner-Rembold, S.; Theisen, G.; Trefzger, T.; Brook, N. H.; Bussey, P. J.; Doyle, A. T.; Fleck, I.; Forbes, J. R.; Jamieson, V. A.; Raine, C.; Saxon, D. H.; Stavrianakou, M.; Wilson, A. S.; Dannemann, A.; Holm, U.; Horstmann, D.; Kammerlocher, H.; Krebs, B.; Neumann, T.; Sinkus, R.; Wick, K.; Badura, E.; Burow, B. D.; Fürtjes, A.; Lohrmann, E.; Milewski, J.; Nakahata, M.; Pavel, N.; Poelz, G.; Schott, W.; Terron, J.; Zetsche, F.; Bacon, T. C.; Beuselinck, R.; Butterworth, I.; Gallo, E.; Harris, V. L.; Hung, B. H.; Long, K. R.; Miller, D. B.; Morawitz, P. P. O.; Prinias, A.; Sedgbeer, J. K.; Whitfield, A. F.; Mallik, U.; McCliment, E.; Wang, M. Z.; Zhang, Y.; Cloth, P.; Filges, D.; An, S. H.; Hong, S. M.; Kim, C. O.; Kim, T. Y.; Nam, S. W.; Park, S. K.; Suh, M. H.; Yon, S. H.; Imlay, R.; Kartik, S.; Kim, H.-J.; McNeil, R. R.; Metcalf, W.; Nadendla, V. K.; Barreiro, F.; Cases, G.; Graciani, R.; Hernández, J. M.; Hervás, L.; Labarga, L.; del Peso, J.; Puga, J.; de Trocóniz, J. F.; Ikraiam, F.; Mayer, J. K.; Smith, G. R.; Corriveau, F.; Hanna, D. S.; Hartmann, J.; Hung, L. W.; Lim, J. N.; Matthews, C. G.; Mitchell, J. W.; Patel, P. M.; Sinclair, L. E.; Stairs, D. G.; Laurent, M. St.; Ullmann, R.; Bashkirov, V.; Dolgoshein, B. A.; Stifutkin, A.; Bashindzhagyan, G. L.; Ermolov, P. F.; Gladilin, L. K.; Golubkov, Y. A.; Kobrin, V. D.; Kuzmin, V. A.; Proskuryakov, A. S.; Savin, A. A.; Shcheglova, L. M.; Solomin, A. N.; Zotov, N. P.; Bentvelsen, S.; Botje, M.; Chlebana, F.; Dake, A.; Engelen, J.; de Jong, P.; de Kamps, M.; Kooijman, P.; Kruse, A.; O'Dell, V.; Tenner, A.; Tiecke, H.; Verkerke, W.; Vreeswijk, M.; Wiggers, L.; de Wolf, E.; van Woudenberg, R.; Acosta, D.; Bylsma, B.; Durkin, L. S.; Honscheid, K.; Li, C.; Ling, T. Y.; McLean, K. W.; Murray, W. N.; Park, I. H.; Romanowski, T. A.; Seidlein, R.; Bailey, D. S.; Blair, G. A.; Byrne, A.; Cashmore, R. J.; Cooper-Sarkar, A. M.; Daniels, D.; Devenish, R. C. E.; Harnew, N.; Lancaster, M.; Luffman, P. E.; McFall, J.; Nath, C.; Quadt, A.; Uijterwaal, H.; Walczak, R.; Wilson, F. F.; Yip, T.; Abbiendi, G.; Bertolin, A.; Brugnera, R.; Carlin, R.; Dal Corso, F.; De Giorgi, M.; Dosselli, U.; Gasparini, F.; Limentani, S.; Morandin, M.; Posocco, M.; Stanco, L.; Stroili, R.; Voci, C.; Bulmahn, J.; Butterworth, J. M.; Feild, R. G.; Oh, B. Y.; Whitmore, J. J.; D'Agostini, G.; Iori, M.; Marini, G.; Mattioli, M.; Nigro, A.; Hart, J. C.; McCubbin, N. A.; Prytz, K.; Shah, T. P.; Short, T. L.; Barberis, E.; Cartiglia, N.; Dubbs, T.; Heusch, C.; Van Hook, M.; Hubbard, B.; Lockman, W.; Sadrozinski, H. F.-W.; Seiden, A.; Biltzinger, J.; Seifert, R. J.; Walenta, A. H.; Zech, G.; Abramowicz, H.; Dagan, S.; Levy, A.; Hasegawa, T.; Hazumi, M.; Ishii, T.; Kuze, M.; Mine, S.; Nagasawa, Y.; Nagira, T.; Nakao, M.; Suzuki, I.; Tokushuku, K.; Yamada, S.; Yamazaki, Y.; Chiba, M.; Hamatsu, R.; Hirose, T.; Homma, K.; Kitamura, S.; Nagayama, S.; Nakamitsu, Y.; Cirio, R.; Costa, M.; Ferrero, M. I.; Lamberti, L.; Maselli, S.; Peroni, C.; Sacchi, R.; Solano, A.; Staiano, A.; Dardo, M.; Bailey, D. C.; Bandyopadhyay, D.; Benard, F.; Brkic, M.; Crombie, M. B.; Gingrich, D. M.; Hartner, G. F.; Joo, K. K.; Levman, G. M.; Martin, J. F.; Orr, R. S.; Sampson, C. R.; Teuscher, R. J.; Catterall, C. D.; Jones, T. W.; Kaziewicz, P. B.; Lane, J. B.; Saunders, R. S.; Shulman, J.; Blankenship, K.; Kochocki, J.; Lu, B.; Mo, L. W.; Bogusz, W.; Charchuła, K.; Ciborowski, J.; Gajewski, J.; Grzelak, G.; Kasprzak, M.; Krzyżanowski, M.; Muchorowski, K.; Nowak, R. J.; Pawlak, J. M.; Tymieniecka, T.; Wróblewski, A. K.; Zakrzewski, J. A.; Żarnecki, A. F.; Adamus, M.; Eisenberg, Y.; Glasman, C.; Karshon, U.; Revel, D.; Shapira, A.; Ali, I.; Behrens, B.; Dasu, S.; Fordham, C.; Foudas, C.; Goussiou, A.; Loveless, R. J.; Reeder, D. D.; Silverstein, S.; Smith, W. H.; Tsurugai, T.; Bhadra, S.; Frisken, W. R.; Furutani, K. M.; ZEUS Collaboration

    1994-11-01

    Energy flows in deep inelastic electron-proton scattering are investigated at a centre-of-mass energy of 269 GeV for the range Q2 ≥ 10 GeV 2 using the ZEUS detector. A comparison is made between events with and without a large rapidity gap between the hadronic system and the proton direction. The energy flows, corrected for detector acceptance and resolution, are shown for these two classes of events in both the HERA laboratory frame and the Breit frame. From the differences in the shapes of these energy flows we conclude that QCD radiation is suppressed in the large-rapidity-gap eents compared to the events without a large rapidity gap.

  14. The energy gap in a-Si 1 - xC g: H alloys

    NASA Astrophysics Data System (ADS)

    Valladares, Ariel A.; Valladares, Alexander; Enrique Sansores, L.; Nelis, Mary Ann Me

    1997-02-01

    The electronic structure of amorphous tetrahedral clusters of the type a-Si 1 - xC g: H are studied using the pseudopotential SCF Hartree-Fock approximation. The reduced energy gap isgiven by Egr( x) - 1 + 0.84 x for x ⩽ 0.5, whereas experimentally Egr( x) = 1 + 0.96 x. For x ⩾ 0.5 the dip in the gap value reported experimentally is verified.

  15. Edge effects on band gap energy in bilayer 2H-MoS{sub 2} under uniaxial strain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Liang; Wang, Jin; Dongare, Avinash M., E-mail: dongare@uconn.edu

    2015-06-28

    The potential of ultrathin MoS{sub 2} nanostructures for applications in electronic and optoelectronic devices requires a fundamental understanding in their electronic structure as a function of strain. Previous experimental and theoretical studies assume that an identical strain and/or stress state is always maintained in the top and bottom layers of a bilayer MoS{sub 2} film. In this study, a bilayer MoS{sub 2} supercell is constructed differently from the prototypical unit cell in order to investigate the layer-dependent electronic band gap energy in a bilayer MoS{sub 2} film under uniaxial mechanical deformations. The supercell contains an MoS{sub 2} bottom layer andmore » a relatively narrower top layer (nanoribbon with free edges) as a simplified model to simulate the as-grown bilayer MoS{sub 2} flakes with free edges observed experimentally. Our results show that the two layers have different band gap energies under a tensile uniaxial strain, although they remain mutually interacting by van der Waals interactions. The deviation in their band gap energies grows from 0 to 0.42 eV as the uniaxial strain increases from 0% to 6% under both uniaxial strain and stress conditions. The deviation, however, disappears if a compressive uniaxial strain is applied. These results demonstrate that tensile uniaxial strains applied to bilayer MoS{sub 2} films can result in distinct band gap energies in the bilayer structures. Such variations need to be accounted for when analyzing strain effects on electronic properties of bilayer or multilayered 2D materials using experimental methods or in continuum models.« less

  16. Band Gaps for Elastic Wave Propagation in a Periodic Composite Beam Structure Incorporating Microstructure and Surface Energy Effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, G. Y.; Gao, X. -L.; Bishop, J. E.

    Here, a new model for determining band gaps for elastic wave propagation in a periodic composite beam structure is developed using a non-classical Bernoulli–Euler beam model that incorporates the microstructure, surface energy and rotational inertia effects. The Bloch theorem and transfer matrix method for periodic structures are employed in the formulation. The new model reduces to the classical elasticity-based model when both the microstructure and surface energy effects are not considered. The band gaps predicted by the new model depend on the microstructure and surface elasticity of each constituent material, the unit cell size, the rotational inertia, and the volumemore » fraction. To quantitatively illustrate the effects of these factors, a parametric study is conducted. The numerical results reveal that the band gap predicted by the current non-classical model is always larger than that predicted by the classical model when the beam thickness is very small, but the difference is diminishing as the thickness becomes large. Also, it is found that the first frequency for producing the band gap and the band gap size decrease with the increase of the unit cell length according to both the current and classical models. In addition, it is observed that the effect of the rotational inertia is larger when the exciting frequency is higher and the unit cell length is smaller. Furthermore, it is seen that the volume fraction has a significant effect on the band gap size, and large band gaps can be obtained by tailoring the volume fraction and material parameters.« less

  17. Band Gaps for Elastic Wave Propagation in a Periodic Composite Beam Structure Incorporating Microstructure and Surface Energy Effects

    DOE PAGES

    Zhang, G. Y.; Gao, X. -L.; Bishop, J. E.; ...

    2017-11-20

    Here, a new model for determining band gaps for elastic wave propagation in a periodic composite beam structure is developed using a non-classical Bernoulli–Euler beam model that incorporates the microstructure, surface energy and rotational inertia effects. The Bloch theorem and transfer matrix method for periodic structures are employed in the formulation. The new model reduces to the classical elasticity-based model when both the microstructure and surface energy effects are not considered. The band gaps predicted by the new model depend on the microstructure and surface elasticity of each constituent material, the unit cell size, the rotational inertia, and the volumemore » fraction. To quantitatively illustrate the effects of these factors, a parametric study is conducted. The numerical results reveal that the band gap predicted by the current non-classical model is always larger than that predicted by the classical model when the beam thickness is very small, but the difference is diminishing as the thickness becomes large. Also, it is found that the first frequency for producing the band gap and the band gap size decrease with the increase of the unit cell length according to both the current and classical models. In addition, it is observed that the effect of the rotational inertia is larger when the exciting frequency is higher and the unit cell length is smaller. Furthermore, it is seen that the volume fraction has a significant effect on the band gap size, and large band gaps can be obtained by tailoring the volume fraction and material parameters.« less

  18. Intrinsic energy localization through discrete gap breathers in one-dimensional diatomic granular crystals.

    PubMed

    Theocharis, G; Boechler, N; Kevrekidis, P G; Job, S; Porter, Mason A; Daraio, C

    2010-11-01

    We present a systematic study of the existence and stability of discrete breathers that are spatially localized in the bulk of a one-dimensional chain of compressed elastic beads that interact via Hertzian contact. The chain is diatomic, consisting of a periodic arrangement of heavy and light spherical particles. We examine two families of discrete gap breathers: (1) an unstable discrete gap breather that is centered on a heavy particle and characterized by a symmetric spatial energy profile and (2) a potentially stable discrete gap breather that is centered on a light particle and is characterized by an asymmetric spatial energy profile. We investigate their existence, structure, and stability throughout the band gap of the linear spectrum and classify them into four regimes: a regime near the lower optical band edge of the linear spectrum, a moderately discrete regime, a strongly discrete regime that lies deep within the band gap of the linearized version of the system, and a regime near the upper acoustic band edge. We contrast discrete breathers in anharmonic Fermi-Pasta-Ulam (FPU)-type diatomic chains with those in diatomic granular crystals, which have a tensionless interaction potential between adjacent particles, and note that the asymmetric nature of the tensionless interaction potential can lead to hybrid bulk-surface localized solutions.

  19. Intrinsic energy localization through discrete gap breathers in one-dimensional diatomic granular crystals

    NASA Astrophysics Data System (ADS)

    Theocharis, G.; Boechler, N.; Kevrekidis, P. G.; Job, S.; Porter, Mason A.; Daraio, C.

    2010-11-01

    We present a systematic study of the existence and stability of discrete breathers that are spatially localized in the bulk of a one-dimensional chain of compressed elastic beads that interact via Hertzian contact. The chain is diatomic, consisting of a periodic arrangement of heavy and light spherical particles. We examine two families of discrete gap breathers: (1) an unstable discrete gap breather that is centered on a heavy particle and characterized by a symmetric spatial energy profile and (2) a potentially stable discrete gap breather that is centered on a light particle and is characterized by an asymmetric spatial energy profile. We investigate their existence, structure, and stability throughout the band gap of the linear spectrum and classify them into four regimes: a regime near the lower optical band edge of the linear spectrum, a moderately discrete regime, a strongly discrete regime that lies deep within the band gap of the linearized version of the system, and a regime near the upper acoustic band edge. We contrast discrete breathers in anharmonic Fermi-Pasta-Ulam (FPU)-type diatomic chains with those in diatomic granular crystals, which have a tensionless interaction potential between adjacent particles, and note that the asymmetric nature of the tensionless interaction potential can lead to hybrid bulk-surface localized solutions.

  20. Closing data gaps for LCA of food products: estimating the energy demand of food processing.

    PubMed

    Sanjuán, Neus; Stoessel, Franziska; Hellweg, Stefanie

    2014-01-21

    Food is one of the most energy and CO2-intensive consumer goods. While environmental data on primary agricultural products are increasingly becoming available, there are large data gaps concerning food processing. Bridging these gaps is important; for example, the food industry can use such data to optimize processes from an environmental perspective, and retailers may use this information for purchasing decisions. Producers and retailers can then market sustainable products and deliver the information demanded by governments and consumers. Finally, consumers are increasingly interested in the environmental information of foods in order to lower their consumption impacts. This study provides estimation tools for the energy demand of a representative set of food process unit operations such as dehydration, evaporation, or pasteurization. These operations are used to manufacture a variety of foods and can be combined, according to the product recipe, to quantify the heat and electricity demand during processing. In combination with inventory data on the production of the primary ingredients, this toolbox will be a basis to perform life cycle assessment studies of a large number of processed food products and to provide decision support to the stakeholders. Furthermore, a case study is performed to illustrate the application of the tools.

  1. Influence of the ordering of impurities on the appearance of an energy gap and on the electrical conductance of graphene.

    PubMed

    Repetsky, S P; Vyshyvana, I G; Kruchinin, S P; Bellucci, Stefano

    2018-06-14

    In the one-band model of strong coupling, the influence of substitutional impurity atoms on the energy spectrum and electrical conductance of graphene is studied. It is established that the ordering of substitutional impurity atoms on nodes of the crystal lattice causes the appearance of a gap in the energy spectrum of graphene with width η|δ| centered at the point yδ, where η is the parameter of ordering, δ is the difference of the scattering potentials of impurity atoms and carbon atoms, and y is the impurity concentration. The maximum value of the parameter of ordering is [Formula: see text]. For the complete ordering of impurity atoms, the energy gap width equals [Formula: see text]. If the Fermi level falls in the region of the mentioned gap, then the electrical conductance [Formula: see text] at the ordering of graphene, i.e., the metal-dielectric transition arises. If the Fermi level is located outside the gap, then the electrical conductance increases with the parameter of order η by the relation [Formula: see text]. At the concentration [Formula: see text], as the ordering of impurity atoms η →1, the electrical conductance of graphene [Formula: see text], i.e., the transition of graphene in the state of ideal electrical conductance arises.

  2. Dynamical Energy Gap Engineering in Graphene via Oscillating Out-of-Plane Deformations

    NASA Astrophysics Data System (ADS)

    Sandler, Nancy; Zhai, Dawei

    The close relation between electronic properties and mechanical deformations in graphene has been the topic of active research in recent years. Interestingly, the effect of deformations on electronic properties can be understood in terms of pseudo-magnetic fields, whose spatial distribution and intensity are controllable via the deformation geometry. Previous results showed that electromagnetic fields (light) have the potential to induce dynamical gaps in graphene's energy bands, transforming graphene from a semimetal to a semiconductor. However, laser frequencies required to achieve these regimes are in the THz regime, which imposes challenges for practical purposes. In this talk we report a novel method to create dynamical gaps using oscillating mechanical deformations, i.e., via time-dependent pseudo-magnetic fields. Using the Floquet formalism we show the existence of a dynamical gap in the band structure at energies set by the frequency of the oscillation, and with a magnitude tuned by the geometry of the deformation. This dynamical-mechanical manipulation strategy appears as a promising venue to engineer electronic properties of suspended graphene devices. Work supported by NSF-DMR 1508325.

  3. Nonlocal kinetic energy functional from the jellium-with-gap model: Applications to orbital-free density functional theory

    NASA Astrophysics Data System (ADS)

    Constantin, Lucian A.; Fabiano, Eduardo; Della Sala, Fabio

    2018-05-01

    Orbital-free density functional theory (OF-DFT) promises to describe the electronic structure of very large quantum systems, being its computational cost linear with the system size. However, the OF-DFT accuracy strongly depends on the approximation made for the kinetic energy (KE) functional. To date, the most accurate KE functionals are nonlocal functionals based on the linear-response kernel of the homogeneous electron gas, i.e., the jellium model. Here, we use the linear-response kernel of the jellium-with-gap model to construct a simple nonlocal KE functional (named KGAP) which depends on the band-gap energy. In the limit of vanishing energy gap (i.e., in the case of metals), the KGAP is equivalent to the Smargiassi-Madden (SM) functional, which is accurate for metals. For a series of semiconductors (with different energy gaps), the KGAP performs much better than SM, and results are close to the state-of-the-art functionals with sophisticated density-dependent kernels.

  4. Dark gap solitons in exciton-polariton condensates in a periodic potential.

    PubMed

    Cheng, Szu-Cheng; Chen, Ting-Wei

    2018-03-01

    We show that dark spatial gap solitons can occur inside the band gap of an exciton-polariton condensate (EPC) in a one-dimensional periodic potential. The energy dispersions of an EPC loaded into a periodic potential show a band-gap structure. Using the effective-mass model of the complex Gross-Pitaevskii equation with pump and dissipation in an EPC in a periodic potential, dark gap solitons are demonstrated near the minimum energy points of the band center and band edge of the first and second bands, respectively. The excitation energies of dark gap solitons are below these minimum points and fall into the band gap. The spatial width of a dark gap soliton becomes smaller as the pump power is increased.

  5. Dark gap solitons in exciton-polariton condensates in a periodic potential

    NASA Astrophysics Data System (ADS)

    Cheng, Szu-Cheng; Chen, Ting-Wei

    2018-03-01

    We show that dark spatial gap solitons can occur inside the band gap of an exciton-polariton condensate (EPC) in a one-dimensional periodic potential. The energy dispersions of an EPC loaded into a periodic potential show a band-gap structure. Using the effective-mass model of the complex Gross-Pitaevskii equation with pump and dissipation in an EPC in a periodic potential, dark gap solitons are demonstrated near the minimum energy points of the band center and band edge of the first and second bands, respectively. The excitation energies of dark gap solitons are below these minimum points and fall into the band gap. The spatial width of a dark gap soliton becomes smaller as the pump power is increased.

  6. Executive summary of NIH workshop on the Use and Biology of Energy Drinks: Current Knowledge and Critical Gaps

    PubMed Central

    Sorkin, Barbara C; Camp, Kathryn M; Haggans, Carol J; Deuster, Patricia A; Haverkos, Lynne; Maruvada, Padma; Witt, Ellen; Coates, Paul M

    2014-01-01

    Sales of energy drinks in the United States reached $12.5 billion in 2012. Emergency department visits related to consumption of these products have increased sharply, and while these numbers remain small relative to product sales, they raise important questions regarding biological and behavioral effects. Although some common ingredients of energy drinks have been extensively studied (e.g., caffeine, B vitamins, sugars, inositol), data on other ingredients (e.g., taurine) are limited. Summarized here are data presented elsewhere in this issue on the prevalence and patterns of caffeine-containing energy drink use, the effects of these products on alertness, fatigue, cognitive functions, sleep, mood, homeostasis, as well as on exercise physiology and metabolism, and the biological mechanisms mediating the observed effects. There are substantial data on the effects of some energy drink ingredients, such as caffeine and sugars, on many of these outcomes; however, even for these ingredients many controversies and gaps remain, and data on other ingredients in caffeine-containing energy drinks, and on ingredient interactions, are sparse. This summary concludes with a discussion of critical gaps in the data and potential next steps. PMID:25293538

  7. Molecular gap and energy level diagram for pentacene adsorbed on filled d-band metal surfaces

    NASA Astrophysics Data System (ADS)

    Baldacchini, Chiara; Mariani, Carlo; Betti, Maria Grazia; Gavioli, L.; Fanetti, M.; Sancrotti, M.

    2006-10-01

    The authors present a combined photoemission and scanning-tunneling spectroscopy study of the filled electronic states, the molecular energy gap, and the energy level diagram of highly ordered arrays of pentacene deposited on the Cu(119) vicinal surface. The states localized at the interface are clearly singled out, comparing the results at different pentacene thicknesses and with gas-phase photoemission data. The molecular gap of 2.35eV, the hole injection barrier of 1.05eV, and the electron injection barrier of 1.30eV determine the energy level diagram of the states localized at the pentacene molecules.

  8. Relating the defect band gap and the density functional band gap

    NASA Astrophysics Data System (ADS)

    Schultz, Peter; Edwards, Arthur

    2014-03-01

    Density functional theory (DFT) is an important tool to probe the physics of materials. The Kohn-Sham (KS) gap in DFT is typically (much) smaller than the observed band gap for materials in nature, the infamous ``band gap problem.'' Accurate prediction of defect energy levels is often claimed to be a casualty--the band gap defines the energy scale for defect levels. By applying rigorous control of boundary conditions in size-converged supercell calculations, however, we compute defect levels in Si and GaAs with accuracies of ~0.1 eV, across the full gap, unhampered by a band gap problem. Using GaAs as a theoretical laboratory, we show that the defect band gap--the span of computed defect levels--is insensitive to variations in the KS gap (with functional and pseudopotential), these KS gaps ranging from 0.1 to 1.1 eV. The defect gap matches the experimental 1.52 eV gap. The computed defect gaps for several other III-V, II-VI, I-VII, and other compounds also agree with the experimental gap, and show no correlation with the KS gap. Where, then, is the band gap problem? This talk presents these results, discusses why the defect gap and the KS gap are distinct, implying that current understanding of what the ``band gap problem'' means--and how to ``fix'' it--need to be rethought. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's NNSA under contract DE-AC04-94AL85000.

  9. Permanent-magnet-less machine having an enclosed air gap

    DOEpatents

    Hsu, John S [Oak Ridge, TN

    2012-02-07

    A permanent magnet-less, brushless synchronous system includes a stator that generates a magnetic rotating field when sourced by an alternating current. An uncluttered rotor disposed within the magnetic rotating field is spaced apart from the stator to form an air gap relative to an axis of rotation. A stationary excitation core spaced apart from the uncluttered rotor by an axial air gap and a radial air gap substantially encloses the stationary excitation core. Some permanent magnet-less, brushless synchronous systems include stator core gaps to reduce axial flux flow. Some permanent magnet-less, brushless synchronous systems include an uncluttered rotor coupled to outer laminations. The quadrature-axis inductance may be increased in some synchronous systems. Some synchronous systems convert energy such as mechanical energy into electrical energy (e.g., a generator); other synchronous systems may convert any form of energy into mechanical energy (e.g., a motor).

  10. Permanent-magnet-less machine having an enclosed air gap

    DOEpatents

    Hsu, John S.

    2013-03-05

    A permanent magnet-less, brushless synchronous system includes a stator that generates a magnetic rotating field when sourced by an alternating current. An uncluttered rotor disposed within the magnetic rotating field is spaced apart from the stator to form an air gap relative to an axis of rotation. A stationary excitation core spaced apart from the uncluttered rotor by an axial air gap and a radial air gap substantially encloses the stationary excitation core. Some permanent magnet-less, brushless synchronous systems include stator core gaps to reduce axial flux flow. Some permanent magnet-less, brushless synchronous systems include an uncluttered rotor coupled to outer laminations. The quadrature-axis inductance may be increased in some synchronous systems. Some synchronous systems convert energy such as mechanical energy into electrical energy (e.g., a generator); other synchronous systems may convert any form of energy into mechanical energy (e.g., a motor).

  11. The Studies of a Vacuum Gap Breakdown after High-Current Arc Interruption with Increasing the Voltage

    NASA Astrophysics Data System (ADS)

    Schneider, A. V.; Popov, S. A.; Batrakov, A. V.; Dubrovskaya, E. L.; Lavrinovich, V. A.

    2017-12-01

    Vacuum-gap breakdown has been studied after high-current arc interruption with a subsequent increase in the transient recovery voltage across a gap. The effects of factors, such as the rate of the rise in the transient voltage, the potential of the shield that surrounds a discharge gap, and the arc burning time, have been determined. It has been revealed that opening the contacts earlier leads to the formation of an anode spot, which is the source of electrode material vapors into the discharge gap after current zero moment. Under the conditions of increasing voltage, this fact results in the breakdown. Too late opening leads to the breakdown of a short gap due to the high electric fields.

  12. Determination of the optical band-gap energy of cubic and hexagonal boron nitride using luminescence excitation spectroscopy

    NASA Astrophysics Data System (ADS)

    Evans, D. A.; McGlynn, A. G.; Towlson, B. M.; Gunn, M.; Jones, D.; Jenkins, T. E.; Winter, R.; Poolton, N. R. J.

    2008-02-01

    Using synchrotron-based luminescence excitation spectroscopy in the energy range 4-20 eV at 8 K, the indirect Γ-X optical band-gap transition in cubic boron nitride is determined as 6.36 ± 0.03 eV, and the quasi-direct band-gap energy of hexagonal boron nitride is determined as 5.96 ± 0.04 eV. The composition and structure of the materials are self-consistently established by optically detected x-ray absorption spectroscopy, and both x-ray diffraction and Raman measurements on the same samples give independent confirmation of their chemical and structural purity: together, the results are therefore considered as providing definitive measurements of the optical band-gap energies of the two materials.

  13. Anisotropic Eliashberg theory of MgB 2: Tc, isotope effects, superconducting energy gaps, quasiparticles, and specific heat

    NASA Astrophysics Data System (ADS)

    Choi, Hyoung Joon; Cohen, Marvin L.; Louie, Steven G.

    2003-03-01

    The anisotropic Eliashberg formalism, employing results from the ab initio pseudopotential density functional calculations, is applied to study the superconducting properties of MgB 2. It is shown that the relatively high transition temperature of MgB 2 originates from strong electron-phonon coupling of the hole states in the boron σ-bonds although the coupling strength averaged over the Fermi surface is moderate, and the reduction of the isotope effect arises from the large anharmonicity of the relevant phonons. The superconducting energy gap is nodeless but its value varies strongly on different pieces of the Fermi surface. The gap values Δ( k) cluster into two groups at low temperature, a small value of ∼2 meV and a large value of ∼7 meV, resulting in two thresholds in the quasiparticle density of states and an increase in the specific heat at low temperature due to quasiparticle excitations over the small gap. All of these results are in good agreement with corresponding experiments and support the view that MgB 2 is a phonon-mediated multiple-gap superconductor.

  14. Role of superconducting energy gap in extended BCS-Bose crossover theory

    NASA Astrophysics Data System (ADS)

    Chávez, I.; García, L. A.; de Llano, M.; Grether, M.

    2017-10-01

    The generalized Bose-Einstein condensation (GBEC) theory of superconductivity (SC) is briefly surveyed. It hinges on three distinct new ingredients: (i) Treatment of Cooper pairs (CPs) as actual bosons since they obey Bose statistics, in contrast to BCS pairs which do not obey Bose commutation relations; (ii) inclusion of two-hole Cooper pairs (2hCPs) on an equal footing with two-electron Cooper pairs (2eCPs), thus making this a complete boson-fermion (BF) model; and (iii) inclusion in the resulting ternary ideal BF gas with particular BF vertex interactions that drive boson formation/disintegration processes. GBEC subsumes as special cases both BCS (having its 50-50 symmetry of both kinds of CPs) and ordinary BEC theories (having no 2hCPs), as well as the now familiar BCS-Bose crossover theory. We extended the crossover theory with the explicit inclusion of 2hCPs and construct a phase diagram of Tc/TF versus n/nf, where Tc and TF are the critical and Fermi temperatures, n is the total number density and nf that of unbound electrons at T = 0. Also, with this extended crossover one can construct the energy gap Δ(T)/Δ(0) versus T/Tc for some elemental SCs by solving at least two equations numerically: a gap-like and a number equation. In 50-50 symmetry, the energy gap curve agrees quite well with experimental data. But ignoring 2hCPs altogether leads to the gap curve falling substantially below that with 50-50 symmetry which already fits the data quite well, showing that 2hCPs are indispensable to describe SCs.

  15. Tuning Ferritin’s band gap through mixed metal oxide nanoparticle formation

    NASA Astrophysics Data System (ADS)

    Olsen, Cameron R.; Embley, Jacob S.; Hansen, Kameron R.; Henrichsen, Andrew M.; Peterson, J. Ryan; Colton, John S.; Watt, Richard K.

    2017-05-01

    This study uses the formation of a mixed metal oxide inside ferritin to tune the band gap energy of the ferritin mineral. The mixed metal oxide is composed of both Co and Mn, and is formed by reacting aqueous Co2+ with {{{{MnO}}}4}- in the presence of apoferritin. Altering the ratio between the two reactants allowed for controlled tuning of the band gap energies. All minerals formed were indirect band gap materials, with indirect band gap energies ranging from 0.52 to 1.30 eV. The direct transitions were also measured, with energy values ranging from 2.71 to 3.11 eV. Tuning the band gap energies of these samples changes the wavelengths absorbed by each mineral, increasing ferritin’s potential in solar-energy harvesting. Additionally, the success of using {{{{MnO}}}4}- in ferritin mineral formation opens the possibility for new mixed metal oxide cores inside ferritin.

  16. Executive summary of NIH workshop on the Use and Biology of Energy Drinks: Current Knowledge and Critical Gaps.

    PubMed

    Sorkin, Barbara C; Camp, Kathryn M; Haggans, Carol J; Deuster, Patricia A; Haverkos, Lynne; Maruvada, Padma; Witt, Ellen; Coates, Paul M

    2014-10-01

    Sales of energy drinks in the United States reached $12.5 billion in 2012. Emergency department visits related to consumption of these products have increased sharply, and while these numbers remain small relative to product sales, they raise important questions regarding biological and behavioral effects. Although some common ingredients of energy drinks have been extensively studied (e.g., caffeine, B vitamins, sugars, inositol), data on other ingredients (e.g., taurine) are limited. Summarized here are data presented elsewhere in this issue on the prevalence and patterns of caffeine-containing energy drink use, the effects of these products on alertness, fatigue, cognitive functions, sleep, mood, homeostasis, as well as on exercise physiology and metabolism, and the biological mechanisms mediating the observed effects. There are substantial data on the effects of some energy drink ingredients, such as caffeine and sugars, on many of these outcomes; however, even for these ingredients many controversies and gaps remain, and data on other ingredients in caffeine-containing energy drinks, and on ingredient interactions, are sparse. This summary concludes with a discussion of critical gaps in the data and potential next steps. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  17. The strain induced band gap modulation from narrow gap semiconductor to half-metal on Ti{sub 2}CrGe: A first principles study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jia, E-mail: jiali@hebut.edu.cn; Research Institute for Energy Equipment Materials, Hebei University of Technology, Tianjin 300401; Zhang, Zhidong

    The Heusler alloy Ti{sub 2}CrGe is a stable L2{sub 1} phase with antiferromagnetic ordering. With band-gap energy (∼ 0.18 eV) obtained from a first-principles calculation, it belongs to the group of narrow band gap semiconductor. The band-gap energy decreases with increasing lattice compression and disappears until a strain of −5%; moreover, gap contraction only occurs in the spin-down states, leading to half-metallic character at the −5% strain. The Ti{sub 1}, Ti{sub 2}, and Cr moments all exhibit linear changes in behavior within strains of −5%– +5%. Nevertheless, the total zero moment is robust for these strains. The imaginary part ofmore » the dielectric function for both up and down spin states shows a clear onset energy, indicating a corresponding electronic gap for the two spin channels.« less

  18. The Use of Gap Analysis to Increase Student Completion Rates at Travelor Adult School

    ERIC Educational Resources Information Center

    Gil, Blanca Estela

    2013-01-01

    This project applied the gap analysis problem-solving framework (Clark & Estes, 2008) in order to help develop strategies to increase completion rates at Travelor Adult School. The purpose of the study was to identify whether the knowledge, motivation and organization barriers were contributing to the identified gap. A mixed method approached…

  19. Conductance modulation in Weyl semimetals with tilted energy dispersion without a band gap

    NASA Astrophysics Data System (ADS)

    Yesilyurt, Can; Siu, Zhuo Bin; Tan, Seng Ghee; Liang, Gengchiau; Jalil, Mansoor B. A.

    2017-06-01

    We investigate the tunneling conductance of Weyl semimetal with tilted energy dispersion by considering electron transmission through a p-n-p junction with one-dimensional electric and magnetic barriers. In the presence of both electric and magnetic barriers, we found that a large conductance gap can be produced with the aid of tilted energy dispersion without a band gap. The origin of this effect is the shift of the electron wave-vector at barrier boundaries caused by (i) the pseudo-magnetic field induced by electrical potential, i.e., a newly discovered feature that is only possible in the materials possessing tilted energy dispersion, (ii) the real magnetic field induced by a ferromagnetic layer deposited on the top of the system. We use a realistic barrier structure applicable in current nanotechnology and analyze the temperature dependence of the tunneling conductance. The new approach presented here may resolve a major problem of possible transistor applications in topological semimetals, i.e., the absence of normal backscattering and gapless band structure.

  20. Exponential vanishing of the ground-state gap of the quantum random energy model via adiabatic quantum computing

    NASA Astrophysics Data System (ADS)

    Adame, J.; Warzel, S.

    2015-11-01

    In this note, we use ideas of Farhi et al. [Int. J. Quantum. Inf. 6, 503 (2008) and Quantum Inf. Comput. 11, 840 (2011)] who link a lower bound on the run time of their quantum adiabatic search algorithm to an upper bound on the energy gap above the ground-state of the generators of this algorithm. We apply these ideas to the quantum random energy model (QREM). Our main result is a simple proof of the conjectured exponential vanishing of the energy gap of the QREM.

  1. Exponential vanishing of the ground-state gap of the quantum random energy model via adiabatic quantum computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adame, J.; Warzel, S., E-mail: warzel@ma.tum.de

    In this note, we use ideas of Farhi et al. [Int. J. Quantum. Inf. 6, 503 (2008) and Quantum Inf. Comput. 11, 840 (2011)] who link a lower bound on the run time of their quantum adiabatic search algorithm to an upper bound on the energy gap above the ground-state of the generators of this algorithm. We apply these ideas to the quantum random energy model (QREM). Our main result is a simple proof of the conjectured exponential vanishing of the energy gap of the QREM.

  2. Energy Gaps and Layer Polarization of Integer and Fractional Quantum Hall States in Bilayer Graphene.

    PubMed

    Shi, Yanmeng; Lee, Yongjin; Che, Shi; Pi, Ziqi; Espiritu, Timothy; Stepanov, Petr; Smirnov, Dmitry; Lau, Chun Ning; Zhang, Fan

    2016-02-05

    Owing to the spin, valley, and orbital symmetries, the lowest Landau level in bilayer graphene exhibits multicomponent quantum Hall ferromagnetism. Using transport spectroscopy, we investigate the energy gaps of integer and fractional quantum Hall (QH) states in bilayer graphene with controlled layer polarization. The state at filling factor ν=1 has two distinct phases: a layer polarized state that has a larger energy gap and is stabilized by high electric field, and a hitherto unobserved interlayer coherent state with a smaller gap that is stabilized by large magnetic field. In contrast, the ν=2/3 quantum Hall state and a feature at ν=1/2 are only resolved at finite electric field and large magnetic field. These results underscore the importance of controlling layer polarization in understanding the competing symmetries in the unusual QH system of BLG.

  3. Synthesis and Exciton Dynamics of Donor-Orthogonal Acceptor Conjugated Polymers: Reducing the Singlet-Triplet Energy Gap.

    PubMed

    Freeman, David M E; Musser, Andrew J; Frost, Jarvist M; Stern, Hannah L; Forster, Alexander K; Fallon, Kealan J; Rapidis, Alexandros G; Cacialli, Franco; McCulloch, Iain; Clarke, Tracey M; Friend, Richard H; Bronstein, Hugo

    2017-08-16

    The presence of energetically low-lying triplet states is a hallmark of organic semiconductors. Even though they present a wealth of interesting photophysical properties, these optically dark states significantly limit optoelectronic device performance. Recent advances in emissive charge-transfer molecules have pioneered routes to reduce the energy gap between triplets and "bright" singlets, allowing thermal population exchange between them and eliminating a significant loss channel in devices. In conjugated polymers, this gap has proved resistant to modification. Here, we introduce a general approach to reduce the singlet-triplet energy gap in fully conjugated polymers, using a donor-orthogonal acceptor motif to spatially separate electron and hole wave functions. This new generation of conjugated polymers allows for a greatly reduced exchange energy, enhancing triplet formation and enabling thermally activated delayed fluorescence. We find that the mechanisms of both processes are driven by excited-state mixing between π-π*and charge-transfer states, affording new insight into reverse intersystem crossing.

  4. Free Energy Gap and Statistical Thermodynamic Fidelity of DNA Codes

    DTIC Science & Technology

    2007-10-01

    reverse-complement unless otherwise stated. For strand x, let Nx denote its complement. A (perfect) Watson - Crick duplex is the joining of complement...is possible for complementary sequences to form a non-perfectly aligned duplex, we will call any x W Nx duplex a Watson - Crick (WC) duplex. Two...DATES COVERED (From - To) 4. TITLE AND SUBTITLE FREE ENERGY GAP AND STATISTICAL THERMODYNAMIC FIDELITY OF DNA CODES 5a. CONTRACT NUMBER FA8750-07

  5. Quasiparticle band gap of organic-inorganic hybrid perovskites: Crystal structure, spin-orbit coupling, and self-energy effects

    NASA Astrophysics Data System (ADS)

    Gao, Weiwei; Gao, Xiang; Abtew, Tesfaye A.; Sun, Yi-Yang; Zhang, Shengbai; Zhang, Peihong

    2016-02-01

    The quasiparticle band gap is one of the most important materials properties for photovoltaic applications. Often the band gap of a photovoltaic material is determined (and can be controlled) by various factors, complicating predictive materials optimization. An in-depth understanding of how these factors affect the size of the gap will provide valuable guidance for new materials discovery. Here we report a comprehensive investigation on the band gap formation mechanism in organic-inorganic hybrid perovskites by decoupling various contributing factors which ultimately determine their electronic structure and quasiparticle band gap. Major factors, namely, quasiparticle self-energy, spin-orbit coupling, and structural distortions due to the presence of organic molecules, and their influences on the quasiparticle band structure of organic-inorganic hybrid perovskites are illustrated. We find that although methylammonium cations do not contribute directly to the electronic states near band edges, they play an important role in defining the band gap by introducing structural distortions and controlling the overall lattice constants. The spin-orbit coupling effects drastically reduce the electron and hole effective masses in these systems, which is beneficial for high carrier mobilities and small exciton binding energies.

  6. Effect of a gap opening on the conductance of graphene with magnetic barrier structures

    NASA Astrophysics Data System (ADS)

    Esmailpour, Mohammad

    2018-04-01

    In the present study Klein tunneling in a single-layer gapped graphene was investigated by transfer matrix method under normal magnetic field for one and two magnetic barriers. Calculations show that electron transmission through a magnetic barrier is deflected to positive angles and reduces as the magnitude of magnetic field and especially the energy gap increases. This reduction is even more significant in larger fields so that after reaching a specific value of energy gap, an effective confinement for fermions and suppression of Klein tunneling is reached particularly in normal incidence and the conductance becomes zero. Unlike one barrier, the process of tunneling through two magnetic barriers induces symmetric transmission probability versus the incident angle; even, for lower energy gaps, electron transmission probability increases which in turn reduces total conductance via proper changes in the value of the magnetic field and energy gap. In general, it is concluded that confining electrons in asymmetric transmission through one barrier is conducted better than two barriers.

  7. Temperature-Dependent Energy Gap Shift and Thermally Activated Transition in Multilayer CdTe/ZnTe Quantum Dots.

    PubMed

    Man, Minh Tan; Lee, Hong Seok

    2015-10-01

    We investigated the influence of growth conditions on carrier dynamics in multilayer CdTe/ZnTe quantum dots (QDs) by monitoring the temperature dependence of the photoluminescence emission energy. The results were analyzed using the empirical Varshni and O'Donnell relations for temperature variation of the energy gap shift. Best fit values showed that the thermally activated transition between two different states occurs due to band low-temperature quenching with values separated by 5.0-6.5 meV. The addition of stack periods in multilayer CdTe/ZnTe QDs plays an important role in the energy gap shift, where the exciton binding energy is enhanced, and, conversely, the exciton-phonon coupling strength is suppressed with an average energy of 19.3-19.8 meV.

  8. Design of single-winding energy-storage reactors for dc-to-dc converters using air-gapped magnetic-core structures

    NASA Technical Reports Server (NTRS)

    Ohri, A. K.; Wilson, T. G.; Owen, H. A., Jr.

    1977-01-01

    A procedure is presented for designing air-gapped energy-storage reactors for nine different dc-to-dc converters resulting from combinations of three single-winding power stages for voltage stepup, current stepup and voltage stepup/current stepup and three controllers with control laws that impose constant-frequency, constant transistor on-time and constant transistor off-time operation. The analysis, based on the energy-transfer requirement of the reactor, leads to a simple relationship for the required minimum volume of the air gap. Determination of this minimum air gap volume then permits the selection of either an air gap or a cross-sectional core area. Having picked one parameter, the minimum value of the other immediately leads to selection of the physical magnetic structure. Other analytically derived equations are used to obtain values for the required turns, the inductance, and the maximum rms winding current. The design procedure is applicable to a wide range of magnetic material characteristics and physical configurations for the air-gapped magnetic structure.

  9. Band Gap Engineering of Titania Systems Purposed for Photocatalytic Activity

    NASA Astrophysics Data System (ADS)

    Thurston, Cameron

    Ab initio computer aided design drastically increases candidate population for highly specified material discovery and selection. These simulations, carried out through a first-principles computational approach, accurately extrapolate material properties and behavior. Titanium Dioxide (TiO2 ) is one such material that stands to gain a great deal from the use of these simulations. In its anatase form, titania (TiO2 ) has been found to exhibit a band gap nearing 3.2 eV. If titania is to become a viable alternative to other contemporary photoactive materials exhibiting band gaps better suited for the solar spectrum, then the band gap must be subsequently reduced. To lower the energy needed for electronic excitation, both transition metals and non-metals have been extensively researched and are currently viable candidates for the continued reduction of titania's band gap. The introduction of multicomponent atomic doping introduces new energy bands which tend to both reduce the band gap and recombination loss. Ta-N, Nb-N, V-N, Cr-N, Mo-N, and W-N substitutions were studied in titania and subsequent energy and band gap calculations show a favorable band gap reduction in the case of passivated systems.

  10. Increased Epithelial Gap Density in the Noninflamed Duodenum of Children With Inflammatory Bowel Diseases.

    PubMed

    Zaidi, Deenaz; Bording-Jorgensen, Michael; Huynh, Hien Q; Carroll, Matthew W; Turcotte, Jean-Francois; Sergi, Consolato; Liu, Julia; Wine, Eytan

    2016-12-01

    Inflammatory bowel diseases (IBD) present commonly in childhood, with unknown etiology, but an important role for the epithelial lining is suggested. Epithelial cell extrusion, measured by counting gaps between epithelial cells, is higher in adult patients with Crohn disease (CD) than in controls. Our objectives were to compare epithelial gaps in the duodenum of IBD and non-IBD pediatric patients, to study the correlation between epithelial gaps, inflammation, and disease activity, and identify potential mechanisms. Epithelial gap density of the duodenum was evaluated using probe-based confocal laser endomicroscopy in 26 pediatric patients with IBD (16 CD, 10 ulcerative colitis [UC]) and 17 non-IBD controls during endoscopy. Epithelial gaps were correlated with serum inflammatory markers, disease activity indices, and intraepithelial lymphocytes. A panel of 10 inflammatory cytokines and expression of TNFAIP3 (A20; inhibits NF-κβ-induced inflammation) were analyzed in duodenal and ileal biopsies. Confocal imaging showed significantly higher epithelial gap density in patients with IBD, including UC. Interleukin (IL)-2 and IL-8 were higher in duodenal but not ileal biopsies of patients with UC. No significant correlation was present between C-reactive protein, erythrocyte sedimentation rate, disease activity indices, and epithelial gaps in patients with UC. In patients with CD, C-reactive protein positively correlated with epithelial gaps. A20 expression in the duodenum was unchanged among non-IBD and IBD cases. Duodenal epithelial gaps are increased in pediatric patients with IBD (including UC) but are unrelated to inflammation. This suggests that altered epithelial barrier is an important systemic feature of pediatric IBD and is not only secondary to inflammation.

  11. Increased structure and active learning reduce the achievement gap in introductory biology.

    PubMed

    Haak, David C; HilleRisLambers, Janneke; Pitre, Emile; Freeman, Scott

    2011-06-03

    Science, technology, engineering, and mathematics instructors have been charged with improving the performance and retention of students from diverse backgrounds. To date, programs that close the achievement gap between students from disadvantaged versus nondisadvantaged educational backgrounds have required extensive extramural funding. We show that a highly structured course design, based on daily and weekly practice with problem-solving, data analysis, and other higher-order cognitive skills, improved the performance of all students in a college-level introductory biology class and reduced the achievement gap between disadvantaged and nondisadvantaged students--without increased expenditures. These results support the Carnegie Hall hypothesis: Intensive practice, via active-learning exercises, has a disproportionate benefit for capable but poorly prepared students.

  12. Gap state analysis in electric-field-induced band gap for bilayer graphene.

    PubMed

    Kanayama, Kaoru; Nagashio, Kosuke

    2015-10-29

    The origin of the low current on/off ratio at room temperature in dual-gated bilayer graphene field-effect transistors is considered to be the variable range hopping in gap states. However, the quantitative estimation of gap states has not been conducted. Here, we report the systematic estimation of the energy gap by both quantum capacitance and transport measurements and the density of states for gap states by the conductance method. An energy gap of ~ 250 meV is obtained at the maximum displacement field of ~ 3.1 V/nm, where the current on/off ratio of ~ 3 × 10(3) is demonstrated at 20 K. The density of states for the gap states are in the range from the latter half of 10(12) to 10(13) eV(-1) cm(-2). Although the large amount of gap states at the interface of high-k oxide/bilayer graphene limits the current on/off ratio at present, our results suggest that the reduction of gap states below ~ 10(11) eV(-1) cm(-2) by continual improvement of the gate stack makes bilayer graphene a promising candidate for future nanoelectronic device applications.

  13. Inter-band optoelectronic properties in quantum dot structure of low band gap III-V semiconductors

    NASA Astrophysics Data System (ADS)

    Dey, Anup; Maiti, Biswajit; Chanda Sarkar, Debasree

    2014-04-01

    A generalized theory is developed to study inter-band optical absorption coefficient (IOAC) and material gain (MG) in quantum dot structures of narrow gap III-V compound semiconductor considering the wave-vector (k→) dependence of the optical transition matrix element. The band structures of these low band gap semiconducting materials with sufficiently separated split-off valance band are frequently described by the three energy band model of Kane. This has been adopted for analysis of the IOAC and MG taking InAs, InSb, Hg1-xCdxTe, and In1-xGaxAsyP1-y lattice matched to InP, as example of III-V compound semiconductors, having varied split-off energy band compared to their bulk band gap energy. It has been found that magnitude of the IOAC for quantum dots increases with increasing incident photon energy and the lines of absorption are more closely spaced in the three band model of Kane than those with parabolic energy band approximations reflecting the direct the influence of energy band parameters. The results show a significant deviation to the MG spectrum of narrow-gap materials having band nonparabolicity compared to the parabolic band model approximations. The results reflect the important role of valence band split-off energies in these narrow gap semiconductors.

  14. Free Energy Gap and Statistical Thermodynamic Fidelity of DNA Codes (Postprint)

    DTIC Science & Technology

    2007-01-01

    reverse-complement unless otherwise stated. For strand x, let Nx denote its complement. A (perfect) Watson - Crick duplex is the joining of complement...is possible for complementary sequences to form a non-perfectly aligned duplex, we will call any x W Nx duplex a Watson - Crick (WC) duplex. Two...DATES COVERED (From - To) 4. TITLE AND SUBTITLE FREE ENERGY GAP AND STATISTICAL THERMODYNAMIC FIDELITY OF DNA CODES 5a. CONTRACT NUMBER FA8750-07

  15. Tuning the energy gap of bilayer α-graphyne by applying strain and electric field

    NASA Astrophysics Data System (ADS)

    Yang, Hang; Wu, Wen-Zhi; Jin, Yu; Wan-Lin, Guo

    2016-02-01

    Our density functional theory calculations show that the energy gap of bilayer α-graphyne can be modulated by a vertically applied electric field and interlayer strain. Like bilayer graphene, the bilayer α-graphyne has electronic properties that are hardly changed under purely mechanical strain, while an external electric field can open the gap up to 120 meV. It is of special interest that compressive strain can further enlarge the field induced gap up to 160 meV, while tensile strain reduces the gap. We attribute the gap variation to the novel interlayer charge redistribution between bilayer α-graphynes. These findings shed light on the modulation of Dirac cone structures and potential applications of graphyne in mechanical-electric devices. Project supported by the National Key Basic Research Program of China (Grant Nos. 2013CB932604 and 2012CB933403), the National Natural Science Foundation of China (Grant Nos. 51472117 and 51535005), the Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures, China (Grant No. 0414K01), the Nanjing University of Aeronautics and Astronautics (NUAA) Fundamental Research Funds, China (Grant No. NP2015203), and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

  16. Optical Band Gap Alteration of Graphene Oxide via Ozone Treatment.

    PubMed

    Hasan, Md Tanvir; Senger, Brian J; Ryan, Conor; Culp, Marais; Gonzalez-Rodriguez, Roberto; Coffer, Jeffery L; Naumov, Anton V

    2017-07-25

    Graphene oxide (GO) is a graphene derivative that emits fluorescence, which makes GO an attractive material for optoelectronics and biotechnology. In this work, we utilize ozone treatment to controllably tune the band gap of GO, which can significantly enhance its applications. Ozone treatment in aqueous GO suspensions yields the addition/rearrangement of oxygen-containing functional groups suggested by the increase in vibrational transitions of C-O and C=O moieties. Concomitantly it leads to an initial increase in GO fluorescence intensity and significant (100 nm) blue shifts in emission maxima. Based on the model of GO fluorescence originating from sp 2 graphitic islands confined by oxygenated addends, we propose that ozone-induced functionalization decreases the size of graphitic islands affecting the GO band gap and emission energies. TEM analyses of GO flakes confirm the size decrease of ordered sp 2 domains with ozone treatment, whereas semi-empirical PM3 calculations on model addend-confined graphitic clusters predict the inverse dependence of the band gap energies on sp 2 cluster size. This model explains ozone-induced increase in emission energies yielding fluorescence blue shifts and helps develop an understanding of the origins of GO fluorescence emission. Furthermore, ozone treatment provides a versatile approach to controllably alter GO band gap for optoelectronics and bio-sensing applications.

  17. Edge currents shunt the insulating bulk in gapped graphene

    NASA Astrophysics Data System (ADS)

    Zhu, M. J.; Kretinin, A. V.; Thompson, M. D.; Bandurin, D. A.; Hu, S.; Yu, G. L.; Birkbeck, J.; Mishchenko, A.; Vera-Marun, I. J.; Watanabe, K.; Taniguchi, T.; Polini, M.; Prance, J. R.; Novoselov, K. S.; Geim, A. K.; Ben Shalom, M.

    2017-02-01

    An energy gap can be opened in the spectrum of graphene reaching values as large as 0.2 eV in the case of bilayers. However, such gaps rarely lead to the highly insulating state expected at low temperatures. This long-standing puzzle is usually explained by charge inhomogeneity. Here we revisit the issue by investigating proximity-induced superconductivity in gapped graphene and comparing normal-state measurements in the Hall bar and Corbino geometries. We find that the supercurrent at the charge neutrality point in gapped graphene propagates along narrow channels near the edges. This observation is corroborated by using the edgeless Corbino geometry in which case resistivity at the neutrality point increases exponentially with increasing the gap, as expected for an ordinary semiconductor. In contrast, resistivity in the Hall bar geometry saturates to values of about a few resistance quanta. We attribute the metallic-like edge conductance to a nontrivial topology of gapped Dirac spectra.

  18. Role of surface energy on the morphology and optical properties of GaP micro & nano structures grown on polar and non-polar substrates

    NASA Astrophysics Data System (ADS)

    Roychowdhury, R.; Kumar, Shailendra; Wadikar, A.; Mukherjee, C.; Rajiv, K.; Sharma, T. K.; Dixit, V. K.

    2017-10-01

    Role of surface energy on the morphology, crystalline quality, electronic structure and optical properties of GaP layer grown on Si (001), Si (111), Ge (111) and GaAs (001) is investigated. GaP layers are grown on four different substrates under identical growth kinetics by metal organic vapour phase epitaxy. The atomic force microscopy images show that GaP layer completely covers the surface of GaAs substrate. On the other hand, the surfaces of Si (001), Si (111), Ge (111) substrates are partially covered with crystallographically morphed GaP island type micro and nano-structures. Origin of these crystallographically morphed GaP island is explained by the theoretical calculation of surface energy of the layer and corresponding substrates respectively. The nature of GaP island type micro and nano-structures and layers are single crystalline with existence of rotational twins on Si and Ge (111) substrates which is confirmed by the phi, omega and omega/2theta scans of high resolution x-ray diffraction. The electronic valence band offsets between the GaP and substrates have been determined from the valence band spectra of ultraviolet photoelectron spectroscopy. The valence electron plasmon of GaP are investigated by studying the energy values of Ga (3d) core level along with loss peaks in the energy dependent photoelectron spectra. The peak observed within the range of 3-6 eV from the Ga (3d) core level in the photoelectron spectra are associated to inter band transitions as their energy values are estimated from the pseudo dielectric function by the spectroscopic ellipsometry.

  19. Ab-initio study of structural, electronic, and transport properties of zigzag GaP nanotubes.

    PubMed

    Srivastava, Anurag; Jain, Sumit Kumar; Khare, Purnima Swarup

    2014-03-01

    Stability and electronic properties of zigzag (3 ≤ n ≤ 16) gallium phosphide nanotubes (GaP NTs) have been analyzed by employing a systematic ab-intio approach based on density functional theory using generalized gradient approximation with revised Perdew Burke Ernzerhoff type parameterization. Diameter dependence of bond length, buckling, binding energy, and band gap has been investigated and the analysis shows that the bond length and buckling decreases with increasing diameter of the tube, highest binding energy of (16, 0) confirms this as the most stable amongst all the NTs taken into consideration. The present GaP NTs shows direct band gap and it increases with diameter of the tubes. Using a two probe model for (4, 0) NT the I-V relationship shows an exponential increase in current on applying bias voltage beyond 1.73 volt.

  20. Effects of dynamical paths on the energy gap and the corrections to the free energy in path integrals of mean-field quantum spin systems

    NASA Astrophysics Data System (ADS)

    Koh, Yang Wei

    2018-03-01

    In current studies of mean-field quantum spin systems, much attention is placed on the calculation of the ground-state energy and the excitation gap, especially the latter, which plays an important role in quantum annealing. In pure systems, the finite gap can be obtained by various existing methods such as the Holstein-Primakoff transform, while the tunneling splitting at first-order phase transitions has also been studied in detail using instantons in many previous works. In disordered systems, however, it remains challenging to compute the gap of large-size systems with specific realization of disorder. Hitherto, only quantum Monte Carlo techniques are practical for such studies. Recently, Knysh [Nature Comm. 7, 12370 (2016), 10.1038/ncomms12370] proposed a method where the exponentially large dimensionality of such systems is condensed onto a random potential of much lower dimension, enabling efficient study of such systems. Here we propose a slightly different approach, building upon the method of static approximation of the partition function widely used for analyzing mean-field models. Quantum effects giving rise to the excitation gap and nonextensive corrections to the free energy are accounted for by incorporating dynamical paths into the path integral. The time-dependence of the trace of the time-ordered exponential of the effective Hamiltonian is calculated by solving a differential equation perturbatively, yielding a finite-size series expansion of the path integral. Formulae for the first excited-state energy are proposed to aid in computing the gap. We illustrate our approach using the infinite-range ferromagnetic Ising model and the Hopfield model, both in the presence of a transverse field.

  1. High Throughput Light Absorber Discovery, Part 2: Establishing Structure-Band Gap Energy Relationships.

    PubMed

    Suram, Santosh K; Newhouse, Paul F; Zhou, Lan; Van Campen, Douglas G; Mehta, Apurva; Gregoire, John M

    2016-11-14

    Combinatorial materials science strategies have accelerated materials development in a variety of fields, and we extend these strategies to enable structure-property mapping for light absorber materials, particularly in high order composition spaces. High throughput optical spectroscopy and synchrotron X-ray diffraction are combined to identify the optical properties of Bi-V-Fe oxides, leading to the identification of Bi 4 V 1.5 Fe 0.5 O 10.5 as a light absorber with direct band gap near 2.7 eV. The strategic combination of experimental and data analysis techniques includes automated Tauc analysis to estimate band gap energies from the high throughput spectroscopy data, providing an automated platform for identifying new optical materials.

  2. Investigating the Gap Between Estimated and Actual Energy Efficiency and Conservation Savings for Public Buildings Projects & Programs in United States

    NASA Astrophysics Data System (ADS)

    Qaddus, Muhammad Kamil

    The gap between estimated and actual savings in energy efficiency and conservation (EE&C) projects or programs forms the problem statement for the scope of public and government buildings. This gap has been analyzed first on impact and then on process-level. On the impact-level, the methodology leads to categorization of the gap as 'Realization Gap'. It then views the categorization of gap within the context of past and current narratives linked to realization gap. On process-level, the methodology leads to further analysis of realization gap on process evaluation basis. The process evaluation criterion, a product of this basis is then applied to two different programs (DESEU and NYC ACE) linked to the scope of this thesis. Utilizing the synergies of impact and process level analysis, it offers proposals on program development and its structure using our process evaluation criterion. Innovative financing and benefits distribution structure is thus developed and will remain part of the proposal. Restricted Stakeholder Crowd Financing and Risk-Free Incentivized return are the products of proposed financing and benefit distribution structure respectively. These products are then complimented by proposing an alternative approach in estimating EE&C savings. The approach advocates estimation based on range-allocation rather than currently utilized unique estimated savings approach. The Way Ahead section thus explores synergy between financial and engineering ranges of energy savings as a multi-discipline approach for future research. Moreover, it provides the proposed program structure with risk aversion and incentive allocation while dealing with uncertainty. This set of new approaches are believed to better fill the realization gap between estimated and actual energy efficiency savings.

  3. The energy trilogy: An integrated sustainability model to bridge wastewater treatment plant energy and emissions gaps

    NASA Astrophysics Data System (ADS)

    Al-Talibi, A. Adhim

    An estimated 4% of national energy consumption is used for drinking water and wastewater services. Despite the awareness and optimization initiatives for energy conservation, energy consumption is on the rise owing to population and urbanization expansion and to commercial and industrial business advancement. The principal concern is since energy consumption grows, the higher will be the energy production demand, leading to an increase in CO2 footprints and the contribution to global warming potential. This research is in the area of energy-water nexus, focusing on wastewater treatment plant (WWTP) energy trilogy -- the group of three related entities, which includes processes: (1) consuming energy, (2) producing energy, and (3) the resulting -- CO2 equivalents. Detailed and measurable energy information is not readily obtained for wastewater facilities, specifically during facility preliminary design phases. These limitations call for data-intensive research approach on GHG emissions quantification, plant efficiencies and source reduction techniques. To achieve these goals, this research introduced a model integrating all plant processes and their pertinent energy sources. In a comprehensive and "Energy Source-to-Effluent Discharge" pattern, this model is capable of bridging the gaps of WWTP energy, facilitating plant designers' decision-making for meeting energy assessment, sustainability and the environmental regulatory compliance. Protocols for estimating common emissions sources are available such as for fuels, whereas, site-specific emissions for other sources have to be developed and are captured in this research. The dissertation objectives were met through an extensive study of the relevant literature, models and tools, originating comprehensive lists of processes and energy sources for WWTPs, locating estimation formulas for each source, identifying site specific emissions factors, and linking the sources in a mathematical model for site specific CO2 e

  4. From the Kohn-Sham band gap to the fundamental gap in solids. An integer electron approach.

    PubMed

    Baerends, E J

    2017-06-21

    It is often stated that the Kohn-Sham occupied-unoccupied gap in both molecules and solids is "wrong". We argue that this is not a correct statement. The KS theory does not allow to interpret the exact KS HOMO-LUMO gap as the fundamental gap (difference (I - A) of electron affinity (A) and ionization energy (I), twice the chemical hardness), from which it indeed differs, strongly in molecules and moderately in solids. The exact Kohn-Sham HOMO-LUMO gap in molecules is much below the fundamental gap and very close to the much smaller optical gap (first excitation energy), and LDA/GGA yield very similar gaps. In solids the situation is different: the excitation energy to delocalized excited states and the fundamental gap (I - A) are very similar, not so disparate as in molecules. Again the Kohn-Sham and LDA/GGA band gaps do not represent (I - A) but are significantly smaller. However, the special properties of an extended system like a solid make it very easy to calculate the fundamental gap from the ground state (neutral system) band structure calculations entirely within a density functional framework. The correction Δ from the KS gap to the fundamental gap originates from the response part v resp of the exchange-correlation potential and can be calculated very simply using an approximation to v resp . This affords a calculation of the fundamental gap at the same level of accuracy as other properties of crystals at little extra cost beyond the ground state bandstructure calculation. The method is based on integer electron systems, fractional electron systems (an ensemble of N- and (N + 1)-electron systems) and the derivative discontinuity are not invoked.

  5. High throughput light absorber discovery, Part 2: Establishing structure–band gap energy relationships

    DOE PAGES

    Suram, Santosh K.; Newhouse, Paul F.; Zhou, Lan; ...

    2016-09-23

    Combinatorial materials science strategies have accelerated materials development in a variety of fields, and we extend these strategies to enable structure-property mapping for light absorber materials, particularly in high order composition spaces. High throughput optical spectroscopy and synchrotron X-ray diffraction are combined to identify the optical properties of Bi-V-Fe oxides, leading to the identification of Bi 4V 1.5Fe 0.5O 10.5 as a light absorber with direct band gap near 2.7 eV. Here, the strategic combination of experimental and data analysis techniques includes automated Tauc analysis to estimate band gap energies from the high throughput spectroscopy data, providing an automated platformmore » for identifying new optical materials.« less

  6. High throughput light absorber discovery, Part 2: Establishing structure–band gap energy relationships

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suram, Santosh K.; Newhouse, Paul F.; Zhou, Lan

    Combinatorial materials science strategies have accelerated materials development in a variety of fields, and we extend these strategies to enable structure-property mapping for light absorber materials, particularly in high order composition spaces. High throughput optical spectroscopy and synchrotron X-ray diffraction are combined to identify the optical properties of Bi-V-Fe oxides, leading to the identification of Bi 4V 1.5Fe 0.5O 10.5 as a light absorber with direct band gap near 2.7 eV. Here, the strategic combination of experimental and data analysis techniques includes automated Tauc analysis to estimate band gap energies from the high throughput spectroscopy data, providing an automated platformmore » for identifying new optical materials.« less

  7. Band gap engineering for graphene by using Na{sup +} ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sung, S. J.; Lee, P. R.; Kim, J. G.

    2014-08-25

    Despite the noble electronic properties of graphene, its industrial application has been hindered mainly by the absence of a stable means of producing a band gap at the Dirac point (DP). We report a new route to open a band gap (E{sub g}) at DP in a controlled way by depositing positively charged Na{sup +} ions on single layer graphene formed on 6H-SiC(0001) surface. The doping of low energy Na{sup +} ions is found to deplete the π* band of graphene above the DP, and simultaneously shift the DP downward away from Fermi energy indicating the opening of E{sub g}.more » The band gap increases with increasing Na{sup +} coverage with a maximum E{sub g}≥0.70 eV. Our core-level data, C 1s, Na 2p, and Si 2p, consistently suggest that Na{sup +} ions do not intercalate through graphene, but produce a significant charge asymmetry among the carbon atoms of graphene to cause the opening of a band gap. We thus provide a reliable way of producing and tuning the band gap of graphene by using Na{sup +} ions, which may play a vital role in utilizing graphene in future nano-electronic devices.« less

  8. Research on electrodischarge drilling of polycrystalline diamond with increased gap voltage

    NASA Astrophysics Data System (ADS)

    Skoczypiec, Sebastian; Bizoń, Wojciech; Żyra, Agnieszka

    2018-05-01

    This paper presents an experimental investigation of the machining characteristics of polycrystalline diamond (PCD). Machining of PCD by conventional technologies is not an effective solution. Due to presence of cobalt this material can be machined by application of electrical discharges. On the other side, electrical conductivity of PCD is on the limit of electrodischarge machining (EDM) possibilities. Proposed paper reports experimental investigation on electrodischarge drilling of PCD samples. The test were carried out with application on of high-voltage (up to 550 V) pulse power unit for two kinds of dielectrics: carbon based (Exxsol D80) and de-ionized water. As output parameters machining accuracy (side gap), material removal rate were selected. Also, based on SEM photographs and energy dispersive X-ray spectroscopy (EDS) analysis, a qualitative evaluation of the obtained results was presented.

  9. Application of back-propagation artificial neural network (ANN) to predict crystallite size and band gap energy of ZnO quantum dots

    NASA Astrophysics Data System (ADS)

    Pelicano, Christian Mark; Rapadas, Nick; Cagatan, Gerard; Magdaluyo, Eduardo

    2017-12-01

    Herein, the crystallite size and band gap energy of zinc oxide (ZnO) quantum dots were predicted using artificial neural network (ANN). Three input factors including reagent ratio, growth time, and growth temperature were examined with respect to crystallite size and band gap energy as response factors. The generated results from neural network model were then compared with the experimental results. Experimental crystallite size and band gap energy of ZnO quantum dots were measured from TEM images and absorbance spectra, respectively. The Levenberg-Marquardt (LM) algorithm was used as the learning algorithm for the ANN model. The performance of the ANN model was then assessed through mean square error (MSE) and regression values. Based on the results, the ANN modelling results are in good agreement with the experimental data.

  10. Ferromagnetic Mn-Implanted GaP: Microstructures vs Magnetic Properties.

    PubMed

    Yuan, Ye; Hübner, René; Liu, Fang; Sawicki, Maciej; Gordan, Ovidiu; Salvan, G; Zahn, D R T; Banerjee, D; Baehtz, Carsten; Helm, Manfred; Zhou, Shengqiang

    2016-02-17

    Ferromagnetic GaMnP layers were prepared by ion implantation and pulsed laser annealing (PLA). We present a systematic investigation on the evolution of microstructure and magnetic properties depending on the pulsed laser annealing energy. The sample microstructure was analyzed by high-resolution X-ray diffraction (HR-XRD), transmission electron microscopy (TEM), Rutherford backscattering spectrometry (RBS), ultraviolet Raman spectroscopy (UV-RS), and extended X-ray absorption fine structure (EXAFS) spectroscopy. The presence of X-ray Pendellösung fringes around GaP (004) and RBS channeling prove the epitaxial structure of the GaMnP layer annealed at the optimized laser energy density (0.40 J/cm(2)). However, a forbidden TO vibrational mode of GaP appears and increases with annealing energy, suggesting the formation of defective domains inside the layer. These domains mainly appear in the sample surface region and extend to almost the whole layer with increasing annealing energy. The reduction of the Curie temperature (TC) and of the uniaxial magnetic anisotropy gradually happens when more defects and the domains appear as increasing the annealing energy density. This fact univocally points to the decisive role of the PLA parameters on the resulting magnetic characteristics in the processed layers, which eventually determine the magnetic (or spintronics) figure of merit.

  11. Electronic Characterization of Defects in Narrow Gap Semiconductors-Comparison of Electronic Energy Levels and Formation Energies in Mercury Cadmium Telluride, Mercury Zinc Telluride, and Mercury Zinc Selenide

    NASA Technical Reports Server (NTRS)

    Patterson, James D.

    1996-01-01

    We have used a Green's function technique to calculate the energy levels and formation energy of deep defects in the narrow gap semiconductors mercury cadmium telluride (MCT), mercury zinc telluride (MZT) and mercury zinc selenide (MZS). The formation energy is calculated from the difference between the total energy with an impurity cluster and the total energy for the perfect crystal. Substitutional (including antisite), interstitial (self and foreign), and vacancy deep defects are considered. Relaxation effects are calculated (with molecular dynamics). By use of a pseudopotential, we generalize the ideal vacancy model so as to be able to consider relaxation for vacancies. Different charge states are considered and the charged state energy shift (as computed by a modified Haldane-Anderson model) can be twice that due to relaxation. Different charged states for vacancies were not calculated to have much effect on the formation energy. For all cases we find deep defects in the energy gap only for cation site s-like orbitals or anion site p-like orbitals, and for the substitutional case only the latter are appreciably effected by relaxation. For most cases for MCT, MZT, MZS, we consider x (the concentration of Cd or Zn) in the range appropriate for a band gap of 0.1 eV. For defect energy levels, the absolute accuracy of our results is limited, but the precision is good, and hence chemical trends are accurately predicted. For the same reason, defect formation energies are more accurately predicted than energy level position. We attempt, in Appendix B, to calculate vacancy formation energies using relatively simple chemical bonding ideas due to Harrison. However, these results are only marginally accurate for estimating vacancy binding energies. Appendix C lists all written reports and publications produced for the grant. We include abstracts and a complete paper that summarizes our work which is not yet available.

  12. Energy band gap and spectroscopic studies in Mn{sub 1-x}Cu{sub x}WO{sub 4} (0 ≤ x ≤ 0.125)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mal, Priyanath; Rambabu, P.; Turpu, G. R.

    2016-05-06

    A study on the effect of nonmagnetic Cu{sup 2+} substitution at Mn{sup 2+} site on the structural and energy band gap of the MnWO{sub 4} is reported. Convenient solid state reaction route has been adopted for the synthesis of Mn{sub 1-x}Cu{sub x}WO{sub 4}. X-ray diffraction (XRD) pattern showed high crystalline quality of the prepared samples. Raman spectroscopic studies were carried out to understand the structural aspects of the doping. 15 Raman active modes were identified out of 18, predicted for wolframite type monoclinic structure of MnWO{sub 4}. UV-visible diffuse reflectance spectra were recorded and analyzed to get energy band gapmore » of the studied system and are found in the range of 2.5 eV to 2.04 eV with a systematic decrease with the increase in Cu{sup 2+} concentration. Energy band gap values are verified by Density Functional Theory calculations based on projector augmented wave (PAW) method. The calculated values are in good agreement with the experimental data.« less

  13. On the size and temperature dependence of the energy gap in cadmium-selenide quantum dots embedded in fluorophosphate glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lipatova, Zh. O., E-mail: zluka-yo@mail.ru; Kolobkova, E. V.; Babkina, A. N.

    2017-03-15

    The temperature and size dependences of the energy gap in CdSe quantum dots with diameters of 2.4, 4.0, and 5.2 nm embedded in fluorophosphate glasses are investigated. It is shown that the temperature coefficient of the band gap dE{sub g}/dT in the quantum dots differs from the bulk value and depends strictly on the dot size. It is found that, furthermore, the energy of each transition in these quantum dots is characterized by an individual temperature coefficient dE/dT.

  14. Gate-independent energy gap in noncovalently intercalated bilayer graphene on SiC(0001)

    NASA Astrophysics Data System (ADS)

    Li, Yuanchang

    2016-12-01

    Our first-principles calculations show that an energy gap around 0.12-0.25 eV can be engineered in epitaxial graphene on SiC(0001) through the noncovalent intercalation of transition or alkali metals but originated from the distinct mechanisms. The former is attributed to the combined effects of a metal-induced perpendicular electric field and interaction, while the latter is solely attributed to the built-in electric field. A great advantage of this scheme is that the gap size is almost independent of the gate voltage up to 1 V/nm, thus reserving the electric means to tune the Fermi level of graphene when configured as field-effect transistors. Given the recent progress in experimental techniques for intercalated graphene, our findings provide a practical way to incorporate graphene in the current semiconductor industry.

  15. Undecidability of the spectral gap.

    PubMed

    Cubitt, Toby S; Perez-Garcia, David; Wolf, Michael M

    2015-12-10

    The spectral gap--the energy difference between the ground state and first excited state of a system--is central to quantum many-body physics. Many challenging open problems, such as the Haldane conjecture, the question of the existence of gapped topological spin liquid phases, and the Yang-Mills gap conjecture, concern spectral gaps. These and other problems are particular cases of the general spectral gap problem: given the Hamiltonian of a quantum many-body system, is it gapped or gapless? Here we prove that this is an undecidable problem. Specifically, we construct families of quantum spin systems on a two-dimensional lattice with translationally invariant, nearest-neighbour interactions, for which the spectral gap problem is undecidable. This result extends to undecidability of other low-energy properties, such as the existence of algebraically decaying ground-state correlations. The proof combines Hamiltonian complexity techniques with aperiodic tilings, to construct a Hamiltonian whose ground state encodes the evolution of a quantum phase-estimation algorithm followed by a universal Turing machine. The spectral gap depends on the outcome of the corresponding 'halting problem'. Our result implies that there exists no algorithm to determine whether an arbitrary model is gapped or gapless, and that there exist models for which the presence or absence of a spectral gap is independent of the axioms of mathematics.

  16. Estimating yield gaps at the cropping system level.

    PubMed

    Guilpart, Nicolas; Grassini, Patricio; Sadras, Victor O; Timsina, Jagadish; Cassman, Kenneth G

    2017-05-01

    Yield gap analyses of individual crops have been used to estimate opportunities for increasing crop production at local to global scales, thus providing information crucial to food security. However, increases in crop production can also be achieved by improving cropping system yield through modification of spatial and temporal arrangement of individual crops. In this paper we define the cropping system yield potential as the output from the combination of crops that gives the highest energy yield per unit of land and time, and the cropping system yield gap as the difference between actual energy yield of an existing cropping system and the cropping system yield potential. Then, we provide a framework to identify alternative cropping systems which can be evaluated against the current ones. A proof-of-concept is provided with irrigated rice-maize systems at four locations in Bangladesh that represent a range of climatic conditions in that country. The proposed framework identified (i) realistic alternative cropping systems at each location, and (ii) two locations where expected improvements in crop production from changes in cropping intensity (number of crops per year) were 43% to 64% higher than from improving the management of individual crops within the current cropping systems. The proposed framework provides a tool to help assess food production capacity of new systems ( e.g. with increased cropping intensity) arising from climate change, and assess resource requirements (water and N) and associated environmental footprint per unit of land and production of these new systems. By expanding yield gap analysis from individual crops to the cropping system level and applying it to new systems, this framework could also be helpful to bridge the gap between yield gap analysis and cropping/farming system design.

  17. Investigation of the charge boost technology for the efficiency increase of closed sorption thermal energy storage systems

    NASA Astrophysics Data System (ADS)

    Rohringer, C.; Engel, G.; Köll, R.; Wagner, W.; van Helden, W.

    2017-10-01

    The inclusion of solar thermal energy into energy systems requires storage possibilities to overcome the gap between supply and demand. Storage of thermal energy with closed sorption thermal energy systems has the advantage of low thermal losses and high energy density. However, the efficiency of these systems needs yet to be increased to become competitive on the market. In this paper, the so-called “charge boost technology” is developed and tested via experiments as a new concept for the efficiency increase of compact thermal energy storages. The main benefit of the charge boost technology is that it can reach a defined state of charge for sorption thermal energy storages at lower temperature levels than classic pure desorption processes. Experiments are conducted to provide a proof of principle for this concept. The results show that the charge boost technology does function as predicted and is a viable option for further improvement of sorption thermal energy storages. Subsequently, a new process application is developed by the author with strong focus on the utilization of the advantages of the charge boost technology over conventional desorption processes. After completion of the conceptual design, the theoretical calculations are validated via experiments.

  18. Dependence of Mobility on Density of Gap States in Organics by GAMEaS - Gate Modulated Activation Energy Spectroscopy

    NASA Astrophysics Data System (ADS)

    So, Woo-Young; Lang, David; Ramirez, Arthur

    2008-03-01

    We develop a spectroscopic method for determining the density of states (DOS) in the energy gap - GAte Modulated activation Energy Spectroscopy (GAMEaS), We also report the relationship of these gap states to the mobility of organic field-effect-transistors (FETs). We find that the field-effect mobility is parameterized by two factors: (1) the free-carrier mobility and (2) the ratio of the free carrier density to the total carrier density induced by the gate bias. We show that the highest mobility FETs have shallow exponential band tails of localized states with characteristic slope of 1/kT at 300K. Most remarkably, state-of-the-art crystalline FETs fabricated from rubrene, pentacene, and tetracene all have a very high free-carrier mobility, up to 200cm2/Vsec at 300K, with the somewhat lower effective mobilities dominated by localized gap states. This strongly suggests that further improvements in device performance could be possible with enhanced material quality.

  19. Electron Elevator: Excitations across the Band Gap via a Dynamical Gap State.

    PubMed

    Lim, A; Foulkes, W M C; Horsfield, A P; Mason, D R; Schleife, A; Draeger, E W; Correa, A A

    2016-01-29

    We use time-dependent density functional theory to study self-irradiated Si. We calculate the electronic stopping power of Si in Si by evaluating the energy transferred to the electrons per unit path length by an ion of kinetic energy from 1 eV to 100 keV moving through the host. Electronic stopping is found to be significant below the threshold velocity normally identified with transitions across the band gap. A structured crossover at low velocity exists in place of a hard threshold. An analysis of the time dependence of the transition rates using coupled linear rate equations enables one of the excitation mechanisms to be clearly identified: a defect state induced in the gap by the moving ion acts like an elevator and carries electrons across the band gap.

  20. Electronic transport in Thue-Morse gapped graphene superlattice under applied bias

    NASA Astrophysics Data System (ADS)

    Wang, Mingjing; Zhang, Hongmei; Liu, De

    2018-04-01

    We investigate theoretically the electronic transport properties of Thue-Morse gapped graphene superlattice under an applied electric field. The results indicate that the combined effect of the band gap and the applied bias breaks the angular symmetry of the transmission coefficient. The zero-averaged wave-number gap can be greatly modulated by the band gap and the applied bias, but its position is robust against change of the band gap. Moreover, the conductance and the Fano factor are strongly dependent not only on the Fermi energy but also on the band gap and the applied bias. In the vicinity of the new Dirac point, the minimum value of the conductance obviously decreases and the Fano factor gradually forms a Poissonian value plateau with increasing of the band gap.

  1. A single high dose of dexamethasone increases GAP-43 and synaptophysin in the hippocampus of aged rats.

    PubMed

    Tesic, Vesna; Perovic, Milka; Zaletel, Ivan; Jovanovic, Mirna; Puskas, Nela; Ruzdijic, Sabera; Kanazir, Selma

    2017-11-01

    The administration of dexamethasone, a synthetic glucocorticoid receptor agonist, has been reported to modulate cognitive performance in both animals and humans. In the present study, we demonstrate the effects of a single high dose of dexamethasone on the expression and distribution of synaptic plasticity-related proteins, growth-associated protein-43 (GAP-43) and synaptophysin, in the hippocampus of 6-, 12-, 18- and 24-month-old rats. Acute dexamethasone treatment significantly altered the expression of GAP-43 at the posttranslational level by modulating the levels of phosphorylated GAP-43 and proteolytic GAP-43-3 fragment. The effect was the most pronounced in the hippocampi of the aged animals. The total GAP-43 protein was increased only in 24-month-old dexamethasone-treated animals, and was concomitant with a decrease in calpain-mediated proteolysis. Moreover, by introducing the gray level co-occurrence matrix method, a form of texture analysis, we were able to reveal the subtle differences in the expression pattern of both GAP-43 and synaptophysin in the hippocampal subfields that were not detected by Western blot analysis alone. Therefore, the current study demonstrates, through a novel combined approach, that dexamethasone treatment significantly affects both GAP-43 and synaptophysin protein expression in the hippocampus of aged rats. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Energy band gaps in graphene nanoribbons with corners

    NASA Astrophysics Data System (ADS)

    Szczȩśniak, Dominik; Durajski, Artur P.; Khater, Antoine; Ghader, Doried

    2016-05-01

    In the present paper, we study the relation between the band gap size and the corner-corner length in representative chevron-shaped graphene nanoribbons (CGNRs) with 120° and 150° corner edges. The direct physical insight into the electronic properties of CGNRs is provided within the tight-binding model with phenomenological edge parameters, developed against recent first-principle results. We show that the analyzed CGNRs exhibit inverse relation between their band gaps and corner-corner lengths, and that they do not present a metal-insulator transition when the chemical edge modifications are introduced. Our results also suggest that the band gap width for the CGNRs is predominantly governed by the armchair edge effects, and is tunable through edge modifications with foreign atoms dressing.

  3. Band gap scaling laws in group IV nanotubes.

    PubMed

    Wang, Chongze; Fu, Xiaonan; Guo, Yangyang; Guo, Zhengxiao; Xia, Congxin; Jia, Yu

    2017-03-17

    By using the first-principles calculations, the band gap properties of nanotubes formed by group IV elements have been investigated systemically. Our results reveal that for armchair nanotubes, the energy gaps at K points in the Brillouin zone decrease as 1/r scaling law with the radii (r) increasing, while they are scaled by -1/r 2  + C at Γ points, here, C is a constant. Further studies show that such scaling law of K points is independent of both the chiral vector and the type of elements. Therefore, the band gaps of nanotubes for a given radius can be determined by these scaling laws easily. Interestingly, we also predict the existence of indirect band gap for both germanium and tin nanotubes. Our new findings provide an efficient way to determine the band gaps of group IV element nanotubes by knowing the radii, as well as to facilitate the design of functional nanodevices.

  4. Increased Cardiac Arrhythmogenesis Associated With Gap Junction Remodeling With Upregulation of RNA-Binding Protein FXR1.

    PubMed

    Chu, Miensheng; Novak, Stefanie Mares; Cover, Cathleen; Wang, Anne A; Chinyere, Ikeotunye Royal; Juneman, Elizabeth B; Zarnescu, Daniela C; Wong, Pak Kin; Gregorio, Carol C

    2018-02-06

    Gap junction remodeling is well established as a consistent feature of human heart disease involving spontaneous ventricular arrhythmia. The mechanisms responsible for gap junction remodeling that include alterations in the distribution of, and protein expression within, gap junctions are still debated. Studies reveal that multiple transcriptional and posttranscriptional regulatory pathways are triggered in response to cardiac disease, such as those involving RNA-binding proteins. The expression levels of FXR1 (fragile X mental retardation autosomal homolog 1), an RNA-binding protein, are critical to maintain proper cardiac muscle function; however, the connection between FXR1 and disease is not clear. To identify the mechanisms regulating gap junction remodeling in cardiac disease, we sought to identify the functional properties of FXR1 expression, direct targets of FXR1 in human left ventricle dilated cardiomyopathy (DCM) biopsy samples and mouse models of DCM through BioID proximity assay and RNA immunoprecipitation, how FXR1 regulates its targets through RNA stability and luciferase assays, and functional consequences of altering the levels of this important RNA-binding protein through the analysis of cardiac-specific FXR1 knockout mice and mice injected with 3xMyc-FXR1 adeno-associated virus. FXR1 expression is significantly increased in tissue samples from human and mouse models of DCM via Western blot analysis. FXR1 associates with intercalated discs, and integral gap junction proteins Cx43 (connexin 43), Cx45 (connexin 45), and ZO-1 (zonula occludens-1) were identified as novel mRNA targets of FXR1 by using a BioID proximity assay and RNA immunoprecipitation. Our findings show that FXR1 is a multifunctional protein involved in translational regulation and stabilization of its mRNA targets in heart muscle. In addition, introduction of 3xMyc-FXR1 via adeno-associated virus into mice leads to the redistribution of gap junctions and promotes ventricular

  5. Theoretical and Experimental Evidence for a Nodal Energy Gap in MgB2

    DTIC Science & Technology

    2017-02-17

    1   Theoretical and Experimental Evidence for a Nodal Energy Gap in MgB2 Y. Dan Agassia and Daniel E. Oatesb aConsultant, Jerusalem, Israel bMIT...surface impedance and intermodulation distortion in high-quality thin films. We briefly review experimental evidence in support of our hypothesis and...demonstrates, this experimental evidence agrees with the l = 6 hypothesis, while inconsistent with s-wave symmetry. To give the l = 6 hypothesis a

  6. Electron elevator: Excitations across the band gap via a dynamical gap state

    DOE PAGES

    Lim, Anthony; Foulkes, W. M. C.; Horsfield, A. P.; ...

    2016-01-27

    We use time-dependent density functional theory to study self-irradiated Si. We calculate the electronic stopping power of Si in Si by evaluating the energy transferred to the electrons per unit path length by an ion of kinetic energy from 1 eV to 100 keV moving through the host. Electronic stopping is found to be significant below the threshold velocity normally identified with transitions across the band gap. A structured crossover at low velocity exists in place of a hard threshold. Lastly, an analysis of the time dependence of the transition rates using coupled linear rate equations enables one of themore » excitation mechanisms to be clearly identified: a defect state induced in the gap by the moving ion acts like an elevator and carries electrons across the band gap.« less

  7. Energy transfer between two vacuum-gapped metal plates: Coulomb fluctuations and electron tunneling

    NASA Astrophysics Data System (ADS)

    Zhang, Zu-Quan; Lü, Jing-Tao; Wang, Jian-Sheng

    2018-05-01

    Recent experimental measurements for near-field radiative heat transfer between two bodies have been able to approach the gap distance within 2 nm , where the contributions of Coulomb fluctuation and electron tunneling are comparable. Using the nonequilibrium Green's function method in the G0W0 approximation, based on a tight-binding model, we obtain for the energy current a Caroli formula from the Meir-Wingreen formula in the local equilibrium approximation. Also, the Caroli formula is consistent with the evanescent part of the heat transfer from the theory of fluctuational electrodynamics. We go beyond the local equilibrium approximation to study the energy transfer in the crossover region from electron tunneling to Coulomb fluctuation based on a numerical calculation.

  8. Band gap opening in α-graphyne by adsorption of organic molecule

    NASA Astrophysics Data System (ADS)

    Majidi, R.; Karami, A. R.

    2014-09-01

    The lack of a band gap limits the application of graphyne in nanoelectronic devices. We have investigated possibility of opening a band gap in α-graphyne by adsorption of tetracyanoethylene. The electronic property of α-graphyne in the presence of different numbers of tetracyanoethylene has been studied using density functional theory. It is found that charge is transferred from graphyne sheet to tetracyanoethylene molecules. In the presence of this electron acceptor molecule, a semimetal α-graphyne shows semiconducting property. The energy band gap at the Dirac point is enhanced by increasing the number of tetracyanoethylene. Our results provide a simple method to create and control the band gap in α-graphyne.

  9. High-Energy Emission From the Polar Cap and Slot Gap

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.

    2006-01-01

    Thirty-five years after the discovery of rotation-powered pulsars, we still do not understand the fundamentals of their pulsed emission at any wavelength. I will review the latest developments in understanding the high-energy emission of rotation-powered pulsars, with particular emphasis on the polar cap and slot gap models. Special and general relativistic effects play important roles in pulsar emission, from inertial frame-dragging near the stellar surface to aberration, time-of-flight and retardation of the magnetic field near the light cylinder. Understanding how these effects determine what we observe at different wavelengths is critical to unraveling the emission physics. I will discuss how the next generation of gamma-ray detectors, AGILE and GLAST, will test prediction of these models.

  10. Electronic energy gap of molecular hydrogen from electrical conductivity measurements at high shock pressures

    NASA Technical Reports Server (NTRS)

    Nellis, W. J.; Mitchell, A. C.; Mccandless, P. C.; Erskine, D. J.; Weir, S. T.

    1992-01-01

    Electrical conductivities were measured for liquid D2 and H2 shock compressed to pressures of 10-20 GPa (100-200 kbar), molar volumes near 8 cu cm/mol, and calculated temperatures of 2900-4600 K. The semiconducting energy gap derived from the conductivities is 12 eV, in good agreement with recent quasi-particle calculations and with oscillator frequencies measured in diamond-anvil cells.

  11. 2D XANES-XEOL mapping: observation of enhanced band gap emission from ZnO nanowire arrays

    NASA Astrophysics Data System (ADS)

    Wang, Zhiqiang; Guo, Xiaoxuan; Sham, Tsun-Kong

    2014-05-01

    Using 2D XANES-XEOL spectroscopy, it is found that the band gap emission of ZnO nanowire arrays is substantially enhanced i.e. that the intensity ratio between the band gap and defect emissions increases by more than an order of magnitude when the excitation energy is scanned across the O K-edge. Possible mechanisms are discussed.Using 2D XANES-XEOL spectroscopy, it is found that the band gap emission of ZnO nanowire arrays is substantially enhanced i.e. that the intensity ratio between the band gap and defect emissions increases by more than an order of magnitude when the excitation energy is scanned across the O K-edge. Possible mechanisms are discussed. Electronic supplementary information (ESI) available: XEOL spectra with different excitation energies. X-ray attenuation length vs. photon energy. Details of surface defects in ZnO NWs. The second O K-edge and Zn L-edge 2D XANES-XEOL maps. Comparison of the first and second TEY at O K-edge and Zn L-edge scans, respectively. Raman spectra of the ZnO NWs with different IBGE/IDE ratios. See DOI: 10.1039/c4nr01049c

  12. GaAsP on GaP top solar cells

    NASA Technical Reports Server (NTRS)

    Mcneely, J. B.; Negley, G. H.; Barnett, A. M.

    1985-01-01

    GaAsP on GaP top solar cells as an attachment to silicon bottom solar cells are being developed. The GaAsP on GaP system offers several advantages for this top solar cell. The most important is that the gallium phosphide substrate provides a rugged, transparent mechanical substrate which does not have to be removed or thinned during processing. Additional advantages are that: (1) gallium phosphide is more oxidation resistant than the III-V aluminum compounds, (2) a range of energy band gaps higher than 1.75 eV is readily available for system efficiency optimization, (3) reliable ohmic contact technology is available from the light-emitting diode industry, and (4) the system readily lends itself to graded band gap structures for additional increases in efficiency.

  13. Effects of optical band gap energy, band tail energy and particle shape on photocatalytic activities of different ZnO nanostructures prepared by a hydrothermal method

    NASA Astrophysics Data System (ADS)

    Klubnuan, Sarunya; Suwanboon, Sumetha; Amornpitoksuk, Pongsaton

    2016-03-01

    The dependence of the crystallite size and the band tail energy on the optical properties, particle shape and oxygen vacancy of different ZnO nanostructures to catalyse photocatalytic degradation was investigated. The ZnO nanoplatelets and mesh-like ZnO lamellae were synthesized from the PEO19-b-PPO3 modified zinc acetate dihydrate using aqueous KOH and CO(NH2)2 solutions, respectively via a hydrothermal method. The band tail energy of the ZnO nanostructures had more influence on the band gap energy than the crystallite size. The photocatalytic degradation of methylene blue increased as a function of the irradiation time, the amount of oxygen vacancy and the intensity of the (0 0 0 2) plane. The ZnO nanoplatelets exhibited a better photocatalytic degradation of methylene blue than the mesh-like ZnO lamellae due to the migration of the photoelectrons and holes to the (0 0 0 1) and (0 0 0 -1) planes, respectively under the internal electric field, that resulted in the enhancement of the photocatalytic activities.

  14. Modeling of Spark Gap Performance

    DTIC Science & Technology

    1983-06-01

    MODELING OF SPARK GAP PERFORMANCE* A. L. Donaldson, R. Ness, M. Hagler, M. Kristiansen Department of Electrical Engineering and L. L. Hatfield...gas pressure, and chaJ:ging rate on the voltage stability of high energy spark gaps is discussed. Implications of the model include changes in...an extremely useful, and physically reasonable framework, from which the properties of spark gaps under a wide variety of experimental conditions

  15. Optically Discriminating Carrier-Induced Quasiparticle Band Gap and Exciton Energy Renormalization in Monolayer MoS2

    NASA Astrophysics Data System (ADS)

    Yao, Kaiyuan; Yan, Aiming; Kahn, Salman; Suslu, Aslihan; Liang, Yufeng; Barnard, Edward S.; Tongay, Sefaattin; Zettl, Alex; Borys, Nicholas J.; Schuck, P. James

    2017-08-01

    Optoelectronic excitations in monolayer MoS2 manifest from a hierarchy of electrically tunable, Coulombic free-carrier and excitonic many-body phenomena. Investigating the fundamental interactions underpinning these phenomena—critical to both many-body physics exploration and device applications—presents challenges, however, due to a complex balance of competing optoelectronic effects and interdependent properties. Here, optical detection of bound- and free-carrier photoexcitations is used to directly quantify carrier-induced changes of the quasiparticle band gap and exciton binding energies. The results explicitly disentangle the competing effects and highlight longstanding theoretical predictions of large carrier-induced band gap and exciton renormalization in two-dimensional semiconductors.

  16. Optically Discriminating Carrier-Induced Quasiparticle Band Gap and Exciton Energy Renormalization in Monolayer MoS_{2}.

    PubMed

    Yao, Kaiyuan; Yan, Aiming; Kahn, Salman; Suslu, Aslihan; Liang, Yufeng; Barnard, Edward S; Tongay, Sefaattin; Zettl, Alex; Borys, Nicholas J; Schuck, P James

    2017-08-25

    Optoelectronic excitations in monolayer MoS_{2} manifest from a hierarchy of electrically tunable, Coulombic free-carrier and excitonic many-body phenomena. Investigating the fundamental interactions underpinning these phenomena-critical to both many-body physics exploration and device applications-presents challenges, however, due to a complex balance of competing optoelectronic effects and interdependent properties. Here, optical detection of bound- and free-carrier photoexcitations is used to directly quantify carrier-induced changes of the quasiparticle band gap and exciton binding energies. The results explicitly disentangle the competing effects and highlight longstanding theoretical predictions of large carrier-induced band gap and exciton renormalization in two-dimensional semiconductors.

  17. High-performance gap-closing vibrational energy harvesting using electret-polarized dielectric oscillators

    NASA Astrophysics Data System (ADS)

    Feng, Yue; Yu, Zejie; Han, Yanhui

    2018-01-01

    In conventional gap-closing electret-biased electrostatic energy harvesting (EEEH) schemes, electrets with a very low ratio of electret thickness to permittivity are in great demand to allow the attainment of high power output. However, in practice, pursuing such a low ratio introduces unwanted burdens on the electret stability and therefore the reliability of the EEEH devices. In this paper, we propose a dielectric-oscillator-based electrostatic EH (DEEH) scheme as an alternative approach to harvesting electret-biased electrostatic energy. This approach permits the fabrication of an electret-free closed EH circuit. The DEEH architecture directly collects the electrical energy exclusively through the oscillating dielectric body and thus completely circumvents the restrictions imposed by the electret parameters (thickness and permittivity) on power generation. Significantly, without considering the electret thickness and permittivity, both theoretical analysis and experiments have verified the effectiveness of this DEEH strategy, and a high figure of merit (on the order of 10-8 mW cm-2 V-2 Hz-1) was achieved for low-frequency movements.

  18. A simplified approach to the band gap correction of defect formation energies: Al, Ga, and In-doped ZnO

    NASA Astrophysics Data System (ADS)

    Saniz, R.; Xu, Y.; Matsubara, M.; Amini, M. N.; Dixit, H.; Lamoen, D.; Partoens, B.

    2013-01-01

    The calculation of defect levels in semiconductors within a density functional theory approach suffers greatly from the band gap problem. We propose a band gap correction scheme that is based on the separation of energy differences in electron addition and relaxation energies. We show that it can predict defect levels with a reasonable accuracy, particularly in the case of defects with conduction band character, and yet is simple and computationally economical. We apply this method to ZnO doped with group III elements (Al, Ga, In). As expected from experiment, the results indicate that Zn substitutional doping is preferred over interstitial doping in Al, Ga, and In-doped ZnO, under both zinc-rich and oxygen-rich conditions. Further, all three dopants act as shallow donors, with the +1 charge state having the most advantageous formation energy. Also, doping effects on the electronic structure of ZnO are sufficiently mild so as to affect little the fundamental band gap and lowest conduction bands dispersion, which secures their n-type transparent conducting behavior. A comparison with the extrapolation method based on LDA+U calculations and with the Heyd-Scuseria-Ernzerhof hybrid functional (HSE) shows the reliability of the proposed scheme in predicting the thermodynamic transition levels in shallow donor systems.

  19. A Quasi-Classical Model of the Hubbard Gap in Lightly Compensated Semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poklonski, N. A.; Vyrko, S. A.; Kovalev, A. I.

    2016-03-15

    A quasi-classical method for calculating the narrowing of the Hubbard gap between the A{sup 0} and A{sup +} acceptor bands in a hole semiconductor or the D{sup 0} and D{sup –} donor bands in an electron semiconductor is suggested. This narrowing gives rise to the phenomenon of a semiconductor transition from the insulator to metal state with an increase in doping level. The major (doping) impurity can be in one of three charge states (–1, 0, or +1), while the compensating impurity can be in states (+1) or (–1). The impurity distribution over the crystal is assumed to be randommore » and the width of Hubbard bands (levels), to be much smaller than the gap between them. It is shown that narrowing of the Hubbard gap is due to the formation of electrically neutral acceptor (donor) states of the quasicontinuous band of allowed energies for holes (electrons) from excited states. This quasicontinuous band merges with the top of the valence band (v band) for acceptors or with the bottom of the conduction band (c band) for donors. In other words, the top of the v band for a p-type semiconductor or the bottom of the c band for an n-type semiconductor is shifted into the band gap. The value of this shift is determined by the maximum radius of the Bohr orbit of the excited state of an electrically neutral major impurity atom, which is no larger than half the average distance between nearest impurity atoms. As a result of the increasing dopant concentration, the both Hubbard energy levels become shallower and the gap between them narrows. Analytical formulas are derived to describe the thermally activated hopping transition of holes (electrons) between Hubbard bands. The calculated gap narrowing with increasing doping level, which manifests itself in a reduction in the activation energy ε{sub 2} is consistent with available experimental data for lightly compensated p-Si crystals doped with boron and n-Ge crystals doped with antimony.« less

  20. Enhanced Andreev reflection in gapped graphene

    NASA Astrophysics Data System (ADS)

    Majidi, Leyla; Zareyan, Malek

    2012-08-01

    We theoretically demonstrate unusual features of superconducting proximity effect in gapped graphene that presents a pseudospin symmetry-broken ferromagnet with a net pseudomagnetization. We find that the presence of a band gap makes the Andreev conductance of graphene superconductor/pseudoferromagnet (S/PF) junction to behave similar to that of a graphene ferromagnet-superconductor junction. The energy gap ΔN can enhance the pseudospin inverted Andreev conductance of S/PF junction to reach a limiting maximum value for ΔN≫μ, which depending on the bias voltage can be larger than the value for the corresponding junction with no energy gap. We further demonstrate a damped-oscillatory behavior for the local density of states of the PF region of S/PF junction and a long-range crossed Andreev reflection process in PF/S/PF structure with antiparallel alignment of pseudomagnetizations of PFs, which confirm that, in this respect, the gapped normal graphene behaves like a ferromagnetic graphene.

  1. Characteristics and dispersity of a two gap capillary discharge applied for long spark gap ignition in air

    NASA Astrophysics Data System (ADS)

    Huang, Dong; Yang, Lanjun; Guo, Haishan; Zhang, Zhiyuan; Jiang, Hongqiu; Xu, Haipeng

    2017-07-01

    In this paper, the characteristics and dispersity of a two gap capillary (TGC) discharge applied for long spark gap ignition are studied. Under the same discharge condition, 30 repetitive discharges are done to get a certain number of data samples. Accordingly, the change trend of the characteristics and the dispersity with the charging voltage of C1 are analyzed statistically. The delay of soft capillary discharge is determined by the saturation rate of the magnetic core of the pulse transformer and decreases with the increase in the charging voltage. The main discharge delay decreases from 1.0 kV to 2.0 kV and stops the decreasing trend when the charging voltage increases to 2.5 kV. In contrast, the current amplitude of soft capillary discharge and main discharge increases with charging voltage. Long tail extinction is witnessed at the charging voltage of 1.0 kV and the major cause is the insufficient pressure in the post discharge. The waveform of the capillary arc resistivity is U-like shape and the minimum resistivity decreases with the increase in the charging voltage. Meanwhile, the arc resistivity in the ascending stage is much higher than that in the descending stage with the same value of the discharge current. The energy consumption of the TGC discharge can be mainly divided into four parts and more than 70% of the energy is consumed in main discharge.

  2. Importance of the Kinetic Energy Density for Band Gap Calculations in Solids with Density Functional Theory.

    PubMed

    Tran, Fabien; Blaha, Peter

    2017-05-04

    Recently, exchange-correlation potentials in density functional theory were developed with the goal of providing improved band gaps in solids. Among them, the semilocal potentials are particularly interesting for large systems since they lead to calculations that are much faster than with hybrid functionals or methods like GW. We present an exhaustive comparison of semilocal exchange-correlation potentials for band gap calculations on a large test set of solids, and particular attention is paid to the potential HLE16 proposed by Verma and Truhlar. It is shown that the most accurate potential is the modified Becke-Johnson potential, which, most noticeably, is much more accurate than all other semilocal potentials for strongly correlated systems. This can be attributed to its additional dependence on the kinetic energy density. It is also shown that the modified Becke-Johnson potential is at least as accurate as the hybrid functionals and more reliable for solids with large band gaps.

  3. Yield gap analyses to estimate attainable bovine milk yields and evaluate options to increase production in Ethiopia and India.

    PubMed

    Mayberry, Dianne; Ash, Andrew; Prestwidge, Di; Godde, Cécile M; Henderson, Ben; Duncan, Alan; Blummel, Michael; Ramana Reddy, Y; Herrero, Mario

    2017-07-01

    Livestock provides an important source of income and nourishment for around one billion rural households worldwide. Demand for livestock food products is increasing, especially in developing countries, and there are opportunities to increase production to meet local demand and increase farm incomes. Estimating the scale of livestock yield gaps and better understanding factors limiting current production will help to define the technological and investment needs in each livestock sector. The aim of this paper is to quantify livestock yield gaps and evaluate opportunities to increase dairy production in Sub-Saharan Africa and South Asia, using case studies from Ethiopia and India. We combined three different methods in our approach. Benchmarking and a frontier analysis were used to estimate attainable milk yields based on survey data. Household modelling was then used to simulate the effects of various interventions on dairy production and income. We tested interventions based on improved livestock nutrition and genetics in the extensive lowland grazing zone and highland mixed crop-livestock zones of Ethiopia, and the intensive irrigated and rainfed zones of India. Our analyses indicate that there are considerable yield gaps for dairy production in both countries, and opportunities to increase production using the interventions tested. In some cases, combined interventions could increase production past currently attainable livestock yields.

  4. Direct band gap measurement of Cu(In,Ga)(Se,S){sub 2} thin films using high-resolution reflection electron energy loss spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heo, Sung; College of Information and Communication Engineering, Sungkyunkwan University, Cheoncheon-dong 300, Jangan-gu, Suwon 440-746; Lee, Hyung-Ik

    2015-06-29

    To investigate the band gap profile of Cu(In{sub 1−x},Ga{sub x})(Se{sub 1−y}S{sub y}){sub 2} of various compositions, we measured the band gap profile directly as a function of in-depth using high-resolution reflection energy loss spectroscopy (HR-REELS), which was compared with the band gap profile calculated based on the auger depth profile. The band gap profile is a double-graded band gap as a function of in-depth. The calculated band gap obtained from the auger depth profile seems to be larger than that by HR-REELS. Calculated band gaps are to measure the average band gap of the spatially different varying compositions with respectmore » to considering its void fraction. But, the results obtained using HR-REELS are to be affected by the low band gap (i.e., out of void) rather than large one (i.e., near void). Our findings suggest an analytical method to directly determine the band gap profile as function of in-depth.« less

  5. Energy exchange properties during second-harmonic generation in finite one-dimensional photonic band-gap structures with deep gratings.

    PubMed

    D'Aguanno, Giuseppe; Centini, Marco; Scalora, Michael; Sibilia, Concita; Bertolotti, Mario; Bloemer, Mark J; Bowden, Charles M

    2003-01-01

    We study second-harmonic generation in finite, one-dimensional, photonic band-gap structures with large index contrast in the regime of pump depletion and global phase-matching conditions. We report a number of surprising results: above a certain input intensity, field dynamics resemble a multiwave mixing process, where backward and forward components compete for the available energy; the pump field is mostly reflected, revealing a type of optical limiting behavior; and second-harmonic generation becomes balanced in both directions, showing unusual saturation effects with increasing pump intensity. This dynamics was unexpected, and it is bound to influence the way one goes about thinking and designing nonlinear frequency conversion devices in a practical way.

  6. Marcasite revisited: Optical absorption gap at room temperature

    NASA Astrophysics Data System (ADS)

    Sánchez, C.; Flores, E.; Barawi, M.; Clamagirand, J. M.; Ares, J. R.; Ferrer, I. J.

    2016-03-01

    Jagadeesh and Seehra published in 1980 that the marcasite band gap energy is 0.34 eV. However, recent calculations and experimental approximations accomplished by several research groups point out that the marcasite band gap energy should be quite similar to that of pyrite (of the order of 0.8-1.0 eV). By using diffuse reflectance spectroscopy (DRS) we have determined that marcasite has no optical absorption gap at photon energies 0.06 ≤ hν ≤ 0.75 eV and that it has two well defined optical transitions at ~ 0.9 eV and ~ 2.2 eV quite similar to those of pyrite. Marcasite optical absorption gap appears to be Eg ≅ 0.83 ± 0.02 eV and it is due to an allowed indirect transition.

  7. Thermally induced effect on sub-band gap absorption in Ag doped CdSe thin films

    NASA Astrophysics Data System (ADS)

    Kaur, Jagdish; Sharma, Kriti; Bharti, Shivani; Tripathi, S. K.

    2015-05-01

    Thin films of Ag doped CdSe have been prepared by thermal evaporation using inert gas condensation (IGC) method taking Argon as inert gas. The prepared thin films are annealed at 363 K for one hour. The sub-band gap absorption spectra in the as deposited and annealed thin films have been studied using constant photocurrent method (CPM). The absorption coefficient in the sub-band gap region is described by an Urbach tail in both as deposited and annealed thin films. The value of Urbach energy and number density of trap states have been calculated from the absorption coefficient in the sub-band gap region which have been found to increase after annealing treatment indicating increase in disorderness in the lattice. The energy distribution of the occupied density of states below Fermi level has also been studied using derivative procedure of absorption coefficient.

  8. Theoretical study of band gap in CuAlO2: Pressure dependence and self-interaction correction

    NASA Astrophysics Data System (ADS)

    Nakanishi, Akitaka; Katayama-Yoshida, Hiroshi

    2012-08-01

    By using first-principles calculations, we studied the energy gaps of delafossite CuAlO2: (1) pressure dependence and (2) self-interaction correction (SIC). Our simulation shows that CuAlO2 transforms from a delafossite structure to a leaning delafossite structure at 60 GPa. The energy gap of CuAlO2 increases through the structural transition due to the enhanced covalency of Cu 3d and O 2p states. We implemented a self-interaction correction (SIC) into first-principles calculation code to go beyond local density approximation and applied it to CuAlO2. The energy gap calculated within the SIC is close to experimental data while one calculated without the SIC is about 1 eV smaller than the experimental data.

  9. Simple intrinsic defects in GaP and InP

    NASA Astrophysics Data System (ADS)

    Schultz, Peter A.

    2012-02-01

    To faithfully simulate evolution of defect chemistry and electrical response in irradiated semiconductor devices requires accurate defect reaction energies and energy levels. In III-Vs, good data is scarce, theory hampered by band gap and supercell problems. I apply density functional theory (DFT) to intrinsic defects in GaP and InP, predicting stable charge states, ground state configurations, defect energy levels, and identifying mobile species. The SeqQuest calculations incorporate rigorous charge boundary conditions removing supercell artifacts, demonstrated converged to the infinite limit. Computed defect levels are not limited by a band gap problem, despite Kohn-Sham gaps much smaller than the experimental gap. As in GaAs, [P.A. Schultz and O.A. von Lilienfeld, Modeling Simul. Mater. Sci. Eng. 17, 084007 (2009)], defects in GaP and InP exhibit great complexity---multitudes of charge states, bistabilities, and negative U systems---but show similarities to each other (and to GaAs). Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  10. Diabetes Increases Cryoinjury Size with Associated Effects on Cx43 Gap Junction Function and Phosphorylation in the Mouse Heart.

    PubMed

    Palatinus, Joseph A; Gourdie, Robert G

    2016-01-01

    Diabetic patients develop larger myocardial infarctions and have an increased risk of death following a heart attack. The poor response to myocardial injury in the diabetic heart is likely related to the many metabolic derangements from diabetes that create a poor substrate in general for wound healing, response to injury and infection. Studies in rodents have implicated a role for the gap junction protein connexin 43 (Cx43) in regulating the injury response in diabetic skin wounds. In this study, we sought to determine whether diabetes alters Cx43 molecular interactions or intracellular communication in the cryoinjured STZ type I diabetic mouse heart. We found that epicardial cryoinjury size is increased in diabetic mice and this increase is prevented by preinjury insulin administration. Consistent with these findings, we found that intercellular coupling via gap junctions is decreased after insulin administration in diabetic and nondiabetic mice. This decrease in coupling is associated with a concomitant increase in phosphorylation of Cx43 at serine 368, a residue known to decrease channel conductance. Taken together, our results suggest that insulin regulates both gap junction-mediated intercellular communication and injury propagation in the mouse heart.

  11. GapBlaster-A Graphical Gap Filler for Prokaryote Genomes.

    PubMed

    de Sá, Pablo H C G; Miranda, Fábio; Veras, Adonney; de Melo, Diego Magalhães; Soares, Siomar; Pinheiro, Kenny; Guimarães, Luis; Azevedo, Vasco; Silva, Artur; Ramos, Rommel T J

    2016-01-01

    The advent of NGS (Next Generation Sequencing) technologies has resulted in an exponential increase in the number of complete genomes available in biological databases. This advance has allowed the development of several computational tools enabling analyses of large amounts of data in each of the various steps, from processing and quality filtering to gap filling and manual curation. The tools developed for gap closure are very useful as they result in more complete genomes, which will influence downstream analyses of genomic plasticity and comparative genomics. However, the gap filling step remains a challenge for genome assembly, often requiring manual intervention. Here, we present GapBlaster, a graphical application to evaluate and close gaps. GapBlaster was developed via Java programming language. The software uses contigs obtained in the assembly of the genome to perform an alignment against a draft of the genome/scaffold, using BLAST or Mummer to close gaps. Then, all identified alignments of contigs that extend through the gaps in the draft sequence are presented to the user for further evaluation via the GapBlaster graphical interface. GapBlaster presents significant results compared to other similar software and has the advantage of offering a graphical interface for manual curation of the gaps. GapBlaster program, the user guide and the test datasets are freely available at https://sourceforge.net/projects/gapblaster2015/. It requires Sun JDK 8 and Blast or Mummer.

  12. 30 CFR 585.642 - How do I submit my GAP?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false How do I submit my GAP? 585.642 Section 585.642 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY... any project easement as part of your original GAP submission or as a revision to your GAP. ...

  13. 30 CFR 585.642 - How do I submit my GAP?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false How do I submit my GAP? 585.642 Section 585.642 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY... any project easement as part of your original GAP submission or as a revision to your GAP. ...

  14. 30 CFR 585.642 - How do I submit my GAP?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false How do I submit my GAP? 585.642 Section 585.642 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY... any project easement as part of your original GAP submission or as a revision to your GAP. ...

  15. Energy as an entanglement witness for quantum many-body systems

    NASA Astrophysics Data System (ADS)

    Dowling, Mark R.; Doherty, Andrew C.; Bartlett, Stephen D.

    2004-12-01

    We investigate quantum many-body systems where all low-energy states are entangled. As a tool for quantifying such systems, we introduce the concept of the entanglement gap, which is the difference in energy between the ground-state energy and the minimum energy that a separable (unentangled) state may attain. If the energy of the system lies within the entanglement gap, the state of the system is guaranteed to be entangled. We find Hamiltonians that have the largest possible entanglement gap; for a system consisting of two interacting spin- 1/2 subsystems, the Heisenberg antiferromagnet is one such example. We also introduce a related concept, the entanglement-gap temperature: the temperature below which the thermal state is certainly entangled, as witnessed by its energy. We give an example of a bipartite Hamiltonian with an arbitrarily high entanglement-gap temperature for fixed total energy range. For bipartite spin lattices we prove a theorem demonstrating that the entanglement gap necessarily decreases as the coordination number is increased. We investigate frustrated lattices and quantum phase transitions as physical phenomena that affect the entanglement gap.

  16. Free energy barriers to evaporation of water in hydrophobic confinement.

    PubMed

    Sharma, Sumit; Debenedetti, Pablo G

    2012-11-08

    We use umbrella sampling Monte Carlo and forward and reverse forward flux sampling (FFS) simulation techniques to compute the free energy barriers to evaporation of water confined between two hydrophobic surfaces separated by nanoscopic gaps, as a function of the gap width, at 1 bar and 298 K. The evaporation mechanism for small (1 × 1 nm(2)) surfaces is found to be fundamentally different from that for large (3 × 3 nm(2)) surfaces. In the latter case, the evaporation proceeds via the formation of a gap-spanning tubular cavity. The 1 × 1 nm(2) surfaces, in contrast, are too small to accommodate a stable vapor cavity. Accordingly, the associated free energy barriers correspond to the formation of a critical-sized cavity for sufficiently large confining surfaces, and to complete emptying of the gap region for small confining surfaces. The free energy barriers to evaporation were found to be of O(20kT) for 14 Å gaps, and to increase by approximately ~5kT with every 1 Å increase in the gap width. The entropy contribution to the free energy of evaporation was found to be independent of the gap width.

  17. Band-gap bowing and p-type doping of (Zn, Mg, Be)O wide-gap semiconductor alloys: a first-principles study

    NASA Astrophysics Data System (ADS)

    Shi, H.-L.; Duan, Y.

    2008-12-01

    Using a first-principles band-structure method and a special quasirandom structure (SQS) approach, we systematically calculate the band gap bowing parameters and p-type doping properties of (Zn, Mg, Be)O related random ternary and quaternary alloys. We show that the bowing parameters for ZnBeO and MgBeO alloys are large and dependent on composition. This is due to the size difference and chemical mismatch between Be and Zn(Mg) atoms. We also demonstrate that adding a small amount of Be into MgO reduces the band gap indicating that the bowing parameter is larger than the band-gap difference. We select an ideal N atom with lower p atomic energy level as dopant to perform p-type doping of ZnBeO and ZnMgBeO alloys. For N doped in ZnBeO alloy, we show that the acceptor transition energies become shallower as the number of the nearest neighbor Be atoms increases. This is thought to be because of the reduction of p- d repulsion. The NO acceptor transition energies are deep in the ZnMgBeO quaternary alloy lattice-matched to GaN substrate due to the lower valence band maximum. These decrease slightly as there are more nearest neighbor Mg atoms surrounding the N dopant. The important natural valence band alignment between ZnO, MgO, BeO, ZnBeO, and ZnMgBeO quaternary alloy is also investigated.

  18. Electronic characterization of defects in narrow gap semiconductors: Comparison of electronic energy levels and formation energies in mercury cadmium telluride, mercury zinc telluride, and mercury zinc selenide

    NASA Technical Reports Server (NTRS)

    Patterson, James D.; Li, Wei-Gang

    1995-01-01

    The project has evolved to that of using Green's functions to predict properties of deep defects in narrow gap materials. Deep defects are now defined as originating from short range potentials and are often located near the middle of the energy gap. They are important because they affect the lifetime of charge carriers and hence the switching time of transistors. We are now moving into the arena of predicting formation energies of deep defects. This will also allow us to make predictions about the relative concentrations of the defects that could be expected at a given temperature. The narrow gap materials mercury cadmium telluride (MCT), mercury zinc telluride (MZT), and mercury zinc selenide (MZS) are of interest to NASA because they have commercial value for infrared detecting materials, and because there is a good possibility that they can be grown better in a microgravity environment. The uniform growth of these crystals on earth is difficult because of convection (caused by solute depletion just ahead of the growing interface, and also due to thermal gradients). In general it is very difficult to grow crystals with both radial and axial homogeneity.

  19. The GAP arginine finger movement into the catalytic site of Ras increases the activation entropy

    PubMed Central

    Kötting, Carsten; Kallenbach, Angela; Suveyzdis, Yan; Wittinghofer, Alfred; Gerwert, Klaus

    2008-01-01

    Members of the Ras superfamily of small G proteins play key roles in signal transduction pathways, which they control by GTP hydrolysis. They are regulated by GTPase activating proteins (GAPs). Mutations that prevent hydrolysis cause severe diseases including cancer. A highly conserved “arginine finger” of GAP is a key residue. Here, we monitor the GTPase reaction of the Ras·RasGAP complex at high temporal and spatial resolution by time-resolved FTIR spectroscopy at 260 K. After triggering the reaction, we observe as the first step a movement of the switch-I region of Ras from the nonsignaling “off” to the signaling “on” state with a rate of 3 s−1. The next step is the movement of the “arginine finger” into the active site of Ras with a rate of k2 = 0.8 s−1. Once the arginine points into the binding pocket, cleavage of GTP is fast and the protein-bound Pi intermediate forms. The switch-I reversal to the “off” state, the release of Pi, and the movement of arginine back into an aqueous environment is observed simultaneously with k3 = 0.1 s−1, the rate-limiting step. Arrhenius plots for the partial reactions show that the activation energy for the cleavage reaction is lowered by favorable positive activation entropy. This seems to indicate that protein-bound structured water molecules are pushed by the “arginine finger” movement out of the binding pocket into the bulk water. The proposed mechanism shows how the high activation barrier for phosphoryl transfer can be reduced by splitting into partial reactions separated by a Pi-intermediate. PMID:18434546

  20. Remote plasma enhanced chemical vapor deposition of GaP with in situ generation of phosphine precursors

    NASA Technical Reports Server (NTRS)

    Choi, S. W.; Lucovsky, G.; Bachmann, Klaus J.

    1993-01-01

    Thin homoepitaxial films of gallium phosphide (GaP) were grown by remote plasma enhanced chemical vapor deposition utilizing in situ generated phosphine precursors. The GaP forming reaction is kinetically controlled with an activation energy of 0.65 eV. The increase of the growth rate with increasing radio frequency (rf) power between 20 and 100 W is due to the combined effects of increasingly complete excitation and the spatial extension of the glow discharge toward the substrate, however, the saturation of the growth rate at even higher rf power indicates the saturation of the generation rate of phosphine precursors at this condition. Slight interdiffusion of P into Si and Si into GaP is indicated from GaP/Si heterostructures grown under similar conditions as the GaP homojunctions.

  1. Remote plasma enhanced chemical vapor deposition of GaP with in situ generation of phosphine precursors

    NASA Technical Reports Server (NTRS)

    Choi, S. W.; Lucovsky, G.; Bachmann, K. J.

    1992-01-01

    Thin homoepitaxial films of gallium phosphide (GaP) have been grown by remote plasma enhanced chemical vapor deposition utilizing in situ-generated phosphine precursors. The GaP forming reaction is kinetically controlled with an activation energy of 0.65 eV. The increase of the growth rate with increasing radio frequency (RF) power between 20 and 100 W is due to the combined effects of increasingly complete excitation and the spatial extension of the glow discharge toward the substrate; however, the saturation of the growth rate at even higher RF power indicates the saturation of the generation rate of phosphine precursors at this condition. Slight interdiffusion of P into Si and Si into GaP is indicated from GaP/Si heterostructures grown under similar conditions as the GaP homojunctions.

  2. A note on anomalous band-gap variations in semiconductors with temperature

    NASA Astrophysics Data System (ADS)

    Chakraborty, P. K.; Mondal, B. N.

    2018-03-01

    An attempt is made to theoretically study the band-gap variations (ΔEg) in semiconductors with temperature following the works, did by Fan and O'Donnell et al. based on thermodynamic functions. The semiconductor band-gap reflects the bonding energy. An increase in temperature changes the chemical bondings, and electrons are promoted from valence band to conduction band. In their analyses, they made several approximations with respect to temperature and other fitting parameters leading to real values of band-gap variations with linear temperature dependences. In the present communication, we have tried to re-analyse the works, specially did by Fan, and derived an analytical model for ΔEg(T). Because, it was based on the second-order perturbation technique of thermodynamic functions. Our analyses are made without any approximations with respect to temperatures and other fitting parameters mentioned in the text, leading to a complex functions followed by an oscillating nature of the variations of ΔEg. In support of the existence of the oscillating energy band-gap variations with temperature in a semiconductor, possible physical explanations are provided to justify the experimental observation for various materials.

  3. Widening the Gap: Pre-University Gap Years and the "Economy of Experience"

    ERIC Educational Resources Information Center

    Heath, Sue

    2007-01-01

    Embarking upon a pre-university gap year is an increasingly popular option among British students. Drawing on Brown et al.'s work on positional conflict theory and the increased importance of the "economy of experience", this paper seeks to explore this growing popularity and argues that the gap year's enhanced profile raises important…

  4. Theoretical investigations on diamondoids (CnHm, n = 10-41): Nomenclature, structural stabilities, and gap distributions

    NASA Astrophysics Data System (ADS)

    Wang, Ya-Ting; Zhao, Yu-Jun; Liao, Ji-Hai; Yang, Xiao-Bao

    2018-01-01

    Combining the congruence check and the first-principles calculations, we have systematically investigated the structural stabilities and gap distributions of possible diamondoids (CnHm) with the carbon numbers (n) from 10 to 41. A simple method for the nomenclature is proposed, which can be used to distinguish and screen the candidates with high efficiency. Different from previous theoretical studies, the possible diamondoids can be enumerated according to our nomenclature, without any pre-determination from experiments. The structural stabilities and electronic properties have been studied by density functional based tight binding and first-principles methods, where a nearly linear correlation is found between the energy gaps obtained by these two methods. According to the formation energy of structures, we have determined the stable configurations as a function of chemical potential. The maximum and minimum energy gaps are found to be dominated by the shape of diamondoids for clusters with a given number of carbon atoms, while the gap decreases in general as the size increases due to the quantum confinement.

  5. Understanding band gaps of solids in generalized Kohn-Sham theory.

    PubMed

    Perdew, John P; Yang, Weitao; Burke, Kieron; Yang, Zenghui; Gross, Eberhard K U; Scheffler, Matthias; Scuseria, Gustavo E; Henderson, Thomas M; Zhang, Igor Ying; Ruzsinszky, Adrienn; Peng, Haowei; Sun, Jianwei; Trushin, Egor; Görling, Andreas

    2017-03-14

    The fundamental energy gap of a periodic solid distinguishes insulators from metals and characterizes low-energy single-electron excitations. However, the gap in the band structure of the exact multiplicative Kohn-Sham (KS) potential substantially underestimates the fundamental gap, a major limitation of KS density-functional theory. Here, we give a simple proof of a theorem: In generalized KS theory (GKS), the band gap of an extended system equals the fundamental gap for the approximate functional if the GKS potential operator is continuous and the density change is delocalized when an electron or hole is added. Our theorem explains how GKS band gaps from metageneralized gradient approximations (meta-GGAs) and hybrid functionals can be more realistic than those from GGAs or even from the exact KS potential. The theorem also follows from earlier work. The band edges in the GKS one-electron spectrum are also related to measurable energies. A linear chain of hydrogen molecules, solid aluminum arsenide, and solid argon provide numerical illustrations.

  6. Understanding band gaps of solids in generalized Kohn–Sham theory

    PubMed Central

    Perdew, John P.; Yang, Weitao; Burke, Kieron; Yang, Zenghui; Gross, Eberhard K. U.; Scheffler, Matthias; Scuseria, Gustavo E.; Henderson, Thomas M.; Zhang, Igor Ying; Ruzsinszky, Adrienn; Peng, Haowei; Sun, Jianwei; Trushin, Egor; Görling, Andreas

    2017-01-01

    The fundamental energy gap of a periodic solid distinguishes insulators from metals and characterizes low-energy single-electron excitations. However, the gap in the band structure of the exact multiplicative Kohn–Sham (KS) potential substantially underestimates the fundamental gap, a major limitation of KS density-functional theory. Here, we give a simple proof of a theorem: In generalized KS theory (GKS), the band gap of an extended system equals the fundamental gap for the approximate functional if the GKS potential operator is continuous and the density change is delocalized when an electron or hole is added. Our theorem explains how GKS band gaps from metageneralized gradient approximations (meta-GGAs) and hybrid functionals can be more realistic than those from GGAs or even from the exact KS potential. The theorem also follows from earlier work. The band edges in the GKS one-electron spectrum are also related to measurable energies. A linear chain of hydrogen molecules, solid aluminum arsenide, and solid argon provide numerical illustrations. PMID:28265085

  7. The effect of carbon nanotubes functionalization on the band-gap energy of TiO2-CNT nanocomposite

    NASA Astrophysics Data System (ADS)

    Shahbazi, Hessam; Shafei, Alireza; Sheibani, Saeed

    2018-01-01

    In this paper the morphology and structure of TiO2-CNT nanocomposite powder obtained by an in situ sol-gel process were investigated. The synthesized nanocomposite powders were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and diffuse reflectance spectroscopy (DRS). The effect of functionalizing of CNT on the properties was studied. XRD results showed amorphous structure before calcination. Also, anatase phase TiO2 was formed after calcination at 400 °C. The SEM results indicate different distributions of TiO2 on CNTs. As a result, well dispersed TiO2 microstructure on the surface of CNTs was observed after functionalizing, while compact and large aggregated particles were found without functionalizing. The average thickness of uniform and well-defined coated TiO2 layer was in the range of 30-40 nm. The DRS results have determined the reflective properties and band gap energies of nanocomposite powders and have shown that functionalizing of CNTs caused the change of band-gap energy from 2.98 to 2.87 eV.

  8. Study on the characteristics of a two gap capillary discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, D.; Yang, L. J., E-mail: yanglj@mail.xjtu.edu.cn; Huo, P.

    2015-02-15

    The paper presents a new two-gap capillary (TGC) discharge structure. The prominent innovation is the introduction of the middle electrode, which divides the capillary into the trigger gap and the main gap. The discharge circuit of the TGC comprises the trigger circuit and the main circuit. The two circuits are used for the pre-ionization of the trigger gap and providing energy of 450 J for the main gap arc discharging, respectively. When the discharge initiates, the trigger gap is pre-ionized under high voltage pulse produced by trigger circuit, and meanwhile, the weakly ionized plasma is generated. The main circuit then maintainsmore » the expansion of the plasma, which is called soft capillary discharge. Afterwards, the main gap is shorted and discharges under a relatively low voltage. With the optimization of the circuit parameter, both the energy deposition ratio in main gap and the degree of plasma ionization are enhanced. The efficiency of the energy deposition is almost twice higher compared with that of the conventional capillary structure. The life performance test indicates that the erosion of the middle electrode and the trigger gap carbonization are the key factors that limit the life performance of the TGC.« less

  9. Energy gap opening by crossing drop cast single-layer graphene nanoribbons.

    PubMed

    Yamada, Toyo Kazu; Fukuda, Hideto; Fujiwara, Taizo; Liu, Polin; Nakamura, Kohji; Kasai, Seiya; Vazquez de Parga, Amadeo L; Tanaka, Hirofumi

    2018-08-03

    Band gap opening of a single-layer graphene nanoribbon (sGNR) sitting on another sGNR, fabricated by drop casting GNR solution on Au(111) substrate in air, was studied by means of scanning tunneling microscopy and spectroscopy in an ultra-high vacuum at 78 K and 300 K. GNRs with a width of ∼45 nm were prepared by unzipping double-walled carbon nanotubes (diameter ∼15 nm) using the ultrasonic method. In contrast to atomically-flat GNRs fabricated via the bottom-up process, the drop cast sGNRs were buckled on Au(111), i.e., some local points of the sGNR are in contact with the substrate (d ∼ 0.5 nm), but other parts float (d ∼ 1-3 nm), where d denotes the measured distance between the sGNR and the substrate. In spite of the fact that the nanoribbons were buckled, dI/dV maps confirmed that each buckled sGNR had a metallic character (∼3.5 G o ) with considerable uniform local density of states, comparable to a flat sGNR. However, when two sGNRs crossed each other, the crossed areas showed a band gap between -50 and +200 meV around the Fermi energy, i.e., the only upper sGNR electronic property changed from metallic to p-type semiconducting, which was not due to the bending, but the electronic interactions between the up and down sGNRs.

  10. Sub-band gap photo-enhanced secondary electron emission from high-purity single-crystal chemical-vapor-deposited diamond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yater, J. E., E-mail: joan.yater@nrl.navy.mil; Shaw, J. L.; Pate, B. B.

    2016-02-07

    Secondary-electron-emission (SEE) current measured from high-purity, single-crystal (100) chemical-vapor-deposited diamond is found to increase when sub-band gap (3.06 eV) photons are incident on the hydrogenated surface. Although the light does not produce photoemission directly, the SEE current increases by more than a factor of 2 before saturating with increasing laser power. In energy distribution curves (EDCs), the emission peak shows a corresponding increase in intensity with increasing laser power. However, the emission-onset energy in the EDCs remains constant, indicating that the bands are pinned at the surface. On the other hand, changes are observed on the high-energy side of the distributionmore » as the laser power increases, with a well-defined shoulder becoming more pronounced. From an analysis of this feature in the EDCs, it is deduced that upward band bending is present in the near-surface region during the SEE measurements and this band bending suppresses the SEE yield. However, sub-band gap photon illumination reduces the band bending and thereby increases the SEE current. Because the bands are pinned at the surface, we conclude that the changes in the band levels occur below the surface in the electron transport region. Sample heating produces similar effects as observed with sub-band gap photon illumination, namely, an increase in SEE current and a reduction in band bending. However, the upward band bending is not fully removed by either increasing laser power or temperature, and a minimum band bending of ∼0.8 eV is established in both cases. The sub-band gap photo-excitation mechanism is under further investigation, although it appears likely at present that defect or gap states play a role in the photo-enhanced SEE process. In the meantime, the study demonstrates the ability of visible light to modify the electronic properties of diamond and enhance the emission capabilities, which may have potential impact for diamond-based vacuum

  11. Theoretical study of room temperature ferromagnetism and band gap energy of pure and ion doped In2O3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Apostolov, A. T.; Apostolova, I. N.; Wesselinowa, J. M.

    2018-06-01

    Using the s-d microscopic model including the electron-phonon interaction and the Green's function theory we have considered the origin of room temperature ferromagnetism (RTFM) in pure and ion doped In2O3 nanoparticles (NPs). The magnetization M increases with decreasing particle size. M of Fe, Tb and Mn doped In2O3 NPs is investigated, which increases, decreases and has a maximum, respectively, with increasing doping concentration. The RTFM is due to surface oxygen vacancies and different ionic radius of the dopants compared to that of the host ions. This differences lead to different strains which changes the exchange interaction constants. We have calculated the dependence of the band gap energy on the particle size in In2O3 NPs and the Fe concentration of Fe doped In2O3 NPs. The results are in good qualitative agreement with the experimental data.

  12. Energy band-gap calculations of short-period (ZnTe)m(ZnSe)n and (ZnS)m(ZnSe)n strained-layer superlattices

    NASA Astrophysics Data System (ADS)

    Wu, Yi-hong; Fujita, Shizuo; Fujita, Shigeo

    1990-01-01

    We report on the calculations of energy band gaps based on the semiempirical tight-binding model for short-period (ZnTe)m(ZnSe)n and (ZnS)m(ZnSe)n strained-layer superlattices (SLSs). During the calculation, much attention has been paid to the modeling of strain effect. It is found that (ZnTe)m(ZnSe)n superlattices grown on InAs, InP, and GaAs substrates show very different electronic properties from each other, which is consistent with experimental results now available. Assuming that the emission observed for (ZnTe)m(ZnSe)n SLS originates from intrinsic luminescence, we obtain an unstrained valence-band offset of 1.136±0.1 eV for this superlattice. On the other hand, the band gap of (ZnS)m(ZnSe)n superlattice grown coherently on GaP is found to exhibit a much stronger structure dependence than that grown coherently on GaAs. The difference of energy gap between superlattice with equal monolayers (m=n) and the corresponding alloy with equal chalcogenide composition is also discussed.

  13. Fostering sustained energy behavior change and increasing energy literacy in a student housing energy challenge

    NASA Astrophysics Data System (ADS)

    Brewer, Robert Stephen

    We designed the Kukui Cup challenge to foster energy conservation and increase energy literacy. Based on a review of the literature, the challenge combined a variety of elements into an overall game experience, including: real-time energy feedback, goals, commitments, competition, and prizes. We designed a software system called Makahiki to provide the online portion of the Kukui Cup challenge. Energy use was monitored by smart meters installed on each floor of the Hale Aloha residence halls on the University of Hawai'i at Manoa campus. In October 2011, we ran the UH Kukui Cup challenge for the over 1000 residents of the Hale Aloha towers. To evaluate the Kukui Cup challenge, I conducted three experiments: challenge participation, energy literacy, and energy use. Many residents participated in the challenge, as measured by points earned and actions completed through the challenge website. I measured the energy literacy of a random sample of Hale Aloha residents using an online energy literacy questionnaire administered before and after the challenge. I found that challenge participants' energy knowledge increased significantly compared to non-challenge participants. Positive self-reported energy behaviors increased after the challenge for both challenge participants and non-participants, leading to the possibility of passive participation by the non-challenge participants. I found that energy use varied substantially between and within lounges over time. Variations in energy use over time complicated the selection of a baseline of energy use to compare the levels during and after the challenge. The best team reduced its energy use during the challenge by 16%. However, team energy conservation did not appear to correlate to participation in the challenge, and there was no evidence of sustained energy conservation after the challenge. The problems inherent in assessing energy conservation using a baseline call into question this common practice. My research has

  14. Communication: electronic band gaps of semiconducting zig-zag carbon nanotubes from many-body perturbation theory calculations.

    PubMed

    Umari, P; Petrenko, O; Taioli, S; De Souza, M M

    2012-05-14

    Electronic band gaps for optically allowed transitions are calculated for a series of semiconducting single-walled zig-zag carbon nanotubes of increasing diameter within the many-body perturbation theory GW method. The dependence of the evaluated gaps with respect to tube diameters is then compared with those found from previous experimental data for optical gaps combined with theoretical estimations of exciton binding energies. We find that our GW gaps confirm the behavior inferred from experiment. The relationship between the electronic gap and the diameter extrapolated from the GW values is also in excellent agreement with a direct measurement recently performed through scanning tunneling spectroscopy.

  15. Graphene field effect transistor without an energy gap.

    PubMed

    Jang, Min Seok; Kim, Hyungjun; Son, Young-Woo; Atwater, Harry A; Goddard, William A

    2013-05-28

    Graphene is a room temperature ballistic electron conductor and also a very good thermal conductor. Thus, it has been regarded as an ideal material for postsilicon electronic applications. A major complication is that the relativistic massless electrons in pristine graphene exhibit unimpeded Klein tunneling penetration through gate potential barriers. Thus, previous efforts to realize a field effect transistor for logic applications have assumed that introduction of a band gap in graphene is a prerequisite. Unfortunately, extrinsic treatments designed to open a band gap seriously degrade device quality, yielding very low mobility and uncontrolled on/off current ratios. To solve this dilemma, we propose a gating mechanism that leads to a hundredfold enhancement in on/off transmittance ratio for normally incident electrons without any band gap engineering. Thus, our saw-shaped geometry gate potential (in place of the conventional bar-shaped geometry) leads to switching to an off state while retaining the ultrahigh electron mobility in the on state. In particular, we report that an on/off transmittance ratio of 130 is achievable for a sawtooth gate with a gate length of 80 nm. Our switching mechanism demonstrates that intrinsic graphene can be used in designing logic devices without serious alteration of the conventional field effect transistor architecture. This suggests a new variable for the optimization of the graphene-based device--geometry of the gate electrode.

  16. Free energy gap laws for the pulse-induced and stationary fluorescence quenching by reversible charge transfer in polar solutions.

    PubMed

    Khokhlova, Svetlana S; Burshtein, Anatoly I

    2011-01-21

    The Stern-Volmer constants for either pulse-induced or stationary fluorescence being quenched by a contact charge transfer are calculated and their free energy dependencies (the free energy gap laws) are specified. The reversibility of charge transfer is taken into account as well as spin conversion in radical ion pairs, followed by their recombination in either singlet or triplet neutral products. The natural decay of triplets as well as their impurity quenching by ionization are accounted for when estimating the fluorescence quantum yield and its free energy dependence.

  17. Reducing support loss in micromechanical ring resonators using phononic band-gap structures

    NASA Astrophysics Data System (ADS)

    Hsu, Feng-Chia; Hsu, Jin-Chen; Huang, Tsun-Che; Wang, Chin-Hung; Chang, Pin

    2011-09-01

    In micromechanical resonators, energy loss via supports into the substrates may lead to a low quality factor. To eliminate the support loss, in this paper a phononic band-gap structure is employed. We demonstrate a design of phononic-crystal (PC) strips used to support extensional wine-glass mode ring resonators to increase the quality factor. The PC strips are introduced to stop elastic-wave propagation by the band-gap and deaf-band effects. Analyses of resonant characteristics of the ring resonators and the dispersion relations, eigenmodes, and transmission properties of the PC strips are presented. With the proposed resonator architecture, the finite-element simulations show that the leaky power is effectively reduced and the stored energy inside the resonators is enhanced simultaneously as the operating frequencies of the resonators are within the band gap or deaf bands. Realization of a high quality factor micromechanical ring resonator with minimized support loss is expected.

  18. Multiple interactions and rapidity gap survival

    NASA Astrophysics Data System (ADS)

    Khoze, V. A.; Martin, A. D.; Ryskin, M. G.

    2018-05-01

    Observations of rare processes containing large rapidity gaps at high energy colliders may be exceptionally informative. However the cross sections of these events are small in comparison with that for the inclusive processes since there is a large probability that the gaps may be filled by secondary particles arising from additional soft interactions or from gluon radiation. Here we review the calculations of the probability that the gaps survive population by particles from these effects for a wide range of different processes.

  19. The temperature-dependency of the optical band gap of ZnO measured by electron energy-loss spectroscopy in a scanning transmission electron microscope

    NASA Astrophysics Data System (ADS)

    Granerød, Cecilie S.; Galeckas, Augustinas; Johansen, Klaus Magnus; Vines, Lasse; Prytz, Øystein

    2018-04-01

    The optical band gap of ZnO has been measured as a function of temperature using Electron Energy-Loss Spectroscopy (EELS) in a (Scanning) Transmission Electron Microscope ((S)TEM) from approximately 100 K up towards 1000 K. The band gap narrowing shows a close to linear dependency for temperatures above 250 K and is accurately described by Varshni, Bose-Einstein, Pässler and Manoogian-Woolley models. Additionally, the measured band gap is compared with both optical absorption measurements and photoluminescence data. STEM-EELS is here shown to be a viable technique to measure optical band gaps at elevated temperatures, with an available temperature range up to 1500 K and the benefit of superior spatial resolution.

  20. Blockade of brain stem gap junctions increases phrenic burst frequency and reduces phrenic burst synchronization in adult rat.

    PubMed

    Solomon, Irene C; Chon, Ki H; Rodriguez, Melissa N

    2003-01-01

    Recent investigations have examined the influence of gap junctional communication on generation and modulation of respiratory rhythm and inspiratory motoneuron synchronization in vitro using transverse medullary slice and en bloc brain stem-spinal cord preparations obtained from neonatal (1-5 days postnatal) mice. Gap junction proteins, however, have been identified in both neurons and glia in brain stem regions implicated in respiratory control in both neonatal and adult rodents. Here, we used an in vitro arterially perfused rat preparation to examine the role of gap junctional communication on generation and modulation of respiratory rhythm and inspiratory motoneuron synchronization in adult rodents. We recorded rhythmic inspiratory motor activity from one or both phrenic nerves before and during pharmacological blockade (i.e., uncoupling) of brain stem gap junctions using carbenoxolone (100 microM), 18alpha-glycyrrhetinic acid (25-100 microM), 18beta-glycyrrhetinic acid (25-100 microM), octanol (200-300 microM), or heptanol (200 microM). During perfusion with a gap junction uncoupling agent, we observed an increase in the frequency of phrenic bursts (~95% above baseline frequency; P < 0.001) and a decrease in peak amplitude of integrated phrenic nerve discharge (P < 0.001). The increase in frequency of phrenic bursts resulted from a decrease in both T(I) (P < 0.01) and T(E) (P < 0.01). In addition, the pattern of phrenic nerve discharge shifted from an augmenting discharge pattern to a "bell-shaped" or square-wave discharge pattern in most experiments. Spectral analyses using a fast Fourier transform (FFT) algorithm revealed a reduction in the peak power of both the 40- to 50-Hz peak (corresponding to the MFO) and 90- to 110-Hz peak (corresponding to the HFO) although spurious higher frequency activity (> or =130 Hz) was observed, suggesting an overall loss or reduction in inspiratory-phase synchronization. Although additional experiments are required to

  1. Anisotropy of the Fermi surface, Fermi velocity, many-body enhancement, and superconducting energy gap in Nb

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crabtree, G.W.; Dye, D.H.; Karim, D.P.

    1987-02-01

    The detailed angular dependence of the Fermi radius k/sub F/, the Fermi velocity v/sub F/(k), the many-body enhancement factor lambda(k), and the superconducting energy gap ..delta..(k), for electrons on the Fermi surface of Nb are derived with use of the de Haas--van Alphen (dHvA) data of Karim, Ketterson, and Crabtree (J. Low Temp. Phys. 30, 389 (1978)), a Korringa-Kohn-Rostoker parametrization scheme, and an empirically adjusted band-structure calculation of Koelling. The parametrization is a nonrelativistic five-parameter fit allowing for cubic rather than spherical symmetry inside the muffin-tin spheres. The parametrized Fermi surface gives a detailed interpretation of the previously unexplained kappa,more » ..cap alpha..', and ..cap alpha..'' orbits in the dHvA data. Comparison of the parametrized Fermi velocities with those of the empirically adjusted band calculation allow the anisotropic many-body enhancement factor lambda(k) to be determined. Theoretical calculations of the electron-phonon interaction based on the tight-binding model agree with our derived values of lambda(k) much better than those based on the rigid-muffin-tin approximation. The anisotropy in the superconducting energy gap ..delta..(k) is estimated from our results for lambda(k), assuming weak anisotropy.« less

  2. Anisotropy of the Fermi surface, Fermi velocity, many-body enhancement, and superconducting energy gap in Nb

    NASA Astrophysics Data System (ADS)

    Crabtree, G. W.; Dye, D. H.; Karim, D. P.; Campbell, S. A.; Ketterson, J. B.

    1987-02-01

    The detailed angular dependence of the Fermi radius kF, the Fermi velocity vF(k), the many-body enhancement factor λ(k), and the superconducting energy gap Δ(k), for electrons on the Fermi surface of Nb are derived with use of the de Haas-van Alphen (dHvA) data of Karim, Ketterson, and Crabtree [J. Low Temp. Phys. 30, 389 (1978)], a Korringa-Kohn-Rostoker parametrization scheme, and an empirically adjusted band-structure calculation of Koelling. The parametrization is a nonrelativistic five-parameter fit allowing for cubic rather than spherical symmetry inside the muffin-tin spheres. The parametrized Fermi surface gives a detailed interpretation of the previously unexplained κ, α', and α'' orbits in the dHvA data. Comparison of the parametrized Fermi velocities with those of the empirically adjusted band calculation allow the anisotropic many-body enhancement factor λ(k) to be determined. Theoretical calculations of the electron-phonon interaction based on the tight-binding model agree with our derived values of λ(k) much better than those based on the rigid-muffin-tin approximation. The anisotropy in the superconducting energy gap Δ(k) is estimated from our results for λ(k), assuming weak anisotropy.

  3. Testing Mylar Multi-Gap Resistive Plate Chambers

    NASA Astrophysics Data System (ADS)

    Towell, Cecily; EIC PID Consortium Collaboration

    2016-09-01

    Quantum Chromodynamics (QCD) is the fundamental theory that successfully explains strong force interactions. To continue the effective study of QCD in nuclear structure, plans are being made to construct an Electron Ion Collider (EIC). Part of the preparation for the EIC includes continued detector development to push beyond their current capabilities. This includes Time of Flight (TOF) detectors, which are used for particle identification. Multi-Gap Resistive Plate Chambers (mRPCs) are a type of TOF detector that typically use glass to make small gas gaps within the detector to produce fast signals when a high energy particle goes through the detector. These extremely thin gaps of 0.2mm are key in achieving the excellent timing resolution capability of these detectors. A new mRPC design is being tested with the goal of reaching a timing resolution of 10ps. This design uses sheets of mylar in place of the glass so that the width of the dividers is smaller, thus vastly increasing the number of gas gaps. Multiple versions of this mylar mRPC have been made and tested. The methods for producing these mRPCs and their performance will be discussed. This research was supported by US DOE MENP Grant DE-FG02-03ER41243.

  4. Mind the gap--reaching the European target of a 2-year increase in healthy life years in the next decade.

    PubMed

    Jagger, Carol; McKee, Martin; Christensen, Kaare; Lagiewka, Karolina; Nusselder, Wilma; Van Oyen, Herman; Cambois, Emmanuelle; Jeune, Bernard; Robine, Jean-Marie

    2013-10-01

    The European Innovation Partnership on Active and Healthy Ageing seeks an increase of two healthy life years (HLY) at birth in the EU27 for the next 10 years. We assess the feasibility of doing so between 2010 and 2020 and the differential impact among countries by applying different scenarios to current trends in HLY. Data comprised HLY and life expectancy (LE) at birth 2004-09 from Eurostat. We estimated HLY in 2010 in each country by multiplying the Eurostat projections of LE in 2010 by the ratio HLY/LE obtained either from country and sex-specific linear regression models of HLY/LE on year (seven countries retaining same HLY question) or extrapolating the average of HLY/LE in 2008 and 2009 to 2010 (20 countries and EU27). The first scenario continued these trends with three other scenarios exploring different HLY gap reductions between 2010 and 2020. The estimated gap in HLY in 2010 was 17.5 years (men) and 18.9 years (women). Assuming current trends continue, EU27 HLY increased by 1.4 years (men) and 0.9 years (women), below the European Innovation Partnership on Active and Healthy Ageing target, with the HLY gap between countries increasing to 18.3 years (men) and 19.5 years (women). To eliminate the HLY gap in 20 years, the EU27 must gain 4.4 HLY (men) and 4.8 HLY (women) in the next decade, which, for some countries, is substantially more than what the current trends suggest. Global targets for HLY move attention from inter-country differences and, alongside the current economic crisis, may contribute to increase health inequalities.

  5. A Low-Energy-Gap Thienochrysenocarbazole Dye for Highly Efficient Mesoscopic Titania Solar Cells: Understanding the Excited State and Charge Carrier Dynamics.

    PubMed

    Wang, Junting; Xie, Xinrui; Weng, Guorong; Yuan, Yi; Zhang, Jing; Wang, Peng

    2018-05-09

    Maintaining both a high external quantum efficiency and a large open-circuit photovoltage of dye-sensitized solar cells (DSSCs) is a crucial challenge in the process of developing narrow-energy-gap dyes for the capture of infrared solar photons. Herein, we report two donor-acceptor organic dyes, C294 and C295, with a polycyclic heteroaromatic unit, 6,11-dihydrothieno[3',2':8,9]chryseno[10,11,12,1-bcdefg]carbazole (TCC), as the central module of the electron donor, and ethylbenzothiadiazole-benzioc acid as the electron acceptor. The interfacial charge recombination was successfully mitigated by introducing an additional branched aliphatic chain in C295. Furthermore, the O⋅⋅⋅S nonbonding interaction between the oxygen atom of the alkoxy group and the sulfur atom of the thiophene in C295 controlled the conformation of C295, resulting in a narrow energy-gap. Time-resolved spectroscopic measurements on C294 and the model dye C272 indicated that the elevation of the HOMO energy level decreased the kinetics and yield of hole injection owing to a reduction in the driving force and that the shortened excited-state lifetime caused by the narrowing of the energy gap was unfavorable for electron injection. By fine tuning the composition of the electrolyte, C294 and C295 eventually achieved high power conversion efficiencies of 11.5 % and 12.4 %, respectively, under full sunlight of air mass 1.5 global conditions. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Increasing Racial Isolation and Test Score Gaps in Mathematics: A 30-Year Perspective

    ERIC Educational Resources Information Center

    Berends, Mark; Penaloza, Roberto V.

    2010-01-01

    Background/Context: Although there has been progress in closing the test score gaps among student groups over past decades, that progress has stalled. Many researchers have speculated why the test score gaps closed between the early 1970s and the early 1990s, but only a few have been able to empirically study how changes in school factors and…

  7. Linear Scaling of the Exciton Binding Energy versus the Band Gap of Two-Dimensional Materials

    NASA Astrophysics Data System (ADS)

    Choi, Jin-Ho; Cui, Ping; Lan, Haiping; Zhang, Zhenyu

    2015-08-01

    The exciton is one of the most crucial physical entities in the performance of optoelectronic and photonic devices, and widely varying exciton binding energies have been reported in different classes of materials. Using first-principles calculations within the G W -Bethe-Salpeter equation approach, here we investigate the excitonic properties of two recently discovered layered materials: phosphorene and graphene fluoride. We first confirm large exciton binding energies of, respectively, 0.85 and 2.03 eV in these systems. Next, by comparing these systems with several other representative two-dimensional materials, we discover a striking linear relationship between the exciton binding energy and the band gap and interpret the existence of the linear scaling law within a simple hydrogenic picture. The broad applicability of this novel scaling law is further demonstrated by using strained graphene fluoride. These findings are expected to stimulate related studies in higher and lower dimensions, potentially resulting in a deeper understanding of excitonic effects in materials of all dimensionalities.

  8. Influence of defects on the absorption edge of InN thin films: The band gap value

    NASA Astrophysics Data System (ADS)

    Thakur, J. S.; Danylyuk, Y. V.; Haddad, D.; Naik, V. M.; Naik, R.; Auner, G. W.

    2007-07-01

    We investigate the optical-absorption spectra of InN thin films whose electron density varies from ˜1017tõ1021cm-3 . The low-density films are grown by molecular-beam-epitaxy deposition while highly degenerate films are grown by plasma-source molecular-beam epitaxy. The optical-absorption edge is found to increase from 0.61to1.90eV as the carrier density of the films is increased from low to high density. Since films are polycrystalline and contain various types of defects, we discuss the band gap values by studying the influence of electron degeneracy, electron-electron, electron-ionized impurities, and electron-LO-phonon interaction self-energies on the spectral absorption coefficients of these films. The quasiparticle self-energies of the valence and conduction bands are calculated using dielectric screening within the random-phase approximation. Using one-particle Green’s function analysis, we self-consistently determine the chemical potential for films by coupling equations for the chemical potential and the single-particle scattering rate calculated within the effective-mass approximation for the electron scatterings from ionized impurities and LO phonons. By subtracting the influence of self-energies and chemical potential from the optical-absorption edge energy, we estimate the intrinsic band gap values for the films. We also determine the variations in the calculated band gap values due to the variations in the electron effective mass and static dielectric constant. For the lowest-density film, the estimated band gap energy is ˜0.59eV , while for the highest-density film, it varies from ˜0.60tõ0.68eV depending on the values of electron effective mass and dielectric constant.

  9. Temporal and spatial correlation of platelet-activating factor-induced increases in endothelial [Ca²⁺]i, nitric oxide, and gap formation in intact venules.

    PubMed

    Zhou, Xueping; He, Pingnian

    2011-11-01

    We have previously demonstrated that platelet-activating factor (PAF)-induced increases in microvessel permeability were associated with endothelial gap formation and that the magnitude of peak endothelial intracellular Ca(2+) concentration ([Ca(2+)](i)) and nitric oxide (NO) production at the single vessel level determines the degree of the permeability increase. This study aimed to examine whether the magnitudes of PAF-induced peak endothelial [Ca(2+)](i), NO production, and gap formation are correlated at the individual endothelial cell level in intact rat mesenteric venules. Endothelial gaps were quantified by the accumulation of fluorescent microspheres at endothelial clefts using confocal imaging. Endothelial [Ca(2+)](i) was measured on fura-2- or fluo-4-loaded vessels, and 4,5-diaminofluorescein (DAF-2) was used for NO measurements. The results showed that increases in endothelial [Ca(2+)](i), NO production, and gap formation occurred in all endothelial cells when vessels were exposed to PAF but manifested a spatial heterogeneity in magnitudes among cells in each vessel. PAF-induced peak endothelial [Ca(2+)](i) preceded the peak NO production by 0.6 min at the cellular level, and the magnitudes of NO production and gap formation linearly correlated with that of the peak endothelial [Ca(2+)](i) in each cell, suggesting that the initial levels of endothelial [Ca(2+)](i) determine downstream NO production and gap formation. These results provide direct evidence from intact venules that inflammatory mediator-induced increases in microvessel permeability are associated with the generalized formation of endothelial gaps around all endothelial cells. The spatial differences in the molecular signaling that were initiated by the heterogeneous endothelial Ca(2+) response contribute to the heterogeneity in permeability increases along the microvessel wall during inflammation.

  10. Energy gap states and tunneling currents in semiconducting graphene

    NASA Astrophysics Data System (ADS)

    Szczesniak, Dominik; Hoehn, Ross; Kais, Sabre

    It has been predicted that when graphene is supported on a substrate or doped with foreign atom species, the inherent linear electronic dispersion of its pristine form can be strongly altered. Worthy of special attention is the situation when the interactions between graphene and the substrate or dopants lead to an opening of the finite electronic gap in the fermionic spectrum of this nano-material, and strongly influence its transport and optical properties. Herein, the fundamental electronic transport properties of such perturbed graphene are discussed in the framework of the complex band structure analysis, which not only accounts for the propagating but also the evanescent electronic states. Various scenarios responsible for the band gap opening and manipulation of its characteristics are considered, these considerations may entirely account for the aforementioned perturbations to the pristine graphene. It is shown, that the these perturbations are responsible for inducing gap states which allow electrons to directly tunnel between the conduction and valence bands in perturbed graphene. The resulting tunneling states are analyzed in a comprehensive manner, suggesting their great importance for the transport processes across graphene-based semiconducting nanostructures.

  11. Integrating diverse forage sources reduces feed gaps on mixed crop-livestock farms.

    PubMed

    Bell, L W; Moore, A D; Thomas, D T

    2017-12-04

    Highly variable climates induce large variability in the supply of forage for livestock and so farmers must manage their livestock systems to reduce the risk of feed gaps (i.e. periods when livestock feed demand exceeds forage supply). However, mixed crop-livestock farmers can utilise a range of feed sources on their farms to help mitigate these risks. This paper reports on the development and application of a simple whole-farm feed-energy balance calculator which is used to evaluate the frequency and magnitude of feed gaps. The calculator matches long-term simulations of variation in forage and metabolisable energy supply from diverse sources against energy demand for different livestock enterprises. Scenarios of increasing the diversity of forage sources in livestock systems is investigated for six locations selected to span Australia's crop-livestock zone. We found that systems relying on only one feed source were prone to higher risk of feed gaps, and hence, would often have to reduce stocking rates to mitigate these risks or use supplementary feed. At all sites, by adding more feed sources to the farm feedbase the continuity of supply of both fresh and carry-over forage was improved, reducing the frequency and magnitude of feed deficits. However, there were diminishing returns from making the feedbase more complex, with combinations of two to three feed sources typically achieving the maximum benefits in terms of reducing the risk of feed gaps. Higher stocking rates could be maintained while limiting risk when combinations of other feed sources were introduced into the feedbase. For the same level of risk, a feedbase relying on a diversity of forage sources could support stocking rates 1.4 to 3 times higher than if they were using a single pasture source. This suggests that there is significant capacity to mitigate both risk of feed gaps at the same time as increasing 'safe' stocking rates through better integration of feed sources on mixed crop

  12. Numerical Simulation of Supersonic Gap Flow

    PubMed Central

    Jing, Xu; Haiming, Huang; Guo, Huang; Song, Mo

    2015-01-01

    Various gaps in the surface of the supersonic aircraft have a significant effect on airflows. In order to predict the effects of attack angle, Mach number and width-to-depth ratio of gap on the local aerodynamic heating environment of supersonic flow, two-dimensional compressible Navier-Stokes equations are solved by the finite volume method, where convective flux of space term adopts the Roe format, and discretization of time term is achieved by 5-step Runge-Kutta algorithm. The numerical results reveal that the heat flux ratio is U-shaped distribution on the gap wall and maximum at the windward corner of the gap. The heat flux ratio decreases as the gap depth and Mach number increase, however, it increases as the attack angle increases. In addition, it is important to find that chamfer in the windward corner can effectively reduce gap effect coefficient. The study will be helpful for the design of the thermal protection system in reentry vehicles. PMID:25635395

  13. Numerical simulation of supersonic gap flow.

    PubMed

    Jing, Xu; Haiming, Huang; Guo, Huang; Song, Mo

    2015-01-01

    Various gaps in the surface of the supersonic aircraft have a significant effect on airflows. In order to predict the effects of attack angle, Mach number and width-to-depth ratio of gap on the local aerodynamic heating environment of supersonic flow, two-dimensional compressible Navier-Stokes equations are solved by the finite volume method, where convective flux of space term adopts the Roe format, and discretization of time term is achieved by 5-step Runge-Kutta algorithm. The numerical results reveal that the heat flux ratio is U-shaped distribution on the gap wall and maximum at the windward corner of the gap. The heat flux ratio decreases as the gap depth and Mach number increase, however, it increases as the attack angle increases. In addition, it is important to find that chamfer in the windward corner can effectively reduce gap effect coefficient. The study will be helpful for the design of the thermal protection system in reentry vehicles.

  14. Energy: Can We Meet the Increasing Demand?

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2006-01-01

    Energy is the lifeblood of the United States. It powers its industries and keeps its economy humming. The nation's progress has relied on making energy abundantly available to support the growth of new ideas and products, and the issue of renewable energy is an increasingly important one. In this article, the author discusses some of the basics of…

  15. Role of Fe doping in tuning the band gap of TiO2 for photo-oxidation induced cytotoxicity paradigm

    PubMed Central

    George, Saji; Pokhrel, Suman; Ji, Zhaoxia; Henderson, Bryana L.; Xia, Tian; Li, LinJiang; Zink, Jeffrey I.; Nel, André E.; Mädler, Lutz

    2014-01-01

    UV-Light induced electron-hole (e−/h+) pair generation and free radical production in TiO2 based nanoparticles is a major conceptual paradigm for biological injury. However, to date, this hypothesis has been difficult to experimentally verify due to the high energy of UV light that is intrinsically highly toxic to biological systems. Here, a versatile flame spray pyrolysis (FSP) synthetic process has been exploited to synthesize a library of iron doped (0–10 at wt%) TiO2 nanoparticles. These particles have been tested for photoactivation-mediated cytotoxicity using near-visible light exposure. The reduction in TiO2 band gap energy with incremental levels of Fe loading maintained the nanoparticle crystalline structure in spite of homogeneous Fe distribution (demonstrated by XRD, HRTEM, SAED, EFTEM, and EELS). Photochemical studies showed that band gap energy was reciprocally tuned proportional to the Fe content. The photo-oxidation capability of Fe-doped TiO2 was found to increase during near-visible light exposure. Use of a macrophage cell line to evaluate cytotoxic and ROS production showed increased oxidant injury and cell death in parallel with a decrease in band gap energy. These findings demonstrate the importance of band gap energy in the phototoxic response of the cell to TiO2 nanoparticles and reflect the potential of this material to generate adverse effects in humans and the environment during high intensity light exposure. PMID:21678906

  16. The gender health gap in China: A decomposition analysis.

    PubMed

    Zhang, Hao; Bago d'Uva, Teresa; van Doorslaer, Eddy

    2015-07-01

    Around the world, and in spite of their higher life expectancy, women tend to report worse health than men until old age. Explanations for this gender gap in self-perceived health may be different in China than in other countries due to the traditional phenomenon of son preference. We examine several possible reasons for the gap using the Chinese SAGE data. We first rule out differential reporting by gender as a possible explanation, exploiting information on anchoring vignettes in eight domains of health functioning. Decomposing the gap in general self-assessed health, we find that about 31% can be explained by socio-demographic factors, most of all by discrimination against women in education in the 20th century. A more complete specification including chronic conditions and health functioning fully explains the remainder of the gap (about 69%). Adding chronic conditions and health functioning also explains at least two thirds of the education contribution, suggesting how education may affect health. In particular, women's higher rates of arthritis, angina and eye diseases make the largest contributions to the gender health gap, by limiting mobility, increasing pain and discomfort, and causing sleep problems and a feeling of low energy. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Sensitive detection of surface- and size-dependent direct and indirect band gap transitions in ferritin.

    PubMed

    Colton, J S; Erickson, S D; Smith, T J; Watt, R K

    2014-04-04

    Ferritin is a protein nano-cage that encapsulates minerals inside an 8 nm cavity. Previous band gap measurements on the native mineral, ferrihydrite, have reported gaps as low as 1.0 eV and as high as 2.5-3.5 eV. To resolve this discrepancy we have used optical absorption spectroscopy, a well-established technique for measuring both direct and indirect band gaps. Our studies included controls on the protein nano-cage, ferritin with the native ferrihydrite mineral, and ferritin with reconstituted ferrihydrite cores of different sizes. We report measurements of an indirect band gap for native ferritin of 2.140 ± 0.015 eV (579.7 nm), with a direct transition appearing at 3.053 ± 0.005 eV (406.1 nm). We also see evidence of a defect-related state having a binding energy of 0.220 ± 0.010 eV . Reconstituted ferrihydrite minerals of different sizes were also studied and showed band gap energies which increased with decreasing size due to quantum confinement effects. Molecules that interact with the surface of the mineral core also demonstrated a small influence following trends in ligand field theory, altering the native mineral's band gap up to 0.035 eV.

  18. On Some Aspects of Energy Conservation in Industries

    NASA Astrophysics Data System (ADS)

    Rai, Keerti; Seksena, S. B. L.; Thakur, A. N.

    2016-06-01

    Energy demand has increased continuously due to advancement in technology and living standards of a large section of people resulting in a wide gap between supply and demand. One of the approaches to reduce this gap would be the adoption of measures of energy conservation in general and the efficient use of energy particularly in motor. This paper presents a review of the research activity in the field of efficiency optimization of three-phase induction motor drive. The approach is analyzed and the better option of energy conservation are identified.

  19. Self-Interaction Corrected Electronic Structure and Energy Gap of CuAlO2 beyond Local Density Approximation

    NASA Astrophysics Data System (ADS)

    Nakanishi, Akitaka

    2011-05-01

    We implemented a self-interaction correction (SIC) into first-principles calculation code to go beyond local density approximation and applied it to CuAlO2. Our simulation shows that the valence band width calculated within the SIC is narrower than that calculated without the SIC because the SIC makes the d-band potential deeper. The energy gap calculated within the SIC expands and is close to experimental data.

  20. Bridging the Gap: Ideas for water sustainability in the western United States

    NASA Astrophysics Data System (ADS)

    Tidwell, V. C.; Passell, H. D.; Roach, J. D.

    2012-12-01

    Incremental improvements in water sustainability in the western U.S. may not be able to close the growing gap between increasing freshwater demand, climate driven variability in freshwater supply, and growing environmental consciousness. Incremental improvements include municipal conservation, improvements to irrigation technologies, desalination, water leasing, and others. These measures, as manifest today in the western U.S., are successful in themselves but limited in their ability to solve long term water scarcity issues. Examples are plainly evident and range from the steady and long term decline of important aquifers and their projected inability to provide water for future agricultural irrigation, projected declines in states' abilities to meet legal water delivery obligations between states, projected shortages of water for energy production, and others. In many cases, measures that can close the water scarcity gap have been identified, but often these solutions simply shift the gap from water to some other sector, e.g., economics. Saline, brackish or produced water purification, for example, could help solve western water shortages in some areas, but will be extremely expensive, and so shift the gap from water to economics. Transfers of water out of agriculture could help close the water scarcity gap in other areas; however, loss of agriculture will shift the gap to regional food security. All these gaps, whether in water, economics, food security, or other sectors, will have a negative impact on the western states. Narrowing these future gaps requires both technical and policy solutions as well as tools to understand the tradeoffs. Here we discuss several examples from across the western U.S. that span differing scales and decision spaces. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear

  1. Captopril improves tumor nanomedicine delivery by increasing tumor blood perfusion and enlarging endothelial gaps in tumor blood vessels.

    PubMed

    Zhang, Bo; Jiang, Ting; Tuo, Yanyan; Jin, Kai; Luo, Zimiao; Shi, Wei; Mei, Heng; Hu, Yu; Pang, Zhiqing; Jiang, Xinguo

    2017-12-01

    Poor tumor perfusion and unfavorable vessel permeability compromise nanomedicine drug delivery to tumors. Captopril dilates blood vessels, reducing blood pressure clinically and bradykinin, as the downstream signaling moiety of captopril, is capable of dilating blood vessels and effectively increasing vessel permeability. The hypothesis behind this study was that captopril can dilate tumor blood vessels, improving tumor perfusion and simultaneously enlarge the endothelial gaps of tumor vessels, therefore enhancing nanomedicine drug delivery for tumor therapy. Using the U87 tumor xenograft with abundant blood vessels as the tumor model, tumor perfusion experiments were carried out using laser Doppler imaging and lectin-labeling experiments. A single treatment of captopril at a dose of 100 mg/kg significantly increased the percentage of functional vessels in tumor tissues and improved tumor blood perfusion. Scanning electron microscopy of tumor vessels also indicated that the endothelial gaps of tumor vessels were enlarged after captopril treatment. Immunofluorescence-staining of tumor slices demonstrated that captopril significantly increased bradykinin expression, possibly explaining tumor perfusion improvements and endothelial gap enlargement. Additionally, imaging in vivo, imaging ex vivo and nanoparticle distribution in tumor slices indicated that after a single treatment with captopril, the accumulation of 115-nm nanoparticles in tumors had increased 2.81-fold with a more homogeneous distribution pattern in comparison to non-captopril treated controls. Finally, pharmacodynamics experiments demonstrated that captopril combined with paclitaxel-loaded nanoparticles resulted in the greatest tumor shrinkage and the most extensive necrosis in tumor tissues among all treatment groups. Taken together, the data from the present study suggest a novel strategy for improving tumor perfusion and enlarging blood vessel permeability simultaneously in order to improve

  2. Low-Symmetry Gap Functions of Organic Superconductors

    NASA Astrophysics Data System (ADS)

    Mori, Takehiko

    2018-04-01

    Superconducting gap functions of various low-symmetry organic superconductors are investigated starting from the tight-binding energy band and the random phase approximation by numerically solving Eliashberg's equation. The obtained singlet gap function is approximately represented by an asymmetrical dx2 - y2 form, where two cosine functions are mixed in an appropriate ratio. This is usually called d + s wave, where the ratio of the two cosine functions varies from 1:1 in the two-dimensional limit to 1:0 in the one-dimensional limit. A single cosine function does not make a superconducting gap in an ideal one-dimensional conductor, but works as a relevant gap function in quasi-one-dimensional conductors with slight interchain transfer integrals. Even when the Fermi surface is composed of small pockets, the gap function is obtained supposing a globally connected elliptical Fermi surface. In such a case, we have to connect the second energy band in the second Brillouin zone. The periodicity of the resulting gap function is larger than the first Brillouin zone. This is because the susceptibility has peaks at 2kF, where the periodicity has to be twice the size of the global Fermi surface. In general, periodicity of gap function corresponds to one electron or two molecules in the real space. In the κ-phase, two axes are nonequivalent, but the exact dx2 - y2 symmetry is maintained because the diagonal transfer integral introduced to a square lattice is oriented to the node direction of the dx2 - y2 wave. By contrast, the θ-phase gap function shows considerable anisotropy because a quarter-filled square lattice has a different dxy symmetry.

  3. Band gap tuning of amorphous Al oxides by Zr alloying

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Canulescu, S., E-mail: stec@fotonik.dtu.dk; Schou, J.; Jones, N. C.

    2016-08-29

    The optical band gap and electronic structure of amorphous Al-Zr mixed oxides with Zr content ranging from 4.8 to 21.9% were determined using vacuum ultraviolet and X-ray absorption spectroscopy. The light scattering by the nano-porous structure of alumina at low wavelengths was estimated based on the Mie scattering theory. The dependence of the optical band gap of the Al-Zr mixed oxides on the Zr content deviates from linearity and decreases from 7.3 eV for pure anodized Al{sub 2}O{sub 3} to 6.45 eV for Al-Zr mixed oxides with a Zr content of 21.9%. With increasing Zr content, the conduction band minimum changes non-linearlymore » as well. Fitting of the energy band gap values resulted in a bowing parameter of ∼2 eV. The band gap bowing of the mixed oxides is assigned to the presence of the Zr d-electron states localized below the conduction band minimum of anodized Al{sub 2}O{sub 3}.« less

  4. Latitude character and evolution of Gnevyshev gap

    NASA Astrophysics Data System (ADS)

    Pandey, K. K.; Hiremath, K. M.; Yellaiah, G.

    2017-06-01

    The time interval, between two highest peaks of the sunspot maximum, during which activity energy substantially absorbed is called Gnevyshev gap. In this study we focus on mysterious evolution of the Gnevyshev gap by analyzing and comparing the integrated (over the whole Sun) characteristics of magnetic field strength of sunspot groups, soft x-ray flares, filaments or prominences and polar faculae. The time latitude distribution of these solar activities from photosphere to coronal height, for the low (≤50°) and high (≥50°) latitudes, shows the way Gnevyshev gap is evolved. The presence of double peak structure is noticed in high latitude (≥50°) activity. During activity maximum the depression (or valley) appearing, in different activity processes, probably due to shifting, spreading, and transfer of energy from higher to lower latitudes with the progress of solar cycle. The morphology of successive lower latitude zones, considering it as a wave pulse, appears to be modified/scattered, by certain degree due to shifting of magnetic energy to empower higher or lower latitudes.

  5. Fostering Sustained Energy Behavior Change and Increasing Energy Literacy in a Student Housing Energy Challenge

    ERIC Educational Resources Information Center

    Brewer, Robert Stephen

    2013-01-01

    We designed the Kukui Cup challenge to foster energy conservation and increase energy literacy. Based on a review of the literature, the challenge combined a variety of elements into an overall game experience, including: real-time energy feedback, goals, commitments, competition, and prizes. We designed a software system called Makahiki to…

  6. How does the plasmonic enhancement of molecular absorption depend on the energy gap between molecular excitation and plasmon modes: a mixed TDDFT/FDTD investigation.

    PubMed

    Sun, Jin; Li, Guang; Liang, WanZhen

    2015-07-14

    A real-time time-dependent density functional theory coupled with the classical electrodynamics finite difference time domain technique is employed to systematically investigate the optical properties of hybrid systems composed of silver nanoparticles (NPs) and organic adsorbates. The results demonstrate that the molecular absorption spectra throughout the whole energy range can be enhanced by the surface plasmon resonance of Ag NPs; however, the absorption enhancement ratio (AER) for each absorption band differs significantly from the others, leading to the quite different spectral profiles of the hybrid complexes in contrast to those of isolated molecules or sole NPs. Detailed investigations reveal that the AER is sensitive to the energy gap between the molecular excitation and plasmon modes. As anticipated, two separate absorption bands, corresponding to the isolated molecules and sole NPs, have been observed at a large energy gap. When the energy gap approaches zero, the molecular excitation strongly couples with the plasmon mode to form the hybrid exciton band, which possesses the significantly enhanced absorption intensity, a red-shifted peak position, a surprising strongly asymmetric shape of the absorption band, and the nonlinear Fano effect. Furthermore, the dependence of surface localized fields and the scattering response functions (SRFs) on the geometrical parameters of NPs, the NP-molecule separation distance, and the external-field polarizations has also been depicted.

  7. Increasing Resiliency Through Renewable Energy Microgrids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Katherine H; DiOrio, Nicholas A; Cutler, Dylan S

    This paper describes a methodology to quantify the economic and resiliency benefit provided by renewable energy (RE) in a hybrid RE-storage-diesel microgrid. We present a case study to show how this methodology is applied to a multi-use/ multi-function telecommunications facility in southern California. In the case study, we first identify photovoltaic (PV) and battery energy storage system (BESS) technologies that minimize the lifecycle cost of energy at the site under normal, grid-connected operation. We then evaluate how those technologies could be incorporated alongside existing diesel generators in a microgrid to increase resiliency at the site, where resiliency is quantified inmore » terms of the amount of time that the microgrid can sustain the critical load during a grid outage. We find that adding PV and BESS to the existing backup diesel generators with a fixed fuel supply extends the amount of time the site could survive an outage by 1.8 days, from 1.7 days for the existing diesel-only backup system to 3.5 days for the PV/diesel/BESS hybrid system. Furthermore, even after diesel fuel supplies are exhausted, the site can continue to operate critical loads during daytime hours using just the PV/BESS when there is sufficient solar resource. We find that the site can save approximately $100,000 in energy costs over the 25-year lifecycle while doubling the amount of time they can survive an outage. The methodology presented here provides a template for increasing resiliency at telecomm sites by implementing renewable energy solutions, which provide additional benefits of carbon emission reduction and energy cost savings.« less

  8. Esaki Diodes in van der Waals Heterojunctions with Broken-Gap Energy Band Alignment.

    PubMed

    Yan, Rusen; Fathipour, Sara; Han, Yimo; Song, Bo; Xiao, Shudong; Li, Mingda; Ma, Nan; Protasenko, Vladimir; Muller, David A; Jena, Debdeep; Xing, Huili Grace

    2015-09-09

    van der Waals (vdW) heterojunctions composed of two-dimensional (2D) layered materials are emerging as a solid-state materials family that exhibits novel physics phenomena that can power a range of electronic and photonic applications. Here, we present the first demonstration of an important building block in vdW solids: room temperature Esaki tunnel diodes. The Esaki diodes were realized in vdW heterostructures made of black phosphorus (BP) and tin diselenide (SnSe2), two layered semiconductors that possess a broken-gap energy band offset. The presence of a thin insulating barrier between BP and SnSe2 enabled the observation of a prominent negative differential resistance (NDR) region in the forward-bias current-voltage characteristics, with a peak to valley ratio of 1.8 at 300 K and 2.8 at 80 K. A weak temperature dependence of the NDR indicates electron tunneling being the dominant transport mechanism, and a theoretical model shows excellent agreement with the experimental results. Furthermore, the broken-gap band alignment is confirmed by the junction photoresponse, and the phosphorus double planes in a single layer of BP are resolved in transmission electron microscopy (TEM) for the first time. Our results represent a significant advance in the fundamental understanding of vdW heterojunctions and broaden the potential applications of 2D layered materials.

  9. Aluminum doping tunes band gap energy level as well as oxidative stress-mediated cytotoxicity of ZnO nanoparticles in MCF-7 cells

    PubMed Central

    Akhtar, Mohd Javed; Alhadlaq, Hisham A.; Alshamsan, Aws; Majeed Khan, M.A.; Ahamed, Maqusood

    2015-01-01

    We investigated whether Aluminum (Al) doping tunes band gap energy level as well as selective cytotoxicity of ZnO nanoparticles in human breast cancer cells (MCF-7). Pure and Al-doped ZnO nanoparticles were prepared by a simple sol-gel method. Characterization study confirmed the formation of single phase of AlxZn1-xO nanocrystals with the size range of 33–55 nm. Al-doping increased the band gap energy of ZnO nanoparticles (from 3.51 eV for pure to 3.87 eV for Al-doped ZnO). Al-doping also enhanced the cytotoxicity and oxidative stress response of ZnO nanoparticles in MCF-7 cells. The IC50 for undoped ZnO nanoparticles was 44 μg/ml while for the Al-doped ZnO counterparts was 31 μg/ml. Up-regulation of apoptotic genes (e.g. p53, bax/bcl2 ratio, caspase-3 & caspase-9) along with loss of mitochondrial membrane potential suggested that Al-doped ZnO nanoparticles induced apoptosis in MCF-7 cells through mitochondrial pathway. Importantly, Al-doping did not change the benign nature of ZnO nanoparticles towards normal cells suggesting that Al-doping improves the selective cytotoxicity of ZnO nanoparticles toward MCF-7 cells without affecting the normal cells. Our results indicated a novel approach through which the inherent selective cytotoxicity of ZnO nanoparticles against cancer cells can be further improved. PMID:26347142

  10. Aluminum doping tunes band gap energy level as well as oxidative stress-mediated cytotoxicity of ZnO nanoparticles in MCF-7 cells

    NASA Astrophysics Data System (ADS)

    Akhtar, Mohd Javed; Alhadlaq, Hisham A.; Alshamsan, Aws; Majeed Khan, M. A.; Ahamed, Maqusood

    2015-09-01

    We investigated whether Aluminum (Al) doping tunes band gap energy level as well as selective cytotoxicity of ZnO nanoparticles in human breast cancer cells (MCF-7). Pure and Al-doped ZnO nanoparticles were prepared by a simple sol-gel method. Characterization study confirmed the formation of single phase of AlxZn1-xO nanocrystals with the size range of 33-55 nm. Al-doping increased the band gap energy of ZnO nanoparticles (from 3.51 eV for pure to 3.87 eV for Al-doped ZnO). Al-doping also enhanced the cytotoxicity and oxidative stress response of ZnO nanoparticles in MCF-7 cells. The IC50 for undoped ZnO nanoparticles was 44 μg/ml while for the Al-doped ZnO counterparts was 31 μg/ml. Up-regulation of apoptotic genes (e.g. p53, bax/bcl2 ratio, caspase-3 & caspase-9) along with loss of mitochondrial membrane potential suggested that Al-doped ZnO nanoparticles induced apoptosis in MCF-7 cells through mitochondrial pathway. Importantly, Al-doping did not change the benign nature of ZnO nanoparticles towards normal cells suggesting that Al-doping improves the selective cytotoxicity of ZnO nanoparticles toward MCF-7 cells without affecting the normal cells. Our results indicated a novel approach through which the inherent selective cytotoxicity of ZnO nanoparticles against cancer cells can be further improved.

  11. Aluminum doping tunes band gap energy level as well as oxidative stress-mediated cytotoxicity of ZnO nanoparticles in MCF-7 cells.

    PubMed

    Akhtar, Mohd Javed; Alhadlaq, Hisham A; Alshamsan, Aws; Majeed Khan, M A; Ahamed, Maqusood

    2015-09-08

    We investigated whether Aluminum (Al) doping tunes band gap energy level as well as selective cytotoxicity of ZnO nanoparticles in human breast cancer cells (MCF-7). Pure and Al-doped ZnO nanoparticles were prepared by a simple sol-gel method. Characterization study confirmed the formation of single phase of Al(x)Zn(1-x)O nanocrystals with the size range of 33-55 nm. Al-doping increased the band gap energy of ZnO nanoparticles (from 3.51 eV for pure to 3.87 eV for Al-doped ZnO). Al-doping also enhanced the cytotoxicity and oxidative stress response of ZnO nanoparticles in MCF-7 cells. The IC50 for undoped ZnO nanoparticles was 44 μg/ml while for the Al-doped ZnO counterparts was 31 μg/ml. Up-regulation of apoptotic genes (e.g. p53, bax/bcl2 ratio, caspase-3 &caspase-9) along with loss of mitochondrial membrane potential suggested that Al-doped ZnO nanoparticles induced apoptosis in MCF-7 cells through mitochondrial pathway. Importantly, Al-doping did not change the benign nature of ZnO nanoparticles towards normal cells suggesting that Al-doping improves the selective cytotoxicity of ZnO nanoparticles toward MCF-7 cells without affecting the normal cells. Our results indicated a novel approach through which the inherent selective cytotoxicity of ZnO nanoparticles against cancer cells can be further improved.

  12. Oxyntomodulin analogue increases energy expenditure via the glucagon receptor.

    PubMed

    Scott, R; Minnion, J; Tan, T; Bloom, S R

    2018-06-01

    The gut hormone oxyntomodulin (OXM) causes weight loss by reducing appetite and increasing energy expenditure. Several analogues are being developed to treat obesity. Exactly how oxyntomodulin works, however, remains controversial. OXM can activate both glucagon and GLP-1 receptors but no specific receptor has been identified. It is thought that the anorectic effect occurs predominantly through GLP-1 receptor activation but, to date, it has not been formally confirmed which receptor is responsible for the increased energy expenditure. We developed OX-SR, a sustained-release OXM analogue. It produces a significant and sustained increase in energy expenditure in rats as measured by indirect calorimetry. We now show that this increase in energy expenditure occurs via activation of the glucagon receptor. Blockade of the GLP-1 receptor with Exendin 9-39 does not block the increase in oxygen consumption caused by OX-SR. However, when activity at the glucagon receptor is lost, there is no increase in energy expenditure. Glucagon receptor activity therefore appears to be essential for OX-SR's effects on energy expenditure. The development of future 'dual agonist' analogues will require careful balancing of GLP-1 and glucagon receptor activities to obtain optimal effects. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Narrow Energy Gap between Triplet and Singlet Excited States of Sn2+ in Borate Glass

    PubMed Central

    Masai, Hirokazu; Yamada, Yasuhiro; Suzuki, Yuto; Teramura, Kentaro; Kanemitsu, Yoshihiko; Yoko, Toshinobu

    2013-01-01

    Transparent inorganic luminescent materials have attracted considerable scientific and industrial attention recently because of their high chemical durability and formability. However, photoluminescence dynamics of ns2-type ions in oxide glasses has not been well examined, even though they can exhibit high quantum efficiency. We report on the emission property of Sn2+-doped strontium borate glasses. Photoluminescence dynamics studies show that the peak energy of the emission spectrum changes with time because of site distribution of emission centre in glass. It is also found that the emission decay of the present glass consists of two processes: a faster S1-S0 transition and a slower T1-S0 relaxation, and also that the energy difference between T1 and S1 states was found to be much smaller than that of (Sn, Sr)B6O10 crystals. We emphasize that the narrow energy gap between the S1 and T1 states provides the glass phosphor a high quantum efficiency, comparable to commercial crystalline phosphors. PMID:24345869

  14. Effect of particle size on band gap and DC electrical conductivity of TiO2 nanomaterial

    NASA Astrophysics Data System (ADS)

    Avinash, B. S.; Chaturmukha, V. S.; Jayanna, H. S.; Naveen, C. S.; Rajeeva, M. P.; Harish, B. M.; Suresh, S.; Lamani, Ashok R.

    2016-05-01

    Materials reduced to the Nano scale can exhibit different properties compared to what they exhibit on a micro scale, enabling unique applications. When TiO2 is reduced to Nano scale it shows unique properties, of which the electrical aspect is highly important. This paper presents increase in the energy gap and decrease in conductivity with decrease in particle size of pure Nano TiO2 synthesized by hydrolysis and peptization of titanium isopropoxide. Aqueous solution with various pH and peptizing the resultant suspension will form Nano TiO2 at different particle sizes. As the pH of the solution is made acidic reduction in the particle size is observed. And it is confirmed from XRD using Scherer formula and SEM, as prepared samples are studied for UV absorbance, and DC conductivity from room temperature to 400°C. From the tauc plot it was observed, and calculated the energy band gap increases as the particle size decreases and shown TiO2 is direct band gap. From Arrhenius plot clearly we encountered, decrease in the conductivity for the decrease in particle size due to hopping of charge carriers and it is evident that, we can tailor the band gap by varying particle size.

  15. Direct graphene growth on MgO: origin of the band gap.

    PubMed

    Gaddam, Sneha; Bjelkevig, Cameron; Ge, Siping; Fukutani, Keisuke; Dowben, Peter A; Kelber, Jeffry A

    2011-02-23

    A 2.5 monolayer (ML) thick graphene film grown by chemical vapor deposition of thermally dissociated C(2)H(4) on MgO(111), displays a significant band gap. The apparent six-fold low energy electron diffraction (LEED) pattern actually consists of two three-fold patterns with different 'A' and 'B' site diffraction intensities. Similar effects are observed for the LEED patterns of a 1 ML carbon film derived from annealing adventitious carbon on MgO(111), and for a 1.5 ML thick graphene film grown by sputter deposition on the 1 ML film. The LEED data indicate different electron densities at the A and B sites of the graphene lattice, suggesting that the observed band gap results from lifting the graphene HOMO/LUMO degeneracy at the Dirac point. The data also indicate that disparities in A site/B site LEED intensities decrease with increasing carbon overlayer thickness, suggesting that the graphene band gap size decreases with increasing number of graphene layers on MgO(111). © 2011 IOP Publishing Ltd

  16. Spark gap device for precise switching

    DOEpatents

    Boettcher, Gordon E.

    1984-01-01

    A spark gap device for precise switching of an energy storage capacitor into an exploding bridge wire load is disclosed. Niobium electrodes having a melting point of 2,415 degrees centrigrade are spaced apart by an insulating cylinder to define a spark gap. The electrodes are supported by conductive end caps which, together with the insulating cylinder, form a hermetically sealed chamber filled with an inert, ionizable gas, such as pure xenon. A quantity of solid radioactive carbon-14 within the chamber adjacent the spark gap serves as a radiation stabilizer. The sides of the electrodes and the inner wall of the insulating cylinder are spaced apart a sufficient distance to prevent unwanted breakdown initiation. A conductive sleeve may envelop the outside of the insulating member from the midpoint of the spark gap to the cap adjacent the cathode. The outer metallic surfaces of the device may be coated with a hydrogen-impermeable coating to lengthen the shelf life and operating life of the device. The device breaks down at about 1,700 volts for input voltage rates up to 570 volts/millisecond and allows peak discharge currents of up to 3,000 amperes from a 0.3 microfarad energy storage capacitor for more than 1,000 operations.

  17. Spark gap device for precise switching

    DOEpatents

    Boettcher, G.E.

    1984-10-02

    A spark gap device for precise switching of an energy storage capacitor into an exploding bridge wire load is disclosed. Niobium electrodes having a melting point of 2,415 degrees centigrade are spaced apart by an insulating cylinder to define a spark gap. The electrodes are supported by conductive end caps which, together with the insulating cylinder, form a hermetically sealed chamber filled with an inert, ionizable gas, such as pure xenon. A quantity of solid radioactive carbon-14 within the chamber adjacent the spark gap serves as a radiation stabilizer. The sides of the electrodes and the inner wall of the insulating cylinder are spaced apart a sufficient distance to prevent unwanted breakdown initiation. A conductive sleeve may envelop the outside of the insulating member from the midpoint of the spark gap to the cap adjacent the cathode. The outer metallic surfaces of the device may be coated with a hydrogen-impermeable coating to lengthen the shelf life and operating life of the device. The device breaks down at about 1,700 volts for input voltage rates up to 570 volts/millisecond and allows peak discharge currents of up to 3,000 amperes from a 0.3 microfarad energy storage capacitor for more than 1,000 operations. 3 figs.

  18. A detailed analysis of the energy levels configuration existing in the band gap of supersaturated silicon with titanium for photovoltaic applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pérez, E.; Dueñas, S.; Castán, H.

    2015-12-28

    The energy levels created in supersaturated n-type silicon substrates with titanium implantation in the attempt to create an intermediate band in their band-gap are studied in detail. Two titanium ion implantation doses (10{sup 13 }cm{sup -2} and 10{sup 14 }cm{sup -2}) are studied in this work by conductance transient technique and admittance spectroscopy. Conductance transients have been measured at temperatures of around 100 K. The particular shape of these transients is due to the formation of energy barriers in the conduction band, as a consequence of the band-gap narrowing induced by the high titanium concentration. Moreover, stationary admittance spectroscopy results suggest the existencemore » of different energy level configuration, depending on the local titanium concentration. A continuum energy level band is formed when titanium concentration is over the Mott limit. On the other hand, when titanium concentration is lower than the Mott limit, but much higher than the donor impurity density, a quasi-continuum energy level distribution appears. Finally, a single deep center appears for low titanium concentration. At the n-type substrate, the experimental results obtained by means of thermal admittance spectroscopy at high reverse bias reveal the presence of single levels located at around E{sub c}-425 and E{sub c}-275 meV for implantation doses of 10{sup 13 }cm{sup −2} and 10{sup 14 }cm{sup −2}, respectively. At low reverse bias voltage, quasi-continuously distributed energy levels between the minimum of the conduction bands, E{sub c} and E{sub c}-450 meV, are obtained for both doses. Conductance transients detected at low temperatures reveal that the high impurity concentration induces a band gap narrowing which leads to the formation of a barrier in the conduction band. Besides, the relationship between the activation energy and the capture cross section values of all the energy levels fits very well to the Meyer-Neldel rule. As it is

  19. Nature of the abnormal band gap narrowing in highly crystalline Zn1-xCoxO nanorods

    NASA Astrophysics Data System (ADS)

    Qiu, Xiaoqing; Li, Liping; Li, Guangshe

    2006-03-01

    Highly crystalline Zn1-xCoxO nanorods were prepared using a hydrothermal method. With increasing Co2+ dopant concentration, the lattice volume enlarged considerably, which is associated with the enhanced repulsive interactions of defect dipole moments on the wall surfaces. This lattice modification produced a significant decrease in band gap energies with its magnitude that followed the relationship, ΔEg=ΔE0•(e-x/B-1), where x and B are Co2+ dopant concentration and a constant, respectively. The abnormal band gap energies were indicated to originate from the sp-d exchange interactions that are proportional to the square of lattice volume.

  20. Activity promoting games and increased energy expenditure

    PubMed Central

    Lanningham-Foster, Lorraine; Foster, Randal C.; McCrady, Shelly K.; Jensen, Teresa B.; Mitre, Naim; Levine, James A.

    2009-01-01

    Objectives Children and adults spend large portions of their days in front of screens. Our hypothesis was that both children and adults would expend more calories and move more while playing activity-promoting video games compared to sedentary video games. Study Design In this single-group study, twenty-two healthy children (12 ± 2 years, 11 M, 11 F) and 20 adults (34 ± 11 years, 10 M, 10 F) were recruited. Energy expenditure and physical activity were measured while participants were resting, standing, watching television seated, sitting and playing a traditional sedentary video game, and while playing an activity-promoting video game (Nintendo® Wii™ Boxing). Physical activity was measured using accelerometers and energy expenditure was measured using an indirect calorimeter. Results Energy expenditure increased significantly above all activities when children or adults played Nintendo® Wii™ (mean increase over resting, 189 ± 63 kcal/hr, p < 0.001, and 148 ± 71 kcal/hr, p < 0.001, respectively). Upon examination of movement using accelerometry, children moved significantly more than adults (55 ± 5 AAU and 23 ± 2 AAU, respectively, p < 0.001) while playing Nintendo® Wii™. Conclusions Activity-promoting video games have the potential to increase movement and energy expenditure in children and adults. PMID:19324368

  1. Building sector feedbacks lead to increased energy demands

    NASA Astrophysics Data System (ADS)

    Hartin, C.; Link, R. P.; Patel, P.; Horowitz, R.; Clarke, L.; Mundra, A.

    2017-12-01

    Typically in human-earth system modeling studies, feedbacks between the earth and human systems are analyzed by passing information between independent models, leading to data errors and poor reproducibility. In this study we explore the two-way feedbacks between the human and earth systems in the building sector of GCAM, an integrated assessment model and, its fully-integrated climate component, Hector. While there is a general agreement in the literature that increasing temperatures will increase cooling energy demands and decrease heating energy demands, there has been no fully-coupled analysis of this dynamic that would, for example, account for the feedbacks on hydrofluorocarbons from increased cooling demands. Using a statistical relationship between global mean temperature change and heating and cooling degree days, we find that the feedbacks on hydrofluorocarbons lead to an increase in global mean temperature of between 0.16 to 0.27 °C in 2100. Demands for electricity increase by about 10% in Africa, while demands decrease in Canada by about 3.0% when taking into account these feedbacks. While the feedbacks between building energy demand and global mean temperature are modest by themselves, this study prompts future research on coupled human-earth system feedbacks, in particular in regards to land, water, and other energy infrastructure.

  2. Increasing passive energy expenditure during clerical work.

    PubMed

    Beers, Erik A; Roemmich, James N; Epstein, Leonard H; Horvath, Peter J

    2008-06-01

    Sitting on a therapy ball or standing may be a passive means of increasing energy expenditure throughout the workday. The purpose of this study was to determine the energy expenditure and liking of performing clerical work in various postures. Subjects included 24 men and women employed in sedentary clerical occupations. Energy expenditure was measured while word processing in three standardized postures; sitting in an office chair, sitting on a therapy ball, and standing. Adults ranked their comfort, fatigue, and liking of each posture and were asked to perform their choice of 20 min of additional clerical work in one of the postures. Energy expenditure was 4.1 kcal/h greater (p energy expenditure between the therapy ball and standing postures (p >or= 0.48). Subjects also liked sitting on a therapy ball as much as sitting in an office chair and liked sitting on a therapy ball more than standing (p increases passive energy expenditure.

  3. Probing optical band gaps at the nanoscale in NiFe₂O₄ and CoFe₂O₄ epitaxial films by high resolution electron energy loss spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dileep, K.; Loukya, B.; Datta, R., E-mail: ranjan@jncasr.ac.in

    2014-09-14

    Nanoscale optical band gap variations in epitaxial thin films of two different spinel ferrites, i.e., NiFe₂O₄ (NFO) and CoFe₂O₄ (CFO), have been investigated by spatially resolved high resolution electron energy loss spectroscopy. Experimentally, both NFO and CFO show indirect/direct band gaps around 1.52 eV/2.74 and 2.3 eV, and 1.3 eV/2.31 eV, respectively, for the ideal inverse spinel configuration with considerable standard deviation in the band gap values for CFO due to various levels of deviation from the ideal inverse spinel structure. Direct probing of the regions in both the systems with tetrahedral A site cation vacancy, which is distinct frommore » the ideal inverse spinel configuration, shows significantly smaller band gap values. The experimental results are supported by the density functional theory based modified Becke-Johnson exchange correlation potential calculated band gap values for the different cation configurations.« less

  4. Data on energy-band-gap characteristics of composite nanoparticles obtained by modification of the amorphous potassium polytitanate in aqueous solutions of transition metal salts

    PubMed Central

    Zimnyakov, D.A.; Sevrugin, A.V.; Yuvchenko, S.A.; Fedorov, F.S.; Tretyachenko, E.V.; Vikulova, M.A.; Kovaleva, D.S.; Krugova, E.Y.; Gorokhovsky, A.V.

    2016-01-01

    Here we present the data on the energy-band-gap characteristics of composite nanoparticles produced by modification of the amorphous potassium polytitanate in aqueous solutions of different transition metal salts. Band gap characteristics are investigated using diffuse reflection spectra of the obtained powders. Calculated logarithmic derivative quantity of the Kubelka–Munk function reveals a presence of local maxima in the regions 0.5–1.5 eV and 1.6–3.0 eV which correspond to band gap values of the investigated materials. The values might be related to the constituents of the composite nanoparticles and intermediate products of their chemical interaction. PMID:27158654

  5. Electronic properties of graphene nano-flakes: energy gap, permanent dipole, termination effect, and Raman spectroscopy.

    PubMed

    Singh, Sandeep Kumar; Neek-Amal, M; Peeters, F M

    2014-02-21

    The electronic properties of graphene nano-flakes (GNFs) with different edge passivation are investigated by using density functional theory. Passivation with F and H atoms is considered: C(N(c)) X(N(x)) (X = F or H). We studied GNFs with 10 < Nc < 56 and limit ourselves to the lowest energy configurations. We found that: (i) the energy difference Δ between the highest occupied molecular orbital and the lowest unoccupied molecular orbital decreases with Nc, (ii) topological defects (pentagon and heptagon) break the symmetry of the GNFs and enhance the electric polarization, (iii) the mutual interaction of bilayer GNFs can be understood by dipole-dipole interaction which were found sensitive to the relative orientation of the GNFs, (iv) the permanent dipoles depend on the edge terminated atom, while the energy gap is independent of it, and (v) the presence of heptagon and pentagon defects in the GNFs results in the largest difference between the energy of the spin-up and spin-down electrons which is larger for the H-passivated GNFs as compared to F-passivated GNFs. Our study shows clearly the effect of geometry, size, termination, and bilayer on the electronic properties of small GNFs. This study reveals important features of graphene nano-flakes which can be detected using Raman spectroscopy.

  6. Electrical transport and optical band gap of NiFe2Ox thin films

    NASA Astrophysics Data System (ADS)

    Bougiatioti, Panagiota; Manos, Orestis; Klewe, Christoph; Meier, Daniel; Teichert, Niclas; Schmalhorst, Jan-Michael; Kuschel, Timo; Reiss, Günter

    2017-12-01

    We fabricated NiFe2Ox thin films on MgAl2O4(001) by reactive dc magnetron co-sputtering varying the oxygen partial pressure. The fabrication of a material with a variable oxygen deficiency leads to controllable electrical and optical properties which are beneficial for the investigations of the transport phenomena and could, therefore, promote the use of such materials in spintronic and spin caloritronic applications. We used several characterization techniques to investigate the film properties, focusing on their structural, magnetic, electrical, and optical properties. From the electrical resistivity, we obtained the conduction mechanisms that govern the systems in the high and low temperature regimes. We further extracted low thermal activation energies which unveil extrinsic transport mechanisms. The thermal activation energy decreases in the less oxidized samples revealing the pronounced contribution of a large amount of electronic states localized in the band gap to the electrical conductivity. The Hall coefficient is negative and decreases with increasing conductivity as expected for n-type conduction, while the Hall- and the drift mobilities show a large difference. The optical band gaps were determined via ultraviolet-visible spectroscopy. They follow a similar trend as the thermal activation energies, with lower band gap values in the less oxidized samples.

  7. Enhancement of superconducting transition temperature by pointlike disorder and anisotropic energy gap in FeSe single crystals

    DOE PAGES

    Teknowijoyo, S.; Cho, K.; Tanatar, M. A.; ...

    2016-08-29

    A highly anisotropic superconducting gap is found in single crystals of FeSe by studying the London penetration depth Δλ measured down to 50 mK in samples before and after 2.5 MeV electron irradiation. The gap minimum increases with introduced pointlike disorder, indicating the absence of symmetry-imposed nodes. Surprisingly, the superconducting transition temperature T c increases by 0.4 K from T c0 ≈ 8.8 K while the structural transition temperature T s decreases by 0.9 K from T s0 ≈ 91.2 K after electron irradiation. Finally, we discuss several explanations for the T c enhancement and propose that local strengthening ofmore » the pair interaction by irradiation-induced Frenkel defects most likely explains the phenomenon.« less

  8. Homotypic gap junctional communication associated with metastasis increases suppression increases with PKA kinase activity and is unaffected by P13K inhibition

    USDA-ARS?s Scientific Manuscript database

    Loss of gap junctional intercellular communication (GJIC) between cancer cells is a common characteristic of malignant transformation. This communication is mediated by connexin proteins that make up the functional units of gap junctions. Connexins are highly regulated at the protein level and phosp...

  9. Optical band gaps of organic semiconductor materials

    NASA Astrophysics Data System (ADS)

    Costa, José C. S.; Taveira, Ricardo J. S.; Lima, Carlos F. R. A. C.; Mendes, Adélio; Santos, Luís M. N. B. F.

    2016-08-01

    UV-Vis can be used as an easy and forthright technique to accurately estimate the band gap energy of organic π-conjugated materials, widely used as thin films/composites in organic and hybrid electronic devices such as OLEDs, OPVs and OFETs. The electronic and optical properties, including HOMO-LUMO energy gaps of π-conjugated systems were evaluated by UV-Vis spectroscopy in CHCl3 solution for a large number of relevant π-conjugated systems: tris-8-hydroxyquinolinatos (Alq3, Gaq3, Inq3, Al(qNO2)3, Al(qCl)3, Al(qBr)3, In(qNO2)3, In(qCl)3 and In(qBr)3); triphenylamine derivatives (DDP, p-TTP, TPB, TPD, TDAB, m-MTDAB, NPB, α-NPD); oligoacenes (naphthalene, anthracene, tetracene and rubrene); oligothiophenes (α-2T, β-2T, α-3T, β-3T, α-4T and α-5T). Additionally, some electronic properties were also explored by quantum chemical calculations. The experimental UV-Vis data are in accordance with the DFT predictions and indicate that the band gap energies of the OSCs dissolved in CHCl3 solution are consistent with the values presented for thin films.

  10. Field induced gap infrared detector

    NASA Technical Reports Server (NTRS)

    Elliott, C. Thomas (Inventor)

    1990-01-01

    A tunable infrared detector which employs a vanishing band gap semimetal material provided with an induced band gap by a magnetic field to allow intrinsic semiconductor type infrared detection capabilities is disclosed. The semimetal material may thus operate as a semiconductor type detector with a wavelength sensitivity corresponding to the induced band gap in a preferred embodiment of a diode structure. Preferred semimetal materials include Hg(1-x)Cd(x)Te, x is less than 0.15, HgCdSe, BiSb, alpha-Sn, HgMgTe, HgMnTe, HgZnTe, HgMnSe, HgMgSe, and HgZnSe. The magnetic field induces a band gap in the semimetal material proportional to the strength of the magnetic field allowing tunable detection cutoff wavelengths. For an applied magnetic field from 5 to 10 tesla, the wavelength detection cutoff will be in the range of 20 to 50 micrometers for Hg(1-x)Cd(x)Te alloys with x about 0.15. A similar approach may also be employed to generate infrared energy in a desired band gap and then operating the structure in a light emitting diode or semiconductor laser type of configuration.

  11. Toward tunable band gap and tunable dirac point in bilayer graphene with molecular doping.

    PubMed

    Yu, Woo Jong; Liao, Lei; Chae, Sang Hoon; Lee, Young Hee; Duan, Xiangfeng

    2011-11-09

    The bilayer graphene has attracted considerable attention for potential applications in future electronics and optoelectronics because of the feasibility to tune its band gap with a vertical displacement field to break the inversion symmetry. Surface chemical doping in bilayer graphene can induce an additional offset voltage to fundamentally affect the vertical displacement field and the band gap opening in bilayer graphene. In this study, we investigate the effect of chemical molecular doping on band gap opening in bilayer graphene devices with single or dual gate modulation. Chemical doping with benzyl viologen molecules modulates the displacement field to allow the opening of a transport band gap and the increase of the on/off ratio in the bilayer graphene transistors. Additionally, Fermi energy level in the opened gap can be rationally controlled by the amount of molecular doping to obtain bilayer graphene transistors with tunable Dirac points, which can be readily configured into functional devices, such as complementary inverters.

  12. Effect of a surface-to-gap temperature discontinuity on the heat transfer to reusable surface insulation tile gaps. [of the space shuttle

    NASA Technical Reports Server (NTRS)

    Throckmorton, D. A.

    1976-01-01

    An experimental investigation is presented that was performed to determine the effect of a surface-to-gap wall temperature discontinuity on the heat transfer within space shuttle, reusable surface insulation, tile gaps submerged in a thick turbulent boundary layer. Heat-transfer measurements were obtained on a flat-plate, single-gap model submerged in a turbulent tunnel wall boundary layer at a nominal free-stream Mach number of 10.3 and free-stream Reynolds numbers per meter of 1.5 million, 3.3 million and 7.8 million. Surface-to-gap wall temperature discontinuities of varying degree were created by heating the surface of the model upstream of the instrumented gap. The sweep angle of the gap was varied between 0 deg and 60 deg; gap width and depth were held constant. A surface-to-gap wall temperature discontinuity (surface temperature greater than gap wall temperature) results in increased heat transfer to the near-surface portion of the gap, as compared with the heat transfer under isothermal conditions, while decreasing the heat transfer to the deeper portions of the gap. The nondimensionalized heat transfer to the near-surface portion of the gap is shown to decrease with increasing Reynolds number; in the deeper portion of the gap, the heat transfer increases with Reynolds number.

  13. Momentum dependence of the superconducting gap and in-gap states in MgB 2 multiband superconductor

    DOE PAGES

    Mou, Daixiang; Jiang, Rui; Taufour, Valentin; ...

    2015-06-29

    We use tunable laser-based angle-resolved photoemission spectroscopy to study the electronic structure of the multiband superconductor MgB 2. These results form the baseline for detailed studies of superconductivity in multiband systems. We find that the magnitude of the superconducting gap on both σ bands follows a BCS-like variation with temperature with Δ 0 ~ 7meV. Furthermore, the value of the gap is isotropic within experimental uncertainty and in agreement with a pure s-wave pairing symmetry. We observe in-gap states confined to k F of the σ band that occur at some locations of the sample surface. As a result, themore » energy of this excitation, ~ 3 meV, was found to be somewhat larger than the previously reported gap on π Fermi sheet and therefore we cannot exclude the possibility of interband scattering as its origin.« less

  14. The theory-practice gap of black carbon mitigation technologies in rural China

    NASA Astrophysics Data System (ADS)

    Zhang, Weishi; Li, Aitong; Xu, Yuan; Liu, Junfeng

    2018-02-01

    Black carbon mitigation has received increasing attention for its potential contribution to both climate change mitigation and air pollution control. Although different bottom-up models concerned with unit mitigation costs of various technologies allow the assessment of alternative policies for optimized cost-effectiveness, the lack of adequate data often forced many reluctant explicit and implicit assumptions that deviate away from actual situations of rural residential energy consumption in developing countries, where most black carbon emissions occur. To gauge the theory-practice gap in black carbon mitigation - the unit cost differences that lie between what is estimated in the theory and what is practically achieved on the ground - this study conducted an extensive field survey and analysis of nine mitigation technologies in rural China, covering both northern and southern regions with different residential energy consumption patterns. With a special focus on two temporal characteristics of those technologies - lifetimes and annual utilization rates, this study quantitatively measured the unit cost gaps and explain the technical as well as sociopolitical mechanisms behind. Structural and behavioral barriers, which have affected the technologies' performance, are discussed together with policy implications to narrow those gaps.

  15. Developing an Energy Performance Modeling Startup Kit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    2012-10-01

    In 2011, the NAHB Research Center began assessing the needs and motivations of residential remodelers regarding energy performance remodeling. This report outlines: the current remodeling industry and the role of energy efficiency; gaps and barriers to adding energy efficiency into remodeling; and support needs of professional remodelers to increase sales and projects involving improving home energy efficiency.

  16. Mechanics of Fluid-Filled Interstitial Gaps. II. Gap Characteristics in Xenopus Embryonic Ectoderm.

    PubMed

    Barua, Debanjan; Parent, Serge E; Winklbauer, Rudolf

    2017-08-22

    The ectoderm of the Xenopus embryo is permeated by a network of channels that appear in histological sections as interstitial gaps. We characterized this interstitial space by measuring gap sizes, angles formed between adjacent cells, and curvatures of cell surfaces at gaps. From these parameters, and from surface-tension values measured previously, we estimated the values of critical mechanical variables that determine gap sizes and shapes in the ectoderm, using a general model of interstitial gap mechanics. We concluded that gaps of 1-4 μm side length can be formed by the insertion of extracellular matrix fluid at three-cell junctions such that cell adhesion is locally disrupted and a tension difference between cell-cell contacts and the free cell surface at gaps of 0.003 mJ/m 2 is generated. Furthermore, a cell hydrostatic pressure of 16.8 ± 1.7 Pa and an interstitial pressure of 3.9 ± 3.6 Pa, relative to the central blastocoel cavity of the embryo, was found to be consistent with the observed gap size and shape distribution. Reduction of cell adhesion by the knockdown of C-cadherin increased gap volume while leaving intracellular and interstitial pressures essentially unchanged. In both normal and adhesion-reduced ectoderm, cortical tension of the free cell surfaces at gaps does not return to the high values characteristic of the free surface of the whole tissue. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  17. Tanshinone IIA Increases the Bystander Effect of Herpes Simplex Virus Thymidine Kinase/Ganciclovir Gene Therapy via Enhanced Gap Junctional Intercellular Communication

    PubMed Central

    Liu, Xijuan; Wu, Yingya; Du, Biaoyan; Li, Jiefen; Zhou, Jing; Li, Jingjing; Tan, Yuhui

    2013-01-01

    The bystander effect is an intriguing phenomenon by which adjacent cells become sensitized to drug treatment during gene therapy with herpes simplex virus thymidine kinase/ganciclovir (HSV-tk/GCV). This effect is reported to be mediated by gap junctional intercellular communication (GJIC), and therefore, we postulated that upregulation of genes that facilitate GJIC may enhance the HSV-tk/GCV bystander effect. Previous findings have shown Tanshinone IIA (Tan IIA), a chemical substance derived from a Chinese medicine herb, promotes the upregulation of the connexins Cx26 and Cx43 in B16 cells. Because gap junctions are formed by connexins, we hypothesized that Tan IIA might increase GJIC. Our results show that Tan IIA increased GJIC in B16 melanoma cells, leading to more efficient GCV-induced bystander killing in cells stably expressing HSV-tk. Additionally, in vivo experiments demonstrated that tumors in mice with 10% HSV-tk positive B16 cells and 90% wild-type B16 cells became smaller following treatment with the combination of GCV and Tan IIA as compared to GCV or Tan IIA alone. These data demonstrate that Tan IIA can augment the bystander effect of HSV-tk/GCV system through increased gap junction coupling, which adds strength to the promising strategy that develops connexins inducer to potentiate the effects of suicide gene therapy. PMID:23861780

  18. Magnetothermoelectric effects in graphene and their dependence on scatterer concentration, magnetic field, and band gap

    NASA Astrophysics Data System (ADS)

    Kundu, Arpan; Alrefae, Majed A.; Fisher, Timothy S.

    2017-03-01

    Using a semiclassical Boltzmann transport equation approach, we derive analytical expressions for electric and thermoelectric transport coefficients of graphene in the presence and absence of a magnetic field. Scattering due to acoustic phonons, charged impurities, and vacancies is considered in the model. Seebeck (Sxx) and Nernst (N) coefficients are evaluated as functions of carrier density, temperature, scatterer concentration, magnetic field, and induced band gap, and the results are compared to experimental data. Sxx is an odd function of Fermi energy, while N is an even function, as observed in experiments. The peak values of both coefficients are found to increase with the decreasing scatterer concentration and increasing temperature. Furthermore, opening a band gap decreases N but increases Sxx. Applying a magnetic field introduces an asymmetry in the variation of Sxx with Fermi energy across the Dirac point. The formalism is more accurate and computationally efficient than the conventional Green's function approach used to model transport coefficients and can be used to explore transport properties of other materials with Dirac cones such as Weyl semimetals.

  19. Government policies increasingly promote renewable energy sources : wood energy markets in the UNECE region, 2009-2010

    Treesearch

    Olle Olsson; Bengt Hillring; Rens Hartkamp; Kenneth Skog; Henry Spelter; Francisco Aguilar; Warren Mabee; Christopher Gaston; Antje Wahl

    2010-01-01

    Sustainability issues about wood fuels are increasingly being debated, but the European Union has decided not to impose EU-wide sustainability criteria for solid biomass. United Kingdom energy companies plan massive increases in their utilization of wood energy, further fuelling European demand for wood energy. In order to increase control of the value chain, European...

  20. Electronic properties of graphene nano-flakes: Energy gap, permanent dipole, termination effect, and Raman spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Sandeep Kumar, E-mail: SandeepKumar.Singh@uantwerpen.be; Peeters, F. M., E-mail: Francois.Peeters@uantwerpen.be; Neek-Amal, M., E-mail: neekamal@srttu.edu

    2014-02-21

    The electronic properties of graphene nano-flakes (GNFs) with different edge passivation are investigated by using density functional theory. Passivation with F and H atoms is considered: C{sub N{sub c}} X{sub N{sub x}} (X = F or H). We studied GNFs with 10 < N{sub c} < 56 and limit ourselves to the lowest energy configurations. We found that: (i) the energy difference Δ between the highest occupied molecular orbital and the lowest unoccupied molecular orbital decreases with N{sub c}, (ii) topological defects (pentagon and heptagon) break the symmetry of the GNFs and enhance the electric polarization, (iii) the mutual interactionmore » of bilayer GNFs can be understood by dipole-dipole interaction which were found sensitive to the relative orientation of the GNFs, (iv) the permanent dipoles depend on the edge terminated atom, while the energy gap is independent of it, and (v) the presence of heptagon and pentagon defects in the GNFs results in the largest difference between the energy of the spin-up and spin-down electrons which is larger for the H-passivated GNFs as compared to F-passivated GNFs. Our study shows clearly the effect of geometry, size, termination, and bilayer on the electronic properties of small GNFs. This study reveals important features of graphene nano-flakes which can be detected using Raman spectroscopy.« less

  1. Gap Winds in a Fjord: Howe Sound, British Columbia.

    NASA Astrophysics Data System (ADS)

    Jackson, Peter L.

    1993-01-01

    Gap, outflow, or Squamish wind, is the cold low level seaward flow of air through fjords which dissect the coastal mountain barrier of northwestern North America. These flows, occurring mainly during winter, can be strong, threatening safety, economic activity and comfort. Howe Sound gap winds were studied using a combination of observations and several types of models. Observations of winds in Howe Sound showed that gap wind strength varied considerably along the channel, across the channel and vertically. Generally, winds increase down the channel, are strongest along the eastern side, and are below 1000 m depth. Observations were unable to answer all questions about gap winds due to data sparseness, particularly in the vertical direction. Therefore, several modelling approaches were used. The modelling began with a complete 3-dimensional quasi-Boussinesq model (CSU RAMS) and ended with the creation and testing of models which are conceptually simpler, and more easily interpreted and manipulated. A gap wind simulation made using RAMS was shown to be mostly successful by statistical evaluation compared to other mesoscale simulations, and by visual inspection of the fields. The RAMS output, which has very high temporal and spatial resolution, provided much additional information about the details of gap flow. In particular, RAMS results suggested a close analogy between gap wind and hydraulic channel flow, with hydraulic features such as supercritical flow and hydraulic jumps apparent. These findings imply gap wind flow could potentially be represented by much simpler models. The simplest possible models containing pressure gradient, advection and friction but not incorporating hydraulic effects, were created, tested, and found lacking. A hydraulic model, which in addition incorporates varying gap wind height and channel geometry, was created and shown to successfully simulate gap winds. Force balance analysis from RAMS and the hydraulic model showed that pressure

  2. Mind the Gap on IceCube: Cosmic neutrino spectrum and muon anomalous magnetic moment

    NASA Astrophysics Data System (ADS)

    Araki, T.; Kaneko, F.; Konishi, Y.; Ota, T.; Sato, J.; Shimomura, T.

    2017-09-01

    The high energy cosmic neutrino spectrum reported by the IceCube collaboration shows a gap in the energy range between 500 TeV and 1 PeV. In this presentation, we illustrate that the IceCube gap is reproduced by the neutrino interaction mediated by the new gauge boson associated with a certain combination of the lepton avour number. The gauge interaction also explains the other long-standing gap in the lepton phenomenology: the gap between theory and experiment in the muon anomalous magnetic moment.

  3. Groundlayer vegetation gradients across oak woodland canopy gaps

    USGS Publications Warehouse

    Pavlovic, N.B.; Grundel, R.; Sluis, W.

    2006-01-01

    Frequency of groundlayer plants was measured across oak woodland canopy gaps at three sites in northwest Indiana to examine how vegetation varied with gap size, direction along the gap edge, and microhabitat. Microhabitats were defined as under the canopy adjacent to the gap, along the gap edge, and within the gap. Gap-sites consisted of gaps plus adjacent tree canopy. Gaps were classified as small (16 ± 1 m2), medium (97 ± 8), and large (310 ± 32). Neither richness nor diversity differed among microhabitats, gap sizes, or edges. Similarity between microhabitats wthin a gap-site increased as the distance between plots decreased and as the difference in PAR decreased, the latter explaining twice the variation in percent dissimilarity compared to Mg concentration, A horizon depth, and litter cover. Diervilla lonicera, Frageria virginiana, Helianthus divaricatus, Polygonatum pubescens, Quercus velutina, Smilacena stellata, and Tradescantia ohiensis decreased, whileTephrosia virginiana and legumes increased in frequency, from canopy to gap, and C4 grasses peaked at the gap edge, independent of gap size. Additional species frequency varied across the microhabitat gradient within specific sites. Sorghastrum nutans was three times more frequent in gaps at large sites than elsewhere. The vegetation in medium-sized gap-sites was more variable than within small and large gap-sites, suggesting greater environmental heterogeneity at that scale. Within gap-sites, vegetation was more heterogeneous within edges and canopies than in gaps. Edges were more similar in composition to gaps than to canopy groundlayer within gap-sites. Few species varied significantly in frequency around the gap edge. The oak woodland groundlayer on sandy substrates can be characterized as a mosaic of forb dominated vegetation that varies across light gradients associated with canopy gaps, transitioning to islands of grassland vegetation when gaps exceed 160 m2.

  4. A Thin Lens Model for Charged-Particle RF Accelerating Gaps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, Christopher K.

    Presented is a thin-lens model for an RF accelerating gap that considers general axial fields without energy dependence or other a priori assumptions. Both the cosine and sine transit time factors (i.e., Fourier transforms) are required plus two additional functions; the Hilbert transforms the transit-time factors. The combination yields a complex-valued Hamiltonian rotating in the complex plane with synchronous phase. Using Hamiltonians the phase and energy gains are computed independently in the pre-gap and post-gap regions then aligned using the asymptotic values of wave number. Derivations of these results are outlined, examples are shown, and simulations with the model aremore » presented.« less

  5. Increasing Student Performance on the Independent School Entrance Exam (ISEE) Using the Gap Analysis Approach

    ERIC Educational Resources Information Center

    Sarshar, Shanon Etty

    2013-01-01

    Using the Gap Analysis problem-solving framework (Clark & Estes, 2008), this study examined the performance gap experienced by 6th grade students on the math sections of the ISEE (Independent School Entrance Exam). The purpose of the study was to identify and validate the knowledge, motivation, and organization causes of the students' low…

  6. Suppression of spin and optical gaps in phosphorene quantum dots

    NASA Astrophysics Data System (ADS)

    Zhang, Yingjie; Sheng, Weidong

    2018-05-01

    Electronic structure and optical properties of triangular phosphorene quantum dots have been investigated theoretically. Based on systematic configuration interaction calculations, the ground and excited states of the interacting many-electron system together with its optical absorption spectrum are obtained. For the nanodot with 60 phosphorus atoms in various dielectric environments, it is found that the spin gap of the correlated system surprisingly overlaps its optical gap over a large range of the effective dielectric constant. The overlapping of the spin and optical gaps can be attributed to the fact that the extra correlation energy in the spin singlet almost compensates the exchange energy in the spin triplet in the presence of strong long-range electron-electron interactions. Moreover, both the spin and optical gaps are shown to be greatly suppressed as the screening effect becomes strong. When the dielectric constant decreases below 2.65, it is seen that the spin gap becomes negative and the quantum dot undergoes a phase transition from nonmagnetic to ferromagnetic. Our results are compared with the previous experimental and theoretical works.

  7. Increased Body Weight Reduces Voluntary Movement to Maintain Energy Expenditure of Rats Exposed to Increases in Gravity

    NASA Technical Reports Server (NTRS)

    Wade, C. E.; Moran, M. M.; Stein, T. P.; Sin, Sidney (Technical Monitor)

    2001-01-01

    With the increase in obesity related diseases there is heightened interest in mechanisms regulating body weight. To assess the influence of increases in body weight on energy expenditure and intake in rats we employed variable levels of gravity. Our approach afforded the means to measure interactions of energy expenditure and intake in response to increases in body weight (body mass x gravity level). We found a dose relationship between rapid elevation of body weight and reduction of voluntary movement, such that the energy requirements for activity are unchanged, and total energy expenditure and intake maintained. Reduction of movement appears to be a response to increased body weight, rather than a contributing factor, suggesting a new regulatory pathway.

  8. Passive band-gap reconfiguration born from bifurcation asymmetry.

    PubMed

    Bernard, Brian P; Mann, Brian P

    2013-11-01

    Current periodic structures are constrained to have fixed energy transmission behavior unless active control or component replacement is used to alter their wave propagation characteristics. The introduction of nonlinearity to generate multiple stable equilibria is an alternative strategy for realizing distinct energy propagation behaviors. We investigate the creation of a reconfigurable band-gap system by implementing passive switching between multiple stable states of equilibrium, to alter the level of energy attenuation in response to environmental stimuli. The ability to avoid potentially catastrophic loads is demonstrated by tailoring the bandpass and band-gap regions to coalesce for two stable equilibria and varying an external load parameter to trigger a bifurcation. The proposed phenomenon could be utilized in remote or autonomous applications where component modifications and active control are impractical.

  9. Phosphorene for energy and catalytic application—filling the gap between graphene and 2D metal chalcogenides

    NASA Astrophysics Data System (ADS)

    Jain, Rishabh; Narayan, Rekha; Padmajan Sasikala, Suchithra; Lee, Kyung Eun; Jung, Hong Ju; Ouk Kim, Sang

    2017-12-01

    Phosphorene, a newly emerging graphene analogous 2D elemental material of phosphorous atoms, is unique on the grounds of its natural direct band gap opening, highly anisotropic and extraordinary physical properties. This review highlights the current status of phosphorene research in energy and catalytic applications. The initial part illustrates the typical physical properties of phosphorene, which successfully bridge the prolonged gap between graphene and 2D metal chalcogenides. Various synthetic methods available for black phosphorus (BP) and the exfoliation/growth techniques for single to few-layer phosphorene are also overviewed. The latter part of this review details the working mechanisms and performances of phosphorene/BP in batteries, supercapacitors, photocatalysis, and electrocatalysis. Special attention has been paid to the research efforts to overcome the inherent shortcomings faced by phosphorene based devices. The relevant device performances are compared with graphene and 2D metal chalcogenides based counterparts. Furthermore, the underlying mechanism behind the unstable nature of phosphorene under ambient condition is discussed along with the various approaches to avoid ambient degradation. Finally, comments are offered for the future prospective explorations and outlook as well as challenges lying in the road ahead for phosphorene research.

  10. Theoretical study on electronic structure of bathocuproine: Renormalization of the band gap in the crystalline state and the large exciton binding energy

    NASA Astrophysics Data System (ADS)

    Yanagisawa, Susumu; Hatada, Shin-No-Suke; Morikawa, Yoshitada

    Bathocuproine (BCP) is a promising organic material of a hole blocking layer in organic light-emitting diodes or an electron buffer layer in organic photovoltaic cells. The nature of the unoccupied electronic states is a key characteristic of the material, which play vital roles in the electron transport. To elucidate the electronic properties of the molecular or crystalline BCP, we use the GW approximation for calculation of the fundamental gap, and the long-range corrected density functional theory for the molecular optical absorption. It is found that the band gap of the BCP single crystal is 4.39 eV, and it is in agreement with the recent low-energy inverse photoemission spectroscopy measurement. The polarization energy is estimated to be larger than 1 eV, demonstrating the large polarization effects induced by the electronic clouds surrounding the injected charge. The theoretical optical absorption energy is 3.68 eV, and the exciton binding energy is estimated to be 0.71 eV, implying the large binding in the eletron-hole pair distributed around the small part of the molecular region. This work was supported by the Grants-in-Aid for Young Scientists (B) (No. 26810009), and for Scientific Research on Innovative Areas ``3D Active-Site Science'' (No. 26105011) from Japan Society for the Promotion of Science.

  11. Effect of Increased Natural Gas Exports on Domestic Energy Markets

    EIA Publications

    2012-01-01

    This report responds to an August 2011 request from the Department of Energy's Office of Fossil Energy (DOE\\/FE) for an analysis of "the impact of increased domestic natural gas demand, as exports." Appendix A provides a copy of the DOE\\/FE request letter. Specifically, DOE\\/FE asked the U.S. Energy Information Administration (EIA) to assess how specified scenarios of increased natural gas exports could affect domestic energy markets, focusing on consumption, production, and prices.

  12. Contribution of Nano- to Microscale Roughness to Heterogeneity: Closing the Gap between Unfavorable and Favorable Colloid Attachment Conditions.

    PubMed

    Rasmuson, Anna; Pazmino, Eddy; Assemi, Shoeleh; Johnson, William P

    2017-02-21

    Surface roughness has been reported to both increase as well as decrease colloid retention. In order to better understand the boundaries within which roughness operates, attachment of a range of colloid sizes to glass with three levels of roughness was examined under both favorable (energy barrier absent) and unfavorable (energy barrier present) conditions in an impinging jet system. Smooth glass was found to provide the upper and lower bounds for attachment under favorable and unfavorable conditions, respectively. Surface roughness decreased, or even eliminated, the gap between favorable and unfavorable attachment and did so by two mechanisms: (1) under favorable conditions attachment decreased via increased hydrodynamic slip length and reduced attraction and (2) under unfavorable conditions attachment increased via reduced colloid-collector repulsion (reduced radius of curvature) and increased attraction (multiple points of contact, and possibly increased surface charge heterogeneity). Absence of a gap where these forces most strongly operate for smaller (<200 nm) and larger (>2 μm) colloids was observed and discussed. These observations elucidate the role of roughness in colloid attachment under both favorable and unfavorable conditions.

  13. Closing the gap: global potential for increasing biofuel production through agricultural intensification

    NASA Astrophysics Data System (ADS)

    Johnston, Matt; Licker, R.; Foley, J.; Holloway, T.; Mueller, N. D.; Barford, C.; Kucharik, C.

    2011-07-01

    Since the end of World War II, global agriculture has undergone a period of rapid intensification achieved through a combination of increased applications of chemical fertilizers, pesticides, and herbicides, the implementation of best management practice techniques, mechanization, irrigation, and more recently, through the use of optimized seed varieties and genetic engineering. However, not all crops and not all regions of the world have realized the same improvements in agricultural intensity. In this study we examine both the magnitude and spatial variation of new agricultural production potential from closing of 'yield gaps' for 20 ethanol and biodiesel feedstock crops. With biofuels coming under increasing pressure to slow or eliminate indirect land-use conversion, the use of targeted intensification via established agricultural practices might offer an alternative for continued growth. We find that by closing the 50th percentile production gap—essentially improving global yields to median levels—the 20 crops in this study could provide approximately 112.5 billion liters of new ethanol and 8.5 billion liters of new biodiesel production. This study is intended to be an important new resource for scientists and policymakers alike—helping to more accurately understand spatial variation of yield and agricultural intensification potential, as well as employing these data to better utilize existing infrastructure and optimize the distribution of development and aid capital.

  14. Environmental implications of increased biomass energy use

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miles, T.R. Sr.; Miles, T.R. Jr.

    1992-03-01

    This study reviews the environmental implications of continued and increased use of biomass for energy to determine what concerns have been and need to be addressed and to establish some guidelines for developing future resources and technologies. Although renewable biomass energy is perceived as environmentally desirable compared with fossil fuels, the environmental impact of increased biomass use needs to be identified and recognized. Industries and utilities evaluating the potential to convert biomass to heat, electricity, and transportation fuels must consider whether the resource is reliable and abundant, and whether biomass production and conversion is environmentally preferred. A broad range ofmore » studies and events in the United States were reviewed to assess the inventory of forest, agricultural, and urban biomass fuels; characterize biomass fuel types, their occurrence, and their suitability; describe regulatory and environmental effects on the availability and use of biomass for energy; and identify areas for further study. The following sections address resource, environmental, and policy needs. Several specific actions are recommended for utilities, nonutility power generators, and public agencies.« less

  15. Far-Infrared Optical Conductivity Gap in Superconducting MgB2 Films

    NASA Astrophysics Data System (ADS)

    Kaindl, Robert A.; Carnahan, Marc A.; Orenstein, Joseph; Chemla, Daniel S.; Christen, Hans M.; Zhai, Hong-Ying; Paranthaman, Mariappan; Lowndes, Doug H.

    2002-01-01

    We report the first study of the optical conductivity of MgB 2 covering the range of its lowest-energy superconducting gap. Terahertz time-domain spectroscopy is utilized to determine the complex, frequency-dependent conductivity σ(ω) of thin films. The imaginary part reveals an inductive response due to the emergence of the superconducting condensate. The real part exhibits a strong depletion of oscillator strength near 5 meV resulting from the opening of a superconducting energy gap. The gap ratio of 2Δ0/kBTC~1.9 is well below the weak-coupling value, pointing to complex behavior in this novel superconductor.

  16. Deletion of the Rab GAP Tbc1d1 modifies glucose, lipid, and energy homeostasis in mice.

    PubMed

    Hargett, Stefan R; Walker, Natalie N; Hussain, Syed S; Hoehn, Kyle L; Keller, Susanna R

    2015-08-01

    Tbc1d1 is a Rab GTPase-activating protein (GAP) implicated in regulating intracellular retention and cell surface localization of the glucose transporter GLUT4 and thus glucose uptake in a phosphorylation-dependent manner. Tbc1d1 is most abundant in skeletal muscle but is expressed at varying levels among different skeletal muscles. Previous studies with male Tbc1d1-deficient (Tbc1d1(-/-)) mice on standard and high-fat diets established a role for Tbc1d1 in glucose, lipid, and energy homeostasis. Here we describe similar, but also additional abnormalities in male and female Tbc1d1(-/-) mice. We corroborate that Tbc1d1 loss leads to skeletal muscle-specific and skeletal muscle type-dependent abnormalities in GLUT4 expression and glucose uptake in female and male mice. Using subcellular fractionation, we show that Tbc1d1 controls basal intracellular GLUT4 retention in large skeletal muscles. However, cell surface labeling of extensor digitorum longus muscle indicates that Tbc1d1 does not regulate basal GLUT4 cell surface exposure as previously suggested. Consistent with earlier observations, female and male Tbc1d1(-/-) mice demonstrate increased energy expenditure and skeletal muscle fatty acid oxidation. Interestingly, we observe sex-dependent differences in in vivo phenotypes. Female, but not male, Tbc1d1(-/-) mice have decreased body weight and impaired glucose and insulin tolerance, but only male Tbc1d1(-/-) mice show increased lipid clearance after oil gavage. We surmise that similar changes at the tissue level cause differences in whole-body metabolism between male and female Tbc1d1(-/-) mice and between male Tbc1d1(-/-) mice in different studies due to variations in body composition and nutrient handling. Copyright © 2015 the American Physiological Society.

  17. Dynamic response functions, helical gaps, and fractional charges in quantum wires

    NASA Astrophysics Data System (ADS)

    Meng, Tobias; Pedder, Christopher J.; Tiwari, Rakesh P.; Schmidt, Thomas L.

    We show how experimentally accessible dynamic response functions can discriminate between helical gaps due to magnetic field, and helical gaps driven by electron-electron interactions (''umklapp gaps''). The latter are interesting since they feature gapped quasiparticles of fractional charge e / 2 , and - when coupled to a standard superconductor - an 8 π-Josephson effect and topological zero energy states bound to interfaces. National Research Fund, Luxembourg (ATTRACT 7556175), Deutsche Forschungsgemeinschaft (GRK 1621 and SFB 1143), Swiss National Science Foundation.

  18. Band gap engineering of N-alloyed Ga{sub 2}O{sub 3} thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Dongyu; Li, Bingsheng, E-mail: libingsheng@hit.edu.cn, E-mail: ashen@ccny.cuny.edu; Sui, Yu

    2016-06-15

    The authors report the tuning of band gap of GaON ternary alloy in a wide range of 2.75 eV. The samples were prepared by a two-step nitridation method. First, the samples were deposited on 2-inch fused silica substrates by megnetron sputtering with NH{sub 3} and Ar gas for 60 minutes. Then they were annealed in NH{sub 3} ambience at different temperatures. The optical band gap energies are calculated from transmittance measurements. With the increase of nitridation temperature, the band gap gradually decreases from 4.8 eV to 2.05 eV. X-ray diffraction results indicate that as-deposited amorphous samples can crystallize into monoclinicmore » and hexagonal structures after they were annealed in oxygen or ammonia ambience, respectively. The narrowing of the band gap is attributed to the enhanced repulsion of N2p -Ga3d orbits and formation of hexagonal structure.« less

  19. Significant reduction in NiO band gap upon formation of Lix Ni1-x O alloys: applications to solar energy conversion.

    PubMed

    Alidoust, Nima; Toroker, Maytal Caspary; Keith, John A; Carter, Emily A

    2014-01-01

    Long-term sustainable solar energy conversion relies on identifying economical and versatile semiconductor materials with appropriate band structures for photovoltaic and photocatalytic applications (e.g., band gaps of ∼ 1.5-2.0 eV). Nickel oxide (NiO) is an inexpensive yet highly promising candidate. Its charge-transfer character may lead to longer carrier lifetimes needed for higher efficiencies, and its conduction band edge is suitable for driving hydrogen evolution via water-splitting. However, NiO's large band gap (∼ 4 eV) severely limits its use in practical applications. Our first-principles quantum mechanics calculations show band gaps dramatically decrease to ∼ 2.0 eV when NiO is alloyed with Li2O. We show that Lix Ni1-x O alloys (with x=0.125 and 0.25) are p-type semiconductors, contain states with no impurity levels in the gap and maintain NiO's desirable charge-transfer character. Lastly, we show that the alloys have potential for photoelectrochemical applications, with band edges well-placed for photocatalytic hydrogen production and CO2 reduction, as well as in tandem dye-sensitized solar cells as a photocathode. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. On the sub-band gap optical absorption in heat treated cadmium sulphide thin film deposited on glass by chemical bath deposition technique

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, P.; Karim, B.; Guha Roy, S.

    2013-12-01

    The sub-band gap optical absorption in chemical bath deposited cadmium sulphide thin films annealed at different temperatures has been critically analyzed with special reference to Urbach relation. It has been found that the absorption co-efficient of the material in the sub-band gap region is nearly constant up to a certain critical value of the photon energy. However, as the photon energy exceeds the critical value, the absorption coefficient increases exponentially indicating the dominance of Urbach rule. The absorption coefficients in the constant absorption region and the Urbach region have been found to be sensitive to annealing temperature. A critical examination of the temperature dependence of the absorption coefficient indicates two different kinds of optical transitions to be operative in the sub-band gap region. After a careful analyses of SEM images, energy dispersive x-ray spectra, and the dc current-voltage characteristics, we conclude that the absorption spectra in the sub-band gap domain is possibly associated with optical transition processes involving deep levels and the grain boundary states of the material.

  1. Eddy Covariance Measurements Over a Maize Field: The Contribution of Minor Flux Terms to the Energy Balance Gap

    NASA Astrophysics Data System (ADS)

    Smidt, J.; Ingwersen, J.; Streck, T.

    2015-12-01

    The lack of energy balance closure is a long-standing problem in eddy covariance (EC) measurements. The energy balance equation is defined as Rn - G = H + λE, where Rn is net radiation, G is the ground heat flux, H is the sensible heat flux and λE is the latent heat flux. In most cases of energy imbalance, either Rn is overestimated or the ground heat and turbulent fluxes are underestimated. Multiple studies have shown that calculations, incorrect instrument installation/calibration and measurement errors alone do not entirely account for this imbalance. Rather, research is now focused on previously neglected sources of heat storage in the soil, biomass and air beneath the EC station. This project examined the potential of five "minor flux terms" - soil heat storage, biomass heat storage, energy consumption by photosynthesis, air heat storage and atmospheric moisture change, to further close the energy balance gap. Eddy covariance measurements were conducted at a maize (Zea mays) field in southwest Germany during summer 2014. Soil heat storage was measured for six weeks at 11 sites around the field footprint. Biomass and air heat storage were measured for six subsequent weeks at seven sites around the field footprint. Energy consumption by photosynthesis was calculated using the CO2 flux data. Evapotranspiration was calculated using the water balance method and then compared to the flux data processed with three post-closure methods: the sensible heat flux, the latent heat flux and the Bowen ratio post-closure methods. An energy balance closure of 66% was achieved by the EC station measurements over the entire investigation period. During the soil heat flux campaign, EC station closure was 74.1%, and the field footprint soil heat storage contributed 3.3% additional closure. During the second minor flux term measurement period, closure with the EC station data was 91%. Biomass heat storage resulted in 1.1% additional closure, the photosynthesis flux closed the gap

  2. Report on audit of Department of Energy`s contractor salary increase fund

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-04-04

    The Department of Energy (Department) uses contractors to operate its facilities and compensates contractor employees based on their skills, complexity of jobs, and work performance. Thirty-one of the Department`s major contractors reported a total payroll of $4.3 billion and $4.4 billion during 1994 and 1995, respectively. The 31 contractors also reported awarding salary increases of $18 million for 1994 and $200 million for 1995. The purpose of the audit was to review the process used to determine and approve the amount of salary increases for contractor employees. The specific audit objective was to determine whether salary increases received by contractormore » employees were in accordance with Departmental policies and procedures. The Department of Energy Acquisition Regulation (DEAR) requires that contractor salary actions be within specific limitations, supportable, and approved prior to incurrence of costs. In addition, the Secretary of Energy imposed a 1 year salary freeze on the merit portion of management and operating contractor employee salaries for each contractor`s Fiscal Year 1994 compensation year. However, a fund for promotions and adjustments was approved but limited to 0.5 percent of payroll for the year. A review of eight major contractors showed that six complied with the Department`s policies on salary increases. The other two gave salary increases that were not always in accordance with Departmental policies. This resulted in both contractors not fully complying with the pay freeze in 1994 and exceeding their salary increase fund budgets in 1995. If these two contractors had implemented Department and contract requirements and contracting officers had properly performed their contract administrative responsibilities concerning salary increase funds, both contractors would have frozen salary increases and would not have exceeded their annual budgets.« less

  3. Effects of tip-substrate gap, deposition temperature, holding time, and pull-off velocity on dip-pen lithography investigated using molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Wu, Cheng-Da; Fang, Te-Hua; Lin, Jen-Fin

    2012-05-01

    The process parameters in the dip-pen nanolithography process, including tip-substrate gap, deposition temperature, holding time, and pull-off velocity are evaluated in terms of the mechanism of molecular transference, alkanethiol meniscus characteristic, surface adsorbed energy, and pattern formation using molecular dynamics simulations. The simulation results clearly show that the optimum deposition occurs at a smaller tip-substrate gap, a slower pull-off velocity, a higher temperature, and a longer holding time. The pattern area increases with decreasing tip-substrate gap and increasing deposition temperature and holding time. With an increase in deposition temperature, the molecular transfer ability significantly increases. Pattern height is a function of meniscus length. When the pull-off velocity is decreased, the pattern height increases. The height of the neck in meniscus decreases and the neck width increases with holding time. Meniscus size increases with increasing deposition temperature and holding time.

  4. Cooking increases net energy gain from a lipid-rich food.

    PubMed

    Groopman, Emily E; Carmody, Rachel N; Wrangham, Richard W

    2015-01-01

    Starch, protein, and lipid are three major sources of calories in the human diet. The unique and universal human practice of cooking has been demonstrated to increase the energy gained from foods rich in starch or protein. Yet no studies have tested whether cooking has equivalent effects on the energy gained from lipid-rich foods. Using mice as a model, we addressed this question by examining the impact of cooking on the energy gained from peanuts, a lipid-rich oilseed, and compared this impact against that of nonthermal processing (blending). We found that cooking consistently increased the energy gained per calorie, whereas blending had no detectable energetic benefits. Assessment of fecal fat excretion showed increases in lipid digestibility when peanuts were cooked, and examination of diet microstructure revealed concomitant alterations to the integrity of cell walls and the oleosin layer of proteins that otherwise shield lipids from digestive lipases. Both effects were consistent with the greater energy gain observed with cooking. Our findings highlight the importance of cooking in increasing dietary energy returns for humans, both past and present. © 2014 Wiley Periodicals, Inc.

  5. Low-energy proton increases associated with interplanetary shock waves.

    NASA Technical Reports Server (NTRS)

    Palmeira, R. A. R.; Allum, F. R.; Rao, U. R.

    1971-01-01

    Impulsive increases in the low energy proton flux observed by the Explorer 34 satellite, in very close time association with geomagnetic storm sudden commencements are described. It is shown that these events are of short duration (20-30 min) and occur only during the decay phase of a solar cosmic-ray flare event. The differential energy spectrum and the angular distribution of the direction of arrival of the particles are discussed. Two similar increases observed far away from the earth by the Pioneer 7 and 8 deep-space probes are also presented. These impulsive increases are compared with Energetic Storm Particle events and their similarities and differences are discussed. A model is suggested to explain these increases, based on the sweeping and trapping of low energy cosmic rays of solar origin by the advancing shock front responsible for the sudden commencement detected on the earth.

  6. Optical properties of II-VI structures for solar energy utilization

    NASA Astrophysics Data System (ADS)

    Schrier, Joshua; Demchenko, Denis; Wang, Lin-Wang

    2007-03-01

    Although II-VI semiconductor materials are abundant, stable, and have direct band gaps, the band gaps are too large for optimal photovoltaic efficiency. However, staggered band alignments of pairs of these materials, and also the formation of intermediate impurity levels in the band gap (which has been demonstrated to increase the efficiency as compared to both single-junction devices), could be utilized to improve the suitability of these materials for solar energy utilization. Previous theoretical studies of these materials are limited, due to the well-known band gap underestimation by density-functional theory. To calculate the absorption spectra, we utilize a band-corrected planewave pseudopotential approach, which gives agreements of within 0.1 eV of the bulk optical gaps values. In this talk, I will present our work on predicting the optical properties of ZnO/ZnS and ZnO/ZnTe heterostructures, nanostructures, and alloys. This work was supported by U.S. Department of Energy under Contract No.DE-AC02-05CH11231 and used the resources of the National Energy Research Scientific Computing Center.

  7. Increasing Flexibility in Energy Code Compliance: Performance Packages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, Philip R.; Rosenberg, Michael I.

    Energy codes and standards have provided significant increases in building efficiency over the last 38 years, since the first national energy code was published in late 1975. The most commonly used path in energy codes, the prescriptive path, appears to be reaching a point of diminishing returns. As the code matures, the prescriptive path becomes more complicated, and also more restrictive. It is likely that an approach that considers the building as an integrated system will be necessary to achieve the next real gains in building efficiency. Performance code paths are increasing in popularity; however, there remains a significant designmore » team overhead in following the performance path, especially for smaller buildings. This paper focuses on development of one alternative format, prescriptive packages. A method to develop building-specific prescriptive packages is reviewed based on a multiple runs of prototypical building models that are used to develop parametric decision analysis to determines a set of packages with equivalent energy performance. The approach is designed to be cost-effective and flexible for the design team while achieving a desired level of energy efficiency performance. A demonstration of the approach based on mid-sized office buildings with two HVAC system types is shown along with a discussion of potential applicability in the energy code process.« less

  8. Resonantly enhanced multiple exciton generation through below-band-gap multi-photon absorption in perovskite nanocrystals.

    PubMed

    Manzi, Aurora; Tong, Yu; Feucht, Julius; Yao, En-Ping; Polavarapu, Lakshminarayana; Urban, Alexander S; Feldmann, Jochen

    2018-04-17

    Multi-photon absorption and multiple exciton generation represent two separate strategies for enhancing the conversion efficiency of light into usable electric power. Targeting below-band-gap and above-band-gap energies, respectively, to date these processes have only been demonstrated independently. Here we report the combined interaction of both nonlinear processes in CsPbBr 3 perovskite nanocrystals. We demonstrate nonlinear absorption over a wide range of below-band-gap excitation energies (0.5-0.8 E g ). Interestingly, we discover high-order absorption processes, deviating from the typical two-photon absorption, at specific energetic positions. These energies are associated with a strong enhancement of the photoluminescence intensity by up to 10 5 . The analysis of the corresponding energy levels reveals that the observed phenomena can be ascribed to the resonant creation of multiple excitons via the absorption of multiple below-band-gap photons. This effect may open new pathways for the efficient conversion of optical energy, potentially also in other semiconducting materials.

  9. Impact of Increasing Home Size on Energy Demand, The

    EIA Publications

    2012-01-01

    Homes built since 1990 are on average 27% larger than homes built in earlier decades, a significant trend because most energy end-uses are correlated with the size of the home. As square footage increases, the burden on heating and cooling equipment rises, lighting requirements increase, and the likelihood that the household uses more than one refrigerator increases. Square footage typically stays fixed over the life of a home and it is a characteristic that is expensive, even impractical to alter to reduce energy consumption.

  10. Local band gap measurements by VEELS of thin film solar cells.

    PubMed

    Keller, Debora; Buecheler, Stephan; Reinhard, Patrick; Pianezzi, Fabian; Pohl, Darius; Surrey, Alexander; Rellinghaus, Bernd; Erni, Rolf; Tiwari, Ayodhya N

    2014-08-01

    This work presents a systematic study that evaluates the feasibility and reliability of local band gap measurements of Cu(In,Ga)Se2 thin films by valence electron energy-loss spectroscopy (VEELS). The compositional gradients across the Cu(In,Ga)Se2 layer cause variations in the band gap energy, which are experimentally determined using a monochromated scanning transmission electron microscope (STEM). The results reveal the expected band gap variation across the Cu(In,Ga)Se2 layer and therefore confirm the feasibility of local band gap measurements of Cu(In,Ga)Se2 by VEELS. The precision and accuracy of the results are discussed based on the analysis of individual error sources, which leads to the conclusion that the precision of our measurements is most limited by the acquisition reproducibility, if the signal-to-noise ratio of the spectrum is high enough. Furthermore, we simulate the impact of radiation losses on the measured band gap value and propose a thickness-dependent correction. In future work, localized band gap variations will be measured on a more localized length scale to investigate, e.g., the influence of chemical inhomogeneities and dopant accumulations at grain boundaries.

  11. Layer specific optical band gap measurement at nanoscale in MoS{sub 2} and ReS{sub 2} van der Waals compounds by high resolution electron energy loss spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dileep, K., E-mail: dileep@jncasr.ac.in, E-mail: ranjan@jncasr.ac.in; Sahu, R.; Datta, R., E-mail: dileep@jncasr.ac.in, E-mail: ranjan@jncasr.ac.in

    2016-03-21

    Layer specific direct measurement of optical band gaps of two important van der Waals compounds, MoS{sub 2} and ReS{sub 2}, is performed at nanoscale by high resolution electron energy loss spectroscopy. For monolayer MoS{sub 2}, the twin excitons (1.8 and 1.95 eV) originating at the K point of the Brillouin zone are observed. An indirect band gap of 1.27 eV is obtained from the multilayer regions. Indirect to direct band gap crossover is observed which is consistent with the previously reported strong photoluminescence from the monolayer MoS{sub 2}. For ReS{sub 2}, the band gap is direct, and a value of 1.52 andmore » 1.42 eV is obtained for the monolayer and multilayer, respectively. The energy loss function is dominated by features due to high density of states at both the valence and conduction band edges, and the difference in analyzing band gap with respect to ZnO is highlighted. Crystalline 1T ReS{sub 2} forms two dimensional chains like superstructure due to the clustering between four Re atoms. The results demonstrate the power of HREELS technique as a nanoscale optical absorption spectroscopy tool.« less

  12. Gap formation following climatic events in spatially structured plant communities

    PubMed Central

    Liao, Jinbao; De Boeck, Hans J.; Li, Zhenqing; Nijs, Ivan

    2015-01-01

    Gaps play a crucial role in maintaining species diversity, yet how community structure and composition influence gap formation is still poorly understood. We apply a spatially structured community model to predict how species diversity and intraspecific aggregation shape gap patterns emerging after climatic events, based on species-specific mortality responses. In multispecies communities, average gap size and gap-size diversity increased rapidly with increasing mean mortality once a mortality threshold was exceeded, greatly promoting gap recolonization opportunity. This result was observed at all levels of species richness. Increasing interspecific difference likewise enhanced these metrics, which may promote not only diversity maintenance but also community invasibility, since more diverse niches for both local and exotic species are provided. The richness effects on gap size and gap-size diversity were positive, but only expressed when species were sufficiently different. Surprisingly, while intraspecific clumping strongly promoted gap-size diversity, it hardly influenced average gap size. Species evenness generally reduced gap metrics induced by climatic events, so the typical assumption of maximum evenness in many experiments and models may underestimate community diversity and invasibility. Overall, understanding the factors driving gap formation in spatially structured assemblages can help predict community secondary succession after climatic events. PMID:26114803

  13. Photonic band gap in isotropic hyperuniform disordered solids with low dielectric contrast.

    PubMed

    Man, Weining; Florescu, Marian; Matsuyama, Kazue; Yadak, Polin; Nahal, Geev; Hashemizad, Seyed; Williamson, Eric; Steinhardt, Paul; Torquato, Salvatore; Chaikin, Paul

    2013-08-26

    We report the first experimental demonstration of a TE-polarization photonic band gap (PBG) in a 2D isotropic hyperuniform disordered solid (HUDS) made of dielectric media with a dielectric index contrast of 1.6:1, very low for PBG formation. The solid is composed of a connected network of dielectric walls enclosing air-filled cells. Direct comparison with photonic crystals and quasicrystals permitted us to investigate band-gap properties as a function of increasing rotational isotropy. We present results from numerical simulations proving that the PBG observed experimentally for HUDS at low index contrast has zero density of states. The PBG is associated with the energy difference between complementary resonant modes above and below the gap, with the field predominantly concentrated in the air or in the dielectric. The intrinsic isotropy of HUDS may offer unprecedented flexibilities and freedom in applications (i. e. defect architecture design) not limited by crystalline symmetries.

  14. Continuously controlled optical band gap in oxide semiconductor thin films

    DOE PAGES

    Herklotz, Andreas; Rus, Stefania Florina; Ward, Thomas Zac

    2016-02-02

    The optical band gap of the prototypical semiconducting oxide SnO 2 is shown to be continuously controlled through single axis lattice expansion of nanometric films induced by low-energy helium implantation. While traditional epitaxy-induced strain results in Poisson driven multidirectional lattice changes shown to only allow discrete increases in bandgap, we find that a downward shift in the band gap can be linearly dictated as a function of out-of-plane lattice expansion. Our experimental observations closely match density functional theory that demonstrates that uniaxial strain provides a fundamentally different effect on the band structure than traditional epitaxy-induced multiaxes strain effects. In conclusion,more » charge density calculations further support these findings and provide evidence that uniaxial strain can be used to drive orbital hybridization inaccessible with traditional strain engineering techniques.« less

  15. Ultrafast Gap Dynamics and Electronic Interactions in a Photoexcited Cuprate Superconductor

    DOE PAGES

    Parham, S.; Li, H.; Nummy, T. J.; ...

    2017-10-20

    We perform time- and angle-resolved photoemission spectroscopy (trARPES) on optimally doped Bi 2Sr 2CaCu 2O 8+δ (BSCCO-2212) using sufficient energy resolution (9 meV) to resolve the k-dependent near-nodal gap structure on time scales where the concept of an electronic pseudotemperature is a useful quantity, i.e., after electronic thermalization has occurred. We study the ultrafast evolution of this gap structure, uncovering a very rich landscape of decay rates as a function of angle, temperature, and energy. We explicitly focus on the quasiparticle states at the gap edge as well as on the spectral weight inside the gap that “fills” the gap—understoodmore » as an interaction, or self-energy effect—and we also make high resolution measurements of the nodal states, enabling a direct and accurate measurement of the electronic temperature (or pseudotemperature) of the electrons in the system. Rather than the standard method of interpreting these results using individual quasiparticle scattering rates that vary significantly as a function of angle, temperature, and energy, we show that the entire landscape of relaxations can be understood by modeling the system as following a nonequilibrium, electronic pseudotemperature that controls all electrons in the zone. Furthermore, this model has zero free parameters, as we obtain the crucial information of the SC gap Δ and the gap-filling strength Γ TDoS by connecting to static ARPES measurements. The quantitative and qualitative agreement between data and model suggests that the critical parameters and interactions of the system, including the pairing interactions, follow parametrically from the electronic pseudotemperature. In conclusion, we expect that this concept will be relevant for understanding the ultrafast response of a great variety of electronic materials, even though the electronic pseudotemperature may not be directly measurable.« less

  16. Ultrafast Gap Dynamics and Electronic Interactions in a Photoexcited Cuprate Superconductor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parham, S.; Li, H.; Nummy, T. J.

    We perform time- and angle-resolved photoemission spectroscopy (trARPES) on optimally doped Bi 2Sr 2CaCu 2O 8+δ (BSCCO-2212) using sufficient energy resolution (9 meV) to resolve the k-dependent near-nodal gap structure on time scales where the concept of an electronic pseudotemperature is a useful quantity, i.e., after electronic thermalization has occurred. We study the ultrafast evolution of this gap structure, uncovering a very rich landscape of decay rates as a function of angle, temperature, and energy. We explicitly focus on the quasiparticle states at the gap edge as well as on the spectral weight inside the gap that “fills” the gap—understoodmore » as an interaction, or self-energy effect—and we also make high resolution measurements of the nodal states, enabling a direct and accurate measurement of the electronic temperature (or pseudotemperature) of the electrons in the system. Rather than the standard method of interpreting these results using individual quasiparticle scattering rates that vary significantly as a function of angle, temperature, and energy, we show that the entire landscape of relaxations can be understood by modeling the system as following a nonequilibrium, electronic pseudotemperature that controls all electrons in the zone. Furthermore, this model has zero free parameters, as we obtain the crucial information of the SC gap Δ and the gap-filling strength Γ TDoS by connecting to static ARPES measurements. The quantitative and qualitative agreement between data and model suggests that the critical parameters and interactions of the system, including the pairing interactions, follow parametrically from the electronic pseudotemperature. In conclusion, we expect that this concept will be relevant for understanding the ultrafast response of a great variety of electronic materials, even though the electronic pseudotemperature may not be directly measurable.« less

  17. A gene delivery system containing nuclear localization signal: Increased nucleus import and transfection efficiency with the assistance of RanGAP1.

    PubMed

    Chen, Kang; Guo, Lingling; Zhang, Jiulong; Chen, Qing; Wang, Kuanglei; Li, Chenxi; Li, Weinan; Qiao, Mingxi; Zhao, Xiuli; Hu, Haiyang; Chen, Dawei

    2017-01-15

    In the present report, a degradable gene delivery system (PAMS/DNA/10NLS) containing nucleus location signal peptide (NLS) was prepared. The agarose gel electrophoresis, particle size and zeta potential of PAMS/DNA/10NLS were similar to those of PAMS/DNA, which proved that NLS did not affect the interaction between PAMS and DNA. PAMS/DNA/10NLS exhibited marked extracellular and intracellular degradation under acidic conditions. The degradation was believed to allow NLS to come into contact with importins easily, which was able to mediate the nucleus import. With the help of NLS, PAMS/DNA/10NLS exhibited a higher transfection capability than PAMS/DNA. Moreover, the transfection of PAMS/DNA/10NLS was less dependent on the breakdown of the nucleus envelope than PAMS/DNA. Considering that GTPase-activating protein 1 (RanGAP1) was able to activate the endogenous GTPase, which was necessary for NLS-mediated nucleus import, RanGAP1 overexpressed cells (RanGAP1 cells) were produced. This result showed that RanGAP1 cells had higher GTPase activities than normal cells. Both the nucleus import and transfection efficiency of PAMS/DNA/10NLS were markedly higher in RanGAP1 cells than that in normal cells. The in vivo transfection results also showed that the transfection efficiency of PAMS/DNA/10NLS was higher in RanGAP1 pre-treated mice than that in normal mice. These findings showed that PAMS/DNA/10NLS is a promising gene delivery system with the assistance of RanGAP1. The present report describes the increased transfection efficiency of a degradable gene delivery system (PAMS/DNA/10NLS) containing nuclear location signal (NLS) with the assistance of GTPase-activating protein 1 (RanGAP1). The physicochemical properties of PAMS/DNA/10NLS were similar to those of PAMS/DNA. PAMS/DNA/10NLS exhibited great extracellular and intracellular degradations, which might allow NLS to contact with importins easily. With the help of NLS, PAMS/DNA/10NLS exhibited a higher transfection

  18. The increasing unemployment gap between the low and high educated in West Germany. Structural or cyclical crowding-out?

    PubMed

    Klein, Markus

    2015-03-01

    This paper addresses trends in education-specific unemployment risks at labor market entry in West Germany from the mid-1970s to the present. In line with previous research it shows that vocationally qualified school-leavers have relatively lower unemployment risks than school-leavers with general education. Over time, the gap in unemployment risks between the low-educated and medium- and highly educated labor market entrants substantially widened for both sexes. The literature identifies two different mechanisms for this trend: structural or cyclical crowding out. While in the former scenario low-educated become increasingly unemployed due to an oversupply of tertiary graduates and displacement from above, in the latter their relative unemployment risk varies with the business cycle. The results provide evidence for cyclical rather than structural crowding-out in West Germany. Since macroeconomic conditions became generally worse over time, this strongly explains the widening unemployment gap between the low-educated and all other education groups. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Band gap and electronic structure of MgSiN2

    NASA Astrophysics Data System (ADS)

    Quirk, J. B.; Râsander, M.; McGilvery, C. M.; Palgrave, R.; Moram, M. A.

    2014-09-01

    Density functional theory calculations and electron energy loss spectroscopy indicate that the electronic structure of ordered orthorhombic MgSiN2 is similar to that of wurtzite AlN. A band gap of 5.7 eV was calculated for both MgSiN2 (indirect) and AlN (direct) using the Heyd-Scuseria-Ernzerhof approximation. Correction with respect to the experimental room-temperature band gap of AlN indicates that the true band gap of MgSiN2 is 6.2 eV. MgSiN2 has an additional direct gap of 6.3 eV at the Γ point.

  20. Density functional theory calculations for the band gap and formation energy of Pr4-xCaxSi12O3+xN18-x; a highly disordered compound with low symmetry and a large cell size.

    PubMed

    Hong, Sung Un; Singh, Satendra Pal; Pyo, Myoungho; Park, Woon Bae; Sohn, Kee-Sun

    2017-06-28

    A novel oxynitride compound, Pr 4-x Ca x Si 12 O 3+x N 18-x , synthesized using a solid-state route has been characterized as a monoclinic structure in the C2 space group using Rietveld refinement on synchrotron powder X-ray diffraction data. The crystal structure of this compound was disordered due to the random distribution of Ca/Pr and N/O ions at various Wyckoff sites. A pragmatic approach for an ab initio calculation based on density function theory (DFT) for this disordered compound has been implemented to calculate an acceptable value of the band gap and formation energy. In general, for the DFT calculation of a disordered compound, a sufficiently large super cell and infinite variety of ensemble configurations is adopted to simulate the random distribution of ions; however, such an approach is time consuming and cost ineffective. Even a single unit cell model gave rise to 43 008 independent configurations as an input model for the DFT calculations. Since it was nearly impossible to calculate the formation energy and the band gap energy for all 43 008 configurations, an elitist non-dominated sorting genetic algorithm (NSGA-II) was employed to find the plausible configurations. In the NSGA-II, all 43 008 configurations were mathematically treated as genomes and the calculated band gap and the formation energy as the objective (fitness) function. Generalized gradient approximation (GGA) was first employed in the preliminary screening using NSGA-II, and thereafter a hybrid functional calculation (HSE06) was executed only for the most plausible GGA-relaxed configurations with lower formation and higher band gap energies. The final band gap energy (3.62 eV) obtained after averaging over the selected configurations, resembles closely the experimental band gap value (4.11 eV).

  1. Optical band gap studies on lithium aluminum silicate glasses doped with Cr3+ ions

    NASA Astrophysics Data System (ADS)

    El-Diasty, Fouad; Abdel Wahab, Fathy A.; Abdel-Baki, Manal

    2006-11-01

    Lithium aluminum silicate glass system (LAS) implanted with chromium ions is prepared. The reflectance and transmittance measurements are used to determine the dispersion of absorption coefficient. The optical data are explained in terms of the different oxidation states adopted by the chromium ions into the glass network. It is found that the oxidation state of the chromium depends on its concentration. Across a wide spectral range, 0.2-1.6μm, analysis of the fundamental absorption edge provides values for the average energy band gaps for allowed direct and indirect transitions. The optical absorption coefficient just below the absorption edge varies exponentially with photon energy indicating the presence of Urbach's tail. Such tail is decreased with the increase of the chromium dopant. From the analysis of the optical absorption data, the absorption peak at ground state exciton energy, the absorption at band gap, and the free exciton binding energy are determined. The extinction coefficient data are used to determine the Fermi energy level of the studied glasses. The metallization criterion is obtained and discussed exploring the nature of the glasses. The measured IR spectra of the different glasses are used to throw some light on the optical properties of the present glasses correlating them with their structure and composition.

  2. The Global Increase in the Socioeconomic Achievement Gap, 1964-2015. CEPA Working Paper No. 17-04

    ERIC Educational Resources Information Center

    Chmielewski, Anna K.

    2017-01-01

    The existence of a "socioeconomic achievement gap"--a disparity in academic achievement between students from high- and low-socioeconomic status (SES) backgrounds--is well-known in educational research. The SES achievement gap has been documented across a wide range of countries. What is unknown in most countries is whether the SES…

  3. Measurement of knee joint gaps without bone resection: "physiologic" extension and flexion gaps in total knee arthroplasty are asymmetric and unequal and anterior and posterior cruciate ligament resections produce different gap changes.

    PubMed

    Nowakowski, Andrej Maria; Majewski, Martin; Müller-Gerbl, Magdalena; Valderrabano, Victor

    2012-04-01

    General agreement is that flexion and extension gaps should be equal and symmetrical in total knee arthroplasty (TKA) procedures. However, comparisons using a standard TKA approach to normal knee joints that have not undergone bone resection are currently unavailable. Since bony preparation can influence capsule and ligament tension, our purpose was to perform measurements without this influence. Ten normal cadaveric knees were assessed using a standard medial parapatellar TKA approach with patellar subluxation. Gap measurements were carried out twice each alternating 100 and 200 N per compartment using a prototypical force-determining ligament balancer without the need for bony resection. Initial measurements were performed in extension, followed by 908 of flexion. The ACL was then resected, and finally the PCL was resected, and measurements were carried out in an analogous fashion. In general, the lateral compartment could be stretched further than the medial compartment, and the corresponding flexion gap values were significantly larger. ACL resection predominantly increased extension gaps, while PCL resection increased flexion gaps. Distraction force of 100 N per compartment appeared adequate; increasing to 200 N did not improve the results.

  4. SOF Integration with Conventional Forces: A Doctrine Gap?

    DTIC Science & Technology

    2011-12-01

    close tolerances, friction in an engine can be reduced considerably. However, there will always be energy lost in the system as heat. The goal is to...armed peshmerga. The combat power analysis favored the Iraqis on the ground. JSOTF planners only recourse was to rely on air power to close this gap . A...Approved for Public Release; Distribution is Unlimited SOF Integration with Conventional Forces: A Doctrine Gap ? A Monograph by MAJ Gregory M

  5. Width-Dependent Band Gap in Armchair Graphene Nanoribbons Reveals Fermi Level Pinning on Au(111)

    PubMed Central

    2017-01-01

    We report the energy level alignment evolution of valence and conduction bands of armchair-oriented graphene nanoribbons (aGNR) as their band gap shrinks with increasing width. We use 4,4″-dibromo-para-terphenyl as the molecular precursor on Au(111) to form extended poly-para-phenylene nanowires, which can subsequently be fused sideways to form atomically precise aGNRs of varying widths. We measure the frontier bands by means of scanning tunneling spectroscopy, corroborating that the nanoribbon’s band gap is inversely proportional to their width. Interestingly, valence bands are found to show Fermi level pinning as the band gap decreases below a threshold value around 1.7 eV. Such behavior is of critical importance to understand the properties of potential contacts in GNR-based devices. Our measurements further reveal a particularly interesting system for studying Fermi level pinning by modifying an adsorbate’s band gap while maintaining an almost unchanged interface chemistry defined by substrate and adsorbate. PMID:29049879

  6. SU-F-T-319: The Impact of Radiation Beam Obliquity and Air Gap Thickness On Optically Stimulated Luminescent in Vivo Dosimetry for Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riegel, A; Klein, E; Sea, P

    Purpose: Optically-stimulated luminescent dosimeters (OSLDs) are increasingly utilized for in vivo dosimetry of complex radiation delivery techniques. Measured doses, however, underestimate planned doses for plans that utilize thermoplastic mask immobilization. The purpose of this work was to quantify the effect of beam obliquity and air gap span between the mask and backscatter material, on measured-to-planned OSLD dose agreement. Methods: A previously-used thermoplastic mask was cut, reheated, and flattened to form a 33 by 9 cm{sup 2} stage approximately 2 mm thick. Two OSLDs were placed on the stage on 5 cm of solid water, covered with 50 by 50 bymore » 5 mm{sup 3} square of bolus, and scanned in the CT simulator. Plans were created with 10 by 10 cm{sup 2} open fields using 4, 6, 10, and 15 MV photon beams at 0°, 45°, and 90° incidence. The isocenter was placed between the OSLDs at 5 mm depth. Dose was calculated and averaged for two OSLDs. Artificial air gaps of 3, 5, 10, and 20 mm were introduced in the plan and dose was recalculated for each energy/angle/gap combination. The experimental setup was replicated on a linear accelerator and air gaps were introduced by “bridging” the thermoplastic stage across solid water plastic of varying thickness. Fields were delivered as planned. OSLDs were read 12–15 hours after irradiation. Results: Measured-toplanned percent differences were constant with increasing gap thickness for 0° and 45° beam angles. At 90° and 0 cm gap, planned dose underestimated measured dose by 10–23% for all energies. This discrepancy decreased linearly to 0% with a 20 mm gap. OSLD signal did not decrease more than 6% for any gap span and energy. Conclusion: With the exception of parallel beam incidence, beam obliquity and air gap thickness did not have a substantial effect on measured-to-planned dose agreement.« less

  7. Complexity of possibly gapped histogram and analysis of histogram.

    PubMed

    Fushing, Hsieh; Roy, Tania

    2018-02-01

    We demonstrate that gaps and distributional patterns embedded within real-valued measurements are inseparable biological and mechanistic information contents of the system. Such patterns are discovered through data-driven possibly gapped histogram, which further leads to the geometry-based analysis of histogram (ANOHT). Constructing a possibly gapped histogram is a complex problem of statistical mechanics due to the ensemble of candidate histograms being captured by a two-layer Ising model. This construction is also a distinctive problem of Information Theory from the perspective of data compression via uniformity. By defining a Hamiltonian (or energy) as a sum of total coding lengths of boundaries and total decoding errors within bins, this issue of computing the minimum energy macroscopic states is surprisingly resolved by applying the hierarchical clustering algorithm. Thus, a possibly gapped histogram corresponds to a macro-state. And then the first phase of ANOHT is developed for simultaneous comparison of multiple treatments, while the second phase of ANOHT is developed based on classical empirical process theory for a tree-geometry that can check the authenticity of branches of the treatment tree. The well-known Iris data are used to illustrate our technical developments. Also, a large baseball pitching dataset and a heavily right-censored divorce data are analysed to showcase the existential gaps and utilities of ANOHT.

  8. Complexity of possibly gapped histogram and analysis of histogram

    PubMed Central

    Roy, Tania

    2018-01-01

    We demonstrate that gaps and distributional patterns embedded within real-valued measurements are inseparable biological and mechanistic information contents of the system. Such patterns are discovered through data-driven possibly gapped histogram, which further leads to the geometry-based analysis of histogram (ANOHT). Constructing a possibly gapped histogram is a complex problem of statistical mechanics due to the ensemble of candidate histograms being captured by a two-layer Ising model. This construction is also a distinctive problem of Information Theory from the perspective of data compression via uniformity. By defining a Hamiltonian (or energy) as a sum of total coding lengths of boundaries and total decoding errors within bins, this issue of computing the minimum energy macroscopic states is surprisingly resolved by applying the hierarchical clustering algorithm. Thus, a possibly gapped histogram corresponds to a macro-state. And then the first phase of ANOHT is developed for simultaneous comparison of multiple treatments, while the second phase of ANOHT is developed based on classical empirical process theory for a tree-geometry that can check the authenticity of branches of the treatment tree. The well-known Iris data are used to illustrate our technical developments. Also, a large baseball pitching dataset and a heavily right-censored divorce data are analysed to showcase the existential gaps and utilities of ANOHT. PMID:29515829

  9. Complexity of possibly gapped histogram and analysis of histogram

    NASA Astrophysics Data System (ADS)

    Fushing, Hsieh; Roy, Tania

    2018-02-01

    We demonstrate that gaps and distributional patterns embedded within real-valued measurements are inseparable biological and mechanistic information contents of the system. Such patterns are discovered through data-driven possibly gapped histogram, which further leads to the geometry-based analysis of histogram (ANOHT). Constructing a possibly gapped histogram is a complex problem of statistical mechanics due to the ensemble of candidate histograms being captured by a two-layer Ising model. This construction is also a distinctive problem of Information Theory from the perspective of data compression via uniformity. By defining a Hamiltonian (or energy) as a sum of total coding lengths of boundaries and total decoding errors within bins, this issue of computing the minimum energy macroscopic states is surprisingly resolved by applying the hierarchical clustering algorithm. Thus, a possibly gapped histogram corresponds to a macro-state. And then the first phase of ANOHT is developed for simultaneous comparison of multiple treatments, while the second phase of ANOHT is developed based on classical empirical process theory for a tree-geometry that can check the authenticity of branches of the treatment tree. The well-known Iris data are used to illustrate our technical developments. Also, a large baseball pitching dataset and a heavily right-censored divorce data are analysed to showcase the existential gaps and utilities of ANOHT.

  10. Direct Band Gap Wurtzite Gallium Phosphide Nanowires

    PubMed Central

    2013-01-01

    The main challenge for light-emitting diodes is to increase the efficiency in the green part of the spectrum. Gallium phosphide (GaP) with the normal cubic crystal structure has an indirect band gap, which severely limits the green emission efficiency. Band structure calculations have predicted a direct band gap for wurtzite GaP. Here, we report the fabrication of GaP nanowires with pure hexagonal crystal structure and demonstrate the direct nature of the band gap. We observe strong photoluminescence at a wavelength of 594 nm with short lifetime, typical for a direct band gap. Furthermore, by incorporation of aluminum or arsenic in the GaP nanowires, the emitted wavelength is tuned across an important range of the visible light spectrum (555–690 nm). This approach of crystal structure engineering enables new pathways to tailor materials properties enhancing the functionality. PMID:23464761

  11. Guidelines for Adolescent Preventive Services: the GAPS in practice.

    PubMed

    Gadomski, Anne; Bennett, Shannon; Young, Margaret; Wissow, Lawrence S

    2003-05-01

    Pre- and post-Guidelines for Adolescent Preventive Services (GAPS) comparison of outcomes gathered via chart audit. A rural hospital-based general pediatric clinic. Adolescents who underwent annual examinations between April 1, 1998, and March 31, 2001. A random sample of 441 medical records was reviewed. Training in the GAPS model and use of the questionnaire began in April 1998. Detection of, discussion of, and referrals for GAPS-related risk behavior. The medical records of 162 younger adolescents (aged 11-15 years) and 279 older adolescents (aged 16-19 years) were audited. Detection of risk behaviors increased from 19% at baseline to 95% with the initial GAPS and 87% with the periodic GAPS. The most prevalent risk factor was having a rifle or gun in the home (younger adolescents, 47% and older adolescents, 39%). The mean number of risk behaviors and health concerns documented was higher in the initial GAPS (4.8 and 1.3, respectively) than in the periodic GAPS (3.8 and 0.7) (P =.01 and.006). The GAPS questionnaires detected lower levels of risk behavior compared with a local Youth Risk Behavior Survey. Controlling for sex, age, and clinician, discussion of psychosocial topics increased during the study period; however, there was considerable variation among clinicians regarding the topics addressed. The GAPS-related referral rate did not change significantly. The GAPS model increases clinicians' detection and discussion of risk behaviors.

  12. Tunable terahertz reflection spectrum based on band gaps of GaP materials excited by ultrasonic

    NASA Astrophysics Data System (ADS)

    Cui, H.; Zhang, X. B.; Wang, X. F.; Wang, G. Q.

    2018-02-01

    Tunable terahertz (THz) reflection spectrum, ranged from 0.2 to 8 THz, in band gaps of gallium phosphide (GaP) materials excited by ultrasonic is investigated in the present paper, in which tunable ultrasonic and terahertz wave collinear transmission in the same direction is postulated. Numerical simulation results show that, under the acousto-optic interaction, band gaps of transverse optical phonon polariton dispersion curves are turned on, this leads to a dis-propagation of polariton in GaP bulk. On the other side, GaP material has less absorption to THz wave according to experimental studies, as indicates that THz wave could be reflected by the band gaps spontaneously. The band gaps width and acousto-optic coupling strength are proportional with ultrasonic frequency and its intensity in ultrasonic frequency range of 0-250 MHz, in which low-frequency branch of transverse optical phonon polariton dispersion curves demonstrate periodicity and folding as well as. With the increase of ultrasonic frequency, frequency of band gap is blue-shifted, and total reflectivity decreased with -1-order and -2-order reflectivity decrease. The band gaps converge to the restrahlen band infinitely with frequency of ultrasonic exceeding over 250 MHz, total reflectivity of which is attenuated. As is show above, reflection of THz wave can be accommodated by regulating the frequency and its intensity of ultrasonic frequency. Relevant technology may be available in tunable THz frequency selection and filtering.

  13. Quantum spill-out in few-nanometer metal gaps: Effect on gap plasmons and reflectance from ultrasharp groove arrays

    NASA Astrophysics Data System (ADS)

    Skjølstrup, Enok J. H.; Søndergaard, Thomas; Pedersen, Thomas G.

    2018-03-01

    Plasmons in ultranarrow metal gaps are highly sensitive to the electron density profile at the metal surfaces. Using a quantum mechanical approach and assuming local response, we study the effects of electron spill-out on gap plasmons and reflectance from ultrasharp metal grooves. We demonstrate that the mode index of ultranarrow gap plasmons converges to the bulk refractive index in the limit of vanishing gap and, thereby, rectify the unphysical divergence found in classical models. Surprisingly, spill-out also significantly increases the plasmonic absorption for few-nanometer gaps and lowers the reflectance from arrays of ultrasharp metal grooves. These findings are explained in terms of enhanced gap plasmon absorption taking place inside the gap 1-2 Å from the walls and delocalization near the groove bottom. Reflectance calculations taking spill-out into account are shown to be in much better agreement with measurements compared with classical models.

  14. Self-amplified photo-induced gap quenching in a correlated electron material

    PubMed Central

    Mathias, S.; Eich, S.; Urbancic, J.; Michael, S.; Carr, A. V.; Emmerich, S.; Stange, A.; Popmintchev, T.; Rohwer, T.; Wiesenmayer, M.; Ruffing, A.; Jakobs, S.; Hellmann, S.; Matyba, P.; Chen, C.; Kipp, L.; Bauer, M.; Kapteyn, H. C.; Schneider, H. C.; Rossnagel, K.; Murnane, M. M.; Aeschlimann, M.

    2016-01-01

    Capturing the dynamic electronic band structure of a correlated material presents a powerful capability for uncovering the complex couplings between the electronic and structural degrees of freedom. When combined with ultrafast laser excitation, new phases of matter can result, since far-from-equilibrium excited states are instantaneously populated. Here, we elucidate a general relation between ultrafast non-equilibrium electron dynamics and the size of the characteristic energy gap in a correlated electron material. We show that carrier multiplication via impact ionization can be one of the most important processes in a gapped material, and that the speed of carrier multiplication critically depends on the size of the energy gap. In the case of the charge-density wave material 1T-TiSe2, our data indicate that carrier multiplication and gap dynamics mutually amplify each other, which explains—on a microscopic level—the extremely fast response of this material to ultrafast optical excitation. PMID:27698341

  15. Self-amplified photo-induced gap quenching in a correlated electron material

    DOE PAGES

    Mathias, S.; Eich, S.; Urbancic, J.; ...

    2016-10-04

    Capturing the dynamic electronic band structure of a correlated material presents a powerful capability for uncovering the complex couplings between the electronic and structural degrees of freedom. When combined with ultrafast laser excitation, new phases of matter can result, since far-from-equilibrium excited states are instantaneously populated. Here, we elucidate a general relation between ultrafast non-equilibrium electron dynamics and the size of the characteristic energy gap in a correlated electron material. Here, we show that carrier multiplication via impact ionization can be one of the most important processes in a gapped material, and that the speed of carrier multiplication critically dependsmore » on the size of the energy gap. In the case of the charge-density wave material 1T-TiSe 2, our data indicate that carrier multiplication and gap dynamics mutually amplify each other, which explains—on a microscopic level—the extremely fast response of this material to ultrafast optical excitation.« less

  16. GAP Analysis Bulletin Number 15

    USGS Publications Warehouse

    Maxwell, Jill; Gergely, Kevin; Aycrigg, Jocelyn; Canonico, Gabrielle; Davidson, Anne; Coffey, Nicole

    2008-01-01

    The Mission of the Gap Analysis Program (GAP) is to promote conservation by providing broad geographic information on biological diversity to resource managers, planners, and policy makers who can use the information to make informed decisions. As part of the National Biological Information Infrastructure (NBII) ?a collaborative program to provide increased access to data and information on the nation?s biological resources--GAP data and analytical tools have been used in hundreds of applications: from basic research to comprehensive state wildlife plans; from educational projects in schools to ecoregional assessments of biodiversity. The challenge: keeping common species common means protecting them BEFORE they become threatened. To do this on a state or regional basis requires key information such as land cover descriptions, predicted distribution maps for native animals, and an assessment of the level of protection currently given to those plants and animals. GAP works cooperatively with Federal, state, and local natural resource professionals and academics to provide this kind of information. GAP activities focus on the creation of state and regional databases and maps that depict patterns of land management, land cover, and biodiversity. These data can be used to identify ?gaps? in conservation--instances where an animal or plant community is not adequately represented on the existing network of conservation lands. GAP is administered through the U.S. Geological Survey. Through building partnerships among disparate groups, GAP hopes to foster the kind of collaboration that is needed to address conservation issues on a broad scale. For more information, contact: John Mosesso National GAP Director 703-648-4079 Kevin Gergely National GAP Operations Manager 208-885-3565

  17. Damping Resonant Current in a Spark-Gap Trigger Circuit to Reduce Noise

    DTIC Science & Technology

    2009-06-01

    DAMPING RESONANT CURRENT IN A SPARK- GAP TRIGGER CIRCUIT TO REDUCE NOISE E. L. Ruden Air Force Research Laboratory, Directed Energy Directorate, AFRL...REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Damping Resonant Current In A Spark- Gap Trigger Circuit To Reduce Noise 5a...thereby triggering 2 after delay 0, is 1. Each of the two rail- gaps (represented by 2) is trig- gered to close after the spark- gap (1) in the

  18. New insights into the opening band gap of graphene oxides

    NASA Astrophysics Data System (ADS)

    Tran, Ngoc Thanh Thuy; Lin, Shih-Yang; Lin, Ming-Fa

    Electronic properties of oxygen absorbed few-layer graphenes are investigated using first-principle calculations. They are very sensitive to the changes in the oxygen concentration, number of graphene layer, and stacking configuration. The feature-rich band structures exhibit the destruction or distortion of the Dirac cone, opening of band gap, anisotropic energy dispersions, O- and (C,O)-dominated energy dispersions, and extra critical points. The band decomposed charge distributions reveal the π-bonding dominated energy gap. The orbital-projected density of states (DOS) have many special structures mainly coming from a composite energy band, the parabolic and partially flat ones. The DOS and spatial charge distributions clearly indicate the critical orbital hybridizations in O-O, C-O and C-C bonds, being responsible for the diversified properties. All of the few-layer graphene oxides are semi-metals except for the semiconducting monolayer ones.

  19. Caring Closes the Language-Learning Gap

    ERIC Educational Resources Information Center

    Borba, Mary

    2009-01-01

    The gap in academic achievement between English speakers and English learners continues to concern educators, parents, and legislators. Rising expectations for literacy and the increasing number of students from diverse backgrounds contribute to this achievement gap. In this article, the author discusses a variety of strategies for reaching out to…

  20. Determination of shift in energy of band edges and band gap of ZnSe spherical quantum dot

    NASA Astrophysics Data System (ADS)

    Siboh, Dutem; Kalita, Pradip Kumar; Sarma, Jayanta Kumar; Nath, Nayan Mani

    2018-04-01

    We have determined the quantum confinement induced shifts in energy of band edges and band gap with respect to size of ZnSe spherical quantum dot employing an effective confinement potential model developed in our earlier communication "arXiv:1705.10343". We have also performed phenomenological analysis of our theoretical results in comparison with available experimental data and observe a very good agreement in this regard. Phenomenological success achieved in this regard confirms validity of the confining potential model as well as signifies the capability and applicability of the ansatz for the effective confining potential to have reasonable information in the study of real nano-structured spherical systems.

  1. Remote modulation of singlet-triplet gaps in carbenes

    NASA Astrophysics Data System (ADS)

    Alkorta, Ibon; Montero-Campillo, M. Merced; Elguero, José

    2018-02-01

    The modulation of the singlet-triplet (S/T) gap of phenyl-carbene derivatives by hydrogen bond formation has been studied using the G4(MP2) computational method. The complexation of the aromatic ring substituents (-NH2, -OH, -PH2, -SH) in meta- and para-positions with water and the protonation or deprotonation of such groups have a remarkable influence on the S/T gaps, reaching S/T gap variations from 25.7 to 93.7 kJ mol-1. This variation is linearly related to the binding energy difference of the S/T configurations. Importantly, the triplet and singlet electronic configurations are systematically favored in the protonated and deprotonated forms, respectively, in all cases.

  2. Effects of electrode gap and electric current on chlorine generation of electrolyzed deep ocean water.

    PubMed

    Hsu, Guoo-Shyng Wang; Hsu, Shun-Yao

    2018-04-01

    Electrolyzed water is a sustainable disinfectant, which can comply with food safety regulations and is environmental friendly. A two-factor central composite design was adopted for studying the effects of electrode gap and electric current on chlorine generation efficiency of electrolyzed deep ocean water. Deep ocean water was electrolyzed in a glass electrolyzing cell equipped with platinum-plated titanium anode and cathode in a constant-current operation mode. Results showed that current density, chlorine concentration, and electrolyte temperature increased with electric current, while electric efficiency decreased with electric current and electrode gap. An electrode gap of less than 11.7 mm, and a low electric current appeared to be a more energy efficient design and operation condition for the electrolysis system. Copyright © 2017. Published by Elsevier B.V.

  3. Increasing nuclear power at liberalised energy markets- case Finland

    NASA Astrophysics Data System (ADS)

    Syri, S.; Kurki-Suonio, T.; Satka, V.

    2012-10-01

    Several Finnish projections for future electricity demand and the need for peak load capacity indicate a demand growth of about 2 GW from the present to the year 2030. The retirement of existing fossil fuel plants and old nuclear power plants will cause increased net import needs during 2020's, even when assuming additional energy efficiency measures and the commissioning of two new nuclear power plants recently approved by the Finnish Parliament. By the year 2030, the need for additional new capacity will be about 6 GW. The increased dependence on import is in contradiction with the official Government targets. This situation is not unique to Finland, but rather is likely to be the case in many other European countries as well. Both the energy company Fortum and energy-intensive industry in Finland see nuclear energy as a viable future generation technology. We describe the « Mankala » concept which is successfully used to build new nuclear capacity at liberalised electricity market in Finland.

  4. The unintended energy impacts of increased nitrate contamination from biofuels production.

    PubMed

    Twomey, Kelly M; Stillwell, Ashlynn S; Webber, Michael E

    2010-01-01

    Increases in corn cultivation for biofuels production, due to the Energy Independence and Security Act of 2007, are likely to lead to increases in nitrate concentrations in both surface and groundwater resources in the United States. These increases might trigger the requirement for additional energy consumption for water treatment to remove the nitrates. While these increasing concentrations of nitrate might pose a human health concern, most water resources were found to be within current maximum contaminant level (MCL) limits of 10 mg L(-1) NO(3)-N. When water resources exceed this MCL, energy-intensive drinking water treatment is required to reduce nitrate levels below 10 mg L(-1). Based on prior estimates of water supplies currently exceeding the nitrate MCL, we calculate that advanced drinking water treatment might require an additional 2360 million kWh annually (for nitrate affected areas only)--a 2100% increase in energy requirements for water treatment in those same areas--to mitigate nitrate contamination and meet the MCL requirement. We predict that projected increases in nitrate contamination in water may impact the energy consumed in the water treatment sector, because of the convergence of several related trends: (1) increasing cornstarch-based ethanol production, (2) increasing nutrient loading in surface water and groundwater resources as a consequence of increased corn-based ethanol production, (3) additional drinking water sources that exceed the MCL for nitrate, and (4) potentially more stringent drinking water standards for nitrate.

  5. GaP betavoltaic cells as a power source

    NASA Technical Reports Server (NTRS)

    Pool, F. S.; Stella, Paul M.; Anspaugh, B.

    1991-01-01

    Maximum power output for the GaP cells of this study was found to be on the order of 1 microW. This resulted from exposure to 200 and 40 KeV electrons at a flux of 2 x 10(exp 9) electrons/sq cm/s, equivalent to a 54 mCurie source. The efficiencies of the cells ranged from 5 to 9 percent for 200 and 40 KeV electrons respectively. The lower efficiency at higher energy is due to a substantial fraction of energy deposition in the substrate, further than a diffusion length from the depletion region of the cell. Radiation damage was clearly observed in GaP after exposure to 200 KeV electrons at a fluence of 2 x 10(exp 12) electrons/sq cm. No discernable damage was observed after exposure to 40 KeV electrons at the same fluence. Analysis indicates that a GaP betavoltaic system would not be practical if limited to low energy beta sources. The power available would be too low even in the ideal case. By utilizing high activity beta sources, such as Sr-90/Y-90, it may be possible to achieve performance that could be suitable for some space power applications. However, to utilize such a source the problem of radiation damage in the beta cell material must be overcome.

  6. Flexion and extension gaps created by the navigation-assisted gap technique show small acceptable mismatches and close mutual correlations.

    PubMed

    Lee, Dae-Hee; Shin, Young-Soo; Jeon, Jin-Ho; Suh, Dong-Won; Han, Seung-Beom

    2014-08-01

    The aim of this study was to investigate the mechanism underlying the development of gap differences in total knee arthroplasty using the navigation-assisted gap technique and to assess whether these gap differences have statistical significance. Ninety-two patients (105 knees) implanted with cruciate-retaining prostheses using the navigation-assisted gap balancing technique were prospectively analysed. Medial extension and flexion gaps and lateral extension and flexion gaps were measured at full extension and at 90° of flexion. Repeated measures analysis of variance was used to compare the mean values of these four gaps. The correlation coefficient between each pair of gaps was assessed using Pearson's correlation analysis. Mean intra-operative medial and lateral extension gaps were 20.6 ± 2.1 and 21.7 ± 2.2 mm, respectively, and mean intra-operative medial and lateral flexion gaps were 21.6 ± 2.7 and 22.1 ± 2.5 mm, respectively. The pairs of gaps differed significantly (P < 0.05 each), except for the difference between the medial flexion and lateral extension gaps (n.s.). All four gaps were significantly correlated with each other, with the highest correlation between the medial and lateral flexion gaps (r = 0.890, P < 0.001) and the lowest between the medial flexion and lateral extension gaps (r = 0.701, P < 0.001). Medial and lateral flexion and extension gaps created using the navigation-assisted gap technique differed significantly, although the differences between them were <2 mm, and the gaps were closely correlated. These narrow ranges of statistically acceptable gap differences and the strong correlations between gaps should be considered by surgeons, as should the risks of soft tissue over-release or unintentional increases in extension or flexion gap after preparation of the other gap.

  7. The disengagement of visual attention in the gap paradigm across adolescence.

    PubMed

    Van der Stigchel, S; Hessels, R S; van Elst, J C; Kemner, C

    2017-12-01

    Attentional disengagement is important for successful interaction with our environment. The efficiency of attentional disengagement is commonly assessed using the gap paradigm. There is, however, a sharp contrast between the number of studies applying the gap paradigm to clinical populations and the knowledge about the underlying developmental trajectory of the gap effect. The aim of the present study was, therefore, to investigate attentional disengagement in a group of children aged 9-15. Besides the typically deployed gap and the overlap conditions, we also added a baseline condition in which the fixation point was removed at the moment that the target appeared. This allowed us to reveal the appropriate experimental conditions to unravel possible developmental differences. Correlational analyses showed that the size of the gap effect became smaller with increasing age, but only for the difference between the gap and the overlap conditions. This shows that there is a gradual increase in the capacity to disengage visual attention with increasing age, but that this effect only becomes apparent when the gap and the overlap conditions are compared. The gradual decrease of the gap effect with increasing age provides additional evidence that the attentional system becomes more efficient with increasing age and that this is a gradual process.

  8. High efficiency GaP power conversion for Betavoltaic applications

    NASA Astrophysics Data System (ADS)

    Sims, Paul E.; Dinetta, Louis C.; Barnett, Allen M.

    1994-09-01

    AstroPower is developing a gallium phosphide (GaP) based energy converter optimized for radio luminescent light-based power supplies. A 'two-step' or 'indirect' process is used where a phosphor is excited by radioactive decay products to produce light that is then converted to electricity by a photovoltaic energy converter. This indirect conversion of beta-radiation to electrical energy can be realized by applying recent developments in tritium based radio luminescent (RL) light sources in combination with the high conversion efficiencies that can be achieved under low illumination with low leakage, gallium phosphide based devices. This tritium to light approach is inherently safer than battery designs that incorporate high activity radionuclides because the beta particles emitted by tritium are of low average energy and are easily stopped by a thin layer of glass. GaP layers were grown by liquid phase epitaxy and p/n junction devices were fabricated and characterized for low light intensity power conversion. AstroPower has demonstrated the feasibility of the GaP based energy converter with the following key results: 23.54 percent conversion efficiency under 968 muW/sq cm 440 nm blue light, 14.59 percent conversion efficiency for 2.85 muW/sq cm 440 nm blue light, and fabrication of working 5 V array. We have also determined that at least 20 muW/sq cm optical power is available for betavoltaic power systems. Successful developments of this device is an enabling technology for low volume, safe, high voltage, milliwatt power supplies with service lifetimes in excess of 12 years.

  9. High efficiency GaP power conversion for Betavoltaic applications

    NASA Technical Reports Server (NTRS)

    Sims, Paul E.; Dinetta, Louis C.; Barnett, Allen M.

    1994-01-01

    AstroPower is developing a gallium phosphide (GaP) based energy converter optimized for radio luminescent light-based power supplies. A 'two-step' or 'indirect' process is used where a phosphor is excited by radioactive decay products to produce light that is then converted to electricity by a photovoltaic energy converter. This indirect conversion of beta-radiation to electrical energy can be realized by applying recent developments in tritium based radio luminescent (RL) light sources in combination with the high conversion efficiencies that can be achieved under low illumination with low leakage, gallium phosphide based devices. This tritium to light approach is inherently safer than battery designs that incorporate high activity radionuclides because the beta particles emitted by tritium are of low average energy and are easily stopped by a thin layer of glass. GaP layers were grown by liquid phase epitaxy and p/n junction devices were fabricated and characterized for low light intensity power conversion. AstroPower has demonstrated the feasibility of the GaP based energy converter with the following key results: 23.54 percent conversion efficiency under 968 muW/sq cm 440 nm blue light, 14.59 percent conversion efficiency for 2.85 muW/sq cm 440 nm blue light, and fabrication of working 5 V array. We have also determined that at least 20 muW/sq cm optical power is available for betavoltaic power systems. Successful developments of this device is an enabling technology for low volume, safe, high voltage, milliwatt power supplies with service lifetimes in excess of 12 years.

  10. Effects of quantum confinement and shape on band gap of core/shell quantum dots and nanowires

    NASA Astrophysics Data System (ADS)

    Gao, Faming

    2011-05-01

    A quantum confinement model for nanocrystals developed is extended to study for the optical gap shifts in core/shell quantum dots and nanowires. The chemical bond properties and gap shifts in the InP/ZnS, CdSe/CdS, CdSe/ZnS, and CdTe/ZnS core/shell quantum dots are calculated in detail. The calculated band gaps are in excellent agreement with experimental values. The effects of structural taping and twinning on quantum confinement of InP and Si nanowires are elucidated. It is found theoretically that a competition between the positive Kubo energy-gap shift and the negative surface energy shift plays the crucial role in the optical gaps of these nanosystems.

  11. Field-Induced-Gap Infrared Detectors

    NASA Technical Reports Server (NTRS)

    Elliott, C. Thomas

    1990-01-01

    Semimetals become semiconductors under applied magnetic fields. New detectors require less cooling equipment because they operate at temperatures higher than liquid-helium temperatures required by extrinsic-semiconductor detectors. Magnetic fields for detectors provided by electromagnets based on recently-discovered high-transition-temperature superconducting materials. Detector material has to be semiconductor, in which photon absorbed by exciting electron/hole pair across gap Eg of forbidden energies between valence and conduction energy bands. Magnetic- and compositional-tuning effects combined to obtain two-absorber detector having narrow passband. By variation of applied magnetic field, passband swept through spectrum of interest.

  12. Disappearance of nodal gap across the insulator-superconductor transition in a copper-oxide superconductor.

    PubMed

    Peng, Yingying; Meng, Jianqiao; Mou, Daixiang; He, Junfeng; Zhao, Lin; Wu, Yue; Liu, Guodong; Dong, Xiaoli; He, Shaolong; Zhang, Jun; Wang, Xiaoyang; Peng, Qinjun; Wang, Zhimin; Zhang, Shenjin; Yang, Feng; Chen, Chuangtian; Xu, Zuyan; Lee, T K; Zhou, X J

    2013-01-01

    The parent compound of the copper-oxide high-temperature superconductors is a Mott insulator. Superconductivity is realized by doping an appropriate amount of charge carriers. How a Mott insulator transforms into a superconductor is crucial in understanding the unusual physical properties of high-temperature superconductors and the superconductivity mechanism. Here we report high-resolution angle-resolved photoemission measurement on heavily underdoped Bi₂Sr₂-xLaxCuO(₆+δ) system. The electronic structure of the lightly doped samples exhibit a number of characteristics: existence of an energy gap along the nodal direction, d-wave-like anisotropic energy gap along the underlying Fermi surface, and coexistence of a coherence peak and a broad hump in the photoemission spectra. Our results reveal a clear insulator-superconductor transition at a critical doping level of ~0.10 where the nodal energy gap approaches zero, the three-dimensional antiferromagnetic order disappears, and superconductivity starts to emerge. These observations clearly signal a close connection between the nodal gap, antiferromagnetism and superconductivity.

  13. Closing yield gaps: perils and possibilities for biodiversity conservation.

    PubMed

    Phalan, Ben; Green, Rhys; Balmford, Andrew

    2014-04-05

    Increasing agricultural productivity to 'close yield gaps' creates both perils and possibilities for biodiversity conservation. Yield increases often have negative impacts on species within farmland, but at the same time could potentially make it more feasible to minimize further cropland expansion into natural habitats. We combine global data on yield gaps, projected future production of maize, rice and wheat, the distributions of birds and their estimated sensitivity to changes in crop yields to map where it might be most beneficial for bird conservation to close yield gaps as part of a land-sparing strategy, and where doing so might be most damaging. Closing yield gaps to attainable levels to meet projected demand in 2050 could potentially help spare an area equivalent to that of the Indian subcontinent. Increasing yields this much on existing farmland would inevitably reduce its biodiversity, and therefore we advocate efforts both to constrain further increases in global food demand, and to identify the least harmful ways of increasing yields. The land-sparing potential of closing yield gaps will not be realized without specific mechanisms to link yield increases to habitat protection (and restoration), and therefore we suggest that conservationists, farmers, crop scientists and policy-makers collaborate to explore promising mechanisms.

  14. Detection thresholds for gaps, overlaps, and no-gap-no-overlaps.

    PubMed

    Heldner, Mattias

    2011-07-01

    Detection thresholds for gaps and overlaps, that is acoustic and perceived silences and stretches of overlapping speech in speaker changes, were determined. Subliminal gaps and overlaps were categorized as no-gap-no-overlaps. The established gap and overlap detection thresholds both corresponded to the duration of a long vowel, or about 120 ms. These detection thresholds are valuable for mapping the perceptual speaker change categories gaps, overlaps, and no-gap-no-overlaps into the acoustic domain. Furthermore, the detection thresholds allow generation and understanding of gaps, overlaps, and no-gap-no-overlaps in human-like spoken dialogue systems. © 2011 Acoustical Society of America

  15. Playing active video games increases energy expenditure in children.

    PubMed

    Graf, Diana L; Pratt, Lauren V; Hester, Casey N; Short, Kevin R

    2009-08-01

    To compare energy expenditure rates in children playing the physically active video games, Dance Dance Revolution (DDR) and Nintendo's Wii Sports in relation to treadmill walking. Energy expenditure, heart rate, step rate, and perceived exertion were measured in 14 boys and 9 girls (ages 10-13 years; BMI at 3-98th percentile for age and gender) while watching television at rest, playing DDR at 2 skill levels, playing Wii bowling and boxing, and walking at 2.6, 4.2, and 5.7 km/h. Arterial elasticity was measured at rest and immediately after gaming. Compared with watching television, energy expenditure while gaming or walking increased 2- to 3-fold. Similarly, high rates of energy expenditure, heart rate, and perceived exertion were elicited from playing Wii boxing, DDR level 2, or walking at 5.7 km/h. This occurred despite variations in step rate among activities, reflecting greater use of upper body during Wii play (lowest step rate) than during walking (highest step rate) or DDR play. Wii bowling and beginner level DDR elicited a 2-fold increase in energy expenditure compared to television watching. Large-artery elasticity declined immediately after both DDR and Wii. The change was inversely related to the increment in energy expenditure above rest achieved during the activity. Energy expenditure during active video game play is comparable to moderate-intensity walking. Thus, for children who spend considerable time playing electronic screen games for entertainment, physically active games seem to be a safe, fun, and valuable means of promoting energy expenditure.

  16. Words vs. deeds: Americans' energy concerns and implementation of green energy policies

    NASA Astrophysics Data System (ADS)

    Brinker, Garrett C.

    As the effects of climate change become increasingly clear, nations, international organizations, and corporations are working together to help mitigate these negative effects before they become irreversible. The United States, as the world's largest emitter per capita, has a responsibility to take quick and decisive action to decrease carbon emissions. And while an overwhelming majority of Americans believe that green energy policies are the right step forward, few have taken meaningful steps to actually implement these policies. Green and energy efficient technologies such as hybrid and electric cars, smart meters, and solar panels---technologies that would reduce our carbon footprint---are currently purchased or used by very few households. There is a clear gap between our words and deeds. Using the University of Texas at Austin Energy Poll dataset, this paper examines this gap and analyzes how income may influence what people say, versus how they act, seeking to better understand how income influences peoples' energy behaviors. Previous literature suggests that income has proven to be an inconsistent measure of concern for energy use. Through two OLS models, this paper finds that income is negatively correlated with Americans' concern for energy usage, while finding that there is a positive correlation between income and Americans' implementation of energy efficient technologies. Further, there is a nonlinear relationship between income groups and how Americans both think about their energy usage and actually implement more energy efficient measures.

  17. Torsional wave band gap properties in a circular plate of a two-dimensional generalized phononic crystal

    NASA Astrophysics Data System (ADS)

    Zhao, Lei; Shu, Haisheng; Liang, Shanjun; Shi, Xiaona; An, Shuowei; Ren, Wanyue; Zhu, Jie

    2018-05-01

    The torsional wave band gap properties of a two-dimensional generalized phononic crystal (GPC) are investigated in this paper. The GPC structure considered is consisted of two different materials being arranged with radial and circumferential periodicities simultaneously. Based on the viewpoint of energy distribution and the finite element method, the power flow, energy density, sound intensity vector together with the stress field of the structure excited by torsional load are numerically calculated and discussed. Our results show that, the band gap of Bragg type exists in these two-dimensional composite structures, and the band gap range is mainly determined by radial periodicity while the circumferential periodicity would result in some transmission peaks within the band gap. These peaks are mainly produced by two different mechanisms, the energy leakage occurred in circumferential channels and the excitation of the local eigenmodes of certain scatterers. These results may be useful in torsional vibration control for various rotational parts and components, and in the application of energy harvesting, etc.

  18. 30 CFR 285.652 - How long do I have to conduct activities under an approved GAP?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... an approved GAP? 285.652 Section 285.652 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT... FACILITIES ON THE OUTER CONTINENTAL SHELF Plans and Information Requirements Activities Under An Approved Gap § 285.652 How long do I have to conduct activities under an approved GAP? After MMS approves your GAP...

  19. Industrial Assessment Centers - Small Manufacturers Reduce Energy & Increase Productivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Since 1976, the Industrial Assessment Centers (IACs), administered by the US Department of Energy, have supported small and medium-sized American manufacturers to reduce energy use and increase their productivity and competitiveness. The 24 IACs, located at premier engineering universities around the country (see below), send faculty and engineering students to local small and medium-sized manufacturers to provide no-cost assessments of energy use, process performance and waste and water flows. Under the direction of experienced professors, IAC engineering students analyze the manufacturer’s facilities, energy bills and energy, waste and water systems, including compressed air, motors/pumps, lighting, process heat and steam. Themore » IACs then follow up with written energy-saving and productivity improvement recommendations, with estimates of related costs and payback periods.« less

  20. Theoretical approach to resonant inelastic x-ray scattering in iron-based superconductors at the energy scale of the superconducting gap

    PubMed Central

    Marra, Pasquale; van den Brink, Jeroen; Sykora, Steffen

    2016-01-01

    We develop a phenomenological theory to predict the characteristic features of the momentum-dependent scattering amplitude in resonant inelastic x-ray scattering (RIXS) at the energy scale of the superconducting gap in iron-based super-conductors. Taking into account all relevant orbital states as well as their specific content along the Fermi surface we evaluate the charge and spin dynamical structure factors for the compounds LaOFeAs and LiFeAs, based on tight-binding models which are fully consistent with recent angle-resolved photoemission spectroscopy (ARPES) data. We find a characteristic intensity redistribution between charge and spin dynamical structure factors which discriminates between sign-reversing and sign-preserving quasiparticle excitations. Consequently, our results show that RIXS spectra can distinguish between s± and s++ wave gap functions in the singlet pairing case. In addition, we find that an analogous intensity redistribution at small momenta can reveal the presence of a chiral p-wave triplet pairing. PMID:27151253

  1. Aerodynamic and acoustic effects of ventricular gap.

    PubMed

    Alipour, Fariborz; Karnell, Michael

    2014-03-01

    Supraglottic compression is frequently observed in individuals with dysphonia. It is commonly interpreted as an indication of excessive circumlaryngeal muscular tension and ventricular medialization. The purpose of this study was to describe the aerodynamic and acoustic impact of varying ventricular medialization in a canine model. Subglottal air pressure, glottal airflow, electroglottograph, acoustic signals, and high-speed video images were recorded in seven excised canine larynges mounted in vitro for laryngeal vibratory experimentation. The degree of gap between the ventricular folds was adjusted and measured using sutures and weights. Data were recorded during phonation when the ventricular gap was narrow, neutral, and large. Glottal resistance was estimated by measures of subglottal pressure and glottal flow. Glottal resistance increased systematically as ventricular gap became smaller. Wide ventricular gaps were associated with increases in fundamental frequency and decreases in glottal resistance. Sound pressure level did not appear to be impacted by the adjustments in ventricular gap used in this research. Increases in supraglottic compression and associated reduced ventricular width may be observed in a variety of disorders that affect voice quality. Ventricular compression may interact with true vocal fold posture and vibration resulting in predictable changes in aerodynamic, physiological, acoustic, and perceptual measures of phonation. The data from this report supports the theory that narrow ventricular gaps may be associated with disordered phonation. In vitro and in vivo human data are needed to further test this association. Copyright © 2014 The Voice Foundation. Published by Mosby, Inc. All rights reserved.

  2. Forward energy flow, central charged-particle multiplicities, and pseudorapidity gaps in W and Z boson events from pp collisions at $$\\sqrt{s}= 7$$ TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatrchyan, Serguei; et al.

    2012-01-01

    A study of forward energy flow and central charged-particle multiplicity in events with W and Z bosons decaying into leptons is presented. The analysis uses a sample of 7 TeV pp collisions, corresponding to an integrated luminosity of 36 inverse picobarns, recorded by the CMS experiment at the LHC. The observed forward energy depositions, their correlations, and the central charged-particle multiplicities are not well described by the available non-diffractive soft-hadron production models. A study of about 300 events with no significant energy deposited in one of the forward calorimeters, corresponding to a pseudorapidity gap of at least 1.9 units, ismore » also presented. An indication for a diffractive component in these events comes from the observation that the majority of the charged leptons from the (W/Z) decays are found in the hemisphere opposite to the gap. When fitting the signed lepton pseudorapidity distribution of these events with predicted distributions from an admixture of diffractive (POMPYT) and non-diffractive (PYTHIA) Monte Carlo simulations, the diffractive component is determined to be (50.0 +/- 9.3 (stat.) +/- 5.2 (syst.))%.« less

  3. Sizable band gap in organometallic topological insulator

    NASA Astrophysics Data System (ADS)

    Derakhshan, V.; Ketabi, S. A.

    2017-01-01

    Based on first principle calculation when Ceperley-Alder and Perdew-Burke-Ernzerh type exchange-correlation energy functional were adopted to LSDA and GGA calculation, electronic properties of organometallic honeycomb lattice as a two-dimensional topological insulator was calculated. In the presence of spin-orbit interaction bulk band gap of organometallic lattice with heavy metals such as Au, Hg, Pt and Tl atoms were investigated. Our results show that the organometallic topological insulator which is made of Mercury atom shows the wide bulk band gap of about ∼120 meV. Moreover, by fitting the conduction and valence bands to the band-structure which are produced by Density Functional Theory, spin-orbit interaction parameters were extracted. Based on calculated parameters, gapless edge states within bulk insulating gap are indeed found for finite width strip of two-dimensional organometallic topological insulators.

  4. Spark gaps synchronization using electrical trigger pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agarwal, Ritu; Saroj, P.C.; Sharma, Archana

    In pulse power systems, it is required to have synchronized triggering of two or more high voltage spark gaps capable of switching large currents, using electrical trigger pulses. This paper intends to study the synchronization of spark gaps using electrical trigger. The trigger generator consists of dc supply, IGBT switch and driver circuit which generates 8kV, 400ns (FWHM) pulses. The experiment was carried out using two 0.15uF/50kV energy storage capacitors charged to 12kV and discharged through stainless steel spark gaps of diameter 9 mm across 10 ohm non inductive load. The initial experiment shows that synchronization has been achieved withmore » jitter of 50 to 100ns. Further studies carried out to reduce the jitter time by varying various electrical parameters will be presented. (author)« less

  5. 30 CFR 285.642 - How do I submit my GAP?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF... submit information on any project easement as part of your original GAP submission or as a revision to...

  6. Chiral zero energy modes in two-dimensional disordered Dirac semimetals

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Yu, Yan; Wu, Hai-Bin; Zhang, Yan-Yang; Liu, Jian-Jun; Li, Shu-Shen

    2018-04-01

    The vacancy-induced chiral zero energy modes (CZEMs) of chiral-unitary-class (AIII) and chiral-symplectic-class (CII) two-dimensional (2 D ) disordered Dirac semimetals realized on a square bipartite lattice are investigated numerically by using the Kubo-Greenwood formula with the kernel polynomial method. The results show that, for both systems, the CZEMs exhibit the critical delocalization. The CZEM conductivity remains a robust constant (i.e., σ CZEM≈1.05 e2/h ), which is insensitive to the sample sizes, the vacancy concentrations, and the numbers of moments of Chebyshev polynomials, i.e., the dephasing strength. For both kinds of chiral systems, the CZEM conductivities are almost identical. However, they are not equal to that of graphene (i.e., 4 e2/π h ), which belongs to the chiral orthogonal class (BDI) semimetal on a 2 D hexagonal bipartite lattice. In addition, for the case that the vacancy concentrations are different in the two sublattices, the CZEM conductivity vanishes, and thus both systems exhibit localization at the Dirac point. Moreover, a band gap and a mobility gap open around zero energy. The widths of the energy gaps and mobility gaps are increasing with larger vacancy concentration difference. The width of the mobility gap is greater than that of the band gap, and a δ -function-like peak of density of states emerges at the Dirac point within the band gap, implying the existence of numerous localized states.

  7. Dynamic traversal of high bumps and large gaps by a small legged robot

    NASA Astrophysics Data System (ADS)

    Gart, Sean; Winey, Nastasia; de La Tijera Obert, Rafael; Li, Chen

    Small animals encounter and negotiate diverse obstacles comparable in size or larger than themselves. In recent experiments, we found that cockroaches can dynamically traverse bumps up to 4 times hip height and gaps up to 1 body length. To better understand the physics that governs these locomotor transitions, we studied a small six-legged robot negotiating high bumps and large gaps and compared it to animal observations. We found that the robot was able to traverse bumps as large as 1 hip height and gaps as wide as 0.5 body length. For the bump, the robot often climbed over to traverse when initial body yaw was small, but was often deflected laterally and failed to traverse when initial body yaw was large. A simple locomotion energy landscape model explained these observations. For the gap, traversal probability decreased with gap width, which was well explained by a simple Lagrangian model of a forward-moving rigid body falling over the gap edge. For both the bump and the gap, animal performance far exceeded that of the robot, likely due to their relatively higher running speeds and larger rotational oscillations prior to and during obstacle traversal. Differences between animal and robot obstacle negotiation behaviors revealed that animals used active strategies to overcome potential energy barriers.

  8. Aging and the 4 kHz Air-bone Gap

    PubMed Central

    Nondahl, David M.; Tweed, Ted S.; Cruickshanks, Karen J.; Wiley, Terry L.; Dalton, Dayna S.

    2011-01-01

    Purpose To assess age- and gender-related patterns in the prevalence and 10-year incidence of 4 kHz air-bone gaps, and associated factors. Method Data were obtained as part of the longitudinal, population-based Epidemiology of Hearing Loss Study. An air-bone gap at 4 kHz was defined as an air-conduction threshold ≥15 dB higher than the bone-conduction threshold in the right ear. Results Among 3,553 participants aged 48 to 92 years at baseline (1993-1995), 3.4% had a 4 kHz air-bone gap in the right ear. The prevalence increased with age. Among the 120 participants with an air-bone gap, 60.0% did not have a flat tympanogram or an air-bone gap at .5 kHz. Ten years later we assessed 2093 participants who did not have a 4 kHz air-bone gap at baseline; 9.2% had developed a 4 kHz air-bone gap in the right ear. The incidence increased with age. Among the 192 participants who had developed an air-bone gap, 60.9% did not have a flat tympanogram or air-bone gaps at other frequencies. Conclusions These results suggest that a finding of a 4 kHz air-bone gap may reflect a combination of aging and other factors and not necessarily exclusively abnormal middle ear function. PMID:22232408

  9. Photoinduced electron transfer in covalent ruthenium-anthraquinone dyads: relative importance of driving-force, solvent polarity, and donor-bridge energy gap.

    PubMed

    Hankache, Jihane; Wenger, Oliver S

    2012-02-28

    Four rigid rod-like molecules comprised of a Ru(bpy)(3)(2+) (bpy = 2,2'-bipyridine) photosensitizer, a 9,10-anthraquinone electron acceptor, and a molecular bridge connecting the two redox partners were synthesized and investigated by optical spectroscopic and electrochemical means. An attempt was made to assess the relative importance of driving-force, solvent polarity, and bridge variation on the rates of photoinduced electron transfer in these molecules. Expectedly, introduction of tert-butyl substituents in the bipyridine ligands of the ruthenium complex and a change in solvent from dichloromethane to acetonitrile lead to a significant acceleration of charge transfer rates. In dichloromethane, photoinduced electron transfer is not competitive with the inherent excited-state deactivation processes of the photosensitizer. In acetonitrile, an increase in driving-force by 0.2 eV through attachment of tert-butyl substituents to the bpy ancillary ligands causes an increase in electron transfer rates by an order of magnitude. Replacement of a p-xylene bridge by a p-dimethoxybenzene spacer entails an acceleration of charge transfer rates by a factor of 3.5. In the dyads from this study, the relative order of importance of individual influences on electron transfer rates is therefore as follows: solvent polarity ≥ driving-force > donor-bridge energy gap.

  10. Solar collector apparatus having increased energy rejection during stagnation

    DOEpatents

    Moore, S.W.

    1981-01-16

    An active solar collector having increased energy rejection during stagnation is disclosed. The collector's glazing is brought into substantial contact with absorber during stagnation to increase re-emittance and thereby to maintan lower temperatures when the collector is not in operation.

  11. Quantifying yield gaps in wheat production in Russia

    NASA Astrophysics Data System (ADS)

    Schierhorn, Florian; Faramarzi, Monireh; Prishchepov, Alexander V.; Koch, Friedrich J.; Müller, Daniel

    2014-08-01

    Crop yields must increase substantially to meet the increasing demands for agricultural products. Crop yield increases are particularly important for Russia because low crop yields prevail across Russia’s widespread and fertile land resources. However, reliable data are lacking regarding the spatial distribution of potential yields in Russia, which can be used to determine yield gaps. We used a crop growth model to determine the yield potentials and yield gaps of winter and spring wheat at the provincial level across European Russia. We modeled the annual yield potentials from 1995 to 2006 with optimal nitrogen supplies for both rainfed and irrigated conditions. Overall, the results suggest yield gaps of 1.51-2.10 t ha-1, or 44-52% of the yield potential under rainfed conditions. Under irrigated conditions, yield gaps of 3.14-3.30 t ha-1, or 62-63% of the yield potential, were observed. However, recurring droughts cause large fluctuations in yield potentials under rainfed conditions, even when the nitrogen supply is optimal, particularly in the highly fertile black soil areas of southern European Russia. The highest yield gaps (up to 4 t ha-1) under irrigated conditions were detected in the steppe areas in southeastern European Russia along the border of Kazakhstan. Improving the nutrient and water supply and using crop breeds that are adapted to the frequent drought conditions are important for reducing yield gaps in European Russia. Our regional assessment helps inform policy and agricultural investors and prioritize research that aims to increase crop production in this important region for global agricultural markets.

  12. The role of confined collagen geometry in decreasing nucleation energy barriers to intrafibrillar mineralization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Doyoon; Lee, Byeongdu; Thomopoulos, Stavros

    Mineralization of collagen is critical for the mechanical functions of bones and teeth. Calcium phosphate nucleation in collagenous structures follows distinctly different patterns in highly confined gap regions (nanoscale confinement) than in less confined extrafibrillar spaces (microscale confinement). Although the mechanism(s) driving these differences are still largely unknown, differences in the free energy for nucleation may explain these two mineralization behaviors. Here, we report on experimentally obtained nucleation energy barriers to intra- and extrafibrillar mineralization, using in situ X-ray scattering observations and classical nucleation theory. Polyaspartic acid, an extrafibrillar nucleation inhibitor, increases interfacial energies between nuclei and mineralization fluids. Inmore » contrast, the confined gap spaces inside collagen fibrils lower the energy barrier by reducing the reactive surface area of nuclei, decreasing the surface energy penalty. The confined gap geometry, therefore, guides the two-dimensional morphology and structure of bioapatite and changes the nucleation pathway by reducing the total energy barrier.« less

  13. The role of confined collagen geometry in decreasing nucleation energy barriers to intrafibrillar mineralization

    DOE PAGES

    Kim, Doyoon; Lee, Byeongdu; Thomopoulos, Stavros; ...

    2018-03-06

    Mineralization of collagen is critical for the mechanical functions of bones and teeth. Calcium phosphate nucleation in collagenous structures follows distinctly different patterns in highly confined gap regions (nanoscale confinement) than in less confined extrafibrillar spaces (microscale confinement). Although the mechanism(s) driving these differences are still largely unknown, differences in the free energy for nucleation may explain these two mineralization behaviors. Here, we report on experimentally obtained nucleation energy barriers to intra- and extrafibrillar mineralization, using in situ X-ray scattering observations and classical nucleation theory. Polyaspartic acid, an extrafibrillar nucleation inhibitor, increases interfacial energies between nuclei and mineralization fluids. Inmore » contrast, the confined gap spaces inside collagen fibrils lower the energy barrier by reducing the reactive surface area of nuclei, decreasing the surface energy penalty. The confined gap geometry, therefore, guides the two-dimensional morphology and structure of bioapatite and changes the nucleation pathway by reducing the total energy barrier.« less

  14. The role of confined collagen geometry in decreasing nucleation energy barriers to intrafibrillar mineralization.

    PubMed

    Kim, Doyoon; Lee, Byeongdu; Thomopoulos, Stavros; Jun, Young-Shin

    2018-03-06

    Mineralization of collagen is critical for the mechanical functions of bones and teeth. Calcium phosphate nucleation in collagenous structures follows distinctly different patterns in highly confined gap regions (nanoscale confinement) than in less confined extrafibrillar spaces (microscale confinement). Although the mechanism(s) driving these differences are still largely unknown, differences in the free energy for nucleation may explain these two mineralization behaviors. Here, we report on experimentally obtained nucleation energy barriers to intra- and extrafibrillar mineralization, using in situ X-ray scattering observations and classical nucleation theory. Polyaspartic acid, an extrafibrillar nucleation inhibitor, increases interfacial energies between nuclei and mineralization fluids. In contrast, the confined gap spaces inside collagen fibrils lower the energy barrier by reducing the reactive surface area of nuclei, decreasing the surface energy penalty. The confined gap geometry, therefore, guides the two-dimensional morphology and structure of bioapatite and changes the nucleation pathway by reducing the total energy barrier.

  15. Solar collector apparatus having increased energy rejection during stagnation

    DOEpatents

    Moore, Stanley W.

    1983-07-12

    The disclosure relates to an active solar collector having increased energy rejection during stagnation. The collector's glazing is brought into substantial contact with absorber during stagnation to increase re-emittance and thereby to maintain lower temperatures when the collector is not in operation.

  16. All-optical band engineering of gapped Dirac materials

    NASA Astrophysics Data System (ADS)

    Kibis, O. V.; Dini, K.; Iorsh, I. V.; Shelykh, I. A.

    2017-03-01

    We demonstrate theoretically that the interaction of electrons in gapped Dirac materials (gapped graphene and transition-metal dichalchogenide monolayers) with a strong off-resonant electromagnetic field (dressing field) substantially renormalizes the band gaps and the spin-orbit splitting. Moreover, the renormalized electronic parameters drastically depend on the field polarization. Namely, a linearly polarized dressing field always decreases the band gap (and, particularly, can turn the gap into zero), whereas a circularly polarized field breaks the equivalence of valleys in different points of the Brillouin zone and can both increase and decrease corresponding band gaps. As a consequence, the dressing field can serve as an effective tool to control spin and valley properties of the materials and be potentially exploited in optoelectronic applications.

  17. Dihydrocapsiate improved age-associated impairments in mice by increasing energy expenditure.

    PubMed

    Ohyama, Kana; Suzuki, Katsuya

    2017-11-01

    Metabolic dysfunction is associated with aging and results in age-associated chronic diseases, including type 2 diabetes mellitus, cardiovascular disease, and stroke. Hence, there has been a focus on increasing energy expenditure in aged populations to protect them from age-associated diseases. Dihydrocapsiate (DCT) is a compound that belongs to the capsinoid family. Capsinoids are capsaicin analogs that are found in nonpungent peppers and increase whole body energy expenditure. However, their effect on energy expenditure has been reported only in young populations, and to date the effectiveness of DCT in increasing energy expenditure in aged populations has not been investigated. In this study, we investigated whether DCT supplementation in aged mice improves age-associated impairments. We obtained 5-wk-old and 1-yr-old male C57BL/6J mice and randomly assigned the aged mice to two groups, resulting in a total of three groups: 1 ) young mice, 2 ) old mice, and 3 ) old mice supplemented with 0.3% DCT. After 12 wk of supplementation, blood and tissue samples were collected and analyzed. DCT significantly suppressed age-associated fat accumulation, adipocyte hypertrophy, and liver steatosis. In addition, the DCT treatment dramatically suppressed age-associated increases in hepatic inflammation, immune cell infiltration, and oxidative stress. DCT exerted these suppression effects by increasing energy expenditure linked to upregulation of both the oxidative phosphorylation gene program and fatty acid oxidation in skeletal muscle. These results indicate that DCT efficiently improves age-associated impairments, including liver steatosis and inflammation, in part by increasing energy expenditure via activation of the fat oxidation pathway in skeletal muscle. Copyright © 2017 the American Physiological Society.

  18. Thermophotovoltaic conversion using selective infrared line emitters and large band gap photovoltaic devices

    DOEpatents

    Brandhorst, Jr., Henry W.; Chen, Zheng

    2000-01-01

    Efficient thermophotovoltaic conversion can be performed using photovoltaic devices with a band gap in the 0.75-1.4 electron volt range, and selective infrared emitters chosen from among the rare earth oxides which are thermally stimulated to emit infrared radiation whose energy very largely corresponds to the aforementioned band gap. It is possible to use thermovoltaic devices operating at relatively high temperatures, up to about 300.degree. C., without seriously impairing the efficiency of energy conversion.

  19. Increased fuel standards among broad range of energy options

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    During simpler times, the mention of the word 'cafe' might have primarily conjured up images of sidewalk coffee and tea bars along Paris' Champs-Elysees. However, with today's concerns about energy needs, CAFE or Corporate Average Fuel Economy standards for automobile fuel efficiency is a hot topic.On August 2, the U.S. House of Representa tives passed an energy bill rejecting a proposal to substantially increase CAFE standards for increasingly popular sport utility vehicles (SUVs). The proposal, which would have required SUVs to increase their current fleet average of 20.5 miles per gallon (mpg) to 27.5 mpg by 2007, to equal the current passenger car fleet requirement, was shelved for a requirement to more modestly raise mpgs by cutting total SUV gasoline usage by 5 billion gallons over 6 years.

  20. Assessing the regional impacts of increased energy maize cultivation on farmland birds.

    PubMed

    Brandt, Karoline; Glemnitz, Michael

    2014-02-01

    The increasing cultivation of energy crops in Germany substantially affects the habitat function of agricultural landscapes. Precise ex ante evaluations regarding the impacts of this cultivation on farmland bird populations are rare. The objective of this paper was to implement a methodology to assess the regional impacts of increasing energy maize cultivation on the habitat quality of agricultural lands for farmland birds. We selected five farmland bird indicator species with varying habitat demands. Using a crop suitability modelling approach, we analysed the availability of potential habitat areas according to different land use scenarios for a real landscape in Northeast Germany. The model was based on crop architecture, cultivation period, and landscape preconditions. Our results showed that the habitat suitability of different crops varied between bird species, and scenario calculations revealed an increase and a decrease in the size of the potential breeding and feeding habitats, respectively. The effects observed in scenario 1 (increased energy maize by 15%) were not reproduced in all cases in scenario 2 (increased energy maize by 30%). Spatial aggregation of energy maize resulted in a negative effect for some species. Changes in the composition of the farmland bird communities, the negative effects on farmland bird species limited in distribution and spread and the relevance of the type of agricultural land use being replaced by energy crops are also discussed. In conclusion, we suggest a trade-off between biodiversity and energy targets by identifying biodiversity-friendly energy cropping systems.

  1. Spectroscopic study of hafnium silicate alloys prepared by RPECVD: Comparisons between conduction/valence band offset energies and optical band gaps

    NASA Astrophysics Data System (ADS)

    Hong, Joon Goo

    Aggressive scaling of devices has continued to improve MOSFET transistor performance. As lateral device dimensions continue to decrease, gate oxide thickness must be scaled down. As one of the promising high k alternative gate oxide materials, HfO2 and its silicates were investigated to understand their direct tunneling behavior by studying band offset energies with spectroscopy and electrical characterization. Local bonding change of remote plasma deposited (HfO2)x(SiO 2)1-x alloys were characterized by Fourier transform infrared (FTIR) spectroscopy, x-ray photoelectron spectroscopy (XPS), and Auger electron spectroscopy (AES) as a function of alloy composition, x. Two different precursors with Hf Nitrato and Hf-tert-butoxide were tested to have amorphous deposition. Film composition was determined off-line by Rutherford backscattering spectroscopy (RBS) and these results were calibrated with on-line AES. As deposited Hf-silicate alloys were characterized by off-line XPS and AES for their chemical shifts interpreting with a partial charge transfer model as well as coordination changes. Sigmoidal dependence of valence band offset energies was observed. Hf 5d* state is fixed at the bottom of the conduction band and located at 1.3 +/- 0.2 eV above the top of the Si conduction band as a conduction band offset by x-ray absorption spectroscopy (XAS). Optical band gap energy changes were observed with vacuum ultra violet spectroscopic ellipsometry (VUVSE) to verify compositional dependence of conduction and valence band offset energy changes. 1 nm EOT normalized tunneling current with Wentzel-Kramer-Brillouin (WKB) simulation based on the band offset study and Franz two band model showed the minimum at the intermediate composition matching with the experimental data. Non-linear trend in tunneling current was observed because the increases in physical thickness were mitigated by reductions in band offset energies and effective mass for tunneling. C-V curves were compared

  2. Ultra-wide acoustic band gaps in pillar-based phononic crystal strips

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coffy, Etienne, E-mail: etienne.coffy@femto-st.fr; Lavergne, Thomas; Addouche, Mahmoud

    2015-12-07

    An original approach for designing a one dimensional phononic crystal strip with an ultra-wide band gap is presented. The strip consists of periodic pillars erected on a tailored beam, enabling the generation of a band gap that is due to both Bragg scattering and local resonances. The optimized combination of both effects results in the lowering and the widening of the main band gap, ultimately leading to a gap-to-midgap ratio of 138%. The design method used to improve the band gap width is based on the flattening of phononic bands and relies on the study of the modal energy distributionmore » within the unit cell. The computed transmission through a finite number of periods corroborates the dispersion diagram. The strong attenuation, in excess of 150 dB for only five periods, highlights the interest of such ultra-wide band gap phononic crystal strips.« less

  3. Influence of the ``second gap'' on the optical absorption of transparent conducting oxides

    NASA Astrophysics Data System (ADS)

    Ha, Viet-Anh; Waroquiers, David; Rignanese, Gian-Marco; Hautier, Geoffroy

    Transparent conducting oxides (TCOs) are critical to many technologies (e.g., thin-film solar cells, flat-panel displays or organic light-emitting diodes). TCOs are heavily doped (n or p-type) oxides that satisfy many design criteria such as high transparency to visible light (i.e., a band gap > 3 eV), high concentration and mobility of carriers (leading to high conductivity), ... In such (highly doped) systems, optical transitions from the conduction band minimum to higher energy bands in n-type or from lower energy bands to the valence band maximum in p-type are possible and can degrade transparency. In fact, it has been claimed that a high energy (> 3eV) for any of these transitions made possible by doping, commonly referred as a high ``second gap'', is a necessary design criterion for high performance TCOs. Here, we study the influence of this second gap on the transparency of doped TCOs by using ab initio calculations within the random phase approximation (RPA) for several well-known p-type and n-type TCOs. Our work highlights how the second gap affects the transparency of doped TCOs, shining light on more accurate design criteria for high performance TCOs.

  4. Energy dependence of effective electron mass and laser-induced ionization of wide band-gap solids

    NASA Astrophysics Data System (ADS)

    Gruzdev, V. E.

    2008-10-01

    Most of the traditional theoretical models of laser-induced ionization were developed under the assumption of constant effective electron mass or weak dependence of the effective mass on electron energy. Those assumptions exclude from consideration all the effects resulting from significant increase of the effective mass with increasing of electron energy in real the conduction band. Promotion of electrons to the states with high effective mass can be done either via laserinduced electron oscillations or via electron-particle collisions. Increase of the effective mass during laser-material interactions can result in specific regimes of ionization. Performing a simple qualitative analysis by comparison of the constant-mass approximation vs realistic dependences of the effective mass on electron energy, we demonstrate that the traditional ionization models provide reliable estimation of the ionization rate in a very limited domain of laser intensity and wavelength. By taking into account increase of the effective mass with electron energy, we demonstrate that special regimes of high-intensity photo-ionization are possible depending on laser and material parameters. Qualitative analysis of the energy dependence of the effective mass also leads to conclusion that the avalanche ionization can be stopped by the effect of electron trapping in the states with large values of the effective mass.

  5. Hydrogen Safety Sensor Performance and Use Gap Analysis: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buttner, William J; Burgess, Robert M; Schmidt, Kara

    Hydrogen sensors are recognized as an important technology for facilitating the safe implementation of hydrogen as an alternative fuel, and there are numerous reports of a sensor alarm successfully preventing a potentially serious event. However, gaps in sensor metrological specifications, as well as in their performance for some applications, exist.The U.S. Department of Energy (DOE) Fuel Cell Technology Office published a short list of critical gaps in the 2007 and 2012 multiyear project plans; more detailed gap analyses were independently performed by the JRC and NREL. There have been, however, some significant advances in sensor technologies since these assessments, includingmore » the commercial availability of hydrogen sensors with fast response times (t90 less than 1 s, which had been an elusive DOE target since 2007), improved robustness to chemical poisons, improved selectivity, and improved lifetime and stability. These improvements, however, have not been universal and typically pertain to select platforms or models. Moreover, as hydrogen markets grow and new applications are being explored, more demands will be imposed on sensor performance. The hydrogen sensor laboratories at NREL and JRC are currently updating the hydrogen safety sensor gap analysis through direct interaction with international stakeholders in the hydrogen community, especially end-users. NREL and the JRC are currently organizing a series of workshops (in Europe and the U.S.) with sensor developers, end-users, and other stakeholders in 2017 to identify technology gaps and to develop a path forward to address them. One workshop is scheduled for May 10 in Brussels, Belgium at the Headquarters of the Fuel Cell and Hydrogen Joint Undertaking. A second workshop is planned at the National Renewable Energy Laboratory in Golden, CO, USA. This presentation will review improvements in sensor technologies in the past 5 to 10 years, identify gaps in sensor performance and use requirements, and

  6. Light Increases Energy Transfer Efficiency in a Boreal Stream

    PubMed Central

    Lesutienė, Jūratė; Gorokhova, Elena; Stankevičienė, Daiva; Bergman, Eva; Greenberg, Larry

    2014-01-01

    Periphyton communities of a boreal stream were exposed to different light and nutrient levels to estimate energy transfer efficiency from primary to secondary producers using labeling with inorganic 13C. In a one-day field experiment, periphyton grown in fast-flow conditions and dominated by opportunistic green algae were exposed to light levels corresponding to sub-saturating (forest shade) and saturating (open stream section) irradiances, and to N and P nutrient additions. In a two-week laboratory experiment, periphyton grown in low-flow conditions and dominated by slowly growing diatoms were incubated under two sub-saturating light and nutrient enrichment levels as well as grazed and non-grazed conditions. Light had significant positive effect on 13C uptake by periphyton. In the field experiment, P addition had a positive effect on 13C uptake but only at sub-saturating light levels, whereas in the laboratory experiment nutrient additions had no effect on the periphyton biomass, 13C uptake, biovolume and community composition. In the laboratory experiment, the grazer (caddisfly) effect on periphyton biomass specific 13C uptake and nutrient content was much stronger than the effects of light and nutrients. In particular, grazers significantly reduced periphyton biomass and increased biomass specific 13C uptake and C:nutrient ratios. The energy transfer efficiency, estimated as a ratio between 13C uptake by caddisfly and periphyton, was positively affected by light conditions, whereas the nutrient effect was not significant. We suggest that the observed effects on energy transfer were related to the increased diet contribution of highly palatable green algae, stimulated by higher light levels. Also, high heterotrophic microbial activity under low light levels would facilitate energy loss through respiration and decrease overall trophic transfer efficiency. These findings suggest that even a small increase in light intensity could result in community-wide effects on

  7. High-Altitude Emission from Pulsar Slot Gaps: The Crab Pulsar

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.; Stern, Julie V.; Dyks, Jaroslaw; Frackowiak, Michal

    2008-01-01

    We present results of a 3D model of optical to gamma-ray emission from the slot gap accelerator of a rotation-powered pulsar. Primary electrons accelerating to high-altitudes in the unscreened electric field of the slot gap reach radiation-reaction limited Lorentz factors of approx. 2 x 10(exp 7), while electron-positron pairs from lower-altitude cascades flow along field lines interior to the slot gap. The curvature, synchrotron and inverse Compton radiation of both primary electrons and pairs produce a broad spectrum of emission from infra-red to GeV energies. Both primaries and pairs undergo cyclotron resonant absorption of radio photons, allowing them to maintain significant pitch angles. Synchrotron radiation from pairs with a power-law energy spectrum from gamma = 10(exp 2) - 10(exp 5), dominate the spectrum up to approx. 10 MeV. Synchrotron and curvature radiation of primaries dominates from 10 MeV up to a few GeV. We examine the energy-dependent pulse profiles and phase-resolved spectra for parameters of the Crab pulsar as a function of magnetic inclination alpha and viewing angle zeta, comparing to broad-band data. In most cases, the pulse profiles are dominated by caustics on trailing field lines. We also explore the relation of the high-energy and the radio profiles, as well as the possibility of caustic formation in the radio cone emission. We find that the Crab pulsar profiles and spectrum can be reasonably well reproduced by a model with alpha = 45deg and zeta approx. 100deg or 80deg. This model predicts that the slot gap emission below 200 MeV will exhibit correlations in time and phase with the radio emission.

  8. Increasing physical activity, but persisting social gaps among middle-aged people: trends in Northern Sweden from 1990 to 2007.

    PubMed

    Ng, Nawi; Söderman, Kerstin; Norberg, Margareta; Öhman, Ann

    2011-01-01

    Physical activity is identified as one important protective factor for chronic diseases. Physical activity surveillance is important in assessing healthy population behaviour over time. Many countries lack population trends on physical activity. To present trends in physical activity levels in Västerbotten County, Sweden and to evaluate physical activity among women and men with various educational levels. Population-based cross-sectional and panel data from the Västerbotten Intervention Programme (VIP) during 1990-2007 were used. All individuals in Västerbotten County who turned 40, 50, or 60 years old were invited to their local primary health care for a health screening. Physical activity during commuting, recreational activities, physical exercise, and socio-demographic data were collected using a self-administered questionnaire. Respondents were categorised as sedentary, moderate physically active, or physically active. The prevalences of physically active behaviours increased from 16 to 24.2% among men and from 12.6 to 30.4% among women. Increases are observed in all educational groups, but gaps between educational groups widened recently. The level of sedentary behaviour was stable over the time period studied. The 10-year follow-up data show that the prevalences of physically active behaviours increased from 15.8 to 21.4% among men and 12.7 to 23.3% among women. However, 10.2% of men and 3.8% of women remained sedentary. Despite the promising evidence of increasing physical activity levels among the population in Västerbotten County, challenges remain for how to reduce the stable levels of sedentary behaviours in some subgroups. Persisting social gaps in physical activity levels should be addressed further. An exploration of people's views on engaging in physical activity and barriers to doing so will allow better formulation of targeted interventions within this population. Global Health Action 2011. © 2011 N. Ng et al.

  9. Challenges and gaps for energy planning models in the developing-world context

    NASA Astrophysics Data System (ADS)

    Debnath, Kumar Biswajit; Mourshed, Monjur

    2018-03-01

    Energy planning models (EPMs) support multi-criteria assessments of the impact of energy policies on the economy and environment. Most EPMs originated in developed countries and are primarily aimed at reducing greenhouse gas emissions while enhancing energy security. In contrast, most, if not all, developing countries are predominantly concerned with increasing energy access. Here, we review thirty-four widely used EPMs to investigate their applicability to developing countries and find an absence of consideration of the objectives, challenges, and nuances of the developing context. Key deficiencies arise from the lack of deliberation of the low energy demand resulting from lack of access and availability of supply. Other inadequacies include the lack of consideration of socio-economic nuances such as the prevalence of corruption and resulting cost inflation, the methods for adequately addressing the shortcomings in data quality, availability and adequacy, and the effects of climate change. We argue for further research on characterization and modelling of suppressed demand, climate change impacts, and socio-political feedback in developing countries, and the development of contextual EPMs.

  10. Energy Conservation and Conversion in NIMROD Computations of Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Maddox, J. A.; Sovinec, C. R.

    2017-10-01

    Previous work modeling magnetic relaxation during non-inductive start-up at the Pegasus spherical tokamak indicates an order of magnitude gap between measured experimental temperature and simulated temperature in NIMROD. Potential causes of the plasma temperature gap include: insufficient transport modeling, too low modeled injector power input, and numerical loss of energy, as energy is not algorithmically conserved in NIMROD simulations. Simple 2D nonlinear MHD simulations explore numerical energy conservation discrepancies in NIMROD because understanding numerical loss of energy is fundamental to addressing the physical problems of the other potential causes of energy loss. Evolution of these configurations induces magnetic reconnection, which transfers magnetic energy to heat and kinetic energy. The kinetic energy is eventually damped so, magnetic energy loss must correspond to an increase in internal energy. Results in the 2D geometries indicate that numerical energy loss during reconnection depends on the temporal resolution of the dynamics. Work support from U.S. Department of Energy through a subcontract from the Plasma Science and Innovation Center.

  11. Increased energy expenditure and glucose oxidation during acute nontraumatic skin pain in humans.

    PubMed

    Holland-Fischer, Peter; Greisen, Jacob; Grøfte, Thorbjørn; Jensen, Troels S; Hansen, Peter O; Vilstrup, Hendrik

    2009-04-01

    Tissue injury is accompanied by pain and results in increased energy expenditure, which may promote catabolism. The extent to which pain contributes to this sequence of events is not known. In a cross-over design, 10 healthy volunteers were examined on three occasions; first, during self-controlled nontraumatic electrical painful stimulus to the abdominal skin, maintaining an intensity of 8 on the visual analogue scale (0-10). Next, the electrical stimulus was reproduced during local analgesia and, finally, there was a control session without stimulus. Indirect calorimetry and blood and urine sampling was done in order to calculate energy expenditure and substrate utilization. During pain stimulus, energy expenditure increased acutely and reversibly by 62% (95% confidence interval, 43-83), which was abolished by local analgesia. Energy expenditure paralleled both heart rate and blood catecholamine levels. The energy expenditure increase was fuelled by all energy sources, with the largest increase in glucose utilization. The pain-related increase in energy expenditure was possibly mediated by adrenergic activity and was probably to a large extent due to increased muscle tone. These effects may be enhanced by cortical events related to the pain. The increase in glucose consumption favours catabolism. Our findings emphasize the clinical importance of pain management.

  12. Engineering of band gap states of amorphous SiZnSnO semiconductor as a function of Si doping concentration.

    PubMed

    Choi, Jun Young; Heo, Keun; Cho, Kyung-Sang; Hwang, Sung Woo; Kim, Sangsig; Lee, Sang Yeol

    2016-11-04

    We investigated the band gap of SiZnSnO (SZTO) with different Si contents. Band gap engineering of SZTO is explained by the evolution of the electronic structure, such as changes in the band edge states and band gap. Using ultraviolet photoelectron spectroscopy (UPS), it was verified that Si atoms can modify the band gap of SZTO thin films. Carrier generation originating from oxygen vacancies can modify the band-gap states of oxide films with the addition of Si. Since it is not easy to directly derive changes in the band gap states of amorphous oxide semiconductors, no reports of the relationship between the Fermi energy level of oxide semiconductor and the device stability of oxide thin film transistors (TFTs) have been presented. The addition of Si can reduce the total density of trap states and change the band-gap properties. When 0.5 wt% Si was used to fabricate SZTO TFTs, they showed superior stability under negative bias temperature stress. We derived the band gap and Fermi energy level directly using data from UPS, Kelvin probe, and high-resolution electron energy loss spectroscopy analyses.

  13. Engineering of band gap states of amorphous SiZnSnO semiconductor as a function of Si doping concentration

    PubMed Central

    Choi, Jun Young; Heo, Keun; Cho, Kyung-Sang; Hwang, Sung Woo; Kim, Sangsig; Lee, Sang Yeol

    2016-01-01

    We investigated the band gap of SiZnSnO (SZTO) with different Si contents. Band gap engineering of SZTO is explained by the evolution of the electronic structure, such as changes in the band edge states and band gap. Using ultraviolet photoelectron spectroscopy (UPS), it was verified that Si atoms can modify the band gap of SZTO thin films. Carrier generation originating from oxygen vacancies can modify the band-gap states of oxide films with the addition of Si. Since it is not easy to directly derive changes in the band gap states of amorphous oxide semiconductors, no reports of the relationship between the Fermi energy level of oxide semiconductor and the device stability of oxide thin film transistors (TFTs) have been presented. The addition of Si can reduce the total density of trap states and change the band-gap properties. When 0.5 wt% Si was used to fabricate SZTO TFTs, they showed superior stability under negative bias temperature stress. We derived the band gap and Fermi energy level directly using data from UPS, Kelvin probe, and high-resolution electron energy loss spectroscopy analyses. PMID:27812035

  14. Magnetical asymmetry effect in capacitively coupled plasmas: effects of the magnetic field gradient, pressure, and gap length

    NASA Astrophysics Data System (ADS)

    Yang, Shali; Chang, Lijie; Zhang, Ya; Jiang, Wei

    2018-03-01

    By applying the asymmetric magnetic field to a discharge, the dc self-bias and asymmetric plasma response can be generated even in a geometrically and electrically symmetric system. This is called magnetical asymmetric effect (MAE), which can be a new method to control the ion energy and flux independently (Yang et al 2017 Plasma Process. Polym. 14 1700087). In the present work, the effects of magnetic field gradient, gas pressure and gap length on MAE are investigated by using a one-dimensional implicit particle-in-cell/Monte Carlo collision simulation. It found that by appropriately increasing the magnetic field gradient and the gap length, the range of the self-bias voltage will be enlarged, which can be used as the effective approach to control the ion bombarding energy at the electrodes since the ion energy is determined by the voltage drop across the sheath. It also found that the ion flux asymmetry will disappear at high pressure when the magnetic field gradient is relative low, due to the frequent electron-neutral collisions can disrupt electron gyromotion and thus the MAE is greatly reduced.

  15. Modeling pedestrian gap crossing index under mixed traffic condition.

    PubMed

    Naser, Mohamed M; Zulkiple, Adnan; Al Bargi, Walid A; Khalifa, Nasradeen A; Daniel, Basil David

    2017-12-01

    There are a variety of challenges faced by pedestrians when they walk along and attempt to cross a road, as the most recorded accidents occur during this time. Pedestrians of all types, including both sexes with numerous aging groups, are always subjected to risk and are characterized as the most exposed road users. The increased demand for better traffic management strategies to reduce the risks at intersections, improve quality traffic management, traffic volume, and longer cycle time has further increased concerns over the past decade. This paper aims to develop a sustainable pedestrian gap crossing index model based on traffic flow density. It focusses on the gaps accepted by pedestrians and their decision for street crossing, where (Log-Gap) logarithm of accepted gaps was used to optimize the result of a model for gap crossing behavior. Through a review of extant literature, 15 influential variables were extracted for further empirical analysis. Subsequently, data from the observation at an uncontrolled mid-block in Jalan Ampang in Kuala Lumpur, Malaysia was gathered and Multiple Linear Regression (MLR) and Binary Logit Model (BLM) techniques were employed to analyze the results. From the results, different pedestrian behavioral characteristics were considered for a minimum gap size model, out of which only a few (four) variables could explain the pedestrian road crossing behavior while the remaining variables have an insignificant effect. Among the different variables, age, rolling gap, vehicle type, and crossing were the most influential variables. The study concludes that pedestrians' decision to cross the street depends on the pedestrian age, rolling gap, vehicle type, and size of traffic gap before crossing. The inferences from these models will be useful to increase pedestrian safety and performance evaluation of uncontrolled midblock road crossings in developing countries. Copyright © 2017 National Safety Council and Elsevier Ltd. All rights reserved.

  16. Understanding the carbon dioxide gaps.

    PubMed

    Scheeren, Thomas W L; Wicke, Jannis N; Teboul, Jean-Louis

    2018-06-01

    The current review attempts to demonstrate the value of several forms of carbon dioxide (CO2) gaps in resuscitation of the critically ill patient as monitor for the adequacy of the circulation, as target for fluid resuscitation and also as predictor for outcome. Fluid resuscitation is one of the key treatments in many intensive care patients. It remains a challenge in daily practice as both a shortage and an overload in intravascular volume are potentially harmful. Many different approaches have been developed for use as target of fluid resuscitation. CO2 gaps can be used as surrogate for the adequacy of cardiac output (CO) and as marker for tissue perfusion and are therefore a potential target for resuscitation. CO2 gaps are easily measured via point-of-care analysers. We shed light on its potential use as nowadays it is not widely used in clinical practice despite its potential. Many studies were conducted on partial CO2 pressure differences or CO2 content (cCO2) differences either alone, or in combination with other markers for outcome or resuscitation adequacy. Furthermore, some studies deal with CO2 gap to O2 gap ratios as target for goal-directed fluid therapy or as marker for outcome. CO2 gap is a sensitive marker of tissue hypoperfusion, with added value over traditional markers of tissue hypoxia in situations in which an oxygen diffusion barrier exists such as in tissue oedema and impaired microcirculation. Venous-to-arterial cCO2 or partial pressure gaps can be used to evaluate whether attempts to increase CO should be made. Considering the potential of the several forms of CO2 measurements and its ease of use via point-of-care analysers, it is recommendable to implement CO2 gaps in standard clinical practice.

  17. Fullerene-Free Organic Solar Cells with an Efficiency of 10.2% and an Energy Loss of 0.59 eV Based on a Thieno[3,4-c]Pyrrole-4,6-dione-Containing Wide Band Gap Polymer Donor.

    PubMed

    Hadmojo, Wisnu Tantyo; Wibowo, Febrian Tri Adhi; Ryu, Du Yeol; Jung, In Hwan; Jang, Sung-Yeon

    2017-09-27

    Although the combination of wide band gap polymer donors and narrow band gap small-molecule acceptors achieved state-of-the-art performance as bulk heterojunction (BHJ) active layers for organic solar cells, there have been only several of the wide band gap polymers that actually realized high-efficiency devices over >10%. Herein, we developed high-efficiency, low-energy-loss fullerene-free organic solar cells using a weakly crystalline wide band gap polymer donor, PBDTTPD-HT, and a nonfullerene small-molecule acceptor, ITIC. The excessive intermolecular stacking of ITIC is efficiently suppressed by the miscibility with PBDTTPD-HT, which led to a well-balanced nanomorphology in the PBDTTPD-HT/ITIC BHJ active films. The favorable optical, electronic, and energetic properties of PBDTTPD-HT with respect to ITIC achieved panchromatic photon-to-current conversion with a remarkably low energy loss (0.59 eV).

  18. Optoelectronic properties analysis of Ti-substituted GaP.

    PubMed

    Tablero, C

    2005-11-08

    A study using first principles of the electronic and optical properties of materials derived from a GaP host semiconductor where one Ti atom is substituted for one of the eight P atoms is presented. This material has a metallic intermediate band sandwiched between the valence and conduction bands of the host semiconductor for 0 < or = U < or = 8 eV where U is the Hubbard parameter. The potential of these materials is that when they are used as an absorber of photons in solar cells, the efficiency is increased significantly with respect to that of the host semiconductor. The results show that the main contribution to the intermediate band is the Ti atom and that this material can absorb photons of lower energy than that of the host semiconductor. The efficiency is increased with respect to that of the host semiconductor mainly because of the absorption from the intermediate to conduction band. As U increases, the contribution of the Ti-d orbitals to the intermediate band varies, increasing the d(z2) character at the bottom of the intermediate band.

  19. The HyperV Full-Scale Contoured-Gap Coaxial Plasma Railgun

    NASA Astrophysics Data System (ADS)

    Brockington, Samuel; Case, Andrew; Messer, Sarah; Bomgardner, Richard; Elton, Raymond; Wu, Linchun; Witherspoon, F. Douglas

    2009-11-01

    HyperV has been developing pulsed plasma injected coaxial railguns with a contoured gap profile designed to mitigate the blowby instability. Previous work using half-scale guns has been successful in launching 150 μg plasmas at 90 km/s [1]. In order to meet the original goal of 200 μg at 200 km/s the full-scale coaxial plasma gun has been constructed, and initial testing is beginning. This new plasma gun consists of two machined aluminum electrodes and a UHMW polyethylene breech insulator. The gun is breech fed by 64 ablative polyethylene capillary discharge units identical to the half-scale gun units. Maximum accelerator energy storage has also been increased 50%. Refractory coatings may be necessary to allow full current (˜800 kA) operation. The outer electrode includes 24 small diagnostic ports for optical and magnetic probe access to the plasma inside the gun to allow direct measurement of the plasma armature dynamics. Initial test data from the full-scale coax gun will be presented along with plans for future testing. Work supported by the U.S. DOE Office of Fusion Energy Sciences.[4pt] [1] F. D. Witherspoon, A. Case, S. Messer, R. Bomgardner, M. Phillips, S. Brockington, R. Elton, ``Contoured Gap Coaxial Plasma Gun with Injected Plasma Armature'' Rev. Sci. Instr. submitted (2009)

  20. A consumption value-gap analysis for sustainable consumption.

    PubMed

    Biswas, Aindrila

    2017-03-01

    Recent studies on consumption behavior have depicted environmental apprehension resulting from across wide consumer segments. However, this has not been widely reflected upon the growth in the market shares for green or environment-friendly products mostly because gaps exist between consumers' expectations and perceptions for those products. Previous studies have highlighted the impact of perceived value on potential demand, consumer satisfaction and behavioral intentions. The necessity to understand the effects of gaps in expected and perceived values on consumers' behavioral intention and potential demand for green products cannot be undermined as it shapes the consumers' inclination to repeated purchase and consumption and thus foster potential market demand. Pertaining to this reason, the study aims to adopt a consumption value-gap model based on the theory of consumption values to assess their impact on sustainable consumption behavior and market demand of green products. Consumption value refers to the level of fulfillment of consumer needs by assessment of net utility derived after effective comparison between the benefits (financial or emotional) and the gives (money, time, or energy). The larger the gaps the higher will be the adversarial impact on behavioral intentions. A structural equation modeling was applied to assess data collected through questionnaire survey. The results indicate that functional value-gap and environmental value-gap has the most adversarial impact on sustainable consumption behavior and market demand for green products.

  1. Why has energy consumption increased. An energy and society approach to the American case

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lacy, M.G.

    1981-01-01

    The general intellectual debate over energy issues has not exhausted the possibilities for sociological work. Sociology can improve on such previous work by providing an empirical-analytic moment, attending to meaning adequacy, recognizing process, assessing the materially determinative character of energy, and by being critical. However, if these several dimensions are taken as prescriptive criteria, even the strictly sociological literature on energy and society has numerous errors and omissions. Based on the findings of that critical examination of the sociological energy literature, a simple formal theory is developed to attack a particular substantive problem: Why has energy consumption increased in themore » United States during the twentieth century. This formalism requires that we begin by regarding energy consumption as completely determined by population, affluence, and technology. The results of the first empirical analysis using that formalism show that rising affluence, rather than deteriorating technology, is the culprit. However, the urge to praise technology is too hasty, since a second analysis shows that there actually have been two trends in energy technology, only one of which tended to hold down energy consumption.« less

  2. Gap Resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Labutti, Kurt; Foster, Brian; Lapidus, Alla

    Gap Resolution is a software package that was developed to improve Newbler genome assemblies by automating the closure of sequence gaps caused by repetitive regions in the DNA. This is done by performing the follow steps:1) Identify and distribute the data for each gap in sub-projects. 2) Assemble the data associated with each sub-project using a secondary assembler, such as Newbler or PGA. 3) Determine if any gaps are closed after reassembly, and either design fakes (consensus of closed gap) for those that closed or lab experiments for those that require additional data. The software requires as input a genomemore » assembly produce by the Newbler assembler provided by Roche and 454 data containing paired-end reads.« less

  3. Pressure dependence of transverse acoustic phonon energy in ferropericlase across the spin transition.

    PubMed

    Fukui, Hiroshi; Baron, Alfred Q R; Ishikawa, Daisuke; Uchiyama, Hiroshi; Ohishi, Yasuo; Tsuchiya, Taku; Kobayashi, Hisao; Matsuzaki, Takuya; Yoshino, Takashi; Katsura, Tomoo

    2017-06-21

    We investigated transverse acoustic (TA) phonons in iron-bearing magnesium oxide (ferropericlase) up to 56 GPa using inelastic x-ray scattering (IXS). The results show that the energy of the TA phonon far from the Brillouin zone center suddenly increases with increasing pressure above the spin transition pressure of ferropericlase. Ab initio calculations revealed that the TA phonon energy far from the Brillouin zone center is higher in the low-spin state than in the high spin state; that the TA phonon energy depend weakly on pressure; and that the energy gap between the TA and the lowest-energy-optic phonons is much narrower in the low-spin state than in the high-spin state. This allows us to conclude that the anomalous behavior of the TA mode in the present experiments is the result of gap narrowing due to the spin transition and explains contradictory results in previous experimental studies.

  4. Antideuteron based dark matter search with GAPS: Current progress and future prospects

    NASA Astrophysics Data System (ADS)

    Hailey, C. J.; Aramaki, T.; Boggs, S. E.; Doetinchem, P. v.; Fuke, H.; Gahbauer, F.; Koglin, J. E.; Madden, N.; Mognet, S. A. I.; Ong, R.; Yoshida, T.; Zhang, T.; Zweerink, J. A.

    2013-01-01

    The General Antiparticle Spectrometer (GAPS) is a new approach to the indirect detection of dark matter. It relies on searching for primary antideuterons produced in the annihilation of dark matter in the galactic halo. Low energy antideuterons produced through Standard Model processes, such as collisions of cosmic-rays with interstellar baryons, are greatly suppressed compared to primary antideuterons. Thus a low energy antideuteron search provides a clean signature of dark matter. In GAPS antiparticles are slowed down and captured in target atoms. The resultant exotic atom deexcites with the emission of X-rays and annihilation pions, protons and other particles. A tracking geometry allows for the detection of the X-rays and particles, providing a unique signature to identify the mass of the antiparticle. A prototype detector was successfully tested at the KEK accelerator in 2005, and a prototype GAPS balloon flight is scheduled for 2011. This will be followed by a full scale experiment on a long duration balloon from Antarctica in 2014. We discuss the status and future plans for GAPS.

  5. Oolong tea increases energy metabolism in Japanese females.

    PubMed

    Komatsu, Tatsushi; Nakamori, Masayo; Komatsu, Keiko; Hosoda, Kazuaki; Okamura, Mariko; Toyama, Kenji; Ishikura, Yoshiyuki; Sakai, Tohru; Kunii, Daisuke; Yamamoto, Shigeru

    2003-08-01

    Oolong tea is a traditional Chinese tea that has long been believed to be beneficial to health such as decreasing body fat. We were interested in this assertion and tried to evaluate the effect of oolong tea on energy expenditure (EE) in comparison with green tea. The subjects were eleven healthy Japanese females (age 20+/-1 y; body mass index (BMI) 21.2+/-2.5 kg/m2) who each consumed of three treatments in a crossover design: 1) water, 2) oolong tea, 3) green tea. Resting energy expenditure (REE) and EE after the consumption of the test beverage for 120 min were measured using an indirect calorimeter. The cumulative increases of EE for 120 min were significantly increased 10% and 4% after the consumption of oolong tea and green tea, respectively. EE at 60 and 90 min were significantly higher after the consumption of oolong tea than that of water (P<0.05). In comparison with green tea, oolong tea contained approximately half the caffeine and epigallocatechin galate, while polymerized polyphenols were double. These results suggest that oolong tea increases EE by its polymerized polyphenols.

  6. Electrospray ionization from a gap with adjustable width.

    PubMed

    Ek, Patrik; Sjödahl, Johan; Roeraade, Johan

    2006-01-01

    In this paper, we present a new concept for electrospray ionization mass spectrometry, where the sample is applied in a gap which is formed between the edges of two triangular-shaped tips. The size of the spray orifice can be changed by varying the gap width. The tips were fabricated from polyethylene terephthalate film with a thickness of 36 microm. To improve the wetting of the gap and sample confinement, the edges of the tips forming the gap were hydrophilized by means of silicon dioxide deposition. Electrospray was performed with gap widths between 1 and 36 microm and flow rates down to 75 nL/min. The gap width could be adjusted in situ during the mass spectrometry experiments and nozzle clogging could be managed by simply widening the gap. Using angiotensin I as analyte, the signal-to-noise ratio increased as the gap width was decreased, and a shift towards higher charge states was observed. The detection limit for angiotensin I was in the low nM range. Copyright (c) 2006 John Wiley & Sons, Ltd.

  7. Band gap renormalization and Burstein-Moss effect in silicon- and germanium-doped wurtzite GaN up to 1020 cm-3

    NASA Astrophysics Data System (ADS)

    Feneberg, Martin; Osterburg, Sarah; Lange, Karsten; Lidig, Christian; Garke, Bernd; Goldhahn, Rüdiger; Richter, Eberhard; Netzel, Carsten; Neumann, Maciej D.; Esser, Norbert; Fritze, Stephanie; Witte, Hartmut; Bläsing, Jürgen; Dadgar, Armin; Krost, Alois

    2014-08-01

    The interplay between band gap renormalization and band filling (Burstein-Moss effect) in n-type wurtzite GaN is investigated. For a wide range of electron concentrations up to 1.6×1020cm-3 spectroscopic ellipsometry and photoluminescence were used to determine the dependence of the band gap energy and the Fermi edge on electron density. The band gap renormalization is the dominating effect up to an electron density of about 9×1018cm-3; at higher values the Burstein-Moss effect is stronger. Exciton screening, the Mott transition, and formation of Mahan excitons are discussed. A quantitative understanding of the near gap transition energies on electron density is obtained. Higher energy features in the dielectric functions up to 10eV are not influenced by band gap renormalization.

  8. Antenatal dietary advice and supplementation to increase energy and protein intake.

    PubMed

    Ota, Erika; Tobe-Gai, Ruoyan; Mori, Rintaro; Farrar, Diane

    2012-09-12

    Gestational weight gain is positively associated with fetal growth, and observational studies of food supplementation in pregnancy have reported increases in gestational weight gain and fetal growth. To assess the effects of advice during pregnancy to increase energy and protein intake, or of actual energy and protein supplementation, on energy and protein intakes, and the effect on maternal and infant health outcomes. We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (22 July 2011) and contacted researchers in the field. We updated the search on 12 July 2012 and added the results to the awaiting classification section of the review. Randomised controlled trials of dietary advice to increase energy and protein intake, or of actual energy and protein supplementation, during pregnancy. Two review authors independently assessed trials for inclusion and assessed risk of bias. Two review authors independently extracted data and checked for accuracy. Extracted data were supplemented by additional information from the trialists we contacted. We examined 110 reports corresponding to 46 trials. Of these trials, 15 were included, 30 were excluded, and one is ongoing. Overall, 15 trials involving 7410 women were included.Nutritional advice (four trials, 790 women)Women given nutritional advice had a lower relative risk of having a preterm birth (two trials, 449 women) (risk ratio (RR) 0.46, 95% CI 0.21 to 0.98 ), head circumference at birth was increased in one trial (389 women) (mean difference (MD) 0.99 cm, 95% CI 0.43 to 1.55) and protein intake increased (three trials, 632 women) (protein intake: MD +6.99 g/day, 95% CI 3.02 to 10.97). No significant differences were observed on any other outcomes.Balanced energy and protein supplementation (11 trials, 5385 women)Risk of stillbirth was significantly reduced for women given balanced energy and protein supplementation (RR 0.62, 95% CI 0.40 to 0.98, five trials, 3408 women), mean birthweight was

  9. Detecting sign-changing superconducting gap in LiFeAs using quasiparticle interference

    NASA Astrophysics Data System (ADS)

    Altenfeld, D.; Hirschfeld, P. J.; Mazin, I. I.; Eremin, I.

    2018-02-01

    Using a realistic ten-orbital tight-binding model Hamiltonian fitted to the angle-resolved photoemission spectroscopy data on LiFeAs, we analyze the temperature, frequency, and momentum dependencies of quasiparticle interference to identify gap sign changes in a qualitative way, following our original proposal [Phys. Rev. B 92, 184513 (2015), 10.1103/PhysRevB.92.184513]. We show that all features present for the simple two-band model for the sign-changing s+--wave superconducting gap employed previously are still present in the realistic tight-binding approximation and gap values observed experimentally. We discuss various superconducting gap structures proposed for LiFeAs and identify various features of these superconducting gap functions in the quasiparticle interference patterns. On the other hand, we show that it will be difficult to identify the more complicated possible sign structures of the hole pocket gaps in LiFeAs due to the smallness of the pockets and the near proximity of two of the gap energies.

  10. Caps and gaps: a computer model for studies on brood incubation strategies in honeybees (Apis mellifera carnica)

    NASA Astrophysics Data System (ADS)

    Fehler, Manuel; Kleinhenz, Marco; Klügl, Franziska; Puppe, Frank; Tautz, Jürgen

    2007-08-01

    In addition to heat production on the comb surface, honeybee workers frequently visit open cells (“gaps”) that are scattered throughout the sealed brood area, and enter them to incubate adjacent brood cells. We examined the efficiency of this heating strategy under different environmental conditions and for gap proportions from 0 to 50%. For gap proportions from 4 to 10%, which are common to healthy colonies, we find a significant reduction in the incubation time per brood cell to maintain the correct temperature. The savings make up 18 to 37% of the time, which would be required for this task in completely sealed brood areas without any gaps. For unnatural high proportions of gaps (>20%), which may be the result of inbreeding or indicate a poor condition of the colony, brood nest thermoregulation becomes less efficient, and the incubation time per brood cell has to increase to maintain breeding temperature. Although the presence of gaps is not essential to maintain an optimal brood nest temperature, a small number of gaps make heating more economical by reducing the time and energy that must be spent on this vital task. As the benefit depends on the availability, spatial distribution and usage of gaps by the bees, further studies need to show the extent to which these results apply to real colonies.

  11. Surface Studies Of Dielectric Materials Used In Spark Gaps

    DTIC Science & Technology

    1983-06-01

    on the virgin sample shows 78.1% carbon, 11.5’% oxygen, 5.2% nitrogen and 5.2% silicon . The usual composition of nylon is C6H110N which would give...copper composite ) electrodes. The spark gap selfbreaks at 40-45kV and switches approximately 1 kJ of energy in 2 ~s at a maximum rep-rate of 2... composite , two different tungsten- copper composites (K-33 and Elkonite), or stainless steel. The spark gap normally operates at a voltage of less than

  12. Closing the poor-rich gap in contraceptive use in urban Kenya: are family planning programs increasingly reaching the urban poor?

    PubMed

    Fotso, Jean Christophe; Speizer, Ilene S; Mukiira, Carol; Kizito, Paul; Lumumba, Vane

    2013-08-27

    Kenya is characterized by high unmet need for family planning (FP) and high unplanned pregnancy, in a context of urban population explosion and increased urban poverty. It witnessed an improvement of its FP and reproductive health (RH) indicators in the recent past, after a period of stalled progress. The objectives of the paper are to: a) describe inequities in modern contraceptive use, types of methods used, and the main sources of contraceptives in urban Kenya; b) examine the extent to which differences in contraceptive use between the poor and the rich widened or shrank over time; and c) attempt to relate these findings to the FP programming context, with a focus on whether the services are increasingly reaching the urban poor. We use data from the 1993, 1998, 2003 and 2008/09 Kenya demographic and health survey. Bivariate analyses describe the patterns of modern contraceptive use and the types and sources of methods used, while multivariate logistic regression models assess how the gap between the poor and the rich varied over time. The quantitative analysis is complemented by a review on the major FP/RH programs carried out in Kenya. There was a dramatic change in contraceptive use between 2003 and 2008/09 that resulted in virtually no gap between the poor and the rich in 2008/09, by contrast to the period 1993-1998 during which the improvement in contraceptive use did not significantly benefit the urban poor. Indeed, the late 1990s marked the realization by the Government of Kenya and its development partners, of the need to deliberately target the poor with family planning services. Most urban women use short-term and less effective methods, with the proportion of long-acting method users dropping by half during the review period. The proportion of private sector users also declined between 2003 and 2008/09. The narrowing gap in the recent past between the urban poor and the urban rich in the use of modern contraception is undoubtedly good news, which

  13. Quasiparticle and excitonic gaps of one-dimensional carbon chains.

    PubMed

    Mostaani, E; Monserrat, B; Drummond, N D; Lambert, C J

    2016-06-01

    We report diffusion quantum Monte Carlo (DMC) calculations of the quasiparticle and excitonic gaps of hydrogen-terminated oligoynes and extended polyyne. The electronic gaps are found to be very sensitive to the atomic structure in these systems. We have therefore optimised the geometry of polyyne by directly minimising the DMC energy with respect to the lattice constant and the Peierls-induced carbon-carbon bond-length alternation. We find the bond-length alternation of polyyne to be 0.136(2) Å and the excitonic and quasiparticle gaps to be 3.30(7) and 3.4(1) eV, respectively. The DMC zone-centre longitudinal optical phonon frequency of polyyne is 2084(5) cm(-1), which is consistent with Raman spectroscopic measurements for large oligoynes.

  14. Evaluating frontier orbital energy and HOMO/LUMO gap with descriptors from density functional reactivity theory.

    PubMed

    Huang, Ying; Rong, Chunying; Zhang, Ruiqin; Liu, Shubin

    2017-01-01

    Wave function theory (WFT) and density functional theory (DFT)-the two most popular solutions to electronic structure problems of atoms and molecules-share the same origin, dealing with the same subject yet using distinct methodologies. For example, molecular orbitals are artifacts in WFT, whereas in DFT, electron density plays the dominant role. One question that needs to be addressed when using these approaches to appreciate properties related to molecular structure and reactivity is if there is any link between the two. In this work, we present a piece of strong evidence addressing that very question. Using five polymeric systems as illustrative examples, we reveal that using quantities from DFT such as Shannon entropy, Fisher information, Ghosh-Berkowitz-Parr entropy, Onicescu information energy, Rényi entropy, etc., one is able to accurately evaluate orbital-related properties in WFT like frontier orbital energies and the HOMO (highest occupied molecular orbital)/LUMO (lowest unoccupied molecular orbital) gap. We verified these results at both the whole molecule level and the atoms-in-molecules level. These results provide compelling evidence suggesting that WFT and DFT are complementary to each other, both trying to comprehend the same properties of the electronic structure and molecular reactivity from different perspectives using their own characteristic vocabulary. Hence, there should be a bridge or bridges between the two approaches.

  15. Energy Factors in Commercial Mortgages: Gaps and Opportunities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mathew, Paul; Coleman, Philip; Wallace, Nancy

    2016-09-01

    The commercial real estate mortgage market is enormous, with almost half a trillion dollars in deals originated in 2015. Relative to other energy efficiency financing mechanisms, very little attention has been paid to the potential of commercial mortgages as a channel for promoting energy efficiency investments. The valuation and underwriting elements of the business are largely driven by the “net operating income” (NOI) metric – essentially, rents minus expenses. While NOI ostensibly includes all expenses, energy factors are in several ways given short shrift in the underwriting process. This is particularly interesting when juxtaposed upon a not insignificant body ofmore » research revealing that there are in fact tangible benefits (such as higher valuations and lower vacancy and default rates) for energy-efficient and “green” commercial buildings. This scoping report characterizes the current status and potential interventions to promote greater inclusion of energy factors in the commercial mortgage process.« less

  16. Closing yield gaps: perils and possibilities for biodiversity conservation

    PubMed Central

    Phalan, Ben; Green, Rhys; Balmford, Andrew

    2014-01-01

    Increasing agricultural productivity to ‘close yield gaps’ creates both perils and possibilities for biodiversity conservation. Yield increases often have negative impacts on species within farmland, but at the same time could potentially make it more feasible to minimize further cropland expansion into natural habitats. We combine global data on yield gaps, projected future production of maize, rice and wheat, the distributions of birds and their estimated sensitivity to changes in crop yields to map where it might be most beneficial for bird conservation to close yield gaps as part of a land-sparing strategy, and where doing so might be most damaging. Closing yield gaps to attainable levels to meet projected demand in 2050 could potentially help spare an area equivalent to that of the Indian subcontinent. Increasing yields this much on existing farmland would inevitably reduce its biodiversity, and therefore we advocate efforts both to constrain further increases in global food demand, and to identify the least harmful ways of increasing yields. The land-sparing potential of closing yield gaps will not be realized without specific mechanisms to link yield increases to habitat protection (and restoration), and therefore we suggest that conservationists, farmers, crop scientists and policy-makers collaborate to explore promising mechanisms. PMID:24535392

  17. Water limits to closing yield gaps

    NASA Astrophysics Data System (ADS)

    Davis, Kyle Frankel; Rulli, Maria Cristina; Garrassino, Francesco; Chiarelli, Davide; Seveso, Antonio; D'Odorico, Paolo

    2017-01-01

    Agricultural intensification is often seen as a suitable approach to meet the growing demand for agricultural products and improve food security. It typically entails the use of fertilizers, new cultivars, irrigation, and other modern technology. In regions of the world affected by seasonal or chronic water scarcity, yield gap closure is strongly dependent on irrigation (blue water). Global yield gap assessments have often ignored whether the water required to close the yield gap is locally available. Here we perform a gridded global analysis (10 km resolution) of the blue water consumption that is needed annually to close the yield gap worldwide and evaluate the associated pressure on renewable freshwater resources. We find that, to close the yield gap, human appropriation of freshwater resources for irrigation would have to increase at least by 146%. Most study countries would experience at least a doubling in blue water requirement, with 71% of the additional blue water being required by only four crops - maize, rice, soybeans, and wheat. Further, in some countries (e.g., Algeria, Morocco, Syria, Tunisia, and Yemen) the total volume of blue water required for yield gap closure would exceed sustainable levels of freshwater consumption (i.e., 40% of total renewable surface and groundwater resources).

  18. Structural and electronic properties of GaAs and GaP semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rani, Anita; Kumar, Ranjan

    2015-05-15

    The Structural and Electronic properties of Zinc Blende phase of GaAs and GaP compounds are studied using self consistent SIESTA-code, pseudopotentials and Density Functional Theory (DFT) in Local Density Approximation (LDA). The Lattice Constant, Equillibrium Volume, Cohesive Energy per pair, Compressibility and Band Gap are calculated. The band gaps calcultated with DFT using LDA is smaller than the experimental values. The P-V data fitted to third order Birch Murnaghan equation of state provide the Bulk Modulus and its pressure derivatives. Our Structural and Electronic properties estimations are in agreement with available experimental and theoretical data.

  19. Tunnel effect wave energy detection

    NASA Technical Reports Server (NTRS)

    Kaiser, William J. (Inventor); Waltman, Steven B. (Inventor); Kenny, Thomas W. (Inventor)

    1995-01-01

    Methods and apparatus for measuring gravitational and inertial forces, magnetic fields, or wave or radiant energy acting on an object or fluid in space provide an electric tunneling current through a gap between an electrode and that object or fluid in space and vary that gap with any selected one of such forces, magnetic fields, or wave or radiant energy acting on that object or fluid. These methods and apparatus sense a corresponding variation in an electric property of that gap and determine the latter force, magnetic fields, or wave or radiant energy in response to that corresponding variation, and thereby sense or measure such parameters as acceleration, position, particle mass, velocity, magnetic field strength, presence or direction, or wave or radiant energy intensity, presence or direction.

  20. Spin asymmetric band gap opening in graphene by Fe adsorption

    NASA Astrophysics Data System (ADS)

    del Castillo, E.; Cargnoni, F.; Achilli, S.; Tantardini, G. F.; Trioni, M. I.

    2015-04-01

    The adsorption of Fe atom on graphene is studied by first-principles Density Functional Theory. The structural, electronic, and magnetic properties are analyzed at different coverages, all preserving C6v symmetry for the Fe adatom. We observed that binding energies, magnetic moments, and adsorption distances rapidly converge as the size of the supercell increases. Among the considered supercells, those constituted by 3n graphene unit cells show a very peculiar behavior: the adsorption of a Fe atom induces the opening of a spin-dependent gap in the band structure. In particular, the gap amounts to tenths of eV in the majority spin component, while in the minority one it has a width of about 1 eV for the 3 × 3 supercell and remains significant even at very low coverages (0.25 eV for θ ≃ 2%). The charge redistribution upon Fe adsorption has also been analyzed according to state of the art formalisms indicating an appreciable charge transfer from Fe to the graphene layer.

  1. Band-edges and band-gap in few-layered transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Bhunia, Hrishikesh; Pal, Amlan J.

    2018-05-01

    We have considered liquid-exfoliated transition metal dichalcogenides (WS2, WSe2, MoS2, and MoSe2) and studied their band-edges and band-gap through scanning tunneling spectroscopy (STS) and density of states. A monolayer, bilayer (2L), and trilayer (3L) of each of the layered materials were characterized to derive the energies. Upon an increase in the number of layers, both the band-edges were found to shift towards the Fermi energy. The results from the exfoliated nanosheets have been compared with reported STS studies of MoS2 and WSe2 formed through chemical vapor deposition or molecular beam epitaxy methods; an uncontrolled lattice strain existed in such 2L and 3L nanoflakes due to mismatch in stacking-patterns between the monolayers affecting their energies. In the present work, the layers formed through the liquid-exfoliation process retained their interlayer coupling or stacking-sequence prevalent to the bulk and hence allowed determination of band-energies in these strain-free two-dimensional materials.

  2. Temperature dependence of the superconducting energy gaps in Ca9.35La0.65(Pt3As8)(Fe2As2)5 single crystal.

    PubMed

    Seo, Yu-Il; Choi, Woo-Jae; Ahmad, D; Kimura, Shin-Ichi; Kwon, Yong Seung

    2018-06-05

    We measured the optical reflectivity R(ω) for an underdoped (Ca 0.935 La 0.065 ) 10 (Pt 3 As 8 )(Fe 2 As 2 ) 5 single crystal and obtained the optical conductivity [Formula: see text] using the K-K transformation. The normal state [Formula: see text] at 30 K is well fitted by a Drude-Lorentz model with two Drude components (ω p1  = 1446 cm -1 and ω p2  = 6322 cm -1 ) and seven Lorentz components. Relative reflectometry was used to accurately determine the temperature dependence of the superconducting gap at various temperatures below T c . The results clearly show the opening of a superconducting gap with a weaker second gap structure; the magnitudes for the gaps are estimated from the generalized Mattis-Bardeen model to be Δ 1  = 30 and Δ 2  = 50 cm -1 , respectively, at T = 8 K, which both decrease with increasing temperature. The temperature dependence of the gaps was not consistent with one-band BCS theory but was well described by a two-band (hence, two gap) BCS model with interband interactions. The temperature dependence of the superfluid density is flat at low temperatures, indicating an s-wave full-gap superconducting state.

  3. Influence of the chemical potential on the Casimir-Polder interaction between an atom and gapped graphene or a graphene-coated substrate

    NASA Astrophysics Data System (ADS)

    Henkel, C.; Klimchitskaya, G. L.; Mostepanenko, V. M.

    2018-03-01

    We present a formalism based on first principles of quantum electrodynamics at nonzero temperature which permits us to calculate the Casimir-Polder interaction between an atom and a graphene sheet with arbitrary mass gap and chemical potential, including graphene-coated substrates. The free energy and force of the Casimir-Polder interaction are expressed via the polarization tensor of graphene in (2 +1 ) -dimensional space-time in the framework of the Dirac model. The obtained expressions are used to investigate the influence of the chemical potential of graphene on the Casimir-Polder interaction. Computations are performed for an atom of metastable helium interacting with either a freestanding graphene sheet or a graphene-coated substrate made of amorphous silica. It is shown that the impacts of the nonzero chemical potential and the mass gap on the Casimir-Polder interaction are in opposite directions, by increasing and decreasing the magnitudes of the free energy and force, respectively. It turns out, however, that the temperature-dependent part of the Casimir-Polder interaction is decreased by a nonzero chemical potential, whereas the mass gap increases it compared to the case of undoped, gapless graphene. The physical explanation for these effects is provided. Numerical computations of the Casimir-Polder interaction are performed at various temperatures and atom-graphene separations.

  4. Optimization of air gap for two-dimensional imaging system using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Zeniya, Tsutomu; Takeda, Tohoru; Yu, Quanwen; Hyodo, Kazuyuki; Yuasa, Tetsuya; Aiyoshi, Yuji; Hiranaka, Yukio; Itai, Yuji; Akatsuka, Takao

    2000-11-01

    Since synchrotron radiation (SR) has several excellent properties such as high brilliance, broad continuous energy spectrum and small divergence, we can obtain x-ray images with high contrast and high spatial resolution by using of SR. In 2D imaging using SR, air gap method is very effective to reduce the scatter contamination. However, to use air gap method, the geometrical effect of finite source size of SR must be considered because spatial resolution of image is degraded by air gap. For 2D x-ray imaging with SR, x-ray mammography was chosen to examine the effect of air gap method. We theoretically discussed the optimization of air gap distance suing effective scatter point source model proposed by Muntz, and executed experiment with a newly manufactured monochromator with asymmetrical reflection and an imaging plate.

  5. Diffraction studies of the high pressure phases of GaAs and GaP

    NASA Technical Reports Server (NTRS)

    Baublitz, M., Jr.; Ruoff, A. L.

    1982-01-01

    High pressure structural phase transitions of GaAs and GaP have been studied by energy dispersive X-ray diffraction with the radiation from the Cornell High Energy Synchrotron Source. GaAs began to transform at 172 + or - 7 kbar to an orthorhombic structure possibly belonging to space group Fmmm. GaP transformed to a tetragonal beta-Sn type phase at 215 + or - 8 kbar. Although pressure transmitting media were used to minimize shear stresses in the specimens, the high pressure diffraction results were interpreted as showing evidence for planar defects in the specimens.

  6. Effect of high temperature annealing on the thermoelectric properties of GaP doped SiGe

    NASA Technical Reports Server (NTRS)

    Vandersande, Jan W.; Wood, Charles; Draper, Susan

    1987-01-01

    Silicon-germanium alloys doped with GaP are used for thermoelectric energy conversion in the temperature range 300-1000 C. The conversion efficiency depends on Z = S-squared/rho lambda, a material's parameter (the figure of merit), where S is the Seebeck coefficient, rho is the electrical resistivity and lambda is the thermal conductivity. The annealing of several samples in the temperature range of 1100-1300 C resulted in the power factor P (= S-squared/rho) increasing with increased annealing temperature. This increase in P was due to a decrease in rho which was not completely offset by a drop in S-squared suggesting that other changes besides that in the carrier concentration took place. SEM and EDX analysis of the samples indicated the formation of a Ga-P-Ge rich phase as a result of the annealing. It is speculated that this phase is associated with the improved properties. Several reasons which could account for the improvement in the power factor of annealed GaP doped SiGe are given.

  7. Rapidity gaps between jets in photoproduction at HERA

    NASA Astrophysics Data System (ADS)

    Derrick, M.; Krakauer, D.; Magill, S.; Mikunas, D.; Musgrave, B.; Repond, J.; Stanek, R.; Talaga, R. L.; Zhang, H.; Bari, G.; Basile, M.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruni, P.; Cara Romeo, G.; Castellini, G.; Chiarini, M.; Cifarelli, L.; Cindolo, F.; Contin, A.; Corradi, M.; Gialas, I.; Giusti, P.; Iacobucci, G.; Laurenti, G.; Levi, G.; Margotti, A.; Massam, T.; Nania, R.; Nemoz, C.; Palmonari, F.; Polini, A.; Sartorelli, G.; Timellini, R.; Zamora Garcia, Y.; Zichichi, A.; Bornheim, A.; Crittenden, J.; Desch, K.; Diekmann, B.; Doeker, T.; Eckert, M.; Feld, L.; Frey, A.; Geerts, M.; Grothe, M.; Hartmann, H.; Heinloth, K.; Heinz, L.; Hilger, E.; Jakob, H.-P.; Katz, U. F.; Mengel, S.; Mollen, J.; Paul, E.; Pfeiffer, M.; Rembser, Ch.; Schramm, D.; Stamm, J.; Wedemeyer, R.; Campbell-Robson, S.; Cassidy, A.; Cottingham, W. N.; Dyce, N.; Foster, B.; George, S.; Hayes, M. E.; Heath, G. P.; Heath, H. F.; Morgado, C. J. S.; O'Mara, J. A.; Piccioni, D.; Roff, D. G.; Tapper, R. J.; Yoshida, R.; Rau, R. R.; Arneodo, M.; Ayad, R.; Capua, M.; Garfagnini, A.; Iannotti, L.; Schioppa, M.; Susinno, G.; Bernstein, A.; Caldwell, A.; Cartiglia, N.; Parsons, J. A.; Ritz, S.; Sciulli, F.; Straub, P. B.; Wai, L.; Yang, S.; Zhu, Q.; Borzemski, P.; Chwastowski, J.; Eskreys, A.; Piotrzkowski, K.; Zachara, M.; Zawiejski, L.; Adamczyk, L.; Bednarek, B.; Jeleń, K.; Kisielewska, D.; Kowalski, T.; Przybycień, M.; Rulikowska-Zarȩbska, E.; Suszycki, L.; Zajaç, J.; Kotański, A.; Bauerdick, L. A. T.; Behrens, U.; Beier, H.; Bienlein, J. K.; Coldewey, C.; Deppe, O.; Desler, K.; Drews, G.; Flasiński, M.; Gilkinson, D. J.; Glasman, C.; Göttlicher, P.; Groß-Knetter, J.; Gutjahr, B.; Haas, T.; Hain, W.; Hasell, D.; Heßling, H.; Iga, Y.; Johnson, K. F.; Joos, P.; Kasemann, M.; Klanner, R.; Koch, W.; Köpke, L.; Kötz, U.; Kowalski, H.; Labs, J.; Ladage, A.; Löhr, B.; Löwe, M.; Lüke, D.; Mainusch, J.; Mańczak, O.; Monteiro, T.; Ng, J. S. T.; Nickel, S.; Notz, D.; Ohrenberg, K.; Roco, M.; Rohde, M.; Roldán, J.; Schneekloth, U.; Schulz, W.; Selonke, F.; Stiliaris, E.; Surrow, B.; Voß, T.; Westphal, D.; Wolf, G.; Youngman, C.; Zeuner, W.; Zhou, J. F.; Grabosch, H. J.; Kharchilava, A.; Leich, A.; Mari, S. M.; Mattingly, M. C. K.; Meyer, A.; Schlenstedt, S.; Wulff, N.; Barbagli, G.; Gallo, E.; Pelfer, P.; Anzivino, G.; Maccarrone, G.; De Pasquale, S.; Votano, L.; Bamberger, A.; Eisenhardt, S.; Freidhof, A.; Söldner-Rembold, S.; Schroeder, J.; Trefzger, T.; Brook, N. H.; Bussey, P. J.; Doyle, A. T.; Saxon, D. H.; Utley, M. L.; Wilson, A. S.; Dannemann, A.; Holm, U.; Horstmann, D.; Neumann, T.; Sinkus, R.; Wick, K.; Badura, E.; Burow, B. D.; Hagge, L.; Lohrmann, E.; Milewski, J.; Nakahata, M.; Pavel, N.; Poelz, G.; Schott, W.; Zetsche, F.; Bacon, T. C.; Bruemmer, N.; Butterworth, I.; Harris, V. L.; Hung, B. Y. H.; Long, K. R.; Miller, D. B.; Morawitz, P. P. O.; Prinias, A.; Sedgbeer, J. K.; Whitfield, A. F.; Mallik, U.; McCliment, E.; Wang, M. Z.; Wang, S. M.; Wu, J. T.; Cloth, P.; Filges, D.; An, S. H.; Hong, S. M.; Nam, S. V.; Park, S. K.; Suh, M. H.; Yon, S. H.; Imlay, R.; Kartik, S.; Kim, H.-J.; McNeil, R. R.; Metcalf, W.; Nadendla, V. K.; Barreiro, F.; Cases, G.; Fernandez, J. P.; Graciani, R.; Hernández, J. M.; Hervás, L.; Labarga, L.; Martinez, M.; del Peso, J.; Puga, J.; Terron, J.; de Trocóniz, J. F.; Smith, G. R.; Corriveau, F.; Hanna, D. S.; Hartmann, J.; Hung, L. W.; Lim, J. N.; Matthews, C. G.; Patel, P. M.; Sinclair, L. E.; Stairs, D. G.; St. Laurent, M.; Ullmann, R.; Zacek, G.; Bashkirov, V.; Dolgoshein, B. A.; Stifutkin, A.; Bashindzhagyan, G. L.; Ermolov, P. F.; Gladilin, L. K.; Golubkov, Yu. A.; Kobrin, V. D.; Korzhavina, I. A.; Kuzmin, V. A.; Lukina, O. Yu.; Proskuryakov, A. S.; Savin, A. A.; Shcheglova, L. M.; Solomin, A. N.; Zotov, N. P.; Botje, M.; Chlebana, F.; Dake, A.; Engelen, J.; de Kamps, M.; Kooijman, P.; Kruse, A.; Tiecke, H.; Verkerke, W.; Vreeswijk, M.; Wiggers, L.; de Wolf, E.; van Woudenberg, R.; Acosta, D.; Bylsma, B.; Durkin, L. S.; Gilmore, J.; Honscheid, K.; Li, C.; Ling, T. Y.; McLean, K. W.; Nylander, P.; Park, I. H.; Romanowski, T. A.; Seidlein, R.; Bailey, D. S.; Byrne, A.; Cashmore, R. J.; Cooper-Sarkar, A. M.; Devenish, R. C. E.; Harnew, N.; Lancaster, M.; Lindemann, L.; McFall, J. D.; Nath, C.; Noyes, V. A.; Quadt, A.; Tickner, J. R.; Uijterwaal, H.; Walczak, R.; Waters, D. S.; Wilson, F. F.; Yip, T.; Abbiendi, G.; Bertolin, A.; Brugnera, R.; Carlin, R.; Dal Corso, F.; De Giorgi, M.; Dosselli, U.; Limentani, S.; Morandin, M.; Posocco, M.; Stanco, L.; Stroili, R.; Voci, C.; Bulmahn, J.; Butterworth, J. M.; Feild, R. G.; Oh, B. Y.; Okrasinski, J. R.; Whitmore, J. J.; D'Agostini, G.; Marini, G.; Nigro, A.; Tassi, E.; Hart, J. C.; McCubbin, N. A.; Prytz, K.; Shah, T. P.; Short, T. L.; Barberis, E.; Dubbs, T.; Heusch, C.; Van Hook, M.; Lockman, W.; Rahn, J. T.; Sadrozinski, H. F.-W.; Seiden, A.; Williams, D. C.; Biltzinger, J.; Seifert, R. J.; Schwarzer, O.; Walenta, A. H.; Zech, G.; Abramowicz, H.; Briskin, G.; Dagan, S.; Händel-Pikielny, C.; Levy, A.; Fleck, J. I.; Hasegawa, T.; Hazumi, M.; Ishii, T.; Kuze, M.; Mine, S.; Nagasawa, Y.; Nakao, M.; Suzuki, I.; Tokushuku, K.; Yamada, S.; Yamazaki, Y.; Chiba, M.; Hamatsu, R.; Hirose, T.; Homma, K.; Kitamura, S.; Nakamitsu, Y.; Yamauchi, K.; Cirio, R.; Costa, M.; Ferrero, M. I.; Lamberti, L.; Maselli, S.; Peroni, C.; Sacchi, R.; Solano, A.; Staiano, A.; Dardo, M.; Bailey, D. C.; Bandyopadhyay, D.; Benard, F.; Brkic, M.; Gingrich, D. M.; Hartner, G. F.; Joo, K. K.; Levman, G. M.; Martin, J. F.; Orr, R. S.; Polenz, S.; Sampson, C. R.; Teuscher, R. J.; Catterall, C. D.; Jones, T. W.; Kaziewicz, P. B.; Lane, J. B.; Saunders, R. L.; Shulman, J.; Blankenship, K.; Lu, B.; Mo, L. W.; Bogusz, W.; Charchuła, K.; Ciborowski, J.; Gajewski, J.; Grzelak, G.; Kasprzak, M.; Krzyżanowski, M.; Muchorowski, K.; Nowak, R. J.; Pawlak, J. M.; Tymieniecka, T.; Wróblewski, A. K.; Zakrzewski, J. A.; Żarnecki, A. F.; Adamus, M.; Eisenberg, Y.; Karshon, U.; Revel, D.; Zer-Zion, D.; Ali, I.; Badgett, W. F.; Behrens, B.; Dasu, S.; Fordham, C.; Foudas, C.; Goussiou, A.; Loveless, R. J.; Reeder, D. D.; Silverstein, S.; Smith, W. H.; Vaiciulis, A.; Wodarczyk, M.; Tsurugai, T.; Bhadra, S.; Cardy, M. L.; Fagerstroem, C.-P.; Frisken, W. R.; Furutani, K. M.; Khakzad, M.; Murray, W. N.; Schmidke, W. B.; ZEUS Collaboration

    1996-02-01

    Photoproduction events which have two or more jets have been studied in the Wγp range 135 GeV < Wγp < 280 GeV with the ZEUS detector at HERA. A class of events is observed with little hadronic activity between the jets. The jets are separated by pseudorapidity intervals (Δη) of up to four units and have transverse energies greater than 6 GeV. A gap is defined as the absence between the jets of particles with transverse energy greater than 300 MeV. The fraction of events containing a gap is measured as a function of Δη. It decreases exponentially as expected for processes in which colour is exchanged between the jets, up to a value of Δη ˜ 3, then reaches a cconstant value of about 0.1. The excess above the exponential fall-off can be interpreted as evidence for hard diffractive scattering via a strongly interacting colour singlet object.

  8. Nanocomposites with increased energy density through high aspect ratio PZT nanowires.

    PubMed

    Tang, Haixiong; Lin, Yirong; Andrews, Clark; Sodano, Henry A

    2011-01-07

    High energy storage plays an important role in the modern electric industry. Herein, we investigated the role of filler aspect ratio in nanocomposites for energy storage. Nanocomposites were synthesized using lead zirconate titanate (PZT) with two different aspect ratio (nanowires, nanorods) fillers at various volume fractions dispersed in a polyvinylidene fluoride (PVDF) matrix. The permittivity constants of composites containing nanowires (NWs) were higher than those with nanorods (NRs) at the same inclusion volume fraction. It was also indicated that the high frequency loss tangent of samples with PZT nanowires was smaller than for those with nanorods, demonstrating the high electrical energy storage efficiency of the PZT NW nanocomposite. The high aspect ratio PZT NWs showed a 77.8% increase in energy density over the lower aspect ratio PZT NRs, under an electric field of 15 kV mm(-1) and 50% volume fraction. The breakdown strength was found to decrease with the increasing volume fraction of PZT NWs, but to only change slightly from a volume fraction of around 20%-50%. The maximum calculated energy density of nanocomposites is as high as 1.158 J cm(-3) at 50% PZT NWs in PVDF. Since the breakdown strength is lower compared to a PVDF copolymer such as poly(vinylidene fluoride-tertrifluoroethylene-terchlorotrifluoroethylene) P(VDF-TreEE-CTFE) and poly(vinylidene fluoride-co-hexafluoropropylene) P(VDF-HFP), the energy density of the nanocomposite could be significantly increased through the use of PZT NWs and a polymer with greater breakdown strength. These results indicate that higher aspect ratio fillers show promising potential to improve the energy density of nanocomposites, leading to the development of advanced capacitors with high energy density.

  9. Quantum many-body intermetallics: Phase stability of Fe3Al and small-gap formation in Fe2VAl

    NASA Astrophysics Data System (ADS)

    Kristanovski, Oleg; Richter, Raphael; Krivenko, Igor; Lichtenstein, Alexander I.; Lechermann, Frank

    2017-01-01

    Various intermetallic compounds harbor subtle electronic correlation effects. To elucidate this fact for the Fe-Al system, we perform a realistic many-body investigation based on a combination of density functional theory with dynamical mean-field theory in a charge self-consistent manner. A better characterization and understanding of the phase stability of bcc-based D 03-Fe3Al through an improved description of the correlated charge density and the magnetic energy is achieved. Upon replacement of one Fe sublattice with V, the Heusler compound Fe2VAl is realized, known to display bad-metal behavior and increased specific heat. Here we document a charge-gap opening at low temperatures in line with previous experimental work. The gap structure does not match conventional band theory and is reminiscent of (pseudo)gap characteristics in correlated oxides.

  10. ZnO-based semiconductors with tunable band gap for solar sell applications

    NASA Astrophysics Data System (ADS)

    Itagaki, N.; Matsushima, K.; Yamashita, D.; Seo, H.; Koga, K.; Shiratani, M.

    2014-03-01

    In this study, we discuss the potential advantages of a new ZnO-based semiconductor, ZnInON (ZION), for application in multi quantum-well (MQW) photovoltaics. ZION is a pseudo-binary alloy of ZnO and InN, which has direct and tunable band gaps over the entire visible spectrum. It was found from simulation results that owing to the large piezoelectric constant, the spatial overlap of the electron and hole wave functions in the QWs is significantly small on the order of 10-2, where the strong piezoelectric field enhances the separation of photo generated carriers. As a result, ZION QWs have low carrier recombination rate of 1014-1018 cm-3s-1, which is much lower than that in conventional QWs such as InGaAs/GaAs QW (1019 cm-3s-1) and InGaN/GaN QW (1018-1018 cm-3s-1). The long carrier life time in ZION QWs (˜1μs) should enable the extraction of photo-generated carriers from well layers before the recombination, and thus increase Voc and Jsc. These simulation results are consistent with our experimental data showing that both Voc and Jsc of a p-i-n solar cell with strained ZION MQWs and thus the efficiency were increased by the superimposition of laser light with lower photon energy than the band gap energy of the QWs. Since the laser light contributed not to carrier generation but to the carrier extraction from the QWs, and no increase in Voc and Jsc was observed for relaxed ZION MQWs, the improvement in the efficiency was attributed to the long carrier lifetime in the strained ZION QWs.

  11. Strain-induced optical band gap variation of SnO 2 films

    DOE PAGES

    Rus, Stefania Florina; Ward, Thomas Zac; Herklotz, Andreas

    2016-06-29

    In this paper, thickness dependent strain relaxation effects are utilized to study the impact of crystal anisotropy on the optical band gap of epitaxial SnO 2 films grown by pulsed laser deposition on (0001)-oriented sapphire substrates. An X-ray diffraction analysis reveals that all films are under tensile biaxial in-plane strain and that strain relaxation occurs with increasing thickness. Variable angle spectroscopic ellipsometry shows that the optical band gap of the SnO 2 films continuously increases with increasing film thickness. This increase in the band gap is linearly related to the strain state of the films, which indicates that the mainmore » origin of the band gap change is strain relaxation. The experimental observation is in excellent agreement with results from density functional theory for biaxial in-plane strain. Our research demonstrates that strain is an effective way to tune the band gap of SnO 2 films and suggests that strain engineering is an appealing route to tailor the optical properties of oxide semiconductors.« less

  12. Fundamental gaps with approximate density functionals: The derivative discontinuity revealed from ensemble considerations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kraisler, Eli; Kronik, Leeor

    2014-05-14

    The fundamental gap is a central quantity in the electronic structure of matter. Unfortunately, the fundamental gap is not generally equal to the Kohn-Sham gap of density functional theory (DFT), even in principle. The two gaps differ precisely by the derivative discontinuity, namely, an abrupt change in slope of the exchange-correlation energy as a function of electron number, expected across an integer-electron point. Popular approximate functionals are thought to be devoid of a derivative discontinuity, strongly compromising their performance for prediction of spectroscopic properties. Here we show that, in fact, all exchange-correlation functionals possess a derivative discontinuity, which arises naturallymore » from the application of ensemble considerations within DFT, without any empiricism. This derivative discontinuity can be expressed in closed form using only quantities obtained in the course of a standard DFT calculation of the neutral system. For small, finite systems, addition of this derivative discontinuity indeed results in a greatly improved prediction for the fundamental gap, even when based on the most simple approximate exchange-correlation density functional – the local density approximation (LDA). For solids, the same scheme is exact in principle, but when applied to LDA it results in a vanishing derivative discontinuity correction. This failure is shown to be directly related to the failure of LDA in predicting fundamental gaps from total energy differences in extended systems.« less

  13. Giant Enhancement in Radiative Heat Transfer in Sub-30 nm Gaps of Plane Parallel Surfaces.

    PubMed

    Fiorino, Anthony; Thompson, Dakotah; Zhu, Linxiao; Song, Bai; Reddy, Pramod; Meyhofer, Edgar

    2018-06-13

    Radiative heat transfer rates that exceed the blackbody limit by several orders of magnitude are expected when the gap size between plane parallel surfaces is reduced to the nanoscale. To date, experiments have only realized enhancements of ∼100 fold as the smallest gap sizes in radiative heat transfer studies have been limited to ∼50 nm by device curvature and particle contamination. Here, we report a 1,200-fold enhancement with respect to the far-field value in the radiative heat flux between parallel planar silica surfaces separated by gaps as small as ∼25 nm. Achieving such small gap sizes and the resultant dramatic enhancement in near-field energy flux is critical to achieve a number of novel near-field based nanoscale energy conversion systems that have been theoretically predicted but remain experimentally unverified.

  14. Structural Dynamics of Tropical Moist Forest Gaps

    PubMed Central

    Hunter, Maria O.; Keller, Michael; Morton, Douglas; Cook, Bruce; Lefsky, Michael; Ducey, Mark; Saleska, Scott; de Oliveira, Raimundo Cosme; Schietti, Juliana

    2015-01-01

    % versus 6 %) within gaps. Both sites demonstrate limited gap contagiousness defined by an increase in the likelihood of mortality in the immediate vicinity (~6 m) of existing gaps. PMID:26168242

  15. Structural Dynamics of Tropical Moist Forest Gaps.

    PubMed

    Hunter, Maria O; Keller, Michael; Morton, Douglas; Cook, Bruce; Lefsky, Michael; Ducey, Mark; Saleska, Scott; de Oliveira, Raimundo Cosme; Schietti, Juliana

    2015-01-01

    %) within gaps. Both sites demonstrate limited gap contagiousness defined by an increase in the likelihood of mortality in the immediate vicinity (~6 m) of existing gaps.

  16. Preparation and Optoelectronic Characteristics of ZnO/CuO-Cu2O Complex Inverse Heterostructure with GaP Buffer for Solar Cell Applications

    PubMed Central

    Hsu, Chih-Hung; Chen, Lung-Chien; Lin, Yi-Feng

    2013-01-01

    This study reports the optoelectronic characteristics of ZnO/GaP buffer/CuO-Cu2O complex (COC) inverse heterostructure for solar cell applications. The GaP and COC layers were used as buffer and absorber in the cell structure, respectively. An energy gap widening effect and CuO whiskers were observed as the copper (Cu) layer was exerted under heat treatment for oxidation at 500 °C for 10 min, and arose from the center of the Cu2O rods. For preparation of the 30 nm-thick GaP buffer by sputtering from GaP target, as the nitrogen gas flow rate increased from 0 to 2 sccm, the transmittance edge of the spectra demonstrated a blueshift form 2.24 to 3.25 eV. Therefore, the layer can be either GaP, GaNP, or GaN by changing the flow rate of nitrogen gas. PMID:28788341

  17. [Research progress of larger flexion gap than extension gap in total knee arthroplasty].

    PubMed

    Zhang, Weisong; Hao, Dingjun

    2017-05-01

    To summarize the progress of larger flexion gap than extension gap in total knee arthro-plasty (TKA). The domestic and foreign related literature about larger flexion gap than extension gap in TKA, and its impact factors, biomechanical and kinematic features, and clinical results were summarized. During TKA, to adjust the relations of flexion gap and extension gap is one of the key factors of successful operation. The biomechanical, kinematic, and clinical researches show that properly larger flexion gap than extension gap can improve both the postoperative knee range of motion and the satisfaction of patients, but does not affect the stability of the knee joint. However, there are also contrary findings. So adjustment of flexion gap and extension gap during TKA is still in dispute. Larger flexion gap than extension gap in TKA is a new joint space theory, and long-term clinical efficacy, operation skills, and related complications still need further study.

  18. Early Learning: Unintended Consequences of the Push to Close the Gap by Increasing Quality

    ERIC Educational Resources Information Center

    Sirinides, Phil

    2015-01-01

    Public education in the United States continues to be marked by persistent disparities in test scores, high school completion rates, and college enrollment rates based on factors such as students' household income, race/ethnicity, and gender. These achievement gaps are already in evidence before children begin school. Students that are assessed as…

  19. Band gap narrowing in BaTiO{sub 3} nanoparticles facilitated by multiple mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramakanth, S.; James Raju, K. C., E-mail: kcjrsp@uohyd.ernet.in; School of Physics, University of Hyderabad, Hyderabad 500046

    2014-05-07

    In the present work, BaTiO{sub 3} nanoparticles of four different size ranges were prepared by sol-gel method. The optical band gap of these particles at some size ranges has come down to 2.53 eV from 3.2 eV, resulting in substantial increase in optical absorption by these ferroelectric nanoparticles making them potential candidates for light energy harvesting. XRD results show the presence of higher compressive strain in 23 nm and 54 nm size particles, they exhibit a higher band gap narrowing, whereas tensile strain is observed in 31 nm and 34 nm particles, and they do not show the marginal band gap narrowing. The 23 nm and 54 nmmore » particles also show a coupling of free carriers to phonons by increasing the intensity of LO phonon mode at 715 cm{sup −1}. The higher surface charge density is expected in case of enhanced surface optical Raman modes (638 cm{sup −1}) contained in 31 and 34 nm size particles. In addition to this, the red shift in an LO mode Raman spectral line at 305 cm{sup −1} with decrease in particle size depicts the presence of phonon confinement in it. The enhanced optical absorption in 23 nm and 54 nm size particles with a narrowed band gap of 3 eV and 2.53 eV is due to exchange correlation interactions between the carriers present in these particles. In 31 nm and 34 nm range particles, the absorption got bleached exhibiting increased band gaps of 3.08 eV and 3.2 eV, respectively. It is due to filling up of conduction band resulting from weakening of exchange correlation interactions between the charge carriers. Hence, it is concluded that the band gap narrowing in the nanoparticles of average size 23 nm/54 nm is a consequence of multiple effects like strain, electron-phonon interaction, and exchange correlation interactions between the carriers which is subdued in some other size ranges like 31 nm/34 nm.« less

  20. Investigation of wide band gap semiconductors: Electrical, optical, and structural properties

    NASA Astrophysics Data System (ADS)

    Gong, Yinyan

    Wide band gap semiconductors are important for many device applications, particularly for lasers and light emitting diodes. In this thesis, we studied (1) the enhancement, by thermal annealing, of p-type doping in Mg-doped GaN grown by metal-organic chemical vapor deposition (MOCVD), (2) the formation of type-II ZnTe quantum dots (QDs) in Zn-Se-Te multilayers with submonolayer insertion of ZnTe, as well as the mechanism of the increase of acceptor incorporation in such samples, (3) optical properties of colloidal-synthesized ZnO nanocrystals. For GaN:Mg grown by MOCVD, it is found that atomic hydrogen, generated during growth, acts as a compensating donor and thus increases the solubility of the acceptor dopant; subsequent to the growth, H can be easily removed and leaves Mg in excess of its equilibrium solubility. For Zn-Se-Te multilayers with submonolayer insertions of ZnTe, it is found that type-II ZnTe QDs are formed even with only one deposition cycle of submonolayer ZnTe. However, the density of QDs in this case is lower than for samples with three consecutive deposition cycles of ZnTe. Moreover, for Zn-Te-Se multilayers where N is deposited together with Te, it is found that N (acceptor dopant) is embedded in ZnTe-rich nanoislands, a material readily doped p-type. We note that only minimal amounts of Te are incorporated in the overall epitaxial film; thus the overall energy gap remains close to that of pure ZnSe. Finally, we studied the optical properties of collidal-synthesized nanocrystals of ZnO, a material of great interest because of its large energy gap (˜3.36 eV at room temperature (RT)) together with a high exciton binding energy (˜60 meV at RT). The photoluminescence (PL) of all our samples consists of a dominant near-band-edge UV emission and a weak broad green emission. The origin of the observed green emission is investigated, and attributed to oxygen vacancies near the surface. A simple model for the recombination process, involving free holes

  1. Local strain-induced band gap fluctuations and exciton localization in aged WS2 monolayers

    NASA Astrophysics Data System (ADS)

    Krustok, J.; Kaupmees, R.; Jaaniso, R.; Kiisk, V.; Sildos, I.; Li, B.; Gong, Y.

    2017-06-01

    Optical properties of aged WS2 monolayers grown by CVD method on Si/SiO2 substrates are studied using temperature dependent photoluminescence and reflectance contrast spectroscopy. Aged WS2 monolayers have a typical surface roughness about 0.5 nm and, in addition, a high density of nanoparticles (nanocaps) with the base diameter about 30 nm and average height of 7 nm. The A-exciton of aged monolayer has a peak position at 1.951 eV while in as-grown monolayer the peak is at about 24 meV higher energy at room temperature. This red-shift is explained using local tensile strain concept, where strain value of 2.1% was calculated for these nanocap regions. Strained nanocaps have lower band gap energy and excitons will funnel into these regions. At T=10K a double exciton and trion peaks were revealed. The separation between double peaks is about 20 meV and the origin of higher energy peaks is related to the optical band gap energy fluctuations caused by random distribution of local tensile strain due to increased surface roughness. In addition, a wide defect related exciton band XD was found at about 1.93 eV in all aged monolayers. It is shown that the theory of localized excitons describes well the temperature dependence of peak position and halfwidth of the A-exciton band. The possible origin of nanocaps is also discussed.

  2. Energy spectrum and electrical conductivity of graphene with a nitrogen impurity

    NASA Astrophysics Data System (ADS)

    Repetskii, S. P.; Vyshivanaya, I. G.; Skotnikov, V. A.; Yatsenyuk, A. A.

    2015-04-01

    The electronic structure of graphene with a nitrogen impurity has been studied based on the model of tight binding using exchange-correlation potentials in the density-functional theory. Wave functions of 2 s and 2 p states of neutral noninteracting carbon atoms have been chosen as the basis. When studying the matrix elements of the Hamiltonian, the first three coordination shells have been taken into account. It has been established that the hybridization of electron-energy bands leads to the splitting of the electron energy spectrum near the Fermi level. Due to the overlap of the energy bands, the arising gap behaves as a quasi-gap, in which the density of the electron levels is much lower than in the rest of the spectrum. It has been established that the conductivity of graphene decreases with increasing nitrogen concentration. Since the increase in the nitrogen concentration leads to an increase in the density of states at the Fermi level, the decrease in the conductivity is due to a sharper decrease in the time of relaxation of the electron sates.

  3. Gap Junctions

    PubMed Central

    Nielsen, Morten Schak; Axelsen, Lene Nygaard; Sorgen, Paul L.; Verma, Vandana; Delmar, Mario; Holstein-Rathlou, Niels-Henrik

    2013-01-01

    Gap junctions are essential to the function of multicellular animals, which require a high degree of coordination between cells. In vertebrates, gap junctions comprise connexins and currently 21 connexins are known in humans. The functions of gap junctions are highly diverse and include exchange of metabolites and electrical signals between cells, as well as functions, which are apparently unrelated to intercellular communication. Given the diversity of gap junction physiology, regulation of gap junction activity is complex. The structure of the various connexins is known to some extent; and structural rearrangements and intramolecular interactions are important for regulation of channel function. Intercellular coupling is further regulated by the number and activity of channels present in gap junctional plaques. The number of connexins in cell-cell channels is regulated by controlling transcription, translation, trafficking, and degradation; and all of these processes are under strict control. Once in the membrane, channel activity is determined by the conductive properties of the connexin involved, which can be regulated by voltage and chemical gating, as well as a large number of posttranslational modifications. The aim of the present article is to review our current knowledge on the structure, regulation, function, and pharmacology of gap junctions. This will be supported by examples of how different connexins and their regulation act in concert to achieve appropriate physiological control, and how disturbances of connexin function can lead to disease. © 2012 American Physiological Society. Compr Physiol 2:1981-2035, 2012. PMID:23723031

  4. Frontier molecular orbitals of a single molecule adsorbed on thin insulating films supported by a metal substrate: electron and hole attachment energies.

    PubMed

    Scivetti, Iván; Persson, Mats

    2017-09-06

    We present calculations of vertical electron and hole attachment energies to the frontier orbitals of a pentacene molecule absorbed on multi-layer sodium chloride films supported by a copper substrate using a simplified density functional theory (DFT) method. The adsorbate and the film are treated fully within DFT, whereas the metal is treated implicitly by a perfect conductor model. We find that the computed energy gap between the highest and lowest unoccupied molecular orbitals-HOMO and LUMO -from the vertical attachment energies increases with the thickness of the insulating film, in agreement with experiments. This increase of the gap can be rationalised in a simple dielectric model with parameters determined from DFT calculations and is found to be dominated by the image interaction with the metal. We find, however, that this simplified model overestimates the downward shift of the energy gap in the limit of an infinitely thick film.

  5. Frontier molecular orbitals of a single molecule adsorbed on thin insulating films supported by a metal substrate: electron and hole attachment energies

    NASA Astrophysics Data System (ADS)

    Scivetti, Iván; Persson, Mats

    2017-09-01

    We present calculations of vertical electron and hole attachment energies to the frontier orbitals of a pentacene molecule absorbed on multi-layer sodium chloride films supported by a copper substrate using a simplified density functional theory (DFT) method. The adsorbate and the film are treated fully within DFT, whereas the metal is treated implicitly by a perfect conductor model. We find that the computed energy gap between the highest and lowest unoccupied molecular orbitals—HOMO and LUMO -from the vertical attachment energies increases with the thickness of the insulating film, in agreement with experiments. This increase of the gap can be rationalised in a simple dielectric model with parameters determined from DFT calculations and is found to be dominated by the image interaction with the metal. We find, however, that this simplified model overestimates the downward shift of the energy gap in the limit of an infinitely thick film.

  6. Analog self-powered harvester achieving switching pause control to increase harvested energy

    NASA Astrophysics Data System (ADS)

    Makihara, Kanjuro; Asahina, Kei

    2017-05-01

    In this paper, we propose a self-powered analog controller circuit to increase the efficiency of electrical energy harvesting from vibrational energy using piezoelectric materials. Although the existing synchronized switch harvesting on inductor (SSHI) method is designed to produce efficient harvesting, its switching operation generates a vibration-suppression effect that reduces the harvested levels of electrical energy. To solve this problem, the authors proposed—in a previous paper—a switching method that takes this vibration-suppression effect into account. This method temporarily pauses the switching operation, allowing the recovery of the mechanical displacement and, therefore, of the piezoelectric voltage. In this paper, we propose a self-powered analog circuit to implement this switching control method. Self-powered vibration harvesting is achieved in this study by attaching a newly designed circuit to an existing analog controller for SSHI. This circuit aims to effectively implement the aforementioned new switching control strategy, where switching is paused in some vibration peaks, in order to allow motion recovery and a consequent increase in the harvested energy. Harvesting experiments performed using the proposed circuit reveal that the proposed method can increase the energy stored in the storage capacitor by a factor of 8.5 relative to the conventional SSHI circuit. This proposed technique is useful to increase the harvested energy especially for piezoelectric systems having large coupling factor.

  7. Changes in drug utilization during a gap in insurance coverage: an examination of the medicare Part D coverage gap.

    PubMed

    Polinski, Jennifer M; Shrank, William H; Huskamp, Haiden A; Glynn, Robert J; Liberman, Joshua N; Schneeweiss, Sebastian

    2011-08-01

    Nations are struggling to expand access to essential medications while curbing rising health and drug spending. While the US government's Medicare Part D drug insurance benefit expanded elderly citizens' access to drugs, it also includes a controversial period called the "coverage gap" during which beneficiaries are fully responsible for drug costs. We examined the impact of entering the coverage gap on drug discontinuation, switching to another drug for the same indication, and drug adherence. While increased discontinuation of and adherence to essential medications is a regrettable response, increased switching to less expensive but therapeutically interchangeable medications is a positive response to minimize costs. We followed 663,850 Medicare beneficiaries enrolled in Part D or retiree drug plans with prescription and health claims in 2006 and/or 2007 to determine who reached the gap spending threshold, n = 217,131 (33%). In multivariate Cox proportional hazards models, we compared drug discontinuation and switching rates in selected drug classes after reaching the threshold between all 1,993 who had no financial assistance during the coverage gap (exposed) versus 9,965 multivariate propensity score-matched comparators with financial assistance (unexposed). Multivariate logistic regressions compared drug adherence (≤ 80% versus >80% of days covered). Beneficiaries reached the gap spending threshold on average 222 d ±79. At the drug level, exposed beneficiaries were twice as likely to discontinue (hazard ratio [HR]  = 2.00, 95% confidence interval [CI] 1.64-2.43) but less likely to switch a drug (HR  = 0.60, 0.46-0.78) after reaching the threshold. Gap-exposed beneficiaries were slightly more likely to have reduced adherence (OR  = 1.07, 0.98-1.18). A lack of financial assistance after reaching the gap spending threshold was associated with a doubling in discontinuing essential medications but not switching drugs in 2006 and 2007. Blunt cost

  8. Spinal astrocyte gap junctions contribute to oxaliplatin-induced mechanical hypersensitivity.

    PubMed

    Yoon, Seo-Yeon; Robinson, Caleb R; Zhang, Haijun; Dougherty, Patrick M

    2013-02-01

    Spinal glial cells contribute to the development of many types of inflammatory and neuropathic pain. Here the contribution of spinal astrocytes and astrocyte gap junctions to oxaliplatin-induced mechanical hypersensitivity was explored. The expression of glial fibrillary acidic protein (GFAP) in spinal dorsal horn was significantly increased at day 7 but recovered at day 14 after oxaliplatin treatment, suggesting a transient activation of spinal astrocytes by chemotherapy. Astrocyte-specific gap junction protein connexin 43 (Cx43) was significantly increased in dorsal horn at both day 7 and day 14 following chemotherapy, but neuronal (connexin 36 [Cx36]) and oligodendrocyte (connexin 32 [Cx32]) gap junction proteins did not show any change. Blockade of astrocyte gap junction with carbenoxolone (CBX) prevented oxaliplatin-induced mechanical hypersensitivity in a dose-dependent manner and the increase of spinal GFAP expression, but had no effect once the mechanical hypersensitivity induced by oxaliplatin had fully developed. These results suggest that oxaliplatin chemotherapy induces the activation of spinal astrocytes and this is accompanied by increased expression of astrocyte-astrocyte gap junction connections via Cx43. These alterations in spinal astrocytes appear to contribute to the induction but not the maintenance of oxaliplatin-induced mechanical hypersensitivity. Combined, these results suggest that targeting spinal astrocyte/astrocyte-specific gap junction could be a new therapeutic strategy to prevent oxaliplatin-induced neuropathy. Spinal astrocytes but not microglia were recently shown to be recruited in paclitaxel-related chemoneuropathy. Here, spinal astrocyte gap junctions are shown to play an important role in the induction of oxaliplatin neuropathy. Copyright © 2013 American Pain Society. Published by Elsevier Inc. All rights reserved.

  9. A Mechanistic Study of CO 2 Reduction at the Interface of a Gallium Phosphide (GaP) Surface using Core-level Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flynn, Kristen

    2015-08-18

    Carbon dioxide (CO 2) emission into the atmosphere has increased tremendously through burning of fossil fuels, forestry, etc.. The increased concentration has made CO 2 reductions very attractive though the reaction is considered uphill. Utilizing the sun as a potential energy source, CO 2 has the possibility to undergo six electron and four proton transfers to produce methanol, a useable resource. This reaction has been shown to occur selectively in an aqueous pyridinium solution with a gallium phosphide (GaP) electrode. Though this reaction has a high faradaic efficiency, it was unclear as to what role the GaP surface played duringmore » the reaction. In this work, we aim to address the fundamental role of GaP during the catalytic conversion, by investigating the interaction between a clean GaP surface with the reactants, products, and intermediates of this reaction using X-ray photoelectron spectroscopy. We have determined a procedure to prepare atomically clean GaP and our initial CO 2 adsorption studies have shown that there is evidence of chemisorption and reaction to form carbonate on the clean surface at LN2 temperatures (80K), in contrast to previous theoretical calculations. These findings will enable future studies on CO 2 catalysis.« less

  10. Influence of the electrode gap separation on the pseudospark-sourced electron beam generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, J., E-mail: junping.zhao@qq.com; State Key Laboratory of Electrical Insulation and Power Equipment, West Xianning Road, Xi'an 710049; Department of Physics, SUPA, University of Strathclyde, Glasgow, G4 0NG Scotland

    Pseudospark-sourced electron beam is a self-focused intense electron beam which can propagate without any external focusing magnetic field. This electron beam can drive a beam-wave interaction directly or after being post-accelerated. It is especially suitable for terahertz radiation generation due to the ability of a pseudospark discharge to produce small size in the micron range and very high current density and bright electron beams. In this paper, a single-gap pseudospark discharge chamber has been built and tested with several electrode gap separations to explore the dependence of the pseudospark-sourced electron beam current on the discharge voltage and the electrode gapmore » separation. Experimental results show that the beam pulses have similar pulse width and delay time from the distinct drop of the applied voltage for smaller electrode gap separations but longer delay time for the largest gap separation used in the experiment. It has been found that the electron beam only starts to occur when the charging voltage is above a certain value, which is defined as the starting voltage of the electron beam. The starting voltage is different for different electrode gap separations and decreases with increasing electrode gap separation in our pseudospark discharge configuration. The electron beam current increases with the increasing discharge voltage following two tendencies. Under the same discharge voltage, the configuration with the larger electrode gap separation will generate higher electron beam current. When the discharge voltage is higher than 10 kV, the beam current generated at the electrode gap separation of 17.0 mm, is much higher than that generated at smaller gap separations. The ionization of the neutral gas in the main gap is inferred to contribute more to the current increase with increasing electrode gap separation.« less

  11. Band gap engineering of BC2N for nanoelectronic applications

    NASA Astrophysics Data System (ADS)

    Lim, Wei Hong; Hamzah, Afiq; Ahmadi, Mohammad Taghi; Ismail, Razali

    2017-12-01

    The BC2N as an example of boron-carbon-nitride (BCN), has the analogous structure as the graphene and boron nitride. It is predicted to have controllable electronic properties. Therefore, the analytical study on the engineer-able band gap of the BC2N is carried out based on the schematic structure of BC2N. The Nearest Neighbour Tight Binding (NNTB) model is employed with the dispersion relation and the density of state (DOS) as the main band gap analysing parameter. The results show that the hopping integrals having the significant effect on the band gap, band structure and DOS of BC2N nanowire (BC2NNW) need to be taken into consideration. The presented model indicates consistent trends with the published computational results around the Dirac points with the extracted band gap of 0.12 eV. Also, it is distinguished that wide energy gap of boron nitride (BN) is successfully narrowed by this carbon doped material which assures the application of BC2N on the nanoelectronics and optoelectronics in the near future.

  12. Discrete monotron oscillator having one-half wavelength coaxial resonator with one-quarter wavelength gap spacing

    DOEpatents

    Carlsten, B.E.; Haynes, W.B.

    1998-02-03

    A discrete monotron oscillator for use in a high power microwave device is formed with a microwave oscillator having a half-wavelength resonant coaxial microwave cavity operating in fundamental TEM mode for microwave oscillation with an inner conductor defining a drift tube for propagating an electron beam and an outer conductor coaxial with the inner conductor. The inner conductor defines a modulating gap and an extraction gap downstream of the modulating gap. The modulating gap and the extraction gap connect the coaxial microwave cavity with the drift tube so that energy for the microwave oscillation is extracted from the electron beam at the extraction gap and modulates the electron beam at the modulating gap. For high power operation, an annular electron beam is used. 8 figs.

  13. Discrete monotron oscillator having one-half wavelength coaxial resonator with one-quarter wavelength gap spacing

    DOEpatents

    Carlsten, Bruce E.; Haynes, William B.

    1998-01-01

    A discrete monotron oscillator for use in a high power microwave device is formed with a microwave oscillator having a half-wavelength resonant coaxial microwave cavity operating in fundamental TEM mode for microwave oscillation with an inner conductor defining a drift tube for propagating an electron beam and an outer conductor coaxial with the inner conductor. The inner conductor defines a modulating gap and an extraction gap downstream of the modulating gap. The modulating gap and the extraction gap connect the coaxial microwave cavity with the drift tube so that energy for the microwave oscillation is extracted from the electron beam at the extraction gap and modulates the electron beam at the modulating gap. For high power operation, an annular electron beam is used.

  14. Increased intake of energy-dense diet and negative energy balance in a mouse model of chronic psychosocial defeat.

    PubMed

    Coccurello, Roberto; Romano, Adele; Giacovazzo, Giacomo; Tempesta, Bianca; Fiore, Marco; Giudetti, Anna Maria; Marrocco, Ilaria; Altieri, Fabio; Moles, Anna; Gaetani, Silvana

    2018-06-01

    Chronic exposure to stress may represent a risk factor for developing metabolic and eating disorders, mostly driven by the overconsumption of easily accessible energy-dense palatable food, although the mechanisms involved remain still unclear. In this study, we used an ethologically oriented murine model of chronic stress caused by chronic psychosocial defeat (CPD) to investigate the effects of unrestricted access to a palatable high fat diet (HFD) on food intake, body weight, energy homeostasis, and expression of different brain neuropeptides. Our aim was to shed light on the mechanisms responsible for body weight and body composition changes due to chronic social stress. In our model of subordinate (defeated), mice (CPD) cohabitated in constant sensory contact with dominants, being forced to interact on daily basis, and were offered ad libitum access either to an HFD or to a control diet (CD). Control mice (of the same strain as CPD mice) were housed in pairs and left unstressed in their home cage (UN). In all these mice, we evaluated body weight, different adipose depots, energy metabolism, caloric intake, and neuropeptide expression. CPD mice increased the intake of HFD and reduced body weight in the presence of enhanced lipid oxidation. Resting energy expenditure and interscapular brown adipose tissue (iBAT) were increased in CPD mice, whereas epididymal adipose tissue increased only in HFD-fed unstressed mice. Propiomelanocortin mRNA levels in hypothalamic arcuate nucleus increased only in HFD-fed unstressed mice. Oxytocin mRNA levels in the paraventricular nucleus and neuropeptide Y mRNA levels within the arcuate were increased only in CD-fed CPD mice. In the arcuate, CART was increased in HFD-fed UN mice and in CD-fed CPD mice, while HFD intake suppressed CART increase in defeated animals. In the basolateral amygdala, CART expression was increased only in CPD animals on HFD. CPD appears to uncouple the intake of HFD from energy homeostasis causing higher

  15. Effects of gap width on droplet transfer behavior in ultra-narrow gap laser welding of high strength aluminum alloys

    NASA Astrophysics Data System (ADS)

    Song, Chaoqun; Dong, Shiyun; Yan, Shixing; He, Jiawu; Xu, Binshi; He, Peng

    2017-10-01

    Ultra-narrow gap laser welding is a novel method for thick high strength aluminum alloy plate for its lower heat input, less deformation and higher efficiency. To obtain a perfect welding quality, it is vital to control the more complex droplet transfer behavior under the influence of ultra-narrow gap groove. This paper reports the effects of gap width of groove on droplet transfer behavior in ultra-narrow gap laser welding of 7A52 aluminum alloy plates by a high speed camera, using an ER 5356 filler wire. The results showed that the gap width had directly effects on droplet transfer mode and droplet shape. The droplet transfer modes were, in order, both-sidewall transfer, single-sidewall transfer, globular droplet transfer and bridging transfer, with different droplet shape and transition period, as the gap width increased from 2 mm to 3.5mm. The effect of gap width on lack of fusion was also studied to analyze the cause for lack of fusion at the bottom and on the sidewall of groove. Finally, with a 2.5 mm U-type parallel groove, a single-pass joint with no lack of fusion and other macro welding defects was successfully obtained in a single-sidewall transfer mode.

  16. Canopy gaps and dead tree dynamics: poking holes in the forest.

    Treesearch

    Sally Duncan

    2002-01-01

    When large trees die, individually or in clumps, gaps are opened in the forest canopy. A shifting mosaic of patches, from small single-tree gaps to very large gaps caused by wildlife, is a natural part of the development of composition and structure in mature forests. Gaps increase the diversity of forests across the landscape and present local environments that...

  17. Ultrafast laser-induced modifications of energy bands of non-metal crystals

    NASA Astrophysics Data System (ADS)

    Gruzdev, Vitaly

    2009-10-01

    Ultrafast laser-induced variations of electron energy bands of transparent solids significantly influence ionization and conduction-band electron absorption driving the initial stage of laser-induced damage (LID). The mechanisms of the variations are attributed to changing electron functions from bonding to anti-bonding configuration via laser-induced ionization; laser-driven electron oscillations in quasi-momentum space; and direct distortion of the inter-atomic potential by electric field of laser radiation. The ionization results in the band-structure modification via accumulation of broken chemical bonds between atoms and provides significant contribution to the overall modification only when enough excited electrons are accumulated in the conduction band. The oscillations are associated with modification of electron energy by pondermotive potential of the oscillations. The direct action of radiation's electric field leads to specific high-frequency Franz-Keldysh effect (FKE) spreading the allowed electron states into the bands of forbidden energy. Those processes determine the effective band gap that is a laser-driven energy gap between the modified electron energy bands. Among those mechanisms, the latter two provide reversible band-structure modification that takes place from the beginning of the ionization and are, therefore, of special interest due to their strong influence on the initial stage of the ionization. The pondermotive potential results either in monotonous increase or oscillatory variations of the effective band gap that has been taken into account in some ionization models. The classical FKE provides decrease of the band gap. We analyzing the competition between those two opposite trends of the effective-band-gap variations and discuss applications of those effects for considerations of the laser-induced damage and its threshold in transparent solids.

  18. Developing an Energy Performance Modeling Startup Kit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, A.

    2012-10-01

    In 2011, the NAHB Research Center began the first part of the multi-year effort by assessing the needs and motivations of residential remodelers regarding energy performance remodeling. The scope is multifaceted - all perspectives will be sought related to remodeling firms ranging in size from small-scale, sole proprietor to national. This will allow the Research Center to gain a deeper understanding of the remodeling and energy retrofit business and the needs of contractors when offering energy upgrade services. To determine the gaps and the motivation for energy performance remodeling, the NAHB Research Center conducted (1) an initial series of focusmore » groups with remodelers at the 2011 International Builders' Show, (2) a second series of focus groups with remodelers at the NAHB Research Center in conjunction with the NAHB Spring Board meeting in DC, and (3) quantitative market research with remodelers based on the findings from the focus groups. The goal was threefold, to: Understand the current remodeling industry and the role of energy efficiency; Identify the gaps and barriers to adding energy efficiency into remodeling; and Quantify and prioritize the support needs of professional remodelers to increase sales and projects involving improving home energy efficiency. This report outlines all three of these tasks with remodelers.« less

  19. Solar energy enhancement using down-converting particles: A rigorous approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abrams, Ze’ev R.; Niv, Avi; Zhang, Xiang

    2011-06-01

    The efficiency of a single band-gap solar cell is specified by the Shockley-Queisser limit, which defines the maximal output power as a function of the solar cell’s band-gap. One way to overcome this limit is by using a down-conversion process whereupon a high energy photon is split into two lower energy photons, thereby increasing the current of the cell. Here, we provide a full analysis of the possible efficiency increase when placing a down-converting material on top of a pre-existing solar cell. We show that a total 7% efficiency improvement is possible for a perfectly efficient down-converting material. Our analysismore » covers both lossless and lossy theoretical limits, as well as a thermodynamic evaluation. Finally, we describe the advantages of nanoparticles as a possible choice for a down-converting material.« less

  20. Origin of band gaps in graphene on hexagonal boron nitride

    PubMed Central

    Jung, Jeil; DaSilva, Ashley M.; MacDonald, Allan H.; Adam, Shaffique

    2015-01-01

    Recent progress in preparing well-controlled two-dimensional van der Waals heterojunctions has opened up a new frontier in materials physics. Here we address the intriguing energy gaps that are sometimes observed when a graphene sheet is placed on a hexagonal boron nitride substrate, demonstrating that they are produced by an interesting interplay between structural and electronic properties, including electronic many-body exchange interactions. Our theory is able to explain the observed gap behaviour by accounting first for the structural relaxation of graphene’s carbon atoms when placed on a boron nitride substrate, and then for the influence of the substrate on low-energy π-electrons located at relaxed carbon atom sites. The methods we employ can be applied to many other van der Waals heterojunctions. PMID:25695638

  1. Observation of a well-defined hybridization gap and in-gap states on the SmB6 (001) surface

    NASA Astrophysics Data System (ADS)

    Sun, Zhixiang; Maldonado, Ana; Paz, Wendel S.; Inosov, Dmytro S.; Schnyder, Andreas P.; Palacios, J. J.; Shitsevalova, Natalya Yu.; Filipov, Vladimir B.; Wahl, Peter

    2018-06-01

    The rise of topology in condensed-matter physics has generated strong interest in identifying novel quantum materials in which topological protection is driven by electronic correlations. Samarium hexaboride is a Kondo insulator for which it has been proposed that a band inversion between 5 d and 4 f bands gives rise to topologically protected surface states. However, unambiguous proof of the existence and topological nature of these surface states is still missing, and its low-energy electronic structure is still not fully established. Here we present a study of samarium hexaboride by ultralow-temperature scanning tunneling microscopy and spectroscopy. We obtain clear atomically resolved topographic images of the sample surface. Our tunneling spectra reveal signatures of a hybridization gap with a size of about 8 meV and with a reduction of the differential conductance inside the gap by almost half, and surprisingly, several strong resonances below the Fermi level. The spatial variations of the energy of the resonances point toward a microscopic variation of the electronic states by the different surface terminations. High-resolution tunneling spectra acquired at 100 mK reveal a splitting of the Kondo resonance, possibly due to the crystal electric field.

  2. SnO2 epitaxial films with varying thickness on c-sapphire: Structure evolution and optical band gap modulation

    NASA Astrophysics Data System (ADS)

    Zhang, Mi; Xu, Maji; Li, Mingkai; Zhang, Qingfeng; Lu, Yinmei; Chen, Jingwen; Li, Ming; Dai, Jiangnan; Chen, Changqing; He, Yunbin

    2017-11-01

    A series of a-plane SnO2 films with thickness between 2.5 nm and 1436 nm were grown epitaxially on c-sapphire by pulsed laser deposition (PLD), to allow a detailed probe into the structure evolution and optical band gap modulation of SnO2 with growing thickness. All films exhibit excellent out-of-plane ordering (lowest (200) rocking-curve half width ∼0.01°) with an orientation of SnO2(100) || Al2O3(0001), while three equivalent domains that are rotated by 120° with one another coexist in-plane with SnO2[010] || Al2O3 [11-20]. Initially the SnO2(100) film assumes a two-dimensional (2D) layer-by-layer growth mode with atomically smooth surface (minimum root-mean-square roughness of 0.183 nm), and endures compressive strain along both c and a axes as well as mild tensile strain along the b-axis. With increasing thickness, transition from the 2D to 3D island growth mode takes place, leading to formation of various defects to allow relief of the stress and thus relaxation of the film towards bulk SnO2. More interestingly, with increasing thickness from nm to μm, the SnO2 films present a non-monotonic V-shaped variation in the optical band gap energy. While the band gap of SnO2 films thinner than 6.1 nm increases rapidly with decreasing film thickness due to the quantum size effect, the band gap of thicker SnO2 films broadens almost linearly with increasing film thickness up to 374 nm, as a result of the strain effect. The present work sheds light on future design of SnO2 films with desired band gap for particular applications by thickness control and strain engineering.

  3. Nitrogen-Induced Perturbation of the Valence Band States in GaP1-xNx Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dudiy, S. V.; Zunger, A.; Felici, M.

    2006-01-01

    The effects of diluted nitrogen impurities on the valence- and conduction-band states of GaP{sub 1-x}N{sub x} have been predicted and measured experimentally. The calculation uses state-of-the-art atomistic modeling: we use large supercells with screened pseudopotentials and consider several random realizations of the nitrogen configurations. These calculations agree with photoluminescence excitation (PLE) measurements performed for nitrogen concentrations x up to 0.035 and photon energies up to 1 eV above the GaP optical-absorption edge, as well as with published ellipsometry data. In particular, a predicted nitrogen-induced buildup of the L character near the valence- and conduction-band edges accounts for the surprising broad-absorptionmore » plateau observed in PLE between the X{sub 1c} and the {Lambda}{sub 1c} critical points of GaP. Moreover, theory accounts quantitatively for the downward bowing of the indirect conduction-band edge and for the upward bowing of the direct transition with increasing nitrogen concentration. We review some of the controversies in the literature regarding the shifts in the conduction band with composition, and conclude that measured results at ultralow N concentration cannot be used to judge behavior at a higher concentration. In particular, we find that at the high concentrations of nitrogen studied here ({approx}1%) the conduction-band edge (CBE) is a hybridized state made from the original GaP X{sub 1c} band-edge state plus all cluster states. In this limit, the CBE plunges down in energy as the N concentration increases, in quantitative agreement with the measurements reported here. However, at ultralow nitrogen concentrations (<0.1%), the CBE is the nearly unperturbed host X{sub 1c}, which does not sense the nitrogen cluster levels. Thus, this state does not move energetically as nitrogen is added and stays pinned in energy, in agreement with experimental results.« less

  4. Window performance and building energy use: Some technical options for increasing energy efficiency

    NASA Astrophysics Data System (ADS)

    Selkowitz, Stephen

    1985-11-01

    Window system design and operation has a major impact on energy use in buildings as well as on occupants' thermal and visual comfort. Window performance will be a function of optical and thermal properties, window management strategies, climate and orientation, and building type and occupancy. In residences, heat loss control is a primary concern, followed by sun control in more southerly climates. In commercial buildings, the daylight provided by windows may be the major energy benefits but solar gain must be controlled so that increased cooling loads do not exceed daylighting savings. Reductions in peak electrical demand and HVAC system size may also be possible in well-designed daylighted buildings.

  5. Nonlinear optical effects of opening a gap in graphene

    NASA Astrophysics Data System (ADS)

    Carvalho, David N.; Biancalana, Fabio; Marini, Andrea

    2018-05-01

    Graphene possesses remarkable electronic, optical, and mechanical properties that have taken the research of two-dimensional relativistic condensed matter systems to prolific levels. However, the understanding of how its nonlinear optical properties are affected by relativisticlike effects has been broadly uncharted. It has been recently shown that highly nontrivial currents can be generated in free-standing samples, notably leading to the generation of even harmonics. Since graphene monolayers are centrosymmetric media, for which such harmonic generation at normal incidence is deemed inaccessible, this light-driven phenomenon is both startling and promising. More realistically, graphene samples are often deposited on a dielectric substrate, leading to additional intricate interactions. Here, we present a treatment to study this instance by gapping the spectrum and we show this leads to the appearance of a Berry phase in the carrier dynamics. We analyze the role of such a phase in the generated nonlinear current and conclude that it suppresses odd-harmonic generation. The pump energy can be tuned to the energy gap to yield interference among odd harmonics mediated by interband transitions, allowing even harmonics to be generated. Our results and general methodology pave the way for understanding the role of gap opening in the nonlinear optics of two-dimensional lattices.

  6. Direct optical band gap measurement in polycrystalline semiconductors: A critical look at the Tauc method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dolgonos, Alex; Mason, Thomas O.; Poeppelmeier, Kenneth R., E-mail: krp@northwestern.edu

    2016-08-15

    The direct optical band gap of semiconductors is traditionally measured by extrapolating the linear region of the square of the absorption curve to the x-axis, and a variation of this method, developed by Tauc, has also been widely used. The application of the Tauc method to crystalline materials is rooted in misconception–and traditional linear extrapolation methods are inappropriate for use on degenerate semiconductors, where the occupation of conduction band energy states cannot be ignored. A new method is proposed for extracting a direct optical band gap from absorption spectra of degenerately-doped bulk semiconductors. This method was applied to pseudo-absorption spectramore » of Sn-doped In{sub 2}O{sub 3} (ITO)—converted from diffuse-reflectance measurements on bulk specimens. The results of this analysis were corroborated by room-temperature photoluminescence excitation measurements, which yielded values of optical band gap and Burstein–Moss shift that are consistent with previous studies on In{sub 2}O{sub 3} single crystals and thin films. - Highlights: • The Tauc method of band gap measurement is re-evaluated for crystalline materials. • Graphical method proposed for extracting optical band gaps from absorption spectra. • The proposed method incorporates an energy broadening term for energy transitions. • Values for ITO were self-consistent between two different measurement methods.« less

  7. Anomalous Temperature Dependence of the Band Gap in Black Phosphorus.

    PubMed

    Villegas, Cesar E P; Rocha, A R; Marini, Andrea

    2016-08-10

    Black phosphorus (BP) has gained renewed attention due to its singular anisotropic electronic and optical properties that might be exploited for a wide range of technological applications. In this respect, the thermal properties are particularly important both to predict its room temperature operation and to determine its thermoelectric potential. From this point of view, one of the most spectacular and poorly understood phenomena is indeed the BP temperature-induced band gap opening; when temperature is increased, the fundamental band gap increases instead of decreases. This anomalous thermal dependence has also been observed recently in its monolayer counterpart. In this work, based on ab initio calculations, we present an explanation for this long known and yet not fully explained effect. We show that it arises from a combination of harmonic and lattice thermal expansion contributions, which are in fact highly interwined. We clearly narrow down the mechanisms that cause this gap opening by identifying the peculiar atomic vibrations that drive the anomaly. The final picture we give explains both the BP anomalous band gap opening and the frequency increase with increasing volume (tension effect).

  8. Low-level stretching accelerates cell migration into a gap.

    PubMed

    Toume, Samer; Gefen, Amit; Weihs, Daphne

    2017-08-01

    We observed that radially stretching cell monolayers at a low level (3%) increases the rate at which they migrate to close a gap formed by in vitro injury. Wound healing has been shown to accelerate in vivo when deformations are topically applied, for example, by negative pressure wound therapy. However, the direct effect of deformations on cell migration during gap closure is still unknown. Thus, we have evaluated the effect of radially applied, sustained (static) tensile strain on the kinematics of en mass cell migration. Monolayers of murine fibroblasts were cultured on stretchable, linear-elastic substrates that were subjected to different tensile strains, using a custom-designed three-dimensionally printed stretching apparatus. Immediately following stretching, the monolayer was 'wounded' at its centre, and cell migration during gap closure was monitored and quantitatively evaluated. We observed a significant increase in normalised migration rates and a reduction of gap closure time with 3% stretching, relative to unstretched controls or 6% stretch. Interestingly, the initial gap area was linearly correlated with the maximum migration rate, especially when stretching was applied. Therefore, small deformations applied to cell monolayers during gap closure enhance en mass cell migration associated with wound healing and can be used to fine-tune treatment protocols. © 2016 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  9. Gallium phosphide energy converters

    NASA Astrophysics Data System (ADS)

    Sims, P. E.; Dinetta, L. C.; Goetz, M. A.

    1995-10-01

    Gallium phosphide (GaP) energy converters may be successfully deployed to provide new mission capabilities for spacecraft. Betavoltaic power supplies based on the conversion of tritium beta decay to electricity using GaP energy converters can supply long term low-level power with high reliability. High temperature solar cells, also based on GaP, can be used in inward-bound missions greatly reducing the need for thermal dissipation. Results are presented for GaP direct conversion devices powered by Ni-63 and compared to the conversion of light emitted by tritiarated phosphors. Leakage currents as low as 1.2 x 10(exp -17) A/sq cm have been measured and the temperature dependence of the reverse saturation current is found to have ideal behavior. Temperature dependent IV, QE, R(sub sh), and V(sub oc) results are also presented. These data are used to predict the high-temperature solar cell and betacell performance of GaP devices and suggest appropriate applications for the deployment of this technology.

  10. Gallium phosphide energy converters

    NASA Technical Reports Server (NTRS)

    Sims, P. E.; Dinetta, L. C.; Goetz, M. A.

    1995-01-01

    Gallium phosphide (GaP) energy converters may be successfully deployed to provide new mission capabilities for spacecraft. Betavoltaic power supplies based on the conversion of tritium beta decay to electricity using GaP energy converters can supply long term low-level power with high reliability. High temperature solar cells, also based on GaP, can be used in inward-bound missions greatly reducing the need for thermal dissipation. Results are presented for GaP direct conversion devices powered by Ni-63 and compared to the conversion of light emitted by tritiarated phosphors. Leakage currents as low as 1.2 x 10(exp -17) A/sq cm have been measured and the temperature dependence of the reverse saturation current is found to have ideal behavior. Temperature dependent IV, QE, R(sub sh), and V(sub oc) results are also presented. These data are used to predict the high-temperature solar cell and betacell performance of GaP devices and suggest appropriate applications for the deployment of this technology.

  11. p120Ras-GAP binds the DLC1 Rho-GAP tumor suppressor protein and inhibits its RhoA GTPase and growth-suppressing activities.

    PubMed

    Yang, X-Y; Guan, M; Vigil, D; Der, C J; Lowy, D R; Popescu, N C

    2009-03-19

    DLC1 (deleted in liver cancer 1), which encodes a Rho GTPase-activating protein (Rho-GAP), is a potent tumor suppressor gene that is frequently inactivated in several human cancers. DLC1 is a multidomain protein that has been shown previously to bind members of the tensin gene family. Here we show that p120Ras-GAP (Ras-GAP; also known as RASA1) interacts and extensively colocalizes with DLC1 in focal adhesions. The binding was mapped to the SH3 domain located in the N terminus of Ras-GAP and to the Rho-GAP catalytic domain located in the C terminus of the DLC1. In vitro analyses with purified proteins determined that the isolated Ras-GAP SH3 domain inhibits DLC1 Rho-GAP activity, suggesting that Ras-GAP is a negative regulator of DLC1 Rho-GAP activity. Consistent with this possibility, we found that ectopic overexpression of Ras-GAP in a Ras-GAP-insensitive tumor line impaired the growth-suppressing activity of DLC1 and increased RhoA activity in vivo. Our observations expand the complexity of proteins that regulate DLC1 function and define a novel mechanism of the cross talk between Ras and Rho GTPases.1R01CA129610

  12. 30 CFR 585.658 - Can my cable or pipeline construction deviate from my approved COP or GAP?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... from my approved COP or GAP? 585.658 Section 585.658 Mineral Resources BUREAU OF OCEAN ENERGY... Can my cable or pipeline construction deviate from my approved COP or GAP? (a) You must make every... COP or GAP. (c) If, after construction, it is determined that a deviation from the approved plan has...

  13. 30 CFR 585.658 - Can my cable or pipeline construction deviate from my approved COP or GAP?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... from my approved COP or GAP? 585.658 Section 585.658 Mineral Resources BUREAU OF OCEAN ENERGY... Can my cable or pipeline construction deviate from my approved COP or GAP? (a) You must make every... COP or GAP. (c) If, after construction, it is determined that a deviation from the approved plan has...

  14. 30 CFR 585.658 - Can my cable or pipeline construction deviate from my approved COP or GAP?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... from my approved COP or GAP? 585.658 Section 585.658 Mineral Resources BUREAU OF OCEAN ENERGY... Can my cable or pipeline construction deviate from my approved COP or GAP? (a) You must make every... COP or GAP. (c) If, after construction, it is determined that a deviation from the approved plan has...

  15. Experimental and theoretical investigation of relative optical band gaps in graphene generations

    NASA Astrophysics Data System (ADS)

    Bhatnagar, Deepika; Singh, Sukhbir; Yadav, Sriniwas; Kumar, Ashok; Kaur, Inderpreet

    2017-01-01

    Size and chemical functionalization dependant optical band gaps in graphene family nanomaterials were investigated by experimental and theoretical study using Tauc plot and density functional theory (DFT). We have synthesized graphene oxide through a modified Hummer’s method using graphene nanoplatelets and sequentially graphene quantum dots through hydrothermal reduction. The experimental results indicate that the optical band gap in graphene generations was altered by reducing the size of graphene sheets and attachment of chemical functionalities like epoxy, hydroxyl and carboxyl groups plays a crucial role in varying optical band gaps. It is further confirmed by DFT calculations that the π orbitals were more dominatingly participating in transitions shown by projected density of states and the molecular energy spectrum represented the effect of attached functional groups along with discreteness in energy levels. Theoretical results were found to be in good agreement with experimental results. All of the above different variants of graphene can be used in native or modified form for sensor design and optoelectronic applications.

  16. Band gap opening and optical absorption enhancement in graphene using ZnO nanocluster

    NASA Astrophysics Data System (ADS)

    Monshi, M. M.; Aghaei, S. M.; Calizo, I.

    2018-05-01

    Electronic, optical and transport properties of the graphene/ZnO heterostructure have been explored using first-principles density functional theory. The results show that Zn12O12 can open a band gap of 14.5 meV in graphene, increase its optical absorption by 1.67 times covering the visible spectrum which extends to the infra-red (IR) range, and exhibits a slight non-linear I-V characteristic depending on the applied bias. These findings envisage that a graphene/Zn12O12 heterostructure can be appropriate for energy harvesting, photodetection, and photochemical devices.

  17. Gap junction-mediated intercellular communication in the immune system.

    PubMed

    Neijssen, Joost; Pang, Baoxu; Neefjes, Jacques

    2007-01-01

    Immune cells are usually considered non-attached blood cells, which would exclude the formation of gap junctions. This is a misconception since many immune cells express connexin 43 (Cx43) and other connexins and are often residing in tissue. The role of gap junctions is largely ignored by immunologists as is the immune system in the field of gap junction research. Here, the current knowledge of the distribution of connexins and the function of gap junctions in the immune system is discussed. Gap junctions appear to play many roles in antibody productions and specific immune responses and may be important in sensing danger in tissue by the immune system. Gap junctions not only transfer electrical and metabolical but also immunological information in the form of peptides for a process called cross-presentation. This is essential for proper immune responses to viruses and possibly tumours. Until now only 40 research papers on gap junctions in the immune system appeared and this will almost certainly expand with the increased mutual interest between the fields of immunology and gap junction research.

  18. The Knowledge Gap Versus the Belief Gap and Abstinence-Only Sex Education.

    PubMed

    Hindman, Douglas Blanks; Yan, Changmin

    2015-08-01

    The knowledge gap hypothesis predicts widening disparities in knowledge of heavily publicized public affairs issues among socioeconomic status groups. The belief gap hypothesis extends the knowledge gap hypothesis to account for knowledge and beliefs about politically contested issues based on empirically verifiable information. This analysis of 3 national surveys shows belief gaps developed between liberals and conservatives regarding abstinence-only sex education; socioeconomic status-based knowledge gaps did not widen. The findings partially support both belief gap and knowledge gap hypotheses. In addition, the unique contributions of exposure to Fox News, CNN, and MSNBC in this process were investigated. Only exposure to Fox News was linked to beliefs about abstinence-only sex education directly and indirectly through the cultivation of conservative ideology.

  19. Regression analysis for bivariate gap time with missing first gap time data.

    PubMed

    Huang, Chia-Hui; Chen, Yi-Hau

    2017-01-01

    We consider ordered bivariate gap time while data on the first gap time are unobservable. This study is motivated by the HIV infection and AIDS study, where the initial HIV contracting time is unavailable, but the diagnosis times for HIV and AIDS are available. We are interested in studying the risk factors for the gap time between initial HIV contraction and HIV diagnosis, and gap time between HIV and AIDS diagnoses. Besides, the association between the two gap times is also of interest. Accordingly, in the data analysis we are faced with two-fold complexity, namely data on the first gap time is completely missing, and the second gap time is subject to induced informative censoring due to dependence between the two gap times. We propose a modeling framework for regression analysis of bivariate gap time under the complexity of the data. The estimating equations for the covariate effects on, as well as the association between, the two gap times are derived through maximum likelihood and suitable counting processes. Large sample properties of the resulting estimators are developed by martingale theory. Simulations are performed to examine the performance of the proposed analysis procedure. An application of data from the HIV and AIDS study mentioned above is reported for illustration.

  20. Phosphorylation of Synaptic GTPase-activating Protein (synGAP) by Ca2+/Calmodulin-dependent Protein Kinase II (CaMKII) and Cyclin-dependent Kinase 5 (CDK5) Alters the Ratio of Its GAP Activity toward Ras and Rap GTPases*

    PubMed Central

    Walkup, Ward G.; Washburn, Lorraine; Sweredoski, Michael J.; Carlisle, Holly J.; Graham, Robert L.; Hess, Sonja; Kennedy, Mary B.

    2015-01-01

    synGAP is a neuron-specific Ras and Rap GTPase-activating protein (GAP) found in high concentrations in the postsynaptic density (PSD) fraction from the mammalian forebrain. We have previously shown that, in situ in the PSD fraction or in recombinant form in Sf9 cell membranes, synGAP is phosphorylated by Ca2+/calmodulin-dependent protein kinase II (CaMKII), another prominent component of the PSD. Here, we show that recombinant synGAP (r-synGAP), lacking 102 residues at the N terminus, can be purified in soluble form and is phosphorylated by cyclin-dependent kinase 5 (CDK5) as well as by CaMKII. Phosphorylation of r-synGAP by CaMKII increases its HRas GAP activity by 25% and its Rap1 GAP activity by 76%. Conversely, phosphorylation by CDK5 increases r-synGAP's HRas GAP activity by 98% and its Rap1 GAP activity by 20%. Thus, phosphorylation by both kinases increases synGAP activity; CaMKII shifts the relative GAP activity toward inactivation of Rap1, and CDK5 shifts the relative activity toward inactivation of HRas. GAP activity toward Rap2 is not altered by phosphorylation by either kinase. CDK5 phosphorylates synGAP primarily at two sites, Ser-773 and Ser-802. Phosphorylation at Ser-773 inhibits r-synGAP activity, and phosphorylation at Ser-802 increases it. However, the net effect of concurrent phosphorylation of both sites, Ser-773 and Ser-802, is an increase in GAP activity. synGAP is phosphorylated at Ser-773 and Ser-802 in the PSD fraction, and its phosphorylation by CDK5 and CaMKII is differentially regulated by activation of NMDA-type glutamate receptors in cultured neurons. PMID:25533468

  1. Benchmarking singlet and triplet excitation energies of molecular semiconductors for singlet fission: Tuning the amount of HF exchange and adjusting local correlation to obtain accurate functionals for singlet-triplet gaps

    NASA Astrophysics Data System (ADS)

    Brückner, Charlotte; Engels, Bernd

    2017-01-01

    Vertical and adiabatic singlet and triplet excitation energies of molecular p-type semiconductors calculated with various DFT functionals and wave-function based approaches are benchmarked against MS-CASPT2/cc-pVTZ reference values. A special focus lies on the singlet-triplet gaps that are very important in the process of singlet fission. Singlet fission has the potential to boost device efficiencies of organic solar cells, but the scope of existing singlet-fission compounds is still limited. A computational prescreening of candidate molecules could enlarge it; yet it requires efficient methods accurately predicting singlet and triplet excitation energies. Different DFT formulations (Tamm-Dancoff approximation, linear response time-dependent DFT, Δ-SCF) and spin scaling schemes along with several ab initio methods (CC2, ADC(2)/MP2, CIS(D), CIS) are evaluated. While wave-function based methods yield rather reliable singlet-triplet gaps, many DFT functionals are shown to systematically underestimate triplet excitation energies. To gain insight, the impact of exact exchange and correlation is in detail addressed.

  2. A Semi-parametric Multivariate Gap-filling Model for Eddy Covariance Latent Heat Flux

    NASA Astrophysics Data System (ADS)

    Li, M.; Chen, Y.

    2010-12-01

    Quantitative descriptions of latent heat fluxes are important to study the water and energy exchanges between terrestrial ecosystems and the atmosphere. The eddy covariance approaches have been recognized as the most reliable technique for measuring surface fluxes over time scales ranging from hours to years. However, unfavorable micrometeorological conditions, instrument failures, and applicable measurement limitations may cause inevitable flux gaps in time series data. Development and application of suitable gap-filling techniques are crucial to estimate long term fluxes. In this study, a semi-parametric multivariate gap-filling model was developed to fill latent heat flux gaps for eddy covariance measurements. Our approach combines the advantages of a multivariate statistical analysis (principal component analysis, PCA) and a nonlinear interpolation technique (K-nearest-neighbors, KNN). The PCA method was first used to resolve the multicollinearity relationships among various hydrometeorological factors, such as radiation, soil moisture deficit, LAI, and wind speed. The KNN method was then applied as a nonlinear interpolation tool to estimate the flux gaps as the weighted sum latent heat fluxes with the K-nearest distances in the PCs’ domain. Two years, 2008 and 2009, of eddy covariance and hydrometeorological data from a subtropical mixed evergreen forest (the Lien-Hua-Chih Site) were collected to calibrate and validate the proposed approach with artificial gaps after standard QC/QA procedures. The optimal K values and weighting factors were determined by the maximum likelihood test. The results of gap-filled latent heat fluxes conclude that developed model successful preserving energy balances of daily, monthly, and yearly time scales. Annual amounts of evapotranspiration from this study forest were 747 mm and 708 mm for 2008 and 2009, respectively. Nocturnal evapotranspiration was estimated with filled gaps and results are comparable with other studies

  3. [Gaps in effective coverage by socioeconomic status and poverty condition].

    PubMed

    Gutiérrez, Juan Pablo

    2013-01-01

    To analyze, in the context of increased health protection in Mexico, the gaps by socioeconomic status and poverty condition on effective coverage of selected preventive interventions. Data from the National Health & Nutrition Survey 2012 and 2006, using previously defined indicators of effective coverage and stratifying them by socioeconomic (SE) status and multidimensional poverty condition. For vaccination interventions, immunological equity has been maintained in Mexico. For indicators related to preventive interventions provided at the clinical setting, effective coverage is lower among those in the lowest SE quintile and among people living in multidimensional poverty. Comparing 2006 and 2012, there is no evidence on gap reduction. While health protection has significantly increased in Mexico, thus reducing SE gaps, those gaps are still important in magnitude for effective coverage of preventive interventions.

  4. Effect of increasing energy cost on arm coordination in elite sprint swimmers.

    PubMed

    Komar, J; Leprêtre, P M; Alberty, M; Vantorre, J; Fernandes, R J; Hellard, P; Chollet, D; Seifert, L

    2012-06-01

    The purpose of this study was to analyze the changes in stroke parameters, motor organization and swimming efficiency with increasing energy cost in aquatic locomotion. Seven elite sprint swimmers performed a 6×300-m incremental swimming test. Stroke parameters (speed, stroke rate and stroke length), motor organization (arm stroke phases and arm coordination index), swimming efficiency (swimming speed squared and hand speed squared) and stroke index were calculated from aerial and underwater side-view cameras. The energy cost of locomotion was assessed by measuring oxygen consumption and blood lactate. Results showed that the increase in energy cost of locomotion was correlated to an increase in the index of coordination and stroke rate, and a decrease in stroke length (p<.05). Furthermore, indicators of swimming efficiency and stroke index did not change significantly with the speed increments (p<.05), indicating that swimmers did not decrease their efficiency despite the increase in energy cost. In parallel, an increase in the index of coordination IdC and stroke rate were observed, along with a decrease in stroke length, stroke index and hand speed squared with each increment, revealing an adaptation to the fatigue within the 300m. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Health disparities and gaps in school readiness.

    PubMed

    Currie, Janet

    2005-01-01

    The author documents pervasive racial disparities in the health of American children and analyzes how and how much those disparities contribute to racial gaps in school readiness. She explores a broad sample of health problems common to U.S. children, such as attention deficit hyperactivity disorder, asthma, and lead poisoning, as well as maternal health problems and health-related behaviors that affect children's behavioral and cognitive readiness for school. If a health problem is to affect the readiness gap, it must affect many children, it must be linked to academic performance or behavior problems, and it must show a racial disparity either in its prevalence or in its effects. The author focuses not only on the black-white gap in health status but also on the poor-nonpoor gap because black children tend to be poorer than white children. The health conditions Currie considers seriously impair cognitive skills and behavior in individual children. But most explain little of the overall racial gap in school readiness. Still, the cumulative effect of health differentials summed over all conditions is significant. Currie's rough calculation is that racial differences in health conditions and in maternal health and behaviors together may account for as much as a quarter of the racial gap in school readiness. Currie scrutinizes several policy steps to lessen racial and socioeconomic disparities in children's health and to begin to close the readiness gap. Increasing poor children's eligibility for Medicaid and state child health insurance is unlikely to be effective because most poor children are already eligible for public insurance. The problem is that many are not enrolled. Even increasing enrollment may not work: socioeconomic disparities in health persist in Canada and the United Kingdom despite universal public health insurance. The author finds more promise in strengthening early childhood programs with a built-in health component, like Head Start; family

  6. Illusory Continuity without Sufficient Sound Energy to Fill a Temporal Gap: Examples of Crossing Glide Tones

    ERIC Educational Resources Information Center

    Kuroda, Tsuyoshi; Nakajima, Yoshitaka; Eguchi, Shuntarou

    2012-01-01

    The gap transfer illusion is an auditory illusion where a temporal gap inserted in a longer glide tone is perceived as if it were in a crossing shorter glide tone. Psychophysical and phenomenological experiments were conducted to examine the effects of sound-pressure-level (SPL) differences between crossing glides on the occurrence of the gap…

  7. Far-infrared Optical Conductivity Gap in Superconducting MgB2 Films

    NASA Astrophysics Data System (ADS)

    Carnahan, M. A.; Kaindl, R. A.; Chemla, D. S.; Christen, H. M.; Zhai, H. Y.; Paranthaman, M.; Lowndes, D. H.

    2002-03-01

    The prospect of unconventional coupling in the superconductor MgB2 motivates experiments which probe the density of states around the superconducting gap. The frequency and temperature dependent optical conductivity contains important spectroscopic information about the fundamental gap excitations as well as providing a contactless measure of the superconducting condensate. Here we present the first measurements of the far-infrared conductivity of MgB2 over a broad frequency range which spans excitations across its lowest-energy superconducting gap [1]. Thin films of MgB2 are grown on Al_2O3 substrates through e-beam evaporation and subsequent ex-situ annealing [2]. Both the real and imaginary parts of the conductivity are obtained - without recourse to Kramers-Kronig transformations - from terahertz time-domain spectroscopy. Below Tc we observe a depletion of oscillator strength due to the opening of a superconducting gap. We find a gap size of 2Δ ≈ 5 meV. This result, a value which is only half that expected in weak-coupling BCS theory, disfavors a conventional isotropic single-gap scenario. [1] R. Kaindl et al., Phys. Rev. Lett. (to appear). [2] M. Paranthaman et al., Appl. Phys. Lett. 78, 3669 (2001).

  8. Effect of surface viscosity, anchoring energy, and cell gap on the response time of nematic liquid crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Souza, R.F. de; Yang, D.-Ke; Lenzi, E.K.

    2014-07-15

    An analytical expression for the relaxation time of a nematic liquid crystal is obtained for the first time by considering the influence of surface viscosity, anchoring energy strength and cell gap, validated numerically by using the so-called relaxation method. This general equation for the molecular response time (τ{sub 0}) was derived for a vertical aligned cell and by solving an eigenvalue equation coming from the usual balance of torque equation in the Derzhanskii and Petrov formulation, recovering the usual equations in the appropriate limit. The results show that τ∼d{sup b}, where b=2 is observed only for strongly anchored cells, whilemore » for moderate to weak anchored cells, the exponent lies between 1 and 2, depending on both, surface viscosity and anchoring strength. We found that the surface viscosity is important when calculating the response time, specially for thin cells, critical for liquid crystal devices. The surface viscosity’s effect on the optical response time with pretilt is also explored. Our results bring new insights about the role of surface viscosity and its effects in applied physics. - Highlights: • The relaxation of nematic liquid crystals is calculated by taking the surface viscosity into account. • An analytical expression for the relaxation time depending on surface viscosity, anchoring strength and cell gap is obtained. • The results are numerically verified. • Surface viscosity is crucial for thin and weak anchored cells. • The effect on optical time and pretilt angle is also studied.« less

  9. Generalized thermoelastic wave band gaps in phononic crystals without energy dissipation

    NASA Astrophysics Data System (ADS)

    Wu, Ying; Yu, Kaiping; Li, Xiao; Zhou, Haotian

    2016-01-01

    We present a theoretical investigation of the thermoelastic wave propagation in the phononic crystals in the context of Green-Nagdhi theory by taking thermoelastic coupling into account. The thermal field is assumed to be steady. Thermoelastic wave band structures of 3D and 2D are derived by using the plane wave expansion method. For the 2D problem, the anti-plane shear mode is not affected by the temperature difference. Thermoelastic wave bands of the in-plane x-y mode are calculated for lead/silicone rubber, aluminium/silicone rubber, and aurum/silicone rubber phononic crystals. The new findings in the numerical results indicate that the thermoelastic wave bands are composed of the pure elastic wave bands and the thermal wave bands, and that the thermal wave bands can serve as the low boundary of the first band gap when the filling ratio is low. In addition, for the lead/silicone rubber phononic crystals the effects of lattice type (square, rectangle, regular triangle, and hexagon) and inclusion shape (circle, oval, and square) on the normalized thermoelastic bandwidth and the upper/lower gap boundaries are analysed and discussed. It is concluded that their effects on the thermoelastic wave band structure are remarkable.

  10. Comparison of the surface dielectric barrier discharge characteristics under different electrode gaps

    NASA Astrophysics Data System (ADS)

    Gao, Guoqiang; Dong, Lei; Peng, Kaisheng; Wei, Wenfu; Li, Chunmao; Wu, Guangning

    2017-01-01

    Currently, great interests are paid to the surface dielectric barrier discharge due to the diverse and interesting application. In this paper, the influences of the electrode gap on the discharge characteristics have been studied. Aspects of the electrical parameters, the optical emission, and the discharge induced gas flow were considered. The electrode gap varied from 0 mm to 21 mm, while the applied AC voltage was studied in the range of 17 kV-27 kV. Results indicate that with the increase of the electrode gap, the variation of discharge voltage exhibits an increasing trend, while the other parameters (i.e., the current, power, and induced flow velocity) increase first, and then decrease once the gap exceeded the critical value. Mechanisms of the electrode gap influencing these key parameters were discussed from the point of equivalent circuit. The experimental results reveal that an optimal discharge gap can be obtained, which is closely related to the applied voltage. Visualization of the induced flow with different electrode gaps was realized by the Schlieren diagnostic technique. Finally, the velocities of induced gas flow determined by the pitot tube were compared with the results of intensity-integral method, and good agreements were found.

  11. Arc voltage distribution skewness as an indicator of electrode gap during vacuum arc remelting

    DOEpatents

    Williamson, Rodney L.; Zanner, Frank J.; Grose, Stephen M.

    1998-01-01

    The electrode gap of a VAR is monitored by determining the skewness of a distribution of gap voltage measurements. A decrease in skewness indicates an increase in gap and may be used to control the gap.

  12. Oxytocin in the ventromedial hypothalamic nucleus reduces feeding and acutely increases energy expenditure

    PubMed Central

    Noble, Emily E.; Billington, Charles J.; Kotz, Catherine M.

    2014-01-01

    Central oxytocin reduces food intake and increases energy expenditure. The ventromedial hypothalamic nucleus (VMN) is associated with energy balance and contains a high density of oxytocin receptors. We hypothesized that oxytocin in the VMN is a negative regulator of energy balance acting to reduce feeding and increase energy expenditure. To test this idea, oxytocin or vehicle was injected directly into the VMN of Sprague-Dawley rats during fasted and nonfasted conditions. Energy expenditure (via indirect calorimetry) and spontaneous physical activity (SPA) were recorded simultaneously. Animals were also exposed to a conditioned taste aversion test, to determine whether oxytocin's effects on food intake were associated with malaise. When food was available during testing, oxytocin-induced elevations in energy expenditure lasted for 1 h, after which overall energy expenditure was reduced. In the absence of food during the testing period, oxytocin similarly increased energy expenditure during the first hour, but differences in 12-h energy expenditure were eliminated, implying that the differences may have been due to the thermic effects of feeding (digestion, absorption, and metabolic processing). Oxytocin acutely elevated SPA and reduced feeding at doses that did not cause a conditioned taste aversion during both the fed and fasted states. Together, these data suggest that oxytocin in the VMN promotes satiety and acutely elevates energy expenditure and SPA and implicates the VMN as a relevant site for the antiobesity effects of oxytocin. PMID:24990860

  13. Relationship between connexin expression and gap-junction resistivity in human atrial myocardium.

    PubMed

    Dhillon, Paramdeep S; Chowdhury, Rasheda A; Patel, Pravina M; Jabr, Rita; Momin, Aziz U; Vecht, Joshua; Gray, Rosaire; Shipolini, Alex; Fry, Christopher H; Peters, Nicholas S

    2014-04-01

    The relative roles of the gap-junctional proteins connexin40 (Cx40) and connexin43 (Cx43) in determining human atrial myocardial resistivity is unknown. In addressing the hypothesis that changing relative expression of Cx40 and Cx43 underlies an increase in human atrial myocardial resistivity with age, this relationship was investigated by direct ex vivo measurement of gap-junctional resistivity and quantitative connexin immunoblotting and immunohistochemistry. Oil-gap impedance measurements were performed to determine resistivity of the intracellular pathway (Ri), which correlated with total Cx40 quantification by Western blotting (rs=0.64, P<0.01, n=20). Specific gap-junctional resistivity (Rj) correlated not only with Western immunoquantification of Cx40 (rs=0.63, P=0.01, n=20), but also more specifically, with the Cx40 fraction localized to the intercalated disks on immunohistochemical quantification (rs=0.66, P=0.02, n=12). Although Cx43 expression showed no correlation with resistivity values, the proportional expression of the 2 connexins, (Cx40/[Cx40+Cx43]) correlated with Ri and Rj (rs=0.58, P<0.01 for Ri and rs=0.51, P=0.02 for Rj). Advancing age was associated with a rise in Ri (rs=0.77, P<0.0001), Rj (rs=0.65, P<0.001, n=23), Cx40 quantity (rs=0.54, P=0.01, n=20), and Cx40 gap-junction protein per unit area of en face disk (rs=0.61, P=0.02, n=12). Cx40 is associated with human right atrial gap-junctional resistivity such that increased total, gap-junctional, and proportional Cx40 expression increases gap-junctional resistivity. Accordingly, advancing age is associated with an increase in Cx40 expression and a corresponding increase in gap-junctional resistivity. These findings are the first to demonstrate this relationship and a mechanistic explanation for changing atrial conduction and age-related arrhythmic tendency.

  14. Numerical Investigation of the Influence of Blade Radial Gap Flow on Axial Blood Pump Performance.

    PubMed

    Liu, Guang-Mao; Jin, Dong-Hai; Zhou, Jian-Ye; Zhang, Yan; Chen, Hai-Bo; Sun, Han-Song; Hu, Sheng-Shou; Gui, Xing-Min

    2018-01-05

    The gaps between the blades and the shroud (or hub) of an axial blood pump affect the hydraulics, efficiency, and hemolytic performance. These gaps are critical parameters when a blood pump is manufactured. To evaluate the influence of blade gaps on axial blood pump performance, the flow characteristics inside an axial blood pump with different radial blade gaps were numerically simulated and analyzed with special attention paid to the hydraulic characteristics, gap flow, hydraulic efficiency, and hemolysis index (HI). In vitro hydraulic testing and particle image velocimetry testing were conducted to verify the numerical results. The simulation results showed that the efficiency and pressure rise decreased when the gap increased. The efficiency of the axial blood pump at design point decreased from 37.1% to 27.1% and the pressure rise decreased from 127.4 to 71.2 mm Hg when the gap increased from 0.1 to 0.3 mm. Return and vortex flows were present in the outlet guide vane channels when the gap was larger than 0.2 mm. The HI of the blood pump with a 0.1 mm gap was 1.5-fold greater than that with a 0.3 mm gap. The results illustrated poor hydraulic characteristics when the gap was larger than 0.15 mm and rapidly deteriorated hemolysis when the gap was larger than 0.1 mm. The numerical and experimental results demonstrated that the pressure rise, pump efficiency, and scalar shear stress decreased when the gap increased. The HI did not strictly decrease with gap increases. The preliminary results encourage the improvement of axial blood pump designs.

  15. The NREL Spectrum of Clean Energy Innovation - Continuum Magazine | NREL

    Science.gov Websites

    Laboratory to Marketplace Disruptive innovation is making solar cost competitive with non-renewable energy , Kansas has new energy and a new outlook. Energy Innovation Portal Bridging Information Gap Energy Innovation Portal Bridging Information Gap Database revolutionizes intellectual property transfer from DOE's

  16. Steric engineering of metal-halide perovskites with tunable optical band gaps

    NASA Astrophysics Data System (ADS)

    Filip, Marina R.; Eperon, Giles E.; Snaith, Henry J.; Giustino, Feliciano

    2014-12-01

    Owing to their high energy-conversion efficiency and inexpensive fabrication routes, solar cells based on metal-organic halide perovskites have rapidly gained prominence as a disruptive technology. An attractive feature of perovskite absorbers is the possibility of tailoring their properties by changing the elemental composition through the chemical precursors. In this context, rational in silico design represents a powerful tool for mapping the vast materials landscape and accelerating discovery. Here we show that the optical band gap of metal-halide perovskites, a key design parameter for solar cells, strongly correlates with a simple structural feature, the largest metal-halide-metal bond angle. Using this descriptor we suggest continuous tunability of the optical gap from the mid-infrared to the visible. Precise band gap engineering is achieved by controlling the bond angles through the steric size of the molecular cation. On the basis of these design principles we predict novel low-gap perovskites for optimum photovoltaic efficiency, and we demonstrate the concept of band gap modulation by synthesising and characterising novel mixed-cation perovskites.

  17. Bipolar doping and band-gap anomalies in delafossite transparent conductive oxides.

    PubMed

    Nie, Xiliang; Wei, Su-Huai; Zhang, S B

    2002-02-11

    Doping wide-gap materials p type is highly desirable but often difficult. This makes the recent discovery of p-type delafossite oxides, CuM(III)O2, very attractive. The CuM(III)O2 also show unique and unexplained physical properties: Increasing band gap from M(III) = Al,Ga, to In, not seen in conventional semiconductors. The largest gap CuInO2 can be mysteriously doped both n and p type but not the smaller gaps CuAlO2 and CuGaO2. Here, we show that both properties are results of a large disparity between the fundamental gap and the apparent optical gap, a finding that could lead to a breakthrough in the study of bipolarly dopable wide-gap semiconductor oxides.

  18. Arc voltage distribution skewness as an indicator of electrode gap during vacuum arc remelting

    DOEpatents

    Williamson, R.L.; Zanner, F.J.; Grose, S.M.

    1998-01-13

    The electrode gap of a VAR is monitored by determining the skewness of a distribution of gap voltage measurements. A decrease in skewness indicates an increase in gap and may be used to control the gap. 4 figs.

  19. A Mechanistic Study of CO 2 Reduction at the Interface of a Gallium Phosphide (GaP) Surface using Core-level Spectroscopy - Oral Presentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flynn, Kristen

    2015-08-19

    Carbon dioxide (CO 2) emission into the atmosphere has increased tremendously through burning of fossil fuels, forestry, etc.. The increased concentration has made CO 2 reductions very attractive though the reaction is considered uphill. Utilizing the sun as a potential energy source, CO 2 has the possibility to undergo six electron and four proton transfers to produce methanol, a useable resource. This reaction has been shown to occur selectively in an aqueous pyridinium solution with a gallium phosphide (GaP) electrode. Though this reaction has a high faradaic efficiency, it was unclear as to what role the GaP surface played duringmore » the reaction. In this work, we aim to address the fundamental role of GaP during the catalytic conversion, by investigating the interaction between a clean GaP surface with the reactants, products, and intermediates of this reaction using X-ray photoelectron spectroscopy. We have determined a procedure to prepare atomically clean GaP and our initial CO 2 adsorption studies have shown that there is evidence of chemisorption and reaction to form carbonate on the clean surface at LN2 temperatures (80K), in contrast to previous theoretical calculations. These findings will enable future studies on CO 2 catalysis.« less

  20. Overcrowding drives the unjamming transition of gap-free monolayers

    NASA Astrophysics Data System (ADS)

    Lan, Ganhui; Su, Tao

    Collective cell motility plays central roles in various biological phenomena such as wound healing, cancer metastasis and embryogenesis. These are demonstrations of the unjamming transition in biology. However, contradictory to the typical density-driven jamming in particulate assemblies, cellular systems often get unjammed in highly packed, sometimes overcrowding environments. Here, we investigate monolayers' collective behaviors when cell number changes under the gap-free constraint. We report that overcrowding can unjam gap-free monolayers through increasing isotropic compression. We show that the transition boundary is determined by the isotropic compression and the cell-cell adhesion. Furthermore, we construct the free energy landscape for the T1 topological transition during monolayer rearrangement, and discover that the landscape evolves from single-barrier W shape to double-barrier M shape during the unjamming process. We also discover a distributed-to-disordered morphological transition of cells' geometry, coinciding with the unjamming transition. Our analyses reveal that the overcrowding and adhesion induced unjamming reflects the mechanical yielding of the highly deformable monolayer, suggesting an alternative mechanism that cells may robustly gain collective mobility through proliferation in confined environments, which differs from those caused by loosing up a packed particulate assembly. This work is supported by the GWU College Facilitating Funds.

  1. Developing GAP Training for Growers: Perspectives from Pennsylvania Supermarkets

    ERIC Educational Resources Information Center

    Tobin, Daniel; Thomson, Joan; LaBorde, Luke; Bagdonis, Jessica

    2011-01-01

    Major supermarket chains increasingly are requiring their produce suppliers to provide evidence of compliance with on-farm food safety standards, known as Good Agricultural Practices (GAPs). To develop a relevant GAP training curriculum that meets the needs of Pennsylvania growers, supermarkets that operate in the state were surveyed to determine…

  2. Gap solitons in a nonlinear quadratic negative-index cavity.

    PubMed

    Scalora, Michael; de Ceglia, Domenico; D'Aguanno, Giuseppe; Mattiucci, Nadia; Akozbek, Neset; Centini, Marco; Bloemer, Mark J

    2007-06-01

    We predict the existence of gap solitons in a nonlinear, quadratic Fabry-Pérot negative index cavity. A peculiarity of a single negative index layer is that if magnetic and electric plasma frequencies are different it forms a photonic band structure similar to that of a multilayer stack composed of ordinary, positive index materials. This similarity also results in comparable field localization and enhancement properties that under appropriate conditions may be used to either dynamically shift the band edge, or for efficient energy conversion. We thus report that an intense, fundamental pump pulse is able to shift the band edge of a negative index cavity, and make it possible for a weak second harmonic pulse initially tuned inside the gap to be transmitted, giving rise to a gap soliton. The process is due to cascading, a well-known phenomenon that occurs far from phase matching conditions that limits energy conversion rates, it resembles a nonlinear third-order process, and causes pulse compression due to self-phase modulation. The symmetry of the equations of motion under the action of either an electric or a magnetic nonlinearity suggests that both nonlinear polarization and magnetization, or a combination of both, can lead to solitonlike pulses. More specifically, the antisymmetric localization properties of the electric and magnetic fields cause a nonlinear polarization to generate a dark soliton, while a nonlinear magnetization spawns a bright soliton.

  3. Doping and band gap control at poly(vinylidene fluoride)/graphene interface

    NASA Astrophysics Data System (ADS)

    Cai, Jia; Wang, Jian-Lu; Gao, Heng; Tian, Bobo; Gong, Shi-Jing; Duan, Chun-Gang; Chu, Jun-Hao

    2018-05-01

    Using the density-functional first-principles calculations, we investigate the electronic structures of poly(vinylidene fluoride) PVDF/graphene composite systems. The n- and p-doping of graphene can be flexibly switched by reversing the ferroelectric polarization of PVDF, without scarifying the intrinsic π-electron band dispersions of graphene that are usually undermined by chemical doping. The doping degree is also dependent on the thickness of PVDF layers, which will get saturated when PVDF is thick enough. In PVDF/bilayer graphene (BLG) heterostructure, the doping degree directly determines the local energy gap of the charged BLG. The sandwich structure of PVDF/BLG/PVDF can further enhance the local energy gap as well as keep the electric neutrality of BLG, which will be of great application potentials in graphene-based nanoelectronics.

  4. NEIGHBORHOOD CONTEXT AND THE GENDER GAP IN ADOLESCENT VIOLENT CRIME.

    PubMed

    Zimmerman, Gregory M; Messner, Steven F

    2010-12-01

    Although researchers consistently demonstrate that females engage in less criminal behavior than males across the life course, research on the variability of the gender gap across contexts is sparse. To address this issue, we examine the gender gap in self-reported violent crime among adolescents across neighborhoods. Multilevel models using data from the Project of Human Development in Chicago Neighborhoods (PHDCN) indicate that the gender gap in violent crime decreases as levels of neighborhood disadvantage increase. Further, the narrowing of the gender gap is explained by gender differences in peer influence on violent offending. Neighborhood disadvantage increases exposure to peer violence for both sexes, but peer violence has a stronger impact on violent offending for females than for males, producing the reduction in the gender gap at higher levels of disadvantage. We also find that the gender difference in the relationship between peer violence and offending is explained, in part, by (1) the tendency for females to have more intimate friendships than males, and (2) the moderating effect of peer intimacy on the relationship between peer violence and self-reported violent behavior.

  5. Molecular driving forces behind the tetrahydrofuran–water miscibility gap

    DOE PAGES

    Smith, Micholas Dean; Mostofian, Barmak; Petridis, Loukas; ...

    2016-01-06

    The tetrahydrofuran water binary system exhibits an unusual closed-loop miscibility gap (transitions from a miscible regime to an immiscible regime back to another miscible regime as the temperature increases). Here, using all-atom molecular dynamics simulations, we probe the structural and dynamical behavior of the binary system in the temperature regime of this gap at four different mass ratios, and we compare the behavior of bulk water and tetrahydrofuran. The changes in structure and dynamics observed in the simulations indicate that the temperature region associated with the miscibility gap is distinctive. Within the miscibility-gap temperature region, the self diffusion of watermore » is significantly altered and the second virial coefficients (pair interaction strengths) show parabolic-like behavior. Altogether, the results suggest that the gap is the result of differing trends with temperature of minor structural changes, which produces interaction virials with parabolic temperature dependence near the miscibility gap.« less

  6. Gallium phosphide energy converters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sims, P.E.; Dinetta, L.C.; Goetz, M.A.

    1995-10-01

    Gallium phosphide (GaP) energy converters may be successfully deployed to provide new mission capabilities for spacecraft. Betavoltaic power supplies based on the conversion of tritium beta decay to electricity using GaP energy converters can supply long term low-level power with high reliability. High temperature solar cells, also based on GaP, can be used in inward-bound missions greatly reducing the need for thermal dissipation. Results are presented for GaP direct conversion devices powered by Ni-63 and compared to the conversion of light emitted by tritiarated phosphors. Leakage currents as low as 1.2 x 10(exp {minus}17) A/sq cm have been measured andmore » the temperature dependence of the reverse saturation current is found to have ideal behavior. Temperature dependent IV, QE, R(sub sh), and V(sub oc) results are also presented. These data are used to predict the high-temperature solar cell and betacell performance of GaP devices and suggest appropriate applications for the deployment of this technology.« less

  7. Band gap grading and photovoltaic performance of solution-processed Cu(In,Ga)S2 thin-film solar cells.

    PubMed

    Sohn, So Hyeong; Han, Noh Soo; Park, Yong Jin; Park, Seung Min; An, Hee Sang; Kim, Dong-Wook; Min, Byoung Koun; Song, Jae Kyu

    2014-12-28

    The photophysical properties of CuInxGa1-xS2 (CIGS) thin films, prepared by solution-based coating methods, are investigated to understand the correlation between the optical properties of these films and the electrical characteristics of solar cells fabricated using these films. Photophysical properties, such as the depth-dependent band gap and carrier lifetime, turn out to be at play in determining the energy conversion efficiency of solar cells. A double grading of the band gap in CIGS films enhances solar cell efficiency, even when defect states disturb carrier collection by non-radiative decay. The combinational stacking of different density films leads to improved solar cell performance as well as efficient fabrication because a graded band gap and reduced shunt current increase carrier collection efficiency. The photodynamics of minority-carriers suggests that the suppression of defect states is a primary area of improvement in CIGS thin films prepared by solution-based methods.

  8. Magnetic field effects on charge structure factors of gapped graphene structure

    NASA Astrophysics Data System (ADS)

    Rezania, Hamed; Tawoose, Nasrin

    2018-02-01

    We present the behaviors of dynamical and static charge susceptibilities of undoped gapped graphene using the Green's function approach in the context of tight binding model Hamiltonian. Specially, the effects of magnetic field on the plasmon modes of gapped graphene structure are investigated via calculating correlation function of charge density operators. Our results show the increase of magnetic field leads to disappear high frequency plasmon mode for gapped case. We also show that low frequency plasmon mode has not affected by increase of magnetic field and chemical potential. Finally the temperature dependence of static charge structure factor of gapp graphene structure is studied. The effects of both magnetic field and gap parameter on the static structure factor are discusses in details.

  9. Gaps in content-based image retrieval

    NASA Astrophysics Data System (ADS)

    Deserno, Thomas M.; Antani, Sameer; Long, Rodney

    2007-03-01

    Content-based image retrieval (CBIR) is a promising technology to enrich the core functionality of picture archiving and communication systems (PACS). CBIR has a potentially strong impact in diagnostics, research, and education. Research successes that are increasingly reported in the scientific literature, however, have not made significant inroads as medical CBIR applications incorporated into routine clinical medicine or medical research. The cause is often attributed without sufficient analytical reasoning to the inability of these applications in overcoming the "semantic gap". The semantic gap divides the high-level scene analysis of humans from the low-level pixel analysis of computers. In this paper, we suggest a more systematic and comprehensive view on the concept of gaps in medical CBIR research. In particular, we define a total of 13 gaps that address the image content and features, as well as the system performance and usability. In addition to these gaps, we identify 6 system characteristics that impact CBIR applicability and performance. The framework we have created can be used a posteriori to compare medical CBIR systems and approaches for specific biomedical image domains and goals and a priori during the design phase of a medical CBIR application. To illustrate the a posteriori use of our conceptual system, we apply it, initially, to the classification of three medical CBIR implementations: the content-based PACS approach (cbPACS), the medical GNU image finding tool (medGIFT), and the image retrieval in medical applications (IRMA) project. We show that systematic analysis of gaps provides detailed insight in system comparison and helps to direct future research.

  10. 30 CFR 285.650 - When may I begin conducting activities under my GAP?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... GAP? 285.650 Section 285.650 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE... conducting the approved activities that do not involve a project easement or the construction of facilities...

  11. Synthesis of copper quantum dots by chemical reduction method and tailoring of its band gap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prabhash, P. G.; Nair, Swapna S., E-mail: swapna.s.nair@gmail.com

    Metallic copper nano particles are synthesized with citric acid and CTAB (cetyltrimethylammonium bromide) as surfactant and chlorides as precursors. The particle size and surface morphology are analyzed by High Resolution Transmission Electron Microscopy. The average size of the nano particle is found to be 3 - 10 nm. The optical absorption characteristics are done by UV-Visible spectrophotometer. From the Tauc plots, the energy band gaps are calculated and because of their smaller size the particles have much higher band gap than the bulk material. The energy band gap is changed from 3.67 eV to 4.27 eV in citric acid coatedmore » copper quantum dots and 4.17 eV to 4.52 eV in CTAB coated copper quantum dots.« less

  12. Nonlinear sub-cyclotron resonance as a formation mechanism for gaps in banded chorus

    DOE PAGES

    Fu, Xiangrong; Guo, Zehua; Dong, Chuanfei; ...

    2015-05-14

    An interesting characteristic of magnetospheric chorus is the presence of a frequency gap at ω ≃ 0.5Ω e, where Ω e is the electron cyclotron angular frequency. Recent chorus observations sometimes show additional gaps near 0.3Ω e and 0.6Ω e. Here we present a novel nonlinear mechanism for the formation of these gaps using Hamiltonian theory and test particle simulations in a homogeneous, magnetized, collisionless plasma. We find that an oblique whistler wave with frequency at a fraction of the electron cyclotron frequency can resonate with electrons, leading to effective energy exchange between the wave and particles.

  13. Compositional dependence of the band gap in Ga(NAsP) quantum well heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jandieri, K., E-mail: kakhaber.jandieri@physik.uni-marburg.de; Ludewig, P.; Wegele, T.

    We present experimental and theoretical studies of the composition dependence of the direct band gap energy in Ga(NAsP)/GaP quantum well heterostructures grown on either (001) GaP- or Si-substrates. The theoretical description takes into account the band anti-crossing model for the conduction band as well as the modification of the valence subband structure due to the strain resulting from the pseudomorphic epitaxial growth on the respective substrate. The composition dependence of the direct band gap of Ga(NAsP) is obtained for a wide range of nitrogen and phosphorus contents relevant for laser applications on Si-substrate.

  14. Impact of the air gap in nanowire array transistors

    NASA Astrophysics Data System (ADS)

    Mativetsky, Jeffrey; Yang, Tong; Mehta, Jeremy

    Organic and inorganic semiconducting nanowires are promising for flexible electronic, energy harvesting, and sensing applications. Nanowire arrays processed from solution are particularly attractive for their ease of processing coupled with their potential for high performance. Random stacking has been observed, however, to hinder the collective electrical performance of such nanowire arrays. Here, we employ solution-processed organic semiconducting nanowires as a model system to assess the impact of the air gap that exists under a large portion of the active material in nanowire array transistors. Confocal Raman spectroscopy is used to non-invasively quantify the average air gap thickness which is found to be unexpectedly large - two to three times the nanowire diameter. This substantial air gap acts as an additional dielectric layer that diminishes the buildup of charge carriers, and can affect the measured charge carrier mobility and current on/off ratio by more than one order of magnitude. These results establish the importance of taking the air gap into account when fabricating and analyzing the performance of transistors based on one-dimensional nanostructures, such as organic and inorganic nanowires, or carbon nanotubes. NSF CAREER award DMR-1555028, NSF CMMI-1537648 , NSF MRI CMMI-1429176.

  15. 30 CFR 585.714 - What records relating to SAPs, COPs, and GAPs must I keep?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false What records relating to SAPs, COPs, and GAPs must I keep? 585.714 Section 585.714 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF... records relating to SAPs, COPs, and GAPs must I keep? (a) Until BOEM releases your financial assurance...

  16. 30 CFR 585.714 - What records relating to SAPs, COPs, and GAPs must I keep?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false What records relating to SAPs, COPs, and GAPs must I keep? 585.714 Section 585.714 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF... records relating to SAPs, COPs, and GAPs must I keep? (a) Until BOEM releases your financial assurance...

  17. 30 CFR 585.714 - What records relating to SAPs, COPs, and GAPs must I keep?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false What records relating to SAPs, COPs, and GAPs must I keep? 585.714 Section 585.714 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF... records relating to SAPs, COPs, and GAPs must I keep? (a) Until BOEM releases your financial assurance...

  18. Closing the Gaps. Research Brief

    ERIC Educational Resources Information Center

    Johnston, Howard

    2011-01-01

    Achievement gaps between groups of students (minority and white, rich and poor, English speakers and English language learners) are complex and intractable. Increasingly, they are being seen as a result of disparities between opportunities for learning available to different groups. By changing the opportunity structures of schools and…

  19. In-gap corner states in core-shell polygonal quantum rings

    PubMed Central

    Sitek, Anna; Ţolea, Mugurel; Niţă, Marian; Serra, Llorenç; Gudmundsson, Vidar; Manolescu, Andrei

    2017-01-01

    We study Coulomb interacting electrons confined in polygonal quantum rings. We focus on the interplay of localization at the polygon corners and Coulomb repulsion. Remarkably, the Coulomb repulsion allows the formation of in-gap states, i.e., corner-localized states of electron pairs or clusters shifted to energies that were forbidden for non-interacting electrons, but below the energies of corner-side-localized states. We specify conditions allowing optical excitation to those states. PMID:28071750

  20. In-gap corner states in core-shell polygonal quantum rings.

    PubMed

    Sitek, Anna; Ţolea, Mugurel; Niţă, Marian; Serra, Llorenç; Gudmundsson, Vidar; Manolescu, Andrei

    2017-01-10

    We study Coulomb interacting electrons confined in polygonal quantum rings. We focus on the interplay of localization at the polygon corners and Coulomb repulsion. Remarkably, the Coulomb repulsion allows the formation of in-gap states, i.e., corner-localized states of electron pairs or clusters shifted to energies that were forbidden for non-interacting electrons, but below the energies of corner-side-localized states. We specify conditions allowing optical excitation to those states.

  1. In-gap corner states in core-shell polygonal quantum rings

    NASA Astrophysics Data System (ADS)

    Sitek, Anna; Ţolea, Mugurel; Niţă, Marian; Serra, Llorenç; Gudmundsson, Vidar; Manolescu, Andrei

    2017-01-01

    We study Coulomb interacting electrons confined in polygonal quantum rings. We focus on the interplay of localization at the polygon corners and Coulomb repulsion. Remarkably, the Coulomb repulsion allows the formation of in-gap states, i.e., corner-localized states of electron pairs or clusters shifted to energies that were forbidden for non-interacting electrons, but below the energies of corner-side-localized states. We specify conditions allowing optical excitation to those states.

  2. Electronic characterization of defects in narrow gap semiconductors

    NASA Technical Reports Server (NTRS)

    Patterson, James D.

    1993-01-01

    The study of point defects in semiconductors has a long and honorable history. In particular, the detailed understanding of shallow defects in common semiconductors traces back to the classic work of Kohn and Luttinger. However, the study of defects in narrow gap semiconductors represents a much less clear story. Here, both shallow defects (caused by long range potentials) and deep defects (from short range potentials) are far from being completely understood. In this study, all results are calculational and our focus is on the chemical trend of deep levels in narrow gap semiconductors. We study substitutional (including antisite), interstitial and ideal vacancy defects. For substitutional and interstitial impurities, the efects of relaxation are included. For materials like Hg(1-x)Cd(x)Te, we study how the deep levels vary with x, of particular interest is what substitutional and interstitial atoms yield energy levels in the gap i.e. actually produce deep ionized levels. Also, since the main technique utilized is Green's functions, we include some summary of that method.

  3. Tuning the band gap in silicene by oxidation.

    PubMed

    Du, Yi; Zhuang, Jincheng; Liu, Hongsheng; Xu, Xun; Eilers, Stefan; Wu, Kehui; Cheng, Peng; Zhao, Jijun; Pi, Xiaodong; See, Khay Wai; Peleckis, Germanas; Wang, Xiaolin; Dou, Shi Xue

    2014-10-28

    Silicene monolayers grown on Ag(111) surfaces demonstrate a band gap that is tunable by oxygen adatoms from semimetallic to semiconducting type. With the use of low-temperature scanning tunneling microscopy, we find that the adsorption configurations and amounts of oxygen adatoms on the silicene surface are critical for band gap engineering, which is dominated by different buckled structures in √13 × √13, 4 × 4, and 2√3 × 2√3 silicene layers. The Si-O-Si bonds are the most energy-favored species formed on √13 × √13, 4 × 4, and 2√3 × 2√3 structures under oxidation, which is verified by in situ Raman spectroscopy as well as first-principles calculations. The silicene monolayers retain their structures when fully covered by oxygen adatoms. Our work demonstrates the feasibility of tuning the band gap of silicene with oxygen adatoms, which, in turn, expands the base of available two-dimensional electronic materials for devices with properties that is hardly achieved with graphene oxide.

  4. Adaptive Evolution of Mitochondrial Energy Metabolism Genes Associated with Increased Energy Demand in Flying Insects

    PubMed Central

    Yang, Yunxia; Xu, Shixia; Xu, Junxiao; Guo, Yan; Yang, Guang

    2014-01-01

    Insects are unique among invertebrates for their ability to fly, which raises intriguing questions about how energy metabolism in insects evolved and changed along with flight. Although physiological studies indicated that energy consumption differs between flying and non-flying insects, the evolution of molecular energy metabolism mechanisms in insects remains largely unexplored. Considering that about 95% of adenosine triphosphate (ATP) is supplied by mitochondria via oxidative phosphorylation, we examined 13 mitochondrial protein-encoding genes to test whether adaptive evolution of energy metabolism-related genes occurred in insects. The analyses demonstrated that mitochondrial DNA protein-encoding genes are subject to positive selection from the last common ancestor of Pterygota, which evolved primitive flight ability. Positive selection was also found in insects with flight ability, whereas no significant sign of selection was found in flightless insects where the wings had degenerated. In addition, significant positive selection was also identified in the last common ancestor of Neoptera, which changed its flight mode from direct to indirect. Interestingly, detection of more positively selected genes in indirect flight rather than direct flight insects suggested a stronger selective pressure in insects having higher energy consumption. In conclusion, mitochondrial protein-encoding genes involved in energy metabolism were targets of adaptive evolution in response to increased energy demands that arose during the evolution of flight ability in insects. PMID:24918926

  5. Adaptive evolution of mitochondrial energy metabolism genes associated with increased energy demand in flying insects.

    PubMed

    Yang, Yunxia; Xu, Shixia; Xu, Junxiao; Guo, Yan; Yang, Guang

    2014-01-01

    Insects are unique among invertebrates for their ability to fly, which raises intriguing questions about how energy metabolism in insects evolved and changed along with flight. Although physiological studies indicated that energy consumption differs between flying and non-flying insects, the evolution of molecular energy metabolism mechanisms in insects remains largely unexplored. Considering that about 95% of adenosine triphosphate (ATP) is supplied by mitochondria via oxidative phosphorylation, we examined 13 mitochondrial protein-encoding genes to test whether adaptive evolution of energy metabolism-related genes occurred in insects. The analyses demonstrated that mitochondrial DNA protein-encoding genes are subject to positive selection from the last common ancestor of Pterygota, which evolved primitive flight ability. Positive selection was also found in insects with flight ability, whereas no significant sign of selection was found in flightless insects where the wings had degenerated. In addition, significant positive selection was also identified in the last common ancestor of Neoptera, which changed its flight mode from direct to indirect. Interestingly, detection of more positively selected genes in indirect flight rather than direct flight insects suggested a stronger selective pressure in insects having higher energy consumption. In conclusion, mitochondrial protein-encoding genes involved in energy metabolism were targets of adaptive evolution in response to increased energy demands that arose during the evolution of flight ability in insects.

  6. Does intra-abdominal fluid increase the resting energy expenditure?

    PubMed

    Zarling, E J; Grande, A; Hano, J

    1997-10-01

    In patients with intra-abdominal fluid collection, caloric needs are based on an estimated dry weight. This is done because intra-abdominal fluid has been assumed to be metabolically inactive. One recent study of patients with slowly resolving ascites suggested otherwise. In our study, the effect of intra-abdominal fluid on the resting energy expenditure (REE) and apparent lean body mass was determined in 10 stable patients requiring peritoneal dialysis. For each subject, in both the empty and full state, we measured REE by indirect calorimetry, and body composition by the bioelectric impedance method. In the full state, the VCO2 was significantly increased (210 +/- 11 versus 197 +/- 9 mL/min, P < 0.02) compared with the empty state. This caused an increase in the calculated resting energy expenditure (1531 +/- 88 kcal/d empty versus 1593 +/- 94 kcal/d full, P < 0.05). The magnitude of increase in REE was similar to the expected calories derived from glucose absorbed out of the dialysate. Estimates of body fat, lean body mass, and total water also were not affected by the intra-abdominal fluid. We conclude that intra-abdominal fluid will not affect the measured REE and hence may be considered to be metabolically inactive.

  7. A Unifying Perspective on Oxygen Vacancies in Wide Band Gap Oxides.

    PubMed

    Linderälv, Christopher; Lindman, Anders; Erhart, Paul

    2018-01-04

    Wide band gap oxides are versatile materials with numerous applications in research and technology. Many properties of these materials are intimately related to defects, with the most important defect being the oxygen vacancy. Here, using electronic structure calculations, we show that the charge transition level (CTL) and eigenstates associated with oxygen vacancies, which to a large extent determine their electronic properties, are confined to a rather narrow energy range, even while band gap and the electronic structure of the conduction band vary substantially. Vacancies are classified according to their character (deep versus shallow), which shows that the alignment of electronic eigenenergies and CTL can be understood in terms of the transition between cavity-like localized levels in the large band gap limit and strong coupling between conduction band and vacancy states for small to medium band gaps. We consider both conventional and hybrid functionals and demonstrate that the former yields results in very good agreement with the latter provided that band edge alignment is taken into account.

  8. Gage Measures Recessed Gaps

    NASA Technical Reports Server (NTRS)

    Zepeda, J. L.

    1983-01-01

    New tool measures separation between recessed parallel surfaces. Tiles have overhanging edges, tool designed to slip into gap from end so it extends through 0.040-inch crack. Measure gaps between 0.200 and 0.400 inch so gap fillers of proper thickness can be selected. Useful in numerous industrial situation involving gap measurements in inaccessable places.

  9. NARROW-GAP POINT-TO-PLANE CORONA WITH HIGH VELOCITY FLOWS

    EPA Science Inventory

    The article discusses a mathematical model developed to describe a narrow- gap point- to- plane corona system used in the detoxification of chemical agents or their simulants, for which the degree of destruction depends on the strength of the electric field or electron energy. Na...

  10. Revealing the Chemistry between Band Gap and Binding Energy for Lead-/Tin-Based Trihalide Perovskite Solar Cell Semiconductors.

    PubMed

    Varadwaj, Arpita; Varadwaj, Pradeep R; Yamashita, Koichi

    2018-01-23

    A relationship between reported experimental band gaps (solid) and DFT-calculated binding energies (gas) is established, for the first time, for each of the four ten-membered lead (or tin) trihalide perovskite solar cell semiconductor series examined in this study, including CH 3 NH 3 PbY 3 , CsPbY 3 , CH 3 NH 3 SnY 3 and CsSnY 3 (Y=I (3-x) Br x=1-3 , I (3-x) Cl x=1-3 , Br (3-x) Cl x=1-3 , and IBrCl). The relationship unequivocally provides a new dimension for the fundamental understanding of the optoelectronic features of solid-state solar cell thin films by using the 0 K gas-phase energetics of the corresponding molecular building blocks. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Applying revised gap analysis model in measuring hotel service quality.

    PubMed

    Lee, Yu-Cheng; Wang, Yu-Che; Chien, Chih-Hung; Wu, Chia-Huei; Lu, Shu-Chiung; Tsai, Sang-Bing; Dong, Weiwei

    2016-01-01

    With the number of tourists coming to Taiwan growing by 10-20 % since 2010, the number has increased due to an increasing number of foreign tourists, particularly after deregulation allowed admitting tourist groups, followed later on by foreign individual tourists, from mainland China. The purpose of this study is to propose a revised gap model to evaluate and improve service quality in Taiwanese hotel industry. Thus, service quality could be clearly measured through gap analysis, which was more effective for offering direction in developing and improving service quality. The HOLSERV instrument was used to identify and analyze service gaps from the perceptions of internal and external customers. The sample for this study included three main categories of respondents: tourists, employees, and managers. The results show that five gaps influenced tourists' evaluations of service quality. In particular, the study revealed that Gap 1 (management perceptions vs. customer expectations) and Gap 9 (service provider perceptions of management perceptions vs. service delivery) were more critical than the others in affecting perceived service quality, making service delivery the main area of improvement. This study contributes toward an evaluation of the service quality of the Taiwanese hotel industry from the perspectives of customers, service providers, and managers, which is considerably valuable for hotel managers. It was the aim of this study to explore all of these together in order to better understand the possible gaps in the hotel industry in Taiwan.

  12. 30 CFR 285.714 - What records relating to SAPs, COPs, and GAPs must I keep?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false What records relating to SAPs, COPs, and GAPs must I keep? 285.714 Section 285.714 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION... Verification Agent § 285.714 What records relating to SAPs, COPs, and GAPs must I keep? (a) Until MMS releases...

  13. Increasing energy efficiency level of building production based on applying modern mechanization facilities

    NASA Astrophysics Data System (ADS)

    Prokhorov, Sergey

    2017-10-01

    Building industry in a present day going through the hard times. Machine and mechanism exploitation cost, on a field of construction and installation works, takes a substantial part in total building construction expenses. There is a necessity to elaborate high efficient method, which allows not only to increase production, but also to reduce direct costs during machine fleet exploitation, and to increase its energy efficiency. In order to achieve the goal we plan to use modern methods of work production, hi-tech and energy saving machine tools and technologies, and use of optimal mechanization sets. As the optimization criteria there are exploitation prime cost and set efficiency. During actual task-solving process we made a conclusion, which shows that mechanization works, energy audit with production juxtaposition, prime prices and costs for energy resources allow to make complex machine fleet supply, improve ecological level and increase construction and installation work quality.

  14. Increasing prosthetic foot energy return affects whole-body mechanics during walking on level ground and slopes.

    PubMed

    Childers, W Lee; Takahashi, Kota Z

    2018-03-29

    Prosthetic feet are designed to store energy during early stance and then release a portion of that energy during late stance. The usefulness of providing more energy return depends on whether or not that energy transfers up the lower limb to aid in whole body propulsion. This research examined how increasing prosthetic foot energy return affected walking mechanics across various slopes. Five people with a uni-lateral transtibial amputation walked on an instrumented treadmill at 1.1 m/s for three conditions (level ground, +7.5°, -7.5°) while wearing a prosthetic foot with a novel linkage system and a traditional energy storage and return foot. The novel foot demonstrated greater range of motion (p = 0.0012), and returned more energy (p = 0.023) compared to the traditional foot. The increased energy correlated with an increase in center of mass (CoM) energy change during propulsion from the prosthetic limb (p = 0.012), and the increased prosthetic limb propulsion correlated to a decrease in CoM energy change (i.e., collision) on the sound limb (p < 0.001). These data indicate that this novel foot was able to return more energy than a traditional prosthetic foot and that this additional energy was used to increase whole body propulsion.

  15. Physiological Role of Gap-Junctional Hemichannels

    PubMed Central

    Quist, Arjan Pieter; Rhee, Seung Keun; Lin, Hai; Lal, Ratneshwar

    2000-01-01

    Hemichannels in the overlapping regions of apposing cells plasma membranes join to form gap junctions and provide an intercellular communication pathway. Hemichannels are also present in the nonjunctional regions of individual cells and their activity is gated by several agents, including calcium. However, their physiological roles are unknown. Using techniques of atomic force microscopy (AFM), fluorescent dye uptake assay, and laser confocal immunofluorescence imaging, we have examined the extracellular calcium-dependent modulation of cell volume. In response to a change in the extracellular physiological calcium concentration (1.8 to ≤1.6 mM) in an otherwise isosmotic condition, real-time AFM imaging revealed a significant and reversible increase in the volume of cells expressing gap-junctional proteins (connexins). Volume change did not occur in cells that were not expressing connexins. However, after the transient or stable transfection of connexin43, volume change did occur. The volume increase was accompanied by cytochalasin D-sensitive higher cell stiffness, which helped maintain cell integrity. These cellular physical changes were prevented by gap-junctional blockers, oleamide and β-glycyrrhetinic acid, or were reversed by returning extracellular calcium to the normal level. We conclude that nongap-junctional hemichannels regulate cell volume in response to the change in extracellular physiological calcium in an otherwise isosmotic situation. PMID:10704454

  16. Can energy drinks increase the desire for more alcohol?

    PubMed

    Marczinski, Cecile A

    2015-01-01

    Energy drinks, the fastest growing segment in the beverage market, have become popular mixers with alcohol. The emerging research examining the use of alcohol mixed with energy drinks (AmEDs) indicates that the combination of caffeine-containing energy drinks with alcohol may be riskier than the use of alcohol alone. The public health concerns arising from AmED use are documented in different research domains. Epidemiologic studies reveal that the consumption of AmEDs is frequent among young and underage drinkers, demographic groups that are more likely to experience the harms and hazards associated with alcohol use. In addition, for all consumers, elevated rates of binge drinking and risk of alcohol dependence have been associated with AmED use when compared to alcohol alone. Results from laboratory studies help explain why AmED use is associated with excessive intake of alcohol. When an energy drink (or caffeine) is combined with alcohol, the desire (or urge) to drink more alcohol is more pronounced in both humans and animals than with the same dose of alcohol alone. The experience of drinking alcohol appears to be more rewarding when combined with energy drinks. Given that caffeine in other foods and beverages increases preference for those products, further research on AmEDs may elucidate the underlying mechanisms that contribute to alcohol dependence. © 2015 American Society for Nutrition.

  17. Energy access and sustainable development

    NASA Astrophysics Data System (ADS)

    Kammen, Daniel M.; Alstone, Peter; Gershenson, Dimitry

    2015-03-01

    With 1.4 billion people lacking electricity to light their homes and provide other basic services, or to conduct business, and all of humanity (and particularly the poor) are in need of a decarbonized energy system can close the energy access gap and protect the global climate system. With particular focus on addressing the energy needs of the underserved, we present an analytical framework informed by historical trends and contemporary technological, social, and institutional conditions that clarifies the heterogeneous continuum of centralized on-grid electricity, autonomous mini- or community grids, and distributed, individual energy services. We find that the current day is a unique moment of innovation in decentralized energy networks based on super-efficient end-use technology and low-cost photovoltaics, supported by rapidly spreading information technology, particularly mobile phones. Collectively these disruptive technology systems could rapidly increase energy access, contributing to meeting the Millennium Development Goals for quality of life, while simultaneously driving action towards low-carbon, Earth-sustaining, energy systems.

  18. A new silicon phase with direct band gap and novel optoelectronic properties

    DOE PAGES

    Guo, Yaguang; Wang, Qian; Kawazoe, Yoshiyuki; ...

    2015-09-23

    Due to the compatibility with the well-developed Si-based semiconductor industry, there is considerable interest in developing silicon structures with direct energy band gaps for effective sunlight harvesting. In this paper, using silicon triangles as the building block, we propose a new silicon allotrope with a direct band gap of 0.61 eV, which is dynamically, thermally and mechanically stable. Symmetry group analysis further suggests that dipole transition at the direct band gap is allowed. Additionally, this new allotrope displays large carrier mobility (~10 4 cm/V · s) at room temperature and a low mass density (1.71 g/cm 3), making it amore » promising material for optoelectronic applications.« less

  19. Electronic structure of layered quaternary chalcogenide materials for band-gap engineering: The example of Cs2MIIM3IVQ8

    NASA Astrophysics Data System (ADS)

    Besse, Rafael; Sabino, Fernando P.; Da Silva, Juarez L. F.

    2016-04-01

    Quaternary chalcogenide materials offer a wide variety of chemical and physical properties, and hence, those compounds have been widely studied for several technological applications. Recently, experimental studies have found that the chalcogenide Cs2MIIM3IVQ8 family (MII = Mg , Zn , Cd , Hg , MIV = Ge , Sn and Q = S , Se , Te ), which includes 24 compounds, yields a wide range of band gaps, namely, from 1.07 to 3.4 eV, and hence, they have attracted great interest. To obtain an improved atomistic understanding of the role of the cations and anions on the physical properties, we performed a first-principles investigation of the 24 Cs2MIIM3IVQ8 compounds employing density functional theory within semilocal and hybrid exchange-correlation energy functionals and the addition of van der Waals corrections to improve the description of the weakly interacting layers. Our lattice parameters are in good agreement with the available experimental data (i.e., 11 compounds), and the equilibrium volume increases linearly by increasing the atomic number of the chalcogen, which can be explained by the increased atomic radius of the chalcogen atoms from S to Te . We found that van der Waals corrections play a crucial role in the lattice parameter in the stacking direction of the Cs2MIIM3IVQ8 layers, while the binding energy per unit area has similar magnitude as obtained for different layered materials. We obtained that the band gaps follow a linear relation as a function of the unit cell volume, which can be explained by the atomic size of the chalcogen atom and the relative position of the Q p states within the band structure. The fundamental and optical band gaps differ by less than 0.1 eV. The band gaps obtained with the hybrid functional are in good agreement with the available experimental data. Furthermore, we found from the Bader analysis, that the Coulomb interations among the cations and anions play a crucial role on the energetic properties.

  20. Role of heteromeric gap junctions in the cytotoxicity of cisplatin.

    PubMed

    Tong, Xuhui; Dong, Shuying; Yu, Meiling; Wang, Qin; Tao, Liang

    2013-08-09

    In several systems, the presence of gap junctions made of a single connexin has been shown to enhance the cytotoxicity of cisplatin. However, most gap junction channels in vivo appear to be heteromeric (composed of more than one connexin isoform). Here we explore in HeLa cells the cytotoxicity to cisplatin that is enhanced by heteromeric gap junctions composed of Cx26 and Cx32, which have been shown to be more selective among biological permeants than the corresponding homomeric channels. We found that survival and subsequent proliferation of cells exposed to cisplatin were substantially reduced when gap junctions were present than when there were no gap junctions. Functional inhibition of gap junctions by oleamide enhanced survival/proliferation, and enhancement of gap junctions by retinoic acid decreased survival/proliferation. These effects occurred only in high density cultures, and the treatments were without effect when there was no opportunity for gap junction formation. The presence of functional gap junctions enhanced apoptosis as reflected in markers of both early-stage and late-stage apoptosis. Furthermore, analysis of caspases 3, 8 and 9 showed that functional gap junctions specifically induced apoptosis by the mitochondrial pathway. These results demonstrate that heteromeric Cx26/Cx32 gap junctions increase the cytotoxicity of cisplatin by induction of apoptosis via the mitochondrial pathway. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.