Sample records for gap modes induced

  1. Dipolar interaction induced band gaps and flat modes in surface-modulated magnonic crystals

    NASA Astrophysics Data System (ADS)

    Gallardo, R. A.; Schneider, T.; Roldán-Molina, A.; Langer, M.; Fassbender, J.; Lenz, K.; Lindner, J.; Landeros, P.

    2018-04-01

    Theoretical results for the magnetization dynamics of a magnonic crystal formed by grooves on the surface of a ferromagnetic film, called a surface-modulated magnonic crystal, are presented. For such a system, the role of the periodic dipolar field induced by the geometrical modulation is addressed by using the plane-wave method. The results reveal that, under the increasing of the depth of the grooves, zones with magnetizing and demagnetizing fields act on the system in such a way that magnonic band gaps are observed in both Damon-Eshbach and backward volume geometries. Particularly, in the backward volume configuration, high-frequency band gaps and low-frequency flat modes are obtained. By taking into account the properties of the internal field induced by the grooves, the flattening of the modes and their shift towards low frequencies are discussed and explained. To test the validity of the model, the theoretical results of this work are confirmed by micromagnetic simulations, and good agreement between both methods is achieved. The theoretical model allows for a detailed understanding of the physics underlying these kinds of systems, thereby providing an outlook for potential applications on magnonic devices.

  2. Bismuth-induced Raman modes in GaP 1– xBi x

    DOE PAGES

    Christian, Theresa M.; Fluegel, Brian; Beaton, Daniel A.; ...

    2016-09-02

    Here, dilute bismide semiconductor alloys are a promising material platform for optoelectronic devices due to drastic impacts of bismuth on the electronic structure of the alloy. At the same time, the details of bismuth incorporation in the lattice are not fully understood. In this work, we conduct Raman scattering spectroscopy on GaP 1- xBi x epilayers grown by molecular beam epitaxy (MBE) and identify several bismuth-related Raman features including gap vibration modes at 296, 303, and 314 cm -1. This study paves the way for more detailed analysis of the local symmetry at bismuth incorporation sites in the dilute bismidemore » alloy regime.« less

  3. Waveguide-mode polarization gaps in square spiral photonic crystals

    NASA Astrophysics Data System (ADS)

    Liu, Rong-Juan; John, Sajeev; Li, Zhi-Yuan

    2015-09-01

    We designed waveguide channels in two types of square spiral photonic crystals. Wide polarization gaps, in which only one circular polarization wave is allowed while the other counter-direction circular polarization wave is forbidden, can be opened up on the waveguide modes within the fundamental photonic band gap according to the calculation of band structures and transmission spectra. This phenomenon is ascribed to the chirality of the waveguide and is independent of the chirality of the background photonic crystal. Moreover, the transmission spectra show a good one-way property of the waveguide channels. The chiral quality factor demonstrates the handedness of the allowed and impeded chiral waveguide modes, and further proved the property of the waveguide-mode polarization gap. Such waveguides with waveguide-mode polarization gap are a good candidate for one-way waveguides with robust backscattering-immune transport.

  4. Special purpose modes in photonic band gap fibers

    DOEpatents

    Spencer, James; Noble, Robert; Campbell, Sara

    2013-04-02

    Photonic band gap fibers are described having one or more defects suitable for the acceleration of electrons or other charged particles. Methods and devices are described for exciting special purpose modes in the defects including laser coupling schemes as well as various fiber designs and components for facilitating excitation of desired modes. Results are also presented showing effects on modes due to modes in other defects within the fiber and due to the proximity of defects to the fiber edge. Techniques and devices are described for controlling electrons within the defect(s). Various applications for electrons or other energetic charged particles produced by such photonic band gap fibers are also described.

  5. Gap-mode-assisted light-induced switching of sub-wavelength magnetic domains

    NASA Astrophysics Data System (ADS)

    Scheunert, G.; McCarron, R.; Kullock, R.; Cohen, S. R.; Rechav, K.; Kaplan-Ashiri, I.; Bitton, O.; Hecht, B.; Oron, D.

    2018-04-01

    Creating sub-micron hotspots for applications such as heat-assisted magnetic recording (HAMR) is a challenging task. The most common approach relies on a surface-plasmon resonator (SPR), whose design dictates the size of the hotspot to always be larger than its critical dimension. Here, we present an approach which circumvents known geometrical restrictions by resorting to electric field confinement via excitation of a gap-mode (GM) between a comparatively large Gold (Au) nano-sphere (radius of 100 nm) and the magnetic medium in a grazing-incidence configuration. Operating a λ=785 nm laser, sub-200 nm hot spots have been generated and successfully used for GM-assisted magnetic switching on commercial CoCrPt perpendicular magnetic recording media at laser powers and pulse durations comparable to SPR-based HAMR. Lumerical electric field modelling confirmed that operating in the near-infrared regime presents a suitable working point where most of the light's energy is deposited in the magnetic layer, rather than in the nano-particle. Further, modelling is used for predicting the limits of our method which, in theory, can yield sub-30 nm hotspots for Au nano-sphere radii of 25-50 nm for efficient heating of FePt recording media with a gap of 5 nm.

  6. Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling

    NASA Astrophysics Data System (ADS)

    Yahiaoui, R.; Burrow, J. A.; Mekonen, S. M.; Sarangan, A.; Mathews, J.; Agha, I.; Searles, T. A.

    2018-04-01

    We demonstrate a classical analog of electromagnetically induced transparency (EIT) in a highly flexible planar terahertz metamaterial (MM) comprised of three-gap split-ring resonators. The keys to achieve EIT in this system are the frequency detuning and hybridization processes between two bright modes coexisting in the same unit cell as opposed to bright-dark modes. We present experimental verification of two bright modes coupling for a terahertz EIT-MM in the context of numerical results and theoretical analysis based on a coupled Lorentz oscillator model. In addition, a hybrid variation of the EIT-MM is proposed and implemented numerically to dynamically tune the EIT window by incorporating photosensitive silicon pads in the split gap region of the resonators. As a result, this hybrid MM enables the active optical control of a transition from the on state (EIT mode) to the off state (dipole mode).

  7. Topological protection of photonic mid-gap cavity modes

    NASA Astrophysics Data System (ADS)

    Benalcazar, Wladimir A.; Noh, Jiho; Huang, Sheng; Collins, Matthew J.; Chen, Kevin; Hughes, Taylor L.; Rechtsman, Mikael

    Defect modes in two-dimensional periodic photonic structures have found use in a highly diverse set of optical devices. Here, we show in theory and experiment that a photonic topological crystalline insulator structure can be used to generate topological defect-localized modes. These defect modes are protected by chiral and crystalline symmetries, and have resonance frequencies in the middle of the photonic band gap (which minimize the mode volume). This protection of zero-dimensional states (defect modes) embedded in a two-dimensional environment constitutes a novel form of topological protection that has not been previously demonstrated. WAB and TLH are supported by the ONR YIP Award N00014-15-1-2383. M.C.R. and J.N. are supported by NSF, Grant ECCS-1509546; M.C.R. is supported by the Alfred P. Sloan foundation fellowship FG-2016-6418.

  8. Terahertz radiation-induced sub-cycle field electron emission across a split-gap dipole antenna

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jingdi; Averitt, Richard D., E-mail: xinz@bu.edu, E-mail: raveritt@ucsd.edu; Department of Physics, Boston University, Boston, Massachusetts 02215

    We use intense terahertz pulses to excite the resonant mode (0.6 THz) of a micro-fabricated dipole antenna with a vacuum gap. The dipole antenna structure enhances the peak amplitude of the in-gap THz electric field by a factor of ∼170. Above an in-gap E-field threshold amplitude of ∼10 MV/cm{sup −1}, THz-induced field electron emission is observed as indicated by the field-induced electric current across the dipole antenna gap. Field emission occurs within a fraction of the driving THz period. Our analysis of the current (I) and incident electric field (E) is in agreement with a Millikan-Lauritsen analysis where log (I) exhibits amore » linear dependence on 1/E. Numerical estimates indicate that the electrons are accelerated to a value of approximately one tenth of the speed of light.« less

  9. Field induced gap infrared detector

    NASA Technical Reports Server (NTRS)

    Elliott, C. Thomas (Inventor)

    1990-01-01

    A tunable infrared detector which employs a vanishing band gap semimetal material provided with an induced band gap by a magnetic field to allow intrinsic semiconductor type infrared detection capabilities is disclosed. The semimetal material may thus operate as a semiconductor type detector with a wavelength sensitivity corresponding to the induced band gap in a preferred embodiment of a diode structure. Preferred semimetal materials include Hg(1-x)Cd(x)Te, x is less than 0.15, HgCdSe, BiSb, alpha-Sn, HgMgTe, HgMnTe, HgZnTe, HgMnSe, HgMgSe, and HgZnSe. The magnetic field induces a band gap in the semimetal material proportional to the strength of the magnetic field allowing tunable detection cutoff wavelengths. For an applied magnetic field from 5 to 10 tesla, the wavelength detection cutoff will be in the range of 20 to 50 micrometers for Hg(1-x)Cd(x)Te alloys with x about 0.15. A similar approach may also be employed to generate infrared energy in a desired band gap and then operating the structure in a light emitting diode or semiconductor laser type of configuration.

  10. Designing broad phononic band gaps for in-plane modes

    NASA Astrophysics Data System (ADS)

    Li, Yang Fan; Meng, Fei; Li, Shuo; Jia, Baohua; Zhou, Shiwei; Huang, Xiaodong

    2018-03-01

    Phononic crystals are known as artificial materials that can manipulate the propagation of elastic waves, and one essential feature of phononic crystals is the existence of forbidden frequency range of traveling waves called band gaps. In this paper, we have proposed an easy way to design phononic crystals with large in-plane band gaps. We demonstrated that the gap between two arbitrarily appointed bands of in-plane mode can be formed by employing a certain number of solid or hollow circular rods embedded in a matrix material. Topology optimization has been applied to find the best material distributions within the primitive unit cell with maximal band gap width. Our results reveal that the centroids of optimized rods coincide with the point positions generated by Lloyd's algorithm, which deepens our understandings on the formation mechanism of phononic in-plane band gaps.

  11. Gap-Mode Surface-Plasmon-Enhanced Photoluminescence and Photoresponse of MoS2.

    PubMed

    Wu, Zhi-Qian; Yang, Jing-Liang; Manjunath, Nallappagar K; Zhang, Yue-Jiao; Feng, Si-Rui; Lu, Yang-Hua; Wu, Jiang-Hong; Zhao, Wei-Wei; Qiu, Cai-Yu; Li, Jian-Feng; Lin, Shi-Sheng

    2018-05-22

    2D materials hold great potential for designing novel electronic and optoelectronic devices. However, 2D material can only absorb limited incident light. As a representative 2D semiconductor, monolayer MoS 2 can only absorb up to 10% of the incident light in the visible, which is not sufficient to achieve a high optical-to-electrical conversion efficiency. To overcome this shortcoming, a "gap-mode" plasmon-enhanced monolayer MoS 2 fluorescent emitter and photodetector is designed by squeezing the light-field into Ag shell-isolated nanoparticles-Au film gap, where the confined electromagnetic field can interact with monolayer MoS 2 . With this gap-mode plasmon-enhanced configuration, a 110-fold enhancement of photoluminescence intensity is achieved, exceeding values reached by other plasmon-enhanced MoS 2 fluorescent emitters. In addition, a gap-mode plasmon-enhanced monolayer MoS 2 photodetector with an 880% enhancement in photocurrent and a responsivity of 287.5 A W -1 is demonstrated, exceeding previously reported plasmon-enhanced monolayer MoS 2 photodetectors. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Multi-mode ultra-strong coupling (I): spectroscopic experiments using a vacuum-gap transmon circuit architecture

    NASA Astrophysics Data System (ADS)

    Bosman, Sal J.; Gely, Mario F.; Singh, Vibhor; Bruno, Alessandro; Bothner, Daniel; Steele, Gary A.

    In circuit QED, multi-mode extensions of the quantum Rabi model suffer from divergence problems. Here, we spectroscopically study multi-mode ultra-strong coupling using a transmon circuit architecture, which provides no clear guidelines on how many modes play a role in the dynamics of the system. As our transmon qubit, we employ a suspended island above the voltage anti-node of a λ / 4 coplanar microwave resonator, thereby realising a circuit where 88% of the qubit capacitance is formed by a vacuum-gap capacitor with the center conductor of the resonator. We measure vacuum Rabi splitting over multiple modes up to 2 GHz, reaching coupling ratios of g / ω = 0 . 18 , well within the ultra-strong coupling regime. We observe a qubit-mediated mode coupling, measurable up to the fifth mode at 38 GHz. Using a novel analytical quantum circuit model of this architecture, which includes all modes without introducing divergencies, we are able to fit the full spectrum and extract a vacuum fluctuations induced Bloch-Siegert shift of up to 62 MHz. This circuit architecture expands the versatility of the transmon technology platform and opens many possibilities in multi-mode physics in the ultra-strong coupling regime.

  13. Continuum absorption in the vicinity of the toroidicity-induced Alfvén gap

    DOE PAGES

    Li, M.; Breizman, B. N.; Zheng, L. J.; ...

    2015-12-04

    Excitation of Alfvén modes is commonly viewed as a concern for energetic particle confinement in burning plasmas. The 3.5 MeValpha particles produced by fusion may be affected as well as other fast ions in both present and future devices. Continuum damping of such modes is one of the key factors that determine their excitation thresholds and saturation levels. This work examines the resonant dissipative response of the Alfvén continuum to an oscillating driving current when the driving frequency is slightly outside the edges of the toroidicity-induced spectral gap. The problem is largely motivated by the need to describe the continuummore » absorption in the frequency sweeping events. Akey element of this problem is the negative interference of the two closely spaced continuum crossing points.Weexplain why the lower and upper edges of the gap can have very different continuum absorption features. Lastly, the difference is associated with an eigenmode whose frequency can be arbitrarily close to the upper edge of the gap whereas the lower edge of the gap is always a finite distance away from the closest eigenmode.« less

  14. Topological Valley Currents in Gapped Dirac Materials

    NASA Astrophysics Data System (ADS)

    Lensky, Yuri D.; Song, Justin C. W.; Samutpraphoot, Polnop; Levitov, Leonid S.

    2015-06-01

    Gapped 2D Dirac materials, in which inversion symmetry is broken by a gap-opening perturbation, feature a unique valley transport regime. Topological valley currents in such materials are dominated by bulk currents produced by electronic states just beneath the gap rather than by edge modes. The system ground state hosts dissipationless persistent valley currents existing even when topologically protected edge modes are absent. Valley currents induced by an external bias are characterized by a quantized half-integer valley Hall conductivity. The undergap currents dominate magnetization and the charge Hall effect in a light-induced valley-polarized state.

  15. Direct observation of mode-specific phonon-band gap coupling in methylammonium lead halide perovskites.

    PubMed

    Kim, Heejae; Hunger, Johannes; Cánovas, Enrique; Karakus, Melike; Mics, Zoltán; Grechko, Maksim; Turchinovich, Dmitry; Parekh, Sapun H; Bonn, Mischa

    2017-09-25

    Methylammonium lead iodide perovskite is an outstanding semiconductor for photovoltaics. One of its intriguing peculiarities is that the band gap of this perovskite increases with increasing lattice temperature. Despite the presence of various thermally accessible phonon modes in this soft material, the understanding of how precisely these phonons affect macroscopic material properties and lead to the peculiar temperature dependence of the band gap has remained elusive. Here, we report a strong coupling of a single phonon mode at the frequency of ~ 1 THz to the optical band gap by monitoring the transient band edge absorption after ultrafast resonant THz phonon excitation. Excitation of the 1 THz phonon causes a blue shift of the band gap over the temperature range of 185 ~ 300 K. Our results uncover the mode-specific coupling between one phonon and the optical properties, which contributes to the temperature dependence of the gap in the tetragonal phase.Methylammonium lead iodide perovskite, a promising material for efficient photovoltaics, shows a unique temperature dependence of its optical properties. Kim et al. quantify the coupling between the optical gap and a lattice phonon at 1 THz, which favorably contributes to the thermal variation of the gap.

  16. Tunable liquid-crystal microshell-laser based on whispering-gallery modes and photonic band-gap mode lasing.

    PubMed

    Lu, Yuelan; Yang, Yue; Wang, Yan; Wang, Lei; Ma, Ji; Zhang, Lingli; Sun, Weimin; Liu, Yongjun

    2018-02-05

    The lasing behaviors of dye-doped cholesteric liquid crystal (DDCLC) microshells fabricated with silica-glass-microsphere coated DDCLCs were examined. Lasing characteristics were studied in a carrier medium with different refractive indices. The lasing in spherical cholesteric liquid crystals (CLCs) was attributed to two mechanisms, photonic band-gap (PBG) lasing and whispering-gallery modes (WGMs), which can independently exist by varying the chiral agent concentration and pumping energy. It was also found that DDCLC microshells can function as highly sensitive thermal sensors, with a temperature sensitivity of 0.982 nm °C -1 in PBG modes and 0.156 nm °C -1 in WGMs.

  17. High doses of salicylate causes prepulse facilitation of onset-gap induced acoustic startle response.

    PubMed

    Sun, Wei; Doolittle, Lauren; Flowers, Elizabeth; Zhang, Chao; Wang, Qiuju

    2014-01-01

    Prepulse inhibition of acoustic startle reflex (PPI), a well-established method for evaluating sensorimotor gating function, has been used to detect tinnitus in animal models. Reduced gap induced PPI (gap-PPI) was considered as a sign of tinnitus. The silent gap used in the test contains both onset and offset signals. Tinnitus may affect these cues differently. In this experiment, we studied the effects of a high dose of salicylate (250 mg/kg, i.p.), an inducer of reversible tinnitus and sensorineural hearing loss, on gap-PPI induced by three different gaps: an onset-gap with 0.1 ms onset and 25 ms offset time, an offset-gap with 25 ms onset and 0.1 ms offset time, and an onset-offset-gap with 0.1 ms onset and offset time. We found that the onset-gaps induced smaller inhibitions than the offset-gaps before salicylate treatment. The offset-gap induced PPI was significantly reduced 1-3h after salicylate treatment. However, the onset-gap caused a facilitation of startle response. These results suggest that salicylate induced reduction of gap-PPI was not only caused by the decrease of offset-gap induced PPI, but also by the facilitation induced by the onset-gap. Since the onset-gap induced PPI is caused by neural offset response, our results suggest that salicylate may cause a facilitation of neural response to an offset acoustical signal. Treatment of vigabatrin (60 mg/kg/day, 14 days), which elevates the GABA level in the brain, blocked the offset-gap induced PPI and onset-gap induced facilitation caused by salicylate. These results suggest that enhancing GABAergic activities can alleviate salicylate induced tinnitus. Published by Elsevier B.V.

  18. Spinal astrocyte gap junctions contribute to oxaliplatin-induced mechanical hypersensitivity.

    PubMed

    Yoon, Seo-Yeon; Robinson, Caleb R; Zhang, Haijun; Dougherty, Patrick M

    2013-02-01

    Spinal glial cells contribute to the development of many types of inflammatory and neuropathic pain. Here the contribution of spinal astrocytes and astrocyte gap junctions to oxaliplatin-induced mechanical hypersensitivity was explored. The expression of glial fibrillary acidic protein (GFAP) in spinal dorsal horn was significantly increased at day 7 but recovered at day 14 after oxaliplatin treatment, suggesting a transient activation of spinal astrocytes by chemotherapy. Astrocyte-specific gap junction protein connexin 43 (Cx43) was significantly increased in dorsal horn at both day 7 and day 14 following chemotherapy, but neuronal (connexin 36 [Cx36]) and oligodendrocyte (connexin 32 [Cx32]) gap junction proteins did not show any change. Blockade of astrocyte gap junction with carbenoxolone (CBX) prevented oxaliplatin-induced mechanical hypersensitivity in a dose-dependent manner and the increase of spinal GFAP expression, but had no effect once the mechanical hypersensitivity induced by oxaliplatin had fully developed. These results suggest that oxaliplatin chemotherapy induces the activation of spinal astrocytes and this is accompanied by increased expression of astrocyte-astrocyte gap junction connections via Cx43. These alterations in spinal astrocytes appear to contribute to the induction but not the maintenance of oxaliplatin-induced mechanical hypersensitivity. Combined, these results suggest that targeting spinal astrocyte/astrocyte-specific gap junction could be a new therapeutic strategy to prevent oxaliplatin-induced neuropathy. Spinal astrocytes but not microglia were recently shown to be recruited in paclitaxel-related chemoneuropathy. Here, spinal astrocyte gap junctions are shown to play an important role in the induction of oxaliplatin neuropathy. Copyright © 2013 American Pain Society. Published by Elsevier Inc. All rights reserved.

  19. Intra-band gap in Lamb modes propagating in a periodic solid structure

    NASA Astrophysics Data System (ADS)

    Pierre, J.; Rénier, M.; Bonello, B.; Hladky-Hennion, A.-C.

    2012-05-01

    A laser ultrasonic technique is used to measure the dispersion of Lamb waves at a few MHz, propagating in phononic crystals made of dissymmetric air inclusions drilled throughout silicon plates. It is shown that the specific shape of the inclusions is at the origin of the intra-band gap that opens within the second Brillouin zone, at the crossing of both flexural and dilatational zero-order modes. The magnitude of the intra-band gap is measured as a function of the dissymmetry rate of the inclusions. Experimental data and the computed dispersion curves are in very good agreement.

  20. Energetic-particle-induced geodesic acoustic mode.

    PubMed

    Fu, G Y

    2008-10-31

    A new energetic particle-induced geodesic acoustic mode (EGAM) is shown to exist. The mode frequency and mode structure are determined nonperturbatively by energetic particle kinetic effects. In particular the EGAM frequency is found to be substantially lower than the standard GAM frequency. The radial mode width is determined by the energetic particle drift orbit width and can be fairly large for high energetic particle pressure and large safety factor. These results are consistent with the recent experimental observation of the beam-driven n=0 mode in DIII-D.

  1. Salicylate-Induced Hearing Loss and Gap Detection Deficits in Rats

    PubMed Central

    Radziwon, Kelly E.; Stolzberg, Daniel J.; Urban, Maxwell E.; Bowler, Rachael A.; Salvi, Richard J.

    2015-01-01

    To test the “tinnitus gap-filling” hypothesis in an animal psychoacoustic paradigm, rats were tested using a go/no-go operant gap detection task in which silent intervals of various durations were embedded within a continuous noise. Gap detection thresholds were measured before and after treatment with a dose of sodium salicylate (200 mg/kg) that reliably induces tinnitus in rats. Noise-burst detection thresholds were also measured to document the amount of hearing loss and aid in interpreting the gap detection results. As in the previous human psychophysical experiments, salicylate had little or no effect on gap thresholds measured in broadband noise presented at high-stimulus levels (30–60 dB SPL); gap detection thresholds were always 10 ms or less. Salicylate also did not affect gap thresholds presented in narrowband noise at 60 dB SPL. Therefore, rats treated with a dose of salicylate that reliably induces tinnitus have no difficulty detecting silent gaps as long as the noise in which they are embedded is clearly audible. PMID:25750635

  2. Tensile-strain effect of inducing the indirect-to-direct band-gap transition and reducing the band-gap energy of Ge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inaoka, Takeshi, E-mail: inaoka@phys.u-ryukyu.ac.jp; Furukawa, Takuro; Toma, Ryo

    By means of a hybrid density-functional method, we investigate the tensile-strain effect of inducing the indirect-to-direct band-gap transition and reducing the band-gap energy of Ge. We consider [001], [111], and [110] uniaxial tensility and (001), (111), and (110) biaxial tensility. Under the condition of no normal stress, we determine both normal compression and internal strain, namely, relative displacement of two atoms in the primitive unit cell, by minimizing the total energy. We identify those strain types which can induce the band-gap transition, and evaluate the critical strain coefficient where the gap transition occurs. Either normal compression or internal strain operatesmore » unfavorably to induce the gap transition, which raises the critical strain coefficient or even blocks the transition. We also examine how each type of tensile strain decreases the band-gap energy, depending on its orientation. Our analysis clearly shows that synergistic operation of strain orientation and band anisotropy has a great influence on the gap transition and the gap energy.« less

  3. Quantum fluctuations and gapped Goldstone modes in spinor Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Beekman, Aron

    2015-03-01

    The classical Heisenberg ferromagnet is an exact eigenstate of the quantum Hamiltonian and therefore has no quantum fluctuations. Furthermore it has a reduced number of Goldstone modes, an order parameter that is itself a symmetry generator, is a highest-weight state for the spin algebra, and has no tower of states of vanishing energy. We derive the connection between all these properties and provide general criteria for their presence in other spontaneously-broken symmetry states. The phletora of groundstates in spinor Bose-Einstein condensates is an ideal testing ground for these predictions. In particular the phases with non-maximal polarization (e.g. the F-phase in spin-3 condensates) have an additional gapped mode that is a partner to the quadratically dispersing Goldstone mode, as compared to the maximally polarized, ferromagnetic phase. Furthermore there is a fundamental limit to the coherence time of superpositions in the non-maximally polarized state, which should manifest itself for small-size systems.

  4. Gap-mode enhancement on MoS2 probed by functionalized tip-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Alajlan, Abdulrahman M.; Voronine, Dmitri V.; Sinyukov, Alexander M.; Zhang, Zhenrong; Sokolov, Alexei V.; Scully, Marlan O.

    2016-09-01

    Surface enhancement of molecular spectroscopic signals has been widely used for sensing and nanoscale imaging. Because of the weak electromagnetic enhancement of Raman signals on semiconductors, it is motivating but challenging to study the electromagnetic effect separately from the chemical effects. We report tip-enhanced Raman scattering measurements on Au and bulk MoS2 substrates using a metallic tip functionalized with copper phthalocyanine molecules and demonstrate similar gap-mode enhancement on both substrates. We compare the experimental results with theoretical calculations to confirm the gap-mode enhancement on MoS2 using a well-established electrostatic model. The functionalized tip approach allows for suppressing the background and is ideal for separating electromagnetic and chemical enhancement mechanisms on various substrates. Our results may find a wide range of applications in MoS2-based devices, sensors, and metal-free nanoscale bio-imaging.

  5. Berberine potentizes apoptosis induced by X-rays irradiation probably through modulation of gap junctions.

    PubMed

    Liu, Bing; Wang, Qin; Yuan, Dong-dong; Hong, Xiao-ting; Tao, Liang

    2011-04-01

    Clinical combination of some traditional Chinese medical herbs, including berberine, with irradiation is demonstrated to improve efficacy of tumor radiotherapy, yet the mechanisms for such effect remain largely unknown. The present study investigated the effect of berberine on apoptosis induced by X-rays irradiation and the relation between this effect and gap junction intercellular communication (GJIC). The role of gap junctions in the modulation of X-rays irradiation-induced apoptosis was explored by manipulation of connexin (Cx) expression, and gap junction function, using oleamide, a GJIC inhibitor, and berberine. In transfected HeLa cells, Cx32 expression increased apoptosis induced by X-rays irradiation, while inhibition of gap junction by oleamide reduced the irradiation responses, indicating the dependence of X-rays irradiation-induced apoptosis on GJIC. Berberine, at the concentrations without cytotoxicity, enhanced apoptosis induced by irradiation only in the presence of functional gap junctions. These results suggest that berberine potentizes cell apoptosis induced by X-rays irradiation, probably through enhancement of gap junction activity.

  6. Optimization Of Shear Modes To Produce Enhanced Bandwidth In Ghz GaP Bragg Cells

    NASA Astrophysics Data System (ADS)

    Soos, J., I.; Rosemeier, R. G.; Rosenbaum, J.

    1988-02-01

    Applications of Gallium Phosphide (GaP) acousto-optic devices, at wavelengths from 570nm - 1.06um seem to be ideal for fiber optic modulators, scanners, deflectors, frequency shifters, Q-switches and mode lockers. One of the major applications are for RF spectrometers in early warning radar receivers and auto-correlators. Longitudinal GaP acousto-optic Bragg cells which have respectively operational frequencies in the range of 200 MHz - 3 GHz and diffraction efficiencies in the range of 120%/RF watt to 1%/RF watt have recently been fabricated. Comparatively, shear GaP devices which have operational frequencies in the range of 200 MHz to 2 GHz and diffraction efficiencies from 80%/RF watt to 7%/RF watt have also been constructed.

  7. Planck intermediate results. XLI. A map of lensing-induced B-modes

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Basak, S.; Battaner, E.; Benabed, K.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Chiang, H. C.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davis, R. J.; de Bernardis, P.; de Zotti, G.; Delabrouille, J.; Dickinson, C.; Diego, J. M.; Doré, O.; Ducout, A.; Dupac, X.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Galeotta, S.; Galli, S.; Ganga, K.; Ghosh, T.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gruppuso, A.; Gudmundsson, J. E.; Harrison, D. L.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hornstrup, A.; Hovest, W.; Hurier, G.; Jaffe, A. H.; Jones, W. C.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Leonardi, R.; Levrier, F.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Meinhold, P. R.; Melchiorri, A.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Novikov, D.; Novikov, I.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pointecouteau, E.; Polenta, G.; Pratt, G. W.; Rachen, J. P.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-12-01

    The secondary cosmic microwave background (CMB) B-modes stem from the post-decoupling distortion of the polarization E-modes due to the gravitational lensing effect of large-scale structures. These lensing-induced B-modes constitute both a valuable probe of the dark matter distribution and an important contaminant for the extraction of the primary CMB B-modes from inflation. Planck provides accurate nearly all-sky measurements of both the polarization E-modes and the integrated mass distribution via the reconstruction of the CMB lensing potential. By combining these two data products, we have produced an all-sky template map of the lensing-induced B-modes using a real-space algorithm that minimizes the impact of sky masks. The cross-correlation of this template with an observed (primordial and secondary) B-mode map can be used to measure the lensing B-mode power spectrum at multipoles up to 2000. In particular, when cross-correlating with the B-mode contribution directly derived from the Planck polarization maps, we obtain lensing-induced B-mode power spectrum measurement at a significance level of 12σ, which agrees with the theoretical expectation derived from the Planck best-fit Λ cold dark matter model. This unique nearly all-sky secondary B-mode template, which includes the lensing-induced information from intermediate to small (10 ≲ ℓ ≲ 1000) angular scales, is delivered as part of the Planck 2015 public data release. It will be particularly useful for experiments searching for primordial B-modes, such as BICEP2/Keck Array or LiteBIRD, since it will enable an estimate to be made of the lensing-induced contribution to the measured total CMB B-modes.

  8. Planck intermediate results: XLI. A map of lensing-induced B-modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ade, P. A. R.; Aghanim, N.; Ashdown, M.

    The secondary cosmic microwave background (CMB) B-modes stem from the post-decoupling distortion of the polarization E-modes due to the gravitational lensing effect of large-scale structures. These lensing-induced B-modes constitute both a valuable probe of the dark matter distribution and an important contaminant for the extraction of the primary CMB B-modes from inflation. Planck provides accurate nearly all-sky measurements of both the polarization E-modes and the integrated mass distribution via the reconstruction of the CMB lensing potential. By combining these two data products, we have produced in this paper an all-sky template map of the lensing-induced B-modes using a real-space algorithmmore » that minimizes the impact of sky masks. The cross-correlation of this template with an observed (primordial and secondary) B-mode map can be used to measure the lensing B-mode power spectrum at multipoles up to 2000. In particular, when cross-correlating with the B-mode contribution directly derived from the Planck polarization maps, we obtain lensing-induced B-mode power spectrum measurement at a significance level of 12σ, which agrees with the theoretical expectation derived from the Planck best-fit Λ cold dark matter model. This unique nearly all-sky secondary B-mode template, which includes the lensing-induced information from intermediate to small (10 ≲ ℓ ≲ 1000) angular scales, is delivered as part of the Planck 2015 public data release. Finally, it will be particularly useful for experiments searching for primordial B-modes, such as BICEP2/Keck Array or LiteBIRD, since it will enable an estimate to be made of the lensing-induced contribution to the measured total CMB B-modes.« less

  9. Planck intermediate results: XLI. A map of lensing-induced B-modes

    DOE PAGES

    Ade, P. A. R.; Aghanim, N.; Ashdown, M.; ...

    2016-12-12

    The secondary cosmic microwave background (CMB) B-modes stem from the post-decoupling distortion of the polarization E-modes due to the gravitational lensing effect of large-scale structures. These lensing-induced B-modes constitute both a valuable probe of the dark matter distribution and an important contaminant for the extraction of the primary CMB B-modes from inflation. Planck provides accurate nearly all-sky measurements of both the polarization E-modes and the integrated mass distribution via the reconstruction of the CMB lensing potential. By combining these two data products, we have produced in this paper an all-sky template map of the lensing-induced B-modes using a real-space algorithmmore » that minimizes the impact of sky masks. The cross-correlation of this template with an observed (primordial and secondary) B-mode map can be used to measure the lensing B-mode power spectrum at multipoles up to 2000. In particular, when cross-correlating with the B-mode contribution directly derived from the Planck polarization maps, we obtain lensing-induced B-mode power spectrum measurement at a significance level of 12σ, which agrees with the theoretical expectation derived from the Planck best-fit Λ cold dark matter model. This unique nearly all-sky secondary B-mode template, which includes the lensing-induced information from intermediate to small (10 ≲ ℓ ≲ 1000) angular scales, is delivered as part of the Planck 2015 public data release. Finally, it will be particularly useful for experiments searching for primordial B-modes, such as BICEP2/Keck Array or LiteBIRD, since it will enable an estimate to be made of the lensing-induced contribution to the measured total CMB B-modes.« less

  10. Polarization-induced Zener tunnel junctions in wide-band-gap heterostructures.

    PubMed

    Simon, John; Zhang, Ze; Goodman, Kevin; Xing, Huili; Kosel, Thomas; Fay, Patrick; Jena, Debdeep

    2009-07-10

    The large electronic polarization in III-V nitrides allows for novel physics not possible in other semiconductor families. In this work, interband Zener tunneling in wide-band-gap GaN heterojunctions is demonstrated by using polarization-induced electric fields. The resulting tunnel diodes are more conductive under reverse bias, which has applications for zero-bias rectification and mm-wave imaging. Since interband tunneling is traditionally prohibitive in wide-band-gap semiconductors, these polarization-induced structures and their variants can enable a number of devices such as multijunction solar cells that can operate under elevated temperatures and high fields.

  11. Gap junction blockade induces apoptosis in human endometrial stromal cells.

    PubMed

    Yu, Jie; Berga, Sarah L; Zou, Wei; Sun, He-Ying; Johnston-MacAnanny, Erika; Yalcinkaya, Tamer; Sidell, Neil; Bagchi, Indrani C; Bagchi, Milan K; Taylor, Robert N

    2014-07-01

    One of the most dynamic adult human tissues is the endometrium. Through coordinated, cyclical proliferation, differentiation, leukocyte recruitment, apoptosis, and desquamation, the uterine lining is expanded and shed monthly, unless pregnancy is established. Errors in these steps potentially cause endometrial dysfunction, abnormal uterine bleeding, failed embryonic implantation, infertility, or endometrial carcinoma. Our prior studies showed that gap junctions comprised of Gap junction alpha-1 (GJA1) protein, also known as connexin 43 (CX43), subunits are critical to endometrial stromal cell differentiation. The current studies were undertaken to explore the mechanism of endometrial dysfunction when gap junction intercellular communication (GJIC) is disrupted. Gap junction blockade by two distinct GJIC inhibitors, 18α-glycyrrhetinic acid (AGA) and octanol (OcOH), suppressed proliferation and induced apoptosis in endometrial stromal cells, as manifested by reduced biomarkers of cell viability, increased TUNEL staining, caspase-3 activation, sub-G1 chromosomal DNA complement, as well as shortened telomere length. Unexpectedly, we also observed that the chemical inhibitors blocked CX43 gene expression. Moreover, when endometrial stromal cells were induced to undergo hormonal decidualization, following a 7-day exposure to 10 nM 17β-estradiol + 100 nM progesterone + 0.5 mM dibutyryl cAMP, characteristic epithelioid changes in cell shape and secretion of prolactin were blunted in the presence of AGA or OcOH, recapitulating effects of RNA interference of CX43. Our findings indicate that endometrial stromal cell proliferation and maintenance of decidualized endometrial function are GJIC-dependent, and that disruption of gap junctions induces endometrial stromal cell apoptosis. These observations may have important implications for several common clinical endometrial pathologies. © 2014 Wiley Periodicals, Inc.

  12. Band gaps and Brekhovskikh attenuation of laser-generated surface acoustic waves in a patterned thin film structure on silicon

    NASA Astrophysics Data System (ADS)

    Maznev, A. A.

    2008-10-01

    Surface acoustic modes of a periodic array of copper and SiO2 lines on a silicon substrate are studied using a laser-induced transient grating technique. It is found that the band gap formed inside the Brillouin zone due to “avoided crossing” of Rayleigh and Sezawa modes is much greater than the band gap in the Rayleigh wave dispersion formed at the zone boundary. Another unexpected finding is that a very strong periodicity-induced attenuation is observed above the longitudinal threshold rather than above the transverse threshold.

  13. Role of antenna modes and field enhancement in second harmonic generation from dipole nanoantennas.

    PubMed

    de Ceglia, Domenico; Vincenti, Maria Antonietta; De Angelis, Costantino; Locatelli, Andrea; Haus, Joseph W; Scalora, Michael

    2015-01-26

    We study optical second harmonic generation from metallic dipole antennas with narrow gaps. Enhancement of the fundamental-frequency field in the gap region plays a marginal role on conversion efficiency. In the symmetric configuration, i.e., with the gap located at the center of the antenna axis, reducing gap size induces a significant red-shift of the maximum conversion efficiency peak. Either enhancement or inhibition of second-harmonic emission may be observed as gap size is decreased, depending on the antenna mode excited at the harmonic frequency. The second-harmonic signal is extremely sensitive to the asymmetry introduced by gap's displacements with respect to the antenna center. In this situation, second-harmonic light can couple to all the available antenna modes. We perform a multipolar analysis that allows engineering the far-field SH emission and find that the interaction with quasi-odd-symmetry modes generates radiation patterns with a strong dipolar component.

  14. Mode jumping of split-ring resonator metamaterials controlled by high-permittivity BST and incident electric fields

    PubMed Central

    Fu, Xiaojian; Zeng, Xinxi; Cui, Tie Jun; Lan, Chuwen; Guo, Yunsheng; Zhang, Hao Chi; Zhang, Qian

    2016-01-01

    We investigate the resonant modes of split-ring resonator (SRR) metamaterials that contain high-permittivity BST block numerically and experimentally. We observe interesting mode-jumping phenomena from the BST-included SRR absorber structure as the excitation wave is incident perpendicularly to the SRR plane. Specifically, when the electric field is parallel to the SRR gap, the BST block in the gap will induce a mode jumping from the LC resonance to plasmonic resonance (horizontal electric-dipole mode), because the displacement current excited by the Mie resonance in the dielectric block acts as a current channel in the gap. When the electric field is perpendicular to the gap side, the plasmonic resonance mode (vertical electric-dipole mode) in SRR changes to two joint modes contributed simultaneously by the back layer, SRR and BST block, as a result of connected back layer and SRR layer by the displacement current in the BST dielectric block. Based on the mode jumping effect as well as temperature and electric-field dependent dielectric constant, the BST-included SRR metamaterials may have great potentials for the applications in electromagnetic switches and widely tunable metamaterial devices. PMID:27502844

  15. Structural analyses of Legionella LepB reveal a new GAP fold that catalytically mimics eukaryotic RasGAP.

    PubMed

    Yu, Qin; Hu, Liyan; Yao, Qing; Zhu, Yongqun; Dong, Na; Wang, Da-Cheng; Shao, Feng

    2013-06-01

    Rab GTPases are emerging targets of diverse bacterial pathogens. Here, we perform biochemical and structural analyses of LepB, a Rab GTPase-activating protein (GAP) effector from Legionella pneumophila. We map LepB GAP domain to residues 313-618 and show that the GAP domain is Rab1 specific with a catalytic activity higher than the canonical eukaryotic TBC GAP and the newly identified VirA/EspG family of bacterial RabGAP effectors. Exhaustive mutation analyses identify Arg444 as the arginine finger, but no catalytically essential glutamine residues. Crystal structures of LepB313-618 alone and the GAP domain of Legionella drancourtii LepB in complex with Rab1-GDP-AlF3 support the catalytic role of Arg444, and also further reveal a 3D architecture and a GTPase-binding mode distinct from all known GAPs. Glu449, structurally equivalent to TBC RabGAP glutamine finger in apo-LepB, undergoes a drastic movement upon Rab1 binding, which induces Rab1 Gln70 side-chain flipping towards GDP-AlF3 through a strong ionic interaction. This conformationally rearranged Gln70 acts as the catalytic cis-glutamine, therefore uncovering an unexpected RasGAP-like catalytic mechanism for LepB. Our studies highlight an extraordinary structural and catalytic diversity of RabGAPs, particularly those from bacterial pathogens.

  16. Gap junction blockage promotes cadmium-induced apoptosis in BRL 3A derived from Buffalo rat liver cells.

    PubMed

    Hu, Di; Zou, Hui; Han, Tao; Xie, Junze; Dai, Nannan; Zhuo, Liling; Gu, Jianhong; Bian, Jianchun; Yuan, Yan; Liu, Xuezhong; Liu, Zongping

    2016-03-01

    Gap junctions mediate direct communication between cells; however, toxicological cascade triggered by nonessential metals can abrogate cellular signaling mediated by gap junctions. Although cadmium (Cd) is known to induce apoptosis in organs and tissues, the mechanisms that underlie gap junction activity in Cd-induced apoptosis in BRL 3A rat liver cells has yet to be established. In this study, we showed that Cd treatment decreased the cell index (a measure of cellular electrical impedance) in BRL 3A cells. Mechanistically, we found that Cd exposure decreased expression of connexin 43 (Cx43), increased expression of p-Cx43 and elevated intracellular free Ca(2+) concentration, corresponding to a decrease in gap junctional intercellular communication. Gap junction blockage pretreatment with 18β-glycyrrhizic acid (GA) promoted Cd-induced apoptosis, involving changes in expression of Bax, Bcl-2, caspase-3 and the mitochondrial transmembrane electrical potential (Δψm). Additionally, GA was found to enhance ERK and p38 activation during Cd-induced activation of mitogen-activated protein kinases, but had no significant effect on JNK activation. Our results indicated the apoptosis-related proteins and the ERK and p38 signaling pathways may participate in gap junction blockage promoting Cd-induced apoptosis in BRL 3A cells.

  17. Pad-mode-induced instantaneous mode instability for simple models of brake systems

    NASA Astrophysics Data System (ADS)

    Oberst, S.; Lai, J. C. S.

    2015-10-01

    Automotive disc brake squeal is fugitive, transient and remains difficult to predict. In particular, instantaneous mode squeal observed experimentally does not seem to be associated with mode coupling and its mechanism is not clear. The effects of contact pressures, friction coefficients as well as material properties (pressure and temperature dependency and anisotropy) for brake squeal propensity have not been systematically explored. By analysing a finite element model of an isotropic pad sliding on a plate similar to that of a previously reported experimental study, pad modes have been identified and found to be stable using conventional complex eigenvalue analysis. However, by subjecting the model to contact pressure harmonic excitation for a range of pressures and friction coefficients, a forced response analysis reveals that the dissipated energy for pad modes is negative and becomes more negative with increasing contact pressures and friction coefficients, indicating the potential for instabilities. The frequency of the pad mode in the sliding direction is within the range of squeal frequencies observed experimentally. Nonlinear time series analysis of the vibration velocity also confirms the evolution of instabilities induced by pad modes as the friction coefficient increases. By extending this analysis to a more realistic but simple brake model in the form of a pad-on-disc system, in-plane pad-modes, which a complex eigenvalue analysis predicts to be stable, have also been identified by negative dissipated energy for both isotropic and anisotropic pad material properties. The influence of contact pressures on potential instabilities has been found to be more dominant than changes in material properties owing to changes in pressure or temperature. Results here suggest that instantaneous mode squeal is likely caused by in-plane pad-mode instabilities.

  18. Gap Filler Induced Transition on the Mars Science Laboratory Heatshield

    NASA Technical Reports Server (NTRS)

    Yoon, Seokkwan; Barnhardt, Michael D.; Tang, Chun Y.; Sozer, Emre; Candler, Graham

    2012-01-01

    Detached Eddy Simulations have been performed to investigate the effects of high-fidelity turbulence modeling on roughness-induced transition to turbulence during Mars entry. Chemically reacting flow solutions will be obtained for a gap filler of Mars Science Laboratory at the peak heating condition.

  19. Gap Junction Inhibition Prevents Drug-induced Liver Toxicity and Fulminant Hepatic Failure

    PubMed Central

    Patel, Suraj J; Milwid, Jack M; King, Kevin R; Bohr, Stefan; Iracheta, Arvin; Li, Matthew; Vitalo, Antonia; Parekkadan, Biju; Jindal, Rohit; Yarmush, Martin L

    2013-01-01

    Drug-induced liver injury (DILI) limits the development and utilization of numerous therapeutic compounds, and consequently presents major challenges to the pharmaceutical industry and clinical medicine1, 2. Acetaminophen (APAP) containing compounds are among the most frequently prescribed drugs, and also the most common cause of DILI3. Here we describe a pharmacological strategy that targets gap junction communication to prevent amplification of fulminant hepatic failure and APAP-induced hepatotoxicity. We report that connexin 32 (Cx32), a key hepatic gap junction protein, is an essential mediator of DILI by showing that mice deficient in Cx32 are protected against liver damage, acute inflammation, and death. We identified a small molecule inhibitor of Cx32 as a novel hepatoprotectant that achieves the same result in wildtype mice when coadministered with known hepatotoxic drugs. These findings demonstrate that gap junction inhibition is an effective therapy for limiting DILI, and suggest a novel pharmaceutical strategy to improve drug safety. PMID:22252509

  20. Entanglement between exciton and mechanical modes via dissipation-induced coupling

    NASA Astrophysics Data System (ADS)

    Sete, Eyob A.; Eleuch, H.; Ooi, C. H. Raymond

    2015-09-01

    We analyze the entanglement between two matter modes in a hybrid quantum system consisting of a microcavity, a quantum well, and a mechanical oscillator. Although the exciton mode in the quantum well and the mechanical oscillator are initially uncoupled, their interaction through the microcavity field results in an indirect exciton-mode-mechanical-mode coupling. We show that this coupling is a Fano-Agarwal-type coupling induced by the decay of the exciton and the mechanical modes caused by the leakage of photons through the microcavity to the environment. Using experimental parameters and for slowly varying microcavity field, we show that the generated coupling leads to an exciton-mode-mechanical-mode entanglement. The maximum entanglement is achieved at the avoided level crossing frequency, where the hybridization of the two modes is maximum. The entanglement is also robust against the phonon thermal bath temperature.

  1. Improved understanding of the hot cathode current modes and mode transitions

    NASA Astrophysics Data System (ADS)

    Campanell, M. D.; Umansky, M. V.

    2017-12-01

    Hot cathodes are crucial components in a variety of plasma sources and applications, but they induce mode transitions and oscillations that are not fully understood. It is often assumed that negatively biased hot cathodes have a space-charge limited (SCL) sheath whenever the current is limited. Here, we show on theoretical grounds that a SCL sheath cannot persist. First, charge-exchange ions born within the virtual cathode (VC) region get trapped and build up. After the ion density reaches the electron density at a point in the VC, a new neutral region is formed and begins growing in space. In planar geometry, this ‘new plasma’ containing cold trapped ions and cold thermoelectrons grows towards the anode and fills the gap, leaving behind an inverse cathode sheath. This explains how transitions from temperature-limited mode to anode glow mode occur in thermionic discharge experiments with magnetic fields. If the hot cathode is a small filament in an unmagnetized plasma, the trapped ion region is predicted to grow radially in both directions, get expelled if it reaches the cathode, and reform periodically. Filament-induced current oscillations consistent with this prediction have been reported in experiments. Here, we set up planar geometry simulations of thermionic discharges and demonstrate several mode transition phenomena for the first time. Our continuum kinetic code lacks the noise of particle simulations, enabling a closer study of the temporal dynamics.

  2. Gap state charge induced spin-dependent negative differential resistance in tunnel junctions

    NASA Astrophysics Data System (ADS)

    Jiang, Jun; Zhang, X.-G.; Han, X. F.

    2016-04-01

    We propose and demonstrate through first-principles calculation a new spin-dependent negative differential resistance (NDR) mechanism in magnetic tunnel junctions (MTJ) with cubic cation disordered crystals (CCDC) AlO x or Mg1-x Al x O as barrier materials. The CCDC is a class of insulators whose band gap can be changed by cation doping. The gap becomes arched in an ultrathin layer due to the space charge formed from metal-induced gap states. With an appropriate combination of an arched gap and a bias voltage, NDR can be produced in either spin channel. This mechanism is applicable to 2D and 3D ultrathin junctions with a sufficiently small band gap that forms a large space charge. It provides a new way of controlling the spin-dependent transport in spintronic devices by an electric field. A generalized Simmons formula for tunneling current through junction with an arched gap is derived to show the general conditions under which ultrathin junctions may exhibit NDR.

  3. Improved understanding of the hot cathode current modes and mode transitions [Mechanism of the hot cathode current mode transitions

    DOE PAGES

    Campanell, Michael D.; Umansky, M. V.

    2017-11-22

    Hot cathodes are crucial components in a variety of plasma sources and applications, but they induce mode transitions and oscillations that are not fully understood. It is often assumed that negatively biased hot cathodes have a space-charge limited (SCL) sheath whenever the current is limited. Here, we show on theoretical grounds that a SCL sheath cannot persist. First, charge-exchange ions born within the virtual cathode (VC) region get trapped and build up. After the ion density reaches the electron density at a point in the VC, a new neutral region is formed and begins growing in space. In planar geometry,more » this 'new plasma' containing cold trapped ions and cold thermoelectrons grows towards the anode and fills the gap, leaving behind an inverse cathode sheath. This explains how transitions from temperature-limited mode to anode glow mode occur in thermionic discharge experiments with magnetic fields. If the hot cathode is a small filament in an unmagnetized plasma, the trapped ion region is predicted to grow radially in both directions, get expelled if it reaches the cathode, and reform periodically. Filament-induced current oscillations consistent with this prediction have been reported in experiments. Here, we set up planar geometry simulations of thermionic discharges and demonstrate several mode transition phenomena for the first time. Lastly, our continuum kinetic code lacks the noise of particle simulations, enabling a closer study of the temporal dynamics.« less

  4. Improved understanding of the hot cathode current modes and mode transitions [Mechanism of the hot cathode current mode transitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campanell, Michael D.; Umansky, M. V.

    Hot cathodes are crucial components in a variety of plasma sources and applications, but they induce mode transitions and oscillations that are not fully understood. It is often assumed that negatively biased hot cathodes have a space-charge limited (SCL) sheath whenever the current is limited. Here, we show on theoretical grounds that a SCL sheath cannot persist. First, charge-exchange ions born within the virtual cathode (VC) region get trapped and build up. After the ion density reaches the electron density at a point in the VC, a new neutral region is formed and begins growing in space. In planar geometry,more » this 'new plasma' containing cold trapped ions and cold thermoelectrons grows towards the anode and fills the gap, leaving behind an inverse cathode sheath. This explains how transitions from temperature-limited mode to anode glow mode occur in thermionic discharge experiments with magnetic fields. If the hot cathode is a small filament in an unmagnetized plasma, the trapped ion region is predicted to grow radially in both directions, get expelled if it reaches the cathode, and reform periodically. Filament-induced current oscillations consistent with this prediction have been reported in experiments. Here, we set up planar geometry simulations of thermionic discharges and demonstrate several mode transition phenomena for the first time. Lastly, our continuum kinetic code lacks the noise of particle simulations, enabling a closer study of the temporal dynamics.« less

  5. Vacuum-induced Berry phases in single-mode Jaynes-Cummings models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yu; Wei, L. F.; Jia, W. Z.

    2010-10-15

    Motivated by work [Phys. Rev. Lett. 89, 220404 (2002)] for detecting the vacuum-induced Berry phases with two-mode Jaynes-Cummings models (JCMs), we show here that, for a parameter-dependent single-mode JCM, certain atom-field states also acquired photon-number-dependent Berry phases after the parameter slowly changed and eventually returned to its initial value. This geometric effect related to the field quantization still exists, even if the field is kept in its vacuum state. Specifically, a feasible Ramsey interference experiment with a cavity quantum electrodynamics system is designed to detect the vacuum-induced Berry phase.

  6. Gap discrete breathers in strained boron nitride

    NASA Astrophysics Data System (ADS)

    Barani, Elham; Korznikova, Elena A.; Chetverikov, Alexander P.; Zhou, Kun; Dmitriev, Sergey V.

    2017-11-01

    Linear and nonlinear dynamics of hexagonal boron nitride (h-BN) lattice is studied by means of molecular dynamics simulations with the use of the Tersoff interatomic potentials. It is found that sufficiently large homogeneous elastic strain along zigzag direction opens a wide gap in the phonon spectrum. Extended vibrational mode with boron and nitrogen sublattices vibrating in-plane as a whole in strained h-BN has frequency within the phonon gap. This fact suggests that a nonlinear spatially localized vibrational mode with frequencies in the phonon gap, called discrete breather (also often termed as intrinsic localized mode), can be excited. Properties of the gap discrete breathers in strained h-BN are contrasted with that for analogous vibrational mode found earlier in strained graphene. It is found that h-BN modeled with the Tersoff potentials does not support transverse discrete breathers.

  7. Strain-induced band-gap engineering of graphene monoxide and its effect on graphene

    NASA Astrophysics Data System (ADS)

    Pu, H. H.; Rhim, S. H.; Hirschmugl, C. J.; Gajdardziska-Josifovska, M.; Weinert, M.; Chen, J. H.

    2013-02-01

    Using first-principles calculations we demonstrate the feasibility of band-gap engineering in two-dimensional crystalline graphene monoxide (GMO), a recently reported graphene-based material with a 1:1 carbon/oxygen ratio. The band gap of GMO, which can be switched between direct and indirect, is tunable over a large range (0-1.35 eV) for accessible strains. Electron and hole transport occurs predominantly along the zigzag and armchair directions (armchair for both) when GMO is a direct- (indirect-) gap semiconductor. A band gap of ˜0.5 eV is also induced in graphene at the K' points for GMO/graphene hybrid systems.

  8. Quantum memories with zero-energy Majorana modes and experimental constraints

    NASA Astrophysics Data System (ADS)

    Ippoliti, Matteo; Rizzi, Matteo; Giovannetti, Vittorio; Mazza, Leonardo

    2016-06-01

    In this work we address the problem of realizing a reliable quantum memory based on zero-energy Majorana modes in the presence of experimental constraints on the operations aimed at recovering the information. In particular, we characterize the best recovery operation acting only on the zero-energy Majorana modes and the memory fidelity that can be therewith achieved. In order to understand the effect of such restriction, we discuss two examples of noise models acting on the topological system and compare the amount of information that can be recovered by accessing either the whole system, or the zero modes only, with particular attention to the scaling with the size of the system and the energy gap. We explicitly discuss the case of a thermal bosonic environment inducing a parity-preserving Markovian dynamics in which the memory fidelity achievable via a read-out of the zero modes decays exponentially in time, independent from system size. We argue, however, that even in the presence of said experimental limitations, the Hamiltonian gap is still beneficial to the storage of information.

  9. Inducible growth mode switches influence Valonia rhizoid differentiation.

    PubMed

    Elvira, Paul Rommel; Sekida, Satoko; Okuda, Kazuo

    2013-02-01

    Cell differentiation and cell type commitment are an integral part of plant growth and development. Investigations on how environmental conditions affect the formation of shoots, roots, and rhizoids can help illustrate how plants determine cell fate and overall morphology. In this study, we evaluated the role of substratum and light on rhizoid differentiation in the coenocytic green alga, Valonia aegagropila. Elongating rhizoids displayed varying growth modes and cell shape upon exposure to different substrata and light conditions. It was found that soft substrata and dark incubation promoted rhizoid elongation via tip growth while subsequent exposure to light prevented tip growth and instead induced swelling in the apical region of rhizoids. Swelling was accompanied by the accumulation of protoplasm in the rhizoid tip through expansion of the cell wall and uninhibited cytoplasmic streaming. Subsequent diffuse growth led to the transformation from slender, rod-shaped rhizoids into spherical thallus-like structures that required photosynthesis. Further manipulation of light regimes caused vacillating cell growth redirections. An elongating V. aegagropila rhizoid cell thus appears capable of growth mode switching that is regulated by immediate environmental conditions thereby influencing ultimate cell shape and function. This is the first description of inducible, multiple growth mode shifts in a single intact plant cell that directly impact its differentiation.

  10. Role of gap junction intercellular communication in testicular leydig cell apoptosis induced by oxaliplatin via the mitochondrial pathway.

    PubMed

    Tong, Xuhui; Han, Xi; Yu, Binbin; Yu, Meiling; Jiang, Guojun; Ji, Jie; Dong, Shuying

    2015-01-01

    Platinum agents are widely used in the chemotherapy of testicular cancer. However, adverse reactions and resistance to such agents have limited their application in antineoplastic treatment. The aim of the present study was to determine the role of gap junction intercellular communication (GJIC) composed of Cx43 on oxaliplatin‑induced survival/apoptosis in mouse leydig normal and cancer cells using MTT, Annexin V/PI double staining assays and western blot analysis. The results showed that GJIC exerted opposite effects on the mouse leydig cancer (I-10) and normal (TM3) cell apoptosis induced by oxaliplatin. In leydig cancer cells, survival of cells exposed to oxaliplatin was substantially reduced when gap junctions formed as compared to no gap junctions. Pharmacological inhibition of gap junctions by oleamide and 18-α-glycyrrhetinic acid resulted in enhanced survival/decreased apoptosis while enhancement of gap junctions by retinoic acid led to decreased survival/increased apoptosis. These effects occurred only in high‑density cultures (gap junction formed), while the pharmacological modulations had no effects when there was no opportunity for gap junction formation. Notably, GJIC played an opposite (protective) role in normal leydig cells survival/apoptosis following exposure to oxaliplatin. Furthermore, this converse oxaliplatin‑inducing apoptosis exerted through the functional gap junction was correlated with the mitochondrial pathway‑related protein Bcl-2/Bax and caspase‑3/9. These results suggested that in testicular leydig normal/cancer cells, GJIC plays an opposite role in oxaliplatin‑induced apoptosis via the mitochondrial pathway.

  11. The Sleep-inducing Lipid Oleamide Deconvolutes Gap Junction Communication and Calcium Wave Transmission in Glial Cells

    PubMed Central

    Guan, Xiaojun; Cravatt, Benjamin F.; Ehring, George R.; Hall, James E.; Boger, Dale L.; Lerner, Richard A.; Gilula, Norton B.

    1997-01-01

    Oleamide is a sleep-inducing lipid originally isolated from the cerebrospinal fluid of sleep-deprived cats. Oleamide was found to potently and selectively inactivate gap junction–mediated communication between rat glial cells. In contrast, oleamide had no effect on mechanically stimulated calcium wave transmission in this same cell type. Other chemical compounds traditionally used as inhibitors of gap junctional communication, like heptanol and 18β-glycyrrhetinic acid, blocked not only gap junctional communication but also intercellular calcium signaling. Given the central role for intercellular small molecule and electrical signaling in central nervous system function, oleamide- induced inactivation of glial cell gap junction channels may serve to regulate communication between brain cells, and in doing so, may influence higher order neuronal events like sleep induction. PMID:9412472

  12. Characterizing the ``Higgs'' amplitude mode in a Spin-1 Bose Einstein Condensate

    NASA Astrophysics Data System (ADS)

    Hebbe Madhusudhana, Bharath; Boguslawski, Matthew; Anquez, Martin; Robbins, Bryce; Barrios, Maryrose; Hoang, Thai; Chapman, Michael

    2016-05-01

    Spontaneous symmetry breaking in a physical system is often characterized by massless Nambu-Goldstone modes and massive Anderson-Higgs modes. It occurs when a system crosses a quantum critical point (QCP) reaching a state does not share the symmetry of the underlying Hamiltonian. In a spin-1 Bose Einstein condensate, the transverse spin component can be considered as an order parameter. A quantum phase transition (QPT) of this system results in breaking of the symmetry group U(1) × SO(2) shared by the Hamiltonian. As a result, two massless coupled phonon-magnon modes are produced along with a single massive mode or a Higgs-like mode, in the form of amplitude excitations of the order parameter. Here we characterize the amplitude excitations experimentally by inducing coherent oscillation in the spin population. We further use the amplitude oscillations to measure the energy gap for different phases of the QPT. At the QCP, finite size effects lead to a non-zero gap, and our measurements are consistent with this prediction.

  13. Triclosan Disrupts Thyroxine: Contribution of Hepatic Transport to the Mode of Action

    EPA Science Inventory

    Triclosan (5-chloro-2-(2,4-dichlorophenoxy)phenol) (TCS) decreases serum thyroxine (T4) in rats. In previous work, TCS upregulated Phase I and II hepatic metabolism after 4-day exposures in rats. A major data gap in our characterization of the mode of action (MOA) of TCS-induced ...

  14. Parametric instability induced by X-mode wave heating at EISCAT

    NASA Astrophysics Data System (ADS)

    Wang, Xiang; Zhou, Chen; Liu, Moran; Honary, Farideh; Ni, Binbin; Zhao, Zhengyu

    2016-10-01

    In this paper, we present results of parametric instability induced by X-mode wave heating observed by EISCAT (European Incoherent Scatter Scientific Association) radar at Tromsø, Norway. Three typical X-mode ionospheric heating experiments on 22 October 2013, 19 October 2012, and 21 February 2013 are investigated in details. Both parametric decay instability (PDI) and oscillating two-stream instability are observed during the X-mode heating period. We suggest that the full dispersion relationship of the Langmuir wave can be employed to analyze the X-mode parametric instability excitation. A modified kinetic electron distribution is proposed and analyzed, which is able to satisfy the matching condition of parametric instability excitation. Parallel electric field component of X-mode heating wave can also exceed the parametric instability excitation threshold under certain conditions.

  15. Quantification of MDL-induced signal degradation in MIMO-OFDM mode-division multiplexing systems.

    PubMed

    Tian, Yu; Li, Juhao; Zhu, Paikun; Wu, Zhongying; Chen, Yuanxiang; He, Yongqi; Chen, Zhangyuan

    2016-08-22

    Mode-division multiplexing (MDM) transmission over few-mode optical fiber has emerged as a promising technology to enhance transmission capacity, in which multiple-input-multiple-output (MIMO) digital signal processing (DSP) after coherent detection is used to demultiplex the signals. Compared with conventional single-mode systems, MIMO-MDM systems suffer non-recoverable signal degradation induced by mode-dependent loss (MDL). In this paper, the MDL-induced signal degradation in orthogonal-frequency-division-multiplexing (OFDM) MDM systems is theoretically quantified in terms of mode-average error vector magnitude (EVM) through frequency domain norm analysis. A novel scalar MDL metric is proposed considering the probability distribution of the practical MDM input signals, and a closed-form expression for EVM measured after zero-force (ZF) MIMO equalization is derived. Simulation results show that the EVM estimations utilizing the novel MDL metric remain unbiased for unrepeated links. For a 6 × 100 km 20-mode MDM transmission system, the estimation accuracy is improved by more than 90% compared with that utilizing traditional condition number (CN) based MDL metric. The proposed MDL metric can be used to predict the MDL-induced SNR penalty in a theoretical manner, which will be beneficial for the design of practical MIMO-MDM systems.

  16. Higgs amplitude mode in the BCS superconductors Nb1-xTi(x)N induced by terahertz pulse excitation.

    PubMed

    Matsunaga, Ryusuke; Hamada, Yuki I; Makise, Kazumasa; Uzawa, Yoshinori; Terai, Hirotaka; Wang, Zhen; Shimano, Ryo

    2013-08-02

    Ultrafast responses of BCS superconductor Nb(1-x)Ti(x)N films in a nonadiabatic excitation regime were investigated by using terahertz (THz) pump-THz probe spectroscopy. After an instantaneous excitation with the monocycle THz pump pulse, a transient oscillation emerges in the electromagnetic response in the BCS gap energy region. The oscillation frequency coincides with the asymptotic value of the BCS gap energy, indicating the appearance of the theoretically anticipated collective amplitude mode of the order parameter, namely the Higgs amplitude mode. Our result opens a new pathway to the ultrafast manipulation of the superconducting order parameter by optical means.

  17. Tailoring mode interference in plasmon-induced transparency metamaterials

    NASA Astrophysics Data System (ADS)

    Liu, Meng; Yang, Quanlong; Xu, Quan; Chen, Xieyu; Tian, Zhen; Gu, Jianqiang; Ouyang, Chunmei; Zhang, Xueqian; Han, Jiaguang; Zhang, Weili

    2018-05-01

    We proposed an approach to tailor the mode interference effect in plasmon-induced transparency (PIT) metamaterials. Through introducing an extra coupling mode using an asymmetric structure configuration at terahertz (THz) frequencies, the well-known single-transparency-window PIT can be switched to dual-transparency-window PIT. Proof-of-concept subwavelength structures were fabricated and experimentally characterized. The measured results are in good agreement with the simulations, and well support our theoretical analysis. The presented research delivers a novel approach toward developing subwavelength devices with varies functionalities, such as ultra-slow group velocities, longitudinal pulse compression and light storage in the THz regime, which can also be extended to other spectral regimes.

  18. Influence of mode-beating pulse on laser-induced plasma

    NASA Astrophysics Data System (ADS)

    Nishihara, M.; Freund, J. B.; Glumac, N. G.; Elliott, G. S.

    2018-04-01

    This paper addresses the influence of mode-beating pulse on laser-induced plasma. The second harmonic of a Nd:YAG laser, operated either with the single mode or multimode, was used for non-resonant optical breakdown, and subsequent plasma development was visualized using a streak imaging system. The single mode lasing leads to a stable breakdown location and smooth envelopment of the plasma boundary, while the multimode lasing, with the dominant mode-beating frequency of 500-800 MHz, leads to fluctuations in the breakdown location, a globally modulated plasma surface, and growth of local microstructures at the plasma boundary. The distribution of the local inhomogeneity was measured from the elastic scattering signals on the streak image. The distance between the local structures agreed with the expected wavelength of hydrodynamic instability development due to the interference between the surface excited wave and transmitted wave. A numerical simulation, however, indicates that the local microstructure could also be directly generated at the peaks of the higher harmonic components if the multimode pulse contains up to the eighth harmonic of the fundamental cavity mode.

  19. Ultrastructural demonstration of Cx43 gap junctions in induced pluripotent stem cells from human cord blood.

    PubMed

    Beckmann, Anja; Schubert, Madline; Hainz, Nadine; Haase, Alexandra; Martin, Ulrich; Tschernig, Thomas; Meier, Carola

    2016-11-01

    Gap junction proteins are essential for direct intercellular communication but also influence cellular differentiation and migration. The expression of various connexin gap junction proteins has been demonstrated in embryonic stem cells, with Cx43 being the most intensely studied. As Cx43 is the most prominent gap junction protein in the heart, cardiomyocyte-differentiated stem cells have been studied intensely. To date, however, little is known about the expression and the subcellular distribution of Cx43 in undifferentiated stem cells or about the structural arrangement of channels. We, therefore, here investigate expression of Cx43 in undifferentiated human cord-blood-derived induced pluripotent stem cells (hCBiPS2). For this purpose, we carried out quantitative real-time PCR and immunohistochemistry. For analysis of Cx43 ultrastructure and protein assembly, we performed freeze-fracture replica immunogold labeling (FRIL). Cx43 expression was detected at mRNA and protein level in hCBIPS2 cells. For the first time, ultrastructural data are presented on gap junction morphology in induced pluripotent stem (iPS) cells from cord blood: Our FRIL and electron microscopical analysis revealed the occurrence of gap junction plaques in undifferentiated iPS cells. In addition, these gap junctions were shown to contain the gap junction protein Cx43.

  20. The alpha2-adrenoreceptor agonist dexmedetomidine protects against lipopolysaccharide-induced apoptosis via inhibition of gap junctions in lung fibroblasts.

    PubMed

    Zhang, Yuan; Tan, Xiaoming; Xue, Lianfang

    2018-01-01

    The α2-adrenoceptor inducer dexmedetomidine protects against acute lung injury (ALI), but the mechanism of this effect is largely unknown. The present study investigated the effect of dexmedetomidine on apoptosis induced by lipopolysaccharide (LPS) and the relationship between this effect and gap junction intercellular communication in human lung fibroblast cell line. Flow cytometry was used to detect apoptosis induced by LPS. Parachute dye coupling assay was used to measure gap junction function, and western blot analysis was used to determine the expression levels of connexin43 (Cx43). The results revealed that exposure of human lung fibroblast cell line to LPS for 24 h increased the apoptosis, and pretreatment of dexmedetomidine and 18α-GA significantly reduced LPS-induced apoptosis. Dexmedetomidine exposure for 1 h inhibited gap junction function mainly via a decrease in Cx43 protein levels in human lung fibroblast cell line. These results demonstrated that the inhibition of gap junction intercellular communication by dexmedetomidine affected the LPS-induced apoptosis through inhibition of gap junction function by reducing Cx43 protein levels. The present study provides evidence of a novel mechanism underlying the effects of analgesics in counteracting ALI. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Gap state analysis in electric-field-induced band gap for bilayer graphene.

    PubMed

    Kanayama, Kaoru; Nagashio, Kosuke

    2015-10-29

    The origin of the low current on/off ratio at room temperature in dual-gated bilayer graphene field-effect transistors is considered to be the variable range hopping in gap states. However, the quantitative estimation of gap states has not been conducted. Here, we report the systematic estimation of the energy gap by both quantum capacitance and transport measurements and the density of states for gap states by the conductance method. An energy gap of ~ 250 meV is obtained at the maximum displacement field of ~ 3.1 V/nm, where the current on/off ratio of ~ 3 × 10(3) is demonstrated at 20 K. The density of states for the gap states are in the range from the latter half of 10(12) to 10(13) eV(-1) cm(-2). Although the large amount of gap states at the interface of high-k oxide/bilayer graphene limits the current on/off ratio at present, our results suggest that the reduction of gap states below ~ 10(11) eV(-1) cm(-2) by continual improvement of the gate stack makes bilayer graphene a promising candidate for future nanoelectronic device applications.

  2. Orbital angular momentum mode of Gaussian beam induced by atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Cheng, Mingjian; Guo, Lixin; Li, Jiangting; Yan, Xu; Dong, Kangjun

    2018-02-01

    Superposition theory of the spiral harmonics is employed to numerical study the transmission property of the orbital angular momentum (OAM) mode of Gaussian beam induced by atmospheric turbulence. Results show that Gauss beam does not carry OAM at the source, but various OAM modes appear after affected by atmospheric turbulence. With the increase of atmospheric turbulence strength, the smaller order OAM modes appear firstly, followed by larger order OAM modes. The beam spreading of Gauss beams in the atmosphere enhance with the increasing topological charge of the OAM modes caused by atmospheric turbulence. The mode probability density of the OAM generated by atmospheric turbulence decreases, and peak position gradually deviate from the Gauss beam spot center with the increase of the topological charge. Our results may be useful for improving the performance of long distance laser digital spiral imaging system.

  3. Effects of gap width on droplet transfer behavior in ultra-narrow gap laser welding of high strength aluminum alloys

    NASA Astrophysics Data System (ADS)

    Song, Chaoqun; Dong, Shiyun; Yan, Shixing; He, Jiawu; Xu, Binshi; He, Peng

    2017-10-01

    Ultra-narrow gap laser welding is a novel method for thick high strength aluminum alloy plate for its lower heat input, less deformation and higher efficiency. To obtain a perfect welding quality, it is vital to control the more complex droplet transfer behavior under the influence of ultra-narrow gap groove. This paper reports the effects of gap width of groove on droplet transfer behavior in ultra-narrow gap laser welding of 7A52 aluminum alloy plates by a high speed camera, using an ER 5356 filler wire. The results showed that the gap width had directly effects on droplet transfer mode and droplet shape. The droplet transfer modes were, in order, both-sidewall transfer, single-sidewall transfer, globular droplet transfer and bridging transfer, with different droplet shape and transition period, as the gap width increased from 2 mm to 3.5mm. The effect of gap width on lack of fusion was also studied to analyze the cause for lack of fusion at the bottom and on the sidewall of groove. Finally, with a 2.5 mm U-type parallel groove, a single-pass joint with no lack of fusion and other macro welding defects was successfully obtained in a single-sidewall transfer mode.

  4. Band gap in tubular pillar phononic crystal plate.

    PubMed

    Shu, Fengfeng; Liu, Yongshun; Wu, Junfeng; Wu, Yihui

    2016-09-01

    In this paper, a phononic crystal (PC) plate with tubular pillars is presented and investigated. The band structures and mode displacement profiles are calculated by using finite element method. The result shows that a complete band gap opens when the ratio of the pillar height to the plate thickness is about 1.6. However, for classic cylinder pillar structures, a band gap opens when the ratio is equal or greater than 3. A tubular pillar design with a void room in it enhances acoustic multiple scattering and gives rise to the opening of the band gap. In order to verify it, a PC structure with double tubular pillars different in size (one within the other) is introduced and a more than 2times band gap enlargement is observed. Furthermore, the coupling between the resonant mode and the plate mode around the band gap is characterized, as well as the effect of the geometrical parameters on the band gap. The behavior of such structure could be utilized to design a pillar PC with stronger structural stability and to enlarge band gaps. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Elastic dependence of defect modes in one-dimensional photonic crystals with a cholesteric elastomer slab

    NASA Astrophysics Data System (ADS)

    Avendanño, Carlos G.; Martínez, Daniel

    2018-07-01

    We studied the transmission spectra in a one-dimensional dielectric multilayer photonic structure containing a cholesteric liquid crystal elastomer layer as a defect. For circularly polarized incident electromagnetic waves, we analyzed the optical defect modes induced in the band gap spectrum as a function of the incident angle and the axial strain applied along the same axis as the periodic medium. The physical parameters of the structure were chosen in such a way the photonic band gap of the cholesteric elastomer lies inside that of the multilayer. We found that, in addition to the defect modes associated with the thickness of the defect layer and the anisotropy of the elastic polymer, two new defect modes appear at both band edges of the cholesteric structure, whose amplitudes and spectral positions can be elastically tuned. Particularly, we showed that, at normal incidence, the defect modes shift toward the long-wavelength region with the strain; whereas, for constant elongation, such defects move toward larger frequencies with the incidence angle.

  6. Phonon-induced ultrafast band gap control in LaTiO3

    NASA Astrophysics Data System (ADS)

    Gu, Mingqiang; Rondinelli, James M.

    We propose a route for ultrafast band gap engineering in correlated transition metal oxides by using optically driven phonons. We show that the ∖Gamma-point electron band energies can be deterministically tuned in the nonequilibrium state. Taking the Mott insulator LaTiO3 as an example, we show that such phonon-assisted processes dynamically induce an indirect-to-direct band gap transition or even a metal-to-insulator transition, depending on the electron correlation strength. We explain the origin of the dynamical band structure control and also establish its generality by examining related oxides. Lastly, we describe experimental routes to realize the band structure control with impulsive stimulated Raman scattering.

  7. Inertial modes and their transition to turbulence in a differentially rotating spherical gap flow

    NASA Astrophysics Data System (ADS)

    Hoff, Michael; Harlander, Uwe; Andrés Triana, Santiago; Egbers, Christoph

    2016-04-01

    We present a study of inertial modes in a spherical shell experiment. Inertial modes are Coriolis-restored linear wave modes, often arise in rapidly-rotating fluids (e.g. in the Earth's liquid outer core [1]). Recent experimental works showed that inertial modes exist in differentially rotating spherical shells. A set of particular inertial modes, characterized by (l,m,ˆω), where l, m is the polar and azimuthal wavenumber and ˆω = ω/Ωout the dimensionless frequency [2], has been found. It is known that they arise due to eruptions in the Ekman boundary layer of the outer shell. But it is an open issue why only a few modes develop and how they get enhanced. Kelley et al. 2010 [3] showed that some modes draw their energy from detached shear layers (e.g. Stewartson layers) via over-reflection. Additionally, Rieutord et al. (2012) [4] found critical layers within the shear layers below which most of the modes cannot exist. In contrast to other spherical shell experiments, we have a full optical access to the flow. Therefore, we present an experimental study of inertial modes, based on Particle-Image-Velocimetry (PIV) data, in a differentially rotating spherical gap flow where the inner sphere is subrotating or counter-rotating at Ωin with respect to the outer spherical shell at Ωout, characterized by the Rossby number Ro = (Ωin - Ωout)/Ωout. The radius ratio of η = 1/3, with rin = 40mm and rout = 120mm, is close to that of the Earth's core. Our apparatus is running at Ekman numbers (E ≈ 10-5, with E = ν/(Ωoutrout2), two orders of magnitude higher than most of the other experiments. Based on a frequency-Rossby number spectrogram, we can partly confirm previous considerations with respect to the onset of inertial modes. In contrast, the behavior of the modes in the counter-rotation regime is different. We found a triad interaction between three dominant inertial modes, where one is a slow axisymmetric Rossby mode [5]. We show that the amplitude of the most

  8. Plasmon transmutation: inducing new modes in nanoclusters by adding dielectric nanoparticles.

    PubMed

    Wen, Fangfang; Ye, Jian; Liu, Na; Van Dorpe, Pol; Nordlander, Peter; Halas, Naomi J

    2012-09-12

    Planar clusters of coupled plasmonic nanoparticles support nanoscale electromagnetic "hot spots" and coherent effects, such as Fano resonances, with unique near and far field signatures, currently of prime interest for sensing applications. Here we show that plasmonic cluster properties can be substantially modified by the addition of individual, discrete dielectric nanoparticles at specific locations on the cluster, introducing new plasmon modes, or transmuting existing plasmon modes to new ones, in the resulting metallodielectric nanocomplex. Depositing a single carbon nanoparticle in the junction between a pair of adjacent nanodisks induces a metal-dielectric-metal quadrupolar plasmon mode. In a ten-membered cluster, placement of several carbon nanoparticles in junctions between multiple adjacent nanoparticles introduces a collective magnetic plasmon mode into the Fano dip, giving rise to an additional subradiant mode in the metallodielectric nanocluster response. These examples illustrate that adding dielectric nanoparticles to metallic nanoclusters expands the number and types of plasmon modes supported by these new mixed-media nanoscale assemblies.

  9. Impacts of propagating, frustrated and surface modes on radiative, electrical and thermal losses in nanoscale-gap thermophotovoltaic power generators.

    PubMed

    Bernardi, Michael P; Dupré, Olivier; Blandre, Etienne; Chapuis, Pierre-Olivier; Vaillon, Rodolphe; Francoeur, Mathieu

    2015-06-26

    The impacts of radiative, electrical and thermal losses on the performances of nanoscale-gap thermophotovoltaic (nano-TPV) power generators consisting of a gallium antimonide cell paired with a broadband tungsten and a radiatively-optimized Drude radiator are analyzed. Results reveal that surface mode mediated nano-TPV power generation with the Drude radiator outperforms the tungsten radiator, dominated by frustrated modes, only for a vacuum gap thickness of 10 nm and if both electrical and thermal losses are neglected. The key limiting factors for the Drude- and tungsten-based devices are respectively the recombination of electron-hole pairs at the cell surface and thermalization of radiation with energy larger than the cell absorption bandgap. A design guideline is also proposed where a high energy cutoff above which radiation has a net negative effect on nano-TPV power output due to thermal losses is determined. It is shown that the power output of a tungsten-based device increases by 6.5% while the cell temperature decreases by 30 K when applying a high energy cutoff at 1.45 eV. This work demonstrates that design and optimization of nano-TPV devices must account for radiative, electrical and thermal losses.

  10. Impacts of propagating, frustrated and surface modes on radiative, electrical and thermal losses in nanoscale-gap thermophotovoltaic power generators

    PubMed Central

    Bernardi, Michael P.; Dupré, Olivier; Blandre, Etienne; Chapuis, Pierre-Olivier; Vaillon, Rodolphe; Francoeur, Mathieu

    2015-01-01

    The impacts of radiative, electrical and thermal losses on the performances of nanoscale-gap thermophotovoltaic (nano-TPV) power generators consisting of a gallium antimonide cell paired with a broadband tungsten and a radiatively-optimized Drude radiator are analyzed. Results reveal that surface mode mediated nano-TPV power generation with the Drude radiator outperforms the tungsten radiator, dominated by frustrated modes, only for a vacuum gap thickness of 10 nm and if both electrical and thermal losses are neglected. The key limiting factors for the Drude- and tungsten-based devices are respectively the recombination of electron-hole pairs at the cell surface and thermalization of radiation with energy larger than the cell absorption bandgap. A design guideline is also proposed where a high energy cutoff above which radiation has a net negative effect on nano-TPV power output due to thermal losses is determined. It is shown that the power output of a tungsten-based device increases by 6.5% while the cell temperature decreases by 30 K when applying a high energy cutoff at 1.45 eV. This work demonstrates that design and optimization of nano-TPV devices must account for radiative, electrical and thermal losses. PMID:26112658

  11. Severe non-anion gap metabolic acidosis induced by topiramate: a case report.

    PubMed

    Shiber, Joseph R

    2010-05-01

    A non-anion gap acidosis can be induced by topiramate, causing symptomatic dyspnea and confusion. Discuss the pathophysiology of the hyperchloremic metabolic acidosis caused by topiramate, the typical clinical presentation, and the recommended treatment. This case presents a young woman with a clinically significant non-anion gap metabolic acidosis believed to be caused by topiramate. She had been taking the medication for several months without prior adverse effects. Once she began having dyspnea as a respiratory response to the renal tubule acidosis, she had decreased oral intake of food and fluids, which induced a pre-renal acute renal failure that worsened her acidemia. In the Emergency Department, she received intravenous fluids and sodium bicarbonate, and later was intubated for mechanical ventilation due to respiratory fatigue. With the topiramate withdrawn, the patient had a full recovery of her renal function and metabolic acid-base status over the next 72 h. This case serves to increase awareness of this possible adverse effect and the recommended treatment as topiramate becomes more widely used. Topiramate can induce a renal tubule acidosis resulting in a hyperchloremic metabolic acidosis. Recognition of the underlying cause is crucial so that the drug can be withdrawn while supportive care is provided. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  12. Exponential protection of zero modes in Majorana islands.

    PubMed

    Albrecht, S M; Higginbotham, A P; Madsen, M; Kuemmeth, F; Jespersen, T S; Nygård, J; Krogstrup, P; Marcus, C M

    2016-03-10

    Majorana zero modes are quasiparticle excitations in condensed matter systems that have been proposed as building blocks of fault-tolerant quantum computers. They are expected to exhibit non-Abelian particle statistics, in contrast to the usual statistics of fermions and bosons, enabling quantum operations to be performed by braiding isolated modes around one another. Quantum braiding operations are topologically protected insofar as these modes are pinned near zero energy, with the departure from zero expected to be exponentially small as the modes become spatially separated. Following theoretical proposals, several experiments have identified signatures of Majorana modes in nanowires with proximity-induced superconductivity and atomic chains, with small amounts of mode splitting potentially explained by hybridization of Majorana modes. Here, we use Coulomb-blockade spectroscopy in an InAs nanowire segment with epitaxial aluminium, which forms a proximity-induced superconducting Coulomb island (a 'Majorana island') that is isolated from normal-metal leads by tunnel barriers, to measure the splitting of near-zero-energy Majorana modes. We observe exponential suppression of energy splitting with increasing wire length. For short devices of a few hundred nanometres, sub-gap state energies oscillate as the magnetic field is varied, as is expected for hybridized Majorana modes. Splitting decreases by a factor of about ten for each half a micrometre of increased wire length. For devices longer than about one micrometre, transport in strong magnetic fields occurs through a zero-energy state that is energetically isolated from a continuum, yielding uniformly spaced Coulomb-blockade conductance peaks, consistent with teleportation via Majorana modes. Our results help to explain the trivial-to-topological transition in finite systems and to quantify the scaling of topological protection with end-mode separation.

  13. Adiabatic Nanofocusing in Hybrid Gap Plasmon Waveguides on the Silicon-on-Insulator Platform.

    PubMed

    Nielsen, Michael P; Lafone, Lucas; Rakovich, Aliaksandra; Sidiropoulos, Themistoklis P H; Rahmani, Mohsen; Maier, Stefan A; Oulton, Rupert F

    2016-02-10

    We present an experimental demonstration of a new class of hybrid gap plasmon waveguides on the silicon-on-insulator (SOI) platform. Created by the hybridization of the plasmonic mode of a gap in a thin metal sheet and the transverse-electric (TE) photonic mode of an SOI slab, this waveguide is designed for efficient adiabatic nanofocusing simply by varying the gap width. For gap widths greater than 100 nm, the mode is primarily photonic in character and propagation lengths can be many tens of micrometers. For gap widths below 100 nm, the mode becomes plasmonic in character with field confinement predominantly within the gap region and with propagation lengths of a few microns. We estimate the electric field intensity enhancement in hybrid gap plasmon waveguide tapers at 1550 nm by three-photon absorption of selectively deposited CdSe/ZnS quantum dots within the gap. Here, we show electric field intensity enhancements of up to 167 ± 26 for a 24 nm gap, proving the viability of low loss adiabatic nanofocusing on a commercially relevant photonics platform.

  14. Identification and onset of inertial modes in the wide-gap spherical Couette system

    NASA Astrophysics Data System (ADS)

    Barik, A.; Wicht, J.; Triana, S. A.; Hoff, M.

    2016-12-01

    The spherical Couette system consists of two concentric rotating spheres with a fluid filling the shell in between. The system has been studied for a long time by fluid dynamicists and is ideal for studying flow instabilities due to differential rotation and the interaction of the same with magnetic fields - important for understanding dynamics of planetary and stellar interiors. The system is also a basis for a new generation of dynamo experiments because of its closer geometrical resemblance to real astrophysical objects as compared to past experiments. We simulate this system using the two different pseudo-spectral codes MagIC and XSHELLS. We focus here on a very interesting and general instability in this system - inertial modes. A rotating body of fluid is known to sustain oscillatory waves due to the restoring action of the Coriolis force. In a bounded container, these form a discrete spectrum called inertial modes. These modes have been analytically known for a rotating full sphere for over a century now. In a spherical shell, they cannot be formulated analytically. However, many of these inertial modes are observed in spherical Couette experiments as well as in simulations. Past studies have tried to explain the onset of these modes invoking wave over-reflection or critical layer instabilities on the cylinder tangent to the inner sphere. In this study, we present the inertial modes found in our simulations and try to explain their onset as secondary instabilities due to the destabilization of the fundamental non-axisymmetric instability, forming a triadic resonance with the fundamental instability. We run various simulations varying the rotation rate of the inner sphere, while keeping the rotation rate of the outer sphere constant. We track velocities and induced magnetic field and produce spectrograms similar to those of the experiments. Our results match very well the experimental data from spherical Couette set-ups at BTU Cottbus and the University of

  15. Neuropathy-induced spinal GAP-43 expression is not a main player in the onset of mechanical pain hypersensitivity.

    PubMed

    Jaken, Robby J; van Gorp, Sebastiaan; Joosten, Elbert A; Losen, Mario; Martínez-Martínez, Pilar; De Baets, Marc; Marcus, Marco A; Deumens, Ronald

    2011-12-01

    Structural plasticity within the spinal nociceptive network may be fundamental to the chronic nature of neuropathic pain. In the present study, the spatiotemporal expression of growth-associated protein-43 (GAP-43), a protein which has been traditionally implicated in nerve fiber growth and sprouting, was investigated in relation to mechanical pain hypersensitivity. An L5 spinal nerve transection model was validated by the presence of mechanical pain hypersensitivity and an increase in the early neuronal activation marker cFos within the superficial spinal dorsal horn upon innocuous hindpaw stimulation. Spinal GAP-43 was found to be upregulated in the superficial L5 dorsal horn from 5 up to 10 days after injury. GAP-43 was co-localized with calcitonin-gene related peptide (CGRP), but not vesicular glutamate transporter-1 (VGLUT-1), IB4, or protein kinase-γ (PKC-γ), suggesting the regulation of GAP-43 in peptidergic nociceptive afferents. These GAP-43/CGRP fibers may be indicative of sprouting peptidergic fibers. Fiber sprouting largely depends on growth factors, which are typically associated with neuro-inflammatory processes. The putative role of neuropathy-induced GAP-43 expression in the development of mechanical pain hypersensitivity was investigated using the immune modulator propentofylline. Propentofylline treatment strongly attenuated the development of mechanical pain hypersensitivity and glial responses to nerve injury as measured by microglial and astroglial markers, but did not affect neuropathy-induced levels of spinal GAP-43 or GAP-43 regulation in CGRP fibers. We conclude that nerve injury induces structural plasticity in fibers expressing CGRP, which is regarded as a main player in central sensitization. Our data do not, however, support a major role of these structural changes in the onset of mechanical pain hypersensitivity.

  16. Propofol inhibits gap junctions by attenuating sevoflurane-induced cytotoxicity against rat liver cells in vitro.

    PubMed

    Huang, Fei; Li, Shangrong; Gan, Xiaoliang; Wang, Ren; Chen, Zhonggang

    2014-04-01

    Liver abnormalities are seen in a small proportion of patients following anaesthesia with sevoflurane. To investigate whether the cytotoxicity of sevoflurane against rat liver cells was mediated by gap junction intercellular communications, and the effect of propofol on sevoflurane-induced cytotoxicity. Experimental study. The study was carried out in the central laboratory of The Third Affiliated Hospital, Sun Yat-sen University. BRL-3A rat liver cells. Immortal rat liver cells BRL-3A were grown at low and high density. Colony-forming assays were performed to determine clonogenic growth of these cells. To investigate the effect of oleamide and propofol on gap junction function, we measured fluorescence transmission between cells using parachute dye-coupling assays. Immunoblotting assays were performed to determine connexin32 and connexin43 expression. Our colony formation assays revealed that, in low-density culture, sevoflurane caused no apparent inhibition of clonogenic growth of BRL-3A cells. In high-density culture, 2.2 to 4.4% sevoflurane markedly inhibited clonogenic growth of BRL-3A cells with 67.6 (0.34)% and 61.2 (0.17)% of the cells being viable, respectively (P = 0.003 vs. low-density culture), suggesting cell density dependency of sevoflurane-induced cytotoxicity. Our colony formation assays revealed that propofol markedly attenuated the suppression by sevoflurane of the clonogenic growth of BRL-3A cells (viability: propofol and sevoflurane, 91.5 (0.014)% vs. sevoflurane, 56.6 (0.019)%; P <0.01). Blocking gap junctions with 10 μmol l oleamide significantly attenuated 4.4% sevoflurane-induced suppression with a viability of 83.6 ± 0.138% (oleamide and sevoflurane vs. sevoflurane, P < 0.01). Immunoblotting assays further showed that propofol (3.2 μg ml) markedly reduced CX32 levels and significantly inhibited gap junctional intercellular communications as revealed by parachute dye-coupling assays. Values are mean (SD). This study

  17. Optically Discriminating Carrier-Induced Quasiparticle Band Gap and Exciton Energy Renormalization in Monolayer MoS2

    NASA Astrophysics Data System (ADS)

    Yao, Kaiyuan; Yan, Aiming; Kahn, Salman; Suslu, Aslihan; Liang, Yufeng; Barnard, Edward S.; Tongay, Sefaattin; Zettl, Alex; Borys, Nicholas J.; Schuck, P. James

    2017-08-01

    Optoelectronic excitations in monolayer MoS2 manifest from a hierarchy of electrically tunable, Coulombic free-carrier and excitonic many-body phenomena. Investigating the fundamental interactions underpinning these phenomena—critical to both many-body physics exploration and device applications—presents challenges, however, due to a complex balance of competing optoelectronic effects and interdependent properties. Here, optical detection of bound- and free-carrier photoexcitations is used to directly quantify carrier-induced changes of the quasiparticle band gap and exciton binding energies. The results explicitly disentangle the competing effects and highlight longstanding theoretical predictions of large carrier-induced band gap and exciton renormalization in two-dimensional semiconductors.

  18. Optically Discriminating Carrier-Induced Quasiparticle Band Gap and Exciton Energy Renormalization in Monolayer MoS_{2}.

    PubMed

    Yao, Kaiyuan; Yan, Aiming; Kahn, Salman; Suslu, Aslihan; Liang, Yufeng; Barnard, Edward S; Tongay, Sefaattin; Zettl, Alex; Borys, Nicholas J; Schuck, P James

    2017-08-25

    Optoelectronic excitations in monolayer MoS_{2} manifest from a hierarchy of electrically tunable, Coulombic free-carrier and excitonic many-body phenomena. Investigating the fundamental interactions underpinning these phenomena-critical to both many-body physics exploration and device applications-presents challenges, however, due to a complex balance of competing optoelectronic effects and interdependent properties. Here, optical detection of bound- and free-carrier photoexcitations is used to directly quantify carrier-induced changes of the quasiparticle band gap and exciton binding energies. The results explicitly disentangle the competing effects and highlight longstanding theoretical predictions of large carrier-induced band gap and exciton renormalization in two-dimensional semiconductors.

  19. GLAST Deficiency in Mice Exacerbates Gap Detection Deficits in a Model of Salicylate-Induced Tinnitus

    PubMed Central

    Yu, Hong; Vikhe Patil, Kim; Han, Chul; Fabella, Brian; Canlon, Barbara; Someya, Shinichi; Cederroth, Christopher R.

    2016-01-01

    Gap detection or gap pre-pulse inhibition of the acoustic startle (GPIAS) has been successfully used in rat and guinea pig models of tinnitus, yet this system has been proven to have low efficacy in CBA mice, with low basal GPIAS and subtle tinnitus-like effects. Here, we tested five mouse strains (CBA, BalbC, CD-1, C57BL/6 and 129sv) for pre-pulse inhibition (PPI) and gap detection with varying interstimulus intervals (ISI) and found that mice from a CBA genetic background had the poorest capacities of suppressing the startle response in the presence of a pre-pulse or a gap. CD-1 mice displayed variable responses throughout all ISI. Interestingly, C57BL/6, 129sv and BalbC showed efficient suppression with either pre-pulses or gaps with shorter ISI. The glutamate aspartate transporter (GLAST) is expressed in support cells from the cochlea and buffers the excess of glutamate. We hypothesized that loss of GLAST function could sensitize the ear to tinnitus-inducing agents, such as salicylate. Using shorter ISI to obtain a greater dynamic range to assess tinnitus-like effects, we found that disruption of gap detection by salicylate was exacerbated across various intensities of a 32-kHz narrow band noise gap carrier in GLAST knockout (KO) mice when compared to their wild-type (WT) littermates. Auditory brainstem responses (ABR) and distortion-product otoacoustic emission (DPOAE) were performed to evaluate the effects on hearing functions. Salicylate caused greater auditory threshold shifts (near 15 dB) in GLAST KO mice than in WT mice across all tested frequencies, despite similarly reduced DPOAE. Despite these changes, inhibition using broad-band gap carriers and 32 kHz pre-pulses were not affected. Our study suggests that GLAST deficiency could become a useful experimental model to decipher the mechanisms underlying drug-induced tinnitus. Future studies addressing the neurological correlates of tinnitus in this model could provide additional insights into the

  20. GLAST Deficiency in Mice Exacerbates Gap Detection Deficits in a Model of Salicylate-Induced Tinnitus.

    PubMed

    Yu, Hong; Vikhe Patil, Kim; Han, Chul; Fabella, Brian; Canlon, Barbara; Someya, Shinichi; Cederroth, Christopher R

    2016-01-01

    Gap detection or gap pre-pulse inhibition of the acoustic startle (GPIAS) has been successfully used in rat and guinea pig models of tinnitus, yet this system has been proven to have low efficacy in CBA mice, with low basal GPIAS and subtle tinnitus-like effects. Here, we tested five mouse strains (CBA, BalbC, CD-1, C57BL/6 and 129sv) for pre-pulse inhibition (PPI) and gap detection with varying interstimulus intervals (ISI) and found that mice from a CBA genetic background had the poorest capacities of suppressing the startle response in the presence of a pre-pulse or a gap. CD-1 mice displayed variable responses throughout all ISI. Interestingly, C57BL/6, 129sv and BalbC showed efficient suppression with either pre-pulses or gaps with shorter ISI. The glutamate aspartate transporter (GLAST) is expressed in support cells from the cochlea and buffers the excess of glutamate. We hypothesized that loss of GLAST function could sensitize the ear to tinnitus-inducing agents, such as salicylate. Using shorter ISI to obtain a greater dynamic range to assess tinnitus-like effects, we found that disruption of gap detection by salicylate was exacerbated across various intensities of a 32-kHz narrow band noise gap carrier in GLAST knockout (KO) mice when compared to their wild-type (WT) littermates. Auditory brainstem responses (ABR) and distortion-product otoacoustic emission (DPOAE) were performed to evaluate the effects on hearing functions. Salicylate caused greater auditory threshold shifts (near 15 dB) in GLAST KO mice than in WT mice across all tested frequencies, despite similarly reduced DPOAE. Despite these changes, inhibition using broad-band gap carriers and 32 kHz pre-pulses were not affected. Our study suggests that GLAST deficiency could become a useful experimental model to decipher the mechanisms underlying drug-induced tinnitus. Future studies addressing the neurological correlates of tinnitus in this model could provide additional insights into the

  1. Gap Junction Intercellular Communication Mediates Ammonia-Induced Neurotoxicity.

    PubMed

    Bobermin, Larissa Daniele; Arús, Bernardo Assein; Leite, Marina Concli; Souza, Diogo Onofre; Gonçalves, Carlos-Alberto; Quincozes-Santos, André

    2016-02-01

    Astrocytes are important brain targets of ammonia, a neurotoxin implicated in the development of hepatic encephalopathy. During hyperammonemia, the pivotal role of astrocytes in brain function and homeostasis is impaired. These cells are abundantly interconnected by gap junctions (GJ), which are intercellular channels that allow the exchange of signaling molecules and metabolites. This communication may also increase cellular vulnerability during injuries, while GJ uncoupling could limit the extension of a lesion. Therefore, the current study was performed to investigate whether astrocyte coupling through GJ contributes to ammonia-induced cytotoxicity. We found that carbenoxolone (CBX), an effective GJ blocker, prevented the following effects induced by ammonia in astrocyte primary cultures: (1) decrease in cell viability and membrane integrity; (2) increase in reactive oxygen species production; (3) decrease in GSH intracellular levels; (4) GS activity; (5) pro-inflammatory cytokine release. On the other hand, CBX had no effect on C6 astroglial cells, which are poorly coupled via GJ. To our knowledge, this study provides the first evidence that GJ play a role in ammonia-induced cytotoxicity. Although more studies in vivo are required to confirm our hypothesis, our data suggest that GJ communication between astrocytes may transmit damage signals and excitotoxic components from unhealthy to normal cells, thereby contributing to the propagation of the neurotoxicity of ammonia.

  2. Superconductivity induced by flexural modes in non-σh-symmetric Dirac-like two-dimensional materials: A theoretical study for silicene and germanene

    NASA Astrophysics Data System (ADS)

    Fischetti, Massimo V.; Polley, Arup

    2018-04-01

    In two-dimensional crystals that lack symmetry under reflections on the horizontal plane of the lattice (non-σh-symmetric), electrons can couple to flexural modes (ZA phonons) at first order. We show that in materials of this type that also exhibit a Dirac-like electron dispersion, the strong coupling can result in electron pairing mediated by these phonons, as long as the flexural modes are not damped or suppressed by additional interactions with a supporting substrate or gate insulator. We consider several models: The weak-coupling limit, which is applicable only in the case of gapped and parabolic materials, like stanene and HfSe2, thanks to the weak coupling; the full gap-equation, solved using the constant-gap approximation and considering statically screened interactions; its extensions to energy-dependent gap and to dynamic screening. We argue that in the case of silicene and germanene superconductivity mediated by this process can exhibit a critical temperature of a few degrees K, or even a few tens of degrees K when accounting for the effect of a high-dielectric-constant environment. We conclude that the electron/flexural-modes coupling should be included in studies of possible superconductivity in non-σh-symmetric two-dimensional crystals, even if alternative forms of coupling are considered.

  3. Stacking orders induced direct band gap in bilayer MoSe2-WSe2 lateral heterostructures.

    PubMed

    Hu, Xiaohui; Kou, Liangzhi; Sun, Litao

    2016-08-16

    The direct band gap of monolayer semiconducting transition-metal dichalcogenides (STMDs) enables a host of new optical and electrical properties. However, bilayer STMDs are indirect band gap semiconductors, which limits its applicability for high-efficiency optoelectronic devices. Here, we report that the direct band gap can be achieved in bilayer MoSe2-WSe2 lateral heterostructures by alternating stacking orders. Specifically, when Se atoms from opposite layers are stacked directly on top of each other, AA and A'B stacked heterostructures show weaker interlayer coupling, larger interlayer distance and direct band gap. Whereas, when Se atoms from opposite layers are staggered, AA', AB and AB' stacked heterostructures exhibit stronger interlayer coupling, shorter interlayer distance and indirect band gap. Thus, the direct/indirect band gap can be controllable in bilayer MoSe2-WSe2 lateral heterostructures. In addition, the calculated sliding barriers indicate that the stacking orders of bilayer MoSe2-WSe2 lateral heterostructures can be easily formed by sliding one layer with respect to the other. The novel direct band gap in bilayer MoSe2-WSe2 lateral heterostructures provides possible application for high-efficiency optoelectronic devices. The results also show that the stacking order is an effective strategy to induce and tune the band gap of layered STMDs.

  4. Pressure-Induced Structural Evolution and Band Gap Shifts of Organometal Halide Perovskite-Based Methylammonium Lead Chloride.

    PubMed

    Wang, Lingrui; Wang, Kai; Xiao, Guanjun; Zeng, Qiaoshi; Zou, Bo

    2016-12-15

    Organometal halide perovskites are promising materials for optoelectronic devices. Further development of these devices requires a deep understanding of their fundamental structure-property relationships. The effect of pressure on the structural evolution and band gap shifts of methylammonium lead chloride (MAPbCl 3 ) was investigated systematically. Synchrotron X-ray diffraction and Raman experiments provided structural information on the shrinkage, tilting distortion, and amorphization of the primitive cubic unit cell. In situ high pressure optical absorption and photoluminescence spectra manifested that the band gap of MAPbCl 3 could be fine-tuned to the ultraviolet region by pressure. The optical changes are correlated with pressure-induced structural evolution of MAPbCl 3 , as evidenced by band gap shifts. Comparisons between Pb-hybrid perovskites and inorganic octahedra provided insights on the effects of halogens on pressure-induced transition sequences of these compounds. Our results improve the understanding of the structural and optical properties of organometal halide perovskites.

  5. Hybrid simulations of Alfvén modes driven by energetic particles

    NASA Astrophysics Data System (ADS)

    Zhu, J.; Ma, Z. W.; Wang, S.

    2016-12-01

    A hybrid kinetic-magnetohydrodynamic code (CLT-K) is developed to study nonlinear dynamics of Alfvén modes driven by energetic particles (EP). A n = 2 toroidicity-induced discrete shear Alfvén eigenmode (TAE)-type energetic particle mode (EPM) with two dominant poloidal harmonics (m = 2 and 3) is first excited and its frequency remains unchanged in the early phase. Later, a new branch of the n = 2 frequency with a single dominant poloidal mode (m = 3) splits from the original TAE-type EPM. The new single m EPM (m = 3) slowly moves radially outward with the downward chirping of the frequency and the mode amplitude remains at a higher level. The original EPM remains at its original position without the frequency chirping, but its amplitude decays with time. Finally, the m = 3 EPM becomes dominant and the frequency falls into the β-induced gap of the Alfvén continuum. The redistribution of the δf in the phase space is consistent with the mode frequency downward chirping and the drifting direction of the resonance region is mainly due to the biased free energy profile. The transition from a TAE-type EPM to a single m EPM is mainly caused by extension of the p = 0 trapped particle resonance in the phase space.

  6. Maven Observations of Electron-Induced Whistler Mode Waves in the Martian Magnetosphere

    NASA Technical Reports Server (NTRS)

    Harada, Y.; Andersson, L.; Fowler, C. M.; Mitchell, D. L.; Halekas, J. S.; Mazelle, C.; Espley, J.; DiBraccio, G. A.; McFadden, J. P.; Brian, D. A.; hide

    2016-01-01

    We report on narrowband electromagnetic waves at frequencies between the local electron cyclotron and lower hybrid frequencies observed by the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft in the Martian induced magnetosphere. The peaked electric field wave spectra below the electron cyclotron frequency were first observed by Phobos-2 in the Martian magnetosphere, but the lack of magnetic field wave data prevented definitive identification of the wave mode and their generation mechanisms remain unclear. Analysis of electric and magnetic field wave spectra obtained by MAVEN demonstrates that the observed narrowband waves have properties consistent with the whistler mode. Linear growth rates computed from the measured electron velocity distributions suggest that these whistler mode waves can be generated by cyclotron resonance with anisotropic electrons. Large electron anisotropy in the Martian magnetosphere is caused by absorption of parallel electrons by the collisional atmosphere. The narrowband whistler mode waves and anisotropic electrons are observed on both open and closed field lines and have similar spatial distributions in MSO and planetary coordinates. Some of the waves on closed field lines exhibit complex frequency-time structures such as discrete elements of rising tones and two bands above and below half the electron cyclotron frequency. These MAVEN observations indicate that whistler mode waves driven by anisotropic electrons, which are commonly observed in intrinsic magnetospheres and at unmagnetized airless bodies, are also present at Mars. The wave-induced electron precipitation into the Martian atmosphere should be evaluated in future studies.

  7. Simvastatin-induced up-regulation of gap junctions composed of connexin 43 sensitize Leydig tumor cells to etoposide: an involvement of PKC pathway.

    PubMed

    Wang, Lingzhi; Fu, Yanni; Peng, Jianxin; Wu, Dengpan; Yu, Meiling; Xu, Chengfang; Wang, Qin; Tao, Liang

    2013-10-04

    Some of lipophilic statins have been reported to enhance toxicities induced by antineoplastic agents but the underling mechanism is unclear. The authors investigated the involvement of Cx43-mediated gap junction intercellular communication (GJIC) in the effect of simvastatin on the cellular toxicity induced by etoposide in this study. The results showed that a major component of the cytotoxicity of therapeutic levels of etoposide is mediated by gap junctions composed of connexin 43(Cx43) and simvastatin at the dosage which does not induce cytotoxicity enhances etoposide toxicity by increasing gap junction coupling. The augmentative effect of simvastatin on GJIC was related to the inhibition of PKC-mediated Cx43 phosphorylation at ser368 and subsequent enhancement of Cx43 membrane location induced by the agent. The present study suggests the possibility that upregulation of gap junctions may be utilized to increase the efficacy of anticancer chemotherapies. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  8. Magnetic field effects on charge structure factors of gapped graphene structure

    NASA Astrophysics Data System (ADS)

    Rezania, Hamed; Tawoose, Nasrin

    2018-02-01

    We present the behaviors of dynamical and static charge susceptibilities of undoped gapped graphene using the Green's function approach in the context of tight binding model Hamiltonian. Specially, the effects of magnetic field on the plasmon modes of gapped graphene structure are investigated via calculating correlation function of charge density operators. Our results show the increase of magnetic field leads to disappear high frequency plasmon mode for gapped case. We also show that low frequency plasmon mode has not affected by increase of magnetic field and chemical potential. Finally the temperature dependence of static charge structure factor of gapp graphene structure is studied. The effects of both magnetic field and gap parameter on the static structure factor are discusses in details.

  9. Gap-junction blocker carbenoxolone differentially enhances NMDA-induced cell death in hippocampal neurons and astrocytes in co-culture.

    PubMed

    Zündorf, Gregor; Kahlert, Stefan; Reiser, Georg

    2007-07-01

    The beneficial or detrimental role of gap junction communication in the pathophysiology of brain injury is still controversial. We used co-cultures of hippocampal astrocytes and neurons, where we identified homocellular astrocyte-astrocyte and heterocellular astrocyte-neuron coupling by fluorescence recovery after photobleaching, which was decreased by the gap junction blocker carbenoxolone (CBX). In these cultures, we determined the cell type-specific effects of CBX on the excitotoxic damage caused by N-methyl-D-aspartate (NMDA). We determined in both astrocytes and neurons the influence of CBX, alone or together with NMDA challenge, on cytotoxicity using propidium iodide labeling. CBX alone was not cytotoxic, but CBX treatment differentially accelerated the NMDA-induced cell death in both astrocytes and neurons. In addition, we measured mitochondrial potential using rhodamine 123, membrane potential using the oxonol dye bis(1,3-diethylthiobarbituric acid)trimethine oxonol, cytosolic Ca(2+) level using fura-2, and formation of reactive oxygen species (ROS) using dihydroethidium. CBX alone induced neither an intracellular Ca(2+) rise nor a membrane depolarization. However, CBX elicited a mitochondrial depolarization in both astrocytes and neurons and increased the ROS formation in neurons. In contrast, NMDA caused a membrane depolarization in neurons, coinciding with intracellular Ca(2+) rise, but neither mitochondrial depolarization nor ROS production seem to be involved in NMDA-mediated cytotoxicity. Pre-treatment with CBX accelerated the NMDA-induced membrane depolarization and prevented the repolarization of neurons after the NMDA challenge. We hypothesize that these effects are possibly mediated via blockage of gap junctions, and might be involved in the mechanism of CBX-induced acceleration of excitotoxic cell death, whereas the CBX-induced mitochondrial depolarization and ROS formation are not responsible for the increase in cytotoxicity. We conclude that

  10. Hollow-Core Photonic Band Gap Fibers for Particle Acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noble, Robert J.; Spencer, James E.; /SLAC

    Photonic band gap (PBG) dielectric fibers with hollow cores are being studied both theoretically and experimentally for use as laser driven accelerator structures. The hollow core functions as both a longitudinal waveguide for the transverse-magnetic (TM) accelerating fields and a channel for the charged particles. The dielectric surrounding the core is permeated by a periodic array of smaller holes to confine the mode, forming a photonic crystal fiber in which modes exist in frequency pass-bands, separated by band gaps. The hollow core acts as a defect which breaks the crystal symmetry, and so-called defect, or trapped modes having frequencies inmore » the band gap will only propagate near the defect. We describe the design of 2-D hollow-core PBG fibers to support TM defect modes with high longitudinal fields and high characteristic impedance. Using as-built dimensions of industrially-made fibers, we perform a simulation analysis of the first prototype PBG fibers specifically designed to support speed-of-light TM modes.« less

  11. The TAT-RasGAP317-326 anti-cancer peptide can kill in a caspase-, apoptosis-, and necroptosis-independent manner

    PubMed Central

    Puyal, Julien; Margue, Christiane; Michel, Sébastien; Kreis, Stephanie; Kulms, Dagmar; Barras, David; Nahimana, Aimable; Widmann, Christian

    2016-01-01

    Tumor cell resistance to apoptosis, which is triggered by many anti-tumor therapies, remains a major clinical problem. Therefore, development of more efficient therapies is a priority to improve cancer prognosis. We have previously shown that a cell-permeable peptide derived from the p120 Ras GTPase-activating protein (RasGAP), called TAT-RasGAP317-326, bears anti-malignant activities in vitro and in vivo, such as inhibition of metastatic progression and tumor cell sensitization to cell death induced by various anti-cancer treatments. Recently, we discovered that this RasGAP-derived peptide possesses the ability to directly kill some cancer cells. TAT-RasGAP317-326 can cause cell death in a manner that can be either partially caspase-dependent or fully caspase-independent. Indeed, TAT-RasGAP317-326-induced toxicity was not or only partially prevented when apoptosis was inhibited. Moreover, blocking other forms of cell death, such as necroptosis, parthanatos, pyroptosis and autophagy did not hamper the killing activity of the peptide. The death induced by TAT-RasGAP317-326 can therefore proceed independently from these modes of death. Our finding has potentially interesting clinical relevance because activation of a death pathway that is distinct from apoptosis and necroptosis in tumor cells could lead to the generation of anti-cancer drugs that target pathways not yet considered for cancer treatment. PMID:27602963

  12. Endothelial gaps and adherent leukocytes in allergen-induced early- and late-phase plasma leakage in rat airways.

    PubMed Central

    Baluk, P.; Bolton, P.; Hirata, A.; Thurston, G.; McDonald, D. M.

    1998-01-01

    Exposure of sensitized individuals to antigen can induce allergic responses in the respiratory tract, manifested by early and late phases of vasodilatation, plasma leakage, leukocyte influx, and bronchoconstriction. Similar responses can occur in the skin, eye, and gastrointestinal tract. The early-phase response involves mast cell mediators and the late-phase response is leukocyte dependent, but the mechanism of leakage is not understood. We sought to identify the leaky blood vessels, to determine whether these vessels contained endothelial gaps, and to analyze the relationship of the gaps to adherent leukocytes, using biotinylated lectins or silver nitrate to stain the cells in situ and Monastral blue as a tracer to quantify plasma leakage. Most of the leakage occurred in postcapillary venules (< 40-microns diameter), whereas most of the leukocyte migration (predominantly neutrophils) occurred in collecting venules. Capillaries and arterioles did not leak. Endothelial gaps were found in the leaky venules, both by silver nitrate staining and by scanning electron microscopy, and 94% of the gaps were distinct from sites of leukocyte adhesion or migration. We conclude that endothelial gaps contribute to both early and late phases of plasma leakage induced by antigen, but most leakage occurs upstream to sites of leukocyte adhesion. Images Figure 3 Figure 5 Figure 6 Figure 7 PMID:9626051

  13. Synchrony-induced modes of oscillation of a neural field model

    NASA Astrophysics Data System (ADS)

    Esnaola-Acebes, Jose M.; Roxin, Alex; Avitabile, Daniele; Montbrió, Ernest

    2017-11-01

    We investigate the modes of oscillation of heterogeneous ring networks of quadratic integrate-and-fire (QIF) neurons with nonlocal, space-dependent coupling. Perturbations of the equilibrium state with a particular wave number produce transient standing waves with a specific temporal frequency, analogously to those in a tense string. In the neuronal network, the equilibrium corresponds to a spatially homogeneous, asynchronous state. Perturbations of this state excite the network's oscillatory modes, which reflect the interplay of episodes of synchronous spiking with the excitatory-inhibitory spatial interactions. In the thermodynamic limit, an exact low-dimensional neural field model describing the macroscopic dynamics of the network is derived. This allows us to obtain formulas for the Turing eigenvalues of the spatially homogeneous state and hence to obtain its stability boundary. We find that the frequency of each Turing mode depends on the corresponding Fourier coefficient of the synaptic pattern of connectivity. The decay rate instead is identical for all oscillation modes as a consequence of the heterogeneity-induced desynchronization of the neurons. Finally, we numerically compute the spectrum of spatially inhomogeneous solutions branching from the Turing bifurcation, showing that similar oscillatory modes operate in neural bump states and are maintained away from onset.

  14. Synchrony-induced modes of oscillation of a neural field model.

    PubMed

    Esnaola-Acebes, Jose M; Roxin, Alex; Avitabile, Daniele; Montbrió, Ernest

    2017-11-01

    We investigate the modes of oscillation of heterogeneous ring networks of quadratic integrate-and-fire (QIF) neurons with nonlocal, space-dependent coupling. Perturbations of the equilibrium state with a particular wave number produce transient standing waves with a specific temporal frequency, analogously to those in a tense string. In the neuronal network, the equilibrium corresponds to a spatially homogeneous, asynchronous state. Perturbations of this state excite the network's oscillatory modes, which reflect the interplay of episodes of synchronous spiking with the excitatory-inhibitory spatial interactions. In the thermodynamic limit, an exact low-dimensional neural field model describing the macroscopic dynamics of the network is derived. This allows us to obtain formulas for the Turing eigenvalues of the spatially homogeneous state and hence to obtain its stability boundary. We find that the frequency of each Turing mode depends on the corresponding Fourier coefficient of the synaptic pattern of connectivity. The decay rate instead is identical for all oscillation modes as a consequence of the heterogeneity-induced desynchronization of the neurons. Finally, we numerically compute the spectrum of spatially inhomogeneous solutions branching from the Turing bifurcation, showing that similar oscillatory modes operate in neural bump states and are maintained away from onset.

  15. Investigation of energetic particle induced geodesic acoustic mode

    NASA Astrophysics Data System (ADS)

    Schneller, Mirjam; Fu, Guoyong; Chavdarovski, Ilija; Wang, Weixing; Lauber, Philipp; Lu, Zhixin

    2017-10-01

    Energetic particles are ubiquitous in present and future tokamaks due to heating systems and fusion reactions. Anisotropy in the distribution function of the energetic particle population is able to excite oscillations from the continuous spectrum of geodesic acoustic modes (GAMs), which cannot be driven by plasma pressure gradients due to their toroidally and nearly poloidally symmetric structures. These oscillations are known as energetic particle-induced geodesic acoustic modes (EGAMs) [G.Y. Fu'08] and have been observed in recent experiments [R. Nazikian'08]. EGAMs are particularly attractive in the framework of turbulence regulation, since they lead to an oscillatory radial electric shear which can potentially saturate the turbulence. For the presented work, the nonlinear gyrokinetic, electrostatic, particle-in-cell code GTS [W.X. Wang'06] has been extended to include an energetic particle population following either bump-on-tail Maxwellian or slowing-down [Stix'76] distribution function. With this new tool, we study growth rate, frequency and mode structure of the EGAM in an ASDEX Upgrade-like scenario. A detailed understanding of EGAM excitation reveals essential for future studies of EGAM interaction with micro-turbulence. Funded by the Max Planck Princeton Research Center. Computational resources of MPCDF and NERSC are greatefully acknowledged.

  16. Deterministic multidimensional nonuniform gap sampling.

    PubMed

    Worley, Bradley; Powers, Robert

    2015-12-01

    Born from empirical observations in nonuniformly sampled multidimensional NMR data relating to gaps between sampled points, the Poisson-gap sampling method has enjoyed widespread use in biomolecular NMR. While the majority of nonuniform sampling schemes are fully randomly drawn from probability densities that vary over a Nyquist grid, the Poisson-gap scheme employs constrained random deviates to minimize the gaps between sampled grid points. We describe a deterministic gap sampling method, based on the average behavior of Poisson-gap sampling, which performs comparably to its random counterpart with the additional benefit of completely deterministic behavior. We also introduce a general algorithm for multidimensional nonuniform sampling based on a gap equation, and apply it to yield a deterministic sampling scheme that combines burst-mode sampling features with those of Poisson-gap schemes. Finally, we derive a relationship between stochastic gap equations and the expectation value of their sampling probability densities. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. The Nature of Accelerating Modes in PBG Fibers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noble, TRobert J.; /SLAC

    Transverse magnetic (TM) modes with phase velocities at or just below the speed of light, c, are intended to accelerate relativistic particles in hollow-core, photonic band gap (PBG) fibers. These are so-called 'surface defect modes', being lattice modes perturbed by the defect to have their frequencies shifted into the band gap, and they can have any phase velocity. PBG fibers also support so-called 'core defect modes' which are characterized as having phase velocities always greater than c and never cross the light line. In this paper we explore the nature of these two classes of accelerating modes and compare theirmore » properties.« less

  18. Gap maps and intrinsic diffraction losses in one-dimensional photonic crystal slabs.

    PubMed

    Gerace, Dario; Andreani, Lucio Claudio

    2004-05-01

    A theoretical study of photonic bands for one-dimensional (1D) lattices embedded in planar waveguides with strong refractive index contrast is presented. The approach relies on expanding the electromagnetic field on the basis of guided modes of an effective waveguide, and on treating the coupling to radiative modes by perturbation theory. Photonic mode dispersion, gap maps, and intrinsic diffraction losses of quasi guided modes are calculated for the case of self-standing membranes as well as for silicon-on-insulator structures. Photonic band gaps in a waveguide are found to depend strongly on the core thickness and on polarization, so that the gaps for transverse electric and transverse magnetic modes most often do not overlap. Radiative losses of quasiguided modes above the light line depend in a nontrivial way on structure parameters, mode index, and wave vector. The results of this study may be useful for the design of integrated 1D photonic structures with low radiative losses.

  19. A multiple gap plasma cathode electron gun and its electron beam analysis in self and trigger breakdown modes.

    PubMed

    Kumar, Niraj; Pal, Dharmendra Kumar; Jadon, Arvind Singh; Pal, Udit Narayan; Rahaman, Hasibur; Prakash, Ram

    2016-03-01

    In the present paper, a pseudospark discharge based multiple gap plasma cathode electron gun is reported which has been operated separately in self and trigger breakdown modes using two different gases, namely, argon and hydrogen. The beam current and beam energy have been analyzed using a concentric ring diagnostic arrangement. Two distinct electron beams are clearly seen with hollow cathode and conductive phases. The hollow cathode phase has been observed for ∼50 ns where the obtained electron beam is having low beam current density and high energy. While in conductive phase it is high current density and low energy electron beam. It is inferred that in the hollow cathode phase the beam energy is more for the self breakdown case whereas the current density is more for the trigger breakdown case. The tailor made operation of the hollow cathode phase electron beam can play an important role in microwave generation. Up to 30% variation in the electron beam energy has been achieved keeping the same gas and by varying the breakdown mode operations. Also, up to 32% variation in the beam current density has been achieved for the trigger breakdown mode at optimized trigger position by varying the gas type.

  20. A multiple gap plasma cathode electron gun and its electron beam analysis in self and trigger breakdown modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Niraj; Pal, Udit Narayan; Prakash, Ram

    In the present paper, a pseudospark discharge based multiple gap plasma cathode electron gun is reported which has been operated separately in self and trigger breakdown modes using two different gases, namely, argon and hydrogen. The beam current and beam energy have been analyzed using a concentric ring diagnostic arrangement. Two distinct electron beams are clearly seen with hollow cathode and conductive phases. The hollow cathode phase has been observed for ∼50 ns where the obtained electron beam is having low beam current density and high energy. While in conductive phase it is high current density and low energy electronmore » beam. It is inferred that in the hollow cathode phase the beam energy is more for the self breakdown case whereas the current density is more for the trigger breakdown case. The tailor made operation of the hollow cathode phase electron beam can play an important role in microwave generation. Up to 30% variation in the electron beam energy has been achieved keeping the same gas and by varying the breakdown mode operations. Also, up to 32% variation in the beam current density has been achieved for the trigger breakdown mode at optimized trigger position by varying the gas type.« less

  1. Fabrication of controllably variable sub-100  nm gaps in silver nanowires by photothermal-induced stress.

    PubMed

    Ghosh, Pintu; Lu, Jinsheng; Luo, Hao; Xu, Ziquan; Yan, Xiaoyuan; Wang, Yewu; Lu, Jun; Qiu, Min; Li, Qiang

    2018-05-15

    A technique to fabricate nanogaps with controllably variable gap width in silver (Ag) nanowires (NWs) by photothermal-induced stress utilizing a focused continuous-wave laser (532 nm) is presented. For the case of an Ag NW on gold thin film, a gap width starting from ∼20  nm is achieved with a critical minimum power (CMP) of about 160 mW, whereas in the case of an Ag NW placed on top of a zinc oxide NW, the attained gap width is as small as a few nm (<10  nm) with a CMP of only ∼100  mW. In both cases, the CMP is much lower as compared to the required CMP (∼280  mW) for an Ag NW placed on a bare silica substrate. The photothermal-induced stress combined with Rayleigh instability, melting, and sublimation of Ag aids in breaking the Ag NW. In particular, the former one plays a key role in attaining an extremely narrow gap. This technique to fabricate sub-100 nm nanogaps in metal NWs can be extensively implemented in fabrication and maintenance of nanomechanical, nanoplasmonic, and nanoelectronic devices.

  2. How does the plasmonic enhancement of molecular absorption depend on the energy gap between molecular excitation and plasmon modes: a mixed TDDFT/FDTD investigation.

    PubMed

    Sun, Jin; Li, Guang; Liang, WanZhen

    2015-07-14

    A real-time time-dependent density functional theory coupled with the classical electrodynamics finite difference time domain technique is employed to systematically investigate the optical properties of hybrid systems composed of silver nanoparticles (NPs) and organic adsorbates. The results demonstrate that the molecular absorption spectra throughout the whole energy range can be enhanced by the surface plasmon resonance of Ag NPs; however, the absorption enhancement ratio (AER) for each absorption band differs significantly from the others, leading to the quite different spectral profiles of the hybrid complexes in contrast to those of isolated molecules or sole NPs. Detailed investigations reveal that the AER is sensitive to the energy gap between the molecular excitation and plasmon modes. As anticipated, two separate absorption bands, corresponding to the isolated molecules and sole NPs, have been observed at a large energy gap. When the energy gap approaches zero, the molecular excitation strongly couples with the plasmon mode to form the hybrid exciton band, which possesses the significantly enhanced absorption intensity, a red-shifted peak position, a surprising strongly asymmetric shape of the absorption band, and the nonlinear Fano effect. Furthermore, the dependence of surface localized fields and the scattering response functions (SRFs) on the geometrical parameters of NPs, the NP-molecule separation distance, and the external-field polarizations has also been depicted.

  3. Involvement of connexin 43 phosphorylation and gap junctional communication between smooth muscle cells in vasopressin-induced ROCK-dependent vasoconstriction after hemorrhagic shock.

    PubMed

    Yang, Guangming; Peng, Xiaoyong; Wu, Yue; Li, Tao; Liu, Liangming

    2017-10-01

    We examined the roles played by gap junctions (GJs) and the GJ channel protein connexin 43 (Cx43) in arginine vasopressin (AVP)-induced vasoconstriction after hemorrhagic shock and their relationship to Rho kinase (ROCK) and protein kinase C (PKC). The results showed that AVP induced an endothelium-independent contraction in rat superior mesenteric arteries (SMAs). Blocking the GJs significantly decreased the contractile response of SMAs and vascular smooth muscle cells (VSMCs) to AVP after shock and hypoxia. The selective Cx43-mimetic peptide inhibited the vascular contractile effect of AVP after shock and hypoxia. AVP restored hypoxia-induced decrease of Cx43 phosphorylation at Ser 262 and gap junctional communication in VSMCs. Activation of RhoA with U-46619 increased the contractile effect of AVP. This effect was antagonized by the ROCK inhibitor Y27632 and the Cx43-mimetic peptide. In contrast, neither an agonist nor an inhibitor of PKC had significant effects on AVP-induced contraction after hemorrhagic shock. In addition, silencing of Cx43 with siRNA blocked the AVP-induced increase of ROCK activity in hypoxic VSMCs. In conclusion, AVP-mediated vascular contractile effects are endothelium and myoendothelial gap junction independent. Gap junctions between VSMCs, gap junctional communication, and Cx43 phosphorylation at Ser 262 play important roles in the vascular effects of AVP. RhoA/ROCK, but not PKC, is involved in this process. Copyright © 2017 the American Physiological Society.

  4. Photonic and phononic surface and edge modes in three-dimensional phoxonic crystals

    NASA Astrophysics Data System (ADS)

    Ma, Tian-Xue; Wang, Yue-Sheng; Zhang, Chuanzeng

    2018-04-01

    We investigate the photonic and phononic surface and edge modes in finite-size three-dimensional phoxonic crystals. By appropriately terminating the phoxonic crystals, the photons and phonons can be simultaneously guided at the two-dimensional surface and/or the one-dimensional edge of the terminated crystals. The Bloch surface and edge modes show that the electromagnetic and acoustic waves are highly localized near the surface and edge, respectively. The surface and edge geometries play important roles in tailoring the dispersion relations of the surface and edge modes, and dual band gaps for the surface or edge modes can be simultaneously achieved by changing the geometrical configurations. Furthermore, as the band gaps for the bulk modes are the essential prerequisites for the realization of dual surface and edge modes, the photonic and phononic bulk-mode band gap properties of three different types of phoxonic crystals with six-connected networks are revealed. It is found that the geometrical characteristic of the crystals with six-connected networks leads to dual large bulk-mode band gaps. Compared with the conventional bulk modes, the surface and edge modes provide a new approach for the photon and phonon manipulation and show great potential for phoxonic crystal devices and optomechanics.

  5. 5-oxoproline-induced anion gap metabolic acidosis after an acute acetaminophen overdose.

    PubMed

    Lawrence, David T; Bechtel, Laura K; Charlton, Nathan P; Holstege, Christopher P

    2010-09-01

    Metabolic acidosis after acute acetaminophen overdose is typically attributed to either transient lactic acidosis without evidence of hepatic injury or hepatic failure. High levels of the organic acid 5-oxoprolinuria are usually reported in patients with predisposing conditions, such as sepsis, who are treated in a subacute or chronic fashion with acetaminophen. The authors report a case of a 40-year-old woman who developed anion gap metabolic acidosis and somnolence after an acute acetaminophen overdose. Substantial hepatic damage did not occur, which ruled out acetaminophen-induced hepatic insufficiency as a cause of the patient's acidosis or altered mental status. Urinalysis revealed elevated levels of 5-oxoproline, suggesting that the patient's acute acetaminophen overdose was associated with marked anion gap metabolic acidosis due solely to 5-oxoproline without hepatic complications. The acidosis fully resolved with N-acetylcysteine treatment and supportive care including hydration.

  6. Frustration-induced internal stresses are responsible for quasilocalized modes in structural glasses

    NASA Astrophysics Data System (ADS)

    Lerner, Edan; Bouchbinder, Eran

    2018-03-01

    It has been recently shown [E. Lerner, G. Düring, and E. Bouchbinder, Phys. Rev. Lett. 117, 035501 (2016), 10.1103/PhysRevLett.117.035501] that the nonphononic vibrational modes of structural glasses at low frequencies ω are quasilocalized and follow a universal density of states D (ω ) ˜ω4 . Here we show that the gapless nature of the observed density of states depends on the existence of internal stresses that generically emerge in glasses due to frustration, thus elucidating a basic element underlying this universal behavior. Similarly to jammed particulate packings, low-frequency modes in structural glasses emerge from a balance between a local elasticity term and an internal stress term in the dynamical matrix, where the difference between them is orders of magnitude smaller than their typical magnitude. By artificially reducing the magnitude of internal stresses in a computer glass former in three dimensions, we show that a gap is formed in the density of states below which no vibrational modes exist, thus demonstrating the crucial importance of internal stresses. Finally, we show that while better annealing the glass upon cooling from the liquid state significantly reduces its internal stresses, the self-organizational processes during cooling render the gapless D (ω ) ˜ω4 density of state unaffected.

  7. Spontaneous and LH-induced maturation in Bufo arenarum oocytes: importance of gap junctions.

    PubMed

    Toranzo, G Sánchez; Oterino, J; Zelarayán, L; Bonilla, F; Bühler, M I

    2007-02-01

    It has been demonstrated in Bufo arenarum that fully grown oocytes are capable of meiotic resumption in the absence of a hormonal stimulus if they are deprived of their follicular envelopes. This event, called spontaneous maturation, only takes place in oocytes collected during the reproductive period, which have a metabolically mature cytoplasm. In Bufo arenarum, progesterone acts on the oocyte surface and causes modifications in the activities of important enzymes, such as a decrease in the activity of adenylate cyclase (AC) and the activation of phospholipase C (PLC). PLC activation leads to the formation of diacylglycerol (DAG) and inositol triphosphate (IP(3)), second messengers that activate protein kinase C (PKC) and cause an increase in intracellular Ca(2+). Recent data obtained from Bufo arenarum show that progesterone-induced maturation causes significant modifications in the level and composition of neutral lipids and phospholipids of whole fully grown ovarian oocytes and of enriched fractions in the plasma membrane. In amphibians, the luteinizing hormone (LH) is responsible for meiosis resumption through the induction of progesterone production by follicular cells. The aim of this work was to study the importance of gap junctions in the spontaneous and LH-induced maturation in Bufo arenarum oocytes. During the reproductive period, Bufo arenarum oocytes are capable of undergoing spontaneous maturation in a similar way to mammalian oocytes while, during the non-reproductive period, they exhibit the behaviour that is characteristic of amphibian oocytes, requiring progesterone stimulation for meiotic resumption (incapable oocytes). This different ability to mature spontaneously is coincident with differences in the amount and composition of the phospholipids in the oocyte membranes. Capable oocytes exhibit in their membranes higher quantities of phospholipids than incapable oocytes, especially of PC and PI, which are precursors of second messengers such as

  8. Multifrequency Gap Solitons in Nonlinear Photonic Crystals

    NASA Astrophysics Data System (ADS)

    Xie, Ping; Zhang, Zhao-Qing

    2003-11-01

    We predict the existence of multifrequency gap solitons (MFGSs) in both one- and two-dimensional nonlinear photonic crystals. A MFGS is a single intrinsic mode possessing multiple frequencies inside the gap. Its existence is a result of synergic nonlinear coupling among solitons or soliton trains at different frequencies. Its formation can either lower the threshold fields of the respective frequency components or stabilize their excitations. These MFGSs form a new class of stable gap solitons.

  9. Analogy of transistor function with modulating photonic band gap in electromagnetically induced grating

    PubMed Central

    Wang, Zhiguo; Ullah, Zakir; Gao, Mengqin; Zhang, Dan; Zhang, Yiqi; Gao, Hong; Zhang, Yanpeng

    2015-01-01

    Optical transistor is a device used to amplify and switch optical signals. Many researchers focus on replacing current computer components with optical equivalents, resulting in an optical digital computer system processing binary data. Electronic transistor is the fundamental building block of modern electronic devices. To replace electronic components with optical ones, an equivalent optical transistor is required. Here we compare the behavior of an optical transistor with the reflection from a photonic band gap structure in an electromagnetically induced transparency medium. A control signal is used to modulate the photonic band gap structure. Power variation of the control signal is used to provide an analogy between the reflection behavior caused by modulating the photonic band gap structure and the shifting of Q-point (Operation point) as well as amplification function of optical transistor. By means of the control signal, the switching function of optical transistor has also been realized. Such experimental schemes could have potential applications in making optical diode and optical transistor used in quantum information processing. PMID:26349444

  10. Analogy of transistor function with modulating photonic band gap in electromagnetically induced grating

    NASA Astrophysics Data System (ADS)

    Wang, Zhiguo; Ullah, Zakir; Gao, Mengqin; Zhang, Dan; Zhang, Yiqi; Gao, Hong; Zhang, Yanpeng

    2015-09-01

    Optical transistor is a device used to amplify and switch optical signals. Many researchers focus on replacing current computer components with optical equivalents, resulting in an optical digital computer system processing binary data. Electronic transistor is the fundamental building block of modern electronic devices. To replace electronic components with optical ones, an equivalent optical transistor is required. Here we compare the behavior of an optical transistor with the reflection from a photonic band gap structure in an electromagnetically induced transparency medium. A control signal is used to modulate the photonic band gap structure. Power variation of the control signal is used to provide an analogy between the reflection behavior caused by modulating the photonic band gap structure and the shifting of Q-point (Operation point) as well as amplification function of optical transistor. By means of the control signal, the switching function of optical transistor has also been realized. Such experimental schemes could have potential applications in making optical diode and optical transistor used in quantum information processing.

  11. Characterization of the Candida albicans Amino Acid Permease Family: Gap2 Is the Only General Amino Acid Permease and Gap4 Is an S-Adenosylmethionine (SAM) Transporter Required for SAM-Induced Morphogenesis.

    PubMed

    Kraidlova, Lucie; Schrevens, Sanne; Tournu, Hélène; Van Zeebroeck, Griet; Sychrova, Hana; Van Dijck, Patrick

    2016-01-01

    Amino acids are key sources of nitrogen for growth of Candida albicans . In order to detect and take up these amino acids from a broad range of different and changing nitrogen sources inside the host, this fungus must be able to adapt via its expression of genes for amino acid uptake and further metabolism. We analyzed six C. albicans putative general amino acid permeases based on their homology to the Saccharomyces cerevisiae Gap1 general amino acid permease. We generated single- and multiple-deletion strains and found that, based on growth assays and transcriptional or posttranscriptional regulation, Gap2 is the functional orthologue to Sc Gap1, with broad substrate specificity. Expression analysis showed that expression of all GAP genes is under control of the Csy1 amino acid sensor, which is different from the situation in S. cerevisiae , where the expression of ScGAP1 is not regulated by Ssy1. We show that Gap4 is the functional orthologue of Sc Sam3, the only S -adenosylmethionine (SAM) transporter in S. cerevisiae , and we report that Gap4 is required for SAM-induced morphogenesis. IMPORTANCE Candida albicans is a commensal organism that can thrive in many niches in its human host. The environmental conditions at these different niches differ quite a bit, and this fungus must be able to sense these changes and adapt its metabolism to them. Apart from glucose and other sugars, the uptake of amino acids is very important. This is underscored by the fact that the C. albicans genome encodes 6 orthologues of the Saccharomyces. cerevisiae general amino acid permease Gap1 and many other amino acid transporters. In this work, we characterize these six permeases and we show that C. albicans Gap2 is the functional orthologue of Sc Gap1 and that C. albicans Gap4 is an orthologue of Sc Sam3, an S -adenosylmethionine (SAM) transporter. Furthermore, we show that Gap4 is required for SAM-induced morphogenesis, an important virulence factor of C. albicans .

  12. Structural dynamics of tropical moist forest gaps

    Treesearch

    Maria O. Hunter; Michael Keller; Douglas Morton; Bruce Cook; Michael Lefsky; Mark Ducey; Scott Saleska; Raimundo Cosme de Oliveira; Juliana Schietti

    2015-01-01

    Gap phase dynamics are the dominant mode of forest turnover in tropical forests. However, gap processes are infrequently studied at the landscape scale. Airborne lidar data offer detailed information on three-dimensional forest structure, providing a means to characterize fine-scale (1 m) processes in tropical forests over large areas. Lidar-based estimates of forest...

  13. Optical Dark-Field and Electron Energy Loss Imaging and Spectroscopy of Symmetry-Forbidden Modes in Loaded Nanogap Antennas.

    PubMed

    Brintlinger, Todd; Herzing, Andrew A; Long, James P; Vurgaftman, Igor; Stroud, Rhonda; Simpkins, B S

    2015-06-23

    We have produced large numbers of hybrid metal-semiconductor nanogap antennas using a scalable electrochemical approach and systematically characterized the spectral and spatial character of their plasmonic modes with optical dark-field scattering, electron energy loss spectroscopy with principal component analysis, and full wave simulations. The coordination of these techniques reveal that these nanostructures support degenerate transverse modes which split due to substrate interactions, a longitudinal mode which scales with antenna length, and a symmetry-forbidden gap-localized transverse mode. This gap-localized transverse mode arises from mode splitting of transverse resonances supported on both antenna arms and is confined to the gap load enabling (i) delivery of substantial energy to the gap material and (ii) the possibility of tuning the antenna resonance via active modulation of the gap material's optical properties. The resonant position of this symmetry-forbidden mode is sensitive to gap size, dielectric strength of the gap material, and is highly suppressed in air-gapped structures which may explain its absence from the literature to date. Understanding the complex modal structure supported on hybrid nanosystems is necessary to enable the multifunctional components many seek.

  14. Visualization of multipolar longitudinal and transversal surface plasmon modes in nanowire dimers.

    PubMed

    Alber, Ina; Sigle, Wilfried; Müller, Sven; Neumann, Reinhard; Picht, Oliver; Rauber, Markus; van Aken, Peter A; Toimil-Molares, Maria Eugenia

    2011-12-27

    We study the transversal and longitudinal localized surface plasmon resonances in single nanowires and nanowire dimers excited by the fast traveling electron beam in a transmission electron microscope equipped with high-resolution electron energy-loss spectroscopy. Bright and dark longitudinal modes up to the fifth order are resolved on individual metallic nanowires. On nanowire dimers, mode splitting into bonding and antibonding is measured up to the third order for several dimers with various aspect ratio and controlled gap size. We observe that the electric field maxima of the bonding modes are shifted toward the gap, while the electric field maxima of the antibonding modes are shifted toward the dimer ends. Finally, we observe that the transversal mode is not detected in the region of the dimer gap and decays away from the rod more rapidly than the longitudinal modes.

  15. Double-gap Alfvén eigenmodes: revisiting eigenmode interaction with the alfvén continuum.

    PubMed

    Gorelenkov, N N

    2005-12-31

    A new type of global shear Alfvén eigenmode is found in tokamak plasmas where the mode localization is in the region intersecting the Alfvén continuum. The eigenmode is formed by the coupling of two solutions from two adjacent gaps (akin to potential wells) in the shear Alfvén continuum. For tokamak plasmas with reversed magnetic shear, it is shown that the toroidicity-induced solution tunnels through the continuum to match the ellipticity-induced Alfvén eigenmode so that the resulting solution is continuous at the point of resonance with the continuum. The existence of these double-gap Alfvén eigenmodes allows for potentially new ways of coupling edge fields to the plasma core in conditions where the core region is conventionally considered inaccessible. Implications include new approaches to heating and current drive in fusion plasmas as well as its possible use as a core diagnostic in burning plasmas.

  16. Mode transition induced by the magnetic field gradient in Hall thrusters

    NASA Astrophysics Data System (ADS)

    Han, Liang; Wei, Liqiu; Yu, Daren

    2016-09-01

    A mode transition phenomenon was found in Hall thrusters, which was induced by the increase of the magnetic field gradient. In the transition process, we observed experimentally that there have been obvious changes in the oscillation, the mean value of the discharge current, the thrust, the anode efficiency, and the plume pattern. The shifting and compression of the high magnetic field causes the electron density in the discharge channel to decrease and the ionization zone to move towards the exit plane. This also corresponds to a low atom density in the discharge channel, resulting in a loss of stability of the ionization at a high magnetic field gradient, which presents the transition of the discharge mode.

  17. Broken symmetries, zero-energy modes, and quantum transport in disordered graphene: from supermetallic to insulating regimes.

    PubMed

    Cresti, Alessandro; Ortmann, Frank; Louvet, Thibaud; Van Tuan, Dinh; Roche, Stephan

    2013-05-10

    The role of defect-induced zero-energy modes on charge transport in graphene is investigated using Kubo and Landauer transport calculations. By tuning the density of random distributions of monovacancies either equally populating the two sublattices or exclusively located on a single sublattice, all conduction regimes are covered from direct tunneling through evanescent modes to mesoscopic transport in bulk disordered graphene. Depending on the transport measurement geometry, defect density, and broken sublattice symmetry, the Dirac-point conductivity is either exceptionally robust against disorder (supermetallic state) or suppressed through a gap opening or by algebraic localization of zero-energy modes, whereas weak localization and the Anderson insulating regime are obtained for higher energies. These findings clarify the contribution of zero-energy modes to transport at the Dirac point, hitherto controversial.

  18. Mode structure symmetry breaking of energetic particle driven beta-induced Alfvén eigenmode

    NASA Astrophysics Data System (ADS)

    Lu, Z. X.; Wang, X.; Lauber, Ph.; Zonca, F.

    2018-01-01

    The mode structure symmetry breaking of energetic particle driven Beta-induced Alfvén Eigenmode (BAE) is studied based on global theory and simulation. The weak coupling formula gives a reasonable estimate of the local eigenvalue compared with global hybrid simulation using XHMGC. The non-perturbative effect of energetic particles on global mode structure symmetry breaking in radial and parallel (along B) directions is demonstrated. With the contribution from energetic particles, two dimensional (radial and poloidal) BAE mode structures with symmetric/asymmetric tails are produced using an analytical model. It is demonstrated that the symmetry breaking in radial and parallel directions is intimately connected. The effects of mode structure symmetry breaking on nonlinear physics, energetic particle transport, and the possible insight for experimental studies are discussed.

  19. Spin wave mode coexistence on the nanoscale: A consequence of the Oersted field induced asymmetric energy landscape

    NASA Astrophysics Data System (ADS)

    Dumas, Randy

    2014-03-01

    The emerging field of magnonics relies on the systematic generation, manipulation, and detection of spin waves (SWs). Nanocontact spin torque oscillators (NC-STOs) provide an ideal platform to study spin transfer torque induced SW emission. In analogy to two species competing for the same food supply it has been argued that only one SW mode can survive in the steady state. However, as evidenced in many experiments clear signatures of mode-hopping are often observed. Here, we present a third possibility, namely that under the correct experimental conditions, mode coexistencecan be realized in NC-STOs. Micromagnetic simulations reveal that the SW modes are spatially separated under the NC. Mode coexistence is facilitated by the local field asymmetries induced by the spatially inhomogeneous Oersted field in the vicinity of the NC and further promoted by SW localization. Finally, both simulation and experiment reveal a weak low frequency signal exactly at the difference of the mode frequencies, consistent with inter-modulation of two coexistent modes. The Swedish Research Council, The Swedish Foundation for Strategic Research, and the Knut and Alice Wallenberg Foundation are acknowledged. ANL is a US DOE Science Laboratory operated under contract no. DE-AC02-06CH11357 by UChicago Argonne, LLC.

  20. Chiral zero energy modes in two-dimensional disordered Dirac semimetals

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Yu, Yan; Wu, Hai-Bin; Zhang, Yan-Yang; Liu, Jian-Jun; Li, Shu-Shen

    2018-04-01

    The vacancy-induced chiral zero energy modes (CZEMs) of chiral-unitary-class (AIII) and chiral-symplectic-class (CII) two-dimensional (2 D ) disordered Dirac semimetals realized on a square bipartite lattice are investigated numerically by using the Kubo-Greenwood formula with the kernel polynomial method. The results show that, for both systems, the CZEMs exhibit the critical delocalization. The CZEM conductivity remains a robust constant (i.e., σ CZEM≈1.05 e2/h ), which is insensitive to the sample sizes, the vacancy concentrations, and the numbers of moments of Chebyshev polynomials, i.e., the dephasing strength. For both kinds of chiral systems, the CZEM conductivities are almost identical. However, they are not equal to that of graphene (i.e., 4 e2/π h ), which belongs to the chiral orthogonal class (BDI) semimetal on a 2 D hexagonal bipartite lattice. In addition, for the case that the vacancy concentrations are different in the two sublattices, the CZEM conductivity vanishes, and thus both systems exhibit localization at the Dirac point. Moreover, a band gap and a mobility gap open around zero energy. The widths of the energy gaps and mobility gaps are increasing with larger vacancy concentration difference. The width of the mobility gap is greater than that of the band gap, and a δ -function-like peak of density of states emerges at the Dirac point within the band gap, implying the existence of numerous localized states.

  1. Semiconductor quantum well irradiated by a two-mode electromagnetic field as a terahertz emitter

    NASA Astrophysics Data System (ADS)

    Mandal, S.; Liew, T. C. H.; Kibis, O. V.

    2018-04-01

    We study theoretically the nonlinear optical properties of a semiconductor quantum well (QW) irradiated by a two-mode electromagnetic wave consisting of a strong resonant dressing field and a weak off-resonant driving field. In the considered strongly coupled electron-field system, the dressing field opens dynamic Stark gaps in the electron energy spectrum of the QW, whereas the driving field induces electron oscillations in the QW plane. Since the gapped electron spectrum restricts the amplitude of the oscillations, the emission of a frequency comb from the QW appears. Therefore, the doubly driven QW operates as a nonlinear optical element which can be used, particularly, for optically controlled generation of terahertz radiation.

  2. Formation of Degenerate Band Gaps in Layered Systems

    PubMed Central

    Ignatov, Anton I.; Merzlikin, Alexander M.; Levy, Miguel; Vinogradov, Alexey P.

    2012-01-01

    In the review, peculiarities of spectra of one-dimensional photonic crystals made of anisotropic and/or magnetooptic materials are considered. The attention is focused on band gaps of a special type—the so called degenerate band gaps which are degenerate with respect to polarization. Mechanisms of formation and properties of these band gaps are analyzed. Peculiarities of spectra of photonic crystals that arise due to the linkage between band gaps are discussed. Particularly, it is shown that formation of a frozen mode is caused by linkage between Brillouin and degenerate band gaps. Also, existence of the optical Borrmann effect at the boundaries of degenerate band gaps and optical Tamm states at the frequencies of degenerate band gaps are analyzed. PMID:28817024

  3. Quantum spill-out in few-nanometer metal gaps: Effect on gap plasmons and reflectance from ultrasharp groove arrays

    NASA Astrophysics Data System (ADS)

    Skjølstrup, Enok J. H.; Søndergaard, Thomas; Pedersen, Thomas G.

    2018-03-01

    Plasmons in ultranarrow metal gaps are highly sensitive to the electron density profile at the metal surfaces. Using a quantum mechanical approach and assuming local response, we study the effects of electron spill-out on gap plasmons and reflectance from ultrasharp metal grooves. We demonstrate that the mode index of ultranarrow gap plasmons converges to the bulk refractive index in the limit of vanishing gap and, thereby, rectify the unphysical divergence found in classical models. Surprisingly, spill-out also significantly increases the plasmonic absorption for few-nanometer gaps and lowers the reflectance from arrays of ultrasharp metal grooves. These findings are explained in terms of enhanced gap plasmon absorption taking place inside the gap 1-2 Å from the walls and delocalization near the groove bottom. Reflectance calculations taking spill-out into account are shown to be in much better agreement with measurements compared with classical models.

  4. Inhibition of gap junction intercellular communication is involved in silica nanoparticles-induced H9c2 cardiomyocytes apoptosis via the mitochondrial pathway.

    PubMed

    Du, Zhong-Jun; Cui, Guan-Qun; Zhang, Juan; Liu, Xiao-Mei; Zhang, Zhi-Hu; Jia, Qiang; Ng, Jack C; Peng, Cheng; Bo, Cun-Xiang; Shao, Hua

    2017-01-01

    Gap junction intercellular communication (GJIC) between cardiomyocytes is essential for synchronous heart contraction and relies on connexin-containing channels. Connexin 43 (Cx43) is a major component involved in GJIC in heart tissue, and its abnormal expression is closely associated with various cardiac diseases. Silica nanoparticles (SNPs) are known to induce cardiovascular toxicity. However, the mechanisms through which GJIC plays a role in cardiomyocytes apoptosis induced by SNPs remain unknown. The aim of the present study is to determine whether SNPs-decreased GJIC promotes apoptosis in rat cardiomyocytes cell line (H9c2 cells) via the mitochondrial pathway using CCK-8 Kit, scrape-loading dye transfer technique, Annexin V/PI double-staining assays, and Western blot analysis. The results showed that SNPs elicited cytotoxicity in H9c2 cells in a time- and concentration-dependent manner. SNPs also reduced GJIC in H9c2 cells in a concentration-dependent manner through downregulation of Cx43 and upregulation of P-Cx43. Inhibition of gap junctions by gap junction blocker carbenoxolone disodium resulted in decreased survival and increased apoptosis, whereas enhancement of the gap junctions by retinoic acid led to enhanced survival but decreased apoptosis. Furthermore, SNPs-induced apoptosis through the disrupted functional gap junction was correlated with abnormal expressions of the proteins involved in the mitochondrial pathway-related apoptosis such as Bcl-2/Bax, cytochrome C, Caspase-9, and Caspase-3. Taken together, our results provide the first evidence that SNPs-decreased GJIC promotes apoptosis in cardiomyocytes via the mitochondrial pathway. In addition, downregulation of GJIC by SNPs in cardiomyocytes is mediated through downregulation of Cx43 and upregulation of P-Cx43. These results suggest that in rat cardiomyocytes cell line, GJIC plays a protective role in SNPs-induced apoptosis and that GJIC may be one of the targets for SNPs-induced biological

  5. Orbiter Gap Filler Bending Model for Re-entry

    NASA Technical Reports Server (NTRS)

    Campbell, Charles H.

    2007-01-01

    Pressure loads on a protruding gap filler during an Orbiter reentry are investigated to evaluate the likelihood of extraction due to pressure loads, and to ascertain how much bending will be induced by re-entry pressure loads. Oblique shock wave theory is utilized to develop a representation of the pressure loads induced on a gap filler for the ISSHVFW trajectory, representative of a heavy weight ISS return. A free body diagram is utilized to react the forces induced by the pressure forces. Preliminary results developed using these methods demonstrate that pressure loads, alone, are not likely causes of gap filler extraction during reentry. Assessment of the amount a gap filler will bend over is presented. Implications of gap filler bending during re-entry include possible mitigation of early boundary layer transition concerns, uncertainty in ground based measurement of protruding gap fillers from historical Orbiter flight history, and uncertainty in the use of Orbiter gap fillers for boundary layer prediction calibration. Authors will be added to the author list as appropriate.

  6. Effects of mode profile on tunneling and traversal of ultracold atoms through vacuum-induced potentials

    NASA Astrophysics Data System (ADS)

    Badshah, Fazal; Irfan, Muhammad; Qamar, Sajid; Qamar, Shahid

    2016-04-01

    We consider the resonant interaction of an ultracold two-level atom with an electromagnetic field inside a high-Q micromaser cavity. In particular, we study the tunneling and traversal of ultracold atoms through vacuum-induced potentials for secant hyperbolic square and sinusoidal cavity mode functions. The phase time which may be considered as an appropriate measure of the time required for the atoms to cross the cavity, significantly modifies with the change of cavity mode profile. For example, switching between the sub and superclassical behaviors in phase time can occur due to the mode function. Similarly, negative phase time appears for the transmission of the two-level atoms in both excited and ground states for secant hyperbolic square mode function which is in contrast to the mesa mode case.

  7. Flexocoupling-induced soft acoustic modes and the spatially modulated phases in ferroelectrics

    NASA Astrophysics Data System (ADS)

    Morozovska, Anna N.; Glinchuk, Maya D.; Eliseev, Eugene A.; Vysochanskii, Yulian M.

    2017-09-01

    Using the Landau-Ginzburg-Devonshire theory and one component approximation, we examined the conditions of the soft acoustic phonon mode (A-mode) appearance in a ferroelectric (FE) depending on the magnitude of the flexoelectric coefficient f and temperature T . If the flexocoefficient f is equal to the temperature-dependent critical value fcr(T ) at some temperature T =TIC , the A-mode frequency tends to zero at wave vector k =k0cr , and the spontaneous polarization becomes spatially modulated in the temperature range T fcr(TIC) , the A-mode becomes zero for two wave vectors k =k1,2 cr , and does not exist in the range of wave vectors k1crinduced soft acoustic amplitudon-type modes in FEs with SMPs of type II. The available experimental results on neutron scattering in organic incommensurate FE betaine calcium chloride dihydrate are in semiquantitative agreement with our theoretical results.

  8. [High anion gap metabolic acidosis (pyroglutamic acidosis) induced by chronic acetaminophen use].

    PubMed

    Tchougang Nono, J; Mistretta, V; Noirot, I; Canivet, J L; Damas, P

    2018-01-01

    Acetaminophen is the most consumable analgesic in the world in the form of medical prescription or self-medication. It is one of the active ingredients most often involved in voluntary poisoning. Lethal dose of acetaminophen classically induces acute hepatic failure on hepatic necrosis. Chronic intake of sub-lethal doses (i.e. near recommended therapeutic doses) of acetaminophen in the presence of certain risk factors may be responsible for another much less recognized pathological manifestation: severe metabolic acidosis with an increased anion gap due to the accumulation of 5-oxoproline or pyroglutamic acid.

  9. Surface Majorana fermions and bulk collective modes in superfluid 3He-B

    NASA Astrophysics Data System (ADS)

    Park, YeJe; Chung, Suk Bum; Maciejko, Joseph

    2015-02-01

    The theoretical study of topological superfluids and superconductors has so far been carried out largely as a translation of the theory of noninteracting topological insulators into the superfluid language, whereby one replaces electrons by Bogoliubov quasiparticles and single-particle band Hamiltonians by Bogoliubov-de Gennes Hamiltonians. Band insulators and superfluids are, however, fundamentally different: While the former exist in the absence of interparticle interactions, the latter are broken symmetry states that owe their very existence to such interactions. In particular, unlike the static energy gap of a band insulator, the gap in a superfluid is due to a dynamical order parameter that is subject to both thermal and quantum fluctuations. In this work, we explore the consequences of bulk quantum fluctuations of the order parameter in the B phase of superfluid 3He on the topologically protected Majorana surface states. Neglecting the high-energy amplitude modes, we find that one of the three spin-orbit Goldstone modes in 3He-B couples to the surface Majorana fermions. This coupling in turn induces an effective short-range two-body interaction between the Majorana fermions, with coupling constant inversely proportional to the strength of the nuclear dipole-dipole interaction in bulk 3He. A mean-field theory suggests that the surface Majorana fermions in 3He-B may be in the vicinity of a metastable gapped time-reversal-symmetry-breaking phase.

  10. Photonic band gap and defects modes in inorganic/organic photonic crystal based on Si and HMDSO layers deposited by sputtering and PECVD

    NASA Astrophysics Data System (ADS)

    Amri, R.; Sahel, S.; Gamra, D.; Lejeune, M.; Clin, M.; Zellama, K.; Bouchriha, H.

    2018-02-01

    Hybrid inorganic/organic one dimensional photonic crystal based on alternating layers of Si/HMDSO is elaborated. The inorganic silicon is deposited by radiofrequency magnetron sputtering and the organic HMDSO is deposited by PECVD technique. As the Si refractive index is n = 3.4, and the refractive index of HMDSO layer depend on the deposition conditions, to get a photonic crystal with high and low refractive index presenting a good contrast, we have varied the radiofrequency power of PECVD process to obtain HMDSO layer with low refractive index (n = 1.45). Photonic band gap of this hybrid structure is obtained from the transmission and reflection spectra and appears after 9 alternative layers of Si/HMDSO. The introduction of defects in our photonic crystal leads to the emergence of localized modes within the photonic band gap. Our results are interpreted by using a theoretical model based on transfer matrix.

  11. The Bragg gap vanishing phenomena in one-dimensional photonic crystals.

    PubMed

    Zhang, Hui; Chen, Xi; Li, Youquan; Fu, Yunqi; Yuan, Naichang

    2009-05-11

    We theoretically deduce the Bragg gap vanishing conditions in one-dimensional photonic crystals and experimentally demonstrate the m=0 band-gap vanishing phenomena at microwave frequencies. In the case of mismatched impedance, the Bragg gap will vanish as long as the discrete modes appear in photonic crystals containing dispersive materials, while for the matched impedance cases, Bragg gaps will always disappear. The experimental results and the simulations agree extremely well with the theoretical expectation.

  12. Localized transversal-rotational modes in linear chains of equal masses.

    PubMed

    Pichard, H; Duclos, A; Groby, J-P; Tournat, V; Gusev, V E

    2014-01-01

    The propagation and localization of transversal-rotational waves in a two-dimensional granular chain of equal masses are analyzed in this study. The masses are infinitely long cylinders possessing one translational and one rotational degree of freedom. Two dispersive propagating modes are predicted in this granular crystal. By considering the semi-infinite chain with a boundary condition applied at its beginning, the analytical study demonstrates the existence of localized modes, each mode composed of two evanescent modes. Their existence, position (either in the gap between the propagating modes or in the gap above the upper propagating mode), and structure of spatial localization are analyzed as a function of the relative strength of the shear and bending interparticle interactions and for different boundary conditions. This demonstrates the existence of a localized mode in a semi-infinite monatomic chain when transversal-rotational waves are considered, while it is well known that these types of modes do not exist when longitudinal waves are considered.

  13. Study of Electromigration-Induced Failures on Cu Pillar Bumps Joined to OSP and ENEPIG Substrates

    NASA Astrophysics Data System (ADS)

    Hsiao, Yu-Hsiang; Lin, Kwang-Lung; Lee, Chiu-Wen; Shao, Yu-Hsiu; Lai, Yi-Shao

    2012-12-01

    This work studies electromigration (EM)-induced failures on Cu pillar bumps joined to organic solderability preservative (OSP) on Cu substrates (OSP-bumps) and electroless Ni(P)/electroless Pd/immersion Au (ENEPIG) under bump metallurgy (UBM) on Cu substrates (ENEPIG-bumps). Two failure modes (Cu pad consumption and gap formation) were found with OSP-bumps, but only one failure mode (gap formation) was found with ENEPIG-bumps. The main interfacial compound layer was the Cu6Sn5 compound, which suffered significant EM-induced dissolution, eventually resulting in severe Cu pad consumption at the cathode side for OSP-bumps. A (Cu,Ni)6Sn5 layer with strong resistance to EM-induced dissolution exists at the joint interface when a nickel barrier layer is incorporated at the cathode side (Ni or ENEPIG), and these imbalanced atomic fluxes result in the voids and gap formation. OSP-bumps showed better lifetime results than ENEPIG-bumps for several current stressing conditions. The inverse Cu atomic flux ( J Cu,chem) which diffuses from the Cu pad to cathode side retards the formation of voids. The driving force for J Cu,chem comes from the difference in chemical potential between the (Cu,Ni)6Sn5 and Cu6Sn5 phases.

  14. Functional role of connexin43 gap junction channels in adult mouse heart assessed by inducible gene deletion.

    PubMed

    Eckardt, D; Theis, M; Degen, J; Ott, T; van Rijen, H V M; Kirchhoff, S; Kim, J-S; de Bakker, J M T; Willecke, K

    2004-01-01

    The gap junction protein Connexin43 (Cx43) is expressed in various cell types during embryonic development and in adult mice. Cx43 null mice (Cx43-/-) die perinatally due to cardiac malformation. In order to define the major functional role of Cx43 gap junction channels in adult mice and to circumvent perinatal death as well as direct or indirect compensation of Cx43 deficiency during development, we established a novel conditional Cx43 mouse mutant. To ablate Cx43 in adult mice in all cells that express Cx43 at a certain time, we targeted the 4-hydroxytamoxifen inducible Cre recombinase, Cre-ER(T), into the endogenous Cx43 locus. This approach left only one Cx43 coding region to be deleted upon induction of Cre-ER(T) activity. Highly efficient inducible ablation of Cx43 was shown in an embryonic stem cell test system and in adult mice. Although Cx43 protein was decreased in different tissues after induction of Cre-ER(T)-mediated recombination, cardiac abnormalities most likely account for death of those mice. Surface and telemetric ECG recordings revealed significant delay of ventricular activation and death during periods of bradyarrhythmia preceded by tachycardias. This novel approach of inducible ablation of Cx43 highlights the functional importance of normal activation of ventricular cardiomyocytes mediated by Cx43 gap junction channels in adult mouse heart to prevent initiation of fatal arrhythmias. The new mouse model should be useful for further analyses of molecular changes initiated by acute loss of Cx43 expression in various cell types.

  15. Phylogenetic inference under varying proportions of indel-induced alignment gaps

    PubMed Central

    Dwivedi, Bhakti; Gadagkar, Sudhindra R

    2009-01-01

    Background The effect of alignment gaps on phylogenetic accuracy has been the subject of numerous studies. In this study, we investigated the relationship between the total number of gapped sites and phylogenetic accuracy, when the gaps were introduced (by means of computer simulation) to reflect indel (insertion/deletion) events during the evolution of DNA sequences. The resulting (true) alignments were subjected to commonly used gap treatment and phylogenetic inference methods. Results (1) In general, there was a strong – almost deterministic – relationship between the amount of gap in the data and the level of phylogenetic accuracy when the alignments were very "gappy", (2) gaps resulting from deletions (as opposed to insertions) contributed more to the inaccuracy of phylogenetic inference, (3) the probabilistic methods (Bayesian, PhyML & "MLε, " a method implemented in DNAML in PHYLIP) performed better at most levels of gap percentage when compared to parsimony (MP) and distance (NJ) methods, with Bayesian analysis being clearly the best, (4) methods that treat gapped sites as missing data yielded less accurate trees when compared to those that attribute phylogenetic signal to the gapped sites (by coding them as binary character data – presence/absence, or as in the MLε method), and (5) in general, the accuracy of phylogenetic inference depended upon the amount of available data when the gaps resulted from mainly deletion events, and the amount of missing data when insertion events were equally likely to have caused the alignment gaps. Conclusion When gaps in an alignment are a consequence of indel events in the evolution of the sequences, the accuracy of phylogenetic analysis is likely to improve if: (1) alignment gaps are categorized as arising from insertion events or deletion events and then treated separately in the analysis, (2) the evolutionary signal provided by indels is harnessed in the phylogenetic analysis, and (3) methods that utilize the

  16. Regression analysis for bivariate gap time with missing first gap time data.

    PubMed

    Huang, Chia-Hui; Chen, Yi-Hau

    2017-01-01

    We consider ordered bivariate gap time while data on the first gap time are unobservable. This study is motivated by the HIV infection and AIDS study, where the initial HIV contracting time is unavailable, but the diagnosis times for HIV and AIDS are available. We are interested in studying the risk factors for the gap time between initial HIV contraction and HIV diagnosis, and gap time between HIV and AIDS diagnoses. Besides, the association between the two gap times is also of interest. Accordingly, in the data analysis we are faced with two-fold complexity, namely data on the first gap time is completely missing, and the second gap time is subject to induced informative censoring due to dependence between the two gap times. We propose a modeling framework for regression analysis of bivariate gap time under the complexity of the data. The estimating equations for the covariate effects on, as well as the association between, the two gap times are derived through maximum likelihood and suitable counting processes. Large sample properties of the resulting estimators are developed by martingale theory. Simulations are performed to examine the performance of the proposed analysis procedure. An application of data from the HIV and AIDS study mentioned above is reported for illustration.

  17. An impurity-induced gap system as a quantum data bus for quantum state transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Bing, E-mail: chenbingphys@gmail.com; Li, Yong; Song, Z.

    2014-09-15

    We introduce a tight-binding chain with a single impurity to act as a quantum data bus for perfect quantum state transfer. Our proposal is based on the weak coupling limit of the two outermost quantum dots to the data bus, which is a gapped system induced by the impurity. By connecting two quantum dots to two sites of the data bus, the system can accomplish a high-fidelity and long-distance quantum state transfer. Numerical simulations for finite system show that the numerical and analytical results of the effective coupling strength agree well with each other. Moreover, we study the robustness ofmore » this quantum communication protocol in the presence of disorder in the couplings between the nearest-neighbor quantum dots. We find that the gap of the system plays an important role in robust quantum state transfer.« less

  18. Electron spin resonance modes in a strong-leg ladder in the Tomonaga-Luttinger liquid phase

    NASA Astrophysics Data System (ADS)

    Ozerov, M.; Maksymenko, M.; Wosnitza, J.; Honecker, A.; Landee, C. P.; Turnbull, M. M.; Furuya, S. C.; Giamarchi, T.; Zvyagin, S. A.

    2015-12-01

    Magnetic excitations in the strong-leg quantum spin ladder compound (C7H10N) 2CuBr4 (known as DIMPY) in the field-induced Tomonaga-Luttinger spin-liquid phase are studied by means of high-field electron spin resonance (ESR) spectroscopy. The presence of a gapped ESR mode with unusual nonlinear frequency-field dependence is revealed experimentally. Using a combination of analytic and exact-diagonalization methods, we compute the dynamical structure factor and identify this mode with longitudinal excitations in the antisymmetric channel. We argue that these excitations constitute a fingerprint of the spin dynamics in a strong-leg spin-1/2 Heisenberg antiferromagnetic ladder and owe their ESR observability to the uniform Dzyaloshinskii-Moriya interaction.

  19. Lamb wave band gaps in a double-sided phononic plate

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Chen, Tian-Ning; Yu, Kun-Peng; Wang, Xiao-Peng

    2013-02-01

    In this paper, we report on the theoretical investigation of the propagation characteristics of Lamb wave in a phononic crystal structure constituted by a square array of cylindrical stubs deposited on both sides of a thin homogeneous plate. The dispersion relations, the power transmission spectra, and the displacement fields of the eigenmodes are studied by using the finite-element method. We investigate the evolution of band gaps in the double-sided phononic plate with stub height on both sides arranged from an asymmetrical distribution to a symmetrical distribution gradually. Numerical results show that as the double stubs in a unit cell arranged more symmetrically on both sides, band width shifts, new band gaps appear, and the bands become flat due to localized resonant modes which couple with plate modes. Specially, more band gaps and flat bands can be found in the symmetrical system as a result of local resonances of the stubs which interact in a stronger way with the plate modes. Moreover, the symmetrical double-sided plate exhibits lower and smaller band gap than that of the asymmetrical plate. These propagation properties of elastic or acoustic waves in the double-sided plate can potentially be utilized to generate filters, slow the group velocity, low-frequency sound insulation, and design acoustic sensors.

  20. Transverse mode selection in vertical-cavity surface-emitting lasers via deep impurity-induced disordering

    NASA Astrophysics Data System (ADS)

    O'Brien, Thomas R.; Kesler, Benjamin; Dallesasse, John M.

    2017-02-01

    Top emission 850-nm vertical-cavity surface-emitting lasers (VCSELs) demonstrating transverse mode selection via impurity-induced disordering (IID) are presented. The IID apertures are fabricated via closed ampoule zinc diffusion. A simple 1-D plane wave model based on the intermixing of Group III atoms during IID is presented to optimize the mirror loss of higher-order modes as a function of IID strength and depth. In addition, the impact of impurity diffusion into the cap layer of the lasers is shown to improve contact resistance. Further investigation of the mode-dependent characteristics of the device imply an increase in the thermal impedance associated with the fraction of IID contained within the oxide aperture. The optimization of the ratio of the IID aperture to oxide aperture is experimentally determined. Single fundamental mode output of 1.6 mW with 30 dBm side mode suppression ratio is achieved by a 3.0 μm oxide-confined device with an IID aperture of 1.3 μm indicating an optimal IID aperture size of 43% of the oxide aperture.

  1. Exact master equation and non-Markovian decoherence dynamics of Majorana zero modes under gate-induced charge fluctuations

    NASA Astrophysics Data System (ADS)

    Lai, Hon-Lam; Yang, Pei-Yun; Huang, Yu-Wei; Zhang, Wei-Min

    2018-02-01

    In this paper, we use the exact master equation approach to investigate the decoherence dynamics of Majorana zero modes in the Kitaev model, a 1D p -wave spinless topological superconducting chain (TSC) that is disturbed by gate-induced charge fluctuations. The exact master equation is derived by extending Feynman-Vernon influence functional technique to fermionic open systems involving pairing excitations. We obtain the exact master equation for the zero-energy Bogoliubov quasiparticle (bogoliubon) in the TSC, and then transfer it into the master equation for the Majorana zero modes. Within this exact master equation formalism, we can describe in detail the non-Markovian decoherence dynamics of the zero-energy bogoliubon as well as Majorana zero modes under local perturbations. We find that at zero temperature, local charge fluctuations induce level broadening to one of the Majorana zero modes but there is an isolated peak (localized bound state) located at zero energy that partially protects the Majorana zero mode from decoherence. At finite temperatures, the zero-energy localized bound state does not precisely exist, but the coherence of the Majorana zero mode can still be partially but weakly protected, due to the sharp dip of the spectral density near the zero frequency. The decoherence will be enhanced as one increases the charge fluctuations and/or the temperature of the gate.

  2. Temporal and spatial correlation of platelet-activating factor-induced increases in endothelial [Ca²⁺]i, nitric oxide, and gap formation in intact venules.

    PubMed

    Zhou, Xueping; He, Pingnian

    2011-11-01

    We have previously demonstrated that platelet-activating factor (PAF)-induced increases in microvessel permeability were associated with endothelial gap formation and that the magnitude of peak endothelial intracellular Ca(2+) concentration ([Ca(2+)](i)) and nitric oxide (NO) production at the single vessel level determines the degree of the permeability increase. This study aimed to examine whether the magnitudes of PAF-induced peak endothelial [Ca(2+)](i), NO production, and gap formation are correlated at the individual endothelial cell level in intact rat mesenteric venules. Endothelial gaps were quantified by the accumulation of fluorescent microspheres at endothelial clefts using confocal imaging. Endothelial [Ca(2+)](i) was measured on fura-2- or fluo-4-loaded vessels, and 4,5-diaminofluorescein (DAF-2) was used for NO measurements. The results showed that increases in endothelial [Ca(2+)](i), NO production, and gap formation occurred in all endothelial cells when vessels were exposed to PAF but manifested a spatial heterogeneity in magnitudes among cells in each vessel. PAF-induced peak endothelial [Ca(2+)](i) preceded the peak NO production by 0.6 min at the cellular level, and the magnitudes of NO production and gap formation linearly correlated with that of the peak endothelial [Ca(2+)](i) in each cell, suggesting that the initial levels of endothelial [Ca(2+)](i) determine downstream NO production and gap formation. These results provide direct evidence from intact venules that inflammatory mediator-induced increases in microvessel permeability are associated with the generalized formation of endothelial gaps around all endothelial cells. The spatial differences in the molecular signaling that were initiated by the heterogeneous endothelial Ca(2+) response contribute to the heterogeneity in permeability increases along the microvessel wall during inflammation.

  3. Nonspecific DNA Binding and Bending by HUαβ: Interfaces of the Three Binding Modes Characterized by Salt Dependent Thermodynamics

    PubMed Central

    Koh, Junseock; Shkel, Irina; Saecker, Ruth M.; Record, M. Thomas

    2011-01-01

    Previous ITC and FRET studies demonstrated that Escherichia coli HUαβ binds nonspecifically to duplex DNA in three different binding modes: a tighter-binding 34 bp mode which interacts with DNA in large (>34 bp) gaps between bound proteins, reversibly bending it 140° and thereby increasing its flexibility, and two weaker, modestly cooperative small-site-size modes (10 bp, 6 bp) useful for filling gaps between bound proteins shorter than 34 bp. Here we use ITC to determine the thermodynamics of these binding modes as a function of salt concentration, and deduce that DNA in the 34 bp mode is bent around but not wrapped on the body of HU, in contrast to specific binding of IHF. Analyses of binding isotherms (8, 15, 34 bp DNA) and initial binding heats (34, 38, 160 bp DNA) reveal that all three modes have similar log-log salt concentration derivatives of the binding constants (Ski) even though their binding site sizes differ greatly; most probable values of Ski on 34 bp or larger DNA are − 7.5 ± 0.5. From the similarity of Ski values, we conclude that binding interfaces of all three modes involve the same region of the arms and saddle of HU. All modes are entropy-driven, as expected for nonspecific binding driven by the polyelectrolyte effect. The bent-DNA 34 bp mode is most endothermic, presumably because of the cost of HU-induced DNA bending, while the 6 bp mode is modestly exothermic at all salt concentrations examined. Structural models consistent with the observed Ski values are proposed. PMID:21513716

  4. Trapped-mode-induced Fano resonance and acoustical transparency in a one-dimensional solid-fluid phononic crystal

    NASA Astrophysics Data System (ADS)

    Quotane, Ilyasse; El Boudouti, El Houssaine; Djafari-Rouhani, Bahram

    2018-01-01

    We investigate theoretically and numerically the possibility of existence of Fano and acoustic-induced transparency (AIT) resonances in a simple though realistic one-dimensional acoustic structure made of solid-fluid layers inserted between two fluids. These resonances are obtained by combining appropriately the zeros of transmission (antiresonance) induced by the solid layers and the local resonances induced by the solid or combined solid-fluid layers with surface free boundary conditions. In particular, we show the possibility of trapped modes, also called bound states in continuum, which have recently found a high renewal interest. These modes appear as resonances with zero width in the transmission spectra as well as in the density of states (DOS). We consider three different structures: (i) a single solid layer inserted between two fluids. This simple structure shows the possibility of existence of trapped modes, which are discrete modes of the solid layer that lie in the continuum modes of the surrounding fluids. We give explicit analytical expressions of the dispersion relation of these eigenmodes of the solid layer which are found independent of the nature of the surrounding fluids. By slightly detuning the angle of incidence from that associated to the trapped mode, we get a well-defined Fano resonance characterized by an asymmetric Fano profile in the transmission spectra. (ii) The second structure consists of a solid-fluid-solid triple layer embedded between two fluids. This structure is found more appropriate to show both Fano and acoustic-induced transparency resonances. We provide detailed analytical expressions for the transmission and reflection coefficients that enable us to deduce a closed-form expression of the dispersion relation giving the trapped modes. Two situations can be distinguished in the triple-layer system: in the case of a symmetric structure (i.e., the same solid layers) we show, by detuning the incidence angle θ , the possibility

  5. Impact of obesity on 7,12-dimethylbenz[a]anthracene-induced altered ovarian connexin gap junction proteins in female mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganesan, Shanthi, E-mail: shanthig@iastate.edu; Nteeba, Jackson, E-mail: nteeba@iastate.edu; Keating, Aileen F., E-mail: akeating@iastate.edu

    The ovarian gap junction proteins alpha 4 (GJA4 or connexin 37; CX37), alpha 1 (GJA1 or connexin 43; CX43) and gamma 1 (GJC1 or connexin 45; CX45) are involved in cell communication and folliculogenesis. 7,12-dimethylbenz[a]anthracene (DMBA) alters Cx37 and Cx43 expression in cultured neonatal rat ovaries. Additionally, obesity has an additive effect on DMBA-induced ovarian cell death and follicle depletion, thus, we investigated in vivo impacts of obesity and DMBA on CX protein levels. Ovaries were collected from lean and obese mice aged 6, 12, 18, or 24 wks. A subset of 18 wk old mice (lean and obese) weremore » dosed with sesame oil or DMBA (1 mg/kg; ip) for 14 days and ovaries collected 3 days thereafter. Cx43 and Cx45 mRNA and protein levels decreased (P < 0.05) after 18 wks while Cx37 mRNA and protein levels decreased (P < 0.05) after 24 wks in obese ovaries. Cx37 mRNA and antral follicle protein staining intensity were reduced (P < 0.05) by obesity while total CX37 protein was reduced (P < 0.05) in DMBA exposed obese ovaries. Cx43 mRNA and total protein levels were decreased (P < 0.05) by DMBA in both lean and obese ovaries while basal protein staining intensity was reduced (P < 0.05) in obese controls. Cx45 mRNA, total protein and protein staining intensity level were decreased (P < 0.05) by obesity. These data support that obesity temporally alters gap junction protein expression and that DMBA-induced ovotoxicity may involve reduced gap junction protein function. - Highlights: • Ovarian gap junction proteins are affected by ovarian aging and obesity. • DMBA exposure negatively impacts gap junction proteins. • Altered gap junction proteins may contribute to infertility.« less

  6. Experimental study on microsphere assisted nanoscope in non-contact mode

    NASA Astrophysics Data System (ADS)

    Ling, Jinzhong; Li, Dancui; Liu, Xin; Wang, Xiaorui

    2018-07-01

    Microsphere assisted nanoscope was proposed in existing literatures to capture super-resolution images of the nano-structures beneath the microsphere attached on sample surface. In this paper, a microsphere assisted nanoscope working in non-contact mode is designed and demonstrated, in which the microsphere is controlled with a gap separated to sample surface. With a gap, the microsphere is moved in parallel to sample surface non-invasively, so as to observe all the areas of interest. Furthermore, the influence of gap size on image resolution is studied experimentally. Only when the microsphere is close enough to the sample surface, super-resolution image could be obtained. Generally, the resolution decreases when the gap increases as the contribution of evanescent wave disappears. To keep an appropriate gap size, a quantitative method is implemented to estimate the gap variation by observing Newton's rings around the microsphere, serving as a real-time feedback for tuning the gap size. With a constant gap, large-area image with high resolution can be obtained during microsphere scanning. Our study of non-contact mode makes the microsphere assisted nanoscope more practicable and easier to implement.

  7. Doping induced carrier and band-gap modulation in bulk versus nano for topological insulators: A test case of Stibnite

    NASA Astrophysics Data System (ADS)

    Maji, Tuhin Kumar; Pal, Samir Kumar; Karmakar, Debjani

    2018-04-01

    We aim at comparing the electronic properties of topological insulator Sb2S3 in bulk and Nanorod using density-functional scheme and investigating the effects of Se-doping at chalcogen-site. While going from bulk to nano, there is a drastic change in the band gap due to surface-induced strain. However, the trend of band gap modulation with increased Se doping is more prominent in bulk. Interestingly, Se-doping introduces different type of carriers in bulk and nano.

  8. Gravitationally induced zero modes of the Faddeev-Popov operator in the Coulomb gauge for Abelian gauge theories

    NASA Astrophysics Data System (ADS)

    Canfora, Fabrizio; Giacomini, Alex; Oliva, Julio

    2010-08-01

    It is shown that on curved backgrounds, the Coulomb gauge Faddeev-Popov operator can have zero modes even in the Abelian case. These zero modes cannot be eliminated by restricting the path integral over a certain region in the space of gauge potentials. The conditions for the existence of these zero modes are studied for static spherically symmetric spacetimes in arbitrary dimensions. For this class of metrics, the general analytic expression of the metric components in terms of the zero modes is constructed. Such expression allows one to find the asymptotic behavior of background metrics, which induce zero modes in the Coulomb gauge, an interesting example being the three-dimensional anti-de Sitter spacetime. Some of the implications for quantum field theory on curved spacetimes are discussed.

  9. Design and characterization of the first peptidomimetic molecule that prevents acidification-induced closure of cardiac gap junctions

    PubMed Central

    Verma, Vandana; Larsen, Bjarne Due; Coombs, Wanda; Lin, Xianming; Sarrou, Eliana; Taffet, Steven M.; Delmar, Mario

    2010-01-01

    Background Gap junctions are potential targets for pharmacological intervention. We have previously developed a series of peptide sequences that prevent closure of Cx43 channels, bind to cardiac Cx43 and prevent acidification-induced uncoupling of cardiac gap junctions. Objective We aimed to identify and validate the minimum core active structure in peptides containing an RR-N/Q-Y motif. Based on that information, we sought to generate a peptidomimetic molecule that acts on the chemical regulation of Cx43 channels. Methods Experiments were based on a combination of biochemical, spectroscopic and electrophysiological techniques, as well as molecular modeling of active pharmacophores with Cx43 activity. Results Molecular modeling analysis indicated that the functional elements of the side chains in the motif RRXY form a triangular structure. Experimental data revealed that compounds containing such a structure bind to Cx43 and prevent Cx43 chemical gating. These results provided us with the first platform for drug design targeted to the carboxyl terminal of Cx43. Using that platform, we designed and validated a peptidomimetic compound (ZP2519; molecular weight 619 Da) that prevented octanol-induced uncoupling of Cx43 channels, and pH gating of cardiac gap junctions. Conclusion Structure-based drug design can be applied to the development of pharmacophores that act directly on Cx43. Small molecules containing these pharmacophores can serve as tools to determine the role of gap junction regulation in the control of cardiac rhythm. Future studies will determine whether these compounds can function as pharmacological agents for the treatment of a selected subset of cardiac arrhythmias. PMID:20601149

  10. Characterizing the Variable Dust Permeability of Planet-induced Gaps

    NASA Astrophysics Data System (ADS)

    Weber, Philipp; Benítez-Llambay, Pablo; Gressel, Oliver; Krapp, Leonardo; Pessah, Martin E.

    2018-02-01

    Aerodynamic theory predicts that dust grains in protoplanetary disks will drift radially inward on comparatively short timescales. In this context, it has long been known that the presence of a gap opened by a planet can significantly alter the dust dynamics. In this paper, we carry out a systematic study employing long-term numerical simulations aimed at characterizing the critical particle size for retention outside a gap as a function of particle size, as well as various key parameters defining the protoplanetary disk model. To this end, we perform multifluid hydrodynamical simulations in two dimensions, including different dust species, which we treat as pressureless fluids. We initialize the dust outside of the planet’s orbit and study under which conditions dust grains are able to cross the gap carved by the planet. In agreement with previous work, we find that the permeability of the gap depends both on dust dynamical properties and the gas disk structure: while small dust follows the viscously accreting gas through the gap, dust grains approaching a critical size are progressively filtered out. Moreover, we introduce and compute a depletion factor that enables us to quantify the way in which higher viscosity, smaller planet mass, or a more massive disk can shift this critical size to larger values. Our results indicate that gap-opening planets may act to deplete the inner reaches of protoplanetary disks of large dust grains—potentially limiting the accretion of solids onto forming terrestrial planets.

  11. Formation of moon induced gaps in dense planetary rings

    NASA Astrophysics Data System (ADS)

    Grätz, F.; Seiß, M.; Spahn, F.

    2017-09-01

    Recent works have shown that bodies embedded in planetary rings create S-shaped density modula- tions called propellers if their mass deceeds a certain threshold or cause a gap around the entire circumference of the disc if the embedded bodies mass exceeds it. Two counteracting physical processes govern the dynamics and determine what structure is created: The gravitational disturber excerts a torque on nearby disc particles, sweeping them away from itself on both sides thus depleting the discs density and forming a gap. Diffusive spreading of the disc material due to collisions counteracts the gravitational scattering and has the tendency to fill the gap. We develop a nonlinear diffusion model that accounts for those two counteracting processes and describes the azimutally averaged surface density profile an embedded moon creates in planetary rings. The gaps width depends on the moons mass, its radial position and the rings viscosity allowing us to estimate the rings viscosity in the vicinity of the Encke and Keeler gap in Saturns A-Ring and compare it to previous measurements. We show that for the Keeler gap the time derivative of the semi-major axis as derived by Goldreich and Tremaine 1980 is underestimated yielding an underestimated viscosity for the ring. We therefore derive a corrected expression for said time derivative by fitting the solutions of Hill's equations for an ensemble of test particles. Furthermore we estimate the masses for potentionally unseen moonlets in the C-Ring and Cassini division.

  12. Band Gap Engineering with Ultralarge Biaxial Strains in Suspended Monolayer MoS2.

    PubMed

    Lloyd, David; Liu, Xinghui; Christopher, Jason W; Cantley, Lauren; Wadehra, Anubhav; Kim, Brian L; Goldberg, Bennett B; Swan, Anna K; Bunch, J Scott

    2016-09-14

    We demonstrate the continuous and reversible tuning of the optical band gap of suspended monolayer MoS2 membranes by as much as 500 meV by applying very large biaxial strains. By using chemical vapor deposition (CVD) to grow crystals that are highly impermeable to gas, we are able to apply a pressure difference across suspended membranes to induce biaxial strains. We observe the effect of strain on the energy and intensity of the peaks in the photoluminescence (PL) spectrum and find a linear tuning rate of the optical band gap of 99 meV/%. This method is then used to study the PL spectra of bilayer and trilayer devices under strain and to find the shift rates and Grüneisen parameters of two Raman modes in monolayer MoS2. Finally, we use this result to show that we can apply biaxial strains as large as 5.6% across micron-sized areas and report evidence for the strain tuning of higher level optical transitions.

  13. Specialization in the default mode: Task-induced brain deactivations dissociate between visual working memory and attention.

    PubMed

    Mayer, Jutta S; Roebroeck, Alard; Maurer, Konrad; Linden, David E J

    2010-01-01

    The idea of an organized mode of brain function that is present as default state and suspended during goal-directed behaviors has recently gained much interest in the study of human brain function. The default mode hypothesis is based on the repeated observation that certain brain areas show task-induced deactivations across a wide range of cognitive tasks. In this event-related functional resonance imaging study we tested the default mode hypothesis by comparing common and selective patterns of BOLD deactivation in response to the demands on visual attention and working memory (WM) that were independently modulated within one task. The results revealed task-induced deactivations within regions of the default mode network (DMN) with a segregation of areas that were additively deactivated by an increase in the demands on both attention and WM, and areas that were selectively deactivated by either high attentional demand or WM load. Attention-selective deactivations appeared in the left ventrolateral and medial prefrontal cortex and the left lateral temporal cortex. Conversely, WM-selective deactivations were found predominantly in the right hemisphere including the medial-parietal, the lateral temporo-parietal, and the medial prefrontal cortex. Moreover, during WM encoding deactivated regions showed task-specific functional connectivity. These findings demonstrate that task-induced deactivations within parts of the DMN depend on the specific characteristics of the attention and WM components of the task. The DMN can thus be subdivided into a set of brain regions that deactivate indiscriminately in response to cognitive demand ("the core DMN") and a part whose deactivation depends on the specific task. 2009 Wiley-Liss, Inc.

  14. Gaps in the Rock and Fossil Records and Implications for the Rate and Mode of Evolution.

    ERIC Educational Resources Information Center

    Smith, Grant Sackett

    1988-01-01

    Examines three types of gaps in the fossil record: real gaps, imaginary gaps, and temporary gaps. Reviews some recent evidence concerning evolution from the paleontological record of microfossils, invertebrates, and vertebrates in order to make some general conclusions regarding the manner in which life evolved on earth. (CW)

  15. Research on low-frequency band gap property of a hybrid phononic crystal

    NASA Astrophysics Data System (ADS)

    Dong, Yake; Yao, Hong; Du, Jun; Zhao, Jingbo; Chao, Ding; Wang, Benchi

    2018-05-01

    A hybrid phononic crystal has been investigated. The characteristic frequency of XY mode, transmission loss and displacement vector have been calculated by the finite element method. There are Bragg scattering band gap and local resonance band gap in the band structures. We studied the influence factors of band gap. There are many flat bands in the eigenfrequencies curve. There are many flat bands in the curve. The band gap covers a large range in low frequency. The band gaps cover more than 95% below 3000 Hz.

  16. Activation of ERK1/2 and PI3K/Akt by IGF-1 on GAP-43 expression in DRG neurons with excitotoxicity induced by glutamate in vitro.

    PubMed

    Liu, Zhen; Cai, Heng; Zhang, Ping; Li, Hao; Liu, Huaxiang; Li, Zhenzhong

    2012-03-01

    Insulin-like growth factor-1 (IGF-1) is a neurotrophic factor and plays an important role in promoting axonal growth from dorsal root ganglion (DRG) neurons. Whether IGF-1 influences growth-associated protein 43 (GAP-43) expression and activates the extracellular signal-regulated protein kinase (ERK1/2) and the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathways in DRG neurons with excitotoxicity induced by glutamate (Glu) remains unknown. In this study, embryonic 15-day-old rat DRG explants were cultured for 48 h and then exposed to IGF-1, Glu, Glu + IGF-1, Glu + IGF-1 + PD98059, Glu + IGF-1 + LY294002, Glu + IGF-1 + PD98059 + LY294002 for additional 12 h. The DRG explants were continuously exposed to growth media as control. The levels of GAP-43 mRNA were detected by real time-PCR analysis. The protein levels of GAP-43, phosphorylated ERK1/2, phosphorylated Akt, total ERK1/2, and total Akt were detected by Western blot assay. GAP-43 expression in situ was determined by immunofluorescent labeling. Apoptotic cell death was monitored by Hoechst 33342 staining. IGF-1 alone increased GAP-43 and its mRNA levels in the absence of Glu. The decreased GAP-43 and its mRNA levels caused by Glu could be partially reversed by the presence of IGF-1. IGF-1 rescued neuronal cell death caused by Glu. Neither the ERK1/2 inhibitor PD98059 nor the PI3K inhibitor LY294002 blocked the effect of IGF-1, but both inhibitors together were effective. To validate the impact of GAP-43 expression by IGF-1, GAP-43 induction was blocked by administration of dexamethasone (DEX). IGF-1 partially rescued the decrease of GAP-43 and its mRNA levels induced by DEX. DEX induced an increase of cell apoptosis. IGF-1 may play an important role in neuroprotective effects on DRG neurons through regulating GAP-43 expression with excitotoxicity induced by Glu and the process was involved in both ERK1/2 and PI3K/Akt signaling pathways.

  17. Improvement in the statistical operation of a Blumlein pulse forming line in bipolar pulse mode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pushkarev, A. I., E-mail: aipush@mail.ru; Isakova, Y. I.; Khaylov, I. P.

    The paper presents the results of studies on shot-to-shot performance of a water Blumlein pulse forming line of 1–1.2 kJ of stored energy. The experiments were carried using the TEMP-4M pulsed ion beam accelerator during its operation in both unipolar pulse mode (150 ns, 250–300 kV) and bipolar-pulse mode with the first negative (300–600 ns, 100–150 kV) followed by a second positive (120 ns, 250–300 kV) pulse. The analysis was carried out for two cases when the Blumlein was terminated with a resistive load and with a self-magnetically insulated ion diode. It was found that in bipolar pulse mode themore » shot-to-shot variation in breakdown voltage of a preliminary spark gap is small, the standard deviation (1σ) does not exceed 2%. At the same time, the shot-to-shot variation in the breakdown voltage of the main spark gap in both bipolar-pulse and unipolar pulse mode is 3–4 times higher than that for the preliminary spark gap. To improve the statistical performance of the main spark gap we changed the regime of its operation from a self-triggered mode to an externally triggered mode. In the new arrangement the first voltage pulse at the output of Blumlein was used to trigger the main spark gap. The new trigatron-type regime of the main spark gap operation showed a good stability of breakdown voltage and thus allowed to stabilize the duration of the first pulse. The standard deviation of the breakdown voltage and duration of the first pulse did not exceed 2% for a set of 50 pulses. The externally triggered mode of the main gap operation also allowed for a decrease in the charging voltage of the Blumlein to a 0.9–0.95 of self-breakdown voltage of the main spark gap while the energy stored in Marx generator was decreased from 4 kJ to 2.5 kJ. At the same time the energy stored in Blumlein remained the same.« less

  18. Effect of ripple taper on band-gap overlap in a coaxial Bragg structure operating at terahertz frequency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding Xueyong; Li Hongfan; Lv Zhensu

    Based on the mode-coupling method, numerical analysis is presented to demonstrate the influence of ripple taper on band-gap overlap in a coaxial Bragg structure operating at terahertz frequency. Results show that the interval between the band-gaps of the competing mode and the desired working mode is narrowed by use of positive-taper ripples, but is expanded if negative-taper ripples are employed, and the influence of the negative-taper ripples is obviously more advantageous than the positive-taper ripples; the band-gap overlap of modes can be efficiently separated by use of negative-taper ripples. The residual side-lobes of the frequency response in a coaxial Braggmore » structure with ripple taper also can be effectively suppressed by employing the windowing-function technique. These peculiarities provide potential advantage in constructing a coaxial Bragg cavity with high quality factor for single higher-order-mode operation of a high-power free-electron maser in the terahertz frequency range.« less

  19. Origin of band gap bowing in dilute GaAs1-xNx and GaP1-xNx alloys: A real-space view

    NASA Astrophysics Data System (ADS)

    Virkkala, Ville; Havu, Ville; Tuomisto, Filip; Puska, Martti J.

    2013-07-01

    The origin of the band gap bowing in dilute nitrogen doped gallium based III-V semiconductors is largely debated. In this paper we show the dilute GaAs1-xNx and GaP1-xNx as representative examples that the nitrogen-induced states close to the conduction band minimum propagate along the zigzag chains on the {110} planes. Thereby states originating from different N atoms interact with each other resulting in broadening of the nitrogen-induced states which narrows the band gap. Our modeling based on ab initio theoretical calculations explains the experimentally observed N concentration dependent band gap narrowing both qualitatively and quantitatively.

  20. Observable cosmological vector mode in the dark ages

    NASA Astrophysics Data System (ADS)

    Saga, Shohei

    2016-09-01

    The second-order vector mode is inevitably induced from the coupling of first-order scalar modes in cosmological perturbation theory and might hinder a possible detection of primordial gravitational waves from inflation through 21 cm lensing observations. Here, we investigate the weak lensing signal in 21 cm photons emitted by neutral hydrogen atoms in the dark ages induced by the second-order vector mode by decomposing the deflection angle of the 21 cm lensing signal into the gradient and curl modes. The curl mode is a good tracer of the cosmological vector and tensor modes since the scalar mode does not induce the curl one. By comparing angular power spectra of the 21 cm lensing curl mode induced by the second-order vector mode and primordial gravitational waves whose amplitude is parametrized by the tensor-to-scalar ratio r , we find that the 21 cm curl mode from the second-order vector mode dominates over that from primordial gravitational waves on almost all scales if r ≲10-5. If we use the multipoles of the power spectrum up to ℓmax=1 05 and 1 06 in reconstructing the curl mode from 21 cm temperature maps, the signal-to-noise ratios of the 21 cm curl mode from the second-order vector mode achieve S /N ≈0.46 and 73, respectively. Observation of 21 cm radiation is, in principle, a powerful tool to explore not only the tensor mode but also the cosmological vector mode.

  1. RX and Z Mode Growth Rates and Propagation at Cavity Boundaries

    NASA Astrophysics Data System (ADS)

    Mutel, R. L.; Christopher, I. W.; Menietti, J. D.; Gurnett, D. A.; Pickett, J. S.; Masson, A.; Fazakerley, A.; Lucek, E.

    Recent Cluster WBD observations in the Earth's auroral acceleration region have detected trapped Z mode auroral kilometric radiation while the spacecraft were entering a deep density cavity. The Z mode has a clear cutoff at the local upper hybrid resonance frequency, while RX mode radiation is detected above the RX mode cutoff frequency. The small gap between the upper hybrid resonance and the RX mode cutoff frequencies is proportional to the local electron density as expected from cold plasma theory. The width of the observed gap provides a new sensitive measure of the ambient electron density. In addition, the relative intensities of RX and Z mode radiation provide a sensitive probe of the plasma β = Ω_pe /Ω_ce at the source since the growth rates, although identical in form, have different ranges of allowed resonant radii which depend on β. In particular, the RX mode growth is favored for low β, while the Z mode is favored at higher β. The observed mode intensities and β's appear to be consistent with this model, and favor generation of Z mode at the source over models in which Z mode is generated by mode-conversion at cavity boundaries. These are the first multi-point direct measurements of mode-specific AKR propagation in the auroral acceleration region of any planet.

  2. Spinal gap junctions: potential involvement in pain facilitation.

    PubMed

    Spataro, Leah E; Sloane, Evan M; Milligan, Erin D; Wieseler-Frank, Julie; Schoeniger, Diana; Jekich, Brian M; Barrientos, Ruth M; Maier, Steven F; Watkins, Linda R

    2004-09-01

    Glia are now recognized as important contributors in pathological pain creation and maintenance. Spinal cord glia exhibit extensive gap junctional connectivity, raising the possibility that glia are involved in the contralateral spread of excitation resulting in mirror image pain. In the present experiments, the gap junction decoupler carbenoxolone was administered intrathecally after induction of neuropathic pain in response to sciatic nerve inflammation (sciatic inflammatory neuropathy) or partial nerve injury (chronic constriction injury). In both neuropathic pain models, a low dose of carbenoxolone reversed mirror image mechanical allodynia, while leaving ipsilateral mechanical allodynia unaffected. Ipsilateral thermal hyperalgesia was briefly attenuated. Critically, blockade of mechanical allodynia and thermal hyperalgesia was not observed in response to intrathecal glycyrrhizic acid, a compound similar to carbenoxolone in all respects but it does not decouple gap junctions. Thus, blockade of mechanical allodynia and thermal hyperalgesia by carbenoxolone does appear to reflect an effect on gap junctions. Examination of carbenoxolone's effects on intrathecal human immunodeficiency virus type 1 gp120 showed that blockade of pain facilitation might result, at least in part, via suppression of interleukin-1 and, in turn, interleukin-6. These data provide the first suggestion that spread of excitation via gap junctions might contribute importantly to inflammatory and traumatic neuropathic pain. The current studies provide evidence for involvement of gap junctions in spinal cord pain facilitation. Intrathecal carbenoxolone, a gap junction decoupler, reversed neuropathy-induced mirror image pain and intrathecal gp120-induced allodynia. In addition, it decreased gp120-induced proinflammatory cytokines. This suggests gap junction activation might lead to proinflammatory cytokine release by distantly activated glia.

  3. Field-Induced-Gap Infrared Detectors

    NASA Technical Reports Server (NTRS)

    Elliott, C. Thomas

    1990-01-01

    Semimetals become semiconductors under applied magnetic fields. New detectors require less cooling equipment because they operate at temperatures higher than liquid-helium temperatures required by extrinsic-semiconductor detectors. Magnetic fields for detectors provided by electromagnets based on recently-discovered high-transition-temperature superconducting materials. Detector material has to be semiconductor, in which photon absorbed by exciting electron/hole pair across gap Eg of forbidden energies between valence and conduction energy bands. Magnetic- and compositional-tuning effects combined to obtain two-absorber detector having narrow passband. By variation of applied magnetic field, passband swept through spectrum of interest.

  4. Plexciton Dirac points and topological modes

    DOE PAGES

    Yuen-Zhou, Joel; Saikin, Semion K.; Zhu, Tony; ...

    2016-06-09

    Plexcitons are polaritonic modes that result from the strong coupling between excitons and plasmons. Here, we consider plexcitons emerging from the interaction of excitons in an organic molecular layer with surface plasmons in a metallic film. We predict the emergence of Dirac cones in the two-dimensional band-structure of plexcitons due to the inherent alignment of the excitonic transitions in the organic layer. An external magnetic field opens a gap between the Dirac cones if the plexciton system is interfaced with a magneto-optical layer. The resulting energy gap becomes populated with topologically protected one-way modes, which travel at the interface ofmore » this plexcitonic system. Furthermore, our theoretical proposal suggests that plexcitons are a convenient and simple platform for the exploration of exotic phases of matter and for the control of energy flow at the nanoscale.« less

  5. Low-bending loss and single-mode operation in few-mode optical fiber

    NASA Astrophysics Data System (ADS)

    Yin, Ping; Wang, Hua; Chen, Ming-Yang; Wei, Jin; Cai, Zhi-Min; Li, Lu-Ming; Yang, Ji-Hai; Zhu, Yuan-Feng

    2016-10-01

    The technique of eliminating the higher-order modes in a few-mode optical fiber is proposed. The fiber is designed with a group of defect modes in the cladding. The higher-order modes in the fiber can be eliminated by bending the fiber to induce strong coupling between the defect modes and the higher-order modes. Numerical simulation shows the bending losses of the LP01 mode are lower than 1.5×10-4 dB/turn for the wavelength shorter than 1.625 μm. The proposed fiber can be bent multiple turns at small bending radius which are preferable for FTTH related applications.

  6. Intermittent bursts induced by double tearing mode reconnection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Lai; Wang, Zheng-Xiong, E-mail: zxwang@dlut.edu.cn

    Reversed magnetic shear (RMS) configuration is assumed to be the steady-state operation scenario for the future advanced tokamaks like International Thermonuclear Experimental Reactor. In this work, we numerically discover a phenomenon of violent intermittent bursts induced by self-organized double tearing mode (DTM) reconnection in the RMS configuration during the very long evolution, which may continuously lead to annular sawtooth crashes and thus badly impact the desired steady-state operation of the future advanced RMS tokamaks. The key process of the intermittent bursts in the off-axis region is similar to that of the typical sawtooth relaxation oscillation in the positive magnetic shearmore » configuration. It is interestingly found that in the decay phase of the DTM reconnection, the zonal field significantly counteracts equilibrium field to make the magnetic shear between the two rational surfaces so weak that the residual self-generated vortices of the previous DTM burst are able to trigger a reverse DTM reconnection by curling the field lines.« less

  7. Intermittent bursts induced by double tearing mode reconnection

    NASA Astrophysics Data System (ADS)

    Wei, Lai; Wang, Zheng-Xiong

    2014-06-01

    Reversed magnetic shear (RMS) configuration is assumed to be the steady-state operation scenario for the future advanced tokamaks like International Thermonuclear Experimental Reactor. In this work, we numerically discover a phenomenon of violent intermittent bursts induced by self-organized double tearing mode (DTM) reconnection in the RMS configuration during the very long evolution, which may continuously lead to annular sawtooth crashes and thus badly impact the desired steady-state operation of the future advanced RMS tokamaks. The key process of the intermittent bursts in the off-axis region is similar to that of the typical sawtooth relaxation oscillation in the positive magnetic shear configuration. It is interestingly found that in the decay phase of the DTM reconnection, the zonal field significantly counteracts equilibrium field to make the magnetic shear between the two rational surfaces so weak that the residual self-generated vortices of the previous DTM burst are able to trigger a reverse DTM reconnection by curling the field lines.

  8. Single mode to dual mode switch through a THz reconfigurable metamaterial

    NASA Astrophysics Data System (ADS)

    Zhang, Wu; Zhang, Meng; Yan, Zongkai; Zhao, Xin; Cheng, Jianping; Liu, Ai Qun

    2017-12-01

    Metamaterials interact with incident electromagnetic waves through their consisting subwavelength metamolecules. In this paper, we reported a reconfigurable metamaterial which tunes its THz response experimentally from a single mode resonance at 2.99 THz to a dual mode resonance at 2.94 THz and 2.99 THz. The reconfiguration is realized through a micromachined actuator, and the tunability is achieved by breaking the symmetry of the metamolecule. An abrupt change in the transmission is experimentally observed when the gap between two metallic structures is closed, and a decrease in transmission from 40% to 5% at 2.94 THz is obtained. Such a tunable metamaterial promises widespread applications in optical switches, filters, and THz detectors.

  9. Electromagnetically induced transparency in planar metamaterials based on guided mode resonance

    NASA Astrophysics Data System (ADS)

    Sun, Yaru; Chen, Hang; Li, Xiangjun; Hong, Zhi

    2017-06-01

    We present and numerically demonstrate a novel, electromagnetically induced transparency (EIT) in planar metamaterials (MMs) based on guided mode resonance (GMR). The unit cell of the MM consists of two metallic ring resonators. The GMR with high quality factor (Q) is achieved by changing the distance between the two rings of the MM. Narrow EIT-like spectral response is realized by coupling between a high Q GMR and a low Q dipolar resonance of the MM. Our work could provide another efficient way towards the realization of EIT with large group index using very simple structures.

  10. Electron Elevator: Excitations across the Band Gap via a Dynamical Gap State.

    PubMed

    Lim, A; Foulkes, W M C; Horsfield, A P; Mason, D R; Schleife, A; Draeger, E W; Correa, A A

    2016-01-29

    We use time-dependent density functional theory to study self-irradiated Si. We calculate the electronic stopping power of Si in Si by evaluating the energy transferred to the electrons per unit path length by an ion of kinetic energy from 1 eV to 100 keV moving through the host. Electronic stopping is found to be significant below the threshold velocity normally identified with transitions across the band gap. A structured crossover at low velocity exists in place of a hard threshold. An analysis of the time dependence of the transition rates using coupled linear rate equations enables one of the excitation mechanisms to be clearly identified: a defect state induced in the gap by the moving ion acts like an elevator and carries electrons across the band gap.

  11. Plasmonic mode interferences and Fano resonances in Metal-Insulator- Metal nanostructured interface

    PubMed Central

    Nicolas, Rana; Lévêque, Gaëtan; Marae-Djouda, Joseph; Montay, Guillame; Madi, Yazid; Plain, Jérôme; Herro, Ziad; Kazan, Michel; Adam, Pierre-Michel; Maurer, Thomas

    2015-01-01

    Metal-insulator-metal systems exhibit a rich underlying physics leading to a high degree of tunability of their spectral properties. We performed a systematic study on a metal-insulator-nanostructured metal system with a thin 6 nm dielectric spacer and showed how the nanoparticle sizes and excitation conditions lead to the tunability and coupling/decoupling of localized and delocalized plasmonic modes. We also experimentally evidenced a tunable Fano resonance in a broad spectral window 600 to 800 nm resulting from the interference of gap modes with white light broad band transmitted waves at the interface playing the role of the continuum. By varying the incident illumination angle shifts in the resonances give the possibility to couple or decouple the localized and delocalized modes and to induce a strong change of the asymmetric Fano profile. All these results were confirmed with a crossed comparison between experimental and theoretical measurements, confirming the nature of different modes. The high degree of control and tunability of this plasmonically rich system paves the way for designing and engineering of similar systems with numerous applications. In particular, sensing measurements were performed and a figure of merit of 3.8 was recorded ranking this sensor among the highest sensitive in this wavelength range. PMID:26399425

  12. Controlling the stability of nonlinear optical modes via electromagnetically induced transparency

    NASA Astrophysics Data System (ADS)

    Zhang, Kun; Liang, Yi-zeng; Lin, Ji; Li, Hui-jun

    2018-02-01

    We propose a scheme to generate and stabilize the high-dimensional spatial solitons via electromagnetically induced transparency (EIT). The system we consider is a resonant atomic ensemble having Λ configuration. We illustrate that under EIT conditions the equation satisfied by the probe field envelope is reduced to a saturable nonlinear Schrödinger equation with the trapping potential, provided by a far-detuned laser field and a random magnetic field. We present high-dimensional soliton solutions exhibiting many interesting characteristics, including diversity (i.e., many different types of soliton solutions can be found, including bright, ring multipole bright, ring multipole defect mode, multiring bright, multiring defect mode, and vortices solitons), the phase transition between bright soliton and higher-order defect modes (i.e., the phase transition can be realized by controlling the nonlinear coefficient or the intensity of the trapping potential), and stability (i.e., various solitons can be stabilized by the Gaussian potential provided by the far detuned laser field, or the random potential provided by the magnetic field). We also find that some solitons are the extension of the linear eigenmode, whereas others entirely derive from the role of nonlinearity. Compared with previous studies, we not only show the diverse soliton solutions in the same system but also find the boundary of the phase transition for the type of solitons. In addition, we present the possibility of using the random potential to stabilize various solitons and vortices.

  13. Ion beam induced optical and surface modification in plasmonic nanostructures

    NASA Astrophysics Data System (ADS)

    Singh, Udai B.; Gautam, Subodh K.; Kumar, Sunil; Hooda, Sonu; Ojha, Sunil; Singh, Fouran

    2016-07-01

    In present work, ion irradiation induced nanostructuring has been exploited as an efficient and effective tool for synthesis of coupled plasmonics nanostructures by using 1.2 MeV Xe ions on Au/ZnO/Au system deposited on glass substrate. The results are correlated on the basis of their optical absorption, surface morphologies and enhanced sensitivity of evolved phonon modes by using UV Visible spectroscopy, scanning electron microscopy (SEM), and Raman spectroscopy (RS), respectively. Optical absorbance spectra of plasmonic nanostructures (NSs) show a decrease in band gap, which may be ascribed to the formation of defects with ion irradiation. The surface morphology reveals the formation of percolated NSs upon ion irradiation and Rutherford backscattering spectrometry (RBS) study clearly shows the formation of multilayer system. Furthermore, RS measurements on samples are studied to understand the enhanced sensitivity of ion irradiation induced phonon mode at 573 cm-1 along with other modes. As compared to pristine sample, a stronger and pronounced evolution of these phonon modes is observed with further ion irradiation, which indicates localized surface plasmon results with enhanced intensity of phonon modes of Zinc oxide (ZnO) material. Thus, such plasmonic NSs can be used as surface enhanced Raman scattering (SERS) substrates.

  14. Comparison of the surface dielectric barrier discharge characteristics under different electrode gaps

    NASA Astrophysics Data System (ADS)

    Gao, Guoqiang; Dong, Lei; Peng, Kaisheng; Wei, Wenfu; Li, Chunmao; Wu, Guangning

    2017-01-01

    Currently, great interests are paid to the surface dielectric barrier discharge due to the diverse and interesting application. In this paper, the influences of the electrode gap on the discharge characteristics have been studied. Aspects of the electrical parameters, the optical emission, and the discharge induced gas flow were considered. The electrode gap varied from 0 mm to 21 mm, while the applied AC voltage was studied in the range of 17 kV-27 kV. Results indicate that with the increase of the electrode gap, the variation of discharge voltage exhibits an increasing trend, while the other parameters (i.e., the current, power, and induced flow velocity) increase first, and then decrease once the gap exceeded the critical value. Mechanisms of the electrode gap influencing these key parameters were discussed from the point of equivalent circuit. The experimental results reveal that an optimal discharge gap can be obtained, which is closely related to the applied voltage. Visualization of the induced flow with different electrode gaps was realized by the Schlieren diagnostic technique. Finally, the velocities of induced gas flow determined by the pitot tube were compared with the results of intensity-integral method, and good agreements were found.

  15. Perception of Western Musical Modes: A Chinese Study.

    PubMed

    Fang, Lele; Shang, Junchen; Chen, Nan

    2017-01-01

    The major mode conveys positive emotion, whereas the minor mode conveys negative emotion. However, previous studies have primarily focused on the emotions induced by Western music in Western participants. The influence of the musical mode (major or minor) on Chinese individuals' perception of Western music is unclear. In the present experiments, we investigated the effects of musical mode and harmonic complexity on psychological perception among Chinese participants. In Experiment 1, the participants ( N = 30) evaluated 24 musical excerpts in five dimensions (pleasure, arousal, dominance, emotional tension, and liking). In Experiment 2, the participants ( N = 40) evaluated 48 musical excerpts. Perceptions of the musical excerpts differed significantly according to mode, even if the stimuli were Western musical excerpts. The major-mode music induced greater pleasure and arousal and produced higher liking ratings than the minor-mode music, whereas the minor-mode music induced greater tension than the major-mode music. Mode did not influence the dominance rating. Perception of Western music was not influenced by harmonic complexity. Moreover, preference for musical mode was influenced by previous exposure to Western music. These results confirm the cross-cultural emotion induction effects of musical modes in Western music.

  16. The role of ion irradiation in activating silent Raman modes via tuning in plasmonic behaviour and surface disorder of Au/ZnO/Pt NFG system

    NASA Astrophysics Data System (ADS)

    Singh, Udai B.; Gautam, Subodh K.; Kumar, Sunil; Ojha, Sunil; Ghosh, Santanu; Singh, Fouran

    2017-09-01

    The perceptible progression of Raman modes of zinc oxide (ZnO) is studied in nanostructures film gap (Au (10 nm)/ZnO (70 nm)/Pt (50 nm)) system with 1.2 MeV Xe ion irradiation. Unattainable silent Raman modes of ZnO turn out to be strongly visible after ion irradiation. The creation of ion-beam-induced lattice disorder, defects, and impurities in a ZnO layer leads to breakdown the translational crystal symmetry that results in the origin of silent modes. The formation of hot-spots in the ZnO layer of the NFG system also supports the enhancement of the intensity of Raman modes. Overall results are attributed to combined effects of lattice disorder, defects, and impurities along with plasmonic effect and explained in the framework of elastic-thermal-spike formation.

  17. Anisotropic-Strain-Induced Band Gap Engineering in Nanowire-Based Quantum Dots.

    PubMed

    Francaviglia, Luca; Giunto, Andrea; Kim, Wonjong; Romero-Gomez, Pablo; Vukajlovic-Plestina, Jelena; Friedl, Martin; Potts, Heidi; Güniat, Lucas; Tütüncüoglu, Gözde; Fontcuberta I Morral, Anna

    2018-04-11

    Tuning light emission in bulk and quantum structures by strain constitutes a complementary method to engineer functional properties of semiconductors. Here, we demonstrate the tuning of light emission of GaAs nanowires and their quantum dots up to 115 meV by applying strain through an oxide envelope. We prove that the strain is highly anisotropic and clearly results in a component along the NW longitudinal axis, showing good agreement with the equations of uniaxial stress. We further demonstrate that the strain strongly depends on the oxide thickness, the oxide intrinsic strain, and the oxide microstructure. We also show that ensemble measurements are fully consistent with characterizations at the single-NW level, further elucidating the general character of the findings. This work provides the basic elements for strain-induced band gap engineering and opens new avenues in applications where a band-edge shift is necessary.

  18. Experiment-theory comparison for low frequency BAE modes in the strongly shaped H-1NF stellarator

    DOE PAGES

    Haskey, S. R.; Blackwell, B. D.; Nuhrenberg, C.; ...

    2015-08-12

    Here, recent advances in the modeling, analysis, and measurement of fluctuations have significantly improved the diagnosis and understanding of Alfvén eigenmodes in the strongly shaped H-1NF helical axis stellarator. Experimental measurements, including 3D tomographic inversions of high resolution visible light images, are in close agreement with beta-induced Alfvén eigenmodes (BAEs) calculated using the compressible ideal MHD code, CAS3D. This is despite the low β in H-1NF, providing experimental evidence that these modes can exist due to compression that is induced by the strong shaping in stellarators, in addition to high β, as is the case in tokamaks. This is confirmedmore » using the CONTI and CAS3D codes, which show significant gap structures at lower frequencies which contain BAE and beta-acoustic Alfvén eigenmodes (BAAEs). The BAEs are excited in the absence of a well confined energetic particle source, further confirming previous studies that thermal particles, electrons, or even radiation fluctuations can drive these modes. Datamining of magnetic probe data shows the experimentally measured frequency of these modes has a clear dependence on the rotational transform profile, which is consistent with a frequency dependency due to postulated confinement related temperature variations.« less

  19. Defect induced guided waves mode conversion

    NASA Astrophysics Data System (ADS)

    Wandowski, Tomasz; Kudela, Pawel; Malinowski, Pawel; Ostachowicz, Wieslaw

    2016-04-01

    This paper deals with analysis of guided waves mode conversion phenomenon in fiber reinforced composite materials. Mode conversion phenomenon may take place when propagating elastic guided waves interact with discontinuities in the composite waveguide. The examples of such discontinuities are sudden thickness change or delamination between layers in composite material. In this paper, analysis of mode conversion phenomenon is based on full wave-field signals. In the full wave-field approach signals representing propagation of elastic waves are gathered from dense mesh of points that span over investigated area of composite part. This allow to animate the guided wave propagation. The reported analysis is based on signals resulting from numerical calculations and experimental measurements. In both cases defect in the form of delamination is considered. In the case of numerical research, Spectral Element Method (SEM) is utilized, in which a mesh is composed of 3D elements. Numerical model includes also piezoelectric transducer. Full wave-field experimental measurements are conducted by using piezoelectric transducer for guided wave excitation and Scanning Laser Doppler Vibrometer (SLDV) for sensing.

  20. Nitric oxide, PKC-ε, and connexin43 are crucial for ischemic preconditioning-induced chemical gap junction uncoupling.

    PubMed

    Rong, Bing; Xie, Fei; Sun, Tao; Hao, Li; Lin, Ming-Jie; Zhong, Jing-Quan

    2016-10-25

    Ischemic preconditioning (IPC) maintains connexin43 (Cx43) phosphorylation and reduces chemical gap junction (GJ) coupling in cardiomyocytes to protect against ischemic damage. However, the signal transduction pathways underlying these effects are not fully understood. Here, we investigated whether nitric oxide (NO) and protein kinase C-ε (PKC-ε) contribute to IPC-induced cardioprotection by maintaining Cx43 phosphorylation and inhibiting chemical GJ coupling. IPC reduced ischemia-induced myocardial infarction and increased cardiomyocyte survival; phosphorylated Cx43, eNOS, and PKC-ε levels; and chemical GJ uncoupling. Administration of the NO donor SNAP mimicked the effects of IPC both in vivo and in vitro, maintaining Cx43 phosphorylation, promoting chemical GJ uncoupling, and reducing myocardial infarction. Preincubation with the NO synthase inhibitor L-NAME or PKC-ε translocation inhibitory peptide (PKC-ε-TIP) abolished these effects of IPC. Additionally, by inducing NO production, IPC induced translocation of PKC-ε, but not PKC-δ, from the cytosolic to the membrane fraction in primary cardiac myocytes. IPC-induced cardioprotection thus involves increased NO production, PKC-ε translocation, Cx43 phosphorylation, and chemical GJ uncoupling.

  1. Electron elevator: Excitations across the band gap via a dynamical gap state

    DOE PAGES

    Lim, Anthony; Foulkes, W. M. C.; Horsfield, A. P.; ...

    2016-01-27

    We use time-dependent density functional theory to study self-irradiated Si. We calculate the electronic stopping power of Si in Si by evaluating the energy transferred to the electrons per unit path length by an ion of kinetic energy from 1 eV to 100 keV moving through the host. Electronic stopping is found to be significant below the threshold velocity normally identified with transitions across the band gap. A structured crossover at low velocity exists in place of a hard threshold. Lastly, an analysis of the time dependence of the transition rates using coupled linear rate equations enables one of themore » excitation mechanisms to be clearly identified: a defect state induced in the gap by the moving ion acts like an elevator and carries electrons across the band gap.« less

  2. Disruption of gap junctions attenuates aminoglycoside-elicited renal tubular cell injury.

    PubMed

    Yao, Jian; Huang, Tao; Fang, Xin; Chi, Yuan; Zhu, Ying; Wan, Yigang; Matsue, Hiroyuki; Kitamura, Masanori

    2010-08-01

    Gap junctions play important roles in the regulation of cell phenotype and in determining cell survival after various insults. Here, we investigated the role of gap junctions in aminoglycoside-induced injury to renal tubular cells. Two tubular epithelial cell lines NRK-E52 and LLC-PK1 were compared for gap junction protein expression and function by immunofluorescent staining, Western blot and dye transfer assay. Cell viability after exposure to aminoglycosides was evaluated by WST assay. Gap junctions were modulated by transfection of the gap junction protein, connexin 43 (Cx43), use of Cx43 siRNA and gap junction inhibitors. NRK-E52 cells expressed abundant Cx43 and were functionally coupled by gap junctional intercellular communication (GJIC). Exposure of NRK-E52 cells to aminoglycosides, G418 and hygromycin, increased Cx43 phosphorylation and GJIC. The aminoglycosides also decreased cell viability that was prevented by gap junction inhibitors and Cx43 siRNA. LLC-PK1 cells were gap junction-deficient and resistant to aminoglycoside-induced cytotoxicity. Over-expression of a wild-type Cx43 converted LLC-PK1 cells to a drug-sensitive phenotype. The gap junction inhibitor alpha-glycyrrhetinic acid (alpha-GA) activated Akt in NRK-E52 cells. Inhibition of the Akt pathway enhanced cell toxicity to G418 and abolished the protective effects of alpha-GA. In addition, gentamycin-elicited cytotoxicity in NRK-E52 cells was also significantly attenuated by alpha-GA. Gap junctions contributed to the cytotoxic effects of aminoglycosides. Modulation of gap junctions could be a promising approach for prevention and treatment of aminoglycoside-induced renal tubular cell injury.

  3. The effect of hot phonons and coupled phonon-plasmon modes on scattering-induced NDR in quantum wells

    NASA Astrophysics Data System (ADS)

    Ridley, B. K.; Al-Mudares, M.

    1988-04-01

    We have extended our Monte Carlo simulation of scattering-induced NDR in Al. 8Ga 2As/GaAs quantum wells by including (a) the effect of hot phonons (b) coupled phonon-plasmon modes (c) degeneracy. Hot phonons were modelled using a phenomenological lifetime which we ranged from 3ps to 10ps. Coupled modes were modelled in the antiscreening approximation. Bulk-like modes were assumed in both cases. NDR is quenched if the phonon lifetime exceeds 7ps, but is little affected if the lifetime is 3ps. The effect of coupled modes is appreciable at a doping density of 10 18cm -3, virtually eliminating NDR, but at 10 17cm -3 the effect is much smaller. Including degeneracy has only a small effect on the results. We conclude that NDR is still possible at electron densities around 10 17cm -3.

  4. A meta-analytic review of two modes of learning and the description-experience gap.

    PubMed

    Wulff, Dirk U; Mergenthaler-Canseco, Max; Hertwig, Ralph

    2018-02-01

    People can learn about the probabilistic consequences of their actions in two ways: One is by consulting descriptions of an action's consequences and probabilities (e.g., reading up on a medication's side effects). The other is by personally experiencing the probabilistic consequences of an action (e.g., beta testing software). In principle, people taking each route can reach analogous states of knowledge and consequently make analogous decisions. In the last dozen years, however, research has demonstrated systematic discrepancies between description- and experienced-based choices. This description-experience gap has been attributed to factors including reliance on a small set of experience, the impact of recency, and different weighting of probability information in the two decision types. In this meta-analysis focusing on studies using the sampling paradigm of decisions from experience, we evaluated these and other determinants of the decision-experience gap by reference to more than 70,000 choices made by more than 6,000 participants. We found, first, a robust description-experience gap but also a key moderator, namely, problem structure. Second, the largest determinant of the gap was reliance on small samples and the associated sampling error: free to terminate search, individuals explored too little to experience all possible outcomes. Third, the gap persisted when sampling error was basically eliminated, suggesting other determinants. Fourth, the occurrence of recency was contingent on decision makers' autonomy to terminate search, consistent with the notion of optional stopping. Finally, we found indications of different probability weighting in decisions from experience versus decisions from description when the problem structure involved a risky and a safe option. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  5. The F-BAR domains from srGAP1, srGAP2 and srGAP3 regulate membrane deformation differently

    PubMed Central

    Coutinho-Budd, Jaeda; Ghukasyan, Vladimir; Zylka, Mark J.; Polleux, Franck

    2012-01-01

    Summary Coordination of membrane deformation and cytoskeletal dynamics lies at the heart of many biological processes critical for cell polarity, motility and morphogenesis. We have recently shown that Slit-Robo GTPase-activating protein 2 (srGAP2) regulates neuronal morphogenesis through the ability of its F-BAR domain to regulate membrane deformation and induce filopodia formation. Here, we demonstrate that the F-BAR domains of two closely related family members, srGAP1 and srGAP3 [designated F-BAR(1) and F-BAR(3), respectively] display significantly different membrane deformation properties in non-neuronal COS7 cells and in cortical neurons. F-BAR(3) induces filopodia in both cell types, though less potently than F-BAR(2), whereas F-BAR(1) prevents filopodia formation in cortical neurons and reduces plasma membrane dynamics. These three F-BAR domains can heterodimerize, and they act synergistically towards filopodia induction in COS7 cells. As measured by fluorescence recovery after photobleaching, F-BAR(2) displays faster molecular dynamics than F-BAR(3) and F-BAR(1) at the plasma membrane, which correlates well with its increased potency to induce filopodia. We also show that the molecular dynamic properties of F-BAR(2) at the membrane are partially dependent on F-Actin. Interestingly, acute phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] depletion in cells does not interfere with plasma membrane localization of F-BAR(2), which is compatible with our result showing that F-BAR(2) binds to a broad range of negatively-charged phospholipids present at the plasma membrane, including phosphatidylserine (PtdSer). Overall, our results provide novel insights into the functional diversity of the membrane deformation properties of this subclass of F-BAR-domains required for cell morphogenesis. PMID:22467852

  6. Ca2+ waves across gaps in non-excitable cells induced by femtosecond laser exposure

    NASA Astrophysics Data System (ADS)

    He, Hao; Wang, Shaoyang; Li, Xun; Li, Shiyang; Hu, Minglie; Cao, Youjia; Wang, Ching-Yue

    2012-04-01

    Calcium is a second messenger in all cells for various cellular processes. It was found in astrocytes and neurons that femtosecond laser stimulation could induce Ca2+ wave propagation. In this work, a femtosecond laser with a power above a certain threshold was focused on single HeLa/HEK293T cells for Ca2+ mobilization. Several types of Ca2+ oscillation patterns were found in neighboring cells. The Ca2+ wave propagated very fast across 40-μm gaps in the Ca2+-free medium mediated by the adenosine-triphosphate released from cells. This approach could provide a clean methodology to investigate the Ca2+ dynamics in non-excitable cells.

  7. Direct visualization of the in-plane leakage of high-order transverse modes in vertical-cavity surface-emitting lasers mediated by oxide-aperture engineering

    NASA Astrophysics Data System (ADS)

    Ledentsov, N.; Shchukin, V. A.; Kropp, J.-R.; Burger, S.; Schmidt, F.; Ledentsov, N. N.

    2016-03-01

    Oxide-confined apertures in vertical cavity surface emitting laser (VCSEL) can be engineered such that they promote leakage of the transverse optical modes from the non- oxidized core region to the selectively oxidized periphery of the device. The reason of the leakage is that the VCSEL modes in the core can be coupled to tilted modes in the periphery if the orthogonality between the core mode and the modes at the periphery is broken by the oxidation-induced optical field redistribution. Three-dimensional modeling of a practical VCSEL design reveals i) significantly stronger leakage losses for high-order transverse modes than that of the fundamental one as high-order modes have a higher field intensity close to the oxide layers and ii) narrow peaks in the far-field profile generated by the leaky component of the optical modes. Experimental 850-nm GaAlAs leaky VCSELs produced in the modeled design demonstrate i) single-mode lasing with the aperture diameters up to 5μm with side mode suppression ratio >20dB at the current density of 10kA/cm2; and ii) narrow peaks tilted at 37 degrees with respect to the vertical axis in excellent agreement with the modeling data and confirming the leaky nature of the modes and the proposed mechanism of mode selection. The results indicate that in- plane coupling of VCSELs, VCSELs and p-i-n photodiodes, VCSEL and delay lines is possible allowing novel photonic integrated circuits. We show that the approach enables design of oxide apertures, air-gap apertures, devices created by impurity-induced intermixing or any combinations of such designs through quantitative evaluation of the leaky emission.

  8. ESR modes in a Strong-Leg Ladder in the Tomonaga-Luttinger Liquid Phase

    NASA Astrophysics Data System (ADS)

    Zvyagin, S.; Ozerov, M.; Maksymenko, M.; Wosnitza, J.; Honecker, A.; Landee, C. P.; Turnbull, M.; Furuya, S. C.; Giamarchi, T.

    Magnetic excitations in the strong-leg quantum spin ladder compound (C7H10N)2CuBr4 (known as DIMPY) in the field-induced Tomonaga-Luttinger spin liquid phase are studied by means of high-field electron spin resonance (ESR) spectroscopy. The presence of a gapped ESR mode with unusual non-linear frequency-field dependence is revealed experimentally. Using a combination of analytic and exact diagonalization methods, we compute the dynamical structure factor and identify this mode with longitudinal excitations in the antisymmetric channel. We argue that these excitations constitute a fingerprint of the spin dynamics in a strong-leg spin-1/2 Heisenberg antiferromagnetic ladder and owe its ESR observability to the uniform Dzyaloshinskii-Moriya interaction. This work was partially supported by the DFG and Helmholtz Gemeinschaft (Germany), Swiss SNF under Division II, and ERC synergy UQUAM project. We acknowledge the support of the HLD at HZDR, member of the European Magnetic Field Laboratory (EMFL).

  9. Molybdenum emission from impurity-induced m= 1 snake-modes on the Alcator C-Mod tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delgado-Aparicio, L.; MIT - Plasma Science and Fusion Center, Cambridge, Massachusetts 02139; Bitter, M.

    2012-10-15

    A suite of novel high-resolution spectroscopic imaging diagnostics has facilitated the identification and localization of molybdenum impurities as the main species during the formation and lifetime of m= 1 impurity-induced snake-modes on Alcator C-Mod. Such measurements made it possible to infer, for the first time, the perturbed radiated power density profiles from which the impurity density can be deduced.

  10. Disruption of gap junctions attenuates aminoglycoside-elicited renal tubular cell injury

    PubMed Central

    Yao, Jian; Huang, Tao; Fang, Xin; Chi, Yuan; Zhu, Ying; Wan, Yigang; Matsue, Hiroyuki; Kitamura, Masanori

    2010-01-01

    BACKGROUND AND PURPOSE Gap junctions play important roles in the regulation of cell phenotype and in determining cell survival after various insults. Here, we investigated the role of gap junctions in aminoglycoside-induced injury to renal tubular cells. EXPERIMENTAL APPROACH Two tubular epithelial cell lines NRK-E52 and LLC-PK1 were compared for gap junction protein expression and function by immunofluorescent staining, Western blot and dye transfer assay. Cell viability after exposure to aminoglycosides was evaluated by WST assay. Gap junctions were modulated by transfection of the gap junction protein, connexin 43 (Cx43), use of Cx43 siRNA and gap junction inhibitors. KEY RESULTS NRK-E52 cells expressed abundant Cx43 and were functionally coupled by gap junctional intercellular communication (GJIC). Exposure of NRK-E52 cells to aminoglycosides, G418 and hygromycin, increased Cx43 phosphorylation and GJIC. The aminoglycosides also decreased cell viability that was prevented by gap junction inhibitors and Cx43 siRNA. LLC-PK1 cells were gap junction-deficient and resistant to aminoglycoside-induced cytotoxicity. Over-expression of a wild-type Cx43 converted LLC-PK1 cells to a drug-sensitive phenotype. The gap junction inhibitor α-glycyrrhetinic acid (α-GA) activated Akt in NRK-E52 cells. Inhibition of the Akt pathway enhanced cell toxicity to G418 and abolished the protective effects of α-GA. In addition, gentamycin-elicited cytotoxicity in NRK-E52 cells was also significantly attenuated by α-GA. CONCLUSION AND IMPLICATIONS Gap junctions contributed to the cytotoxic effects of aminoglycosides. Modulation of gap junctions could be a promising approach for prevention and treatment of aminoglycoside-induced renal tubular cell injury. PMID:20649601

  11. Strain-induced optical band gap variation of SnO 2 films

    DOE PAGES

    Rus, Stefania Florina; Ward, Thomas Zac; Herklotz, Andreas

    2016-06-29

    In this paper, thickness dependent strain relaxation effects are utilized to study the impact of crystal anisotropy on the optical band gap of epitaxial SnO 2 films grown by pulsed laser deposition on (0001)-oriented sapphire substrates. An X-ray diffraction analysis reveals that all films are under tensile biaxial in-plane strain and that strain relaxation occurs with increasing thickness. Variable angle spectroscopic ellipsometry shows that the optical band gap of the SnO 2 films continuously increases with increasing film thickness. This increase in the band gap is linearly related to the strain state of the films, which indicates that the mainmore » origin of the band gap change is strain relaxation. The experimental observation is in excellent agreement with results from density functional theory for biaxial in-plane strain. Our research demonstrates that strain is an effective way to tune the band gap of SnO 2 films and suggests that strain engineering is an appealing route to tailor the optical properties of oxide semiconductors.« less

  12. Inertia-induced dendriticlike patterns in lifting Hele-Shaw flows

    NASA Astrophysics Data System (ADS)

    Anjos, Pedro H. A.; Dias, Eduardo O.; Miranda, José A.

    2017-01-01

    The lifting Hele-Shaw cell problem is a variant of the classical constant-gap Hele-Shaw situation in which the cell gap width is time dependent. Experiments on Newtonian fluid flows in lifting Hele-Shaw cells with large lifting velocities reveal the development of dendriticlike fingered structures that compete among themselves. The usual Darcy law description of the problem, where inertial effects are neglected, has not been able to explain the origin of these competing sidebranched patterns. In this work we use a generalized Darcy law and a perturbative mode-coupling theory to investigate the impact of inertia on the pattern-forming dynamics of the system. Two main results are deduced: Inertia induces a mechanism for finger sidebranching formation and favors the intensification of finger competition events.

  13. Measurement of a superconducting energy gap in a homogeneously amorphous insulator.

    PubMed

    Sherman, D; Kopnov, G; Shahar, D; Frydman, A

    2012-04-27

    We present tunneling spectroscopy measurements that directly reveal the existence of a superconducting gap in the insulating state of homogenously disordered amorphous indium oxide films. Two films on both sides of the disorder induced superconductor to insulator transition show the same energy gap scale. This energy gap persists up to relatively high magnetic fields and is observed across the magnetoresistance peak typical of disordered superconductors. The results provide useful information for understanding the nature of the insulating state in the disorder induced superconductor to insulator transition.

  14. High power experimental studies of hybrid photonic band gap accelerator structures

    DOE PAGES

    Zhang, JieXi; Munroe, Brian J.; Xu, Haoran; ...

    2016-08-31

    This paper reports the first high power tests of hybrid photonic band gap (PBG) accelerator structures. Three hybrid PBG (HPBG) structures were designed, built and tested at 17.14 GHz. Each structure had a triangular lattice array with 60 inner sapphire rods and 24 outer copper rods sandwiched between copper disks. The dielectric PBG band gap map allows the unique feature of overmoded operation in a TM 02 mode, with suppression of both lower order modes, such as the TM 11 mode, as well as higher order modes. The use of sapphire rods, which have negligible dielectric loss, required inclusion ofmore » the dielectric birefringence in the design. The three structures were designed to sequentially reduce the peak surface electric field. Simulations showed relatively high surface fields at the triple point as well as in any gaps between components in the clamped assembly. The third structure used sapphire rods with small pin extensions at each end and obtained the highest gradient of 19 MV/m, corresponding to a surface electric field of 78 MV/m, with a breakdown probability of 5×10 –1 per pulse per meter for a 100-ns input power pulse. Operation at a gradient above 20 MV/m led to runaway breakdowns with extensive light emission and eventual damage. For all three structures, multipactor light emission was observed at gradients well below the breakdown threshold. As a result, this research indicated that multipactor triggered at the triple point limited the operational gradient of the hybrid structure.« less

  15. Mode(s) of action of arsenic-induced tumors and toxicity.

    EPA Science Inventory

    Although arsenic has long been known for its toxicity and carcinogenicity, it is unknown exactly how these adverse health effects ocurr. Three of the biggest unresolved issues in arsenic exposures and adverse health effects are (a) what is (are) the mode of action (MOA)(s) of ar...

  16. Shear Stress induced Stretching of Red Blood Cells by Oscillating Bubbles within a Narrow Gap

    NASA Astrophysics Data System (ADS)

    Li, Fenfang; Mohammadzadeh, Milad; Ohl, Claus-Dieter; Claus-Dieter Ohl Team

    2013-11-01

    The flow pattern, especially the boundary layer caused by the expanding/contracting bubble in a narrow gap (15 μm) and the resultant stretching of red blood cells is investigated in this work. High speed recordings show that a red blood cell (biconcave shape, thickness of 1-2 μm) can be elongated to five times its original length by a laser-induced cavitation bubble within the narrow gap. However, flexible cancer cells in suspension (RKO, spherical shape, diameter of 10-15 μm) are hardly elongated under the same experimental condition. We hypothesize that the shear stress at the boundary layer is crucial for this elongation to occur. Therefore, in order to resolve the related fluid dynamics, we conducted numerical simulations using the finite element method (Fluent). The rapidly expanding/contracting vapor bubble is successfully modeled by employing viscosity and surface tension. The transient pressure inside the bubble and the velocity profile of the flow is obtained. We observe strong shear near the upper and lower boundary during the bubble oscillation. The flow fields are compared with analytical solutions to transient and pulsating flows in 2D. In the experiment the red blood cells sit within the lower boundary layer, thus are probably elongated by this strong shear flow. In contrast, the spherical cancer cells are of comparable size to the gap height so that they are lesser affected by this boundary layer flow.

  17. Mixing induced by a propagating normal mode in long term experiments

    NASA Astrophysics Data System (ADS)

    Dossmann, Yvan; Pollet, Florence; Odier, Philippe; Dauxois, Thierry

    2017-04-01

    The energy pathways from propagating internal waves to the scales of irreversible mixing in the ocean are numerous. The triadic resonant instability (TRI) is an intrinsic destabilization process that can lead to mixing away from topographies. It consists in the destabilization of a primary internal wave generation leading to the radiation of two secondary waves of lower frequencies and different wave vectors. In the process, internal wave energy is carried down to smaller scales. A previous study focused on the assessment of instantaneous turbulent fluxes fields associated with the TRI process in laboratory experiments [1]. The present study investigates the integrated impact of mixing processes induced by a propagative normal mode over long term experiments using a similar setup. Configurations for which the TRI process is either favored or inhibited are tackled. Optical measurements using the light attenuation technique allow to follow the internal waves dynamics and the evolution of the density profile between two runs of one hour typical duration. The horizontally averaged turbulent diffusivity Kt(z) and the mixing efficiency Γ are assessed. One finds values up to Kt = 10-6 m2/s and Γ = 11 %, with slightly larger values in the presence of TRI. The maximum value for Kt is measured at the position(s) of the maximum shear normal mode shear for both normal modes 1 and 2. The development of staircases in the density profile is observed after several hours of forcing. This mechanism can be explained by Phillips' argument by which sharp interfaces can form due to vertical variations of the buoyancy flux. The staircases are responsible for large variations in the vertical distribution of turbulent diffusivity. These results could help to refine parameterizations of the impact of low order normal modes in ocean mixing. Reference : [1] Dossmann et al. 2016, Mixing by internal waves quantified using combined PIV/PLIF technique, Experiments in Fluids, 57, 132.

  18. Numerical simulation of operation modes in atmospheric pressure uniform barrier discharge excited by a saw-tooth voltage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Xuechen; Niu Dongying; Yin Zengqian

    2012-08-15

    The characteristics of dielectric barrier discharge excited by a saw-tooth voltage are simulated in atmospheric pressure helium based on a one-dimensional fluid model. A stepped discharge is obtained per half voltage cycle with gas gap width less than 2 mm by the simulation, which is different to the pulsed discharge excited by a sinusoidal voltage. For the stepped discharge, the plateau duration increases with increasing the voltage amplitude and decreasing the gas gap. Therefore, uniform discharge with high temporal duty ratio can be realized with small gap through increasing the voltage amplitude. The maximal densities of both electron and ionmore » appear near the anode and the electric field is almost uniformly distributed along the gap, which indicates that the stepped discharge belongs to a Townsend mode. In contrast to the stepped discharge with small gas gap, a pulsed discharge can be obtained with large gas gap. Through analyzing the spatial density distributions of electron and ion and the electric field, the pulsed discharge is in a glow mode. The voltage-current (V-I) characteristics are analyzed for the above mentioned discharges under different gas gaps, from which the different discharge modes are verified.« less

  19. Observation of beta-induced Alfvén Eigenmode in J-TEXT tokamak

    NASA Astrophysics Data System (ADS)

    Liu, Linzi; He, Jiyang; Hu, Qiming; Zhuang, Ge

    2015-06-01

    High-frequency oscillations have been frequently observed under the conditions of tearing modes and runaway electrons in J-TEXT Ohmic plasmas. It is found the frequencies of these oscillations range from 20 to 45 kHz, being consistent with the beta-induced Alfvén Eigenmodes (BAEs) with the same order of the low-frequency gap induced by finite beta effects and the coupling of the shear Alfvén wave with the compressional response of the plasma. The exciting conditions for BAEs are investigated, which indicate that runaway electrons, as well as magnetic perturbations contributed by magnetic islands, are indispensable in the excitation of BAEs. In addition, externally applied static resonant magnetic perturbations (RMPs) are used to excite BAEs successfully for the first time in J-TEXT, as indicated by high frequency oscillations (~30 kHz). Further studies show that BAEs can be excited only when the coil current of RMP is stronger than 4 kA, and the strength of BAEs becomes stronger with stronger RMP. To assess the verification of the BAEs, the frequencies of observed modes are compared to the calculated frequencies of the BAE frequency gap in the Alfvén continuum, namely the continuum accumulation point (CAP), and they are found to be close.

  20. Theoretical study of the Raman active CDW gap mode in manganites.

    PubMed

    Rout, G C; Panda, Saswati; Behera, S N

    2010-09-22

    We report here the microscopic theory of the Raman spectra of the colossal magnetoresistive (CMR) manganite systems. The system is described by a model Hamiltonian consisting of the double exchange interaction in addition to the charge ordering interaction in the e(g) band and spin-spin interaction among the t(2g) core electrons. Further the phonon coupling to the conduction electron density is incorporated in the model for phonons in the harmonic approximation. The spectral density function for the Raman spectra is calculated from the imaginary part of the phonon Green's function. The calculated spectra display the Raman active bare phonon peak along with the charge ordering peak. The magnetic field and temperature dependence of the charge ordering peak agrees with the 480 cm(-1) JT mode observed in the experiments. The evolution of this mode is investigated in the report.

  1. Nitric oxide, PKC-ε, and connexin43 are crucial for ischemic preconditioning-induced chemical gap junction uncoupling

    PubMed Central

    Sun, Tao; Hao, Li; Lin, Ming-Jie; Zhong, Jing-Quan

    2016-01-01

    Ischemic preconditioning (IPC) maintains connexin43 (Cx43) phosphorylation and reduces chemical gap junction (GJ) coupling in cardiomyocytes to protect against ischemic damage. However, the signal transduction pathways underlying these effects are not fully understood. Here, we investigated whether nitric oxide (NO) and protein kinase C-ε (PKC-ε) contribute to IPC-induced cardioprotection by maintaining Cx43 phosphorylation and inhibiting chemical GJ coupling. IPC reduced ischemia-induced myocardial infarction and increased cardiomyocyte survival; phosphorylated Cx43, eNOS, and PKC-ε levels; and chemical GJ uncoupling. Administration of the NO donor SNAP mimicked the effects of IPC both in vivo and in vitro, maintaining Cx43 phosphorylation, promoting chemical GJ uncoupling, and reducing myocardial infarction. Preincubation with the NO synthase inhibitor L-NAME or PKC-ε translocation inhibitory peptide (PKC-ε-TIP) abolished these effects of IPC. Additionally, by inducing NO production, IPC induced translocation of PKC-ε, but not PKC-δ, from the cytosolic to the membrane fraction in primary cardiac myocytes. IPC-induced cardioprotection thus involves increased NO production, PKC-ε translocation, Cx43 phosphorylation, and chemical GJ uncoupling. PMID:27655723

  2. Current induced multi-mode propagating spin waves in a spin transfer torque nano-contact with strong perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Mohseni, S. Morteza; Yazdi, H. F.; Hamdi, M.; Brächer, T.; Mohseni, S. Majid

    2018-03-01

    Current induced spin wave excitations in spin transfer torque nano-contacts are known as a promising way to generate exchange-dominated spin waves at the nano-scale. It has been shown that when these systems are magnetized in the film plane, broken spatial symmetry of the field around the nano-contact induced by the Oersted field opens the possibility for spin wave mode co-existence including a non-linear self-localized spin-wave bullet and a propagating mode. By means of micromagnetic simulations, here we show that in systems with strong perpendicular magnetic anisotropy (PMA) in the free layer, two propagating spin wave modes with different frequency and spatial distribution can be excited simultaneously. Our results indicate that in-plane magnetized spin transfer nano-contacts in PMA materials do not host a solitonic self-localized spin-wave bullet, which is different from previous studies for systems with in plane magnetic anisotropy. This feature renders them interesting for nano-scale magnonic waveguides and crystals since magnon transport can be configured by tuning the applied current.

  3. Probing plasmonic breathing modes optically

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krug, Markus K., E-mail: markus.krug@uni-graz.at; Reisecker, Michael; Hohenau, Andreas

    2014-10-27

    The confinement of surface plasmon modes in flat nanoparticles gives rise to plasmonic breathing modes. With a vanishing net dipole moment, breathing modes do not radiate, i.e., they are optically dark. Having thus escaped optical detection, breathing modes were only recently revealed in silver nanodisks with electron energy loss spectroscopy in an electron microscope. We show that for disk diameters >200 nm, retardation induced by oblique optical illumination relaxes the optically dark character. This makes breathing modes and thus the full plasmonic mode spectrum accessible to optical spectroscopy. The experimental spectroscopy data are in excellent agreement with numerical simulations.

  4. ECCD-induced tearing mode stabilization via active control in coupled NIMROD/GENRAY HPC simulations

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas; Kruger, S. E.; Held, E. D.; Harvey, R. W.

    2012-10-01

    Actively controlled electron cyclotron current drive (ECCD) applied within magnetic islands formed by neoclassical tearing modes (NTMs) has been shown to control or suppress these modes. In conjunction with ongoing experimental efforts, the development and verification of integrated numerical models of this mode stabilization process is of paramount importance in determining optimal NTM stabilization strategies for ITER. In the advanced model developed by the SWIM Project, the equations/closures of extended (not reduced) MHD contain new terms arising from 3D (not toroidal or bounce-averaged) RF-induced quasilinear diffusion. The quasilinear operator formulation models the equilibration of driven current within the island using the same extended MHD dynamics which govern the physics of island formation, yielding a more accurate and self-consistent picture of 3D island response to RF drive. Results of computations which model ECRF deposition using ray tracing, assemble the 3D quasilinear operator from ray/profile data, and calculate the resultant forces within the extended MHD code will be presented. We also discuss the efficacy of various numerical active feedback control systems, which gather data from synthetic diagnostics to dynamically trigger and spatially align RF fields.

  5. Evaluation of neural reflex activation as a mode of action for the acute respiratory effects of ozone.

    PubMed

    Prueitt, Robyn L; Goodman, Julie E

    2016-09-01

    Exposure to elevated levels of ozone has been associated with a variety of respiratory-related health endpoints in both epidemiology and controlled human exposure studies, including lung function decrements and airway inflammation. A mode of action (MoA) for these effects has not been established, but it has been proposed that they may occur through ozone-induced activation of neural reflexes. We critically reviewed experimental studies of ozone exposure and neural reflex activation and applied the International Programme on Chemical Safety (IPCS) mode-of-action/human relevance framework to evaluate the biological plausibility and human relevance of this proposed MoA. Based on the currently available experimental data, we found that the proposed MoA of neural reflex activation is biologically plausible for the endpoint of ozone-induced lung function decrements at high ozone exposures, but further studies are needed to fill important data gaps regarding the relevance of this MoA at lower exposures. A role for the proposed MoA in ozone-induced airway inflammation is less plausible, as the evidence is conflicting and is also of unclear relevance given the lack of studies conducted at lower exposures. The evidence suggests a different MoA for ozone-induced inflammation that may still be linked to the key events in the proposed MoA, such that neural reflex activation may have some degree of involvement in modulating ozone-induced neutrophil influx, even if it is not a direct role.

  6. A magnetically tunable non-Bragg defect mode in a corrugated waveguide filled with liquid crystals

    NASA Astrophysics Data System (ADS)

    Zhang, Lu; Fan, Ya-Xian; Liu, Huan; Han, Xu; Lu, Wen-Qiang; Tao, Zhi-Yong

    2018-04-01

    A magnetically tunable, non-Bragg defect mode (NBDM) was created in the terahertz frequency range by inserting a defect in the middle of a periodically corrugated waveguide filled with liquid crystals (LCs). In the periodic waveguide, non-Bragg gaps beyond the Bragg ones, which appear in the transmission spectra, are created by different transverse mode resonances. The transmission spectra of the waveguide containing a defect showed that a defect mode was present inside the non-Bragg gap. The NBDM has quite different features compared to the Bragg defect mode, which includes more complex, high-order guided wave modes. In our study, we filled the corrugated waveguide with LCs to realize the tunability of the NBDM. The simulated results showed that the NBDM in a corrugated waveguide filled with LCs can be used in filters, sensors, switches, and other terahertz integrated devices.

  7. Gaps induced by inversion symmetry breaking and second-generation Dirac cones in graphene/hexagonal boron nitride

    DOE PAGES

    Wang, Eryin; Lu, Xiaobo; Ding, Shijie; ...

    2016-08-22

    Graphene/hexagonal boron nitride (h-BN) has emerged as a model van der Waals heterostructure as the superlattice potential, which is induced by lattice mismatch and crystal orientation, gives rise to various novel quantum phenomena, such as the self-similar Hofstadter butterfly states. Although the newly generated second-generation Dirac cones (SDCs) are believed to be crucial for understanding such intriguing phenomena, fundamental knowledge of SDCs, such as locations and dispersion, and the effect of inversion symmetry breaking on the gap opening, still remains highly debated due to the lack of direct experimental results. In this work we report direct experimental results on themore » dispersion of SDCs in 0°-aligned graphene/h-BN heterostructures using angle-resolved photoemission spectroscopy. Our data unambiguously reveal SDCs at the corners of the superlattice Brillouin zone, and at only one of the two superlattice valleys. Moreover, gaps of approximately 100 meV and approximately 160 meV are observed at the SDCs and the original graphene Dirac cone, respectively. Our work highlights the important role of a strong inversion-symmetry-breaking perturbation potential in the physics of graphene/h-BN, and fills critical knowledge gaps in the band structure engineering of Dirac fermions by a superlattice potential.« less

  8. Packaging-induced failure of semiconductor lasers and optical telecommunications components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharps, J.A.

    1996-12-31

    Telecommunications equipment for field deployment generally have specified lifetimes of > 100,000 hr. To achieve this high reliability, it is common practice to package sensitive components in hermetic, inert gas environments. The intent is to protect components from particulate and organic contamination, oxidation, and moisture. However, for high power density 980 nm diode lasers used in optical amplifiers, the authors found that hermetic, inert gas packaging induced a failure mode not observed in similar, unpackaged lasers. They refer to this failure mode as packaging-induced failure, or PIF. PIF is caused by nanomole amounts of organic contamination which interact with highmore » intensity 980 nm light to form solid deposits over the emitting regions of the lasers. These deposits absorb 980 nm light, causing heating of the laser, narrowing of the band gap, and eventual thermal runaway. The authors have found PIF is averted by packaging with free O{sub 2} and/or a getter material that sequesters organics.« less

  9. Temperature-Induced Topological Phase Transition in HgTe Quantum Wells

    NASA Astrophysics Data System (ADS)

    Kadykov, A. M.; Krishtopenko, S. S.; Jouault, B.; Desrat, W.; Knap, W.; Ruffenach, S.; Consejo, C.; Torres, J.; Morozov, S. V.; Mikhailov, N. N.; Dvoretskii, S. A.; Teppe, F.

    2018-02-01

    We report a direct observation of temperature-induced topological phase transition between the trivial and topological insulator states in an HgTe quantum well. By using a gated Hall bar device, we measure and represent Landau levels in fan charts at different temperatures, and we follow the temperature evolution of a peculiar pair of "zero-mode" Landau levels, which split from the edge of electronlike and holelike subbands. Their crossing at a critical magnetic field Bc is a characteristic of inverted band structure in the quantum well. By measuring the temperature dependence of Bc, we directly extract the critical temperature Tc at which the bulk band gap vanishes and the topological phase transition occurs. Above this critical temperature, the opening of a trivial gap is clearly observed.

  10. Formation of functional gap junctions in amniotic fluid-derived stem cells induced by transmembrane co-culture with neonatal rat cardiomyocytes

    PubMed Central

    Connell, Jennifer Petsche; Augustini, Emily; Moise, Kenneth J; Johnson, Anthony; Jacot, Jeffrey G

    2013-01-01

    Amniotic fluid-derived stem cells (AFSC) have been reported to differentiate into cardiomyocyte-like cells and form gap junctions when directly mixed and cultured with neonatal rat ventricular myocytes (NRVM). This study investigated whether or not culture of AFSC on the opposite side of a Transwell membrane from NRVM, allowing for contact and communication without confounding factors such as cell fusion, could direct cardiac differentiation and enhance gap junction formation. Results were compared to shared media (Transwell), conditioned media and monoculture media controls. After a 2-week culture period, AFSC did not express cardiac myosin heavy chain or troponin T in any co-culture group. Protein expression of cardiac calsequestrin 2 was up-regulated in direct transmembrane co-cultures and media control cultures compared to the other experimental groups, but all groups were up-regulated compared with undifferentiated AFSC cultures. Gap junction communication, assessed with a scrape-loading dye transfer assay, was significantly increased in direct transmembrane co-cultures compared to all other conditions. Gap junction communication corresponded with increased connexin 43 gene expression and decreased phosphorylation of connexin 43. Our results suggest that direct transmembrane co-culture does not induce cardiomyocyte differentiation of AFSC, though calsequestrin expression is increased. However, direct transmembrane co-culture does enhance connexin-43-mediated gap junction communication between AFSC. PMID:23634988

  11. Structural Dynamics of Tropical Moist Forest Gaps

    PubMed Central

    Hunter, Maria O.; Keller, Michael; Morton, Douglas; Cook, Bruce; Lefsky, Michael; Ducey, Mark; Saleska, Scott; de Oliveira, Raimundo Cosme; Schietti, Juliana

    2015-01-01

    Gap phase dynamics are the dominant mode of forest turnover in tropical forests. However, gap processes are infrequently studied at the landscape scale. Airborne lidar data offer detailed information on three-dimensional forest structure, providing a means to characterize fine-scale (1 m) processes in tropical forests over large areas. Lidar-based estimates of forest structure (top down) differ from traditional field measurements (bottom up), and necessitate clear-cut definitions unencumbered by the wisdom of a field observer. We offer a new definition of a forest gap that is driven by forest dynamics and consistent with precise ranging measurements from airborne lidar data and tall, multi-layered tropical forest structure. We used 1000 ha of multi-temporal lidar data (2008, 2012) at two sites, the Tapajos National Forest and Ducke Reserve, to study gap dynamics in the Brazilian Amazon. Here, we identified dynamic gaps as contiguous areas of significant growth, that correspond to areas > 10 m2, with height <10 m. Applying the dynamic definition at both sites, we found over twice as much area in gap at Tapajos National Forest (4.8 %) as compared to Ducke Reserve (2.0 %). On average, gaps were smaller at Ducke Reserve and closed slightly more rapidly, with estimated height gains of 1.2 m y-1 versus 1.1 m y-1 at Tapajos. At the Tapajos site, height growth in gap centers was greater than the average height gain in gaps (1.3 m y-1 versus 1.1 m y-1). Rates of height growth between lidar acquisitions reflect the interplay between gap edge mortality, horizontal ingrowth and gap size at the two sites. We estimated that approximately 10 % of gap area closed via horizontal ingrowth at Ducke Reserve as opposed to 6 % at Tapajos National Forest. Height loss (interpreted as repeat damage and/or mortality) and horizontal ingrowth accounted for similar proportions of gap area at Ducke Reserve (13 % and 10 %, respectively). At Tapajos, height loss had a much stronger signal (23

  12. Structural Dynamics of Tropical Moist Forest Gaps.

    PubMed

    Hunter, Maria O; Keller, Michael; Morton, Douglas; Cook, Bruce; Lefsky, Michael; Ducey, Mark; Saleska, Scott; de Oliveira, Raimundo Cosme; Schietti, Juliana

    2015-01-01

    Gap phase dynamics are the dominant mode of forest turnover in tropical forests. However, gap processes are infrequently studied at the landscape scale. Airborne lidar data offer detailed information on three-dimensional forest structure, providing a means to characterize fine-scale (1 m) processes in tropical forests over large areas. Lidar-based estimates of forest structure (top down) differ from traditional field measurements (bottom up), and necessitate clear-cut definitions unencumbered by the wisdom of a field observer. We offer a new definition of a forest gap that is driven by forest dynamics and consistent with precise ranging measurements from airborne lidar data and tall, multi-layered tropical forest structure. We used 1000 ha of multi-temporal lidar data (2008, 2012) at two sites, the Tapajos National Forest and Ducke Reserve, to study gap dynamics in the Brazilian Amazon. Here, we identified dynamic gaps as contiguous areas of significant growth, that correspond to areas > 10 m2, with height <10 m. Applying the dynamic definition at both sites, we found over twice as much area in gap at Tapajos National Forest (4.8%) as compared to Ducke Reserve (2.0%). On average, gaps were smaller at Ducke Reserve and closed slightly more rapidly, with estimated height gains of 1.2 m y-1 versus 1.1 m y-1 at Tapajos. At the Tapajos site, height growth in gap centers was greater than the average height gain in gaps (1.3 m y-1 versus 1.1 m y-1). Rates of height growth between lidar acquisitions reflect the interplay between gap edge mortality, horizontal ingrowth and gap size at the two sites. We estimated that approximately 10% of gap area closed via horizontal ingrowth at Ducke Reserve as opposed to 6% at Tapajos National Forest. Height loss (interpreted as repeat damage and/or mortality) and horizontal ingrowth accounted for similar proportions of gap area at Ducke Reserve (13% and 10%, respectively). At Tapajos, height loss had a much stronger signal (23% versus 6

  13. Whispering Gallery Mode Optomechanical Resonator

    NASA Technical Reports Server (NTRS)

    Aveline, David C.; Strekalov, Dmitry V.; Yu, Nan; Yee, Karl Y.

    2012-01-01

    Great progress has been made in both micromechanical resonators and micro-optical resonators over the past decade, and a new field has recently emerged combining these mechanical and optical systems. In such optomechanical systems, the two resonators are strongly coupled with one influencing the other, and their interaction can yield detectable optical signals that are highly sensitive to the mechanical motion. A particularly high-Q optical system is the whispering gallery mode (WGM) resonator, which has many applications ranging from stable oscillators to inertial sensor devices. There is, however, limited coupling between the optical mode and the resonator s external environment. In order to overcome this limitation, a novel type of optomechanical sensor has been developed, offering great potential for measurements of displacement, acceleration, and mass sensitivity. The proposed hybrid device combines the advantages of all-solid optical WGM resonators with high-quality micro-machined cantilevers. For direct access to the WGM inside the resonator, the idea is to radially cut precise gaps into the perimeter, fabricating a mechanical resonator within the WGM. Also, a strategy to reduce losses has been developed with optimized design of the cantilever geometry and positions of gap surfaces.

  14. Photonic-band-gap gyrotron amplifier with picosecond pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nanni, Emilio A.; Jawla, Sudheer; Lewis, Samantha M.

    Here, we report the amplification of 250 GHz pulses as short as 260 ps without observation of pulse broadening using a photonic-band-gap circuit gyrotron traveling-wave-amplifier. The gyrotron amplifier operates with a device gain of 38 dB and an instantaneous bandwidth of 8 GHz. The operational bandwidth of the amplifier can be tuned over 16 GHz by adjusting the operating voltage of the electron beam and the magnetic field. The amplifier uses a 30 cm long photonic-band-gap interaction circuit to confine the desired TE 03-like operating mode while suppressing lower order modes which can result in undesired oscillations. The circuit gainmore » is >55 dB for a beam voltage of 23 kV and a current of 700 mA. These results demonstrate the wide bandwidths and a high gain achievable with gyrotron amplifiers. The amplification of picosecond pulses of variable lengths, 260–800 ps, shows good agreement with the theory using the coupled dispersion relation and the gain-spectrum of the amplifier as measured with quasi-CW input pulses.« less

  15. Photonic-band-gap gyrotron amplifier with picosecond pulses

    DOE PAGES

    Nanni, Emilio A.; Jawla, Sudheer; Lewis, Samantha M.; ...

    2017-12-05

    Here, we report the amplification of 250 GHz pulses as short as 260 ps without observation of pulse broadening using a photonic-band-gap circuit gyrotron traveling-wave-amplifier. The gyrotron amplifier operates with a device gain of 38 dB and an instantaneous bandwidth of 8 GHz. The operational bandwidth of the amplifier can be tuned over 16 GHz by adjusting the operating voltage of the electron beam and the magnetic field. The amplifier uses a 30 cm long photonic-band-gap interaction circuit to confine the desired TE 03-like operating mode while suppressing lower order modes which can result in undesired oscillations. The circuit gainmore » is >55 dB for a beam voltage of 23 kV and a current of 700 mA. These results demonstrate the wide bandwidths and a high gain achievable with gyrotron amplifiers. The amplification of picosecond pulses of variable lengths, 260–800 ps, shows good agreement with the theory using the coupled dispersion relation and the gain-spectrum of the amplifier as measured with quasi-CW input pulses.« less

  16. Features of Superconducting Gaps Revealed by STM/STS in Iron Based Superconductors With and Without Hole Pockets

    NASA Astrophysics Data System (ADS)

    Wen, Hai-Hu; Hai-Hu Wen Team

    The pairing mechanism and gap structure in iron based superconductors (IBS) remains unresolved. We have conducted extensive STM/STS study on the Na(Fe1-xTx) As (T =Co, Cu, Mn), Ba1-xKxFe2As2KFe2As2, and Li1-xFexOHFeSe single crystals. We found the clear evidence of the in-gap quasi-particle states induced by the non-magnetic Cu impurities in Na(Fe0.97- x Co0.03Cux) As, giving strong evidence of the S+/- pairing. Furthermore, we show the presence of the bosonic mode with the energy identical to that of the neutron resonance and a simple linear relation Ω/kBTc ~ 4.3, being explained a consequence of the S+/-pairing. The STS spectrum in Li1-x FexOHFeSe clearly indicates the presence of double superconducting gaps with Δ1 ~ 14.3 meV and Δ2 ~ 8.6 meV. Further analysis based on QPI allows us to assign the larger (smaller) gap to the outer (inner) hybridized electron pockets. The huge value 2Δ1/kBTc = 8.7 discovered here undoubtedly proves the strong coupling mechanism. This work was supported by the Ministry of Science and Technology of China, National Natural Science Foundation of China.

  17. Self-amplified photo-induced gap quenching in a correlated electron material

    PubMed Central

    Mathias, S.; Eich, S.; Urbancic, J.; Michael, S.; Carr, A. V.; Emmerich, S.; Stange, A.; Popmintchev, T.; Rohwer, T.; Wiesenmayer, M.; Ruffing, A.; Jakobs, S.; Hellmann, S.; Matyba, P.; Chen, C.; Kipp, L.; Bauer, M.; Kapteyn, H. C.; Schneider, H. C.; Rossnagel, K.; Murnane, M. M.; Aeschlimann, M.

    2016-01-01

    Capturing the dynamic electronic band structure of a correlated material presents a powerful capability for uncovering the complex couplings between the electronic and structural degrees of freedom. When combined with ultrafast laser excitation, new phases of matter can result, since far-from-equilibrium excited states are instantaneously populated. Here, we elucidate a general relation between ultrafast non-equilibrium electron dynamics and the size of the characteristic energy gap in a correlated electron material. We show that carrier multiplication via impact ionization can be one of the most important processes in a gapped material, and that the speed of carrier multiplication critically depends on the size of the energy gap. In the case of the charge-density wave material 1T-TiSe2, our data indicate that carrier multiplication and gap dynamics mutually amplify each other, which explains—on a microscopic level—the extremely fast response of this material to ultrafast optical excitation. PMID:27698341

  18. Self-amplified photo-induced gap quenching in a correlated electron material

    DOE PAGES

    Mathias, S.; Eich, S.; Urbancic, J.; ...

    2016-10-04

    Capturing the dynamic electronic band structure of a correlated material presents a powerful capability for uncovering the complex couplings between the electronic and structural degrees of freedom. When combined with ultrafast laser excitation, new phases of matter can result, since far-from-equilibrium excited states are instantaneously populated. Here, we elucidate a general relation between ultrafast non-equilibrium electron dynamics and the size of the characteristic energy gap in a correlated electron material. Here, we show that carrier multiplication via impact ionization can be one of the most important processes in a gapped material, and that the speed of carrier multiplication critically dependsmore » on the size of the energy gap. In the case of the charge-density wave material 1T-TiSe 2, our data indicate that carrier multiplication and gap dynamics mutually amplify each other, which explains—on a microscopic level—the extremely fast response of this material to ultrafast optical excitation.« less

  19. Factors Influencing Students' Choice of Study Mode: An Australian Case Study

    ERIC Educational Resources Information Center

    Ifenthaler, Dirk; Gosper, Maree; Bailey, Matthew; Kretzschmar, Mandy

    2014-01-01

    Despite the expansion of online and blended learning, as well as open education, little research has been undertaken on what motivates students to enrol in particular study modes at university level. This project addresses this gap in higher education research by exploring the reasons why humanities students choose to study through specific modes.…

  20. Excitation of high frequency pressure driven modes in non-axisymmetric equilibrium at high βpol in PBX-M

    NASA Astrophysics Data System (ADS)

    Sesnic, S.; Holland, A.; Kaita, R.; Kaye, S. M.; Okabayashi, M.; Takahashi, H.; Asakura, N.; Bell, R. E.; Bernabei, S.; Chance, M. S.; Duperrex, P.-A.; Fonck, R. J.; Gammel, G. M.; Greene, G. J.; Hatcher, R. E.; Jardin, S. C.; Jiang, T.; Kessel, C. E.; Kugel, H. W.; Leblanc, B.; Levinton, F. M.; Manickam, J.; Ono, M.; Paul, S. F.; Powell, E. T.; Qin, Y.; Roberts, D. W.; Sauthoff, N. R.

    1993-12-01

    High frequency pressure driven modes have been observed in high poloidal beta discharges in the Princeton Beta Experiment Modification (PBX-M). These modes are excited in a non-axisymmetric equilibrium characterized by a large, low frequency mt = 1/nt = 1 island, and they are capable of expelling fast ions. The modes reside on or very close to the q = 1 surface and have mode numbers with either mh = nh or (less probably) mh/nh = mh/(mh-1), with mh varying between 3 and 10. Occasionally these modes are simultaneously localized in the vicinity of the ml = 2/nl = 1 island. The high frequency modes near the q = 1 surface also exhibit a ballooning character, being significantly stronger on the large major radius side of the plasma. When a large mt = 1/nt = 1 island is present, the mode is poloidally localized in the immediate vicinity of the X point of the island. The modes occur exclusively in high beta beam heated discharges and are likely to be driven by the beam ions. They can thus be a manifestation of either a toroidicity induced shear Alfven eigenmode (TAE) at q = (2mh+1)/2nh, a kinetic ballooning mode, or some other type of pressure driven (high β) mode. Most of the data are consistent with the theoretical predictions for the TAE gap mode. Since the high frequency modes in PBX-M, however, are found exclusively on or in the immediate neighbourhood of magnetic surfaces with low rational numbers (q = 1, 2,...), other possibilities are not excluded

  1. Quantum transport in alkane molecular wires: Effects of binding modes and anchoring groups

    NASA Astrophysics Data System (ADS)

    Sheng, W.; Li, Z. Y.; Ning, Z. Y.; Zhang, Z. H.; Yang, Z. Q.; Guo, H.

    2009-12-01

    Effects of binding modes and anchoring groups on nonequilibrium electronic transport properties of alkane molecular wires are investigated from atomic first-principles based on density functional theory and nonequilibrium Green's function formalism. Four typical binding modes, top, bridge, hcp-hollow, and fcc-hollow, are considered at one of the two contacts. For wires with three different anchoring groups, dithiol, diamine, or dicarboxylic acid, the low bias conductances resulting from the four binding modes are all found to have either a high or a low value, well consistent with recent experimental observations. The trend can be rationalized by the behavior of electrode-induced gap states at small bias. When bias increases to higher values, states from the anchoring groups enter into the bias window and contribute significantly to the tunneling process so that transport properties become more complicated for the four binding modes. Other low bias behaviors including the values of the inverse length scale for tunneling characteristic, contact resistance, and the ratios of the high/low conductance values are also calculated and compared to experimental results. The conducting capabilities of the three anchoring groups are found to decrease from dithiol, diamine to dicarboxylic-acid, largely owing to a decrease in binding strength to the electrodes. Our results give a clear microscopic picture to the transport physics and provide reasonable qualitative explanations for the corresponding experimental data.

  2. Entropically Stabilized Colloidal Crystals Hold Entropy in Collective Modes

    NASA Astrophysics Data System (ADS)

    Antonaglia, James; van Anders, Greg; Glotzer, Sharon

    Ordered structures can be stabilized by entropy if the system has more ordered microstates available than disordered ones. However, ``locating'' the entropy in an ordered system is challenging because entropic ordering is necessarily a collective effort emerging from the interactions of large numbers of particles. Yet, we can characterize these crystals using simple traditional tools, because entropically stabilized crystals exhibit collective motion and effective stiffness. For a two-dimensional system of hard hexagons, we calculate the dispersion relations of both vibrational and librational collective modes. We find the librational mode is gapped, and the gap provides an emergent, macroscopic, and density-dependent length scale. We quantify the entropic contribution of each collective mode and find that below this length scale, the dominant entropic contributions are librational, and above this length scale, vibrations dominate. This length scale diverges in the high-density limit, so entropy is found predominantly in libration near dense packing. National Science Foundation Graduate Research Fellowship Program Grant No. DGE 1256260, Advanced Research Computing at the University of Michigan, Ann Arbor, and the Simons Foundation.

  3. Generation of orthogonally polarized self-mode-locked Nd:YAG lasers with tunable beat frequencies from the thermally induced birefringence.

    PubMed

    Sung, C L; Cheng, H P; Lee, C Y; Cho, C Y; Liang, H C; Chen, Y F

    2016-04-15

    The simultaneous self-mode-locking of two orthogonally polarized states in a Nd:YAG laser is demonstrated by using a short linear cavity. A total output power of 3.8 W can be obtained at an incident pump power of 8.2 W. The beat frequency Δfc between two orthogonally polarized mode-locked components is observed and measured precisely. It is found that the beat frequency increases linearly with an increase in the absorbed pump power. The origin of the beat frequency can be utterly manifested by considering the thermally induced birefringence in the Nd:YAG crystal. The present result offers a promising approach to generate orthogonally polarized mode-locked lasers with tunable beat frequency.

  4. Noise-induced creation and annihilation of dissipative solitons (DS) in a passively mode-locked laser

    NASA Astrophysics Data System (ADS)

    Teamir, Tesfay; Elahi, Parviz; Makey, Ghaith; Fatih, Ilday

    Passive mode-locking, resulting in self-organized formation of femtoseconds-long laser pulses, constitutes a far-from-equilibrium steady state. Mode-locking is not only important for laser technology, but also of fundamental interest for broad class of systems. Despite numerous studies on their nonlinear dynamics, there is little understanding of the transitions that intrinsic noise can induce. We show that transitions between single-DS and multi-DS states can be triggered. Near critical points, DS states are observed to repeatedly exchange energy among themselves, form DS clusters with varying or vibrating temporal separation, often followed by random transformations among different states. This critical behavior appears to be caused by soliton-soliton or soliton-generated dispersive wave interactions. Irrespective of the specifics of the state, the measured noise level of the laser starts at a moderate value, is then reduced, as the DS's energy is increased. Further increases in power (nonlinearity) drives it towards a noisy critical state, where creation or annihilation of pulses occurs just before a new steady state is formed. These noise-induced transitions between steady states can shed light on the thermodynamics of far-from-equilibrium systems. TàBITAK (113F319) and ERC CoG (617521).

  5. Correlations, soliton modes, and non-Hermitian linear mode transmutation in the one-dimensional noisy Burgers equation.

    PubMed

    Fogedby, Hans C

    2003-08-01

    Using the previously developed canonical phase space approach applied to the noisy Burgers equation in one dimension, we discuss in detail the growth morphology in terms of nonlinear soliton modes and superimposed linear modes. We moreover analyze the non-Hermitian character of the linear mode spectrum and the associated dynamical pinning, and mode transmutation from diffusive to propagating behavior induced by the solitons. We discuss the anomalous diffusion of growth modes, switching and pathways, correlations in the multisoliton sector, and in detail the correlations and scaling properties in the two-soliton sector.

  6. Active control of ECCD-induced tearing mode stabilization in coupled NIMROD/GENRAY HPC simulations

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas; Kruger, Scott; Held, Eric

    2013-10-01

    Actively controlled ECCD applied in or near magnetic islands formed by NTMs has been successfully shown to control/suppress these modes, despite uncertainties in island O-point locations (where induced current is most stabilizing) relative to the RF deposition region. Integrated numerical models of the mode stabilization process can resolve these uncertainties and augment experimental efforts to determine optimal ITER NTM stabilization strategies. The advanced SWIM model incorporates RF effects in the equations/closures of extended MHD as 3D (not toroidal or bounce-averaged) quasilinear diffusion coefficients. Equilibration of driven current within the island geometry is modeled using the same extended MHD dynamics governing the physics of island formation, yielding a more accurate/self-consistent picture of island response to RF drive. Additionally, a numerical active feedback control system gathers data from synthetic diagnostics to dynamically trigger & spatially align the RF fields. Computations which model the RF deposition using ray tracing, assemble the 3D QL operator from ray & profile data, calculate the resultant xMHD forces, and dynamically realign the RF to more efficiently stabilize modes are presented; the efficacy of various control strategies is also discussed. Supported by the SciDAC Center for Extended MHD Modeling (CEMM); see also https://cswim.org.

  7. Discrete monotron oscillator having one-half wavelength coaxial resonator with one-quarter wavelength gap spacing

    DOEpatents

    Carlsten, B.E.; Haynes, W.B.

    1998-02-03

    A discrete monotron oscillator for use in a high power microwave device is formed with a microwave oscillator having a half-wavelength resonant coaxial microwave cavity operating in fundamental TEM mode for microwave oscillation with an inner conductor defining a drift tube for propagating an electron beam and an outer conductor coaxial with the inner conductor. The inner conductor defines a modulating gap and an extraction gap downstream of the modulating gap. The modulating gap and the extraction gap connect the coaxial microwave cavity with the drift tube so that energy for the microwave oscillation is extracted from the electron beam at the extraction gap and modulates the electron beam at the modulating gap. For high power operation, an annular electron beam is used. 8 figs.

  8. Discrete monotron oscillator having one-half wavelength coaxial resonator with one-quarter wavelength gap spacing

    DOEpatents

    Carlsten, Bruce E.; Haynes, William B.

    1998-01-01

    A discrete monotron oscillator for use in a high power microwave device is formed with a microwave oscillator having a half-wavelength resonant coaxial microwave cavity operating in fundamental TEM mode for microwave oscillation with an inner conductor defining a drift tube for propagating an electron beam and an outer conductor coaxial with the inner conductor. The inner conductor defines a modulating gap and an extraction gap downstream of the modulating gap. The modulating gap and the extraction gap connect the coaxial microwave cavity with the drift tube so that energy for the microwave oscillation is extracted from the electron beam at the extraction gap and modulates the electron beam at the modulating gap. For high power operation, an annular electron beam is used.

  9. Foraging mode and evolution of strike-induced chemosensory searching in lizards.

    PubMed

    Cooper, William E

    2003-04-01

    Strike-induced chemosensory searching (SICS) in lizards and snakes is a means of relocating prey by scent-trailing. The two main components of SICS are an elevated tongue-flick rate for vomerolfactory sampling after biting prey (PETF) and searching movements. In combination, these behaviors permit scent-trailing. Prey chemical discrimination, which is a prerequisite for SICS, is present in active foragers, but not in ambush foragers. Using comparative data. I show that searching movements and SICS have undergone correlated evolution with foraging mode and with prey chemical discrimination in lizards. This suggests that active foraging selects for prey chemical discrimination, which is then employed to search for escaped prey using the typical movements and tongue-flicking behaviors of active foragers. SICS in lizards is simply heightened active foraging after biting prey. In nonvenomous snakes, SICS is similar to that in lizards but is not restricted to active foragers. Only highly venomous snakes voluntarily release dangerous prey upon envenomation, pause to let the venom incapacitate the prey, and then relocate the prey by scent-trailing. PETF was observed in two ambush foragers and is not evolutionarily correlated with foraging mode or searching movements. Because it occurs in species lacking prey chemical discrimination, such PETF may be a response to gustatory cues or to internal chemicals not encountered on surfaces or trails of uninjured prey.

  10. Oscillatory modes of extended Nile River records (A.D. 622-1922)

    NASA Astrophysics Data System (ADS)

    Kondrashov, D.; Feliks, Y.; Ghil, M.

    2005-05-01

    The historical records of the low- and high-water levels of the Nile River are among the longest climatic records that have near-annual resolution. There are few gaps in the first part of the records (A.D. 622-1470) and larger gaps later (A.D. 1471-1922). We apply advanced spectral methods, Singular-Spectrum Analysis (SSA) and the Multi-Taper Method (MTM), to fill the gaps and to locate interannual and interdecadal periodicities. The gap filling uses a novel, iterative version of SSA. Our analysis reveals several statistically significant features of the records: a nonlinear, data-adaptive trend that includes a 256-year cycle, a quasi-quadriennial (4.2-year) and a quasi-biennial (2.2-year) mode, as well as additional periodicities of 64, 19, 12, and, most strikingly, 7 years. The quasi-quadriennial and quasi-biennial modes support the long-established connection between the Nile River discharge and the El-Niño/Southern Oscillation (ENSO) phenomenon in the Indo-Pacific Ocean. The longest periods might be of astronomical origin. The 7-year periodicity, possibly related to the biblical cycle of lean and fat years, seems to be due to North Atlantic influences.

  11. Estimating the pressure of laser-induced plasma shockwave by stimulated Raman shift of lattice translational modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Zhanlong; College of Physics, Jilin University, Changchun 130012; Shan Xiaoning

    2012-07-09

    The current paper investigates stimulated Raman scattering (SRS) when laser-induced plasma is formed in heavy water by focusing an intense pulsed 532 nm Nd:YAG laser beam at room temperature. An unexpected low-frequency SRS line attributed to the lattice translational modes of ice-VII (D{sub 2}O) is observed. The pressure of the plasma shockwave is estimated using low-frequency SRS line shift.

  12. Mobile phone radiation induces mode-dependent DNA damage in a mouse spermatocyte-derived cell line: a protective role of melatonin.

    PubMed

    Liu, Chuan; Gao, Peng; Xu, Shang-Cheng; Wang, Yuan; Chen, Chun-Hai; He, Min-Di; Yu, Zheng-Ping; Zhang, Lei; Zhou, Zhou

    2013-11-01

    To evaluate whether exposure to mobile phone radiation (MPR) can induce DNA damage in male germ cells. A mouse spermatocyte-derived GC-2 cell line was exposed to a commercial mobile phone handset once every 20 min in standby, listen, dialed or dialing modes for 24 h. DNA damage was determined using an alkaline comet assay. The levels of DNA damage were significantly increased following exposure to MPR in the listen, dialed and dialing modes. Moreover, there were significantly higher increases in the dialed and dialing modes than in the listen mode. Interestingly, these results were consistent with the radiation intensities of these modes. However, the DNA damage effects of MPR in the dialing mode were efficiently attenuated by melatonin pretreatment. These results regarding mode-dependent DNA damage have important implications for the safety of inappropriate mobile phone use by males of reproductive age and also suggest a simple preventive measure: Keeping mobile phones as far away from our body as possible, not only during conversations but during 'dialed' and 'dialing' operation modes. Since the 'dialed' mode is actually part of the standby mode, mobile phones should be kept at a safe distance from our body even during standby operation. Furthermore, the protective role of melatonin suggests that it may be a promising pharmacological candidate for preventing mobile phone use-related reproductive impairments.

  13. Metal-induced gap states in ferroelectric capacitors and its relationship with complex band structures

    NASA Astrophysics Data System (ADS)

    Junquera, Javier; Aguado-Puente, Pablo

    2013-03-01

    At metal-isulator interfaces, the metallic wave functions with an energy eigenvalue within the band gap decay exponentially inside the dielectric (metal-induced gap states, MIGS). These MIGS can be actually regarded as Bloch functions with an associated complex wave vector. Usually only real values of the wave vectors are discussed in text books, since infinite periodicity is assumed and, in that situation, wave functions growing exponentially in any direction would not be physically valid. However, localized wave functions with an exponential decay are indeed perfectly valid solution of the Schrodinger equation in the presence of defects, surfaces or interfaces. For this reason, properties of MIGS have been typically discussed in terms of the complex band structure of bulk materials. The probable dependence on the interface particulars has been rarely taken into account explicitly due to the difficulties to include them into the model or simulations. We aim to characterize from first-principles simulations the MIGS in realistic ferroelectric capacitors and their connection with the complex band structure of the ferroelectric material. We emphasize the influence of the real interface beyond the complex band structure of bulk materials. Financial support provided by MICINN Grant FIS2009-12721-C04-02, and by the European Union Grant No. CP-FP 228989-2 ``OxIDes''. Computer resources provided by the RES.

  14. A Multi-Mode Shock Tube for Investigation of Blast-Induced Traumatic Brain Injury

    PubMed Central

    Reneer, Dexter V.; Hisel, Richard D.; Hoffman, Joshua M.; Kryscio, Richard J.; Lusk, Braden T.

    2011-01-01

    Abstract Blast-induced mild traumatic brain injury (bTBI) has become increasingly common in recent military conflicts. The mechanisms by which non-impact blast exposure results in bTBI are incompletely understood. Current small animal bTBI models predominantly utilize compressed air-driven membrane rupture as their blast wave source, while large animal models use chemical explosives. The pressure-time signature of each blast mode is unique, making it difficult to evaluate the contributions of the different components of the blast wave to bTBI when using a single blast source. We utilized a multi-mode shock tube, the McMillan blast device, capable of utilizing compressed air- and compressed helium-driven membrane rupture, and the explosives oxyhydrogen and cyclotrimethylenetrinitramine (RDX, the primary component of C-4 plastic explosives) as the driving source. At similar maximal blast overpressures, the positive pressure phase of compressed air-driven blasts was longer, and the positive impulse was greater, than those observed for shockwaves produced by other driving sources. Helium-driven shockwaves more closely resembled RDX blasts, but by displacing air created a hypoxic environment within the shock tube. Pressure-time traces from oxyhydrogen-driven shockwaves were very similar those produced by RDX, although they resulted in elevated carbon monoxide levels due to combustion of the polyethylene bag used to contain the gases within the shock tube prior to detonation. Rats exposed to compressed air-driven blasts had more pronounced vascular damage than those exposed to oxyhydrogen-driven blasts of the same peak overpressure, indicating that differences in blast wave characteristics other than peak overpressure may influence the extent of bTBI. Use of this multi-mode shock tube in small animal models will enable comparison of the extent of brain injury with the pressure-time signature produced using each blast mode, facilitating evaluation of the blast wave

  15. A multi-mode shock tube for investigation of blast-induced traumatic brain injury.

    PubMed

    Reneer, Dexter V; Hisel, Richard D; Hoffman, Joshua M; Kryscio, Richard J; Lusk, Braden T; Geddes, James W

    2011-01-01

    Blast-induced mild traumatic brain injury (bTBI) has become increasingly common in recent military conflicts. The mechanisms by which non-impact blast exposure results in bTBI are incompletely understood. Current small animal bTBI models predominantly utilize compressed air-driven membrane rupture as their blast wave source, while large animal models use chemical explosives. The pressure-time signature of each blast mode is unique, making it difficult to evaluate the contributions of the different components of the blast wave to bTBI when using a single blast source. We utilized a multi-mode shock tube, the McMillan blast device, capable of utilizing compressed air- and compressed helium-driven membrane rupture, and the explosives oxyhydrogen and cyclotrimethylenetrinitramine (RDX, the primary component of C-4 plastic explosives) as the driving source. At similar maximal blast overpressures, the positive pressure phase of compressed air-driven blasts was longer, and the positive impulse was greater, than those observed for shockwaves produced by other driving sources. Helium-driven shockwaves more closely resembled RDX blasts, but by displacing air created a hypoxic environment within the shock tube. Pressure-time traces from oxyhydrogen-driven shockwaves were very similar those produced by RDX, although they resulted in elevated carbon monoxide levels due to combustion of the polyethylene bag used to contain the gases within the shock tube prior to detonation. Rats exposed to compressed air-driven blasts had more pronounced vascular damage than those exposed to oxyhydrogen-driven blasts of the same peak overpressure, indicating that differences in blast wave characteristics other than peak overpressure may influence the extent of bTBI. Use of this multi-mode shock tube in small animal models will enable comparison of the extent of brain injury with the pressure-time signature produced using each blast mode, facilitating evaluation of the blast wave components

  16. Parafermionic zero modes in gapless edge states

    NASA Astrophysics Data System (ADS)

    Clarke, David

    It has been recently demonstrated1 that Majorana zero modes may occur in the gapless edge of Abelian quantum Hall states at a boundary between different edge phases bordering the same bulk. Such a zero mode is guaranteed to occur when an edge phase that supports fermionic excitations borders one that does not. Here we generalize to the non-charge conserving case such as may occur when a superconductor abuts the quantum Hall edge. We find that not only Majorana zero modes, but their ℤN generalizations (known as parafermionic zero modes) may occur at boundaries between edge phases in a fractional quantum Hall state. In particular, we find thst the ν = 1 / 3 fractional quantum Hall state supports topologically distinct edge phases separated by ℤ3 parafermionic zero modes when charge conservation is broken. Paradoxically, an arrangement of phases can be made such that only an odd number of localized parafermionic zero modes occur around the edge of a quantum Hall droplet. Such an arrangement is not allowed in a gapped system, but here the paradox is resolved due to an extended zero mode in the edge spectrum. LPS-MPO-CMTC, JQI-NSF-PFC, Microsoft Station Q.

  17. Power coupling mode transitions induced by tailored voltage waveforms in capacitive oxygen discharges

    NASA Astrophysics Data System (ADS)

    Derzsi, Aranka; Bruneau, Bastien; Gibson, Andrew Robert; Johnson, Erik; O'Connell, Deborah; Gans, Timo; Booth, Jean-Paul; Donkó, Zoltán

    2017-03-01

    Low-pressure capacitively coupled radio frequency discharges operated in O2 and driven by tailored voltage waveforms are investigated experimentally and by means of kinetic simulations. Pulse-type (peaks/valleys) and sawtooth-type voltage waveforms that consist of up to four consecutive harmonics of the fundamental frequency are used to study the amplitude asymmetry effect as well as the slope asymmetry effect at different fundamental frequencies (5, 10, and 15 MHz) and at different pressures (50-700 mTorr). Values of the DC self-bias determined experimentally and spatio-temporal excitation rates derived from phase resolved optical emission spectroscopy measurements are compared with particle-in-cell/Monte Carlo collisions simulations. The spatio-temporal distributions of the excitation rate obtained from experiments are well reproduced by the simulations. Transitions of the discharge electron heating mode from the drift-ambipolar mode to the α-mode are induced by changing the number of consecutive harmonics included in the driving voltage waveform or by changing the gas pressure. Changing the number of harmonics in the waveform has a strong effect on the electronegativity of the discharge, on the generation of the DC self-bias and on the control of ion properties at the electrodes, both for pulse-type, as well as sawtooth-type driving voltage waveforms The effect of the surface quenching rate of oxygen singlet delta metastable molecules on the spatio-temporal excitation patterns is also investigated.

  18. The locking and unlocking thresholds for tearing modes in a cylindrical tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Wenlong; Zhu, Ping, E-mail: pzhu@ustc.edu.cn; Department of Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706

    2016-03-15

    The locking and unlocking thresholds for tearing modes are in general different. In this work, the physics origin for this difference is illustrated from theory analysis, and a numerical procedure is developed to find both locking and unlocking thresholds. In particular, a new scaling law for the unlocking threshold that is valid in both weak and strong rotation regimes has been derived from the lowest amplitude of the RMP (resonant magnetic perturbation) allowed for the locked-mode solution. Above the unlocking threshold, the criterion for the phase-flip instability is extended to identify the entire locked-mode states. Two different regimes of themore » RMP amplitude in terms of the accessibility of the locked-mode states have been found. In the first regime, the locked-mode state may or may not be accessible depending on the initial conditions of an evolving island. In the second regime, the locked-mode state can always be reached regardless of the initial conditions of the tearing mode. The lowest RMP amplitude for the second regime is determined to be the mode-locking threshold. The different characteristics of the two regimes above the unlocking threshold reveal the underlying physics for the gap between the locking and unlocking thresholds and provide an explanation for the closely related and widely observed hysteresis phenomena in island evolution during the sweeping process of the RMP amplitude up and down across that threshold gap.« less

  19. Damping-free collective oscillations of a driven two-component Bose gas in optical lattices

    NASA Astrophysics Data System (ADS)

    Shchedrin, Gavriil; Jaschke, Daniel; Carr, Lincoln D.

    2018-04-01

    We explore the quantum many-body physics of a driven Bose-Einstein condensate in optical lattices. The laser field induces a gap in the generalized Bogoliubov spectrum proportional to the effective Rabi frequency. The lowest-lying modes in a driven condensate are characterized by zero group velocity and nonzero current. Thus, the laser field induces roton modes, which carry interaction in a driven condensate. We show that collective excitations below the energy of the laser-induced gap remain undamped, while above the gap they are characterized by a significantly suppressed Landau damping rate.

  20. Cross mode modulation in multimode fibers.

    PubMed

    Kroushkov, Dimitar I; Rademacher, Georg; Petermann, Klaus

    2013-05-15

    We show that Kerr nonlinearity induced intermodal power transfer in a particular mode group of a multimode fiber can be formulated by the same type of equation used to describe the effect of cross polarization modulation in single-mode fibers.

  1. Nonlinear Gap Junctions Enable Long-Distance Propagation of Pulsating Calcium Waves in Astrocyte Networks

    PubMed Central

    Goldberg, Mati; De Pittà, Maurizio; Volman, Vladislav; Berry, Hugues; Ben-Jacob, Eshel

    2010-01-01

    A new paradigm has recently emerged in brain science whereby communications between glial cells and neuron-glia interactions should be considered together with neurons and their networks to understand higher brain functions. In particular, astrocytes, the main type of glial cells in the cortex, have been shown to communicate with neurons and with each other. They are thought to form a gap-junction-coupled syncytium supporting cell-cell communication via propagating Ca2+ waves. An identified mode of propagation is based on cytoplasm-to-cytoplasm transport of inositol trisphosphate (IP3) through gap junctions that locally trigger Ca2+ pulses via IP3-dependent Ca2+-induced Ca2+ release. It is, however, currently unknown whether this intracellular route is able to support the propagation of long-distance regenerative Ca2+ waves or is restricted to short-distance signaling. Furthermore, the influence of the intracellular signaling dynamics on intercellular propagation remains to be understood. In this work, we propose a model of the gap-junctional route for intercellular Ca2+ wave propagation in astrocytes. Our model yields two major predictions. First, we show that long-distance regenerative signaling requires nonlinear coupling in the gap junctions. Second, we show that even with nonlinear gap junctions, long-distance regenerative signaling is favored when the internal Ca2+ dynamics implements frequency modulation-encoding oscillations with pulsating dynamics, while amplitude modulation-encoding dynamics tends to restrict the propagation range. As a result, spatially heterogeneous molecular properties and/or weak couplings are shown to give rise to rich spatiotemporal dynamics that support complex propagation behaviors. These results shed new light on the mechanisms implicated in the propagation of Ca2+ waves across astrocytes and the precise conditions under which glial cells may participate in information processing in the brain. PMID:20865153

  2. Transcriptional profile of diurnon-induces toxicity on the urinary bladder of male wistar rats to inform mode of action

    EPA Science Inventory

    Diuron (3-(3,4-dichlorophenyl)-1,1-dimethylurea) is a substituted urea herbicide that induces rat urinary bladder urothelial tumors at high dietary levels (2500 ppm). The specific mode of action and molecular alterations triggered by diuron, however, have not been clarified. Th...

  3. Controlling magnetic and electric dipole modes in hollow silicon nanocylinders.

    PubMed

    van de Haar, Marie Anne; van de Groep, Jorik; Brenny, Benjamin J M; Polman, Albert

    2016-02-08

    We propose a dielectric nanoresonator geometry consisting of hollow dielectric nanocylinders which support geometrical resonances. We fabricate such hollow Si particles with an outer diameter of 108-251 nm on a Si substrate, and determine their resonant modes with cathodo-luminescence (CL) spectroscopy and optical dark-field (DF) scattering measurements. The scattering behavior is numerically investigated in a systematic fashion as a function of wavelength and particle geometry. We find that the additional design parameter as a result of the introduction of a center gap can be used to control the relative spectral spacing of the resonant modes, which will enable additional control over the angular radiation pattern of the scatterers. Furthermore, the gap offers direct access to the enhanced magnetic dipole modal field in the center of the particle.

  4. Dual-LP11 mode 4×4 MIMO-OFDM transmission over a two-mode fiber.

    PubMed

    Al Amin, Abdullah; Li, An; Chen, Simin; Chen, Xi; Gao, Guanjun; Shieh, William

    2011-08-15

    We report successful transmission of dual-LP(11) mode (LP(11a) and LP(11b)), dual polarization coherent optical orthogonal frequency-division multiplexing (CO-OFDM) signals over two-mode fibers (TMF) using all-fiber mode converters. Mode converters based on mechanically induced long-period grating with better than 20 dB extinction ratios are realized and used for interfacing single-mode fiber transmitter and receivers to the TMF. We demonstrate that by using 4×4 MIMO-OFDM processing, the random coupling of the two LP(11) spatial modes can be successfully tracked and equalized with a one-tap frequency-domain equalizer. We achieve successful transmission of 35.3 Gb/s over 26-km two-mode fiber with less than 3 dB penalty. © 2011 Optical Society of America

  5. Multiple detuned-resonator induced transparencies in MIM plasmonic waveguide

    NASA Astrophysics Data System (ADS)

    Liu, Li; Xia, Sheng-Xuan; Luo, Xin; Zhai, Xiang; Yu, Ya-Bin; Wang, Ling-Ling

    2018-07-01

    We propose a simple plasmonic waveguide system based on two-detuned resonators, which demonstrates multiple detuned-resonator induced transparencies at visible and near-infrared region. The performance of electromagnetic responses can be agile manipulated by tuning the asymmetry degree of the structure and the width of the split gap. Three transmission dips exist with the symmetrical design while three peaks emerge between the dip-position of the transmission spectra with two detuned resonators. The physical mechanism behind the plasmon-induced transparency (PIT) resonance is revealed as being attributed to the constructive interference between the confined modes in the detuned resonators. The former tend to the role of two coupled radiative oscillators. The work may open up avenues for the control of light in highly integrated optical circuits.

  6. Tomographic reconstruction of heat release rate perturbations induced by helical modes in turbulent swirl flames

    NASA Astrophysics Data System (ADS)

    Moeck, Jonas P.; Bourgouin, Jean-François; Durox, Daniel; Schuller, Thierry; Candel, Sébastien

    2013-04-01

    Swirl flows with vortex breakdown are widely used in industrial combustion systems for flame stabilization. This type of flow is known to sustain a hydrodynamic instability with a rotating helical structure, one common manifestation of it being the precessing vortex core. The role of this unsteady flow mode in combustion is not well understood, and its interaction with combustion instabilities and flame stabilization remains unclear. It is therefore important to assess the structure of the perturbation in the flame that is induced by this helical mode. Based on principles of tomographic reconstruction, a method is presented to determine the 3-D distribution of the heat release rate perturbation associated with the helical mode. Since this flow instability is rotating, a phase-resolved sequence of projection images of light emitted from the flame is identical to the Radon transform of the light intensity distribution in the combustor volume and thus can be used for tomographic reconstruction. This is achieved with one stationary camera only, a vast reduction in experimental and hardware requirements compared to a multi-camera setup or camera repositioning, which is typically required for tomographic reconstruction. Different approaches to extract the coherent part of the oscillation from the images are discussed. Two novel tomographic reconstruction algorithms specifically tailored to the structure of the heat release rate perturbations related to the helical mode are derived. The reconstruction techniques are first applied to an artificial field to illustrate the accuracy. High-speed imaging data acquired in a turbulent swirl-stabilized combustor setup with strong helical mode oscillations are then used to reconstruct the 3-D structure of the associated perturbation in the flame.

  7. Thermally triggered phononic gaps in liquids at THz scale

    DOE PAGES

    Bolmatov, Dima; Zhernenkov, Mikhail; Zavyalov, Dmitry; ...

    2016-01-14

    In this study we present inelastic X-ray scattering experiments in a diamond anvil cell and molecular dynamic simulations to investigate the behavior of phononic excitations in liquid Ar. The spectra calculated using molecular dynamics were found to be in a good agreement with the experimental data. Furthermore, we observe that, upon temperature increases, a low-frequency transverse phononic gap emerges while high-frequency propagating modes become evanescent at the THz scale. The effect of strong localization of a longitudinal phononic mode in the supercritical phase is observed for the first time. The evidence for the high-frequency transverse phononic gap due to themore » transition from an oscillatory to a ballistic dynamic regimes of motion is presented and supported by molecular dynamics simulations. This transition takes place across the Frenkel line thermodynamic limit which demarcates compressed liquid and non-compressed fluid domains on the phase diagram and is supported by calculations within the Green-Kubo phenomenological formalism. These results are crucial to advance the development of novel terahertz thermal devices, phononic lenses, mirrors, and other THz metamaterials.« less

  8. Radiative heat transfer exceeding the blackbody limit between macroscale planar surfaces separated by a nanosize vacuum gap

    NASA Astrophysics Data System (ADS)

    Bernardi, Michael P.; Milovich, Daniel; Francoeur, Mathieu

    2016-09-01

    Using Rytov's fluctuational electrodynamics framework, Polder and Van Hove predicted that radiative heat transfer between planar surfaces separated by a vacuum gap smaller than the thermal wavelength exceeds the blackbody limit due to tunnelling of evanescent modes. This finding has led to the conceptualization of systems capitalizing on evanescent modes such as thermophotovoltaic converters and thermal rectifiers. Their development is, however, limited by the lack of devices enabling radiative transfer between macroscale planar surfaces separated by a nanosize vacuum gap. Here we measure radiative heat transfer for large temperature differences (~120 K) using a custom-fabricated device in which the gap separating two 5 × 5 mm2 intrinsic silicon planar surfaces is modulated from 3,500 to 150 nm. A substantial enhancement over the blackbody limit by a factor of 8.4 is reported for a 150-nm-thick gap. Our device paves the way for the establishment of novel evanescent wave-based systems.

  9. Lattice gauge action suppressing near-zero modes of H{sub W}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukaya, Hidenori; Hashimoto, Shoji; Kaneko, Takashi

    2006-11-01

    We propose a lattice action including unphysical Wilson fermions with a negative mass m{sub 0} of the order of the inverse lattice spacing. With this action, the exact zero mode of the Hermitian Wilson-Dirac operator H{sub W}(m{sub 0}) cannot appear and near-zero modes are strongly suppressed. By measuring the spectral density {rho}({lambda}{sub W}), we find a gap near {lambda}{sub W}=0 on the configurations generated with the standard and improved gauge actions. This gap provides a necessary condition for the proof of the exponential locality of the overlap-Dirac operator by Hernandez, Jansen, and Luescher. Since the number of near-zero modes ismore » small, the numerical cost to calculate the matrix sign function of H{sub W}(m{sub 0}) is significantly reduced, and the simulation including dynamical overlap fermions becomes feasible. We also introduce a pair of twisted mass pseudofermions to cancel the unwanted higher mode effects of the Wilson fermions. The gauge coupling renormalization due to the additional fields is then minimized. The topological charge measured through the index of the overlap-Dirac operator is conserved during continuous evolutions of gauge field variables.« less

  10. Photonic-band-gap gyrotron amplifier with picosecond pulses.

    PubMed

    Nanni, Emilio A; Jawla, Sudheer; Lewis, Samantha M; Shapiro, Michael A; Temkin, Richard J

    2017-12-04

    We report the amplification of 250 GHz pulses as short as 260 ps without observation of pulse broadening using a photonic-band-gap circuit gyrotron traveling-wave-amplifier. The gyrotron amplifier operates with a device gain of 38 dB and an instantaneous bandwidth of 8 GHz. The operational bandwidth of the amplifier can be tuned over 16 GHz by adjusting the operating voltage of the electron beam and the magnetic field. The amplifier uses a 30 cm long photonic-band-gap interaction circuit to confine the desired TE 03 -like operating mode while suppressing lower order modes which can result in undesired oscillations. The circuit gain is >55 dB for a beam voltage of 23 kV and a current of 700 mA. These results demonstrate the wide bandwidths and a high gain achievable with gyrotron amplifiers. The amplification of picosecond pulses of variable lengths, 260-800 ps, shows good agreement with the theory using the coupled dispersion relation and the gain-spectrum of the amplifier as measured with quasi-CW input pulses.

  11. Role of Fe doping in tuning the band gap of TiO2 for photo-oxidation induced cytotoxicity paradigm

    PubMed Central

    George, Saji; Pokhrel, Suman; Ji, Zhaoxia; Henderson, Bryana L.; Xia, Tian; Li, LinJiang; Zink, Jeffrey I.; Nel, André E.; Mädler, Lutz

    2014-01-01

    UV-Light induced electron-hole (e−/h+) pair generation and free radical production in TiO2 based nanoparticles is a major conceptual paradigm for biological injury. However, to date, this hypothesis has been difficult to experimentally verify due to the high energy of UV light that is intrinsically highly toxic to biological systems. Here, a versatile flame spray pyrolysis (FSP) synthetic process has been exploited to synthesize a library of iron doped (0–10 at wt%) TiO2 nanoparticles. These particles have been tested for photoactivation-mediated cytotoxicity using near-visible light exposure. The reduction in TiO2 band gap energy with incremental levels of Fe loading maintained the nanoparticle crystalline structure in spite of homogeneous Fe distribution (demonstrated by XRD, HRTEM, SAED, EFTEM, and EELS). Photochemical studies showed that band gap energy was reciprocally tuned proportional to the Fe content. The photo-oxidation capability of Fe-doped TiO2 was found to increase during near-visible light exposure. Use of a macrophage cell line to evaluate cytotoxic and ROS production showed increased oxidant injury and cell death in parallel with a decrease in band gap energy. These findings demonstrate the importance of band gap energy in the phototoxic response of the cell to TiO2 nanoparticles and reflect the potential of this material to generate adverse effects in humans and the environment during high intensity light exposure. PMID:21678906

  12. Robust manipulation of light using topologically protected plasmonic modes.

    PubMed

    Liu, Chenxu; Gurudev Dutt, M V; Pekker, David

    2018-02-05

    We propose using a topological plasmonic crystal structure composed of an array of nearly parallel nanowires with unequal spacing for manipulating light. In the paraxial approximation, the Helmholtz equation that describes the propagation of light along the nanowires maps onto the Schrödinger equation of the Su-Schrieffer-Heeger (SSH) model. Using a full three-dimensional finite difference time domain solution of the Maxwell equations, we verify the existence of topological defect modes, with sub-wavelength localization, bound to domain walls of the plasmonic crystal. We show that by manipulating domain walls we can construct spatial mode filters that couple bulk modes to topological defect modes, and topological beam-splitters that couple two topological defect modes. Finally, we show that the structures are tolerant to fabrication errors with an inverse length-scale smaller than the topological band gap.

  13. TOPICAL REVIEW: Experimental study of organic zero-gap conductor α-(BEDT-TTF)2I3

    NASA Astrophysics Data System (ADS)

    Tajima, Naoya; Kajita, Koji

    2009-04-01

    A zero-gap state with a Dirac cone type energy dispersion was discovered in the organic conductor α-(BEDT-TTF)2I3 under high hydrostatic pressures. This is the first two-dimensional (2D) zero-gap state discovered in bulk crystals with a layered structure. In contrast to the case of graphene, the Dirac cone in this system is highly anisotropic. The present system, therefore, provides a new type of massless Dirac fermion system with anisotropic Fermi velocity. This system exhibits remarkable transport phenomena characteristic to electrons on the Dirac cone type energy structure. The carrier density, written as n~T2, is a characteristic feature of the 2D zero-gap structure. On the other hand, the resistivity per layer (sheet resistance RS) is given as RS=h/e2 and is independent of temperature. The effect of a magnetic field on samples in the zero-gap system was examined. The difference between zero-gap conductors and conventional conductors is the appearance of a Landau level called the zero mode at the contact points when a magnetic field is applied normal to the conductive layer. Zero-mode Landau carriers give rise to strong negative out-of-plane magnetoresistance.

  14. Damage localization by statistical evaluation of signal-processed mode shapes

    NASA Astrophysics Data System (ADS)

    Ulriksen, M. D.; Damkilde, L.

    2015-07-01

    Due to their inherent, ability to provide structural information on a local level, mode shapes and t.lieir derivatives are utilized extensively for structural damage identification. Typically, more or less advanced mathematical methods are implemented to identify damage-induced discontinuities in the spatial mode shape signals, hereby potentially facilitating damage detection and/or localization. However, by being based on distinguishing damage-induced discontinuities from other signal irregularities, an intrinsic deficiency in these methods is the high sensitivity towards measurement, noise. The present, article introduces a damage localization method which, compared to the conventional mode shape-based methods, has greatly enhanced robustness towards measurement, noise. The method is based on signal processing of spatial mode shapes by means of continuous wavelet, transformation (CWT) and subsequent, application of a generalized discrete Teager-Kaiser energy operator (GDTKEO) to identify damage-induced mode shape discontinuities. In order to evaluate whether the identified discontinuities are in fact, damage-induced, outlier analysis of principal components of the signal-processed mode shapes is conducted on the basis of T2-statistics. The proposed method is demonstrated in the context, of analytical work with a free-vibrating Euler-Bernoulli beam under noisy conditions.

  15. Dynamical phenomena at the inner edge of the Keeler gap

    NASA Astrophysics Data System (ADS)

    Tajeddine, Radwan; Nicholson, Philip D.; Tiscareno, Matthew S.; Hedman, Matthew M.; Burns, Joseph A.; El Moutamid, Maryame

    2017-06-01

    We analyze several thousand Cassini ISS images in order to study the inner edge of the Keeler gap in Saturn's outer A ring. We find strong evidence for an m = 32 perturbation with a mean amplitude of radial variation of 4.5 km. Phase analysis yields a pattern speed consistent with the mean motion of Prometheus, indicating that this pattern is generated by the 32:31 Inner Lindblad resonance with Prometheus. In addition, we find evidence of 18-lobed and 20-lobed patterns with amplitudes of ∼1.5 km. These patterns, whose rotation rates correspond to resonance locations ∼4 km interior to the gap edge, are believed to be normal modes. The former is probably related to the nearby 18:17 (m = 18) resonance with Pandora. In addition to these resonant and normal mode patterns, we also observe multiple localized features that appear to move at the local keplerian rate and that persist for only a few months. One hypothesis is that different groups of ring particles at the inner edge of the gap may be reacting differently to the resonance with Prometheus, with local variations in the forced eccentricity and/or pericenter; an alternative hypothesis is the existence of several unseen objects embedded at or near the inner edge of the Keeler gap, similar to those suspected to exist at the outer edges of the A and B rings. In either case, observations of the ring edge at opposite ansae demonstrate that the localized features must be on eccentric orbits.

  16. The interplay of the gap, the magnetic resonance, and the van Hove singularity

    NASA Astrophysics Data System (ADS)

    Levy, Giorgio; Berthod, Christophe; Fischer, Oystein

    2007-03-01

    The characteristic features of the tunneling spectra in the Bi-based HTS are a d-wave like gap structure, strong and often asymmetric coherence peaks, and an asymmetric dip-hump structure at higher energy. Hoogenboom et al. [1] analysed the spectra of the two-layer compound Bi2212 and showed that all of these properties can be understood assuming d-wave superconductivity, a band structure as measured by ARPES, and an interaction of the quasiparticles with the magnetic resonant mode. In particular the asymmetric dip-hump results in this model from the interplay of the gap, the mode and the van Hove singularity present in the band structure. Here we analyse new data for the three-layer compound Bi2223. Unlike in Ref. [1], we perform full unconstrained least-square fits in order to determine the various parameters of the model directly from the experimental data. This allows us to determine the doping dependence of the gap and of the magnetic resonance energy. [1] B. W. Hoogenboom, C. Berthod, M. Peter, ø. Fischer, and A. A. Kordyuk, Phys. Rev. B 67, 224502 (2003).

  17. Pulmonary Capillary Hemorrhage Induced by Different Imaging Modes of Diagnostic Ultrasound.

    PubMed

    Miller, Douglas L; Dong, Zhihong; Dou, Chunyan; Raghavendran, Krishnan

    2018-05-01

    The induction of pulmonary capillary hemorrhage (PCH) is a well-established non-thermal biological effect of pulsed ultrasound in animal models. Typically, research has been done using laboratory pulsed ultrasound systems with a fixed beam and, recently, by B-mode diagnostic ultrasound. In this study, a GE Vivid 7 Dimension ultrasound machine with 10 L linear array probe was used at 6.6 MHz to explore the relative PCH efficacy of B-mode imaging, M-mode (fixed beam), color angio mode Doppler imaging and pulsed Doppler mode (fixed beam). Anesthetized rats were scanned in a warmed water bath, and thresholds were determined by scanning at different power steps, 2 dB apart, in different groups of six rats. Exposures were performed for 5 min, except for a 15-s M-mode group. Peak rarefactional pressure amplitude thresholds were 1.5 MPa for B-mode and 1.1 MPa for angio Doppler mode. For the non-scanned modes, thresholds were 1.1 MPa for M-mode and 0.6 MPa for pulsed Doppler mode with its relatively high duty cycle (7.7 × 10 -3 vs. 0.27 × 10 -3 for M-mode). Reducing the duration of M-mode to 15 s (from 300 s) did not significantly reduce PCH (area, volume or depth) for some power settings, but the threshold was increased to 1.4 MPa. Pulmonary sonographers should be aware of this unique adverse bio-effect of diagnostic ultrasound and should consider reduced on-screen mechanical index settings for potentially vulnerable patients. Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  18. Coupling of Higgs and Leggett modes in non-equilibrium superconductors.

    PubMed

    Krull, H; Bittner, N; Uhrig, G S; Manske, D; Schnyder, A P

    2016-06-21

    In equilibrium systems amplitude and phase collective modes are decoupled, as they are mutually orthogonal excitations. The direct detection of these Higgs and Leggett collective modes by linear-response measurements is not possible, because they do not couple directly to the electromagnetic field. In this work, using numerical exact simulations we show for the case of two-gap superconductors, that optical pump-probe experiments excite both Higgs and Leggett modes out of equilibrium. We find that this non-adiabatic excitation process introduces a strong interaction between the collective modes, which is absent in equilibrium. Moreover, we propose a type of pump-probe experiment, which allows to probe and coherently control the Higgs and Leggett modes, and thus the order parameter directly. These findings go beyond two-band superconductors and apply to general collective modes in quantum materials.

  19. Driven assembly with multiaxial fields: Creating a soft mode in assemblies of anisometric induced dipoles

    DOE PAGES

    Martin, James E.; Swol, Frank Van

    2015-07-10

    We show that multiaxial fields can induce time-averaged, noncentrosymmetric interactions between particles having polarization anisotropy, yet the multiaxial field itself does not exert either a force or a torque on an isolated particle. These induced interactions lead to particle assemblies whose energy is strongly dependent on both the translational and orientational degrees of freedom of the system. The situation is similar to a collection of permanent dipoles, but the symmetry of the time-averaged interaction is quite distinct, and the scale of the system energy can be dynamically controlled by the magnitude of the applied multiaxial field. In our paper, themore » case of polarizable rods is considered in detail, and it is suggested that collections of rods embedded in spheres can be used to create a material with a dynamically tunable magnetic permeability or dielectric permittivity. We report on Monte Carlo simulations performed to investigate the behavior of assemblies of both multiaxial-field induced dipoles and permanent dipoles arranged onto two-dimensional lattices. Lastly, the ground state of the induced dipoles is an orientational soft mode of aligned dipoles, whereas that of the permanent dipoles is a vortex state.« less

  20. Cardiac Arrhythmia and Injury Induced in Rats by Burst and Pulsed Mode Ultrasound with Gas Body Contrast Agent

    PubMed Central

    Miller, Douglas L.; Dou, Chunyan; Lucchesi, Benedict R.

    2009-01-01

    Objective Premature complexes (PCs) in the electrocardiogram (ECG) signal have been reported for myocardial contrast echocardiography and also for burst mode (physical therapy) ultrasound with gas body contrast agent at lower peak rarefactional pressure amplitudes (PRPAs). For contrast echocardiography, irreversibly injured cardiomyocytes have been associated with the arrhythmia. The objective was to determine if cardiomyocyte injury is associated with the PCs induced by the burst mode at lower PRPAs. Methods Anesthetized rats were exposed to focused 1.5 MHz ultrasound in a water bath. Evans blue dye was injected IP to stain injured cardiomyocytes and Definity ultrasound contrast agent was infused IV. Continuous burst mode simulated physical therapy ultrasound. Intermittent 2 ms bursts, or envelopes of pulses simulating diagnostic ultrasound, were triggered 1:4 at end systole. PCs were observed on ECG recordings and stained cardiomyocytes were counted in frozen sections. Results The continuous burst mode produced variable PCs and stained cells above 0.3 MPa PRPA. The triggered bursts above 0.3 MPa and pulse envelopes above 1.2 MPa produced statistically significant (P<0.01) PCs and stained cardiomyocytes. Conclusion Irreversible cardiomyocyte injury was associated with the development of PCs for burst mode and occurred at substantially lower PRPAs than for pulsed ultrasound. PMID:19854967

  1. Mind the Gap: Exploring the Underground of the NASA Space Cancer Risk Model

    NASA Technical Reports Server (NTRS)

    Chappell, L. J.; Elgart, S. R.; Milder, C. M.; Shavers, M. R.; Semones, E. J.; Huff, J. L.

    2017-01-01

    The REID quantifies the lifetime risk of death from radiation-induced cancer in an exposed astronaut. The NASA Space Cancer Risk (NSCR) 2012 mode incorporates elements from physics, biology, epidemiology, and statistics to generate the REID distribution. The current model quantifies the space radiation environment, radiation quality, and dose-rate effects to estimate a NASA-weighted dose. This weighted dose is mapped to the excess risk of radiation-induced cancer mortality from acute exposures to gamma rays and then transferred to an astronaut population. Finally, the REID is determined by integrating this risk over the individual's lifetime. The calculated upper 95% confidence limit of the REID is used to restrict an astronaut's permissible mission duration (PMD) for a proposed mission. As a statistical quantity characterized by broad, subjective uncertainties, REID estimates for space missions result in wide distributions. Currently, the upper 95% confidence level is over 350% larger than the mean REID value, which can severely limit an astronaut's PMD. The model incorporates inputs from multiple scientific disciplines in the risk estimation process. Physics and particle transport models calculate how radiation moves through space, penetrates spacecraft, and makes its way to the human beings onboard. Epidemiological studies of exposures from atomic bombings, medical treatments, and power plants are used to quantify health risks from acute and chronic low linear energy transfer (LET) ionizing radiation. Biological studies in cellular and animal models using radiation at various LETs and energies inform quality metrics for ions present in space radiation. Statistical methodologies unite these elements, controlling for mathematical and scientific uncertainty and variability. Despite current progress, these research platforms contain knowledge gaps contributing to the large uncertainties still present in the model. The NASA Space Radiation Program Element (SRPE

  2. Impurity bound states in fully gapped d-wave superconductors with subdominant order parameters

    PubMed Central

    Mashkoori, Mahdi; Björnson, Kristofer; Black-Schaffer, Annica M.

    2017-01-01

    Impurities in superconductors and their induced bound states are important both for engineering novel states such as Majorana zero-energy modes and for probing bulk properties of the superconducting state. The high-temperature cuprates offer a clear advantage in a much larger superconducting order parameter, but the nodal energy spectrum of a pure d-wave superconductor only allows virtual bound states. Fully gapped d-wave superconducting states have, however, been proposed in several cuprate systems thanks to subdominant order parameters producing d + is- or d + id′-wave superconducting states. Here we study both magnetic and potential impurities in these fully gapped d-wave superconductors. Using analytical T-matrix and complementary numerical tight-binding lattice calculations, we show that magnetic and potential impurities behave fundamentally different in d + is- and d + id′-wave superconductors. In a d + is-wave superconductor, there are no bound states for potential impurities, while a magnetic impurity produces one pair of bound states, with a zero-energy level crossing at a finite scattering strength. On the other hand, a d + id′-wave symmetry always gives rise to two pairs of bound states and only produce a reachable zero-energy level crossing if the normal state has a strong particle-hole asymmetry. PMID:28281570

  3. Serotonin passes through myoendothelial gap junctions to promote pulmonary arterial smooth muscle cell differentiation.

    PubMed

    Gairhe, Salina; Bauer, Natalie N; Gebb, Sarah A; McMurtry, Ivan F

    2012-11-01

    Myoendothelial gap junctional signaling mediates pulmonary arterial endothelial cell (PAEC)-induced activation of latent TGF-β and differentiation of cocultured pulmonary arterial smooth muscle cells (PASMCs), but the nature of the signal passing from PAECs to PASMCs through the gap junctions is unknown. Because PAECs but not PASMCs synthesize serotonin, and serotonin can pass through gap junctions, we hypothesized that the monoamine is the intercellular signal. We aimed to determine whether PAEC-derived serotonin mediates PAEC-induced myoendothelial gap junction-dependent activation of TGF-β signaling and differentiation of PASMCs. Rat PAECs and PASMCs were monocultured or cocultured with (touch) or without (no-touch) direct cell-cell contact. In all cases, tryptophan hydroxylase 1 (Tph1) transcripts were expressed predominantly in PAECs. Serotonin was detected by immunostaining in both PAECs and PASMCs in PAEC/PASMC touch coculture but was not found in PASMCs in either PAEC/PASMC no-touch coculture or in PASMC/PASMC touch coculture. Furthermore, inhibition of gap junctions but not of the serotonin transporter in PAEC/PASMC touch coculture prevented serotonin transfer from PAECs to PASMCs. Inhibition of serotonin synthesis pharmacologically or by small interfering RNAs to Tph1 in PAECs inhibited the PAEC-induced activation of TGF-β signaling and differentiation of PASMCs. We concluded that serotonin synthesized by PAECs is transferred through myoendothelial gap junctions into PASMCs, where it activates TGF-β signaling and induces a more differentiated phenotype. This finding suggests a novel role of gap junction-mediated intercellular serotonin signaling in regulation of PASMC phenotype.

  4. Topological gaps without masses in driven graphene-like systems

    NASA Astrophysics Data System (ADS)

    Iadecola, Thomas; Neupert, Titus; Chamon, Claudio

    2014-03-01

    We illustrate the possibility of realizing band gaps in graphene-like systems that fall outside the existing classification of gapped Dirac Hamiltonians in terms of masses. As our primary example we consider a band gap arising due to time-dependent distortions of the honeycomb lattice. By means of an exact, invertible, and transport-preserving mapping to a time-independent Hamiltonian, we show that the system exhibits Chern-insulating phases with quantized Hall conductivities +/-e2 / h . The chirality of the corresponding gapless edge modes is controllable by both the frequency of the driving and the manner in which sublattice symmetry is broken by the dynamical lattice modulations. We demonstrate that, while these phases are in the same topological sector as the Haldane model, they are nevertheless separated from the latter by a gap-closing transition unless an extra parameter is added to the Hamiltonian. Finally, we discuss a promising possible realization of this physics in photonic lattices. This work is supported in part by DOE Grant DEF-06ER46316 (T.I. and C.C.).

  5. Suppression of the noise-induced effects in an electrostatic micro-plate using an adaptive back-stepping sliding mode control.

    PubMed

    Nwagoum Tuwa, Peguy Roussel; Woafo, P

    2018-01-01

    In this work, an adaptive backstepping sliding mode control approach is applied through the piezoelectric layer in order to control and to stabilize an electrostatic micro-plate. The mathematical model of the system by taking into account the small fluctuations in the gap considered as bounded noise is carried out. The accuracy of the proposed modal equation is proven using the method of lines. By using both approaches, the effects of noise are presented. It is found that they lead to pull-in instability as well as to random chaos. A suitable backstepping approach to improve the tracking performance is integrated to the adaptive sliding mode control in order to eliminate chattering phenomena and reinforce the robustness of the system in presence of uncertainties and external random disturbances. It is proved that all the variables of the closed-loop system are bounded and the system can follow the given reference signals as close as possible. Numerical simulations are provided to show the effectiveness of proposed controller. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Improving cardiac gap junction communication as a new antiarrhythmic mechanism: the action of antiarrhythmic peptides.

    PubMed

    Dhein, Stefan; Hagen, Anja; Jozwiak, Joanna; Dietze, Anna; Garbade, Jens; Barten, Markus; Kostelka, Martin; Mohr, Friedrich-Wilhelm

    2010-03-01

    Co-ordinated electrical activation of the heart is maintained by intercellular coupling of cardiomyocytes via gap junctional channels located in the intercalated disks. These channels consist of two hexameric hemichannels, docked to each other, provided by either of the adjacent cells. Thus, a complete gap junction channel is made from 12 protein subunits, the connexins. While 21 isoforms of connexins are presently known, cardiomyocytes typically are coupled by Cx43 (most abundant), Cx40 or Cx45. Some years ago, antiarrhythmic peptides were discovered and synthesised, which were shown to increase macroscopic gap junction conductance (electrical coupling) and enhance dye transfer (metabolic coupling). The lead substance of these peptides is AAP10 (H-Gly-Ala-Gly-Hyp-Pro-Tyr-CONH(2)), a peptide with a horseshoe-like spatial structure as became evident from two-dimensional nuclear magnetic resonance studies. A stable D: -amino-acid derivative of AAP10, rotigaptide, as well as a non-peptide analogue, gap-134, has been developed in recent years. Antiarrhythmic peptides act on Cx43 and Cx45 gap junctions but not on Cx40 channels. AAP10 has been shown to enhance intercellular communication in rat, rabbit and human cardiomyocytes. Antiarrhythmic peptides are effective against ventricular tachyarrhythmias, such as late ischaemic (type IB) ventricular fibrillation, CaCl(2) or aconitine-induced arrhythmia. Interestingly, the effect of antiarrhythmic peptides is higher in partially uncoupled cells and was shown to be related to maintained Cx43 phosphorylation, while arrhythmogenic conditions like ischaemia result in Cx43 dephosphorylation and intercellular decoupling. It is still a matter of debate whether these drugs also act against atrial fibrillation. The present review outlines the development of this group of peptides and derivatives, their mode of action and molecular mechanisms, and discusses their possible therapeutic potential.

  7. Energy absorption behavior of polyurea coatings under laser-induced dynamic tensile and mixed-mode loading

    NASA Astrophysics Data System (ADS)

    Jajam, Kailash; Lee, Jaejun; Sottos, Nancy

    2015-06-01

    Energy absorbing, lightweight, thin transparent layers/coatings are desirable in many civilian and military applications such as hurricane resistant windows, personnel face-shields, helmet liners, aircraft canopies, laser shields, blast-tolerant sandwich structures, sound and vibration damping materials to name a few. Polyurea, a class of segmented block copolymer, has attracted recent attention for its energy absorbing properties. However, most of the dynamic property characterization of polyurea is limited to tensile and split-Hopkinson-pressure-bar compression loading experiments with strain rates on the order of 102 and 104 s-1, respectively. In the present work, we report the energy absorption behavior of polyurea thin films (1 to 2 μm) subjected to laser-induced dynamic tensile and mixed-mode loading. The laser-generated high amplitude stress wave propagates through the film in short time frames (15 to 20 ns) leading to very high strain rates (107 to 108 s-1) . The substrate stress, surface velocity and fluence histories are inferred from the displacement fringe data. On comparing input and output fluences, test results indicate significant energy absorption by the polyurea films under both tensile and mixed-mode loading conditions. Microscopic examination reveals distinct changes in failure mechanisms under mixed-mode loading from that observed under pure tensile loading. Office of Naval Research MURI.

  8. Dominant phonon wave vectors and strain-induced splitting of the 2D Raman mode of graphene

    NASA Astrophysics Data System (ADS)

    Narula, Rohit; Bonini, Nicola; Marzari, Nicola; Reich, Stephanie

    2012-03-01

    The dominant phonon wave vectors q* probed by the 2D Raman mode of pristine and uniaxially strained graphene are determined via a combination of ab initio calculations and a full two-dimensional integration of the transition matrix. We show that q* are highly anisotropic and rotate about K with the polarizer and analyzer condition relative to the lattice. The corresponding phonon-mediated electronic transitions show a finite component along K-Γ that sensitively determines q*. We invalidate the notion of “inner” and “outer” processes. The characteristic splitting of the 2D mode of graphene under uniaxial tensile strain and given polarizer and analyzer setting is correctly predicted only if the strain-induced distortion and red-shift of the in-plane transverse optical (iTO) phonon dispersion as well as the changes in the electronic band structure are taken into account.

  9. A likely planet-induced gap in the disc around T Cha

    NASA Astrophysics Data System (ADS)

    Hendler, Nathanial P.; Pinilla, Paola; Pascucci, Ilaria; Pohl, Adriana; Mulders, Gijs; Henning, Thomas; Dong, Ruobing; Clarke, Cathie; Owen, James; Hollenbach, David

    2018-03-01

    We present high-resolution (0.11 × 0.06 arcsec2) 3 mm ALMA observations of the highly inclined transition disc around the star T Cha. Our continuum image reveals multiple dust structures: an inner disc, a spatially resolved dust gap, and an outer ring. When fitting sky-brightness models to the real component of the 3 mm visibilities, we infer that the inner emission is compact (≤1 au in radius), the gap width is between 18 and 28 au, and the emission from the outer ring peaks at ˜36 au. We compare our ALMA image with previously published 1.6 μm VLT/SPHERE imagery. This comparison reveals that the location of the outer ring is wavelength dependent. More specifically, the peak emission of the 3 mm ring is at a larger radial distance than that of the 1.6 μm ring, suggesting that millimeter-sized grains in the outer disc are located farther away from the central star than micron-sized grains. We discuss different scenarios to explain our findings, including dead zones, star-driven photoevaporation, and planet-disc interactions. We find that the most likely origin of the dust gap is from an embedded planet, and estimate - for a single planet scenario - that T Cha's gap is carved by a 1.2MJup planet.

  10. Gap-induced reductions of evoked potentials in the auditory cortex: A possible objective marker for the presence of tinnitus in animals.

    PubMed

    Berger, Joel I; Owen, William; Wilson, Caroline A; Hockley, Adam; Coomber, Ben; Palmer, Alan R; Wallace, Mark N

    2018-01-15

    Animal models of tinnitus are essential for determining the underlying mechanisms and testing pharmacotherapies. However, there is doubt over the validity of current behavioural methods for detecting tinnitus. Here, we applied a stimulus paradigm widely used in a behavioural test (gap-induced inhibition of the acoustic startle reflex GPIAS) whilst recording from the auditory cortex, and showed neural response changes that mirror those found in the behavioural tests. We implanted guinea pigs (GPs) with electrocorticographic (ECoG) arrays and recorded baseline auditory cortical responses to a startling stimulus. When a gap was inserted in otherwise continuous background noise prior to the startling stimulus, there was a clear reduction in the subsequent evoked response (termed gap-induced reductions in evoked potentials; GIREP), suggestive of a neural analogue of the GPIAS test. We then unilaterally exposed guinea pigs to narrowband noise (left ear; 8-10 kHz; 1 h) at one of two different sound levels - either 105 dB SPL or 120 dB SPL - and recorded the same responses seven-to-ten weeks following the noise exposure. Significant deficits in GIREP were observed for all areas of the auditory cortex (AC) in the 120 dB-exposed GPs, but not in the 105 dB-exposed GPs. These deficits could not simply be accounted for by changes in response amplitudes. Furthermore, in the contralateral (right) caudal AC we observed a significant increase in evoked potential amplitudes across narrowband background frequencies in both 105 dB and 120 dB-exposed GPs. Taken in the context of the large body of literature that has used the behavioural test as a demonstration of the presence of tinnitus, these results are suggestive of objective neural correlates of the presence of noise-induced tinnitus and hyperacusis. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Strain-induced Weyl and Dirac states and direct-indirect gap transitions in group-V materials

    NASA Astrophysics Data System (ADS)

    Moynihan, Glenn; Sanvito, Stefano; O'Regan, David D.

    2017-12-01

    We perform comprehensive density-functional theory calculations on strained two-dimensional phosphorus (P), arsenic (As) and antimony (Sb) in the monolayer, bilayer, and bulk α-phase, from which we compute the key mechanical and electronic properties of these materials. Specifically, we compute their electronic band structures, band gaps, and charge-carrier effective masses, and identify the qualitative electronic and structural transitions that may occur. Moreover, we compute the elastic properties such as the Young’s modulus Y; shear modulus G; bulk modulus B ; and Poisson ratio ν and present their isotropic averages of as well as their dependence on the in-plane orientation, for which the relevant expressions are derived. We predict strain-induced Dirac states in the monolayers of As and Sb and the bilayers of P, As, and Sb, as well as the possible existence of Weyl states in the bulk phases of P and As. These phases are predicted to support charge velocities up to 106 m {{\\text{s}}-1} and, in some highly anisotropic cases, permit one-dimensional ballistic conductivity in the puckered direction. We also predict numerous band gap transitions for moderate in-plane stresses. Our results contribute to the mounting evidence for the utility of these materials, made possible by their broad range in tuneable properties, and facilitate the directed exploration of their potential application in next-generation electronics.

  12. The strain induced band gap modulation from narrow gap semiconductor to half-metal on Ti{sub 2}CrGe: A first principles study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jia, E-mail: jiali@hebut.edu.cn; Research Institute for Energy Equipment Materials, Hebei University of Technology, Tianjin 300401; Zhang, Zhidong

    The Heusler alloy Ti{sub 2}CrGe is a stable L2{sub 1} phase with antiferromagnetic ordering. With band-gap energy (∼ 0.18 eV) obtained from a first-principles calculation, it belongs to the group of narrow band gap semiconductor. The band-gap energy decreases with increasing lattice compression and disappears until a strain of −5%; moreover, gap contraction only occurs in the spin-down states, leading to half-metallic character at the −5% strain. The Ti{sub 1}, Ti{sub 2}, and Cr moments all exhibit linear changes in behavior within strains of −5%– +5%. Nevertheless, the total zero moment is robust for these strains. The imaginary part ofmore » the dielectric function for both up and down spin states shows a clear onset energy, indicating a corresponding electronic gap for the two spin channels.« less

  13. Effect of interstitial palladium on plasmon-driven charge transfer in nanoparticle dimers.

    PubMed

    Lerch, Sarah; Reinhard, Björn M

    2018-04-23

    Capacitive plasmon coupling between noble metal nanoparticles (NPs) is characterized by an increasing red-shift of the bonding dipolar plasmon mode (BDP) in the classical electromagnetic coupling regime. This model breaks down at short separations where plasmon-driven charge transfer induces a gap current between the NPs with a magnitude and separation dependence that can be modulated if molecules are present in the gap. Here, we use gap contained DNA as a scaffold for the growth of palladium (Pd) NPs in the gap between two gold NPs and investigate the effect of increasing Pd NP concentration on the BDP mode. Consistent with enhanced plasmon-driven charge transfer, the integration of discrete Pd NPs depolarizes the capacitive BDP mode over longer interparticle separations than is possible in only DNA-linked Au NPs. High Pd NP densities in the gap increases the gap conductance and induces the transition from capacitive to conductive coupling.

  14. Goldstone-like phonon modes in a (111)-strained perovskite

    NASA Astrophysics Data System (ADS)

    Marthinsen, A.; Griffin, S. M.; Moreau, M.; Grande, T.; Tybell, T.; Selbach, S. M.

    2018-01-01

    Goldstone modes are massless particles resulting from spontaneous symmetry breaking. Although such modes are found in elementary particle physics as well as in condensed-matter systems like superfluid helium, superconductors, and magnons, structural Goldstone modes are rare. Epitaxial strain in thin films can induce structures and properties not accessible in bulk and has been intensively studied for (001)-oriented perovskite oxides. Here we predict Goldstone-like phonon modes in (111)-strained SrMn O3 by first-principles calculations. Under compressive strain the coupling between two in-plane rotational instabilities gives rise to a Mexican hat-shaped energy surface characteristic of a Goldstone mode. Conversely, large tensile strain induces in-plane polar instabilities with no directional preference, giving rise to a continuous polar ground state. Such phonon modes with U (1) symmetry could emulate structural condensed-matter Higgs modes. The mass of this Higgs boson, given by the shape of the Mexican hat energy surface, can be tuned by strain through proper choice of substrate.

  15. Communication-dependent mineralization of osteoblasts via gap junctions.

    PubMed

    Hashida, Yukihiko; Nakahama, Ken-ichi; Shimizu, Kaori; Akiyama, Masako; Harada, Kiyoshi; Morita, Ikuo

    2014-04-01

    Connexin43 (Cx43) is a major gap junction (GJ) protein in bone and plays a critical role in osteoblast differentiation. Several studies show that osteoblast differentiation is delayed by Cx43 ablation. However, the precise mechanism underlying the role of Cx43 in osteoblast differentiation is not fully understood. Firstly, we analyzed the phenotype of a conditional knockout mouse, which was generated by mating of an osterix promoter-driven Cre expressing mouse with a Cx43-floxed mouse. As expected, delayed ossification was observed. Secondly, we demonstrated that the cell communication via gap junctions played an important role in osteoblast differentiation using a tamoxifen-inducible knockout system in vitro. Genetic ablation of Cx43 resulted in both the disruption of cell-communications and the attenuation of osteoblast mineralization induced by BMP-2, but not by ascorbic acid. Moreover, restoring full-length Cx43 (382aa) expression rescued the impairment of osteoblast cell-communication and osteoblast mineralization; however, the expression of the Cx43 N-terminal mutant (382aaG2V) did not rescue either of them. Comparing the gene expression profiles, the genes directly regulated by BMP-2 were attenuated by Cx43 gene ablation. These results suggested that the cell-communication mediated by gap junctions was indispensable for normal differentiation of osteoblast induced by BMP-2. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Processing Mode Causally Influences Emotional Reactivity

    PubMed Central

    Watkins, Ed; Moberly, Nicholas J.; Moulds, Michelle L.

    2008-01-01

    Three studies are reported showing that emotional responses to stress can be modified by systematic prior practice in adopting particular processing modes. Participants were induced to think about positive and negative scenarios in a mode either characteristic of or inconsistent with the abstract-evaluative mind-set observed in depressive rumination, via explicit instructions (Experiments 1 and 2) and via implicit induction of interpretative biases (Experiment 3), before being exposed to a failure experience. In all three studies, participants trained into the mode antithetical to depressive rumination demonstrated less emotional reactivity following failure than participants trained into the mode consistent with depressive rumination. These findings provide evidence consistent with the hypothesis that processing mode modifies emotional reactivity and support the processing-mode theory of rumination. PMID:18540752

  17. Edge currents shunt the insulating bulk in gapped graphene

    NASA Astrophysics Data System (ADS)

    Zhu, M. J.; Kretinin, A. V.; Thompson, M. D.; Bandurin, D. A.; Hu, S.; Yu, G. L.; Birkbeck, J.; Mishchenko, A.; Vera-Marun, I. J.; Watanabe, K.; Taniguchi, T.; Polini, M.; Prance, J. R.; Novoselov, K. S.; Geim, A. K.; Ben Shalom, M.

    2017-02-01

    An energy gap can be opened in the spectrum of graphene reaching values as large as 0.2 eV in the case of bilayers. However, such gaps rarely lead to the highly insulating state expected at low temperatures. This long-standing puzzle is usually explained by charge inhomogeneity. Here we revisit the issue by investigating proximity-induced superconductivity in gapped graphene and comparing normal-state measurements in the Hall bar and Corbino geometries. We find that the supercurrent at the charge neutrality point in gapped graphene propagates along narrow channels near the edges. This observation is corroborated by using the edgeless Corbino geometry in which case resistivity at the neutrality point increases exponentially with increasing the gap, as expected for an ordinary semiconductor. In contrast, resistivity in the Hall bar geometry saturates to values of about a few resistance quanta. We attribute the metallic-like edge conductance to a nontrivial topology of gapped Dirac spectra.

  18. Tumor-induced loss of mural Connexin 43 gap junction activity promotes endothelial proliferation.

    PubMed

    Choudhary, Mayur; Naczki, Christine; Chen, Wenhong; Barlow, Keith D; Case, L Douglas; Metheny-Barlow, Linda J

    2015-05-23

    Proper functional association between mural cells and endothelial cells (EC) causes EC of blood vessels to become quiescent. Mural cells on tumor vessels exhibit decreased attachment to EC, which allows vessels to be unstable and proliferative. The mechanisms by which tumors prevent proper association between mural cells and EC are not well understood. Since gap junctions (GJ) play an important role in cell-cell contact and communication, we investigated whether loss of GJ plays a role in tumor-induced mural cell dissociation. Mural cell regulation of endothelial proliferation was assessed by direct co-culture assays of fluorescently labeled cells quantified by flow cytometry or plate reader. Gap junction function was assessed by parachute assay. Connexin 43 (Cx43) protein in mural cells exposed to conditioned media from cancer cells was assessed by Western and confocal microscopy; mRNA levels were assessed by quantitative real-time PCR. Expression vectors or siRNA were utilized to overexpress or knock down Cx43. Tumor growth and angiogenesis was assessed in mouse hosts deficient for Cx43. Using parachute dye transfer assay, we demonstrate that media conditioned by MDA-MB-231 breast cancer cells diminishes GJ communication between mural cells (vascular smooth muscle cells, vSMC) and EC. Both protein and mRNA of the GJ component Connexin 43 (Cx43) are downregulated in mural cells by tumor-conditioned media; media from non-tumorigenic MCF10A cells had no effect. Loss of GJ communication by Cx43 siRNA knockdown, treatment with blocking peptide, or exposure to tumor-conditioned media diminishes the ability of mural cells to inhibit EC proliferation in co-culture assays, while overexpression of Cx43 in vSMC restores GJ and endothelial inhibition. Breast tumor cells implanted into mice heterozygous for Cx43 show no changes in tumor growth, but exhibit significantly increased tumor vascularization determined by CD31 staining, along with decreased mural cell support

  19. A high-order mode extended interaction klystron at 0.34 THz

    NASA Astrophysics Data System (ADS)

    Wang, Dongyang; Wang, Guangqiang; Wang, Jianguo; Li, Shuang; Zeng, Peng; Teng, Yan

    2017-02-01

    We propose the concept of high-order mode extended interaction klystron (EIK) at the terahertz band. Compared to the conventional fundamental mode EIK, it operates at the TM31-2π mode, and its remarkable advantage is to obtain a large structure and good performance. The proposed EIK consists of five identical cavities with five gaps in each cavity. The method is discussed to suppress the mode competition and self-oscillation in the high-order mode cavity. Particle-in-cell simulation demonstrates that the EIK indeed operates at TM31-2π mode without self-oscillation while other modes are well suppressed. Driven by the electron beam with a voltage of 15 kV and a current of 0.3 A, the saturation gain of 43 dB and the output power of 60 W are achieved at the center frequency of 342.4 GHz. The EIK operating at high-order mode seems a promising approach to generate high power terahertz waves.

  20. Active mode locking of lasers by piezoelectrically induced diffraction modulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krausz, F.; Turi, L.; Kuti, C.

    A new amplitude-modulation mode-locking technique is presented. Acoustic waves are generated directly on the faces of a resonant photoelastic medium. The created standing waves cause a highly efficient diffraction modulation of light. The modulation depth of standing-wave mode lockers is related to material and drive parameters and a figure of merit is introduced. With a lithium niobate crystal modulation depths over 10 are achieved at 1.054 {mu}m and 1 W of radio frequency power. Using this device for the active mode locking of a continuous-wave Nd:glass laser pulses as short as 3.8 ps are produced at a repetition rate ofmore » 66 MHz. Limitations of amplitude-modulation mode locking by standing acoustic waves are discussed.« less

  1. Active mode locking of lasers by piezoelectrically induced diffraction modulation

    NASA Astrophysics Data System (ADS)

    Krausz, F.; Turi, L.; Kuti, Cs.; Schmidt, A. J.

    1990-04-01

    A new amplitude-modulation mode-locking technique is presented. Acoustic waves are generated directly on the faces of a resonant photoelastic medium. The created standing waves cause a highly efficient diffraction modulation of light. The modulation depth of standing-wave mode lockers is related to material and drive parameters and a figure of merit is introduced. With a lithium niobate crystal modulation depths over 10 are achieved at 1.054 μm and 1 W of radio frequency power. Using this device for the active mode locking of a continuous-wave Nd:glass laser pulses as short as 3.8 ps are produced at a repetition rate of 66 MHz. Limitations of amplitude-modulation mode locking by standing acoustic waves are discussed.

  2. Specific analogues uncouple transport, signalling, oligo-ubiquitination and endocytosis in the yeast Gap1 amino acid transceptor

    PubMed Central

    Van Zeebroeck, Griet; Rubio-Texeira, Marta; Schothorst, Joep; Thevelein, Johan M

    2014-01-01

    The Saccharomyces cerevisiae amino acid transceptor Gap1 functions as receptor for signalling to the PKA pathway and concomitantly undergoes substrate-induced oligo-ubiquitination and endocytosis. We have identified specific amino acids and analogues that uncouple to certain extent signalling, transport, oligo-ubiquitination and endocytosis. l-lysine, l-histidine and l-tryptophan are transported by Gap1 but do not trigger signalling. Unlike l-histidine, l-lysine triggers Gap1 oligo-ubiquitination without substantial induction of endocytosis. Two transported, non-metabolizable signalling agonists, β-alanine and d-histidine, are strong and weak inducers of Gap1 endocytosis, respectively, but both causing Gap1 oligo-ubiquitination. The non-signalling agonist, non-transported competitive inhibitor of Gap1 transport, l-Asp-γ-l-Phe, induces oligo-ubiquitination but no discernible endocytosis. The Km of l-citrulline transport is much lower than the threshold concentration for signalling and endocytosis. These results show that molecules can be transported without triggering signalling or substantial endocytosis, and that oligo-ubiquitination and endocytosis do not require signalling nor metabolism. Oligo-ubiquitination is required, but apparently not sufficient to trigger endocytosis. In addition, we demonstrate intracellular cross-induction of endocytosis of transport-defective Gap1Y395C by ubiquitination- and endocytosis-deficient Gap1K9R,K16R. Our results support the concept that different substrates bind to partially overlapping binding sites in the same general substrate-binding pocket of Gap1, triggering divergent conformations, resulting in different conformation-induced downstream processes. PMID:24852066

  3. Capsaicin-induced activation of ERK1/2 and its involvement in GAP-43 expression and CGRP depletion in organotypically cultured DRG neurons.

    PubMed

    Li, Yunfeng; Liu, Guixiang; Li, Hao; Xu, Youzheng; Zhang, Hong; Liu, Zhen

    2013-04-01

    Low concentrations of capsaicin (CAP) stimulate and high concentrations of CAP can be toxic to the primary sensory neurons of the dorsal root ganglion (DRG). CAP induces the phosphorylation of extracellular signal-regulated protein kinases 1/2 (ERK1/2) in DRG neurons. The effect of the activation of ERK1/2 by different concentrations of CAP on growth-associated protein 43 (GAP-43) expression and calcitonin gene-related peptide (CGRP) depletion in DRG neurons remains unknown. In the present study, organotypic embryonic 15-day-old rat DRG explants were used to determine the effect of different concentrations of CAP on GAP-43 expression and CGRP depletion. The results showed that, compared to unstimulated control cultures, GAP-43 and pERK1/2 protein levels increased at a low concentration (2 μmol/L) of CAP and decreased at a higher concentration (10 μmol/L). The number of CGRP-immunoreactive (IR) migrating neurons also decreased in CAP-treated cultures. The increase in GAP-43 levels and CGRP depletion could be blocked by the administration of ERK1/2 inhibitor PD98059. The results of the present study imply that CAP at different concentrations has different effects on GAP-43 expression and CGRP depletion. These effects were involved in the activation of ERK1/2 in organotypically cultured DRG neurons stimulated with CAP. These data may provide new insights for further development potential therapeutic applications of CAP with moderate dose on neurogenic inflammation.

  4. Slow light effect analysis excited by plasmon-induced transparency in metal-dielectric-metal waveguide

    NASA Astrophysics Data System (ADS)

    Jin, Gui; Huang, Xiaoyi

    2018-02-01

    We propose and demonstrate a metal-dielectric-metal(MDM) waveguide side coupled with two stubs to realize plasmon induced transparency (PIT) effect. The dispersion relation of the structure has been plotted by solving the dispersion equation of MDM three layer structure, the transmission spectrum is investigated by coupled mode theory (CMT) and Finite Element Method (FEM) simulation, the CMT results can. The surface plasmon device can also be used as a EIT-like filter with a variable full width of half-maximum (FWHM) and highest transmission over 88%. The maximum group index ng is 42 with a group velocity of 0.023ܿ and transmission of 48%, The normalized delay-bandwidth product (NDBP) can be modulated through changing the gap width of resonators and waveguide bus, the highest is 0.641 at gap width 10 nm, and lowest is 0.246 at 30 nm. The dispersion of group velocity (GVD) changes drastically at narrow gap width and becomes more and more flat at broader gap width, this opens up an avenue for designing optical buffers, switches and modulators.

  5. Giant Linear Nonreciprocity, Zero Reflection, and Zero Band Gap in Equilibrated Space-Time-Varying Media

    NASA Astrophysics Data System (ADS)

    Taravati, Sajjad

    2018-06-01

    This article presents a class of space-time-varying media with giant linear nonreciprocity, zero space-time local reflections, and zero photonic band gap. This is achieved via equilibrium in the electric and magnetic properties of unidirectionally space-time-modulated media. The enhanced nonreciprocity is accompanied by a larger sonic regime interval which provides extra design freedom for achieving strong nonreciprocity by a weak pumping strength. We show that the width of photonic band gaps in general periodic space-time permittivity- and permeability-modulated media is proportional to the absolute difference between the electric and magnetic pumping strengths. We derive a rigorous analytical solution for investigation of wave propagation and scattering from general periodic space-time permittivity- and permeability-modulated media. In contrast with weak photonic transitions, from the excited mode to its two adjacent modes, in conventional space-time permittivity-modulated media, in an equilibrated space-time-varying medium, strong photonic transitions occur from the excited mode to its four adjacent modes. We study the enhanced nonreciprocity and zero band gap in equilibrated space-time-modulated media by analysis of their dispersion diagrams. In contrast to conventional space-time permittivity-modulated media, equilibrated space-time media exhibit different phase and group velocities for forward and backward harmonics. Furthermore, the numerical simulation scheme of general space-time permittivity- and permeability-modulated media is presented, which is based on the finite-difference time-domain technique. Our analytical and numerical results provide insights into general space-time refractive-index-modulated media, paving the way toward optimal isolators, nonreciprocal integrated systems, and subharmonic frequency generators.

  6. Experimental investigation of leaky lamb modes by an optically induced grating.

    PubMed

    Van de Rostyne, Kris; Glorieux, Christ; Gao, Weimin; Lauriks, Walter; Thoen, Jan

    2002-09-01

    By removing the symmetry of a free plate configuration, fluid loading significantly modifies the nature of acoustic waves travelling along a plate, and it even gives existence to new acoustic modes. We present theoretical predictions for the existence, dispersive behavior, and spatial distribution of leaky Lamb waves in a fluid-loaded film. Although Lamb modes are often investigated by studying the radiated fluid waves resulting from their leakage, here their properties are assessed by detecting the wave displacements directly using laser beam deflection. By using crossed laser beam excitation, the detection and analysis of the different modes is done at a fixed wavelength, allowing one to verify the existence, the velocity, and the damping of each predicted mode in a simple and unambiguous way. Our theoretical predictions for the nature of the modes in a water-loaded Plexiglas film, including parts of looping modes, are experimentally confirmed.

  7. Integrator or Coincidence Detector: A Novel Measure Based on the Discrete Reverse Correlation to Determine a Neuron's Operational Mode.

    PubMed

    Kanev, Jacob; Koutsou, Achilleas; Christodoulou, Chris; Obermayer, Klaus

    2016-10-01

    In this letter, we propose a definition of the operational mode of a neuron, that is, whether a neuron integrates over its input or detects coincidences. We complete the range of possible operational modes by a new mode we call gap detection, which means that a neuron responds to gaps in its stimulus. We propose a measure consisting of two scalar values, both ranging from -1 to +1: the neural drive, which indicates whether its stimulus excites the neuron, serves as background noise, or inhibits it; the neural mode, which indicates whether the neuron's response is the result of integration over its input, of coincidence detection, or of gap detection; with all three modes possible for all neural drive values. This is a pure spike-based measure and can be applied to measure the influence of either all or subset of a neuron's stimulus. We derive the measure by decomposing the reverse correlation, test it in several artificial and biological settings, and compare it to other measures, finding little or no correlation between them. We relate the results of the measure to neural parameters and investigate the effect of time delay during spike generation. Our results suggest that a neuron can use several different modes simultaneously on different subsets of its stimulus to enable it to respond to its stimulus in a complex manner.

  8. Gap formation following climatic events in spatially structured plant communities

    PubMed Central

    Liao, Jinbao; De Boeck, Hans J.; Li, Zhenqing; Nijs, Ivan

    2015-01-01

    Gaps play a crucial role in maintaining species diversity, yet how community structure and composition influence gap formation is still poorly understood. We apply a spatially structured community model to predict how species diversity and intraspecific aggregation shape gap patterns emerging after climatic events, based on species-specific mortality responses. In multispecies communities, average gap size and gap-size diversity increased rapidly with increasing mean mortality once a mortality threshold was exceeded, greatly promoting gap recolonization opportunity. This result was observed at all levels of species richness. Increasing interspecific difference likewise enhanced these metrics, which may promote not only diversity maintenance but also community invasibility, since more diverse niches for both local and exotic species are provided. The richness effects on gap size and gap-size diversity were positive, but only expressed when species were sufficiently different. Surprisingly, while intraspecific clumping strongly promoted gap-size diversity, it hardly influenced average gap size. Species evenness generally reduced gap metrics induced by climatic events, so the typical assumption of maximum evenness in many experiments and models may underestimate community diversity and invasibility. Overall, understanding the factors driving gap formation in spatially structured assemblages can help predict community secondary succession after climatic events. PMID:26114803

  9. Locked-mode avoidance and recovery without momentum input

    NASA Astrophysics Data System (ADS)

    Delgado-Aparicio, L.; Rice, J. E.; Wolfe, S.; Cziegler, I.; Gao, C.; Granetz, R.; Wukitch, S.; Terry, J.; Greenwald, M.; Sugiyama, L.; Hubbard, A.; Hugges, J.; Marmar, E.; Phillips, P.; Rowan, W.

    2015-11-01

    Error-field-induced locked-modes (LMs) have been studied in Alcator C-Mod at ITER-Bϕ, without NBI fueling and momentum input. Delay of the mode-onset and locked-mode recovery has been successfully obtained without external momentum input using Ion Cyclotron Resonance Heating (ICRH). The use of external heating in-sync with the error-field ramp-up resulted in a successful delay of the mode-onset when PICRH > 1 MW, which demonstrates the existence of a power threshold to ``unlock'' the mode; in the presence of an error field the L-mode discharge can transition into H-mode only when PICRH > 2 MW and at high densities, avoiding also the density pump-out. The effects of ion heating observed on unlocking the core plasma may be due to ICRH induced flows in the plasma boundary, or modifications of plasma profiles that changed the underlying turbulence. This work was performed under US DoE contracts including DE-FC02-99ER54512 and others at MIT, DE-FG03-96ER-54373 at University of Texas at Austin, and DE-AC02-09CH11466 at PPPL.

  10. Fano-like resonance phenomena by flexural shell modes in sound transmission through two-dimensional periodic arrays of thin-walled hollow cylinders

    NASA Astrophysics Data System (ADS)

    Kosevich, Yuriy A.; Goffaux, Cecile; Sánchez-Dehesa, Jose

    2006-07-01

    It is shown that the n=2 and 3 flexural shell vibration modes of thin-walled hollow cylinders result in Fano-like resonant enhancement of sound wave transmission through or reflection from two-dimensional periodic arrays of these cylinders in air. The frequencies of the resonant modes are well described by the analytical theory of flexural (circumferential) modes of thin-walled hollow cylinders and are confirmed by finite-difference time-domain simulations. When the modes are located in the band gaps of the phononic crystal, an enhancement of the band-gap widths is produced by the additional restoring forces caused by the flexural shell deformations. Our conclusions provide an alternative method for the vibration control of airborne phononic crystals.

  11. Band gap narrowing in BaTiO{sub 3} nanoparticles facilitated by multiple mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramakanth, S.; James Raju, K. C., E-mail: kcjrsp@uohyd.ernet.in; School of Physics, University of Hyderabad, Hyderabad 500046

    2014-05-07

    In the present work, BaTiO{sub 3} nanoparticles of four different size ranges were prepared by sol-gel method. The optical band gap of these particles at some size ranges has come down to 2.53 eV from 3.2 eV, resulting in substantial increase in optical absorption by these ferroelectric nanoparticles making them potential candidates for light energy harvesting. XRD results show the presence of higher compressive strain in 23 nm and 54 nm size particles, they exhibit a higher band gap narrowing, whereas tensile strain is observed in 31 nm and 34 nm particles, and they do not show the marginal band gap narrowing. The 23 nm and 54 nmmore » particles also show a coupling of free carriers to phonons by increasing the intensity of LO phonon mode at 715 cm{sup −1}. The higher surface charge density is expected in case of enhanced surface optical Raman modes (638 cm{sup −1}) contained in 31 and 34 nm size particles. In addition to this, the red shift in an LO mode Raman spectral line at 305 cm{sup −1} with decrease in particle size depicts the presence of phonon confinement in it. The enhanced optical absorption in 23 nm and 54 nm size particles with a narrowed band gap of 3 eV and 2.53 eV is due to exchange correlation interactions between the carriers present in these particles. In 31 nm and 34 nm range particles, the absorption got bleached exhibiting increased band gaps of 3.08 eV and 3.2 eV, respectively. It is due to filling up of conduction band resulting from weakening of exchange correlation interactions between the charge carriers. Hence, it is concluded that the band gap narrowing in the nanoparticles of average size 23 nm/54 nm is a consequence of multiple effects like strain, electron-phonon interaction, and exchange correlation interactions between the carriers which is subdued in some other size ranges like 31 nm/34 nm.« less

  12. Antioxidant potential of CORM-A1 and resveratrol during TNF-α/cycloheximide-induced oxidative stress and apoptosis in murine intestinal epithelial MODE-K cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babu, Dinesh, E-mail: dinesh.babu@ugent.be; Leclercq, Georges; Goossens, Vera

    2015-10-15

    Targeting excessive production of reactive oxygen species (ROS) could be an effective therapeutic strategy to prevent oxidative stress-associated gastrointestinal inflammation. NADPH oxidase (NOX) and mitochondrial complexes (I and II) are the major sources of ROS production contributing to TNF-α/cycloheximide (CHX)-induced apoptosis in the mouse intestinal epithelial cell line, MODE-K. In the current study, the influence of a polyphenolic compound (resveratrol) and a water-soluble carbon monoxide (CO)-releasing molecule (CORM-A1) on the different sources of TNF-α/CHX-induced ROS production in MODE-K cells was assessed. This was compared with H{sub 2}O{sub 2}-, rotenone- or antimycin-A-induced ROS-generating systems. Intracellular total ROS, mitochondrial-derived ROS and mitochondrialmore » superoxide anion (O{sub 2}·{sup −}) production levels were assessed. Additionally, the influence on TNF-α/CHX-induced changes in mitochondrial membrane potential (Ψ{sub m}) and mitochondrial function was studied. In basal conditions, CORM-A1 did not affect intracellular total or mitochondrial ROS levels, while resveratrol increased intracellular total ROS but reduced mitochondrial ROS production. TNF-α/CHX- and H{sub 2}O{sub 2}-mediated increase in intracellular total ROS production was reduced by both resveratrol and CORM-A1, whereas only resveratrol attenuated the increase in mitochondrial ROS triggered by TNF-α/CHX. CORM-A1 decreased antimycin-A-induced mitochondrial O{sub 2}·{sup −} production without any influence on TNF-α/CHX- and rotenone-induced mitochondrial O{sub 2}·{sup −} levels, while resveratrol abolished all three effects. Finally, resveratrol greatly reduced and abolished TNF-α/CHX-induced mitochondrial depolarization and mitochondrial dysfunction, while CORM-A1 only mildly affected these parameters. These data indicate that the cytoprotective effect of resveratrol is predominantly due to mitigation of mitochondrial ROS, while CORM-A1 acts

  13. Voltage-Controlled Switching and Thermal Effects in VO2 Nano-Gap Junctions

    DTIC Science & Technology

    2014-06-09

    Voltage-controlled switching and thermal effects in VO2 nano-gap junctions Arash Joushaghani,1 Junho Jeong,1 Suzanne Paradis,2 David Alain,2 J...2014) Voltage-controlled switching in lateral VO2 nano-gap junctions with different gap lengths and thermal properties was investigated. The effect of...indicate that the VO2 phase transition was likely initiated electroni- cally, which was sometimes followed by a secondary thermally-induced transition

  14. Mode of action: inhibition of androgen receptor function--vinclozolin-induced malformations in reproductive development.

    PubMed

    Kavlock, Robert; Cummings, Audrey

    2005-01-01

    Vinclozolin is a fungicide that has been shown to cause Leydig cell tumors and atrophy of the accessory sex glands in adult rodents. In addition, exposure of rats during pregnancy causes a pattern of malformations in the male urogenital tract. A wealth of standard toxicological studies and targeted research efforts is available related to this adverse effect, and these were used to evaluate the Human Relevance Framework (HRF) for noncancer health effects. Vinclozolin and two of its metabolites, designated M1 and M2, have been shown to bind and inhibit the function of the rat and human androgen receptor. Other means of interfering with androgen receptor function (e.g., by exposure to the pharmaceutical agent flutamide) lead to similar adverse health outcomes. There is direct in vivo evidence in the rat prostate that androgen-dependent gene expression changes occur after exposure to vinclozolin. There are no proposed alternatives to the androgen receptor-mediated mode of action. Based on what is known about kinetic and dynamic factors, confidence is high that the animal mode of action (MOA) for vinclozolin-induced malformation of the male reproductive tract is highly plausible in humans.

  15. Pairing matrix elements and pairing gaps with bare, effective, and induced interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barranco, F.; Bortignon, P.F.; Colo, G.

    2005-11-01

    The dependence on the single-particle states of the pairing matrix elements of the Gogny force and of the bare low-momentum nucleon-nucleon potential v{sub low-k}--designed so as to reproduce the low-energy observables avoiding the use of a repulsive core--is studied for a typical finite, superfluid nucleus ({sup 120}Sn). It is found that the matrix elements of v{sub low-k} follow closely those of v{sub Gogny} on a wide range of energy values around the Fermi energy e{sub F}, those associated with v{sub low-k} being less attractive. This result explains the fact that around e{sub F} the pairing gap {delta}{sub Gogny} associated withmore » the Gogny interaction (and with a density of single-particle levels corresponding to an effective k mass m{sub k}{approx_equal}0.7 m) is a factor of about 2 larger than {delta}{sub low-k}, being in agreement with {delta}{sub exp}=1.4 MeV. The exchange of low-lying collective surface vibrations among pairs of nucleons moving in time-reversal states gives rise to an induced pairing interaction v{sub ind} peaked at e{sub F}. The interaction (v{sub low-k}+v{sub ind}) Z{sub {omega}} arising from the renormalization of the bare nucleon-nucleon potential and of the single-particle motion ({omega}-mass and quasiparticle strength Z{sub {omega}}) associated with the particle-vibration coupling mechanism, leads to a value of the pairing gap at the Fermi energy {delta}{sub ren} that accounts for the experimental value. An important question that remains to be studied quantitatively is to what extent {delta}{sub Gogny}, which depends on average parameters, and {delta}{sub ren}, which explicitly depends on the parameters describing the (low-energy) nuclear structure, display or not a similar isotopic dependence and whether this dependence is borne out by the data.« less

  16. Free energy gap laws for the pulse-induced and stationary fluorescence quenching by reversible charge transfer in polar solutions.

    PubMed

    Khokhlova, Svetlana S; Burshtein, Anatoly I

    2011-01-21

    The Stern-Volmer constants for either pulse-induced or stationary fluorescence being quenched by a contact charge transfer are calculated and their free energy dependencies (the free energy gap laws) are specified. The reversibility of charge transfer is taken into account as well as spin conversion in radical ion pairs, followed by their recombination in either singlet or triplet neutral products. The natural decay of triplets as well as their impurity quenching by ionization are accounted for when estimating the fluorescence quantum yield and its free energy dependence.

  17. Few-mode fiber based distributed curvature sensor through quasi-single-mode Brillouin frequency shift.

    PubMed

    Wu, Hao; Wang, Ruoxu; Liu, Deming; Fu, Songnian; Zhao, Can; Wei, Huifeng; Tong, Weijun; Shum, Perry Ping; Tang, Ming

    2016-04-01

    We proposed and demonstrated a few-mode fiber (FMF) based optical-fiber sensor for distributed curvature measurement through quasi-single-mode Brillouin frequency shift (BFS). By central-alignment splicing FMF and single-mode fiber (SMF) with a fusion taper, a SMF-components-compatible distributed curvature sensor based on FMF is realized using the conventional Brillouin optical time-domain analysis system. The distributed BFS change induced by bending in FMF has been theoretically and experimentally investigated. The precise BFS response to the curvature along the fiber link has been calibrated. A proof-of-concept experiment is implemented to validate its effectiveness in distributed curvature measurement.

  18. Variation in Yield Gap Induced by Nitrogen, Phosphorus and Potassium Fertilizer in North China Plain

    PubMed Central

    Dai, Xiaoqin; Ouyang, Zhu; Li, Yunsheng; Wang, Huimin

    2013-01-01

    A field experiment was conducted under a wheat-maize rotation system from 1990 to 2006 in North China Plain (NCP) to determine the effects of N, P and K on yield and yield gap. There were five treatments: NPK, PK, NK, NP and a control. Average wheat and maize yields were the highest in the NPK treatment, followed by those in the NP plots among all treatments. For wheat and maize yield, a significant increasing trend over time was found in the NPK-treated plots and a decreasing trend in the NK-treated plots. In the absence of N or P, wheat and maize yields were significantly lower than those in the NPK treatment. For both crops, the increasing rate of the yield gap was the highest in the P omission plots, i.e., 189.1 kg ha−1 yr−1 for wheat and 560.6 kg ha−1 yr−1 for maize. The cumulative omission of P fertilizer induced a deficit in the soil available N and extractable P concentrations for maize. The P fertilizer was more pivotal in long-term wheat and maize growth and soil fertility conservation in NCP, although the N fertilizer input was important for both crops growth. The crop response to K fertilizers was much lower than that to N or P fertilizers, but for maize, the cumulative omission of K fertilizer decreased the yield by 26% and increased the yield gap at a rate of 322.7 kg ha−1 yr−1. The soil indigenous K supply was not sufficiently high to meet maize K requirement over a long period. The proper application of K fertilizers is necessary for maize production in the region. Thus, the appropriate application of N and P fertilizers for the growth of both crops, while regularly combining K fertilizers for maize growth, is absolutely necessary for sustainable crop production in the NCP. PMID:24349204

  19. Variation in yield gap induced by nitrogen, phosphorus and potassium fertilizer in North China Plain.

    PubMed

    Dai, Xiaoqin; Ouyang, Zhu; Li, Yunsheng; Wang, Huimin

    2013-01-01

    A field experiment was conducted under a wheat-maize rotation system from 1990 to 2006 in North China Plain (NCP) to determine the effects of N, P and K on yield and yield gap. There were five treatments: NPK, PK, NK, NP and a control. Average wheat and maize yields were the highest in the NPK treatment, followed by those in the NP plots among all treatments. For wheat and maize yield, a significant increasing trend over time was found in the NPK-treated plots and a decreasing trend in the NK-treated plots. In the absence of N or P, wheat and maize yields were significantly lower than those in the NPK treatment. For both crops, the increasing rate of the yield gap was the highest in the P omission plots, i.e., 189.1 kg ha(-1) yr(-1) for wheat and 560.6 kg ha(-1) yr(-1) for maize. The cumulative omission of P fertilizer induced a deficit in the soil available N and extractable P concentrations for maize. The P fertilizer was more pivotal in long-term wheat and maize growth and soil fertility conservation in NCP, although the N fertilizer input was important for both crops growth. The crop response to K fertilizers was much lower than that to N or P fertilizers, but for maize, the cumulative omission of K fertilizer decreased the yield by 26% and increased the yield gap at a rate of 322.7 kg ha(-1) yr(-1). The soil indigenous K supply was not sufficiently high to meet maize K requirement over a long period. The proper application of K fertilizers is necessary for maize production in the region. Thus, the appropriate application of N and P fertilizers for the growth of both crops, while regularly combining K fertilizers for maize growth, is absolutely necessary for sustainable crop production in the NCP.

  20. Nitrogen-Induced Perturbation of the Valence Band States in GaP1-xNx Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dudiy, S. V.; Zunger, A.; Felici, M.

    2006-01-01

    The effects of diluted nitrogen impurities on the valence- and conduction-band states of GaP{sub 1-x}N{sub x} have been predicted and measured experimentally. The calculation uses state-of-the-art atomistic modeling: we use large supercells with screened pseudopotentials and consider several random realizations of the nitrogen configurations. These calculations agree with photoluminescence excitation (PLE) measurements performed for nitrogen concentrations x up to 0.035 and photon energies up to 1 eV above the GaP optical-absorption edge, as well as with published ellipsometry data. In particular, a predicted nitrogen-induced buildup of the L character near the valence- and conduction-band edges accounts for the surprising broad-absorptionmore » plateau observed in PLE between the X{sub 1c} and the {Lambda}{sub 1c} critical points of GaP. Moreover, theory accounts quantitatively for the downward bowing of the indirect conduction-band edge and for the upward bowing of the direct transition with increasing nitrogen concentration. We review some of the controversies in the literature regarding the shifts in the conduction band with composition, and conclude that measured results at ultralow N concentration cannot be used to judge behavior at a higher concentration. In particular, we find that at the high concentrations of nitrogen studied here ({approx}1%) the conduction-band edge (CBE) is a hybridized state made from the original GaP X{sub 1c} band-edge state plus all cluster states. In this limit, the CBE plunges down in energy as the N concentration increases, in quantitative agreement with the measurements reported here. However, at ultralow nitrogen concentrations (<0.1%), the CBE is the nearly unperturbed host X{sub 1c}, which does not sense the nitrogen cluster levels. Thus, this state does not move energetically as nitrogen is added and stays pinned in energy, in agreement with experimental results.« less

  1. Amplitude mode oscillations in pump-probe photoemission spectra from a d -wave superconductor

    NASA Astrophysics Data System (ADS)

    Nosarzewski, B.; Moritz, B.; Freericks, J. K.; Kemper, A. F.; Devereaux, T. P.

    2017-11-01

    Recent developments in the techniques of ultrafast pump-probe photoemission have made possible the search for collective modes in strongly correlated systems out of equilibrium. Including inelastic scattering processes and a retarded interaction, we simulate time- and angle-resolved photoemission spectroscopy (trARPES) to study the amplitude mode of a d -wave superconductor, a collective mode excited through the nonlinear light-matter coupling to the pump pulse. We find that the amplitude mode oscillations of the d -wave order parameter occur in phase at a single frequency that is twice the quasi-steady-state maximum gap size after pumping. We comment on the necessary conditions for detecting the amplitude mode in trARPES experiments.

  2. Interchange mode excited by trapped energetic ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishimura, Seiya, E-mail: n-seiya@kobe-kosen.ac.jp

    2015-07-15

    The kinetic energy principle describing the interaction between ideal magnetohydrodynamic (MHD) modes with trapped energetic ions is revised. A model is proposed on the basis of the reduced ideal MHD equations for background plasmas and the bounce-averaged drift-kinetic equation for trapped energetic ions. The model is applicable to large-aspect-ratio toroidal devices. Specifically, the effect of trapped energetic ions on the interchange mode in helical systems is analyzed. Results show that the interchange mode is excited by trapped energetic ions, even if the equilibrium states are stable to the ideal interchange mode. The energetic-ion-induced branch of the interchange mode might bemore » associated with the fishbone mode in helical systems.« less

  3. Role of Gap Junctions in Early Brain Injury Following Subarachnoid Hemorrhage

    PubMed Central

    Ayer, Robert; Chen, Wanqiu; Sugawara, Takashi; Suzuki, Hidenori; Zhang, John H.

    2010-01-01

    Gap junction inhibition has been demonstrated to reverse the vascular contraction that follows experimental subarachnoid hemorrhage. This study hypothesizes that the use of established gap junction inhibitors: octonal and carbenoxolone, to interrupt cell to cell communication will provide neuroprotection against early brain injury after SAH. The filament perforation model of SAH was performed in male Sprague–Dawley rats weighing between 300 and 380g. Octanol (260.46mg or 781.38 mg/kg), carbenoxolone (100 mg/kg), or vehicles were given via intraperitoneal injection 1 hour after SAH. Neurologic deficits and cerebral apoptosis were assessed 24 and 72 hours after SAH. In addition, Western blot analysis was performed to confirm the in vivo inhibition of CNS gap junctions. The administration of octanol and carbenoxolone both failed to attenuate the neurological deficits induced by SAH, and they did not reduce neuronal apoptosis. Additionally, carbenoloxone increased post SAH mortality and exacerbated SAH induced apoptosis. Despites previous studies that show gap junction inhibitors reverse vasospasm following experimental SAH, they failed to improve clinical outcomes or provide neuroprotection in this study. PMID:20018179

  4. Direct Measurement of Optical Force Induced by Near-Field Plasmonic Cavity Using Dynamic Mode AFM

    PubMed Central

    Guan, Dongshi; Hang, Zhi Hong; Marcet, Zsolt; Liu, Hui; Kravchenko, I. I.; Chan, C. T.; Chan, H. B.; Tong, Penger

    2015-01-01

    Plasmonic nanostructures have attracted much attention in recent years because of their potential applications in optical manipulation through near-field enhancement. Continuing experimental efforts have been made to develop accurate techniques to directly measure the near-field optical force induced by the plasmonic nanostructures in the visible frequency range. In this work, we report a new application of dynamic mode atomic force microscopy (DM-AFM) in the measurement of the enhanced optical force acting on a nano-structured plasmonic resonant cavity. The plasmonic cavity is made of an upper gold-coated glass sphere and a lower quartz substrate patterned with an array of subwavelength gold disks. In the near-field when the sphere is positioned close to the disk array, plasmonic resonance is excited in the cavity and the induced force by a 1550 nm infrared laser is found to be increased by an order of magnitude compared with the photon pressure generated by the same laser light. The experiment demonstrates that DM-AFM is a powerful tool for the study of light induced forces and their enhancement in plasmonic nanostructures. PMID:26586455

  5. Direct measurement of optical force induced by near-field plasmonic cavity using dynamic mode AFM

    DOE PAGES

    Guan, Dongshi; Hang, Zhi Hong; Marset, Zsolt; ...

    2015-11-20

    Plasmonic nanostructures have attracted much attention in recent years because of their potential applications in optical manipulation through near-field enhancement. Continuing experimental efforts have been made to develop accurate techniques to directly measure the near-field optical force induced by the plasmonic nanostructures in the visible frequency range. In this work, we report a new application of dynamic mode atomic force microscopy (DM-AFM) in the measurement of the enhanced optical force acting on a nano-structured plasmonic resonant cavity. The plasmonic cavity is made of an upper gold-coated glass sphere and a lower quartz substrate patterned with an array of subwavelength goldmore » disks. In the near-field when the sphere is positioned close to the disk array, plasmonic resonance is excited in the cavity and the induced force by a 1550 nm infrared laser is found to be increased by an order of magnitude compared with the photon pressure generated by the same laser light. Lastly, the experiment demonstrates that DM-AFM is a powerful tool for the study of light induced forces and their enhancement in plasmonic nanostructures.« less

  6. Continuously controlled optical band gap in oxide semiconductor thin films

    DOE PAGES

    Herklotz, Andreas; Rus, Stefania Florina; Ward, Thomas Zac

    2016-02-02

    The optical band gap of the prototypical semiconducting oxide SnO 2 is shown to be continuously controlled through single axis lattice expansion of nanometric films induced by low-energy helium implantation. While traditional epitaxy-induced strain results in Poisson driven multidirectional lattice changes shown to only allow discrete increases in bandgap, we find that a downward shift in the band gap can be linearly dictated as a function of out-of-plane lattice expansion. Our experimental observations closely match density functional theory that demonstrates that uniaxial strain provides a fundamentally different effect on the band structure than traditional epitaxy-induced multiaxes strain effects. In conclusion,more » charge density calculations further support these findings and provide evidence that uniaxial strain can be used to drive orbital hybridization inaccessible with traditional strain engineering techniques.« less

  7. Vibrational analysis of carbonyl modes in different stages of light-induced cyclopyrimidine dimer repair reactions

    NASA Astrophysics Data System (ADS)

    Schmitz, Matthias; Tavan, Paul; Nonella, Marco

    2001-11-01

    The formation of cyclopyrimidine dimers is a DNA defect, which is repaired by the enzyme DNA photolyase in a light-induced reaction. Radical anions of the dimers have been suggested to occur as short-lived intermediates during repair. For their identification time-resolved Fourier-transform infrared (FTIR) spectroscopy will be a method of choice. To support and guide such spectroscopic studies we have calculated the vibrational spectra of various pyrimidine compounds using density functional methods. Our results suggest that the carbonyl vibrations of these molecules can serve as marker modes to identify and distinguish intermediates of the repair reaction.

  8. Filling of Cloud-Induced Gaps for Land Use and Land Cover Classifications Around Refugee Camps

    NASA Astrophysics Data System (ADS)

    Braun, Andreas; Hagensieker, Ron; Hochschild, Volker

    2016-08-01

    Clouds cover is one of the main constraints in the field of optical remote sensing. Especially the use of multispectral imagery is affected by either fully obscured data or parts of the image which remain unusable. This study compares four algorithms for the filling of cloud induced gaps in classified land cover products based on Markov Random Fields (MRF), Random Forest (RF), Closest Spectral Fit (CSF) operators. They are tested on a classified image of Sentinel-2 where artificial clouds are filled by information derived from a scene of Sentinel-1. The approaches rely on different mathematical principles and therefore produced results varying in both pattern and quality. Overall accuracies for the filled areas range from 57 to 64 %. Best results are achieved by CSF, however some classes (e.g. sands and grassland) remain critical through all approaches.

  9. Three-dimensional superconducting gap in FeSe from angle-resolved photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Kushnirenko, Y. S.; Fedorov, A. V.; Haubold, E.; Thirupathaiah, S.; Wolf, T.; Aswartham, S.; Morozov, I.; Kim, T. K.; Büchner, B.; Borisenko, S. V.

    2018-05-01

    We present a systematic angle-resolved photoemission spectroscopy study of the superconducting gap in FeSe. The gap function is determined in a full Brillouin zone including all Fermi surfaces and kz dependence. We find significant anisotropy of the superconducting gap in all momentum directions. While the in-plane anisotropy can be explained by both nematicity-induced pairing anisotropy and orbital-selective pairing, the kz anisotropy requires an additional refinement of the theoretical approaches.

  10. Simultaneous large band gaps and localization of electromagnetic and elastic waves in defect-free quasicrystals.

    PubMed

    Yu, Tianbao; Wang, Zhong; Liu, Wenxing; Wang, Tongbiao; Liu, Nianhua; Liao, Qinghua

    2016-04-18

    We report numerically large and complete photonic and phononic band gaps that simultaneously exist in eight-fold phoxonic quasicrystals (PhXQCs). PhXQCs can possess simultaneous photonic and phononic band gaps over a wide range of geometric parameters. Abundant localized modes can be achieved in defect-free PhXQCs for all photonic and phononic polarizations. These defect-free localized modes exhibit multiform spatial distributions and can confine simultaneously electromagnetic and elastic waves in a large area, thereby providing rich selectivity and enlarging the interaction space of optical and elastic waves. The simulated results based on finite element method show that quasiperiodic structures formed of both solid rods in air and holes in solid materials can simultaneously confine and tailor electromagnetic and elastic waves; these structures showed advantages over the periodic counterparts.

  11. A small mode volume tunable microcavity: Development and characterization

    NASA Astrophysics Data System (ADS)

    Greuter, Lukas; Starosielec, Sebastian; Najer, Daniel; Ludwig, Arne; Duempelmann, Luc; Rohner, Dominik; Warburton, Richard J.

    2014-09-01

    We report the realization of a spatially and spectrally tunable air-gap Fabry-Pérot type microcavity of high finesse and cubic-wavelength-scale mode volume. These properties are attractive in the fields of opto-mechanics, quantum sensing, and foremost cavity quantum electrodynamics. The major design feature is a miniaturized concave mirror with atomically smooth surface and radius of curvature as low as 10 μm produced by CO2 laser ablation of fused silica. We demonstrate excellent mode-matching of a focussed laser beam to the microcavity mode and confirm from the frequencies of the resonator modes that the effective optical radius matches the physical radius. With these small radii, we demonstrate wavelength-size beam waists. We also show that the microcavity is sufficiently rigid for practical applications: in a cryostat at 4 K, the root-mean-square microcavity length fluctuations are below 5 pm.

  12. The psychedelic state induced by ayahuasca modulates the activity and connectivity of the default mode network.

    PubMed

    Palhano-Fontes, Fernanda; Andrade, Katia C; Tofoli, Luis F; Santos, Antonio C; Crippa, Jose Alexandre S; Hallak, Jaime E C; Ribeiro, Sidarta; de Araujo, Draulio B

    2015-01-01

    The experiences induced by psychedelics share a wide variety of subjective features, related to the complex changes in perception and cognition induced by this class of drugs. A remarkable increase in introspection is at the core of these altered states of consciousness. Self-oriented mental activity has been consistently linked to the Default Mode Network (DMN), a set of brain regions more active during rest than during the execution of a goal-directed task. Here we used fMRI technique to inspect the DMN during the psychedelic state induced by Ayahuasca in ten experienced subjects. Ayahuasca is a potion traditionally used by Amazonian Amerindians composed by a mixture of compounds that increase monoaminergic transmission. In particular, we examined whether Ayahuasca changes the activity and connectivity of the DMN and the connection between the DMN and the task-positive network (TPN). Ayahuasca caused a significant decrease in activity through most parts of the DMN, including its most consistent hubs: the Posterior Cingulate Cortex (PCC)/Precuneus and the medial Prefrontal Cortex (mPFC). Functional connectivity within the PCC/Precuneus decreased after Ayahuasca intake. No significant change was observed in the DMN-TPN orthogonality. Altogether, our results support the notion that the altered state of consciousness induced by Ayahuasca, like those induced by psilocybin (another serotonergic psychedelic), meditation and sleep, is linked to the modulation of the activity and the connectivity of the DMN.

  13. Air-Gapped Structures as Magnetic Elements for Use in Power Processing Systems. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Ohri, A. K.

    1977-01-01

    Methodical approaches to the design of inductors for use in LC filters and dc-to-dc converters using air gapped magnetic structures are presented. Methods for the analysis and design of full wave rectifier LC filter circuits operating with the inductor current in both the continuous conduction and the discontinuous conduction modes are also described. In the continuous conduction mode, linear circuit analysis techniques are employed, while in the case of the discontinuous mode, the method of analysis requires computer solutions of the piecewise linear differential equations which describe the filter in the time domain. Procedures for designing filter inductors using air gapped cores are presented. The first procedure requires digital computation to yield a design which is optimized in the sense of minimum core volume and minimum number of turns. The second procedure does not yield an optimized design as defined above, but the design can be obtained by hand calculations or with a small calculator. The third procedure is based on the use of specially prepared magnetic core data and provides an easy way to quickly reach a workable design.

  14. Dispersion of doppleron-phonon modes in strong coupling regime.

    PubMed

    Gudkov, V V; Zhevstovskikh, I V

    2004-04-01

    The dispersion equation for doppleron-phonon modes was constructed and solved analytically in the strong coupling regime. The Fermi surface model proposed previously for calculating the doppleron spectrum in an indium crystal was used. It was shown that in the vicinity of doppleron-phonon resonance, the dispersion curves of coupled modes form a gap qualitatively different from the one observed under helicon-phonon resonance: there is a frequency interval forbidden for existence of waves of definite circular polarization depending upon direction of the external DC magnetic field. The physical reason for it is interaction of the waves which have oppositely directed group velocities.

  15. The effects of in-vehicle tasks and time-gap selection while reclaiming control from adaptive cruise control (ACC) with bus simulator.

    PubMed

    Lin, Tsang-Wei; Hwang, Sheue-Ling; Su, Jau-Ming; Chen, Wan-Hui

    2008-05-01

    This research aimed to find out the effects of in-vehicle distractions and time-gap settings with a fix-based bus driving simulator in a following scenario. Professional bus drivers were recruited to perform in-vehicle tasks while driving with adaptive cruise control (ACC) of changeable time-gap settings in freeway traffic. Thirty subjects were divided equally into three groups for different in-vehicle task modes (between subjects), including no task distraction, hands-free, and manual modes. Further, time-gap settings for the experimental ACC were: shorter than 1.0 s, 1.0-1.5 s, 1.5-2.0 s, and longer than 2.0 s (within subjects). Longitudinal (mean headway, forward collision rate, and response time) and lateral control (mean lateral lane position and its standard deviation) performance was assessed. In the results, longitudinal control performance was worsened by both shorter time-gaps and heavier in-vehicle tasks. But the interaction indicated that the harm by heavier in-vehicle distraction could be improved by longer time-gaps. As for the lateral control, it would only be negatively affected by shorter time-gap settings. This research indicates the effects of time-gaps and in-vehicle distraction, as well as the interaction. Proper time-gap selection under different in-vehicle distractions can help avoid accidents and keep safe.

  16. Tunable sub-gap radiation detection with superconducting resonators

    NASA Astrophysics Data System (ADS)

    Dupré, O.; Benoît, A.; Calvo, M.; Catalano, A.; Goupy, J.; Hoarau, C.; Klein, T.; Le Calvez, K.; Sacépé, B.; Monfardini, A.; Levy-Bertrand, F.

    2017-04-01

    We have fabricated planar amorphous indium oxide superconducting resonators ({T}{{c}}˜ 2.8 K) that are sensitive to frequency-selective radiation in the range of 7-10 GHz. Those values lay far below twice the superconducting gap that is worth about 200 GHz. The photon detection consists in a shift of the fundamental resonance frequency. We show that the detected frequency can be adjusted by modulating the total length of the superconducting resonator. We attribute those observations to the excitation of higher-order resonance modes. The coupling between the fundamental lumped and the higher order distributed resonance is due to the kinetic inductance nonlinearity with current. These devices, that we have called sub-gap kinetic inductance detectors, are to be distinguished from the standard kinetic inductance detectors in which quasi-particles are generated when incident light breaks down Cooper pairs.

  17. Processing mode during repetitive thinking in socially anxious individuals: evidence for a maladaptive experiential mode.

    PubMed

    Wong, Quincy J J; Moulds, Michelle L

    2012-12-01

    Evidence from the depression literature suggests that an analytical processing mode adopted during repetitive thinking leads to maladaptive outcomes relative to an experiential processing mode. To date, in socially anxious individuals, the impact of processing mode during repetitive thinking related to an actual social-evaluative situation has not been investigated. We thus tested whether an analytical processing mode would be maladaptive relative to an experiential processing mode during anticipatory processing and post-event rumination. High and low socially anxious participants were induced to engage in either an analytical or experiential processing mode during: (a) anticipatory processing before performing a speech (Experiment 1; N = 94), or (b) post-event rumination after performing a speech (Experiment 2; N = 74). Mood, cognition, and behavioural measures were employed to examine the effects of processing mode. For high socially anxious participants, the modes had a similar effect on self-reported anxiety during both anticipatory processing and post-event rumination. Unexpectedly, relative to the analytical mode, the experiential mode led to stronger high standard and conditional beliefs during anticipatory processing, and stronger unconditional beliefs during post-event rumination. These experiments are the first to investigate processing mode during anticipatory processing and post-event rumination. Hence, these results are novel and will need to be replicated. These findings suggest that an experiential processing mode is maladaptive relative to an analytical processing mode during repetitive thinking characteristic of socially anxious individuals. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Mode of carcinogenic action of pesticides inducing thyroid follicular cell tumors in rodents.

    PubMed

    Hurley, P M

    1998-08-01

    Of 240 pesticides screened for carcinogenicity by the U.S. Environmental Protection Agency Office of Pesticide Programs, at least 24 (10%) produce thyroid follicular cell tumors in rodents. Thirteen of the thyroid carcinogens also induce liver tumors, mainly in mice, and 9 chemicals produce tumors at other sites. Some mutagenic data are available on all 24 pesticides producing thyroid tumors. Mutagenicity does not seem to be a major determinant in thyroid carcinogenicity, except for possibly acetochlor; evidence is less convincing for ethylene thiourea and etridiazole. Studies on thyroid-pituitary functioning, including indications of thyroid cell growth and/or changes in thyroxine, triiodothyronine, or thyroid-stimulating hormone levels, are available on 19 pesticides. No such antithyroid information is available for etridiazole, N-octyl bicycloheptene dicarboximide, terbutryn, triadimefon, and trifluralin. Of the studied chemicals, only bromacil lacks antithyroid activity under study conditions. Intrathyroidal and extrathyroidal sites of action are found: amitrole, ethylene thiourea, and mancozeb are thyroid peroxidase inhibitors; and acetochlor, clofentezine, fenbuconazole, fipronil, pendimethalin, pentachloronitrobenzene, prodiamine, pyrimethanil, and thiazopyr seem to enhance the hepatic metabolism and excretion of thyroid hormone. Thus, with 12 pesticides that mode of action judgments can be made, 11 disrupt thyroid-pituitary homeostasis only; no chemical is mutagenic only; and acetochlor may have both antithyroid and some mutagenic activity. More information is needed to identify other potential antithyroid modes of thyroid carcinogenic action.

  19. Mass hierarchy, mass gap and corrections to Newton's law on thick branes with Poincaré symmetry

    NASA Astrophysics Data System (ADS)

    Barbosa-Cendejas, Nandinii; Herrera-Aguilar, Alfredo; Kanakoglou, Konstantinos; Nucamendi, Ulises; Quiros, Israel

    2014-01-01

    We consider a scalar thick brane configuration arising in a 5D theory of gravity coupled to a self-interacting scalar field in a Riemannian manifold. We start from known classical solutions of the corresponding field equations and elaborate on the physics of the transverse traceless modes of linear fluctuations of the classical background, which obey a Schrödinger-like equation. We further consider two special cases in which this equation can be solved analytically for any massive mode with , in contrast with numerical approaches, allowing us to study in closed form the massive spectrum of Kaluza-Klein (KK) excitations and to analytically compute the corrections to Newton's law in the thin brane limit. In the first case we consider a novel solution with a mass gap in the spectrum of KK fluctuations with two bound states—the massless 4D graviton free of tachyonic instabilities and a massive KK excitation—as well as a tower of continuous massive KK modes which obey a Legendre equation. The mass gap is defined by the inverse of the brane thickness, allowing us to get rid of the potentially dangerous multiplicity of arbitrarily light KK modes. It is shown that due to this lucky circumstance, the solution of the mass hierarchy problem is much simpler and transparent than in the thin Randall-Sundrum (RS) two-brane configuration. In the second case we present a smooth version of the RS model with a single massless bound state, which accounts for the 4D graviton, and a sector of continuous fluctuation modes with no mass gap, which obey a confluent Heun equation in the Ince limit. (The latter seems to have physical applications for the first time within braneworld models). For this solution the mass hierarchy problem is solved with positive branes as in the Lykken-Randall (LR) model and the model is completely free of naked singularities. We also show that the scalar-tensor system is stable under scalar perturbations with no scalar modes localized on the braneworld

  20. Laser initiated spark development in an air gap.

    PubMed

    Lindner, F W; Rudolph, W; Brumme, G; Fischer, H

    1975-09-01

    Spark development is studied by 20-nsec image converter photography. A diffuse and transparent prechannel bridges the gap from the top of the metal vapor jet, which has counterelectrode potential. The prechannel cuts off the development of the cone shaped jet with increasing gap voltage. The final breakdown is initiated by a z-axis, laser induced filament, which expands into the prechannel volume within less, similar10 nsec. This interval represents the final high current thermalization phase of the breakdown. Thermal expansion of the initial spark channel (Braginskii) follows.

  1. Alpha-Driven MHD and MHD-Induced Alpha Loss in TFTR DT Experiments

    NASA Astrophysics Data System (ADS)

    Chang, Zuoyang

    1996-11-01

    Theoretical calculation and numerical simulation indicate that there can be interesting interactions between alpha particles and MHD activity which can adversely affect the performance of a tokamak reactor (e.g., ITER). These interactions include alpha-driven MHD, like the toroidicity-induced-Alfven-eigenmode (TAE) and MHD induced alpha particle losses or redistribution. Both phenomena have been observed in recent TFTR DT experiments. Weak alpha-driven TAE activity was observed in a NBI-heated DT experiment characterized by high q0 ( >= 2) and low core magnetic shear. The TAE mode appears at ~30-100 ms after the neutral beam turning off approximately as predicted by theory. The mode has an amplitude measured by magnetic coils at the edge tildeB_p ~1 mG, frequency ~150-190 kHz and toroidal mode number ~2-3. It lasts only ~ 30-70 ms and has been seen only in DT discharges with fusion power level about 1.5-2.0 MW. Numerical calculation using NOVA-K code shows that this type of plasma has a big TAE gap. The calculated TAE frequency and mode number are close to the observation. (2) KBM-induced alpha particle loss^1. In some high-β, high fusion power DT experiments, enhanced alpha particle losses were observed to be correlated to the high frequency MHD modes with f ~100-200 kHz (the TAE frequency would be two-times higher) and n ~5-10. These modes are localized around the peak plasma pressure gradient and have ballooning characteristics. Alpha loss increases by 30-100% during the modes. Particle orbit simulations show the added loss results from wave-particle resonance. Linear instability analysis indicates that the plasma is unstable to the kinetic MHD ballooning modes (KBM) driven primarily by strong local pressure gradients. ----------------- ^1Z. Chang, et al, Phys. Rev. Lett. 76 (1996) 1071. In collaberation with R. Nazikian, G.-Y. Fu, S. Batha, R. Budny, L. Chen, D. Darrow, E. Fredrickson, R. Majeski, D. Mansfield, K. McGuire, G. Rewoldt, G. Taylor, R. White, K

  2. Dust coagulation and magnetic field strength in a planet-induced gap subject to MRI turbulence

    NASA Astrophysics Data System (ADS)

    Carballido, Augusto; Matthews, Lorin; Hyde, Truell

    2017-01-01

    We investigate the coagulation of dust particles in and around a gap opened by a Jupiter-mass planet. To this end, we carry out a high-resolution magnetohydrodynamic (MHD) simulation of the gap environment, which is turbulent due to the magneto rotational instability. From the MHD simulation, we obtain values of the gas velocities, densities and turbulent stresses close to the gap edge, in one of the two gas streams that accrete onto the planet, and inside the low-density gap. The MHD values are then supplied to a Monte Carlo dust coagulation algorithm, which models grain sticking, compaction and bouncing. We consider two dust populations for each region: one whose initial size distribution is monodisperse, with monomer radius equal to 1 micron, and another one whose initial size distribution follows the Mathis-Rumpl-Nordsieck distribution for interstellar dust grains, with an initial range of monomer radii between 0.5 and 10 microns. Without bouncing, our Monte Carlo calculations show steady growth of dust aggregates in all regions, and the mass-weighted (MW) average porosity of the initially mono disperse population reaches extremely high final values of 98%. The final MW porosities in all other cases without bouncing range from 30% to 82%. The efficiency of compaction is due to high turbulent relative speeds between dust particles. When bouncing is introduced, growth is slowed down in the planetary wake and inside the gap.We also analyze the strength of the magnetic field threading the gaps opened by planets of different sub-Jovian masses. Preliminary results show that, in a gap opened by a large-mass planet (~ 1 MJ), the time-averaged radial profile of the vertical component of the field (Bz) increases sharply inside the gap, and less sharply in the case of less massive planets. In gaps opened by intermediate-mass planets (~ 0.5 — 0.75 MJ), the radial profile of Bz exhibits local maxima in the vicinity of the planet, but not at the gap center.

  3. Closing the mycetoma knowledge gap.

    PubMed

    van de Sande, Wendy; Fahal, Ahmed; Ahmed, Sarah Abdalla; Serrano, Julian Alberto; Bonifaz, Alexandro; Zijlstra, Ed

    2018-04-01

    On 28th May 2016, mycetoma was recognized as a neglected tropical disease by the World Health Organization. This was the result of a 4-year journey starting in February 2013 with a meeting of global mycetoma experts. Knowledge gaps were identified and included the incidence, prevalence, and mapping of mycetoma; the mode of transmission; the development of methods for early diagnosis; and better treatment. In this review, we review the road to recognition, the ISHAM working group meeting in Argentina, and we address the progress made in closing the knowledge gaps since 2013. Progress included adding another 9000 patients to the literature, which allowed us to update the prevalence map on mycetoma. Furthermore, based on molecular phylogeny, species names were corrected and four novel mycetoma causative agents were identified. By mapping mycetoma causative agents an association with Acacia trees was found. For early diagnosis, three different isothermal amplification techniques were developed, and novel antigens were discovered. To develop better treatment strategies for mycetoma patients, in vitro susceptibility tests for the coelomycete agents of black grain mycetoma were developed, and the first randomized clinical trial for eumycetoma started early 2017.

  4. Method and radial gap machine for high strength undiffused brushless operation

    DOEpatents

    Hsu, John S.

    2006-10-31

    A radial gap brushless electric machine (30) having a stator (31) and a rotor (32) and a main air gap (34) also has at least one stationary excitation coil (35a, 36a) separated from the rotor (32) by a secondary air gap (35e, 35f, 36e, 36f) so as to induce a secondary flux in the rotor (32) which controls a resultant flux in the main air gap (34). Permanent magnetic (PM) material (38) is disposed in spaces between the rotor pole portions (39) to inhibit the second flux from leaking from the pole portions (39) prior to reaching the main air gap (34). By selecting the direction of current in the stationary excitation coil (35a, 36a) both flux enhancement and flux weakening are provided for the main air gap (34). A method of non-diffused flux enhancement and flux weakening for a radial gap machine is also disclosed.

  5. Role of heteromeric gap junctions in the cytotoxicity of cisplatin.

    PubMed

    Tong, Xuhui; Dong, Shuying; Yu, Meiling; Wang, Qin; Tao, Liang

    2013-08-09

    In several systems, the presence of gap junctions made of a single connexin has been shown to enhance the cytotoxicity of cisplatin. However, most gap junction channels in vivo appear to be heteromeric (composed of more than one connexin isoform). Here we explore in HeLa cells the cytotoxicity to cisplatin that is enhanced by heteromeric gap junctions composed of Cx26 and Cx32, which have been shown to be more selective among biological permeants than the corresponding homomeric channels. We found that survival and subsequent proliferation of cells exposed to cisplatin were substantially reduced when gap junctions were present than when there were no gap junctions. Functional inhibition of gap junctions by oleamide enhanced survival/proliferation, and enhancement of gap junctions by retinoic acid decreased survival/proliferation. These effects occurred only in high density cultures, and the treatments were without effect when there was no opportunity for gap junction formation. The presence of functional gap junctions enhanced apoptosis as reflected in markers of both early-stage and late-stage apoptosis. Furthermore, analysis of caspases 3, 8 and 9 showed that functional gap junctions specifically induced apoptosis by the mitochondrial pathway. These results demonstrate that heteromeric Cx26/Cx32 gap junctions increase the cytotoxicity of cisplatin by induction of apoptosis via the mitochondrial pathway. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  6. Graphene-induced band gap renormalization in polythiophene: a many-body perturbation study

    NASA Astrophysics Data System (ADS)

    Marsusi, F.; Fedorov, I. A.; Gerivani, S.

    2018-01-01

    Density functional theory and many-body perturbation theory at the G0W0 level are employed to study the electronic properties of polythiophene (PT) adsorbed on the graphene surface. Analysis of the charge density difference shows that substrate-adsorbate interaction leads to a strong physisorption and interfacial electric dipole moment formation. The electrostatic potential displays a  -0.19 eV shift in the graphene work function from its initial value of 4.53 eV, as the result of the interaction. The LDA band gap of the polymer does not show any change. However, the band structure exhibits weak orbital hybridizations resulting from slight overlapping between the polymer and graphene states wave functions. The interfacial polarization effects on the band gap and levels alignment are investigated at the G0W0 level and show a notable reduction of PT band gap compared to that of the isolated chain.

  7. Amplitude mode oscillations in pump-probe photoemission spectra from a d -wave superconductor

    DOE PAGES

    Nosarzewski, B.; Moritz, B.; Freericks, J. K.; ...

    2017-11-20

    Recent developments in the techniques of ultrafast pump-probe photoemission have made possible the search for collective modes in strongly correlated systems out of equilibrium. Including inelastic scattering processes and a retarded interaction, we simulate time- and angle-resolved photoemission spectroscopy (trARPES) to study the amplitude mode of a d-wave superconductor, a collective mode excited through the nonlinear light-matter coupling to the pump pulse. We find that the amplitude mode oscillations of the d-wave order parameter occur in phase at a single frequency that is twice the quasi-steady-state maximum gap size after pumping. As a result, we comment on the necessary conditionsmore » for detecting the amplitude mode in trARPES experiments.« less

  8. Amplitude mode oscillations in pump-probe photoemission spectra from a d -wave superconductor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nosarzewski, B.; Moritz, B.; Freericks, J. K.

    Recent developments in the techniques of ultrafast pump-probe photoemission have made possible the search for collective modes in strongly correlated systems out of equilibrium. Including inelastic scattering processes and a retarded interaction, we simulate time- and angle-resolved photoemission spectroscopy (trARPES) to study the amplitude mode of a d-wave superconductor, a collective mode excited through the nonlinear light-matter coupling to the pump pulse. We find that the amplitude mode oscillations of the d-wave order parameter occur in phase at a single frequency that is twice the quasi-steady-state maximum gap size after pumping. As a result, we comment on the necessary conditionsmore » for detecting the amplitude mode in trARPES experiments.« less

  9. The guided-mode resonance biosensor: principles, technology, and implementation

    NASA Astrophysics Data System (ADS)

    Magnusson, Robert; Lee, Kyu J.; Hemmati, Hafez; Ko, Yeong Hwan; Wenner, Brett R.; Allen, Jeffery W.; Allen, Monica S.; Gimlin, Susanne; Weidanz, Debra Wawro

    2018-02-01

    The guided-mode resonance (GMR) sensor operates with quasi-guided modes induced in periodic films. The resonance is enabled by 1D or 2D nanopatterns that are expeditiously fabricated. Optical sensors are needed in many fields including medical diagnostics, chemical analyses, and environmental monitoring. Inducing resonance in multiple modes enables extraction of complete bioreaction information including the biolayer thickness, biolayer refractive index, and any change in the refractive index in the background buffer solution. Thus, we refer to this version of the GMR sensor as the complete biosensor. We address the fundamentals, state of technological development, and implementation of this basic sensor modality.

  10. Remaining gaps for "safe" CO2 storage: the INGV CO2GAPS vision of "learning by doing" monitoring geogas leakage, reservoirs contamination/mixing and induced/triggered seismicity

    NASA Astrophysics Data System (ADS)

    Quattrocchi, F.; Vinciguerra, S.; Chiarabba, C.; Boschi, E.; Anselmi, M.; Burrato, P.; Buttinelli, M.; Cantucci, B.; Cinti, D.; Galli, G.; Improta, L.; Nazzari, M.; Pischiutta, M.; Pizzino, L.; Procesi, M.; Rovelli, A.; Sciarra, A.; Voltattorni, N.

    2012-12-01

    The CO2GAPS project proposed by INGV is intended to build up an European Proposal for a new kind of research strategy in the field of the geogas storage. Aim of the project would be to fill such key GAPS concerning the main risks associated to CO2 storage and their implications on the entire Carbon Capture and Storage (CCS) process, which are: i) the geogas leakage both in soils and shallow aquifers, up to indoor seepage; ii) the reservoirs contamination/mixing by hydrocarbons and heavy metals; iii) induced or triggered seismicity and microseismicity, especially for seismogenic blind faults. In order to consider such risks and make the CCS public acceptance easier, a new kind of research approach should be performed by: i) a better multi-disciplinary and "site specific" risk assessment; ii) the development of more reliable multi-disciplinary monitoring protocols. In this view robust pre-injection base-lines (seismicity and degassing) as well as identification and discrimination criteria for potential anomalies are mandatory. CO2 injection dynamic modelling presently not consider reservoirs geomechanical properties during reactive mass-transport large scale simulations. Complex simulations of the contemporaneous physic-chemical processes involving CO2-rich plumes which move, react and help to crack the reservoir rocks are not totally performed. These activities should not be accomplished only by the oil-gas/electric companies, since the experienced know-how should be shared among the CCS industrial operators and research institutions, with the governments support and overview, also flanked by a transparent and "peer reviewed" scientific popularization process. In this context, a preliminary and reliable 3D modelling of the entire "storage complex" as defined by the European Directive 31/2009 is strictly necessary, taking into account the above mentioned geological, geochemical and geophysical risks. New scientific results could also highlighting such opportunities

  11. Acetaminophen-induced anion gap metabolic acidosis secondary to 5-oxoproline: a case report.

    PubMed

    Abkur, Tarig Mohammed; Mohammed, Waleed; Ali, Mohamed; Casserly, Liam

    2014-12-06

    5-oxoproline (pyroglutamic acid), an organic acid intermediate of the gamma-glutamyl cycle, is a rare cause of high anion gap metabolic acidosis. Acetaminophen and several other drugs have been implicated in the development of transient 5-oxoprolinemia in adults. We believe that reporting all cases of 5-oxoprolinemia will contribute to a better understanding of this disease. Here, we report the case of a patient who developed transient 5-oxoprolinemia following therapeutic acetaminophen use. A 75-year-old Caucasian woman was initially admitted for treatment of an infected hip prosthesis and subsequently developed transient high anion gap metabolic acidosis. Our patient received 40 g of acetaminophen over a 10-day period. After the more common causes of high anion gap metabolic acidosis were excluded, a urinary organic acid screen revealed a markedly increased level of 5-oxoproline. The acidosis resolved completely after discontinuation of the acetaminophen. 5-oxoproline acidosis is an uncommon cause of high anion gap metabolic acidosis; however, it is likely that it is under-diagnosed as awareness of the condition remains low and testing can only be performed at specialized laboratories. The diagnosis should be suspected in cases of anion gap metabolic acidosis, particularly in patients with recent acetaminophen use in combination with sepsis, malnutrition, liver disease, pregnancy or renal failure. This case has particular interest in medicine, especially for the specialties of nephrology and orthopedics. We hope that it will add more information to the literature about this rare condition.

  12. High anion gap metabolic acidosis induced by cumulation of ketones, L- and D-lactate, 5-oxoproline and acute renal failure.

    PubMed

    Heireman, Laura; Mahieu, Boris; Helbert, Mark; Uyttenbroeck, Wim; Stroobants, Jan; Piqueur, Marian

    2017-07-27

    Frequent causes of high anion gap metabolic acidosis (HAGMA) are lactic acidosis, ketoacidosis and impaired renal function. In this case report, a HAGMA caused by ketones, L- and D-lactate, acute renal failure as well as 5-oxoproline is discussed. A 69-year-old woman was admitted to the emergency department with lowered consciousness, hyperventilation, diarrhoea and vomiting. The patient had suffered uncontrolled type 2 diabetes mellitus, underwent gastric bypass surgery in the past and was chronically treated with high doses of paracetamol and fosfomycin. Urosepsis was diagnosed, whilst laboratory analysis of serum bicarbonate concentration and calculation of the anion gap indicated a  HAGMA. L-lactate, D-lactate, β-hydroxybutyric acid, acetone and 5-oxoproline serum levels were markedly elevated and renal function was impaired. We concluded that this case of HAGMA was induced by a variety of underlying conditions: sepsis, hyperglycaemia, prior gastric bypass surgery, decreased renal perfusion and paracetamol intake. Risk factors for 5-oxoproline intoxication present in this case are female gender, sepsis, impaired renal function and uncontrolled type 2 diabetes mellitus. Furthermore, chronic antibiotic treatment with fosfomycin might have played a role in the increased production of 5-oxoproline. Paracetamol-induced 5-oxoproline intoxication should be considered as a cause of HAGMA in patients with female gender, sepsis, impaired renal function or uncontrolled type 2 diabetes mellitus, even when other more obvious causes of HAGMA such as lactate, ketones or renal failure can be identified.

  13. Topology and Edge Modes in Quantum Critical Chains

    NASA Astrophysics Data System (ADS)

    Verresen, Ruben; Jones, Nick G.; Pollmann, Frank

    2018-02-01

    We show that topology can protect exponentially localized, zero energy edge modes at critical points between one-dimensional symmetry-protected topological phases. This is possible even without gapped degrees of freedom in the bulk—in contrast to recent work on edge modes in gapless chains. We present an intuitive picture for the existence of these edge modes in the case of noninteracting spinless fermions with time-reversal symmetry (BDI class of the tenfold way). The stability of this phenomenon relies on a topological invariant defined in terms of a complex function, counting its zeros and poles inside the unit circle. This invariant can prevent two models described by the same conformal field theory (CFT) from being smoothly connected. A full classification of critical phases in the noninteracting BDI class is obtained: Each phase is labeled by the central charge of the CFT, c ∈1/2 N , and the topological invariant, ω ∈Z . Moreover, c is determined by the difference in the number of edge modes between the phases neighboring the transition. Numerical simulations show that the topological edge modes of critical chains can be stable in the presence of interactions and disorder.

  14. Surface plasmon polariton nanocavity with ultrasmall mode volume

    NASA Astrophysics Data System (ADS)

    Yue, Wencheng; Yao, Peijun; Luo, Huiwen; Liu, Wen

    2017-08-01

    We present a plasmonic nanocavity structure, consisting of a gallium phosphide (GaP) cylinder penetrating into a rectangular silver plate, and study its properties using a finite element method (FEM). An ultrasmall mode volume of 1.5×10-5[λ_0/(2n)]3 is achieved, which is more than 200 times smaller than the previous ultrasmall mode volume plasmonic nanodisk resonators. Meanwhile, the quality factor of the plasmonic nanocavity is about 38.2 and is over two times greater than the ultrasmall mode volume plasmonic nanodisk resonators. Compared to the aforementioned plasmonic nanodisk resonators, a more than one-order of magnitude larger Purcell factor of 1.2×104 is achieved. We determined the resonant modes of our plasmonic nanocavity are dipolar plasmon modes by analyzing the electric field properties. In addition, we investigate the dependence of the optical properties on the refractive index of the cavity material and discuss the effect of including the silica (SiO2) substrate. Our work provides an alternative approach to achieve ultrasmall plasmonic nanocavity of interest in applications to many areas of research, including device physics, nonlinear optics and quantum optics.

  15. Frequency dependence of p-mode frequency shifts induced by magnetic activity in Kepler solar-like stars

    NASA Astrophysics Data System (ADS)

    Salabert, D.; Régulo, C.; Pérez Hernández, F.; García, R. A.

    2018-04-01

    The variations of the frequencies of the low-degree acoustic oscillations in the Sun induced by magnetic activity show a dependence on radial order. The frequency shifts are observed to increase towards higher-order modes to reach a maximum of about 0.8 μHz over the 11-yr solar cycle. A comparable frequency dependence is also measured in two other main sequence solar-like stars, the F-star HD 49933, and the young 1 Gyr-old solar analog KIC 10644253, although with different amplitudes of the shifts of about 2 μHz and 0.5 μHz, respectively. Our objective here is to extend this analysis to stars with different masses, metallicities, and evolutionary stages. From an initial set of 87 Kepler solar-like oscillating stars with known individual p-mode frequencies, we identify five stars showing frequency shifts that can be considered reliable using selection criteria based on Monte Carlo simulations and on the photospheric magnetic activity proxy Sph. The frequency dependence of the frequency shifts of four of these stars could be measured for the l = 0 and l = 1 modes individually. Given the quality of the data, the results could indicate that a physical source of perturbation different from that in the Sun is dominating in this sample of solar-like stars.

  16. Ultrafast band-gap oscillations in iron pyrite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolb, B; Kolpak, AM

    2013-12-20

    With its combination of favorable band gap, high absorption coefficient, material abundance, and low cost, iron pyrite, FeS2, has received a great deal of attention over the past decades as a promising material for photovoltaic applications such as solar cells and photoelectrochemical cells. Devices made from pyrite, however, exhibit open circuit voltages significantly lower than predicted, and despite a recent resurgence of interest in the material, there currently exists no widely accepted explanation for this disappointing behavior. In this paper, we show that phonons, which have been largely overlooked in previous efforts, may play a significant role. Using fully self-consistentmore » GW calculations, we demonstrate that a phonon mode related to the oscillation of the sulfur-sulfur bond distance in the pyrite structure is strongly coupled to the energy of the conduction-band minimum, leading to an ultrafast (approximate to 100 fs) oscillation in the band gap. Depending on the coherency of the phonons, we predict that this effect can cause changes of up to +/- 0.3 eV relative to the accepted FeS2 band gap at room temperature. Harnessing this effect via temperature or irradiation with infrared light could open up numerous possibilities for novel devices such as ultrafast switches and adaptive solar absorbers.« less

  17. Nonsymmorphic symmetry-protected topological modes in plasmonic nanoribbon lattices

    NASA Astrophysics Data System (ADS)

    Zhang, Yong-Liang; Wu, Raymond P. H.; Kumar, Anshuman; Si, Tieyan; Fung, Kin Hung

    2018-04-01

    Using a dynamic eigenresponse theory, we study the topological edge plasmon modes in dispersive plasmonic lattices constructed by unit cells of multiple nanoribbons. In dipole approximation, the bulk-edge correspondence in the lattices made of dimerized unit cell and one of its square-root daughter with nonsymmorphic symmetry are demonstrated. Calculations with consideration of dynamic long-range effects and retardation are compared to those given by nearest-neighbor approximations. It is shown that nonsymmorphic symmetry opens up two symmetric gaps where versatile topological edge plasmon modes are found. Unprecedented spectral shifts of the edge states with respect to the zero modes due to long-range coupling are found. The proposed ribbon structure is favorable to electrical gating and thus could serve as an on-chip platform for electrically controllable subwavelength edge states at optical wavelengths. Our eigenresponse approach provides a powerful tool for the radiative topological mode analysis in strongly coupled plasmonic lattices.

  18. Dynamics of mode-coupling-induced microresonator frequency combs in normal dispersion

    NASA Astrophysics Data System (ADS)

    Jang, Jae K.; Okawachi, Yoshitomo; Yu, Mengjie; Luke, Kevin; Ji, Xingchen; Lipson, Michal; Gaeta, Alexander L.

    2016-12-01

    We experimentally and theoretically investigate the dynamics of microresonator-based frequency comb generation assisted by mode coupling in the normal group-velocity dispersion (GVD) regime. We show that mode coupling can initiate intracavity modulation instability (MI) by directly perturbing the pump-resonance mode. We also observe the formation of a low-noise comb as the pump frequency is tuned further into resonance from the MI point. We determine the phase-matching conditions that accurately predict all the essential features of the MI and comb spectra, and extend the existing analogy between mode coupling and high-order dispersion to the normal GVD regime. We discuss the applicability of our analysis to the possibility of broadband comb generation in the normal GVD regime.

  19. Impact of the Nanoscale Gap Morphology on the Plasmon Coupling in Asymmetric Nanoparticle Dimer Antennas.

    PubMed

    Popp, Paul S; Herrmann, Janning F; Fritz, Eva-Corinna; Ravoo, Bart Jan; Höppener, Christiane

    2016-03-23

    Coupling of plasmon resonances in metallic gap antennas is of interest for a wide range of applications due to the highly localized strong electric fields supported by these structures, and their high sensitivity to alterations of their structure, geometry, and environment. Morphological alterations of asymmetric nanoparticle dimer antennas with (sub)-nanometer size gaps are assigned to changes of their optical response in correlative dark-field spectroscopy and high-resolution transmission electron microscopy (HR-TEM) investigations. This multimodal approach to investigate individual dimer structures clearly demonstrates that the coupling of the plasmon modes, in addition to well-known parameters such as the particle geometry and the gap size, is also affected by the relative alignment of both nanoparticles. The investigations corroborate that the alignment of the gap forming facets, and with that the gap area, is crucial for their scattering properties. The impact of a flat versus a rounded gap structure on the optical properties of equivalent dimers becomes stronger with decreasing gap size. These results hint at a higher confinement of the electric field in the gap and possibly a different onset of quantum transport effects for flat and rounded gap antennas in corresponding structures for very narrow gaps. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. [Influence of Cx26/Cx32 gap junction channel on antineoplastic effect of etoposide in Hela cells].

    PubMed

    Tong, Xu-Hui; Dong, Shu-Ying; Jiang, Guo-Jun; Fan, Gao-Fu

    2012-03-01

    To observe the influence of Cx26/Cx32 gap junction channel on the antineoplastic effect of etoposide in Hela cervical cancer cells. Fluorescence trace was used to assay the gap junction intercellular communication mediated by Cx26/Cx32 in Hela cells and its functional modulation by the pharmacological agents (oleamide, retinoid acid). A standard colony-forming assay was applied to determine the cell growth-inhibiting effect of etoposide in Hela cells with functional modulation of the gap junction. Hoechst 33258 staining was used to assess the changes in etoposide-induced apoptosis of Hela cells with altered gap junction functions. Oleamide markedly decreased while retinoid acid obviously increased the gap junction function in Hela cells. Standard colony-forming assay showed that etoposide produced a lowered antiproliferative effect in Hela cells with reduced gap junction and an increased antiproliferative effect in cells with enhanced gap junction function. In cells with a reduced gap junction function, etoposide induced a lowered apoptosis rate, which increased obviously in cells with an enhanced gap junction function. The antineoplastic effect of etoposide is reduced in Hela cells with a decreased gap junction intercellular communication mediated by Cx26/Cx32 and is enhanced in cells with an increased gap junction intercellular communication.

  1. Lipopolysaccharide effects on the proliferation of NRK52E cells via alternations in gap-junction function.

    PubMed

    Hei, Ziqing; Zhang, Ailan; Wei, Jing; Gan, Xiaoliang; Wang, Yanling; Luo, Gangjian; Li, Xiaoyun

    2012-07-01

    Gap junctions regulate proper kidney function by facilitating intercellular communication, vascular conduction, and tubular purinergic signaling. However, no clear relationship has been described between gap-junction function and acute kidney injury induced by the endotoxin lipopolysaccharide (LPS). Normal rat kidney epithelial cells (NRK52E cells) were seeded at high and low densities to promote or impede gap-junction formation, respectively, and establish distinctive levels of intercellular communication in culture. Cells were then challenged with LPS at various concentrations (10-1,000 ng/mL). LPS-induced formation and function of gap junctions were assessed by measuring changes in cell proliferation and colony-forming rates, fluorescent dye transmission to adjacent cells, expression levels of connexin43, and repositioning of confluent cells in response to the gap junction inhibitor oleamide or agonist retinoic acid. The cell proliferation rate and colony-forming rate of high- and low-density NRK52E cells were decreased upon LPS challenge, in a dose-dependent manner. The colony-forming rate of confluent high-density cells was significantly lower than that of low-density cells. Oleamide treatment raised the LPS-induced colony-forming rate of high-density cells, whereas retinoic acid decreased the rate. Neither oleamide nor retinoic acid significantly affected the LPS-induced colony-forming rate of low-density cells. Fluorescence transmission of high-density cells was reduced by LPS challenge, in a dose-dependent manner, but inclusion of retinoic acid increased the LPS-induced transmission of fluorescence. LPS challenge of either high- or low-density NRK52E cells resulted in down-regulated connexin43 expression. Gap-junction function plays an important role in concentration-dependent cytotoxic effect of LPS on normal rat kidney cells in vitro.

  2. The Psychedelic State Induced by Ayahuasca Modulates the Activity and Connectivity of the Default Mode Network

    PubMed Central

    Palhano-Fontes, Fernanda; Andrade, Katia C.; Tofoli, Luis F.; Santos, Antonio C.; Crippa, Jose Alexandre S.; Hallak, Jaime E. C.; Ribeiro, Sidarta; de Araujo, Draulio B.

    2015-01-01

    The experiences induced by psychedelics share a wide variety of subjective features, related to the complex changes in perception and cognition induced by this class of drugs. A remarkable increase in introspection is at the core of these altered states of consciousness. Self-oriented mental activity has been consistently linked to the Default Mode Network (DMN), a set of brain regions more active during rest than during the execution of a goal-directed task. Here we used fMRI technique to inspect the DMN during the psychedelic state induced by Ayahuasca in ten experienced subjects. Ayahuasca is a potion traditionally used by Amazonian Amerindians composed by a mixture of compounds that increase monoaminergic transmission. In particular, we examined whether Ayahuasca changes the activity and connectivity of the DMN and the connection between the DMN and the task-positive network (TPN). Ayahuasca caused a significant decrease in activity through most parts of the DMN, including its most consistent hubs: the Posterior Cingulate Cortex (PCC)/Precuneus and the medial Prefrontal Cortex (mPFC). Functional connectivity within the PCC/Precuneus decreased after Ayahuasca intake. No significant change was observed in the DMN-TPN orthogonality. Altogether, our results support the notion that the altered state of consciousness induced by Ayahuasca, like those induced by psilocybin (another serotonergic psychedelic), meditation and sleep, is linked to the modulation of the activity and the connectivity of the DMN. PMID:25693169

  3. A study of the influence of forest gaps on fire–atmosphere interactions

    Treesearch

    Michael T. Kiefer; Warren E. Heilman; Shiyuan Zhong; Joseph J. (Jay) Charney; Xindi (Randy) Bian

    2016-01-01

    Much uncertainty exists regarding the possible role that gaps in forest canopies play in modulating fire–atmosphere interactions in otherwise horizontally homogeneous forests. This study examines the influence of gaps in forest canopies on atmospheric perturbations induced by a low-intensity fire using the ARPS-CANOPY model, a version of the Advanced Regional...

  4. Plasma-resistivity-induced strong damping of the kinetic resistive wall mode.

    PubMed

    He, Yuling; Liu, Yueqiang; Liu, Yue; Hao, Guangzhou; Wang, Aike

    2014-10-24

    An energy-principle-based dispersion relation is derived for the resistive wall mode, which incorporates both the drift kinetic resonance between the mode and energetic particles and the resistive layer physics. The equivalence between the energy-principle approach and the resistive layer matching approach is first demonstrated for the resistive plasma resistive wall mode. As a key new result, it is found that the resistive wall mode, coupled to the favorable average curvature stabilization inside the resistive layer (as well as the toroidal plasma flow), can be substantially more stable than that predicted by drift kinetic theory with fast ion stabilization, but with the ideal fluid assumption. Since the layer stabilization becomes stronger with decreasing plasma resistivity, this regime is favorable for reactor scale, high-temperature fusion devices.

  5. Ten factors for considering the mode of action of Cr(VI)-induced gastrointestinal tumors in rodents.

    PubMed

    Thompson, Chad M; Suh, Mina; Proctor, Deborah M; Haws, Laurie C; Harris, Mark A

    2017-11-01

    The determination of whether a chemical induces a specific cancer through a mutagenic or non-mutagenic mode of action (MOA) plays an important role in choosing between linear and nonlinear low-dose extrapolation to derive toxicity criteria. There is no formal framework from the U.S. EPA for determining whether environmental chemicals act through a mutagenic or non-mutagenic MOA; consequently, most such determinations are made on an ad hoc basis. Eastmond [Mutat Res 751 (2012)] recently conducted a systematic investigation of MOA determinations by U.S. and international regulatory agencies and organizations, and identified ten major factors that influence them, including toxicokinetics, in vivo genotoxicity in target organs, data quality, and evidence for alternative MOAs. We have used these ten factors to evaluate mutagenic vs. non-mutagenic MOA for gastrointestinal tumors induced by oral exposure to hexavalent chromium [Cr(VI)]. We also highlight similarities between Cr(VI) and other intestinal carcinogens previously determined to have non-genotoxic MOAs. Based on these analyses, we conclude that the MOA for Cr(VI) induced gastrointestinal tumors is non-mutagenic and that threshold risk assessment approaches are appropriate. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  6. PKC-mediated HuD-GAP43 pathway activation in a mouse model of antiretroviral painful neuropathy.

    PubMed

    Sanna, M D; Quattrone, A; Ghelardini, C; Galeotti, N

    2014-03-01

    Patients treated with nucleoside reverse transcriptase inhibitors (NRTIs) develop painful neuropathies that lead to discontinuation of antiretroviral therapy thus limiting viral suppression strategies. The mechanisms by which NRTIs contribute to the development of neuropathy are not known. In order to elucidate the mechanisms underlying this drug-induced neuropathy, we have characterized cellular events in the central nervous system following antiretroviral treatment. Systemic administration of the antiretroviral agent, 2',3'-dideoxycytidine (ddC) considerably increased the expression and phosphorylation of protein kinase C (PKC) γ and ɛ, enzymes highly involved in pain processes, within periaqueductal grey matter (PAG), and, to a lesser extent, within thalamus and prefrontal cortex. These events appeared in coincidence with thermal and mechanical allodynia, but PKC blockade did not prevent the antiretroviral-induced pain hypersensitivity, ruling out a major involvement of PKC in the ddC-induced nociceptive behaviour. An increased expression of GAP43, a marker of neuroregeneration, and decreased levels of ATF3, a marker of neuroregeneration, were detected in all brain areas. ddC treatment also increased the expression of HuD, a RNA-binding protein target of PKC known to stabilize GAP43 mRNA. Pharmacological blockade of PKC prevented HuD and GAP43 overexpression. Silencing of both PKCγ and HuD reduced GAP43 levels in control mice and prevented the ddC-induced GAP43 enhanced expression. Present findings illustrate the presence of a supraspinal PKC-mediated HuD-GAP43 pathway activated by ddC. Based on our results, we speculate that antiretroviral drugs may recruit the HuD-GAP43 pathway, potentially contributing to a response to the antiretroviral neuronal toxicity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. GapBlaster-A Graphical Gap Filler for Prokaryote Genomes.

    PubMed

    de Sá, Pablo H C G; Miranda, Fábio; Veras, Adonney; de Melo, Diego Magalhães; Soares, Siomar; Pinheiro, Kenny; Guimarães, Luis; Azevedo, Vasco; Silva, Artur; Ramos, Rommel T J

    2016-01-01

    The advent of NGS (Next Generation Sequencing) technologies has resulted in an exponential increase in the number of complete genomes available in biological databases. This advance has allowed the development of several computational tools enabling analyses of large amounts of data in each of the various steps, from processing and quality filtering to gap filling and manual curation. The tools developed for gap closure are very useful as they result in more complete genomes, which will influence downstream analyses of genomic plasticity and comparative genomics. However, the gap filling step remains a challenge for genome assembly, often requiring manual intervention. Here, we present GapBlaster, a graphical application to evaluate and close gaps. GapBlaster was developed via Java programming language. The software uses contigs obtained in the assembly of the genome to perform an alignment against a draft of the genome/scaffold, using BLAST or Mummer to close gaps. Then, all identified alignments of contigs that extend through the gaps in the draft sequence are presented to the user for further evaluation via the GapBlaster graphical interface. GapBlaster presents significant results compared to other similar software and has the advantage of offering a graphical interface for manual curation of the gaps. GapBlaster program, the user guide and the test datasets are freely available at https://sourceforge.net/projects/gapblaster2015/. It requires Sun JDK 8 and Blast or Mummer.

  8. Finite-size Scaling of the Density of States in Photonic Band Gap Crystals

    NASA Astrophysics Data System (ADS)

    Hasan, Shakeeb Bin; Mosk, Allard P.; Vos, Willem L.; Lagendijk, Ad

    2018-06-01

    The famous vanishing of the density of states (DOS) in a band gap, be it photonic or electronic, pertains to the infinite-crystal limit. In contrast, all experiments and device applications refer to finite crystals, which raises the question: Upon increasing the linear size L of a crystal, how fast does the DOS approach the infinite-crystal limit? We present a theory for finite crystals that includes Bloch-mode broadening due to the presence of crystal boundaries. Our results demonstrate that the DOS for frequencies inside a band gap has a 1 /L scale dependence for crystals in one, two and three dimensions.

  9. Quasiparticle and excitonic gaps of one-dimensional carbon chains.

    PubMed

    Mostaani, E; Monserrat, B; Drummond, N D; Lambert, C J

    2016-06-01

    We report diffusion quantum Monte Carlo (DMC) calculations of the quasiparticle and excitonic gaps of hydrogen-terminated oligoynes and extended polyyne. The electronic gaps are found to be very sensitive to the atomic structure in these systems. We have therefore optimised the geometry of polyyne by directly minimising the DMC energy with respect to the lattice constant and the Peierls-induced carbon-carbon bond-length alternation. We find the bond-length alternation of polyyne to be 0.136(2) Å and the excitonic and quasiparticle gaps to be 3.30(7) and 3.4(1) eV, respectively. The DMC zone-centre longitudinal optical phonon frequency of polyyne is 2084(5) cm(-1), which is consistent with Raman spectroscopic measurements for large oligoynes.

  10. Adsorbate hopping via vibrational-mode coupling induced by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Ueba, H.; Hayashi, M.; Paulsson, M.; Persson, B. N. J.

    2008-09-01

    We study the heat transfer from femtosecond laser-heated hot electrons in a metal to adsorbates in the presence of vibrational-mode coupling. The theory is successfully applied to the experimental result of atomic oxygen hopping on a vicinal Pt(111) surface. The effective friction coupling between hot electrons and the vibrational mode relevant to the hopping motion depends on the transient temperature of the partner mode excited by hot electrons. The calculated two-pulse correlation and fluence dependence of the hopping probability reproduce the experimental results, which were previously analyzed using the hot-electron temperature (Te) -dependent friction ηa(Te) in a conventional heat transfer equation. A possible elementary process behind such a hypothetic modeling using ηa(Te) is discussed in terms of an indirect heating of the vibrational mode for hopping at the surface.

  11. One-shot calculation of temperature-dependent optical spectra and phonon-induced band-gap renormalization

    NASA Astrophysics Data System (ADS)

    Zacharias, Marios; Giustino, Feliciano

    2016-08-01

    Recently, Zacharias et al. [Phys. Rev. Lett. 115, 177401 (2015), 10.1103/PhysRevLett.115.177401] developed an ab initio theory of temperature-dependent optical absorption spectra and band gaps in semiconductors and insulators. In that work, the zero-point renormalization and the temperature dependence were obtained by sampling the nuclear wave functions using a stochastic approach. In the present work, we show that the stochastic sampling of Zacharias et al. can be replaced by fully deterministic supercell calculations based on a single optimal configuration of the atomic positions. We demonstrate that a single calculation is able to capture the temperature-dependent band-gap renormalization including quantum nuclear effects in direct-gap and indirect-gap semiconductors, as well as phonon-assisted optical absorption in indirect-gap semiconductors. In order to demonstrate this methodology, we calculate from first principles the temperature-dependent optical absorption spectra and the renormalization of direct and indirect band gaps in silicon, diamond, and gallium arsenide, and we obtain good agreement with experiment and with previous calculations. In this work we also establish the formal connection between the Williams-Lax theory of optical transitions and the related theories of indirect absorption by Hall, Bardeen, and Blatt, and of temperature-dependent band structures by Allen and Heine. The present methodology enables systematic ab initio calculations of optical absorption spectra at finite temperature, including both direct and indirect transitions. This feature will be useful for high-throughput calculations of optical properties at finite temperature and for calculating temperature-dependent optical properties using high-level theories such as G W and Bethe-Salpeter approaches.

  12. Fabrication and characteristics of thin disc piezoelectric transformers based on piezoelectric buzzers with gap circles.

    PubMed

    Chang, Kuo-Tsai; Lee, Chun-Wei

    2008-04-01

    This paper investigates design, fabrication and test of thin disc piezoelectric transformers (PTs) based on piezoelectric buzzers with gap circles at different diameters of the gap circles. The performance test is focused on characteristics of voltage gains, including maximum voltage gains and maximum-gain frequencies, for each piezoelectric transformer under different load conditions. Both a piezoelectric buzzer and a gap circle on a silver electrode of the buzzer are needed to build any type of the PTs. Here, the gap circle is used to form a ring-shaped input electrode and a circle-shaped output electrode for each piezoelectric transformer. To do so, both structure and connection of a PT are first expressed. Then, operating principle of a PT and its related vibration mode observed by a carbon-power imaging technique are described. Moreover, an experimental setup for characterizing each piezoelectric transformer is constructed. Finally, effects of diameters of the gap circles on characteristics of voltage gains at different load resistances are discussed.

  13. Dual-probe near-field fiber head with gap servo control for data storage applications.

    PubMed

    Fang, Jen-Yu; Tien, Chung-Hao; Shieh, Han-Ping D

    2007-10-29

    We present a novel fiber-based near-field optical head consisting of a straw-shaped writing probe and a flat gap sensing probe. The straw-shaped probe with a C-aperture on the end face exhibits enhanced transmission by a factor of 3 orders of magnitude over a conventional fiber probe due to a hybrid effect that excites both propagation modes and surface plasmon waves. In the gap sensing probe, the spacing between the probe and the disk surface functions as an external cavity. The high sensitivity of the output power to the change in the gap width is used as a feedback control signal. We characterize and design the straw-shaped writing probe and the flat gap sensing probe. The dual-probe system is installed on a conventional biaxial actuator to demonstrate the capability of flying over a disk surface with nanometer position precision.

  14. Electronic and elastic mode locking in charge density wave conductors

    NASA Astrophysics Data System (ADS)

    Zettl, A.

    1986-12-01

    Mode locking phenomena are investigated in the charge density wave (CDW) materials NbSe 3 and TaS 3. The joint application of ac and dc electric fields results in free running and mode locked solutions for the CDW drift velocity, with associated ac-induced dynamic coherence lengths ξ D(ac) on the order of several hundred microns. The electronic response couples directly to the elastic properties of the crystal, with corresponding free running and mode locked solutions for the velocity of sound. Phase slip center-induced discontinuities in the CDW phase velocity lead to mode locked solutions with period doubling routes to chaos, and noisy precursor effects at bifurcation points. These results are discussed in terms of simple models of CDW domain synchronization, and internal CDW dynamics.

  15. Epithelial and endothelial damage induced by mechanical ventilation modes.

    PubMed

    Suki, Béla; Hubmayr, Rolf

    2014-02-01

    The adult respiratory distress syndrome (ARDS) is a common cause of respiratory failure with substantial impact on public health. Patients with ARDS generally require mechanical ventilation, which risks further lung damage. Recent improvements in ARDS outcomes have been attributed to reductions in deforming stress associated with lung protective mechanical ventilation modes and settings. The following review details the mechanics of the lung parenchyma at different spatial scales and the response of its resident cells to deforming stress in order to provide the biologic underpinnings of lung protective care. Although lung injury is typically viewed through the lens of altered barrier properties and mechanical ventilation-associated immune responses, in this review, we call attention to the importance of heterogeneity and the physical failure of the load bearing cell and tissue elements in the pathogenesis of ARDS. Specifically, we introduce a simple elastic network model to better understand the deformations of lung regions, intra-acinar alveoli and cells within a single alveolus, and consider the role of regional distension and interfacial stress-related injury for various ventilation modes. Heterogeneity of stiffness and intercellular and intracellular stress failure are fundamental components of ARDS and their development also depends on the ventilation mode.

  16. Giant Hall Photoconductivity in Narrow-Gapped Dirac Materials

    NASA Astrophysics Data System (ADS)

    Song, Justin C. W.; Kats, Mikhail A.

    2016-12-01

    Carrier dynamics acquire a new character in the presence of Bloch-band Berry curvature, which naturally arises in gapped Dirac materials (GDMs). Here we argue that photoresponse in GDMs with small band gaps is dramatically enhanced by Berry curvature. This manifests in a giant and saturable Hall photoconductivity when illuminated by circularly polarized light. Unlike Hall motion arising from a Lorentz force in a magnetic field, which impedes longitudinal carrier motion, Hall photoconductivity arising from Berry curvature can boost longitudinal carrier transport. In GDMs, this results in a helicity-dependent photoresponse in the Hall regime, where photoconductivity is dominated by its Hall component. We find that the induced Hall conductivity per incident irradiance is enhanced by up to six orders of magnitude when moving from the visible regime (with corresponding band gaps) to the far infrared. These results suggest that narrow-gap GDMs are an ideal test-bed for the unique physics that arise in the presence of Berry curvature, and open a new avenue for infrared and terahertz optoelectronics.

  17. Interactions of phosphatidylinositol kinase, GTPase-activating protein (GAP), and GAP-associated proteins with the colony-stimulating factor 1 receptor.

    PubMed Central

    Reedijk, M; Liu, X Q; Pawson, T

    1990-01-01

    The interactions of the macrophage colony-stimulating factor 1 (CSF-1) receptor with potential targets were investigated after ligand stimulation either of mouse macrophages or of fibroblasts that ectopically express mouse CSF-1 receptors. In Rat-2 cells expressing the mouse CSF-1 receptor, full activation of the receptor and cellular transformation require exogenous CSF-1, whereas NIH 3T3 cells expressing mouse c-fms are transformed by autocrine stimulation. Activated CSF-1 receptors physically associate with a phosphatidylinositol (PI) 3'-kinase. A mutant CSF-1 receptor with a deletion of the kinase insert region was deficient in its ability to bind functional PI 3'-kinase and to induce PI 3'-kinase activity precipitable with antiphosphotyrosine antibodies. In fibroblasts, CSF-1 stimulation also induced the phosphorylation of the GTPase-activating protein (GAP)-associated protein p62 on tyrosine, although GAP itself was a relatively poor substrate. In contrast to PI 3'-kinase association, phosphorylation of p62 and GAP was not markedly affected by deletion of the kinase insert region. These results indicate that the kinase insert region selectively enhances the CSF-1-dependent association of the CSF-1 receptor with active PI 3'-kinase. The insert deletion mutant retains considerable transforming activity in NIH 3T3 cells (G. Taylor, M. Reedijk, V. Rothwell, L. Rohrschneider, and T. Pawson, EMBO J. 8:2029-2037, 1989). This mutant was more seriously impaired in Rat-2 cell transformation, although mutant-expressing Rat-2 cells still formed small colonies in soft agar in the presence of CSF-1. Therefore, phosphorylation of GAP and p62 through activation of the CSF-1 receptor does not result in full fibroblast transformation. The interaction between the CSF-1 receptor and PI 3'-kinase may contribute to c-fms fibroblast transformation and play a role in CSF-1-stimulated macrophages. Images PMID:2172781

  18. Detection thresholds for gaps, overlaps, and no-gap-no-overlaps.

    PubMed

    Heldner, Mattias

    2011-07-01

    Detection thresholds for gaps and overlaps, that is acoustic and perceived silences and stretches of overlapping speech in speaker changes, were determined. Subliminal gaps and overlaps were categorized as no-gap-no-overlaps. The established gap and overlap detection thresholds both corresponded to the duration of a long vowel, or about 120 ms. These detection thresholds are valuable for mapping the perceptual speaker change categories gaps, overlaps, and no-gap-no-overlaps into the acoustic domain. Furthermore, the detection thresholds allow generation and understanding of gaps, overlaps, and no-gap-no-overlaps in human-like spoken dialogue systems. © 2011 Acoustical Society of America

  19. A comprehensive review of metal-induced cellular transformation studies.

    PubMed

    Chen, Qiao Yi; Costa, Max

    2017-09-15

    In vitro transformation assays not only serve practical purposes in screening for potential carcinogenic substances in food, drug, and cosmetic industries, but more importantly, they provide a means of understanding the critical biological processes behind in vivo cancer development. In resemblance to cancer cells in vivo, successfully transformed cells display loss of contact inhibition, gain of anchorage independent growth, resistant to proper cell cycle regulation such as apoptosis, faster proliferation rate, potential for cellular invasion, and ability to form tumors in experimental animals. Cells purposely transformed using metal exposures enable researchers to examine molecular changes, dissect various stages of tumor formation, and ultimately elucidate metal induced cancer mode of action. For practical purposes, this review specifically focuses on studies incorporating As-, Cd-, Cr-, and Ni-induced cell transformation. Through investigating and comparing an extensive list of studies using various methods of metal-induced transformation, this review serves to bridge an information gap and provide a guide for avoiding procedural discrepancies as well as maximizing experimental efficiency. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. ORIENTATION REQUIREMENT TO DETECT MAGNETIC FIELD-INDUCTED ALTERATION OF GAP JUNCTION COMMUNICATION IN EPITHELIAL CELLS

    EPA Science Inventory

    ORIENTATION REQUIREMENT TO DETECT MAGNETIC FIELD-INDUCED ALTERATION OF GAP JUNCTION COMMUNICATION IN EPITHELIAL CELLS.
    OBJECTIVE: We have shown that functional gap junction communication as measured by Lucifer yellow dye transfer (DT) in Clone-9 rat liver epithelial cells, c...

  1. Multi-frequency modes in superconducting resonators: Bridging frequency gaps in off-resonant couplings

    NASA Astrophysics Data System (ADS)

    Andersen, Christian Kraglund; Mølmer, Klaus

    2015-03-01

    A SQUID inserted in a superconducting waveguide resonator imposes current and voltage boundary conditions that makes it suitable as a tuning element for the resonator modes. If such a SQUID element is subject to a periodically varying magnetic flux, the resonator modes acquire frequency side bands. We calculate the multi-frequency eigenmodes and these can couple resonantly to physical systems with different transition frequencies and this makes the resonator an efficient quantum bus for state transfer and coherent quantum operations in hybrid quantum systems. As an example of the application, we determine their coupling to transmon qubits with different frequencies and we present a bi-chromatic scheme for entanglement and gate operations. In this calculation, we obtain a maximally entangled state with a fidelity F = 95 % . Our proposal is competitive with the achievements of other entanglement-gates with superconducting devices and it may offer some advantages: (i) There is no need for additional control lines and dephasing associated with the conventional frequency tuning of qubits. (ii) When our qubits are idle, they are far detuned with respect to each other and to the resonator, and hence they are immune to cross talk and Purcell-enhanced decay.

  2. Study on control of defect mode in hybrid mirror chirped porous silicon photonic crystal

    NASA Astrophysics Data System (ADS)

    Chen, Ying; Luo, Pei; Han, Yangyang; Cui, Xingning; He, Lei

    2018-03-01

    Based on the optical resonance principle and the tight-binding theory, a hybrid mirror chirped porous silicon photonic crystal is proposed. The control of the defect mode in hybrid mirror chirped porous silicon photonic crystal is studied. Through the numerical simulation, the control regulations of the defect modes resulted by the number of the periodical layers for the fundamental unit and the cascading number of the chirped structures are analyzed, and the split and the degeneration of the defect modes resulted by the change of the relative location between the mirror structures and the quasi-mirror structures are discussed. The simulation results show that the band gap would be broadened with the increase of the chirp quantity and the layer number of unilateral chirp. Adjusting the structural parameters of the hybrid mirror structure, the multimode characteristics will occur in the band gap. The more the cascading number of the chirped units, the more the number of the filtering channels will be. In addition, with the increase of the relative location between the mirror structures and the quasi-mirror structures, the degeneration of the defect modes will occur and can obtain high Q value. The structure can provide effective theoretical references for the design the multi-channel filters and high Q value sensors.

  3. Stress Induced Degradation Modes in CIGSS Minimodules (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kempe, M. D.; Terwilliger, K.; Tarrant, D.

    2008-05-01

    The experimental objectives of this report are: (1) compare the performance of modules exposed to high temperature and humidity; (2) determine the effects of different encapsulants on long term stability of CIGSS modules; and (3) analyze failure modes to determine areas in need of improvement.

  4. Spectral and mode properties of surface plasmon polariton waveguides studied by near-field excitation and leakage-mode radiation measurement

    PubMed Central

    2014-01-01

    We present a method to couple surface plasmon polariton (SPP) guiding mode into dielectric-loaded SPP waveguide (DLSPPW) devices with spectral and mode selectivity. The method combined a transmission-mode near-field spectroscopy to excite the SPP mode and a leakage radiation optical microscope for direct visualization. By using a near-field fiber tip, incident photons with different wavelengths were converted into SPPs at the metal/dielectric interface. Real-time SPP radiation images were taken through leakage radiation images. The wavelength-dependent propagation lengths for silver- and gold-based DLSPPWs were measured and compared. It confirms that silver-based SPP has a propagation length longer than a gold-based one by 1.25, 1.38, and 1.52 times for red, green, and blue photons. The resonant coupling as a function of wavelength in dual DLSPPWs was measured. The coupling lengths measured from leakage radiation images were in good agreement with finite-difference time domain simulations. In addition, the propagation profile due to multi-SPP modes interference was studied by changing position of the fiber tip. In a multimode DLSPPW, SPP was split into two branches with a gap of 2.237 μm when the tip was at the center of the waveguide. It became a zigzag profile when the SPP was excited at the corner of the waveguide. PMID:25177228

  5. Optical Band Gap Alteration of Graphene Oxide via Ozone Treatment.

    PubMed

    Hasan, Md Tanvir; Senger, Brian J; Ryan, Conor; Culp, Marais; Gonzalez-Rodriguez, Roberto; Coffer, Jeffery L; Naumov, Anton V

    2017-07-25

    Graphene oxide (GO) is a graphene derivative that emits fluorescence, which makes GO an attractive material for optoelectronics and biotechnology. In this work, we utilize ozone treatment to controllably tune the band gap of GO, which can significantly enhance its applications. Ozone treatment in aqueous GO suspensions yields the addition/rearrangement of oxygen-containing functional groups suggested by the increase in vibrational transitions of C-O and C=O moieties. Concomitantly it leads to an initial increase in GO fluorescence intensity and significant (100 nm) blue shifts in emission maxima. Based on the model of GO fluorescence originating from sp 2 graphitic islands confined by oxygenated addends, we propose that ozone-induced functionalization decreases the size of graphitic islands affecting the GO band gap and emission energies. TEM analyses of GO flakes confirm the size decrease of ordered sp 2 domains with ozone treatment, whereas semi-empirical PM3 calculations on model addend-confined graphitic clusters predict the inverse dependence of the band gap energies on sp 2 cluster size. This model explains ozone-induced increase in emission energies yielding fluorescence blue shifts and helps develop an understanding of the origins of GO fluorescence emission. Furthermore, ozone treatment provides a versatile approach to controllably alter GO band gap for optoelectronics and bio-sensing applications.

  6. Attentional Capacity Limits Gap Detection during Concurrent Sound Segregation.

    PubMed

    Leung, Ada W S; Jolicoeur, Pierre; Alain, Claude

    2015-11-01

    Detecting a brief silent interval (i.e., a gap) is more difficult when listeners perceive two concurrent sounds rather than one in a sound containing a mistuned harmonic in otherwise in-tune harmonics. This impairment in gap detection may reflect the interaction of low-level encoding or the division of attention between two sound objects, both of which could interfere with signal detection. To distinguish between these two alternatives, we compared ERPs during active and passive listening with complex harmonic tones that could include a gap, a mistuned harmonic, both features, or neither. During active listening, participants indicated whether they heard a gap irrespective of mistuning. During passive listening, participants watched a subtitled muted movie of their choice while the same sounds were presented. Gap detection was impaired when the complex sounds included a mistuned harmonic that popped out as a separate object. The ERP analysis revealed an early gap-related activity that was little affected by mistuning during the active or passive listening condition. However, during active listening, there was a marked decrease in the late positive wave that was thought to index attention and response-related processes. These results suggest that the limitation in detecting the gap is related to attentional processing, possibly divided attention induced by the concurrent sound objects, rather than deficits in preattentional sensory encoding.

  7. Two-dimensional numerical simulation of O-mode to Z-mode conversion in the ionosphere

    NASA Astrophysics Data System (ADS)

    Cannon, P. D.; Honary, F.; Borisov, N.

    2016-03-01

    Experiments in the illumination of the F region of the ionosphere via radio frequency waves polarized in the ordinary mode (O-mode) have revealed that the magnitude of artificial heating-induced effects depends strongly on the inclination angle of the pump beam, with a greater modification to the plasma observed when the heating beam is directed close to or along the magnetic zenith direction. Numerical simulations performed using a recently developed finite-difference time-domain (FDTD) code are used to investigate the contribution of the O-mode to Z-mode conversion process to this effect. The aspect angle dependence and angular size of the radio window for which conversion of an O-mode pump wave to the Z-mode occurs is simulated for a variety of plasma density profiles including 2-D linear gradients representative of large-scale plasma depletions, density-depleted plasma ducts, and periodic field-aligned irregularities. The angular shape of the conversion window is found to be strongly influenced by the background plasma profile. If the Z-mode wave is reflected, it can propagate back toward the O-mode reflection region leading to resonant enhancement of the electric field in this region. Simulation results presented in this paper demonstrate that this process can make a significant contribution to the magnitude of electron density depletion and temperature enhancement around the resonance height and contributes to a strong dependence of the magnitude of plasma perturbation with the direction of the pump wave.

  8. Stabilizing windings for tilting and shifting modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jardin, S.C.; Christensen, U.R.

    1982-02-26

    This invention provides simple, inexpensive, independent and passive, conducting loops for stabilizing a plasma ring having externally produced equilibrium fields on opposite sides of the plasma ring and internal plasma currents that interact to tilt and/or shift the plasma ring relative to the externally produced equilibrium field so as to produce unstable tilting and/or shifting modes in the plasma ring. More particularly this invention provides first and second passive conducting loops for containing first and second induced currents in first and second directions corresponding to the amplitude and directions of the unstable tilting and/or shifting modes in the plasma ring.more » To this end, the induced currents provide additional magnetic fields for producing restoring forces and/or restoring torques for counteracting the tilting and/or shifting modes when the conducting loops are held fixed in stationary positions relative to the externally produced equilibrium fields on opposite sides of the plasma ring.« less

  9. Dependence of Helicon Antenna Loading on the Antenna/Plasma Gap and n|| in DIII-D Experiments

    NASA Astrophysics Data System (ADS)

    Pinsker, R. I.; Moeller, C. P.

    2017-10-01

    A comprehensive set of measurements of the plasma loading of a 12-element antenna array, designed to launch helicon waves (i.e., very-high-harmonic fast waves), were performed on DIII-D in 2016. The antenna, operated in the 466 - 486 MHz band, is prototypical of a wider array for a 1-MW-level experiment planned for 2018-9. The dependence of the antenna loading on antenna/plasma gap is of great practical significance, as the gap must be kept greater than a minimum distance to suppress deleterious plasma-material interactions, while the loading must be high enough to retain good efficiency of power transfer to the plasma. While the loading in all examined plasma regimes, including both limited and diverted L-mode discharges and H-mode discharges, decayed exponentially with increasing gap in agreement with simple theory, the characteristic decay length was in all cases larger than expected, motivating the development of a more realistic model. Furthermore, the characteristic decay length did not depend on the launched n||, though the absolute level of loading at a given gap increased as |n||| was decreased from 4 to 2. After the antenna was removed from DIII-D, measurements of the loading produced by a 100 Ω/sq resistive film were carried out on the bench. Both the antenna/film gap and n|| were scanned varied and the results compared with calculations done with the QuickWave FDTD electromagnetics solver. Very good agreement was found in this case. Work supported by the US DOE under DE-FC02-04ER54698.

  10. Acetaminophen-induced anion gap metabolic acidosis and 5-oxoprolinuria (pyroglutamic aciduria) acquired in hospital.

    PubMed

    Humphreys, Benjamin D; Forman, John P; Zandi-Nejad, Kambiz; Bazari, Hasan; Seifter, Julian; Magee, Colm C

    2005-07-01

    A rare cause of high anion gap acidosis is 5-oxoproline (pyroglutamic acid), an organic acid intermediate of the gamma-glutamyl cycle. Acetaminophen and several other drugs have been implicated in the development of transient 5-oxoprolinemia in adults. We report the case of a patient with lymphoma who was admitted for salvage chemotherapy. The patient subsequently developed fever and neutropenia and was administered 20.8 g of acetaminophen during 10 days. During this time, anion gap increased from 14 to 30 mEq/L (14 to 30 mmol/L) and altered mental status developed. After usual causes of high anion gap acidosis were ruled out, a screen for urine organic acids showed 5-oxoproline levels elevated at 58-fold greater than normal values. Predisposing factors in this case included renal dysfunction and sepsis. Clinicians need to be aware of this unusual cause of anion gap acidosis because it may be more common than expected, early discontinuation of the offending agent is therapeutic, and administration of N -acetylcysteine could be beneficial.

  11. Propagation Distance of the α-Particle-Induced Bystander Effect: The Role of Nuclear Traversal and Gap Junction Communication

    PubMed Central

    Gaillard, Sylvain; Pusset, David; de Toledo, Sonia M.; Fromm, Michel; Azzam, Edouard I.

    2009-01-01

    When cell populations are exposed to low-dose α-particle radiation, a significant fraction of the cells will not be traversed by a radiation track. However, stressful effects occur in both irradiated and bystander cells in the population. Characterizing these effects, and investigating their underlying mechanism(s), is critical to understanding human health risks associated with exposure to α particles. To this end, confluent normal human fibroblast cultures were grown on polyethylene terephthalate foil grafted to an ultrathin solid-state nuclear track detector and exposed under non-perturbing conditions to low-fluence α particles from a broadbeam irradiator. Irradiated and affected bystander cells were localized with micrometer precision. The stress-responsive protein p21Waf1 (also known as CDKN1A) was induced in bystander cells within a 100-µm radius from an irradiated cell. The mean propagation distance ranged from 20 to 40 µm around the intranuclear α-particle impact point, which corresponds to a set of ∼30 cells. Nuclear traversal, induced DNA damage, and gap junction communication were critical contributors to propagation of this stressful effect The strategy described here may be ideal to investigate the size of radiation-affected target and the relative contribution of different cellular organelles to bystander effects induced by energetic particles, which is relevant to radioprotection and cancer radiotherapy. PMID:19580486

  12. Relating the defect band gap and the density functional band gap

    NASA Astrophysics Data System (ADS)

    Schultz, Peter; Edwards, Arthur

    2014-03-01

    Density functional theory (DFT) is an important tool to probe the physics of materials. The Kohn-Sham (KS) gap in DFT is typically (much) smaller than the observed band gap for materials in nature, the infamous ``band gap problem.'' Accurate prediction of defect energy levels is often claimed to be a casualty--the band gap defines the energy scale for defect levels. By applying rigorous control of boundary conditions in size-converged supercell calculations, however, we compute defect levels in Si and GaAs with accuracies of ~0.1 eV, across the full gap, unhampered by a band gap problem. Using GaAs as a theoretical laboratory, we show that the defect band gap--the span of computed defect levels--is insensitive to variations in the KS gap (with functional and pseudopotential), these KS gaps ranging from 0.1 to 1.1 eV. The defect gap matches the experimental 1.52 eV gap. The computed defect gaps for several other III-V, II-VI, I-VII, and other compounds also agree with the experimental gap, and show no correlation with the KS gap. Where, then, is the band gap problem? This talk presents these results, discusses why the defect gap and the KS gap are distinct, implying that current understanding of what the ``band gap problem'' means--and how to ``fix'' it--need to be rethought. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's NNSA under contract DE-AC04-94AL85000.

  13. Spatial modulation of above-the-gap cathodoluminescence in InP nanowires

    NASA Astrophysics Data System (ADS)

    Tizei, L. H. G.; Zagonel, L. F.; Tencé, M.; Stéphan, O.; Kociak, M.; Chiaramonte, T.; Ugarte, D.; Cotta, M. A.

    2013-12-01

    We report the observation of light emission on wurtzite InP nanowires excited by fast electrons. The experiments were performed in a scanning transmission electron microscope using an in-house-built cathodoluminescence detector. Besides the exciton emission, at 850 nm, emission above the band gap from 400 to 800 nm was observed. In particular, this broad emission presented systematic periodic modulations indicating variations in the local excitation probability. The physical origin of the detected emission is not clear. Measurements of the spatial variation of the above-the-gap emission points to the formation of leaky cavity modes of a plasmonic nature along the nanowire length, indicating the wave nature of the excitation. We propose a phenomenological model, which fits closely the observed spatial variations.

  14. Surfactant-laden drop jellyfish-breakup mode induced by the Marangoni effect

    NASA Astrophysics Data System (ADS)

    Zhao, Hui; Zhang, Wen-Bin; Xu, Jian-Liang; Li, Wei-Feng; Liu, Hai-Feng

    2017-03-01

    Drop breakup is a familiar event in both nature and technology. In this study, we find that the bag breakup mode can be replaced by a new breakup mode: jellyfish breakup, when the surfactant concentration of a surfactant-laden drop is high. This new breakup mode has a morphology resembling a jellyfish with many long tentacles. This is due to the inhomogeneous distribution of surfactant in the process of drop deformation and breakup. The thin film of liquid can remain stable as a result of the Marangoni effect. Finally, we propose that the dimensionless surfactant concentration can serve as a criterion for breakup mechanisms.

  15. Velocity space resolved absolute measurement of fast ion losses induced by a tearing mode in the ASDEX Upgrade tokamak

    NASA Astrophysics Data System (ADS)

    Galdon-Quiroga, J.; Garcia-Munoz, M.; Sanchis-Sanchez, L.; Mantsinen, M.; Fietz, S.; Igochine, V.; Maraschek, M.; Rodriguez-Ramos, M.; Sieglin, B.; Snicker, A.; Tardini, G.; Vezinet, D.; Weiland, M.; Eriksson, L. G.; The ASDEX Upgrade Team; The EUROfusion MST1 Team

    2018-03-01

    Absolute flux of fast ion losses induced by tearing modes have been measured by means of fast ion loss detectors (FILD) for the first time in RF heated plasmas in the ASDEX Upgrade tokamak. Up to 30 MW m-2 of fast ion losses are measured by FILD at 5 cm from the separatrix, consistent with infra-red camera measurements, with energies in the range of 250-500 keV and pitch angles corresponding to large trapped orbits. A resonant interaction between the fast ions in the high energy tail of the ICRF distribution and a m/n  =  5/4 tearing mode leads to enhanced fast ion losses. Around 9.3 +/- 0.7 % of the fast ion losses are found to be coherent with the mode and scale linearly with its amplitude, indicating the convective nature of the transport mechanism. Simulations have been carried out to estimate the contribution of the prompt losses. A good agreement is found between the simulated and the measured velocity space of the losses. The velocity space resonances that may be responsible for the enhanced fast ion losses are identified.

  16. Mode Transitions in Magnetically Shielded Hall Effect Thrusters

    NASA Technical Reports Server (NTRS)

    Sekerak, Michael J.; Longmier, Benjamin W.; Gallimore, Alec D.; Huang, Wensheng; Kamhawi, Hani; Hofer, Richard R.; Jorns, Benjamin A.; Polk, James E.

    2014-01-01

    A mode transition study is conducted in magnetically shielded thrusters where the magnetic field magnitude is varied to induce mode transitions. Three different oscillatory modes are identified with the 20-kW NASA-300MS-2 and the 6-kW H6MS: Mode 1) global mode similar to unshielded thrusters at low magnetic fields, Mode 2) cathode oscillations at nominal magnetic fields, and Mode 3) combined spoke, cathode and breathing mode oscillations at high magnetic fields. Mode 1 exhibits large amplitude, low frequency (1-10 kHz), breathing mode type oscillations where discharge current mean value and oscillation amplitude peak. The mean discharge current is minimized while thrust-to-power and anode efficiency are maximized in Mode 2, where higher frequency (50-90 kHz), low amplitude, cathode oscillations dominate. Thrust is maximized in Mode 3 and decreases by 5-6% with decreasing magnetic field strength. The presence or absence of spokes and strong cathode oscillations do not affect each other or discharge current. Similar to unshielded thrusters, mode transitions and plasma oscillations affect magnetically shielded thruster performance and should be characterized during system development.

  17. Experimental evidence of locally resonant sonic band gap in two-dimensional phononic stubbed plates

    NASA Astrophysics Data System (ADS)

    Oudich, Mourad; Senesi, Matteo; Assouar, M. Badreddine; Ruzenne, Massimo; Sun, Jia-Hong; Vincent, Brice; Hou, Zhilin; Wu, Tsung-Tsong

    2011-10-01

    We provide experimental evidence of the existence of a locally resonant sonic band gap in a two-dimensional stubbed plate. Structures consisting of a periodic arrangement of silicone rubber stubs deposited on a thin aluminium plate were fabricated and characterized. Brillouin spectroscopy analysis is carried out to determine the elastic constants of the used rubber. The constants are then implemented in an efficient finite-element model that predicts the band structure and transmission to identify the theoretical band gap. We measure a complete sonic band gap for the out-of-plane Lamb wave modes propagating in various samples fabricated with different stub heights. Frequency domain measurements of full wave field and transmission are performed through a scanning laser Doppler vibrometer. A complete band gap from 1.9 to 2.6 kHz is showed using a sample with 6-mm stub diameter, 5-mm thickness, and 1-cm structure periodicity. Very good agreement between numerical and experimental results is obtained.

  18. Induced changes in refractive index, optical band gap, and absorption edge of polycarbonate-SiO2 thin films by Vis-IR lasers

    NASA Astrophysics Data System (ADS)

    Ehsani, Hassan; Akhoondi, Somaieh

    2016-09-01

    In this experimental work, we have studied induced changes in refractive index, extinction coefficient, and optical band-gap of Bisphenol-A-polycarbonate (BPA-PC) coated with a uniform and thin, anti-scratch SiO2 film irradiated by visible to near-infrared lasers at 532 nm (green),650 nm(red), and 980 nm (IR)wavelength lasers with different energy densities. Our lasers sources are indium-gallium-aluminum-phosphide, second harmonic of neodymium-YAG-solid state lasers and gallium-aluminum-arsenide-semiconductor laser. The energy densities of our sources have been changed by changing the spot size of incident laser. samples transmission spectra were monitored by carry500 spectrophotometer and induced changes in optical properties are evaluated by using, extrapolation of the transmission spectrum through Swanepoel method and computer application

  19. Topological transitions induced by antiferromagnetism in a thin-film topological insulator

    NASA Astrophysics Data System (ADS)

    Yin, Gen; He, Qinglin; Yu, Luyan; Pan, Lei; Wang, Kang

    Ferromagnetism introduced in topological insulators (TIs) opens a non-trivial exchange band gap, providing an exciting platform to control the topological order through an external magnetic field. The magnetization induces a topological transition that breaks time-reversal symmetry, resulting in anomalous Hall effects. Recently, it was experimentally shown that the surface of an antiferromagnetic (AFM) thin film can magnetize the surface Dirac fermions in a TI thin film similar to the case induced by ferromagnetism. Here, we show that when a TI thin film is sandwiched between two antiferromagnetic layers, an unsynchronized magnetic reversal introduces two intermediate spin configurations during the scan of the external field, resulting in a new topological phase with second Chern numbers. This topological phase introduces two counter-propagating chiral edge modes inside the exchange gap, changing the total number of transport channels drastically when the fermi level is close to the Dirac point. Induced by this change, the magnetoresistance of the channel presents an antisymmetric feature during the field scan. With the the help of the high ordering temperature of AFM layers, this transport signature of the phase transition persists up to 90K experimentally. This work is supported by (i) SHINES, an EFRC by US-DOE, Office of Science, BES, #SC0012670. (ii) US-NSF (DMR-1411085), (iii) ARO program W911NF-15-1-10561, and (iv) FAME Center in STARnet, an SRC program by MARCO and DARPA.

  20. Modeling Plasma Formation in a Micro-gap at Microwave Frequency

    NASA Astrophysics Data System (ADS)

    Bowman, Arthur; Remillard, Stephen

    2013-03-01

    In the presence of a strong electric field, gas molecules become ionized, forming a plasma. The study of this dielectric breakdown at microwave frequency has important applications in improving the operation of radio frequency (RF) devices, where the high electric fields present in small gaps can easily ionize gases like air. A cone and tuner resonant structure was used to induce breakdown of diatomic Nitrogen in adjustable micro-gaps ranging from 13 to 1,156 μm. The electric field for plasma formation exhibited strong pressure dependence in the larger gap sizes, as predicted by previous theoretical and experimental work. Pressure is proportional to the frequency of collision between electrons and molecules, which increases with pressure when the gap is large, but levels off in the micro-gap region. A separate model of the breakdown electric field based on the characteristic diffusion length of the plasma also fit the data poorly for these smaller gap sizes. This may be explained by a hypothesis that dielectric breakdown at and below the 100 μm gap size occurs outside the gap, an argument that is supported by the observation of very high breakdown threshold electric fields in this region. Optical emissions revealed that vibrational and rotational molecular transitions of the first positive electronic system are suppressed in micro-gaps, indicating that transitions into the molecular ground state do not occur in micro-gap plasmas. Acknowledgements: National Science Foundation under NSF-REU Grant No. PHY/DMR-1004811, the Provost's Office of Hope College, and the Hope College Division of Natural and Applied Sciences.

  1. Tapping-mode AFM study of tip-induced polymer deformation under geometrical confinement.

    PubMed

    Zhang, Hong; Honda, Yukio; Takeoka, Shinji

    2013-02-05

    The morphological stability of polymer films is critically important to their application as functional materials. The deformation of polymer surfaces on the nanoscale may be significantly influenced by geometrical confinement. Herein, we constructed a mechanically heterogeneous polymer surface by phase separation in a thin polymer film and investigated the deformation behavior of its nanostructure (∼30 nm thickness and ∼100 nm average diameter) with tapping-mode atomic force microscopy. By changing different scan parameters, we could induce deformation localized to the nanostructure in a controllable manner. A quantity called the deformation index is defined and shown to be correlated to energy dissipation by tip-sample interaction. We clarified that the plastic deformation of a polymer on the nanoscale is energy-dependent and is related to the glass-to-rubber transition. The mobility of polymer chains beneath the tapping tip is enhanced, and in the corresponding region a rubberlike deformation with the lateral motion of the tip is performed. The method we developed can provide insight into the geometrical confinement effects on polymer behavior.

  2. ECCD-induced tearing mode stabilization in coupled IPS/NIMROD/GENRAY HPC simulations

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas; Kruger, S. E.; Held, E. D.; Harvey, R. W.; Elwasif, W. R.

    2012-03-01

    We summarize ongoing developments toward an integrated, predictive model for determining optimal ECCD-based NTM stabilization strategies in ITER. We demonstrate the capability of the SWIM Project's Integrated Plasma Simulator (IPS) framework to choreograph multiple executions of, and data exchanges between, physics codes modeling various spatiotemporal scales of this coupled RF/MHD problem on several thousand HPC processors. As NIMROD evolves fluid equations to model bulk plasma behavior, self-consistent propagation/deposition of RF power in the ensuing plasma profiles is calculated by GENRAY. Data from both codes is then processed by computational geometry packages to construct the RF-induced quasilinear diffusion tensor; moments of this tensor (entering as additional terms in NIMROD's fluid equations due to the disparity in RF/MHD spatiotemporal scales) influence the dynamics of current, momentum, and energy evolution as well as the MHD closures. Initial results are shown to correctly capture the physics of magnetic island stabilization; we also discuss the development of a numerical plasma control system for active feedback stabilization of tearing modes.

  3. ECCD-induced tearing mode stabilization in coupled IPS/NIMROD/GENRAY HPC simulations

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas; Kruger, S. E.; Held, E. D.; Harvey, R. W.; Elwasif, W. R.; Schnack, D. D.; SWIM Project Team

    2011-10-01

    We present developments toward an integrated, predictive model for determining optimal ECCD-based NTM stabilization strategies in ITER. We demonstrate the capability of the SWIM Project's Integrated Plasma Simulator (IPS) framework to choreograph multiple executions of, and data exchanges between, physics codes modeling various spatiotemporal scales of this coupled RF/MHD problem on several thousand HPC processors. As NIMROD evolves fluid equations to model bulk plasma behavior, self-consistent propagation/deposition of RF power in the ensuing plasma profiles is calculated by GENRAY. A third code (QLCALC) then interfaces with computational geometry packages to construct the RF-induced quasilinear diffusion tensor from NIMROD/GENRAY data, and the moments of this tensor (entering as additional terms in NIMROD's fluid equations due to the disparity in RF/MHD spatiotemporal scales) influence the dynamics of current, momentum, and energy evolution. Initial results are shown to correctly capture the physics of magnetic island stabilization [Jenkins et al., PoP 17, 012502 (2010)]; we also discuss the development of a numerical plasma control system for active feedback stabilization of tearing modes. Funded by USDoE SciDAC.

  4. Role of gap junctions on synchronization in human neocortical networks.

    PubMed

    Gigout, S; Deisz, R A; Dehnicke, C; Turak, B; Devaux, B; Pumain, R; Louvel, J

    2016-04-15

    Gap junctions (GJ) have been implicated in the synchronization of epileptiform activities induced by 4-aminopyrine (4AP) in slices from human epileptogenic cortex. Previous evidence implicated glial GJ to govern the frequency of these epileptiform events. The synchrony of these events (evaluated by the phase unlocking index, PUI) in adjacent areas however was attributed to neuronal GJ. In the present study, we have investigated the effects of GAP-134, a recently developed specific activator of glial GJ, on both the PUI and the frequency of the 4AP-induced epileptiform activities in human neocortical slices of temporal lobe epilepsy tissue. To delineate the impact of GJ on spatial spread of synchronous activity we evaluated the effects of carbenoxolone (CBX, a non-selective GJ blocker) on the spread in three axes 1. vertically in a given cortical column, 2. laterally within the deep cortical layers and 3. laterally within the upper cortical layers. GAP-134 slightly increased the frequency of the 4AP-induced spontaneous epileptiform activities while leaving the PUI unaffected. CBX had no effect on the PUI within a cortical column or on the PUI in the deep cortical layers. CBX increased the PUI for long interelectrodes distances in the upper cortical layers. In conclusion we provide new arguments toward the role played by glial GJ to maintain the frequency of spontaneous activities. We show that neuronal GJ control the PUI only in upper cortical layers. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Excitation of terahertz modes localized on a layered superconductor: Anomalous dispersion and resonant transmission

    NASA Astrophysics Data System (ADS)

    Apostolov, S. S.; Makarov, N. M.; Yampol'skii, V. A.

    2018-01-01

    We study theoretically the optic transmission through a slab of layered superconductor separated from two dielectric leads by spatial gaps. Based on the transfer matrix formalism along with the Josephson plasma electrodynamic approach, we derive analytic expressions for the transmittance and identify the conditions for the perfect transmission. The special interest of the study is focused on the resonant transmission, which occurs when the wave does not propagate in the spatial gaps. Far from the resonance, the transmittance is exponentially small due to the total internal reflection from the lead-gap interface. However, the excitation of electromagnetic modes localized on the layered superconductor gives rise to a remarkable resonant enhancement of the transmission. Moreover, this phenomenon is significantly modified for the layered superconductors in comparison with usual dielectrics or conductors. The dispersion curves for the modes localized on the layered superconductor are proved to be nonmonotonic, thus resulting in the specific dependence of the transmittance T on the incidence angle θ . In particular, we predict the onset of two resonant peaks in the T (θ ) dependence and their subsequent merge into the broadened single peak with increasing of the wave frequency. Our analytical results are demonstrated by numerical data.

  6. Soyasaponins prevent H₂O₂-induced inhibition of gap junctional intercellular communication by scavenging reactive oxygen species in rat liver cells.

    PubMed

    Chen, Jiading; Sun, Suxia; Zha, Dingsheng; Wu, Jiguo; Mao, Limei; Deng, Hong; Chu, Xinwei; Luo, Haiji; Zha, Longying

    2014-01-01

    It appears to be more practical and effective to prevent carcinogenesis by targeting the tumor promotion stage. Gap junctional intercellular communication (GJIC) is strongly involved in carcinogenesis, especially the tumor promotion stage. Considerable interest has been focused on the chemoprevention activities of soyasaponin (SS), which are major phytochemicals found in soybeans and soy products. However, less is known about the preventive effects of SS (especially SS with different chemical structures) against tumor promoter-induced inhibition of GJIC. We investigated the protective effects of SS-A1, SS-A2, and SS-I against hydrogen peroxide (H2O2)-induced GJIC inhibition and reactive oxygen species (ROS) production in Buffalo rat liver (BRL) cells. The present results clearly show for the first time that SS-A1, SS-A2, and SS-I prevent the H2O2-induced GJIC inhibition by scavenging ROS in BRL cells in a dose-dependent manner at the concentration range of from 25 to 100 μg/mL. Soyasaponins attenuated the H2O2-induced ROS through potentiating the activities of superoxide dismutase and glutathione peroxidase. This may be an important mechanism by which SS protects against tumor promotion. In addition, various chemical structures of SS appear to exhibit different protective abilities against GJIC inhibition. This may partly attribute to their differences in ROS-scavenging activities.

  7. Finite element method analysis of band gap and transmission of two-dimensional metallic photonic crystals at terahertz frequencies.

    PubMed

    Degirmenci, Elif; Landais, Pascal

    2013-10-20

    Photonic band gap and transmission characteristics of 2D metallic photonic crystals at THz frequencies have been investigated using finite element method (FEM). Photonic crystals composed of metallic rods in air, in square and triangular lattice arrangements, are considered for transverse electric and transverse magnetic polarizations. The modes and band gap characteristics of metallic photonic crystal structure are investigated by solving the eigenvalue problem over a unit cell of the lattice using periodic boundary conditions. A photonic band gap diagram of dielectric photonic crystal in square lattice array is also considered and compared with well-known plane wave expansion results verifying our FEM approach. The photonic band gap designs for both dielectric and metallic photonic crystals are consistent with previous studies obtained by different methods. Perfect match is obtained between photonic band gap diagrams and transmission spectra of corresponding lattice structure.

  8. The Gap Detection Test: Can It Be Used to Diagnose Tinnitus?

    PubMed Central

    Boyen, Kris; Başkent, Deniz

    2015-01-01

    Objectives: Animals with induced tinnitus showed difficulties in detecting silent gaps in sounds, suggesting that the tinnitus percept may be filling the gap. The main purpose of this study was to evaluate the applicability of this approach to detect tinnitus in human patients. The authors first hypothesized that gap detection would be impaired in patients with tinnitus, and second, that gap detection would be more impaired at frequencies close to the tinnitus frequency of the patient. Design: Twenty-two adults with bilateral tinnitus, 20 age-matched and hearing loss–matched subjects without tinnitus, and 10 young normal-hearing subjects participated in the study. To determine the characteristics of the tinnitus, subjects matched an external sound to their perceived tinnitus in pitch and loudness. To determine the minimum detectable gap, the gap threshold, an adaptive psychoacoustic test was performed three times by each subject. In this gap detection test, four different stimuli, with various frequencies and bandwidths, were presented at three intensity levels each. Results: Similar to previous reports of gap detection, increasing sensation level yielded shorter gap thresholds for all stimuli in all groups. Interestingly, the tinnitus group did not display elevated gap thresholds in any of the four stimuli. Moreover, visual inspection of the data revealed no relation between gap detection performance and perceived tinnitus pitch. Conclusions: These findings show that tinnitus in humans has no effect on the ability to detect gaps in auditory stimuli. Thus, the testing procedure in its present form is not suitable for clinical detection of tinnitus in humans. PMID:25822647

  9. The Gap Detection Test: Can It Be Used to Diagnose Tinnitus?

    PubMed

    Boyen, Kris; Başkent, Deniz; van Dijk, Pim

    2015-01-01

    Animals with induced tinnitus showed difficulties in detecting silent gaps in sounds, suggesting that the tinnitus percept may be filling the gap. The main purpose of this study was to evaluate the applicability of this approach to detect tinnitus in human patients. The authors first hypothesized that gap detection would be impaired in patients with tinnitus, and second, that gap detection would be more impaired at frequencies close to the tinnitus frequency of the patient. Twenty-two adults with bilateral tinnitus, 20 age-matched and hearing loss-matched subjects without tinnitus, and 10 young normal-hearing subjects participated in the study. To determine the characteristics of the tinnitus, subjects matched an external sound to their perceived tinnitus in pitch and loudness. To determine the minimum detectable gap, the gap threshold, an adaptive psychoacoustic test was performed three times by each subject. In this gap detection test, four different stimuli, with various frequencies and bandwidths, were presented at three intensity levels each. Similar to previous reports of gap detection, increasing sensation level yielded shorter gap thresholds for all stimuli in all groups. Interestingly, the tinnitus group did not display elevated gap thresholds in any of the four stimuli. Moreover, visual inspection of the data revealed no relation between gap detection performance and perceived tinnitus pitch. These findings show that tinnitus in humans has no effect on the ability to detect gaps in auditory stimuli. Thus, the testing procedure in its present form is not suitable for clinical detection of tinnitus in humans.

  10. Investigating the Pressure-Induced Amorphization of Zeolitic Imidazolate Framework ZIF-8: Mechanical Instability Due to Shear Mode Softening.

    PubMed

    Ortiz, Aurélie U; Boutin, Anne; Fuchs, Alain H; Coudert, François-Xavier

    2013-06-06

    We provide the first molecular dynamics study of the mechanical instability that is the cause of pressure-induced amorphization of zeolitic imidazolate framework ZIF-8. By measuring the elastic constants of ZIF-8 up to the amorphization pressure, we show that the crystal-to-amorphous transition is triggered by the mechanical instability of ZIF-8 under compression, due to shear mode softening of the material. No similar softening was observed under temperature increase, explaining the absence of temperature-induced amorphization in ZIF-8. We also demonstrate the large impact of the presence of adsorbate in the pores on the mechanical stability and compressibility of the framework, increasing its shear stability. This first molecular dynamics study of ZIF mechanical properties under variations of pressure, temperature, and pore filling opens the way to a more comprehensive understanding of their mechanical stability, structural transitions, and amorphization.

  11. Higher Order Mode Analysis of the SNS Superconducting Linac

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. Doleans; D. Jeon; S. Kim

    2001-06-01

    Higher order modes (HOM's) of monopoles, dipoles, quadrupoles and sextupoles in {beta} = 0.61 and {beta} = 0.81 6-cell superconducting (SC) cavities for the Spallation Neutron Source (SNS) project, have been found up to about 3 GHz and their properties such as R/Q, trapping possibility, etc have been figured out in concerning with the manufacturing imperfection. Main issues of HOM's are beam instabilities (published separately) and HOM induced power especially from TM monopoles. The time structure of SNS beam has three different time scales of pulses, which are micro-pulse, midi-pulse and macropulse. Each time structure will generate resonances. When amore » mode is near these resonance frequencies, the induced voltage could be large and accordingly the resulting HOM power, too. In order to understand the effects from such a complex beam time structure on the mode excitation and resulting HOM power, analytic expressions are developed. With these analytic expressions, the induced HOM voltage and HOM power were calculated by assuming external Q for each HOM.« less

  12. RotundRacGAP Functions with Ras during Spermatogenesis and Retinal Differentiation in Drosophila melanogaster

    PubMed Central

    Bergeret, Evelyne; Pignot-Paintrand, Isabelle; Guichard, Annabel; Raymond, Karine; Fauvarque, Marie-Odile; Cazemajor, Michel; Griffin-Shea, Ruth

    2001-01-01

    Our analysis of rotund (rn) null mutations in Drosophila melanogaster revealed that deletion of the rn locus affects both spermatid and retinal differentiation. In the male reproductive system, the absence of RnRacGAP induced small testes, empty seminal vesicles, short testicular cysts, reduced amounts of interspermatid membrane, the absence of individualization complexes, and incomplete mitochondrial condensation. Flagellar growth continued within the short rn null cysts to produce large bulbous terminations of intertwined mature flagella. Organization of the retina was also severely perturbed as evidenced by grossly misshapen ommatidia containing reduced numbers of photoreceptor and pigment cells. These morphological phenotypes were rescued by genomic rnRacGAP transgenes, demonstrating that RnRacGAP function is critical to spermatid and retinal differentiation. The testicular phenotypes were suppressed by heterozygous hypomorphic mutations in the Dras1 and drk genes, indicating cross talk between RacGAP-regulated signaling and that of the Ras pathway. The observed genetic interactions are consistent with a model in which Rac signaling is activated by Ras and negatively regulated by RnRacGAP during spermatid differentiation. RnRacGAP and Ras cross talk also operated during retinal differentiation; however, while the heterozygous hypomorphic drk mutation continued to act as a suppressor of the rn null mutation, the heterozygous hypomorphic Dras1 mutation induced novel retinal phenotypes. PMID:11509670

  13. Photonic band gap in isotropic hyperuniform disordered solids with low dielectric contrast.

    PubMed

    Man, Weining; Florescu, Marian; Matsuyama, Kazue; Yadak, Polin; Nahal, Geev; Hashemizad, Seyed; Williamson, Eric; Steinhardt, Paul; Torquato, Salvatore; Chaikin, Paul

    2013-08-26

    We report the first experimental demonstration of a TE-polarization photonic band gap (PBG) in a 2D isotropic hyperuniform disordered solid (HUDS) made of dielectric media with a dielectric index contrast of 1.6:1, very low for PBG formation. The solid is composed of a connected network of dielectric walls enclosing air-filled cells. Direct comparison with photonic crystals and quasicrystals permitted us to investigate band-gap properties as a function of increasing rotational isotropy. We present results from numerical simulations proving that the PBG observed experimentally for HUDS at low index contrast has zero density of states. The PBG is associated with the energy difference between complementary resonant modes above and below the gap, with the field predominantly concentrated in the air or in the dielectric. The intrinsic isotropy of HUDS may offer unprecedented flexibilities and freedom in applications (i. e. defect architecture design) not limited by crystalline symmetries.

  14. Reducing support loss in micromechanical ring resonators using phononic band-gap structures

    NASA Astrophysics Data System (ADS)

    Hsu, Feng-Chia; Hsu, Jin-Chen; Huang, Tsun-Che; Wang, Chin-Hung; Chang, Pin

    2011-09-01

    In micromechanical resonators, energy loss via supports into the substrates may lead to a low quality factor. To eliminate the support loss, in this paper a phononic band-gap structure is employed. We demonstrate a design of phononic-crystal (PC) strips used to support extensional wine-glass mode ring resonators to increase the quality factor. The PC strips are introduced to stop elastic-wave propagation by the band-gap and deaf-band effects. Analyses of resonant characteristics of the ring resonators and the dispersion relations, eigenmodes, and transmission properties of the PC strips are presented. With the proposed resonator architecture, the finite-element simulations show that the leaky power is effectively reduced and the stored energy inside the resonators is enhanced simultaneously as the operating frequencies of the resonators are within the band gap or deaf bands. Realization of a high quality factor micromechanical ring resonator with minimized support loss is expected.

  15. Generalized thermoelastic wave band gaps in phononic crystals without energy dissipation

    NASA Astrophysics Data System (ADS)

    Wu, Ying; Yu, Kaiping; Li, Xiao; Zhou, Haotian

    2016-01-01

    We present a theoretical investigation of the thermoelastic wave propagation in the phononic crystals in the context of Green-Nagdhi theory by taking thermoelastic coupling into account. The thermal field is assumed to be steady. Thermoelastic wave band structures of 3D and 2D are derived by using the plane wave expansion method. For the 2D problem, the anti-plane shear mode is not affected by the temperature difference. Thermoelastic wave bands of the in-plane x-y mode are calculated for lead/silicone rubber, aluminium/silicone rubber, and aurum/silicone rubber phononic crystals. The new findings in the numerical results indicate that the thermoelastic wave bands are composed of the pure elastic wave bands and the thermal wave bands, and that the thermal wave bands can serve as the low boundary of the first band gap when the filling ratio is low. In addition, for the lead/silicone rubber phononic crystals the effects of lattice type (square, rectangle, regular triangle, and hexagon) and inclusion shape (circle, oval, and square) on the normalized thermoelastic bandwidth and the upper/lower gap boundaries are analysed and discussed. It is concluded that their effects on the thermoelastic wave band structure are remarkable.

  16. Development and performance evaluation of an MR squeeze-mode damper

    NASA Astrophysics Data System (ADS)

    Sapiński, Bogdan; Gołdasz, Janusz

    2015-11-01

    In this paper the authors present results of a magnetorheological (MR) damper prototype development and performance evaluation study. The damper is a device functioning in the so-called squeeze-mode of MR fluid flow regime of operation. By principle, in a squeeze-mode damper the control (working) gap height varies according to the prescribed displacement or force input profile. Such hardware has been claimed to be well suited to small-amplitude vibration damping applications. However, it is still in its infancy. Its potential seems appealing yet unclear. Accordingly, the authors reveal performance figures of the damper complemented by numerical finite-element simulations of the electro-magnetic circuit of the device. The numerical results are presented in the form of maps of averaged magnetic flux density versus coil current and gap height as well as magnetic flux, inductance, and cogging force calculations, respectively. The simulated data are followed by experimental evaluation of the damper performance incorporating plots of force versus piston displacement (velocity) across a prescribed range of excitation inputs. Moreover, some insight into transient (unsteady) characteristics of the device is provided through testing results involving transient currents.

  17. Topological Magnon Modes in Patterned Ferrimagnetic Insulator Thin Films.

    PubMed

    Li, Yun-Mei; Xiao, Jiang; Chang, Kai

    2018-05-09

    Manipulation of magnons opens an attractive direction in the future energy-efficient information processing devices. Such quasi-particles can transfer and process information free from the troublesome Ohmic loss in conventional electronic devices. Here, we propose to realize topologically protected magnon modes using the interface between the patterned ferrimagnetic insulator thin films of different configurations without the Dzyaloshinskii-Moriya interaction. The interface thus behaves like a perfect waveguide to conduct the magnon modes lying in the band gap. These modes are immune to backscattering even in sharply bent tracks, robust against the disorders, and maintain a high degree of coherence during propagation. We design a magnonic Mach-Zehnder interferometer, which realizes a continuous change of magnon signal with varying external magnetic field or driving frequency. Our results pave a new way for realizing topologically protected magnon waveguide and finally achieving a scalable low-dissipation spintronic devices and even the magnonic integrated circuit.

  18. Precursor Ion Scan Mode-Based Strategy for Fast Screening of Polyether Ionophores by Copper-Induced Gas-Phase Radical Fragmentation Reactions.

    PubMed

    Crevelin, Eduardo J; Possato, Bruna; Lopes, João L C; Lopes, Norberto P; Crotti, Antônio E M

    2017-04-04

    The potential of copper(II) to induce gas-phase fragmentation reactions in macrotetrolides, a class of polyether ionophores produced by Streptomyces species, was investigated by accurate-mass electrospray tandem mass spectrometry (ESI-MS/MS). Copper(II)/copper(I) transition directly induced production of diagnostic acylium ions with m/z 199, 185, 181, and 167 from α-cleavages of [macrotetrolides + Cu] 2+ . A UPLC-ESI-MS/MS methodology based on the precursor ion scan of these acylium ions was developed and successfully used to identify isodinactin (1), trinactin (2), and tetranactin (3) in a crude extract of Streptomyces sp. AMC 23 in the precursor ion scan mode. In addition, copper(II) was also used to induce radical fragmentation reactions in the carboxylic acid polyether ionophore nigericin. The resulting product ions with m/z 755 and 585 helped to identify nigericin in a crude extract of Streptomyces sp. Eucal-26 by means of precursor ion scan experiments, demonstrating that copper-induced fragmentation reactions can potentially identify different classes of polyether ionophores rapidly and selectively.

  19. Traction force dynamics predict gap formation in activated endothelium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valent, Erik T.; Nieuw Amerongen, Geerten P. van; Hinsbergh, Victor W.M. van

    In many pathological conditions the endothelium becomes activated and dysfunctional, resulting in hyperpermeability and plasma leakage. No specific therapies are available yet to control endothelial barrier function, which is regulated by inter-endothelial junctions and the generation of acto-myosin-based contractile forces in the context of cell-cell and cell-matrix interactions. However, the spatiotemporal distribution and stimulus-induced reorganization of these integral forces remain largely unknown. Traction force microscopy of human endothelial monolayers was used to visualize contractile forces in resting cells and during thrombin-induced hyperpermeability. Simultaneously, information about endothelial monolayer integrity, adherens junctions and cytoskeletal proteins (F-actin) were captured. This revealed a heterogeneousmore » distribution of traction forces, with nuclear areas showing lower and cell-cell junctions higher traction forces than the whole-monolayer average. Moreover, junctional forces were asymmetrically distributed among neighboring cells. Force vector orientation analysis showed a good correlation with the alignment of F-actin and revealed contractile forces in newly formed filopodia and lamellipodia-like protrusions within the monolayer. Finally, unstable areas, showing high force fluctuations within the monolayer were prone to form inter-endothelial gaps upon stimulation with thrombin. To conclude, contractile traction forces are heterogeneously distributed within endothelial monolayers and force instability, rather than force magnitude, predicts the stimulus-induced formation of intercellular gaps. - Highlights: • Endothelial monolayers exert dynamic- and heterogeneous traction forces. • High traction forces correlate with junctional areas and the F-actin cytoskeleton. • Newly formed inter-endothelial gaps are characterized by opposing traction forces. • Force stability is a key feature controlling endothelial permeability.« less

  20. CMB delensing beyond the B modes

    NASA Astrophysics Data System (ADS)

    Green, Daniel; Meyers, Joel; van Engelen, Alexander

    2017-12-01

    Gravitational lensing by large-scale structure significantly impacts observations of the cosmic microwave background (CMB): it smooths the acoustic peaks in temperature and E-mode polarization power spectra, correlating previously uncorrelated modes; and it converts E-mode polarization into B-mode polarization. The act of measuring and removing the effect of lensing from CMB maps, or delensing, has been well studied in the context of B modes, but little attention has been given to the delensing of the temperature and E modes. In this paper, we model the expected delensed T and E power spectra to all orders in the lensing potential, demonstrating the sharpening of the acoustic peaks and a significant reduction in lens-induced power spectrum covariances. We then perform cosmological forecasts, demonstrating that delensing will yield improved sensitivity to parameters with upcoming surveys. We highlight the breaking of the degeneracy between the effective number of neutrino species and primordial helium fraction as a concrete application. We also show that delensing increases cosmological information as long as the measured lensing reconstruction is included in the analysis. We conclude that with future data, delensing will be crucial not only for primordial B-mode science but for a range of other observables as well.

  1. Gap Resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Labutti, Kurt; Foster, Brian; Lapidus, Alla

    Gap Resolution is a software package that was developed to improve Newbler genome assemblies by automating the closure of sequence gaps caused by repetitive regions in the DNA. This is done by performing the follow steps:1) Identify and distribute the data for each gap in sub-projects. 2) Assemble the data associated with each sub-project using a secondary assembler, such as Newbler or PGA. 3) Determine if any gaps are closed after reassembly, and either design fakes (consensus of closed gap) for those that closed or lab experiments for those that require additional data. The software requires as input a genomemore » assembly produce by the Newbler assembler provided by Roche and 454 data containing paired-end reads.« less

  2. Single-mode dispersive waves and soliton microcomb dynamics

    PubMed Central

    Yi, Xu; Yang, Qi-Fan; Zhang, Xueyue; Yang, Ki Youl; Li, Xinbai; Vahala, Kerry

    2017-01-01

    Dissipative Kerr solitons are self-sustaining optical wavepackets in resonators. They use the Kerr nonlinearity to both compensate dispersion and offset optical loss. Besides providing insights into nonlinear resonator physics, they can be applied in frequency metrology, precision clocks, and spectroscopy. Like other optical solitons, the dissipative Kerr soliton can radiate power as a dispersive wave through a process that is the optical analogue of Cherenkov radiation. Dispersive waves typically consist of an ensemble of optical modes. Here, a limiting case is studied in which the dispersive wave is concentrated into a single cavity mode. In this limit, its interaction with the soliton induces hysteresis behaviour in the soliton's spectral and temporal properties. Also, an operating point of enhanced repetition-rate stability occurs through balance of dispersive-wave recoil and Raman-induced soliton-self-frequency shift. The single-mode dispersive wave can therefore provide quiet states of soliton comb operation useful in many applications. PMID:28332495

  3. Impurity-induced photoconductivity of narrow-gap Cadmium–Mercury–Telluride structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozlov, D. V., E-mail: dvkoz@impras.ru; Rumyantsev, V. V.; Morozov, S. V.

    2015-12-15

    The photoconductivity (PC) spectra of CdHgTe (MCT) solid solutions with a Cd fraction of 17 and 19% are measured. A simple model for calculating the states of doubly charged acceptors in MCT solid solutions, which makes it possible to describe satisfactorily the observed photoconductivity spectra, is proposed. The found lines in the photoconductivity spectra of narrow-gap MCT structures are associated with transitions between the states of both charged and neutral acceptor centers.

  4. Energy gap in graphene nanoribbons with structured external electric potentials

    NASA Astrophysics Data System (ADS)

    Apel, W.; Pal, G.; Schweitzer, L.

    2011-03-01

    The electronic properties of graphene zigzag nanoribbons with electrostatic potentials along the edges are investigated. Using the Dirac-fermion approach, we calculate the energy spectrum of an infinitely long nanoribbon of finite width w, terminated by Dirichlet boundary conditions in the transverse direction. We show that a structured external potential that acts within the edge regions of the ribbon can induce a spectral gap and thus switch the nanoribbon from metallic to insulating behavior. The basic mechanism of this effect is the selective influence of the external potentials on the spinorial wave functions that are topological in nature and localized along the boundary of the graphene nanoribbon. Within this single-particle description, the maximal obtainable energy gap is Emax∝πℏvF/w, i.e., ≈0.12 eV for w=15 nm. The stability of the spectral gap against edge disorder and the effect of disorder on the two-terminal conductance is studied numerically within a tight-binding lattice model. We find that the energy gap persists as long as the applied external effective potential is larger than ≃0.55×W, where W is a measure of the disorder strength. We argue that there is a transport gap due to localization effects even in the absence of a spectral gap.

  5. Inducing Strong Superconductivity in WTe2 by a Proximity Effect.

    PubMed

    Huang, Ce; Narayan, Awadhesh; Zhang, Enze; Liu, Yanwen; Yan, Xiao; Wang, Jiaxiang; Zhang, Cheng; Wang, Weiyi; Zhou, Tong; Yi, Changjiang; Liu, Shanshan; Ling, Jiwei; Zhang, Huiqin; Liu, Ran; Sankar, Raman; Chou, Fangcheng; Wang, Yihua; Shi, Youguo; Law, Kam Tuen; Sanvito, Stefano; Zhou, Peng; Han, Zheng; Xiu, Faxian

    2018-06-21

    The search for proximity-induced superconductivity in topological materials has generated widespread interest in the condensed matter physics community. The superconducting states inheriting nontrivial topology at interfaces are expected to exhibit exotic phenomena such as topological superconductivity and Majorana zero modes, which hold promise for applications in quantum computation. However, a practical realization of such hybrid structures based on topological semimetals and superconductors has hitherto been limited. Here, we report the strong proximity-induced superconductivity in type-II Weyl semimetal WTe 2 , in a van der Waals hybrid structure obtained by mechanically transferring NbSe 2 onto various thicknesses of WTe 2 . When the WTe 2 thickness ( t WTe 2 ) reaches 21 nm, the superconducting transition occurs around the critical temperature ( T c ) of NbSe 2 with a gap amplitude (Δ p ) of 0.38 meV and an unexpected ultralong proximity length ( l p ) up to 7 μm. With the thicker 42 nm WTe 2 layer, however, the proximity effect yields T c ≈ 1.2 K, Δ p = 0.07 meV, and a short l p of less than 1 μm. Our theoretical calculations, based on the Bogoliubov-de Gennes equations in the clean limit, predict that the induced superconducting gap is a sizable fraction of the NbSe 2 superconducting one when t WTe 2 is less than 30 nm and then decreases quickly as t WTe 2 increases. This agrees qualitatively well with the experiments. Such observations form a basis in the search for superconducting phases in topological semimetals.

  6. Large superconducting double-gap, a pronounced pseudogap and evidence for proximity-induced topological superconductivity in the Bi2Te3/Fe1+yTe interfacial superconductor

    NASA Astrophysics Data System (ADS)

    Shen, J. Y.; He, M. Q.; He, Q. L.; Law, K. T.; Sou, I. K.; Lortz, R.; Petrovic, A. P.

    We investigate directional point-contact spectroscopy on a Bi2Te3/ Fe1+yTe heterostructure, fabricated via van der Waals epitaxy, which is interfacial superconducting with an onset TC at 12K and zero resistance below 8K. A large superconducting twin-gap structure is seen down to 0.27K, together with a zero bias conductance peak. The anisotropic smaller gap (Δ1) is around 5 meV at 0.27K and closes at 8K, while the other one (Δ2), as large as 12 meV, is isotropic and eventually evolves into a pseudogap closing at 40K. Both, the two-gap BTK and Dynes models can well reproduce our data, demonstrating Δ1 should be associated with the proximity-induced superconductivity in the topological Bi2Te3 layer, while Δ2 may be attributed to an intrinsically-doped FeTe thin film at the interface. This work was supported by grants from the Research Grants Council of the Hong Kong Special Administrative Region, China (603010, SEGHKUST03).

  7. Coherent perfect absorption mediated enhancement of transverse spin in a gap plasmon guide

    NASA Astrophysics Data System (ADS)

    Mukherjee, Samyobrata; Dutta Gupta, Subhasish

    2017-01-01

    We consider a symmetric gap plasmon guide (a folded Kretschmann configuration) supporting both symmetric and antisymmetric coupled surface plasmons. We calculate the transverse spin under illumination from both the sides like in coherent perfect absorption (CPA), whereby all the incident light can be absorbed to excite one of the modes of the structure. Significant enhancement in the transverse spin is shown to be possible when the CPA dip and the mode excitation are at the same frequency. The enhancement results from CPA-mediated total transfer of the incident light to either of the coupled modes and the associated large local fields. The effect is shown to be robust against small deviations from the symmetric structure. The transverse spin is localized in the structure since in the ambient dielectric there are only incident plane waves lacking any structure.

  8. Band transition and topological interface modes in 1D elastic phononic crystals.

    PubMed

    Yin, Jianfei; Ruzzene, Massimo; Wen, Jihong; Yu, Dianlong; Cai, Li; Yue, Linfeng

    2018-05-01

    In this report, we design a one-dimensional elastic phononic crystal (PC) comprised of an Aluminum beam with periodically arranged cross-sections to study the inversion of bulk bands due to the change of topological phases. As the geometric parameters of the unit cell varies, the second bulk band closes and reopens forming a topological transition point. This phenomenon is confirmed for both longitudinal waves and bending waves. By constructing a structural system formed by two PCs with different topological phases, for the first time, we experimentally demonstrate the existence of interface mode within the bulk band gap as a result of topological transition for both longitudinal and bending modes in elastic systems, although for bending modes, additional conditions have to be met in order to have the interface mode due to the dispersive nature of the bending waves in uniform media compared to the longitudinal waves.

  9. Higgs amplitude mode in a two-dimensional quantum antiferromagnet near the quantum critical point

    NASA Astrophysics Data System (ADS)

    Hong, Tao; Matsumoto, Masashige; Qiu, Yiming; Chen, Wangchun; Gentile, Thomas R.; Watson, Shannon; Awwadi, Firas F.; Turnbull, Mark M.; Dissanayake, Sachith E.; Agrawal, Harish; Toft-Petersen, Rasmus; Klemke, Bastian; Coester, Kris; Schmidt, Kai P.; Tennant, David A.

    2017-07-01

    Spontaneous symmetry-breaking quantum phase transitions play an essential role in condensed-matter physics. The collective excitations in the broken-symmetry phase near the quantum critical point can be characterized by fluctuations of phase and amplitude of the order parameter. The phase oscillations correspond to the massless Nambu-Goldstone modes whereas the massive amplitude mode, analogous to the Higgs boson in particle physics, is prone to decay into a pair of low-energy Nambu-Goldstone modes in low dimensions. Especially, observation of a Higgs amplitude mode in two dimensions is an outstanding experimental challenge. Here, using inelastic neutron scattering and applying the bond-operator theory, we directly and unambiguously identify the Higgs amplitude mode in a two-dimensional S = 1/2 quantum antiferromagnet C9H18N2CuBr4 near a quantum critical point in two dimensions. Owing to an anisotropic energy gap, it kinematically prevents such decay and the Higgs amplitude mode acquires an infinite lifetime.

  10. Effects of maturation-inducing hormone on heterologous gap junctional coupling in ovarian follicles of Atlantic croaker

    USGS Publications Warehouse

    Yoshizaki, G.; Patino, R.; Thomas, P.; Bolamba, D.; Chang, Xiaotian

    2001-01-01

    A previous ultrastructural study of heterologous (granulosa cell-oocyte) gap junction (GJ) contacts in ovarian follicles of Atlantic croaker suggested that these contacts disappear late during the process of resumption of oocyte meiosis. This observation suggested that, unlike scenarios proposed for a number of other species, uncoupling of GJ is not necessary for the onset of meiotic resumption in croaker follicles. However, the functionality of heterologous GJ contacts and the temporal association between maturation-inducing hormone (MIH)-induced changes in heterologous coupling and resumption of oocyte meiosis have not been examined in Atlantic croaker. These questions were addressed with a cell-cell coupling assay that is based on the transfer of a GJ marker, Lucifer Yellow, from oocytes to granulosa cells. Follicle-enclosed oocytes injected with Lucifer Yellow allowed transfer of the dye into the follicle cell layer, thus confirming that there is functional heterologous coupling between the oocyte and the granulosa cells. Dye transfer was observed in vitellogenic, full-grown/maturation-incompetent, and full-grown /maturation-competent follicles. Treatment of maturation-competent follicles with MIH caused a time-dependent decline in the number of follicles transferring dye. However, although GJ uncoupling in some of the follicles was observed before germinal vesicle breakdown (GVBD, index of meiotic resumption), about 50% of the follicles maintained the ability to transfer dye even after GVBD had occurred. Further, a known GJ inhibitor (phorbol 12-myristate 13-acetate) blocked heterologous GJ within a time frame similar to that seen with MIH but without inducing any of the morphological changes (including GVBD) associated with follicular maturation. In conclusion, uncoupling of heterologous GJ seems insufficient and unnecessary for the onset of meiotic resumption in ovarian follicles of Atlantic croaker. ?? 2001 Elsevier Science.

  11. Photoionization of Trapped Carriers in Avalanche Photodiodes to Reduce Afterpulsing During Geiger-Mode Photon Counting

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.

    2005-01-01

    We reduced the afterpulsing probability by a factor of five in a Geiger-mode photon-counting InGaAs avalanche photodiode by using sub-band-gap (lambda = 1.95 micron) laser diode illumination, which we believe photoionizes the trapped carriers.

  12. Widely tunable Tm-doped mode-locked all-fiber laser

    PubMed Central

    Yan, Zhiyu; Sun, Biao; Li, Xiaohui; Luo, Jiaqi; Shum, Perry Ping; Yu, Xia; Zhang, Ying; Wang, Qi Jie

    2016-01-01

    We demonstrated a widely tunable Tm-doped mode-locked all-fiber laser, with the widest tunable range of 136 nm, from 1842 to 1978 nm. Nonlinear polarization evolution (NPE) technique is employed to enable mode-locking and the wavelength-tunable operation. The widely tunable range attributes to the NPE-induced transmission modulation and bidirectional pumping mechanism. Such kind of tunable mode-locked laser can find various applications in optical communications, spectroscopy, time-resolved measurement, and among others. PMID:27263655

  13. INSIGHTS INTO THE CARCINOGENIC MODE OF ACTION OF ARSENIC

    EPA Science Inventory

    That arsenic can induce cancer in humans has been known since the late 17th century, yet how arsenic induces cancer has been the subject of numerous scientific publications. Various modes of action (MOA) have been proposed for arsenic's carcinogenicity. In this paper we review o...

  14. Vertical structure of internal wave induced velocity for mode I and II solitary waves in two- and three-layer fluid

    NASA Astrophysics Data System (ADS)

    Gigiyatullin, Ayrat; Kurkin, Andrey; Kurkina, Oxana; Rouvinskaya, Ekaterina; Rybin, Artem

    2017-04-01

    With the use of the Gardner equation, or its variable-coefficient forms, the velocity components of fluid particles in the vertical section induced by a passage of internal waves can be estimated in weakly nonlinear limit. The horizontal velocity gives the greatest contribution into the local current speed. This is a typical property of long waves. This feature of an internal wave field may greatly contribute to the local sediment transport and/or resuspension. The velocity field induced by mode I and II internal solitary waves are studied. The contribution from second-order terms in asymptotic expansion into the horizontal velocity is estimated for the models of two- and three-layer fluid density stratification for solitons of positive and negative polarity, as well as for breathers of different shapes and amplitudes. The influence of the nonlinear correction manifests itself firstly in the shape of the lines of zero horizontal velocity: they are curved and the shape depends on the soliton amplitude and polarity while for the leading-order wave field they are horizontal. Also the wavefield accounting for the nonlinear correction for mode I waves has smaller maximal absolute values of negative velocities (near-surface for the soliton of elevation, and near-bottom for the soliton of depression) and larger maximums of positive velocities. Thus for the solitary internal waves of positive polarity weakly nonlinear theory overestimates the near-bottom velocities and underestimates the near-surface current. For solitary waves of negative polarity, which are the most typical for hydrological conditions of low and middle latitudes, the situation is the opposite. Similar estimations are produced for mode II waves, which possess more complex structure. The presented results of research are obtained with the support of the Russian Foundation for Basic Research grant 16-35-00413.

  15. Rayleigh scattering in few-mode optical fibers.

    PubMed

    Wang, Zhen; Wu, Hao; Hu, Xiaolong; Zhao, Ningbo; Mo, Qi; Li, Guifang

    2016-10-24

    The extremely low loss of silica fibers has enabled the telecommunication revolution, but single-mode fiber-optic communication systems have been driven to their capacity limits. As a means to overcome this capacity crunch, space-division multiplexing (SDM) using few-mode fibers (FMF) has been proposed and demonstrated. In single-mode optical fibers, Rayleigh scattering serves as the dominant mechanism for optical loss. However, to date, the role of Rayleigh scattering in FMFs remains elusive. Here we establish and experimentally validate a general model for Rayleigh scattering in FMFs. Rayleigh backscattering not only sets the intrinsic loss limit for FMFs but also provides the theoretical foundation for few-mode optical time-domain reflectometry, which can be used to probe perturbation-induced mode-coupling dynamics in FMFs. We also show that forward inter-modal Rayleigh scattering ultimately sets a fundamental limit on inter-modal-crosstalk for FMFs. Therefore, this work not only has implications specifically for SDM systems but also broadly for few-mode fiber optics and its applications in amplifiers, lasers, and sensors in which inter-modal crosstalk imposes a fundamental performance limitation.

  16. Design and fabrication of elliptical-core few-mode fiber for MIMO-less data transmission.

    PubMed

    Liang, Junpeng; Mo, Qi; Fu, Songnian; Tang, Ming; Shum, P; Liu, Deming

    2016-07-01

    We propose a design strategy of elliptical core few-mode fiber (e-FMF) that supports three spatial modes with enhanced mode spacing between LP11a and LP11b, to suppress intra-mode coupling during mode-division multiplexing (MDM) transmission. Our theoretical investigations show that there exist two optimization regimes for the e-FMF, as a comparison with traditional circular core FMF(c-FMF). At the regime of three-mode operation, there occurs a trade-off between mode spacing and bending-induced loss. Meanwhile, in terms of five-mode regime, a trade-off between mode spacing and high-order mode crosstalk happens. Finally, we fabricate 7.94 km e-FMF with the optimal parameters, based on the commercial fiber manufacture facility. The primary characterizations at 1550 nm show that three spatial modes of e-FMF can be transmitted with a loss less than 0.3 dB/km. Meanwhile, -22.44  dB crosstalk between LP11a and LP11b is observed, even when the 2 km e-FMF is under stress-induced strong perturbation.

  17. Soft Vibrational Modes Predict Breaking Events during Force-Induced Protein Unfolding.

    PubMed

    Habibi, Mona; Plotkin, Steven S; Rottler, Jörg

    2018-02-06

    We investigate the correlation between soft vibrational modes and unfolding events in simulated force spectroscopy of proteins. Unfolding trajectories are obtained from molecular dynamics simulations of a Gō model of a monomer of a mutant of superoxide dismutase 1 protein containing all heavy atoms in the protein, and a normal mode analysis is performed based on the anisotropic network model. We show that a softness map constructed from the superposition of the amplitudes of localized soft modes correlates with unfolding events at different stages of the unfolding process. Soft residues are up to eight times more likely to undergo disruption of native structure than the average amino acid. The memory of the softness map is retained for extensions of up to several nanometers, but decorrelates more rapidly during force drops. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  18. Haptic adaptation to slant: No transfer between exploration modes

    PubMed Central

    van Dam, Loes C. J.; Plaisier, Myrthe A.; Glowania, Catharina; Ernst, Marc O.

    2016-01-01

    Human touch is an inherently active sense: to estimate an object’s shape humans often move their hand across its surface. This way the object is sampled both in a serial (sampling different parts of the object across time) and parallel fashion (sampling using different parts of the hand simultaneously). Both the serial (moving a single finger) and parallel (static contact with the entire hand) exploration modes provide reliable and similar global shape information, suggesting the possibility that this information is shared early in the sensory cortex. In contrast, we here show the opposite. Using an adaptation-and-transfer paradigm, a change in haptic perception was induced by slant-adaptation using either the serial or parallel exploration mode. A unified shape-based coding would predict that this would equally affect perception using other exploration modes. However, we found that adaptation-induced perceptual changes did not transfer between exploration modes. Instead, serial and parallel exploration components adapted simultaneously, but to different kinaesthetic aspects of exploration behaviour rather than object-shape per se. These results indicate that a potential combination of information from different exploration modes can only occur at down-stream cortical processing stages, at which adaptation is no longer effective. PMID:27698392

  19. Acousto-optic resonant coupling of three spatial modes in an optical fiber.

    PubMed

    Park, Hee Su; Song, Kwang Yong

    2014-01-27

    A fiber-optic analogue to an externally driven three-level quantum state is demonstrated by acousto-optic coupling of the spatial modes in a few-mode fiber. Under the condition analogous to electromagnetically induced transparency, a narrow-bandwidth transmission within an absorption band for the fundamental mode is demonstrated. The presented structure is an efficient converter between the fundamental mode and the higher-order modes that cannot be easily addressed by previous techniques, therefore can play a significant role in the next-generation space-division multiplexing communications as an arbitrarily mode-selectable router.

  20. The shift of optical band gap in W-doped ZnO with oxygen pressure and doping level

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, J.; Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Science, Chongqing 400714; Peng, X.Y.

    2014-06-01

    Highlights: • CVD–PLD co-deposition technique was used. • Better crystalline of the ZnO samples causes the redshift of the optical band gap. • Higher W concentration induces blueshift of the optical band gap. - Abstract: Tungsten-doped (W-doped) zinc oxide (ZnO) nanostructures were synthesized on quartz substrates by pulsed laser and hot filament chemical vapor co-deposition technique under different oxygen pressures and doping levels. We studied in detail the morphological, structural and optical properties of W-doped ZnO by SEM, XPS, Raman scattering, and optical transmission spectra. A close correlation among the oxygen pressure, morphology, W concentrations and the variation of bandmore » gaps were investigated. XPS and Raman measurements show that the sample grown under the oxygen pressure of 2.7 Pa has the maximum tungsten concentration and best crystalline structure, which induces the redshift of the optical band gap. The effect of W concentration on the change of morphology and shift of optical band gap was also studied for the samples grown under the fixed oxygen pressure of 2.7 Pa.« less

  1. Thermal tuning on band gaps of 2D phononic crystals considering adhesive layers

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaoliang; Chen, Jialin; Li, Yuhang; Sun, Yuxin; Xing, Yufeng

    2018-02-01

    Phononic crystals are very attractive in many applications, such as noise reduction, filters and vibration isolation, due to their special forbidden band gap structures. In the present paper, the investigation of tunable band gaps of 2D phononic crystals with adhesive layers based on thermal changing is conducted. Based on the lumped-mass method, an analytical model of 2D phononic crystals with relatively thin adhesive layers is established, in which the in-plane and out-of-plane modes are both in consideration. The adhesive material is sensitive to temperature so that the band structure can be tuned and controlled by temperature variation. As temperature increases from 20 °C-80 °C, the first band gap shifts to the frequency zone around 10 kHz, which is included by the audible frequency range. The results propose an important guideline for applications, such as noise suppression using the 2D phononic crystals.

  2. Stable switching among high-order modes in polariton condensates

    NASA Astrophysics Data System (ADS)

    Sun, Yongbao; Yoon, Yoseob; Khan, Saeed; Ge, Li; Steger, Mark; Pfeiffer, Loren N.; West, Ken; Türeci, Hakan E.; Snoke, David W.; Nelson, Keith A.

    2018-01-01

    We report multistate optical switching among high-order bouncing-ball modes ("ripples") and whispering-gallery modes ("petals") of exciton-polariton condensates in a laser-generated annular trap. By tailoring the diameter and power of the annular trap, the polariton condensate can be switched among different trapped modes, accompanied by redistribution of spatial densities and superlinear increase in the emission intensities, implying that polariton condensates in this geometry could be exploited for an all-optical multistate switch. A model based on non-Hermitian modes of the generalized Gross-Pitaevskii equation reveals that this mode switching arises from competition between pump-induced gain and in-plane polariton loss. The parameters for reproducible switching among trapped modes have been measured experimentally, giving us a phase diagram for mode switching. Taken together, the experimental result and theoretical modeling advance our fundamental understanding of the spontaneous emergence of coherence and move us toward its practical exploitation.

  3. Two types of modes in finite size one-dimensional coaxial photonic crystals: General rules and experimental evidence

    NASA Astrophysics Data System (ADS)

    El Boudouti, E. H.; El Hassouani, Y.; Djafari-Rouhani, B.; Aynaou, H.

    2007-08-01

    We demonstrate analytically and experimentally the existence and behavior of two types of modes in finite size one-dimensional coaxial photonic crystals made of N cells with vanishing magnetic field on both sides. We highlight the existence of N-1 confined modes in each band and one mode by gap associated to either one or the other of the two surfaces surrounding the structure. The latter modes are independent of N . These results generalize our previous findings on the existence of surface modes in two semi-infinite superlattices obtained from the cleavage of an infinite superlattice between two cells. The analytical results are obtained by means of the Green’s function method, whereas the experiments are carried out using coaxial cables in the radio-frequency regime.

  4. Contributions of different modes of TRPV1 activation to TRPV1 antagonist-induced hyperthermia.

    PubMed

    Garami, Andras; Shimansky, Yury P; Pakai, Eszter; Oliveira, Daniela L; Gavva, Narender R; Romanovsky, Andrej A

    2010-01-27

    Transient receptor potential vanilloid-1 (TRPV1) antagonists are widely viewed as next-generation pain therapeutics. However, these compounds cause hyperthermia, a serious side effect. TRPV1 antagonists differentially block three modes of TRPV1 activation: by heat, protons, and chemical ligands (e.g., capsaicin). We asked what combination of potencies in these three modes of TRPV1 activation corresponds to the lowest potency of a TRPV1 antagonist to cause hyperthermia. We studied hyperthermic responses of rats, mice, and guinea pigs to eight TRPV1 antagonists with different pharmacological profiles and used mathematical modeling to find a relative contribution of the blockade of each activation mode to the development of hyperthermia. We found that the hyperthermic effect has the highest sensitivity to the extent of TRPV1 blockade in the proton mode (0.43 to 0.65) with no to moderate sensitivity in the capsaicin mode (-0.01 to 0.34) and no sensitivity in the heat mode (0.00 to 0.01). We conclude that hyperthermia-free TRPV1 antagonists do not block TRPV1 activation by protons, even if they are potent blockers of the heat mode, and that decreasing the potency to block the capsaicin mode may further decrease the potency to cause hyperthermia.

  5. Contributions of different modes of TRPV1 activation to TRPV1 antagonist-induced hyperthermia

    PubMed Central

    Garami, Andras; Shimansky, Yury P.; Pakai, Eszter; Oliveira, Daniela L.; Gavva, Narender R.; Romanovsky, Andrej A.

    2010-01-01

    Transient receptor potential vanilloid-1 (TRPV1) antagonists are widely viewed as next-generation pain therapeutics. However, these compounds cause hyperthermia, a serious side effect. TRPV1 antagonists differentially block three modes of TRPV1 activation: by heat, protons, and chemical ligands (e.g., capsaicin). We asked what combination of potencies in these three modes of TRPV1 activation corresponds to the lowest potency of a TRPV1 antagonist to cause hyperthermia. We studied hyperthermic responses of rats, mice, and guinea pigs to eight TRPV1 antagonists with different pharmacological profiles and used mathematical modeling to find a relative contribution of the blockade of each activation mode to the development of hyperthermia. We have found that the hyperthermic effect has the highest sensitivity to the extent of TRPV1 blockade in the proton mode (0.43 to 0.65) with no to moderate sensitivity in the capsaicin mode (-0.01 to 0.34) and no sensitivity in the heat mode (0.00 to 0.01). We conclude that hyperthermia-free TRPV1 antagonists do not block TRPV1 activation by protons, even if they are potent blockers of the heat mode, and that decreasing the potency to block the capsaicin mode may further decrease the potency to cause hyperthermia. PMID:20107070

  6. Effect of cross-phase-modulation-induced polarization scattering on optical polarization mode dispersion compensation in wavelength-division-multiplexed systems

    NASA Astrophysics Data System (ADS)

    Xie, Chongjin; Möller, Lothar; Kilper, Daniel C.; Mollenauer, Linn F.

    2003-12-01

    Interchannel cross-phase-modulation-induced polarization scattering (XPMIPS) and its effect on the performance of optical polarization mode dispersion (PMD) compensation in wavelength-division-multiplexed (WDM) systems are studied. The level of XPMIPS in long-haul WDM transmission systems is theoretically quantified, and its effect on optical PMD compensation is evaluated with numerical simulations. We show that in 10-Gbit/s ultra-long-haul dense WDM systems XPMIPS could reduce the PMD compensation efficiency by 50%, whereas for 40-Gbit/s systems the effect of XPMIPS is smaller.

  7. [Research progress of larger flexion gap than extension gap in total knee arthroplasty].

    PubMed

    Zhang, Weisong; Hao, Dingjun

    2017-05-01

    To summarize the progress of larger flexion gap than extension gap in total knee arthro-plasty (TKA). The domestic and foreign related literature about larger flexion gap than extension gap in TKA, and its impact factors, biomechanical and kinematic features, and clinical results were summarized. During TKA, to adjust the relations of flexion gap and extension gap is one of the key factors of successful operation. The biomechanical, kinematic, and clinical researches show that properly larger flexion gap than extension gap can improve both the postoperative knee range of motion and the satisfaction of patients, but does not affect the stability of the knee joint. However, there are also contrary findings. So adjustment of flexion gap and extension gap during TKA is still in dispute. Larger flexion gap than extension gap in TKA is a new joint space theory, and long-term clinical efficacy, operation skills, and related complications still need further study.

  8. All-Phononic Digital Transistor on the Basis of Gap-Soliton Dynamics in an Anharmonic Oscillator Ladder.

    PubMed

    Malishava, Merab; Khomeriki, Ramaz

    2015-09-04

    A conceptual mechanism of amplification of phonons by phonons on the basis of a nonlinear band-gap transmission (supratransmission) phenomenon is presented. As an example, a system of weakly coupled chains of anharmonic oscillators is considered. One (source) chain is driven harmonically by a boundary with a frequency located in the upper band close to the band edge of the ladder system. Amplification happens when a second (gate) chain is driven by a small signal in the counterphase and with the same frequency as the first chain. If the total driving of both chains overcomes the band-gap transmission threshold, the large amplitude band-gap soliton emerges and the amplification scenario is realized. The mechanism is interpreted as the nonlinear superposition of evanescent and propagating nonlinear modes manifesting in a single or double soliton generation working in band-gap or bandpass regimes, respectively. The results could be straightforwardly generalized for all-optical or all-magnonic contexts and have all the promise of logic gate operations.

  9. All-Phononic Digital Transistor on the Basis of Gap-Soliton Dynamics in an Anharmonic Oscillator Ladder

    NASA Astrophysics Data System (ADS)

    Malishava, Merab; Khomeriki, Ramaz

    2015-09-01

    A conceptual mechanism of amplification of phonons by phonons on the basis of a nonlinear band-gap transmission (supratransmission) phenomenon is presented. As an example, a system of weakly coupled chains of anharmonic oscillators is considered. One (source) chain is driven harmonically by a boundary with a frequency located in the upper band close to the band edge of the ladder system. Amplification happens when a second (gate) chain is driven by a small signal in the counterphase and with the same frequency as the first chain. If the total driving of both chains overcomes the band-gap transmission threshold, the large amplitude band-gap soliton emerges and the amplification scenario is realized. The mechanism is interpreted as the nonlinear superposition of evanescent and propagating nonlinear modes manifesting in a single or double soliton generation working in band-gap or bandpass regimes, respectively. The results could be straightforwardly generalized for all-optical or all-magnonic contexts and have all the promise of logic gate operations.

  10. Gap Junctions and Connexin Hemichannels Underpin Haemostasis and Thrombosis

    PubMed Central

    Vaiyapuri, Sakthivel; Jones, Chris I.; Sasikumar, Parvathy; Moraes, Leonardo A.; Munger, Stephanie J.; Wright, Joy R.; Ali, Marfoua S.; Sage, Tanya; Kaiser, William J.; Tucker, Katherine L.; Stain, Christopher J.; Bye, Alexander P.; Jones, Sarah; Oviedo-Orta, Ernesto; Simon, Alexander M.; Mahaut-Smith, Martyn P.; Gibbins, Jonathan M.

    2012-01-01

    Background Connexins are a widespread family of membrane proteins that assemble into hexameric hemichannels, also known as connexons. Connexons regulate membrane permeability in individual cells or couple between adjacent cells to form gap junctions and thereby provide a pathway for regulated intercellular communication. We have now examined the role of connexins in platelets, blood cells that circulate in isolation, but upon tissue injury adhere to each other and the vessel wall to prevent blood loss and facilitate wound repair. Methods and Results We report the presence of connexins in platelets, notably connexin37, and that the formation of gap junctions within platelet thrombi is required for the control of clot retraction. Inhibition of connexin function modulated a range of platelet functional responses prior to platelet-platelet contact, and reduced laser induced thrombosis in vivo in mice. Deletion of the Cx37 gene (Gja4) in transgenic mice reduced platelet aggregation, fibrinogen binding, granule secretion and clot retraction indicating an important role for Cx37 hemichannels and gap junctions in platelet thrombus function. Conclusions Together, these data demonstrate that platelet gap junctions and hemichannels underpin the control of haemostasis and thrombosis and represent potential therapeutic targets. PMID:22528526

  11. Modelling of rotation-induced frequency shifts in whispering gallery modes

    NASA Astrophysics Data System (ADS)

    Venediktov, V. Yu; Kukaev, A. S.; Filatov, Yu V.; Shalymov, E. V.

    2018-02-01

    We study the angular velocity sensors based on whispering gallery mode resonators. Rotation of such resonators gives rise to various effects that can cause a spectral shift of their modes. Optical methods allow this shift to be determined with high precision, which can be used practically to measure the angular velocity in inertial orientation and navigation systems. The basic principles of constructing the angular velocity sensors utilising these effects are considered, their advantages and drawbacks are indicated. We also study the interrelation between the effects and the possibility of their mutual influence on each other. Based on the analytical studies of the effects, we consider the possibility of their combined application for angular velocity measurements.

  12. Podocyte-specific RAP1GAP expression contributes to focal segmental glomerulosclerosis–associated glomerular injury

    PubMed Central

    Potla, Uma; Ni, Jie; Vadaparampil, Justin; Yang, Guozhe; Leventhal, Jeremy S.; Campbell, Kirk N.; Chuang, Peter Y.; Morozov, Alexei; He, John C.; D’Agati, Vivette D.; Klotman, Paul E.; Kaufman, Lewis

    2014-01-01

    Injury to the specialized epithelial cells of the glomerulus (podocytes) underlies the pathogenesis of all forms of proteinuric kidney disease; however, the specific genetic changes that mediate podocyte dysfunction after injury are not fully understood. Here, we performed a large-scale insertional mutagenic screen of injury-resistant podocytes isolated from mice and found that increased expression of the gene Rap1gap, encoding a RAP1 activation inhibitor, ameliorated podocyte injury resistance. Furthermore, injured podocytes in murine models of disease and kidney biopsies from glomerulosclerosis patients exhibited increased RAP1GAP, resulting in diminished glomerular RAP1 activation. In mouse models, podocyte-specific inactivation of Rap1a and Rap1b induced massive glomerulosclerosis and premature death. Podocyte-specific Rap1a and Rap1b haploinsufficiency also resulted in severe podocyte damage, including features of podocyte detachment. Over-expression of RAP1GAP in cultured podocytes induced loss of activated β1 integrin, which was similarly observed in kidney biopsies from patients. Furthermore, preventing elevation of RAP1GAP levels in injured podocytes maintained β1 integrin–mediated adhesion and prevented cellular detachment. Taken together, our findings suggest that increased podocyte expression of RAP1GAP contributes directly to podocyte dysfunction by a mechanism that involves loss of RAP1-mediated activation of β1 integrin. PMID:24642466

  13. Gap Junctions

    PubMed Central

    Nielsen, Morten Schak; Axelsen, Lene Nygaard; Sorgen, Paul L.; Verma, Vandana; Delmar, Mario; Holstein-Rathlou, Niels-Henrik

    2013-01-01

    Gap junctions are essential to the function of multicellular animals, which require a high degree of coordination between cells. In vertebrates, gap junctions comprise connexins and currently 21 connexins are known in humans. The functions of gap junctions are highly diverse and include exchange of metabolites and electrical signals between cells, as well as functions, which are apparently unrelated to intercellular communication. Given the diversity of gap junction physiology, regulation of gap junction activity is complex. The structure of the various connexins is known to some extent; and structural rearrangements and intramolecular interactions are important for regulation of channel function. Intercellular coupling is further regulated by the number and activity of channels present in gap junctional plaques. The number of connexins in cell-cell channels is regulated by controlling transcription, translation, trafficking, and degradation; and all of these processes are under strict control. Once in the membrane, channel activity is determined by the conductive properties of the connexin involved, which can be regulated by voltage and chemical gating, as well as a large number of posttranslational modifications. The aim of the present article is to review our current knowledge on the structure, regulation, function, and pharmacology of gap junctions. This will be supported by examples of how different connexins and their regulation act in concert to achieve appropriate physiological control, and how disturbances of connexin function can lead to disease. © 2012 American Physiological Society. Compr Physiol 2:1981-2035, 2012. PMID:23723031

  14. FIBER AND INTEGRATED OPTICS: Modulation of the phase and polarization of modes in a few-mode fiber waveguide subjected to axial deformation

    NASA Astrophysics Data System (ADS)

    Belovolov, M. I.; Vitrik, O. B.; Dianov, Evgenii M.; Kulchin, Yurii N.; Obukh, V. F.

    1989-11-01

    An investigation was made of modulation of the phase and polarization of modes in a few-mode fiber waveguide subjected to axial deformation. The simplest and most convenient (for analysis) controlled interference pattern was obtained on addition, at the exit from a waveguide, of the fields of two modes of different order or of components of two orthogonally polarized waves of the same mode when an additional phase shift between these waves was induced by deformation. The two investigated schemes were suitable for the construction of simple and highly sensitive sensors capable of detecting small strains with characteristics which could be varied by suitable selection of the waveguide parameters and of the signal processing method.

  15. Cation-induced band-gap tuning in organohalide perovskites: interplay of spin-orbit coupling and octahedra tilting.

    PubMed

    Amat, Anna; Mosconi, Edoardo; Ronca, Enrico; Quarti, Claudio; Umari, Paolo; Nazeeruddin, Md K; Grätzel, Michael; De Angelis, Filippo

    2014-06-11

    Organohalide lead perovskites have revolutionized the scenario of emerging photovoltaic technologies. The prototype MAPbI3 perovskite (MA = CH3NH3(+)) has dominated the field, despite only harvesting photons above 750 nm (∼1.6 eV). Intensive research efforts are being devoted to find new perovskites with red-shifted absorption onset, along with good charge transport properties. Recently, a new perovskite based on the formamidinium cation ((NH2)2CH(+) = FA) has shown potentially superior properties in terms of band gap and charge transport compared to MAPbI3. The results have been interpreted in terms of the cation size, with the larger FA cation expectedly delivering reduced band-gaps in Pb-based perovskites. To provide a full understanding of the interplay among size, structure, and organic/inorganic interactions in determining the properties of APbI3 perovskites, in view of designing new materials and fully exploiting them for solar cells applications, we report a fully first-principles investigation on APbI3 perovskites with A = Cs(+), MA, and FA. Our results evidence that the tetragonal-to-quasi cubic structural evolution observed when moving from MA to FA is due to the interplay of size effects and enhanced hydrogen bonding between the FA cations and the inorganic matrix altering the covalent/ionic character of Pb-I bonds. Most notably, the observed cation-induced structural variability promotes markedly different electronic and optical properties in the MAPbI3 and FAPbI3 perovskites, mediated by the different spin-orbit coupling, leading to improved charge transport and red-shifted absorption in FAPbI3 and in general in pseudocubic structures. Our theoretical model constitutes the basis for the rationale design of new and more efficient organohalide perovskites for solar cells applications.

  16. Effects of electrode gap and electric current on chlorine generation of electrolyzed deep ocean water.

    PubMed

    Hsu, Guoo-Shyng Wang; Hsu, Shun-Yao

    2018-04-01

    Electrolyzed water is a sustainable disinfectant, which can comply with food safety regulations and is environmental friendly. A two-factor central composite design was adopted for studying the effects of electrode gap and electric current on chlorine generation efficiency of electrolyzed deep ocean water. Deep ocean water was electrolyzed in a glass electrolyzing cell equipped with platinum-plated titanium anode and cathode in a constant-current operation mode. Results showed that current density, chlorine concentration, and electrolyte temperature increased with electric current, while electric efficiency decreased with electric current and electrode gap. An electrode gap of less than 11.7 mm, and a low electric current appeared to be a more energy efficient design and operation condition for the electrolysis system. Copyright © 2017. Published by Elsevier B.V.

  17. Forensics of subhalo-stream encounters: the three phases of gap growth

    NASA Astrophysics Data System (ADS)

    Erkal, Denis; Belokurov, Vasily

    2015-06-01

    There is hope to discover dark matter subhaloes free of stars (predicted by the current theory of structure formation) by observing gaps they produce in tidal streams. In fact, this is the most promising technique for dark substructure detection and characterization as such gaps grow with time, magnifying small perturbations into clear signatures observable by ongoing and planned Galaxy surveys. To facilitate such future inference, we develop a comprehensive framework for studies of the growth of the stream density perturbations. Starting with simple assumptions and restricting to streams on circular orbits, we derive analytic formulae that describe the evolution of all gap properties (size, density contrast, etc.) at all times. We uncover complex, previously unnoticed behaviour, with the stream initially forming a density enhancement near the subhalo impact point. Shortly after, a gap forms due to the relative change in period induced by the subhalo's passage. There is an intermediate regime where the gap grows linearly in time. At late times, the particles in the stream overtake each other, forming caustics, and the gap grows like √{t}. In addition to the secular growth, we find that the gap oscillates as it grows due to epicyclic motion. We compare this analytic model to N-body simulations and find an impressive level of agreement. Importantly, when analysing the observation of a single gap we find a large degeneracy between the subhalo mass, the impact geometry and kinematics, the host potential, and the time since flyby.

  18. Displacement of polarons by vibrational modes in doped conjugated polymers

    NASA Astrophysics Data System (ADS)

    Anderson, M.; Ramanan, C.; Fontanesi, C.; Frick, A.; Surana, S.; Cheyns, D.; Furno, M.; Keller, T.; Allard, S.; Scherf, U.; Beljonne, D.; D'Avino, G.; von Hauff, E.; Da Como, E.

    2017-10-01

    Organic pi-conjugated polymers are deemed to be soft materials with strong electron-phonon coupling, which results in the formation of polarons, i.e., charge carriers dressed by self-localized distortion of the nuclei. Universal signatures for polarons are optical resonances below the band gap and intense vibrational modes (IVMs), both found in the infrared (IR) spectral region. Here, we study p -doped conjugated homo- and copolymers by combining first-principles modelling and optical spectroscopy from the far-IR to the visible. Polaronic IVMs are found to feature absorption intensities comparable to purely electronic transitions and, most remarkably, show only loose resemblance to the Raman or IR-active modes of the neutral polymer. The IVM frequency is dramatically scaled down (up to 50%) compared to the backbone carbon-stretching modes in the pristine polymers. The very large intensity of IVMs is associated with displacement of the excess positive charge along the backbone driven by specific vibrational modes. We propose a quantitative picture for the identification of these polaron shifting modes that solely based on structural information, directly correlates with their IR intensity. This finding finally discloses the elusive microscopic mechanism behind the huge IR intensity of IVMs in doped polymeric semiconductors.

  19. Smad ubiquitination regulatory factor-2 controls gap junction intercellular communication by modulating endocytosis and degradation of connexin43.

    PubMed

    Fykerud, Tone Aase; Kjenseth, Ane; Schink, Kay Oliver; Sirnes, Solveig; Bruun, Jarle; Omori, Yasufumi; Brech, Andreas; Rivedal, Edgar; Leithe, Edward

    2012-09-01

    Gap junctions consist of arrays of intercellular channels that enable adjacent cells to communicate both electrically and metabolically. Gap junction channels are made of a family of integral membrane proteins called connexins, of which the best-studied member is connexin43. Gap junctions are dynamic plasma membrane domains, and connexin43 has a high turnover rate in most tissue types. However, the mechanisms involved in the regulation of connexin43 endocytosis and transport to lysosomes are still poorly understood. Here, we demonstrate by live-cell imaging analysis that treatment of cells with 12-O-tetradecanoylphorbol 13-acetate (TPA) induces endocytosis of subdomains of connexin43 gap junctions. The internalized, connexin43-enriched vesicles were found to fuse with early endosomes, which was followed by transport of connexin43 to the lumen of early endosomes. The HECT E3 ubiquitin ligase smad ubiquitination regulatory factor-2 (Smurf2) was found to be recruited to connexin43 gap junctions in response to TPA treatment. Depletion of Smurf2 by small interfering RNA resulted in enhanced levels of connexin43 gap junctions between adjacent cells and increased gap junction intercellular communication. Smurf2 depletion also counteracted the TPA-induced endocytosis and degradation of connexin43. Collectively, these data identify Smurf2 as a novel regulator of connexin43 gap junctions.

  20. Anomalous Temperature Dependence of the Band Gap in Black Phosphorus.

    PubMed

    Villegas, Cesar E P; Rocha, A R; Marini, Andrea

    2016-08-10

    Black phosphorus (BP) has gained renewed attention due to its singular anisotropic electronic and optical properties that might be exploited for a wide range of technological applications. In this respect, the thermal properties are particularly important both to predict its room temperature operation and to determine its thermoelectric potential. From this point of view, one of the most spectacular and poorly understood phenomena is indeed the BP temperature-induced band gap opening; when temperature is increased, the fundamental band gap increases instead of decreases. This anomalous thermal dependence has also been observed recently in its monolayer counterpart. In this work, based on ab initio calculations, we present an explanation for this long known and yet not fully explained effect. We show that it arises from a combination of harmonic and lattice thermal expansion contributions, which are in fact highly interwined. We clearly narrow down the mechanisms that cause this gap opening by identifying the peculiar atomic vibrations that drive the anomaly. The final picture we give explains both the BP anomalous band gap opening and the frequency increase with increasing volume (tension effect).

  1. The free-fall mode experiment on LISA Pathfinder: first results

    NASA Astrophysics Data System (ADS)

    Giusteri, Roberta; LPF Collaboration

    2017-05-01

    The LISA Pathfinder space mission is testing the critical experimental challenge for LISA by measuring the differential acceleration between two free-falling test masses inside a single co-orbiting spacecraft at a level of sub-femto-g for frequencies down to 0.1mHz. In LPF it is necessary that one test mass (TM) is electrostatically forced to follow the orbit of the other TM. This force represents a noise source in differential acceleration at frequencies below 1mHz. The free-fall mode experiment has been performed in order to reduce this source of noise: the actuation is limited to short impulses on one TM, so that it is in free fall between two successive kicks, while the other TM is drag-free. The free-fall mode thus provides a different technique for measuring the differential TM acceleration without the added force noise and calibration issues introduced by the actuator. Data analysis challenge is related to the presence of the kicks: they represent a high-noise contribution and need to be removed, thus leaving short gaps in data. This article presents preliminary data of the LPF free-fall measurement campaign and describes the three data analysis techniques developed to mitigate the presence of gaps.

  2. Pressure-Induced Structural Transition and Enhancement of Energy Gap of CuAlO2

    NASA Astrophysics Data System (ADS)

    Nakanishi, Akitaka

    2011-02-01

    By using first-principles calculations, we studied the stable crystal structures and energy gaps of CuAlO2 under high pressure. Our simulation shows that CuAlO2 transforms from a delafossite structure to a leaning delafossite structure. The critical pressure of the transition was determined to be 60 GPa. The energy gap of CuAlO2 increases through the structural transition due to the enhanced covalency of Cu 3d and O 2p states. We found that a chalcopyrite structure does not appear as a stable structure under high pressure.

  3. Ion-Flow-Induced Excitation of Electrostatic Cyclotron Mode in Magnetized Dusty Plasma

    NASA Astrophysics Data System (ADS)

    Bezbaruah, P.; Das, N.

    2018-05-01

    The stability of electrostatic cyclotron mode is investigated in a flowing magnetized dusty plasma in the presence of strong ion-neutral collisions. In the high magnetic field limit, when the dust magnetization becomes important, it is expected that the collective behavior of magnetized dust grains suspended in the near-sheath region substantially influences the dispersion properties of electrostatic modes. The growth/damping of the collective excitation is significantly controlled by such parameters as the ion-neutral collision frequency, Mach number, and magnetic field strength. In our case, the explicit dependence of the Mach number on the magnetic field and collision frequency has been taken into account and possible implications on the stability of the mode is analyzed. Streaming instability of cyclotron modes may be important to understand issues related to the interaction mechanism between dust grains and other associated phenomena like Coulomb crystallization, phase behavior, transport properties, etc., in the relatively strong magnetic field limit, which is currently accessible in the DPD (Kiel University) and MDPX (PSL, Auburn University) experiments.

  4. Nonclassical-light generation in a photonic-band-gap nonlinear planar waveguide

    NASA Astrophysics Data System (ADS)

    Peřina, Jan, Jr.; Sibilia, Concita; Tricca, Daniela; Bertolotti, Mario

    2004-10-01

    The optical parametric process occurring in a photonic-band-gap planar waveguide is studied from the point of view of nonclassical-light generation. The nonlinearly interacting optical fields are described by the generalized superposition of coherent signals and noise using the method of operator linear corrections to a classical strong solution. Scattered backward-propagating fields are taken into account. Squeezed light as well as light with sub-Poissonian statistics can be obtained in two-mode fields under the specified conditions.

  5. Effectively Single-Mode Self-Recovering Ultrafast Nonlinear Nanowire Surface Plasmons

    NASA Astrophysics Data System (ADS)

    Tuniz, Alessandro; Weidlich, Stefan; Schmidt, Markus A.

    2018-04-01

    We report on a regime for surface-plasmon propagation, which is robust to defects and effectively single mode, and we exploit it for accessing the ultrafast nonlinear response of gold on centimeter-long subwavelength-diameter cylindrical nanowires. The hybrid plasmonic-photonic platform is formed by a gold nanowire, monolithically integrated into the core of an optical fiber. We show that, despite the dual-waveguide nature of this structure, the long-range surface plasmon is the only effectively propagating mode in the near infrared, which self-recovers in the presence of gaps via a light-recapturing effect. This self-recovery overcomes detrimental effects of wire discontinuities and enables measurements of the ultrafast nonlinearity of gold, which we perform for a 28-fs pulse duration.

  6. Noise-induced bistability in the quasi-neutral coexistence of viral RNAs under different replication modes.

    PubMed

    Sardanyés, Josep; Arderiu, Andreu; Elena, Santiago F; Alarcón, Tomás

    2018-05-01

    Evolutionary and dynamical investigations into real viral populations indicate that RNA replication can range between the two extremes represented by so-called 'stamping machine replication' (SMR) and 'geometric replication' (GR). The impact of asymmetries in replication for single-stranded (+) sense RNA viruses has been mainly studied with deterministic models. However, viral replication should be better described by including stochasticity, as the cell infection process is typically initiated with a very small number of RNA macromolecules, and thus largely influenced by intrinsic noise. Under appropriate conditions, deterministic theoretical descriptions of viral RNA replication predict a quasi-neutral coexistence scenario, with a line of fixed points involving different strands' equilibrium ratios depending on the initial conditions. Recent research into the quasi-neutral coexistence in two competing populations reveals that stochastic fluctuations fundamentally alter the mean-field scenario, and one of the two species outcompetes the other. In this article, we study this phenomenon for viral RNA replication modes by means of stochastic simulations and a diffusion approximation. Our results reveal that noise has a strong impact on the amplification of viral RNAs, also causing the emergence of noise-induced bistability. We provide analytical criteria for the dominance of (+) sense strands depending on the initial populations on the line of equilibria, which are in agreement with direct stochastic simulation results. The biological implications of this noise-driven mechanism are discussed within the framework of the evolutionary dynamics of RNA viruses with different modes of replication. © 2018 The Author(s).

  7. Vortex-induced vibrations of two cylinders in tandem arrangement in the proximity–wake interference region

    PubMed Central

    BORAZJANI, IMAN; SOTIROPOULOS, FOTIS

    2009-01-01

    We investigate numerically vortex-induced vibrations (VIV) of two identical two-dimensional elastically mounted cylinders in tandem in the proximity–wake interference regime at Reynolds number Re = 200 for systems having both one (transverse vibrations) and two (transverse and in-line) degrees of freedom (1-DOF and 2-DOF, respectively). For the 1-DOF system the computed results are in good qualitative agreement with available experiments at higher Reynolds numbers. Similar to these experiments our simulations reveal: (1) larger amplitudes of motion and a wider lock-in region for the tandem arrangement when compared with an isolated cylinder; (2) that at low reduced velocities the vibration amplitude of the front cylinder exceeds that of the rear cylinder; and (3) that above a threshold reduced velocity, large-amplitude VIV are excited for the rear cylinder with amplitudes significantly larger than those of the front cylinder. By analysing the simulated flow patterns we identify the VIV excitation mechanisms that lead to such complex responses and elucidate the near-wake vorticity dynamics and vortex-shedding modes excited in each case. We show that at low reduced velocities vortex shedding provides the initial excitation mechanism, which gives rise to a vertical separation between the two cylinders. When this vertical separation exceeds one cylinder diameter, however, a significant portion of the incoming flow is able to pass through the gap between the two cylinders and the gap-flow mechanism starts to dominate the VIV dynamics. The gap flow is able to periodically force either the top or the bottom shear layer of the front cylinder into the gap region, setting off a series of very complex vortex-to-vortex and vortex-to-cylinder interactions, which induces pressure gradients that result in a large oscillatory force in phase with the vortex shedding and lead to the experimentally observed larger vibration amplitudes. When the vortex shedding is the dominant

  8. Magnetic zero-modes, vortices and Cartan geometry

    NASA Astrophysics Data System (ADS)

    Ross, Calum; Schroers, Bernd J.

    2018-04-01

    We exhibit a close relation between vortex configurations on the 2-sphere and magnetic zero-modes of the Dirac operator on R^3 which obey an additional nonlinear equation. We show that both are best understood in terms of the geometry induced on the 3-sphere via pull-back of the round geometry with bundle maps of the Hopf fibration. We use this viewpoint to deduce a manifestly smooth formula for square-integrable magnetic zero-modes in terms of two homogeneous polynomials in two complex variables.

  9. Mode-locking evolution in ring fiber lasers with tunable repetition rate.

    PubMed

    Korobko, D A; Fotiadi, A A; Zolotovskii, I O

    2017-09-04

    We have applied a simple approach to analyze behavior of the harmonically mode-locked fiber laser incorporating an adjustable Mach-Zehnder interferometer (MZI). Our model is able to describe key features of the laser outputs and explore limitations of physical mechanisms responsible for laser operation at different pulse repetition rates tuned over a whole GHz range. At low repetition rates the laser operates as a harmonically mode-locked soliton laser triggered by a fast saturable absorber. At high repetition rates the laser mode-locking occurs due to dissipative four-wave mixing seeded by MZI and gain spectrum filtering. However, the laser stability in this regime is rather low due to poor mode selectivity provided by MZI that is able to support the desired laser operation just near the lasing threshold. The use of a double MZI instead of a single MZI could improve the laser stability and extends the range of the laser tunability. The model predicts a gap between two repetitive rate ranges where pulse train generation is not supported.

  10. High-Power Fiber Lasers Using Photonic Band Gap Materials

    NASA Technical Reports Server (NTRS)

    DiDomenico, Leo; Dowling, Jonathan

    2005-01-01

    High-power fiber lasers (HPFLs) would be made from photonic band gap (PBG) materials, according to the proposal. Such lasers would be scalable in the sense that a large number of fiber lasers could be arranged in an array or bundle and then operated in phase-locked condition to generate a superposition and highly directed high-power laser beam. It has been estimated that an average power level as high as 1,000 W per fiber could be achieved in such an array. Examples of potential applications for the proposed single-fiber lasers include welding and laser surgery. Additionally, the bundled fibers have applications in beaming power through free space for autonomous vehicles, laser weapons, free-space communications, and inducing photochemical reactions in large-scale industrial processes. The proposal has been inspired in part by recent improvements in the capabilities of single-mode fiber amplifiers and lasers to produce continuous high-power radiation. In particular, it has been found that the average output power of a single strand of a fiber laser can be increased by suitably changing the doping profile of active ions in its gain medium to optimize the spatial overlap of the electromagnetic field with the distribution of active ions. Such optimization minimizes pump power losses and increases the gain in the fiber laser system. The proposal would expand the basic concept of this type of optimization to incorporate exploitation of the properties (including, in some cases, nonlinearities) of PBG materials to obtain power levels and efficiencies higher than are now possible. Another element of the proposal is to enable pumping by concentrated sunlight. Somewhat more specifically, the proposal calls for exploitation of the properties of PBG materials to overcome a number of stubborn adverse phenomena that have impeded prior efforts to perfect HPFLs. The most relevant of those phenomena is amplified spontaneous emission (ASE), which causes saturation of gain and power

  11. ASC Induces Apoptosis via Activation of Caspase-9 by Enhancing Gap Junction-Mediated Intercellular Communication

    PubMed Central

    Hida, Shigeaki; Fujii, Chifumi; Taniguchi, Shun’ichiro; Ito, Kensuke; Matsumura, Tomio; Okada, Nagisa; Sakaizawa, Takashi; Kobayashi, Akira; Takeoka, Michiko; Miyagawa, Shin-ichi

    2017-01-01

    ASC (apoptosis-associated speck-like protein containing a CARD) is a key adaptor molecule of inflammasomes that mediates inflammatory and apoptotic signals. Aberrant methylation-induced silencing of ASC has been observed in a variety of cancer cells, thus implicating ASC in tumor suppression, although this role remains incompletely defined especially in the context of closely neighboring cell proliferation. As ASC has been confirmed to be silenced by abnormal methylation in HT1080 fibrosarcoma cells as well, this cell line was investigated to characterize the precise role and mechanism of ASC in tumor progression. The effects of ASC were examined using in vitro cell cultures based on comparisons between low and high cell density conditions as well as in a xenograft murine model. ASC overexpression was established by insertion of the ASC gene into pcDNA3 and pMX-IRES-GFP vectors, the latter being packed into a retrovirus and subjected to reproducible competitive assays using parental cells as an internal control, for evaluation of cell viability. p21 and p53 were silenced using shRNA. Cell viability was suppressed in ASC-expressing transfectants as compared with control cells at high cell density conditions in in vitro culture and colony formation assays and in in vivo ectopic tumor formation trials. This suppression was not detected in low cell density conditions. Furthermore, remarkable progression of apoptosis was observed in ASC-introduced cells at a high cell density, but not at a low one. ASC-dependent apoptosis was mediated not by p21, p53, or caspase-1, but rather by cleavage of caspase-9 as well as by suppression of the NF-κB-related X-linked inhibitor-of-apoptosis protein. Caspase-9 cleavage was observed to be dependent on gap junction formation. The remarkable effect of ASC on the induction of apoptosis through caspase-9 and gap junctions revealed in this study may lead to promising new approaches in anticancer therapy. PMID:28056049

  12. Engineering an Insulating Ferroelectric Superlattice with a Tunable Band Gap from Metallic Components

    NASA Astrophysics Data System (ADS)

    Ghosh, Saurabh; Borisevich, Albina Y.; Pantelides, Sokrates T.

    2017-10-01

    The recent discovery of "polar metals" with ferroelectriclike displacements offers the promise of designing ferroelectrics with tunable energy gaps by inducing controlled metal-insulator transitions. Here we employ first-principles calculations to design a metallic polar superlattice from nonpolar metal components and show that controlled intermixing can lead to a true insulating ferroelectric with a tunable band gap. We consider a 2 /2 superlattice made of two centrosymmetric metallic oxides, La0.75 Sr0.25 MnO3 and LaNiO3 , and show that ferroelectriclike displacements are induced. The ferroelectriclike distortion is found to be strongly dependent on the carrier concentration (Sr content). Further, we show that a metal-to-insulator (MI) transition is feasible in this system via disproportionation of the Ni sites. Such a disproportionation and, hence, a MI transition can be driven by intermixing of transition metal ions between Mn and Ni layers. As a result, the energy gap of the resulting ferroelectric can be tuned by varying the degree of intermixing in the experimental fabrication method.

  13. The Gap-Startle Paradigm for Tinnitus Screening in Animal Models: Limitations and Optimization

    PubMed Central

    Lobarinas, Edward; Hayes, Sarah H.; Allman, Brian L.

    2012-01-01

    In 2006, Turner and colleagues (Behav Neurosci, 120:188–195) introduced the gap-startle paradigm as a high-throughput method for tinnitus screening in rats. Under this paradigm, gap detection ability was assessed by determining the level of inhibition of the acoustic startle reflex produced by a short silent gap inserted in an otherwise continuous background sound prior to a loud startling stimulus. Animals with tinnitus were expected to show impaired gap detection ability (i.e., lack of inhibition of the acoustic startle reflex) if the background sound containing the gap was qualitatively similar to the tinnitus pitch. Thus, for the gap-startle paradigm to be a valid tool to screen for tinnitus, a robust startle response from which to inhibit must be present. Because recent studies have demonstrated that the acoustic startle reflex could be dramatically reduced following noise exposure, we endeavored to 1) modify the gap-startle paradigm to be more resilient in the presence of hearing loss, and 2) evaluate whether a reduction in startle reactivity could confound the interpretation of gap prepulse inhibition and lead to errors in screening for tinnitus. In the first experiment, the traditional broadband noise (BBN) startle stimulus was replaced by a bandpass noise in which the sound energy was concentrated in the lower frequencies (5–10 kHz) in order to maintain audibility of the startle stimulus after unilateral high frequency noise exposure (16 kHz). However, rats still showed a 57% reduction in startle amplitude to the bandpass noise post-noise exposure. A follow-up experiment on a separate group of rats with transiently-induced conductive hearing loss revealed that startle reactivity was better preserved when the BBN startle stimulus was replaced by a rapid airpuff to the back of the rats neck. Furthermore, it was found that transient unilateral conductive hearing loss, which was not likely to induce tinnitus, caused an impairment in gap prepulse inhibition

  14. Advanced simulation study on bunch gap transient effect

    NASA Astrophysics Data System (ADS)

    Kobayashi, Tetsuya; Akai, Kazunori

    2016-06-01

    Bunch phase shift along the train due to a bunch gap transient is a concern in high-current colliders. In KEKB operation, the measured phase shift along the train agreed well with a simulation and a simple analytical form in most part of the train. However, a rapid phase change was observed at the leading part of the train, which was not predicted by the simulation or by the analytical form. In order to understand the cause of this observation, we have developed an advanced simulation, which treats the transient loading in each of the cavities of the three-cavity system of the accelerator resonantly coupled with energy storage (ARES) instead of the equivalent single cavities used in the previous simulation, operating in the accelerating mode. In this paper, we show that the new simulation reproduces the observation, and clarify that the rapid phase change at the leading part of the train is caused by a transient loading in the three-cavity system of ARES. KEKB is being upgraded to SuperKEKB, which is aiming at 40 times higher luminosity than KEKB. The gap transient in SuperKEKB is investigated using the new simulation, and the result shows that the rapid phase change at the leading part of the train is much larger due to higher beam currents. We will also present measures to mitigate possible luminosity reduction or beam performance deterioration due to the rapid phase change caused by the gap transient.

  15. Rayleigh scattering in few-mode optical fibers

    PubMed Central

    Wang, Zhen; Wu, Hao; Hu, Xiaolong; Zhao, Ningbo; Mo, Qi; Li, Guifang

    2016-01-01

    The extremely low loss of silica fibers has enabled the telecommunication revolution, but single-mode fiber-optic communication systems have been driven to their capacity limits. As a means to overcome this capacity crunch, space-division multiplexing (SDM) using few-mode fibers (FMF) has been proposed and demonstrated. In single-mode optical fibers, Rayleigh scattering serves as the dominant mechanism for optical loss. However, to date, the role of Rayleigh scattering in FMFs remains elusive. Here we establish and experimentally validate a general model for Rayleigh scattering in FMFs. Rayleigh backscattering not only sets the intrinsic loss limit for FMFs but also provides the theoretical foundation for few-mode optical time-domain reflectometry, which can be used to probe perturbation-induced mode-coupling dynamics in FMFs. We also show that forward inter-modal Rayleigh scattering ultimately sets a fundamental limit on inter-modal-crosstalk for FMFs. Therefore, this work not only has implications specifically for SDM systems but also broadly for few-mode fiber optics and its applications in amplifiers, lasers, and sensors in which inter-modal crosstalk imposes a fundamental performance limitation. PMID:27775003

  16. Phase control of entanglement and quantum steering in a three-mode optomechanical system

    NASA Astrophysics Data System (ADS)

    Sun, F. X.; Mao, D.; Dai, Y. T.; Ficek, Z.; He, Q. Y.; Gong, Q. H.

    2017-12-01

    The theory of phase control of coherence, entanglement and quantum steering is developed for an optomechanical system composed of a single mode cavity containing a partially transmitting dielectric membrane and driven by short laser pulses. The membrane divides the cavity into two mutually coupled optomechanical cavities resulting in an effective three-mode closed loop system, two field modes of the two cavities and a mechanical mode representing the oscillating membrane. The closed loop in the coupling creates interfering channels which depend on the relative phase of the coupling strengths of the field modes to the mechanical mode. Populations and correlations of the output modes are calculated analytically and show several interesting phase dependent effects such as reversible population transfer from one field mode to the other, creation of collective modes, and induced coherence without induced emission. We find that these effects result from perfect mutual coherence between the field modes which is preserved even if one of the modes is not populated. The inseparability criterion for the output modes is also investigated and we find that entanglement may occur only between the field modes and the mechanical mode. We show that depending on the phase, the field modes can act on the mechanical mode collectively or individually resulting, respectively, in tripartite or bipartite entanglement. In addition, we examine the phase sensitivity of quantum steering of the mechanical mode by the field modes. Deterministic phase transfer of the steering from bipartite to collective is predicted and optimum steering corresponding to perfect EPR state can be achieved. These different types of quantum steering can be distinguished experimentally by measuring the coincidence rate between two detectors adjusted to collect photons of the output cavity modes. In particular, we find that the minima of the interference pattern of the coincidence rate signal the bipartite steering

  17. Improved Abutting Edges For Welding In Keyhole Mode

    NASA Technical Reports Server (NTRS)

    Harwing, Dennis D.; Sanders, John M.

    1994-01-01

    Welds of better quality made, and/or heat input reduced. Improved shapes devised for abutting edges of metal pieces to be joined by plasma arc welding in keyhole mode, in which gas jet maintains molten hole ("keyhole") completely through thickness of weld joint. Edges of metal pieces to be welded together machined to provide required combination gap and shaped, thin sections. Shapes and dimensions chosen to optimize weld in various respects; e.g., to enhance penetration of keyhole or reduce heat input to produce joint of given thickness.

  18. A phononic crystal strip based on silicon for support tether applications in silicon-based MEMS resonators and effects of temperature and dopant on its band gap characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ha, Thi Dep, E-mail: hathidep@yahoo.com; Faculty of Electronic Technology, Industrial University of Ho Chi Minh City, Hochiminh City; Bao, JingFu, E-mail: baojingfu@uestc.edu.cn

    Phononic crystals (PnCs) and n-type doped silicon technique have been widely employed in silicon-based MEMS resonators to obtain high quality factor (Q) as well as temperature-induced frequency stability. For the PnCs, their band gaps play an important role in the acoustic wave propagation. Also, the temperature and dopant doped into silicon can cause the change in its material properties such as elastic constants, Young’s modulus. Therefore, in order to design the simultaneous high Q and frequency stability silicon-based MEMS resonators by two these techniques, a careful design should study effects of temperature and dopant on the band gap characteristics tomore » examine the acoustic wave propagation in the PnC. Based on these, this paper presents (1) a proposed silicon-based PnC strip structure for support tether applications in low frequency silicon-based MEMS resonators, (2) influences of temperature and dopant on band gap characteristics of the PnC strips. The simulation results show that the largest band gap can achieve up to 33.56 at 57.59 MHz and increase 1280.13 % (also increase 131.89 % for ratio of the widest gaps) compared with the counterpart without hole. The band gap properties of the PnC strips is insignificantly effected by temperature and electron doping concentration. Also, the quality factor of two designed length extensional mode MEMS resonators with proposed PnC strip based support tethers is up to 1084.59% and 43846.36% over the same resonators with PnC strip without hole and circled corners, respectively. This theoretical study uses the finite element analysis in COMSOL Multiphysics and MATLAB softwares as simulation tools. This findings provides a background in combination of PnC and dopant techniques for high performance silicon-based MEMS resonators as well as PnC-based MEMS devices.« less

  19. Role of Mutagenicity in Asbestos Fiber-Induced Carcinogenicity and Other Diseases

    PubMed Central

    Huang, Sarah X. L.; Jaurand, Marie-Claude; Kamp, David W.; Whysner, John; Hei, Tom K.

    2011-01-01

    The cellular and molecular mechanisms of how asbestos fibers induce cancers and other diseases are not well understood. Both serpentine and amphibole asbestos fibers have been shown to induce oxidative stress, inflammatory responses, cellular toxicity and tissue injuries, genetic changes, and epigenetic alterations in target cells in vitro and tissues in vivo. Most of these mechanisms are believe to be shared by both fiber-induced cancers and noncancerous diseases. This article summarizes the findings from existing literature with a focus on genetic changes, specifically, mutagenicity of asbestos fibers. Thus far, experimental evidence suggesting the involvement of mutagenesis in asbestos carcinogenicity is more convincing than asbestos-induced fibrotic diseases. The potential contributions of mutagenicity to asbestos-induced diseases, with an emphasis on carcinogenicity, are reviewed from five aspects: (1) whether there is a mutagenic mode of action (MOA) in fiber-induced carcinogenesis; (2) mutagenicity/carcinogenicity at low dose; (3) biological activities that contribute to mutagenicity and impact of target tissue/cell type; (4) health endpoints with or without mutagenicity as a key event; and finally, (5) determinant factors of toxicity in mutagenicity. At the end of this review, a consensus statement of what is known, what is believed to be factual but requires confirmation, and existing data gaps, as well as future research needs and directions, is provided. PMID:21534089

  20. Thermally induced effect on sub-band gap absorption in Ag doped CdSe thin films

    NASA Astrophysics Data System (ADS)

    Kaur, Jagdish; Sharma, Kriti; Bharti, Shivani; Tripathi, S. K.

    2015-05-01

    Thin films of Ag doped CdSe have been prepared by thermal evaporation using inert gas condensation (IGC) method taking Argon as inert gas. The prepared thin films are annealed at 363 K for one hour. The sub-band gap absorption spectra in the as deposited and annealed thin films have been studied using constant photocurrent method (CPM). The absorption coefficient in the sub-band gap region is described by an Urbach tail in both as deposited and annealed thin films. The value of Urbach energy and number density of trap states have been calculated from the absorption coefficient in the sub-band gap region which have been found to increase after annealing treatment indicating increase in disorderness in the lattice. The energy distribution of the occupied density of states below Fermi level has also been studied using derivative procedure of absorption coefficient.

  1. STEM-EELS analysis of multipole surface plasmon modes in symmetry-broken AuAg nanowire dimers

    NASA Astrophysics Data System (ADS)

    Schubert, Ina; Sigle, Wilfried; van Aken, Peter A.; Trautmann, Christina; Toimil-Molares, Maria Eugenia

    2015-03-01

    Surface plasmon coupling in nanowires separated by small gaps generates high field enhancements at the position of the gap and is thus of great interest for sensing applications. It is known that the nanowire dimensions and in particular the symmetry of the structures has strong influence on the plasmonic properties of the dimer structure. Here, we report on multipole surface plasmon coupling in symmetry-broken AuAg nanowire dimers. Our dimers, consisting of two nanowires with different lengths and separated by gaps of only 10 to 30 nm, were synthesized by pulsed electrochemical deposition in ion track-etched polymer templates. Electron energy-loss spectroscopy in scanning transmission electron microscopy allows us to resolve up to nine multipole order surface plasmon modes of these dimers spectrally separated from each other. The spectra evidence plasmon coupling between resonances of different multipole order, resulting in the generation of additional plasmonic modes. Since such complex structures require elaborated synthesis techniques, dimer structures with complex composition, morphology and shape are created. We demonstrate that finite element simulations on pure Au dimers can predict the generated resonances in the fabricated structures. The excellent agreement of our experiment on AuAg dimers with finite integration simulations using CST microwave studio manifests great potential to design complex structures for sensing applications.

  2. The Knowledge Gap Versus the Belief Gap and Abstinence-Only Sex Education.

    PubMed

    Hindman, Douglas Blanks; Yan, Changmin

    2015-08-01

    The knowledge gap hypothesis predicts widening disparities in knowledge of heavily publicized public affairs issues among socioeconomic status groups. The belief gap hypothesis extends the knowledge gap hypothesis to account for knowledge and beliefs about politically contested issues based on empirically verifiable information. This analysis of 3 national surveys shows belief gaps developed between liberals and conservatives regarding abstinence-only sex education; socioeconomic status-based knowledge gaps did not widen. The findings partially support both belief gap and knowledge gap hypotheses. In addition, the unique contributions of exposure to Fox News, CNN, and MSNBC in this process were investigated. Only exposure to Fox News was linked to beliefs about abstinence-only sex education directly and indirectly through the cultivation of conservative ideology.

  3. Methamphetamine compromises gap junctional communication in astrocytes and neurons.

    PubMed

    Castellano, Paul; Nwagbo, Chisom; Martinez, Luis R; Eugenin, Eliseo A

    2016-05-01

    Methamphetamine (meth) is a central nervous system (CNS) stimulant that results in psychological and physical dependency. The long-term effects of meth within the CNS include neuronal plasticity changes, blood-brain barrier compromise, inflammation, electrical dysfunction, neuronal/glial toxicity, and an increased risk to infectious diseases including HIV. Most of the reported meth effects in the CNS are related to dysregulation of chemical synapses by altering the release and uptake of neurotransmitters, especially dopamine, norepinephrine, and epinephrine. However, little is known about the effects of meth on connexin (Cx) containing channels, such as gap junctions (GJ) and hemichannels (HC). We examined the effects of meth on Cx expression, function, and its role in NeuroAIDS. We found that meth altered Cx expression and localization, decreased GJ communication between neurons and astrocytes, and induced the opening of Cx43/Cx36 HC. Furthermore, we found that these changes in GJ and HC induced by meth treatment were mediated by activation of dopamine receptors, suggesting that dysregulation of dopamine signaling induced by meth is essential for GJ and HC compromise. Meth-induced changes in GJ and HC contributed to amplified CNS toxicity by dysregulating glutamate metabolism and increasing the susceptibility of neurons and astrocytes to bystander apoptosis induced by HIV. Together, our results indicate that connexin containing channels, GJ and HC, are essential in the pathogenesis of meth and increase the sensitivity of the CNS to HIV CNS disease. Methamphetamine (meth) is an extremely addictive central nervous system stimulant. Meth reduced gap junctional (GJ) communication by inducing internalization of connexin-43 (Cx43) in astrocytes and reducing expression of Cx36 in neurons by a mechanism involving activation of dopamine receptors (see cartoon). Meth-induced changes in Cx containing channels increased extracellular levels of glutamate and resulted in higher

  4. Interferon-gamma inhibits intestinal restitution by preventing gap junction communication between enterocytes.

    PubMed

    Leaphart, Cynthia L; Qureshi, Faisal; Cetin, Selma; Li, Jun; Dubowski, Theresa; Baty, Catherine; Batey, Catherine; Beer-Stolz, Donna; Guo, Fengli; Murray, Sandra A; Hackam, David J

    2007-06-01

    Necrotizing enterocolitis (NEC) is characterized by interferon-gamma (IFN-gamma) release and inadequate intestinal restitution. Because enterocytes migrate together, mucosal healing may require interenterocyte communication via connexin 43-mediated gap junctions. We hypothesize that enterocyte migration requires interenterocyte communication, that IFN impairs migration by impairing connexin 43, and that impaired healing during NEC is associated with reduced gap junctions. NEC was induced in Swiss-Webster or IFN(-/-) mice, and restitution was determined in the presence of the gap junction inhibitor oleamide, or via time-lapse microscopy of IEC-6 cells. Connexin 43 expression, trafficking, and localization were detected in cultured or primary enterocytes or mouse or human intestine by confocal microscopy and (35)S-labeling, and gap junction communication was assessed using live microscopy with oleamide or connexin 43 siRNA. Enterocytes expressed connexin 43 in vitro and in vivo, and exchanged fluorescent dye via gap junctions. Gap junction inhibition significantly reduced enterocyte migration in vitro and in vivo. NEC was associated with IFN release and loss of enterocyte connexin 43 expression. IFN inhibited enterocyte migration by reducing gap junction communication through the dephosphorylation and internalization of connexin 43. Gap junction inhibition significantly increased NEC severity, whereas reversal of the inhibitory effects of IFN on gap junction communication restored enterocyte migration after IFN exposure. Strikingly, IFN(-/-) mice were protected from the development of NEC, and showed restored connexin 43 expression and intestinal restitution. IFN inhibits enterocyte migration by preventing interenterocyte gap junction communication. Connexin 43 loss may provide insights into the development of NEC, in which restitution is impaired.

  5. A new hysteresis model based on force-displacement characteristics of magnetorheological fluid actuators subjected to squeeze mode operation

    NASA Astrophysics Data System (ADS)

    Chen, Peng; Bai, Xian-Xu; Qian, Li-Jun; Choi, Seung-Bok

    2017-06-01

    This paper presents a new hysteresis model based on the force-displacement characteristics of magnetorheological (MR) fluid actuators (or devices) subjected to squeeze mode operation. The idea of the proposed model is originated from experimental observation of the field-dependent hysteretic behavior of MR fluids, which shows that from a view of rate-independence of hysteresis, a gap width-dependent hysteresis is occurred in the force-displacement relationship instead of the typical relationship of the force-velocity. To effectively and accurately portray the hysteresis behavior, the gap width-dependent hysteresis elements, the nonlinear viscous effect and the inertial effect are considered for the formulation of the hysteresis model. Then, a model-based feedforward force tracking control scheme is established through an observer which can estimate the virtual displacement. The effectiveness of the proposed hysteresis model is validated through the identification and prediction of the damping force of MR fluids in the squeeze mode. In addition, it is shown that superior force tracking performance of the feedforward control associated with the proposed hysteresis mode is evaluated by adopting several tracking trajectories.

  6. Coupled modes of rainfall over China and the pacific sea surface temperature in boreal summertime

    NASA Astrophysics Data System (ADS)

    Li, Chun; Ma, Hao

    2011-09-01

    In addition, the possible atmospheric teleconnections of the coupled rainfall and SST modes were discussed. For the ENSO-NC mode, anomalous low-pressure and high-pressure over the Asian continent induces moisture divergence over North China and reduces summer rainfall there. For the WTP-YRV mode, East Asia-Pacific teleconnection induces moisture convergence over the Yangtze River valley and enhances the summer rainfall there. The TPMM SST and the summer rainfall anomalies over the YRVL are linked by a circumglobal, wave-train-like, atmospheric teleconnection.

  7. Tracing the evolution of the two energy gaps in magnesium diboride under pressure

    NASA Astrophysics Data System (ADS)

    Kononenko, V.; Tarenkov, V.; Belogolovskii, M.; Döring, S.; Schmidt, S.; Seidel, P.

    2015-04-01

    We have studied transport characteristics of mesoscopic multiple-mode superconducting contacts formed between two grains in bulk two-gap magnesium diboride. The experimental setup was realized by driving a normal-metal tip into MgB2 polycrystalline sample and proved to be extremely stable, providing possibility to perform pressure experiments at low temperatures. It is argued that in our procedure a small piece of the superconducting electrode is captured by the tip apex and, as a result, two junctions in series are formed: a junction between a tip and MgB2 grain and a mesoscopic disordered contact between two superconducting pellets. Although the relative weight of the first junction resistance was considerably less, its contribution is shown to be important for the comparison of measured data with expected gap values. Two hallmarks of multiple Andreev reflections inside the MgB2-c-MgB2 contact (c stands for a high-transparent constriction), a zero-bias 1/ √{|V | } -like singularity of the dc differential conductance and peaks connected to the two gap values, have been revealed. Finally, we report results of a hydrostatic compression experiment showing the evolution of the MgB2 gap values with pressure. In contrast to the theoretical expectations, we have observed an increase of the smaller gap Δπ whereas the larger gap Δσ decreased with increasing pressure as it should be for the electron-phonon pairing mechanism. We argue that the so-called separable model of anisotropy effects is insufficient to describe such changes and only improved two-band versions are capable to reproduce the pressure effect on the energy gaps in magnesium diboride.

  8. Influence of Gap Distance on Vacuum Arc Characteristics of Cup Type AMF Electrode in Vacuum Interrupters

    NASA Astrophysics Data System (ADS)

    Cheng, Shaoyong; Xiu, Shixin; Wang, Jimei; Shen, Zhengchao

    2006-11-01

    The greenhouse effect of SF6 is a great concern today. The development of high voltage vacuum circuit breakers becomes more important. The vacuum circuit breaker has minimum pollution to the environment. The vacuum interrupter is the key part of a vacuum circuit breaker. The interrupting characteristics in vacuum and arc-controlling technique are the main problems to be solved for a longer gap distance in developing high voltage vacuum interrupters. To understand the vacuum arc characteristics and provide effective technique to control vacuum arc in a long gap distance, the arc mode transition of a cup-type axial magnetic field electrode is observed by a high-speed charge coupled device (CCD) video camera under different gap distances while the arc voltage and arc current are recorded. The controlling ability of the axial magnetic field on vacuum arc obviously decreases when the gap distance is longer than 40 mm. The noise components and mean value of the arc voltage significantly increase. The effective method for controlling the vacuum arc characteristics is provided by long gap distances based on the test results. The test results can be used as a reference to develop high voltage and large capacity vacuum interrupters.

  9. Quasi Eighth-Mode Substrate Integrated Waveguide (SIW) Fractal Resonator Filter Utilizing Gap Coupling Compensation

    NASA Astrophysics Data System (ADS)

    Zhang, Sheng; Rao, Jia-Yu; Tai, Wen-Si; Wang, Ting; Liu, Fa-Lin

    2016-09-01

    In this paper, a kind of quasi eighth substrate integrated waveguide resonator (QESIWR) with defected fractal structure (DFS) is proposed firstly. Compared with the eighth substrate integrated waveguide resonator (ESIWR), this kind of resonator has lower resonant frequency (f0), acceptable unloaded quality (Qu) value and almost unchanged electric field distribution. In order to validate the properties of QESIWR, a cascaded quadruplet QESIWRs filter is designed and optimized. By using cross coupling and gap coupling compensation, this filter has two transmission zeros (TZs) at each side of the passband. Meanwhile, in comparison with the conventional ones, its size is cut down over 90 %. The measured results agree well with the simulated ones.

  10. Neurotoxicity of Persistent Organic Pollutants: Possible Mode(s) of Action and Further Considerations

    PubMed Central

    Kodavanti, Prasada Rao S.

    2005-01-01

    Persistent organic pollutants (POPs) are long-lived toxic organic compounds and are of major concern for human and ecosystem health. Although the use of most POPs is banned in most countries, some organochlorine pesticides are still being used in several parts of the world. Although environmental levels of some POPs such as polychlorinated biphenyls (PCBs) have declined, newly emerging POPs such as polybrominated diphenyl ethers (PBDEs) have been increasing considerably. Exposure to POPs has been associated with a wide spectrum of effects including reproductive, developmental, immunologic, carcinogenic, and neurotoxic effects. It is of particular concern that neurotoxic effects of some POPs have been observed in humans at low environmental concentrations. This review focuses on PCBs as a representative chemical class of POPs and discusses the possible mode(s) of action for the neurotoxic effects with emphasis on comparing dose-response and structure-activity relationships (SAR) with other structurally related chemicals. There is sufficient epidemiological and experimental evidence showing that PCB exposure is associated with motor and cognitive deficits in humans and animal models. Although several potential mode(s) of actions were postulated for PCB-induced neurotoxic effects, changes in neurotransmitter systems, altered intracellular signalling processes, and thyroid hormone imbalance are predominant ones. These three potential mechanisms are discussed in detail in vitro and in vivo. In addition, SAR was conducted on other structurally similar chemicals to see if they have a common mode(s) of action. Relative potency factors for several of these POPs were calculated based on their effects on intracellular signalling processes. This is a comprehensive review comparing molecular effects at the cellular level to the neurotoxic effects seen in the whole animal for environmentally relevant POPs. PMID:18648619

  11. Polariton condensation with saturable molecules dressed by vibrational modes

    DOE PAGES

    Cwik, Justyna A.; Reja, Sahinur; Littlewood, Peter B.; ...

    2014-02-01

    Here, polaritons, mixed light-matter quasiparticles, undergo a transition to a condensed, macroscopically coherent state at low temperatures or high densities. Recent experiments show that coupling light to organic molecules inside a microcavity allows condensation at room temperature. The molecules act as saturable absorbers with transitions dressed by molecular vibrational modes. Motivated by this, we calculate the phase diagram and spectrum of a modified Tavis-Cummings model, describing vibrationally dressed two-level systems, coupled to a cavity mode. Coupling to vibrational modes can induce re-entrance, i.e. a normal-condensed-normal sequence with decreasing temperature and can drive the transition first-order.

  12. Influence of toroidal rotation on tearing modes

    NASA Astrophysics Data System (ADS)

    Cai, Huishan; Cao, Jintao; Li, Ding

    2017-10-01

    Tearing modes stability analysis including toroidal rotation is studied. It is found that rotation affects the stability of tearing modes mainly through the interaction with resistive inner region of tearing mode. The coupling of magnetic curvature with centrifugal force and Coriolis force provides a perturbed perpendicular current, and a return parallel current is induced to affect the stability of tearing modes. Toroidal rotation plays a stable role, which depends on the magnitude of Mach number and adiabatic index Γ, and is independent on the direction of toroidal rotation. For Γ >1, the scaling of growth rate is changed for typical Mach number in present tokamaks. For Γ = 1 , the scaling keeps unchanged, and the effect of toroidal rotation is much less significant, compared with that for Γ >1. National Magnetic Confinement Fusion Science Program and National Science Foundation of China under Grants No. 2014GB106004, No. 2013GB111000, No. 11375189, No. 11075161 and No. 11275260, and Youth Innovation Promotion Association CAS.

  13. Aerodynamic heating in transitional hypersonic boundary layers: Role of second-mode instability

    NASA Astrophysics Data System (ADS)

    Zhu, Yiding; Chen, Xi; Wu, Jiezhi; Chen, Shiyi; Lee, Cunbiao; Gad-el-Hak, Mohamed

    2018-01-01

    The evolution of second-mode instabilities in hypersonic boundary layers and its effects on aerodynamic heating are investigated. Experiments are conducted in a Mach 6 wind tunnel using fast-response pressure sensors, fluorescent temperature-sensitive paint, and particle image velocimetry. Calculations based on parabolic stability equations and direct numerical simulations are also performed. It is found that second-mode waves, accompanied by high-frequency alternating fluid compression and expansion, produce intense aerodynamic heating in a small region that rapidly heats the fluid passing through it. As the second-mode waves decay downstream, the dilatation-induced aerodynamic heating decreases while its shear-induced counterpart keeps growing. The latter brings about a second growth of the surface temperature when transition is completed.

  14. Optical phonon modes of III-V nanoparticles and indium phosphide/II-VI core-shell nanoparticles: A Raman and infrared study

    NASA Astrophysics Data System (ADS)

    Manciu, Felicia Speranta

    The prospects for realizing efficient nanoparticle light emitters in the visible/near IR for communications and bio-medical applications have benefited from progress in chemical fabrication of nanoparticles. III-V semiconductor nanopaticles such as GaP and InP are promising materials for the development of "blue" and "green" emitters, respectively, due to their large effective bandgaps. Enhanced emission efficiency has been achieved for core-shell nanoparticles, since inorganic shell materials increase electronic tunability and may decrease surface defects that often occur for nanoparticles capped with organic molecules. Also, the emission wavelength of InP nanoparticle cores can be tuned from green to red by changing the shell material in InP/II-VI core-shell nanoparticles. Investigations of phonon modes in nanocrystals are of both fundamental and applied interest. In the former case the optical phonon modes, such as surface/interface modes, are dependent on the nanoparticle dimensions, and also can provide information about dynamical properties of the nanoparticles and test the validity of various theoretical approaches. In the latter case the vibronic properties of nanoparticle emitters are controlled by confined phonons and modifications of the electron-phonon interaction by the confinement. Thus, the objective of the present thesis is the detailed study of the phonon modes of III-V nanoparticles (GaP and InP) and InP/II-VI core-shell nanoparticles by IR absorption and Raman scattering spectroscopies, and an elucidation of their complex vibrational properties. With the exception of three samples (two GaP and one InP), all samples were synthesized by a novel colloidal chemistry method, which does not requires added surfactant, but rather treatment of the corresponding precursors in octadecene noncoordinative solvent. Sample quality was characterized by ED, TEM and X-ray diffraction. Based on a comparison with a dielectric continuum model, the observed features

  15. Low Level Pro-inflammatory Cytokines Decrease Connexin36 Gap Junction Coupling in Mouse and Human Islets through Nitric Oxide-mediated Protein Kinase Cδ*

    PubMed Central

    Farnsworth, Nikki L.; Walter, Rachelle L.; Hemmati, Alireza; Westacott, Matthew J.; Benninger, Richard K. P.

    2016-01-01

    Pro-inflammatory cytokines contribute to the decline in islet function during the development of diabetes. Cytokines can disrupt insulin secretion and calcium dynamics; however, the mechanisms underlying this are poorly understood. Connexin36 gap junctions coordinate glucose-induced calcium oscillations and pulsatile insulin secretion across the islet. Loss of gap junction coupling disrupts these dynamics, similar to that observed during the development of diabetes. This study investigates the mechanisms by which pro-inflammatory cytokines mediate gap junction coupling. Specifically, as cytokine-induced NO can activate PKCδ, we aimed to understand the role of PKCδ in modulating cytokine-induced changes in gap junction coupling. Isolated mouse and human islets were treated with varying levels of a cytokine mixture containing TNF-α, IL-1β, and IFN-γ. Islet dysfunction was measured by insulin secretion, calcium dynamics, and gap junction coupling. Modulators of PKCδ and NO were applied to determine their respective roles in modulating gap junction coupling. High levels of cytokines caused cell death and decreased insulin secretion. Low levels of cytokine treatment disrupted calcium dynamics and decreased gap junction coupling, in the absence of disruptions to insulin secretion. Decreases in gap junction coupling were dependent on NO-regulated PKCδ, and altered membrane organization of connexin36. This study defines several mechanisms underlying the disruption to gap junction coupling under conditions associated with the development of diabetes. These mechanisms will allow for greater understanding of islet dysfunction and suggest ways to ameliorate this dysfunction during the development of diabetes. PMID:26668311

  16. Low Level Pro-inflammatory Cytokines Decrease Connexin36 Gap Junction Coupling in Mouse and Human Islets through Nitric Oxide-mediated Protein Kinase Cδ.

    PubMed

    Farnsworth, Nikki L; Walter, Rachelle L; Hemmati, Alireza; Westacott, Matthew J; Benninger, Richard K P

    2016-02-12

    Pro-inflammatory cytokines contribute to the decline in islet function during the development of diabetes. Cytokines can disrupt insulin secretion and calcium dynamics; however, the mechanisms underlying this are poorly understood. Connexin36 gap junctions coordinate glucose-induced calcium oscillations and pulsatile insulin secretion across the islet. Loss of gap junction coupling disrupts these dynamics, similar to that observed during the development of diabetes. This study investigates the mechanisms by which pro-inflammatory cytokines mediate gap junction coupling. Specifically, as cytokine-induced NO can activate PKCδ, we aimed to understand the role of PKCδ in modulating cytokine-induced changes in gap junction coupling. Isolated mouse and human islets were treated with varying levels of a cytokine mixture containing TNF-α, IL-1β, and IFN-γ. Islet dysfunction was measured by insulin secretion, calcium dynamics, and gap junction coupling. Modulators of PKCδ and NO were applied to determine their respective roles in modulating gap junction coupling. High levels of cytokines caused cell death and decreased insulin secretion. Low levels of cytokine treatment disrupted calcium dynamics and decreased gap junction coupling, in the absence of disruptions to insulin secretion. Decreases in gap junction coupling were dependent on NO-regulated PKCδ, and altered membrane organization of connexin36. This study defines several mechanisms underlying the disruption to gap junction coupling under conditions associated with the development of diabetes. These mechanisms will allow for greater understanding of islet dysfunction and suggest ways to ameliorate this dysfunction during the development of diabetes. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Narrow Band Gap Lead Sulfide Hole Transport Layers for Quantum Dot Photovoltaics.

    PubMed

    Zhang, Nanlin; Neo, Darren C J; Tazawa, Yujiro; Li, Xiuting; Assender, Hazel E; Compton, Richard G; Watt, Andrew A R

    2016-08-24

    The band structure of colloidal quantum dot (CQD) bilayer heterojunction solar cells is optimized using a combination of ligand modification and QD band gap control. Solar cells with power conversion efficiencies of up to 9.33 ± 0.50% are demonstrated by aligning the absorber and hole transport layers (HTL). Key to achieving high efficiencies is optimizing the relative position of both the valence band and Fermi energy at the CQD bilayer interface. By comparing different band gap CQDs with different ligands, we find that a smaller band gap CQD HTL in combination with a more p-type-inducing CQD ligand is found to enhance hole extraction and hence device performance. We postulate that the efficiency improvements observed are largely due to the synergistic effects of narrower band gap QDs, causing an upshift of valence band position due to 1,2-ethanedithiol (EDT) ligands and a lowering of the Fermi level due to oxidation.

  18. Bosonic anomalies, induced fractional quantum numbers, and degenerate zero modes: The anomalous edge physics of symmetry-protected topological states

    NASA Astrophysics Data System (ADS)

    Wang, Juven C.; Santos, Luiz H.; Wen, Xiao-Gang

    2015-05-01

    The boundary of symmetry-protected topological states (SPTs) can harbor new quantum anomaly phenomena. In this work, we characterize the bosonic anomalies introduced by the 1+1D non-onsite-symmetric gapless edge modes of (2+1)D bulk bosonic SPTs with a generic finite Abelian group symmetry (isomorphic to G =∏iZNi=ZN1×ZN2×ZN3×⋯ ). We demonstrate that some classes of SPTs (termed "Type II") trap fractional quantum numbers (such as fractional ZN charges) at the 0D kink of the symmetry-breaking domain walls, while some classes of SPTs (termed "Type III") have degenerate zero energy modes (carrying the projective representation protected by the unbroken part of the symmetry), either near the 0D kink of a symmetry-breaking domain wall, or on a symmetry-preserving 1D system dimensionally reduced from a thin 2D tube with a monodromy defect 1D line embedded. More generally, the energy spectrum and conformal dimensions of gapless edge modes under an external gauge flux insertion (or twisted by a branch cut, i.e., a monodromy defect line) through the 1D ring can distinguish many SPT classes. We provide a manifest correspondence from the physical phenomena, the induced fractional quantum number, and the zero energy mode degeneracy to the mathematical concept of cocycles that appears in the group cohomology classification of SPTs, thus achieving a concrete physical materialization of the cocycles. The aforementioned edge properties are formulated in terms of a long wavelength continuum field theory involving scalar chiral bosons, as well as in terms of matrix product operators and discrete quantum lattice models. Our lattice approach yields a regularization with anomalous non-onsite symmetry for the field theory description. We also formulate some bosonic anomalies in terms of the Goldstone-Wilczek formula.

  19. Redox competition mode of scanning electrochemical microscopy (RC-SECM) for visualisation of local catalytic activity.

    PubMed

    Eckhard, Kathrin; Chen, Xingxing; Turcu, Florin; Schuhmann, Wolfgang

    2006-12-07

    In order to locally analyse catalytic activity on modified surfaces a transient redox competition mode of scanning electrochemical microscopy (SECM) has been developed. In a bi-potentiostatic experiment the SECM tip competes with the sample for the very same analyte. This leads to a current decrease at the SECM tip, if it is positioned in close proximity to an active catalyst site on the surface. Specifically, local catalytic activity of a Pt-catalyst modified sample with respect to the catalytic reduction of molecular oxygen was investigated. At higher local catalytic activity the local 02 partial pressure within the gap between accurately positioned SECM tip and sample is depleted, leading to a noticeable tip current decrease over active sites. A flexible software module has been implemented into the SECM to adapt the competition conditions by proper definition of tip and sample potentials. A potential pulse profile enables the localised electrochemically induced generation of molecular oxygen prior to the competition detection. The current decay curves are recorded over the entire duration of the applied reduction pulse. Hence, a time resolved processing of the acquired current values provides movies of the local oxygen concentration against x,y-position. The SECM redox competition mode was verified with a macroscopic Pt-disk electrode as a test sample to demonstrate the feasibility of the approach. Moreover, highly dispersed electro-deposited spots of gold and platinum on glassy carbon were visualised using the redox competition mode of SECM. Catalyst spots of different nature as well as activity inhomogeneities within one spot caused by local variations in Pt-loading were visualised successfully.

  20. Cumulative effects in inflation with ultra-light entropy modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Achúcarro, Ana; Atal, Vicente; Germani, Cristiano

    2017-02-01

    In multi-field inflation one or more non-adiabatic modes may become light, potentially inducing large levels of isocurvature perturbations in the cosmic microwave background. If in addition these light modes are coupled to the adiabatic mode, they influence its evolution on super horizon scales. Here we consider the case in which a non-adiabatic mode becomes approximately massless (''ultralight') while still coupled to the adiabatic mode, a typical situation that arises with pseudo-Nambu-Goldstone bosons or moduli. This ultralight mode freezes on super-horizon scales and acts as a constant source for the curvature perturbation, making it grow linearly in time and effectively suppressingmore » the isocurvature component. We identify a Stückelberg-like emergent shift symmetry that underlies this behavior. As inflation lasts for many e -folds, the integrated effect of this source enhances the power spectrum of the adiabatic mode, while keeping the non-adiabatic spectrum approximately untouched. In this case, towards the end of inflation all the fluctuations, adiabatic and non-adiabatic, are dominated by a single degree of freedom.« less

  1. Cumulative effects in inflation with ultra-light entropy modes

    NASA Astrophysics Data System (ADS)

    Achúcarro, Ana; Atal, Vicente; Germani, Cristiano; Palma, Gonzalo A.

    2017-02-01

    In multi-field inflation one or more non-adiabatic modes may become light, potentially inducing large levels of isocurvature perturbations in the cosmic microwave background. If in addition these light modes are coupled to the adiabatic mode, they influence its evolution on super horizon scales. Here we consider the case in which a non-adiabatic mode becomes approximately massless (``ultralight") while still coupled to the adiabatic mode, a typical situation that arises with pseudo-Nambu-Goldstone bosons or moduli. This ultralight mode freezes on super-horizon scales and acts as a constant source for the curvature perturbation, making it grow linearly in time and effectively suppressing the isocurvature component. We identify a Stückelberg-like emergent shift symmetry that underlies this behavior. As inflation lasts for many e-folds, the integrated effect of this source enhances the power spectrum of the adiabatic mode, while keeping the non-adiabatic spectrum approximately untouched. In this case, towards the end of inflation all the fluctuations, adiabatic and non-adiabatic, are dominated by a single degree of freedom.

  2. Salty Anomalies Forced by Central American Gap Winds: Aquarius Observations

    NASA Astrophysics Data System (ADS)

    Grodsky, S. A.; Carton, J.; Bentamy, A.

    2014-12-01

    Although upwelling normally doesn't have direct impact on the sea surface salinity (SSS), we present observational evidence of upwelling-induced SSS patterns off the Pacific Central American coast. This area is characterized by stable near-surface salinity stratification that is produced by the mixed layer dilution by local rainfall. Here the fresh and warm mixed layer is periodically disrupted by the gap wind-induced uplifts of colder and saltier water. Aquarius SSS data capture these high SSS events. In boreal winter when the intense gap winds are frequent, two tongues of anomalously salty water develop off the Gulfs of Tehuantepec and Papagayo. During that season the average SSS in the meridionally oriented Tehuantepec tongue is about 0.4 psu saltier than background SSS. The zonally elongated Papagayo tongue stands out even more strongly, being 1 to 2 psu saltier than SSS in the neighboring Panama Bight. The spatial locations and orientations of these salty tongues closely correspond to the locations and orientations of the cool SST tongues suggesting they have similar governing mechanisms.

  3. Analysis of the vibration modes of piezoelectric circular microdiaphragms

    NASA Astrophysics Data System (ADS)

    Olfatnia, M.; Singh, V. R.; Xu, T.; Miao, J. M.; Ong, L. S.

    2010-08-01

    The vibration modes of a piezoelectric circular microdiaphragm (PCM) are visualized and investigated in this paper. The PCM was previously fabricated by combining sol-gel PZT thin film and MEMS technology (Olfatnia et al 2010 J. Micromech. Microeng. 20 015007). We used a reflection digital holography microscope to visualize different frequency modes. It was found that the degeneracy of the modes with at least one nodal diameter is broken, even though it was expected that these orthogonal modes are degenerated in frequency (Meirovitch 1967 Analytical Methods in Vibrations (New York: Macmillan)). These non-degenerated modes are correlated to the lack of symmetry of the PCM, mainly imposed by the top electrode configuration. The theoretical and experimental measurements of the resonance frequency of different modes show that even though for the first fundamental mode, the diaphragm behaves more like a membrane, in higher modes the stiffness contribution increases, for instance, from 6% in mode (0, 1) to 46% in mode (0, 3). Finite element simulations demonstrate that the frequency shift of the PCM to mass loading increases in higher frequency modes. This shift is almost 8.5 times higher in mode (0, 3) than in mode (0, 1). The impedance characterization of the PCM shows that by applying higher excitation voltages, more vibration modes can be excited. However, these higher voltages induce geometric nonlinearities in the PCM, which in turn increases the resonant frequency of the device.

  4. Drosophila Shaking-B protein forms gap junctions in paired Xenopus oocytes.

    PubMed

    Phelan, P; Stebbings, L A; Baines, R A; Bacon, J P; Davies, J A; Ford, C

    1998-01-08

    In most multicellular organisms direct cell-cell communication is mediated by the intercellular channels of gap junctions. These channels allow the exchange of ions and molecules that are believed to be essential for cell signalling during development and in some differentiated tissues. Proteins called connexins, which are products of a multigene family, are the structural components of vertebrate gap junctions. Surprisingly, molecular homologues of the connexins have not been described in any invertebrate. A separate gene family, which includes the Drosophila genes shaking-B and l(1)ogre, and the Caenorhabditis elegans genes unc-7 and eat-5, encodes transmembrane proteins with a predicted structure similar to that of the connexins. shaking-B and eat-5 are required for the formation of functional gap junctions. To test directly whether Shaking-B is a channel protein, we expressed it in paired Xenopus oocytes. Here we show that Shaking-B localizes to the membrane, and that its presence induces the formation of functional intercellular channels. To our knowledge, this is the first structural component of an invertebrate gap junction to be characterized.

  5. SnO2 epitaxial films with varying thickness on c-sapphire: Structure evolution and optical band gap modulation

    NASA Astrophysics Data System (ADS)

    Zhang, Mi; Xu, Maji; Li, Mingkai; Zhang, Qingfeng; Lu, Yinmei; Chen, Jingwen; Li, Ming; Dai, Jiangnan; Chen, Changqing; He, Yunbin

    2017-11-01

    A series of a-plane SnO2 films with thickness between 2.5 nm and 1436 nm were grown epitaxially on c-sapphire by pulsed laser deposition (PLD), to allow a detailed probe into the structure evolution and optical band gap modulation of SnO2 with growing thickness. All films exhibit excellent out-of-plane ordering (lowest (200) rocking-curve half width ∼0.01°) with an orientation of SnO2(100) || Al2O3(0001), while three equivalent domains that are rotated by 120° with one another coexist in-plane with SnO2[010] || Al2O3 [11-20]. Initially the SnO2(100) film assumes a two-dimensional (2D) layer-by-layer growth mode with atomically smooth surface (minimum root-mean-square roughness of 0.183 nm), and endures compressive strain along both c and a axes as well as mild tensile strain along the b-axis. With increasing thickness, transition from the 2D to 3D island growth mode takes place, leading to formation of various defects to allow relief of the stress and thus relaxation of the film towards bulk SnO2. More interestingly, with increasing thickness from nm to μm, the SnO2 films present a non-monotonic V-shaped variation in the optical band gap energy. While the band gap of SnO2 films thinner than 6.1 nm increases rapidly with decreasing film thickness due to the quantum size effect, the band gap of thicker SnO2 films broadens almost linearly with increasing film thickness up to 374 nm, as a result of the strain effect. The present work sheds light on future design of SnO2 films with desired band gap for particular applications by thickness control and strain engineering.

  6. Mirror-image-induced magnetic modes.

    PubMed

    Xifré-Pérez, Elisabet; Shi, Lei; Tuzer, Umut; Fenollosa, Roberto; Ramiro-Manzano, Fernando; Quidant, Romain; Meseguer, Francisco

    2013-01-22

    Reflection in a mirror changes the handedness of the real world, and right-handed objects turn left-handed and vice versa (M. Gardner, The Ambidextrous Universe, Penguin Books, 1964). Also, we learn from electromagnetism textbooks that a flat metallic mirror transforms an electric charge into a virtual opposite charge. Consequently, the mirror image of a magnet is another parallel virtual magnet as the mirror image changes both the charge sign and the curl handedness. Here we report the dramatic modification in the optical response of a silicon nanocavity induced by the interaction with its image through a flat metallic mirror. The system of real and virtual dipoles can be interpreted as an effective magnetic dipole responsible for a strong enhancement of the cavity scattering cross section.

  7. Resonant tidal excitation of oscillation modes in merging binary neutron stars: Inertial-gravity modes

    NASA Astrophysics Data System (ADS)

    Xu, Wenrui; Lai, Dong

    2017-10-01

    In coalescing neutron star (NS) binaries, tidal force can resonantly excite low-frequency (≲500 Hz ) oscillation modes in the NS, transferring energy between the orbit and the NS. This resonant tide can induce phase shift in the gravitational waveforms, and potentially provide a new window of studying NS interior using gravitational waves. Previous works have considered tidal excitations of pure g-modes (due to stable stratification of the star) and pure inertial modes (due to Coriolis force), with the rotational effect treated in an approximate manner. However, for realistic NSs, the buoyancy and rotational effects can be comparable, giving rise to mixed inertial-gravity modes. We develop a nonperturbative numerical spectral code to compute the frequencies and tidal coupling coefficients of these modes. We then calculate the phase shift in the gravitational waveform due to each resonance during binary inspiral. Given the uncertainties in the NS equation of state and stratification property, we adopt polytropic NS models with a parametrized stratification. We derive relevant scaling relations and survey how the phase shift depends on various properties of the NS. We find that for canonical NSs (with mass M =1.4 M⊙ and radius R =10 km ) and modest rotation rates (≲300 Hz ), the gravitational wave phase shift due to a resonance is generally less than 0.01 radian. But the phase shift is a strong function of R and M , and can reach a radian or more for low-mass NSs with larger radii (R ≳15 km ). Significant phase shift can also be produced when the combination of stratification and rotation gives rise to a very low frequency (≲20 Hz in the inertial frame) modified g-mode. As a by-product of our precise calculation of oscillation modes in rotating NSs, we find that some inertial modes can be strongly affected by stratification; we also find that the m =1 r -mode, previously identified to have a small but finite inertial-frame frequency based on the Cowling

  8. Direct control of air gap flux in permanent magnet machines

    DOEpatents

    Hsu, John S.

    2000-01-01

    A method and apparatus for field weakening in PM machines uses field weakening coils (35, 44, 45, 71, 72) to produce flux in one or more stators (34, 49, 63, 64), including a flux which counters flux normally produced in air gaps between the stator(s) (34, 49, 63, 64) and the rotor (20, 21, 41, 61) which carries the PM poles. Several modes of operation are introduced depending on the magnitude and polarity of current in the field weakening coils (35, 44, 45, 71, 72). The invention is particularly useful for, but not limited to, the electric vehicle drives and PM generators.

  9. The influence of GAP-43 on orientation of cell division through G proteins.

    PubMed

    Huang, Rui; Zhao, Junpeng; Ju, Lili; Wen, Yujun; Xu, Qunyuan

    2015-12-01

    Recent studies have shown that GAP-43 is highly expressed in horizontally dividing neural progenitor cells, and G protein complex are required for proper mitotic-spindle orientation of those progenitors in the mammalian developing cortex. In order to verify the hypothesis that GAP-43 may influence the orientation of cell division through interacting with G proteins during neurogenesis, the GAP-43 RNA from adult C57 mouse was cloned into the pEGFP-N1 vector, which was then transfected into Madin-Darby Canine Kidney (MDCK) cells cultured in a three-dimensional (3D) cell culture system. The interaction of GAP-43 with Gαi was detected by co-immunoprecipitation (co-IP), while cystogenesis of 3D morphogenesis of MDCK cells and expression of GAP-43 and Gαi were determined by immunofluorescence and Western blotting. The results showed are as follows: After being transfected by pEGFP-N1-GAP-43, GAP-43 was localized on the cell membrane and co-localized with Gαi, and this dramatically induced a defective cystogenesis in 3D morphogenesis of MDCK cells. The functional interaction between GAP-43 and Gαi proteins was proven by the co-IP assay. It can be considered from the results that the GAP-43 is involved in the orientation of cell division by interacting with Gαi and this should be an important mechanism for neurogenesis in the mammalian brain. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Locked-mode avoidance and recovery without external momentum input

    NASA Astrophysics Data System (ADS)

    Delgado-Aparicio, L.; Gates, D. A.; Wolfe, S.; Rice, J. E.; Gao, C.; Wukitch, S.; Greenwald, M.; Hughes, J.; Marmar, E.; Scott, S.

    2014-10-01

    Error-field-induced locked-modes (LMs) have been studied in C-Mod at ITER toroidal fields without NBI fueling and momentum input. The use of ICRH heating in synch with the error-field ramp-up resulted in a successful delay of the mode-onset when PICRH > 1 MW and a transition into H-mode when PICRH > 2 MW. The recovery experiments consisted in applying ICRH power during the LM non-rotating phase successfully unlocking the core plasma. The ``induced'' toroidal rotation was in the counter-current direction, restoring the direction and magnitude of the toroidal flow before the LM formation, but contrary to the expected Rice-scaling in the co-current direction. However, the LM occurs near the LOC/SOC transition where rotation reversals are commonly observed. Once PICRH is turned off, the core plasma ``locks'' at later times depending on the evolution of ne and Vt. This work was performed under US DoE contracts including DE-FC02-99ER54512 and others at MIT and DE-AC02-09CH11466 at PPPL.

  11. Cadmium and naphthalene-induced hyperglycemia in the fiddler crab, Uca pugilator: Differential modes of action on the neutroendocrine system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reddy, P.S.; Katyayani, R.V.; Fingerman, M.

    1996-03-01

    Hyperglycemia is a typical response of aquatic organisms to heavy metals. In crustaceans, the medulla terminalis X-organ-sinus gland neuroendocrine complex in the eyestalk is the source of the crustacean hyperglycemic hormone (CHH). The role of CHH in pollutant-induced b1ood glucose changes has only recently begun to be studied. Reddy provided evidence that CHH mediates cadmium-induced hyperglycemia in the red swamp crayfish, Procambarus clarkii. In a study of another hormonally-regulated function, color changes, cadmium exposure resulted in pigment in the melanophores of the fiddler crab, Uca pugilator, becoming less dispersed than in unexposed crabs. Earlier studies showed that, like cadmium, bothmore » a PCB, Aroclor 1242, and naphthalene induced black pigment aggregation in Uca poor. In general, when crabs are exposed to a pollutant, hydrocarbon or cadmium, they aggregate the pigment in their melanophores, but apparently by different mechanisms. Hydrocarbons appear to inhibit release of black pigment-dispersing hormone (BDPH), whereas cadmium appears to inhibit its synthesis. These apparent different modes of action of cadmium and naphthalene on the color change mechanism led us to compare the impact of these pollutants on the hormonal regulation of blood glucose in Uca pugilator. The present study was performed to determine (1) whether cadmium and naphthalene induce hyperglycemia in Uca pugilator, (2) whether CH has a role, if naphthalene and cadmium do induce hyperglycemia, and (3) the effects, if any, of cadmium and naphthalene on CHH activity in the eyestalk neuroendocrine complex.« less

  12. Toward tunable band gap and tunable dirac point in bilayer graphene with molecular doping.

    PubMed

    Yu, Woo Jong; Liao, Lei; Chae, Sang Hoon; Lee, Young Hee; Duan, Xiangfeng

    2011-11-09

    The bilayer graphene has attracted considerable attention for potential applications in future electronics and optoelectronics because of the feasibility to tune its band gap with a vertical displacement field to break the inversion symmetry. Surface chemical doping in bilayer graphene can induce an additional offset voltage to fundamentally affect the vertical displacement field and the band gap opening in bilayer graphene. In this study, we investigate the effect of chemical molecular doping on band gap opening in bilayer graphene devices with single or dual gate modulation. Chemical doping with benzyl viologen molecules modulates the displacement field to allow the opening of a transport band gap and the increase of the on/off ratio in the bilayer graphene transistors. Additionally, Fermi energy level in the opened gap can be rationally controlled by the amount of molecular doping to obtain bilayer graphene transistors with tunable Dirac points, which can be readily configured into functional devices, such as complementary inverters.

  13. Effect of a gap opening on the conductance of graphene with magnetic barrier structures

    NASA Astrophysics Data System (ADS)

    Esmailpour, Mohammad

    2018-04-01

    In the present study Klein tunneling in a single-layer gapped graphene was investigated by transfer matrix method under normal magnetic field for one and two magnetic barriers. Calculations show that electron transmission through a magnetic barrier is deflected to positive angles and reduces as the magnitude of magnetic field and especially the energy gap increases. This reduction is even more significant in larger fields so that after reaching a specific value of energy gap, an effective confinement for fermions and suppression of Klein tunneling is reached particularly in normal incidence and the conductance becomes zero. Unlike one barrier, the process of tunneling through two magnetic barriers induces symmetric transmission probability versus the incident angle; even, for lower energy gaps, electron transmission probability increases which in turn reduces total conductance via proper changes in the value of the magnetic field and energy gap. In general, it is concluded that confining electrons in asymmetric transmission through one barrier is conducted better than two barriers.

  14. Engineering an Insulating Ferroelectric Superlattice with a Tunable Band Gap from Metallic Components

    DOE PAGES

    Ghosh, Saurabh; Borisevich, Albina Y.; Pantelides, Sokrates T.

    2017-10-25

    The recent discovery of “polar metals” with ferroelectriclike displacements offers the promise of designing ferroelectrics with tunable energy gaps by inducing controlled metal-insulator transitions. Here in this work, we employ first-principles calculations to design a metallic polar superlattice from nonpolar metal components and show that controlled intermixing can lead to a true insulating ferroelectric with a tunable band gap. We consider a 2/2 superlattice made of two centrosymmetric metallic oxides, La 0.75Sr 0.25MnO 3 and LaNiO 3, and show that ferroelectriclike displacements are induced. The ferroelectriclike distortion is found to be strongly dependent on the carrier concentration (Sr content). Further,more » we show that a metal-to-insulator (MI) transition is feasible in this system via disproportionation of the Ni sites. Such a disproportionation and, hence, a MI transition can be driven by intermixing of transition metal ions between Mn and Ni layers. Finally, as a result, the energy gap of the resulting ferroelectric can be tuned by varying the degree of intermixing in the experimental fabrication method.« less

  15. Engineering an Insulating Ferroelectric Superlattice with a Tunable Band Gap from Metallic Components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Saurabh; Borisevich, Albina Y.; Pantelides, Sokrates T.

    The recent discovery of “polar metals” with ferroelectriclike displacements offers the promise of designing ferroelectrics with tunable energy gaps by inducing controlled metal-insulator transitions. Here in this work, we employ first-principles calculations to design a metallic polar superlattice from nonpolar metal components and show that controlled intermixing can lead to a true insulating ferroelectric with a tunable band gap. We consider a 2/2 superlattice made of two centrosymmetric metallic oxides, La 0.75Sr 0.25MnO 3 and LaNiO 3, and show that ferroelectriclike displacements are induced. The ferroelectriclike distortion is found to be strongly dependent on the carrier concentration (Sr content). Further,more » we show that a metal-to-insulator (MI) transition is feasible in this system via disproportionation of the Ni sites. Such a disproportionation and, hence, a MI transition can be driven by intermixing of transition metal ions between Mn and Ni layers. Finally, as a result, the energy gap of the resulting ferroelectric can be tuned by varying the degree of intermixing in the experimental fabrication method.« less

  16. A Gap with a Deficit of Large Grains in the Protoplanetary Disk around TW Hya

    NASA Astrophysics Data System (ADS)

    Tsukagoshi, Takashi; Nomura, Hideko; Muto, Takayuki; Kawabe, Ryohei; Ishimoto, Daiki; Kanagawa, Kazuhiro D.; Okuzumi, Satoshi; Ida, Shigeru; Walsh, Catherine; Millar, T. J.

    2016-10-01

    We report ˜3 au resolution imaging observations of the protoplanetary disk around TW Hya at 145 and 233 GHz with the Atacama Large Millimeter/submillimeter Array. Our observations revealed two deep gaps (˜25%-50%) at 22 and 37 au and shallower gaps (a few percent) at 6, 28, and 44 au, as recently reported by Andrews et al. The central hole with a radius of ˜3 au was also marginally resolved. The most remarkable finding is that the spectral index α (R) between bands 4 and 6 peaks at the 22 au gap. The derived power-law index of the dust opacity β (R) is ˜1.7 at the 22 au gap and decreases toward the disk center to ˜0. The most prominent gap at 22 au could be caused by the gravitational interaction between the disk and an unseen planet with a mass of ≲1.5 M Neptune, although other origins may be possible. The planet-induced gap is supported by the fact that β (R) is enhanced at the 22 au gap, indicating a deficit of ˜millimeter-sized grains within the gap due to dust filtration by a planet.

  17. The band gap properties of the three-component semi-infinite plate-like LRPC by using PWE/FE method

    NASA Astrophysics Data System (ADS)

    Qian, Denghui; Wang, Jianchun

    2018-06-01

    This paper applies coupled plane wave expansion and finite element (PWE/FE) method to calculate the band structure of the proposed three-component semi-infinite plate-like locally resonant phononic crystal (LRPC). In order to verify the accuracy of the result, the band structure calculated by PWE/FE method is compared to that calculated by the traditional finite element (FE) method, and the frequency range of the band gap in the band structure is compared to that of the attenuation in the transmission power spectrum. Numerical results and further analysis demonstrate that a band gap is opened by the coupling between the dominant vibrations of the rubber layer and the matrix modes. In addition, the influences of the geometry parameters on the band gap are studied and understood with the help of the simple “base-spring-mass” model, the influence of the viscidity of rubber layer on the band gap is also investigated.

  18. Guiding, bending, and splitting of coupled defect surface modes in a surface-wave photonic crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Zhen; Gao, Fei; Zhang, Baile, E-mail: blzhang@ntu.edu.sg

    2016-01-25

    We experimentally demonstrate a type of waveguiding mechanism for coupled surface-wave defect modes in a surface-wave photonic crystal. Unlike conventional spoof surface plasmon waveguides, waveguiding of coupled surface-wave defect modes is achieved through weak coupling between tightly localized defect cavities in an otherwise gapped surface-wave photonic crystal, as a classical wave analogue of tight-binding electronic wavefunctions in solid state lattices. Wave patterns associated with the high transmission of coupled defect surface modes are directly mapped with a near-field microwave scanning probe for various structures including a straight waveguide, a sharp corner, and a T-shaped splitter. These results may find usemore » in the design of integrated surface-wave devices with suppressed crosstalk.« less

  19. Phenomenology of break-up modes in contact free externally heated nanoparticle laden fuel droplets

    NASA Astrophysics Data System (ADS)

    Pathak, Binita; Basu, Saptarshi

    2016-12-01

    We study thermally induced atomization modes in contact free (acoustically levitated) nanoparticle laden fuel droplets. The initial droplet size, external heat supplied, and suspended particle concentration (wt. %) in droplets govern the stability criterion which ultimately determines the dominant mode of atomization. Pure fuel droplets exhibit two dominant modes of breakup namely primary and secondary. Primary modes are rather sporadic and normally do not involve shape oscillations. Secondary atomization however leads to severe shape deformations and catastrophic intense breakup of the droplets. The dominance of these modes has been quantified based on the external heat flux, dynamic variation of surface tension, acoustic pressure, and droplet size. Addition of particles alters the regimes of the primary and secondary atomization and introduces bubble induced boiling and bursting. We analyze this new mode of atomization and estimate the time scale of bubble growth up to the point of bursting using energy balance to determine the criterion suitable for parent droplet rupture. All the three different modes of breakup have been well identified in a regime map determined in terms of Weber number and the heat utilization rate which is defined as the energy utilized for transient heating, vaporization, and boiling in droplets.

  20. SELF-TRAPPING OF DISKOSEISMIC CORRUGATION MODES IN NEUTRON STAR SPACETIMES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsang, David; Pappas, George

    2016-02-10

    We examine the effects of higher-order multipole contributions of rotating neutron star (NS) spacetimes on the propagation of corrugation (c-)modes within a thin accretion disk. We find that the Lense–Thirring precession frequency, which determines the propagation region of the low-frequency fundamental corrugation modes, can experience a turnover allowing for c-modes to become self-trapped for sufficiently high dimensionless spin j and quadrupole rotational deformability α. If such self-trapping c-modes can be detected, e.g., through phase-resolved spectroscopy of the iron line for a high-spin low-mass accreting neutron star, this could potentially constrain the spin-induced NS quadrupole and the NS equation of state.