Sample records for gap gas tungsten

  1. Gas-driven permeation of deuterium through tungsten and tungsten alloys

    DOE PAGES

    Buchenauer, Dean A.; Karnesky, Richard A.; Fang, Zhigang Zak; ...

    2016-03-25

    Here, to address the transport and trapping of hydrogen isotopes, several permeation experiments are being pursued at both Sandia National Laboratories (deuterium gas-driven permeation) and Idaho National Laboratories (tritium gas- and plasma-driven tritium permeation). These experiments are in part a collaboration between the US and Japan to study the performance of tungsten at divertor relevant temperatures (PHENIX). Here we report on the development of a high temperature (≤1150 °C) gas-driven permeation cell and initial measurements of deuterium permeation in several types of tungsten: high purity tungsten foil, ITER-grade tungsten (grains oriented through the membrane), and dispersoid-strengthened ultra-fine grain (UFG) tungstenmore » being developed in the US. Experiments were performed at 500–1000 °C and 0.1–1.0 atm D 2 pressure. Permeation through ITER-grade tungsten was similar to earlier W experiments by Frauenfelder (1968–69) and Zaharakov (1973). Data from the UFG alloy indicates marginally higher permeability (< 10×) at lower temperatures, but the permeability converges to that of the ITER tungsten at 1000 °C. The permeation cell uses only ceramic and graphite materials in the hot zone to reduce the possibility for oxidation of the sample membrane. Sealing pressure is applied externally, thereby allowing for elevation of the temperature for brittle membranes above the ductile-to-brittle transition temperature.« less

  2. Hydrocarbon deposition in gaps of tungsten and graphite tiles in Experimental Advanced Superconducting Tokamak edge plasma parameters

    NASA Astrophysics Data System (ADS)

    Xu, Qian; Yang, Zhongshi; Luo, Guang-Nan

    2015-09-01

    The three-dimensional (3D) Monte Carlo code PIC-EDDY has been utilized to investigate the mechanism of hydrocarbon deposition in gaps of tungsten tiles in the Experimental Advanced Superconducting Tokamak (EAST), where the sheath potential is calculated by the 2D in space and 3D in velocity particle-in-cell method. The calculated results for graphite tiles using the same method are also presented for comparison. Calculation results show that the amount of carbon deposited in the gaps of carbon tiles is three times larger than that in the gaps of tungsten tiles when the carbon particles from re-erosion on the top surface of monoblocks are taken into account. However, the deposition amount is found to be larger in the gaps of tungsten tiles at the same CH4 flux. When chemical sputtering becomes significant as carbon coverage on tungsten increases with exposure time, the deposition inside the gaps of tungsten tiles would be considerable.

  3. Gas tungsten arc welder

    DOEpatents

    Christiansen, D.W.; Brown, W.F.

    A welder for automated closure of fuel pins by a gas tungsten arc process in which a rotating length of cladding is positioned adjacent a welding electrode in a sealed enclosure. An independently movable axial grinder is provided in the enclosure for refurbishing the used electrode between welds.

  4. Gas Tungsten Arc Welding. Welding Module 6. Instructor's Guide.

    ERIC Educational Resources Information Center

    Missouri Univ., Columbia. Instructional Materials Lab.

    This guide is intended to assist vocational educators in teaching a three-unit module in gas tungsten arc welding. The module has been designed to be totally integrated with Missouri's Vocational Instruction Management System. The basic principles involved in gas tungsten arc welding, supplies, and applications are covered. The materials included…

  5. Gas tungsten arc welding in a microgravity environment: Work done on GAS payload G-169

    NASA Technical Reports Server (NTRS)

    Welcher, Blake A.; Kolkailah, Faysal A.; Muir, Arthur H., Jr.

    1987-01-01

    GAS payload G-169 is discussed. G-169 contains a computer-controlled Gas Tungsten Arc Welder. The equipment design, problem analysis, and problem solutions are presented. Analysis of data gathered from other microgravity arc welding and terrestrial Gas Tungsten Arc Welding (GTAW) experiments are discussed in relation to the predicted results for the GTAW to be performed in microgravity with payload G-169.

  6. Vacuum Gas Tungsten Arc Welding

    NASA Technical Reports Server (NTRS)

    Weeks, J. L.; Todd, D. T.; Wooten, J. R.

    1997-01-01

    A two-year program investigated vacuum gas tungsten arc welding (VGTAW) as a method to modify or improve the weldability of normally difficult-to-weld materials. After a vacuum chamber and GTAW power supply were modified, several difficult-to-weld materials were studied and key parameters developed. Finally, Incoloy 903 weld overlays were produced without microfissures.

  7. Closed-cage tungsten oxide clusters in the gas phase.

    PubMed

    Singh, D M David Jeba; Pradeep, T; Thirumoorthy, Krishnan; Balasubramanian, Krishnan

    2010-05-06

    During the course of a study on the clustering of W-Se and W-S mixtures in the gas phase using laser desorption ionization (LDI) mass spectrometry, we observed several anionic W-O clusters. Three distinct species, W(6)O(19)(-), W(13)O(29)(-), and W(14)O(32)(-), stand out as intense peaks in the regular mass spectral pattern of tungsten oxide clusters suggesting unusual stabilities for them. Moreover, these clusters do not fragment in the postsource decay analysis. While trying to understand the precursor material, which produced these clusters, we found the presence of nanoscale forms of tungsten oxide. The structure and thermodynamic parameters of tungsten clusters have been explored using relativistic quantum chemical methods. Our computed results of atomization energy are consistent with the observed LDI mass spectra. The computational results suggest that the clusters observed have closed-cage structure. These distinct W(13) and W(14) clusters were observed for the first time in the gas phase.

  8. Gas tungsten arc welder with electrode grinder

    DOEpatents

    Christiansen, David W.; Brown, William F.

    1984-01-01

    A welder for automated closure of fuel pins by a gas tungsten arc process in which a rotating length of cladding is positioned adjacent a welding electrode in a sealed enclosure. An independently movable axial grinder is provided in the enclosure for refurbishing the used electrode between welds.

  9. Tungsten-Doped TiO2 Nanolayers with Improved CO2 Gas Sensing Properties for Environmental Applications

    NASA Astrophysics Data System (ADS)

    Saberi, Maliheh; Ashkarran, Ali Akbar

    Tungsten-doped TiO2 gas sensors were successfully synthesized using sol-gel process and spin coating technique. The fabricated sensor was characterized by field emission scanning electron microscopy (FE-SEM), ultraviolet visible (UV-Vis) spectroscopy, transmission electron microscopy (TEM), X-Ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. Gas sensing properties of pristine and tungsten-doped TiO2 nanolayers (NLs) were probed by detection of CO2 gas. A series of experiments were conducted in order to find the optimum operating temperature of the prepared sensors and also the optimum value of tungsten concentration in TiO2 matrix. It was found that introducing tungsten into the TiO2 matrix enhanced the gas sensing performance. The maximum response was found to be (1.37) for 0.001g tungsten-doped TiO2 NLs at 200∘C as an optimum operating temperature.

  10. Nanostructured Tungsten Oxide Composite for High-Performance Gas Sensors

    PubMed Central

    Feng-Chen, Siyuan; Aldalbahi, Ali; Feng, Peter Xianping

    2015-01-01

    We report the results of composite tungsten oxide nanowires-based gas sensors. The morphologic surface, crystallographic structures, and chemical compositions of the obtained nanowires have been investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), and Raman scattering, respectively. The experimental measurements reveal that each wire consists of crystalline nanoparticles with an average diameter of less than 250 nm. By using the synthesized nanowires, highly sensitive prototypic gas sensors have been designed and fabricated. The dependence of the sensitivity of tungsten oxide nanowires to the methane and hydrogen gases as a function of time has been obtained. Various sensing parameters such as sensitivity, response time, stability, and repeatability were investigated in order to reveal the sensing ability. PMID:26512670

  11. Gas-tungsten arc welding of aluminum alloys

    DOEpatents

    Frye, Lowell D.

    1984-01-01

    A gas-tungsten arc welding method for joining together structures formed of aluminum alloy with these structures disposed contiguously to a heat-damagable substrate of a metal dissimilar to the aluminum alloy. The method of the present invention is practiced by diamond machining the fay surfaces of the aluminum alloy structures to provide a mirror finish thereon having a surface roughness in the order of about one microinch. The fay surfaces are aligned and heated sufficiently by the tungsten electrode to fuse the aluminum alloy contiguous to the fay surfaces to effect the weld joint. The heat input used to provide an oxide-free weld is significantly less than that required if the fay surfaces were prepared by using conventional chemical and mechanical practices.

  12. Fast, Nonspattering Inert-Gas Welding

    NASA Technical Reports Server (NTRS)

    Gilbert, Jeffrey L.

    1991-01-01

    Proposed welding technique combines best features of metal (other than tungsten)/inert-gas welding, plasma arc welding, and tungsten/inert-gas welding. Advantages include: wire fed to weld joint preheated, therefore fed at high speed without spattering; high-frequency energy does not have to be supplied to workpiece to initiate welding; size of arc gap not critical, power-supply control circuit adjusts voltage across gap to compensate for changes; only low gas-flow rate needed; welding electrode replaced easily as prefabricated assembly; external wire-feeding manipulator not needed; and welding process relatively forgiving of operator error.

  13. Gas-tungsten arc welding of aluminum alloys

    DOEpatents

    Frye, L.D.

    1982-03-25

    The present invention is directed to a gas-tungsten arc welding method for joining together structures formed of aluminum alloy with these structures disposed contiguously to a heat-damagable substrate of a metal dissimilar to the aluminum alloy. The method of the present invention is practiced by diamond machining the fay surfaces of the aluminum alloy structures to profice a mirror finish thereon having a surface roughness in the order of about one microinch. The fay surface are aligned and heated sufficiently by the tungsten electrode to fuse the aluminum alloy continguous to the fay surfaces to effect the weld joint. The heat input used to provide an oxide-free weld is significantly less than that required if the fay surfaces were prepared by using conventional chemical and mechanical practices.

  14. Refractory metals welded or brazed with tungsten inert gas equipment

    NASA Technical Reports Server (NTRS)

    Wisner, J. P.

    1965-01-01

    Appropriate brazing metals and temperatures facilitate the welding or brazing of base metals with tungsten inert gas equipment. The highest quality bond is obtained when TIG welding is performed in an inert atmosphere.

  15. Thermal expansion method for lining tantalum alloy tubing with tungsten

    NASA Technical Reports Server (NTRS)

    Watson, G. K.; Whittenberger, J. D.; Mattson, W. F.

    1973-01-01

    A differential-thermal expansion method was developed to line T-111 (tantalum - 8 percent tungsten - 2 percent hafnium) tubing with a tungsten diffusion barrier as part of a fuel element fabrication study for a space power nuclear reactor concept. This method uses a steel mandrel, which has a larger thermal expansion than T-111, to force the tungsten against the inside of the T-111 tube. Variables investigated include lining temperature, initial assembly gas size, and tube length. Linear integrity increased with increasing lining temperature and decreasing gap size. The method should have more general applicability where cylinders must be lined with a thin layer of a second material.

  16. Tungsten Oxide Photonic Crystals as Optical Transducer for Gas Sensing.

    PubMed

    Amrehn, Sabrina; Wu, Xia; Wagner, Thorsten

    2018-01-26

    Some metal oxide semiconductors, such as tungsten trioxide or tin dioxide, are well-known as resistive transducers for gas sensing and offer high sensitivities down to the part per billion level. Electrical signal read-out, however, limits the information obtained on the electronic properties of metal oxides to a certain frequency range and its application because of the required electrical contacts. Therefore, a novel approach for building an optical transducer for gas reactions utilizing metal oxide photonic crystals is presented here. By the rational design of the structure and composition it is possible to synthesize a functional material which allows one to obtain insight into its electronic properties in the optical frequency range with simple experimental measures. The concept is demonstrated by tungsten trioxide inverse opal structure as optical transducer material for hydrogen sensing. The sensing behavior is analyzed in a temperature range from room temperature to 500 °C and in a wide hydrogen concentration range (3000 ppm to 10%). The sensing mechanism is mainly the refractive index change resulting from hydrogen intercalation in tungsten trioxide, but the back reaction has also impact on the optical properties of this system. Detailed chemical reaction studies provide suggestions for specific sensing conditions.

  17. Gas tungsten arc welding of aluminum alloys 6XXX. Welding procedure specification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wodtke, C.H.; Frizzell, D.R.; Plunkett, W.A.

    1985-08-01

    Procedure WPS-1003 is qualified under Section IX of the ASME Boiler and Pressure Vessel Code for gas tungsten arc welding of aluminum alloys 6061 and 6063 (P-23), in thickness range 0.035 to 0.516 in.; filler metal is ER4043 (F-23) or ER5356 (F-22); shielding gas is argon.

  18. Gas mixtures for spark gap closing switches

    DOEpatents

    Christophorou, L.G.; McCorkle, D.L.; Hunter, S.R.

    1987-02-20

    Gas mixtures for use in spark gap closing switches comprised of fluorocarbons and low molecular weight, inert buffer gases. To this can be added a third gas having a low ionization potential relative to the buffer gas. The gas mixtures presented possess properties that optimized the efficiency spark gap closing switches. 6 figs.

  19. Nuclear Technology. Course 28: Welding Inspection. Module 28-3, Tungsten Inert Gas (TIG), Metal Inert Gas (MIG) and Submerged Arc Welding.

    ERIC Educational Resources Information Center

    Espy, John

    This third in a series of ten modules for a course titled Welding Inspection presents the apparatus, process techniques, procedures, applications, associated defects, and inspection for the tungsten inert gas, metal inert gas, and submerged arc welding processes. The module follows a typical format that includes the following sections: (1)…

  20. Better Gas-Gap Thermal Switches For Sorption Compressors

    NASA Technical Reports Server (NTRS)

    Bhandari, Pradeep; Rodriguez, Jose

    1995-01-01

    Gas-gap thermal switches associated with sorption compressors of some heat pumps and cryogenic systems designed for higher performance, according to proposal, by introducing controlled turbulent flows into gas gaps. Utilizes convection in turbulent flow to transfer heat at greater rate. Design takes advantage of flow of working fluid. Working fluid also serve as heat transfer medium in gas gap.

  1. High heat flux properties of pure tungsten and plasma sprayed tungsten coatings

    NASA Astrophysics Data System (ADS)

    Liu, X.; Tamura, S.; Tokunaga, K.; Yoshida, N.; Noda, N.; Yang, L.; Xu, Z.

    2004-08-01

    High heat flux properties of pure tungsten and plasma sprayed tungsten coatings on carbon substrates have been studied by annealing and cyclic heat loading. The recrystallization temperature and an activation energy QR=126 kJ/mol for grain growth of tungsten coating by vacuum plasma spray (VPS) were estimated, and the microstructural changes of multi-layer tungsten and rhenium interface pre-deposited by physical vapor deposition (PVD) with anneal temperature were investigated. Cyclic load tests indicated that pure tungsten and VPS-tungsten coating could withstand 1000 cycles at 33-35 MW/m 2 heat flux and 3 s pulse duration, and inert gas plasma spray (IPS)-tungsten coating showed local cracks by 300 cycles but did not induce failure by further cycles. However, the failure of pure tungsten and VPS-tungsten coating by fatigue cracking was observed under higher heat load (55-60 MW/m 2) for 420 and 230 cycles, respectively.

  2. Tungsten Filament Fire

    ERIC Educational Resources Information Center

    Ruiz, Michael J.; Perkins, James

    2016-01-01

    We safely remove the outer glass bulb from an incandescent lamp and burn up the tungsten filament after the glass is removed. This demonstration dramatically illustrates the necessity of a vacuum or inert gas for the environment surrounding the tungsten filament inside the bulb. Our approach has added historical importance since the incandescent…

  3. Tungsten wire and tubing joined by nickel brazing

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Thin tungsten wire and tungsten tubing are brazed together using a contacting coil of nickel wire heated to its melting point in an inert-gas atmosphere. This method is also effective for brazing tungsten to tungsten-rhenium parts.

  4. Vaccum Gas Tungsten Arc Welding, phase 1

    NASA Astrophysics Data System (ADS)

    Weeks, J. L.; Krotz, P. D.; Todd, D. T.; Liaw, Y. K.

    1995-03-01

    This two year program will investigate Vacuum Gas Tungsten Arc Welding (VGTAW) as a method to modify or improve the weldability of normally difficult-to-weld materials. VGTAW appears to offer a significant improvement in weldability because of the clean environment and lower heat input needed. The overall objective of the program is to develop the VGTAW technology and implement it into a manufacturing environment that will result in lower cost, better quality and higher reliability aerospace components for the space shuttle and other NASA space systems. Phase 1 of this program was aimed at demonstrating the process's ability to weld normally difficult-to-weld materials. Phase 2 will focus on further evaluation, a hardware demonstration and a plan to implement VGTAW technology into a manufacturing environment. During Phase 1, the following tasks were performed: (1) Task 11000 Facility Modification - an existing vacuum chamber was modified and adapted to a GTAW power supply; (2) Task 12000 Materials Selection - four difficult-to-weld materials typically used in the construction of aerospace hardware were chosen for study; (3) Task 13000 VGTAW Experiments - welding experiments were conducted under vacuum using the hollow tungsten electrode and evaluation. As a result of this effort, two materials, NARloy Z and Incoloy 903, were downselected for further characterization in Phase 2; and (4) Task 13100 Aluminum-Lithium Weld Studies - this task was added to the original work statement to investigate the effects of vacuum welding and weld pool vibration on aluminum-lithium alloys.

  5. Vaccum Gas Tungsten Arc Welding, phase 1

    NASA Technical Reports Server (NTRS)

    Weeks, J. L.; Krotz, P. D.; Todd, D. T.; Liaw, Y. K.

    1995-01-01

    This two year program will investigate Vacuum Gas Tungsten Arc Welding (VGTAW) as a method to modify or improve the weldability of normally difficult-to-weld materials. VGTAW appears to offer a significant improvement in weldability because of the clean environment and lower heat input needed. The overall objective of the program is to develop the VGTAW technology and implement it into a manufacturing environment that will result in lower cost, better quality and higher reliability aerospace components for the space shuttle and other NASA space systems. Phase 1 of this program was aimed at demonstrating the process's ability to weld normally difficult-to-weld materials. Phase 2 will focus on further evaluation, a hardware demonstration and a plan to implement VGTAW technology into a manufacturing environment. During Phase 1, the following tasks were performed: (1) Task 11000 Facility Modification - an existing vacuum chamber was modified and adapted to a GTAW power supply; (2) Task 12000 Materials Selection - four difficult-to-weld materials typically used in the construction of aerospace hardware were chosen for study; (3) Task 13000 VGTAW Experiments - welding experiments were conducted under vacuum using the hollow tungsten electrode and evaluation. As a result of this effort, two materials, NARloy Z and Incoloy 903, were downselected for further characterization in Phase 2; and (4) Task 13100 Aluminum-Lithium Weld Studies - this task was added to the original work statement to investigate the effects of vacuum welding and weld pool vibration on aluminum-lithium alloys.

  6. Deuterium gas-driven permeation and subsequent retention in rolled tungsten foils

    NASA Astrophysics Data System (ADS)

    Liu, Feng; Zhou, Haishan; Li, Xiao-Chun; Xu, Yuping; An, Zhongqing; Mao, Hongmin; Xing, Wenjing; Hou, Qing; Luo, Guang-Nan

    2014-12-01

    Experiments concerning deuterium gas-driven permeation through rolled tungsten foils in the temperature range of 850-950 K and subsequent deuterium retention have been performed. The steady state permeation flux of deuterium is proportional to the square root of the driving pressure. The permeability of deuterium is in an order of 10-14 mol m-1 s-1 Pa-1/2 in this temperature range and the activation energy for permeation is 1.21 eV. Measurements of diffusivity are significantly affected by the driving pressure, which can be well explained by a saturable-trap model. Thermal desorption spectra of samples feature a single deuterium release peak at about 873 K. TMAP 4 modeling of this peak gives a detrapping energy of 1.70 eV, which fits the dissociation enthalpy of deuterium desorbing from the inner wall of vacancy clusters or pores in tungsten.

  7. Crystalline mesoporous tungsten oxide nanoplate monoliths synthesized by directed soft template method for highly sensitive NO{sub 2} gas sensor applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoa, Nguyen Duc, E-mail: ndhoa@itims.edu.vn; Duy, Nguyen Van; Hieu, Nguyen Van, E-mail: hieu@itims.edu.vn

    2013-02-15

    Graphical abstract: Display Omitted Highlights: ► Mesoporous WO{sub 3} nanoplate monoliths were obtained by direct templating synthesis. ► Enable effective accession of the analytic molecules for the sensor applications. ► The WO{sub 3} sensor exhibited a high performance to NO{sub 2} gas at low temperature. -- Abstract: Controllable synthesis of nanostructured metal oxide semiconductors with nanocrystalline size, porous structure, and large specific surface area is one of the key issues for effective gas sensor applications. In this study, crystalline mesoporous tungsten oxide nanoplate-like monoliths with high specific surface areas were obtained through instant direct-templating synthesis for highly sensitive nitrogen dioxidemore » (NO{sub 2}) sensor applications. The copolymer soft template was converted into a solid carbon framework by heat treatment in an inert gas prior to calcinations in air to sustain the mesoporous structure of tungsten oxide. The multidirectional mesoporous structures of tungsten oxide with small crystalline size, large specific surface area, and superior physical characteristics enabled the rapid and effective accession of analytic gas molecules. As a result, the sensor response was enhanced and the response and recovery times were reduced, in which the mesoporous tungsten oxide based gas sensor exhibited a superior response of 21,155% to 5 ppm NO{sub 2}. In addition, the developed sensor exhibited selective detection of low NO{sub 2} concentration in ammonia and ethanol at a low temperature of approximately 150 °C.« less

  8. Electron temperature and density measurement of tungsten inert gas arcs with Ar-He shielding gas mixture

    NASA Astrophysics Data System (ADS)

    Kühn-Kauffeldt, M.; Marques, J.-L.; Forster, G.; Schein, J.

    2013-10-01

    The diagnostics of atmospheric welding plasma is a well-established technology. In most cases the measurements are limited to processes using pure shielding gas. However in many applications shielding gas is a mixture of various components including metal vapor in gas metal arc welding (GMAW). Shielding gas mixtures are intentionally used for tungsten inert gas (TIG) welding in order to improve the welding performance. For example adding Helium to Argon shielding gas allows the weld geometry and porosity to be influenced. Yet thermal plasmas produced with gas mixtures or metal vapor still require further experimental investigation. In this work coherent Thomson scattering is used to measure electron temperature and density in these plasmas, since this technique allows independent measurements of electron and ion temperature. Here thermal plasmas generated by a TIG process with 50% Argon and 50% Helium shielding gas mixture have been investigated. Electron temperature and density measured by coherent Thomson scattering have been compared to the results of spectroscopic measurements of the plasma density using Stark broadening of the 696.5 nm Argon spectral line. Further investigations of MIG processes using Thomson scattering technique are planned.

  9. Gas tungsten arc welding of aluminum alloys 3004, 5052, and 5X54. Welding procedure specification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wodtke, C.H.; Frizzell, D.R.; Plunkett, W.A.

    1985-08-01

    Procedure WPS-1002 is qualified under Section IX of the ASME Boiler and Pressure Vessel Code for gas tungsten arc welding of aluminum alloys 3004, 5052, 5154, and 5454 (P-22), in thickness range 0.062 to 0.5 in.; filler metal is ER4043 (F-23) for 3004, and ER5356 (F-22) for other alloys; shielding gas is argon.

  10. Spark gap switch system with condensable dielectric gas

    DOEpatents

    Thayer, III, William J.

    1991-01-01

    A spark gap switch system is disclosed which is capable of operating at a high pulse rate comprising an insulated switch housing having a purging gas entrance port and a gas exit port, a pair of spaced apart electrodes each having one end thereof within the housing and defining a spark gap therebetween, an easily condensable and preferably low molecular weight insulating gas flowing through the switch housing from the housing, a heat exchanger/condenser for condensing the insulating gas after it exits from the housing, a pump for recirculating the condensed insulating gas as a liquid back to the housing, and a heater exchanger/evaporator to vaporize at least a portion of the condensed insulating gas back into a vapor prior to flowing the insulating gas back into the housing.

  11. Analysis and Comparison of Aluminum Alloy Welded Joints Between Metal Inert Gas Welding and Tungsten Inert Gas Welding

    NASA Astrophysics Data System (ADS)

    Zhao, Lei; Guan, Yingchun; Wang, Qiang; Cong, Baoqiang; Qi, Bojin

    2015-09-01

    Surface contamination usually occurs during welding processing and it affects the welds quality largely. However, the formation of such contaminants has seldom been studied. Effort was made to study the contaminants caused by metal inert gas (MIG) welding and tungsten inert gas (TIG) welding processes of aluminum alloy, respectively. SEM, FTIR and XPS analysis was carried out to investigate the microstructure as well as surface chemistry. These contaminants were found to be mainly consisting of Al2O3, MgO, carbide and chromium complexes. The difference of contaminants between MIG and TIG welds was further examined. In addition, method to minimize these contaminants was proposed.

  12. Modelling the transient behaviour of pulsed current tungsten-inert-gas weldpools

    NASA Astrophysics Data System (ADS)

    Wu, C. S.; Zheng, W.; Wu, L.

    1999-01-01

    A three-dimensional model is established to simulate the pulsed current tungsten-inert-gas (TIG) welding process. The goal is to analyse the cyclic variation of fluid flow and heat transfer in weldpools under periodic arc heat input. To this end, an algorithm, which is capable of handling the transience, nonlinearity, multiphase and strong coupling encountered in this work, is developed. The numerical simulations demonstrate the transient behaviour of weldpools under pulsed current. Experimental data are compared with numerical results to show the effectiveness of the developed model.

  13. Assessment of Stress Corrosion Cracking Resistance of Activated Tungsten Inert Gas-Welded Duplex Stainless Steel Joints

    NASA Astrophysics Data System (ADS)

    Alwin, B.; Lakshminarayanan, A. K.; Vasudevan, M.; Vasantharaja, P.

    2017-12-01

    The stress corrosion cracking behavior of duplex stainless steel (DSS) weld joint largely depends on the ferrite-austenite phase microstructure balance. This phase balance is decided by the welding process used, heat input, welding conditions and the weld metal chemistry. In this investigation, the influence of activated tungsten inert gas (ATIG) and tungsten inert gas (TIG) welding processes on the stress corrosion cracking (SCC) resistance of DSS joints was evaluated and compared. Boiling magnesium chloride (45 wt.%) environment maintained at 155 °C was used. The microstructure and ferrite content of different weld zones are correlated with the outcome of sustained load, SCC test. Irrespective of the welding processes used, SCC resistance of weld joints was inferior to that of the base metal. However, ATIG weld joint exhibited superior resistance to SCC than the TIG weld joint. The crack initiation and final failure were in the weld metal for the ATIG weld joint; they were in the heat-affected zone for the TIG weld joint.

  14. Spark gap switch with spiral gas flow

    DOEpatents

    Brucker, John P.

    1989-01-01

    A spark gap switch having a contaminate removal system using an injected gas. An annular plate concentric with an electrode of the switch defines flow paths for the injected gas which form a strong spiral flow of the gas in the housing which is effective to remove contaminates from the switch surfaces. The gas along with the contaminates is exhausted from the housing through one of the ends of the switch.

  15. Gas flow stabilized megavolt spark gap for repetitive pulses

    DOEpatents

    Lawson, R.N.; O'Malley, M.W.; Rohwein, G.J.

    A high voltage spark gap switch is disclosed including a housing having first and second end walls being spaced apart by a predetermined distance. A first electrode is positioned on the first end wall and a second electrode is positioned on the second end wall. The first and second electrodes are operatively disposed relative to each other and are spaced apart by a predetermined gap. An inlet conduit is provided for supplying gas to the first electrode. The conduit includes a nozzle for dispersing the gas in the shape of an annular jet. The gas is supplied into the housing at a predetermined velocity. A venturi housing is disposed within the second electrode. An exhaust conduit is provided for discharging gas and residue from the housing. The gas supplied at the predetermined velocity to the housing through the inlet conduit and the nozzle in an annular shape traverses the gap between the first and second electrodes and entrains low velocity gas within the housing decreasing the velocity of the gas supplied to the housing and increasing the diameter of the annular shape. The venturi disposed within the second electrode recirculates a large volume of gas to clean and cool the surface of the electrodes.

  16. Gas flow stabilized megavolt spark gap for repetitive pulses

    DOEpatents

    Lawson, Robert N.; O'Malley, Martin W.; Rohwein, Gerald J.

    1986-01-01

    A high voltage spark gap switch including a housing having first and second end walls being spaced apart by a predetermined distance. A first electrode is positioned on the first end wall and a second electrode is positioned on the second end wall. The first and second electrodes are operatively disposed relative to each other and are spaced apart by a predetermined gap. An inlet conduit is provided for supplying gas to the first electrode. The conduit includes a nozzle for dispersing the gas in the shape of an annular jet. The gas is supplied into the housing at a predetermined velocity. A venturi housing is disposed within the second electrode. An exhaust conduit is provided for discharging gas and residue from the housing. The gas supplied at the predetermined velocity to the housing through the inlet conduit and the nozzle in an annular shape traverses the gap between the first and second electrodes and entrains low velocity gas within the housing decreasing the velocity of the gas supplied to the housing and increasing the diameter of the annular shape. The venturi disposed within the second electrode recirculates a large volume of gas to clean and cool the surface of the electrodes.

  17. Investigation on Microstructure and Mechanical Properties of Continuous and Pulsed Current Gas Tungsten Arc Welded alloy 600

    NASA Astrophysics Data System (ADS)

    Srikanth, A.; Manikandan, M.

    2018-02-01

    The present study investigates the microstructure and mechanical properties of joints fabricated by Continuous and pulsed current gas tungsten arc welded alloy 600. Welding was done by autogenous mode. The macro examination was carried out to evaluate the welding defects in the weld joints. Optical and Scanning Electron Microscope (SEM) were performed to assess the microstructural changes in the fusion zone. Energy Dispersive Spectroscopy (EDS) analysis was carried to evaluate the microsegregation of alloying elements in the fusion zone. The tensile test was conducted to assess the strength of the weld joints. The results show that no welding defects were observed in the fusion zones of Continuous and Pulsed current Gas Tungsten Arc Welding. The refined microstructure was found in the pulsed current compared to continuous current mode. Microsegregation was not noticed in the weld grain boundary of continuous and pulsed current mode. The pulsed current shows improved mechanical properties compared to the continuous current mode.

  18. A comparison of the physics of Gas Tungsten Arc Welding (GTAW), Electron Beam Welding (EBW), and Laser Beam Welding (LBW)

    NASA Technical Reports Server (NTRS)

    Nunes, A. C., Jr.

    1985-01-01

    The physics governing the applicability and limitations of gas tungsten arc (GTA), electron beam (EB), and laser beam (LB) welding are compared. An appendix on the selection of laser welding systems is included.

  19. Signal analysis of voltage noise in welding arcs. [gas tungsten arc welding

    NASA Technical Reports Server (NTRS)

    Elis, E.; Eagar, T. W.

    1982-01-01

    Gas tungsten arc welds were made on low alloy steel plates to which intentional defects (discontinuities) were imposed. Disruption of shielding gas, welding over surface films, and tack welds produce changes in what is otherwise a relatively uniform voltage signal. The arc voltage was 15 volts + or - 2 volts with 300 mV ripple noise from the power supply. Changes in this steady noise voltage varied from 50 mV to less than one millivolt depending on the severity and the type of change experienced. In some instances the changes were easily detected by analysis of the signal in real time, while in other cases the signal had to transformed to the frequency domain in order to detect the changes. Discontinuities as small as 1.5 mm in length were detected. The ultimate sensitivity and reproducibility of the technique is still being investigated.

  20. An update to the toxicological profile for water-soluble and sparingly soluble tungsten substances

    PubMed Central

    Lemus, Ranulfo; Venezia, Carmen F.

    2015-01-01

    Abstract Tungsten is a relatively rare metal with numerous applications, most notably in machine tools, catalysts, and superalloys. In 2003, tungsten was nominated for study under the National Toxicology Program, and in 2011, it was nominated for human health assessment under the US Environmental Protection Agency's (EPA) Integrated Risk Information System. In 2005, the Agency for Toxic Substances and Disease Registry (ATSDR) issued a toxicological profile for tungsten, identifying several data gaps in the hazard assessment of tungsten. By filling the data gaps identified by the ATSDR, this review serves as an update to the toxicological profile for tungsten and tungsten substances. A PubMed literature search was conducted to identify reports published during the period 2004–2014, in order to gather relevant information related to tungsten toxicity. Additional information was also obtained directly from unpublished studies from within the tungsten industry. A systematic approach to evaluate the quality of data was conducted according to published criteria. This comprehensive review has gathered new toxicokinetic information and summarizes the details of acute and repeated-exposure studies that include reproductive, developmental, neurotoxicological, and immunotoxicological endpoints. Such new evidence involves several relevant studies that must be considered when regulators estimate and propose a tungsten reference or concentration dose. PMID:25695728

  1. Gap Solitons of Superfluid Fermi Gas in FS Optical Lattices

    NASA Astrophysics Data System (ADS)

    Chen, Yan; Zhang, Ke-Zhi; He, Yong-Lin; Liu, Zhen-Lai; Zhu, Liao

    2018-01-01

    By employing the mean-field theory and hydrodynamic scheme, we study the gap solitons of superfluid Fermi gas in Fourier-Synthesized(FS) optical lattices. By means of numerical methods and variational approximation, the atomic interaction, the chemical potential, the potential depth of the lattice and relative phase of the Fermi system are derived along the Bose-Enstein condensation(BEC)side to the Bardeen-Cooper-Schrieffer (BCS)side. It means that the condition exciting gap solitons is obtained. Moreover, we analyze the fundamental gap soltions of the superfluid Fermi gas. It is found that the relative phase α impacts greatly on the properties of fundamental gap solitons for superfluid Fermi gas. Especially, the nonlinearity interaction term g decreases with α. Add, due to Fermi pressure, curvature changes of g in the BEC limit( γ = 1, here, γ is a function of an interaction parameter) is larger than that at unitary ( γ = 2/3). Spatial distribution of gap solitons exhibit very obvious different when the system transit from the BEC side to BCS side.

  2. Gas tungsten arc welding of aluminum alloys 1XXX and 3003 to 3004, 5052 and 5X54. Welding procedure specification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wodtke, C.H.; Frizzell, D.R.; Plunkett, W.A.

    1985-08-01

    Procedure WPS-2201 is qualified under Section IX of the ASME Boiler and Pressure Vessel for gas tungsten arc welding of aluminum alloys 1060, 1100, and 3003 (P-21) to 3004, 5052, 5154, and 5454 (P-22), in thickness range 0.062 to 0.5 in.; filler metal is ER5356 (F-22); shielding gas is argon.

  3. Gas Tungsten Arc Welding and Plasma Arc Cutting. Teacher Edition [and] Student Edition [and] Student Workbook. Second Edition.

    ERIC Educational Resources Information Center

    Harper, Eddie; Knapp, John

    This packet of instructional materials for a gas tungsten arc welding (GTAW) and plasma arc cutting course is comprised of a teacher edition, student edition, and student workbook. The teacher edition consists of introductory pages and teacher pages. Introductory pages include training and competency profile, state duty/task crosswalk,…

  4. Runaway gas accretion and gap opening versus type I migration

    NASA Astrophysics Data System (ADS)

    Crida, A.; Bitsch, B.

    2017-03-01

    Growing planets interact with their natal protoplanetary disc, which exerts a torque onto them allowing them to migrate in the disc. Small mass planets do not affect the gas profile and migrate in the fast type-I migration. Although type-I migration can be directed outwards for planets smaller than 20 - 30M⊕ in some regions of the disc, planets above this mass should be lost into the central star long before the disc disperses. Massive planets push away material from their orbit and open a gap. They subsequently migrate in the slower, type II migration, which could save them from migrating all the way to the star. Hence, growing giant planets can be saved if and only if they can reach the gap opening mass, because this extends their migration timescale, allowing them to eventually survive at large orbits until the disc itself disperses. However, most of the previous studies only measured the torques on planets with fixed masses and orbits to determine the migration rate. Additionally, the transition between type-I and type-II migration itself is not well studied, especially when taking the growth mechanism of rapid gas accretion from the surrounding disc into account. Here we use isothermal 2D disc simulations with FARGO-2D1D to study the migration behaviour of gas accreting protoplanets in discs. We find that migrating giant planets always open gaps in the disc. We further show analytically and numerically that in the runaway gas accretion regime, the growth time-scale is comparable to the type-I migration time-scale, indicating that growing planets will reach gap opening masses before migrating all the way to the central star in type-I migration if the disc is not extremely viscous and/or thick. An accretion rate limited to the radial gas flow in the disc, in contrast, is not fast enough. When gas accretion by the planet is taken into account, the gap opening process is accelerated because the planet accretes material originating from its horseshoe region. This

  5. Thermo-mechanical modeling of the gas-tungsten-arc (GTA) welding process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duncan, D.B.

    1980-01-18

    A fundamental study of gas-tungsten-arc (GTA) welding was undertaken. This was initiated with a review of the GTA welding process which lead to the decision to focus experimental and analytical efforts on stationary welds on a pure material. Pure nickel was selected for the test material. Temperature, strain, and distortion measurements were made during the formation of spot welds on circular plates. Transient thermal data were obtained with thermocouples, a radiation pyrometer, and from motion pictures. Local strain was observed qualitatively from Moire interference fringe patterns. Distortion during welding was measured with displacement gages and residual distortion with a profilometer.more » Experimental measurements are compared with predictions of thermal and mechanical finite element codes.« less

  6. Gas tungsten arc welding of aluminum alloys 6XXX. Welding procedure specification. Supplement 1. Records of procedure qualification tests. [6061 and 6063

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wodtke, C.H.; Frizzell, D.R.; Plunkett, W.A.

    1986-06-01

    Procedure WPS-1003 is qualified under Section IX of the ASME Boiler and Pressure Vessel Code for gas tungsten arc welding of aluminum alloys 6061 and 6063 (P-23), in thickness range 0.035 to 0.516 inch; filler metal is ER4043 (F-23) or ER5356 (F-22); shielding gas is argon.

  7. Remote reactor repair: GTA (gas tungsten Arc) weld cracking caused by entrapped helium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanne, Jr, W R

    1988-01-01

    A repair patch was welded to the wall of a nuclear reactor tank using remotely controlled thirty-foot long robot arms. Further repair was halted when gas tungsten arc (GTA) welds joining type 304L stainless steel patches to the 304 stainless steel wall developed toe cracks in the heat-affected zone (HAZ). The role of helium in cracking was investigated using material with entrapped helium from tritium decay. As a result of this investigation, and of an extensive array of diagnostic tests performed on reactor tank wall material, helium embrittlement was shown to be the cause of the toe cracks.

  8. Control of Gas Tungsten Arc welding pool shape by trace element addition to the weld pool

    DOEpatents

    Heiple, C.R.; Burgardt, P.

    1984-03-13

    An improved process for Gas Tungsten Arc welding maximizes the depth/width ratio of the weld pool by adding a sufficient amount of a surface active element to insure inward fluid flow, resulting in deep, narrow welds. The process is especially useful to eliminate variable weld penetration and shape in GTA welding of steels and stainless steels, particularly by using a sulfur-doped weld wire in a cold wire feed technique.

  9. Dissimilar Brazed Joints Between Steel and Tungsten Carbide

    NASA Astrophysics Data System (ADS)

    Voiculescu, I.; Geanta, V.; Binchiciu, H.; Iovanas, D.; Stefanoiu, R.

    2017-06-01

    Brazing is a joining process used to obtain heterogeneous assemblies between different materials, such as steels, irons, non-ferrous metals, ceramics etc. Some application, like asphalt cutters, require quick solutions to obtain dissimilar joints at acceptable costs, given the very short period of operation of these parts. This paper presents some results obtained during the brazing of dissimilar joints between steel and tungsten carbide by using different types of Ag-Cu system filler materials alloyed with P and Sn. The brazing techniques used were oxygen-gas flame and induction joining. The brazing behaviour was analysed in cross sections by optical and electron microscopy. The metallographic analysis enhanced the adhesion features and the length of penetration in the joining gap. The melting range of the filler materials was measured using thermal analysis.

  10. High-voltage spark atomic emission detector for gas chromatography

    NASA Technical Reports Server (NTRS)

    Calkin, C. L.; Koeplin, S. M.; Crouch, S. R.

    1982-01-01

    A dc-powered, double-gap, miniature nanosecond spark source for emission spectrochemical analysis of gas chromatographic effluents is described. The spark is formed between two thoriated tungsten electrodes by the discharge of a coaxial capacitor. The spark detector is coupled to the gas chromatograph by a heated transfer line. The gas chromatographic effluent is introduced into the heated spark chamber where atomization and excitation of the effluent occurs upon breakdown of the analytical gap. A microcomputer-controlled data acquisition system allows the implementation of time-resolution techniques to distinguish between the analyte emission and the background continuum produced by the spark discharge. Multiple sparks are computer averaged to improve the signal-to-noise ratio. The application of the spark detector for element-selective detection of metals and nonmetals is reported.

  11. Gas Breakdown in the Sub-Nanosecond Regime with Voltages Below 15 KV

    DTIC Science & Technology

    2013-06-01

    needle -plane gap with outer coaxial conductor, and a 50-Ω load line. The needle consists of tungsten and has a radius of curvature below 0.5 µm. The...here gas breakdown during nanosecond pulses occurs mainly as corona discharges on wire antennas, and represents an unwanted effect - General...risetime between 400 ps to1 ns), 50-W transmission line, axial needle -plane gap with outer coaxial conductor, and a 50-W load line. The needle consists of

  12. Molybdenum-copper and tungsten-copper alloys and method of making

    DOEpatents

    Schmidt, Frederick A.; Verhoeven, John D.; Gibson, Edwin D.

    1989-05-23

    Molybdenum-copper and tungsten-copper alloys are prepared by a consumable electrode method in which the electrode consists of a copper matrix with embedded strips of refractory molybdenum or tungsten. The electrode is progressively melted at its lower end with a superatmospheric inert gas pressure maintained around the liquifying electrode. The inert gas pressure is sufficiently above the vapor pressure of copper at the liquidus temperature of the alloy being formed to suppress boiling of liquid copper.

  13. Molybdenum-copper and tungsten-copper alloys and method of making

    DOEpatents

    Schmidt, F.A.; Verhoeven, J.D.; Gibson, E.D.

    1989-05-23

    Molybdenum-copper and tungsten-copper alloys are prepared by a consumable electrode method in which the electrode consists of a copper matrix with embedded strips of refractory molybdenum or tungsten. The electrode is progressively melted at its lower end with a superatmospheric inert gas pressure maintained around the liquefying electrode. The inert gas pressure is sufficiently above the vapor pressure of copper at the liquidus temperature of the alloy being formed to suppress boiling of liquid copper. 6 figs.

  14. Dissimilar Joining of Stainless Steel and 5083 Aluminum Alloy Sheets by Gas Tungsten Arc Welding-Brazing Process

    NASA Astrophysics Data System (ADS)

    Cheepu, Muralimohan; Srinivas, B.; Abhishek, Nalluri; Ramachandraiah, T.; Karna, Sivaji; Venkateswarlu, D.; Alapati, Suresh; Che, Woo Seong

    2018-03-01

    The dissimilar joining using gas tungsten arc welding - brazing of 304 stainless steel to 5083 Al alloy had been conducted with the addition of Al-Cu eutectic filler metal. The interface microstructure formation between filler metal and substrates, and spreading of the filler metal were studied. The interface microstructure between filler metal and aluminum alloy characterized that the formation of pores and elongated grains with the initiation of micro cracks. The spreading of the liquid braze filler on stainless steel side packed the edges and appeared as convex shape, whereas a concave shape has been formed on aluminum side. The major compounds formed at the fusion zone interface were determined by using X-ray diffraction techniques and energy-dispersive X-ray spectroscopy analysis. The micro hardness at the weld interfaces found to be higher than the substrates owing to the presence of Fe2Al5 and CuAl2 intermetallic compounds. The maximum tensile strength of the weld joints was about 95 MPa, and the tensile fracture occurred at heat affected zone on weak material of the aluminum side and/or at stainless steel/weld seam interface along intermetallic layer. The interface formation and its effect on mechanical properties of the welds during gas tungsten arc welding-brazing has been discussed.

  15. Welding procedure specification. Supplement 1. Records of procedure qualification tests. Gas tungsten arc welding of aluminum alloys 3004, 5052, and 5X54

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wodtke, C.H.; Frizzell, D.R.; Plunkett, W.A.

    1986-06-01

    Procedure WPS-1002 is qualified under Section IX of the ASME Boiler and Pressure Vessel Code for gas tungsten arc welding of aluminum alloys 3004, 5052, 5154, and 5454 (P-22), in thickness range 0.062 to 0.5 inches; filler metal is ER4043 (F-23) for 3004, and ER5356 (F-22) for other alloys; shielding gas is argon.

  16. Opacity of tungsten-seeded hydrogen to 2500 K and 115 atmospheres.

    NASA Technical Reports Server (NTRS)

    Williams, J. R.; Partain, W. L.; Clement, J. P.

    1971-01-01

    Experimental investigation and measurement of the radiant heat attenuation of an aerosol which may serve as a gas core nuclear-rocket propellant. The experiment uses a tungsten-hydrogen aerosol heated to temperatures as high as 2500 K under pressures up to 115 atmospheres. The hydrogen aerosol is produced by dispersion of submicron-sized particles of tungsten in hydrogen gas. A narrow beam of broad spectrum (visible and ultraviolet) light is passed through it with the attenuation being measured as a function of wavelength. Other aerosol characteristics examined include the nature and extent of chemical reactions between the seed material and the hydrogen and the degree of dispersion of the seed material obtained before and after heating. Chemical equilibrium calculations and vapor pressure data for the refractory metals indicate that tungsten is a prime candidate for the seed material in the gas core nuclear rocket.

  17. A Room Temperature Nitric Oxide Gas Sensor Based on a Copper-Ion-Doped Polyaniline/Tungsten Oxide Nanocomposite

    PubMed Central

    Wang, Shih-Han; Shen, Chi-Yen; Su, Jian-Ming; Chang, Shiang-Wen

    2015-01-01

    The parts-per-billion-level nitric oxide (NO) gas sensing capability of a copper-ion-doped polyaniline/tungsten oxide nanocomposite (Cu2+/PANI/WO3) film coated on a Rayleigh surface acoustic wave device was investigated. The sensor developed in this study was sensitive to NO gas at room temperature in dry nitrogen. The surface morphology, dopant distribution, and electric properties were characterized using scanning electron microscopy, energy-dispersive X-ray spectroscopy mapping, and Hall effect measurements, respectively. The Cu2+/PANI/WO3 film exhibited high NO gas sensitivity and selectivity as well as long-term stability. At 1 ppb of NO, a signal with a frequency shift of 4.3 ppm and a signal-to-noise ratio of 17 was observed. The sensor exhibited distinct selectivity toward NO gas with no substantial response to O2, NH3 and CO2 gases. PMID:25811223

  18. An effective approach to synthesize monolayer tungsten disulphide crystals using tungsten halide precursor

    NASA Astrophysics Data System (ADS)

    Thangaraja, Amutha; Shinde, Sachin M.; Kalita, Golap; Tanemura, Masaki

    2016-02-01

    The synthesis of large-area monolayer tungsten disulphide (WS2) single crystal is critical for realistic application in electronic and optical devices. Here, we demonstrate an effective approach to synthesize monolayer WS2 crystals using tungsten hexachloride (WCl6) as a solid precursor in atmospheric chemical vapor deposition process. In this technique, 0.05M solution of WCl6 in ethanol was drop-casted on SiO2/Si substrate to create an even distribution of the precursor, which was reduced and sulfurized at 750 °C in Ar atmosphere. We observed growth of triangular, star-shaped, as well as dendritic WS2 crystals on the substrate. The crystal geometry evolves with the shape and size of the nuclei as observed from the dendritic structures. These results show that controlling the initial nucleation and growth process, large WS2 single crystalline monolayer can be grown using the WCl6 precursor. Our finding shows an easier and effective approach to grow WS2 monolayer using tungsten halide solution-casting, rather than evaporating the precursor for gas phase reaction.

  19. Passive gas-gap heat switch for adiabatic demagnetization refrigerator

    NASA Technical Reports Server (NTRS)

    Shirron, Peter J. (Inventor); Di Pirro, Michael J. (Inventor)

    2005-01-01

    A passive gas-gap heat switch for use with a multi-stage continuous adiabatic demagnetization refrigerator (ADR). The passive gas-gap heat switch turns on automatically when the temperature of either side of the switch rises above a threshold value and turns off when the temperature on either side of the switch falls below this threshold value. One of the heat switches in this multistage process must be conductive in the 0.25? K to 0.3? K range. All of the heat switches must be capable of switching off in a short period of time (1-2 minutes), and when off to have a very low thermal conductance. This arrangement allows cyclic cooling cycles to be used without the need for separate heat switch controls.

  20. Study of structural, electronic and optical properties of tungsten doped bismuth oxychloride by DFT calculations.

    PubMed

    Yang, Wenjuan; Wen, Yanwei; Chen, Rong; Zeng, Dawen; Shan, Bin

    2014-10-21

    First-principle calculations have been carried out to investigate structural stabilities, electronic structures and optical properties of tungsten doped bismuth oxychloride (BiOCl). The structures of substitutional and interstitial tungsten, and in the form of WO6-ligand-doped BiOCl are examined. The substitutional and interstitial tungsten doping leads to discrete midgap states within the forbidden band gap, which has an adverse effect on the photocatalytic properties. On the other hand, the WO6-ligand-doped BiOCl structure induces a continuum of hybridized states in the forbidden gap, which favors transport of electrons and holes and could result in enhancement of visible light activity. In addition, the band gap of WO6-BiOCl decreases by 0.25 eV with valence band maximum (VBM) shifting upwards compared to that of pure BiOCl. By calculating optical absorption spectra of pure BiOCl and WO6-ligand-doped BiOCl structure, it is found that the absorption peak of the WO6-ligand-doped BiOCl structure has a red shift towards visible light compared with that of pure BiOCl, which agrees well with experimental observations. These results reveal the tungsten doped BiOCl system as a promising material in photocatalytic decomposition of organics and water splitting under sunlight irradiation.

  1. Experimental Results from a Laser-Triggered, Gas-Insulated, Spark-Gap Switch

    NASA Astrophysics Data System (ADS)

    Camacho, J. F.; Ruden, E. L.; Domonkos, M. T.

    2017-10-01

    We are performing experiments on a laser-triggered spark-gap switch with the goal of studying the transition from photoionization to current conduction. The discharge of current through the switch is triggered by a focused 532-nm wavelength beam from a Q-switched Nd:YAG laser with a pulse duration of about 10 ns. The trigger pulse is delivered along the longitudinal axis of the switch, and the focal spot can be placed anywhere along the axis of the 5-mm, gas-insulated gap between the switch electrodes. The switch test bed is designed to support a variety of working gases (e.g., Ar, N2) over a range of pressures. Electrical and optical diagnostics are used to measure switch performance as a function of parameters such as charge voltage, trigger pulse energy, insulating gas pressure, and gas species. A Mach-Zehnder imaging interferometer system operating at 532 nm is being used to obtain interferograms of the discharge plasma in the switch. We are also developing a 1064-nm interferometry diagnostic in an attempt to measure plasma free electron and neutral gas density profiles simultaneously within the switch gap. Results from our most recent experiments will be presented.

  2. Investigation on microstructure and mechanical properties on pulsed current gas tungsten arc welded super alloy 617

    NASA Astrophysics Data System (ADS)

    Mageshkumar, K.; Kuppan, P.; Arivazhagan, N.

    2017-11-01

    The present research work investigates the metallurgical and mechanical properties of weld joint fabricated by alloy 617 by pulsed current gas tungsten arc welding (PCGTAW) technique. Welding was done by ERNiCrCoMo-1 filler wire. Optical and Scanning Electron Microscope (SEM) revealed the fine equiaxed dendritic in the fusion zone. Electron Dispersive Spectroscopy (EDS) demonstrates the presence of Mo-rich secondary phases in the grain boundary regions. Tensile test shows improved mechanical properties compared to the continuous current mode. Bend test didn’t indicate the presence of defects in the weldments.

  3. Abnormal macropore formation during double-sided gas tungsten arc welding of magnesium AZ91D alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen Jun; You Guoqiang; Long Siyuan

    2008-08-15

    One of the major concerns during gas tungsten arc (GTA) welding of cast magnesium alloys is the presence of large macroporosity in weldments, normally thought to occur from the presence of gas in the castings. In this study, a double-sided GTA welding process was adopted to join wrought magnesium AZ91D alloy plates. Micropores were formed in the weld zone of the first side that was welded, due to precipitation of H{sub 2} as the mushy zone freezes. When the reverse side was welded, the heat generated caused the mushy zone in the initial weld to reform. The micropores in themore » initial weld then coalesced and expanded to form macropores by means of gas expansion through small holes that are present at the grain boundaries in the partially melted zone. Macropores in the partially melted zone increase with increased heat input, so that when a filler metal is used the macropores are smaller in number and in size.« less

  4. Development of an improved GTA (gas tungsten arc) weld temperature monitor fixture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hollar, D.L.

    1990-05-01

    An initial design weld temperature control fixture was implemented into final closure of an electronic assembly in November 1986. Use of this fixture indicated several areas that could be improved. Review of these areas with the process engineer and the weld operator provided the ideas to be incorporated into the new design Phase 2 fixture. Some primary areas of change and improvement included fixture mobility to provide better accessibility to the weld joint area, automatic timed blow cooling of the weld joint, and a feature to assure proper thermocouple placement. The resulting Phase 2 fixture design provided all of themore » essential weld temperature monitoring features in addition to several significant improvements. Technology developed during this project will pave the way to similar process monitoring of other manual gas tungsten arc (GTA) welding applications. 9 figs.« less

  5. Mechanism and Microstructure of Oxide Fluxes for Gas Tungsten Arc Welding of Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Liu, L. M.; Zhang, Z. D.; Song, G.; Wang, L.

    2007-03-01

    Five single oxide fluxes—MgO, CaO, TiO2, MnO2, and Cr2O3—were used to investigate the effect of active flux on the depth/width ratio in AZ31B magnesium alloy. The microstructure and mechanical property of the tungsten inert gas (TIG) welding seam were studied. The oxygen content in the weld seam and the arc images during the TIG welding process were analyzed. A series of emission spectroscopy of weld arc for TIG welding for magnesium with and without flux were developed. The results showed that for the five single oxide fluxes, all can increase the weld penetration effectively and grain size in the weld seam of alternating current tungsten inert gas (ACTIG) welding of the Mg alloy. The oxygen content of the welds made without flux is not very different from those produced with oxide fluxes not considering trapped oxide. However, welds that have the best penetration have a relatively higher oxygen content among those produced with flux. It was found that the arc images with the oxide fluxes were only the enlarged form of the arc images without flux; the arc constriction was not observed. The detection of arc spectroscopy showed that the metal elements in the oxides exist as the neutral atom or the first cation in the weld arc. This finding would influence the arc properties. When TIG simulation was carried out on a plate with flux applied only on one side, the arc image video showed an asymmetric arc, which deviated toward the flux free side. The thermal stability, the dissociation energy, and the electrical conductivity of oxide should be considered when studying the mechanism for increased TIG flux weld penetration.

  6. Characterization of Tungsten Inert Gas (TIG) Welding Fume Generated by Apprentice Welders

    PubMed Central

    Graczyk, Halshka; Lewinski, Nastassja; Zhao, Jiayuan; Concha-Lozano, Nicolas; Riediker, Michael

    2016-01-01

    Tungsten inert gas welding (TIG) represents one of the most widely used metal joining processes in industry. Its propensity to generate a greater portion of welding fume particles at the nanoscale poses a potential occupational health hazard for workers. However, current literature lacks comprehensive characterization of TIG welding fume particles. Even less is known about welding fumes generated by welding apprentices with little experience in welding. We characterized TIG welding fume generated by apprentice welders (N = 20) in a ventilated exposure cabin. Exposure assessment was conducted for each apprentice welder at the breathing zone (BZ) inside of the welding helmet and at a near-field (NF) location, 60cm away from the welding task. We characterized particulate matter (PM4), particle number concentration and particle size, particle morphology, chemical composition, reactive oxygen species (ROS) production potential, and gaseous components. The mean particle number concentration at the BZ was 1.69E+06 particles cm−3, with a mean geometric mean diameter of 45nm. On average across all subjects, 92% of the particle counts at the BZ were below 100nm. We observed elevated concentrations of tungsten, which was most likely due to electrode consumption. Mean ROS production potential of TIG welding fumes at the BZ exceeded average concentrations previously found in traffic-polluted air. Furthermore, ROS production potential was significantly higher for apprentices that burned their metal during their welding task. We recommend that future exposure assessments take into consideration welding performance as a potential exposure modifier for apprentice welders or welders with minimal training. PMID:26464505

  7. Time-dependent calculations of molten pool formation and thermal plasma with metal vapour in gas tungsten arc welding

    NASA Astrophysics Data System (ADS)

    Tanaka, M.; Yamamoto, K.; Tashiro, S.; Nakata, K.; Yamamoto, E.; Yamazaki, K.; Suzuki, K.; Murphy, A. B.; Lowke, J. J.

    2010-11-01

    A gas tungsten arc (GTA) was modelled taking into account the contamination of the plasma by metal vapour from the molten anode. The whole region of GTA atmosphere including the tungsten cathode, the arc plasma and the anode was treated using a unified numerical model. A viscosity approximation was used to express the diffusion coefficient in terms of viscosity of the shielding gas and metal vapour. The transient two-dimensional distributions of temperature, velocity of plasma flow and iron vapour concentration were predicted, together with the molten pool as a function of time for a 150 A arc current at atmospheric pressure, both for helium and argon gases. It was shown that the thermal plasma in the GTA was influenced by iron vapour from the molten pool surface and that the concentration of iron vapour in the plasma was dependent on the temperature of the molten pool. GTA on high sulfur stainless steel was calculated to discuss the differences between a low sulfur and a high sulfur stainless steel anode. Helium was selected as the shielding gas because a helium GTA produces more metal vapour than an argon GTA. In the GTA on a high sulfur stainless steel anode, iron vapour and current path were constricted. Radiative emission density in the GTA on high sulfur stainless steel was also concentrated in the centre area of the arc plasma together with the iron vapour although the temperature distributions were almost the same as that in the case of a low sulfur stainless steel anode.

  8. An investigation of the normal momentum transfer for gases on tungsten

    NASA Technical Reports Server (NTRS)

    Moskal, E. J.

    1971-01-01

    The near monoenergetic beam of neutral helium and argon atoms impinged on a single crystal tungsten target, with the (100) face exposed to the beam. The target was mounted on a torsion balance. The rotation of this torsion balance was monitored by an optical lever, and this reading was converted to a measurement of the momentum exchange between the beam and the target. The tungsten target was flashed to a temperature in excess of 2000 C before every clean run, and the vacuum levels in the final chamber were typically between 0.5 and 1 ntorr. The momentum exchange for the helium-tungsten surface and the argon-tungsten surface combination was obtained over approximately a decade of incoming energy (for the argon gas) at angles of incidence of 0, 30, and 41 deg on both clean and dirty (gas covered) surfaces. The results exhibited a significant variation in momentum transfer between the data obtained for the clean and dirty surfaces. The values of normal momentum accommodation coefficient for the clean surface were found to be lower than the values previously reported.

  9. An effective approach to synthesize monolayer tungsten disulphide crystals using tungsten halide precursor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thangaraja, Amutha; Shinde, Sachin M.; Kalita, Golap, E-mail: kalita.golap@nitech.ac.jp

    2016-02-01

    The synthesis of large-area monolayer tungsten disulphide (WS{sub 2}) single crystal is critical for realistic application in electronic and optical devices. Here, we demonstrate an effective approach to synthesize monolayer WS{sub 2} crystals using tungsten hexachloride (WCl{sub 6}) as a solid precursor in atmospheric chemical vapor deposition process. In this technique, 0.05M solution of WCl{sub 6} in ethanol was drop-casted on SiO{sub 2}/Si substrate to create an even distribution of the precursor, which was reduced and sulfurized at 750 °C in Ar atmosphere. We observed growth of triangular, star-shaped, as well as dendritic WS{sub 2} crystals on the substrate. The crystalmore » geometry evolves with the shape and size of the nuclei as observed from the dendritic structures. These results show that controlling the initial nucleation and growth process, large WS{sub 2} single crystalline monolayer can be grown using the WCl{sub 6} precursor. Our finding shows an easier and effective approach to grow WS{sub 2} monolayer using tungsten halide solution-casting, rather than evaporating the precursor for gas phase reaction.« less

  10. Studies on nickel-tungsten oxide thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Usha, K. S.; Sivakumar, R., E-mail: krsivakumar1979@yahoo.com; Sanjeeviraja, C.

    2014-10-15

    Nickel-Tungsten oxide (95:5) thin films were prepared by rf sputtering at 200W rf power with various substrate temperatures. X-ray diffraction study reveals the amorphous nature of films. The substrate temperature induced decrease in energy band gap with a maximum transmittance of 71%1 was observed. The Micro-Raman study shows broad peaks at 560 cm{sup −1} and 1100 cm{sup −1} correspond to Ni-O vibration and the peak at 860 cm{sup −1} can be assigned to the vibration of W-O-W bond. Photoluminescence spectra show two peaks centered on 420 nm and 485 nm corresponding to the band edge emission and vacancies created duemore » to the addition of tungsten, respectively.« less

  11. Tin-tungsten mineralizing processes in tungsten vein deposits: Panasqueira, Portugal

    NASA Astrophysics Data System (ADS)

    Lecumberri-Sanchez, P.; Pinto, F.; Vieira, R.; Wälle, M.; Heinrich, C. A.

    2015-12-01

    Tungsten has a high heat resistance, density and hardness, which makes it widely applied in industry (e.g. steel, tungsten carbides). Tungsten deposits are typically magmatic-hydrothermal systems. Despite the economic significance of tungsten, there are no modern quantitative analytical studies of the fluids responsible for the formation of its highest-grade deposit type (tungsten vein deposits). Panasqueira (Portugal) is a tungsten vein deposit, one of the leading tungsten producers in Europe and one of the best geologically characterized tungsten vein deposits. In this study, compositions of the mineralizing fluids at Panasqueira have been determined through combination of detailed petrography, microthermometric measurements and LA-ICPMS analyses, and geochemical modeling has been used to determine the processes that lead to tungsten mineralization. We characterized the fluids related to the various mineralizing stages in the system: the oxide stage (tin and tungsten mineralization), the sulfide stage (chalcopyrite and sphalerite mineralization) and the carbonate stage. Thus, our results provide information on the properties of fluids related with specific paragenetic stages. Furthermore we used those fluid compositions in combination with host rock mineralogy and chemistry to evaluate which are the controlling factors in the mineralizing process. This study provides the first quantitative analytical data on fluid composition for tungsten vein deposits and evaluates the controlling mineralization processes helping to determine the mechanisms of formation of the Panasqueira tin-tungsten deposit and providing additional geochemical constraints on the local distribution of mineralization.

  12. Characterization of Tungsten Inert Gas (TIG) Welding Fume Generated by Apprentice Welders.

    PubMed

    Graczyk, Halshka; Lewinski, Nastassja; Zhao, Jiayuan; Concha-Lozano, Nicolas; Riediker, Michael

    2016-03-01

    Tungsten inert gas welding (TIG) represents one of the most widely used metal joining processes in industry. Its propensity to generate a greater portion of welding fume particles at the nanoscale poses a potential occupational health hazard for workers. However, current literature lacks comprehensive characterization of TIG welding fume particles. Even less is known about welding fumes generated by welding apprentices with little experience in welding. We characterized TIG welding fume generated by apprentice welders (N = 20) in a ventilated exposure cabin. Exposure assessment was conducted for each apprentice welder at the breathing zone (BZ) inside of the welding helmet and at a near-field (NF) location, 60cm away from the welding task. We characterized particulate matter (PM4), particle number concentration and particle size, particle morphology, chemical composition, reactive oxygen species (ROS) production potential, and gaseous components. The mean particle number concentration at the BZ was 1.69E+06 particles cm(-3), with a mean geometric mean diameter of 45nm. On average across all subjects, 92% of the particle counts at the BZ were below 100nm. We observed elevated concentrations of tungsten, which was most likely due to electrode consumption. Mean ROS production potential of TIG welding fumes at the BZ exceeded average concentrations previously found in traffic-polluted air. Furthermore, ROS production potential was significantly higher for apprentices that burned their metal during their welding task. We recommend that future exposure assessments take into consideration welding performance as a potential exposure modifier for apprentice welders or welders with minimal training. © The Author 2015. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  13. Hydrogen Cracking in Gas Tungsten Arc Welding of an AISI Type 321 Stainless Steel

    NASA Astrophysics Data System (ADS)

    Rozenak, P.; Unigovski, Ya.; Shneck, R.

    The effects of in situ cathodic charging on the tensile properties and susceptibility to cracking of an AISI type 321 stainless steel, welded by the gas tungsten arc welding (GTAW) process, was studied by various treatments. Appearance of delta-ferrite phase in the as-welded steels in our tested conditions was observed with discontinuous grain boundaries (M23C6) and a dense distribution of metal carbides MC ((Ti, Nb)C), which precipitated in the matrix. Shielding gas rates changes the mechanical properties of the welds. Ultimate tensile strength and ductility are increases with the resistance to the environments related the increase of the supplied shielding inert gas rates. Charged specimens, caused mainly in decreases in the ductility of welded specimens. However, more severe decrease in ductility was obtained after post weld heat treatment (PWHT). The fracture of sensitized specimens was predominantly intergranular, whereas the as-welded specimens exhibited massive transgranular regions. Both types of specimen demonstrated narrow brittle zones at the sides of the fracture surface and ductile micro-void coalescences in the middle. Ferrite δ was form after welding with high density of dislocation structures and stacking faults formation and the thin stacking fault plates with e-martensite phase were typically found in the austenitic matrix after the cathodical charging process.

  14. Clamp and Gas Nozzle for TIG Welding

    NASA Technical Reports Server (NTRS)

    Gue, G. B.; Goller, H. L.

    1982-01-01

    Tool that combines clamp with gas nozzle is aid to tungsten/inert-gas (TIG) welding in hard-to-reach spots. Tool holds work to be welded while directing a stream of argon gas at weld joint, providing an oxygen-free environment for tungsten-arc welding.

  15. Causal Factors of Weld Porosity in Gas Tungsten Arc Welding of Powder-Metallurgy-Produced Titanium Alloys

    NASA Astrophysics Data System (ADS)

    Muth, T. R.; Yamamoto, Y.; Frederick, D. A.; Contescu, C. I.; Chen, W.; Lim, Y. C.; Peter, W. H.; Feng, Z.

    2013-05-01

    An investigation was undertaken using gas tungsten arc (GTA) welding on consolidated powder metallurgy (PM) titanium (Ti) plate to identify the causal factors behind observed porosity in fusion welding. Tramp element compounds of sodium and magnesium, residual from the metallothermic reduction of titanium chloride used to produce the titanium, were remnant in the starting powder and were identified as gas-forming species. PM-titanium made from revert scrap, where sodium and magnesium were absent, showed fusion weld porosity, although to a lesser degree. We show that porosity was attributable to hydrogen from adsorbed water on the surface of the powders prior to consolidation. The removal and minimization of both adsorbed water on the surface of titanium powder and the residues from the reduction process prior to consolidation of titanium powders are critical for achieving equivalent fusion welding success similar to that seen in wrought titanium produced via the Kroll process.

  16. The Effect of Constant and Pulsed Current Gas Tungsten Arc Welding on Joint Properties of 2205 Duplex Stainless Steel to 316L Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Neissi, R.; Shamanian, M.; Hajihashemi, M.

    2016-05-01

    In this study, dissimilar 316L austenitic stainless steel/2205 duplex stainless steel (DSS) joints were fabricated by constant and pulsed current gas tungsten arc welding process using ER2209 DSS as a filler metal. Microstructures and joint properties were characterized using optical and electron scanning microscopy, tensile, Charpy V-notch impact and micro-hardness tests, and cyclic polarization measurements. Microstructural observations confirmed the presence of chromium nitride and delta ferrite in the heat-affected zone of DSS and 316L, respectively. In addition, there was some deviation in the austenite/ferrite ratio of the surface welding pass in comparison to the root welding pass. Besides having lower pitting potential, welded joints produced by constant current gas tungsten arc welding process, consisted of some brittle sigma phase precipitates, which resulted in some impact energy reduction. The tensile tests showed high tensile strength for the weld joints in which all the specimens were broken in 316L base metal.

  17. Tungsten Deposition on Graphite using Plasma Enhanced Chemical Vapour Deposition.

    NASA Astrophysics Data System (ADS)

    Sharma, Uttam; Chauhan, Sachin S.; Sharma, Jayshree; Sanyasi, A. K.; Ghosh, J.; Choudhary, K. K.; Ghosh, S. K.

    2016-10-01

    The tokamak concept is the frontrunner for achieving controlled thermonuclear reaction on earth, an environment friendly way to solve future energy crisis. Although much progress has been made in controlling the heated fusion plasmas (temperature ∼ 150 million degrees) in tokamaks, technological issues related to plasma wall interaction topic still need focused attention. In future, reactor grade tokamak operational scenarios, the reactor wall and target plates are expected to experience a heat load of 10 MW/m2 and even more during the unfortunate events of ELM's and disruptions. Tungsten remains a suitable choice for the wall and target plates. It can withstand high temperatures, its ductile to brittle temperature is fairly low and it has low sputtering yield and low fuel retention capabilities. However, it is difficult to machine tungsten and hence usages of tungsten coated surfaces are mostly desirable. To produce tungsten coated graphite tiles for the above-mentioned purpose, a coating reactor has been designed, developed and made operational at the SVITS, Indore. Tungsten coating on graphite has been attempted and successfully carried out by using radio frequency induced plasma enhanced chemical vapour deposition (rf -PECVD) for the first time in India. Tungsten hexa-fluoride has been used as a pre-cursor gas. Energy Dispersive X-ray spectroscopy (EDS) clearly showed the presence of tungsten coating on the graphite samples. This paper presents the details of successful operation and achievement of tungsten coating in the reactor at SVITS.

  18. Development of tungsten fibre-reinforced tungsten composites towards their use in DEMO—potassium doped tungsten wire

    NASA Astrophysics Data System (ADS)

    Riesch, J.; Han, Y.; Almanstötter, J.; Coenen, J. W.; Höschen, T.; Jasper, B.; Zhao, P.; Linsmeier, Ch; Neu, R.

    2016-02-01

    For the next step fusion reactor the use of tungsten is inevitable to suppress erosion and allow operation at elevated temperature and high heat loads. Tungsten fibre-reinforced composites overcome the intrinsic brittleness of tungsten and its susceptibility to operation embrittlement and thus allow its use as a structural as well as an armour material. That this concept works in principle has been shown in recent years. In this contribution we present a development approach towards its use in a future fusion reactor. A multilayer approach is needed addressing all composite constituents and manufacturing steps. A huge potential lies in the optimization of the tungsten wire used as fibre. We discuss this aspect and present studies on potassium doped tungsten wire in detail. This wire, utilized in the illumination industry, could be a replacement for the so far used pure tungsten wire due to its superior high temperature properties. In tensile tests the wire showed high strength and ductility up to an annealing temperature of 2200 K. The results show that the use of doped tungsten wire could increase the allowed fabrication temperature and the overall working temperature of the composite itself.

  19. Tungsten foil laminate for structural divertor applications - Joining of tungsten foils

    NASA Astrophysics Data System (ADS)

    Reiser, Jens; Rieth, Michael; Möslang, Anton; Dafferner, Bernhard; Hoffmann, Jan; Mrotzek, Tobias; Hoffmann, Andreas; Armstrong, D. E. J.; Yi, Xiaoou

    2013-05-01

    This paper is the fourth in our series on tungsten laminates. The aim of this paper is to discuss laminate synthesis, meaning the joining of tungsten foils. It is obvious that the properties of the tungsten laminate strongly depend on the combination of (i) interlayer and (ii) joining technology, as this combination defines (i) the condition of the tungsten foil after joining (as-received or recrystallised) as well as (ii) the characteristics of the interface between the tungsten foil and the interlayer (wettability or diffusion leading to a solid solution or the formation of intermetallics). From the example of tungsten laminates joined by brazing with (i) an eutectic silver copper brazing filler, (ii) copper, (iii) titanium, and (iv) zirconium, the microstructure will be discussed, with special focus on the interface. Based on our assumptions of the mechanism of the extraordinary ductility of tungsten foil we present three syntheses strategies and make recommendations for the synthesis of high temperature tungsten laminates.

  20. Experimental investigations of tungsten inert gas assisted friction stir welding of pure copper plates

    NASA Astrophysics Data System (ADS)

    Constantin, M. A.; Boșneag, A.; Nitu, E.; Iordache, M.

    2017-10-01

    Welding copper and its alloys is usually difficult to join by conventional fusion welding processes because of high thermal diffusivity of the copper, alloying elements, necessity of using a shielding gas and a clean surface. To overcome this inconvenience, Friction Stir Welding (FSW), a solid state joining process that relies on frictional heating and plastic deformation, is used as a feasible welding process. In order to achieve an increased welding speed and a reduction in tool wear, this process is assisted by another one (WIG) which generates and adds heat to the process. The aim of this paper is to identify the influence of the additional heat on the process parameters and on the welding joint properties (distribution of the temperature, hardness and roughness). The research includes two experiments for the FSW process and one experiment for tungsten inert gas assisted FSW process. The outcomes of the investigation are compared and analysed for both welding variants. Adding a supplementary heat source, the plates are preheated and are obtain some advantages such as reduced forces used in process and FSW tool wear, faster and better plasticization of the material, increased welding speed and a proper weld quality.

  1. Cyclic Nanostructures of Tungsten Oxide (WO3)n  (n = 2–6) as NOx Gas Sensor: A Theoretical Study

    PubMed Central

    Izadyar, Mohammad; Jamsaz, Azam

    2014-01-01

    Today's WO3-based gas sensors have received a lot of attention, because of important role as a sensitive layer for detection of the small quantities of  NOx. In this research, a theoretical study has been done on the sensing properties of different cyclic nanoclusters of (WO3)n  (n = 2–6) for NOx  (x = 1,2) gases. Based on the calculated adsorption energies by B3LYP and X3LYP functionals, from the different orientations of  NOx molecule on the tungsten oxide clusters, O–N⋯W was preferred. Different sizes of the mentioned clusters have been analyzed and W2O6 cluster was chosen as the best candidate for NOx detection from the energy viewpoint. Using the concepts of the chemical hardness and electronic charge transfer, some correlations between the energy of adsorption and interaction energy have been established. These analyses confirmed that the adsorption energy will be boosted with charge transfer enhancement. However, the chemical hardness relationship is reversed. Finally, obtained results from the natural bond orbital and electronic density of states analysis confirmed the electronic charge transfer from the adsorbates to WO3 clusters and Fermi level shifting after adsorption, respectively. The last parameter confirms that the cyclic clusters of tungsten oxide can be used as NOx gas sensors. PMID:25544841

  2. Gas and seismicity within the Istanbul seismic gap.

    PubMed

    Géli, L; Henry, P; Grall, C; Tary, J-B; Lomax, A; Batsi, E; Riboulot, V; Cros, E; Gürbüz, C; Işık, S E; Sengör, A M C; Le Pichon, X; Ruffine, L; Dupré, S; Thomas, Y; Kalafat, D; Bayrakci, G; Coutellier, Q; Regnier, T; Westbrook, G; Saritas, H; Çifçi, G; Çağatay, M N; Özeren, M S; Görür, N; Tryon, M; Bohnhoff, M; Gasperini, L; Klingelhoefer, F; Scalabrin, C; Augustin, J-M; Embriaco, D; Marinaro, G; Frugoni, F; Monna, S; Etiope, G; Favali, P; Bécel, A

    2018-05-01

    Understanding micro-seismicity is a critical question for earthquake hazard assessment. Since the devastating earthquakes of Izmit and Duzce in 1999, the seismicity along the submerged section of North Anatolian Fault within the Sea of Marmara (comprising the "Istanbul seismic gap") has been extensively studied in order to infer its mechanical behaviour (creeping vs locked). So far, the seismicity has been interpreted only in terms of being tectonic-driven, although the Main Marmara Fault (MMF) is known to strike across multiple hydrocarbon gas sources. Here, we show that a large number of the aftershocks that followed the M 5.1 earthquake of July, 25 th 2011 in the western Sea of Marmara, occurred within a zone of gas overpressuring in the 1.5-5 km depth range, from where pressurized gas is expected to migrate along the MMF, up to the surface sediment layers. Hence, gas-related processes should also be considered for a complete interpretation of the micro-seismicity (~M < 3) within the Istanbul offshore domain.

  3. Quasi physisorptive two dimensional tungsten oxide nanosheets with extraordinary sensitivity and selectivity to NO2.

    PubMed

    Khan, Hareem; Zavabeti, Ali; Wang, Yichao; Harrison, Christopher J; Carey, Benjamin J; Mohiuddin, Md; Chrimes, Adam F; De Castro, Isabela Alves; Zhang, Bao Yue; Sabri, Ylias M; Bhargava, Suresh K; Ou, Jian Zhen; Daeneke, Torben; Russo, Salvy P; Li, Yongxiang; Kalantar-Zadeh, Kourosh

    2017-12-14

    Attributing to their distinct thickness and surface dependent physicochemical properties, two dimensional (2D) nanostructures have become an area of increasing interest for interfacial interactions. Effectively, properties such as high surface-to-volume ratio, modulated surface activities and increased control of oxygen vacancies make these types of materials particularly suitable for gas-sensing applications. This work reports a facile wet-chemical synthesis of 2D tungsten oxide nanosheets by sonication of tungsten particles in an acidic environment and thermal annealing thereafter. The resultant product of large nanosheets with intrinsic substoichiometric properties is shown to be highly sensitive and selective to nitrogen dioxide (NO 2 ) gas, which is a major pollutant. The strong synergy between polar NO 2 molecules and tungsten oxide surface and also abundance of active surface sites on the nanosheets for molecule interactions contribute to the exceptionally sensitive and selective response. An extraordinary response factor of ∼30 is demonstrated to ultralow 40 parts per billion (ppb) NO 2 at a relatively low operating temperature of 150 °C, within the physisorption temperature band for tungsten oxide. Selectivity to NO 2 is demonstrated and the theory behind it is discussed. The structural, morphological and compositional characteristics of the synthesised and annealed materials are extensively characterised and electronic band structures are proposed. The demonstrated 2D tungsten oxide based sensing device holds the greatest promise for producing future commercial low-cost, sensitive and selective NO 2 gas sensors.

  4. Gap Size Uncertainty Quantification in Advanced Gas Reactor TRISO Fuel Irradiation Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pham, Binh T.; Einerson, Jeffrey J.; Hawkes, Grant L.

    The Advanced Gas Reactor (AGR)-3/4 experiment is the combination of the third and fourth tests conducted within the tristructural isotropic fuel development and qualification research program. The AGR-3/4 test consists of twelve independent capsules containing a fuel stack in the center surrounded by three graphite cylinders and shrouded by a stainless steel shell. This capsule design enables temperature control of both the fuel and the graphite rings by varying the neon/helium gas mixture flowing through the four resulting gaps. Knowledge of fuel and graphite temperatures is crucial for establishing the functional relationship between fission product release and irradiation thermal conditions.more » These temperatures are predicted for each capsule using the commercial finite-element heat transfer code ABAQUS. Uncertainty quantification reveals that the gap size uncertainties are among the dominant factors contributing to predicted temperature uncertainty due to high input sensitivity and uncertainty. Gap size uncertainty originates from the fact that all gap sizes vary with time due to dimensional changes of the fuel compacts and three graphite rings caused by extended exposure to high temperatures and fast neutron irradiation. Gap sizes are estimated using as-fabricated dimensional measurements at the start of irradiation and post irradiation examination dimensional measurements at the end of irradiation. Uncertainties in these measurements provide a basis for quantifying gap size uncertainty. However, lack of gap size measurements during irradiation and lack of knowledge about the dimension change rates lead to gap size modeling assumptions, which could increase gap size uncertainty. In addition, the dimensional measurements are performed at room temperature, and must be corrected to account for thermal expansion of the materials at high irradiation temperatures. Uncertainty in the thermal expansion coefficients for the graphite materials used in the AGR-3

  5. Ductilisation of tungsten (W): Tungsten laminated composites

    DOE PAGES

    Reiser, Jens; Garrison, Lauren M.; Greuner, Henri; ...

    2017-08-02

    Here we elucidate the mechanisms of plastic deformation and fracture of tungsten laminated composites. Furthermore our results suggest that the mechanical response of the laminates is governed by the plastic deformation of the tungsten plies. In most cases, the impact of the interlayer is of secondary importance.

  6. Tungsten-reinforced tantalum

    NASA Technical Reports Server (NTRS)

    Bacigalupi, R. J.; Breitwieser, R.

    1972-01-01

    Method is described for producing tungsten-reinforced tantalum, a material possessing the high temperature strength of tungsten and room temperature ductility and weldability of tantalum. This material is produced by bonding together and overlaying structure of tungsten wires with chemical vapor deposited tantalum.

  7. Optical Diagnostics of Multi-Gap Gas Switches for Linear Transformer Drivers

    NASA Astrophysics Data System (ADS)

    Sheng, Liang; Li, Yang; Sun, Tieping; Cong, Peitian; Zhang, Mei; Peng, Bodong; Zhao, Jizhen; Yue, Zhiqin; Wei, Fuli; Yuan, Yuan

    2014-07-01

    The trigger characteristics of a multi-gap gas switch with double insulating layers, a square-groove electrode supporter and a UV pre-ionizing structure are investigated aided by a high sensitivity fiber-bundle array detector, a UV fiber detector, and a framing camera, in addition to standard electrical diagnostics. The fiber-bundle-array detector is used to track the turn-on sequence of each electrode gap at a timing precision of 0.6 ns. Each fiber bundle, including five fibers with different azimuth angles, aims at the whole emitting area of each electrode gap and is fed to a photomultiplier tube. The UV fiber detector with a spectrum response of 260-320 nm, including a fused-quartz fiber of 200 μm in diameter and a solar-blinded photomultiplier tube, is adopted to study the effect of UV pre-ionizing on trigger characteristics. The framing camera, with a capacity of 4 frames per shot and an exposure time of 5 ns, is employed to capture the evolution of channel arcs. Based on the turn-on light signal of each electrode gap, the breakdown delay is divided into statistical delay and formative delay. A decrease in both of them, a smaller switch jitter and more channel arcs are observed with lower gas pressure. An increase in trigger voltage can reduce the statistical delay and its jitter, while higher trigger voltage has a relatively small influence on the formative delay and the number of channel arcs. With the UV pre-ionizing structure at 0.24 MPa gas pressure and 60 kV trigger voltage, the statistical delay and its jitter can be reduced by 1.8 ns and 0.67 ns, while the formative delay and its jitter can only be reduced by 0.5 ns and 0.25 ns.

  8. Effect of Gas Tungsten Arc Welding Parameters on Hydrogen-Assisted Cracking of Type 321 Stainless Steel

    NASA Astrophysics Data System (ADS)

    Rozenak, Paul; Unigovski, Yaakov; Shneck, Roni

    2016-05-01

    The susceptibility of AISI type 321 stainless steel welded by the gas tungsten arc welding (GTAW) process to hydrogen-assisted cracking (HAC) was studied in a tensile test combined with in situ cathodic charging. Specimen charging causes a decrease in ductility of both the as-received and welded specimens. The mechanical properties of welds depend on welding parameters. For example, the ultimate tensile strength and ductility increase with growing shielding gas (argon) rate. More severe decrease in the ductility was obtained after post-weld heat treatment (PWHT). In welded steels, in addition to discontinuous grain boundary carbides (M23C6) and dense distribution of metal carbides MC ((Ti, Nb)C) precipitated in the matrix, the appearance of delta-ferrite phase was observed. The fracture of sensitized specimens was predominantly intergranular, whereas the as-welded specimens exhibited mainly transgranular regions. High-dislocation density regions and stacking faults were found in delta-ferrite formed after welding. Besides, thin stacking fault plates and epsilon-martensite were found in the austenitic matrix after the cathodic charging.

  9. Cyclic Nanostructures of Tungsten Oxide (WO3) n   (n = 2-6) as NO x Gas Sensor: A Theoretical Study.

    PubMed

    Izadyar, Mohammad; Jamsaz, Azam

    2014-01-01

    Today's WO3-based gas sensors have received a lot of attention, because of important role as a sensitive layer for detection of the small quantities of  NO x . In this research, a theoretical study has been done on the sensing properties of different cyclic nanoclusters of (WO3) n   (n = 2-6) for NO x   (x = 1,2) gases. Based on the calculated adsorption energies by B3LYP and X3LYP functionals, from the different orientations of  NO x molecule on the tungsten oxide clusters, O-N⋯W was preferred. Different sizes of the mentioned clusters have been analyzed and W2O6 cluster was chosen as the best candidate for NO x detection from the energy viewpoint. Using the concepts of the chemical hardness and electronic charge transfer, some correlations between the energy of adsorption and interaction energy have been established. These analyses confirmed that the adsorption energy will be boosted with charge transfer enhancement. However, the chemical hardness relationship is reversed. Finally, obtained results from the natural bond orbital and electronic density of states analysis confirmed the electronic charge transfer from the adsorbates to WO3 clusters and Fermi level shifting after adsorption, respectively. The last parameter confirms that the cyclic clusters of tungsten oxide can be used as NO x gas sensors.

  10. Gas Tungsten Arc Welding and Plasma Arc Cutting. Teacher Edition.

    ERIC Educational Resources Information Center

    Fortney, Clarence; And Others

    This welding curriculum guide treats two topics in detail: the care of tungsten electrodes and the entire concept of contamination control and the hafnium electrode and its importance in dual-air cutting systems that use compressed shop air for plasma arc cutting activities. The guide contains three units of instruction that cover the following…

  11. Effect of electrode gap on the sensing properties of multiwalled carbon nanotubes based gas sensor

    NASA Astrophysics Data System (ADS)

    Saheed, Mohamed Shuaib Mohamed; Mohamed, Norani Muti; Burhanudin, Zainal Arif

    2016-11-01

    Vertically aligned multiwalled carbon nanotubes (MWCNT) were grown on Si substrate coated with alumina and iron using chemical vapor deposition. Electrode gap of 10, 25 and 50 µm were adopted to determine the effect of varying gap spacing on the sensing properties such as voltage breakdown, sensitivity and selectivity for three gases namely argon, carbon dioxide and ammonia. Argon has the lowest voltage breakdown for every electrode gap. The fabricated MWCNT based gas sensor drastically reduced the voltage breakdown by 89.5% when the electrode spacing is reduced from 50 µm to 10 µm. The reduction is attributed to the high non-uniform electric field between the electrodes caused by the protrusion of nanotips. The sensor shows good sensitivity and selectivity with the ability to detect the gas in the mixture with air provided that the concentration is ≥ 20% where the voltage breakdown will be close to the pure gas.

  12. The nitrogen effect on Type 304L austenitic stainless steel weld metal welded with a GTA (Gas Tungsten Arc) system under ambient and hyperbaric conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okagawa, R.K.

    1984-01-01

    Small amounts of nitrogen were injected into Type 304L austenitic stainless steel weld metal. This was accomplished by using an Ar-N/sub 2/ shield gas mixture in combination with a controlled argon atmosphere on autogeneous Gas Tungsten Arc (GTA) welds. Weld metal nitrogen as a function of nitrogen shield gas content and applied pressure was examined. Nitrogen shield gas contents above 4% were found to have a major effect on the weld metal microstructure. The base metal nitrogen did not influence the nitrogen solubility reaction or solidification behavior during welding. For Type 304L austenitic stainless steel, a nitrogen coefficient of 13.4more » was determined for the nickel equivalent expression. 63 refs., 19 figs., 4 tabs.« less

  13. Castellated structures for ITER: Differences of impurity deposition and fuel accumulation in the toroidal and poloidal gaps

    NASA Astrophysics Data System (ADS)

    Litnovsky, A.; Philipps, V.; Wienhold, P.; Krieger, K.; Kirschner, A.; Borodin, D.; Sergienko, G.; Schmitz, O.; Kreter, A.; Samm, U.; Richter, S.; Breuer, U.; Textor Team

    2009-04-01

    Castellation is foreseen for the first wall and divertor area in ITER. The concern of the fuel accumulation and impurity deposition in the gaps of castellated structures calls for dedicated studies. Recently, a tungsten castellated limiter with rectangular and roof-like shaped cells was exposed to the SOL plasmas in TEXTOR. After exposure, roughly two times less fuel was found in the gaps between the shaped cells whereas the difference in carbon deposition was less pronounced. Up to 70 at.% of tungsten was found intermixed in the deposited layers in the gaps. The metal fraction in the deposit decreases rapidly with a depth of the gap. Modeling of carbon deposition in poloidal gaps has provided a qualitative agreement with an experiment. The significant anisotropy of C and D distributions in the toroidal gaps was measured.

  14. Deuterium trapping in tungsten

    NASA Astrophysics Data System (ADS)

    Poon, Michael

    Tungsten is one of the primary material candidates being investigated for use in the first-wall of a magnetic confinement fusion reactor. An ion accelerator was used to simulate the type of ion interaction that may occur at a plasma-facing material. Thermal desorption spectroscopy (TDS) was the primary tool used to analyze the effects of the irradiation. Secondary ion mass spectroscopy (SIMS) was used to determine the distribution of trapped D in the tungsten specimen. The tritium migration analysis program (TMAP) was used to simulate thermal desorption profiles from the D depth distributions. Fitting of the simulated thermal desorption profiles with the measured TDS results provided values of the D trap energies. Deuterium trapping in single crystal tungsten was studied as a function of the incident ion fluence, ion flux, irradiation temperature, irradiation history, and surface impurity levels during irradiation. The results show that deuterium was trapped at vacancies and voids. Two deuterium atoms could be trapped at a tungsten vacancy, with trapping energies of 1.4 eV and 1.2 eV for the first and second D atoms, respectively. In a tungsten void, D is trapped as atoms adsorbed on the inner walls of the void with a trap energy of 2.1 eV, or as D2 molecules inside the void with a trap energy of 1.2 eV. Deuterium trapping in polycrystalline tungsten was also studied as a function of the incident fluence, irradiation temperature, and irradiation history. Deuterium trapping in polycrystalline tungsten also occurs primarily at vacancies and voids with the same trap energies as in single crystal tungsten; however, the presence of grain boundaries promotes the formation of large surface blisters with high fluence irradiations at 500 K. In general, D trapping is greater in polycrystalline tungsten than in single crystal tungsten. To simulate mixed materials comprising of carbon (C) and tungsten, tungsten specimens were pre-irradiated with carbon ions prior to D

  15. Passive Gas-Gap Heat Switches for Use in Low-Temperature Cryogenic Systems

    NASA Technical Reports Server (NTRS)

    Kimball, M. O.; Shirron, P. J.; Canavan, E. R.; Tuttle, J. G.; Jahromi, A. E.; Dipirro, M. J.; James, B. L.; Sampson, M. A.; Letmate, R. V.

    2017-01-01

    We present the current state of development in passive gas-gap heat switches. This type of switch does not require a separate heater to activate heat transfer but, instead, relies upon the warming of one end due to an intrinsic step in a thermodynamic cycle to raise a getter above a threshold temperature. Above this temperature sequestered gas is released to couple both sides of the switch. This enhances the thermodynamic efficiency of the system and reduces the complexity of the control system. Various gas mixtures and getter configurations will be presented.

  16. Passive Gas-Gap Heat Switches for Use in Adiabatic Demagnetization Refrigerators

    NASA Technical Reports Server (NTRS)

    Shirron, P. J.; Canavan, E. R.; DiPirro, M. J.; Jackson, M.; Panek, J.; Tuttle, J. G.; Krebs, Carolyn (Technical Monitor)

    2001-01-01

    We have designed, built, and tested a gas gap heat switch that works passively, without the need for a separate, thermally activated getter. This switch uses He-3 condensed as a thin film on alternating plates of copper. The switch is thermally conductive at temperatures above about 0.2 K, and is insulating if either end of the switch is below about 0.15 K. The "on" conductance (7 mW/K at 0.25K) is limited by the surface area and gap between the copper leaves, the saturated vapor pressure of the He-3, and the Kapitza boundary resistance between the He-3 and the copper. The "off" conductance is determined by the helium containment shell which physically supports the two conductive ends. We have also designed and are building passive gas gap heat switches which will passively turn off near 1 K and 4 K. For these switches we rely on the rapidly changing vapor pressure of He-4 above neon or copper substrates, respectively, when the coverage is less than one monolayer. The different binding energies of the He-4 to the neon or copper give rise to the different temperatures where the switches transition between the on and off states.

  17. Direct Electrochemical Preparation of Cobalt, Tungsten, and Tungsten Carbide from Cemented Carbide Scrap

    NASA Astrophysics Data System (ADS)

    Xiao, Xiangjun; Xi, Xiaoli; Nie, Zuoren; Zhang, Liwen; Ma, Liwen

    2017-02-01

    A novel process of preparing cobalt, tungsten, and tungsten carbide powders from cemented carbide scrap by molten salt electrolysis has been investigated in this paper. In this experiment, WC-6Co and NaCl-KCl salt were used as sacrificial anode and electrolyte, respectively. The dissolution potential of cobalt and WC was determined by linear sweep voltammetry to be 0 and 0.6 V ( vs Ag/AgCl), respectively. Furthermore, the electrochemical behavior of cobalt and tungsten ions was investigated by a variety of electrochemical techniques. Results of cyclic voltammetry (CV) and square-wave voltammetry show that the cobalt and tungsten ions existed as Co2+ and W2+ on melts, respectively. The effect of applied voltage, electrolysis current, and electrolysis times on the composition of the product was studied. Results showed that pure cobalt powder can be obtained when the electrolysis potential is lower than 0.6 V or during low current and short times. Double-cathode and two-stage electrolysis was utilized for the preparation of cobalt, tungsten carbide, and tungsten powders. Additionally, X-ray diffraction results confirm that the product collected at cathodes 1 and 2 is pure Co and WC, respectively. Pure tungsten powder was obtained after electrolysis of the second part. Scanning electron microscope results show that the diameters of tungsten, tungsten carbide, and cobalt powder are smaller than 100, 200, and 200 nm, respectively.

  18. Tungsten and Barium Transport in the Internal Plasma of Hollow Cathodes

    NASA Technical Reports Server (NTRS)

    Polk, James E.; Mikellides, Ioannis G.; Katz, Ira; Capece, Angela M.

    2008-01-01

    The effect of tungsten erosion, transport and redeposition on the operation of dispenser hollow cathodes was investigated in detailed examinations of the discharge cathode inserts from an 8200 hour and a 30,352 hour ion engine wear test. Erosion and subsequent re-deposition of tungsten in the electron emission zone at the downstream end of the insert reduces the porosity of the tungsten matrix, preventing the flow of barium from the interior. This inhibits the interfacial reactions of the barium-calcium-aluminate impregnant with the tungsten in the pores. A numerical model of barium transport in the internal xenon discharge plasma shows that the barium required to reduce the work function in the emission zone can be supplied from upstream through the gas phase. Barium that flows out of the pores of the tungsten insert is rapidly ionized in the xenon discharge and pushedback to the emitter surface by the electric field and drag from the xenon ion flow. Thisbarium ion flux is sufficient to maintain a barium surface coverage at the downstream endgreater than 0.6, even if local barium production at that point is inhibited by tungsten deposits. The model also shows that the neutral barium pressure exceeds the equilibrium vapor pressure of the impregnant decomposition reaction over much of the insert length,so the reactions are suppressed. Only a small region upstream of the zone blocked by tungsten deposits is active and supplies the required barium. These results indicate that hollowcathode failure models based on barium depletion rates in vacuum dispenser cathodes are very conservative.

  19. Ion cyclotron resonance heating for tungsten control in various JET H-mode scenarios

    NASA Astrophysics Data System (ADS)

    Goniche, M.; Dumont, R. J.; Bobkov, V.; Buratti, P.; Brezinsek, S.; Challis, C.; Colas, L.; Czarnecka, A.; Drewelow, P.; Fedorczak, N.; Garcia, J.; Giroud, C.; Graham, M.; Graves, J. P.; Hobirk, J.; Jacquet, P.; Lerche, E.; Mantica, P.; Monakhov, I.; Monier-Garbet, P.; Nave, M. F. F.; Noble, C.; Nunes, I.; Pütterich, T.; Rimini, F.; Sertoli, M.; Valisa, M.; Van Eester, D.; Contributors, JET

    2017-05-01

    Ion cyclotron resonance heating (ICRH) in the hydrogen minority scheme provides central ion heating and acts favorably on the core tungsten transport. Full wave modeling shows that, at medium power level (4 MW), after collisional redistribution, the ratio of power transferred to the ions and the electrons vary little with the minority (hydrogen) concentration n H/n e but the high-Z impurity screening provided by the fast ions temperature increases with the concentration. The power radiated by tungsten in the core of the JET discharges has been analyzed on a large database covering the 2013-2014 campaign. In the baseline scenario with moderate plasma current (I p = 2.5 MA) ICRH modifies efficiently tungsten transport to avoid its accumulation in the plasma centre and, when the ICRH power is increased, the tungsten radiation peaking evolves as predicted by the neo-classical theory. At higher current (3-4 MA), tungsten accumulation can be only avoided with 5 MW of ICRH power with high gas injection rate. For discharges in the hybrid scenario, the strong initial peaking of the density leads to strong tungsten accumulation. When this initial density peaking is slightly reduced, with an ICRH power in excess of 4 MW,very low tungsten concentration in the core (˜10-5) is maintained for 3 s. MHD activity plays a key role in tungsten transport and modulation of the tungsten radiation during a sawtooth cycle is correlated to the fishbone activity triggered by the fast ion pressure gradient.

  20. Trends in tungsten coil atomic spectrometry

    NASA Astrophysics Data System (ADS)

    Donati, George L.

    Renewed interest in electrothermal atomic spectrometric methods based on tungsten coil atomizers is a consequence of a world wide increasing demand for fast, inexpensive, sensitive, and portable analytical methods for trace analysis. In this work, tungsten coil atomic absorption spectrometry (WCAAS) and tungsten coil atomic emission spectrometry (WCAES) are used to determine several different metals and even a non-metal at low levels in different samples. Improvements in instrumentation and new strategies to reduce matrix effects and background signals are presented. Investigation of the main factors affecting both WCAAS and WCAES analytical signals points to the importance of a reducing, high temperature gas phase in the processes leading to atomic cloud generation. Some more refractory elements such as V and Ti were determined for the first time by double tungsten coil atomic emission spectrometry (DWCAES). The higher temperatures provided by two atomizers in DWCAES also allowed the detection of Ag, Cu and Sn emission signals for the first time. Simultaneous determination of several elements by WCAES in relatively complex sample matrices was possible after a simple acid extraction. The results show the potential of this method as an alternative to more traditional, expensive methods for fast, more effective analyses and applications in the field. The development of a new metallic atomization cell is also presented. Lower limits of detection in both WCAAS and WCAES determinations were obtained due to factors such as better control of background signal, smaller, more isothermal system, with atomic cloud concentration at the optical path for a longer period of time. Tungsten coil-based methods are especially well suited to applications requiring low sample volume, low cost, sensitivity and portability. Both WCAAS and WCAES have great commercial potential in fields as diverse as archeology and industrial quality control. They are simple, inexpensive, effective

  1. Polycrystalline silicon on tungsten substrates

    NASA Technical Reports Server (NTRS)

    Bevolo, A. J.; Schmidt, F. A.; Shanks, H. R.; Campisi, G. J.

    1979-01-01

    Thin films of electron-beam-vaporized silicon were deposited on fine-grained tungsten substrates under a pressure of about 1 x 10 to the -10th torr. Mass spectra from a quadrupole residual-gas analyzer were used to determine the partial pressure of 13 residual gases during each processing step. During separate silicon depositions, the atomically clean substrates were maintained at various temperatures between 400 and 780 C, and deposition rates were between 20 and 630 A min. Surface contamination and interdiffusion were monitored by in situ Auger electron spectrometry before and after cleaning, deposition, and annealing. Auger depth profiling, X-ray analysis, and SEM in the topographic and channeling modes were utilized to characterize the samples with respect to silicon-metal interface, interdiffusion, silicide formation, and grain size of silicon. The onset of silicide formation was found to occur at approximately 625 C. Above this temperature tungsten silicides were formed at a rate faster than the silicon deposition. Fine-grain silicon films were obtained at lower temperatures.

  2. High strength uranium-tungsten alloys

    DOEpatents

    Dunn, Paul S.; Sheinberg, Haskell; Hogan, Billy M.; Lewis, Homer D.; Dickinson, James M.

    1991-01-01

    Alloys of uranium and tungsten and a method for making the alloys. The amount of tungsten present in the alloys is from about 4 wt % to about 35 wt %. Tungsten particles are dispersed throughout the uranium and a small amount of tungsten is dissolved in the uranium.

  3. Gas gap heat switch for a cryogen-free magnet system

    NASA Astrophysics Data System (ADS)

    Barreto, J.; Borges de Sousa, P.; Martins, D.; Kar, S.; Bonfait, G.; Catarino, I.

    2015-12-01

    Cryogen-free superconducting magnet systems (CFMS) have become popular over the last two decades for the simple reason that the use of liquid helium is rather cumbersome and that helium is a scarce resource. Some available CFMS use a mechanical cryocooler as the magnet's cold source. However, the variable temperature insert (VTI) for some existing CFMS are not strictly cryogen-free as they are still based on helium gas circulation through the sample space. We designed a prototype of a gas gap heat switch (GGHS) that allows a thermal management of a completely cryogen-free magnet system, with no helium losses. The idea relies on a parallel cooling path to a variable temperature insert (VTI) of a magnetic properties measurement system under development at Inter-University Accelerator Centre. A Gifford-McMahon cryocooler (1.5 W @ 4.2 K) would serve primarily as the cold source of the superconducting magnet, dedicating 1 W to this cooling, under quite conservative safety factors. The remaining cooling power (0.5 W) is to be diverted towards a VTI through a controlled GGHS that was designed and built with a 80 μm gap width. The built GGHS thermal performance was measured at 4 K, using helium as the exchange gas, and its conductance is compared both with a previously developed analytical model and a finite element method. Lessons learned lead to a new and more functional prototype yet to be reported.

  4. Analytical characteristics of a continuum-source tungsten coil atomic absorption spectrometer.

    PubMed

    Rust, Jennifer A; Nóbrega, Joaquim A; Calloway, Clifton P; Jones, Bradley T

    2005-08-01

    A continuum-source tungsten coil electrothermal atomic absorption spectrometer has been assembled, evaluated, and employed in four different applications. The instrument consists of a xenon arc lamp light source, a tungsten coil atomizer, a Czerny-Turner high resolution monochromator, and a linear photodiode array detector. This instrument provides simultaneous multi-element analyses across a 4 nm spectral window with a resolution of 0.024 nm. Such a device might be useful in many different types of analyses. To demonstrate this broad appeal, four very different applications have been evaluated. First of all, the temperature of the gas phase was measured during the atomization cycle of the tungsten coil, using tin as a thermometric element. Secondly, a summation approach for two absorption lines for aluminum falling within the same spectral window (305.5-309.5 nm) was evaluated. This approach improves the sensitivity without requiring any additional preconcentration steps. The third application describes a background subtraction technique, as it is applied to the analysis of an oil emulsion sample. Finally, interference effects caused by Na on the atomization of Pb were studied. The simultaneous measurements of Pb and Na suggests that negative interference arises at least partially from competition between Pb and Na atoms for H2 in the gas phase.

  5. Deuterium permeation behaviors in tungsten implanted with nitrogen

    NASA Astrophysics Data System (ADS)

    Liang, Chuan-hui; Wang, Dongping; Jin, Wei; Lou, Yuanfu; Wang, Wei; Ye, Xiaoqiu; Chen, Chang-an; Liu, Kezhao; Xu, Haiyan; Wang, Xiaoying; Kleyn, Aart W.

    2018-07-01

    Surface modification of tungsten due to the cooling species nitrogen seeded in the divertor region, i.e., by nitrogen ion implantation or re-deposition, is considered to affect the permeation behavior of H isotopes. This work focuses on the effect of nitrogen ion implantation into tungsten (W-N) on the deuterium gas-driven permeation behavior. For comparison, both permeation in tungsten implanted with W ion (W-W) and without implantation (pristine W) are studied. These three samples were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photo-electron spectroscopy (XPS). The SEM results revealed that the W-W sample has various voids on the surface, and the W-N sample has a rough surface with pretty fine microstructures. These are different from the pristine W sample with a smooth and compact surface. The XRD patterns show the disappearance of crystallinity on both W-W and W-N sample surfaces. It indicates that the ion implantation process results in an almost complete conversion from crystalline to amorphous in the sample surfaces. The sputter-depth profiling XPS spectra show that the implanted nitrogen prefers to form a 140 nm thick tungsten nitride layer. In permeation experiments, it was found that the D permeability is temperature dependent. Interestingly, the W-N sample presented a lower D permeability than the W-W sample, but higher than the pristine W sample. Such behavior implies that tungsten nitride acts as a permeation barrier, while defects created by ions implantation can promote permeability. The possible permeation mechanism correlated with sample surface composition and microstructure is consequently discussed in this work.

  6. Trace hydrogen sulfide gas sensor based on tungsten sulfide membrane-coated thin-core fiber modal interferometer

    NASA Astrophysics Data System (ADS)

    Deng, Dashen; Feng, Wenlin; Wei, Jianwei; Qin, Xiang; Chen, Rong

    2017-11-01

    A novel fiber-optic hydrogen sulfide sensor based on a thin-core Mach-Zehnder fiber modal interferometer (TMZFI) is demonstrated and fabricated. This in-line interferometer is composed of a short section of thin-core fiber sandwiched between two standard single mode fibers, and the fast response to hydrogen sulfide is achieved via the construction of tungsten sulfide film on the outside surface of the TMZFI using the dip-coating and calcination technique. The fabricated sensing nanofilm is characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS) spectrometer, Fourier transform infrared (FTIR) and spectroscopic analysis technology, etc. Experimental results showed that the WS2 sensing film has a hexagonal structure with a compact and porous morphology. The XPS and FTIR indicate that the existence of two elements (W and S) is demonstrated. With the increasing concentration of hydrogen sulfide, the interference spectra appear blue shift. In addition, a high sensitivity of 18.37 pm/ppm and a good linear relationship are obtained within a measurement range from 0 to 80 ppm. In addition, there is an excellent selectivity for H2S, which has also been proved by the surface adsorption energy results of tungsten sulfide with four gases (H2S, N2, O2 and CO2) by using the density functional theory calculations. This interferometer has the advantages of simple structure, high sensitivity and easy manufacture, and could be used in the safety monitoring field of hydrogen sulfide gas.

  7. Gap opening by gas accretion and influence on planet populations

    NASA Astrophysics Data System (ADS)

    Crida, A.; Bitsch, B.; Ndugu, N.; Morbidelli, A.

    2017-09-01

    Giant planets grow and migrate in protoplanetary disks. Because they accrete gas from their horseshoe region until the latter is depleted, we find that giant planets can open a gap before being lost into their central star by type I migration. A reduced type II migration is then enough and necessary to limit the total amount of migration that a giant planet suffers during its formation.

  8. Erosion and Modifications of Tungsten-Coated Carbon and Copper Under High Heat Flux

    NASA Astrophysics Data System (ADS)

    Liu, Xiang; S, Tamura; K, Tokunaga; N, Yoshida; Zhang, Fu; Xu, Zeng-yu; Ge, Chang-chun; N, Noda

    2003-08-01

    Tungsten-coated carbon and copper was prepared by vacuum plasma spraying (VPS) and inert gas plasma spraying (IPS), respectively. W/CFC (Tungsten/Carbon Fiber-Enhanced material) coating has a diffusion barrier that consists of W and Re multi-layers pre-deposited by physical vapor deposition on carbon fiber-enhanced materials, while W/Cu coating has a graded transition interface. Different grain growth processes of tungsten coatings under stable and transient heat loads were observed, their experimental results indicated that the recrystallizing temperature of VPS-W coating was about 1400 °C and a recrystallized columnar layer of about 30 μm thickness was formed by cyclic heat loads of 4 ms pulse duration. Erosion and modifications of W/CFC and W/Cu coatings under high heat load, such as microstructure changes of interface, surface plastic deformations and cracks, were investigated, and the erosion mechanism (erosion products) of these two kinds of tungsten coatings under high heat flux was also studied.

  9. Tungsten inert gas (TIG) welding of Ni-rich NiTi plates: functional behavior

    NASA Astrophysics Data System (ADS)

    Oliveira, J. P.; Barbosa, D.; Braz Fernandes, F. M.; Miranda, R. M.

    2016-03-01

    It is often reported that, to successfully join NiTi shape memory alloys, fusion-based processes with reduced thermal affected regions (as in laser welding) are required. This paper describes an experimental study performed on the tungsten inert gas (TIG) welding of 1.5 mm thick plates of Ni-rich NiTi. The functional behavior of the joints was assessed. The superelasticity was analyzed by cycling tests at maximum imposed strains of 4, 8 and 12% and for a total of 600 cycles, without rupture. The superelastic plateau was observed, in the stress-strain curves, 30 MPa below that of the base material. Shape-memory effect was evidenced by bending tests with full recovery of the initial shape of the welded joints. In parallel, uniaxial tensile tests of the joints showed a tensile strength of 700 MPa and an elongation to rupture of 20%. The elongation is the highest reported for fusion-welding of NiTi, including laser welding. These results can be of great interest for the wide-spread inclusion of NiTi in complex shaped components requiring welding, since TIG is not an expensive process and is simple to operate and implement in industrial environments.

  10. Microstructural Response of Directionally Solidified René 80 Superalloy to Gas-Tungsten Arc Welding

    NASA Astrophysics Data System (ADS)

    Sidhu, R. K.; Ojo, O. A.; Chaturvedi, M. C.

    2009-01-01

    The microstructural response of directionally solidified René 80 (DS René 80) superalloy to gas-tungsten-arc (GTA) welding was investigated. Rapid heating during welding resulted in a significant grain-boundary liquation of solid-state reaction product γ' precipitates, intergranular elemental segregation induced M5B3 borides, and secondary solidification constituents MC carbides and sulfocarbides, which were all present in the preweld heat-treated alloy. Liquation of these particles embrittled the grain boundaries in the heat-affected zone (HAZ) and caused microfissuring along the liquated grain boundaries. Nevertheless, contrary to the generally observed increase in HAZ cracking in superalloys with an increase in Ti and Al concentration, due to increase in the alloy’s hardness, significantly reduced cracking was observed in DS René 80 compared to the conventionally cast IN738 welded under the same conditions, despite its hardness being higher than that of IN738. This was related to the nature of base-metal grain- boundary intersections at the fusion-zone boundary in these materials.

  11. The effect on the transmission loss of a double wall panel of using helium gas in the gap

    NASA Astrophysics Data System (ADS)

    Atwal, M. S.; Crocker, M. J.

    The possibility of increasing the sound-power transmission loss of a double panel by using helium gas in the gap is investigated. The transmission loss of a panel is defined as ten times the common logarithm of the ratio of the sound power incident on the panel to the sound power transmitted to the space on the other side of the panel. The work is associated with extensive research being done to develop new techniques for predicting the interior noise levels on board high-speed advanced turboprop aircraft and reducing the noise levels with a minimum weight penalty. Helium gas was chosen for its inert properties and its low impedance compared with air. With helium in the gap, the impedance mismatch experienced by the sound wave will be greater than that with air in the gap. It is seen that helium gas in the gap increases the transmission loss of the double panel over a wide range of frequencies.

  12. The effect on the transmission loss of a double wall panel of using helium gas in the gap

    NASA Technical Reports Server (NTRS)

    Atwal, M. S.; Crocker, M. J.

    1985-01-01

    The possibility of increasing the sound-power transmission loss of a double panel by using helium gas in the gap is investigated. The transmission loss of a panel is defined as ten times the common logarithm of the ratio of the sound power incident on the panel to the sound power transmitted to the space on the other side of the panel. The work is associated with extensive research being done to develop new techniques for predicting the interior noise levels on board high-speed advanced turboprop aircraft and reducing the noise levels with a minimum weight penalty. Helium gas was chosen for its inert properties and its low impedance compared with air. With helium in the gap, the impedance mismatch experienced by the sound wave will be greater than that with air in the gap. It is seen that helium gas in the gap increases the transmission loss of the double panel over a wide range of frequencies.

  13. Mineral resource of the month: tungsten

    USGS Publications Warehouse

    Shedd, Kim B.

    2012-01-01

    The article offers information on tungsten. It says that tungsten is a metal found in chemical compounds such as in the scheelite and ore minerals wolframite. It states that tungsten has the highest melting point and it forms a compound as hard as diamond when combined with carbon. It states that tungsten can be used as a substitute for lead in fishing weights, ammunition, and hunting shot. Moreover, China started to export tungsten materials and products instead of tungsten raw materials.

  14. METHOD OF MAKING TUNGSTEN FILAMENTS

    DOEpatents

    Frazer, J.W.

    1962-12-18

    A method of making tungsten filaments is described in which the tungsten is completely free of isotope impurities in the range of masses 234 to 245 for use in mass spectrometers. The filament comprises a tantalum core generally less than 1 mil in diameter having a coating of potassium-free tantalum-diffused tungsten molecularly bonded thereto. In the preferred process of manufacture a short, thin tantalum filament is first mounted between terminal posts mounted in insulated relation through a backing plate. The tungsten is most conveniently vapor plated onto the tantalum by a tungsten carbonyl vapor decomposition method having a critical step because of the tendency of the tantalum to volatilize at the temperature of operntion of the filament. The preferred recipe comprises volatilizing tantalum by resistance henting until the current drops by about 40%, cutting the voltage back to build up the tungsten, and then gradually building the temperature back up to balance the rate of tungsten deposition with the rate of tantalum volatilization. (AEC)

  15. Development of quantitative atomic modeling for tungsten transport study using LHD plasma with tungsten pellet injection

    NASA Astrophysics Data System (ADS)

    Murakami, I.; Sakaue, H. A.; Suzuki, C.; Kato, D.; Goto, M.; Tamura, N.; Sudo, S.; Morita, S.

    2015-09-01

    Quantitative tungsten study with reliable atomic modeling is important for successful achievement of ITER and fusion reactors. We have developed tungsten atomic modeling for understanding the tungsten behavior in fusion plasmas. The modeling is applied to the analysis of tungsten spectra observed from plasmas of the large helical device (LHD) with tungsten pellet injection. We found that extreme ultraviolet (EUV) emission of W24+ to W33+ ions at 1.5-3.5 nm are sensitive to electron temperature and useful to examine the tungsten behavior in edge plasmas. We can reproduce measured EUV spectra at 1.5-3.5 nm by calculated spectra with the tungsten atomic model and obtain charge state distributions of tungsten ions in LHD plasmas at different temperatures around 1 keV. Our model is applied to calculate the unresolved transition array (UTA) seen at 4.5-7 nm tungsten spectra. We analyze the effect of configuration interaction on population kinetics related to the UTA structure in detail and find the importance of two-electron-one-photon transitions between 4p54dn+1- 4p64dn-14f. Radiation power rate of tungsten due to line emissions is also estimated with the model and is consistent with other models within factor 2.

  16. Tungsten dust remobilization under steady-state and transient plasma conditions

    DOE PAGES

    Ratynskaia, S.; Tolias, P.; De Angeli, M.; ...

    2016-11-22

    Remobilization is one of the most prominent unresolved fusion dust-relevant issues, strongly related to the lifetime of dust in plasma-wetted regions, the survivability of dust on hot plasma-facing surfaces and the formation of dust accumulation sites. A systematic cross-machine study has been initiated to investigate the remobilization of tungsten micron-size dust from tungsten surfaces implementing a newly developed technique based on controlled pre-adhesion by gas dynamics methods. It has been utilized in a number of devices and has provided new insights on remobilization under steady-state and transient conditions. In conclusion, the experiments are interpreted with contact mechanics theory and heatmore » conduction models.« less

  17. Microstructural Characterization of a Polycrystalline Nickel-Based Superalloy Processed via Tungsten-Intert-Gas-Shaped Metal Deposition

    NASA Astrophysics Data System (ADS)

    Clark, Daniel; Bache, Martin R.; Whittaker, Mark T.

    2010-12-01

    Recent trials have produced tungsten-inert-gas (TIG)-welded structures of a suitable scale to allow an evaluation of the technique as an economic and commercial process for the manufacture of complex aeroengine components. The employment of TIG welding is shown to have specific advantages over alternative techniques based on metal inert gas (MIG) systems. Investigations using the nickel-based superalloy 718 have shown that TIG induces a smaller weld pool with less compositional segregation. In addition, because the TIG process involves a pulsed power source, a faster cooling rate is achieved, although this rate, in turn, compromises the deposition rate. The microstructures produced by the two techniques differ significantly, with TIG showing an absence of the detrimental delta and Laves phases typically produced by extended periods at a high temperature using MIG. Instead, an anisotropic dendritic microstructure was evident with a preferred orientation relative to the axis of epitaxy. Niobium was segregated to the interdendritic regions. A fine-scale porosity was evident within the microstructure with a maximum diameter of approximately 5 μm. This porosity often was found in clusters and usually was associated with the interdendritic regions. Subsequent postdeposition heat treatment was shown to have no effect on preexisting porosity and to have a minimal effect on the microstructure.

  18. Hydrogen release from 800 MeV proton-irradiated tungsten

    NASA Astrophysics Data System (ADS)

    Oliver, B. M.; Venhaus, T. J.; Causey, R. A.; Garner, F. A.; Maloy, S. A.

    2002-12-01

    Tungsten irradiated in spallation neutron sources, such as those proposed for the accelerator production of tritium (APT) project, will contain large quantities of generated helium and hydrogen gas. Tungsten used in proposed fusion reactors will also be exposed to neutrons, and the generated protium will be accompanied by deuterium and tritium diffusing in from the plasma-facing surface. The release kinetics of these gases during various off-normal scenarios involving loss of coolant and after heat-induced rises in temperature are of particular interest for both applications. To determine the release kinetics of hydrogen from tungsten, tungsten rods irradiated with 800 MeV protons in the Los Alamos Neutron Science Center (LANSCE) to high exposures as part of the APT project have been examined. Hydrogen evolution from the tungsten has been measured using a dedicated mass-spectrometer system by subjecting the specimens to an essentially linear temperature ramp from ˜300 to ˜1500 K. Release profiles are compared with predictions obtained using the Tritium Migration Analysis Program (TMAP4). The measurements show that for high proton doses, the majority of the hydrogen is released gradually, starting at about 900 K and reaching a maximum at about 1400 K, where it drops fairly rapidly. Comparisons with TMAP show quite reasonable agreement using a trap energy of 1.4 eV and a trap density of ˜7%. There is a small additional release fraction occurring at ˜550 K, which is believed to be associated with low-energy trapping at or near the surface, and, therefore, was not included in the bulk TMAP model.

  19. Study of Radiographic Linear Indications and Subsequent Microstructural Features in Gas Tungsten Arc Welds of Inconel 718

    NASA Technical Reports Server (NTRS)

    Walley, J. L.; Nunes, A. C.; Clounch, J. L.; Russell, C. K.

    2007-01-01

    This study presents examples and considerations for differentiating linear radiographic indications produced by gas tungsten arc welds in a 0.05-in-thick sheet of Inconel 718. A series of welds with different structural features, including the enigma indications and other defect indications such as lack of fusion and penetration, were produced, radiographed, and examined metallographically. The enigma indications were produced by a large columnar grain running along the center of the weld nugget occurring when the weld speed was reduced sufficiently below nominal. Examples of respective indications, including the effect of changing the x-ray source location, are presented as an aid to differentiation. Enigma, nominal, and hot-weld specimens were tensile tested to demonstrate the harmlessness of the enigma indication. Statistical analysis showed that there is no difference between the strengths of these three weld conditions.

  20. Polarographic determination of tungsten in rocks

    USGS Publications Warehouse

    Reichen, L.E.

    1954-01-01

    This work was undertaken to develop a simpler and faster method than the classical gravimetric procedure for the determination of tungsten in rocks and ores. A new polarographic wave of tungsten is obtained in a supporting electrolyte of dilute hydrochloric acid containing tartrate ion. This permits the determination of tungsten both rapidly and accurately. No precipitation of the tungsten is necessary, and only the iron need be separated from the tungsten. The accuracy is within the limits of a polarographic procedure; comparison of polarographic and gravimetric results is given. The method reduces appreciably the amount of time ordinarily consumed in determination of tungsten.

  1. Global Tungsten Demand and Supply Forecast

    NASA Astrophysics Data System (ADS)

    Dvořáček, Jaroslav; Sousedíková, Radmila; Vrátný, Tomáš; Jureková, Zdenka

    2017-03-01

    An estimate of the world tungsten demand and supply until 2018 has been made. The figures were obtained by extrapolating from past trends of tungsten production from1905, and its demand from 1964. In addition, estimate suggestions of major production and investment companies were taken into account with regard to implementations of new projects for mining of tungsten or possible termination of its standing extraction. It can be assumed that tungsten supply will match demand by 2018. This suggestion is conditioned by successful implementation of new tungsten extraction projects, and full application of tungsten recycling methods.

  2. Mechanical and optical characterization of tungsten oxynitride (W-O-N) nano-coatings

    NASA Astrophysics Data System (ADS)

    Nunez, Oscar Roberto

    Aation and cation doping of transition metal oxides has recently gained attention as a viable option to design materials for application in solar energy conversion, photo-catalysis, transparent electrodes, photo-electrochemical cells, electrochromics and flat panel displays in optoelectronics. Specifically, nitrogen doped tungsten oxide (WO3) has gained much attention for its ability to facilitate optical property tuning while also demonstrating enhanced photo-catalytic and photochemical properties. The effect of nitrogen chemistry and mechanics on the optical and mechanical properties of tungsten oxynitride (W-O-N) nano-coatings is studied in detail in this work. The W-O-N coatings were deposited by direct current (DC) sputtering to a thickness of ˜100 nm and the structural, compositional, optical and mechanical properties were characterized in order to gain a deeper understanding of the effects of nitrogen incorporation and chemical composition. All the W-O-N coatings fabricated under variable nitrogen gas flow rate were amorphous. X-ray photoelectron spectroscopy (XPS) and Rutherford backscattering spectrometry (RBS) measurements revealed that nitrogen incorporation is effective only for a nitrogen gas flow rates ?9 sccm. Optical characterization using ultraviolet-visible-near infrared (UV-VIS-NIR) spectroscopy and spectroscopic ellipsometry (SE) indicate that the nitrogen incorporation induced effects on the optical parameters is significant. The band gap (Eg) values decreased from ˜2.99 eV to ˜1.89 eV indicating a transition from insulating WO3 to metallic-like W-N phase. Nano-mechanical characterization using indentation revealed a corresponding change in mechanical properties; maximum values of 4.46 GPa and 98.5 GPa were noted for hardness and Young?s modulus, respectively. The results demonstrate a clear relationship between the mechanical, physical and optical properties of amorphous W-O-N nano-coatings. The correlation presented in this thesis could

  3. High strength uranium-tungsten alloy process

    DOEpatents

    Dunn, Paul S.; Sheinberg, Haskell; Hogan, Billy M.; Lewis, Homer D.; Dickinson, James M.

    1990-01-01

    Alloys of uranium and tungsten and a method for making the alloys. The amount of tungsten present in the alloys is from about 4 wt % to about 35 wt %. Tungsten particles are dispersed throughout the uranium and a small amount of tungsten is dissolved in the uranium.

  4. Process Of Bonding Copper And Tungsten

    DOEpatents

    Slattery, Kevin T.; Driemeyer, Daniel E.

    1999-11-23

    Process for bonding a copper substrate to a tungsten substrate by providing a thin metallic adhesion promoting film bonded to a tungsten substrate and a functionally graded material (FGM) interlayer bonding the thin metallic adhesion promoting film to the copper substrate. The FGM interlayer is formed by thermal plasma spraying mixtures of copper powder and tungsten powder in a varied blending ratio such that the blending ratio of the copper powder and the tungsten powder that is fed to a plasma torch is intermittently adjusted to provide progressively higher copper content/tungsten content, by volume, ratio values in the interlayer in a lineal direction extending from the tungsten substrate towards the copper substrate. The resulting copper to tungsten joint well accommodates the difference in the coefficient of thermal expansion of the materials.

  5. High-flux plasma exposure of ultra-fine grain tungsten

    DOE PAGES

    Kolasinski, R. D.; Buchenauer, D. A.; Doerner, R. P.; ...

    2016-05-12

    Here we examine the response of an ultra-fine grained (UFG) tungsten material to high-flux deuterium plasma exposure. UFG tungsten has received considerable interest as a possible plasma-facing material in magnetic confinement fusion devices, in large part because of its improved resistance to neutron damage. However, optimization of the material in this manner may lead to trade-offs in other properties. Moreover, we address two aspects of the problem in this work: (a) how high-flux plasmas modify the structure of the exposed surface, and (b) how hydrogen isotopes become trapped within the material. The specific UFG tungsten considered here contains 100 nm-widthmore » Ti dispersoids (1 wt%) that limit the growth of the W grains to a median size of 960 nm. Metal impurities (Fe, Cr) as well as O were identified within the dispersoids; these species were absent from the W matrix. To simulate relevant particle bombardment conditions, we exposed specimens of the W-Ti material to low energy (100 eV), high-flux (> 10 22 m -2 s -1) deuterium plasmas in the PISCES-A facility at the University of California, San Diego. To explore different temperature-dependent trapping mechanisms, we considered a range of exposure temperatures between 200 °C and 500 °C. For comparison, we also exposed reference specimens of conventional powder metallurgy warm-rolled and ITER-grade tungsten at 300 °C. Post-mortem focused ion beam profiling and atomic force microscopy of the UFG tungsten revealed no evidence of near-surface bubbles containing high pressure D2 gas, a common surface degradation mechanism associated with plasma exposure. Thermal desorption spectrometry indicated moderately higher trapping of D in the material compared with the reference specimens, though still within the spread of values for different tungsten grades found in the literature database. Finally, for the criteria considered here, these results do not indicate any significant obstacles to the potential use of

  6. Simulation Study on the Self-Sustained Oscillations in DC Driven Glow Discharges at Atmospheric Pressure Under Different Gas Gaps

    NASA Astrophysics Data System (ADS)

    Wang, Xiaofei; He, Yafeng; Liu, Fucheng

    2015-06-01

    In this paper, a one-dimensional plasma fluid model is employed to study the self-sustained oscillations in DC-driven helium glow discharges at atmospheric pressure under different gas gaps. Our simulation results indicate that a harmonic current oscillation with tiny amplitude always occur at the onset of instability and transits into a relaxation one as the conductivity of the semiconductor is decreased. It is found that the dynamics of the oscillations are dependent on the gas gaps. The discharge can only exhibit a simple oscillation with unique amplitude and frequency at smaller gas gaps (<2 mm) while it can exhibit a more complex oscillation with several different amplitudes and frequencies at larger gas gaps (>2 mm). The discharge modes in these current oscillations have also been analyzed. supported by National Natural Science Foundation of China (Nos. 11205044 and 11405042), Hebei Natural Science Fund of China (Nos. A2012201015 and A2011201006), the Research Foundation of Education Bureau of Hebei Province of China (No. Y2012009), the Postdoctoral Science Foundation of Hebei Province of China (No. B2014003004) and the Postdoctoral Foundation of Hebei University

  7. Process Of Bonding Copper And Tungsten

    DOEpatents

    Slattery, Kevin T.; Driemeyer, Daniel E.; Davis, John W.

    2000-07-18

    Process for bonding a copper substrate to a tungsten substrate by providing a thin metallic adhesion promoting film bonded to a tungsten substrate and a functionally graded material (FGM) interlayer bonding the thin metallic adhesion promoting film to the copper substrate. The FGM interlayer is formed by sintering a stack of individual copper and tungsten powder blend layers having progressively higher copper content/tungsten content, by volume, ratio values in successive powder blend layers in a lineal direction extending from the tungsten substrate towards the copper substrate. The resulting copper to tungsten joint well accommodates the difference in the coefficient of thermal expansion of the materials.

  8. Welding and Weldability of AZ31B by Gas Tungsten Arc and Laser Beam Welding Processes

    NASA Astrophysics Data System (ADS)

    Lathabai, S.; Barton, K. J.; Harris, D.; Lloyd, P. G.; Viano, D. M.; McLean, A.

    Welding will play an important role in the fabrication of modular lightweight structures based on magnesium alloy die castings, extrusion profiles and wrought products. Minimisation of rejection rates during fabrication requires that satisfactory weldability be established for a particular combination of materials and welding procedures. In this paper, we present the results of a study to quantify the weldability of wrought alloy AZ31B by gas tungsten arc (GTA) and laser beam (LB) welding processes. The susceptibility to weld metal solidification cracking was evaluated using the Circular Patch weldability test. Operating windows of welding parameters for crack-free and porosity-free GTA and LB welding were identified, based on which welding procedures were developed for sheet and plate AZ31B. The microstructure and mechanical properties of welded test plates were assessed, leading to a better understanding of microstructurat development and structure-property relationships in GTA and LB weldments in AZ31B.

  9. Numerical Modeling of Fluid Flow, Heat Transfer and Arc-Melt Interaction in Tungsten Inert Gas Welding

    NASA Astrophysics Data System (ADS)

    Li, Linmin; Li, Baokuan; Liu, Lichao; Motoyama, Yuichi

    2017-04-01

    The present work develops a multi-region dynamic coupling model for fluid flow, heat transfer and arc-melt interaction in tungsten inert gas (TIG) welding using the dynamic mesh technique. The arc-weld pool unified model is developed on basis of magnetohydrodynamic (MHD) equations and the interface is tracked using the dynamic mesh method. The numerical model for arc is firstly validated by comparing the calculated temperature profiles and essential results with the former experimental data. For weld pool convection solution, the drag, Marangoni, buoyancy and electromagnetic forces are separately validated, and then taken into account. Moreover, the model considering interface deformation is adopted in a stationary TIG welding process with SUS304 stainless steel and the effect of interface deformation is investigated. The depression of weld pool center and the lifting of pool periphery are both predicted. The results show that the weld pool shape calculated with considering the interface deformation is more accurate.

  10. Gleeble Testing of Tungsten Samples

    DTIC Science & Technology

    2013-02-01

    as a diffusion barrier to prevent the tungsten samples from fusing to the tungsten carbide inserts at elevated temperatures. After the anvils were...anvils with removable tungsten carbide inserts. The inserts were 19.05 mm (0.75 in) in diameter and 25.4 mm (1 in) long; they were purchased from...rhenium are shown in tables 6 and 7 and figure 7. The sample tested at 1300 °C, T4, partially embedded into the tungsten carbide (WC) inserts during

  11. Thermal conductivity of tungsten: Effects of plasma-related structural defects from molecular-dynamics simulations

    NASA Astrophysics Data System (ADS)

    Hu, Lin; Wirth, Brian D.; Maroudas, Dimitrios

    2017-08-01

    We report results on the lattice thermal conductivities of tungsten single crystals containing nanoscale-sized pores or voids and helium (He) nanobubbles as a function of void/bubble size and gas pressure in the He bubbles based on molecular-dynamics simulations. For reference, we calculated lattice thermal conductivities of perfect tungsten single crystals along different crystallographic directions at room temperature and found them to be about 10% of the overall thermal conductivity of tungsten with a weak dependence on the heat flux direction. The presence of nanoscale voids in the crystal causes a significant reduction in its lattice thermal conductivity, which decreases with increasing void size. Filling the voids with He to form He nanobubbles and increasing the bubble pressure leads to further significant reduction of the tungsten lattice thermal conductivity, down to ˜20% of that of the perfect crystal. The anisotropy in heat conduction remains weak for tungsten single crystals containing nanoscale-sized voids and He nanobubbles throughout the pressure range examined. Analysis of the pressure and atomic displacement fields in the crystalline region that surrounds the He nanobubbles reveals that the significant reduction of tungsten lattice thermal conductivity in this region is due to phonon scattering from the nanobubbles, as well as lattice deformation around the nanobubbles and formation of lattice imperfections at higher bubble pressure.

  12. Hazard of ultraviolet radiation emitted in gas tungsten arc welding of aluminum alloys.

    PubMed

    Nakashima, Hitoshi; Utsunomiya, Akihiro; Fujii, Nobuyuki; Okuno, Tsutomu

    2016-01-01

    Ultraviolet radiation (UVR) emitted during arc welding frequently causes keratoconjunctivitis and erythema. The extent of the hazard of UVR varies depending on the welding method and conditions. Therefore, it is important to identify the levels of UVR that are present under various conditions. In this study, we experimentally evaluated the hazard of UVR emitted in gas tungsten arc welding (GTAW) of aluminum alloys. The degree of hazard of UVR is measured by the effective irradiance defined in the American Conference of Governmental Industrial Hygienists guidelines. The effective irradiances measured in this study are in the range 0.10-0.91 mW/cm(2) at a distance of 500 mm from the welding arc. The maximum allowable exposure times corresponding to these levels are only 3.3-33 s/day. This demonstrates that unprotected exposure to UVR emitted by GTAW of aluminum alloys is quite hazardous in practice. In addition, we found the following properties of the hazard of UVR. (1) It is more hazardous at higher welding currents than at lower welding currents. (2) It is more hazardous when magnesium is included in the welding materials than when it is not. (3) The hazard depends on the direction of emission from the arc.

  13. Hazard of ultraviolet radiation emitted in gas tungsten arc welding of aluminum alloys

    PubMed Central

    NAKASHIMA, Hitoshi; UTSUNOMIYA, Akihiro; FUJII, Nobuyuki; OKUNO, Tsutomu

    2015-01-01

    Ultraviolet radiation (UVR) emitted during arc welding frequently causes keratoconjunctivitis and erythema. The extent of the hazard of UVR varies depending on the welding method and conditions. Therefore, it is important to identify the levels of UVR that are present under various conditions. In this study, we experimentally evaluated the hazard of UVR emitted in gas tungsten arc welding (GTAW) of aluminum alloys. The degree of hazard of UVR is measured by the effective irradiance defined in the American Conference of Governmental Industrial Hygienists guidelines. The effective irradiances measured in this study are in the range 0.10–0.91 mW/cm2 at a distance of 500 mm from the welding arc. The maximum allowable exposure times corresponding to these levels are only 3.3–33 s/day. This demonstrates that unprotected exposure to UVR emitted by GTAW of aluminum alloys is quite hazardous in practice. In addition, we found the following properties of the hazard of UVR. (1) It is more hazardous at higher welding currents than at lower welding currents. (2) It is more hazardous when magnesium is included in the welding materials than when it is not. (3) The hazard depends on the direction of emission from the arc. PMID:26632121

  14. Presence of Tungsten-Containing Fibers in Tungsten Refining and Manufacturing Processes

    PubMed Central

    Mckernan, John L.; Toraason, Mark A.; Fernback, Joseph E.; Petersen, Martin R.

    2009-01-01

    In tungsten refining and manufacturing processes, a series of tungsten oxides are typically formed as intermediates in the production of tungsten powder. The present study was conducted to characterize airborne tungsten-containing fiber dimensions, elemental composition and concentrations in the US tungsten refining and manufacturing industry. During the course of normal employee work activities, seven personal breathing zone and 62 area air samples were collected and analyzed using National Institute for Occupational Safety and Health (NIOSH) fiber sampling and counting methods to determine dimensions, composition and airborne concentrations of fibers. Mixed models were used to identify relationships between potential determinants and airborne fiber concentrations. Results from transmission electron microscopy analyses indicated that airborne fibers with length >0.5 μm, diameter >0.01 μm and aspect ratios ≥3:1 were present on 35 of the 69 air samples collected. Overall, the airborne fibers detected had a geometric mean length ≈3 μm and diameter ≈0.3 μm. Ninety-seven percent of the airborne fibers identified were in the thoracic fraction (i.e. aerodynamic diameter ≤ 10 μm). Energy dispersive X-ray spectrometry results indicated that airborne fibers prior to the carburization process consisted primarily of tungsten and oxygen, with other elements being detected in trace quantities. Based on NIOSH fiber counting ‘B’ rules (length > 5 μm, diameter < 3 μm and aspect ratio ≥ 5:1), airborne fiber concentrations ranged from below the limit of detection to 0.085 fibers cm−3, with calcining being associated with the highest airborne concentrations. The mixed model procedure indicated that process temperature had a marginally significant relationship to airborne fiber concentration. This finding was expected since heated processes such as calcining created the highest airborne fiber concentrations. The finding of airborne tungsten-containing fibers in

  15. Computational modeling of GTA (gas tungsten arc) welding with emphasis on surface tension effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zacharia, T.; David, S.A.

    1990-01-01

    A computational study of the convective heat transfer in the weld pool during gas tungsten arch (GTA) welding of Type 304 stainless steel is presented. The solution of the transport equations is based on a control volume approach which utilized directly, the integral form of the governing equations. The computational model considers buoyancy and electromagnetic and surface tension forces in the solution of convective heat transfer in the weld pool. In addition, the model treats the weld pool surface as a deformable free surface. The computational model includes weld metal vaporization and temperature dependent thermophysical properties. The results indicate thatmore » consideration of weld pool vaporization effects and temperature dependent thermophysical properties significantly influence the weld model predictions. Theoretical predictions of the weld pool surface temperature distributions and the cross-sectional weld pool size and shape wee compared with corresponding experimental measurements. Comparison of the theoretically predicted and the experimentally obtained surface temperature profiles indicated agreement with {plus minus} 8%. The predicted weld cross-section profiles were found to agree very well with actual weld cross-sections for the best theoretical models. 26 refs., 8 figs.« less

  16. Interaction of tungsten with tungsten carbide in a copper melt

    NASA Astrophysics Data System (ADS)

    Bodrova, L. E.; Goida, E. Yu.; Pastukhov, E. A.; Marshuk, L. A.; Popova, E. A.

    2013-07-01

    The chemical interaction between tungsten and tungsten carbide in a copper melt with the formation of W2C at 1300°C is studied. It is shown that the mechanical activation of a composition consisting of copper melt + W and WC powders by low-temperature vibrations initiates not only the chemical interaction of its solid components but also their refinement.

  17. Preparation of the spacer for narrow electrode gap configuration in ionization-based gas sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saheed, Mohamed Shuaib Mohamed; Mohamed, Norani Muti; Burhanudin, Zainal Arif

    2012-09-26

    Carbon nanotubes (CNTs) have started to be developed as the sensing element for ionization-based gas sensors due to the demand for improved sensitivity, selectivity, stability and other sensing properties beyond what can be offered by the conventional ones. Although these limitations have been overcome, the problems still remain with the conventional ionization-based gas sensors in that they are bulky and operating with large breakdown voltage and high temperature. Recent studies have shown that the breakdown voltage can be reduced by using nanostructured electrodes and narrow electrode gap. Nanostructured electrode in the form of aligned CNTs array with evenly distributed nanotipsmore » can enhance the linear electric field significantly. The later is attributed to the shorter conductivity path through narrow electrode gap. The paper presents the study on the design consideration in order to realize ionization based gas sensor using aligned carbon nanotubes array in an optimum sensor configuration with narrow electrode gap. Several deposition techniques were studied to deposit the spacer, the key component that can control the electrode gap. Plasma spray deposition, electron beam deposition and dry oxidation method were employed to obtain minimum film thickness around 32 {mu}m. For plasma spray method, sand blasting process is required in order to produce rough surface for strong bonding of the deposited film onto the surface. Film thickness, typically about 39 {mu}m can be obtained. For the electron beam deposition and dry oxidation, the film thickness is in the range of nanometers and thus unsuitable to produce the spacer. The deposited multilayer film consisting of copper, alumina and ferum on which CNTs array will be grown was found to be removed during the etching process. This is attributed to the high etching rate on the thin film which can be prevented by reducing the rate and having a thicker conductive copper film.« less

  18. Tungsten fiber reinforced superalloys: A status review

    NASA Technical Reports Server (NTRS)

    Petrasek, D. W.; Signorelli, R. A.

    1981-01-01

    Improved performance of heat engines is largely dependent upon maximum cycle temperatures. Tungsten fiber reinforced superalloys (TFRS) are the first of a family of high temperature composites that offer the potential for significantly raising hot component operating temperatures and thus leading to improved heat engine performance. This status review of TFRS research emphasizes the promising property data developed to date, the status of TFRS composite airfoil fabrication technology, and the areas requiring more attention to assure their applicability to hot section components of aircraft gas turbine engines.

  19. The winter gap effect in methane leak detection and repair with optical gas imaging cameras

    NASA Astrophysics Data System (ADS)

    Fox, T. A.; Barchyn, T.; Hugenholtz, C.

    2017-12-01

    Implementing effective leak detection and repair (LDAR) programs is essential for mitigating fugitive methane emissions from oil and gas operations. In Canada, newly proposed regulations will require that high-risk facilities be surveyed 3 times/yr for fugitive leaks. Like the United States, Canada promotes the use of Optical Gas Imaging cameras (OGIs) for detecting natural gas leaks during LDAR surveys. However, recent research suggests OGIs may perform poorly under adverse environmental conditions, especially in low temperatures. For regions like Canada that experience cold winters, OGIs may not be reliably used for months at a time, meaning that leaks may accumulate and emit for longer periods before being repaired. While considerable oil and gas activity occurs in high-latitude regions with cold winters, no research has explored how extended cold periods impact OGI-focused LDAR programs. To improve this understanding, we present a simple model exploring relationships among winter gap length, fugitive methane emissions, and investment input for LDAR programs employing OGI instruments in gas producing regions of different latitudes. Preliminary results suggest that longer gaps between LDAR surveys caused by cold temperatures result in either 1) higher total emissions for the year, or 2) greater time and equipment investment in LDAR programs to achieve emissions mitigation equivalent to LDAR programs operating under ideal conditions. When weather constraints are removed and LDAR surveys are evenly spaced throughout the year, emissions mitigation is optimized. However, as the winter gap duration and the size of the implicated area increases, fugitive leaks last longer. Furthermore, a spillover effect is observed as LDAR crews become overwhelmed with the high volume of work required as temperatures increase in the spring. Our model adds weight to the argument that LDAR programs should be tailored to regional needs, and that regulators should be more cognisant of

  20. Scaling laws for gas breakdown for nanoscale to microscale gaps at atmospheric pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loveless, Amanda M.; Garner, Allen L., E-mail: algarner@purdue.edu

    2016-06-06

    Electronics miniaturization motivates gas breakdown predictions for microscale and smaller gaps, since traditional breakdown theory fails when gap size, d, is smaller than ∼15 μm at atmospheric pressure, p{sub atm}. We perform a matched asymptotic analysis to derive analytic expressions for breakdown voltage, V{sub b}, at p{sub atm} for 1 nm ≤ d ≤ 35 μm. We obtain excellent agreement between numerical, analytic, and particle-in-cell simulations for argon, and show V{sub b} decreasing as d → 0, instead of increasing as predicted by Paschen's law. This work provides an analytic framework for determining V{sub b} at atmospheric pressure for various gap distances that may be extended tomore » other gases.« less

  1. Assessment of Zr-Fe-V getter alloy for gas-gap heat switches

    NASA Technical Reports Server (NTRS)

    Prina, M.; Kulleck, J. G.; Bowman, R. C., Jr.

    2000-01-01

    A commercial Zr-V-Fe alloy (i.e., SAES Getters trade name alloy St-172) has been assessed as reversible hydrogen storage material for use in actuators of gas gap heat switches. Two prototype actuators containing the SAES St-172 material were built and operated for several thousand cycles to evaluate performance of the metal hydride system under conditions simulating heat switch operation.

  2. Scanning tunneling microscopy measurements of the spin Hall effect in tungsten films by using iron-coated tungsten tips

    NASA Astrophysics Data System (ADS)

    Xie, Ting; Dreyer, Michael; Bowen, David; Hinkel, Dan; Butera, R. E.; Krafft, Charles; Mayergoyz, Isaak

    2018-05-01

    Scanning tunneling microscopy experiments using iron-coated tungsten tips and current-carrying tungsten films have been conducted. An asymmetry of the tunneling current with respect to the change of the direction of the bias current through a tungsten film has been observed. It is argued that this asymmetry is a manifestation of the spin Hall effect in the current-carrying tungsten film. Nanoscale variations of this asymmetry across the tungsten film have been studied by using the scanning tunneling microscopy technique.

  3. Fabrication of a tantalum-clad tungsten target for LANSCE

    NASA Astrophysics Data System (ADS)

    Nelson, A. T.; O'Toole, J. A.; Valicenti, R. A.; Maloy, S. A.

    2012-12-01

    Development of a solid state bonding technique suitable to clad tungsten targets with tantalum was completed to improve operation of the Los Alamos Neutron Science Centers spallation target. Significant deterioration of conventional bare tungsten targets has historically resulted in transfer of tungsten into the cooling system through corrosion resulting in increased radioactivity outside the target and reduction of delivered neutron flux. The fabrication method chosen to join the tantalum cladding to the tungsten was hot isostatic pressing (HIP) given the geometry constraints of a cylindrical assembly and previous success demonstrated at KENS. Nominal HIP parameters of 1500 °C, 200 MPa, and 3 h were selected based upon previous work. Development of the process included significant surface engineering controls and characterization given tantalums propensity for oxide and carbide formation at high temperatures. In addition to rigorous acid cleaning implemented at each step of the fabrication process, a three layer tantalum foil gettering system was devised such that any free oxygen and carbon impurities contained in the argon gas within the HIP vessel was mitigated to the extent possible before coming into contact with the tantalum cladding. The result of the numerous controls and refined techniques was negligible coarsening of the native Ta2O5 surface oxide, no measureable oxygen diffusion into the tantalum bulk, and no detectable carburization despite use of argon containing up to 5 ppm oxygen and up to 40 ppm total CO, CO2, or organic contaminants. Post bond characterization of the interface revealed continuous bonding with a few microns of species interdiffusion.

  4. Welding procedure specification. Suppliment 1. Records of procedure qualification tests. Gas tungsten arc welding of aluminum alloys 1XXX and 3003 to 3004, 5052 and 5X54. [1060, 1100, and 3003 to 3004, 5052, 5154, and 5454

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wodtke, C.H.; Frizzell, D.R.; Plunkett, W.A.

    1986-06-01

    Procedure WPS-2202 is qualified under Section IX of the ASME Boiler and Pressure Vessel Code for gas tungsten arc welding of aluminum alloys 1060, 1100, and 3003 (P-21) to 3004, 5052, 5154, and 5454 (P-22), in thickness range 0.062 to 0.062 to 0.5 inch; filler metal is ER5356 (F-22); shielding gas is argon.

  5. Effect of current and speed on porosity in autogenous Tungsten Inert Gas (TIG) welding of aluminum alloys A1100 butt joint

    NASA Astrophysics Data System (ADS)

    Milyardi, Indra; Sunar Baskoro, Ario

    2018-04-01

    Autogenous Tungsten Inert Gas (TIG) welding has been conducted on aluminum alloy A1100. The purpose of this research is to determine the proper current and speed of autogenous TIG welding with butt joint pattern. Variations on welding current are 150 A, 155 A, and 160 A with the variations on welding speed are 1 mm/seconds, 1.1 mm/seconds, 1.2 mm/seconds. The welded results were tested using non-destructive test (NDT) method using X-Ray radiography. After the test, it is found that the appropriate current for the best result without porosity can be achieved using the welding parameter of welding current of 160 A and the welding speed of 1.1 mm seconds.

  6. Surface Studies Of Dielectric Materials Used In Spark Gaps

    DTIC Science & Technology

    1983-06-01

    on the virgin sample shows 78.1% carbon, 11.5’% oxygen, 5.2% nitrogen and 5.2% silicon . The usual composition of nylon is C6H110N which would give...copper composite ) electrodes. The spark gap selfbreaks at 40-45kV and switches approximately 1 kJ of energy in 2 ~s at a maximum rep-rate of 2... composite , two different tungsten- copper composites (K-33 and Elkonite), or stainless steel. The spark gap normally operates at a voltage of less than

  7. The effect of high-power plasma flows on tungsten plates with multilayer films of tungsten nanoparticles

    NASA Astrophysics Data System (ADS)

    Gorokhov, M. V.; Kozhevin, V. M.; Yavsin, D. A.; Voronin, A. V.; Gurevich, S. A.

    2017-04-01

    We have experimentally studied the action of high-power plasma flows on pure tungsten plates covered with multilayer films of tungsten nanoparticles formed by the method of laser electrodeposition. The samples were irradiated using a plasma gun producing hydrogen (helium) plasma flows with power density up to 35 GW/cm2. The resulting surface morphology was studied by scanning electron microscopy (SEM). SEM data showed that tungsten plates coated by nanoparticles are more resistant to the formation of microcracks than are pure tungsten plates.

  8. Ion-driven deuterium permeation through tungsten at high temperatures

    NASA Astrophysics Data System (ADS)

    Gasparyan, Yu. M.; Golubeva, A. V.; Mayer, M.; Pisarev, A. A.; Roth, J.

    2009-06-01

    The ion-driven permeation (IDP) through 50 μm thick pure tungsten foils was measured in the temperature range of 823-923 K during irradiation by 200 eV/D + ion beam with a flux of 10 17-10 18 D/m 2s. Gas driven permeation (GDP) from the deuterium background gas was observed as well. Calculations using both the analytical formula for the diffusion limited regime (DLR) and the TMAP 7 code gave good agreement with the experimental data. Defects with a detrapping energy of (2.05 ± 0.15) eV were found to limit the permeation lag time in our experimental conditions.

  9. High surface area synthesis, electrochemical activity, and stability of tungsten carbide supported Pt during oxygen reduction in proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Chhina, H.; Campbell, S.; Kesler, O.

    The oxidation of carbon catalyst supports to carbon dioxide gas leads to degradation in catalyst performance over time in proton exchange membrane fuel cells (PEMFCs). The electrochemical stability of Pt supported on tungsten carbide has been evaluated on a carbon-based gas diffusion layer (GDL) at 80 °C and compared to that of HiSpec 4000™ Pt/Vulcan XC-72R in 0.5 M H 2SO 4. Due to other electrochemical processes occurring on the GDL, detailed studies were also performed on a gold mesh substrate. The oxygen reduction reaction (ORR) activity was measured both before and after accelerated oxidation cycles between +0.6 V and +1.8 V vs. RHE. Tafel plots show that the ORR activity remained high even after accelerated oxidation tests for Pt/tungsten carbide, while the ORR activity was extremely poor after accelerated oxidation tests for HiSpec 4000™. In order to make high surface area tungsten carbide, three synthesis routes were investigated. Magnetron sputtering of tungsten on carbon was found to be the most promising route, but needs further optimization.

  10. The shift of optical band gap in W-doped ZnO with oxygen pressure and doping level

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, J.; Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Science, Chongqing 400714; Peng, X.Y.

    2014-06-01

    Highlights: • CVD–PLD co-deposition technique was used. • Better crystalline of the ZnO samples causes the redshift of the optical band gap. • Higher W concentration induces blueshift of the optical band gap. - Abstract: Tungsten-doped (W-doped) zinc oxide (ZnO) nanostructures were synthesized on quartz substrates by pulsed laser and hot filament chemical vapor co-deposition technique under different oxygen pressures and doping levels. We studied in detail the morphological, structural and optical properties of W-doped ZnO by SEM, XPS, Raman scattering, and optical transmission spectra. A close correlation among the oxygen pressure, morphology, W concentrations and the variation of bandmore » gaps were investigated. XPS and Raman measurements show that the sample grown under the oxygen pressure of 2.7 Pa has the maximum tungsten concentration and best crystalline structure, which induces the redshift of the optical band gap. The effect of W concentration on the change of morphology and shift of optical band gap was also studied for the samples grown under the fixed oxygen pressure of 2.7 Pa.« less

  11. Tungsten Speciation and Solubility in Munitions-Impacted Soils.

    PubMed

    Bostick, Benjamín C; Sun, Jing; Landis, Joshua D; Clausen, Jay L

    2018-02-06

    Considerable questions persist regarding tungsten geochemistry in natural systems, including which forms of tungsten are found in soils and how adsorption regulates dissolved tungsten concentrations. In this study, we examine tungsten speciation and solubility in a series of soils at firing ranges in which tungsten rounds were used. The metallic, mineral, and adsorbed forms of tungsten were characterized using X-ray absorption spectroscopy and X-ray microprobe, and desorption isotherms for tungsten in these soils were used to characterize its solid-solution partitioning behavior. Data revealed the complete and rapid oxidation of tungsten metal to hexavalent tungsten(VI) and the prevalence of adsorbed polymeric tungstates in the soils rather than discrete mineral phases. These polymeric complexes were only weakly retained in the soils, and porewaters in equilibrium with contaminated soils had 850 mg L -1 tungsten, considerably in excess of predicted solubility. We attribute the high solubility and limited adsorption of tungsten to the formation of polyoxometalates such as W 12 SiO 40 4- , an α-Keggin cluster, in soil solutions. Although more research is needed to confirm which of such polyoxometalates are present in soils, their formation may not only increase the solubility of tungsten but also facilitate its transport and influence its toxicity.

  12. Tungsten carbide: Crystals by the ton

    NASA Astrophysics Data System (ADS)

    Smith, E. N.

    1988-06-01

    A comparison is made of the conventional process of making tungsten carbide by carburizing tungsten powder and the Macro Process wherein the tungsten carbide is formed directly from the ore concentrate by an exothermic reaction of ingredients causing a simultaneous reduction and carburization. Tons of tungsten monocarbide crystals are formed in a very rapid reaction. The process is unique in that it is self regulating and produces a tungsten carbide compound with the correct stoichiometry. The high purity with respect to oxygen and nitrogen is achieved because the reactions occur beneath the molten metal. The morphology and hardness of these crystals has been studied by various investigators and reported in the listed references.

  13. High strength and density tungsten-uranium alloys

    DOEpatents

    Sheinberg, Haskell

    1993-01-01

    Alloys of tungsten and uranium and a method for making the alloys. The amount of tungsten present in the alloys is from about 55 vol % to about 85 vol %. A porous preform is made by sintering consolidated tungsten powder. The preform is impregnated with molten uranium such that (1) uranium fills the pores of the preform to form uranium in a tungsten matrix or (2) uranium dissolves portions of the preform to form a continuous uranium phase containing tungsten particles.

  14. Accurate pointing of tungsten welding electrodes

    NASA Technical Reports Server (NTRS)

    Ziegelmeier, P.

    1971-01-01

    Thoriated-tungsten is pointed accurately and quickly by using sodium nitrite. Point produced is smooth and no effort is necessary to hold the tungsten rod concentric. The chemically produced point can be used several times longer than ground points. This method reduces time and cost of preparing tungsten electrodes.

  15. Gas-fired power in the UK: Bridging supply gaps and implications of domestic shale gas exploitation for UK climate change targets.

    PubMed

    Turk, Jeremy K; Reay, David S; Haszeldine, R Stuart

    2018-03-01

    There is a projected shortcoming in the fourth carbon budget of 7.5%. This shortfall may be increased if the UK pursues a domestic shale gas industry to offset projected decreases in traditional gas supply. Here we estimate that, if the project domestic gas supply gap for power generation were to be met by UK shale gas with low fugitive emissions (0.08%), an additional 20.4MtCO 2 e 1 would need to be accommodated during carbon budget periods 3-6. We find that a modest fugitive emissions rate (1%) for UK shale gas would increase global emissions compared to importing an equal quantity of Qatari liquefied natural gas. Additionally, we estimate that natural gas electricity generation would emit 420-466MtCO 2 e (460 central estimate) during the same time period within the traded EU emissions cap. We conclude that domestic shale gas production with even a modest 1% fugitive emissions rate would risk exceedance of UK carbon budgets. We also highlight that, under the current production-based greenhouse gas accounting system, the UK is incentivized to import natural gas rather than produce it domestically. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Results of Uranium Dioxide-Tungsten Irradiation Test and Post-Test Examination

    NASA Technical Reports Server (NTRS)

    Collins, J. F.; Debogdan, C. E.; Diianni, D. C.

    1973-01-01

    A uranium dioxide (UO2) fueled capsule was fabricated and irradiated in the NASA Plum Brook Reactor Facility. The capsule consisted of two bulk UO2 specimens clad with chemically vapor deposited tungsten (CVD W) 0.762 and 0.1016 cm (0.030-and 0.040-in.) thick, respectively. The second specimen with 0.1016-cm (0.040-in.) thick cladding was irradiated at temperature for 2607 hours, corresponding to an average burnup of 1.516 x 10 to the 20th power fissions/cu cm. Postirradiation examination showed distortion in the bottom end cap, failure of the weld joint, and fracture of the central vent tube. Diametral growth was 1.3 percent. No evidence of gross interaction between CVD tungsten or arc-cast tungsten cladding and the UO2 fuel was observed. Some of the fission gases passed from the fuel cavity to the gas surrounding the fuel specimen via the vent tube and possibly the end-cap weld failure. Whether the UO2 loss rates through the vent tube were within acceptable limits could not be determined in view of the end-cap weld failure.

  17. Design and test of porous-tungsten mercury vaporizers

    NASA Technical Reports Server (NTRS)

    Kerslake, W. R.

    1972-01-01

    Future use of large size Kaufman thrusters and thruster arrays will impose new design requirements for porous plug type vaporizers. Larger flow rate coupled with smaller pores to prevent liquid intrusion will be desired. The results of testing samples of porous tungsten for flow rate, liquid intrusion pressure level, and mechanical strength are presented. Nitrogen gas was used in addition to mercury flow for approximate calibration. Liquid intrusion pressure levels will require that flight thruster systems with long feed lines have some way (a valve) to restrict dynamic line pressures during launch.

  18. RECOVERY OF URANIUM FROM TUNGSTEN

    DOEpatents

    Newnam, K.

    1959-02-01

    A method is presented for the rccovery of uranium which has adhered to tungsten parts in electromagnetic isotope separation apparatus. Such a tungsten article is dissolved electrolytically in 20% NaOH by using the tungsten article as the anode. The resulting solution, containing soluble sodium lungstate and an insoluble slime, is then filtered. The slime residue is ignited successively with sodium nitrate and sodium pyrosulfate and leashed, and the resulting filtrates are combined with the original filtrate. Uranium is then recovered from the combined flltrates by diuranate precipitation.

  19. On Improving the Quality of Gas Tungsten Arc Welded 18Ni 250 Maraging Steel Rocket Motor Casings

    NASA Astrophysics Data System (ADS)

    Gupta, Renu N.; Raja, V. S.; Mukherjee, M. K.; Narayana Murty, S. V. S.

    2017-10-01

    In view of their excellent combination of strength and toughness, maraging steels (18Ni 250 grade) are widely used for the fabrication of large sized solid rocket motor casings. Gas tungsten arc welding is commonly employed to fabricate these thin walled metallic casings, as the technique is not only simple but also provides the desired mechanical properties. However, sometimes, radiographic examination of welds reveals typical unacceptable indications requiring weld repair. As a consequence, there is a significant drop in weld efficiency and productivity. In this work, the nature and the cause of the occurrence of these defects have been investigated and an attempt is made to overcome the problem. It has been found that weld has a tendency to form typical Ca and Al oxide inclusions leading to the observed defects. The use of calcium fluoride flux has been found to produce a defect free weld with visible effect on weld bead finish. The flux promotes the separation of inclusions, refines the grain size and leads to significant improvement in mechanical properties of the weldment.

  20. In situ laser-induced breakdown spectroscopy measurements of chemical compositions in stainless steels during tungsten inert gas welding

    NASA Astrophysics Data System (ADS)

    Taparli, Ugur Alp; Jacobsen, Lars; Griesche, Axel; Michalik, Katarzyna; Mory, David; Kannengiesser, Thomas

    2018-01-01

    A laser-induced breakdown spectroscopy (LIBS) system was combined with a bead-on-plate Tungsten Inert Gas (TIG) welding process for the in situ measurement of chemical compositions in austenitic stainless steels during welding. Monitoring the weld pool's chemical composition allows governing the weld pool solidification behavior, and thus enables the reduction of susceptibility to weld defects. Conventional inspection methods for weld seams (e.g. ultrasonic inspection) cannot be performed during the welding process. The analysis system also allows in situ study of the correlation between the occurrence of weld defects and changes in the chemical composition in the weld pool or in the two-phase region where solid and liquid phase coexist. First experiments showed that both the shielding Ar gas and the welding arc plasma have a significant effect on the selected Cr II, Ni II and Mn II characteristic emissions, namely an artificial increase of intensity values via unspecific emission in the spectra. In situ investigations showed that this artificial intensity increase reached a maximum in presence of weld plume. Moreover, an explicit decay has been observed with the termination of the welding plume due to infrared radiation during sample cooling. Furthermore, LIBS can be used after welding to map element distribution. For austenitic stainless steels, Mn accumulations on both sides of the weld could be detected between the heat affected zone (HAZ) and the base material.

  1. Hydrogen permeation properties of plasma-sprayed tungsten*1

    NASA Astrophysics Data System (ADS)

    Anderl, R. A.; Pawelko, R. J.; Hankins, M. R.; Longhurst, G. R.; Neiser, R. A.

    1994-09-01

    Tungsten has been proposed as a plasma-facing component material for advanced fusion facilities. This paper reports on laboratory-scale studies that were done to assess the hydrogen permeation properties of plasma-sprayed tungsten for such applications. The work entailed deuterium permeation measurements for plasma-sprayed (PS) tungsten coatings, sputter-deposited (SP) tungsten coatings, and steel substrate material using a mass-analyzed, 3 keV D 3+ ion beam with fluxes of ˜6.5 × 10 19 D/m 2 s. Extensive characterization analyses for the plasma-sprayed tungsten coatings were made using Auger spectrometry and scanning electron microscopy (SEM). Observed permeation rates through composite PS-tungsten/steel specimens were several orders of magnitude below the permeation levels observed for SP-tungsten/steel composite specimens and pure steel specimens. Characterization analyses indicated that the plasma-sprayed tungsten coating had a nonhomogeneous microstructure that consisted of splats with columnar solidification, partially-melted particles with grain boundaries, and void regions. Reduced permeation levels can be attributed to the complex microstructure and a substantial surface-connected porosity.

  2. Boron carbide coating deposition on tungsten and testing of tungsten layers and coating under intense plasma load

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Airapetov, A. A.; Begrambekov, L. B., E-mail: lbb@plasma.mephi.ru; Buzhinskiy, O. I.

    2015-12-15

    A device intended for boron carbide coating deposition and material testing under high heat loads is presented. A boron carbide coating 5 μm thick was deposited on the tungsten substrate. These samples were subjected to thermocycling loads in the temperature range of 400–1500°C. Tungsten layers deposited on tungsten substrates were tested in similar conditions. Results of the surface analysis are presented.

  3. Precipitation of a monoclonal antibody by soluble tungsten.

    PubMed

    Bee, Jared S; Nelson, Stephanie A; Freund, Erwin; Carpenter, John F; Randolph, Theodore W

    2009-09-01

    Tungsten microparticles may be introduced into some pre-filled syringes during the creation of the needle hole. In turn, these microcontaminants may interact with protein therapeutics to produce visible particles. We found that soluble tungsten polyanions formed in acidic buffer below pH 6.0 can precipitate a monoclonal antibody within seconds. Soluble tungsten in pH 5.0 buffer at about 3 ppm was enough to cause precipitation of a mAb formulated at 0.02 mg/mL. The secondary structure of the protein was near-native in the collected precipitate. Our observations are consistent with the coagulation of a monoclonal antibody by tungsten polyanions. Tungsten-induced precipitation should only be a concern for proteins formulated below about pH 6.0 since tungsten polyanions are not formed at higher pHs. We speculate that the heterogenous nature of particle contamination within the poorly mixed syringe tip volume could mean that a specification for tungsten contamination based on the entire syringe volume is not appropriate. The potential potency of tungsten metal contamination is highlighted by the small number of particles that would be required to generate soluble tungsten levels needed to coagulate this antibody at pH 5.0.

  4. Precipitation of a Monoclonal Antibody by Soluble Tungsten

    PubMed Central

    Bee, Jared S.; Nelson, Stephanie A.; Freund, Erwin; Carpenter, John F.; Randolph, Theodore W.

    2009-01-01

    Tungsten microparticles may be introduced into some pre-filled syringes during the creation of the needle hole. In turn, these microcontaminants may interact with protein therapeutics to produce visible particles. We found that soluble tungsten polyanions formed in acidic buffer below pH 6.0 can precipitate a monoclonal antibody within seconds. Soluble tungsten in pH 5.0 buffer at about 3 ppm was enough to cause precipitation of a mAb formulated at 0.02 mg/mL. The secondary structure of the protein was near-native in the collected precipitate. Our observations are consistent with the coagulation of a monoclonal antibody by tungsten polyanions. Tungsten-induced precipitation should only be a concern for proteins formulated below about pH 6.0 since tungsten polyanions are not formed at higher pHs. We speculate that the heterogenous nature of particle contamination within the poorly mixed syringe tip volume could mean that a specification for tungsten contamination based on the entire syringe volume is not appropriate. The potential potency of tungsten metal contamination is highlighted by the small number of particles that would be required to generate soluble tungsten levels needed to coagulate this antibody at pH 5.0. PMID:19230018

  5. The influence of filament temperature and oxygen concentration on tungsten oxide nanostructures by hot filament metal oxide deposition

    NASA Astrophysics Data System (ADS)

    Lou, J.; Ye, B. J.; Weng, H. M.; Du, H. J.; Wang, Z. B.; Wang, X. P.

    2008-08-01

    Tungsten oxide (WOx) nanostructures were prepared by a hot filament chemical vapour deposition system and the temperature of the hot tungsten filaments was changed by steps of degrees. The morphology and average growth rate were indicated by scanning electron microscopy which showed that the morphology was highly related to the filament temperature (Tf) and the distance between the filaments and the polished Si (1 0 0) substrates (df). The influence of Tf on the crystalline nature was studied by x-ray diffraction and Raman spectroscopy. The evolution of stoichiometry and types of defects was indicated by x-ray photoelectron spectroscopy and slow positron implantation spectroscopy. When Tf was up to 1750 °C, tungsten oxide nanostructure was synthesized. A turning point of Tf was found at which the nature of crystallinity and of stoichiometry was the best. As Tf increased to 2100 °C or df decreased, the film crystallinity decreased; correspondingly, the component ratio of stoichiometry WO3 decreased and lots of vacancy agglomerates were present. In order to develop the chemical phase from substoichiometry to stoichiometry, the oxygen gas concentration in the mixture gas during deposition should be raised to an appropriate level.

  6. Mirrorlike pulsed laser deposited tungsten thin film.

    PubMed

    Mostako, A T T; Rao, C V S; Khare, Alika

    2011-01-01

    Mirrorlike tungsten thin films on stainless steel substrate deposited via pulsed laser deposition technique in vacuum (10(-5) Torr) is reported, which may find direct application as first mirror in fusion devices. The crystal structure of tungsten film is analyzed using x-ray diffraction pattern, surface morphology of the tungsten films is studied with scanning electron microscope and atomic force microscope. The film composition is identified using energy dispersive x-ray. The specular and diffuse reflectivities with respect to stainless steel substrate of the tungsten films are recorded with FTIR spectra. The thickness and the optical quality of pulsed laser deposition deposited films are tested via interferometric technique. The reflectivity is approaching about that of the bulk for the tungsten film of thickness ∼782 nm.

  7. Tungsten devices in analytical atomic spectrometry

    NASA Astrophysics Data System (ADS)

    Hou, Xiandeng; Jones, Bradley T.

    2002-04-01

    Tungsten devices have been employed in analytical atomic spectrometry for approximately 30 years. Most of these atomizers can be electrically heated up to 3000 °C at very high heating rates, with a simple power supply. Usually, a tungsten device is employed in one of two modes: as an electrothermal atomizer with which the sample vapor is probed directly, or as an electrothermal vaporizer, which produces a sample aerosol that is then carried to a separate atomizer for analysis. Tungsten devices may take various physical shapes: tubes, cups, boats, ribbons, wires, filaments, coils and loops. Most of these orientations have been applied to many analytical techniques, such as atomic absorption spectrometry, atomic emission spectrometry, atomic fluorescence spectrometry, laser excited atomic fluorescence spectrometry, metastable transfer emission spectroscopy, inductively coupled plasma optical emission spectrometry, inductively coupled plasma mass spectrometry and microwave plasma atomic spectrometry. The analytical figures of merit and the practical applications reported for these techniques are reviewed. Atomization mechanisms reported for tungsten atomizers are also briefly summarized. In addition, less common applications of tungsten devices are discussed, including analyte preconcentration by adsorption or electrodeposition and electrothermal separation of analytes prior to analysis. Tungsten atomization devices continue to provide simple, versatile alternatives for analytical atomic spectrometry.

  8. Impacts of propagating, frustrated and surface modes on radiative, electrical and thermal losses in nanoscale-gap thermophotovoltaic power generators.

    PubMed

    Bernardi, Michael P; Dupré, Olivier; Blandre, Etienne; Chapuis, Pierre-Olivier; Vaillon, Rodolphe; Francoeur, Mathieu

    2015-06-26

    The impacts of radiative, electrical and thermal losses on the performances of nanoscale-gap thermophotovoltaic (nano-TPV) power generators consisting of a gallium antimonide cell paired with a broadband tungsten and a radiatively-optimized Drude radiator are analyzed. Results reveal that surface mode mediated nano-TPV power generation with the Drude radiator outperforms the tungsten radiator, dominated by frustrated modes, only for a vacuum gap thickness of 10 nm and if both electrical and thermal losses are neglected. The key limiting factors for the Drude- and tungsten-based devices are respectively the recombination of electron-hole pairs at the cell surface and thermalization of radiation with energy larger than the cell absorption bandgap. A design guideline is also proposed where a high energy cutoff above which radiation has a net negative effect on nano-TPV power output due to thermal losses is determined. It is shown that the power output of a tungsten-based device increases by 6.5% while the cell temperature decreases by 30 K when applying a high energy cutoff at 1.45 eV. This work demonstrates that design and optimization of nano-TPV devices must account for radiative, electrical and thermal losses.

  9. Impacts of propagating, frustrated and surface modes on radiative, electrical and thermal losses in nanoscale-gap thermophotovoltaic power generators

    PubMed Central

    Bernardi, Michael P.; Dupré, Olivier; Blandre, Etienne; Chapuis, Pierre-Olivier; Vaillon, Rodolphe; Francoeur, Mathieu

    2015-01-01

    The impacts of radiative, electrical and thermal losses on the performances of nanoscale-gap thermophotovoltaic (nano-TPV) power generators consisting of a gallium antimonide cell paired with a broadband tungsten and a radiatively-optimized Drude radiator are analyzed. Results reveal that surface mode mediated nano-TPV power generation with the Drude radiator outperforms the tungsten radiator, dominated by frustrated modes, only for a vacuum gap thickness of 10 nm and if both electrical and thermal losses are neglected. The key limiting factors for the Drude- and tungsten-based devices are respectively the recombination of electron-hole pairs at the cell surface and thermalization of radiation with energy larger than the cell absorption bandgap. A design guideline is also proposed where a high energy cutoff above which radiation has a net negative effect on nano-TPV power output due to thermal losses is determined. It is shown that the power output of a tungsten-based device increases by 6.5% while the cell temperature decreases by 30 K when applying a high energy cutoff at 1.45 eV. This work demonstrates that design and optimization of nano-TPV devices must account for radiative, electrical and thermal losses. PMID:26112658

  10. Development and characterization of powder metallurgically produced discontinuous tungsten fiber reinforced tungsten composites

    NASA Astrophysics Data System (ADS)

    Mao, Y.; Coenen, J. W.; Riesch, J.; Sistla, S.; Almanstötter, J.; Jasper, B.; Terra, A.; Höschen, T.; Gietl, H.; Bram, M.; Gonzalez-Julian, J.; Linsmeier, Ch; Broeckmann, C.

    2017-12-01

    In future fusion reactors, tungsten is the prime candidate material for the plasma facing components. Nevertheless, tungsten is prone to develop cracks due to its intrinsic brittleness—a major concern under the extreme conditions of fusion environment. To overcome this drawback, tungsten fiber reinforced tungsten (Wf/W) composites are being developed. These composite materials rely on an extrinsic toughing principle, similar to those in ceramic matrix composite, using internal energy dissipation mechanisms, such as crack bridging and fiber pull-out, during crack propagation. This can help Wf/W to facilitate a pseudo-ductile behavior and allows an elevated damage resilience compared to pure W. For pseudo-ductility mechanisms to occur, the interface between the fiber and matrix is crucial. Recent developments in the area of powder-metallurgical Wf/W are presented. Two consolidation methods are compared. Field assisted sintering technology and hot isostatic pressing are chosen to manufacture the Wf/W composites. Initial mechanical tests and microstructural analyses are performed on the Wf/W composites with a 30% fiber volume fraction. The samples produced by both processes can give pseudo-ductile behavior at room temperature.

  11. Materials Survey: Tungsten

    DTIC Science & Technology

    1956-12-01

    Decomposition of Tungsten Ores ......................................... 111-13 Purification of Tungsten Oxide...which followed in 1945 . THE POSTWAR PERIOD Readjustment ’൚-4-1" type of high-speed steel bymanu- facturers who had been using the Ś-6" The period 1946... 1945 ... 5,26’ 8,639 4,7,74 14, 16 2 4,341 23.17 first. 1Ś ... 4.42 b,s81 6,869 6,458 37 ),980 20.17 I94’... 2,945 9,W02 6,018 7,812 148 3.󈧐 23.43袄

  12. Arc-starting aid for GTA welding

    NASA Technical Reports Server (NTRS)

    Whiffen, E. L.

    1977-01-01

    Three-in-one handtool combining arc-gap gage, electrode tip sander, and electrode projection gate, effectively improves initiation on gas tungsten arc (GTA), automatic skate-welding machines. Device effects ease in polishing electrode tips and setting exactly initial arc gap before each weld pass.

  13. The tungsten powder study of the dispenser cathode

    NASA Astrophysics Data System (ADS)

    Bao, Ji-xiu; Wan, Bao-fei

    2006-06-01

    The intercorrelation of tungsten powder properties, such as grain size, distribution and morphology, and porous matrix parameters with electron emission capability and longevity of Ba dispenser cathodes has been investigated for the different grain morphologies. It is shown that a fully cleaning step of the tungsten powder is so necessary that the tungsten powder will be reduction of oxide in hydrogen atmosphere above 700 °C. The porosity of the tungsten matrix distributes more even and the closed pore is fewer, the average granule size of the tungsten powder distributes more convergent. The porosity of the tungsten matrix and the evaporation of the activator are bigger and the pulse of the cathode is smaller when the granularity is bigger by the analysis of the electronic microscope and diode experiment.

  14. Irradiation effects in tungsten-copper laminate composite

    DOE PAGES

    Garrison, L. M.; Katoh, Yutai; Snead, Lance L.; ...

    2016-09-19

    Tungsten-copper laminate composite has shown promise as a structural plasma-facing component as compared to tungsten rod or plate. The present study evaluated the tungsten-copper composite after irradiation in the High Flux Isotope Reactor (HFIR) at temperatures of 410–780 °C and fast neutron fluences of 0.02–9.0 × 10 25 n/m 2, E > 0.1 MeV, 0.0039–1.76 displacements per atom (dpa) in tungsten. Tensile tests were performed on the composites, and the fracture surfaces were analyzed with scanning electron microscopy. Before irradiation, the tungsten layers had brittle cleavage failure, but the overall composite had 15.5% elongation at 22 °C. After only 0.0039more » dpa this was reduced to 7.7% elongation, and no ductility was observed after 0.2 dpa at all irradiation temperatures when tensile tested at 22 °C. In conclusion, tor elevated temperature tensile tests after irradiation, the composite only had ductile failure at temperatures where the tungsten was delaminating or ductile.« less

  15. Fluid inclusion gas studies, carrock fell tungsten deposit, england: implications for regional exploration

    NASA Astrophysics Data System (ADS)

    Shepherd, T. J.; Waters, P.

    1984-10-01

    A fluid inclusion investigation of the Carrock Fell tungsten deposit, Northern England, confirms that the quartz-wolframite-scheelite veins associated with the Caledonian Skiddaw Granite are almost exclusively related to an exocontact hydrothermal system developed at the margin of a local cupola. Fluid circulation, as defined by the spatial variation in temperature and H2O/CO2 ratios for inclusions in vein quartz, reveals a strong structural control. The zone of maximum flow, which extends 0 400 m out from the granite contact, is characterised by high H2O/CO2 ratios and corresponds closely with the known distribution of high-grade oreshoots. Based on the fluid inclusion “gas” signature for the Carrock Fell deposit, a distinction can be made between potentially tungstaniferous quartz veins and those related to Cu-Pb-Zn deposits in the absence of diagnostic ore minerals. Also, a regional survey of quartz veins in the Lake District suggests that at several localities the fluids have a close affinity with those at Carrock Fell. This is interpreted as the high-level, distal expression of tungsten mineralisation at depth. Evidence for similar mineralisation elsewhere in the British Caledonides favours those granites in the paratectonic zones of Ireland and southern Scotland.

  16. Micro-engineered first wall tungsten armor for high average power laser fusion energy systems

    NASA Astrophysics Data System (ADS)

    Sharafat, Shahram; Ghoniem, Nasr M.; Anderson, Michael; Williams, Brian; Blanchard, Jake; Snead, Lance; HAPL Team

    2005-12-01

    The high average power laser program is developing an inertial fusion energy demonstration power reactor with a solid first wall chamber. The first wall (FW) will be subject to high energy density radiation and high doses of high energy helium implantation. Tungsten has been identified as the candidate material for a FW armor. The fundamental concern is long term thermo-mechanical survivability of the armor against the effects of high temperature pulsed operation and exfoliation due to the retention of implanted helium. Even if a solid tungsten armor coating would survive the high temperature cyclic operation with minimal failure, the high helium implantation and retention would result in unacceptable material loss rates. Micro-engineered materials, such as castellated structures, plasma sprayed nano-porous coatings and refractory foams are suggested as a first wall armor material to address these fundamental concerns. A micro-engineered FW armor would have to be designed with specific geometric features that tolerate high cyclic heating loads and recycle most of the implanted helium without any significant failure. Micro-engineered materials are briefly reviewed. In particular, plasma-sprayed nano-porous tungsten and tungsten foams are assessed for their potential to accommodate inertial fusion specific loads. Tests show that nano-porous plasma spray coatings can be manufactured with high permeability to helium gas, while retaining relatively high thermal conductivities. Tungsten foams where shown to be able to overcome thermo-mechanical loads by cell rotation and deformation. Helium implantation tests have shown, that pulsed implantation and heating releases significant levels of implanted helium. Helium implantation and release from tungsten was modeled using an expanded kinetic rate theory, to include the effects of pulsed implantations and thermal cycles. Although, significant challenges remain micro-engineered materials are shown to constitute potential

  17. Tungsten or Wolfram: Friend or Foe?

    PubMed

    Zoroddu, Maria A; Medici, Serenella; Peana, Massimiliano; Nurchi, Valeria M; Lachowicz, Joanna I; Laulicht-Glickc, Freda; Costa, Max

    2018-01-01

    Tungsten or wolfram was regarded for many years as an enemy within the tin smelting and mining industry, because it conferred impurity or dirtiness in tin mining. However, later it was considered an amazing metal for its strength and flexibility, together with its diamond like hardness and its melting point which is the highest of any metal. It was first believed to be relatively inert and an only slightly toxic metal. Since early 2000, the risk exerted by tungsten alloys, its dusts and particulates to induce cancer and several other adverse effects in animals as well as humans has been highlighted from in vitro and in vivo experiments. Thus, it becomes necessary to take a careful look at all the most recent data reported in the scientific literature, covering the years 2001-2016. In fact, the findings indicate that much more attention should be devoted to thoroughly investigate the toxic effects of tungsten and the involved mechanisms of tungsten metal or tungsten metal ions. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Diffusion Bonding Technology of Tungsten and SiC/SiC Composites for Nuclear Applications

    NASA Astrophysics Data System (ADS)

    Kishimoto, Hirotatsu; Shibayama, Tamaki; Abe, Takahiro; Shimoda, Kazuya; Kawamura, Satoshi; Kohyama, Akira

    2011-10-01

    Silicon carbide (SiC) is a candidate for the structural material in the next generation nuclear plants. Use of SiC/SiC composites is expected to increase the operation temperature of system over 1000 °C. For the high temperature system, refractory metals are planned to be used for several components. Tungsten is a candidate of armor on the divertor component in fusion, and is planned to be used for an upper-end plug of SiC/SiC fuel pin in a Gas cooled Fast Reactor (GFR). Joining technique of the SiC/SiC composites and tungsten is an important issue for nuclear systems in future. Nano-Infiltration and Transient Eutectoid (NITE) method is able to provide dense stable and high strength SiC/SiC composites having high resistance against pressure at elevated temperature, a diffusion bonding technique is usable to join the materials. Present research produces a NITE-SiC/SiC composite and tungsten as the similar dimension as a projected cladding tube of fuel pin for GFR using diffusion bonding, and investigated microstructure and mechanical properties.

  19. TUNGSTEN BRONZE RELATED NON-NOBLE ELECTROCATALYSTS.

    DTIC Science & Technology

    FUEL CELLS, *CATALYSTS), (*OXYGEN, *ELECTRODES), (* SILICIDES , ELECTRODES), (*CARBIDES, ELECTRODES), (*TUNGSTEN COMPOUNDS, *ELECTROCHEMISTRY...CATALYSTS, TITANIUM COMPOUNDS, ZIRCONIUM COMPOUNDS, VANADIUM COMPOUNDS, NIOBIUM COMPOUNDS, TUNGSTEN COMPOUNDS, TANTALUM COMPOUNDS, MOLYBDENUM COMPOUNDS, SULFURIC ACID, CRYSTAL GROWTH, SODIUM COMPOUNDS

  20. Microstructures and mechanical properties of bonding layers between low carbon steel and alloy 625 processed by gas tungsten arc welding

    NASA Astrophysics Data System (ADS)

    Lou, Shuai; Lee, Seul Bi; Nam, Dae-Geun; Choi, Yoon Suk

    2017-11-01

    A filler metal wire, Alloy 625, was cladded on a plate of a low carbon streel, SS400, by gas tungsten arc welding, and the morphology of the weld bead and resulting dilution ratio were investigated under different welding parameter values (the input current, weld speed and wire feed speed). The wire feed speed was found to be most influential in controlling the dilution ratio of the weld bead, and seemed to limit the influence of other welding parameters. Two extreme welding conditions (with the minimum and maximum dilution ratios) were identified, and the corresponding microstructures, hardness and tensile properties near the bond line were compared between the two cases. The weld bead with the minimum dilution ratio showed superior hardness and tensile properties, while the formation lath martensite (due to relatively fast cooling) affected mechanical properties in the heat affected zone of the base metal with the maximum dilution ratio.

  1. Tungsten Targets the Tumor Microenvironment to Enhance Breast Cancer Metastasis

    PubMed Central

    Bolt, Alicia M.; Sabourin, Valérie; Molina, Manuel Flores; Police, Alice M.; Negro Silva, Luis Fernando; Plourde, Dany; Lemaire, Maryse; Ursini-Siegel, Josie; Mann, Koren K.

    2015-01-01

    The number of individuals exposed to high levels of tungsten is increasing, yet there is limited knowledge of the potential human health risks. Recently, a cohort of breast cancer patients was left with tungsten in their breasts following testing of a tungsten-based shield during intraoperative radiotherapy. While monitoring tungsten levels in the blood and urine of these patients, we utilized the 66Cl4 cell model, in vitro and in mice to study the effects of tungsten exposure on mammary tumor growth and metastasis. We still detect tungsten in the urine of patients’ years after surgery (mean urinary tungsten concentration at least 20 months post-surgery = 1.76 ng/ml), even in those who have opted for mastectomy, indicating that tungsten does not remain in the breast. In addition, standard chelation therapy was ineffective at mobilizing tungsten. In the mouse model, tungsten slightly delayed primary tumor growth, but significantly enhanced lung metastasis. In vitro, tungsten did not enhance 66Cl4 proliferation or invasion, suggesting that tungsten was not directly acting on 66Cl4 primary tumor cells to enhance invasion. In contrast, tungsten changed the tumor microenvironment, enhancing parameters known to be important for cell invasion and metastasis including activated fibroblasts, matrix metalloproteinases, and myeloid-derived suppressor cells. We show, for the first time, that tungsten enhances metastasis in an animal model of breast cancer by targeting the microenvironment. Importantly, all these tumor microenvironmental changes are associated with a poor prognosis in humans. PMID:25324207

  2. Portable spectrometer monitors inert gas shield in welding process

    NASA Technical Reports Server (NTRS)

    Grove, E. L.

    1967-01-01

    Portable spectrometer using photosensitive readouts, monitors the amount of oxygen and hydrogen in the inert gas shield of a tungsten-inert gas welding process. A fiber optic bundle transmits the light from the welding arc to the spectrometer.

  3. Tuning the band gap of TiO2 by tungsten doping for efficient UV and visible photodegradation of Congo red dye.

    PubMed

    Ullah, Irfan; Haider, Ali; Khalid, Nasir; Ali, Saqib; Ahmed, Sajjad; Khan, Yaqoob; Ahmed, Nisar; Zubair, Muhammad

    2018-06-13

    Tungsten-doped TiO 2 (W@TiO 2 ) nanoparticles, with different percentages of atomic tungsten dopant levels (range of 0 to 6 mol%) have been synthesized by the sol-gel method and characterized by UV-Visible spectroscopy, XRD, SEM, EDX, ICP-OES and XPS analysis. By means of UV-Vis spectroscopy, it has been observed that with 6 mol% tungsten doping the wavelength range of excitation of TiO 2 has extended to the visible portion of spectrum. Therefore, we evaluated the photocatalytic activity of W@TiO 2 catalysts for the degradation of Congo red dye under varying experimental parameters such as dopant concentration, catalyst dosage, dye concentrations and pH. Moreover, 6 mol% W@TiO 2 catalyst was deposited on a glass substrate to form thin film using spin coating technique in order to make the photocatalyst effortlessly reusable with approximately same efficiency. The results compared with standard titania, Degussa P25 both in UV- and visible light, suggest that 6 mol% W@TiO 2 can be a cost-effective choice for visible light induced photocatalytic degradation of Congo red dye. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Anisotropic surface acoustic waves in tungsten/lithium niobate phononic crystals

    NASA Astrophysics Data System (ADS)

    Sun, Jia-Hong; Yu, Yuan-Hai

    2018-02-01

    Phononic crystals (PnC) were known for acoustic band gaps for different acoustic waves. PnCs were already applied in surface acoustic wave (SAW) devices as reflective gratings based on the band gaps. In this paper, another important property of PnCs, the anisotropic propagation, was studied. PnCs made of circular tungsten films on a lithium niobate substrate were analyzed by finite element method. Dispersion curves and equal frequency contours of surface acoustic waves in PnCs of various dimensions were calculated to study the anisotropy. The non-circular equal frequency contours and negative refraction of group velocity were observed. Then PnC was applied as an acoustic lens based on the anisotropic propagation. Trajectory of SAW passing PnC lens was calculated and transmission of SAW was optimized by selecting proper layers of lens and applying tapered PnC. The result showed that PnC lens can suppress diffraction of surface waves effectively and improve the performance of SAW devices.

  5. Mechanical properties and microstructures of a magnesium alloy gas tungsten arc welded with a cadmium chloride flux

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Z.D.; Liu, L.M.; Shen, Y.

    2008-01-15

    Gas tungsten arc (GTA) welds were prepared on 5-mm thick plates of wrought magnesium AZ31B alloy, using an activated flux. The microstructural characteristics of the weld joint were investigated using optical and scanning microscopy, and the fusion zone microstructure was compared with that of the base metal. The elemental distribution was also investigated by electron probe microanalysis (EPMA). Mechanical properties were determined by standard tensile tests on small-scale specimens. The as-welded fusion zone prepared using a CdCl{sub 2} flux exhibited a larger grain size than that prepared without flux; the microstructure consisted of matrix {alpha}-Mg, eutectic {alpha}-Mg and {beta}-Al{sub 12}Mg{submore » 17}. The HAZ was observed to be slightly wider for the weld prepared with a CdCl{sub 2} flux compared to that prepared without flux; thus the tensile strength was lower for the flux-prepared weld. The fact that neither Cd nor Cl was detected in the weld seam by EPMA indicates that the CdCl{sub 2} flux has a small effect on convection in the weld pool.« less

  6. Evaluation of anodic behavior of commercially pure titanium in tungsten inert gas and laser welds.

    PubMed

    Orsi, Iara Augusta; Raimundo, Larica B; Bezzon, Osvaldo Luiz; Nóbilo, Mauro Antonio de Arruda; Kuri, Sebastião E; Rovere, Carlos Alberto D; Pagnano, Valeria Oliveira

    2011-12-01

    This study evaluated the resistance to corrosion in welds made with Tungsten Inert Gas (TIG) in specimens made of commercially pure titanium (cp Ti) in comparison with laser welds. A total of 15 circular specimens (10-mm diameter, 2-mm thick) were fabricated and divided into two groups: control group-cp Ti specimens (n = 5); experimental group-cp Ti specimens welded with TIG (n = 5) and with laser (n = 5). They were polished mechanically, washed with isopropyl alcohol, and dried with a drier. In the anodic potentiodynamic polarization assay, measurements were taken using a potentiostat/galvanostat in addition to CorrWare software for data acquisition and CorrView for data visualization and treatment. Three curves were made for each working electrode. Corrosion potential values were statistically analyzed by the Student's t-test. Statistical analysis showed that corrosion potentials and passive current densities of specimens welded with TIG are similar to those of the control group, and had lower values than laser welding. TIG welding provided higher resistance to corrosion than laser welding. Control specimens welded with TIG were more resistant to local corrosion initiation and propagation than those with laser welding, indicating a higher rate of formation and growth of passive film thickness on the surfaces of these alloys than on specimens welded with laser, making it more difficult for corrosion to occur. © 2011 by the American College of Prosthodontists.

  7. Improved microstructure and mechanical properties in gas tungsten arc welded aluminum joints by using graphene nanosheets/aluminum composite filler wires.

    PubMed

    Fattahi, M; Gholami, A R; Eynalvandpour, A; Ahmadi, E; Fattahi, Y; Akhavan, S

    2014-09-01

    In the present study, different amounts of graphene nanosheets (GNSs) were added to the 4043 aluminum alloy powders by using the mechanical alloying method to produce the composite filler wires. With each of the produced composite filler wires, one all-weld metal coupon was welded using the gas tungsten arc (GTA) welding process. The microstructure, mechanical properties and fracture surface morphology of the weld metals have been evaluated and the results are compared. As the amount of GNSs in the composition of filler wire is increased, the microstructure of weld metal was changed from the dendritic structure to fine equiaxed grains. Furthermore, the tensile strength and microhardness of weld metal was improved, and is attributed to the augmented nucleation and retarded growth. From the results, it was seen that the GNSs/Al composite filler wire can be used to improve the microstructure and mechanical properties of GTA weld metals of aluminum and its alloys. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. The effects of alloying elements on microstructures and mechanical properties of tungsten inert gas welded AZ80 magnesium alloys joint

    NASA Astrophysics Data System (ADS)

    Li, Hui; Zhang, Jiansheng; Ding, Rongrong

    2017-11-01

    The effects of alloying elements on the macrostructures, microstructures and tensile strength of AZ80 Mg alloy weldments were studied in the present study. The results indicate that with the decrease of Al element content of filler wire, the welding defects of seam are gradually eliminated and the β-Mg17Al12 phases at α-Mg boundaries are refined and become discontinuous, which are beneficial to the improvement of tensile strength. With AZ31 Mg alloy filler wire, the maximum tensile strength of AZ80 weldment is 220 MPa and fracture occurs at the welding seam of joint. It is experimentally proved that robust AZ80 Mg alloy joints can be obtained by tungsten inert gas (TIG) welding process with AZ31 Mg alloy filler wire. However, further study is required to improve the microstructures and reduce welding defects of joint in order to further improve the joining strength of AZ80 Mg alloy joint.

  9. Ablation study of tungsten-based nuclear thermal rocket fuel

    NASA Astrophysics Data System (ADS)

    Smith, Tabitha Elizabeth Rose

    The research described in this thesis has been performed in order to support the materials research and development efforts of NASA Marshall Space Flight Center (MSFC), of Tungsten-based Nuclear Thermal Rocket (NTR) fuel. The NTR was developed to a point of flight readiness nearly six decades ago and has been undergoing gradual modification and upgrading since then. Due to the simplicity in design of the NTR, and also in the modernization of the materials fabrication processes of nuclear fuel since the 1960's, the fuel of the NTR has been upgraded continuously. Tungsten-based fuel is of great interest to the NTR community, seeking to determine its advantages over the Carbide-based fuel of the previous NTR programs. The materials development and fabrication process contains failure testing, which is currently being conducted at MSFC in the form of heating the material externally and internally to replicate operation within the nuclear reactor of the NTR, such as with hot gas and RF coils. In order to expand on these efforts, experiments and computational studies of Tungsten and a Tungsten Zirconium Oxide sample provided by NASA have been conducted for this dissertation within a plasma arc-jet, meant to induce ablation on the material. Mathematical analysis was also conducted, for purposes of verifying experiments and making predictions. The computational method utilizes Anisimov's kinetic method of plasma ablation, including a thermal conduction parameter from the Chapman Enskog expansion of the Maxwell Boltzmann equations, and has been modified to include a tangential velocity component. Experimental data matches that of the computational data, in which plasma ablation at an angle shows nearly half the ablation of plasma ablation at no angle. Fuel failure analysis of two NASA samples post-testing was conducted, and suggestions have been made for future materials fabrication processes. These studies, including the computational kinetic model at an angle and the

  10. Secondary electron emission from plasma-generated nanostructured tungsten fuzz

    DOE PAGES

    Patino, M.; Raitses, Y.; Wirz, R.

    2016-11-14

    Recently, several researchers (e.g., Q. Yang, Y.-W. You, L. Liu, H. Fan, W. Ni, D. Liu, C. S. Liu, G. Benstetter, and Y. Wang, Scientific Reports 5, 10959 (2015)) have shown that tungsten fuzz can grow on a hot tungsten surface under bombardment by energetic helium ions in different plasma discharges and applications, including magnetic fusion devices with plasma facing tungsten components. This work reports direct measurements of the total effective secondary electron emission (SEE) from tungsten fuzz. Using dedicated material surface diagnostics and in-situ characterization, we find two important results: (1) SEE values for tungsten fuzz are 40-63% lowermore » than for smooth tungsten and (2) the SEE values for tungsten fuzz are independent of the angle of the incident electron. The reduction in SEE from tungsten fuzz is most pronounced at high incident angles, which has important implications for many plasma devices since in a negative-going sheath the potential structure leads to relatively high incident angles for the electrons at the plasma confining walls. Overall, low SEE will create a relatively higher sheath potential difference that reduces plasma electron energy loss to the confining wall. Thus the presence or self-generation in a plasma of a low SEE surface such as tungsten fuzz can be desirable for improved performance of many plasma devices.:7px« less

  11. Tungsten recycling in the United States in 2000

    USGS Publications Warehouse

    Shedd, Kim B.

    2011-01-01

    This report, which is one of a series of reports on metals recycling, defines and quantifies the flow of tungsten-bearing materials in the United States from imports and stock releases through consumption and disposition in 2000, with particular emphasis on the recycling of industrial scrap (new scrap) and used products (old scrap). Because of tungsten's many diverse uses, numerous types of scrap were available for recycling by a wide variety of processes. In 2000, an estimated 46 percent of U.S. tungsten supply was derived from scrap. The ratio of tungsten consumed from new scrap to that consumed from old scrap was estimated to be 20:80. Of all the tungsten in old scrap available for recycling, an estimated 66 percent was either consumed in the United States or exported to be recycled.

  12. Post-discharge gas composition of a large-gap DBD in humid air by UV-Vis absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Moiseev, T.; Misra, N. N.; Patil, S.; Cullen, P. J.; Bourke, P.; Keener, K. M.; Mosnier, J. P.

    2014-12-01

    Large gap dielectric barrier discharges (DBD) provide non-thermal, non-equilibrium plasmas that can generate specific gas chemistry with enhanced bactericidal effects when working in humid air. The present study investigates the post-discharge gas composition of such plasmas operated in humid air using UV-Vis (200-800 nm) absorption spectroscopy. Absorbance spectra have been de-convoluted using direct deconvolution and iterative methods and results are correlated to the DBD electrical parameters. The high-voltage (56 and 70 kV rms) DBD plasma generated at 50 Hz frequency in a closed container over a 20 mm gap in air with relative humidity (RH) of 5-70% has been characterized by I-V and capacitive methods. The post-discharge gas composition at each RH is assessed by UV-Vis absorption spectroscopy for plasma exposure times of 15-120 s. The concentration of ozone and nitrogen oxides (O3, NO2, NO3, N2O4) increases with plasma exposure time but a strong decrease in [O3] levels is obtained with increase in RH. The decrease in [O3] and an abundance of nitrogen oxides is ascribed to high specific power densities in the closed container and to increasing RH levels. The absorbance residual following deconvolution shows a strong band at 230-270 nm consistent with the presence of pernitric acid (HNO4) and other HNOx (x = 1, 3) species. Humid air large gap DBD plasmas in closed containers generate along with O3, high levels of nitrogen oxides and HNOx (x = 1, 4) acids leading to increased bactericidal rates.

  13. Design and application of gas-gap heat switches

    NASA Technical Reports Server (NTRS)

    Chan, C. K.; Ross, R. G., Jr.

    1990-01-01

    Gas-gap heat switches can serve as an effective means of thermally disconnecting a standby cryocooler when the primary (operating) cooler is connected and vice versa. The final phase of the development and test of a cryogenic heat switch designed for loads ranging from 2 watts at 8 K, to 100 watts at 80 K are described. Achieved heat-switch on/off conductance ratio ranged from 11,000 at 8 K to 2200 at 80 K. A particularly challenging element of heat-switch design is achieving satisfactory operation when large temperatures differentials exist across the switch. A special series of tests and analyses was conducted and used in this Phase-2 activity to evaluate the developed switches for temperature differentials ranging up to 200 K. Problems encountered at the maximum levels are described and analyzed, and means of avoiding the problems in the future are presented. A comprehensive summary of the overall heat-switch design methodology is also presented with special emphasis on lessons learned over the course of the 4-year development effort.

  14. Raman scattering from rapid thermally annealed tungsten silicide

    NASA Technical Reports Server (NTRS)

    Kumar, Sandeep; Dasgupta, Samhita; Jackson, Howard E.; Boyd, Joseph T.

    1987-01-01

    Raman scattering as a technique for studying the formation of tungsten silicide is presented. The tungsten silicide films have been formed by rapid thermal annealing of thin tungsten films sputter deposited on silicon substrates. The Raman data are interpreted by using data from resistivity measurements, Auger and Rutherford backscattering measurements, and scanning electron microscopy.

  15. Pneumatic gap sensor and method

    DOEpatents

    Bagdal, Karl T.; King, Edward L.; Follstaedt, Donald W.

    1992-01-01

    An apparatus and method for monitoring and maintaining a predetermined width in the gap between a casting nozzle and a casting wheel, wherein the gap is monitored by means of at least one pneumatic gap sensor. The pneumatic gap sensor is mounted on the casting nozzle in proximity to the casting surface and is connected by means of a tube to a regulator and a transducer. The regulator provides a flow of gas through a restictor to the pneumatic gap sensor, and the transducer translates the changes in the gas pressure caused by the proximity of the casting wheel to the pneumatic gap sensor outlet into a signal intelligible to a control device. The relative positions of the casting nozzle and casting wheel can thereby be selectively adjusted to continually maintain a predetermined distance between their adjacent surfaces. The apparatus and method enables accurate monitoring of the actual casting gap in a simple and reliable manner resistant to the extreme temperatures and otherwise hostile casting environment.

  16. Electrical transport properties of nanoplates shaped tungsten oxide embedded poly(vinyl-alcohol) film

    NASA Astrophysics Data System (ADS)

    Das, Amit Kumar; Chatterjee, Piyali; Meikap, Ajit Kumar

    2018-04-01

    Tungsten oxide (WO3) nanoplates have been synthesized via hydrothermal method. The average crystallite size of the nanoplates is 28.9 ± 0.5 nm. The direct and indirect band gap of WO3 is observed. The AC conductivity of PVA-WO3 composite film has been observed and carrier transport mechanism follows correlated barrier hopping model. The maximum barrier height of the composite film is 0.1 eV. The electric modulus reflects the non-Debye type behaviour of relaxation time which is simulated by Kohlrausch-Willims-Watts (KWW) function.

  17. Measurement of uptake and release of tritium by tungsten

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakayama, M.; Torikai, Y.; Saito, M.

    2015-03-15

    Tungsten is currently contemplated as plasma facing material for the divertor of future fusion machines. In this paper the uptake of tritium by tungsten and its release behavior have been investigated. Tungsten samples have been annealed at various temperatures and loaded at also different temperatures with deuterium containing 7.2 % tritium at a pressure of 1.2 kPa. A specific system was designed to assess the release of tritiated water and molecular tritium by the samples. Due to the rather low solubility of hydrogen isotopes in tungsten it is particularly important to be aware of the presence of hydrogen traps ormore » thin oxide films. As shown in this work, traps or oxide films may affect the retention capability of tungsten and lead to significantly modified release properties. It became clear that there were capture sites that had different thermal stability and different capture intensity in tungsten after polishing, or oxide films that were grown on the surface of tungsten and had barrier effects.« less

  18. Comparing Novel Multi-Gap Resistive Plate Chamber Models

    NASA Astrophysics Data System (ADS)

    Stien, Haley; EIC PID Consortium Collaboration

    2016-09-01

    Investigating nuclear structure has led to the fundamental theory of Quantum Chromodynamics. An Electron Ion Collider (EIC) is a proposed accelerator that would further these investigations. In order to prepare for the EIC, there is an active detector research and development effort. One specific goal is to achieve better particle identification via improved Time of Flight (TOF) detectors. A promising option is the Multi-Gap Resistive Plate Chamber (mRPC). These detectors are similar to the more traditional RPCs, but their active gas gaps have dividers to form several thinner gas gaps. These very thin and accurately defined gas gaps improve the timing resolution of the chamber, so the goal is to build an mRPC with the thinnest gaps to achieve the best possible timing resolution. Two different construction techniques have been employed to make two mRPCs. The first technique is to physically separate the gas gaps with sheets of glass that are .2mm thick. The second technique is to 3D print the layered gas gaps. A comparison of these mRPCs and their performances will be discussed and the latest data presented. This research was supported by US DOE MENP Grant DE-FG02-03ER41243.

  19. Effect of oxygen vacancies on the electronic and optical properties of tungsten oxide from first principles calculations

    NASA Astrophysics Data System (ADS)

    Mehmood, Faisal; Pachter, Ruth; Murphy, Neil R.; Johnson, Walter E.; Ramana, Chintalapalle V.

    2016-12-01

    In this work, we investigated theoretically the role of oxygen vacancies on the electronic and optical properties of cubic, γ-monoclinic, and tetragonal phases of tungsten oxide (WO3) thin films. Following the examination of structural properties and stability of the bulk tungsten oxide polymorphs, we analyzed band structures and optical properties, applying density functional theory (DFT) and GW (Green's (G) function approximation with screened Coulomb interaction (W)) methods. Careful benchmarking of calculated band gaps demonstrated the importance of using a range-separated functional, where results for the pristine room temperature γ-monoclinic structure indicated agreement with experiment. Further, modulation of the band gap for WO3 structures with oxygen vacancies was quantified. Dielectric functions for cubic WO3, calculated at both the single-particle, essentially time-dependent DFT, as well as many-body GW-Bethe-Salpeter equation levels, indicated agreement with experimental data for pristine WO3. Interestingly, we found that introducing oxygen vacancies caused appearance of lower energy absorptions. A smaller refractive index was indicated in the defective WO3 structures. These predictions could lead to further experiments aimed at tuning the optical properties of WO3 by introducing oxygen vacancies, particularly for the lower energy spectral region.

  20. Solution and diffusion of hydrogen isotopes in tungsten-rhenium alloy

    NASA Astrophysics Data System (ADS)

    Ren, Fei; Yin, Wen; Yu, Quanzhi; Jia, Xuejun; Zhao, Zongfang; Wang, Baotian

    2017-08-01

    Rhenium is one of the main transmutation elements forming in tungsten under neutron irradiation. Therefore, it is essential to understand the influence of rhenium impurity on hydrogen isotopes retention in tungsten. First-principle calculations were used to study the properties of hydrogen solution and diffusion in perfect tungsten-rhenium lattice. The interstitial hydrogen still prefers the tetrahedral site in presence of rhenium, and rhenium atom cannot act directly as a trapping site of hydrogen. The presence of rhenium in tungsten raises the solution energy and the real normal modes of vibration on the ground state and the transition state, compared to hydrogen in pure tungsten. Without zero point energy corrections, the presence of rhenium decreases slightly the migration barrier. It is found that although the solution energy would tend to increase slightly with the rising of the concentration of rhenium, but which does not influence noticeably the solution energy of hydrogen in tungsten-rhenium alloy. The solubility and diffusion coefficient of hydrogen in perfect tungsten and tungsten-rhenium alloy have been estimated, according to Sievert's law and harmonic transition state theory. The results show the solubility of hydrogen in tungsten agrees well the experimental data, and the presence of Re would decrease the solubility and increase the diffusivity for the perfect crystals.

  1. Inert-Gas Diffuser For Plasma Or Arc Welding

    NASA Technical Reports Server (NTRS)

    Gilbert, Jeffrey L.; Spencer, Carl N.; Hosking, Timothy J.

    1994-01-01

    Inert-gas diffuser provides protective gas cover for weld bead as it cools. Follows welding torch, maintaining continuous flow of argon over newly formed joint and prevents it from oxidizing. Helps to ensure welds of consistently high quality. Devised for plasma arc keyhole welding of plates of 0.25-in. or greater thickness, also used in tungsten/inert-gas and other plasma or arc welding processes.

  2. Deposition of tungsten metal by an immersion process

    DOE PAGES

    Small, Leo J.; Brumbach, Michael T.; Clem, Paul G.; ...

    2017-03-23

    A new multi-step, solution-phase method for the spontaneous deposition of tungsten from a room temperature ethereal solution is reported. This immersion process relies on the deposition of a sacrificial zinc coating which is galvanically displaced by the ether-mediated reduction of oxophilic WCl 6. Subsequent thermal treatment renders a crystalline, metallic tungsten film. The chemical evolution of the surface and formation of a complex intermediate tungsten species is characterized by X-ray diffraction, infrared spectroscopy, and X-ray photoelectron spectroscopy. Efficient metallic tungsten deposition is first characterized on a graphite substrate and then demonstrated on a functional carbon foam electrode. The resulting electrochemicalmore » performance of the modified electrode is interrogated with the canonical aqueous ferricyanide system. A tungsten-coated carbon foam electrode showed that both electrode resistance and overall electrochemical cell resistance were reduced by 50%, resulting in a concomitant decrease in redox peak separation from 1.902 V to 0.783 V. Furthermore, this process promises voltage efficiency gains in electrodes for energy storage technologies and demonstrates the viability of a new route to tungsten coating for technologies and industries where high conductivity and chemical stability are paramount.« less

  3. Divertor tungsten tile melting and its effect on core plasma performance

    NASA Astrophysics Data System (ADS)

    Lipschultz, B.; Coenen, J. W.; Barnard, H. S.; Howard, N. T.; Reinke, M. L.; Whyte, D. G.; Wright, G. M.

    2012-12-01

    For the 2007 and 2008 run campaigns, Alcator C-Mod operated with a full toroidal row of tungsten tiles in the high heat flux region of the outer divertor; tungsten levels in the core plasma were below measurement limits. An accidental creation of a tungsten leading edge in the 2009 campaign led to this study of a melting tungsten source: H-mode operation with strike point in the region of the melting tile was immediately impossible due to some fraction of tungsten droplets reaching the main plasma. Approximately 15 g of tungsten was lost from the tile over ˜100 discharges. Less than 1% of the evaporated tungsten was found re-deposited on surfaces, the rest is assumed to have become dust. The strong discharge variability of the tungsten reaching the core implies that the melt layer topology is always varying. There is no evidence of healing of the surface with repeated melting. Forces on the melted tungsten tend to lead to prominences that extend further into the plasma. A discussion of the implications of melting a divertor tungsten monoblock on the ITER plasma is presented.

  4. Tritium Decay Helium-3 Effects in Tungsten

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shimada, M.; Merrill, B. J.

    2016-06-01

    A critical challenge for long-term operation of ITER and beyond to a Demonstration reactor (DEMO) and future fusion reactor will be the development of plasma-facing components (PFCs) that demonstrate erosion resistance to steady-state/transient heat fluxes and intense neutral/ion particle fluxes under the extreme fusion nuclear environment, while at the same time minimizing in-vessel tritium inventories and permeation fluxes into the PFC’s coolant. Tritium will diffuse in bulk tungsten at elevated temperatures, and can be trapped in radiation-induced trap site (up to 1 at. % T/W) in tungsten [1,2]. Tritium decay into helium-3 may also play a major role in microstructuralmore » evolution (e.g. helium embrittlement) in tungsten due to relatively low helium-4 production (e.g. He/dpa ratio of 0.4-0.7 appm [3]) in tungsten. Tritium-decay helium-3 effect on tungsten is hardly understood, and its database is very limited. Two tungsten samples (99.99 at. % purity from A.L.M.T. Co., Japan) were exposed to high flux (ion flux of 1.0x1022 m-2s-1 and ion fluence of 1.0x1026 m-2) 0.5%T2/D2 plasma at two different temperatures (200, and 500°C) in Tritium Plasma Experiment (TPE) at Idaho National Laboratory. Tritium implanted samples were stored at ambient temperature in air for more than 3 years to investigate tritium decay helium-3 effect in tungsten. The tritium distributions on plasma-exposed was monitored by a tritium imaging plate technique during storage period [4]. Thermal desorption spectroscopy was performed with a ramp rate of 10°C/min up to 900°C to outgas residual deuterium and tritium but keep helium-3 in tungsten. These helium-3 implanted samples were exposed to deuterium plasma in TPE to investigate helium-3 effect on deuterium behavior in tungsten. The results show that tritium surface concentration in 200°C sample decreased to 30 %, but tritium surface concentration in 500°C sample did not alter over the 3 years storage period, indicating possible

  5. Effect of Microstructure on Stress Corrosion Cracking Behaviour of High Nitrogen Stainless Steel Gas Tungsten Arc Welds

    NASA Astrophysics Data System (ADS)

    Mohammed, Raffi; Srinivasa Rao, K.; Madhusudhan Reddy, G.

    2018-03-01

    Present work is aimed to improve stress corrosion cracking resistance of high nitrogen steel and its welds. An attempt to weld high nitrogen steel of 5 mm thick plate using gas tungsten arc welding (GTAW) with three high strength age hardenable fillers i.e., 11-10 PH filler, PH 13- 8Mo and maraging grade of MDN 250 filler is made. Welds were characterized by optical microscopy and scanning electron microscopy. Vickers hardness testing of the welds was carried out to study the mechanical behaviour of welds. Potentio-dynamic polarization studies were done to determine pitting corrosion resistance in aerated 3.5% NaCl solution. Stress corrosion cracking (SCC) testing was carried out using constant load type machine with applied stress of 50% yield strength and in 45% MgCl2 solution boiling at 155°C. The results of the present investigation established that improvement in resistance to stress corrosion cracking was observed for PH 13- 8Mo GTA welds when compared to 11-10 PH and MDN 250 GTA welds. However, All GTA welds failed in the weld interface region. This may be attributed to relatively lower pitting potential in weld interface which acts as active site and the initiation source of pitting.

  6. Microstructure formation in partially melted zone during gas tungsten arc welding of AZ91 Mg cast alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu Tianping; Chen, Zhan W.; Gao Wei

    2008-11-15

    During gas tungsten arc (GTA) welding of AZ91 Mg cast alloy, constitutional liquid forms locally in the original interdendritic regions in the partially melted zone (PMZ). The PMZ re-solidification behaviour has not been well understood. In this study, the gradual change of the re-solidification microstructure within PMZ from base metal side to weld metal side was characterised. High cooling rate experiments using Gleeble thermal simulator were also conducted to understand the morphological change of the {alpha}-Mg/{beta}-Mg{sub 17}Al{sub 12} phase interface formed during re-solidification after partial melting. It was found that the original partially divorced eutectic structure has become a moremore » regular eutectic phase in most of the PMZ, although close to the fusion boundary the re-solidified eutectic is again a divorced one. Proceeding the eutectic re-solidification, if the degree of partial melting is sufficiently high, {alpha}-Mg re-solidified with a cellular growth, resulting in a serrated interface between {alpha}-Mg and {alpha}-Mg/{beta}-Mg{sub 17}Al{sub 12} in the weld sample and between {alpha}-Mg and {beta}-Mg{sub 17}Al{sub 12} (fully divorced eutectic) in Gleeble samples. The morphological changes affected by the peak temperature and cooling rate are also explained.« less

  7. Characterization of thin film deposits on tungsten filaments in catalytic chemical vapor deposition using 1,1-dimethylsilacyclobutane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Yujun, E-mail: shiy@ucalgary.ca; Tong, Ling; Mulmi, Suresh

    Metal filament plays a key role in the technique of catalytic chemical vapor deposition (Cat-CVD) as it serves as a catalyst in dissociating the source gas to form reactive species. These reactive species initiate the gas-phase reaction chemistry and final thin film and nanostructure formation. At the same time, they also react with the metal itself, leading to the formation of metal alloys and other deposits. The deposits on the tungsten filaments when exposed to 1,1-dimethylsilacyclobutane (DMSCB), a single-source precursor for silicon carbide thin films, in the process of Cat-CVD were studied in this work. It has been demonstrated thatmore » a rich variety of deposits, including tungsten carbides (W{sub 2}C and WC), tungsten silicide (W{sub 5}Si{sub 3}), silicon carbide, amorphous carbon, and graphite, form on the W filament surfaces. The structural and morphological changes in the tungsten filaments depend strongly on the DMSCB pressure and filament temperature. At 1000 and 2000 °C, the formation of WC and W{sub 2}C dominates. In addition, a thin amorphous carbon layer has been found at 1500 °C with the 0.12 and 0.24 Torr of DMSCB and a lower temperature of 1200 °C with the 0.48 Torr of DMSCB. An increase in the DMSCB sample pressure gives rise to higher Si and C contents. As a result, the formation of SiC and W{sub 5}Si{sub 3} has been observed with the two high-pressure DMSCB samples (i.e., 0.24 and 0.48 Torr). The rich decomposition chemistry of DMSCB on the W surfaces is responsible for the extensive changes in the structure of the W filament, providing support for the close relationship between the gas-phase decomposition chemistry and the nature of alloy formation on the metal surface. The understanding of the structural changes obtained from this work will help guide the development of efficient methods to solve the filament aging problem in Cat-CVD and also to achieve a controllable deposition process.« less

  8. The optical response of monolayer, few-layer and bulk tungsten disulfide.

    PubMed

    Molas, Maciej R; Nogajewski, Karol; Slobodeniuk, Artur O; Binder, Johannes; Bartos, Miroslav; Potemski, Marek

    2017-09-14

    We present a comprehensive optical study of thin flakes of tungsten disulfide (WS 2 ) with thickness ranging from mono- to octalayer and in the bulk limit. It is shown that the optical band-gap absorption of monolayer WS 2 is governed by competing resonances arising from one neutral and two distinct negatively charged excitons whose contributions to the overall absorption of light vary as a function of temperature and carrier concentration. The photoluminescence response of monolayer WS 2 is found to be largely dominated by disorder/impurity- and/or phonon-assisted recombination processes. The indirect band-gap luminescence in multilayer WS 2 turns out to be a phonon-mediated process whose energy evolution with the number of layers surprisingly follows a simple model of a two-dimensional confinement. The energy position of the direct band-gap response (A and B resonances) is only weakly dependent on the layer thickness, which underlines an approximate compensation of the effect of the reduction of the exciton binding energy by the shrinkage of the apparent band gap. The A-exciton absorption-type spectra in multilayer WS 2 display a non-trivial fine structure which results from the specific hybridization of the electronic states in the vicinity of the K-point of the Brillouin zone. The effects of temperature on the absorption-like and photoluminescence spectra of various WS 2 layers are also quantified.

  9. Pneumatic gap sensor and method

    DOEpatents

    Bagdal, K.T.; King, E.L.; Follstaedt, D.W.

    1992-03-03

    An apparatus and method for monitoring and maintaining a predetermined width in the gap between a casting nozzle and a casting wheel, wherein the gap is monitored by means of at least one pneumatic gap sensor. The pneumatic gap sensor is mounted on the casting nozzle in proximity to the casting surface and is connected by means of a tube to a regulator and a transducer. The regulator provides a flow of gas through a restictor to the pneumatic gap sensor, and the transducer translates the changes in the gas pressure caused by the proximity of the casting wheel to the pneumatic gap sensor outlet into a signal intelligible to a control device. The relative positions of the casting nozzle and casting wheel can thereby be selectively adjusted to continually maintain a predetermined distance between their adjacent surfaces. The apparatus and method enables accurate monitoring of the actual casting gap in a simple and reliable manner resistant to the extreme temperatures and otherwise hostile casting environment. 6 figs.

  10. Processing and property evaluation of tungsten-based mixed oxides for photovoltaics and optoelectronics

    NASA Astrophysics Data System (ADS)

    Vargas, Mirella

    Tungsten Oxide (WO3) films and low-dimensional structures have proven to be promising candidates in the fields of photonics and electronics. WO3 is a well-established n-type semiconductor characterized by unique electrochromic behavior, an ideal optical band gap that permits transparency over a wide spectral range, and high chemical integrity. The plethora of diverse properties endow WO3 to be highly effective in applications related to electrochromism, gas sensing, and deriving economical energy. Compared to the bulk films, a materials system involving WO3 and a related species (elements or metal oxides) offer the opportunity to tailor the electrochromic response, and an overall enhancement of the physio-chemical and optical properties. In the present case, WO3 and TiO2 composite films have been fabricated by reactive magnetron sputtering employing W/Ti alloy targets, and individual W and Ti targets for co-sputtering. Composite WO3-TiO2 films were fabricated with variable chemical composition and the effect of variable bulk chemistry on film structure, surface/interface chemistry and chemical valence state of the W and Ti cations was investigated in detail. The process-property relationships between composition and physical properties for the films deposited by using W/Ti alloy targets of variable Ti content are associated with decreases in the deposition rate of the WO3-TiO2 films due to the lower sputter yield of the strongly bonded TiO2 formed on the target surface. Additionally, for the co-sputtered films using variable tungsten power, the optical properties demonstrate unique optical modulation. The changes associated with the physical color of the films demonstrate the potential to tailor the optical behavior for the design and fabrication of multilayer photovoltaic and catalytic devices. The process-structure-property correlation derived in this work will provide a road-map to optimize and produce W-Ti-O thin films with desired properties for a given

  11. Tensile behavior of tungsten and tungsten-alloy wires from 1300 to 1600 K

    NASA Technical Reports Server (NTRS)

    Hee, Man Yun

    1988-01-01

    The tensile behavior of a 200-micrometer-diameter tungsten lamp (218CS-W), tungsten + 1.0 atomic percent (a/o) thoria (ST300-W), and tungsten + 0.4 a/o hafnium carbide (WHfC) wires was determined over the temperature range 1300 t0 1600 K at strain rates of 3.3 X 10 to the -2 to 3.3 X 10 to the -5/sec. Although most tests were conducted on as-drawn materials, one series of tests was undertaken on ST300-W wires in four different conditions: as-drawn and vacuum-annealed at 1535 K for 1 hr, with and without electroplating. Whereas heat treatment had no effect on tensile properties, electropolishing significantly increased both the proportional limit and ductility, but not the ultimate tensile strength. Comparison of the behavior of the three alloys indicates that the HfC-dispersed material possesses superior tensile properties. Theoretical calculations indicate that the strength/ductility advantage of WHfC is due to the resistance to recrystallization imparted by the dispersoid.

  12. A new technique for the strengthening of aluminum tungsten inert gas weld metals: using carbon nanotube/aluminum composite as a filler metal.

    PubMed

    Fattahi, M; Nabhani, N; Rashidkhani, E; Fattahi, Y; Akhavan, S; Arabian, N

    2013-01-01

    The effect of multi-walled carbon nanotube (MWCNT) on the mechanical properties of aluminum multipass weld metal prepared by the tungsten inert gas (TIG) welding process was investigated. High energy ball milling was used to disperse MWCNT in the aluminum powder. Carbon nanotube/aluminum composite filler metal was fabricated for the first time by hot extrusion of ball-milled powders. After welding, the tensile strength, microhardness and MWCNT distribution in the weld metal were investigated. The test results showed that the tensile strength and microhardness of weld metal was greatly increased when using the filler metal containing 1.5 wt.% MWCNT. Therefore, according to the results presented in this paper, it can be concluded that the filler metal containing MWCNT can serve as a super filler metal to improve the mechanical properties of TIG welds of Al and its alloys. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Preliminary investigation and application of alternate dry gas seal face materials{copyright}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evenson, R.; Peterson, R.; Hanson, R.

    1994-01-01

    Traditional seal mating ring materials such as tungsten carbide (WC) are commonly used in high pressure centrifugal gas compressor dry gas (gas lubricating film) seal applications. Although these materials possess desirable properties for minimizing thermal distortion and deformation when subjected to pressure and centrifugal force, they have low toughness, i.e., they are brittle and have poor resistance to thermal shock. It has been found that these materials are easily heat checked during seal face touchdown. Heat checking as well as other crack indications inherent in these materials can quickly propagate, resulting in a catastrophic seal ring failure. In this paper,more » an investigation of alternate seal face materials is described. Two ductile, nitrided, low ferrous materials proved to be readily manufacturable into dry gas seal rings and performed comparably to tungsten carbide in natural gas service. 10 refs., 13 figs., 5 tabs.« less

  14. Gas discharge headlights and visibility of coloured road signs.

    PubMed

    Venkatachalam, Kannan; Smith, George

    2000-01-01

    BACKGROUND: Automotive headlamps mostly use the tungsten halogen bulb but several years ago a new type of headlamp, the gas discharge bulb, was introduced. Because of the different spectral output of this type of lamp, there has been a suggestion that it may affect the colour recognition and sign conspicuity under night-time conditions. In this study, the visibility of the road signs is used to examine the effect of the gas discharge lamp's spectrum compared with that of the conventional halogen headlamp. METHODS: The spectral output of the lamps and the spectral reflectance of common-coloured road signs were measured using a Spectra-Pritchard spectroradiometer. Using luminous reflectance data, chromaticity co-ordinates and the colorimetric shift of the road signs, when illuminated by gas discharge lamps, were plotted using CIE x,y co-ordinate system. Colour rendering indices of the lamp were calculated using Munsell samples and road signs as proscribed by the CIE Publication. In addition, the visibility index of the road signs was calculated using Adrian's 'Visibility of Target' model. RESULTS: The gas discharge headlamp has more energy in the blue region and less energy in the red region of the spectrum than the halogen headlamp. The general colour rendering index of the gas discharge lamp is higher than that of the halogen lamp. When compared with daylight, all coloured road signs used in this study have less colorimetric shift when illuminated by the gas discharge headlamp than by the halogen headlamp. CONCLUSION: The result indicates that the gas discharge lamp, while having a very different spectrum from daylight or tungsten halogen lamps, should not have a deleterious effect on sign detection or recognition, when compared to daylight or tungsten halogen lamps.

  15. High-strength tungsten alloy with improved ductility

    NASA Technical Reports Server (NTRS)

    Klopp, W. D.; Raffo, P. L.; Rubenstein, L. S.; Witzke, W. R.

    1967-01-01

    Alloy combines superior strength at elevated temperatures with improved ductility at lower temperatures relative to unalloyed tungsten. Composed of tungsten, rhenium, hafnium, and carbon, the alloy is prepared by consumable electrode vacuum arc-melting and can be fabricated into rod, plate, and sheet.

  16. Study of properties of tungsten irradiated in hydrogen atmosphere

    NASA Astrophysics Data System (ADS)

    Tazhibayeva, I.; Skakov, M.; Baklanov, V.; Koyanbayev, E.; Miniyazov, A.; Kulsartov, T.; Ponkratov, Yu.; Gordienko, Yu.; Zaurbekova, Zh.; Kukushkin, I.; Nesterov, E.

    2017-12-01

    The paper presents the results of the experiments with DF (double forged) tungsten samples irradiated at the WWR-K research reactor in hydrogen and helium atmospheres. The irradiation time was 3255 h (135.6 d). After reactor irradiation, W samples have been subjected to investigations of their activity level, hardness, and microstructure, as well as x-ray and texture observations. The hydrogen yield released from irradiated tungsten samples have been measured using TDS-method. The hydrogen concentration in the tungsten samples irradiated in hydrogen was higher than that in the samples irradiated in helium atmosphere. It is shown that the surface microstructure of tungsten samples irradiated in hydrogen is characterized by micro-pits, inclusions and blisters in the form of bubbles, which were not observed earlier for tungsten irradiated in hydrogen.

  17. Tungsten dust impact on ITER-like plasma edge

    DOE PAGES

    Smirnov, R. D.; Krasheninnikov, S. I.; Pigarov, A. Yu.; ...

    2015-01-12

    The impact of tungsten dust originating from divertor plates on the performance of edge plasma in ITER-like discharge is evaluated using computer modeling with the coupled dust-plasma transport code DUSTT-UEDGE. Different dust injection parameters, including dust size and mass injection rates, are surveyed. It is found that tungsten dust injection with rates as low as a few mg/s can lead to dangerously high tungsten impurity concentrations in the plasma core. Dust injections with rates of a few tens of mg/s are shown to have a significant effect on edge plasma parameters and dynamics in ITER scale tokamaks. The large impactmore » of certain phenomena, such as dust shielding by an ablation cloud and the thermal force on tungsten ions, on dust/impurity transport in edge plasma and consequently on core tungsten contamination level is demonstrated. Lastly, it is also found that high-Z impurities provided by dust can induce macroscopic self-sustained plasma oscillations in plasma edge leading to large temporal variations of edge plasma parameters and heat load to divertor target plates.« less

  18. Method of synthesizing tungsten nanoparticles

    DOEpatents

    Thoma, Steven G; Anderson, Travis M

    2013-02-12

    A method to synthesize tungsten nanoparticles has been developed that enables synthesis of nanometer-scale, monodisperse particles that can be stabilized only by tetrahydrofuran. The method can be used at room temperature, is scalable, and the product concentrated by standard means. Since no additives or stabilizing surfactants are required, this method is particularly well suited for producing tungsten nanoparticles for dispersion in polymers. If complete dispersion is achieved due to the size of the nanoparticles, then the optical properties of the polymer can be largely maintained.

  19. Preparation and characterization of Pt loaded WO3 films suitable for gas sensing applications

    NASA Astrophysics Data System (ADS)

    Jolly Bose, R.; Illyasukutty, Navas; Tan, K. S.; Rawat, R. S.; Vadakke Matham, Murukesan; Kohler, Heinz; Mahadevan Pillai, V. P.

    2018-05-01

    This paper presents the preparation of nanostructured platinum (Pt) loaded tungsten oxide (WO3) thin films by radio frequency (RF) magnetron sputtering technique. Even though, Pt loading does not produce any phase change in WO3 lattice, it deteriorates the crystalline quality and induces defects on WO3 films. The Pt loading in WO3 has profound impact on structural and optical properties of the films by which the particle size, lattice strain and optical band gap energy are reduced. Nanoporous film with reduced particle size is obtained for 5 wt% Pt loaded WO3 sample which is crucial for gas sensors. Hence the sensing response of 5 wt% Pt loaded sample is tested towards carbon monoxide (CO) gas along with pure WO3 sample. The sensing response of Pt loaded sample is nearly 15 times higher than pure WO3 sample in non-humid ambience at an operating temperature 200 °C. This indicates the suitability of the prepared films for gas sensors. The sensing response of pure WO3 film depends on the humidity while the Pt loaded WO3 film shows stable response in both humid and non-humid ambiences.

  20. Persistence of tungsten oxide particle/fiber mixtures in artificial human lung fluids

    PubMed Central

    2010-01-01

    Background During the manufacture of tungsten metal for non-sag wire, tungsten oxide powders are produced as intermediates and can be in the form of tungsten trioxide (WO3) or tungsten blue oxides (TBOs). TBOs contain fiber-shaped tungsten sub-oxide particles of respirable or thoracic size. The aim of this research was to investigate whether fiber-containing TBOs had prolonged biodurability in artificial lung fluids compared to tungsten metal or WO3 and therefore potentially could pose a greater inhalation hazard. Methods Dissolution of tungsten metal, WO3, one fiber-free TBO (WO2.98), and three fiber-containing TBO (WO2.81, WO2.66, and WO2.51) powders were measured for the material as-received, dispersed, and mixed with metallic cobalt. Solubility was evaluated using artificial airway epithelial lining fluid (SUF) and macrophage phagolysosomal simulant fluid (PSF). Results Dissolution rates of tungsten compounds were one to four orders of magnitude slower in PSF compared to SUF. The state of the fiber-containing TBOs did not influence their dissolution in either SUF or PSF. In SUF, fiber-containing WO2.66 and WO2.51 dissolved more slowly than tungsten metal or WO3. In PSF, all three fiber-containing TBOs dissolved more slowly than tungsten metal. Conclusions Fiber-containing TBO powders dissolved more slowly than tungsten metal and WO3 powders in SUF and more slowly than tungsten metal in PSF. Existing pulmonary toxicological information on tungsten compounds indicates potential for pulmonary irritation and possibly fibrosis. Additional research is needed to fully understand the hazard potential of TBOs. PMID:21126345

  1. A study of thorium exposure during tungsten inert gas welding in an airline engineering population.

    PubMed

    McElearney, N; Irvine, D

    1993-07-01

    To investigate the theoretic possibility of excessive exposure to thorium during the process of tungsten inert gas (TIG) welding using thoriated rods we carried out a cross-sectional study of TIG welders and an age- and skill-matched group. We measured the radiation doses from inhaled thorium that was retained in the body and investigated whether any differences in health or biologic indices could have been attributable to the welding and tip-grinding process. Sixty-four TIG welders, 11 non-TIG welders, and 61 control subjects from an airline engineering population participated. All of the subjects were interviewed for biographic, occupational history and morbidity details. All of the welders and eight control subjects carried out large-volume urine sampling to recover thorium 232 and thorium 228; this group also had chest radiographs. All of the subjects had a blood sample taken to estimate liver enzymes, and they provided small-volume urine samples for the estimation of retinol-binding protein and beta 2-microglobulin. We found no excess of morbidity among the TIG or non-TIG welding groups, and the levels of retinol-binding protein and beta 2-microglobulin were the same for both groups. There was a higher aspartate aminotransferase level in the control group. The internal radiation doses were estimated at less than an annual level of intake in all cases, and considerably less if the exposure (as was the case) was assumed to be chronic over many years. Some additional precautionary measures are suggested to reduce further any potential hazard from this process.

  2. Effects of nitrogen ion implantation time on tungsten films deposited by DC magnetron sputtering on AISI 410 martensitic stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malau, Viktor, E-mail: malau@ugm.ac.id; Ilman, Mochammad Noer, E-mail: noer-ilman@yahoo.com; Iswanto, Priyo Tri, E-mail: priyatri@yahoo.com

    Nitrogen ion implantation time on tungsten thin film deposited on surface of AISI 410 steel has been performed. Tungsten thin film produced by dc magnetron sputtering method was deposited on AISI 410 martensitic stainless steel substrates, and then the nitrogen ions were implanted on tungsten thin film. The objective of this research is to investigate the effects of implantation deposition time on surface roughness, microhardness, specific wear and corrosion rate of nitrogen implanted on tungsten film. Magnetron sputtering process was performed by using plasma gas of argon (Ar) to bombardier tungsten target (W) in a vacuum chamber with a pressuremore » of 7.6 x 10{sup −2} torr, a voltage of 300 V, a sputter current of 80 mA for sputtered time of 10 minutes. Nitrogen implantation on tungsten film was done with an initial pressure of 3x10{sup −6} mbar, a fluence of 2 x 10{sup 17} ions/cm{sup 2}, an energy of 100 keV and implantation deposition times of 0, 20, 30 and 40 minutes. The surface roughness, microhardness, specific wear and corrosion rate of the films were evaluated by surfcorder test, Vickers microhardness test, wear test and potentiostat (galvanostat) test respectively. The results show that the nitrogen ions implanted deposition time on tungsten film can modify the surface roughness, microhardness, specific wear and corrosion rate. The minimum surface roughness, specific wear and corrosion rate can be obtained for implantation time of 20 minutes and the maximum microhardness of the film is 329 VHN (Vickers Hardness Number) for implantation time of 30 minutes. The specific wear and corrosion rate of the film depend directly on the surface roughness.« less

  3. Some observations on uranium carbide alloy/tungsten compatibility.

    NASA Technical Reports Server (NTRS)

    Phillips, W. M.

    1972-01-01

    Results of chemical compatibility tests between both pure tungsten and thoriated tungsten run at 1800 C for up to 3300 hours with uranium carbide alloys. Alloying with zirconium carbide appeared to widen the homogeneity range of uranium carbide, making additional carbon available for reaction with the tungsten. Reaction layers were formed both by vapor phase reaction and by physical contact, producing either or both UWC2 and W2C, depending upon the phases present in the starting fuel alloy. Formation of UWC2 results in slow growth of the reaction layer with time, while W2C reaction layers grow rapidly, allowing equilibrium to be reached in less than 2500 hours at 1800 C. Neither the presence of a thermal gradient nor the presence of thoria in the tungsten clad affect the reactions observed.

  4. Conical Tungsten Tips as Substrates for the Preparation of Ultramicroelectrodes

    PubMed Central

    Hermans, Andre; Wightman, R. Mark

    2008-01-01

    Here we describe a simple method to prepare voltammetric microelectrodes using tungsten wires as a substrate. Tungsten wires have high tensile modulus and enable the fabrication of electrodes that have small dimensions overall while retaining rigidity. In this work, 125 μm tungsten wires with a conical tip were employed. For the preparation of gold or platinum ultramicroelectrodes, commercial tungsten microelectrodes, completely insulated except at the tip, were used as substrates. Following removal of oxides from the exposed tungsten, platinum or gold was electroplated yielding surfaces with an electroactive area of between 1×10−6 cm2 to 2×10−6 cm2. Carbon surfaces on the etched tip of tungsten microwires were prepared by coating with photoresist followed by pyrolysis. The entire electrode was then insulated with Epoxylite except the tip yielding an exposed carbon surface with an area of around 4×10−6 cm2 to 6×10−6 cm2. All three types of ultramicroelectrodes fabricated on the tungsten wire had similar electrochemical behavior to electrodes fabricated from wires or fibers insulated with glass tubes. PMID:17129002

  5. Photo- and gas-tuned, reversible thermoelectric properties and anomalous photo-thermoelectric effects of platinum-loaded tungsten trioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Kenta; Watanabe, Takuya; Kakemoto, Hirofumi

    We report the photo- and gas-controllable properties of platinum-loaded tungsten trioxide (Pt/WO{sub 3}), which is of interest for developing practical applications of WO{sub 3} as well as for interpreting such phenomena from scientific viewpoints. Here, a Pt/WO{sub 3} thin film generated a thermoelectric power due to the ultraviolet-light-induced band-gap excitation (photochromic (PC) reaction) and/or dark storage in formic acid vapor (gaschromic (GC) reaction) in the absence of O{sub 2}, resulting from the generation of W{sup 5+} ions. After such chromic reactions, the electrical conductivity (σ) is increased, whereas the absolute value of the Seebeck coefficient (S) is decreased. The changesmore » in σ and S and their rate of change for consistency increased in the order of: during the PC reaction < during the GC reaction < during simultaneous PC and GC reactions. The opposite behaviors, a decrease in σ and an increase in S, were exhibited by Pt/WO{sub 3} in the presence of O{sub 2} after dark storage or visible-light irradiation. This reversible cycle could be repeated. Moreover, anomalous, nontrivial photo-thermoelectric effects (a photoconductive effect (photoconductivity, σ{sub photo}) and a photo-Seebeck effect (photo-Seebeck coefficient, S{sub photo})) were also detected in response to the visible-light irradiation of Pt/WO{sub 3} in the absence of O{sub 2} after chromic reactions. Under visible-light irradiation, both σ{sub photo} and the absolute value of S{sub photo} are increased. After the irradiation, both values were decreased, that is, σ and the absolute value of S were smaller than σ{sub photo} and the absolute value of S{sub photo}, respectively. These effects are likely to be due to the photoinduced charge carriers and the accumulated electrons in Pt contributing to the increase in σ{sub photo}. In addition, electrons are extracted from the W{sup 5+} state, decreasing the number of W{sup 5+} in H{sub x}WO{sub 3} and thus contributing

  6. Tensile and flexural strength of commercially pure titanium submitted to laser and tungsten inert gas welds.

    PubMed

    Atoui, Juliana Abdallah; Felipucci, Daniela Nair Borges; Pagnano, Valéria Oliveira; Orsi, Iara Augusta; Nóbilo, Mauro Antônio de Arruda; Bezzon, Osvaldo Luiz

    2013-01-01

    This study evaluated the tensile and flexural strength of tungsten inert gas (TIG) welds in specimens made of commercially pure titanium (CP Ti) compared with laser welds. Sixty cylindrical specimens (2 mm diameter x 55 mm thick) were randomly assigned to 3 groups for each test (n=10): no welding (control), TIG welding (10 V, 36 A, 8 s) and Nd:YAG laser welding (380 V, 8 ms). The specimens were radiographed and subjected to tensile and flexural strength tests at a crosshead speed of 1.0 mm/min using a load cell of 500 kgf applied on the welded interface or at the middle point of the non-welded specimens. Tensile strength data were analyzed by ANOVA and Tukey's test, and flexural strength data by the Kruskal-Wallis test (α=0.05). Non-welded specimens presented significantly higher tensile strength (control=605.84 ± 19.83) (p=0.015) and flexural strength (control=1908.75) (p=0.000) than TIG- and laser-welded ones. There were no significant differences (p>0.05) between the welding types for neither the tensile strength test (TIG=514.90 ± 37.76; laser=515.85 ± 62.07) nor the flexural strength test (TIG=1559.66; laser=1621.64). As far as tensile and flexural strengths are concerned, TIG was similar to laser and could be suitable to replace laser welding in implant-supported rehabilitations.

  7. Preparation and electrocatalytic activity of tungsten carbide and titania nanocomposite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Sujuan; Shi, Binbin; Yao, Guoxing

    2011-10-15

    Graphical abstract: The electrocatalytic activity of tungsten carbide and titania nanocomposite is related to the structure, crystal phase and chemical components of the nanocomposite, and is also affected by the property of electrolyte. A synergistic effect exists between tungsten carbide and titania of the composite. Highlights: {yields} Electrocatalytic activity of tungsten carbide and titania nanocomposite with core-shell structure. {yields} Activity is related to the structure, crystal phase and chemical component of the nanocomposite. {yields} The property of electrolyte affects the electrocatalytic activity. {yields} A synergistic effect exists between tungsten carbide and titania of the composite. -- Abstract: Tungsten carbide andmore » titania nanocomposite was prepared by combining a reduced-carbonized approach with a mechanochemical approach. The samples were characterized by X-ray diffraction, transmission electron microscope under scanning mode and X-ray energy dispersion spectrum. The results show that the crystal phases of the samples are composed of anatase, rutile, nonstoichiometry titanium oxide, monotungsten carbide, bitungsten carbide and nonstoichiometry tungsten carbide, and they can be controlled by adjusting the parameters of the reduced-carbonized approach; tungsten carbide particles decorate on the surface of titania support, the diameter of tungsten carbide particle is smaller than 20 nm and that of titania is around 100 nm; the chemical components of the samples are Ti, O, W and C. The electrocatalytic activity of the samples was measured by a cyclic voltammetry with three electrodes. The results indicate that the electrocatalytic activities of the samples are related to their crystal phases and the property of electrolyte in aqueous solution. A synergistic effect between titania and tungsten carbide is reported for the first time.« less

  8. Density-functional studies of tungsten trioxide, tungsten bronzes, and related systems

    NASA Astrophysics Data System (ADS)

    Ingham, B.; Hendy, S. C.; Chong, S. V.; Tallon, J. L.

    2005-08-01

    Tungsten trioxide adopts a variety of structures which can be intercalated with charged species to alter the electronic properties, thus forming “tungsten bronzes.” Similar effects are observed upon removing oxygen from WO3 . We present a computational study of cubic and hexagonal alkali bronzes and examine the effects on cell size and band structure as the size of the intercalated ion is increased. With the exception of hydrogen (which is predicted to be unstable as an intercalate), the behavior of the bronzes are relatively consistent. NaWO3 is the most stable of the cubic systems, although in the hexagonal system the larger ions are more stable. The band structures are identical, with the intercalated atom donating its single electron to the tungsten 5d valence band. A study of fractional doping in the NaxWO3 system (0⩽x⩽1) showed a linear variation in cell parameter and a systematic shift in the Fermi level into the conduction band. In the oxygen-deficient WO3-x system the Fermi level undergoes a sudden jump into the conduction band at around x=0.2 . Lastly, three compounds of a layered WO4•α,ω -diaminoalkane hybrid series were studied and found to be insulating, with features in the band structure similar to those of the parent WO3 compound that relate well to experimental UV-visible spectroscopy results.

  9. OEDGE modeling for the planned tungsten ring experiment on DIII-D

    DOE PAGES

    Elder, J. David; Stangeby, Peter C.; Abrams, Tyler W.; ...

    2017-04-19

    The OEDGE code is used to model tungsten erosion and transport for DIII-D experiments with toroidal rings of high-Z metal tiles. Such modeling is needed for both experimental and diagnostic design to have estimates of the expected core and edge tungsten density and to understand the various factors contributing to the uncertainties in these calculations. OEDGE simulations are performed using the planned experimental magnetic geometries and plasma conditions typical of both L-mode and inter-ELM H-mode discharges in DIII-D. OEDGE plasma reconstruction based on specific representative discharges for similar geometries is used to determine the plasma conditions applied to tungsten plasmamore » impurity simulations. We developed a new model for tungsten erosion in OEDGE which imports charge-state resolved carbon impurity fluxes and impact energies from a separate OEDGE run which models the carbon production, transport and deposition for the same plasma conditions as the tungsten simulations. Furthermore, these values are then used to calculate the gross tungsten physical sputtering due to carbon plasma impurities which is then added to any sputtering by deuterium ions; tungsten self-sputtering is also included. The code results are found to be dependent on the following factors: divertor geometry and closure, the choice of cross-field anomalous transport coefficients, divertor plasma conditions (affecting both tungsten source strength and transport), the choice of tungsten atomic physics data used in the model (in particular sviz(Te) for W-atoms), and the model of the carbon flux and energy used for 2 calculating the tungsten source due to sputtering. The core tungsten density is found to be of order 10 15 m -3 (excluding effects of any core transport barrier and with significant variability depending on the other factors mentioned) with density decaying into the scrape off layer.« less

  10. Recovery of Tungsten and Molybdenum from Low-Grade Scheelite

    NASA Astrophysics Data System (ADS)

    Li, Yongli; Yang, Jinhong; Zhao, Zhongwei

    2017-10-01

    With most high-quality tungsten ores being exhausted, the enhancement of low-grade scheelite concentrates processing has attracted a great deal of attention. The objective of this study is to develop a method to maximize the recovery tungsten and molybdenum from a low-grade scheelite via a new acid leaching process followed by solvent extraction. Under optimal conditions (350 g/L H2SO4, 95°C, and 2 h), approximately 99.8% of tungsten and 98% of molybdenum were leached out. In the subsequent solvent extraction process, more than 99% of the tungsten and molybdenum were extracted with a co-extraction system (50% TBP, 30% HDEHP, and 10% 2-octanol in kerosene) using a three-stage cross-flow extraction. The raffinate can be recycled for the next leaching process after replenishing the H2SO4 to the initial value (approximately 350 g/L). Based on these results, a conceptual flowsheet is presented to recover tungsten and molybdenum from the low-grade scheelite.

  11. Electrospark doping of steel with tungsten

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denisova, Yulia, E-mail: yukolubaeva@mail.ru; Shugurov, Vladimir, E-mail: shugurov@opee.hcei.tsc.ru; Petrikova, Elizaveta, E-mail: elizmarkova@yahoo.com

    2016-01-15

    The paper is devoted to the numerical modeling of thermal processes and the analysis of the structure and properties of the surface layer of carbon steel subjected to electrospark doping with tungsten. The problem of finding the temperature field in the system film (tungsten) / substrate (iron) is reduced to the solution of the heat conductivity equation. A one-dimensional case of heating and cooling of a plate with the thickness d has been considered. Calculations of temperature fields formed in the system film / substrate synthesized using methods of electrospark doping have been carried out as a part of one-dimensionalmore » approximation. Calculations have been performed to select the mode of the subsequent treatment of the system film / substrate with a high-intensity pulsed electron beam. Authors revealed the conditions of irradiation allowing implementing processes of steel doping with tungsten. A thermodynamic analysis of phase transformations taking place during doping of iron with tungsten in equilibrium conditions has been performed. The studies have been carried out on the surface layer of the substrate modified using the method of electrospark doping. The results showed the formation in the surface layer of a structure with a highly developed relief and increased strength properties.« less

  12. Structures and transitions in tungsten grain boundaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frolov, T.; Zhu, Q.; Marian, J.

    2017-02-07

    The objective of this study is to develop a computational methodology to predict structure, energies of tungsten grain boundaries as a function of misorientation and inclination. The energies and the mobilities are the necessary input for thermomechanical model of recrystallization of tungsten for magnetic fusion applications being developed by the Marian Group at UCLA.

  13. Defect evolution in single crystalline tungsten following low temperature and low dose neutron irradiation

    DOE PAGES

    Hu, Xunxiang; Koyanagi, Takaaki; Fukuda, Makoto; ...

    2016-01-01

    The tungsten plasma-facing components of fusion reactors will experience an extreme environment including high temperature, intense particle fluxes of gas atoms, high-energy neutron irradiation, and significant cyclic stress loading. Irradiation-induced defect accumulation resulting in severe thermo-mechanical property degradation is expected. For this reason, and because of the lack of relevant fusion neutron sources, the fundamentals of tungsten radiation damage must be understood through coordinated mixed-spectrum fission reactor irradiation experiments and modeling. In this study, high-purity (110) single-crystal tungsten was examined by positron annihilation spectroscopy and transmission electron microscopy following low-temperature (~90 °C) and low-dose (0.006 and 0.03 dpa) mixed-spectrum neutronmore » irradiation and subsequent isochronal annealing at 400, 500, 650, 800, 1000, 1150, and 1300 °C. The results provide insights into microstructural and defect evolution, thus identifying the mechanisms of different annealing behavior. Following 1 h annealing, ex situ characterization of vacancy defects using positron lifetime spectroscopy and coincidence Doppler broadening was performed. The vacancy cluster size distributions indicated intense vacancy clustering at 400 °C with significant damage recovery around 1000 °C. Coincidence Doppler broadening measurements confirm the trend of the vacancy defect evolution, and the S–W plots indicate that only a single type of vacancy cluster is present. Furthermore, transmission electron microscopy observations at selected annealing conditions provide supplemental information on dislocation loop populations and visible void formation. This microstructural information is consistent with the measured irradiation-induced hardening at each annealing stage. This provides insight into tungsten hardening and embrittlement due to irradiation-induced matrix defects.« less

  14. Removal of aqueous chromium and environmental CO2 by using photocatalytic TiO2 doped with tungsten.

    PubMed

    Trejo-Valdez, M; Hernández-Guzmán, S R; Manriquez-Ramírez, M E; Sobral, H; Martínez-Gutiérrez, H; Torres-Torres, C

    2018-05-15

    Removal of hexavalent chromium was accomplished by using photocatalyst materials of TiO 2 doped with tungsten oxide, environmental air as oxygen supply and white light as irradiation source. Dichromate anions in concentration ranges of 50 to 1000 μg/L were removed by means of aqueous dispersions of TiO 2 doped with tungsten. The aqueous chromium analyses were performed by Differential Pulse Voltammetry technique. Additionally, mineralization of CO 2 gas was promoted by the photocatalysis process, as was clearly shown by Raman spectroscopy and X-ray Photoelectron Spectroscopy (XPS) analyses obtained from the TiO 2 samples recovered after photocatalytic experiments. Results of sample analyses by Scanning Electron Microscopy (SEM) and High Resolution Transmission Electron Microscopy (HRTEM) are presented and discussed. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. TUNGSTEN INTERFERENCE IN VOLUMETRIC ANALYSIS OF URANIUM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dufour, R.F.; Articolo, O.

    1958-08-01

    Tungsten was found to have a negligible effect on the determination of uranium in uranium-zirconium alloys by the Jones reductor-dichromate method used at KAPL. The tungstate ion interferred seriously and gave high results. However, the soluble tungsten was precipitated by intensive fuming with sulfuric acid and rendered ineffective in tbe subsequent oxidationreduction reactions of the uranium. (auth)

  16. Physicochemical Characterization of Aerosol Generated in the Gas Tungsten Arc Welding of Stainless Steel.

    PubMed

    Miettinen, Mirella; Torvela, Tiina; Leskinen, Jari T T

    2016-10-01

    Exposure to stainless steel (SS) welding aerosol that contain toxic heavy metals, chromium (Cr), manganese (Mn), and nickel (Ni), has been associated with numerous adverse health effects. The gas tungsten arc welding (GTAW) is commonly applied to SS and produces high number concentration of substantially smaller particles compared with the other welding techniques, although the mass emission rate is low. Here, a field study in a workshop with the GTAW as principal welding technique was conducted to determine the physicochemical properties of the airborne particles and to improve the understanding of the hazard the SS welding aerosols pose to welders. Particle number concentration and number size distribution were measured near the breathing zone (50cm from the arc) and in the middle of the workshop with condensation particle counters and electrical mobility particle sizers, respectively. Particle morphology and chemical composition were studied using scanning and transmission electron microscopy and energy-dispersive X-ray spectroscopy. In the middle of the workshop, the number size distribution was unimodal with the geometric mean diameter (GMD) of 46nm. Near the breathing zone the number size distribution was multimodal, and the GMDs of the modes were in the range of 10-30nm. Two different agglomerate types existed near the breathing zone. The first type consisted of iron oxide primary particles with size up to 40nm and variable amounts of Cr, Mn, and Ni replacing iron in the structure. The second type consisted of very small primary particles and contained increased proportion of Ni compared to the proportion of (Cr + Mn) than the first agglomerate type. The alterations in the distribution of Ni between different welding aerosol particles have not been reported previously. © The Author 2016. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  17. High-temperature properties of joint interface of VPS-tungsten coated CFC

    NASA Astrophysics Data System (ADS)

    Tamura, S.; Liu, X.; Tokunaga, K.; Tsunekawa, Y.; Okumiya, M.; Noda, N.; Yoshida, N.

    2004-08-01

    Tungsten coated carbon fiber composite (CFC) is a candidate material for the high heat flux components in fusion reactors. In order to investigate the high-temperature properties at the joint interface of coating, heat load experiments by using electron beam were performed on VPS-tungsten coated CX-2002U samples. After the heat load test for 3.6 ks at 1400 °C, tungsten-rhenium multilayer (diffusion barrier for carbon) at the joint interface of coating was observed clearly. But, at the temperatures above 1600 °C, the multilayer was disappeared and a tungsten carbide layer was formed in the VPS-tungsten coating. At the temperatures below 1800 °C, the thickness of this layer logarithmically increased with increasing its loading time. At 2000 °C, the growth of the tungsten carbide layer was proportional to the square root of loading time. These results indicate that the diffusion barrier for carbon is not expected to suppress the carbide formation at the joint interface of the VPS-tungsten coating above 1600 °C.

  18. Dynamic polarizability of tungsten atoms reconstructed from fast electrical explosion of fine wires in vacuum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarkisov, G. S.; Rosenthal, S. E.; Struve, K. W.

    For nanosecond electrical explosion of fine metal wires in vacuum generates calibrated, radially expanded gas cylinders of metal atoms are surrounded by low-density fast expanding plasma corona. Here, a novel integrated-phase technique, based on laser interferometry, provides the dynamic dipole polarizability of metal atoms. This data was previously unavailable for tungsten atoms. Furthermore, an extremely high melting temperature and significant pre-melt electronic emission make these measurements particularly complicated for this refractory metal.

  19. Dynamic polarizability of tungsten atoms reconstructed from fast electrical explosion of fine wires in vacuum

    DOE PAGES

    Sarkisov, G. S.; Rosenthal, S. E.; Struve, K. W.

    2016-10-12

    For nanosecond electrical explosion of fine metal wires in vacuum generates calibrated, radially expanded gas cylinders of metal atoms are surrounded by low-density fast expanding plasma corona. Here, a novel integrated-phase technique, based on laser interferometry, provides the dynamic dipole polarizability of metal atoms. This data was previously unavailable for tungsten atoms. Furthermore, an extremely high melting temperature and significant pre-melt electronic emission make these measurements particularly complicated for this refractory metal.

  20. 40 CFR 440.60 - Applicability; description of the tungsten ore subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... tungsten ore subcategory. 440.60 Section 440.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Tungsten Ore Subcategory § 440.60 Applicability; description of the tungsten ore subcategory. The...

  1. 40 CFR 440.60 - Applicability; description of the tungsten ore subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... tungsten ore subcategory. 440.60 Section 440.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Tungsten Ore Subcategory § 440.60 Applicability; description of the tungsten ore subcategory. The...

  2. 40 CFR 440.60 - Applicability; description of the tungsten ore subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... tungsten ore subcategory. 440.60 Section 440.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Tungsten Ore Subcategory § 440.60 Applicability; description of the tungsten ore subcategory. The...

  3. Impact of temperature during He+ implantation on deuterium retention in tungsten, tungsten with carbon deposit and tungsten carbide

    NASA Astrophysics Data System (ADS)

    Oya, Yasuhisa; Sato, Misaki; Li, Xiaochun; Yuyama, Kenta; Fujita, Hiroe; Sakurada, Shodai; Uemura, Yuki; Hatano, Yuji; Yoshida, Naoaki; Ashikawa, Naoko; Sagara, Akio; Chikada, Takumi

    2016-02-01

    Temperature dependence on deuterium (D) retention for He+ implanted tungsten (W) was studied by thermal desorption spectroscopy (TDS) to evaluate the tritium retention behavior in W. The activation energies were evaluated using Hydrogen Isotope Diffusion and Trapping (HIDT) simulation code and found to be 0.55 eV, 0.65 eV, 0.80 eV and 1.00 eV. The heating scenarios clearly control the D retention behavior and, dense and large He bubbles could work as a D diffusion barrier toward the bulk, leading to D retention enhancement at lower temperature of less than 430 K, even if the damage was introduced by He+ implantation. By comparing the D retention for W, W with carbon deposit and tungsten carbide (WC), the dense carbon layer on the surface enhances the dynamic re-emission of D as hydrocarbons, and induces the reduction of D retention. However, by He+ implantation, the D retention was increased for all the samples.

  4. Tungsten Speciation in Firing Range Soils

    DTIC Science & Technology

    2011-01-01

    R. A. A. Suurs, O . Oenema , and W. H. van Riemsdijk. 2004. Phosphorus availability for plant uptake in a phosphorus enriched noncalcareous sandy soil...heteroatom (most commonly P5+, Si4+, or B3+), M is the addenda atom (most common are molybdenum and tungsten), and O represents oxygen. The structure self...coordination to four oxygen atoms. The EXAFS spectrum of tungstate is dominated by os- cillations attributed to tungsten-oxygen (W- O ) bonding (Fig. 4), and to

  5. 40 CFR 440.60 - Applicability; description of the tungsten ore subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... tungsten ore subcategory. 440.60 Section 440.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORE MINING AND DRESSING POINT SOURCE CATEGORY Tungsten Ore Subcategory § 440.60 Applicability; description of the tungsten ore subcategory. The provisions of this...

  6. 40 CFR 440.60 - Applicability; description of the tungsten ore subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... tungsten ore subcategory. 440.60 Section 440.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORE MINING AND DRESSING POINT SOURCE CATEGORY Tungsten Ore Subcategory § 440.60 Applicability; description of the tungsten ore subcategory. The provisions of this...

  7. Carcinogenicity of Embedded Tungsten Alloys in Mice

    DTIC Science & Technology

    2011-03-01

    year carcinogenicity (Aim 1) and serial euthanasia (Aim 2) studies were analyzed for metal content using inductively coupled-plasma mass spectrometry...inductively coupled- plasma mass spectrometer (PQ ExCell ICPMS System, ThermoElemental, Franklin, MA) equipped with a Cetac ASX500 Autosampler. High...Metal analysis using inductively coupled-plasma mass spectrometry showed that both the tungsten/nickel/cobalt and tungsten/nickel/iron

  8. Compatibility of buffered uranium carbides with tungsten.

    NASA Technical Reports Server (NTRS)

    Phillips, W. M.

    1971-01-01

    Results of compatibility tests between tungsten and hyperstoichiometric uranium carbide alloys run at 1800 C for 1000 and 2500 hours. These tests compared tungsten-buffered uranium carbide with tungsten-buffered uranium-zirconium carbide. The zirconium carbide addition appeared to widen the homogeneity range of the uranium carbide, making additional carbon available for reaction. Reaction layers could be formed by either of two diffusion paths, one producing UWC2, while the second resulted in the formation of W2C. UWC2 acts as a diffusion barrier for carbon and slows the growth of the reaction layer with time, while carbon diffusion is relatively rapid in W2C, allowing equilibrium to be reached in less than 2500 hours at a temperature of 1800 C.

  9. Superhard Rhenium/Tungsten Diboride Solid Solutions.

    PubMed

    Lech, Andrew T; Turner, Christopher L; Lei, Jialin; Mohammadi, Reza; Tolbert, Sarah H; Kaner, Richard B

    2016-11-02

    Rhenium diboride (ReB 2 ), containing corrugated layers of covalently bonded boron, is a superhard metallic compound with a microhardness reaching as high as 40.5 GPa (under an applied load of 0.49 N). Tungsten diboride (WB 2 ), which takes a structural hybrid between that of ReB 2 and AlB 2 , where half of the boron layers are planar (as in AlB 2 ) and half are corrugated (as in ReB 2 ), has been shown not to be superhard. Here, we demonstrate that the ReB 2 -type structure can be maintained for solid solutions of tungsten in ReB 2 with tungsten content up to a surprisingly large limit of nearly 50 atom %. The lattice parameters for the solid solutions linearly increase along both the a- and c-axes with increasing tungsten content, as evaluated by powder X-ray and neutron diffraction. From micro- and nanoindentation hardness testing, all of the compositions within the range of 0-48 atom % W are superhard, and the bulk modulus of the 48 atom % solid solution is nearly identical to that of pure ReB 2 . These results further indicate that ReB 2 -structured compounds are superhard, as has been predicted from first-principles calculations, and may warrant further studies into additional solid solutions or ternary compounds taking this structure type.

  10. UNS S31603 Stainless Steel Tungsten Inert Gas Welds Made with Microparticle and Nanoparticle Oxides.

    PubMed

    Tseng, Kuang-Hung; Lin, Po-Yu

    2014-06-20

    The purpose of this study was to investigate the difference between tungsten inert gas (TIG) welding of austenitic stainless steel assisted by microparticle oxides and that assisted by nanoparticle oxides. SiO₂ and Al₂O₃ were used to investigate the effects of the thermal stability and the particle size of the activated compounds on the surface appearance, geometric shape, angular distortion, delta ferrite content and Vickers hardness of the UNS S31603 stainless steel TIG weld. The results show that the use of SiO₂ leads to a satisfactory surface appearance compared to that of the TIG weld made with Al₂O₃. The surface appearance of the TIG weld made with nanoparticle oxide has less flux slag compared with the one made with microparticle oxide of the same type. Compared with microparticle SiO₂, the TIG welding with nanoparticle SiO₂ has the potential benefits of high joint penetration and less angular distortion in the resulting weldment. The TIG welding with nanoparticle Al₂O₃ does not result in a significant increase in the penetration or reduction of distortion. The TIG welding with microparticle or nanoparticle SiO₂ uses a heat source with higher power density, resulting in a higher ferrite content and hardness of the stainless steel weld metal. In contrast, microparticle or nanoparticle Al₂O₃ results in no significant difference in metallurgical properties compared to that of the C-TIG weld metal. Compared with oxide particle size, the thermal stability of the oxide plays a significant role in enhancing the joint penetration capability of the weld, for the UNS S31603 stainless steel TIG welds made with activated oxides.

  11. Pressure Measurements for Tungsten Wire Explosions in Water

    NASA Astrophysics Data System (ADS)

    Afanas'ev, V. N.

    2005-07-01

    Successful wire array implosion experiments carried out on PBFA- Z accelerator [1], in which a record-breaking soft x-ray yield of more than 1.5 MJ was observed, stimulated interest in research of electric explosion of thin metal wires. The results of pressure measurements micron's tungsten wire explosion, which carried out in deionized water. Thin tungsten wire explosion was investigated experimentally at current pulse 100 ns duration. The shock waves from the 70 μm tungsten wire explosion were measured by the piezoceramic pressure gauge. The gauges were placed at a range from 3 to 15 mm of wire. The piezoceramic gauges were calibrated on the stable electron beams generator with nanoseconds duration. Experiments were carried out for verifying the tungsten plasma equation of state parameters under different values of the deposited energy. [1] R. B. Spielman, C. Deeney, G. A. Chandler et al., Phys.Plasmas #5, ð. 2105, 1998. The work was supported by ISTC # 1826

  12. Thermal Neutron Capture onto the Stable Tungsten Isotopes

    NASA Astrophysics Data System (ADS)

    Hurst, A. M.; Firestone, R. B.; Sleaford, B. W.; Summers, N. C.; Revay, Zs.; Szentmiklósi, L.; Belgya, T.; Basunia, M. S.; Capote, R.; Choi, H.; Dashdorj, D.; Escher, J.; Krticka, M.; Nichols, A.

    2012-02-01

    Thermal neutron-capture measurements of the stable tungsten isotopes have been carried out using the guided thermal-neutron beam at the Budapest Reactor. Prompt singles spectra were collected and analyzed using the HYPERMET γ-ray analysis software package for the compound tungsten systems 183W, 184W, and 187W, prepared from isotopically-enriched samples of 182W, 183W, and 186W, respectively. These new data provide both confirmation and new insights into the decay schemes and structure of the tungsten isotopes reported in the Evaluated Gamma-ray Activation File based upon previous elemental analysis. The experimental data have also been compared to Monte Carlo simulations of γ-ray emission following the thermal neutron-capture process using the statistical-decay code DICEBOX. Together, the experimental cross sections and modeledfeeding contribution from the quasi continuum, have been used to determine the total radiative thermal neutron-capture cross sections for the tungsten isotopes and provide improved decay-scheme information for the structural- and neutron-data libraries.

  13. Mechanistic, kinetic, and processing aspects of tungsten chemical mechanical polishing

    NASA Astrophysics Data System (ADS)

    Stein, David

    This dissertation presents an investigation into tungsten chemical mechanical polishing (CMP). CMP is the industrially predominant unit operation that removes excess tungsten after non-selective chemical vapor deposition (CVD) during sub-micron integrated circuit (IC) manufacture. This work explores the CMP process from process engineering and fundamental mechanistic perspectives. The process engineering study optimized an existing CMP process to address issues of polish pad and wafer carrier life. Polish rates, post-CMP metrology of patterned wafers, electrical test data, and synergy with a thermal endpoint technique were used to determine the optimal process. The oxidation rate of tungsten during CMP is significantly lower than the removal rate under identical conditions. Tungsten polished without inhibition during cathodic potentiostatic control. Hertzian indenter model calculations preclude colloids of the size used in tungsten CMP slurries from indenting the tungsten surface. AFM surface topography maps and TEM images of post-CMP tungsten do not show evidence of plow marks or intergranular fracture. Polish rate is dependent on potassium iodate concentration; process temperature is not. The colloid species significantly affects the polish rate and process temperature. Process temperature is not a predictor of polish rate. A process energy balance indicates that the process temperature is predominantly due to shaft work, and that any heat of reaction evolved during the CMP process is negligible. Friction and adhesion between alumina and tungsten were studied using modified AFM techniques. Friction was constant with potassium iodate concentration, but varied with applied pressure. This corroborates the results from the energy balance. Adhesion between the alumina and the tungsten was proportional to the potassium iodate concentration. A heuristic mechanism, which captures the relationship between polish rate, pressure, velocity, and slurry chemistry, is presented

  14. Modeling of Spark Gap Performance

    DTIC Science & Technology

    1983-06-01

    MODELING OF SPARK GAP PERFORMANCE* A. L. Donaldson, R. Ness, M. Hagler, M. Kristiansen Department of Electrical Engineering and L. L. Hatfield...gas pressure, and chaJ:ging rate on the voltage stability of high energy spark gaps is discussed. Implications of the model include changes in...an extremely useful, and physically reasonable framework, from which the properties of spark gaps under a wide variety of experimental conditions

  15. Helium-induced hardening effect in polycrystalline tungsten

    NASA Astrophysics Data System (ADS)

    Kong, Fanhang; Qu, Miao; Yan, Sha; Zhang, Ailin; Peng, Shixiang; Xue, Jianming; Wang, Yugang

    2017-09-01

    In this paper, helium induced hardening effect of tungsten was investigated. 50 keV He2+ ions at fluences vary from 5 × 1015 cm-2 to 5 × 1017 cm-2 were implanted into polycrystalline tungsten at RT to create helium bubble-rich layers near the surface. The microstructure and mechanical properties of the irradiated specimens were studied by TEM and nano-indentor. Helium bubble rich layers are formed in near surface region, and the layers become thicker with the rise of fluences. Helium bubbles in the area of helium concentration peak are found to grow up, while the bubble density is almost unchanged. Obvious hardening effect is induced by helium implantation in tungsten. Micro hardness increases rapidly with the fluence firstly, and more slowly when the fluence is above 5 × 1016 cm-2. The hardening effect of tungsten can be attributed to helium bubbles, which is found to be in agreement with the Bacon-Orowan stress formula. The growing diameter is the major factor rather than helium bubbles density (voids distance) in the process of helium implantation at fluences below 5 × 1017 cm-2.

  16. Effect of Helmholtz Oscillation on Auto-shroud for APS Tungsten Carbide Coating

    NASA Astrophysics Data System (ADS)

    Jin, Younggil; Choi, Sooseok; Yang, Seung Jae; Park, Chong Rae; Kim, Gon-Ho

    2013-06-01

    The atmospheric-pressure plasma spray (APS) of tungsten coating was performed using tungsten carbide (WC) powder by means of DC plasma torch equipped with a stepped anode nozzle as a potential method of W coating on graphite plasma-facing component of fusion reactors. This nozzle configuration allows Helmholtz oscillation mode dominating in APS arc fluctuation, and the variation of auto-shroud effect with Helmholtz oscillation characteristics can be investigated. Tungsten coating made from WC powder has lower porosity and higher tungsten purity than that made from pure tungsten powder. The porosity and chemical composition of coatings were investigated by mercury intrusion porosimetry and x-ray photoelectron spectroscopy, respectively. The purity of tungsten coating layer is increased with the increasing frequency of Helmholtz oscillation and the increasing arc current. The modulation of Helmholtz oscillation frequency and magnitude may enhance the decarburization of WC to deposit tungsten coating without W-C and W-O bond from WC powder.

  17. A study of scandia and rhenium doped tungsten matrix dispenser cathode

    NASA Astrophysics Data System (ADS)

    Wang, Jinshu; Li, Lili; Liu, Wei; Wang, Yanchun; Zhao, Lei; Zhou, Meiling

    2007-10-01

    Scandia and rhenium doped tungsten powders were prepared by solid-liquid doping combined with two-step reduction method. The experimental results show that scandia was distributed evenly on the surface of tungsten particles. The addition of scandia and rhenium could decrease the particle size of doped tungsten, for example, the tungsten powders doped with Sc 2O 3 and Re had the average size of about 50 nm in diameter. By using this kind of powder, scandia and rhenium doped tungsten matrix with the sub-micrometer sized tungsten grains was obtained. This kind of matrix exhibited good anti-bombardment insensitivity at high temperature. The emission property result showed that high space charge limited current densities of more than 60 A/cm 2 at 900 °C could be obtained for this cathode. A Ba-Sc-O multilayer about 100 nm in thickness formed at the surface of cathode after activation led to the high emission property.

  18. A molecular dynamics study of melting and dissociation of tungsten nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Min; Wang, Jun; Fu, Baoqin

    2015-12-15

    Molecular dynamics simulations were conducted to study the melting and dissociation of free tungsten nanoparticles. For the various interatomic potentials applied, the melting points of the tungsten nanoparticles increased with increasing nanoparticle diameter. Combining these results with the melting point of bulk tungsten in the experiment, the melting point of nanoparticles with diameters ranging from 4 to 12 nm could be determined. As the temperature increases, free nanoparticles are subject to dissociation phenomena. The dissociation rate was observed to follow Arrhenius behavior, and the Meyer–Neldel rule was obeyed. These results are useful in understanding the behavior of tungsten dust generatedmore » in nuclear fusion devices as well as for the preparation, formation, and application of tungsten powders.« less

  19. Thermal effects on the structural properties of tungsten oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Yang, Tsung-Yeh; Wu, Chung-Yi; Tsai, Meng-Hung; Lin, Hong-Ming; Tsai, Wen-Li; Hwu, Yeukuang

    2004-06-01

    Tungsten oxide nanoparticles are prepared by evaporating and oxidizing the tungsten boat in helium and oxygen atmosphere and then quenched to the liquid nitrogen temperature. The as-prepared tungsten oxide nanoparticles are porous-free with uniform size. The morphology and particle size distribution of the as-prepared and after sinter treatments tungsten oxide nanoparticles are revealed by TEM and AFM. The long-range order of these nanoparticles can be examined by X-ray diffraction technique. The as-prepared nanoparticles exhibit a mixture structure of monoclinic and hexagonal crystals. Preliminary X-ray diffraction results indicate that the hexagonal structure is transformed to monoclinic structure after annealing to above 600°C. In order to better distinguish the structural properties of the tungsten oxide (WO3- x) nanoparticles before and after annealing, the X-ray absorption spectrum technique is utilized; thus, the detailed local atomic arrangement of oxygen and/or tungsten can be determined. According to the XAS result, the shape of the W L3-edge undergoes no considerable changes. This infers that structural transformation of tungsten oxide nanoparticle may be caused by the migration of oxygen after sintering. From the O K-edge of absorption spectrum, it suggests that a mixture phase structure is obtained when sintered below 300°C. And this result indicates that heat treatment to approximately 600°C produces a stable structure of a monoclinic crystal of WO3.

  20. Advanced smart tungsten alloys for a future fusion power plant

    NASA Astrophysics Data System (ADS)

    Litnovsky, A.; Wegener, T.; Klein, F.; Linsmeier, Ch; Rasinski, M.; Kreter, A.; Tan, X.; Schmitz, J.; Mao, Y.; Coenen, J. W.; Bram, M.; Gonzalez-Julian, J.

    2017-06-01

    The severe particle, radiation and neutron environment in a future fusion power plant requires the development of advanced plasma-facing materials. At the same time, the highest level of safety needs to be ensured. The so-called loss-of-coolant accident combined with air ingress in the vacuum vessel represents a severe safety challenge. In the absence of a coolant the temperature of the tungsten first wall may reach 1200 °C. At such a temperature, the neutron-activated radioactive tungsten forms volatile oxide which can be mobilized into atmosphere. Smart tungsten alloys are being developed to address this safety issue. Smart alloys should combine an acceptable plasma performance with the suppressed oxidation during an accident. New thin film tungsten-chromium-yttrium smart alloys feature an impressive 105 fold suppression of oxidation compared to that of pure tungsten at temperatures of up to 1000 °C. Oxidation behavior at temperatures up to 1200 °C, and reactivity of alloys in humid atmosphere along with a manufacturing of reactor-relevant bulk samples, impose an additional challenge in smart alloy development. First exposures of smart alloys in steady-state deuterium plasma were made. Smart tungsten-chroimium-titanium alloys demonstrated a sputtering resistance which is similar to that of pure tungsten. Expected preferential sputtering of alloying elements by plasma ions was confirmed experimentally. The subsequent isothermal oxidation of exposed samples did not reveal any influence of plasma exposure on the passivation of alloys.

  1. Studies on microstructure, mechanical and pitting corrosion behaviour of similar and dissimilar stainless steel gas tungsten arc welds

    NASA Astrophysics Data System (ADS)

    Mohammed, Raffi; Dilkush; Srinivasa Rao, K.; Madhusudhan Reddy, G.

    2018-03-01

    In the present study, an attempt has been made to weld dissimilar alloys of 5mm thick plates i.e., austenitic stainless steel (316L) and duplex stainless steel (2205) and compared with that of similar welds. Welds are made with conventional gas tungsten arc welding (GTAW) process with two different filler wires namely i.e., 309L and 2209. Welds were characterized using optical microscopy to observe the microstructural changes and correlate with mechanical properties using hardness, tensile and impact testing. Potentio-dynamic polarization studies were carried out to observe the pitting corrosion behaviour in different regions of the welds. Results of the present study established that change in filler wire composition resulted in microstructural variation in all the welds with different morphology of ferrite and austenite. Welds made with 2209 filler showed plate like widmanstatten austenite (WA) nucleated at grain boundaries. Compared to similar stainless steel welds inferior mechanical properties was observed in dissimilar stainless steel welds. Pitting corrosion resistance is observed to be low for dissimilar stainless steel welds when compared to similar stainless steel welds. Overall study showed that similar duplex stainless steel welds having favorable microstructure and resulted in better mechanical properties and corrosion resistance. Relatively dissimilar stainless steel welds made with 309L filler obtained optimum combination of mechanical properties and pitting corrosion resistance when compared to 2209 filler and is recommended for industrial practice.

  2. Mixing of multiple metal vapours into an arc plasma in gas tungsten arc welding of stainless steel

    NASA Astrophysics Data System (ADS)

    Park, Hunkwan; Trautmann, Marcus; Tanaka, Keigo; Tanaka, Manabu; Murphy, Anthony B.

    2017-11-01

    A computational model of the mixing of multiple metal vapours, formed by vaporization of the surface of an alloy workpiece, into the thermal arc plasma in gas tungsten arc welding (GTAW) is presented. The model incorporates the combined diffusion coefficient method extended to allow treatment of three gases, and is applied to treat the transport of both chromium and iron vapour in the helium arc plasma. In contrast to previous models of GTAW, which predict that metal vapours are swept away to the edge of the arc by the plasma flow, it is found that the metal vapours penetrate strongly into the arc plasma, reaching the cathode region. The predicted results are consistent with published measurements of the intensity of atomic line radiation from the metal vapours. The concentration of chromium vapour is predicted to be higher than that of iron vapour due to its larger vaporization rate. An accumulation of chromium vapour is predicted to occur on the cathode at about 1.5 mm from the cathode tip, in agreement with published measurements. The arc temperature is predicted to be strongly reduced due to the strong radiative emission from the metal vapours. The driving forces causing the diffusion of metal vapours into the helium arc are examined, and it is found that diffusion due to the applied electric field (cataphoresis) is dominant. This is explained in terms of large ionization energies and the small mass of helium compared to those of the metal vapours.

  3. Effect of filler metals on the mechanical properties of Inconel 625 and AISI 904L dissimilar weldments using gas tungsten arc welding

    NASA Astrophysics Data System (ADS)

    Senthur Prabu, S.; Devendranath Ramkumar, K.; Arivazhagan, N.

    2017-11-01

    In the present research work, dissimilar welding between Inconel 625 super alloy and AISI 904L super austenitic stainless steel using manual multi-pass continuous current gas tungsten arc (CCGTA) welding process employed with ERNiCrMo-4 and ERNiCrCoMo-1 fillers were performed to determine the mechanical properties and weldability. Tensile test results corroborated that the fracture had occurred at the parent metal of AISI 904L irrespective of filler used for all the trials. The presence of the macro and micro void coalescence in the fibrous matrix characterised for ductile mode of fracture. The hardness values at the weld interface of Inconel 625 side were observed to be higher for ERNiCrMo-4 filler due to the presence of strengthening elements such as W, Mo, Ni and Cr. The impact test accentuated that the weldments using ERNiCrMo-4 filler offered better impact toughness (41J) at room temperature. Bend test results showed that the weldments using these fillers exhibited good ductility without cracks.

  4. Characterization of Mg/Al butt joints welded by gas tungsten arc filling with Zn–29.5Al–0.5Ti filler metal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Fei; Wang, Hongyang; Liu, Liming, E-mail: liulm@dlut.edu.cn

    2014-04-01

    The multivariate alloying design of a welding joint is used in the Mg to Al welding process. A Zn–29.5Al–0.5Ti alloy is added as filler metal in gas tungsten arc welding of Mg and Al alloy joint based on the analysis of Al and Mg alloy characteristics. The tensile strength, microstructure, and phase constitution of the weld seam are analyzed. The formation of brittle and hard Mg–Al intermetallic compounds is avoided because of the effects of Zn, Al, and Ti. The average tensile strength of the joint is 148 MPa. Al{sub 3}Ti is first precipitated and functions as the nucleus ofmore » heterogeneous nucleation during solidification. Moreover, the precipitated Al–MgZn{sub 2} hypoeutectic phase exhibited a feather-like structure, which enhances the property of the Mg–Al dissimilar joint. - Highlights: • Mg alloy AZ31B and Al alloy 6061 are butt welded by fusion welding. • The effect of Ti in filler metal is investigated. • The formation of Mg–Al intermetallic compounds is avoided.« less

  5. Phase II Tungsten Fate-and Transport Study for Camp Edwards

    DTIC Science & Technology

    2010-02-01

    soil and water . However, previous studies at the Massachusetts Military Reservation (MMR) at Camp Edwards demonstrated that metallic tungsten used ...7.5-12.5 ft bwt) using a Waterra sampler. Unfiltered and filtered water samples were sent to ERDC-EL for analysis of tungsten and other metals... water for tungsten and metals using ICP-MS, following the USEPA Method 6020 for sample preparation by EPA Method 3005. Metals analysis included antimony

  6. SPARK GAP SWITCH

    DOEpatents

    Neal, R.B.

    1957-12-17

    An improved triggered spark gap switch is described, capable of precisely controllable firing time while switching very large amounts of power. The invention in general comprises three electrodes adjustably spaced and adapted to have a large potential impressed between the outer electrodes. The central electrode includes two separate elements electrically connected togetaer and spaced apart to define a pair of spark gaps between the end electrodes. Means are provided to cause the gas flow in the switch to pass towards the central electrode, through a passage in each separate element, and out an exit disposed between the two separate central electrode elements in order to withdraw ions from the spark gap.

  7. Creation of deuterium protective layer below the tungsten surface

    NASA Astrophysics Data System (ADS)

    Krstic, Predrag; Kaganovich, Igor; Startsev, Edward

    2014-10-01

    By cumulative irradiation of both pre-damaged and virgin surfaces of monocrystal tungsten by deuterium atoms of impact energy of few tens of eV, we simulate by classical molecular dynamics the creation of a deuterium protective layer. The depth and width of the layer depend on the deuterium impact energy and the diffusion rate of deuterium in tungsten, the latter being influenced by the tungsten temperature and damage. Found simulation results are in concert with the experimental results, found recently in DIFFER. Support of the PPPL LDRD project acknowledged.

  8. 40 CFR 421.310 - Applicability: Description of the secondary tungsten and cobalt subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE... the production of tungsten or cobalt at secondary tungsten and cobalt facilities processing tungsten...

  9. Weldability, strength, and high temperature stability of chemically vapor deposited tungsten

    NASA Technical Reports Server (NTRS)

    Bryant, W. A.

    1972-01-01

    Three types of CVD tungsten (fluoride-produced, chloride-produced and the combination of the two which is termed duplex) were evaluated to determine their weldability, high temperature strength and structural stability during 5000 hour exposure to temperatures of 1540 C and 1700 C. Each type of CVD tungsten could be successfully electron beam welded but the results for the chloride product were not as satisfactory as those of the other two materials. The high temperature strength behavior of the three materials did not differ greatly. However a large difference was noted for the grain growth behavior of the two basic CVD tungsten materials. Fluoride tungsten was found to be relatively stable while for the most part the grain size of chloride tungsten increased appreciably. The examination of freshly fractured surfaces with a scanning electron microscope revealed numerous bubbles in the fluoride material following its exposure to 1700 C for 5000 hours. Less severe thermal treatments produced relatively few bubbles in this material. Only at certain locations within the chloride material associated with the interruption of tungsten were bubbles noted.

  10. Element 74, the Wolfram Versus Tungsten Controversy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holden,N.E.

    Two and a quarter centuries ago, a heavy mineral ore was found which was thought to contain a new chemical element called heavy stone (or tungsten in Swedish). A few years later, the metal was separated from its oxide and the new element (Z=74) was called wolfram. Over the years since that time, both the names wolfram and tungsten were attached to this element in various countries. Sixty years ago, IUPAC chose wolfram as the official name for the element. A few years later, under pressure from the press in the USA, the alternative name tungsten was also allowed bymore » IUPAC. Now the original, official name 'wolfram' has been deleted by IUPAC as one of the two alternate names for the element. The history of this controversy is described here.« less

  11. Engineered Surface Properties of Porous Tungsten from Cryogenic Machining

    NASA Astrophysics Data System (ADS)

    Schoop, Julius Malte

    Porous tungsten is used to manufacture dispenser cathodes due to it refractory properties. Surface porosity is critical to functional performance of dispenser cathodes because it allows for an impregnated ceramic compound to migrate to the emitting surface, lowering its work function. Likewise, surface roughness is important because it is necessary to ensure uniform wetting of the molten impregnate during high temperature service. Current industry practice to achieve surface roughness and surface porosity requirements involves the use of a plastic infiltrant during machining. After machining, the infiltrant is baked and the cathode pellet is impregnated. In this context, cryogenic machining is investigated as a substitutionary process for the current plastic infiltration process. Along with significant reductions in cycle time and resource use, surface quality of cryogenically machined un-infiltrated (as-sintered) porous tungsten has been shown to significantly outperform dry machining. The present study is focused on examining the relationship between machining parameters and cooling condition on the as-machined surface integrity of porous tungsten. The effects of cryogenic pre-cooling, rake angle, cutting speed, depth of cut and feed are all taken into consideration with respect to machining-induced surface morphology. Cermet and Polycrystalline diamond (PCD) cutting tools are used to develop high performance cryogenic machining of porous tungsten. Dry and pre-heated machining were investigated as a means to allow for ductile mode machining, yet severe tool-wear and undesirable smearing limited the feasibility of these approaches. By using modified PCD cutting tools, high speed machining of porous tungsten at cutting speeds up to 400 m/min is achieved for the first time. Beyond a critical speed, brittle fracture and built-up edge are eliminated as the result of a brittle to ductile transition. A model of critical chip thickness ( hc ) effects based on cutting

  12. Selective catalytic reduction system and process for control of NO.sub.x emissions in a sulfur-containing gas stream

    DOEpatents

    Sobolevskiy, Anatoly

    2015-08-11

    An exhaust gas treatment process, apparatus, and system for reducing the concentration of NOx, CO and hydrocarbons in a gas stream, such as an exhaust stream (29), via selective catalytic reduction with ammonia is provided. The process, apparatus and system include a catalytic bed (32) having a reducing only catalyst portion (34) and a downstream reducing-plus-oxidizing portion (36). Each portion (34, 36) includes an amount of tungsten. The reducing-plus-oxidizing catalyst portion (36) advantageously includes a greater amount of tungsten than the reducing catalyst portion (36) to markedly limit ammonia salt formation.

  13. UNS S31603 Stainless Steel Tungsten Inert Gas Welds Made with Microparticle and Nanoparticle Oxides

    PubMed Central

    Tseng, Kuang-Hung; Lin, Po-Yu

    2014-01-01

    The purpose of this study was to investigate the difference between tungsten inert gas (TIG) welding of austenitic stainless steel assisted by microparticle oxides and that assisted by nanoparticle oxides. SiO2 and Al2O3 were used to investigate the effects of the thermal stability and the particle size of the activated compounds on the surface appearance, geometric shape, angular distortion, delta ferrite content and Vickers hardness of the UNS S31603 stainless steel TIG weld. The results show that the use of SiO2 leads to a satisfactory surface appearance compared to that of the TIG weld made with Al2O3. The surface appearance of the TIG weld made with nanoparticle oxide has less flux slag compared with the one made with microparticle oxide of the same type. Compared with microparticle SiO2, the TIG welding with nanoparticle SiO2 has the potential benefits of high joint penetration and less angular distortion in the resulting weldment. The TIG welding with nanoparticle Al2O3 does not result in a significant increase in the penetration or reduction of distortion. The TIG welding with microparticle or nanoparticle SiO2 uses a heat source with higher power density, resulting in a higher ferrite content and hardness of the stainless steel weld metal. In contrast, microparticle or nanoparticle Al2O3 results in no significant difference in metallurgical properties compared to that of the C-TIG weld metal. Compared with oxide particle size, the thermal stability of the oxide plays a significant role in enhancing the joint penetration capability of the weld, for the UNS S31603 stainless steel TIG welds made with activated oxides. PMID:28788704

  14. Inter-diffusion analysis of joint interface of tungsten-rhenium couple

    NASA Astrophysics Data System (ADS)

    Hua, Y. F.; Li, Z. X.; Zhang, X.; Du, J. H.; Huang, C. L.; Du, M. H.

    2011-09-01

    The tungsten-rhenium couple was prepared by using glow plasma physical vapor deposition (PVD) on the isotropic fine grained graphite (IG) substrates. Diffusion anneals of the tungsten-rhenium couple were conducted at the temperature from 1100 °C to 1400 °C to investigate the inter-diffusion behaviors. The results showed that the thickness of the inter-diffusion zone increased with increasing annealing temperature. The relationship between the inter-diffusion coefficient and the annealing temperature accorded with the Arrhenius manner. The value of inter-diffusion activation energies was 189 kJ/mole (1.96 eV). The service time of tungsten-rhenium multilayer diffusion barrier was limited by the inter-diffusion for rhenium and tungsten rather than the diffusion of carbon in rhenium.

  15. Comparison of Tensile Damage Evolution in Ti6A14V Joints Between Laser Beam Welding and Gas Tungsten Arc Welding

    NASA Astrophysics Data System (ADS)

    Gao, Xiao-Long; Zhang, Lin-Jie; Liu, Jing; Zhang, Jian-Xun

    2014-12-01

    The present paper studied the evolution of tensile damage in joints welded using laser beam welding (LBW) and gas tungsten arc welding (TIG) under a uniaxial tensile load. The damage evolution in the LBW joints and TIG-welded joints was studied by using digital image correlation (DIC) technology and monitoring changes in Young's modulus during tensile testing. To study the mechanism of void nucleation and growth in the LBW joints and TIG-welded joints, test specimens with various amounts of plastic deformation were analyzed using a scanning electron microscope (SEM). Compared with TIG-welded joints, LBW-welded joints have a finer microstructure and higher microhardness in the fusion zone. The SEM analysis and DIC test results indicated that the critical strain of void nucleation was greater in the LBW-welded joints than in the TIG-welded joints, while the growth rate of voids was lower in the LBW-welded joints than in the TIG-welded joints. Thus, the damage ratio in the LBW joints was lower than that in the TIG-welded joints during tensile testing. This can be due to the coarser martensitic α' and the application of TC-1 welding rods in the TIG-welded joint.

  16. Surface studies of barium and barium oxide on tungsten and its application to understanding the mechanism of operation of an impregnated tungsten cathode

    NASA Technical Reports Server (NTRS)

    Forman, R.

    1976-01-01

    Surface studies have been made of multilayer and monolayer films of barium and barium oxide on a tungsten substrate. The purpose of the investigation was to synthesize the surface conditions that exist on an activated impregnated tungsten cathode and obtain a better understanding of the mechanism of operation of such cathodes. The techniques employed in these measurements were Auger spectroscopy and work-function measurements. The results of this study show that the surface of an impregnated cathode is identical to that observed for a synthesized monolayer or partial monolayer of barium on oxidized tungsten by evaluating Auger spectra and work-function measurements. Data obtained from desorption studies of barium monolayers on a tungsten substrate in conjunction with Auger and work-function results have been interpreted to show that throughout most of its life an impreganated cathode has a partial monolayer, rather than a monolayer, of barium on its surface.

  17. Two phase gap cooling of an electrical machine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shoykhet, Boris A.

    2016-10-04

    An electro-dynamic machine has a rotor and stator with a gap therebetween. The machine has a frame defining a hollow interior with end cavities on axially opposite ends of the frame. A gas circulating system has an inlet that supplies high pressure gas to the frame interior and an outlet to collect gas passing therethrough. A liquid coolant circulating system has an inlet that supplies coolant to the frame interior and an outlet that collects coolant passing therethrough. The coolant inlet and gas inlet are generally located on the frame in a manner to allow coolant from the coolant inletmore » to flow with gas from the gas inlet to the gap. The coolant outlet and gas outlet are generally located on the frame in a manner to allow the coolant to be separated from the gas with the separated coolant and gas collected for circulation through their respective circulating systems.« less

  18. MRR and TWR evaluation on electrical discharge machining of Ti-6Al-4V using tungsten : copper composite electrode

    NASA Astrophysics Data System (ADS)

    Prasanna, J.; Rajamanickam, S.; Amith Kumar, O.; Karthick Raj, G.; Sathya Narayanan, P. V. V.

    2017-05-01

    In this paper Ti-6Al-4V used as workpiece material and it is keenly seen in variety of field including medical, chemical, marine, automotive, aerospace, aviation, electronic industries, nuclear reactor, consumer products etc., The conventional machining of Ti-6Al-4V is very difficult due to its distinctive properties. The Electrical Discharge Machining (EDM) is right choice of machining this material. The tungsten copper composite material is employed as tool material. The gap voltage, peak current, pulse on time and duty factor is considered as the machining parameter to analyze the machining characteristics Material Removal Rate (MRR) and Tool Wear Rate (TWR). The Taguchi method is provided to work for finding the significant parameter of EDM. It is found that for MRR significant parameters rated in the following order Gap Voltage, Pulse On-Time, Peak Current and Duty Factor. On the other hand for TWR significant parameters are listed in line of Gap Voltage, Duty Factor, Peak Current and Pulse On-Time.

  19. New oxidation-resistant tungsten alloys for use in the nuclear fusion reactors

    NASA Astrophysics Data System (ADS)

    Litnovsky, A.; Wegener, T.; Klein, F.; Linsmeier, Ch; Rasinski, M.; Kreter, A.; Tan, X.; Schmitz, J.; Coenen, J. W.; Mao, Y.; Gonzalez-Julian, J.; Bram, M.

    2017-12-01

    Smart tungsten-based alloys are under development as plasma-facing components for a future fusion power plant. Smart alloys are planned to adjust their properties depending on environmental conditions: acting as a sputter-resistant plasma-facing material during plasma operation and suppressing the sublimation of radioactive tungsten oxide in case of an accident on the power plant. New smart alloys containing yttrium are presently in the focus of research. Thin film smart alloys are featuring an remarkable 105-fold suppression of mass increase due to an oxidation as compared to that of pure tungsten at 1000 °C. Newly developed bulk smart tungsten alloys feature even better oxidation resistance compared to that of thin films. First plasma test of smart alloys under DEMO-relevant conditions revealed the same mass removal as for pure tungsten due to sputtering by plasma ions. Exposed smart alloy samples demonstrate the superior oxidation performance as compared to tungsten-chromium-titanium systems developed earlier.

  20. Tungsten coating for improved wear resistance and reliability of microelectromechanical devices

    DOEpatents

    Fleming, James G.; Mani, Seethambal S.; Sniegowski, Jeffry J.; Blewer, Robert S.

    2001-01-01

    A process is disclosed whereby a 5-50-nanometer-thick conformal tungsten coating can be formed over exposed semiconductor surfaces (e.g. silicon, germanium or silicon carbide) within a microelectromechanical (MEM) device for improved wear resistance and reliability. The tungsten coating is formed after cleaning the semiconductor surfaces to remove any organic material and oxide film from the surface. A final in situ cleaning step is performed by heating a substrate containing the MEM device to a temperature in the range of 200-600 .degree. C. in the presence of gaseous nitrogen trifluoride (NF.sub.3). The tungsten coating can then be formed by a chemical reaction between the semiconductor surfaces and tungsten hexafluoride (WF.sub.6) at an elevated temperature, preferably about 450.degree. C. The tungsten deposition process is self-limiting and covers all exposed semiconductor surfaces including surfaces in close contact. The present invention can be applied to many different types of MEM devices including microrelays, micromirrors and microengines. Additionally, the tungsten wear-resistant coating of the present invention can be used to enhance the hardness, wear resistance, electrical conductivity, optical reflectivity and chemical inertness of one or more semiconductor surfaces within a MEM device.

  1. Recombination of open-f-shell tungsten ions

    NASA Astrophysics Data System (ADS)

    Krantz, C.; Badnell, N. R.; Müller, A.; Schippers, S.; Wolf, A.

    2017-03-01

    We review experimental and theoretical efforts aimed at a detailed understanding of the recombination of electrons with highly charged tungsten ions characterised by an open 4f sub-shell. Highly charged tungsten occurs as a plasma contaminant in ITER-like tokamak experiments, where it acts as an unwanted cooling agent. Modelling of the charge state populations in a plasma requires reliable thermal rate coefficients for charge-changing electron collisions. The electron recombination of medium-charged tungsten species with open 4f sub-shells is especially challenging to compute reliably. Storage-ring experiments have been conducted that yielded recombination rate coefficients at high energy resolution and well-understood systematics. Significant deviations compared to simplified, but prevalent, computational models have been found. A new class of ab initio numerical calculations has been developed that provides reliable predictions of the total plasma recombination rate coefficients for these ions.

  2. Tungsten-microdiamond composites for plasma facing components

    NASA Astrophysics Data System (ADS)

    Livramento, V.; Nunes, D.; Correia, J. B.; Carvalho, P. A.; Mardolcar, U.; Mateus, R.; Hanada, K.; Shohoji, N.; Fernandes, H.; Silva, C.; Alves, E.

    2011-09-01

    Tungsten is considered as one of promising candidate materials for plasma facing component in nuclear fusion reactors due to its resistance to sputtering and high melting point. High thermal conductivity is also a prerequisite for plasma facing components under the unique service environment of fusion reactor characterised by the massive heat load, especially in the divertor area. The feasibility of mechanical alloying of nanodiamond and tungsten, and the consolidation of the composite powders with Spark Plasma Sintering (SPS) was previously demonstrated. In the present research we report on the use of microdiamond instead of nanodiamond in such composites. Microdiamond is more favourable than nanodiamond in view of phonon transport performance leading to better thermal conductivity. However, there is a trade off between densification and thermal conductivity as the SPS temperature increases tungsten carbide formation from microdiamond is accelerated inevitably while the consolidation density would rise.

  3. Tungsten-nickel-cobalt alloy and method of producing same

    DOEpatents

    Dickinson, James M.; Riley, Robert E.

    1977-03-15

    An improved tungsten alloy having a tungsten content of approximately 95 weight percent, a nickel content of about 3 weight percent, and the balance being cobalt of about 2 weight percent is described. A method for producing said tungsten-nickel-cobalt alloy is further described and comprises (a) coating the tungsten particles with a nickel-cobalt alloy, (b) pressing the coated particles into a compact shape, (c) heating said compact in hydrogen to a temperature in the range of 1400.degree. C and holding at this elevated temperature for a period of about 2 hours, (d) increasing this elevated temperature to about 1500.degree. C and holding for 1 hour at this temperature, (e) cooling to about 1200.degree. C and replacing the hydrogen atmosphere with an inert argon atmosphere while maintaining this elevated temperature for a period of about 1/2 hour, and (f) cooling the resulting alloy to room temperature in this argon atmosphere.

  4. Multiple Disk Gaps and Rings Generated by a Single Super-Earth

    NASA Astrophysics Data System (ADS)

    Dong, Ruobing; Li, Shengtai; Chiang, Eugene; Li, Hui

    2017-07-01

    We investigate the observational signatures of super-Earths (i.e., planets with Earth-to-Neptune mass), which are the most common type of exoplanet discovered to date, in their natal disks of gas and dust. Combining two-fluid global hydrodynamics simulations with a radiative transfer code, we calculate the distributions of gas and of submillimeter-sized dust in a disk perturbed by a super-Earth, synthesizing images in near-infrared scattered light and the millimeter-wave thermal continuum for direct comparison with observations. In low-viscosity gas (α ≲ {10}-4), a super-Earth opens two annular gaps to either side of its orbit by the action of Lindblad torques. This double gap and its associated gas pressure gradients cause dust particles to be dragged by gas into three rings: one ring sandwiched between the two gaps, and two rings located at the gap edges farthest from the planet. Depending on the system parameters, additional rings may manifest for a single planet. A double gap located at tens of au from a host star in Taurus can be detected in the dust continuum by the Atacama Large Millimeter Array (ALMA) at an angular resolution of ∼0\\buildrel{\\prime\\prime}\\over{.} 03 after two hours of integration. Ring and gap features persist in a variety of background disk profiles, last for thousands of orbits, and change their relative positions and dimensions depending on the speed and direction of planet migration. Candidate double gaps have been observed by ALMA in systems such as HL Tau (D5 and D6) and TW Hya (at 37 and 43 au); we submit that each double gap is carved by one super-Earth in nearly inviscid gas.

  5. Deuterium retention in tungsten in dependence of the surface conditions

    NASA Astrophysics Data System (ADS)

    Ogorodnikova, O. V.; Roth, J.; Mayer, M.

    2003-03-01

    The paper reviews hydrogen isotope retention and migration in tungsten (W). Due to a large scatter of the deuterium (D) retention database, new measurements of ion-driven D retention in polycrystalline W foil have been performed to clarify the mechanism of hydrogen isotope inventory in W. Deuterium retention has been investigated as a function of ion fluence, implantation temperature, incident energy and surface conditions. Special attention has been given on the investigation of D retention in thin films of tungsten carbide and tungsten oxide which can be formed on W surface in a fusion device. Such kinds of films increase the D retention in W. Several points are reviewed: (i) inventory in pure W, (ii) inventory in W pre-implanted by carbon ions and (iii) inventory in tungsten oxide.

  6. Fabrication of large tungsten structures by chemical vapor deposition

    NASA Technical Reports Server (NTRS)

    Kahle, V. E.; Lewis, W. J.; Stubbs, V. R.

    1971-01-01

    Process is accomplished by reducing tungsten hexafluoride with hydrogen. Metallic tungsten of essentially 100 percent purity and density is produced and built up as dense deposit on heated mandrel assembly. Process variations are building up, sealing or bonding refractory metals at temperatures below transition temperatures of base metal substrates.

  7. The Effect of Tungsten and Niobium on the Stress Relaxation Rates of Disk Alloy CH98

    NASA Technical Reports Server (NTRS)

    Gayda, John

    2003-01-01

    Gas turbine engines for future subsonic transports will probably have higher pressure ratios which will require nickel-base superalloy disks with 1300 to 1400 F temperature capability. Several advanced disk alloys are being developed to fill this need. One of these, CH98, is a promising candidate for gas turbine engines and is being studied in NASA s Advanced Subsonic Technology (AST) program. For large disks, residual stresses generated during quenching from solution heat treatment are often reduced by a stabilization heat treatment, in which the disk is heated to 1500 to 1600 F for several hours followed by a static air cool. The reduction in residual stress levels lessens distortion during machining of disks. However, previous work on CH98 has indicated that stabilization treatments decrease creep capability. Additions of the refractory elements tungsten and niobium improve tensile and creep properties after stabilization, while maintaining good crack growth resistance at elevated temperatures. As the additions of refractory elements increase creep capability, they might also effect stress relaxation rates and therefore the reduction in residual stress levels obtained for a given stabilization treatment. To answer this question, the stress relaxation rates of CH98 with and without tungsten and niobium additions are compared in this paper for temperatures and times generally employed in stabilization treatments on modern disk alloys.

  8. Tunable carbon nanotube-tungsten carbide nanoparticles heterostructures by vapor deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, Min; Guo, Hongyan; Ge, Changchun

    2014-05-14

    A simple, versatile route for the synthesis of carbon nanotube (CNT)-tungsten carbide nanoparticles heterostructures was set up via vapor deposition process. For the first time, amorphous CNTs (α-CNTs) were used to immobilized tungsten carbide nanoparticles. By adjusting the synthesis and annealing temperature, α-CNTs/amorphous tungsten carbide, α-CNTs/W{sub 2}C, and CNTs/W{sub 2}C/WC heterostructures were prepared. This approach provides an efficient method to attach other metal carbides and other nanoparticles to carbon nanotubes with tunable properties.

  9. Assessing tungsten transport in the vadose zone: from dissolution studies to soil columns.

    PubMed

    Tuna, Gulsah Sen; Braida, Washington; Ogundipe, Adebayo; Strickland, David

    2012-03-01

    This study investigates the dissolution, sorption, leachability, and plant uptake of tungsten and alloying metals from canister round munitions in the presence of model, well characterized soils. The source of tungsten was canister round munitions, composed mainly of tungsten (95%) with iron and nickel making up the remaining fraction. Three soils were chosen for the lysimeter studies while four model soils were selected for the adsorption studies. Lysimeter soils were representatives of the typical range of soils across the continental USA; muck-peat, clay-loamy and sandy-quartzose soil. Adsorption equilibrium data on the four model soils were modeled with Langmuir and linear isotherms and the model parameters were obtained. The adsorption affinity of soils for tungsten follows the order: Pahokee peat>kaolinite>montmorillonite>illite. A canister round munition dissolution study was also performed. After 24 d, the measured dissolved concentrations were: 61.97, 3.56, 15.83 mg L(-1) for tungsten, iron and nickel, respectively. Lysimeter transport studies show muck peat and sandy quartzose soils having higher tungsten concentration, up to 150 mg kg(-1) in the upper layers of the lysimeters and a sharp decline with depth suggesting strong retardation processes along the soil profile. The concentrations of tungsten, iron and nickel in soil lysimeter effluents were very low in terms of posing any environmental concern; although no regulatory limits have been established for tungsten in natural waters. The substantial uptake of tungsten and nickel by ryegrass after 120 d of exposure to soils containing canister round munition suggests the possibility of tungsten and nickel entering the food chain. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. International strategic mineral issues summary report: tungsten

    USGS Publications Warehouse

    Werner, Antony B.T.; Sinclair, W. David; Amey, Earle B.

    1998-01-01

    In 1995, China and the former Soviet Union accounted for over three-fourths of the world's mine production of tungsten. China alone produced about two-thirds of world output. Given its vast resources, China will likely maintain its prominent role in world tungsten supply. By the year 2020, changes in supply patterns are likely to result from declining output from individual deposits in Australia, Austria, and Portugal and the opening of new mines in Canada, China, and the United Kingdom.

  11. Microstructure and abrasive wear properties of Fe-Cr-C hardfacing alloy cladding manufactured by Gas Tungsten Arc Welding (GTAW)

    NASA Astrophysics Data System (ADS)

    Chen, Jie-Hao; Hsieh, Chih-Chun; Hua, Pei-Shing; Chang, Chia-Ming; Lin, Chi-Ming; Wu, Paxon Ti-Yuan; Wu, Weite

    2013-01-01

    A series of Fe-Cr-C hardfacing alloys is deposited by gas tungsten arc welding and subjected to abrasive wear testing. Pure Fe with various amounts of CrC (Cr:C=4:1) powders are mixed as the fillers and used to deposit hardfacing alloys on low carbon steel. Depending on the various CrC additions to the alloy fillers, the claddings mainly contain hypoeutectic, near eutectic, or hypereutectic microstructures of austenite γ-Fe phase and (Cr,Fe)7C3 carbides on hardfacing alloys, respectively. When 30% CrC is added to the filler, the finest microstructure is achieved, which corresponds to the γ-Fe+(Cr,Fe)7C3 eutectic structure. With the addition of 35% and 40% CrC to the fillers, the results show that the cladding consists of the massive primary (Cr,Fe)7C3 as the reinforcing phase and interdendritic γ-Fe+(Cr,Fe)7C3 eutectics as the matrix. The (Cr,Fe)7C3 carbide-reinforced claddings have high hardness and excellent wear resistance under abrasive wear test conditions. Concerning the abrasive wear feature observable on the worn surface, the formation and fraction of massive primary (Cr,Fe)7C3 carbides predominates the wear resistance of hardfacing alloys. Abrasive particles result in continuous plastic grooves when the cladding has primary γ-Fe phase in a hypoeutectic structure.

  12. A multiscale microstructural approach to ductile-phase toughened tungsten for plasma-facing materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Ba Nghiep; Henager, Jr., Charles H.; Overman, Nicole R.

    Increasing fracture toughness and modifying the ductile-brittle transition temperature of a tungsten-alloy relative to pure tungsten has been shown to be feasible by ductile-phase toughening (DPT) of tungsten for future plasma-facing materials for fusion energy. In DPT, a ductile phase is included in a brittle tungsten matrix to increase the overall work of fracture for the material. This research models the deformation behavior of DPT tungsten materials, such as tungsten-copper composites, using a multiscale modeling approach that involves a microstructural dual-phase (copper-tungsten) region of interest where the constituent phases are finely discretized and are described by a continuum damage mechanicsmore » model. Large deformation, damage, and fracture are allowed to occur and are modeled in a region that is connected to adjacent homogenized elastic regions to form a macroscopic structure, such as a test specimen. The present paper illustrates this multiscale modeling approach to analyze unnotched and single-edge notched (SENB) tungsten-copper composite specimens subjected to three-point bending. The predicted load-displacement responses and crack propagation patterns are compared to the corresponding experimental results to validate the model. Furthermore, such models may help design future DPT composite configurations for fusion materials, including volume fractions of ductile phase and microstructural optimization.« less

  13. A multiscale microstructural approach to ductile-phase toughened tungsten for plasma-facing materials

    DOE PAGES

    Nguyen, Ba Nghiep; Henager, Jr., Charles H.; Overman, Nicole R.; ...

    2018-05-23

    Increasing fracture toughness and modifying the ductile-brittle transition temperature of a tungsten-alloy relative to pure tungsten has been shown to be feasible by ductile-phase toughening (DPT) of tungsten for future plasma-facing materials for fusion energy. In DPT, a ductile phase is included in a brittle tungsten matrix to increase the overall work of fracture for the material. This research models the deformation behavior of DPT tungsten materials, such as tungsten-copper composites, using a multiscale modeling approach that involves a microstructural dual-phase (copper-tungsten) region of interest where the constituent phases are finely discretized and are described by a continuum damage mechanicsmore » model. Large deformation, damage, and fracture are allowed to occur and are modeled in a region that is connected to adjacent homogenized elastic regions to form a macroscopic structure, such as a test specimen. The present paper illustrates this multiscale modeling approach to analyze unnotched and single-edge notched (SENB) tungsten-copper composite specimens subjected to three-point bending. The predicted load-displacement responses and crack propagation patterns are compared to the corresponding experimental results to validate the model. Furthermore, such models may help design future DPT composite configurations for fusion materials, including volume fractions of ductile phase and microstructural optimization.« less

  14. High purity tungsten targets

    NASA Technical Reports Server (NTRS)

    1975-01-01

    High purity tungsten, which is used for targets in X-ray tubes was considered for space processing. The demand for X-ray tubes was calculated using the growth rates for dental and medical X-ray machines. It is concluded that the cost benefits are uncertain.

  15. Effect of PWHT on Microstructure, Mechanical and Corrosion Behaviour of Gas Tungsten Arc Welds of IN718 Superalloys

    NASA Astrophysics Data System (ADS)

    Dilkush; Mohammed, Raffi; Madhusudhan Reddy, G.; Srinivasa Rao, K.

    2018-03-01

    The present work aims to improve corrosion resistance and mechanical behavior of the welds with suitable post weld heat treatment i.e. direct aging and solutionizing treatments (980STA, 1080STA). Gas tungsten arc welding (GTAW) has been performed on Inconel 718 (IN718) nickel based super alloy plates with 3mm thickness. The structural –property relationship of the post weld heat treated samples is judged by correlating the microstructural changes with observed mechanical behavior and pitting corrosion resistance of the welds As-recevied, direct aging (DA), 980STA,1080STA were studied. Welds were characterized for microstructure changes with scanning electron microscopy (SEM) and optical microscopy (OM).Vickers micro- hardness tester was used to measure the hardness of the weldments. Potential-dynamic polarization testing was carried out to study the pitting corrosion resistance in 3.5%NaCl (Sodium chloride) solution at 30°C.Results of the present study established that post weld heat treatments resulted in promoting the element segregation diffusion and resolve them from brittle laves particles in the matrix. Increased precipitation of strengthening phases lead to a significant increase in fusion zone hardness of 1080STA post weld heat treated condition compared to as welded, direct aged, 980STA conditions. Due to significant changes in the microstructural behavior of 1080STA condition resulted in superior pitting corrosion resistance than 980STA, direct aged and as- recevied conditions of IN718 GTA welds

  16. Crystal structure and phase stability of tungsten borides

    NASA Astrophysics Data System (ADS)

    Li, Quan; Zhou, Dan; Ma, Yanming; Chen, Changfeng

    2013-03-01

    We address the longstanding and controversial issue of ground-state structures of technically important tungsten borides using a first-principles structural search method via a particle-swarm optimization (PSO) algorithm. We have explored a large set of stable chemical compositions (convex hull) and clarified the ground-state structures for a wide range of boron concentrations, including W2B, W3B2,WB,W2B3, WB2,W2B5, WB3, and WB4. We further assessed relative stability of various tungsten borides and compared the calculated results with previously reported experimental data. The phase diagram predicted by the presented calculations may serve as a useful guide for synthesis of a variety of tungsten borides. This work was supported by DOE Grant No. DE-FC52-06NA26274.

  17. Some observations on uranium carbide alloy/tungsten compatibility

    NASA Technical Reports Server (NTRS)

    Phillips, W. M.

    1972-01-01

    Chemical compatibility between both pure and thoriated tungsten and uranium carbide alloys was studied at 1800 C for up to 3300 hours. Alloying with zirconium carbide appeared to widen the homogeneity range of uranium carbide, making additional carbon available for reaction with the tungsten. Reaction layers were formed both by vapor phase reaction and by physical contact, producing either or both UWC2 and W2C, dependent upon the phases present in the starting fuel alloy. Formation of UWC2 results in slow growth of the reaction layer with time, while W2C reaction layers grow rapidly, allowing equilibrium to be reached in less than 2500 hours at 1800 C. The presence of a thermal gradient had no effect on the reactions observed nor did the presence of thoria in the tungsten clad.

  18. Enhancement of deuterium retention in damaged tungsten by plasma-induced defect clustering

    NASA Astrophysics Data System (ADS)

    Jin, Younggil; Roh, Ki-Baek; Sheen, Mi-Hyang; Kim, Nam-Kyun; Song, Jaemin; Kim, Young-Woon; Kim, Gon-Ho

    2017-12-01

    The enhancement of deuterium retention was investigated for tungsten in the presence of both 2.8 MeV self-ion induced cascade damage and fuel hydrogen isotope plasma. Vacancy clustering in cascade damaged polycrystalline tungsten occurred due to deuterium irradiation and was observed near the grain boundary by using all-step transmission electron microscopy analysis. Analysis of the highest desorption temperature peak using thermal desorption spectroscopy supports reasonable evidence of defect clustering in the damaged polycrystalline tungsten. The defect clustering was neither observed on the damaged polycrystalline tungsten without deuterium irradiation nor on the damaged single-crystalline tungsten with deuterium irradiation. This result implies the synergetic role of deuterium and grain boundary on defect clustering. This study proposes a path for the defect transform from point defect to defect cluster, by the agglomeration between irradiated deuterium and cascade damage-induced defect. This agglomeration may induce more severe damage on the tungsten divertor at which the high fuel hydrogen ions, fast neutrons, and self-ions are irradiated simultaneously and it would increase the in-vessel tritium inventory.

  19. Gas heating dynamics during leader inception in long air gaps at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Liu, Lipeng; Becerra, Marley

    2017-08-01

    The inception of leader discharges in long air gaps at atmospheric pressure is simulated with a thermo-hydrodynamic model and a detailed kinetic scheme for N2/O2/H2O mixtures. In order to investigate the effect of humidity, the kinetic scheme includes the most important reactions with the H2O molecule and its derivatives, resulting in a scheme with 45 species and 192 chemical reactions. The heating of a thin plasma channel in front of an anode electrode during the streamer to leader transition is evaluated with a detailed 1D radial model. The analysis includes the simulation of the corresponding streamer bursts, dark periods and aborted leaders that may occur prior to the inception of a propagating leader discharge. The simulations are performed using the time-varying discharge current in two laboratory discharge events of positive polarity reported in the literature as input. Excellent agreement between the simulated and the experimental time variation of the thermal radius for a 1 m rod-plate air gap discharge event reported in the literature has been found. The role of different energy transfer and loss mechanisms prior to the inception of a stable leader is also discussed. It is found that although a small percentage of water molecules can accelerate the vibrational-translational relaxation to some extent, this effect leads to a negligible temperature increase during the streamer-to-leader transition. It is also found that the gas temperature should significantly exceed 2000 K for the transition to lead to the inception of a propagating leader. Otherwise, the strong convection loss produced by the gas expansion during the transition causes a drop in the translational temperature below 2000 K, aborting the incepted leader. Furthermore, it is shown that the assumptions used by the widely-used model of Gallimberti do not hold when evaluating the streamer-to-leader transition.

  20. Calibration and Temperature Profile of a Tungsten Filament Lamp

    ERIC Educational Resources Information Center

    de Izarra, Charles; Gitton, Jean-Michel

    2010-01-01

    The goal of this work proposed for undergraduate students and teachers is the calibration of a tungsten filament lamp from electric measurements that are both simple and precise, allowing to determine the temperature of tungsten filament as a function of the current intensity. This calibration procedure was first applied to a conventional filament…

  1. Kinetics of scheelite dissolution in groundwater: defining the release rate of tungsten contamination from a natural source

    NASA Astrophysics Data System (ADS)

    Montgomery, S. D.; Mckibben, M. A.

    2011-12-01

    Tungsten, an emerging contaminant, has no EPA standard for its permissible levels in drinking water. At sites in California, Nevada, and Arizona there may be a correlation between elevated levels of tungsten in drinking water and clusters of childhood acute lymphocytic leukemia (ALL). Developing a better understanding of how tungsten is released from rocks into surface and groundwaters is therefore of growing environmental interest. Knowledge of tungstate ore mineral weathering processes, particularly the rates of dissolution of scheelite (CaWO4) in groundwater, could improve models of how tungsten is released and transported in natural waters. Our research is focusing on experimental determination of the rates and products of tungstate mineral dissolution in synthetic groundwater, as a function of temperature, pH and mineral surface area. The initial rate method is being used to develop rate laws. Batch reactor experiments are conducted within constant temperature circulation baths over a pH range of 2-9. Cleaned scheelite powder with grain diameters of 106-150um is placed between two screens in a sample platform and then placed inside a two liter Teflon vessel filled with synthetic groundwater. Ports on the vessel allow sample extraction, temperature and pH measurement, gas inflow, and water circulation. Aliquots of solution are taken periodically for product analysis by ICP -MS. Changes in mineral surface characteristics are monitored using SEM and EDS methods. Results so far reveal that the dissolution of scheelite is incongruent at both neutral and low pH. Solid tungstic acid forms on scheelite mineral surfaces under acidic conditions, implying that this phase controls the dissolution rate in acidic environments. The influence of dissolved CO2 and resultant calcium carbonate precipitation on the dissolution of scheelite at higher pH is also being investigated. The rate law being developed for scheelite dissolution will be useful in reactive-transport computer

  2. PCD tool wear and its monitoring in machining tungsten

    NASA Astrophysics Data System (ADS)

    Wang, Lijiang; Zhang, Zhenlie; Sun, Qi; Liu, Pin

    The views of Chinese and foreign researchers are quite different as to whether or not polycrystalline diamond (PCD) tools can machine tungsten that is used in the aerospace and electronic industries. A study is presented that shows the possibility of machining tungsten, and a new method is developed for monitoring the tool wear in production.

  3. Weldability Characteristics of Sintered Hot-Forged AISI 4135 Steel Produced through P/M Route by Using Pulsed Current Gas Tungsten Arc Welding

    NASA Astrophysics Data System (ADS)

    Joseph, Joby; Muthukumaran, S.; Pandey, K. S.

    2016-01-01

    Present investigation is an attempt to study the weldability characteristics of sintered hot-forged plates of AISI 4135 steel produced through powder metallurgy (P/M) route using matching filler materials of ER80S B2. Compacts of homogeneously blended elemental powders corresponding to the above steel were prepared on a universal testing machine (UTM) by taking pre-weighed powder blend with a suitable die, punch and bottom insert assembly. Indigenously developed ceramic coating was applied on the entire surface of the compacts in order to protect them from oxidation during sintering. Sintered preforms were hot forged to flat, approximately rectangular plates, welded by pulsed current gas tungsten arc welding (PCGTAW) processes with aforementioned filler materials. Microstructural, tensile and hardness evaluations revealed that PCGTAW process with low heat input could produce weldments of good quality with almost nil defects. It was established that PCGTAW joints possess improved tensile properties compared to the base metal and it was mainly attributed to lower heat input, resulting in finer fusion zone grains and higher fusion zone hardness. Thus, the present investigation opens a new and demanding field in research.

  4. Spark Gap Electrode Erosion

    DTIC Science & Technology

    1984-12-01

    N~JFOSR-TR- 85-0282 o ~FINAL REPORT S SPARK GAP ELECTRODE EROSION 00i Air Force Office of Scientific Research Grant No. 84-0015- Approve", t’r p...OF MONITORING ORGANIZATION Texas Tech University IDibj Air Office of Scientific Research it- ADORESS rCat.. State and ZIP CG*, 7b. ADONESS ’CitY...spark gap was measured for various electrode, gas, and pressure combinations. A previously developed model of self breakdown voltage distribution was

  5. Coupled interactions between tungsten surfaces and transient high-heat-flux deuterium plasmas

    NASA Astrophysics Data System (ADS)

    Takamura, S.; Uesugi, Y.

    2015-03-01

    Fundamental studies on the interactions between transient deuterium-plasma heat pulses and tungsten surfaces were carried out in terms of electrical, mechanical and thermal response in a compact plasma device AIT-PID (Aichi Institute of Technology-Plasma Irradiation Device). Firstly, electron-emission-induced surface-temperature increase is discussed in the surface-temperature range near tungsten's melting point, which is accomplished by controlling the sheath voltage and power transmission factor. Secondly, anomalous penetration of tungsten atomic efflux into the surrounding plasma was observed in addition to a normal layered population; it is discussed in terms of the effect of substantial tungsten influx into the deuterium plasma, which causes dissipation of plasma electron energy. Thirdly, a momentum input from pulsed plasma onto a tungsten target was observed visually. The force is estimated numerically by the accelerated ion flow to the target as well as the reaction of tungsten-vapour efflux. Finally, a discussion follows on the effects of the plasma heat pulses on the morphology of tungsten surface (originally a helium-induced ‘fuzzy’ nanostructure). A kind of bifurcated effect is obtained: melting and annealing. Open questions remain for all the phenomena observed, although sheath-voltage-dependent plasma-heat input may be a key parameter. Discussions on all these phenomena are provided by considering their implications to tokamak fusion devices.

  6. Tungsten nanoparticles influence on radiation protection properties of polymers

    NASA Astrophysics Data System (ADS)

    Gavrish, V. M.; Baranov, G. A.; Chayka, T. V.; Derbasova, N. M.; Lvov, A. V.; Matsuk, Y. M.

    2016-02-01

    In the presented article the results of the study of metal-polymer composites based on the ultra-high molecular weight polyethylene GUR 4122 with the addition of superdispersed tungsten nanopowders with 5, 10, 20, 40, and 50 mass percent content levels are given, their thermophysical, radiation-shielding, and mechanical properties are shown, and the influence of content levels of tungsten superdispersed nanopowders on these properties is analyzed. The conducted studies have shown the increase in the listed properties depending on the content level of tungsten superdispersed and nanopowders in the ultra-high molecular weight polyethylene GUR 4122. Owing to their properties, the obtained materials may be used in various fields, such as aviation, space technologies, mechanical engineering, etc.

  7. Ductile tungsten-nickel alloy and method for making same

    DOEpatents

    Snyder, Jr., William B.

    1976-01-01

    The present invention is directed to a ductile, high-density tungsten-nickel alloy which possesses a tensile strength in the range of 100,000 to 140,000 psi and a tensile elongation of 3.1 to 16.5 percent in 1 inch at 25.degree.C. This alloy is prepared by the steps of liquid phase sintering a mixture of tungsten-0.5 to 10.0 weight percent nickel, heat treating the alloy at a temperature above the ordering temperature of approximately 970.degree.C. to stabilize the matrix phase, and thereafter rapidly quenching the alloy in a suitable liquid to maintain the matrix phase in a metastable, face-centered cubic, solid- solution of tungsten in nickel.

  8. First principles study of intrinsic defects in hexagonal tungsten carbide

    NASA Astrophysics Data System (ADS)

    Kong, Xiang-Shan; You, Yu-Wei; Xia, J. H.; Liu, C. S.; Fang, Q. F.; Luo, G.-N.; Huang, Qun-Ying

    2010-11-01

    The characteristics of intrinsic defects are important for the understanding of self-diffusion processes, mechanical strength, brittleness, and plasticity of tungsten carbide, which are present in the divertor of fusion reactors. Here, we use first-principles calculations to investigate the stability of point defects and their complexes in tungsten carbide. Our results confirm that the defect formation energies of carbon are much lower than that of tungsten and reveal the carbon vacancy to be the dominant defect in tungsten carbide. The C sbnd C dimer configuration along the dense a direction is the most stable configuration of carbon interstitial defect. The results of carbon defect diffusion show that the carbon vacancy stay for a wide range of temperature because of extremely high diffusion barriers, while carbon interstitial migration is activated at lower temperatures for its considerably lower activation energy. Both of them prefer to diffusion in carbon basal plane.

  9. Thermodynamic properties of tungsten

    NASA Astrophysics Data System (ADS)

    Grimvall, Göran; Thiessen, Maria; Guillermet, Armando Fernández

    1987-11-01

    Tungsten has several unusual thermodynamic properties, e.g., very high values of the melting point, the entropy of fusion, the expansion on melting and the lattice anharmonicity. These features are given a semiquantitative explanation, based on the electron density of states N(E). Our treatment includes a numerical calculation of the electronic heat capacity from N(E) and a calculation of the entropy Debye temperature FTHETAS(T) from the vibrational part of the experimental heat capacity. FTHETAS(T) decreases by 36% from 300 K to the melting temperature 3695 K, the largest drop in FTHETAS for elemental metals. Recent quantum-mechanical ab initio calculations of the difference, Hβ/α, in Gibbs energy at T=0 K between the metastable fcc tungsten and the stable bcc phase yield Hβ/α=50+/-5 kJ/mol, which is much larger than the ``experimental'' values Hβ/α=10 and 19 kJ/mol derived from previous semiempirical analyses [the so-called calculation of phase diagrams (``CALPHAD'') method] of binary phase diagrams containing tungsten. We have reanalyzed CALPHAD data, using the results of the first part of this paper. Because of the shapes of N(E) of α-W and β-W, some usually acceptable CALPHAD procedures give misleading results. We give several estimates of Hβ/α, using different assumptions about the hypothetical melting temperature Tβf of fcc W. The more realistic of our estimates gives Hβ/α=30 kJ/mol or larger, thus reducing considerably the previous discrepancy between CALPHAD and ab initio results. The physical picture emerging from this work should be of importance in refinements of the CALPHAD method.

  10. Study of ion-irradiated tungsten in deuterium plasma

    NASA Astrophysics Data System (ADS)

    Khripunov, B. I.; Gureev, V. M.; Koidan, V. S.; Kornienko, S. N.; Latushkin, S. T.; Petrov, V. B.; Ryazanov, A. I.; Semenov, E. V.; Stolyarova, V. G.; Danelyan, L. S.; Kulikauskas, V. S.; Zatekin, V. V.; Unezhev, V. N.

    2013-07-01

    Experimental study aimed at investigation of neutron induced damage influence on fusion reactor plasma facing materials is reported. Displacement damage was produced in tungsten by high-energy helium and carbon ions at 3-10 MeV. The reached level of displacement damage ranged from several dpa to 600 dpa. The properties of the irradiated tungsten were studied in steady-state deuterium plasma on the LENTA linear divertor simulator. Plasma exposures were made at 250 eV of ion energy to fluence 1021-1022 ion/сm2. Erosion dynamics of the damaged layer and deuterium retention were observed. Surface microstructure modifications and important damage of the 5 μm layer shown. Deuterium retention in helium-damaged tungsten (ERD) showed its complex behavior (increase or decrease) depending on implanted helium quantity and the structure of the surface layer.

  11. Tensile Properties of Molybdenum and Tungsten from 2500 to 3700 F

    NASA Technical Reports Server (NTRS)

    Hall, Robert W.; Sikora, Paul F.

    1959-01-01

    Specimens of commercially pure sintered tungsten, arc-cast unalloyed molybdenum, and two arc-cast molybdenum-base alloys (one with 0.5 percent titanium, the other with 0.46 percent titanium and 0.07 percent zirconium) were fabricated from 1/2-inch-diameter rolled or swaged bars. All specimens were evaluated in short-time tensile tests in the as-received condition, and all except the molybdenum-titanium-zirconium alloy were tested after a 30-minute recrystallization anneal at 3800 F in a vacuum of approximately 0.1 micron. Results showed that the tungsten was considerably stronger than either the arc-cast unalloyed molybdenum or the molybdenum-base alloys over the 2500 to 3700 F temperature range. Recrystallization of swaged tungsten at 3800 F considerably reduced its tensile strength at 2500 F. However, above 3100 F, the as-swaged tungsten specimens recrystallized during testing, and had about the same strength as when recrystallized at 3800 F before evaluation. The ductility of molybdenum-base materials was very high at all test temperatures; the ductility of tungsten decreased sharply above about 3120 F.

  12. Granite-related Yangjiashan tungsten deposit, southern China

    NASA Astrophysics Data System (ADS)

    Xie, Guiqing; Mao, Jingwen; Li, Wei; Fu, Bin; Zhang, Zhiyuan

    2018-04-01

    The Yangjiashan scheelite-bearing deposit (38,663 metric tons of WO3 with an average ore grade of 0.70% WO3) is hosted in quartz veins in a biotite monzogranite intrusion and surrounding slate in the Xiangzhong Metallogenic Province of southern China. The monzogranite has a zircon SHRIMP U-Pb age of 406.6 ± 2.8 Ma (2σ, n = 20, MSWD = 1.4). Cassiterite coexisting with scheelite yields a weighted mean 206Pb/238U age of 409.8 ± 5.9 Ma (2σ, n = 30, MSWD = 0.20), and molybdenite intergrown with scheelite yields a weighted mean Re-Os age of 404.2 ± 3.2 Ma (2σ, n = 3, MSWD = 0.10). These results suggest that the Yangjiashan tungsten deposit is temporally related to the Devonian intrusion. The δD and calculated δ18OH2O values of quartz intergrown with scheelite range from - 87 to - 68‰, and - 1.2 to 3.4‰, respectively. Sulfides have a narrow range of δ34S values of - 2.9 to - 0.7‰ with an average value of - 1.6‰ (n = 16). The integration of geological, stable isotope, and geochronological data, combined with the quartz-muscovite greisen style of ore, supports a magmatic-hydrothermal origin for the tungsten mineralization. Compared to the more common tungsten skarn, quartz-wolframite vein, and porphyry tungsten deposits, as well as orogenic gold deposits worldwide, the Yangjiashan tungsten deposit is an unusual example of a granite-related, gold-poor, scheelite-bearing quartz vein type of deposit. The calcium needed for the formation of scheelite is derived from the sericitization of calcic plagioclase in the monzogranite and Ca-bearing psammitic country rocks, and the relatively high pH, reduced and Ca-rich mineralizing fluid may be the main reasons for the formation of scheelite rather than wolframite at Yangjiashan.

  13. Tribology of carbide derived carbon films synthesized on tungsten carbide

    NASA Astrophysics Data System (ADS)

    Tlustochowicz, Marcin

    Tribologically advantageous films of carbide derived carbon (CDC) have been successfully synthesized on binderless tungsten carbide manufactured using the plasma pressure compaction (P2CRTM) technology. In order to produce the CDC films, tungsten carbide samples were reacted with chlorine containing gas mixtures at temperatures ranging from 800°C to 1000°C in a sealed tube furnace. Some of the treated samples were later dechlorinated by an 800°C hydrogenation treatment. Detailed mechanical and structural characterizations of the CDC films and sliding contact surfaces were done using a series of analytical techniques and their results were correlated with the friction and wear behavior of the CDC films in various tribosystems, including CDC-steel, CDC-WC, CDC-Si3N4 and CDC-CDC. Optimum synthesis and treatment conditions were determined for use in two specific environments: moderately humid air and dry nitrogen. It was found that CDC films first synthesized at 1000°C and then hydrogen post-treated at 800°C performed best in air with friction coefficient values as low as 0.11. However, for dry nitrogen applications, no dechlorination was necessary and both hydrogenated and as-synthesized CDC films exhibited friction coefficients of approximately 0.03. A model of tribological behavior of CDC has been proposed that takes into consideration the tribo-oxidation of counterface material, the capillary forces from adsorbed water vapor, the carbon-based tribofilm formation, and the lubrication effect of both chlorine and hydrogen.

  14. CTAB assisted synthesis of tungsten oxide nanoplates as an efficient low temperature NOX sensor

    NASA Astrophysics Data System (ADS)

    Mehta, Swati S.; Tamboli, Mohaseen S.; Mulla, Imtiaz S.; Suryavanshi, Sharad S.

    2018-02-01

    Tungsten oxide nanoplates with porous morphology were effectively prepared by acidification using CTAB (HexadeCetyltrimethyl ammonium bromide) as a surfactant. For characterization, the synthesized materials were subjected to X-Ray powder diffraction (XRD), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), UV-Visible spectroscopy (UV-Vis) and surface area (BET) measurements. The morphology and size of the particles were controlled by solution acidity. The BET results confirmed that the materials are well crystallized and mesoporous in nature. The nanocrystalline powder was used to prepare thick films by screen printing on alumina substrate for the investigation of gas sensing properties. The gas response measurements revealed that the samples acidified using 10 M H2SO4 exhibits highest response of 91% towards NOX at optimum temperature of 200 °C for 100 ppm, and it also exhibits 35% response at room temperature.

  15. Development of tungsten armor and bonding to copper for plasma-interactive components

    NASA Astrophysics Data System (ADS)

    Smid, I.; Akiba, M.; Vieider, G.; Plöchl, L.

    1998-10-01

    For the highest sputtering threshold of all possible candidates, tungsten will be the most likely armor material in highly loaded plasma-interactive components of commercially relevant fusion reactors. The development of new materials, as well as joining and coating techniques are needed to find the best balance in plasma compatibility, lifetime, reliability, neutron irradiation resistance, and safety. Further important issues for selection are availability, costs of machining and production, etc. Tungsten doped with lanthanum oxide is a commercially available W grade for electrodes, designed for low electron work function, higher recrystallization temperature, reduced secondary grain growth, and machinability at relatively low costs. W-Re and related tungsten base alloys are preferred for application at high temperatures, when high strength, high thermal shock and recrystallization resistance are required. Due to the high costs and limited global availability of Re, however, the amount of such alloys in a commercial reactor should be kept low. Newly measured material properties up to high temperatures are presented for lanthanated and W-Re alloys, and the impact on fusion application is discussed. Recently developed coatings of chemical vapor deposited tungsten (CVD-W) on copper substrates have proven to be resistant to repeated thermal and shock loading. Layers of more than 5 mm, as required for the International Thermonuclear Experimental Reactor (ITER), became available. Vacuum plasma sprayed tungsten (VPS-W) in particular is attractive for its lower costs, and the potential of in situ repair. However, the advantage of sacrificial plasma-interactive tungsten coatings in long-term fusion devices has yet to be demonstrated. A durable and reliable joining of bulk tungsten to copper is needed to achieve an acceptable component lifetime in a fusion environment. The material properties of the copper alloys proposed for ITER, and their impact on the quality of bonding

  16. Influence of Au ions irradiation damage on helium implanted tungsten

    NASA Astrophysics Data System (ADS)

    Kong, Fanhang; Qu, Miao; Yan, Sha; Cao, Xingzhong; Peng, Shixiang; Zhang, Ailin; Xue, Jianming; Wang, Yugang; Zhang, Peng; Wang, Baoyi

    2017-10-01

    The damages of implanted helium ions together with energetic neutrons in tungsten is concerned under the background of nuclear fusion related materials research. Helium is lowly soluble in tungsten and has high binding energy with vacancy. In present work, noble metal Au ions were used to study the synergistic effect of radiation damage and helium implantation. Nano indenter and the Doppler broaden energy spectrum of positron annihilation analysis measurements were used to research the synergy of radiation damage and helium implantation in tungsten. In the helium fluence range of 4.8 × 1015 cm-2-4.8 × 1016 cm-2, vacancies played a role of trappers only at the very beginning of bubble nucleation. The size and density is not determined by vacancies, but the effective capture radius between helium bubbles and scattered helium atoms. Vacancies were occupied by helium bubbles even at the lowest helium fluence, leaving dislocations and helium bubbles co-exist in tungsten materials.

  17. Ductile tungsten-nickel-alloy and method for manufacturing same

    DOEpatents

    Ludwig, Robert L.

    1978-01-01

    The tensile elongation of a tungsten-nickel-iron alloy containing essentially 95 weight percent reprocessed tungsten, 3.5 weight percent nickel, and 1.5 weight percent iron is increased from a value of less than about 1 percent up to about 23 percent by the addition of less than 0.5 weight percent of a reactive metal consisting of niobium and zirconium.

  18. Destruction of tungsten limiters in the T-10 Tokamak under high plasma heat loads

    NASA Astrophysics Data System (ADS)

    Grashin, S. A.; Arkhipov, I. I.; Budaev, V. P.; Giniyatulin, R. N.; Karpov, A. V.; Klyuchnikov, L. A.; Krupin, V. A.; Litunovskiy, N. V.; Masul, I. V.; Makhankov, F. N.; Martynenko, Yu V.; Sarytchev, D. V.; Solomatin, R. Yu; Khimchenko, L. N.

    2017-10-01

    Tungsten limiters were tested in the T-10 tokamak. The limiters were made from the ITER-grade WMP “POLEMA” tungsten. The influence of the edge tokamak plasma on tungsten limiters leads to significant cracking of tungsten. The heat load of up to 2 MW · m-2 leads to the micro-crack development at the grain boundaries accompanied by the loss of grains. The heat loads that exceed 5 MW · m-2 lead to the macro crack development. Under the present T-10 tokamak conditions, the heat and particle fluxes in the edge plasma lead to the significant destruction of tungsten limiters during the experimental campaign. During the disruption and runaway electron formation, extreme heat loads of more than 1 GW/m2 cause strong melting of tungsten on the inner and outer part of the ring limiter.

  19. Information extraction from FN plots of tungsten microemitters.

    PubMed

    Mussa, Khalil O; Mousa, Marwan S; Fischer, Andreas

    2013-09-01

    Tungsten based microemitter tips have been prepared both clean and coated with dielectric materials. For clean tungsten tips, apex radii have been varied ranging from 25 to 500 nm. These tips were manufactured by electrochemical etching a 0.1 mm diameter high purity (99.95%) tungsten wire at the meniscus of two molar NaOH solution. Composite micro-emitters considered here are consisting of a tungsten core coated with different dielectric materials-such as magnesium oxide (MgO), sodium hydroxide (NaOH), tetracyanoethylene (TCNE), and zinc oxide (ZnO). It is worthwhile noting here, that the rather unconventional NaOH coating has shown several interesting properties. Various properties of these emitters were measured including current-voltage (IV) characteristics and the physical shape of the tips. A conventional field emission microscope (FEM) with a tip (cathode)-screen (anode) separation standardized at 10 mm was used to electrically characterize the electron emitters. The system was evacuated down to a base pressure of ∼10(-8) mbar when baked at up to ∼180 °C overnight. This allowed measurements of typical field electron emission (FE) characteristics, namely the IV characteristics and the emission images on a conductive phosphorus screen (the anode). Mechanical characterization has been performed through a FEI scanning electron microscope (SEM). Within this work, the mentioned experimental results are connected to the theory for analyzing Fowler-Nordheim (FN) plots. We compared and evaluated the data extracted from clean tungsten tips of different radii and determined deviations between the results of different extraction methods applied. In particular, we derived the apex radii of several clean and coated tungsten tips by both SEM imaging and analyzing FN plots. The aim of this analysis is to support the ongoing discussion on recently developed improvements of the theory for analyzing FN plots related to metal field electron emitters, which in particular

  20. Casting copper to tungsten for high-power arc lamp cathodes

    NASA Technical Reports Server (NTRS)

    Will, H. A.

    1974-01-01

    Voids forming at interface when copper is cast onto tungsten can be eliminated by adding wetting agent during casting process. Small amount of copper and nickel are cast onto thoriated tungsten insert, insert is recast with more copper to form electrode. Good thermal conductance results in long-lived cathode.

  1. Atomically Thin Heterostructures Based on Single-Layer Tungsten Diselenide and Graphene [Plus Supplemental Information

    DOE PAGES

    Lin, Yu-Chuan; Chang, Chih-Yuan S.; Ghosh, Ram Krishna; ...

    2014-11-10

    Heterogeneous engineering of two-dimensional layered materials, including metallic graphene and semiconducting transition metal dichalcogenides, presents an exciting opportunity to produce highly tunable electronic and optoelectronic systems. We report the direct growth of highly crystalline, monolayer tungsten diselenide (WSe 2) on epitaxial graphene (EG). Raman spectroscopy and photoluminescence confirms high-quality WSe 2 monolayers; while transmission electron microscopy shows an atomically sharp interface and low energy electron diffraction confirms near perfect orientation between WSe 2 and EG. Vertical transport measurements across the WSe 2/EG heterostructure provides evidence that a tunnel barrier exists due to the van der Waals gap, and is supportedmore » by density functional theory that predicts a 1.6 eV barrier for transport from WSe 2 to graphene.« less

  2. Influence of nitrogen in the shielding gas on corrosion resistance of duplex stainless steel welds

    NASA Astrophysics Data System (ADS)

    Bhatt, R. B.; Kamat, H. S.; Ghosal, S. K.; de, P. K.

    1999-10-01

    The influence of nitrogen in shielding gas on the corrosion resistance of welds of a duplex stainless steel (grade U-50), obtained by gas tungsten arc (GTA) with filler wire, autogenous GTA (bead-on-plate), electron beam welding (EBW), and microplasma techniques, has been evaluated in chloride solutions at 30 °C. Pitting attack has been observed in GTA, electron beam welding, and microplasma welds when welding has been carried out using pure argon as the shielding gas. Gas tungsten arc welding with 5 to 10% nitrogen and 90 to 95% argon, as the shielding gas, has been found to result in an improved pitting corrosion resistance of the weldments of this steel. However, the resistance to pitting of autogenous welds (bead-on-plate) obtained in pure argon as the shielding gas has been observed to remain unaffected. Microscopic examination, electron probe microanalysis (EPMA), and x-ray diffraction studies have revealed that the presence of nitrogen in the shielding gas in the GTA welds not only modifies the microstructure and the austenite to ferrite ratio but also results in a nearly uniform distribution of the various alloying elements, for example, chromium, nickel, and molybdenum among the constitutent phases, which are responsible for improved resistance to pitting corrosion.

  3. Influence of nitrogen in the shielding gas on corrosion resistance of duplex stainless steel welds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhatt, R.B.; Kamat, H.S.; Ghosal, S.K.

    1999-10-01

    The influence of nitrogen in shielding gas on the corrosion resistance of welds of a duplex stainless steel (grade U-50), obtained by gas tungsten arc (GTA) with filler wire, autogenous GTA (bead-on-plate), electron beam welding (EBW), and microplasma techniques, has been evaluated in chloride solutions at 30 C. Pitting attack has been observed in GTA, electron beam welding, and microplasma welds when welding has been carried out using pure argon as the shielding gas. Gas tungsten arc welding with 5 to 10% nitrogen and 90 to 95% argon, as the shielding gas, has been found to result in an improvedmore » pitting corrosion resistance of the weldments of this steel. However, the resistance of pitting of autogenous welds (bead-on-plate) obtained in pure argon as the shielding gas has been observed to remain unaffected. Microscopic examination, electron probe microanalysis (EPMA), and x-ray diffraction studies have revealed that the presence of nitrogen in the shielding gas in the GTA welds not only modifies the microstructure and the austenite to ferrite ratio but also results in a nearly uniform distribution of the various alloying elements, for example, chromium, nickel, and molybdenum among the constituent phases, which are responsible for improved resistance to pitting corrosion.« less

  4. Electronic Structure Control of Tungsten Oxide Activated by Ni for Ultrahigh-Performance Supercapacitors.

    PubMed

    Meng, Tian; Kou, Zongkui; Amiinu, Ibrahim Saana; Hong, Xufeng; Li, Qingwei; Tang, Yongfu; Zhao, Yufeng; Liu, Shaojun; Mai, Liqiang; Mu, Shichun

    2018-04-17

    Tuning the electron structure is of vital importance for designing high active electrode materials. Here, for boosting the capacitive performance of tungsten oxide, an atomic scale engineering approach to optimize the electronic structure of tungsten oxide by Ni doping is reported. Density functional theory calculations disclose that through Ni doping, the density of state at Fermi level for tungsten oxide can be enhanced, thus promoting its electron transfer. When used as electrode of supercapacitors, the obtained Ni-doped tungsten oxide with 4.21 at% Ni exhibits an ultrahigh mass-specific capacitance of 557 F g -1 at the current density of 1 A g -1 and preferable durability in a long-term cycle test. To the best of knowledge, this is the highest supercapacitor performance reported so far in tungsten oxide and its composites. The present strategy demonstrates the validity of the electronic structure control in tungsten oxide via introducing Ni atoms for pseudocapacitors, which can be extended to other related fields as well. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Measurements of tungsten migration in the DIII-D divertor

    NASA Astrophysics Data System (ADS)

    Wampler, W. R.; Rudakov, D. L.; Watkins, J. G.; McLean, A. G.; Unterberg, E. A.; Stangeby, P. C.

    2017-12-01

    An experimental study of migration of tungsten in the DIII-D divertor is described, in which the outer strike point of L-mode plasmas was positioned on a toroidal ring of tungsten-coated metal inserts. Net deposition of tungsten on the divertor just outside the strike point was measured on graphite samples exposed to various plasma durations using the divertor materials evaluation system. Tungsten coverage, measured by Rutherford backscattering spectroscopy (RBS), was found to be low and nearly independent of both radius and exposure time closer to the strike point, whereas farther from the strike point the W coverage was much larger and increased with exposure time. Depth profiles from RBS show this was due to accumulation of thicker mixed-material deposits farther from the strike point where the plasma temperature is lower. These results are consistent with a low near-surface steady-state coverage on graphite undergoing net erosion, and continuing accumulation in regions of net deposition. This experiment provides data needed to validate, and further improve computational simulations of erosion and deposition of material on plasma-facing components and transport of impurities in magnetic fusion devices. Such simulations are underway and will be reported later.

  6. Tungsten fragmentation in nuclear reactions induced by high-energy cosmic-ray protons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chechenin, N. G., E-mail: chechenin@sinp.msu.ru; Chuvilskaya, T. V.; Shirokova, A. A.

    2015-01-15

    Tungsten fragmentation arising in nuclear reactions induced by cosmic-ray protons in space-vehicle electronics is considered. In modern technologies of integrated circuits featuring a three-dimensional layered architecture, tungsten is frequently used as a material for interlayer conducting connections. Within the preequilibrium model, tungsten-fragmentation features, including the cross sections for the elastic and inelastic scattering of protons of energy between 30 and 240 MeV; the yields of isotopes and isobars; their energy, charge, and mass distributions; and recoil energy spectra, are calculated on the basis of the TALYS and EMPIRE-II-19 codes. It is shown that tungsten fragmentation affects substantially forecasts of failuresmore » of space-vehicle electronics.« less

  7. Tungsten insulated susceptor cup for high temperature induction furnace eliminates contamination

    NASA Technical Reports Server (NTRS)

    Geringer, H. J.

    1966-01-01

    METILUR /Materials Experimental Tungsten Induction Laboratory Unit Replacement/ is an improved, unitized design of a susceptor cup and shielding that uses only one type of construction material /tungsten/ which eliminates contamination. Cycling runs can be accomplished with METILUR.

  8. Brush Plating of Nickel-Tungsten Alloy for Engineering Application

    DTIC Science & Technology

    2012-08-01

    ASETS Defense ‘12 1 Brush Plating of Nickel-Tungsten Alloy for Engineering Application Zhimin Zhong & Sid Clouser Report Documentation Page Form...COVERED 00-00-2012 to 00-00-2012 4. TITLE AND SUBTITLE Brush Plating of Nickel-Tungsten Alloy for Engineering Application 5a. CONTRACT NUMBER...6 Surface morphology Visual appearance, scanning electron and optical microscope images. Smooth, fine grained, micro- cracked surface morphology

  9. Displacement energy of the surface layers of tungsten

    NASA Astrophysics Data System (ADS)

    Han, Longtao; Krstic, Predrag

    2015-11-01

    A molecular dynamics study with BOP potential is used to calculate the threshold displacement energy (ED) of primary knock-on atoms in the surface layers of the tungsten bcc crystal lattice at 300 K and at various crystallographic directions. Depending on the direction, ED is 10% to 75% smaller from the bulk value at the first layer, interfacing vacuum, while it reaches close to the bulk value already at the third tungsten layer. Supported by IACS of SBU and LDRD of PPPL.

  10. Selections from 2016: Gaps in HL Tau's Protoplanetary Disk

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-12-01

    Editors note:In these last two weeks of 2016, well be looking at a few selections that we havent yet discussed on AAS Nova from among the most-downloaded paperspublished in AAS journals this year. The usual posting schedule will resume after the AAS winter meeting.Gas Gaps in the Protoplanetary Disk Around the Young Protostar HL TauPublished March 2016The dust (left) and gas (right) emission from HL Tau show that the gaps in its disk match up. [Yen et al. 2016]Main takeaway:At the end of last year, the Atacama Large Millimeter/Submillimeter Array released some of its first data including a spectacular observation of a dusty protoplanetary disk around the young star HL Tau. In this follow-up study, a team led by Hsi-Wei Yen (Academia Sinica Institute of Astronomy and Astrophysics, Taiwan) analyzed the ALMA data and confirmed the presence of two gaps in the gas of HL Taus disk, at radii of 28 and 69 AU.Why its interesting:The original ALMA image of HL Taus disk suggests the presence of gaps in disk, but scientists werent sure if they were caused by effects like gravitational instabilities or dust clumping, or if the gaps were created by the presence of young planets. Yen and collaborators showed that gaps in the disks gas line up with gaps in its dust, supporting the model in which these gaps have been carved out by newly formed planets.Added intrigue:The evidence for planets in this disk came as a bit of a surprise, since it was originally believed that it takes tens of millions of years to form planets from the dust of protoplanetary disks but HL Tau is only a million years old. These observations therefore suggest that planets start to form much earlier than we thought.CitationHsi-Wei Yen et al 2016 ApJL 820 L25. doi:10.3847/2041-8205/820/2/L25

  11. Energy and Tangential Momentum Accommodation on Different Flashed Tungsten and Gas Covered Tungsten Surfaces.

    DTIC Science & Technology

    1981-10-29

    and r. (r. co2 0o/wn and r’ = rw/co, where co is the ideal gas free space sound velocity, po is the equilibrium density, w is the angular frequency, q...LAC 1, 1 u s IA’ xI i i k-h t I t i. - LI t HiOil, tI it I o) %’t.liii I t and a 1 -~i1 )t lulil PI t. AIs o 1 v vii in i lit, t ll 1 1 k FAP vst lics

  12. Thermionic gas switch

    DOEpatents

    Hatch, George L.; Brummond, William A.; Barrus, Donald M.

    1986-01-01

    A temperature responsive thermionic gas switch having folded electron emitting surfaces. An ionizable gas is located between the emitter and an interior surface of a collector, coaxial with the emitter. In response to the temperature exceeding a predetermined level, sufficient electrons are derived from the emitter to cause the gas in the gap between the emitter and collector to become ionized, whereby a very large increase in current in the gap occurs. Due to the folded emitter surface area of the switch, increasing the "on/off" current ratio and adjusting the "on" current capacity is accomplished.

  13. Pitfalls of tungsten multileaf collimator in proton beam therapy.

    PubMed

    Moskvin, Vadim; Cheng, Chee-Wai; Das, Indra J

    2011-12-01

    Particle beam therapy is associated with significant startup and operational cost. Multileaf collimator (MLC) provides an attractive option to improve the efficiency and reduce the treatment cost. A direct transfer of the MLC technology from external beam radiation therapy is intuitively straightforward to proton therapy. However, activation, neutron production, and the associated secondary cancer risk in proton beam should be an important consideration which is evaluated. Monte Carlo simulation with FLUKA particle transport code was applied in this study for a number of treatment models. The authors have performed a detailed study of the neutron generation, ambient dose equivalent [H∗(10)], and activation of a typical tungsten MLC and compared with those obtained from a brass aperture used in a typical proton therapy system. Brass aperture and tungsten MLC were modeled by absorber blocks in this study, representing worst-case scenario of a fully closed collimator. With a tungsten MLC, the secondary neutron dose to the patient is at least 1.5 times higher than that from a brass aperture. The H∗(10) from a tungsten MLC at 10 cm downstream is about 22.3 mSv/Gy delivered to water phantom by noncollimated 200 MeV beam of 20 cm diameter compared to 14 mSv/Gy for the brass aperture. For a 30-fraction treatment course, the activity per unit volume in brass aperture reaches 5.3 × 10⁴ Bq cm(-3) at the end of the last treatment. The activity in brass decreases by a factor of 380 after 24 h, additional 6.2 times after 40 days of cooling, and is reduced to background level after 1 yr. Initial activity in tungsten after 30 days of treating 30 patients per day is about 3.4 times higher than in brass that decreases only by a factor of 2 after 40 days and accumulates to 1.2 × 10⁶ Bq cm(-3) after a full year of operation. The daily utilization of the MLC leads to buildup of activity with time. The overall activity continues to increase due to (179)Ta with a half

  14. Core tungsten radiation diagnostic calibration by small shell pellet injection in the DIII-D tokamak

    DOE PAGES

    Hollmann, Eric M.; Commaux, Nicolas; Shiraki, Daisuke; ...

    2017-10-04

    Injection of small (OD = 0.8 mm) plastic pellets carrying embedded smaller (10 μg) tungsten grains is used to check calibrations of core tungsten line radiation diagnostics in support of the 2016 tungsten rings campaign in the DIII-D tokamak. The total (1 eV – 10 keV) and soft x-ray (1 keV – 10 keV) brightnesses we observed were found to be reasonably well (< factor 2) predicted using existing calibration factors and rate calculations. Individual core (EUV/SXR) tungsten line brightnesses appear to be somewhat less reliable (factor 2-4) for prediction of core tungsten concentration.

  15. Core tungsten radiation diagnostic calibration by small shell pellet injection in the DIII-D tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hollmann, Eric M.; Commaux, Nicolas; Shiraki, Daisuke

    Injection of small (OD = 0.8 mm) plastic pellets carrying embedded smaller (10 μg) tungsten grains is used to check calibrations of core tungsten line radiation diagnostics in support of the 2016 tungsten rings campaign in the DIII-D tokamak. The total (1 eV – 10 keV) and soft x-ray (1 keV – 10 keV) brightnesses we observed were found to be reasonably well (< factor 2) predicted using existing calibration factors and rate calculations. Individual core (EUV/SXR) tungsten line brightnesses appear to be somewhat less reliable (factor 2-4) for prediction of core tungsten concentration.

  16. Effect of reinforcement phase on the mechanical property of tungsten nanocomposite synthesized by spark plasma sintering

    DOE PAGES

    Lee, Jin -Kyu; Kim, Song -Yi; Ott, Ryan T.; ...

    2015-07-15

    Nanostructured tungsten composites were fabricated by spark plasma sintering of nanostructured composite powders. The composite powders, which were synthesized by mechanical milling of tungsten and Ni-based alloy powders, are comprised of alternating layers of tungsten and metallic glass several hundred nanometers in size. The mechanical behavior of the nanostructured W composite is similar to pure tungsten, however, in contrast to monolithic pure tungsten, some macroscopic compressive plasticity accompanies the enhanced maximum strength up to 2.4 GPa by introducing reinforcement. As a result, we have found that the mechanical properties of the composites strongly depend on the uniformity of the nano-grainedmore » tungsten matrix and reinforcement phase distribution.« less

  17. Interaction between tungsten monocarbide and an iron-based metallic melt

    NASA Astrophysics Data System (ADS)

    Chumanov, I. V.; Anikeev, A. N.

    2015-12-01

    A technique and results of investigation of compacted tungsten carbide substrates by scanning microscopy are reported. Samples are prepared in the course of studies of the wettability of tungsten carbide substrates with the iron melt, which are performed in accordance with the sessile drop method using two different heating strategies, namely, contact and noncontact heating of metal.

  18. Effect on structure and mechanical property of tungsten irradiated by high intensity pulsed ion beam

    NASA Astrophysics Data System (ADS)

    Mei, Xianxiu; Zhang, Xiaonan; Liu, Xiaofei; Wang, Younian

    2017-09-01

    The anti-thermal radiation performance of tungsten was investigated by high intensity pulsed ion beam technology. The ion beam was mainly composed of Cn+ (70%) and H+ (30%) at an acceleration voltage of 250 kV under different energy densities for different number of pulses. GIXRD analysis showed that no obvious phase structural changes occurred on the tungsten, and microstress generated. SEM analysis exhibited that there was no apparent irradiation damage on the surface of tungsten at the low irradiation frequency (3 times and 10 times) and at the low energy density (0.25 J/cm2 and 0.7 J/cm2). Cracks appeared on the surface of tungsten after 100-time and 300-time irradiation. Shedding phenomenon even appeared on the surface of tungsten at the energy densities of 1.4 J/cm2 and 2.0 J/cm2. The surface nano-hardness of tungsten decreased with the increase of the pulse times and the energy density. The tungsten has good anti-thermal radiation properties under certain heat load environment.

  19. Corrosion of Tungsten Microelectrodes used in Neural Recording Applications

    PubMed Central

    Patrick, Erin; Orazem, Mark E.; Sanchez, Justin C.; Nishida, Toshikazu

    2011-01-01

    In neuroprosthetic applications, long-term electrode viability is necessary for robust recording of the activity of neural populations used for generating communication and control signals. The corrosion of tungsten microwire electrodes used for intracortical recording applications was analyzed in a controlled bench-top study and compared to the corrosion of tungsten microwires used in an in vivo study. Two electrolytes were investigated for the benchtop electrochemical analysis: 0.9% phosphate buffered saline (PBS) and 0.9% PBS containing 30 mM of hydrogen peroxide. The oxidation and reduction reactions responsible for corrosion were found by measurement of the open circuit potential and analysis of Pourbaix diagrams. Dissolution of tungsten to form the tungstic ion was found to be the corrosion mechanism. The corrosion rate was estimated from the polarization resistance, which was extrapolated from the electrochemical impedance spectroscopy data. The results show that tungsten microwires in an electrolyte of PBS have a corrosion rate of 300–700 µm/yr. The corrosion rate for tungsten microwires in an electrolyte containing PBS and 30 mM H2O2 is accelerated to 10,000–20,000 µm/yr. The corrosion rate was found to be controlled by the concentration of the reacting species in the cathodic reaction (e.g. O2 and H2O2). The in vivo corrosion rate, averaged over the duration of implantation, was estimated to be 100 µm/yr. The reduced in vivo corrosion rate as compared to the benchtop rate is attributed to decreased rate of oxygen diffusion caused by the presence of a biological film and a reduced concentration of available oxygen in the brain. PMID:21470563

  20. Direct Growth of Crystalline Tungsten Oxide Nanorod Arrays by a Hydrothermal Process and Their Electrochromic Properties

    NASA Astrophysics Data System (ADS)

    Lu, Chih-Hao; Hon, Min Hsiung; Leu, Ing-Chi

    2017-04-01

    Transparent crystalline tungsten oxide nanorod arrays for use as an electrochromic layer have been directly prepared on fluorine-doped tin oxide-coated glass via a facile tungsten film-assisted hydrothermal process using aqueous tungsten hexachloride solution. X-ray diffraction analysis and field-emission scanning electron microscopy were used to characterize the phase and morphology of the grown nanostructures. Arrays of tungsten oxide nanorods with diameter of ˜22 nm and length of ˜240 nm were obtained at 200°C after 8 h of hydrothermal reaction. We propose a growth mechanism for the deposition of the monoclinic tungsten oxide phase in the hydrothermal environment. The tungsten film was first oxidized to tungsten oxide to provide seed sites for crystal growth and address the poor connection between the growing tungsten oxide and substrate. Aligned tungsten oxide nanorod arrays can be grown by a W thin film-assisted heterogeneous nucleation process with NaCl as a structure-directing agent. The fabricated electrochromic device demonstrated optical modulation (coloration/bleaching) at 632.8 nm of ˜41.2% after applying a low voltage of 0.1 V for 10 s, indicating the potential of such nanorod array films for use in energy-saving smart windows.

  1. Effect of Continuous and Pulsed Current Gas Tungsten Arc Welding on Dissimilar Weldments Between Hastelloy C-276/AISI 321 Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Sharma, Sumitra; Taiwade, Ravindra V.; Vashishtha, Himanshu

    2017-03-01

    In the present investigation, an attempt has been made to join Hastelloy C-276 nickel-based superalloy and AISI 321 austenitic stainless steel using ERNiCrMo-4 filler. The joints were fabricated by continuous and pulsed current gas tungsten arc welding processes. Experimental studies to ascertain the structure-property co-relationship with or without pulsed current mode were carried out using an optical microscope and scanning electron microscope. Further, the energy-dispersive spectroscope was used to evaluate the extent of microsegregation. The microstructure of fusion zone was obtained as finer cellular dendritic structure for pulsed current mode, whereas columnar structure was formed with small amount of cellular structure for continuous current mode. The scanning electron microscope examination witnessed the existence of migrated grain boundaries at the weld interfaces. Moreover, the presence of secondary phases such as P and μ was observed in continuous current weld joints, whereas they were absent in pulsed current weld joints, which needs to be further characterized. Moreover, pulsed current joints resulted in narrower weld bead, refined morphology, reduced elemental segregation and improved strength of the welded joints. The outcomes of the present investigation would help in obtaining good quality dissimilar joints for industrial applications and AISI 321 ASS being cheaper consequently led to cost-effective design also.

  2. Review of deformation behavior of tungsten at temperature less than 0.2 absolute melting temperature

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.

    1972-01-01

    The deformation behavior of tungsten at temperatures 0.2 T sub m is reviewed, with primary emphasis on the temperature dependence of the yield stress and the ductile-brittle transition temperature. It appears that a model based on the high Peierls stress of tungsten best accounts for the observed mechanical behavior at low temperatures. Recent research is discussed which suggests an important role of electron concentration and bonding on the mechanical behavior of tungsten. It is concluded that future research on tungsten should include studies to define more clearly the correlation between electron concentration and mechanical behavior of tungsten alloys and other transition metal alloys.

  3. Compact flat-panel gas-gap heat switch operating at 295 K

    NASA Astrophysics Data System (ADS)

    Krielaart, M. A. R.; Vermeer, C. H.; Vanapalli, S.

    2015-11-01

    Heat switches are devices that can change from a thermally conducting (on-) state to an insulating (off-) state whenever the need arises. They enable adaptive thermal management strategies in which cooling rates are altered either spatially or temporally, leading to a substantial reduction in the energy and mass budget of a large range of systems. State-of-the-art heat switches are only rarely employed in thermal system architectures, since they are rather bulky and have a limited thermal performance (expressed as the heat transfer ratio between the on- and off-state heat conductance). Using selective laser melting additive manufacturing technology, also known as 3D printing, we developed a compact flat-panel gas-gap heat switch that offers superior thermal performance, is simpler and more economic to produce and assemble, contains no moving parts, and is more reliable because it lacks welded joints. The manufactured rectangular panel heat switch has frontal device dimensions of 10 cm by 10 cm, thickness of 3.2 mm and weighs just 121 g. An off heat conductance of 0.2 W/K and on-off heat conductance ratio of 38 is observed at 295 K.

  4. Tungsten toxicity, bioaccumulation, and compartmentalization into organisms representing two trophic levels.

    PubMed

    Kennedy, Alan J; Johnson, David R; Seiter, Jennifer M; Lindsay, James H; Boyd, Robert E; Bednar, Anthony J; Allison, Paul G

    2012-09-04

    Metallic tungsten has civil and military applications and was considered a green alternative to lead. Recent reports of contamination in drinking water and soil have raised scrutiny and suspended some applications. This investigation employed the cabbage Brassica oleracae and snail Otala lactea as models to determine the toxicological implications of sodium tungstate and an aged tungsten powder-spiked soil containing monomeric and polymeric tungstates. Aged soil bioassays indicated cabbage growth was impaired at 436 mg of W/kg, while snail survival was not impacted up to 3793 mg of W/kg. In a dermal exposure, sodium tungstate was more toxic to the snail, with a lethal median concentration of 859 mg of W/kg. While the snail significantly bioaccumulated tungsten, predominately in the hepatopancreas, cabbage leaves bioaccumulated much higher concentrations. Synchrotron-based mapping indicated the highest levels of W were in the veins of cabbage leaves. Our results suggest snails consuming contaminated cabbage accumulated higher tungsten concentrations relative to the concentrations directly bioaccumulated from soil, indicating the importance of robust trophic transfer investigations. Finally, synchrotron mapping provided evidence of tungsten in the inner layer of the snail shell, suggesting potential use of snail shells as a biomonitoring tool for metal contamination.

  5. Complexity of Products of Tungsten Corrosion: Comparison of the 3D Pourbaix Diagrams with the Experimental Data

    NASA Astrophysics Data System (ADS)

    Nave, Maryana I.; Kornev, Konstantin G.

    2017-03-01

    Tungsten is one of the most attractive metals in applications where materials are subject to high temperature and strong fields. However, in harsh aqueous environment, tungsten is prone to corrosion. Control of tungsten corrosion in aqueous solutions is a challenging task: as a transition metal, tungsten is able to produce a vast variety of oxides and hydrates. To reveal the thermodynamic pathway of corrosion at different conditions, the 3D Pourbaix diagrams relating the reduction potential, pH, and concentration of different tungsten-based compounds were constructed. These diagrams allow one to identify the most thermodynamically stable tungsten-based compounds. The 3D Pourbaix diagrams were used to explain different regimes of anodic dissolution of tungsten in aqueous solutions of potassium hydroxide.

  6. Underwater explosive compaction-sintering of tungsten-copper coating on a copper surface

    NASA Astrophysics Data System (ADS)

    Chen, Xiang; Li, Xiaojie; Yan, Honghao; Wang, Xiaohong; Chen, Saiwei

    2018-01-01

    This study investigated underwater explosive compaction-sintering for coating a high-density tungsten-copper composite on a copper surface. First, 50% W-50% Cu tungsten-copper composite powder was prepared by mechanical alloying. The composite powder was pre-compacted and sintered by hydrogen. Underwater explosive compaction was carried out. Finally, a high-density tungsten-copper coating was obtained by diffusion sintering of the specimen after explosive compaction. A simulation of the underwater explosive compaction process showed that the peak value of the pressure in the coating was between 3.0 and 4.8 GPa. The hardness values of the tungsten-copper layer and the copper substrate were in the range of 87-133 and 49 HV, respectively. The bonding strength between the coating and the substrate was approximately 100-105 MPa.

  7. Tungsten bridge for the low energy ignition of explosive and energetic materials

    DOEpatents

    Benson, D.A.; Bickes, R.W. Jr.; Blewer, R.S.

    1990-12-11

    A tungsten bridge device for the low energy ignition of explosive and energetic materials is disclosed. The device is fabricated on a silicon-on-sapphire substrate which has an insulating bridge element defined therein using standard integrated circuit fabrication techniques. Then, a thin layer of tungsten is selectively deposited on the silicon bridge layer using chemical vapor deposition techniques. Finally, conductive lands are deposited on each end of the tungsten bridge layer to form the device. It has been found that this device exhibits substantially shorter ignition times than standard metal bridges and foil igniting devices. In addition, substantially less energy is required to cause ignition of the tungsten bridge device of the present invention than is required for common metal bridges and foil devices used for the same purpose. 2 figs.

  8. Tungsten bridge for the low energy ignition of explosive and energetic materials

    DOEpatents

    Benson, David A.; Bickes, Jr., Robert W.; Blewer, Robert S.

    1990-01-01

    A tungsten bridge device for the low energy ignition of explosive and energetic materials is disclosed. The device is fabricated on a silicon-on-sapphire substrate which has an insulating bridge element defined therein using standard integrated circuit fabrication techniques. Then, a thin layer of tungsten is selectively deposited on the silicon bridge layer using chemical vapor deposition techniques. Finally, conductive lands are deposited on each end of the tungsten bridge layer to form the device. It has been found that this device exhibits substantially shorter ignition times than standard metal bridges and foil igniting devices. In addition, substantially less energy is required to cause ignition of the tungsten bridge device of the present invention than is required for common metal bridges and foil devices used for the same purpose.

  9. Diffusion of hydrogen in a hydrogen-saturated tungsten

    NASA Astrophysics Data System (ADS)

    Krstic, Predrag; Kaganovich, Igor

    2015-11-01

    Hydrogen diffusion in monoscrystalline tungsten is studied by molecular dynamics with BOP potential in function of hydrogen concentration and temperature. Tungsten surface is prepared by cumulative irradiation of the 25 eV deuterium atoms at various fluences. The diffusion coefficients for T>500K and various D concentrations were calculated from the average slope of the mean square displacements of deuterium as functions of time. The accumulation of deuterium suppresses its diffusion at all temperatures. The results are in a reasonable agreement with the existing experiments. Supported by the LDRD of PPPL.

  10. The deuterium depth profile in neutron-irradiated tungsten exposed to plasma

    NASA Astrophysics Data System (ADS)

    Shimada, Masashi; Cao, G.; Hatano, Y.; Oda, T.; Oya, Y.; Hara, M.; Calderoni, P.

    2011-12-01

    Tungsten samples (99.99% purity from A.L.M.T. Corp., 6 mm in diameter, 0.2 mm in thickness) were irradiated by high-flux neutrons at 50 °C to 0.025 dpa in the High Flux Isotope Reactor at Oak Ridge National Laboratory. Subsequently, the neutron-irradiated tungsten samples were exposed to high-flux deuterium plasmas (ion flux: 1021-1022 m-2 s-1, ion fluence: 1025-1026 m-2) in the Tritium Plasma Experiment at Idaho National Laboratory. This paper reports the results of deuterium depth profiling in neutron-irradiated tungsten exposed to plasmas at 100, 200 and 500 °C via nuclear reaction analysis (NRA). The NRA measurements show that a significant amount of deuterium (>0.1 at.% D/W) remains trapped in the bulk material (up to 5 μm) at 500 °C. Tritium Migration Analysis Program simulation results using the NRA profiles indicate that different trapping mechanisms exist for neutron-irradiated and unirradiated tungsten.

  11. Atomically thin heterostructures based on single-layer tungsten diselenide and graphene.

    PubMed

    Lin, Yu-Chuan; Chang, Chih-Yuan S; Ghosh, Ram Krishna; Li, Jie; Zhu, Hui; Addou, Rafik; Diaconescu, Bogdan; Ohta, Taisuke; Peng, Xin; Lu, Ning; Kim, Moon J; Robinson, Jeremy T; Wallace, Robert M; Mayer, Theresa S; Datta, Suman; Li, Lain-Jong; Robinson, Joshua A

    2014-12-10

    Heterogeneous engineering of two-dimensional layered materials, including metallic graphene and semiconducting transition metal dichalcogenides, presents an exciting opportunity to produce highly tunable electronic and optoelectronic systems. In order to engineer pristine layers and their interfaces, epitaxial growth of such heterostructures is required. We report the direct growth of crystalline, monolayer tungsten diselenide (WSe2) on epitaxial graphene (EG) grown from silicon carbide. Raman spectroscopy, photoluminescence, and scanning tunneling microscopy confirm high-quality WSe2 monolayers, whereas transmission electron microscopy shows an atomically sharp interface, and low energy electron diffraction confirms near perfect orientation between WSe2 and EG. Vertical transport measurements across the WSe2/EG heterostructure provides evidence that an additional barrier to carrier transport beyond the expected WSe2/EG band offset exists due to the interlayer gap, which is supported by theoretical local density of states (LDOS) calculations using self-consistent density functional theory (DFT) and nonequilibrium Green's function (NEGF).

  12. Growth and characterization of α and β-phase tungsten films on various substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jeong-Seop; Cho, Jaehun; You, Chun-Yeol, E-mail: cyyou@inha.ac.kr

    2016-03-15

    The growth conditions of tungsten thin films were investigated using various substrates including Si, Si/SiO{sub 2}, GaAs, MgO, and Al{sub 2}O{sub 3}, and recipes were discovered for the optimal growth conditions of thick metastable β-phase tungsten films on Si, GaAs, and Al{sub 2}O{sub 3} substrates, which is an important material in spin orbit torque studies. For the Si/SiO{sub 2} substrate, the crystal phase of the tungsten films was different depending upon the tungsten film thickness, and the transport properties were found to dramatically change with the thickness owing to a change in phase from the α + β phase to the α-phase.more » It is shown that the crystal phase changes are associated with residual stress in the tungsten films and that the resistivity is closely related to the grain sizes.« less

  13. Extension of the ECRH operational space with O2 and X3 heating schemes to control tungsten accumulation in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Höhnle, H.; Stober, J.; Herrmann, A.; Kasparek, W.; Leuterer, F.; Monaco, F.; Neu, R.; Schmid-Lorch, D.; Schütz, H.; Schweinzer, J.; Stroth, U.; Wagner, D.; Vorbrugg, S.; Wolfrum, E.; ASDEX Upgrade Team

    2011-08-01

    ASDEX Upgrade has been operated with tungsten-coated plasma-facing components for several years. H-mode operation with good confinement has been demonstrated. Nevertheless, purely neutral beam injection-heated H-modes with reduced gas puff, moderate heating power or/and increased triangularity tend to accumulate tungsten, followed by a radiative collapse. Under these conditions, central electron heating with electron cyclotron resonance heating (ECRH), usually in X2 polarization, changes the impurity transport in the plasma centre, reducing the central tungsten concentration and, in many cases, stabilizing the plasma. In order to extend the applicability of central ECRH to a wider range of magnetic field and plasma current additional ECRH schemes with reduced single-pass absorption have been implemented: X3 heating allows us to reduce the magnetic field by 30%, such that the first H-modes with an ITER-like value of the safety factor of q95 = 3 could be run in the tungsten-coated device. O2 heating increases the cutoff density by a factor of 2 allowing higher currents and triangularities to be addressed. For both schemes, scenarios have been developed to cope with the associated reduced absorption. In the case of central X3 heating, the X2 resonance lies close to the pedestal top at the high-field side of the plasma, serving as a beam dump. For O2, holographic mirrors have been developed which guarantee a second pass through the plasma centre. The beam position on these reflectors is controlled by fast thermocouples. Stray-radiation protection has been implemented using sniffer probes.

  14. Design and Operation of a Two-Color Interferometer to Measure Plasma and Neutral Gas Densities in a Laser-Triggered Spark Gap Switch

    NASA Astrophysics Data System (ADS)

    Camacho, J. F.; Ruden, E. L.; Domonkos, M. T.; Schmitt-Sody, A.; Lucero, A.

    2014-10-01

    A Mach-Zehnder imaging interferometer, operating with 1064-nm and 532-nm wavelength beams from a short-pulse laser and a frequency-doubled branch, respectively, has been designed and built to simultaneously measure plasma free electron and neutral gas densities profiles within a laser-triggered spark gap switch with a 5-mm gap. The switch will be triggered by focusing a separate 532-nm or 1064-nm laser pulse along the gap's axis to trigger low-jitter breakdown. Illuminating the gap transverse to this axis, the diagnostic will generate interferograms for each wavelength, which will then be numerically converted to phase-shift maps. These will be used to calculate independent line-integrated free electron and neutral density profiles by exploiting their different frequency dispersion curves. The density profiles themselves, then, will be calculated by Abel inversion. Details of the interferometer's design will be presented along with density data obtained using a variety of fill gasses at various pressures. Other switch parameters will be varied as well in order to characterize more fully the performance of the switch.

  15. Critical aspect ratio for tungsten fibers in copper-nickel matrix composites

    NASA Technical Reports Server (NTRS)

    Jech, R. W.

    1975-01-01

    Stress-rupture and tensile tests were conducted at 816 C (1500 F) to determine the effect of matrix composition on the minimum fiber length to diameter ratio (critical aspect ratio) below which fibers in a tungsten fiber/copper-nickel alloy matrix composite could not be stressed to their ultimate load carrying capability. This study was intended to simulate some of the conditions that might be encountered with materials combinations used in high-temperature composites. The critical aspect ratio for stress-rupture was found to be greater than for short-time tension, and it increased as the time to rupture increased. The increase was relatively slight, and calculated fiber lengths for long service appear to be well within practical size limits for effective reinforcement and ease of fabrication of potential gas turbine components.

  16. Nickel base alloy. [for gas turbine engine stator vanes

    NASA Technical Reports Server (NTRS)

    Freche, J. C.; Waters, W. J. (Inventor)

    1977-01-01

    A nickel base superalloy for use at temperatures of 2000 F (1095 C) to 2200 F (1205 C) was developed for use as stator vane material in advanced gas turbine engines. The alloy has a nominal composition in weight percent of 16 tungsten, 7 aluminum, 1 molybdenum, 2 columbium, 0.3 zirconium, 0.2 carbon and the balance nickel.

  17. Gas-path leakage seal for a gas turbine

    DOEpatents

    Wolfe, C.E.; Dinc, O.S.; Bagepalli, B.S.; Correia, V.H.; Aksit, M.F.

    1996-04-23

    A gas-path leakage seal is described for generally sealing a gas-path leakage-gap between spaced-apart first and second members of a gas turbine (such as combustor casing segments). The seal includes a generally imperforate foil-layer assemblage which is generally impervious to gas and is located in the leakage-gap. The seal also includes a cloth-layer assemblage generally enclosingly contacting the foil-layer assemblage. In one seal, the first edge of the foil-layer assemblage is left exposed, and the foil-layer assemblage resiliently contacts the first member near the first edge to reduce leakage in the ``plane`` of the cloth-layer assemblage under conditions which include differential thermal growth of the two members. In another seal, such leakage is reduced by having a first weld-bead which permeates the cloth-layer assemblage, is attached to the metal-foil-layer assemblage near the first edge, and unattachedly contacts the first member. 4 figs.

  18. Gas-path leakage seal for a gas turbine

    DOEpatents

    Wolfe, Christopher E.; Dinc, Osman S.; Bagepalli, Bharat S.; Correia, Victor H.; Aksit, Mahmut F.

    1996-01-01

    A gas-path leakage seal for generally sealing a gas-path leakage-gap between spaced-apart first and second members of a gas turbine (such as combustor casing segments). The seal includes a generally imperforate foil-layer assemblage which is generally impervious to gas and is located in the leakage-gap. The seal also includes a cloth-layer assemblage generally enclosingly contacting the foil-layer assemblage. In one seal, the first edge of the foil-layer assemblage is left exposed, and the foil-layer assemblage resiliently contacts the first member near the first edge to reduce leakage in the "plane" of the cloth-layer assemblage under conditions which include differential thermal growth of the two members. In another seal, such leakage is reduced by having a first weld-bead which permeates the cloth-layer assemblage, is attached to the metal-foil-layer assemblage near the first edge, and unattachedly contacts the first member.

  19. Structural stability of super duplex stainless weld metals and its dependence on tungsten and copper

    NASA Astrophysics Data System (ADS)

    Nilsson, J.-O.; Huhtala, T.; Jonsson, P.; Karlsson, L.; Wilson, A.

    1996-08-01

    Three different superduplex stainless weld metals have been produced using manual metal arc welding under identical welding conditions. The concentration of the alloying elements tungsten and copper corresponded to the concentrations in commercial superduplex stainless steels (SDSS). Aging experiments in the temperature range 700 °C to 1110 °C showed that the formation of intermetallic phase was enhanced in tungsten-rich weld metal and also dissolved at higher temperatures compared with tungsten-poor and tungsten-free weld metals. It could be inferred from time-temperature-transformation (TTT) and continuous-cooling-transformation (CCT) diagrams produced in the present investigation that the critical cooling rate to avoid 1 wt pct of intermetallic phase was 2 times faster for tungsten-rich weld metal. Microanalysis in combination with thermodynamic calculations showed that tungsten was accommodated in χ phase, thereby decreasing the free energy. Experimental evidence supports the view that the formation of intermetallic phase is enhanced in tungsten-rich weld metal, owing to easier nucleation of nonequilibrium χ phase compared with σ phase. The formation of secondary austenite (γ2) during welding was modeled using the thermodynamic computer program Thermo-Calc. Satisfactory agreement between theory and practice was obtained. Thermo-Calc was capable of predicting observed lower concentrations of chromium and nitrogen in γ2 compared with primary austenite. The volume fraction of γ2 was found to be significantly higher in tungsten-rich and tungsten + copper containing weld metal. The results could be explained by a higher driving force for precipitation of γ2 in these.

  20. Development of Bulk Nanocrystalline Tungsten Alloys for Fusion Reactor Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Zhigang Zak

    This project developed a technology for manufacturing bulk ultrafine tungsten materials that are at or near full density for fusion reactor structural applications, aiming to improve ductility and toughness of tungsten before and after irradiation. The project involved the development of fabrication processes for making bulk ultrafine grained W, the development of new alloys of ultrafine grained W and evaluations of properties of these specific materials. The goal of this fabrication process is to produce fully dense bulk W with ultrafine grain sizes, with uniform distributions of grain size and additives. To date there is no known process that couldmore » be used to make ultrafine grained tungsten in a fully dense state and in a cost-acceptable fashion. The specific technology described in this proposal for making ultrafine grained tungsten involves a suite of nano-particle processing and sintering techniques. The program also developed new alloys of ultrafine grained W, e.g. W-(Ta,V,Ti)-TiC alloys to improve ductility and toughness before and after irradiation. By completing this project, we achieved the following objectives: • Demonstrated experimentally the feasibility of producing bulk ultrafine grained tungsten alloys (at or near 100% dense, <1000 nm grain size) using the proposed process • Demonstrated the proposed ultrafine grained W alloys, namely, W-(Ta, V, Ti)-TiC, can indeed be made using the proposed process • Demonstrated that the properties of nano tungsten alloys meet the requirements for fusion reactor applications. The overall goal was to harness the potential of ultrafine grained W produced using the proposed processes as the core structural materials for future fusion reactors. The project was very successful overall, meeting all milestones and surpassing project goals in terms of process development and material’s blistering resistance properties. A novel process similar to the conventional press-and-sinter powder metallurgy method

  1. Tungsten: A Preliminary Environmental Risk Assessment

    DTIC Science & Technology

    2011-05-01

    Tungsten Effects on Soil Microbial Communities BUILDING STRONG® Actinobacteria Bacteroidetes Firmicutes alpha-Proteobacteria beta-Proteobacteria gamma...Persistence of Actinobacteria & gamma- Proteobacteria • Actinobacteria – includes the actinomycetes  γ-Proteobacteria – includes a variety of microbes

  2. Molecular Dynamics Simulation of Hydrogen Trapping on Sigma 5 Tungsten Grain Boundaries

    NASA Astrophysics Data System (ADS)

    Al-Shalash, Aws Mohammed Taha

    Tungsten as a plasma facing material is the predominant contender for future Tokamak reactor environments. The interaction between the plasma particles and tungsten is crucial to be studied for successful usage and design of tungsten in the plasma facing components ensuring the reliability and longevity of the fusion reactors. The bombardment of the sigma 5 polycrystalline tungsten was modeled using the molecular dynamics simulation through the large-scale atomic/molecular massively parallel simulator (LAMMPS) code and Tersoff type interatomic potential. By simulating the operational conditions of the Tokamak reactors, the hydrogen trapping rate, implantation distribution, and bubble formation was investigated at various temperatures (300-1200 K) and various hydrogen incident energy (20-100 eV). The substrate's temperature increases the deflected H atoms, and increases the penetration depth for the ones that go through. As well, the lower temperature tungsten substrates retain more H atoms. Increasing the bombarded hydrogen's energy increases the trapping and retention rate and the depth of penetration. Another experiments were conducted to determine whether the Sigma5 grain boundary's (GB) location affects the trapping profiles in H. The findings are ranges from small effect on deflection rates at low H energies to no effect at high H energies. However, there is a considerable effect on shifting the trapping depth profile upward toward the surface when raising the GB closer to the surface. Hydrogen atoms are highly mobile on tungsten substrate, yet no bubble formation was witnessed.

  3. Powder Processing of Amorphous Tungsten-bearing Alloys and Composites

    DTIC Science & Technology

    2015-03-01

    8725 John J. Kingman Road, MS-6201 Fort Belvoir, VA 22060-6201 T E C H N IC A L R E P O R T DTRA-TR-14-73 Powder Processing of Amorphous Tungsten...Technology, Boise State University, Army Research Laboratory Project Title: Powder Processing of Amorphous Tungsten-bearing Alloys and Composites...Our year 3 tasks, as laid out in the project proposal, were to 1) Consolidate amorphous or nanocrystalline powder blends 2) Mechanical testing

  4. Extreme Ultraviolet Spectra of Few-Times Ionized Tungsten for Divertor Plasma Diagnostics

    DOE PAGES

    Clementson, Joel; Lennartsson, Thomas; Beiersdorfer, Peter

    2015-09-09

    The extreme ultraviolet (EUV) emission from few-times ionized tungsten atoms has been experimentally studied at the Livermore electron beam ion trap facility. The ions were produced and confined during low-energy operations of the EBIT-I electron beam ion trap. By varying the electron-beam energy from around 30–300 eV, tungsten ions in charge states expected to be abundant in tokamak divertor plasmas were excited, and the resulting EUV emission was studied using a survey spectrometer covering 120–320 Å. It is found that the emission strongly depends on the excitation energy; below 150 eV, it is relatively simple, consisting of strong isolated linesmore » from a few charge states, whereas at higher energies, it becomes very complex. For divertor plasmas with tungsten impurity ions, this emission should prove useful for diagnostics of tungsten flux rates and charge balance, as well as for radiative cooling of the divertor volume. Several lines in the 194–223 Å interval belonging to the spectra of five- and seven-times ionized tungsten (Tm-like W VI and Ho-like W VIII) were also measured using a high-resolution spectrometer.« less

  5. Sequential and simultaneous thermal and particle exposure of tungsten

    NASA Astrophysics Data System (ADS)

    Steudel, I.; Huber, A.; Kreter, A.; Linke, J.; Sergienko, G.; Unterberg, B.; Wirtz, M.

    2016-02-01

    The broad array of expected loading conditions in a fusion reactor such as ITER necessitates high requirements on the plasma facing materials (PFMs). Tungsten, the PFM for the divertor region, the most affected part of the in-vessel components, must thus sustain severe, distinct exposure conditions. Accordingly, comprehensive experiments investigating sequential and simultaneous thermal and particle loads were performed on double forged pure tungsten, not only to investigate whether the thermal and particle loads cause damage but also if the sequence of exposure maintains an influence. The exposed specimens showed various kinds of damage such as roughening, blistering, and cracking at a base temperature where tungsten could be ductile enough to compensate the induced stresses exclusively by plastic deformation (Pintsuk et al 2011 J. Nucl. Mater. 417 481-6). It was found out that hydrogen has an adverse effect on the material performance and the loading sequence on the surface modification.

  6. Development of high temperature materials for solid propellant rocket nozzle applications. [tantalum carbides-tungsten fiber composites

    NASA Technical Reports Server (NTRS)

    Manning, C. R., Jr.; Honeycutt, L., III

    1974-01-01

    Evaluation of tantalum carbide-tungsten fiber composites has been completed as far as weight percent carbon additions and weight percent additions of tungsten fiber. Extensive studies were undertaken concerning Young's Modulus and fracture strength of this material. Also, in-depth analysis of the embrittling effects of the extra carbon additions on the tungsten fibers has been completed. The complete fabrication procedure for the tantalum carbide-tungsten fiber composites with extra carbon additions is given. Microprobe and metallographic studies showed the effect of extra carbon on the tungsten fibers, and evaluation of the thermal shock parameter fracture strength/Young's Modulus is included.

  7. The high temperature impact response of tungsten and chromium

    NASA Astrophysics Data System (ADS)

    Zaretsky, E. B.; Kanel, G. I.

    2017-09-01

    The evolution of elastic-plastic shock waves has been studied in pure polycrystalline tungsten and chromium at room and elevated temperatures over propagation distances ranging from 0.05 to 3 mm (tungsten) and from 0.1 to 2 mm (chromium). The use of fused silica windows in all but one experiment with chromium and in several high temperature experiments with tungsten led to the need for performing shock and optic characterization of these windows over the 300-1200 K temperature interval. Experiments with tungsten and chromium samples showed that annealing of the metals transforms the initial ramping elastic wave into a jump-like wave, substantially increasing the Hugoniot elastic limits of the metals. With increased annealing time, the spall strength of the two metals slightly increases. Both at room and at high temperatures, the elastic precursor in the two metals decays in two distinct regimes. At propagation distances smaller than ˜1 mm (tungsten) or ˜0.5 mm (chromium), decay is fast, with the dislocation motion and multiplication being controlled by phonon viscous drag. At greater distances, the rate of decay becomes much lower, with control of the plastic deformation being passed to the thermally activated generation and motion of dislocation double-kinks. The stress at which this transition takes place virtually coincides with the Peierls stress τP of the active glide system. Analysis of the annealing effects in both presently and previously studied BCC metals (i.e., Ta, V, Nb, Mo, W, and Cr) and of the dependencies of their normalized Peierls stresses τP(θ) /τP(0 ) on the normalized temperature θ=T /Tm allows one to conclude that the non-planar, split into several glide planes, structure of the dislocation core in these metals is mainly responsible for their plastic deformation features.

  8. Corrosion of tungsten microelectrodes used in neural recording applications.

    PubMed

    Patrick, Erin; Orazem, Mark E; Sanchez, Justin C; Nishida, Toshikazu

    2011-06-15

    In neuroprosthetic applications, long-term electrode viability is necessary for robust recording of the activity of neural populations used for generating communication and control signals. The corrosion of tungsten microwire electrodes used for intracortical recording applications was analyzed in a controlled bench-top study and compared to the corrosion of tungsten microwires used in an in vivo study. Two electrolytes were investigated for the bench-top electrochemical analysis: 0.9% phosphate buffered saline (PBS) and 0.9% PBS containing 30 mM of hydrogen peroxide. The oxidation and reduction reactions responsible for corrosion were found by measurement of the open circuit potential and analysis of Pourbaix diagrams. Dissolution of tungsten to form the tungstic ion was found to be the corrosion mechanism. The corrosion rate was estimated from the polarization resistance, which was extrapolated from the electrochemical impedance spectroscopy data. The results show that tungsten microwires in an electrolyte of PBS have a corrosion rate of 300-700 μm/yr. The corrosion rate for tungsten microwires in an electrolyte containing PBS and 30 mM H₂O₂ is accelerated to 10,000-20,000 μm/yr. The corrosion rate was found to be controlled by the concentration of the reacting species in the cathodic reaction (e.g. O₂ and H₂O₂). The in vivo corrosion rate, averaged over the duration of implantation, was estimated to be 100 μm/yr. The reduced in vivo corrosion rate as compared to the bench-top rate is attributed to decreased rate of oxygen diffusion caused by the presence of a biological film and a reduced concentration of available oxygen in the brain. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. 40 CFR 721.10600 - Calcium cobalt lead strontium titanium tungsten oxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Calcium cobalt lead strontium titanium... Specific Chemical Substances § 721.10600 Calcium cobalt lead strontium titanium tungsten oxide. (a... calcium cobalt lead strontium titanium tungsten oxide (PMN P-11-272; CAS No. 1262279-30-0) is subject to...

  10. 40 CFR 721.10600 - Calcium cobalt lead strontium titanium tungsten oxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Calcium cobalt lead strontium titanium... Specific Chemical Substances § 721.10600 Calcium cobalt lead strontium titanium tungsten oxide. (a... calcium cobalt lead strontium titanium tungsten oxide (PMN P-11-272; CAS No. 1262279-30-0) is subject to...

  11. Carcinogenicity and Immunotoxicity of Embedded Depleted Uranium and Heavy-Metal Tungsten Alloy in Rodents

    DTIC Science & Technology

    2006-10-01

    Embedded Depleted Uranium and Heavy-Metal Tungsten Alloy in Rodents PRINCIPAL INVESTIGATOR: John F. Kalinich, Ph.D...Carcinogenicity and Immunotoxicity of Embedded Depleted Uranium and Heavy- Metal Tungsten Alloy in Rodents 5b. GRANT NUMBER DAMD17-01-1-0821 5c...ABSTRACT This study investigated the carcinogenic and immunotoxic potential of embedded fragments of depleted uranium (DU) and a heavy-metal tungsten

  12. Toxicity of tungsten carbide and cobalt-doped tungsten carbide nanoparticles in mammalian cells in vitro.

    PubMed

    Bastian, Susanne; Busch, Wibke; Kühnel, Dana; Springer, Armin; Meissner, Tobias; Holke, Roland; Scholz, Stefan; Iwe, Maria; Pompe, Wolfgang; Gelinsky, Michael; Potthoff, Annegret; Richter, Volkmar; Ikonomidou, Chrysanthy; Schirmer, Kristin

    2009-04-01

    Tungsten carbide nanoparticles are being explored for their use in the manufacture of hard metals. To develop nanoparticles for broad applications, potential risks to human health and the environment should be evaluated and taken into consideration. We aimed to assess the toxicity of well-characterized tungsten carbide (WC) and cobalt-doped tungsten carbide (WC-Co) nanoparticle suspensions in an array of mammalian cells. We examined acute toxicity of WC and of WC-Co (10% weight content Co) nanoparticles in different human cell lines (lung, skin, and colon) as well as in rat neuronal and glial cells (i.e., primary neuronal and astroglial cultures and the oligodendrocyte precursor cell line OLN-93). Furthermore, using electron microscopy, we assessed whether nanoparticles can be taken up by living cells. We chose these in vitro systems in order to evaluate for potential toxicity of the nanoparticles in different mammalian organs (i.e., lung, skin, intestine, and brain). Chemical-physical characterization confirmed that WC as well as WC-Co nanoparticles with a mean particle size of 145 nm form stable suspensions in serum-containing cell culture media. WC nanoparticles were not acutely toxic to the studied cell lines. However, cytotoxicity became apparent when particles were doped with Co. The most sensitive were astrocytes and colon epithelial cells. Cytotoxicity of WC-Co nanoparticles was higher than expected based on the ionic Co content of the particles. Analysis by electron microscopy demonstrated presence of WC nanoparticles within mammalian cells. Our findings demonstrate that doping of WC nanoparticles with Co markedly increases their cytotoxic effect and that the presence of WC-Co in particulate form is essential to elicit this combinatorial effect.

  13. Surface morphology changes to tungsten under exposure to He ions from an electron cyclotron resonance plasma source

    NASA Astrophysics Data System (ADS)

    Donovan, David; Buchenauer, Dean; Whaley, Josh; Friddle, Raymond; Wright, Graham

    2014-10-01

    Exposure of tungsten to low energy (<100 eV) helium plasmas at temperatures between 900-1900 K in both laboratory experiments and tokamaks has been shown to cause severe nanoscale modification of the near surface resulting the growth of tungsten tendrils. We are exploring the potential for using a compact ECR plasma in situ with scanning tunneling microscopy (STM) to investigate the early stages of helium induced tungsten migration. Here we report on characterization of the plasma source for helium plasmas with a desired ion flux of ~1 × 1019 ions m-2 s-1 and the surface morphology changes seen on the exposed tungsten surfaces. Exposures of polished tungsten discs have been performed and characterized using SEM, AFM, and FIB cross section imaging. Bubbles have been seen on the exposed tungsten surface and in sub-surface cross sections growing to up to 150 nm in diameter. Comparisons are made between exposures of warm rolled Plansee tungsten discs and ALMT ITER grade tungsten samples. Work supported by US DOE Contract DE-AC04-94AL85000 and the PSI Science Center.

  14. Processing and consolidation of copper/tungsten

    DOE PAGES

    Chen, Ching-Fong; Pokharel, Reeju; Brand, Michael J.; ...

    2016-09-27

    Here, we developed a copper/tungsten (Cu/W) composite for mesoscale Materials Science applications using the novel High-Energy Diffraction Microscopy (HEDM) technique. Argon-atomized copper powder was selected as the starting raw powder and screened to remove the extremely large particle fraction. Tungsten particles were collected by milling and screening the -325 mesh tungsten powder between 500 and 635 mesh sieves. Hot pressing of screened Cu powder was performed at 900 °C in Ar/4 %H 2 atmosphere. XRD and ICP results show that the hot-pressed Cu sample consists of about 5 vol% Cu 2O, which is caused by the presence of oxygen onmore » the surface of the starting Cu powder. Hot pressing the copper powder in a pure hydrogen atmosphere was successful in removing most of the surface oxygen. Our process was also implemented for hot pressing the Cu/W composite. The density of the Cu/W composites hot pressed at 950 °C in pure hydrogen was about 94 % of the theoretical density (TD). The hot-pressed Cu/W composites were further hot isostatic pressed at 1050 °C in argon atmosphere, which results in 99.6 % of the TD with the designed Cu grain size and W particle distribution. Tensile specimens with D-notch were machined using the wire EDM method. Furthermore, the processing and consolidation of these materials will be discussed in detail. The HEDM images are also showed and discussed.« less

  15. A mass spectrometric system for analyzing thermal desorption spectra of ion-implanted argon and cesium in tungsten. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Wood, G. M., Jr.

    1974-01-01

    A mass spectrometric system for determining the characteristics of materials used in instrumental development and aerospace applications was developed. The desorption spectra of cesium that was ion-implanted into polycrystalline tungsten and the effects on the spectra of bombardment of the tungsten by low energy (70 eV) electrons were investigated. Work function changes were measured by the retarding potential diode method. Flash desorption characteristics were observed and gas-reaction mechanisms of the surface of heated metal filaments were studied. Desorption spectra were measured by linearly increasing the sample temperature at a selected rate, the temperature cycling being generated from a ramp-driven dc power supply, with the mass spectrometer tuned to a mass number of interest. Results of the study indicate an anomolous desorption mechanism following an electron bombardment of the sample surface. The enhanced spectra are a function of the post-bombardment time and energy and are suggestive of an increased concentration of cesium atoms, up to 10 or more angstroms below the surface.

  16. Technology of fast spark gaps

    NASA Astrophysics Data System (ADS)

    Standler, Ronald B.

    1989-09-01

    To protect electronic systems from the effects of electromagnetic pulse (EMP) form nuclear weapons and high-power microwave (HPM) weapons, it is desirable to have fast responding protection components. The gas-filled spark gap appears to be an attractive protection component, except that it can be slow to conduct under certain conditions. This report reviews the literature and presents ideas for construction of a spark gap that will conduct in less than one nanosecond. The key concept to making a fast-responding spark gap is to produce a large number of free electrons quickly. Seven different mechanisms for production of free electrons are reviewed, and several that are relevant to miniature spark gaps for protective applications are discussed in detail. These mechanisms include: inclusion of radioactive materials, photoelectric effect, secondary electrode emission from the anode, and field emission from the cathode.

  17. Adhesion and transfer of polytetrafluoroethylene to tungsten studied by field ion microscopy

    NASA Technical Reports Server (NTRS)

    Brainard, W. A.; Buckley, D. H.

    1972-01-01

    Mechanical contacts between polytetrafluoroethylene (PTFE) and tungsten field ion tips were made in situ in the field ion microscope. Both load and force of adhesion were measured for varying contact times and for clean and contaminated tungsten tips. Strong adhesion between the PTFE and clean tungsten was observed at contact times greater than 2.5 min (forces of adhesion were greater than three times the load). For times less than 2.5 min, the force of adhesion was immeasurably small. The increase in adhesion with contact time after 2.5 min can be attributed to the increase in true contact area by creep of PTFE. No adhesion was measurable at long contact times with contaminated tungsten tips. Neon field ion micrographs taken after the contacts show many linear and branched arrays which appear to represent PTFE that remains adhered to the surface even at the high electric fields required for imaging.

  18. Irradiation hardening of pure tungsten exposed to neutron irradiation

    DOE PAGES

    Hu, Xunxiang; Koyanagi, Takaaki; Fukuda, Makoto; ...

    2016-08-26

    In this paper, pure tungsten samples have been neutron irradiated in HFIR at 90–850 °C to 0.03–2.2 dpa. A dispersed barrier hardening model informed by the available microstructure data has been used to predict the hardness. Comparison of the model predictions and the measured Vickers hardness reveals the dominant hardening contribution at various irradiation conditions. For tungsten samples irradiated in HFIR, the results indicate that voids and dislocation loops contributed to the hardness increase in the low dose region (<0.3 dpa), while the formation of intermetallic second phase precipitation, resulting from transmutation, dominates the radiation-induced strengthening beginning with a relativelymore » modest dose (>0.6 dpa). Finally, the precipitate contribution is most pronounced for the HFIR irradiations, whereas the radiation-induced defect cluster microstructure can rationalize the entirety of the hardness increase observed in tungsten irradiated in the fast neutron spectrum of Joyo and the mixed neutron spectrum of JMTR.« less

  19. [Determination of tungsten and cobalt in the air of workplace by ICP-OES].

    PubMed

    Zhang, J; Ding, C G; Li, H B; Song, S; Yan, H F

    2017-08-20

    Objective: To establish the inductively coupled plasma optical emission spectrometry (ICP-OES) method for determination of cobalt and tungsten in the air of workplace. Methods: The cobalt and tungsten were collected by filter membrane and then digested by nitric acid, inductively coupled plasma optical emission spectrometry (ICP-OES) was used for the detection of cobalt and tungsten. Results: The linearity of tungsten was good at the range of 0.01-1 000 μg/ml with a correlation coefficient of 0.999 9, the LOD and LOQ were 0.006 7 μg/ml and 0.022 μg/ml, respectively. The recovery was ranged from 98%-101%, the RSD of intra-and inter-batch precision were 1.1%-3.0% and 2.1%-3.8%, respectively. The linearity of cobalt was good at the range of 0.01-100 μg/ml with a correlation coefficient of 0.999 9, the LOD and LOQ were 0.001 2 μg/ml and 0.044 μg/ml, respectively. The recovery was ranged from 95%-97%, the RSD of intra-and inter-batch precision were 1.1%-2.4% and 1.1%-2.9%, respectively. The sampling efficiency of tungsten and cobalt were higher than 94%. Conclusion: The linear range, sensitivity and precision of the method was suitable for the detection of tungsten and cobalt in the air of workplace.

  20. Effects of Heating and Cooling Rates on Phase Transformations in 10 Wt Pct Ni Steel and Their Application to Gas Tungsten Arc Welding

    NASA Astrophysics Data System (ADS)

    Barrick, Erin J.; Jain, Divya; DuPont, John N.; Seidman, David N.

    2017-12-01

    10 wt pct Ni steel is a high-strength steel that possesses good ballistic resistance from the deformation induced transformation of austenite to martensite, known as the transformation-induced-plasticity effect. The effects of rapid heating and cooling rates associated with welding thermal cycles on the phase transformations and microstructures, specifically in the heat-affected zone, were determined using dilatometry, microhardness, and microstructural characterization. Heating rate experiments demonstrate that the Ac3 temperature is dependent on heating rate, varying from 1094 K (821 °C) at a heating rate of 1 °C/s to 1324 K (1051 °C) at a heating rate of 1830 °C/s. A continuous cooling transformation diagram produced for 10 wt pct Ni steel reveals that martensite will form over a wide range of cooling rates, which reflects a very high hardenability of this alloy. These results were applied to a single pass, autogenous, gas tungsten arc weld. The diffusion of nickel from regions of austenite to martensite during the welding thermal cycle manifests itself in a muddled, rod-like lath martensitic microstructure. The results of these studies show that the nickel enrichment of the austenite in 10 wt pct Ni steel plays a critical role in phase transformations during welding.

  1. Casting copper to tungsten for high power arc lamp cathodes

    NASA Technical Reports Server (NTRS)

    Will, H. A.

    1973-01-01

    A method for making 400-kW arc lamp cathodes is described. The cathodes are made by casting a 1.75-in. diameter copper body onto a thoriated tungsten insert. The addition of 0.5-percent nickel to the copper prevents voids from forming at the copper-tungsten interface. Cathodes made by this process have withstood more than 110 hours of operation in a 400-kW arc lamp.

  2. Glandular radiation dose in tomosynthesis of the breast using tungsten targets.

    PubMed

    Sechopoulos, Ioannis; D'Orsi, Carl J

    2008-10-24

    With the advent of new detector technology, digital tomosynthesis imaging of the breast has, in the past few years, become a technique intensely investigated as a replacement for planar mammography. As with all other x-ray-based imaging methods, radiation dose is of utmost concern in the development of this new imaging technology. For virtually all development and optimization studies, knowledge of the radiation dose involved in an imaging protocol is necessary. A previous study characterized the normalized glandular dose in tomosynthesis imaging and its variation with various breast and imaging system parameters. This characterization was performed with x-ray spectra generated by molybdenum and rhodium targets. In the recent past, many preliminary patient studies of tomosynthesis imaging have been reported in which the x-ray spectra were generated with x-ray tubes with tungsten targets. The differences in x-ray distribution among spectra from these target materials make the computation of new normalized glandular dose values for tungsten target spectra necessary. In this study we used previously obtained monochromatic normalized glandular dose results to obtain spectral results for twelve different tungsten target x-ray spectra. For each imaging condition, two separate values were computed: the normalized glandular dose for the zero degree projection angle (DgN0), and the ratio of the glandular dose for non-zero projection angles to the glandular dose for the zero degree projection (the relative glandular dose, RGD(alpha)). It was found that DgN0 is higher for tungsten target x-ray spectra when compared with DgN0 values for molybdenum and rhodium target spectra of both equivalent tube voltage and first half value layer. Therefore, the DgN0 for the twelve tungsten target x-ray spectra and different breast compositions and compressed breast thicknesses simulated are reported. The RGD(alpha) values for the tungsten spectra vary with the parameters studied in a

  3. Tungsten Oxides for Photocatalysis, Electrochemistry, and Phototherapy.

    PubMed

    Huang, Zhen-Feng; Song, Jiajia; Pan, Lun; Zhang, Xiangwen; Wang, Li; Zou, Ji-Jun

    2015-09-23

    The conversion, storage, and utilization of renewable energy have all become more important than ever before as a response to ever-growing energy and environment concerns. The performance of energy-related technologies strongly relies on the structure and property of the material used. The earth-abundant family of tungsten oxides (WOx ≤3 ) receives considerable attention in photocatalysis, electrochemistry, and phototherapy due to their highly tunable structures and unique physicochemical properties. Great breakthroughs have been made in enhancing the optical absorption, charge separation, redox capability, and electrical conductivity of WOx ≤3 through control of the composition, crystal structure, morphology, and construction of composite structures with other materials, which significantly promotes the efficiency of processes and devices based on this material. Herein, the properties and synthesis of WOx ≤3 family are reviewed, and then their energy-related applications are highlighted, including solar-light-driven water splitting, CO2 reduction, and pollutant removal, electrochromism, supercapacitors, lithium batteries, solar and fuel cells, non-volatile memory devices, gas sensors, and cancer therapy, from the aspect of function-oriented structure design and control. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Material properties and their influence on the behaviour of tungsten as plasma facing material

    NASA Astrophysics Data System (ADS)

    Wirtz, M.; Uytdenhouwen, I.; Barabash, V.; Escourbiac, F.; Hirai, T.; Linke, J.; Loewenhoff, Th.; Panayotis, S.; Pintsuk, G.

    2017-06-01

    With the aim of a possible improvement of the material specification for tungsten, five different tungsten products by different companies and by different production technologies (forging and rolling) are subject to a materials characterization program. Tungsten produced by forging results in an uniaxial elongated grain shape while rolled products have a plate like grain shape which has an influence on the mechanical properties of the material. The materials were investigated with respect to the following parameters: hardness measurements, microstructural investigations, tensile tests and recrystallisation sensitivity tests at 3 different temperatures. The obtained results show that different production processes have an influence on the resulting anisotropic microstructure and the related material properties of tungsten in the as-received state. Additionally, the recrystallization sensitivity varies between the different products, what could be a result of the different production processes. Additionally, two tungsten products were exposed to thermal shocks. The obtained results show that the improved recrystallisation behaviour has no major impact on the thermal shock performance.

  5. A molecular dynamics study of helium bombardments on tungsten nanoparticles

    NASA Astrophysics Data System (ADS)

    Li, Min; Hou, Qing; Cui, Jiechao; Wang, Jun

    2018-06-01

    Molecular dynamics simulations were conducted to study the bombardment process of a single helium atom on a tungsten nanoparticle. Helium atoms ranging from 50 eV to 50 keV were injected into tungsten nanoparticles with a diameter in the range of 2-12 nm. The retention and reflection of projectiles and sputtering of nanoparticles were calculated at various times. The results were found to be relative to the nanoparticle size and projectile energy. The projectile energy of 100 eV contributes to the largest retention of helium atoms in tungsten nanoparticles. The most obvious difference in reflection exists in the range of 3-10 keV. Around 66% of sputtering atoms is in forward direction for projectiles with incident energy higher than 10 keV. Moreover, the axial direction of the nanoparticles was demonstrated to influence the bombardment to some degree.

  6. Mechanistic Understanding of Tungsten Oxide In-Plane Nanostructure Growth via Sequential Infiltration Synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jae Jin; Suh, Hyo Seon; Zhou, Chun

    Tungsten oxide (WO3-x) nanostructures with hexagonal in-plane arrangements were fabricated by sequential infiltration synthesis (SIS), using the selective interaction of gas phase precursors with functional groups in one domain of a block copolymer (BCP) self-assembled template. Such structures are highly desirable for various practical applications and as model systems for fundamental studies. The nanostructures were characterized by cross-sectional scanning electron microscopy, grazing-incidence small/wide-angle X-ray scattering (GISAXS/GIWAXS), and X-ray absorption near edge structure (XANES) measurements at each stage during the SIS process and subsequent thermal treatments, to provide a comprehensive picture of their evolution in morphology, crystallography and electronic structure. Inmore » particular, we discuss the critical role of SIS Al2O3 seeds toward modifying the chemical affinity and free volume in a polymer for subsequent infiltration of gas phase precursors. The insights into SIS growth obtained from this study are valuable to the design and fabrication of a wide range of targeted nanostructures.« less

  7. Dosimetric evaluation of lead and tungsten eye shields in electron beam treatment.

    PubMed

    Shiu, A S; Tung, S S; Gastorf, R J; Hogstrom, K R; Morrison, W H; Peters, L J

    1996-06-01

    The purpose of this study is to report that commercially available eye shields (designed for orthovoltage x-rays) are inadequate to protect the ocular structures from penetrating electrons for electron beam energies equal to or greater than 6 MeV. Therefore, a prototype medium size tungsten eye shield was designed and fabricated. The advantages of the tungsten eye shield over lead are discussed. Electron beams (6-9 MeV) are often used to irradiate eyelid tumors to curative doses. Eye shields can be placed under the eyelids to protect the globe. Film and thermoluminescent dosimeters (TLDs) were used within a specially constructed polystyrene eye phantom to determine the effectiveness of various commercially available internal eye shields (designed for orthovoltage x-rays). The same procedures were used to evaluate a prototype medium size tungsten eye shield (2.8 mm thick), which was designed and fabricated for protection of the globe from penetrating electrons for electron beam energy equal to 9 MeV. A mini-TLD was used to measure the dose enhancement due to electrons backscattered off the tungsten eye shield, both with or without a dental acrylic coating that is required to reduce discomfort, permit sterilization of the shield, and reduce the dose contribution from backscattered electrons. Transmission of a 6 MeV electron beam through a 1.7 mm thick lead eye shield was found to be 50% on the surface (cornea) of the phantom and 27% at a depth of 6 mm (lens). The thickness of lead required to stop 6-9 MeV electron beams is impractical. In place of lead, a prototype medium size tungsten eye shield was made. For 6 to 9 MeV electrons, the doses measured on the surface (cornea) and at 6 mm (lens) and 21 mm (retina) depths were all less than 5% of the maximum dose of the open field (4 x 4 cm). Electrons backscattered off a tungsten eye shield without acrylic coating increased the lid dose from 85 to 123% at 6 MeV and 87 to 119% at 9 MeV. For the tungsten eye shield coated

  8. Electrochemical synthesis of nanoporous tungsten carbide and its application as electrocatalysts for photoelectrochemical cells.

    PubMed

    Kang, Jin Soo; Kim, Jin; Lee, Myeong Jae; Son, Yoon Jun; Jeong, Juwon; Chung, Dong Young; Lim, Ahyoun; Choe, Heeman; Park, Hyun S; Sung, Yung-Eun

    2017-05-04

    Photoelectrochemical (PEC) cells are promising tools for renewable and sustainable solar energy conversion. Currently, their inadequate performance and high cost of the noble metals used in the electrocatalytic counter electrode have postponed the practical use of PEC cells. In this study, we report the electrochemical synthesis of nanoporous tungsten carbide and its application as a reduction catalyst in PEC cells, namely, dye-sensitized solar cells (DSCs) and PEC water splitting cells, for the first time. The method employed in this study involves the anodization of tungsten foil followed by post heat treatment in a CO atmosphere to produce highly crystalline tungsten carbide film with an interconnected nanostructure. This exhibited high catalytic activity for the reduction of cobalt bipyridine species, which represent state-of-the-art redox couples for DSCs. The performance of tungsten carbide even surpassed that of Pt, and a substantial increase (∼25%) in energy conversion efficiency was achieved when Pt was substituted by tungsten carbide film as the counter electrode. In addition, tungsten carbide displayed decent activity as a catalyst for the hydrogen evolution reaction, suggesting the high feasibility for its utilization as a cathode material for PEC water splitting cells, which was also verified in a two-electrode water photoelectrolyzer.

  9. Toxicity of Tungsten Carbide and Cobalt-Doped Tungsten Carbide Nanoparticles in Mammalian Cells in Vitro

    PubMed Central

    Bastian, Susanne; Busch, Wibke; Kühnel, Dana; Springer, Armin; Meißner, Tobias; Holke, Roland; Scholz, Stefan; Iwe, Maria; Pompe, Wolfgang; Gelinsky, Michael; Potthoff, Annegret; Richter, Volkmar; Ikonomidou, Chrysanthy; Schirmer, Kristin

    2009-01-01

    Background Tungsten carbide nanoparticles are being explored for their use in the manufacture of hard metals. To develop nanoparticles for broad applications, potential risks to human health and the environment should be evaluated and taken into consideration. Objective We aimed to assess the toxicity of well-characterized tungsten carbide (WC) and cobaltdoped tungsten carbide (WC-Co) nanoparticle suspensions in an array of mammalian cells. Methods We examined acute toxicity of WC and of WC-Co (10% weight content Co) nanoparticles in different human cell lines (lung, skin, and colon) as well as in rat neuronal and glial cells (i.e., primary neuronal and astroglial cultures and the oligodendro cyte precursor cell line OLN-93). Furthermore, using electron microscopy, we assessed whether nanoparticles can be taken up by living cells. We chose these in vitro systems in order to evaluate for potential toxicity of the nanoparticles in different mammalian organs (i.e., lung, skin, intestine, and brain). Results Chemical–physical characterization confirmed that WC as well as WC-Co nanoparticles with a mean particle size of 145 nm form stable suspensions in serum-containing cell culture media. WC nanoparticles were not acutely toxic to the studied cell lines. However, cytotoxicity became apparent when particles were doped with Co. The most sensitive were astrocytes and colon epithelial cells. Cytotoxicity of WC-Co nanoparticles was higher than expected based on the ionic Co content of the particles. Analysis by electron microscopy demonstrated presence of WC nanoparticles within mammalian cells. Conclusions Our findings demonstrate that doping of WC nanoparticles with Co markedly increases their cytotoxic effect and that the presence of WC-Co in particulate form is essential to elicit this combinatorial effect. PMID:19440490

  10. Spectroscopic Investigations of Highly Charged Tungsten Ions - Atomic Spectroscopy and Fusion Plasma Diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clementson, Joel

    2010-05-01

    The spectra of highly charged tungsten ions have been investigated using x-ray and extreme ultraviolet spectroscopy. These heavy ions are of interest in relativistic atomic structure theory, where high-precision wavelength measurements benchmark theoretical approaches, and in magnetic fusion research, where the ions may serve to diagnose high-temperature plasmas. The work details spectroscopic investigations of highly charged tungsten ions measured at the Livermore electron beam ion trap (EBIT) facility. Here, the EBIT-I and SuperEBIT electron beam ion traps have been employed to create, trap, and excite tungsten ions of M- and L-shell charge states. The emitted spectra have been studied inmore » high resolution using crystal, grating, and x-ray calorimeter spectrometers. In particular, wavelengths of n = 0 M-shell transitions in K-like W 55+ through Ne-like W 64+, and intershell transitions in Zn-like W 44+ through Co-like W 47+ have been measured. Special attention is given to the Ni-like W46+ ion, which has two strong electric-dipole forbidden transitions that are of interest for plasma diagnostics. The EBIT measurements are complemented by spectral modeling using the Flexible Atomic Code (FAC), and predictions for tokamak spectra are presented. The L-shell tungsten ions have been studied at electron-beam energies of up to 122 keV and transition energies measured in Ne-like W 64+ through Li-like W 71+. These spectra constitute the physics basis in the design of the ion-temperature crystal spectrometer for the ITER tokamak. Tungsten particles have furthermore been introduced into the Sustained Spheromak Physics Experiment (SSPX) spheromak in Livermore in order to investigate diagnostic possibilities of extreme ultraviolet tungsten spectra for the ITER divertor. The spheromak measurement and spectral modeling using FAC suggest that tungsten ions in charge states around Er-like W 6+ could be useful for plasma diagnostics.« less

  11. Rugged, portable tungsten coil atomic emission spectrometer.

    PubMed

    Gu, Jiyan; Oliveira, Silvana R; Donati, George L; Gomes Neto, José Anchieta; Jones, Bradley T

    2011-04-01

    Tungsten coil atomic emission spectrometry is an ideal technique for field applications because of its simplicity, low cost, low power requirement, and independence from cooling systems. A new, portable, compact design is reported here. The tungsten coil is extracted from an inexpensive 24 V, 250 W commercial light bulb. The coil is housed in a small, aluminum cell. The emission signal exits from a small aperture in the cell, while the bulk of the blackbody emission from the tungsten coil is blocked. The resulting spectra exhibit extremely low background signals. The atomization cell, a single lens, and a hand-held charge coupled device (CCD) spectrometer are fixed on a 1 × 6 × 30 cm ceramic base. The resulting system is robust and easily transported. A programmable, miniature 400 W solid-state constant current power supply controls the temperature of the coil. Fifteen elements are determined with the system (Ba, Cs, Li, Rb, Cr, Sr, Eu, Yb, Mn, Fe, Cu, Mg, V, Al, and Ga). The precision ranges from 4.3% to 8.4% relative standard deviation for repetitive measurements of the same solution. Detection limits are in the 0.04 to 1500 μg/L range. Accuracy is tested using standard reference materials for polluted water, peach leaves, and tomato leaves. For those elements present above the detection limit, recoveries range from 72% to 147%.

  12. ERO modelling of tungsten erosion and re-deposition in EAST L mode discharges

    NASA Astrophysics Data System (ADS)

    Xie, H.; Ding, R.; Kirschner, A.; Chen, J. L.; Ding, F.; Mao, H. M.; Feng, W.; Borodin, D.; Wang, L.

    2017-09-01

    Tungsten erosion and re-deposition at the upper outer divertor of the Experimental Advanced Superconducting Tokamak has been modelled using the 3D Monte Carlo code ERO. The measured divertor plasma condition in attached L mode discharges with upper single null configuration has been used to build the background plasma in the simulations. The tungsten gross erosion rate is mainly determined by carbon impurity in the background plasma. Increasing carbon concentration can first increase and afterwards suppress the tungsten erosion rate. Taking into account the material mixing surface model, the influence of eroded particles returning to the surface on sputtering has been studied. Sputtering by eroded particles returning to the surface can significantly enhance the gross erosion by reduction of the carbon ratio within the surface interaction layer and by increasing the erosion rate due to sputtering by both eroded tungsten and carbon particles. Modelling indicates that carbon deposition occurs on the dome plate and part of the vertical plate close to the dome plate, whereas tungsten net erosion occurs on most of the vertical plate. The modelling results are in reasonable agreement with the experimental WI spectroscopy.

  13. Non-boronized compared with boronized operation of ASDEX Upgrade with full-tungsten plasma facing components

    NASA Astrophysics Data System (ADS)

    Kallenbach, A.; Dux, R.; Mayer, M.; Neu, R.; Pütterich, T.; Bobkov, V.; Fuchs, J. C.; Eich, T.; Giannone, L.; Gruber, O.; Herrmann, A.; Horton, L. D.; Maggi, C. F.; Meister, H.; Müller, H. W.; Rohde, V.; Sips, A.; Stäbler, A.; Stober, J.; ASDEX Upgrade Team

    2009-04-01

    After completion of the tungsten coating of all plasma facing components, ASDEX Upgrade has been operated without boronization for 1 1/2 experimental campaigns. This has allowed the study of fuel retention under conditions of relatively low D co-deposition with low-Z impurities as well as the operational space of a full-tungsten device for the unfavourable condition of a relatively high intrinsic impurity level. Restrictions in operation were caused by the central accumulation of tungsten in combination with density peaking, resulting in H-L backtransitions induced by too low separatrix power flux. Most important control parameters have been found to be the central heating power, as delivered predominantly by ECRH, and the ELM frequency, most easily controlled by gas puffing. Generally, ELMs exhibit a positive impact, with the effect of impurity flushing out of the pedestal region overbalancing the ELM-induced W source. The restrictions of plasma operation in the unboronized W machine occurred predominantly under low or medium power conditions. Under medium-high power conditions, stable operation with virtually no difference between boronized and unboronized discharges was achieved. Due to the reduced intrinsic radiation with boronization and the limited power handling capability of VPS coated divertor tiles (≈10 MW m-2), boronized operation at high heating powers was possible only with radiative cooling. To enable this, a previously developed feedback system using (thermo-)electric current measurements as approximate sensor for the divertor power flux was introduced into the standard AUG operation. To avoid the problems with reduced ELM frequency due to core plasma radiation, nitrogen was selected as radiating species since its radiative characteristic peaks at lower electron temperatures in comparison with Ne and Ar, favouring SOL and divertor radiative losses. Nitrogen seeding resulted not only in the desired divertor power load reduction but also in improved

  14. Synthesis, Consolidation and Characterization of Sol-gel Derived Tantalum-Tungsten Oxide Thermite Composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cervantes, O

    2010-06-01

    Energetic composite powders consisting of sol-gel (SG) derived nanostructured tungsten oxide were produced with various amounts of micrometer-scale tantalum fuel metal. Such energetic composite powders were ignition-tested and results show that the powders are not sensitive to friction, spark and/or impact ignition. Initial consolidation experiments, using the High Pressure Spark Plasma Sintering (HPSPS) technique, on the SG derived nanostructured tungsten oxide produced samples with higher relative density than can be achieved with commercially available tungsten oxide. The SG derived nanostructured tungsten oxide with immobilized tantalum fuel metal (Ta - WO3) energetic composite was consolidated to a density of 9.17 g·cm-3more » or 93% relative density. In addition, those samples were consolidated without significant pre-reaction of the constituents, thus retaining their stored chemical energy.« less

  15. Conceptual design and development of GEM based detecting system for tomographic tungsten focused transport monitoring

    NASA Astrophysics Data System (ADS)

    Chernyshova, M.; Czarski, T.; Malinowski, K.; Kowalska-Strzęciwilk, E.; Poźniak, K.; Kasprowicz, G.; Zabołotny, W.; Wojeński, A.; Kolasiński, P.; Mazon, D.; Malard, P.

    2015-10-01

    Implementing tungsten as a plasma facing material in ITER and future fusion reactors will require effective monitoring of not just its level in the plasma but also its distribution. That can be successfully achieved using detectors based on Gas Electron Multiplier (GEM) technology. This work presents the conceptual design of the detecting unit for poloidal tomography to be tested at the WEST project tokamak. The current stage of the development is discussed covering aspects which include detector's spatial dimensions, gas mixtures, window materials and arrangements inside and outside the tokamak ports, details of detector's structure itself and details of the detecting module electronics. It is expected that the detecting unit under development, when implemented, will add to the safe operation of tokamak bringing the creation of sustainable nuclear fusion reactors a step closer. A shorter version of this contribution is due to be published in PoS at: 1st EPS conference on Plasma Diagnostics

  16. A Wsbnd Ne interatomic potential for simulation of neon implantation in tungsten

    NASA Astrophysics Data System (ADS)

    Backman, Marie; Juslin, Niklas; Huang, Guiyang; Wirth, Brian D.

    2016-08-01

    An interatomic pair potential for Wsbnd Ne is developed for atomistic molecular dynamics simulations of neon implantation in tungsten. The new potential predicts point defect energies and binding energies of small clusters that are in good agreement with electronic structure calculations. Molecular dynamics simulations of small neon clusters in tungsten show that trap mutation, in which an interstitial neon cluster displaces a tungsten atom from its lattice site, occurs for clusters of three or more neon atoms. However, near a free surface, trap mutation can occur at smaller sizes, including even a single neon interstitial in close proximity to a (100) or (110) surface.

  17. FINAL REPORT ON GDE GAP CELL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herman, D.; Summers, W.; Danko, E.

    2009-09-28

    A project has been undertaken to develop an electrochemical cell and support equipment for evaluation of a gas diffusion electrode-based, narrow-electrolyte-gap anode for SO{sub 2} oxidation in the hydrogen production cycle of the hybrid sulfur (HyS) process. The project supported the HyS development program at the Savannah River National Lab (SRNL). The benefits of using a gas diffusion electrode in conjunction with the narrow anolyte gap are being determined through electrochemical polarization testing under a variety conditions, and by comparison to results produced by SRNL and others using anode technologies that have no anolyte gap. These test results indicate thatmore » the NGA cell has low resistance suitable for use in the HyS electrolyzer, exhibits good efficiency at high current densities compared to the direct feed HyS electrolyzer, and indicates robust performance in extended testing over 65 hours. Seepage episodes were mostly caused by port clogging, which can be mitigated in future designs through minor modifications to the hardware. Significant reductions in sulfur crossover have not yet been demonstrated in the NGA configuration compared to in-house direct feed testing, but corroborative sulfur layer analysis is as yet incomplete. Further testing in a single-pass anolyte configuration is recommended for complete evaluation of steady-state electrochemical efficiency and SO{sub 2} crossover in the narrow gap configuration.« less

  18. Recent progress of tungsten R&D for fusion application in Japan

    NASA Astrophysics Data System (ADS)

    Ueda, Y.; Lee, H. T.; Ohno, N.; Kajita, S.; Kimura, A.; Kasada, R.; Nagasaka, T.; Hatano, Y.; Hasegawa, A.; Kurishita, H.; Oya, Y.

    2011-12-01

    The status of ongoing research projects of tungsten R&D in Japan is summarized in this paper. For tungsten material development, a new improved fabrication technique, the so-called superplasticity-based microstructural modification, is described. This technique successfully improved fracture strength and ductility at room temperature. Recent results on vacuum plasma spray W coating and W brazing on ferritic steels and vanadium alloys are explained. Feasibility of these techniques for the manufacture of the blanket is successfully demonstrated. The latest findings on the effect of neutron damage in tungsten on T retention and on the change in mechanical and electrical properties are described. Retention characteristics for neutron-damaged W were different compared to those for ion-damaged W. Upon neutron irradiation, tungsten alloys containing transmutation elements of W (Re and Os) show changes in properties that are different compared with those shown by pure W. The effects of mixed plasma exposure (D/He/C) are described. Both D/He and D/C mixed ion irradiations significantly affect ion-driven permeation in W. He bubble dynamics play a key role in nano-structure formation on the W surface.

  19. Qualification of tungsten coatings on plasma-facing components for JET

    NASA Astrophysics Data System (ADS)

    Maier, H.; Neu, R.; Greuner, H.; Böswirth, B.; Balden, M.; Lindig, S.; Matthews, G. F.; Rasinski, M.; Wienhold, P.; Wiltner, A.

    2009-12-01

    This contribution summarizes the work that has been performed to establish the industrial production of tungsten coatings on carbon fibre composite (CFC) for application within the ITER-like Wall Project at JET. This comprises the investigation of vacuum plasma-sprayed coatings, physical vapour deposited tungsten/rhenium multilayers, as well as coatings deposited by combined magnetron-sputtering and ion implantation. A variety of analysis tools were applied to investigate failures and oxide and carbide formation in these systems.

  20. Microstructure, optical, and electrochromic properties of sol-gel nanoporous tungsten oxide films

    NASA Astrophysics Data System (ADS)

    Djaoued, Yahia; Ashrit, P. V.; Badilescu, S.; Bruning, R.

    2003-08-01

    Porous tungsten oxide films have been prepared by a nonhydrolitic sol-gel method using poly(ethylene glycol) (PEG) as a structure directing agent. The method entails the hydrolysis of an ethanolic solution of tungsten ethoxide (formed by the reaction of WCl6 with ethanol) followed by condensation and polymerization at the PEG-tungsten oxide oligometers interface. A highly porous WO3 framework was obtained after PEG was burned off by calcination at a relativley low temperature. AFM images of the films treated thermally show an ordered material rather than microscopic particulates. Both fibrilar nanostructures and striped phase can be obtained via this approach, depending on the concentration of PEG in the coating solution. XRD data from the fibrils indicate that they are crystalline with very small crystals, whereas the striped phases obtained with 20% PEG correspond to two crystalline phases, one, the stoichiometric WO3 and the other one an oxygen deficient phase, containing larger crystals (~28 nm). The results show that PEG promotes the formation of oxygen deficient phases and delays crystallization. Compared to WO3 with no PEG, the optical and electrochromic properties of the macroporous tungsten oxide films appear to be significantly improved. The formation of organized nanostructures is tentatively accounted for by the strong hydrogen bonding interactions between PEG and the tungsten oxide oligomers.

  1. Concentration by centrifugation for gas exchange EPR oximetry measurements with loop-gap resonators.

    PubMed

    Subczynski, Witold K; Felix, Christopher C; Klug, Candice S; Hyde, James S

    2005-10-01

    Measurement of the bimolecular collision rate between a spin label and oxygen is conveniently carried out using a gas permeable plastic sample tube of small diameter that fits a loop-gap resonator. It is often desirable to concentrate the sample by centrifugation in order to improve the signal-to-noise ratio (SNR), but the deformable nature of small plastic sample tubes presents technical problems. Solutions to these problems are described. Two geometries were considered: (i) a methylpentene polymer, TPX, from Mitsui Chemicals, at X-band and (ii) Teflon tubing with 0.075 mm wall thickness at Q-band. Sample holders were fabricated from Delrin that fit the Eppendorf microcentrifuge tubes and support the sample capillaries. For TPX, pressure of the sealant at the end of the sample tube against the Delrin sample holder provided an adequate seal. For Teflon, the holder permitted introduction of water around the tube in order to equalize pressures across the sealant during centrifugation. Typically, the SNR was improved by a factor of five to eight. Oxygen accessibility applications in site-directed spin labeling studies are discussed.

  2. Concentration by centrifugation for gas exchange EPR oximetry measurements with loop-gap resonators

    NASA Astrophysics Data System (ADS)

    Subczynski, Witold K.; Felix, Christopher C.; Klug, Candice S.; Hyde, James S.

    2005-10-01

    Measurement of the bimolecular collision rate between a spin label and oxygen is conveniently carried out using a gas permeable plastic sample tube of small diameter that fits a loop-gap resonator. It is often desirable to concentrate the sample by centrifugation in order to improve the signal-to-noise ratio (SNR), but the deformable nature of small plastic sample tubes presents technical problems. Solutions to these problems are described. Two geometries were considered: (i) a methylpentene polymer, TPX, from Mitsui Chemicals, at X-band and (ii) Teflon tubing with 0.075 mm wall thickness at Q-band. Sample holders were fabricated from Delrin that fit the Eppendorf microcentrifuge tubes and support the sample capillaries. For TPX, pressure of the sealant at the end of the sample tube against the Delrin sample holder provided an adequate seal. For Teflon, the holder permitted introduction of water around the tube in order to equalize pressures across the sealant during centrifugation. Typically, the SNR was improved by a factor of five to eight. Oxygen accessibility applications in site-directed spin labeling studies are discussed.

  3. Testing Mylar Multi-Gap Resistive Plate Chambers

    NASA Astrophysics Data System (ADS)

    Towell, Cecily; EIC PID Consortium Collaboration

    2016-09-01

    Quantum Chromodynamics (QCD) is the fundamental theory that successfully explains strong force interactions. To continue the effective study of QCD in nuclear structure, plans are being made to construct an Electron Ion Collider (EIC). Part of the preparation for the EIC includes continued detector development to push beyond their current capabilities. This includes Time of Flight (TOF) detectors, which are used for particle identification. Multi-Gap Resistive Plate Chambers (mRPCs) are a type of TOF detector that typically use glass to make small gas gaps within the detector to produce fast signals when a high energy particle goes through the detector. These extremely thin gaps of 0.2mm are key in achieving the excellent timing resolution capability of these detectors. A new mRPC design is being tested with the goal of reaching a timing resolution of 10ps. This design uses sheets of mylar in place of the glass so that the width of the dividers is smaller, thus vastly increasing the number of gas gaps. Multiple versions of this mylar mRPC have been made and tested. The methods for producing these mRPCs and their performance will be discussed. This research was supported by US DOE MENP Grant DE-FG02-03ER41243.

  4. Effect of temperature and geometric parameters on elastic properties of tungsten nanowire: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Saha, Sourav; Mojumder, Satyajit; Mahboob, Monon; Islam, M. Zahabul

    2016-07-01

    Tungsten is a promising material and has potential use as battery anode. Tungsten nanowires are gaining attention from researchers all over the world for this wide field of application. In this paper, we investigated effect of temperature and geometric parameters (diameter and aspect ratio) on elastic properties of Tungsten nanowire. Aspect ratios (length to diameter ratio) considered are 8:1, 10:1, and 12:1 while diameter of the nanowire is varied from 1-4 nm. For 2 nm diameter sample (aspect ratio 10:1), temperature is varied (10K ~ 1500K) to observe elastic behavior of Tungsten nanowire under uniaxial tensile loading. EAM potential is used for molecular dynamic simulation. We applied constant strain rate of 109 s-1 to deform the nanowire. Elastic behavior is expressed through stress vs. strain plot. We also investigated the fracture mechanism of tungsten nanowire and radial distribution function. Investigation suggests peculiar behavior of Tungsten nanowire in nano-scale with double peaks in stress vs. strain diagram. Necking before final fracture suggests that actual elastic behavior of the material is successfully captured through atomistic modeling.

  5. Biomass-derived high-performance tungsten-based electrocatalysts on graphene for hydrogen evolution

    DOE PAGES

    Meng, Fanke; Hu, Enyuan; Zhang, Lihua; ...

    2015-08-05

    We report a new class of highly active and stable tungsten-based catalysts to replace noble metal materials for the hydrogen evolution reaction (HER) in an acidic electrolyte. The catalyst is produced by heating an earth-abundant and low-cost mixture of ammonium tungstate, soybean powder and graphene nanoplatelets (WSoyGnP). The catalyst compound consists of tungsten carbide (W₂C and WC) and tungsten nitride (WN) nanoparticles decorated on graphene nanoplatelets. The catalyst demonstrates an overpotential (η₁₀, the potential at a current density of 10 mA cm⁻²) of 0.105 V, which is the smallest among tungsten-based HER catalysts in acidic media. The coupling with graphenemore » significantly reduces the charge transfer resistance and increases the active surface area of the product, which are favorable for enhancing the HER activity. Therefore, the approach of employing biomass and other less expensive materials as precursors for the production of catalysts with high HER activity provides a new path for the design and development of efficient catalysts for the hydrogen production industry.« less

  6. Surface studies of thermionic cathodes and the mechanism of operation of an impregnated tungsten cathode

    NASA Technical Reports Server (NTRS)

    Forman, R.

    1976-01-01

    The surface properties of conventional impregnated cathodes were investigated by the use of Auger spectroscopy and work function measurements, and these were compared with a synthesized barium or barium oxide coated tungsten surface. The barium and barium oxide coated surfaces were prepared by evaporating barium onto a tungsten surface that can be heated to elevated temperatures. Multilayer or monolayer coverages can be investigated using this technique. The results of this study show that the surface of an impregnated tungsten cathode is identical to that observed for a synthesized monolayer or partial monolayer of barium on partially oxidized tungsten, using the criteria of identical Auger patterns and work functions. Desorption measurements of barium from a tungsten surface were also made. These results in conjunction with Auger and work function data were interpreted to show that throughout most of its life an impregnated cathode operating in the range of 1100 C has a partial monolayer rather than a monolayer of barium on its surface.

  7. Electronic structure of indium-tungsten-oxide alloys and their energy band alignment at the heterojunction to crystalline silicon

    NASA Astrophysics Data System (ADS)

    Menzel, Dorothee; Mews, Mathias; Rech, Bernd; Korte, Lars

    2018-01-01

    The electronic structure of thermally co-evaporated indium-tungsten-oxide films is investigated. The stoichiometry is varied from pure tungsten oxide to pure indium oxide, and the band alignment at the indium-tungsten-oxide/crystalline silicon heterointerface is monitored. Using in-system photoelectron spectroscopy, optical spectroscopy, and surface photovoltage measurements, we show that the work function of indium-tungsten-oxide continuously decreases from 6.3 eV for tungsten oxide to 4.3 eV for indium oxide, with a concomitant decrease in the band bending at the hetero interface to crystalline silicon than indium oxide.

  8. Surface morphology changes to tungsten under exposure to He ions from an electron cyclotron resonance plasma source

    NASA Astrophysics Data System (ADS)

    Donovan, David; Maan, Anurag; Duran, Jonah; Buchenauer, Dean; Whaley, Josh

    2015-11-01

    Exposure of tungsten to low energy (<100 eV) helium plasmas at temperatures between 900-1900 K in both laboratory experiments and tokamaks has been shown to cause severe nanoscale modification of the near surface resulting the growth of tungsten tendrils. We used a relatively low flux (2.5x1019 ions m-2 s-1) compact ECR plasma source at Sandia-California to investigate the early stages of helium induced tungsten damage. Exposures of polished tungsten discs were performed and characterized using SEM, AFM, and FIB cross section imaging. Bubbles have been seen on the exposed tungsten surface and in sub-surface cross sections growing to up to 150 nm in diameter. Comparisons were made between exposures of warm rolled Plansee tungsten discs and ALMT ITER grade tungsten samples. A similar He plasma exposure stage has now been developed at the University of Tennessee-Knoxville with an improved compact ECR plasma source. Status of the new UTK exposure stage will be discussed as well as planned experiments and new material characterization techniques (EBSD, GIXRD). Work supported by US DOE Contract DE-AC04-94AL85000 and the PSI Science Center.

  9. Diallyl disulphide as natural organosulphur friction modifier via the in-situ tribo-chemical formation of tungsten disulphide

    NASA Astrophysics Data System (ADS)

    Rodríguez Ripoll, Manel; Totolin, Vladimir; Gabler, Christoph; Bernardi, Johannes; Minami, Ichiro

    2018-01-01

    The present work shows a novel method for generating in-situ low friction tribofilms containing tungsten disulphide in lubricated contacts using diallyl disulphide as sulphur precursor. The approach relies on the tribo-chemical interaction between the diallyl disulphide and a surface containing embedded sub-micrometer tungsten carbide particles. The results show that upon sliding contact between diallyl disulphide and the tungsten-containing surface, the coefficient of friction drops to values below 0.05 after an induction period. The reason for the reduction in friction is due to tribo-chemical reactions that leads to the in-situ formation of a complex tribofilm that contains iron and tungsten components. X-ray photoelectron spectroscopy analyses indicate the presence of tungsten disulphide at the contact interface, thus justifying the low coefficient of friction achieved during the sliding experiments. It was proven that the low friction tribofilms can only be formed by the coexistence of tungsten and sulphur species, thus highlighting the synergy between diallyl disulphide and the tungsten-containing surface. The concept of functionalizing surfaces to react with specific additives opens up a wide range of possibilities, which allows tuning on-site surfaces to target additive interactions.

  10. Enhanced spin–orbit torques by oxygen incorporation in tungsten films

    PubMed Central

    Demasius, Kai-Uwe; Phung, Timothy; Zhang, Weifeng; Hughes, Brian P.; Yang, See-Hun; Kellock, Andrew; Han, Wei; Pushp, Aakash; Parkin, Stuart S. P.

    2016-01-01

    The origin of spin–orbit torques, which are generated by the conversion of charge-to-spin currents in non-magnetic materials, is of considerable debate. One of the most interesting materials is tungsten, for which large spin–orbit torques have been found in thin films that are stabilized in the A15 (β-phase) structure. Here we report large spin Hall angles of up to approximately –0.5 by incorporating oxygen into tungsten. While the incorporation of oxygen into the tungsten films leads to significant changes in their microstructure and electrical resistivity, the large spin Hall angles measured are found to be remarkably insensitive to the oxygen-doping level (12–44%). The invariance of the spin Hall angle for higher oxygen concentrations with the bulk properties of the films suggests that the spin–orbit torques in this system may originate dominantly from the interface rather than from the interior of the films. PMID:26912203

  11. Narrow groove welding gas diffuser assembly and welding torch

    DOEpatents

    Rooney, Stephen J.

    2001-01-01

    A diffuser assembly is provided for narrow groove welding using an automatic gas tungsten arc welding torch. The diffuser assembly includes a manifold adapted for adjustable mounting on the welding torch which is received in a central opening in the manifold. Laterally extending manifold sections communicate with a shield gas inlet such that shield gas supplied to the inlet passes to gas passages of the manifold sections. First and second tapered diffusers are respectively connected to the manifold sections in fluid communication with the gas passages thereof. The diffusers extend downwardly along the torch electrode on opposite sides thereof so as to release shield gas along the length of the electrode and at the distal tip of the electrode. The diffusers are of a transverse width which is on the order of the thickness of the electrode so that the diffusers can, in use, be inserted into a narrow welding groove before and after the electrode in the direction of the weld operation.

  12. Tungsten Contact and Line Resistance Reduction with Advanced Pulsed Nucleation Layer and Low Resistivity Tungsten Treatment

    NASA Astrophysics Data System (ADS)

    Chandrashekar, Anand; Chen, Feng; Lin, Jasmine; Humayun, Raashina; Wongsenakhum, Panya; Chang, Sean; Danek, Michal; Itou, Takamasa; Nakayama, Tomoo; Kariya, Atsushi; Kawaguchi, Masazumi; Hizume, Shunichi

    2010-09-01

    This paper describes electrical testing results of new tungsten chemical vapor deposition (CVD-W) process concepts that were developed to address the W contact and bitline scaling issues on 55 nm node devices. Contact resistance (Rc) measurements in complementary metal oxide semiconductor (CMOS) devices indicate that the new CVD-W process for sub-32 nm and beyond - consisting of an advanced pulsed nucleation layer (PNL) combined with low resistivity tungsten (LRW) initiation - produces a 20-30% drop in Rc for diffused NiSi contacts. From cross-sectional bright field and dark field transmission electron microscopy (TEM) analysis, such Rc improvement can be attributed to improved plugfill and larger in-feature W grain size with the advanced PNL+LRW process. More experiments that measured contact resistance for different feature sizes point to favorable Rc scaling with the advanced PNL+LRW process. Finally, 40% improvement in line resistance was observed with this process as tested on 55 nm embedded dynamic random access memory (DRAM) devices, confirming that the advanced PNL+LRW process can be an effective metallization solution for sub-32 nm devices.

  13. Nonlinear Bloch waves in metallic photonic band-gap filaments

    NASA Astrophysics Data System (ADS)

    Kaso, Artan; John, Sajeev

    2007-11-01

    We demonstrate the occurrence of nonlinear Bloch waves in metallic photonic crystals (PCs). These periodically structured filaments are characterized by an isolated optical pass band below an effective plasma gap. The pass band occurs in a frequency range where the metallic filament exhibits a negative, frequency-dependent dielectric function and absorption loss. The metallic losses are counterbalanced by gain in two models of inhomogeneously broadened nonlinear oscillators. In the first model, we consider close-packed quantum dots that fill the void regions of a two-dimensional (2D) metallic PC, and whose inhomogeneously broadened emission spectrum spans the original optical pass band of the bare filament. In the second model, we consider thin (10 50 nm) layers of inhomogeneously broadened two-level resonators, with large dipole oscillator strength, that cover the interior surfaces of 2D metallic (silver and tungsten) PCs. These may arise from localized surface plasmon resonances due to small metal particles or an otherwise rough metal surface. For simplicity, we treat electromagnetic modes with electric field perpendicular to the plane of metal periodicity. In both models, a pumping threshold of the resonators is found, above which periodic nonlinear solutions of Maxwell’s equations with purely real frequency within the optical pass band emerge. These nonlinear Bloch waves exhibit a laserlike input pumping to output amplitude characteristic. For strong surface resonances, these nonlinear waves may play a role in light emission from a hot tungsten (suitably microstructured) filament.

  14. Ultrasonic ranking of toughness of tungsten carbide

    NASA Technical Reports Server (NTRS)

    Vary, A.; Hull, D. R.

    1983-01-01

    The feasibility of using ultrasonic attenuation measurements to rank tungsten carbide alloys according to their fracture toughness was demonstrated. Six samples of cobalt-cemented tungsten carbide (WC-Co) were examined. These varied in cobalt content from approximately 2 to 16 weight percent. The toughness generally increased with increasing cobalt content. Toughness was first determined by the Palmqvist and short rod fracture toughness tests. Subsequently, ultrasonic attenuation measurements were correlated with both these mechanical test methods. It is shown that there is a strong increase in ultrasonic attenuation corresponding to increased toughness of the WC-Co alloys. A correlation between attenuation and toughness exists for a wide range of ultrasonic frequencies. However, the best correlation for the WC-Co alloys occurs when the attenuation coefficient measured in the vicinity of 100 megahertz is compared with toughness as determined by the Palmqvist technique.

  15. Reduced ternary molybdenum and tungsten sulfides and hydroprocessing catalysis therewith

    DOEpatents

    Hilsenbeck, S.J.; McCarley, R.E.; Schrader, G.L.; Xie, X.B.

    1999-02-16

    New amorphous molybdenum/tungsten sulfides with the general formula M{sup n+}{sub 2x/n}(L{sub 6}S{sub 8})S{sub x}, where L is molybdenum or tungsten and M is a ternary metal, has been developed. Characterization of these amorphous materials by chemical and spectroscopic methods (IR, Raman, PES) shows that the (M{sub 6}S{sub 8}){sup 0} cluster units are present. Vacuum thermolysis of the amorphous Na{sub 2x}(Mo{sub 6}S{sub 8})S{sub x}{hor_ellipsis}yMeOH first produces poorly crystalline NaMo{sub 6}S{sub 8} by disproportionation at 800 C and well-crystallized NaMo{sub 6}S{sub 8} at {>=} 900 C. Ion-exchange of the sodium material in methanol with soluble M{sup 2+} and M{sup 3+} salts (M=Sn, Co, Ni, Pb, La, Ho) produces the M{sup n+}{sub 2x/n}(Mo{sub 6}S{sub 8})S{sub x}{hor_ellipsis}yMeOH compounds. Additionally, the new reduced ternary molybdenum sulfides with the general formula M{sup n+}{sub 2x/n}Mo{sub 6}S{sub 8+x}(MeOH){sub y}[MMOS] (M=Sn, Co, Ni) is an effective hydrodesulfurization (HDS) catalyst both as-prepared and after a variety of pretreatment conditions. Under specified pretreatment conditions with flowing hydrogen gas, the SnMoS type catalyst can be stabilized, and while still amorphous, can be considered as ``Chevrel phase-like`` in that both contain Mo{sub 6}S{sub 8} cluster units. Furthermore, the small cation NiMoS and CoMoS type pretreated catalyst is shown to be very active HDS catalysts with rates that exceeded the model unpromoted and cobalt-promoted MoS{sub 2} catalysts. 9 figs.

  16. Reduced ternary molybdenum and tungsten sulfides and hydroprocessing catalysis therewith

    DOEpatents

    Hilsenbeck, Shane J.; McCarley, Robert E.; Schrader, Glenn L.; Xie, Xiaobing

    1999-02-16

    New amorphous molybdenum/tungsten sulfides with the general formula M.sup.n+.sub.2x/n (L.sub.6 S.sub.8)S.sub.x, where L is molybdenum or tungsten and M is a ternary metal, has been developed. Characterization of these amorphous materials by chemical and spectroscopic methods (IR, Raman, PES) shows that the (M.sub.6 S.sub.8).sup.0 cluster units are present. Vacuum thermolysis of the amorphous Na.sub.2x (Mo.sub.6 S.sub.8)S.sub.x .multidot.yMeOH first produces poorly crystalline NaMo.sub.6 S.sub.8 by disproportionation at 800.degree. C. and well-crystallized NaMo.sub.6 S.sub.8 at .gtoreq. 900.degree. C. Ion-exchange of the sodium material in methanol with soluble M.sup.2+ and M.sup.3+ salts (M=Sn, Co, Ni, Pb, La, Ho) produces the M.sup.n+.sub.2x/n (Mo.sub.6 S.sub.8)S.sub.x .multidot.yMeOH compounds. Additionally, the new reduced ternary molybdenum sulfides with the general formula M.sup.n+.sub.2x/n Mo.sub.6 S.sub.8+x (MeOH).sub.y ›MMOS! (M=Sn, Co, Ni) is an effective hydrodesulfurization (HDS) catalyst both as-prepared and after a variety of pretreatment conditions. Under specified pretreatment conditions with flowing hydrogen gas, the SnMoS type catalyst can be stabilized, and while still amorphous, can be considered as "Chevrel phase-like" in that both contain Mo.sub.6 S.sub.8 cluster units. Furthermore, the small cation NiMoS and CoMoS type pretreated catalyst showed to be very active HDS catalysts with rates that exceeded the model unpromoted and cobalt-promoted MoS.sub.2 catalysts.

  17. Electrons, phonons and superconductivity in rocksalt and tungsten-carbide phases of CrC.

    PubMed

    Tütüncü, H M; Baǧcı, S; Srivastava, G P; Akbulut, A

    2012-11-14

    We present results of ab initio theoretical investigations of the electronic structure, phonon dispersion relations, electron-phonon interaction and superconductivity in the rocksalt and tungsten-carbide phases of CrC. It is found that, compared to the stable tungsten-carbide phase, the metastable rocksalt phase is characterized by a much larger electronic density of states at the Fermi level. The phonon spectra of the rocksalt phase exhibit anomalies in the dispersion curves of both the transverse and longitudinal acoustic branches along the main symmetry directions. A combination of these characteristic electronic and phonon properties leads to an order of magnitude larger value of the electron-phonon coupling constant (λ = 2.66) for the rocksalt phase compared to that for the tungsten-carbide phase (λ = 0.24). Our calculations suggest that superconducting transition temperature values of 0.01 K and 25-35 K may be expected for the tungsten-carbide and rocksalt phases, respectively.

  18. Measuring the dynamic polarizability of tungsten atom via electrical wire explosion in vacuum

    NASA Astrophysics Data System (ADS)

    Shi, Huantong; Zou, Xiaobing; Wang, Xinxin

    2018-02-01

    Electrical explosion of wire provides a practical approach to the experimental measurement of dynamic polarizability of metal atoms with high melting and boiling temperatures. With the help of insulation coating, a section of tungsten wire was transformed to the plasma state while the near electrode region was partially vaporized, which enabled us to locate the "neutral-region" (consisting of gaseous atoms) in the Mach-Zehnder interferogram. In this paper, the polarizability of the tungsten atom at 532 nm was reconstructed based on a technique previously used for the same purpose, and the basic preconditions of the measurement were verified in detail, including the existence of the neutral region, conservation of linear density of tungsten during wire expansion, and neglect of the vaporized insulation coating. The typical imaging time varied from 80 ns to as late as 200 ns and the reconstructed polarizability of the tungsten atom was 16 ± 1 Å3, which showed good statistical consistency and was also in good agreement with the previous results.

  19. Magnetization curves of sintered heavy tungsten alloys for applications in MRI-guided radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolling, Stefan; Oborn, Bradley M.; Keall, Paul J., E-mail: paul.keall@sydney.edu.au

    2014-06-15

    Purpose: Due to the current interest in MRI-guided radiotherapy, the magnetic properties of the materials commonly used in radiotherapy are becoming increasingly important. In this paper, measurement results for the magnetization (BH) curves of a range of sintered heavy tungsten alloys used in radiation shielding and collimation are presented. Methods: Sintered heavy tungsten alloys typically contain >90 % tungsten and <10 % of a combination of iron, nickel, and copper binders. Samples of eight different grades of sintered heavy tungsten alloys with varying binder content were investigated. Using a superconducting quantum interference detector magnetometer, the induced magnetic momentm was measured for eachmore » sample as a function of applied external field H{sub 0} and the BH curve derived. Results: The iron content of the alloys was found to play a dominant role, directly influencing the magnetizationM and thus the nonlinearity of the BH curve. Generally, the saturation magnetization increased with increasing iron content of the alloy. Furthermore, no measurable magnetization was found for all alloys without iron content, despite containing up to 6% of nickel. For two samples from different manufacturers but with identical quoted nominal elemental composition (95% W, 3.5% Ni, 1.5% Fe), a relative difference in the magnetization of 11%–16% was measured. Conclusions: The measured curves show that the magnetic properties of sintered heavy tungsten alloys strongly depend on the iron content, whereas the addition of nickel in the absence of iron led to no measurable effect. Since a difference in the BH curves for two samples with identical quoted nominal composition from different manufacturers was observed, measuring of the BH curve for each individual batch of heavy tungsten alloys is advisable whenever accurate knowledge of the magnetic properties is crucial. The obtained BH curves can be used in FEM simulations to predict the magnetic impact of sintered

  20. Thermal desorption spectroscopy of high fluence irradiated ultrafine and nanocrystalline tungsten: helium trapping and desorption correlated with morphology

    NASA Astrophysics Data System (ADS)

    El-Atwani, O.; Taylor, C. N.; Frishkoff, J.; Harlow, W.; Esquivel, E.; Maloy, S. A.; Taheri, M. L.

    2018-01-01

    Microstructural changes due to displacement damage and helium desorption are two phenomena that occur in tungsten plasma facing materials in fusion reactors. Nanocrystalline metals are being investigated as radiation tolerant materials that can mitigate these microstructural changes and better trap helium along their grain boundaries. Here, we investigate the performance of three tungsten grades (nanocrystalline, ultrafine and ITER grade tungsten), exposed to a high fluence of 4 keV helium at both RT and 773 K, during a thermal desorption spectroscopy (TDS) experiment. An investigation of the microstructure in pre-and post-TDS sample sets was performed. The amount of desorbed helium was shown to be highest in the ITER grade tungsten and lowest in the nanocrystalline tungsten. Correlating the desorption spectra and the microstructure (grain boundaries decorated with nanopores and crack formation) and comparing with previous literature on coarse grained tungsten samples at similar irradiation and TDS conditions, revealed the importance of grain boundaries in trapping helium and limiting helium desorption up to a high temperature of 1350 K in agreement with transmission electron microscopy studies on helium irradiated tungsten which showed preferential and large facetted bubble formation along the grain boundaries in the nanocrystalline tungsten grade.

  1. Thermal desorption spectroscopy of high fluence irradiated ultrafine and nanocrystalline tungsten: helium trapping and desorption correlated with morphology

    DOE PAGES

    El-Atwani, Osman; Taylor, Chase N.; Frishkoff, James; ...

    2017-11-09

    Here, microstructural changes due to displacement damage and helium desorption are two phenomena that occur in tungsten plasma facing materials in fusion reactors. Nanocrystalline metals are being investigated as radiation tolerant materials that can mitigate these microstructural changes and better trap helium along their grain boundaries. Here, we investigate the performance of three tungsten grades (nanocrystalline, ultrafine and ITER grade tungsten), exposed to a high fluence of 4 keV helium at both RT and 773 K, during a thermal desorption spectroscopy (TDS) experiment. An investigation of the microstructure in pre-and post-TDS sample sets was performed. The amount of desorbed heliummore » was shown to be highest in the ITER grade tungsten and lowest in the nanocrystalline tungsten. Correlating the desorption spectra and the microstructure (grain boundaries decorated with nanopores and crack formation) and comparing with previous literature on coarse grained tungsten samples at similar irradiation and TDS conditions, revealed the importance of grain boundaries in trapping helium and limiting helium desorption up to a high temperature of 1350 K in agreement with transmission electron microscopy studies on helium irradiated tungsten which showed preferential and large facetted bubble formation along the grain boundaries in the nanocrystalline tungsten grade.« less

  2. Genotoxic Changes to Rodent Cells Exposed in Vitro to Tungsten, Nickel, Cobalt and Iron

    PubMed Central

    Bardack, Stephanie; Dalgard, Clifton L.; Kalinich, John F.; Kasper, Christine E.

    2014-01-01

    Tungsten-based materials have been proposed as replacements for depleted uranium in armor-penetrating munitions and for lead in small-arms ammunition. A recent report demonstrated that a military-grade composition of tungsten, nickel, and cobalt induced a highly-aggressive, metastatic rhabdomyosarcoma when implanted into the leg muscle of laboratory rats to simulate a shrapnel wound. The early genetic changes occurring in response to embedded metal fragments are not known. In this study, we utilized two cultured rodent myoblast cell lines, exposed to soluble tungsten alloys and the individual metals comprising the alloys, to study the genotoxic effects. By profiling cell transcriptomes using microarray, we found slight, yet distinct and unique, gene expression changes in rat myoblast cells after 24 h metal exposure, and several genes were identified that correlate with impending adverse consequences of ongoing exposure to weapons-grade tungsten alloy. These changes were not as apparent in the mouse myoblast cell line. This indicates a potential species difference in the cellular response to tungsten alloy, a hypothesis supported by current findings with in vivo model systems. Studies examining genotoxic-associated gene expression changes in cells from longer exposure times are warranted. PMID:24619124

  3. Tantalum-tungsten oxide thermite composites prepared by sol-gel synthesis and spark plasma sintering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuntz, Joshua D.; Gash, Alexander E.; Cervantes, Octavio G.

    2010-08-15

    Energetic composite powders consisting of sol-gel derived nanostructured tungsten oxide were produced with various amounts of micrometer-scale tantalum fuel metal. Such energetic composite powders were ignition-tested and the results show that the powders are not sensitive to friction, spark and/or impact ignition. Initial consolidation experiments, using the High-Pressure Spark Plasma Sintering (HPSPS) technique, on the sol-gel derived nanostructured tungsten oxide produced samples with higher relative density than can be achieved with commercially available tungsten oxide. The sol-gel derived nanostructured tungsten oxide with immobilized tantalum fuel metal (Ta-WO{sub 3}) energetic composite was consolidated to a density of 9.17 g cm{sup -3}more » or 93% relative density. In addition, those samples were consolidated without significant pre-reaction of the constituents, thus retaining their stored chemical energy. (author)« less

  4. Tantalum-Tungsten Oxide Thermite Composite Prepared by Sol-Gel Synthesis and Spark Plasma Sintering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cervantes, O; Kuntz, J; Gash, A

    2009-02-13

    Energetic composite powders consisting of sol-gel derived nanostructured tungsten oxide were produced with various amounts of micrometer-scale tantalum fuel metal. Such energetic composite powders were ignition tested and results show that the powders are not sensitive to friction, spark and/or impact ignition. Initial consolidation experiments, using the High Pressure Spark Plasma Sintering (HPSPS) technique, on the sol-gel derived nanostructured tungsten oxide produced samples with higher relative density than can be achieved with commercially available tungsten oxide. The sol-gel derived nanostructured tungsten oxide with immobilized tantalum fuel metal (Ta - WO{sub 3}) energetic composite was consolidated to a density of 9.17more » g.cm{sup -3} or 93% relative density. In addition those parts were consolidated without significant pre-reaction of the constituents, thus the sample retained its stored chemical energy.« less

  5. Geology and genesis of the Baid al Jimalah tungsten deposit, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Kamilli, R.J.; Cole, J.C.; Elliott, J.E.; Criss, R.E.

    1993-01-01

    The Baid ad Jimalah tungsten deposit in Saudi Arabia consists predominantly of swarms of steeply dipping, subparallel, tungsten-bearing quartz veins and of less abundant, smaller stockwork veins. It is spatially, temporally, and genetically associated with a 569 Ma, highly differentiated, porphyritic, two-feldspar granite that intrudes Late Proterozoic immature sandstones. Baid al Jimalah is similar in character and origin to Phanerozoic tungsten-tin greisen deposits throughout the world, especially the Hemerdon deposit in Devon, England. It is also analogous to Climax-type molybdenum deposits, which contain virtually identical mineral assemblages, but with the relative proportions of molybdenum and tungsten mineralization reversed, primarily owing to differences in oxygen fugacity. This similarity in mineralization styles and fluid histories indicates that metallogenic processes in granite-related deposits in the late Precambrian were similar to those seen in the Phanerozoic. -from Authors

  6. Determination of small amounts of molybdenum in tungsten and molybdenum ores

    USGS Publications Warehouse

    Grimaldi, F.S.; Wells, R.C.

    1943-01-01

    A rapid method has been developed for the determination of small amounts of molybdenum in tungsten and molybdenum ores. After removing iron and other major constituents the molybdenum thiocyanate color is developed in water-acetone solutions, using ammonium citrate to eliminate the interference of tungsten. Comparison is made by titrating a blank with a standard molybdenum solution. Aliquots are adjusted to deal with amounts of molybdenum ranging from 0.01 to 1.30 mg.

  7. Structural Assessment of Tungsten-Epoxy Bonding in Spacecraft Composite Enclosures with Enhanced Radiation Protection

    NASA Astrophysics Data System (ADS)

    Kanerva, M.; Koerselman, J. R.; Revitzer, H.; Johansson, L.-S.; Sarlin, E.; Rautiainen, A.; Brander, T.; Saarela, O.

    2014-06-01

    Spacecraft include sensitive electronics that must be protected against radiation from the space environment. Hybrid laminates consisting of tungsten layers and carbon- fibre-reinforced epoxy composite are a potential solution for lightweight, efficient, and protective enclosure material. Here, we analysed six different surface treatments for tungsten foils in terms of the resulting surface tension components, composition, and bonding strength with epoxy. A hydrofluoric-nitric-sulfuric-acid method and a diamond-like carbon-based DIARC® coating were found the most potential surface treatments for tungsten foils in this study.

  8. K-line spectra from tungsten heated by an intense pulsed electron beam.

    PubMed

    Pereira, N R; Weber, B V; Apruzese, J P; Mosher, D; Schumer, J W; Seely, J F; Szabo, C I; Boyer, C N; Stephanakis, S J; Hudson, L T

    2010-10-01

    The plasma-filled rod-pinch diode (PFRP) is an intense source of x-rays ideal for radiography of dense objects. In the PRFP megavoltage electrons from a pulsed discharge concentrate at the pointed end of a 1 mm diameter tapered tungsten rod. Ionization of this plasma might increase the energy of tungsten's Kα(1) fluorescence line, at 59.3182 keV, enough for the difference to be observed by a high-resolution Cauchois transmission crystal spectrograph. When the PFRP's intense hard bremsstrahlung is suppressed by the proper shielding, such an instrument gives excellent fluorescence spectra, albeit with as yet insufficient resolution to see any effect of tungsten's ionization. Higher resolution is possible with various straightforward upgrades that are feasible thanks to the radiation's high intensity.

  9. Effect of temperature and geometric parameters on elastic properties of tungsten nanowire: A molecular dynamics study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saha, Sourav, E-mail: ssaha09@me.buet.ac.bd; Mojumder, Satyajit; Mahboob, Monon

    2016-07-12

    Tungsten is a promising material and has potential use as battery anode. Tungsten nanowires are gaining attention from researchers all over the world for this wide field of application. In this paper, we investigated effect of temperature and geometric parameters (diameter and aspect ratio) on elastic properties of Tungsten nanowire. Aspect ratios (length to diameter ratio) considered are 8:1, 10:1, and 12:1 while diameter of the nanowire is varied from 1-4 nm. For 2 nm diameter sample (aspect ratio 10:1), temperature is varied (10 K ~ 1500 K) to observe elastic behavior of Tungsten nanowire under uniaxial tensile loading. EAMmore » potential is used for molecular dynamic simulation. We applied constant strain rate of 10{sup 9} s{sup −1} to deform the nanowire. Elastic behavior is expressed through stress vs. strain plot. We also investigated the fracture mechanism of tungsten nanowire and radial distribution function. Investigation suggests peculiar behavior of Tungsten nanowire in nano-scale with double peaks in stress vs. strain diagram. Necking before final fracture suggests that actual elastic behavior of the material is successfully captured through atomistic modeling.« less

  10. First result of deuterium retention in neutron-irradiated tungsten exposed to high flux plasma in TPE

    NASA Astrophysics Data System (ADS)

    Shimada, Masashi; Hatano, Y.; Calderoni, P.; Oda, T.; Oya, Y.; Sokolov, M.; Zhang, K.; Cao, G.; Kolasinski, R.; Sharpe, J. P.

    2011-08-01

    With the Japan-US joint research project Tritium, Irradiations, and Thermofluids for America and Nippon (TITAN), an initial set of tungsten samples (99.99% purity, A.L.M.T. Co.) were irradiated by high flux neutrons at 323 K to 0.025 dpa in High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL). Subsequently, one of the neutron-irradiated tungsten samples was exposed to a high-flux deuterium plasma (ion flux: 5 × 1021 m-2 s-1, ion fluence: 4 × 1025 m-2) in the Tritium Plasma Experiment (TPE) at Idaho National Laboratory (INL). The deuterium retention in the neutron-irradiated tungsten was 40% higher in comparison to the unirradiated tungsten. The observed broad desorption spectrum from neutron-irradiated tungsten and associated TMAP modeling of the deuterium release suggest that trapping occurs in the bulk material at more than three different energy sites.

  11. Comparison of 2-Octanol and Tributyl Phosphate in Recovery of Tungsten from Sulfuric-Phosphoric Acid Leach Solution of Scheelite

    NASA Astrophysics Data System (ADS)

    Liao, Yulong; Zhao, Zhongwei

    2018-04-01

    Tungsten was recovered from sulfuric-phosphoric acid leach solution of scheelite using 2-octanol and tributyl phosphate (TBP). Approximately 76% of the tungsten and less than 6.2% of the iron were extracted when using 70% 2-octanol, showing good selectivity for tungsten over iron; the tungsten extraction could not be significantly enhanced using a three-stage countercurrent simulation test. Moreover, more than 99.2% of the W and 91.0% of the Fe were extracted when using 70% TBP, showing poor selectivity, but after pretreating the leach solution with iron powder, less than 5.5% of the Fe was extracted. The loaded phases were stripped using deionized water and ammonia solution. The maximum stripping rate of tungsten from loaded 2-octanol was 45.6% when using water, compared with only 13.1% from loaded TBP. Tungsten was efficiently stripped from loaded phases using ammonia solution without formation of Fe(OH)3 precipitate. Finally, a flow sheet for recovery of tungsten with TBP is proposed.

  12. Influence of oxygen on the carbide formation on tungsten

    NASA Astrophysics Data System (ADS)

    Luthin, J.; Linsmeier, Ch.

    2001-03-01

    As a first wall material in nuclear fusion devices, tungsten will interact with carbon and oxygen from the plasma. In this study, we report on the process of thermally induced carbide formation of thin carbon films on polycrystalline tungsten and the influence of oxygen on this process. All investigations are performed using X-ray photoelectron spectroscopy (XPS). Carbon films are supplied through electron beam evaporation of graphite. The carbidization process, monitored during increased substrate temperature, can be divided into four phases. In phase I disordered carbon converts into graphite-like carbon. In phase II significant diffusion and the reaction to W 2C is observed, followed by phase III which is dominated by the presence of W 2C and the beginning reaction to WC. Finally in phase IV only WC is present, but the total carbon amount has strongly decreased. Different mechanisms of oxygen influence on the carbide formation are proposed and measurements of the reaction of carbon on tungsten with intermediate oxide layers are presented in detail. A WO 2+ x intermediate layer completely inhibits the carbide formation, while a WO 2 layer leads to WC formation at temperatures above 1270 K.

  13. Compressed gas fuel storage system

    DOEpatents

    Wozniak, John J.; Tiller, Dale B.; Wienhold, Paul D.; Hildebrand, Richard J.

    2001-01-01

    A compressed gas vehicle fuel storage system comprised of a plurality of compressed gas pressure cells supported by shock-absorbing foam positioned within a shape-conforming container. The container is dimensioned relative to the compressed gas pressure cells whereby a radial air gap surrounds each compressed gas pressure cell. The radial air gap allows pressure-induced expansion of the pressure cells without resulting in the application of pressure to adjacent pressure cells or physical pressure to the container. The pressure cells are interconnected by a gas control assembly including a thermally activated pressure relief device, a manual safety shut-off valve, and means for connecting the fuel storage system to a vehicle power source and a refueling adapter. The gas control assembly is enclosed by a protective cover attached to the container. The system is attached to the vehicle with straps to enable the chassis to deform as intended in a high-speed collision.

  14. A study of tungsten spectra using large helical device and compact electron beam ion trap in NIFS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morita, S.; Goto, M.; Murakami, I.

    2013-07-11

    Tungsten spectra have been observed from Large Helical Device (LHD) and Compact electron Beam Ion Trap (CoBIT) in wavelength ranges of visible to EUV. The EUV spectra with unresolved transition array (UTA), e.g., 6g-4f, 5g-4f, 5f-4d and 5p-4d transitions for W{sup +24-+33}, measured from LHD plasmas are compared with those measured from CoBIT with monoenergetic electron beam ({<=}2keV). The tungsten spectra from LHD are well analyzed based on the knowledge from CoBIT tungsten spectra. The C-R model code has been developed to explain the UTA spectra in details. Radial profiles of EUV spectra from highly ionized tungsten ions have beenmore » measured and analyzed by impurity transport simulation code with ADPAK atomic database code to examine the ionization balance determined by ionization and recombination rate coefficients. As the first trial, analysis of the tungsten density in LHD plasmas is attempted from radial profile of Zn-like WXLV (W{sup 44+}) 4p-4s transition at 60.9A based on the emission rate coefficient calculated with HULLAC code. As a result, a total tungsten ion density of 3.5 Multiplication-Sign 10{sup 10}cm{sup -3} at the plasma center is reasonably obtained. In order to observe the spectra from tungsten ions in lower-ionized charge stages, which can give useful information on the tungsten influx in fusion plasmas, the ablation cloud of the impurity pellet is directly measured with visible spectroscopy. A lot of spectra from neutral and singly ionized tungsten are observed and some of them are identified. A magnetic forbidden line from highly ionized tungsten ions has been examined and Cd-like WXXVII (W{sup 26+}) at 3893.7A is identified as the ground-term fine-structure transition of 4f{sup 23}H{sub 5}-{sup 3}H{sub 4}. The possibility of {alpha} particle diagnostic in D-T burning plasmas using the magnetic forbidden line is discussed.« less

  15. A study of tungsten spectra using large helical device and compact electron beam ion trap in NIFS

    NASA Astrophysics Data System (ADS)

    Morita, S.; Dong, C. F.; Goto, M.; Kato, D.; Murakami, I.; Sakaue, H. A.; Hasuo, M.; Koike, F.; Nakamura, N.; Oishi, T.; Sasaki, A.; Wang, E. H.

    2013-07-01

    Tungsten spectra have been observed from Large Helical Device (LHD) and Compact electron Beam Ion Trap (CoBIT) in wavelength ranges of visible to EUV. The EUV spectra with unresolved transition array (UTA), e.g., 6g-4f, 5g-4f, 5f-4d and 5p-4d transitions for W+24-+33, measured from LHD plasmas are compared with those measured from CoBIT with monoenergetic electron beam (≤2keV). The tungsten spectra from LHD are well analyzed based on the knowledge from CoBIT tungsten spectra. The C-R model code has been developed to explain the UTA spectra in details. Radial profiles of EUV spectra from highly ionized tungsten ions have been measured and analyzed by impurity transport simulation code with ADPAK atomic database code to examine the ionization balance determined by ionization and recombination rate coefficients. As the first trial, analysis of the tungsten density in LHD plasmas is attempted from radial profile of Zn-like WXLV (W44+) 4p-4s transition at 60.9Å based on the emission rate coefficient calculated with HULLAC code. As a result, a total tungsten ion density of 3.5×1010cm-3 at the plasma center is reasonably obtained. In order to observe the spectra from tungsten ions in lower-ionized charge stages, which can give useful information on the tungsten influx in fusion plasmas, the ablation cloud of the impurity pellet is directly measured with visible spectroscopy. A lot of spectra from neutral and singly ionized tungsten are observed and some of them are identified. A magnetic forbidden line from highly ionized tungsten ions has been examined and Cd-like WXXVII (W26+) at 3893.7Å is identified as the ground-term fine-structure transition of 4f23H5-3H4. The possibility of α particle diagnostic in D-T burning plasmas using the magnetic forbidden line is discussed.

  16. A photoevaporative gap in the closest planet-forming disc

    NASA Astrophysics Data System (ADS)

    Ercolano, Barbara; Rosotti, Giovanni P.; Picogna, Giovanni; Testi, Leonardo

    2017-01-01

    The dispersal of the circum-stellar discs of dust and gas surrounding young low-mass stars has important implications for the formation of planetary systems. Photoevaporation from energetic radiation from the central object is thought to drive the dispersal in the majority of discs, by creating a gap which disconnects the outer from the inner regions of the disc and then disperses the outer disc from the inside-out, while the inner disc keeps draining viscously on to the star. In this Letter, we show that the disc around TW Hya, the closest protoplanetary disc to Earth, may be the first object where a photoevaporative gap has been imaged around the time at which it is being created. Indeed, the detected gap in the Atacama large millimeter/submillimeter array images is consistent with the expectations of X-ray photoevaporation models, thus not requiring the presence of a planet. The photoevaporation model is also consistent with a broad range of properties of the TW Hya system, e.g. accretion rate and the location of the gap at the onset of dispersal. We show that the central, unresolved 870 μm continuum source might be produced by free-free emission from the gas and/or residual dust inside the gap.

  17. Melt damage simulation of W-macrobrush and divertor gaps after multiple transient events in ITER

    NASA Astrophysics Data System (ADS)

    Bazylev, B. N.; Janeschitz, G.; Landman, I. S.; Loarte, A.; Pestchanyi, S. E.

    2007-06-01

    Tungsten in the form of macrobrush structure is foreseen as one of two candidate materials for the ITER divertor and dome. In ITER, even for moderate and weak ELMs when a thin shielding layer does not protect the armour surface from the dumped plasma, the main mechanisms of metallic target damage remain surface melting and melt motion erosion, which determines the lifetime of the plasma facing components. The melt erosion of W-macrobrush targets with different geometry of brush surface under the heat loads caused by weak ELMs is numerically investigated using the modified code MEMOS. The optimal angle of brush surface inclination that provides a minimum of surface roughness is estimated for given inclination angles of impacting plasma stream and given parameters of the macrobrush target. For multiple disruptions the damage of the dome gaps and the gaps between divertor cassettes caused by the radiation impact is estimated.

  18. A Gap in TW Hydrae's Disk

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-01-01

    Located a mere 176 light-years away, TW Hydrae is an 8-million-year-old star surrounded by a nearly face-on disk of gas and dust. Recent observations have confirmed the existence of a gap within that disk a particularly intriguing find, since gaps can sometimes signal the presence of a planet.Gaps and PlanetsNumerical simulations have shown that newly-formed planets orbiting within dusty disks can clear the gas and dust out of their paths. This process results in pressure gradients that can be seen in the density structure of the disk, in the form of visible gaps, rings, or spirals.For this reason, finding a gap in a protoplanetary disk can be an exciting discovery. Previous observations of the disk around TW Hydrae had indicated that there might be a gap present, but they were limited in their resolution; despite TW Hydraes relative nearness, attempting to observe the dim light scattered off dust particles in a disk surrounding a distant, bright star is difficult!But a team led by Valerie Rapson (Rochester Institute of Technology, Dudley Observatory) recently set out to follow up on this discovery using a powerful tool: the Gemini Planet Imager (GPI).New ObservationsComparison of the actual image of TW Hydraes disk from GPI (right) to a simulated scattered-light image from a model of a ~0.2 Jupiter-mass planet orbiting in the disk at ~21 AU (left) in two different bands (top: J, bottom: K1).[Adapted from Rapson et al. 2015]GPI is an instrument on the Gemini South Telescope in Chile. Its near-infrared imagers, equipped with extreme adaptive optics, allowed it to probe the disk from ~80 AU all the way in to ~10 AU from the central star, with an unprecedented resolution of ~1.5 AU.These observations from GPI allowed Rapson and collaborators to unambiguously confirm the presence of a gap in TW Hydraes disk. The gap lies at a distance of ~23 AU from the central star (roughly the same distance as Uranus to the Sun), and its ~5 AU wide.Modeled PossibilitiesThere are a

  19. Plasma-induced damage of tungsten coatings on graphite limiters

    NASA Astrophysics Data System (ADS)

    Fortuna, E.; Rubel, M. J.; Psoda, M.; Andrzejczuk, M.; Kurzydowski, K. J.; Miskiewicz, M.; Philipps, V.; Pospieszczyk, A.; Sergienko, G.; Spychalski, M.; Zielinski, W.

    2007-03-01

    Vaccum plasma sprayed tungsten coatings with an evaporated sandwich Re-W interlayer on graphite limiter blocks were studied after the experimental campaign in the TEXTOR tokamak. The coating morphology was modified by high-heat loads and co-deposition of species from the plasma. Co-deposits contained fuel species, carbon, boron and silicon. X-ray diffractometer phase analysis indicated the coexistence of metallic tungsten and its carbides (WC and W2C) and boride (W2B). In the Re-W layer the presence of carbon was detected in a several micrometres thick zone. In the overheated part of the limiter, the Re-W layer was transformed into a sigma phase.

  20. Structure control of tungsten nanocontacts through pulsed-voltage application

    NASA Astrophysics Data System (ADS)

    Suzuki, Yasuchika; Kizuka, Tokushi

    2018-05-01

    The structural variation in tungsten nanocontacts (NCs) during a pulsed-voltage application was observed in situ by high-resolution transmission electron microscopy. The direction of electromigration in the NCs changed from the well-known direction to the opposite direction at a critical voltage of 0.9 V. Upon applying a higher pulsed voltage of 2.5 V, the NC structure changed to amorphous, with an average conductance density decreased to 82% of that of the crystalline NCs. We demonstrated that the external shape and texture of tungsten NCs can be controlled with an atomic precision through electromigration and amorphization by a pulsed-voltage application.

  1. Smart tungsten alloys as a material for the first wall of a future fusion power plant

    NASA Astrophysics Data System (ADS)

    Litnovsky, A.; Wegener, T.; Klein, F.; Linsmeier, Ch.; Rasinski, M.; Kreter, A.; Unterberg, B.; Coenen, J. W.; Du, H.; Mayer, J.; Garcia-Rosales, C.; Calvo, A.; Ordas, N.

    2017-06-01

    Tungsten is currently deemed as a promising plasma-facing material (PFM) for the future power plant DEMO. In the case of an accident, air can get into contact with PFMs during the air ingress. The temperature of PFMs can rise up to 1200 °C due to nuclear decay heat in the case of damaged coolant supply. Heated neutron-activated tungsten forms a volatile radioactive oxide which can be mobilized into the atmosphere. New self-passivating ‘smart’ alloys can adjust their properties to the environment. During plasma operation the preferential sputtering of lighter alloying elements will leave an almost pure tungsten surface facing the plasma. During an accident the alloying elements in the bulk are forming oxides thus protecting tungsten from mobilization. Good plasma performance and the suppression of oxidation are required for smart alloys. Bulk tungsten (W)-chroimum (Cr)-titanium (Ti) alloys were exposed together with pure tungsten (W) samples to the steady-state deuterium plasma under identical conditions in the linear plasma device PSI 2. The temperature of the samples was ~576 °C-715 °C, the energy of impinging ions was 210 eV matching well the conditions expected at the first wall of DEMO. Weight loss measurements demonstrated similar mass decrease of smart alloys and pure tungsten samples. The oxidation of exposed samples has proven no effect of plasma exposure on the oxidation resistance. The W-Cr-Ti alloy demonstrated advantageous 3-fold lower mass gain due to oxidation than that of pure tungsten. New yttrium (Y)-containing thin film systems are demonstrating superior performance in comparison to that of W-Cr-Ti systems and of pure W. The oxidation rate constant of W-Cr-Y thin film is 105 times less than that of pure tungsten. However, the detected reactivity of the bulk smart alloy in humid atmosphere is calling for a further improvement.

  2. Experimental investigations of argon spark gap recovery times by developing a high voltage double pulse generator.

    PubMed

    Reddy, C S; Patel, A S; Naresh, P; Sharma, Archana; Mittal, K C

    2014-06-01

    The voltage recovery in a spark gap for repetitive switching has been a long research interest. A two-pulse technique is used to determine the voltage recovery times of gas spark gap switch with argon gas. First pulse is applied to the spark gap to over-volt the gap and initiate the breakdown and second pulse is used to determine the recovery voltage of the gap. A pulse transformer based double pulse generator capable of generating 40 kV peak pulses with rise time of 300 ns and 1.5 μs FWHM and with a delay of 10 μs-1 s was developed. A matrix transformer topology is used to get fast rise times by reducing L(l)C(d) product in the circuit. Recovery Experiments have been conducted for 2 mm, 3 mm, and 4 mm gap length with 0-2 bars pressure for argon gas. Electrodes of a sparkgap chamber are of rogowsky profile type, made up of stainless steel material, and thickness of 15 mm are used in the recovery study. The variation in the distance and pressure effects the recovery rate of the spark gap. An intermediate plateu is observed in the spark gap recovery curves. Recovery time decreases with increase in pressure and shorter gaps in length are recovering faster than longer gaps.

  3. Microstructural and mechanical characterization of CO{sub 2} laser and gas tungsten arc welds of an Al-Li-Cu alloy 2195

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, K.H.; Baeslack, W.A. III; Szabo, A.

    1994-12-31

    Lithium-containing aluminum alloys offer an attractive combination of low density and high strength and stiffness and have been the focus of vigorous research for their promising aerospace applications. To achieve the full potential advantages in using these alloys, the integrity of welded joints, both n the fusion zone and the heat-affected zone, must be ensured. In the present study, Weldalite{sup TM} 049 (designated as alloy 2195) with nominal composition of Al-1.0Li-4.0Cu-0.4Mg0.4Ag-0.14Zr (wt%) was welded autogenously using the gas tungsten-arc (GTA) and CO{sub 2} laser beam (LB) welding processes. The average ultimate tensile strengths for as-welded, 160{degrees}C/16 h-aged, and 190{degrees}C/16 h-agedmore » GTA welds were 296.4 MPa, 304.6 MPa, and 336.8 MPa, and corresponded to joint efficiencies of 61.4%, 48.1% and 56.0%, respectively. Porosity was found occasionally in the laser welds and slightly affected the performance of the aluminum weldments. For laser welds, average ultimate tensile strengths and corresponding joint efficiencies for a-welded, 160{degrees}C/16 h-aged, and 190{degrees}C/16 h-aged weldments were 293.2 MPa (60.8%) 305.9 MPa (48.3%), and 331.0 MPa (55.0%), respectively. Scanning electron fractography revealed that failure of the GTA and LB tensile specimens occurred either within the weld metal or along the fusion boundary. The latter was related to the existence of an equiaxed band along the fusion boundary.« less

  4. SPS Fabrication of Tungsten-Rhenium Alloys in Support of NTR Fuels Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jonathan A. Webb; Indrajit Charit; Cory Sparks

    Abstract. Tungsten metal slugs were fabricated via Spark Plasma Sintering (SPS) of powdered metals at temperatures ranging from 1575 K to 1975 K and hold times of 5 minutes to 30 minutes, using powders with an average diameter of 7.8 ?m. Sintered tungsten specimens were found to have relative densities ranging from 83 % to 94 % of the theoretical density for tungsten. Consolidated specimens were also tested for their Vickers Hardness Number (VHN), which was fitted as a function of relative density; the fully consolidated VHN was extrapolated to be 381.45 kg/mm2. Concurrently, tungsten and rhenium powders with averagemore » respective diameters of 0.5 ?m and 13.3 ?m were pre-processed either by High-Energy-Ball-Milling (HEBM) or by homogeneous mixing to yield W-25at.%Re mixtures. The powder batches were sintered at temperatures of 1975 K and 2175 K for hold times ranging from 0 minutes to 60 minutes yielding relative densities ranging from 94% to 97%. The combination of HEBM and sintering showed a significant decrease in the inter-metallic phases compared to that of the homogenous mixing and sintering.« less

  5. TUNGSTEN BASE ALLOYS

    DOEpatents

    Schell, D.H.; Sheinberg, H.

    1959-12-15

    A high-density quaternary tungsten-base alloy having high mechanical strength and good machinability composed of about 2 wt.% Ni, 3 wt.% Cu, 5 wt.% Pb, and 90wt.% W is described. This alloy can be formed by the powder metallurgy technique of hot pressing in a graphite die without causing a reaction between charge and the die and without formation of a carbide case on the final compact, thereby enabling re-use of the graphite die. The alloy is formable at hot- pressing temperatures of from about 1200 to about 1350 deg C. In addition, there is little component shrinkage, thereby eliminating the necessity of subsequent extensive surface machining.

  6. A review of the deformation behavior of tungsten at temperatures less than 0.2 of the melting point /K/

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.

    1974-01-01

    The deformation behavior of tungsten at temperatures below 0.2 times the absolute melting temperature is reviewed with primary emphasis on the temperature dependence of the yield stress and the ductile-brittle transition. It is concluded that a model based on the high Peierls stress of tungsten best accounts for the observed mechanical behavior at low temperatures. Recent research suggests an important role of electron concentration and bonding on the mechanical behavior of tungsten. Future research on tungsten should include studies to define more clearly the correlation between electron concentration and mechanical behavior of alloys of tungsten and other transition metal alloys.

  7. Tungsten - Yttrium Based Nuclear Structural Materials

    NASA Astrophysics Data System (ADS)

    Ramana, Chintalapalle; Chessa, Jack; Martinenz, Gustavo

    2013-04-01

    The challenging problem currently facing the nuclear science community in this 21st century is design and development of novel structural materials, which will have an impact on the next-generation nuclear reactors. The materials available at present include reduced activation ferritic/martensitic steels, dispersion strengthened reduced activation ferritic steels, and vanadium- or tungsten-based alloys. These materials exhibit one or more specific problems, which are either intrinsic or caused by reactors. This work is focussed towards tungsten-yttrium (W-Y) based alloys and oxide ceramics, which can be utilized in nuclear applications. The goal is to derive a fundamental scientific understanding of W-Y-based materials. In collaboration with University of Califonia -- Davis, the project is designated to demonstrate the W-Y based alloys, ceramics and composites with enhanced physical, mechanical, thermo-chemical properties and higher radiation resistance. Efforts are focussed on understanding the microstructure, manipulating materials behavior under charged-particle and neutron irradiation, and create a knowledge database of defects, elemental diffusion/segregation, and defect trapping along grain boundaries and interfaces. Preliminary results will be discussed.

  8. Tungsten tetraboride, an inexpensive superhard material

    PubMed Central

    Mohammadi, Reza; Lech, Andrew T.; Xie, Miao; Weaver, Beth E.; Yeung, Michael T.; Tolbert, Sarah H.; Kaner, Richard B.

    2011-01-01

    Tungsten tetraboride (WB4) is an interesting candidate as a less expensive member of the growing group of superhard transition metal borides. WB4 was successfully synthesized by arc melting from the elements. Characterization using powder X-ray diffraction (XRD) and energy-dispersive X-ray spectroscopy (EDX) indicates that the as-synthesized material is phase pure. The zero-pressure bulk modulus, as measured by high-pressure X-ray diffraction for WB4, is 339 GPa. Mechanical testing using microindentation gives a Vickers hardness of 43.3 ± 2.9 GPa under an applied load of 0.49 N. Various ratios of rhenium were added to WB4 in an attempt to increase hardness. With the addition of 1 at.% Re, the Vickers hardness increased to approximately 50 GPa at 0.49 N. Powders of tungsten tetraboride with and without 1 at.% Re addition are thermally stable up to approximately 400 °C in air as measured by thermal gravimetric analysis. PMID:21690363

  9. Technology for radiation efficiency measurement of high-power halogen tungsten lamp used in calibration of high-energy laser energy meter.

    PubMed

    Wei, Ji Feng; Hu, Xiao Yang; Sun, Li Qun; Zhang, Kai; Chang, Yan

    2015-03-20

    The calibration method using a high-power halogen tungsten lamp as a calibration source has many advantages such as strong equivalence and high power, so it is very fit for the calibration of high-energy laser energy meters. However, high-power halogen tungsten lamps after power-off still reserve much residual energy and continually radiate energy, which is difficult to be measured. Two measuring systems were found to solve the problems. One system is composed of an integrating sphere and two optical spectrometers, which can accurately characterize the radiative spectra and power-time variation of the halogen tungsten lamp. This measuring system was then calibrated using a normal halogen tungsten lamp made of the same material as the high-power halogen tungsten lamp. In this way, the radiation efficiency of the halogen tungsten lamp after power-off can be quantitatively measured. In the other measuring system, a wide-spectrum power meter was installed far away from the halogen tungsten lamp; thus, the lamp can be regarded as a point light source. The radiation efficiency of residual energy from the halogen tungsten lamp was computed on the basis of geometrical relations. The results show that the halogen tungsten lamp's radiation efficiency was improved with power-on time but did not change under constant power-on time/energy. All the tested halogen tungsten lamps reached 89.3% of radiation efficiency at 50 s after power-on. After power-off, the residual energy in the halogen tungsten lamp gradually dropped to less than 10% of the initial radiation power, and the radiation efficiency changed with time. The final total radiation energy was decided by the halogen tungsten lamp's radiation efficiency, the radiation efficiency of residual energy, and the total power consumption. The measuring uncertainty of total radiation energy was 2.4% (here, the confidence factor is two).

  10. Investigation of metal-dithiolate fold angle effects: implications for molybdenum and tungsten enzymes.

    PubMed

    Joshi, Hemant K; Cooney, J Jon A; Inscore, Frank E; Gruhn, Nadine E; Lichtenberger, Dennis L; Enemark, John H

    2003-04-01

    Gas-phase photoelectron spectroscopy and density functional theory have been used to investigate the interactions between the sulfur pi-orbitals of arene dithiolates and high-valent transition metals as minimum molecular models of the active site features of pyranopterin MoW enzymes. The compounds (Tp*)MoO(bdt) (compound 1), Cp(2)Mo(bdt) (compound 2), and Cp(2)Ti(bdt) (compound 3) [where Tp* is hydrotris(3,5-dimethyl-1-pyrazolyl)borate, bdt is 1,2-benzenedithiolate, and Cp is eta(5)- cyclopentadienyl] provide access to three different electronic configurations of the metal, formally d(1), d(2), and d(0), respectively. The gas-phase photoelectron spectra show that ionizations from occupied metal and sulfur based valence orbitals are more clearly observed in compounds 2 and 3 than in compound 1. The observed ionization energies and characters compare very well with those calculated by density functional theory. A "dithiolate-folding-effect" involving an interaction of the metal in-plane and sulfur-pi orbitals is proposed to be a factor in the electron transfer reactions that regenerate the active sites of molybdenum and tungsten enzymes.

  11. Investigation of metal–dithiolate fold angle effects: Implications for molybdenum and tungsten enzymes

    PubMed Central

    Joshi, Hemant K.; Cooney, J. Jon A.; Inscore, Frank E.; Gruhn, Nadine E.; Lichtenberger, Dennis L.; Enemark, John H.

    2003-01-01

    Gas-phase photoelectron spectroscopy and density functional theory have been used to investigate the interactions between the sulfur π-orbitals of arene dithiolates and high-valent transition metals as minimum molecular models of the active site features of pyranopterin Mo/W enzymes. The compounds (Tp*)MoO(bdt) (compound 1), Cp2Mo(bdt) (compound 2), and Cp2Ti(bdt) (compound 3) [where Tp* is hydrotris(3,5-dimethyl-1-pyrazolyl)borate, bdt is 1,2-benzenedithiolate, and Cp is η5- cyclopentadienyl] provide access to three different electronic configurations of the metal, formally d1, d2, and d0, respectively. The gas-phase photoelectron spectra show that ionizations from occupied metal and sulfur based valence orbitals are more clearly observed in compounds 2 and 3 than in compound 1. The observed ionization energies and characters compare very well with those calculated by density functional theory. A “dithiolate-folding-effect” involving an interaction of the metal in-plane and sulfur-π orbitals is proposed to be a factor in the electron transfer reactions that regenerate the active sites of molybdenum and tungsten enzymes. PMID:12655066

  12. [Study on transient absorption spectrum of tungsten nanoparticle with HepG2 tumor cell].

    PubMed

    Cao, Lin; Shu, Xiao-Ning; Liang, Dong; Wang, Cong

    2014-07-01

    Significance of this study lies in tungsten nano materials can be used as a preliminary innovative medicines applied basic research. This paper investigated the inhibition of tungsten nanoparticles which effected on human hepatoma HepG2 cells by MTT. The authors use transient absorption spectroscopy (TAS) technology absorption and emission spectra characterization of charge transfer between nanoparticles and tumor cell. The authors discussed the role of the tungsten nanoparticles in the tumor early detection of the disease and its anti-tumor properties. In the HepG2 experiments system, 100-150 microg x mL(-1) is the best drug concentration of anti-tumor activity which recact violently within 6 hours and basically completed in 24 hours. The results showed that transient absorption spectroscopy can be used as tumor detection methods and characterization of charge transfer between nano-biosensors and tumor cells. Tungsten nanoparticles have potential applications as anticancer drugs.

  13. Structure of the non-redox-active tungsten/[4Fe:4S] enzyme acetylene hydratase.

    PubMed

    Seiffert, Grazyna B; Ullmann, G Matthias; Messerschmidt, Albrecht; Schink, Bernhard; Kroneck, Peter M H; Einsle, Oliver

    2007-02-27

    The tungsten-iron-sulfur enzyme acetylene hydratase stands out from its class because it catalyzes a nonredox reaction, the hydration of acetylene to acetaldehyde. Sequence comparisons group the protein into the dimethyl sulfoxide reductase family, and it contains a bis-molybdopterin guanine dinucleotide-ligated tungsten atom and a cubane-type [4Fe:4S] cluster. The crystal structure of acetylene hydratase at 1.26 A now shows that the tungsten center binds a water molecule that is activated by an adjacent aspartate residue, enabling it to attack acetylene bound in a distinct, hydrophobic pocket. This mechanism requires a strong shift of pK(a) of the aspartate, caused by a nearby low-potential [4Fe:4S] cluster. To access this previously unrecognized W-Asp active site, the protein evolved a new substrate channel distant from where it is found in other molybdenum and tungsten enzymes.

  14. Tungsten fiber reinforced copper matrix composites: A review

    NASA Technical Reports Server (NTRS)

    Mcdanels, David L.

    1989-01-01

    Tungsten fiber reinforced copper matrix (W/Cu) composites have served as an ideal model system with which to analyze the properties of metal matrix composites. A series of research programs were conducted to investigate the stress-strain behavior of W/Cu composites; the effect of fiber content on the strength, modulus, and conductivity of W/Cu composites; and the effect of alloying elements on the behavior of tungsten wire and of W/Cu composites. Later programs investigated the stress-rupture, creep, and impact behavior of these composites at elevated temperatures. Analysis of the results of these programs as allows prediction of the effects of fiber properties, matrix properties, and fiber content on the properties of W/Cu composites. These analyses form the basis for the rule-of-mixtures prediction of composite properties which was universally adopted as the criteria for measuring composite efficiency. In addition, the analyses allows extrapolation of potential properties of other metal matrix composites and are used to select candidate fibers and matrices for development of tungsten fiber reinforced superalloy composite materials for high temperature aircraft and rocket engine turbine applications. The W/Cu composite efforts are summarized, some of the results obtained are described, and an update is provided on more recent work using W/Cu composites as high strength, high thermal conductivity composite materials for high heat flux, elevated temperature applications.

  15. Morphologies of tungsten nanotendrils grown under helium exposure

    DOE PAGES

    Wang, Kun; Doerner, R. P.; Baldwin, Matthew J.; ...

    2017-02-14

    Nanotendril “fuzz” will grow under He bombardment under tokamak-relevant conditions on tungsten plasma-facing materials in a magnetic fusion energy device. We have grown tungsten nanotendrils at low (50 eV) and high (12 keV) He bombardment energy, in the range 900–1000 °C, and characterized them using electron microscopy. Low energy tendrils are finer (~22 nm diameter) than high-energy tendrils (~176 nm diameter), and low-energy tendrils have a smoother surface than high-energy tendrils. Cavities were omnipresent and typically ~5–10 nm in size. Oxygen was present at tendril surfaces, but tendrils were all BCC tungsten metal. Electron diffraction measured tendril growth axes andmore » grain boundary angle/axis pairs; no preferential growth axes or angle/axis pairs were observed, and low-energy fuzz grain boundaries tended to be high angle; high energy tendril grain boundaries were not observed. We speculate that the strong tendency to high-angle grain boundaries in the low-energy tendrils implies that as the tendrils twist or bend, strain must accumulate until nucleation of a grain boundary is favorable compared to further lattice rotation. Finally, the high-energy tendrils consisted of very large (>100 nm) grains compared to the tendril size, so the nature of the high energy irradiation must enable faster growth with less lattice rotation.« less

  16. Morphologies of tungsten nanotendrils grown under helium exposure

    PubMed Central

    Wang, Kun; Doerner, R. P.; Baldwin, M. J.; Meyer, F. W.; Bannister, M. E.; Darbal, Amith; Stroud, Robert; Parish, Chad M.

    2017-01-01

    Nanotendril “fuzz” will grow under He bombardment under tokamak-relevant conditions on tungsten plasma-facing materials in a magnetic fusion energy device. We have grown tungsten nanotendrils at low (50 eV) and high (12 keV) He bombardment energy, in the range 900–1000 °C, and characterized them using electron microscopy. Low energy tendrils are finer (~22 nm diameter) than high-energy tendrils (~176 nm diameter), and low-energy tendrils have a smoother surface than high-energy tendrils. Cavities were omnipresent and typically ~5–10 nm in size. Oxygen was present at tendril surfaces, but tendrils were all BCC tungsten metal. Electron diffraction measured tendril growth axes and grain boundary angle/axis pairs; no preferential growth axes or angle/axis pairs were observed, and low-energy fuzz grain boundaries tended to be high angle; high energy tendril grain boundaries were not observed. We speculate that the strong tendency to high-angle grain boundaries in the low-energy tendrils implies that as the tendrils twist or bend, strain must accumulate until nucleation of a grain boundary is favorable compared to further lattice rotation. The high-energy tendrils consisted of very large (>100 nm) grains compared to the tendril size, so the nature of the high energy irradiation must enable faster growth with less lattice rotation. PMID:28195125

  17. Morphologies of tungsten nanotendrils grown under helium exposure.

    PubMed

    Wang, Kun; Doerner, R P; Baldwin, M J; Meyer, F W; Bannister, M E; Darbal, Amith; Stroud, Robert; Parish, Chad M

    2017-02-14

    Nanotendril "fuzz" will grow under He bombardment under tokamak-relevant conditions on tungsten plasma-facing materials in a magnetic fusion energy device. We have grown tungsten nanotendrils at low (50 eV) and high (12 keV) He bombardment energy, in the range 900-1000 °C, and characterized them using electron microscopy. Low energy tendrils are finer (~22 nm diameter) than high-energy tendrils (~176 nm diameter), and low-energy tendrils have a smoother surface than high-energy tendrils. Cavities were omnipresent and typically ~5-10 nm in size. Oxygen was present at tendril surfaces, but tendrils were all BCC tungsten metal. Electron diffraction measured tendril growth axes and grain boundary angle/axis pairs; no preferential growth axes or angle/axis pairs were observed, and low-energy fuzz grain boundaries tended to be high angle; high energy tendril grain boundaries were not observed. We speculate that the strong tendency to high-angle grain boundaries in the low-energy tendrils implies that as the tendrils twist or bend, strain must accumulate until nucleation of a grain boundary is favorable compared to further lattice rotation. The high-energy tendrils consisted of very large (>100 nm) grains compared to the tendril size, so the nature of the high energy irradiation must enable faster growth with less lattice rotation.

  18. Physical and Mechanical Properties of W-Ni-Fe-Co Metal Foam Modified by Titanium Tungsten Carbide Alloying

    NASA Astrophysics Data System (ADS)

    Ishchenko, A. N.; Tabachenko, A. N.; Afanas'eva, S. A.; Belov, N. N.; Biryukov, Yu. A.; Burkin, V. V.; D'yachkovskii, A. S.; Rogaev, K. S.; Skosyrskii, A. B.; Yugov, N. T.

    2018-02-01

    The paper studies physical and mechanical properties of tungsten-nickel-iron-cobalt metal foam alloyed with titanium tungsten carbide. Test specimens are obtained by the liquid phase sintering of powder materials, including those containing tungsten nanopowders. High porosity metal foams are prepared through varying the porosity of powder specimens and the content of filling material. The penetration capability of cylinder projectiles made of new alloys is explored in this paper. It is shown that their penetration depth exceeds that of the prototype with relevant weight and size, made of tungsten-nickel-iron alloy, other factors being equal.

  19. The role of disk self-gravity on gap formation of the HL Tau proto-planetary disk

    DOE PAGES

    Li, Shengtai; Li, Hui

    2016-05-31

    Here, we use extensive global hydrodynamic disk gas+dust simulations with embedded planets to model the dust ring and gap structures in the HL Tau protoplanetary disk observed with the Atacama Large Millimeter/Submillimeter Array (ALMA). Since the HL Tau is a relatively massive disk, we find the disk self-gravity (DSG) plays an important role in the gap formation induced by the planets. Our simulation results demonstrate that DSG is necessary in explaining of the dust ring and gap in HL Tau disk. The comparison of simulation results shows that the dust rings and gap structures are more evident when the fullymore » 2D DSG (non-axisymmetric components are included) is used than if 1D axisymmetric DSG (only the axisymetric component is included) is used, or the disk self-gravity is not considered. We also find that the couple dust+gas+planet simulations are required because the gap and ring structure is different between dust and gas surface density.« less

  20. Vacuum Plasma Spray Forming of Tungsten Lorentz Force Accelerator Components

    NASA Technical Reports Server (NTRS)

    Zimmerman, Frank R.

    2001-01-01

    The Vacuum Plasma Spray (VPS) Laboratory at NASA's Marshall Space Flight Center has developed and demonstrated a fabrication technique using the VPS process to form anode sections for a Lorentz force accelerator from tungsten. Lorentz force accelerators are an attractive form of electric propulsion that provides continuous, high-efficiency propulsion at useful power levels for such applications as orbit transfers or deep space missions. The VPS process is used to deposit refractory metals such as tungsten onto a graphite mandrel of the desired shape. Because tungsten is reactive at high temperatures, it is thermally sprayed in an inert environment where the plasma gun melts and accelerates the metal powder onto the mandrel. A three-axis robot inside the chamber controls the motion of the plasma spray torch. A graphite mandrel acts as a male mold, forming the required contour and dimensions of the inside surface of the anode. This paper describes the processing techniques, design considerations, and process development associated with the VPS forming of the Lorentz force accelerator.

  1. Tungsten-yttria carbide coating for conveying copper

    DOEpatents

    Rothman, Albert J.

    1993-01-01

    A method is provided for providing a carbided-tungsten-yttria coating on the interior surface of a copper vapor laser. The surface serves as a wick for the condensation of liquid copper to return the condensate to the interior of the laser for revolatilization.

  2. The nature of thrombosis induced by platinum and tungsten coils in saccular aneurysms.

    PubMed

    Byrne, J V; Hope, J K; Hubbard, N; Morris, J H

    1997-01-01

    To compare the efficacy and biocompatability of electrolytic and mechanically detachable embolization coils of two metal types. Experimental saccular aneurysms in pigs were used to assess embolization induced by platinum or tungsten coils. Longitudinal angiographic and histologic studies were performed on treated and untreated (control) aneurysms to compare thrombosis and cellular responses after embolization with electrolytically detachable platinum coils and with mechanically detached tungsten coils. Fewer tungsten than platinum coils were needed to induce thrombosis. The inflammatory response within the aneurysmal lumen was more florid in embolized aneurysms than in control aneurysms. No difference was found in the timing or extent of accumulation of eosinophils, lymphocytes, or polymorphs between the two coils used. Giant cell responses were more marked in treated aneurysms; tungsten coils more than platinum coils. The amount of collagen and fibrosis present increased over the study period and was similar in treated and control aneurysms. The coil type influenced the initial cellular response but had little effect on the rate or degree to which blood clot within the aneurysm was replaced by fibrous tissue.

  3. Effect of starting microstructure on helium plasma-materials interaction in tungsten

    DOE PAGES

    Wang, Kun; Bannister, Mark E.; Meyer, Fred W.; ...

    2016-11-24

    Here, in a magnetic fusion energy (MFE) device, the plasma-facing materials (PFMs) will be subjected to tremendous fluxes of ions, heat, and neutrons. The response of PFMs to the fusion environment is still not well defined. Tungsten metal is the present candidate of choice for PFM applications such as the divertor in ITER. However, tungsten's microstructure will evolve in service, possibly to include recrystallization. How tungsten's response to plasma exposure evolves with changes in microstructure is presently unknown. In this work, we have exposed hot-worked and recrystallized tungsten to an 80 eV helium ion beam at a temperature of 900more » °C to fluences of 2 × 10 23 or 20 × 10 23 He/m 2. This resulted in a faceted surface structure at the lower fluence or short but well-developed nanofuzz structure at the higher fluence. There was little difference in the hot-rolled or recrystallized material's near-surface (≤50 nm) bubbles at either fluence. At higher fluence and deeper depth, the bubble populations of the hot-rolled and recrystallized were different, the recrystallized being larger and deeper. This may explain previous high-fluence results showing pronounced differences in recrystallized material. The deeper penetration in recrystallized material also implies that grain boundaries are traps, rather than high-diffusivity paths.« less

  4. An application of gap regenerator/expander precooled by two stage G-M refrigerator

    NASA Technical Reports Server (NTRS)

    Matsubara, Y.; Yasukochi, K.

    1983-01-01

    The degradation of regenerator effectiveness below 10K is due to the imbalance of the heat capacity of the regenerator material and helium gas as a working fluid. One of the attractive methods to increase this efficiency could be realized by a gap regenerator system regarding helium gas property. This paper describes an experiment using pressurized helium gas as a regenerator material. A two stage G-M cycle refrigerator has been used for precooling the gap regenerator system. With this method, minimum temperature below 5K has been obtained when the precooling temperature maintained at 10K.

  5. Failure study of helium-cooled tungsten divertor plasma-facing units tested at DEMO relevant steady-state heat loads

    NASA Astrophysics Data System (ADS)

    Ritz, G.; Hirai, T.; Norajitra, P.; Reiser, J.; Giniyatulin, R.; Makhankov, A.; Mazul, I.; Pintsuk, G.; Linke, J.

    2009-12-01

    Tungsten was selected as armor material for the helium-cooled divertor in future DEMO-type fusion reactors and fusion power plants. After realizing the design and testing of them under cyclic thermal loads of up to ~14 MW m-2, the tungsten divertor plasma-facing units were examined by metallography; they revealed failures such as cracks at the thermal loaded and as-machined surfaces, as well as degradation of the brazing layers. Furthermore, in order to optimize the machining processes, the quality of tungsten surfaces prepared by turning, milling and using a diamond cutting wheel were examined. This paper presents a metallographic examination of the tungsten plasma-facing units as well as technical studies and the characterization on machining of tungsten and alternative brazing joints.

  6. Tungsten-182 heterogeneity in modern ocean island basalts

    NASA Astrophysics Data System (ADS)

    Mundl, Andrea; Touboul, Mathieu; Jackson, Matthew G.; Day, James M. D.; Kurz, Mark D.; Lekic, Vedran; Helz, Rosalind T.; Walker, Richard J.

    2017-04-01

    New tungsten isotope data for modern ocean island basalts (OIB) from Hawaii, Samoa, and Iceland reveal variable 182W/184W, ranging from that of the ambient upper mantle to ratios as much as 18 parts per million lower. The tungsten isotopic data negatively correlate with 3He/4He. These data indicate that each OIB system accesses domains within Earth that formed within the first 60 million years of solar system history. Combined isotopic and chemical characteristics projected for these ancient domains indicate that they contain metal and are repositories of noble gases. We suggest that the most likely source candidates are mega-ultralow-velocity zones, which lie beneath Hawaii, Samoa, and Iceland but not beneath hot spots whose OIB yield normal 182W and homogeneously low 3He/4He.

  7. Preparation of tungsten oxide

    DOEpatents

    Bulian, Christopher J [Yankton, SD; Dye, Robert C [Los Alamos, NM; Son, Steven F [Los Alamos, NM; Jorgensen, Betty S [Jemez Springs, NM; Perry, W Lee [Jemez Springs, NM

    2009-09-22

    Tungsten trioxide hydrate (WO.sub.3.H.sub.2O) was prepared from a precursor solution of ammonium paratungstate in concentrated aqueous hydrochloric acid. The precursor solution was rapidly added to water, resulting in the crash precipitation of a yellow white powder identified as WO.sub.3.H.sub.2O nanosized platelets by x-ray diffraction and scanning electron microscopy. Annealing of the powder at 200.degree. C. provided cubic phase WO.sub.3 nanopowder, and at 400.degree. C. provided WO.sub.3 nanopowder as a mixture of monoclinic and orthorhombic phases.

  8. The CO₂ GAP Project--CO₂ GAP as a prognostic tool in emergency departments.

    PubMed

    Shetty, Amith L; Lai, Kevin H; Byth, Karen

    2010-12-01

    To determine whether CO₂ GAP [(a-ET) PCO₂] value differs consistently in patients presenting with shortness of breath to the ED requiring ventilatory support. To determine a cut-off value of CO₂ GAP, which is consistently associated with measured outcome and to compare its performance against other derived variables. This prospective observational study was conducted in ED on a convenience sample of 412 from 759 patients who underwent concurrent arterial blood gas and ETCO₂ (end-tidal CO₂) measurement. They were randomized to test sample of 312 patients and validation set of 100 patients. The primary outcome of interest was the need for ventilatory support and secondary outcomes were admission to high dependency unit or death during stay in ED. The randomly selected training set was used to select cut-points for the possible predictors; that is, CO₂ GAP, CO₂ gradient, physiologic dead space and A-a gradient. The sensitivity, specificity and predictive values of these predictors were validated in the test set of 100 patients.   Analysis of the receiver operating characteristic curves revealed the CO₂ GAP performed significantly better than the arterial-alveolar gradient in patients requiring ventilator support (area under the curve 0.950 vs 0.726). A CO₂ GAP ≥10 was associated with assisted ventilation outcomes when applied to the validation test set (100% sensitivity 70% specificity). The CO₂ GAP [(a-ET) PCO₂] differs significantly in patients requiring assisted ventilation when presenting with shortness of breath to EDs and further research addressing the prognostic value of CO₂ GAP in this specific aspect is required. © 2010 The Authors. EMA © 2010 Australasian College for Emergency Medicine and Australasian Society for Emergency Medicine.

  9. Characterizing the Variable Dust Permeability of Planet-induced Gaps

    NASA Astrophysics Data System (ADS)

    Weber, Philipp; Benítez-Llambay, Pablo; Gressel, Oliver; Krapp, Leonardo; Pessah, Martin E.

    2018-02-01

    Aerodynamic theory predicts that dust grains in protoplanetary disks will drift radially inward on comparatively short timescales. In this context, it has long been known that the presence of a gap opened by a planet can significantly alter the dust dynamics. In this paper, we carry out a systematic study employing long-term numerical simulations aimed at characterizing the critical particle size for retention outside a gap as a function of particle size, as well as various key parameters defining the protoplanetary disk model. To this end, we perform multifluid hydrodynamical simulations in two dimensions, including different dust species, which we treat as pressureless fluids. We initialize the dust outside of the planet’s orbit and study under which conditions dust grains are able to cross the gap carved by the planet. In agreement with previous work, we find that the permeability of the gap depends both on dust dynamical properties and the gas disk structure: while small dust follows the viscously accreting gas through the gap, dust grains approaching a critical size are progressively filtered out. Moreover, we introduce and compute a depletion factor that enables us to quantify the way in which higher viscosity, smaller planet mass, or a more massive disk can shift this critical size to larger values. Our results indicate that gap-opening planets may act to deplete the inner reaches of protoplanetary disks of large dust grains—potentially limiting the accretion of solids onto forming terrestrial planets.

  10. Extreme ultraviolet spectra of multiply charged tungsten ions

    NASA Astrophysics Data System (ADS)

    Mita, Momoe; Sakaue, Hiroyuki A.; Kato, Daiji; Murakami, Izumi; Nakamura, Nobuyuki

    2017-11-01

    We present extreme ultraviolet spectra of multiply charged tungsten ions observed with an electron beam ion trap. The observed spectra are compared with previous experimental results and theoretical spectra obtained with a collisional radiative model.

  11. Initial Considerations of a Dust Dispenser for Injecting Tungsten Particles in Space

    DTIC Science & Technology

    2014-09-26

    INTRODUCTION We began to learn how to work with tungsten particles as fine as corn starch , which must be ejected as individual particles. Several designs...purchased a quantity of tungsten carbide spheres, with diameters in our desired range, because of their shape and improved resistance to oxidation... resistance . When ignoring air resistance the only force acting on the particle after it leaves the dispenser is gravity. The particle motion can be

  12. Oxidation behaviour of silicon-free tungsten alloys for use as the first wall material

    NASA Astrophysics Data System (ADS)

    Koch, F.; Brinkmann, J.; Lindig, S.; Mishra, T. P.; Linsmeier, Ch

    2011-12-01

    The use of self-passivating tungsten alloys as armour material of the first wall of a fusion power reactor may be advantageous concerning safety issues. In earlier studies good performance of the system W-Cr-Si was demonstrated. Thin films of such alloys showed a strongly reduced oxidation rate compared to pure tungsten. However, the formation of brittle tungsten silicides may be disadvantageous for the powder metallurgical production of bulk W-Cr-Si alloys if a good workability is needed. This paper shows the results of screening tests to identify suitable silicon-free alloys with distinguished self-passivation and a potentially good workability. Of all the tested systems W-Cr-Ti alloys showed the most promising results. The oxidation rate was even lower than the one of W-Cr-Si alloys, the reduction factor was about four orders of magnitude compared to pure tungsten. This performance could be conserved even if the content of alloying elements was reduced.

  13. Development of positron annihilation spectroscopy for investigating deuterium decorated voids in neutron-irradiated tungsten

    NASA Astrophysics Data System (ADS)

    Taylor, C. N.; Shimada, M.; Merrill, B. J.; Akers, D. W.; Hatano, Y.

    2015-08-01

    The present work is a continuation of a recent research to develop and optimize positron annihilation spectroscopy (PAS) for characterizing neutron-irradiated tungsten. Tungsten samples were exposed to neutrons in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory and damaged to 0.025 and 0.3 dpa. Subsequently, they were exposed to deuterium plasmas in the Tritium Plasma Experiment (TPE) at Idaho National Laboratory. The implanted deuterium was desorbed through sample heating to 900 °C, and Doppler broadening (DB)-PAS was performed both before and after heating. Results show that deuterium impregnated tungsten is identified as having a smaller S-parameter. The S-parameter increases after deuterium desorption. Microstructural changes also occur during sample heating. These effects can be isolated from deuterium desorption by comparing the S-parameters from the deuterium-free back face with the deuterium-implanted front face. The application of using DB-PAS to examine deuterium retention in tungsten is examined.

  14. Infiltrated W–Cu composites with combined architecture of hierarchical particulate tungsten and tungsten fibers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Shuhua, E-mail: liangsh@xaut.edu.cn; Shaanxi Province Key Laboratory for Electrical Materials and Infiltration Technology, Xi'an 710048; Chen, Long

    In this article, novel W–Cu composites reinforced with topologically-inserted tungsten fibers (W{sub f}) have been fabricated by hot-press sintering and infiltration method. By pre-sputtering of ~ 100 nm thick chromium layer onto the surface of W{sub f}, the contiguity or connectivity between W{sub f} and neighboring tungsten particles (W{sub p}) or Cu after sintering and infiltration was enhanced. Combined SEM, TEM and STEM techniques confirmed that the intact interfaces of W{sub f}/W{sub p} and W{sub f}/Cu free from precipitates, impurities and porosities would provide desirable strength and ductility. Further mechanical tests also validated its superior compressive strength and plasticity atmore » various temperatures, together with significantly improved tensile strength (by 23.6%) and hardness (by 9.3%) for the W–Cu composite after reinforcement with Cr-coated W{sub f}, which promotes the engineering application of the composite greatly. - Highlights: • W-fibers reinforced W–Cu composites were fabricated by sintering and infiltration. • The sputtered Cr onto W{sub f} has dissolved into adjacent W{sub f} and W{sub p} during fabrication. • The intact interfaces of W{sub f}/W{sub p} and W{sub f}/Cu confer enhanced strength and ductility. • Tensile strength and hardness improve by 23.6% and 9.3% after interface tuning.« less

  15. OBSERVATIONS ON RHENIUM-TUNGSTEN ALLOYS (in German)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirner, K.

    1959-12-01

    Re-W alloys were arc melted between tungsten electrodes, checked metallographically and their hardness was determined. Two intermetallic phases were found, one of which---a stgroa phase--having a broad homogeneity range (approximately from 40 to 60%) and a high hardness (1800 VPN/sub 300/). (auth)

  16. Direct determination of cadmium in foods by solid sampling electrothermal vaporization inductively coupled plasma mass spectrometry using a tungsten coil trap

    NASA Astrophysics Data System (ADS)

    Zhang, Ying; Mao, Xuefei; Liu, Jixin; Wang, Min; Qian, Yongzhong; Gao, Chengling; Qi, Yuehan

    2016-04-01

    In this work, a solid sampling device consisting of a tungsten coil trap, porous carbon vaporizer and on-line ashing furnace of a Ni-Cr coil was interfaced with inductively coupled plasma mass spectrometry (ICP-MS). A modified double gas circuit system was employed that was composed of carrier and supplemental gas lines controlled by separate gas mass flow controllers. For Cd determination in food samples using the assembled solid sampling ICP-MS, the optimal ashing and vaporization conditions, flow rate of the argon-hydrogen (Ar/H2) (v:v = 24:1) carrier gas and supplemental gas, and minimum sampling mass were investigated. Under the optimized conditions, the limit of quantification was 0.5 pg and the relative standard deviation was within a 10.0% error range (n = 10). Furthermore, the mean spiked recoveries for various food samples were 99.4%-105.9% (n = 6). The Cd concentrations measured by the proposed method were all within the certified values of the reference materials or were not significantly different (P > 0.05) from those of the microwave digestion ICP-MS method, demonstrating the good accuracy and precision of the solid sampling ICP-MS method for Cd determination in food samples.

  17. The Effect of Ion Energy and Substrate Temperature on Deuterium Trapping in Tungsten

    NASA Astrophysics Data System (ADS)

    Roszell, John Patrick Town

    Tungsten is a candidate plasma facing material for next generation magnetic fusion devices such as ITER and there are major operational and safety issues associated with hydrogen (tritium) retention in plasma facing components. An ion gun was used to simulate plasma-material interactions under various conditions in order to study hydrogen retention characteristics of tungsten thus enabling better predictions of hydrogen retention in ITER. Thermal Desorption Spectroscopy (TDS) was used to measure deuterium retention from ion irradiation while modelling of TDS spectra with the Tritium Migration Analysis Program (TMAP) was used to provide information about the trapping mechanisms involved in deuterium retention in tungsten. X-ray Photoelectron Spectroscopy (XPS) and Secondary Ion Mass Spectrometry (SIMS) were used to determine the depth resolved composition of specimens used for irradiation experiments. Carbon and oxygen atoms will be among the most common contaminants within ITER. C and O contamination in polycrystalline tungsten (PCW) specimens even at low levels (˜0.1%) was shown to reduce deuterium retention by preventing diffusion of deuterium into the bulk of the specimen. This diffusion barrier was also responsible for the inhibition of blister formation during irradiations at 500 K. These observations may provide possible mitigation techniques for problems associated with tritium retention and mechanical damage to plasma facing components caused by hydrogen implantation. Deuterium trapping in PCW and single crystal tungsten (SCW) was studied as a function of ion energy and substrate temperature. Deuterium retention was shown to decrease with decreasing ion energy below 100 eV/D+. Irradiation of tungsten specimens with 10 eV/D+ ions was shown to retain up to an order of magnitude less deuterium than irradiation with 500 eV/D+ ions. Furthermore, the retention mechanism for deuterium was shown to be consistent across the entire energy range studied (10-500 e

  18. Electrochemical Dissolution of Tungsten Carbide in NaCl-KCl-Na2WO4 Molten Salt

    NASA Astrophysics Data System (ADS)

    Zhang, Liwen; Nie, Zuoren; Xi, Xiaoli; Ma, Liwen; Xiao, Xiangjun; Li, Ming

    2018-02-01

    Tungsten carbide was utilized as anode to extract tungsten in a NaCl-KCl-Na2WO4 molten salt, and the electrochemical dissolution was investigated. Although the molten salt electrochemical method is a short process method of tungsten extraction from tungsten carbide in one step, the dissolution efficiency and current efficiency are quite low. In order to improve the dissolution rate and current efficiency, the sodium tungstate was added as the active substance. The dissolution rate, the anode current efficiency, and the cathode current efficiency were calculated with different contents of sodium tungstate addition. The anodes prior to and following the reaction, as well as the product, were analyzed through X-ray diffraction, scanning electron microscopy, and energy dispersive spectrometry. The results demonstrated that the sodium tungstate could improve the dissolution rate and the current efficiency, due to the addition of sodium tungstate decreasing the charge transfer resistance in the electrolysis system. Due to the fact that the addition of sodium tungstate could remove the carbon during electrolysis, pure tungsten powders with 100 nm diameter were obtained when the content of sodium tungstate was 1.0 pct.

  19. Recrystallization and grain growth induced by ELMs-like transient heat loads in deformed tungsten samples

    NASA Astrophysics Data System (ADS)

    Suslova, A.; El-Atwani, O.; Sagapuram, D.; Harilal, S. S.; Hassanein, A.

    2014-11-01

    Tungsten has been chosen as the main candidate for plasma facing components (PFCs) due to its superior properties under extreme operating conditions in future nuclear fusion reactors such as ITER. One of the serious issues for PFCs is the high heat load during transient events such as ELMs and disruption in the reactor. Recrystallization and grain size growth in PFC materials caused by transients are undesirable changes in the material, since the isotropic microstructure developed after recrystallization exhibits a higher ductile-to-brittle transition temperature which increases with the grain size, a lower thermal shock fatigue resistance, a lower mechanical strength, and an increased surface roughening. The current work was focused on careful determination of the threshold parameters for surface recrystallization, grain growth rate, and thermal shock fatigue resistance under ELM-like transient heat events. Transient heat loads were simulated using long pulse laser beams for two different grades of ultrafine-grained tungsten. It was observed that cold rolled tungsten demonstrated better power handling capabilities and higher thermal stress fatigue resistance compared to severely deformed tungsten. Higher recrystallization threshold, slower grain growth, and lower degree of surface roughening were observed in the cold rolled tungsten.

  20. Recrystallization and grain growth induced by ELMs-like transient heat loads in deformed tungsten samples

    PubMed Central

    Suslova, A.; El-Atwani, O.; Sagapuram, D.; Harilal, S. S.; Hassanein, A.

    2014-01-01

    Tungsten has been chosen as the main candidate for plasma facing components (PFCs) due to its superior properties under extreme operating conditions in future nuclear fusion reactors such as ITER. One of the serious issues for PFCs is the high heat load during transient events such as ELMs and disruption in the reactor. Recrystallization and grain size growth in PFC materials caused by transients are undesirable changes in the material, since the isotropic microstructure developed after recrystallization exhibits a higher ductile-to-brittle transition temperature which increases with the grain size, a lower thermal shock fatigue resistance, a lower mechanical strength, and an increased surface roughening. The current work was focused on careful determination of the threshold parameters for surface recrystallization, grain growth rate, and thermal shock fatigue resistance under ELM-like transient heat events. Transient heat loads were simulated using long pulse laser beams for two different grades of ultrafine-grained tungsten. It was observed that cold rolled tungsten demonstrated better power handling capabilities and higher thermal stress fatigue resistance compared to severely deformed tungsten. Higher recrystallization threshold, slower grain growth, and lower degree of surface roughening were observed in the cold rolled tungsten. PMID:25366885

  1. Recrystallization and grain growth induced by ELMs-like transient heat loads in deformed tungsten samples.

    PubMed

    Suslova, A; El-Atwani, O; Sagapuram, D; Harilal, S S; Hassanein, A

    2014-11-04

    Tungsten has been chosen as the main candidate for plasma facing components (PFCs) due to its superior properties under extreme operating conditions in future nuclear fusion reactors such as ITER. One of the serious issues for PFCs is the high heat load during transient events such as ELMs and disruption in the reactor. Recrystallization and grain size growth in PFC materials caused by transients are undesirable changes in the material, since the isotropic microstructure developed after recrystallization exhibits a higher ductile-to-brittle transition temperature which increases with the grain size, a lower thermal shock fatigue resistance, a lower mechanical strength, and an increased surface roughening. The current work was focused on careful determination of the threshold parameters for surface recrystallization, grain growth rate, and thermal shock fatigue resistance under ELM-like transient heat events. Transient heat loads were simulated using long pulse laser beams for two different grades of ultrafine-grained tungsten. It was observed that cold rolled tungsten demonstrated better power handling capabilities and higher thermal stress fatigue resistance compared to severely deformed tungsten. Higher recrystallization threshold, slower grain growth, and lower degree of surface roughening were observed in the cold rolled tungsten.

  2. Synthesis and Characterization of Paramagnetic Tungsten Imido Complexes Bearing α-Diimine Ligands.

    PubMed

    Tanahashi, Hiromasa; Ikeda, Hideaki; Tsurugi, Hayato; Mashima, Kazushi

    2016-02-15

    Tungsten imido complexes bearing a redox-active ligand, such as N,N'-bis(2,6-diisopropylphenyl)-1,4-diaza-2,3-dimethyl-1,3-butadiene (L1), N,N'-bis(2,6-diisopropylphenyl)-1,4-diaza-1,3-butadiene (L2), and 1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene (L3), were prepared by salt-free reduction of W(═NC6H3-2,6-(i)Pr2)Cl4 (1) using 1-methyl-3,6-bis(trimethylsilyl)-1,4-cyclohexadiene (MBTCD) followed by addition of the corresponding redox-active ligands. In the initial stage, reaction of W(═NC6H3-2,6-(i)Pr2)Cl4 with MBTCD afforded a tetranuclear W(V) imido cluster, [W(═NC6H3-2,6-(i)Pr2)Cl3]4 (2), which served as a unique precursor for introducing redox-active ligands to the tungsten center to give the corresponding mononuclear complexes with a general formula of W(═NC6H3-2,6-(i)Pr2)Cl3(L) (3, L = L1; 4, L = L2; and 6, L = L3). X-ray analyses of complexes 3 and 6 revealed a neutral coordination mode of L1 and L3 to the tungsten in solid state, while the electron paramagnetic resonance (EPR) spectra of 3 and 4 clarified that a radical was predominantly located on the tungsten center supported by neutral L1 or L2, and the EPR spectra of complex 6 indicated that a radical was delocalized over both the tungsten center and the monoanionic redox-active ligand L3.

  3. Gap Fill Materials Using Cyclodextrin Derivatives in ArF Lithography

    NASA Astrophysics Data System (ADS)

    Takei, Satoshi; Shinjo, Tetsuya; Sakaida, Yasushi; Hashimoto, Keisuke

    2007-11-01

    High planarizing gap fill materials based on β-cyclodextrin in ArF photoresist under-layer materials have been developed for fast etching in CF4 gas. Gap fill materials used in the via-first dual damascene process need to have high etch rates to prevent crowning or fencing on top of the trench after etching and a small thickness bias between the dense and blanket areas to minimize issues observed during trench lithography by narrowing the process latitude. Cyclodextrin is a circular oligomer with a nanoscale porous structure that has a high number of oxygen atoms, as calculated using the Ohnishi parameter, providing high etch rates. Additionally, since gap fill materials using cyclodextrin derivatives have low viscosities and molecular weights, they are expected to exhibit excellent flow properties and minimal thermal shrinkage during baking. In this paper, we describe the composition and basic film properties of gap fill materials; planarization in the via-first dual damascene process and etch rates in CF4 gas compared with dextrin with α-glycoside bonds in polysaccharide, poly(2-hydroxypropyl methacrylate) and poly(4-hydroxystyrene). The β-cyclodextrin used in this study was obtained by esterifying the hydroxyl groups of dextrin resulting in improved wettability on via substrates and solubility in photoresist solvents such as propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate and ethyl lactate. Gap fill materials using cyclodextrin derivatives showed good planarization and via filling performance without observing voids in via holes. In addition to superior via filling performance, the etch rate of gap fill materials using β-cyclodextrin derivatives was 2.8-2.9 times higher than that of an ArF photoresist, evaluated under CF4 gas conditions by reactive ion etching. These results were attributed to the combination of both nanoscale porous structures and a high density of oxygen atoms in our gap fill materials using cyclodextrin

  4. Deep and wide gaps by super Earths in low-viscosity discs

    NASA Astrophysics Data System (ADS)

    Ginzburg, Sivan; Sari, Re'em

    2018-06-01

    Planets can open cavities (gaps) in the protoplanetary gaseous discs in which they are born by exerting gravitational torques. Viscosity counters these torques and limits the depletion of the gaps. We present a simple one-dimensional scheme to calculate the gas density profile inside gaps by balancing the gravitational and viscous torques. By generalizing the results of Goodman & Rafikov (2001), our scheme properly accounts for the propagation of angular momentum by density waves. This method allows us to easily study low-viscosity discs, which are challenging for full hydrodynamical simulations. We complement our numerical integration by analytical equations for the gap's steady-state depth and width as a function of the planet's to star's mass ratio μ, the gas disc's aspect ratio h, and its Shakura & Sunyaev viscosity parameter α. Specifically, we focus on low-mass planets (μ < μth ≡ h3) and identify a new low-viscosity regime, α < h(μ/μth)5, in which the classical analytical scaling relations are invalid. Equivalently, this low-viscosity regime applies to every gap that is depleted by more than a factor of (μth/μ)3 relative to the unperturbed density. We show that such gaps are significantly deeper and wider than previously thought, and consequently take a longer time to reach equilibrium.

  5. The catalytic role of tungsten electrode material in the plasmachemical activity of a pulsed corona discharge in water

    NASA Astrophysics Data System (ADS)

    Lukes, Petr; Clupek, Martin; Babicky, Vaclav; Sisrova, Irena; Janda, Vaclav

    2011-06-01

    The effects of tungsten material used as a high-voltage needle electrode on the production of hydrogen peroxide and the degradation of dimethylsulfoxide (DMSO) caused by a pulsed corona discharge in water were investigated. A reactor of needle-plate electrode geometry was used. The erosion of the tungsten electrodes by the discharge was evaluated. The yields of H2O2 production and the decomposition of DMSO by the discharge, which were obtained using the tungsten electrodes, were compared with those determined for titanium electrodes. The electrode erosion increased significantly with an increase in the solution conductivity. A large fraction (50-70%) of the eroded tungsten electrode material was released into the solution in dissolved form as tungstate WO_4^{2-} ions. A correlation between the amount of eroded tungsten material released into the solution and the chemical effects induced by the discharge was determined. Lower yields of H2O2 and a higher degradation of DMSO by the discharge were obtained using the tungsten electrodes than were determined using titanium electrodes. Tungstate ions were shown to play a dominant role in the decomposition of H2O2, which was produced by the discharge using a tungsten electrode. The higher degradation of DMSO that was determined for tungsten was attributed to the tungstate-catalyzed oxidation of DMSO by H2O2, in addition to the oxidation of DMSO by OH radicals. Such a mechanism was supported by the detection of degradation by-products of DMSO (methanesulfonate, sulfate and dimethyl sulfone). The catalytic role of tungstate ions in the plasmachemical activity of the discharge generated using a tungsten electrode was also demonstrated on a pH-dependent decomposition of H2O2 and DMSO.

  6. Preservation of Earth-forming events in the tungsten isotopic composition of modern flood basalts.

    PubMed

    Rizo, Hanika; Walker, Richard J; Carlson, Richard W; Horan, Mary F; Mukhopadhyay, Sujoy; Manthos, Vicky; Francis, Don; Jackson, Matthew G

    2016-05-13

    How much of Earth's compositional variation dates to processes that occurred during planet formation remains an unanswered question. High-precision tungsten isotopic data from rocks from two large igneous provinces, the North Atlantic Igneous Province and the Ontong Java Plateau, reveal preservation to the Phanerozoic of tungsten isotopic heterogeneities in the mantle. These heterogeneities, caused by the decay of hafnium-182 in mantle domains with high hafnium/tungsten ratios, were created during the first ~50 million years of solar system history, indicating that portions of the mantle that formed during Earth's primary accretionary period have survived to the present. Copyright © 2016, American Association for the Advancement of Science.

  7. Nuclear Rocket Ceramic Metal Fuel Fabrication Using Tungsten Powder Coating and Spark Plasma Sintering

    NASA Technical Reports Server (NTRS)

    Barnes, M. W.; Tucker, D. S.; Hone, L.; Cook, S.

    2017-01-01

    Nuclear thermal propulsion is an enabling technology for crewed Mars missions. An investigation was conducted to evaluate spark plasma sintering (SPS) as a method to produce tungsten-depleted uranium dioxide (W-dUO2) fuel material when employing fuel particles that were tungsten powder coated. Ceramic metal fuel wafers were produced from a blend of W-60vol% dUO2 powder that was sintered via SPS. The maximum sintering temperatures were varied from 1,600 to 1,850 C while applying a 50-MPa axial load. Wafers exhibited high density (>95% of theoretical) and a uniform microstructure (fuel particles uniformly dispersed throughout tungsten matrix).

  8. Titanium dioxide-based carbon monoxide gas sensors: Effects of crystallinity and chemistry on sensitivity

    NASA Astrophysics Data System (ADS)

    Seeley, Zachary Mark

    Among metal-oxide gas sensors which change electrical resistive properties upon exposure to target gasses, titanium dioxide (TiO2) has received attention for its sensitivity and stability during high temperature (>500°C) operation. However, due to the sensing mechanism sensitivity, selectivity, and stability remain as critical deficiencies to be resolved before these sensors reach commercial use. In this study, TiO2 thick films of approximately 30mum and thin films of approximately 1mum thick were fabricated to assess the influence of their material properties on gas sensing mechanism. Increased calcination temperature of TiO2 thick films led to grain growth, reduction in specific surface area, and particle-particle necking. These properties are known to degrade sensitivity; however the measured carbon monoxide (CO) gas response improved with increasing calcination temperature up to 800°C. It was concluded that the sensing improvement was due to increased crystallinity within the films. Sensing properties of TiO2 thin films of were also dependent on crystallization, however; due to the smaller volume of material, they reached optimized crystallization at lower temperatures of 650°C, compared to 800°C for thick films. Incorporation of tungsten (W) and nickel (Ni) ions into the films created donor and acceptor defect sites, respectively, within the electronic band gap of TiO2. The additional n-type defects in W-doped TiO 2 improved n-type CO response, while p-type defects in Ni-doped TiO 2 converted the gas response to p-type. Chemistry of thin films had a more significant impact on the electrical properties and gas response than did microstructure or crystallinity. Doped films could be calcined at higher temperatures and yet remain highly sensitive to CO. Thin films with p-n bi-layer structure were fabricated to determine the influence of a p-n junction on gas sensing properties. No effect of the junction was observed and the sensing response neared the average

  9. Tungsten Inert Gas and Friction Stir Welding Characteristics of 4-mm-Thick 2219-T87 Plates at Room Temperature and -196 °C

    NASA Astrophysics Data System (ADS)

    Lei, Xuefeng; Deng, Ying; Yin, Zhimin; Xu, Guofu

    2014-06-01

    2219-T87 aluminum alloy is widely used for fabricating liquid rocket propellant storage tank, due to its admirable cryogenic property. Welding is the dominant joining method in the manufacturing process of aerospace components. In this study, the tungsten inert gas welding and friction stir welding (FSW) characteristics of 4-mm-thick 2219-T87 alloy plate at room temperature (25 °C) and deep cryogenic temperature (-196 °C) were investigated by property measurements and microscopy methods. The studied 2219 base alloy exhibits a low strength plane anisotropy and excellent room temperature and cryogenic mechanical properties. The ultimate tensile strength values of TIG and FSW welding joints can reach 265 and 353 MPa at room temperature, and 342 and 438 MPa at -196 °C, respectively. The base metal consists of elongated deformed grains and many nano-scaled θ (Al2Cu) aging precipitates. Fusion zone and heat-affected zone (HAZ) of the TIG joint are characterized by coarsening dendritic grains and equiaxed recrystallized grains, respectively. The FSW-welded joint consists of the weld nugget zone, thermo-mechanically affected zone (TMAZ), and HAZ. In the weld nugget zone, a micro-scaled sub-grain structure is the main microstructure characteristic. The TMAZ and HAZ are both characterized by coarsened aging precipitates and elongated deformed grains. The excellent FSW welding properties are attributed to the preservation of the working structures and homogenous chemical compositions.

  10. Pulsed gas laser

    DOEpatents

    Anderson, Louis W.; Fitzsimmons, William A.

    1978-01-01

    A pulsed gas laser is constituted by Blumlein circuits wherein space metal plates function both as capacitors and transmission lines coupling high frequency oscillations to a gas filled laser tube. The tube itself is formed by spaced metal side walls which function as connections to the electrodes to provide for a high frequency, high voltage discharge in the tube to cause the gas to lase. Also shown is a spark gap switch having structural features permitting a long life.

  11. Comparison of the surface dielectric barrier discharge characteristics under different electrode gaps

    NASA Astrophysics Data System (ADS)

    Gao, Guoqiang; Dong, Lei; Peng, Kaisheng; Wei, Wenfu; Li, Chunmao; Wu, Guangning

    2017-01-01

    Currently, great interests are paid to the surface dielectric barrier discharge due to the diverse and interesting application. In this paper, the influences of the electrode gap on the discharge characteristics have been studied. Aspects of the electrical parameters, the optical emission, and the discharge induced gas flow were considered. The electrode gap varied from 0 mm to 21 mm, while the applied AC voltage was studied in the range of 17 kV-27 kV. Results indicate that with the increase of the electrode gap, the variation of discharge voltage exhibits an increasing trend, while the other parameters (i.e., the current, power, and induced flow velocity) increase first, and then decrease once the gap exceeded the critical value. Mechanisms of the electrode gap influencing these key parameters were discussed from the point of equivalent circuit. The experimental results reveal that an optimal discharge gap can be obtained, which is closely related to the applied voltage. Visualization of the induced flow with different electrode gaps was realized by the Schlieren diagnostic technique. Finally, the velocities of induced gas flow determined by the pitot tube were compared with the results of intensity-integral method, and good agreements were found.

  12. Constitutive behavior of tantalum and tantalum-tungsten alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, S.R.; Gray, G.T. III

    1996-10-01

    The effects of strain rate, temperature, and tungsten alloying on the yield stress and the strain-hardening behavior of tantalum were investigated. The yield and flow stresses of unalloyed Ta and tantalum-tungsten alloys were found to exhibit very high rate sensitivities, while the hardening rates in Ta and Ta-W alloys were found to be insensitive to strain rate and temperature at lower temperatures or at higher strain rates. This behavior is consistent with the observation that overcoming the intrinsic Peierls stress is shown to be the rate-controlling mechanism in these materials at low temperatures. The dependence of yield stress on temperaturemore » and strain rate was found to decrease, while the strain-hardening rate increased with tungsten alloying content. The mechanical threshold stress (MTS) model was adopted to model the stress-strain behavior of unalloyed Ta and the Ta-W alloys. Parameters for the constitutive relations for Ta and the Ta-W alloys were derived for the MTS model, the Johnson-Cook (JC), and the Zerilli-Armstrong (ZA) models. The results of this study substantiate the applicability of these models for describing the high strain-rate deformation of Ta and Ta-W alloys. The JC and ZA models, however, due to their use of a power strain-hardening law, were found to yield constitutive relations for Ta and Ta-W alloys that are strongly dependent on the range of strains for which the models were optimized.« less

  13. OEDGE Modeling of Collector Probe measurements in L-mode from the DIII-D tungsten ring campaign

    NASA Astrophysics Data System (ADS)

    Elder, J. D.; Stangeby, P. C.; Unterberg, Z.; Donovan, D.; Wampler, W. R.; Watkins, J.; Abrams, T.; McLean, A. G.

    2017-10-01

    During the tungsten ring campaign on DIII-D, a collector probe system with multiple diameter, dual-facing collector rods was inserted into the far scrape off layer (SOL) near the outer midplane to measure the plasma tungsten content. For most probes more tungsten was observed on the side connected along field lines to the inner divertor, with the larger probes showing largest divertor-facing asymmetries The OEDGE code is used to model the tungsten erosion, transport and deposition. It has been enhanced with (i) a peripheral particle transport and deposition model to record the impurity content in the peripheral region outside the regular mesh, and (ii) a collector probe model. The OEDGE results approximately reproduce both the divertor-facing asymmetries and the radial decay of each collector probe profile. The effect of changing impurity transport assumptions and wall location are examined. The measured divertor-facing asymmetries imply a higher tungsten density in the plasma upstream of the probe; this was expected theoretically from the effect of the parallel ion temperature gradient force driving upstream transport of tungsten from the outer divertor and was also found in the code analysis. Work supported by the US Department of Energy under DE-FC02-04ER54698, DE-NA0003525, DE-AC05-00OR22725, and DE-AC52-07NA27344.

  14. Fabrication of high aspect ratio tungsten nanostructures on ultrathin c-Si membranes for extreme UV applications

    NASA Astrophysics Data System (ADS)

    Delachat, F.; Le Drogoff, B.; Constancias, C.; Delprat, S.; Gautier, E.; Chaker, M.; Margot, J.

    2016-01-01

    In this work, we demonstrate a full process for fabricating high aspect ratio diffraction optics for extreme ultraviolet lithography. The transmissive optics consists in nanometer scale tungsten patterns standing on flat, ultrathin (100 nm) and highly transparent (>85% at 13.5 nm) silicon membranes (diameter of 1 mm). These tungsten patterns were achieved using an innovative pseudo-Bosch etching process based on an inductively coupled plasma ignited in a mixture of SF6 and C4F8. Circular ultra-thin Si membranes were fabricated through a state-of-the-art method using direct-bonding with thermal difference. The silicon membranes were sputter-coated with a few hundred nanometers (100-300 nm) of stress-controlled tungsten and a very thin layer of chromium. Nanoscale features were written in a thin resist layer by electron beam lithography and transferred onto tungsten by plasma etching of both the chromium hard mask and the tungsten layer. This etching process results in highly anisotropic tungsten features at room temperature. The homogeneity and the aspect ratio of the advanced pattern transfer on the membranes were characterized with scanning electron microscopy after focus ion beam milling. An aspect ratio of about 6 for 35 nm size pattern is successfully obtained on a 1 mm diameter 100 nm thick Si membrane. The whole fabrication process is fully compatible with standard industrial semiconductor technology.

  15. High-temperature brazing for reliable tungsten CFC joints

    NASA Astrophysics Data System (ADS)

    Koppitz, Th; Pintsuk, G.; Reisgen, U.; Remmel, J.; Hirai, T.; Sievering, R.; Rojas, Y.; Casalegno, V.

    2007-03-01

    The joining of tungsten and carbon-based materials is demanding due to the incompatibility of their chemical and thermophysical properties. Direct joining is unfeasible by the reason of brittle tungsten carbide formation. High-temperature brazing has been investigated in order to find a suitable brazing filler metal (BFM) which successfully acts as an intermediary between the incompatible properties of the base materials. So far only low Cr-alloyed Cu-based BFMs provide the preferential combination of good wetting action on both materials, tolerable interface reactions, and a precipitation free braze joint. Attempts to implement a higher melting metal (e.g. Pd, Ti, Zr) as a BFM have failed up to now, because the formation of brittle precipitations and pores in the seam were inevitable. But the wide metallurgical complexity of this issue is regarded to offer further joining potential.

  16. Molybdenum Incorporation in Tungsten Aldehyde Oxidoreductase Enzymes from Pyrococcus furiosus▿ †

    PubMed Central

    Sevcenco, Ana-Maria; Bevers, Loes E.; Pinkse, Martijn W. H.; Krijger, Gerard C.; Wolterbeek, Hubert T.; Verhaert, Peter D. E. M.; Hagen, Wilfred R.; Hagedoorn, Peter-Leon

    2010-01-01

    The hyperthermophilic archaeon Pyrococcus furiosus expresses five aldehyde oxidoreductase (AOR) enzymes, all containing a tungsto-bispterin cofactor. The growth of this organism is fully dependent on the presence of tungsten in the growth medium. Previous studies have suggested that molybdenum is not incorporated in the active site of these enzymes. Application of the radioisotope 99Mo in metal isotope native radioautography in gel electrophoresis (MIRAGE) technology to P. furiosus shows that molybdenum can in fact be incorporated in all five AOR enzymes. Mo(V) signals characteristic for molybdopterin were observed in formaldehyde oxidoreductase (FOR) in electron paramagnetic resonance (EPR)-monitored redox titrations. Our finding that the aldehyde oxidation activity of FOR and WOR5 (W-containing oxidoreductase 5) correlates only with the residual tungsten content suggests that the Mo-containing AORs are most likely inactive. An observed W/Mo antagonism is indicative of tungstate-dependent negative feedback of the expression of the tungstate/molybdate ABC transporter. An intracellular selection mechanism for tungstate and molybdate processing has to be present, since tungsten was found to be preferentially incorporated into the AORs even under conditions with comparable intracellular concentrations of tungstate and molybdate. Under the employed growth conditions of starch as the main carbon source in a rich medium, no tungsten- and/or molybdenum-associated proteins are detected in P. furiosus other than the high-affinity transporter, the proteins of the metallopterin insertion machinery, and the five W-AORs. PMID:20562313

  17. Life-cycle greenhouse gas emissions of shale gas, natural gas, coal, and petroleum.

    PubMed

    Burnham, Andrew; Han, Jeongwoo; Clark, Corrie E; Wang, Michael; Dunn, Jennifer B; Palou-Rivera, Ignasi

    2012-01-17

    The technologies and practices that have enabled the recent boom in shale gas production have also brought attention to the environmental impacts of its use. It has been debated whether the fugitive methane emissions during natural gas production and transmission outweigh the lower carbon dioxide emissions during combustion when compared to coal and petroleum. Using the current state of knowledge of methane emissions from shale gas, conventional natural gas, coal, and petroleum, we estimated up-to-date life-cycle greenhouse gas emissions. In addition, we developed distribution functions for key parameters in each pathway to examine uncertainty and identify data gaps such as methane emissions from shale gas well completions and conventional natural gas liquid unloadings that need to be further addressed. Our base case results show that shale gas life-cycle emissions are 6% lower than conventional natural gas, 23% lower than gasoline, and 33% lower than coal. However, the range in values for shale and conventional gas overlap, so there is a statistical uncertainty whether shale gas emissions are indeed lower than conventional gas. Moreover, this life-cycle analysis, among other work in this area, provides insight on critical stages that the natural gas industry and government agencies can work together on to reduce the greenhouse gas footprint of natural gas.

  18. Life-cycle analysis of shale gas and natural gas.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, C.E.; Han, J.; Burnham, A.

    2012-01-27

    The technologies and practices that have enabled the recent boom in shale gas production have also brought attention to the environmental impacts of its use. Using the current state of knowledge of the recovery, processing, and distribution of shale gas and conventional natural gas, we have estimated up-to-date, life-cycle greenhouse gas emissions. In addition, we have developed distribution functions for key parameters in each pathway to examine uncertainty and identify data gaps - such as methane emissions from shale gas well completions and conventional natural gas liquid unloadings - that need to be addressed further. Our base case results showmore » that shale gas life-cycle emissions are 6% lower than those of conventional natural gas. However, the range in values for shale and conventional gas overlap, so there is a statistical uncertainty regarding whether shale gas emissions are indeed lower than conventional gas emissions. This life-cycle analysis provides insight into the critical stages in the natural gas industry where emissions occur and where opportunities exist to reduce the greenhouse gas footprint of natural gas.« less

  19. Genesis and evolution of the Baid al Jimalah tungsten deposit, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Kamilli, Robert J.

    1986-01-01

    Baid al Jimalah is similar in character and origin to other tungsten-tin greisen deposits in the world, especially the Hemerdon deposit in Devon, England. It is also analogous to Climax-type molybdenum deposits, which contain virtually identical mineral assemblages, but with the relative intensities of the molybdenum and tungsten mineralization reversed.

  20. Conflict minerals from the Democratic Republic of the Congo: global tungsten processing plants, a critical part of the tungsten supply chain

    USGS Publications Warehouse

    Bermúdez-Lugo, Omayra

    2014-01-01

    The U.S. Geological Survey (USGS) analyzes supply chains to identify and define major components of mineral and material flows from ore extraction, through intermediate forms, to a final product. Two major reasons necessitate these analyses: (1) to identify risks associated with the supply of critical and strategic minerals to the United States and (2) to provide greater supply chain transparency so that policymakers have the information necessary to ensure domestic legislation compliance. This fact sheet focuses on the latter. The USGS National Minerals Information Center has been asked by governmental and non-governmental organizations to provide information on tin, tantalum, tungsten, and gold (collectively known as “3TG minerals”) processing facilities worldwide in response to U.S. legislation aimed at removing the link between the trade in these minerals and civil unrest in the Democratic Republic of the Congo. Post beneficiation processing plants (smelters and refineries) of 3TG mineral ores and concentrates were identified by company and industry association representatives as being the link in the 3TG mineral supply chain through which these minerals can be traced to their source of origin (mine); determining the point of origin is critical to establishing a transparent conflict mineral supply chain. This fact sheet, the first in a series of 3TG mineral fact sheets, focuses on the tungsten supply chain by listing plants that consume tungsten concentrates to produce ammonium paratungstate and ferrotungsten worldwide.