Sample records for gap wedge designed

  1. Split-wedge antennas with sub-5 nm gaps for plasmonic nanofocusing

    DOE PAGES

    Chen, Xiaoshu; Lindquist, Nathan C.; Klemme, Daniel J.; ...

    2016-11-22

    Here, we present a novel plasmonic antenna structure, a split-wedge antenna, created by splitting an ultrasharp metallic wedge with a nanogap perpendicular to its apex. The nanogap can tightly confine gap plasmons and boost the local optical field intensity in and around these opposing metallic wedge tips. This three-dimensional split-wedge antenna integrates the key features of nanogaps and sharp tips, i.e., tight field confinement and three-dimensional nanofocusing, respectively, into a single platform. We fabricate split-wedge antennas with gaps that are as small as 1 nm in width at the wafer scale by combining silicon V-grooves with template stripping and atomicmore » layer lithography. Computer simulations show that the field enhancement and confinement are stronger at the tip–gap interface compared to what standalone tips or nanogaps produce, with electric field amplitude enhancement factors exceeding 50 when near-infrared light is focused on the tip–gap geometry. The resulting nanometric hotspot volume is on the order of λ 3/10 6. Experimentally, Raman enhancement factors exceeding 10 7 are observed from a 2 nm gap split-wedge antenna, demonstrating its potential for sensing and spectroscopy applications.« less

  2. Split-Wedge Antennas with Sub-5 nm Gaps for Plasmonic Nanofocusing

    PubMed Central

    2016-01-01

    We present a novel plasmonic antenna structure, a split-wedge antenna, created by splitting an ultrasharp metallic wedge with a nanogap perpendicular to its apex. The nanogap can tightly confine gap plasmons and boost the local optical field intensity in and around these opposing metallic wedge tips. This three-dimensional split-wedge antenna integrates the key features of nanogaps and sharp tips, i.e., tight field confinement and three-dimensional nanofocusing, respectively, into a single platform. We fabricate split-wedge antennas with gaps that are as small as 1 nm in width at the wafer scale by combining silicon V-grooves with template stripping and atomic layer lithography. Computer simulations show that the field enhancement and confinement are stronger at the tip–gap interface compared to what standalone tips or nanogaps produce, with electric field amplitude enhancement factors exceeding 50 when near-infrared light is focused on the tip–gap geometry. The resulting nanometric hotspot volume is on the order of λ3/106. Experimentally, Raman enhancement factors exceeding 107 are observed from a 2 nm gap split-wedge antenna, demonstrating its potential for sensing and spectroscopy applications. PMID:27960527

  3. Group sequential designs for stepped-wedge cluster randomised trials.

    PubMed

    Grayling, Michael J; Wason, James Ms; Mander, Adrian P

    2017-10-01

    The stepped-wedge cluster randomised trial design has received substantial attention in recent years. Although various extensions to the original design have been proposed, no guidance is available on the design of stepped-wedge cluster randomised trials with interim analyses. In an individually randomised trial setting, group sequential methods can provide notable efficiency gains and ethical benefits. We address this by discussing how established group sequential methodology can be adapted for stepped-wedge designs. Utilising the error spending approach to group sequential trial design, we detail the assumptions required for the determination of stepped-wedge cluster randomised trials with interim analyses. We consider early stopping for efficacy, futility, or efficacy and futility. We describe first how this can be done for any specified linear mixed model for data analysis. We then focus on one particular commonly utilised model and, using a recently completed stepped-wedge cluster randomised trial, compare the performance of several designs with interim analyses to the classical stepped-wedge design. Finally, the performance of a quantile substitution procedure for dealing with the case of unknown variance is explored. We demonstrate that the incorporation of early stopping in stepped-wedge cluster randomised trial designs could reduce the expected sample size under the null and alternative hypotheses by up to 31% and 22%, respectively, with no cost to the trial's type-I and type-II error rates. The use of restricted error maximum likelihood estimation was found to be more important than quantile substitution for controlling the type-I error rate. The addition of interim analyses into stepped-wedge cluster randomised trials could help guard against time-consuming trials conducted on poor performing treatments and also help expedite the implementation of efficacious treatments. In future, trialists should consider incorporating early stopping of some kind into

  4. Group sequential designs for stepped-wedge cluster randomised trials

    PubMed Central

    Grayling, Michael J; Wason, James MS; Mander, Adrian P

    2017-01-01

    Background/Aims: The stepped-wedge cluster randomised trial design has received substantial attention in recent years. Although various extensions to the original design have been proposed, no guidance is available on the design of stepped-wedge cluster randomised trials with interim analyses. In an individually randomised trial setting, group sequential methods can provide notable efficiency gains and ethical benefits. We address this by discussing how established group sequential methodology can be adapted for stepped-wedge designs. Methods: Utilising the error spending approach to group sequential trial design, we detail the assumptions required for the determination of stepped-wedge cluster randomised trials with interim analyses. We consider early stopping for efficacy, futility, or efficacy and futility. We describe first how this can be done for any specified linear mixed model for data analysis. We then focus on one particular commonly utilised model and, using a recently completed stepped-wedge cluster randomised trial, compare the performance of several designs with interim analyses to the classical stepped-wedge design. Finally, the performance of a quantile substitution procedure for dealing with the case of unknown variance is explored. Results: We demonstrate that the incorporation of early stopping in stepped-wedge cluster randomised trial designs could reduce the expected sample size under the null and alternative hypotheses by up to 31% and 22%, respectively, with no cost to the trial’s type-I and type-II error rates. The use of restricted error maximum likelihood estimation was found to be more important than quantile substitution for controlling the type-I error rate. Conclusion: The addition of interim analyses into stepped-wedge cluster randomised trials could help guard against time-consuming trials conducted on poor performing treatments and also help expedite the implementation of efficacious treatments. In future, trialists should

  5. Seismological evidence for a sub-volcanic arc mantle wedge beneath the Denali volcanic gap, Alaska

    USGS Publications Warehouse

    McNamara, D.E.; Pasyanos, M.E.

    2002-01-01

    Arc volcanism in Alaska is strongly correlated with the 100 km depth contour of the western Aluetian Wadati-Benioff zone. Above the eastern portion of the Wadati-Benioff zone however, there is a distinct lack of volcanism (the Denali volcanic gap). We observe high Poisson's ratio values (0.29-0.33) over the entire length of the Alaskan subduction zone mantle wedge based on regional variations of Pn and Sn velocities. High Poisson's ratios at this depth (40-70 km), adjacent to the subducting slab, are attributed to melting of mantle-wedge peridotites, caused by fluids liberated from the subducting oceanic crust and sediments. Observations of high values of Poisson's ratio, beneath the Denali volcanic gap suggest that the mantle wedge contains melted material that is unable to reach the surface. We suggest that its inability to migrate through the overlying crust is due to increased compression in the crust at the northern apex of the curved Denali fault.

  6. The optimal design of stepped wedge trials with equal allocation to sequences and a comparison to other trial designs.

    PubMed

    Thompson, Jennifer A; Fielding, Katherine; Hargreaves, James; Copas, Andrew

    2017-12-01

    Background/Aims We sought to optimise the design of stepped wedge trials with an equal allocation of clusters to sequences and explored sample size comparisons with alternative trial designs. Methods We developed a new expression for the design effect for a stepped wedge trial, assuming that observations are equally correlated within clusters and an equal number of observations in each period between sequences switching to the intervention. We minimised the design effect with respect to (1) the fraction of observations before the first and after the final sequence switches (the periods with all clusters in the control or intervention condition, respectively) and (2) the number of sequences. We compared the design effect of this optimised stepped wedge trial to the design effects of a parallel cluster-randomised trial, a cluster-randomised trial with baseline observations, and a hybrid trial design (a mixture of cluster-randomised trial and stepped wedge trial) with the same total cluster size for all designs. Results We found that a stepped wedge trial with an equal allocation to sequences is optimised by obtaining all observations after the first sequence switches and before the final sequence switches to the intervention; this means that the first sequence remains in the control condition and the last sequence remains in the intervention condition for the duration of the trial. With this design, the optimal number of sequences is [Formula: see text], where [Formula: see text] is the cluster-mean correlation, [Formula: see text] is the intracluster correlation coefficient, and m is the total cluster size. The optimal number of sequences is small when the intracluster correlation coefficient and cluster size are small and large when the intracluster correlation coefficient or cluster size is large. A cluster-randomised trial remains more efficient than the optimised stepped wedge trial when the intracluster correlation coefficient or cluster size is small. A

  7. Deciphering assumptions about stepped wedge designs: the case of Ebola vaccine research.

    PubMed

    Doussau, Adélaïde; Grady, Christine

    2016-12-01

    Ethical concerns about randomising persons to a no-treatment arm in the context of Ebola epidemic led to consideration of alternative designs. The stepped wedge (SW) design, in which participants or clusters are randomised to receive an intervention at different time points, gained popularity. Common arguments in favour of using this design are (1) when an intervention is likely to do more good than harm, (2) all participants should receive the experimental intervention at some time point during the study and (3) the design might be preferable for practical reasons. We examine these assumptions when considering Ebola vaccine research. First, based on the claim that a stepped wedge design is indicated when it is likely that the intervention will do more good than harm, we reviewed published and ongoing SW trials to explore previous use of this design to test experimental drugs or vaccines, and found that SW design has never been used for trials of experimental drugs or vaccines. Given that Ebola vaccines were all experimental with no prior efficacy data, the use of a stepped wedge design would have been unprecedented. Second, we show that it is rarely true that all participants receive the intervention in SW studies, but rather, depending on certain design features, all clusters receive the intervention. Third, we explore whether the SW design is appealing for feasibility reasons and point out that there is significant complexity. In the setting of the Ebola epidemic, spatiotemporal variation may have posed problematic challenges to a stepped wedge design for vaccine research. Finally, we propose a set of points to consider for scientific reviewers and ethics committees regarding proposals for SW designs. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  8. Recirculating wedges for metal-vapor plasma tubes

    DOEpatents

    Hall, Jerome P.; Sawvel, Robert M.; Draggoo, Vaughn G.

    1994-01-01

    A metal vapor laser is disclosed that recycles condensed metal located at the terminal ends of a plasma tube back toward the center of the tube. A pair of arcuate wedges are incorporated on the bottom of the plasma tube near the terminal ends. The wedges slope downward toward the center so that condensed metal may be transported under the force of gravity away from the terminal ends. The wedges are curved to fit the plasma tube to thereby avoid forming any gaps within the tube interior.

  9. Recirculating wedges for metal-vapor plasma tubes

    DOEpatents

    Hall, J.P.; Sawvel, R.M.; Draggoo, V.G.

    1994-06-28

    A metal vapor laser is disclosed that recycles condensed metal located at the terminal ends of a plasma tube back toward the center of the tube. A pair of arcuate wedges are incorporated on the bottom of the plasma tube near the terminal ends. The wedges slope downward toward the center so that condensed metal may be transported under the force of gravity away from the terminal ends. The wedges are curved to fit the plasma tube to thereby avoid forming any gaps within the tube interior. 8 figures.

  10. On the acoustic wedge design and simulation of anechoic chamber

    NASA Astrophysics Data System (ADS)

    Jiang, Changyong; Zhang, Shangyu; Huang, Lixi

    2016-10-01

    This study proposes an alternative to the classic wedge design for anechoic chambers, which is the uniform-then-gradient, flat-wall (UGFW) structure. The working mechanisms of the proposed structure and the traditional wedge are analyzed. It is found that their absorption patterns are different. The parameters of both structures are optimized for achieving minimum absorber depth, under the condition of absorbing 99% of normal incident sound energy. It is found that, the UGFW structure achieves a smaller total depth for the cut-off frequencies ranging from 100 Hz to 250 Hz. This paper also proposes a modification for the complex source image (CSI) model for the empirical simulation of anechoic chambers, originally proposed by Bonfiglio et al. [J. Acoust. Soc. Am. 134 (1), 285-291 (2013)]. The modified CSI model considers the non-locally reactive effect of absorbers at oblique incidence, and the improvement is verified by a full, finite-element simulation of a small chamber. With the modified CSI model, the performance of both decorations with the optimized parameters in a large chamber is simulated. The simulation results are analyzed and checked against the tolerance of 1.5 dB deviation from the inverse square law, stipulated in the ISO standard 3745(2003). In terms of the total decoration depth and anechoic chamber performance, the UGFW structure is better than the classic wedge design.

  11. Sojourner APXS & Wedge

    NASA Image and Video Library

    1997-08-27

    This image of the rock "Wedge" was taken from the Sojourner rover's rear color camera on Sol 37. The position of the rover relative to Wedge is seen in MRPS 83349. The segmented rod visible in the middle of the frame is the deployment arm for the Alpha Proton X-Ray Spectrometer (APXS). The APXS, the bright, cylindrical object at the end of the arm, is positioned against Wedge and is designed to measure the rock's chemical composition. This was done successfully on the night of Sol 37. http://photojournal.jpl.nasa.gov/catalog/PIA00906

  12. Design and simulation of MEMS-actuated adjustable optical wedge for laser beam scanners

    NASA Astrophysics Data System (ADS)

    Bahgat, Ahmed S.; Zaki, Ahmed H.; Abdo Mohamed, Mohamed; El Sherif, Ashraf Fathy

    2018-01-01

    This paper introduces both optical and mechanical design and simulation of large static deflection MOEMS actuator. The designed device is in the form of an adjustable optical wedge (AOW) laser scanner. The AOW is formed of 1.5-mm-diameter plano-convex lens separated by air gap from plano-concave fixed lens. The convex lens is actuated by staggered vertical comb drive and suspended by rectangular cross-section torsion beam. An optical analysis and simulation of air separated AOW as well as detailed design, analysis, and static simulation of comb -drive are introduced. The dynamic step response of the full system is also introduced. The analytical solution showed a good agreement with the simulation results. A general global minimum optimization algorithm is applied to the comb-drive design to minimize driving voltage. A maximum comb-drive mechanical deflection angle of 12 deg in each direction was obtained under DC actuation voltage of 32 V with a settling time of 90 ms, leading to 1-mm one-dimensional (1-D) steering of laser beam with continuous optical scan angle of 5 deg in each direction. This optimization process provided a design of larger deflection actuator with smaller driving voltage compared with other conventional devices. This enhancement could lead to better performance of MOEMS-based laser beam scanners for imaging and low-speed applications.

  13. Microchip and wedge ion funnels and planar ion beam analyzers using same

    DOEpatents

    Shvartsburg, Alexandre A; Anderson, Gordon A; Smith, Richard D

    2012-10-30

    Electrodynamic ion funnels confine, guide, or focus ions in gases using the Dehmelt potential of oscillatory electric field. New funnel designs operating at or close to atmospheric gas pressure are described. Effective ion focusing at such pressures is enabled by fields of extreme amplitude and frequency, allowed in microscopic gaps that have much higher electrical breakdown thresholds in any gas than the macroscopic gaps of present funnels. The new microscopic-gap funnels are useful for interfacing atmospheric-pressure ionization sources to mass spectrometry (MS) and ion mobility separation (IMS) stages including differential IMS or FAIMS, as well as IMS and MS stages in various configurations. In particular, "wedge" funnels comprising two planar surfaces positioned at an angle and wedge funnel traps derived therefrom can compress ion beams in one dimension, producing narrow belt-shaped beams and laterally elongated cuboid packets. This beam profile reduces the ion density and thus space-charge effects, mitigating the adverse impact thereof on the resolving power, measurement accuracy, and dynamic range of MS and IMS analyzers, while a greater overlap with coplanar light or particle beams can benefit spectroscopic methods.

  14. Different methods to analyze stepped wedge trial designs revealed different aspects of intervention effects.

    PubMed

    Twisk, J W R; Hoogendijk, E O; Zwijsen, S A; de Boer, M R

    2016-04-01

    Within epidemiology, a stepped wedge trial design (i.e., a one-way crossover trial in which several arms start the intervention at different time points) is increasingly popular as an alternative to a classical cluster randomized controlled trial. Despite this increasing popularity, there is a huge variation in the methods used to analyze data from a stepped wedge trial design. Four linear mixed models were used to analyze data from a stepped wedge trial design on two example data sets. The four methods were chosen because they have been (frequently) used in practice. Method 1 compares all the intervention measurements with the control measurements. Method 2 treats the intervention variable as a time-independent categorical variable comparing the different arms with each other. In method 3, the intervention variable is a time-dependent categorical variable comparing groups with different number of intervention measurements, whereas in method 4, the changes in the outcome variable between subsequent measurements are analyzed. Regarding the results in the first example data set, methods 1 and 3 showed a strong positive intervention effect, which disappeared after adjusting for time. Method 2 showed an inverse intervention effect, whereas method 4 did not show a significant effect at all. In the second example data set, the results were the opposite. Both methods 2 and 4 showed significant intervention effects, whereas the other two methods did not. For method 4, the intervention effect attenuated after adjustment for time. Different methods to analyze data from a stepped wedge trial design reveal different aspects of a possible intervention effect. The choice of a method partly depends on the type of the intervention and the possible time-dependent effect of the intervention. Furthermore, it is advised to combine the results of the different methods to obtain an interpretable overall result. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Analysis and design of wedge projection display system based on ray retracing method.

    PubMed

    Lee, Chang-Kun; Lee, Taewon; Sung, Hyunsik; Min, Sung-Wook

    2013-06-10

    A design method for the wedge projection display system based on the ray retracing method is proposed. To analyze the principle of image formation on the inclined surface of the wedge-shaped waveguide, the bundle of rays is retraced from an imaging point on the inclined surface to the aperture of the waveguide. In consequence of ray retracing, we obtain the incident conditions of the ray, such as the position and the angle at the aperture, which provide clues for image formation. To illuminate the image formation, the concept of the equivalent imaging point is proposed, which is the intersection where the incident rays are extended over the space regardless of the refraction and reflection in the waveguide. Since the initial value of the rays arriving at the equivalent imaging point corresponds to that of the rays converging into the imaging point on the inclined surface, the image formation can be visualized by calculating the equivalent imaging point over the entire inclined surface. Then, we can find image characteristics, such as their size and position, and their degree of blur--by analyzing the distribution of the equivalent imaging point--and design the optimized wedge projection system by attaching the prism structure at the aperture. The simulation results show the feasibility of the ray retracing analysis and characterize the numerical relation between the waveguide parameters and the aperture structure for on-axis configuration. The experimental results verify the designed system based on the proposed method.

  16. Ultrasonic fluid densitometer having liquid/wedge and gas/wedge interfaces

    DOEpatents

    Greenwood, Margaret S.

    2000-01-01

    The present invention is an ultrasonic liquid densitometer that uses a material wedge having two sections, one with a liquid/wedge interface and another with a gas/wedge interface. It is preferred that the wedge have an acoustic impedance that is near the acoustic impedance of the liquid, specifically less than a factor of 11 greater than the acoustic impedance of the liquid. Ultrasonic signals are internally reflected within the material wedge. Density of a liquid is determined by immersing the wedge into the liquid and measuring reflections of ultrasound at the liquid/wedge interface and at the gas/wedge interface.

  17. Double wedge prism based beam deflector for precise laser beam steering

    NASA Astrophysics Data System (ADS)

    Tyszka, Krzysztof; Dobosz, Marek; Bilaszewski, Tomasz

    2018-02-01

    Aiming to increase laser beam pointing stability required in interferometric measurements, we designed a laser beam deflector intended for active laser beam stabilization systems. The design is based on two wedge-prisms: the deflecting wedge driven by a tilting piezo-platform and the fixed wedge to compensate initial beam deflection. Our design allows linear beam steering, independently in the horizontal or vertical direction, with resolution of less than 1 μrad in a range of more than 100 μrad, and no initial deflection of the beam. Moreover, the ratio of the output beam deflection angle and the wedge tilt angle is less than 0.1; therefore, the noise influence is significantly reduced in comparison to standard mirror-based deflectors. The theoretical analyses support the designing process and can serve as a guide to wedge-prism selection. The experimental results are in agreement with theory and confirm the advantages of the presented double wedge system.

  18. Radial wedge flange clamp

    DOEpatents

    Smith, Karl H.

    2002-01-01

    A radial wedge flange clamp comprising a pair of flanges each comprising a plurality of peripheral flat wedge facets having flat wedge surfaces and opposed and mating flat surfaces attached to or otherwise engaged with two elements to be joined and including a series of generally U-shaped wedge clamps each having flat wedge interior surfaces and engaging one pair of said peripheral flat wedge facets. Each of said generally U-shaped wedge clamps has in its opposing extremities apertures for the tangential insertion of bolts to apply uniform radial force to said wedge clamps when assembled about said wedge segments.

  19. Stepped wedge designs: insights from a design of experiments perspective.

    PubMed

    Matthews, J N S; Forbes, A B

    2017-10-30

    Stepped wedge designs (SWDs) have received considerable attention recently, as they are potentially a useful way to assess new treatments in areas such as health services implementation. Because allocation is usually by cluster, SWDs are often viewed as a form of cluster-randomized trial. However, since the treatment within a cluster changes during the course of the study, they can also be viewed as a form of crossover design. This article explores SWDs from the perspective of crossover trials and designed experiments more generally. We show that the treatment effect estimator in a linear mixed effects model can be decomposed into a weighted mean of the estimators obtained from (1) regarding an SWD as a conventional row-column design and (2) a so-called vertical analysis, which is a row-column design with row effects omitted. This provides a precise representation of "horizontal" and "vertical" comparisons, respectively, which to date have appeared without formal description in the literature. This decomposition displays a sometimes surprising way the analysis corrects for the partial confounding between time and treatment effects. The approach also permits the quantification of the loss of efficiency caused by mis-specifying the correlation parameter in the mixed-effects model. Optimal extensions of the vertical analysis are obtained, and these are shown to be highly inefficient for values of the within-cluster dependence that are likely to be encountered in practice. Some recently described extensions to the classic SWD incorporating multiple treatments are also compared using the experimental design framework. Copyright © 2017 John Wiley & Sons, Ltd.

  20. Wedge gate valves selecting essentials in pipeline systems designing based on permissible operation parameters

    NASA Astrophysics Data System (ADS)

    Zakirnichnaya, M. M.; Kulsharipov, I. M.

    2017-10-01

    Wedge gate valves are widely used at the fuel and energy complex enterprises. The pipeline valves manufacturers indicate the safe operation resource according to the current regulatory and technical documentation. In this case, the resource value of the valve body strength calculation results is taken into consideration as the main structural part. However, it was determined that the wedge gate valves fail before the assigned resource due to the occurrence of conditions under which the wedge breaks in the hooks and, accordingly, the sealing integrity is not ensured. In this regard, it became necessary to assess the conditions under which the resource should be assigned not only to the valve body, but also to take into account the wedge durability. For this purpose, wedge resource calculations were made using the example of ZKL2 250-25 and ZKL2 300-25 valves using the ABAQUS software package FE-SAFE module under the technological parameters influence on the basis of their stressstrain state calculation results. Operating conditions, under which the wedge resource value is lower than the one set by the manufacturer, were determined. A technique for limiting the operating parameters for ensuring the wedge durability during the wedge gate valve assigned resource is proposed.

  1. A practical Bayesian stepped wedge design for community-based cluster-randomized clinical trials: The British Columbia Telehealth Trial.

    PubMed

    Cunanan, Kristen M; Carlin, Bradley P; Peterson, Kevin A

    2016-12-01

    Many clinical trial designs are impractical for community-based clinical intervention trials. Stepped wedge trial designs provide practical advantages, but few descriptions exist of their clinical implementational features, statistical design efficiencies, and limitations. Enhance efficiency of stepped wedge trial designs by evaluating the impact of design characteristics on statistical power for the British Columbia Telehealth Trial. The British Columbia Telehealth Trial is a community-based, cluster-randomized, controlled clinical trial in rural and urban British Columbia. To determine the effect of an Internet-based telehealth intervention on healthcare utilization, 1000 subjects with an existing diagnosis of congestive heart failure or type 2 diabetes will be enrolled from 50 clinical practices. Hospital utilization is measured using a composite of disease-specific hospital admissions and emergency visits. The intervention comprises online telehealth data collection and counseling provided to support a disease-specific action plan developed by the primary care provider. The planned intervention is sequentially introduced across all participating practices. We adopt a fully Bayesian, Markov chain Monte Carlo-driven statistical approach, wherein we use simulation to determine the effect of cluster size, sample size, and crossover interval choice on type I error and power to evaluate differences in hospital utilization. For our Bayesian stepped wedge trial design, simulations suggest moderate decreases in power when crossover intervals from control to intervention are reduced from every 3 to 2 weeks, and dramatic decreases in power as the numbers of clusters decrease. Power and type I error performance were not notably affected by the addition of nonzero cluster effects or a temporal trend in hospitalization intensity. Stepped wedge trial designs that intervene in small clusters across longer periods can provide enhanced power to evaluate comparative

  2. Diving wedges

    NASA Astrophysics Data System (ADS)

    Vincent, Lionel; Kanso, Eva

    2017-11-01

    Diving induces large pressures during water entry, accompanied by the creation of cavity behind the diver and water splash ejected from the free water surface. To minimize impact forces, divers streamline their shape at impact. Here, we investigate the impact forces and splash evolution of diving wedges as a function of the wedge opening angle. A gradual transition from impactful to smooth entry is observed as the wedge angle decreases. After submersion, diving wedges experience significantly smaller drag forces (two-fold smaller) than immersed wedges. We characterize the shapes of the cavity and splash created by the wedge and find that they are independent of the entry velocity at short times, but that the splash exhibits distinct variations in shape at later times. Combining experimental approach and a discrete fluid particle model, we show that the splash shape is governed by a destabilizing Venturi-suction force due to air rushing between the splash and the water surface and a stabilizing force due to surface tension. These findings may have implications in a wide range of water entry problems, with applications in engineering and bio-related problems, including naval engineering, disease spreading and platform diving. This work was funded by the National Science Foundation.

  3. [Biphasic ceramic wedge and plate fixation with locked adjustable screws for open wedge tibial osteotomy].

    PubMed

    Lavallé, F; Pascal-Mousselard, H; Rouvillain, J L; Ribeyre, D; Delattre, O; Catonné, Y

    2004-10-01

    The aim of this radiological study was to evaluate the use of a biphasic ceramic wedge combined with plate fixation with locked adjustable screws for open wedge tibial osteotomy. Twenty-six consecutive patients (27 knees) underwent surgery between December 1999 and March 2002 to establish a normal lower-limb axis. The series included 6 women and 20 men, mean age 50 years (16 right knees and 11 left knees). Partial weight-bearing with crutches was allowed on day 1. A standard radiological assessment was performed on day 1, 90, and 360 (plain AP and lateral stance films of the knee). A pangonogram was performed before surgery and at day 360. Presence of a lateral metaphyseal space, development of peripheral cortical bridges, and osteointegration of the bone substitute-bone interface were evaluated used to assess bone healing. The medial tibial angle between the line tangent to the tibial plateau and the anatomic axis of the tibia (beta) was evaluated to assess preservation of postoperative correction. The HKA angle was determined. Three patients were lost to follow-up and 23 patients (24 knees) were retained for analysis. At last follow-up, presence of peripheral cortical bridges and complete filling of the lateral metaphyseal space demonstrated bone healing in all patients. Good quality osteointegration was achieved since 21 knees did not present an interface between the bone substitute and native bone (homogeneous transition zone). The beta angle was unchanged for 23 knees. A normal axis was observed in patients (16 knees) postoperatively. Use of a biphasic ceramic wedge in combination with plate fixation with locked adjustable screws is a reliable option for open wedge tibial osteotomy. The bone substitute fills the gap well. Tolerance and integration are optimal. Bone healing is achieved. Plate fixation with protected weight bearing appears to be a solid assembly, maintaining these corrections.

  4. Wedge measures parallax separations...on large-scale 70-mm

    Treesearch

    Steven L. Wert; Richard J. Myhre

    1967-01-01

    A new parallax wedge (range: 1.5 to 2 inches) has been designed for use with large-scaled 70-mm. aerial photographs. The narrow separation of the wedge allows the user to measure small parallax separations that are characteristic of large-scale photographs.

  5. Dose to the contralateral breast: a comparison of two techniques using the enhanced dynamic wedge versus a standard wedge.

    PubMed

    Warlick, W B; O'Rear, J H; Earley, L; Moeller, J H; Gaffney, D K; Leavitt, D D

    1997-01-01

    The dose to the contralateral breast has been associated with an increased risk of developing a second breast malignancy. Varying techniques have been devised and described in the literature to minimize this dose. Metal beam modifiers such as standard wedges are used to improve the dose distribution in the treated breast, but unfortunately introduce an increased scatter dose outside the treatment field, in particular to the contralateral breast. The enhanced dynamic wedge is a means of remote wedging created by independently moving one collimator jaw through the treatment field during dose delivery. This study is an analysis of differing doses to the contralateral breast using two common clinical set-up techniques with the enhanced dynamic wedge versus the standard metal wedge. A tissue equivalent block (solid water), modeled to represent a typical breast outline, was designed as an insert in a Rando phantom to simulate a standard patient being treated for breast conservation. Tissue equivalent material was then used to complete the natural contour of the breast and to reproduce appropriate build-up and internal scatter. Thermoluminescent dosimeter (TLD) rods were placed at predetermined distances from the geometric beam's edge to measure the dose to the contralateral breast. A total of 35 locations were used with five TLDs in each location to verify the accuracy of the measured dose. The radiation techniques used were an isocentric set-up with co-planar, non divergent posterior borders and an isocentric set-up with a half beam block technique utilizing the asymmetric collimator jaw. Each technique used compensating wedges to optimize the dose distribution. A comparison of the dose to the contralateral breast was then made with the enhanced dynamic wedge vs. the standard metal wedge. The measurements revealed a significant reduction in the contralateral breast dose with the enhanced dynamic wedge compared to the standard metal wedge in both set-up techniques. The

  6. Wedge assembly for electrical transformer component spacing

    DOEpatents

    Baggett, Franklin E.; Cage, W. Franklin

    1991-01-01

    A wedge assembly that is easily inserted between two surfaces to be supported thereby, and thereafter expanded to produce a selected spacing between those surfaces. This wedge assembly has two outer members that are substantially identical except that they are mirror images of each other. Oppositely directed faces of these of these outer members are substantially parallel for the purpose of contacting the surfaces to be separated. The outer faces of these outer members that are directed toward each other are tapered so as to contact a center member having complementary tapers on both faces. A washer member is provided to contact a common end of the outer members, and a bolt member penetrates this washer and is threadably received in a receptor of the center member. As the bolt member is threaded into the center member, the center member is drawn further into the gap between the outer members and thereby separates these outer members to contact the surfaces to be separated. In the preferred embodiment, the contacting surfaces of the outer member and the center member are provided with guide elements. The wedge assembly is described for use in separating the secondary windings from the laminations of an electrical power transformer.

  7. Total Hip Intraoperative Femur Fracture: Do the Design Enhancements of a Second-Generation Tapered-Wedge Stem Reduce the Incidence?

    PubMed

    Colacchio, Nicholas D; Robbins, Claire E; Aghazadeh, Mehran S; Talmo, Carl T; Bono, James V

    2017-10-01

    Intraoperative femur fracture (IFF) is a well-known complication in primary uncemented total hip arthroplasty (THA). Variations in implant instrumentation design and operative technique may influence the risk of IFF. This study investigates IFF between a standard uncemented tapered-wedge femoral stem and its second-generation successor with the following design changes: size-specific medial curvature, proportional incremental stem growth, modest reduction in stem length, and distal lateral relief. A single experienced surgeon's patient database was retrospectively queried for IFF occurring during primary uncemented THA using a standard tapered-wedge femoral stem system or a second-generation stem. All procedures were performed using soft tissue preserving anatomic capsule repair and posterior approach. The primary outcome measure was IFF. A z-test of proportions was performed to determine significant difference between the 2 stems with respect to IFF. Patient demographics, Dorr classification, and implant characteristics were also examined. Forty-one of 1510 patients (2.72%) who received a standard tapered-wedge femoral stem sustained an IFF, whereas 5 of 800 patients (0.63%) using the second-generation stem incurred an IFF. No other significant associations were found. A standard tapered-wedge femoral stem instrumentation system resulted in greater than 4 times higher incidence of IFF than its second-generation successor used for primary uncemented THA. Identifying risk factors for IFF is necessary to facilitate implant system improvements and thus maximize patient outcomes. Copyright © 2017. Published by Elsevier Inc.

  8. The Cosmonaut Sea Wedge

    USGS Publications Warehouse

    Solli, K.; Kuvaas, B.; Kristoffersen, Y.; Leitchenkov, G.; Guseva, J.; Gandyukhin, V.

    2007-01-01

    A set of multi-channel seismic profiles (~15000 km) acquired by Russia, Norway and Australia has been used to investigate the depositional evolution of the Cosmonaut Sea margin of East Antarctica. We recognize a regional sediment wedge below the upper part of the continental rise. The wedge, herein termed the Cosmonaut Sea Wedge, is positioned stratigraphically underneath the inferred glaciomarine section and extends for at least 1200 km along the continental margin and from 80 to about 250 km seaward or to the north. Lateral variations in the growth pattern of the wedge indicate several overlapping depocentres, which at their distal northern end are flanked by elongated mounded drifts and contourite sheets. The internal stratification of the mounded drift deposits suggests that westward flowing bottom currents reworked the marginal deposits. The action of these currents together with sea-level changes is considered to have controlled the growth of the wedge. We interpret the Cosmonaut Sea Wedge as a composite feature comprising several bottom current reworked fan systems.

  9. Dosimetric Characteristics of Wedged Fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sidhu, N.P.S.; Breitman, Karen

    2015-01-15

    The beam characteristics of the wedged fields in the nonwedged planes (planes normal to the wedged planes) were studied for 6 MV and 15 MV x-ray beams. A method was proposed for determining the maximum field length of a wedged field that can be used in the nonwedged plane without introducing undesirable alterations in the dose distributions of these fields. The method requires very few measurements. The relative wedge factors of 6 MV and 15 MV X-rays were determined for wedge filters of nominal wedge angles of 15°, 30°, 45°, and 60° as a function of depth and field size.more » For a 6 MV beam the relative wedge factors determined for a field size of 10 × 10 cm{sup 2} for 30°, 45°, and 60° wedge filters can be used for various field sizes ranging from 4 cm{sup 2} to 20 cm{sup 2} (except for the 60° wedge for which the maximum field size that can be used is 15 × 20 cm{sup 2}) without introducing errors in the dosimetric calculations of more than 0.5% for depths up to 20 cm and 1% for depths up to 30 cm. For the 15° wedge filter the relative wedge factor for a field size of 10 × 10 cm{sup 2} can be used over the same range of field sizes by introducing slightly higher error, 0.5% for depths up to 10 cm and 1% for depths up to 30 cm. For a 15 MV beam the maximum magnitude of the relative wedge factors for 45° and 60° lead wedges is of the order of 1%, and it is not important clinically to apply a correction of that magnitude. For a 15 MV beam the relative wedge factors determined for a field size of 6 × 6 cm{sup 2} for the 15° and 30° steel wedges can be used over a range of field sizes from 4 cm{sup 2} to 20 cm{sup 2} without causing dosimetric errors greater than 0.5% for depths up to 10 cm.« less

  10. Research Designs for Intervention Research with Small Samples II: Stepped Wedge and Interrupted Time-Series Designs.

    PubMed

    Fok, Carlotta Ching Ting; Henry, David; Allen, James

    2015-10-01

    The stepped wedge design (SWD) and the interrupted time-series design (ITSD) are two alternative research designs that maximize efficiency and statistical power with small samples when contrasted to the operating characteristics of conventional randomized controlled trials (RCT). This paper provides an overview and introduction to previous work with these designs and compares and contrasts them with the dynamic wait-list design (DWLD) and the regression point displacement design (RPDD), which were presented in a previous article (Wyman, Henry, Knoblauch, and Brown, Prevention Science. 2015) in this special section. The SWD and the DWLD are similar in that both are intervention implementation roll-out designs. We discuss similarities and differences between the SWD and DWLD in their historical origin and application, along with differences in the statistical modeling of each design. Next, we describe the main design characteristics of the ITSD, along with some of its strengths and limitations. We provide a critical comparative review of strengths and weaknesses in application of the ITSD, SWD, DWLD, and RPDD as small sample alternatives to application of the RCT, concluding with a discussion of the types of contextual factors that influence selection of an optimal research design by prevention researchers working with small samples.

  11. Research Designs for Intervention Research with Small Samples II: Stepped Wedge and Interrupted Time-Series Designs

    PubMed Central

    Ting Fok, Carlotta Ching; Henry, David; Allen, James

    2015-01-01

    The stepped wedge design (SWD) and the interrupted time-series design (ITSD) are two alternative research designs that maximize efficiency and statistical power with small samples when contrasted to the operating characteristics of conventional randomized controlled trials (RCT). This paper provides an overview and introduction to previous work with these designs, and compares and contrasts them with the dynamic wait-list design (DWLD) and the regression point displacement design (RPDD), which were presented in a previous article (Wyman, Henry, Knoblauch, and Brown, 2015) in this Special Section. The SWD and the DWLD are similar in that both are intervention implementation roll-out designs. We discuss similarities and differences between the SWD and DWLD in their historical origin and application, along with differences in the statistical modeling of each design. Next, we describe the main design characteristics of the ITSD, along with some of its strengths and limitations. We provide a critical comparative review of strengths and weaknesses in application of the ITSD, SWD, DWLD, and RPDD as small samples alternatives to application of the RCT, concluding with a discussion of the types of contextual factors that influence selection of an optimal research design by prevention researchers working with small samples. PMID:26017633

  12. Thermally actuated wedge block

    DOEpatents

    Queen, Jr., Charles C.

    1980-01-01

    This invention relates to an automatically-operating wedge block for maintaining intimate structural contact over wide temperature ranges, including cryogenic use. The wedging action depends on the relative thermal expansion of two materials having very different coefficients of thermal expansion. The wedge block expands in thickness when cooled to cryogenic temperatures and contracts in thickness when returned to room temperature.

  13. Rethinking wedges

    NASA Astrophysics Data System (ADS)

    Davis, Steven J.; Cao, Long; Caldeira, Ken; Hoffert, Martin I.

    2013-03-01

    a longer-term focus, the root difference lies in the perceived urgency of the climate problem [6]. The emission reductions required by current targets, let alone a complete phase-out of emissions, demand fundamental, disruptive changes in the global energy system over the next 50 years. Depending on what sort of fossil-fuel infrastructure is replaced and neglecting any emissions produced to build and maintain the new infrastructure (see, e.g. [43]), a single wedge represents 0.7-1.4 terawatts (TW) of carbon-free energy (or an equivalent decrease in demand for fossil energy). Whether the changes to the energy system are called incremental or revolutionary, few would dispute that extensive innovation of technologies will be necessary to afford many terawatts of carbon-free energy and reductions in energy demand [42, 44, 45]. Currently, only a few classes of technologies might conceivably provide carbon-free power at the scale of multiple terawatts, among them fossil fuels with carbon capture and storage (CCS), nuclear, and renewables (principally solar and wind, and perhaps biomass) [42, 46, 47]. However, CCS has not yet been commercially deployed at any centralized power plant; the existing nuclear industry, based on reactor designs more than a half-century old and facing renewed public concerns of safety, is in a period of retrenchment, not expansion; and existing solar, wind, biomass, and energy storage systems are not yet mature enough to provide affordable baseload power at terawatt scale. Each of these technologies must be further developed if they are to be deployed at scale and at costs competitive with fossil energy. Yet because investments in the energy sector tend to be capital intensive and long term, research successes are often not fully appropriable [48], and technologies compete almost entirely on the price of delivered electricity, private firms tend to underinvest in R&D, which has made energy one of the least innovative industry sectors in modern

  14. Double-wedged Wollaston-type polarimeter design and integration to RTT150-TFOSC

    NASA Astrophysics Data System (ADS)

    Helhel, Selcuk; Kirbiyik, Halil; Bayar, Cevdet; Khamitov, Irek; Kahya, Gizem; Okuyan, Oguzhan

    2016-07-01

    Photometric and spectroscopic observation capabilities of 1.5-m Russian- Turkish Telescope RTT150 has been broadened with the integration of presented polarimeter. The well-known double-wedged Wollaston-type dual-beam technique was preferred and applied to design and produce it. The designed polarimeter was integrated into the telescope detector TFOSC, and called TFOSC-WP. Its capabil- ities and limitations were attempted to be determined by a number of observation sets. Non-polarized and strongly polarized stars were observed to determine its limi- tations as well as its linearity. An instrumental intrinsic polarization was determined for the 1×5 arcmin field of view in equatorial coordinate system, the systematic error of polarization degree as 0.2% %, and position angle as 1.9°. These limitations and capabilities are denoted as good enough to satisfy telescopes' present and future astrophysical space missions related to GAIA and SRG projects.

  15. Observation of the dispersion of wedge waves propagating along cylinder wedge with different truncations by laser ultrasound technique

    NASA Astrophysics Data System (ADS)

    Jia, Jing; Zhang, Yu; Han, Qingbang; Jing, Xueping

    2017-10-01

    The research focuses on study the influence of truncations on the dispersion of wedge waves propagating along cylinder wedge with different truncations by using the laser ultrasound technique. The wedge waveguide models with different truncations were built by using finite element method (FEM). The dispersion curves were obtained by using 2D Fourier transformation method. Multiple mode wedge waves were observed, which was well agreed with the results estimated from Lagasse's empirical formula. We established cylinder wedge with radius of 3mm, 20° and 60°angle, with 0μm, 5μm, 10μm, 20μm, 30μm, 40μm, and 50μm truncations, respectively. It was found that non-ideal wedge tip caused abnormal dispersion of the mode of cylinder wedge, the modes of 20° cylinder wedge presents the characteristics of guide waves which propagating along hollow cylinder as the truncation increasing. Meanwhile, the modes of 60° cylinder wedge with truncations appears the characteristics of guide waves propagating along hollow cylinder, and its mode are observed clearly. The study can be used to evaluate and detect wedge structure.

  16. Evaluating the dose to the contralateral breast when using a dynamic wedge versus a regular wedge.

    PubMed

    Weides, C D; Mok, E C; Chang, W C; Findley, D O; Shostak, C A

    1995-01-01

    The incidence of secondary cancers in the contralateral breast after primary breast irradiation is several times higher than the incidence of first time breast cancer. Studies have shown that the scatter radiation to the contralateral breast may play a large part in the induction of secondary breast cancers. Factors that may contribute to the contralateral breast dose may include the use of blocks, the orientation of the field, and wedges. Reports have shown that the use of regular wedges, particularly for the medial tangential field, gives a significantly higher dose to the contralateral breast compared to an open field. This paper compares the peripheral dose outside the field using a regular wedge, a dynamic wedge, and an open field technique. The data collected consisted of measurements taken with patients, solid water and a Rando phantom using a Varian 2300CD linear accelerator. Ion chambers, thermoluminescent dosimeters (TLD), diodes, and films were the primary means for collecting the data. The measurements show that the peripheral dose outside the field using a dynamic wedge is close to that of open fields, and significantly lower than that of regular wedges. This information indicates that when using a medial wedge, a dynamic wedge should be used.

  17. Thermal Evolution of Diapirs with Complex Mantle Wedge Flow

    NASA Astrophysics Data System (ADS)

    Sylvia, R. T.; Kincaid, C.

    2016-12-01

    Subduction of oceanic lithosphere drives heat and mass exchange between Earth's interior and surface. One proposed transport mechanism for thermally and chemically distinct material through the wedge is the diapir model. The dominant driver of flow in the upper mantle is a mode of forced convection responding to motion of a tabular slab. A set of 4D laboratory experiments was conducted exploring the relationship between buoyancy flux and subduction parameters and subsequent effects on diapir transport. Variable subduction styles tested include downdip and rollback motion, slab gaps, slab steepening and backarc extension. The mantle is modeled using viscous glucose syrup with an Arrhenius type temperature dependent viscosity. Diapirs representing homogeneous mechanically mixed melange layer are introduced as buoyant fluid injected at multiple point sources situated along the surface of the sinking slab. Laboratory data is collected using high definition time-lapse photography and quantified using image velocimetry techniques. Here we present results from numerical simulation of the thermal evolution of spherical mantle wedge diapirs using 2D axisymmetric advection-diffusion model with internal diapir flow described by an analytic potential flow solution. A suite of wedge temperature profiles are used as thermal forcing on diapirs traversing the wedge along experimentally observed 4D ascent pathways. Scaling arguments suggest that for systems with Péclet number on the order of 15 advective heat transport is expected to dominate over diffusive heat transport, but the range of observed P-T-t paths and vigorous internal flow complicate this assumption. Interactions between modes of free (diapiric) and forced (wedge) convection lead to complex spatio-temporal variability in slab-to-arc connectivity patterns. Rollback induced toroidal flow, along trench changes in dip, convergence rate and backarc extension all produce a significant ( 500 km) trench-parallel transport

  18. Aligning Optical Fibers by Means of Actuated MEMS Wedges

    NASA Technical Reports Server (NTRS)

    Morgan, Brian; Ghodssi, Reza

    2007-01-01

    Microelectromechanical systems (MEMS) of a proposed type would be designed and fabricated to effect lateral and vertical alignment of optical fibers with respect to optical, electro-optical, optoelectronic, and/or photonic devices on integrated circuit chips and similar monolithic device structures. A MEMS device of this type would consist of a pair of oppositely sloped alignment wedges attached to linear actuators that would translate the wedges in the plane of a substrate, causing an optical fiber in contact with the sloping wedge surfaces to undergo various displacements parallel and perpendicular to the plane. In making it possible to accurately align optical fibers individually during the packaging stages of fabrication of the affected devices, this MEMS device would also make it possible to relax tolerances in other stages of fabrication, thereby potentially reducing costs and increasing yields. In a typical system according to the proposal (see Figure 1), one or more pair(s) of alignment wedges would be positioned to create a V groove in which an optical fiber would rest. The fiber would be clamped at a suitable distance from the wedges to create a cantilever with a slight bend to push the free end of the fiber gently to the bottom of the V groove. The wedges would be translated in the substrate plane by amounts Dx1 and Dx2, respectively, which would be chosen to move the fiber parallel to the plane by a desired amount Dx and perpendicular to the plane by a desired amount Dy. The actuators used to translate the wedges could be variants of electrostatic or thermal actuators that are common in MEMS.

  19. Band Gap Optimization Design of Photonic Crystals Material

    NASA Astrophysics Data System (ADS)

    Yu, Y.; Yu, B.; Gao, X.

    2017-12-01

    The photonic crystal has a fundamental characteristic - photonic band gap, which can prevent light to spread in the crystals. This paper studies the width variation of band gaps of two-dimension square lattice photonic crystals by changing the geometrical shape of the unit cells’ inner medium column. Using the finite element method, we conduct numerical experiments on MATLAB 2012a and COMSOL 3.5. By shortening the radius in vertical axis and rotating the medium column, we design a new unit cell, with a 0.3*3.85e-7 vertical radius and a 15 degree deviation to the horizontal axis. The new cell has a gap 1.51 percent wider than the circle medium structure in TE gap and creates a 0.0124 wide TM gap. Besides, the experiment shows the first TM gap is partially overlapped by the second TE gap in gap pictures. This is helpful to format the absolute photonic band gaps and provides favorable theoretical basis for designing photonic communication material.

  20. Open wedge high tibial osteotomy using three-dimensional printed models: Experimental analysis using porcine bone.

    PubMed

    Kwun, Jun-Dae; Kim, Hee-June; Park, Jaeyoung; Park, Il-Hyung; Kyung, Hee-Soo

    2017-01-01

    The purpose of this study was to evaluate the usefulness of three-dimensional (3D) printed models for open wedge high tibial osteotomy (HTO) in porcine bone. Computed tomography (CT) images were obtained from 10 porcine knees and 3D imaging was planned using the 3D-Slicer program. The osteotomy line was drawn from the three centimeters below the medial tibial plateau to the proximal end of the fibular head. Then the osteotomy gap was opened until the mechanical axis line was 62.5% from the medial border along the width of the tibial plateau, maintaining the posterior tibial slope angle. The wedge-shaped 3D-printed model was designed with the measured angle and osteotomy section and was produced by the 3D printer. The open wedge HTO surgery was reproduced in porcine bone using the 3D-printed model and the osteotomy site was fixed with a plate. Accuracy of osteotomy and posterior tibial slope was evaluated after the osteotomy. The mean mechanical axis line on the tibial plateau was 61.8±1.5% from the medial tibia. There was no statistically significant difference (P=0.160). The planned and post-osteotomy correction wedge angles were 11.5±3.2° and 11.4±3.3°, and the posterior tibial slope angle was 11.2±2.2° pre-osteotomy and 11.4±2.5° post-osteotomy. There were no significant differences (P=0.854 and P=0.429, respectively). This study showed that good results could be obtained in high tibial osteotomy by using 3D printed models of porcine legs. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Phase Space Exchange in Thick Wedge Absorbers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neuffer, David

    The problem of phase space exchange in wedge absorbers with ionization cooling is discussed. The wedge absorber exchanges transverse and longitudinal phase space by introducing a position-dependent energy loss. In this paper we note that the wedges used with ionization cooling are relatively thick, so that single wedges cause relatively large changes in beam phase space. Calculation methods adapted to such “thick wedge” cases are presented, and beam phase-space transformations through such wedges are discussed.

  2. Cementless Tapered Wedge Femoral Stems Decrease Subsidence in Obese Patients Compared to Traditional Fit-and-Fill Stems.

    PubMed

    Grant, Tanner W; Lovro, Luke R; Licini, David J; Warth, Lucian C; Ziemba-Davis, Mary; Meneghini, Robert M

    2017-03-01

    Femoral component stability and resistance to subsidence is critical for osseointegration and clinical success in cementless total hip arthroplasty. The purpose of this study was to radiographically evaluate the anatomic fit and subsidence of 2 different proximally tapered, porous-coated modern cementless femoral component designs. A retrospective cohort study of 126 consecutive cementless total hip arthroplasties was performed. Traditional fit-and-fill stems were implanted in the first 61 hips with the remaining 65 receiving morphometric tapered wedge stems. Preoperative bone morphology was radiographically assessed by the canal flare index. Canal fill in the coronal plane, subsidence, and the sagittal alignment of stems was measured digitally on immediate and 1-month postoperative radiographs. Demographics and canal flare indices were similar between groups. The percentage of femoral canal fill was greater in the tapered wedge compared to the fit-and-fill stem (P = .001). There was significantly less subsidence in the tapered wedge design (0.3 mm) compared to the fit-and-fill design (1.1 mm) (P = .001). Subsidence significantly increased as body mass index (BMI) increased in the fit-and-fill stems, a finding not observed in the tapered wedge design (P = .013). An anatomically designed morphometric tapered wedge femoral stem demonstrated greater axial stability and decreased subsidence with increasing BMI than a traditional fit-and-fill stem. The resistance to subsidence, irrespective of BMI, is likely due to the inherent axial stability of a tapered wedge design and may be the optimal stem design for obese patients. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Wedge filter imaging spectrometer

    NASA Astrophysics Data System (ADS)

    Sémery, Alain; Réess, Jean-Michel; Lemarquis, Frédéric; Drossart, Pierre; Laubier, David; Bernardi, Pernelle

    2017-11-01

    The development of the planetary exploration for landers makes it more and more necessary to have at our disposal small and light instruments. This is why we are developing in our laboratory a light imaging spectrometer with a wedge filter making the spectral splitting. This design already developed in other laboratories has the great advantage to need a limited number of optical components. However its drawback is that at a given instant the different spectral pixels don't see the same spot in the field. We propose a new design to remedy this drawback by the adjunction of a dispersive system in the fore-optics.

  4. Inclined indentation of smooth wedge in rock mass

    NASA Astrophysics Data System (ADS)

    Chanyshev, AI; Podyminogin, GM; Lukyashko, OA

    2018-03-01

    The article focuses on the inclined rigid wedge indentation into a rigid-plastic half-plane of rocks with the Mohr–Coulomb-Mohr plasticity. The limiting loads on different sides of the wedge are determined versus the internal friction angle, cohesion and wedge angle. It is shown that when the force is applied along the symmetry axis of the wedge, the zone of plasticity is formed only on one wedge side. In order to form the plasticity zone on both sides of the wedge, it is necessary to apply the force asymmetrically relative to the wedge symmetry axis. An engineering solution for the asymmetrical case implementation is suggested.

  5. Europa Wedge Region

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This image shows an area of crustal separation on Jupiter's moon, Europa. Lower resolution pictures taken earlier in the tour of NASA's Galileo spacecraft revealed that dark wedge-shaped bands in this region are areas where the icy crust has completely pulled apart. Dark material has filled up from below and filled the void created by this separation.

    In the lower left corner of this image, taken by Galileo's onboard camera on December 16, 1997, a portion of one dark wedge area is visible, revealing a linear texture along the trend of the wedge. The lines of the texture change orientation slightly and reflect the fact that we are looking at a bend in the wedge. The older, bright background, visible on the right half of the image, is criss-crossed with ridges. A large, bright ridge runs east-west through the upper part of the image, cutting across both the older background plains and the wedge. This ridge is rough in texture, with numerous small terraces and troughs containing dark material.

    North is to the top of the picture and the sun illuminates the surface from the northwest. This image, centered at approximately 16.5 degrees south latitude and 196.5 degrees west longitude, covers an area approximately 10 kilometers square (about 6.5 miles square). The resolution of this image is about 26 meters per picture element. This image was taken by the solid state imaging system from a distance of 1250 kilometers (750 miles).

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://www.jpl.nasa.gov/ galileo.

  6. Achieving hard X-ray nanofocusing using a wedged multilayer Laue lens

    DOE PAGES

    Huang, Xiaojing; Conley, Raymond; Bouet, Nathalie; ...

    2015-05-04

    We report on the fabrication and the characterization of a wedged multilayer Laue lens for x-ray nanofocusing. The lens was fabricated using a sputtering deposition technique, in which a specially designed mask was employed to introduce a thickness gradient in the lateral direction of the multilayer. X-ray characterization shows an efficiency of 27% and a focus size of 26 nm at 14.6 keV, in a good agreement with theoretical calculations. These results indicate that the desired wedging is achieved in the fabricated structure. We anticipate that continuous development on wedged MLLs will advance x-ray nanofocusing optics to new frontiers andmore » enrich capabilities and opportunities for hard X-ray microscopy.« less

  7. Achieving hard X-ray nanofocusing using a wedged multilayer Laue lens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Xiaojing; Conley, Raymond; Bouet, Nathalie

    We report on the fabrication and the characterization of a wedged multilayer Laue lens for x-ray nanofocusing. The lens was fabricated using a sputtering deposition technique, in which a specially designed mask was employed to introduce a thickness gradient in the lateral direction of the multilayer. X-ray characterization shows an efficiency of 27% and a focus size of 26 nm at 14.6 keV, in a good agreement with theoretical calculations. These results indicate that the desired wedging is achieved in the fabricated structure. We anticipate that continuous development on wedged MLLs will advance x-ray nanofocusing optics to new frontiers andmore » enrich capabilities and opportunities for hard X-ray microscopy.« less

  8. Laboratory experiments on subduction-induced circulation in the wedge and the evolution of mantle diapirs

    NASA Astrophysics Data System (ADS)

    Sylvia, R. T.; Kincaid, C. R.; Behn, M. D.; Zhang, N.

    2014-12-01

    Circulation in subduction zones involves large-scale, forced-convection by the motion of the down-going slab and small scale, buoyant diapirs of hydrated mantle or subducted sediments. Models of subduction-diapir interaction often neglect large-scale flow patterns induced by rollback, back-arc extension and slab morphology. We present results from laboratory experiments relating these parameters to styles of 4-D wedge circulation and diapir ascent. A glucose fluid is used to represent the mantle. Subducting lithosphere is modeled with continuous rubber belts moving with prescribed velocities, capable of reproducing a large range in downdip relative rollback plate rates. Differential steepening of distinct plate segments simulates the evolution of slab gaps. Back-arc extension is produced using Mylar sheeting in contact with fluid beneath the overriding plate that moves relative to the slab rollback rate. Diapirs are introduced at the slab-wedge interface in two modes: 1) distributions of low density rigid spheres and 2) injection of low viscosity, low density fluid to the base of the wedge. Results from 30 experiments with imposed along-trench (y) distributions of buoyancy, show near-vertical ascent paths only in cases with simple downdip subduction and ratios (W*) of diapir rise velocity to downdip plate rate of W*>1. For W* = 0.2-1, diapir ascent paths are complex, with large (400 km) lateral offsets between source and surfacing locations. Rollback and back-arc extension enhance these offsets, occasionally aligning diapirs from different along-trench locations into trench-normal, age-progressive linear chains beneath the overriding plate. Diapirs from different y-locations may surface beneath the same volcanic center, despite following ascent paths of very different lengths and transit times. In cases with slab gaps, diapirs from the outside edge of the steep plate move 1000 km parallel to the trench before surfacing above the shallow dipping plate. "Dead zones

  9. Mantle wedge exhumation beneath the Dora-Maira (U)HP dome unravelled by local earthquake tomography (Western Alps)

    NASA Astrophysics Data System (ADS)

    Solarino, Stefano; Malusà, Marco G.; Eva, Elena; Guillot, Stéphane; Paul, Anne; Schwartz, Stéphane; Zhao, Liang; Aubert, Coralie; Dumont, Thierry; Pondrelli, Silvia; Salimbeni, Simone; Wang, Qingchen; Xu, Xiaobing; Zheng, Tianyu; Zhu, Rixiang

    2018-01-01

    In continental subduction zones, the behaviour of the mantle wedge during exhumation of (ultra)high-pressure [(U)HP] rocks provides a key to distinguish among competing exhumation mechanisms. However, in spite of the relevant implications for understanding orogenic evolution, a high-resolution image of the mantle wedge beneath the Western Alps is still lacking. In order to fill this gap, we perform a detailed analysis of the velocity structure of the Alpine belt beneath the Dora-Maira (U)HP dome, based on local earthquake tomography independently validated by receiver function analysis. Our results point to a composite structure of the mantle wedge above the subducted European lithosphere. We found that the Dora-Maira (U)HP dome lays directly above partly serpentinized peridotites (Vp 7.5 km/s; Vp/Vs = 1.70-1.72), documented from 10 km depth down to the top of the eclogitized lower crust of the European plate. These serpentinized peridotites, possibly formed by fluid release from the subducting European slab to the Alpine mantle wedge, are juxtaposed against dry mantle peridotites of the Adriatic upper plate along an active fault rooted in the lithospheric mantle. We propose that serpentinized mantle-wedge peridotites were exhumed at shallow crustal levels during late Eocene transtensional tectonics, also triggering the rapid exhumation of (U)HP rocks, and were subsequently indented under the Alpine metamorphic wedge in the early Oligocene. Our findings suggest that mantle-wedge exhumation may represent a major feature of the deep structure of exhumed continental subduction zones. The deep orogenic levels here imaged by seismic tomography may be exposed today in older (U)HP belts, where mantle-wedge serpentinites are commonly associated with coesite-bearing continental metamorphic rocks.

  10. Substorm Current Wedge Revisited

    NASA Astrophysics Data System (ADS)

    Kepko, L.; McPherron, R. L.; Amm, O.; Apatenkov, S.; Baumjohann, W.; Birn, J.; Lester, M.; Nakamura, R.; Pulkkinen, T. I.; Sergeev, V.

    2015-07-01

    Almost 40 years ago the concept of the substorm current wedge was developed to explain the magnetic signatures observed on the ground and in geosynchronous orbit during substorm expansion. In the ensuing decades new observations, including radar and low-altitude spacecraft, MHD simulations, and theoretical considerations have tremendously advanced our understanding of this system. The AMPTE/IRM, THEMIS and Cluster missions have added considerable observational knowledge, especially on the important role of fast flows in producing the stresses that generate the substorm current wedge. Recent detailed, multi-spacecraft, multi-instrument observations both in the magnetosphere and in the ionosphere have brought a wealth of new information about the details of the temporal evolution and structure of the current system. While the large-scale picture remains valid, the new details call for revision and an update of the original view. In this paper we briefly review the historical development of the substorm current wedge, review recent in situ and ground-based observations and theoretical work, and discuss the current active research areas. We conclude with a revised, time-dependent picture of the substorm current wedge that follows its evolution from the initial substorm flows through substorm expansion and recovery.

  11. Ice Particle Impacts on a Moving Wedge

    NASA Technical Reports Server (NTRS)

    Vargas, Mario; Struk, Peter M.; Kreeger, Richard E.; Palacios, Jose; Iyer, Kaushik A.; Gold, Robert E.

    2014-01-01

    This work presents the results of an experimental study of ice particle impacts on a moving wedge. The experiment was conducted in the Adverse Environment Rotor Test Stand (AERTS) facility located at Penn State University. The wedge was placed at the tip of a rotating blade. Ice particles shot from a pressure gun intercepted the moving wedge and impacted it at a location along its circular path. The upward velocity of the ice particles varied from 7 to 12 meters per second. Wedge velocities were varied from 0 to 120 meters per second. Wedge angles tested were 0 deg, 30 deg, 45 deg, and 60 deg. High speed imaging combined with backlighting captured the impact allowing observation of the effect of velocity and wedge angle on the impact and the post-impact fragment behavior. It was found that the pressure gun and the rotating wedge could be synchronized to consistently obtain ice particle impacts on the target wedge. It was observed that the number of fragments increase with the normal component of the impact velocity. Particle fragments ejected immediately after impact showed velocities higher than the impact velocity. The results followed the major qualitative features observed by other researchers for hailstone impacts, even though the reduced scale size of the particles used in the present experiment as compared to hailstones was 4:1.

  12. Impingement of water droplets on wedges and double-wedge airfoils at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Serafini, John S

    1954-01-01

    An analytical solution has been obtained for the equations of motion of water droplets impinging on a wedge in a two-dimensional supersonic flow field with a shock wave attached to the wedge. The closed-form solution yields analytical expressions for the equation of the droplet trajectory, the local rate of impingement and the impingement velocity at any point on the wedge surface, and the total rate of impingement. The analytical expressions are utilized to determine the impingement on the forward surfaces of diamond airfoils in supersonic flow fields with attached shock waves. The results presented include the following conditions: droplet diameters from 2 to 100 microns, pressure altitudes from sea level to 30,000 feet, free-stream static temperatures from 420 degrees r, free stream Mach numbers from 1.1 to 2.0, semiapex angles for the wedge from 1.14 degrees to 7.97 degrees, thickness-to-chord ratios for the diamond airfoil from 0.02 to 0.14, chord lengths from 1 to 20 feet, and angles of attack from zero to the inverse tangent of the airfoil thickness-to-chord ratio.

  13. Aerodynamic Analysis Over Double Wedge Airfoil

    NASA Astrophysics Data System (ADS)

    Prasad, U. S.; Ajay, V. S.; Rajat, R. H.; Samanyu, S.

    2017-05-01

    Aeronautical studies are being focused more towards supersonic flights and methods to attain a better and safer flight with highest possible performance. Aerodynamic analysis is part of the whole procedure, which includes focusing on airfoil shapes which will permit sustained flight of aircraft at these speeds. Airfoil shapes differ based on the applications, hence the airfoil shapes considered for supersonic speeds are different from the ones considered for Subsonic. The present work is based on the effects of change in physical parameter for the Double wedge airfoil. Mach number range taken is for transonic and supersonic. Physical parameters considered for the Double wedge case with wedge angle (ranging from 5 degree to 15 degree. Available Computational tools are utilized for analysis. Double wedge airfoil is analysed at different Angles of attack (AOA) based on the wedge angle. Analysis is carried out using fluent at standard conditions with specific heat ratio taken as 1.4. Manual calculations for oblique shock properties are calculated with the help of Microsoft excel. MATLAB is used to form a code for obtaining shock angle with Mach number and wedge angle at the given parameters. Results obtained from manual calculations and fluent analysis are cross checked.

  14. Designing Phononic Crystals with Wide and Robust Band Gaps

    NASA Astrophysics Data System (ADS)

    Jia, Zian; Chen, Yanyu; Yang, Haoxiang; Wang, Lifeng

    2018-04-01

    Phononic crystals (PnCs) engineered to manipulate and control the propagation of mechanical waves have enabled the design of a range of novel devices, such as waveguides, frequency modulators, and acoustic cloaks, for which wide and robust phononic band gaps are highly preferable. While numerous PnCs have been designed in recent decades, to the best of our knowledge, PnCs that possess simultaneous wide and robust band gaps (to randomness and deformations) have not yet been reported. Here, we demonstrate that by combining the band-gap formation mechanisms of Bragg scattering and local resonances (the latter one is dominating), PnCs with wide and robust phononic band gaps can be established. The robustness of the phononic band gaps are then discussed from two aspects: robustness to geometric randomness (manufacture defects) and robustness to deformations (mechanical stimuli). Analytical formulations further predict the optimal design parameters, and an uncertainty analysis quantifies the randomness effect of each designing parameter. Moreover, we show that the deformation robustness originates from a local resonance-dominant mechanism together with the suppression of structural instability. Importantly, the proposed PnCs require only a small number of layers of elements (three unit cells) to obtain broad, robust, and strong attenuation bands, which offer great potential in designing flexible and deformable phononic devices.

  15. Analysis and measurement of electromagnetic scattering by pyramidal and wedge absorbers

    NASA Technical Reports Server (NTRS)

    Dewitt, B. T.; Burnside, Walter D.

    1986-01-01

    By modifying the reflection coefficients in the Uniform Geometrical Theory of Diffraction a solution that approximates the scattering from a dielectric wedge is found. This solution agrees closely with the exact solution of Rawlins which is only valid for a few minor cases. This modification is then applied to the corner diffraction coefficient and combined with an equivalent current and geometrical optics solutions to model scattering from pyramid and wedge absorbers. Measured results from 12 inch pyramid absorbers from 2 to 18 GHz are compared to calculations assuming the returns add incoherently and assuming the returns add coherently. The measured results tend to be between the two curves. Measured results from the 8 inch wedge absorber are also compared to calculations with the return being dominated by the wedge diffraction. The procedures for measuring and specifying absorber performance are discussed and calibration equations are derived to calculate a reflection coefficient or a reflectivity using a reference sphere. Shaping changes to the present absorber designs are introduced to improve performance based on both high and low frequency analysis. Some prototypes were built and tested.

  16. Pressure Distributions About Finite Wedges in Bounded and Unbounded Subsonic Streams

    NASA Technical Reports Server (NTRS)

    Donoughe, Patrick L; Prasse, Ernst I

    1953-01-01

    An analytical investigation of incompressible flow about wedges was made to determine effects of tunnel-wedge ratio and wedge angle on the wedge pressure distributions. The region of applicability of infinite wedge-type velocity distribution was examined for finite wedges. Theoretical and experimental pressure coefficients for various tunnel-wedge ratios, wedge angles, and subsonic Mach numbers were compared.

  17. Application of a nonrandomized stepped wedge design to evaluate an evidence-based quality improvement intervention: a proof of concept using simulated data on patient-centered medical homes.

    PubMed

    Huynh, Alexis K; Lee, Martin L; Farmer, Melissa M; Rubenstein, Lisa V

    2016-10-21

    Stepped wedge designs have gained recognition as a method for rigorously assessing implementation of evidence-based quality improvement interventions (QIIs) across multiple healthcare sites. In theory, this design uses random assignment of sites to successive QII implementation start dates based on a timeline determined by evaluators. However, in practice, QII timing is often controlled more by site readiness. We propose an alternate version of the stepped wedge design that does not assume the randomized timing of implementation while retaining the method's analytic advantages and applying to a broader set of evaluations. To test the feasibility of a nonrandomized stepped wedge design, we developed simulated data on patient care experiences and on QII implementation that had the structures and features of the expected data from a planned QII. We then applied the design in anticipation of performing an actual QII evaluation. We used simulated data on 108,000 patients to model nonrandomized stepped wedge results from QII implementation across nine primary care sites over 12 quarters. The outcome we simulated was change in a single self-administered question on access to care used by Veterans Health Administration (VA), based in the United States, as part of its quarterly patient ratings of quality of care. Our main predictors were QII exposure and time. Based on study hypotheses, we assigned values of 4 to 11 % for improvement in access when sites were first exposed to implementation and 1 to 3 % improvement in each ensuing time period thereafter when sites continued with implementation. We included site-level (practice size) and respondent-level (gender, race/ethnicity) characteristics that might account for nonrandomized timing in site implementation of the QII. We analyzed the resulting data as a repeated cross-sectional model using HLM 7 with a three-level hierarchical data structure and an ordinal outcome. Levels in the data structure included patient ratings

  18. Development of Cone Wedge Ring Expansion Test to Evaluate Mechanical Properties of Clad Tubing Structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jy-An John

    To determine the hoop tensile properties of irradiated fuel cladding in a hot cell, a cone wedge ring expansion test method was developed. A four-piece wedge insert was designed with tapered angles matched to the cone shape of a loading piston. The ring specimen was expanded in the radial direction by the lateral expansion of the wedges under the downward movement of the piston. The advantages of the proposed method are that implementation of the test setup in a hot cell is simple and easy, and that it enables a direct strain measurement of the test specimen from the piston’smore » vertical displacement soon after the wedge-clad contact resistance is initiated.« less

  19. Use of Wedge Absorbers in MICE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neuffer, D.; Summers, D.; Mohayai, T.

    2017-03-01

    Wedge absorbers are needed to obtain longitudinal cooling in ionization cooling. They also can be used to obtain emittance exchanges between longitudinal and transverse phase space. There can be large exchanges in emittance, even with single wedges. In the present note we explore the use of wedge absorbers in the MICE experiment to obtain transverse–longitudinal emittance exchanges within present and future operational conditions. The same wedge can be used to explore “direct” and “reverse” emittance exchange dynamics, where direct indicates a configuration that reduces momentum spread and reverse is a configuration that increases momentum spread. Analytical estimated and ICOOL andmore » G4BeamLine simulations of the exchanges at MICE parameters are presented. Large exchanges can be obtained in both reverse and direct configurations.« less

  20. Designing Phononic Crystals with Wide and Robust Band Gaps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jia, Zian; Chen, Yanyu; Yang, Haoxiang

    Here, phononic crystals (PnCs) engineered to manipulate and control the propagation of mechanical waves have enabled the design of a range of novel devices, such as waveguides, frequency modulators, and acoustic cloaks, for which wide and robust phononic band gaps are highly preferable. While numerous PnCs have been designed in recent decades, to the best of our knowledge, PnCs that possess simultaneous wide and robust band gaps (to randomness and deformations) have not yet been reported. Here, we demonstrate that by combining the band-gap formation mechanisms of Bragg scattering and local resonances (the latter one is dominating), PnCs with widemore » and robust phononic band gaps can be established. The robustness of the phononic band gaps are then discussed from two aspects: robustness to geometric randomness (manufacture defects) and robustness to deformations (mechanical stimuli). Analytical formulations further predict the optimal design parameters, and an uncertainty analysis quantifies the randomness effect of each designing parameter. Moreover, we show that the deformation robustness originates from a local resonance-dominant mechanism together with the suppression of structural instability. Importantly, the proposed PnCs require only a small number of layers of elements (three unit cells) to obtain broad, robust, and strong attenuation bands, which offer great potential in designing flexible and deformable phononic devices.« less

  1. Designing Phononic Crystals with Wide and Robust Band Gaps

    DOE PAGES

    Jia, Zian; Chen, Yanyu; Yang, Haoxiang; ...

    2018-04-16

    Here, phononic crystals (PnCs) engineered to manipulate and control the propagation of mechanical waves have enabled the design of a range of novel devices, such as waveguides, frequency modulators, and acoustic cloaks, for which wide and robust phononic band gaps are highly preferable. While numerous PnCs have been designed in recent decades, to the best of our knowledge, PnCs that possess simultaneous wide and robust band gaps (to randomness and deformations) have not yet been reported. Here, we demonstrate that by combining the band-gap formation mechanisms of Bragg scattering and local resonances (the latter one is dominating), PnCs with widemore » and robust phononic band gaps can be established. The robustness of the phononic band gaps are then discussed from two aspects: robustness to geometric randomness (manufacture defects) and robustness to deformations (mechanical stimuli). Analytical formulations further predict the optimal design parameters, and an uncertainty analysis quantifies the randomness effect of each designing parameter. Moreover, we show that the deformation robustness originates from a local resonance-dominant mechanism together with the suppression of structural instability. Importantly, the proposed PnCs require only a small number of layers of elements (three unit cells) to obtain broad, robust, and strong attenuation bands, which offer great potential in designing flexible and deformable phononic devices.« less

  2. Wedges for ultrasonic inspection

    DOEpatents

    Gavin, Donald A.

    1982-01-01

    An ultrasonic transducer device is provided which is used in ultrasonic inspection of the material surrounding a threaded hole and which comprises a wedge of plastic or the like including a curved threaded surface adapted to be screwed into the threaded hole and a generally planar surface on which a conventional ultrasonic transducer is mounted. The plastic wedge can be rotated within the threaded hole to inspect for flaws in the material surrounding the threaded hole.

  3. Ultrasonic transducer with laminated coupling wedge

    DOEpatents

    Karplus, Henry H. B.

    1976-08-03

    An ultrasonic transducer capable of use in a high-temperature environment incorporates a laminated metal coupling wedge including a reflecting edge shaped as a double sloping roof and a transducer crystal backed by a laminated metal sound absorber disposed so as to direct sound waves through the coupling wedge and into a work piece, reflections from the interface between the coupling wedge and the work piece passing to the reflecting edge. Preferably the angle of inclination of the two halves of the reflecting edge are different.

  4. Capillary Rise in a Wedge

    ERIC Educational Resources Information Center

    Piva, M.

    2009-01-01

    In introductory-level physics courses, the concept of surface tension is often illustrated using the example of capillary rise in thin tubes. In this paper the author describes experiments conducted using a planar geometry created with two small plates forming a thin wedge. The distribution of the fluid entering the wedge can be studied as a…

  5. The influence of wedge diffuser blade number and divergence angle on the performance of a high pressure ratio centrifugal compressor

    NASA Astrophysics Data System (ADS)

    Wang, Yi; Han, Ge; Lu, Xingen; Zhu, Junqiang

    2018-02-01

    Wedge diffuser is widely used in centrifugal compressors due to its high performance and compact size. This paper is aimed to research the influence of wedge diffuser blade number and divergence angle on centrifugal compressor performance. The impact of wedge diffuser blade number on compressor stage performance is investigated, and then the wedge diffusers with different divergence angle are studied by varying diffuser wedge angle and blade number simultaneously. It is found that wedge diffuser with 27 blades could have about 0.8% higher adiabatic efficiency and 0.14 higher total pressure ratio than the wedge diffuser with 19 blades and the best compressor performance is achieved when diffuser divergence angle is 8.3°.These results could give some advices on centrifugal compressor design.

  6. Complex interactions between diapirs and 4-D subduction driven mantle wedge circulation.

    NASA Astrophysics Data System (ADS)

    Sylvia, R. T.; Kincaid, C. R.

    2015-12-01

    Analogue laboratory experiments generate 4-D flow of mantle wedge fluid and capture the evolution of buoyant mesoscale diapirs. The mantle is modeled with viscous glucose syrup with an Arrhenius type temperature dependent viscosity. To characterize diapir evolution we experiment with a variety of fluids injected from multiple point sources. Diapirs interact with kinematically induced flow fields forced by subducting plate motions replicating a range of styles observed in dynamic subduction models (e.g., rollback, steepening, gaps). Data is collected using high definition timelapse photography and quantified using image velocimetry techniques. While many studies assume direct vertical connections between the volcanic arc and the deeper mantle source region, our experiments demonstrate the difficulty of creating near vertical conduits. Results highlight extreme curvature of diapir rise paths. Trench-normal deflection occurs as diapirs are advected downward away from the trench before ascending into wedge apex directed return flow. Trench parallel deflections up to 75% of trench length are seen in all cases, exacerbated by complex geometry and rollback motion. Interdiapir interaction is also important; upwellings with similar trajectory coalesce and rapidly accelerate. Moreover, we observe a new mode of interaction whereby recycled diapir material is drawn down along the slab surface and then initiates rapid fluid migration updip along the slab-wedge interface. Variability in trajectory and residence time leads to complex petrologic inferences. Material from disparate source regions can surface at the same location, mix in the wedge, or become fully entrained in creeping flow adding heterogeneity to the mantle. Active diapirism or any other vertical fluid flux mechanism employing rheological weakening lowers viscosity in the recycling mantle wedge affecting both solid and fluid flow characteristics. Many interesting and insightful results have been presented based

  7. Distal Femoral Osteotomy for the Valgus Knee: Medial Closing Wedge Versus Lateral Opening Wedge: A Systematic Review.

    PubMed

    Wylie, James D; Jones, Daniel L; Hartley, Melissa K; Kapron, Ashley L; Krych, Aaron J; Aoki, Stephen K; Maak, Travis G

    2016-10-01

    (1) To determine the radiographic correction/healing rate, patient-reported outcomes, reoperation rate, and complication rate after distal femoral osteotomy (DFO) for the valgus knee with lateral compartment pathology. (2) To summarize the reported results of medial closing wedge and lateral opening wedge DFO. We conducted a systematic review of PubMed, MEDLINE, and CINAHL to identify studies reporting outcomes of DFOs for the valgus knee. Keywords included "distal femoral osteotomy," "chondral," "cartilage," "valgus," "joint restoration," "joint preservation," "arthritis," and "gonarthrosis." Two authors first reviewed the articles; our study exclusion criteria were then applied, and the articles were included on the basis relevance defined by the aforementioned criteria. The Methodological Index for Nonrandomized Studies scale judged the quality of the literature. Sixteen studies were relevant to the research questions out of 191 studies identified by the original search. Sixteen studies were identified reporting on 372 osteotomies with mean follow-up of 45 to 180 months. All studies reported mean radiographic correction to a near neutral mechanical axis, with 3.2% nonunion and 3.8% delayed union rates. There was a 9% complication rate and a 34% reoperation rate, of which 15% were converted to arthroplasty. There were similar results reported for medial closing wedge and lateral opening wedge techniques, with a higher conversion to arthroplasty in the medial closing wedge that was confounded by longer mean follow-up in this group (mean follow-up 100 v 58 months). DFOs for the valgus knee with lateral compartment disease provide improvements in patient-reported knee health-related quality of life at midterm follow-up but have high rates of reoperation. No evidence exists proving better results of either the lateral opening wedge or medial closing wedge techniques. Level IV, systematic review of Level IV studies. Copyright © 2016 Arthroscopy Association of North

  8. Development and verification of a cementless novel tapered wedge stem for total hip arthroplasty.

    PubMed

    Faizan, Ahmad; Wuestemann, Thies; Nevelos, Jim; Bastian, Adam C; Collopy, Dermot

    2015-02-01

    Most current tapered wedge hip stems were designed based upon the original Mueller straight stem design introduced in 1977. These stems were designed to have a single medial curvature and grew laterally to accommodate different sizes. In this preclinical study, the design and verification of a tapered wedge stem using computed tomography scans of 556 patients are presented. The computer simulation demonstrated that the novel stem, designed for proximal engagement, allowed for reduced distal fixation, particularly in the 40-60 year male population. Moreover, the physical micromotion testing and finite element analysis demonstrated that the novel stem allowed for reduced micromotion. In summary, preclinical data suggest that the computed tomography based stem design described here may offer enhanced implant fit and reduced micromotion. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Proposed variations of the stepped-wedge design can be used to accommodate multiple interventions

    PubMed Central

    Lyons, Vivian H; Li, Lingyu; Hughes, James P; Rowhani-Rahbar, Ali

    2018-01-01

    Objective Stepped wedge design (SWD) cluster randomized trials have traditionally been used for evaluating a single intervention. We aimed to explore design variants suitable for evaluating multiple interventions in a SWD trial. Study Design and Setting We identified four specific variants of the traditional SWD that would allow two interventions to be conducted within a single cluster randomized trial: Concurrent, Replacement, Supplementation and Factorial SWDs. These variants were chosen to flexibly accommodate study characteristics that limit a one-size-fits-all approach for multiple interventions. Results In the Concurrent SWD, each cluster receives only one intervention, unlike the other variants. The Replacement SWD supports two interventions that will not or cannot be employed at the same time. The Supplementation SWD is appropriate when the second intervention requires the presence of the first intervention, and the Factorial SWD supports the evaluation of intervention interactions. The precision for estimating intervention effects varies across the four variants. Conclusion Selection of the appropriate design variant should be driven by the research question while considering the trade-off between the number of steps, number of clusters, restrictions for concurrent implementation of the interventions, lingering effects of each intervention, and precision of the intervention effect estimates. PMID:28412466

  10. Scattering of In-Plane Waves by Elastic Wedges

    NASA Astrophysics Data System (ADS)

    Mohammadi, K.; Asimaki, D.; Fradkin, L.

    2014-12-01

    The scattering of seismic waves by elastic wedges has been a topic of interest in seismology and geophysics for many decades. Analytical, semi-analytical, experimental and numerical studies on idealized wedges have provided insight into the seismic behavior of continental margins, mountain roots and crustal discontinuities. Published results, however, have almost exclusively focused on incident Rayleigh waves and out-of-plane body (SH) waves. Complementing the existing body of work, we here present results from our study on the res­ponse of elastic wedges to incident P or SV waves, an idealized pro­blem that can provide valuable insight to the understanding and parameterization of topographic ampli­fication of seismic ground mo­tion. We first show our earlier work on explicit finite difference simulations of SV-wave scattering by elastic wedges over a wide range of internal angles. We next present a semi-analytical solution that we developed using the approach proposed by Gautesen, to describe the scattered wavefield in the immediate vicinity of the wedge's tip (near-field). We use the semi-analytical solution to validate the numerical analyses, and improve resolution of the amplification factor at the wedge vertex that spikes when the internal wedge angle approaches the critical angle of incidence.

  11. Hemi-wedge osteotomy in the management of large angular deformities around the knee joint.

    PubMed

    El-Alfy, Barakat Sayed

    2016-08-01

    Angular deformity around the knee joint is a common orthopedic problem. Many options are available for the management of such problem with varying degrees of success and failure. The aim of the present study was to assess the results of hemi-wedge osteotomy in the management of big angular deformities about the knee joint. Twenty-eight limbs in 21 patients with large angular deformities around the knee joint were treated by the hemi-wedge osteotomy technique. The ages ranged from 12 to 43 years with an average of 19.8 years. The deformity ranged from 20° to 40° with a mean of 30.39° ± 5.99°. The deformities were genu varum in 12 cases and genu valgum in 9 cases. Seven cases had bilateral deformities. Small wedge was removed from the convex side of the bone and put in the gap created in the other side after correction of the deformity. At the final follow-up, the deformity was corrected in all cases except two. Full range of knee movement was regained in all cases. The complications included superficial wound infection in two cases, overcorrection in one case, pain along the lateral aspect of the knee in one case and recurrence of the deformity in one case. No cases were complicated by nerve injury or vascular injury. Hemi-wedge osteotomy is a good method for treatment of deformities around the knee joint. It can correct large angular deformities without major complications.

  12. Chevron closing base wedge bunionectomy.

    PubMed

    Bruyn, J M

    1993-01-01

    The Chevron-base wedge Association for Osteosynthesis fixated bunionectomy provides a stable, aggressive correction of the severe hallux abducto valgus deformity. It is intended for the bunion requiring a double osteotomy in order to adequately reduce both intermetatarsal and proximal articular facet angle with minimal shortening and elevation. This article presents the rationale for the procedure, technique, and a 4-year follow-up of six patients with eight Chevron-base wedge bunionectomies.

  13. Measuring Liquid-Level Utilizing Wedge Wave

    PubMed Central

    Honma, Yudai; Mori, Masayuki; Ihara, Ikuo

    2017-01-01

    A new technique for measuring liquid-level utilizing wedge wave is presented and demonstrated through FEM simulation and a corresponding experiment. The velocities of wedge waves in the air and the water, and the sensitivities for the measurement, are compared with the simulation and the results obtained in the experiments. Combining the simulation and the measurement theory, it is verified that the foundation framework for the methods is available. The liquid-level sensing is carried out using the aluminum waveguide with a 30° wedge in the water. The liquid-level is proportional to the traveling time of the mode 1 wedge wave. The standard deviations and the uncertainties of the measurement are 0.65 mm and 0.21 mm using interface echo, and 0.39 mm and 0.12 mm utilized by end echo, which are smaller than the industry standard of 1.5 mm. The measurement resolutions are 7.68 μm using the interface echo, which is the smallest among all the guided acoustic wave-based liquid-level sensing. PMID:29267232

  14. Ultrasonic friction power during Al wire wedge-wedge bonding

    NASA Astrophysics Data System (ADS)

    Shah, A.; Gaul, H.; Schneider-Ramelow, M.; Reichl, H.; Mayer, M.; Zhou, Y.

    2009-07-01

    Al wire bonding, also called ultrasonic wedge-wedge bonding, is a microwelding process used extensively in the microelectronics industry for interconnections to integrated circuits. The bonding wire used is a 25μm diameter AlSi1 wire. A friction power model is used to derive the ultrasonic friction power during Al wire bonding. Auxiliary measurements include the current delivered to the ultrasonic transducer, the vibration amplitude of the bonding tool tip in free air, and the ultrasonic force acting on the bonding pad during the bond process. The ultrasonic force measurement is like a signature of the bond as it allows for a detailed insight into mechanisms during various phases of the process. It is measured using piezoresistive force microsensors integrated close to the Al bonding pad (Al-Al process) on a custom made test chip. A clear break-off in the force signal is observed, which is followed by a relatively constant force for a short duration. A large second harmonic content is observed, describing a nonsymmetric deviation of the signal wave form from the sinusoidal shape. This deviation might be due to the reduced geometrical symmetry of the wedge tool. For bonds made with typical process parameters, several characteristic values used in the friction power model are determined. The ultrasonic compliance of the bonding system is 2.66μm/N. A typical maximum value of the relative interfacial amplitude of ultrasonic friction is at least 222nm. The maximum interfacial friction power is at least 11.5mW, which is only about 4.8% of the total electrical power delivered to the ultrasonic generator.

  15. Proposed variations of the stepped-wedge design can be used to accommodate multiple interventions.

    PubMed

    Lyons, Vivian H; Li, Lingyu; Hughes, James P; Rowhani-Rahbar, Ali

    2017-06-01

    Stepped-wedge design (SWD) cluster-randomized trials have traditionally been used for evaluating a single intervention. We aimed to explore design variants suitable for evaluating multiple interventions in an SWD trial. We identified four specific variants of the traditional SWD that would allow two interventions to be conducted within a single cluster-randomized trial: concurrent, replacement, supplementation, and factorial SWDs. These variants were chosen to flexibly accommodate study characteristics that limit a one-size-fits-all approach for multiple interventions. In the concurrent SWD, each cluster receives only one intervention, unlike the other variants. The replacement SWD supports two interventions that will not or cannot be used at the same time. The supplementation SWD is appropriate when the second intervention requires the presence of the first intervention, and the factorial SWD supports the evaluation of intervention interactions. The precision for estimating intervention effects varies across the four variants. Selection of the appropriate design variant should be driven by the research question while considering the trade-off between the number of steps, number of clusters, restrictions for concurrent implementation of the interventions, lingering effects of each intervention, and precision of the intervention effect estimates. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Seamount subduction underneath an accretionary wedge: modelling mass wasting and wedge collapse

    NASA Astrophysics Data System (ADS)

    Mannu, Utsav; Ueda, Kosuke; Willett, Sean; Gerya, Taras; Strasser, Michael

    2017-04-01

    Seamounts (h >1 km) and knolls (h = 500 m-1000 m) cover about one-fifth of the total ocean floor area. These topographical highs of the ocean floor eventually get subducted. Subduction of these topographical features leads to severe deformation of the overriding plate and can cause extensive tectonic erosion and mass wasting of the frontal prism, which can ultimately cause a forearc wedge collapse. Large submarine landslides and the corresponding wedge collapse have previously been reported, for instance, in the northern part of the Hikurangi margin where the landslide is known as the giant Ruatoria debris avalanche, and have also been frequently reported in several seismic sections along the Costa Rica margin. Size and frequency relation of landslides suggest that the average size of submarine landslides in margins with rough subducting plates tends to be larger. However, this observation has not yet been tested or explained by physical models. In numerical subduction models, landslides take place, if at all, on a much larger timescale (in the order of 104-105 years, depending on the time steps of the model) than in natural cases. On the other hand, numerical models simulating mass wasting events such as avalanches and submarine landslides, typically model single events at a much smaller spatio-temporal domain, and do not consider long-term occurrence patterns of freely forming landslides. In this contribution, we present a multi-scale nested numerical approach to emulate short-term landslides within long-term progressive subduction. The numerical approach dynamically produces instantaneous submarine landslides and the resulting debris flow in the spatially and temporally refined inner model. Then we apply these convoluted changes in topography (e.g. due to the submarine landslide etc.) back to an outer larger-scale model instance that addresses wedge evolution. We use this approach to study the evolution of the accretionary wedge during seamount subduction.

  17. Ancient Yedoma carbon loss: primed by ice wedge thaw?

    NASA Astrophysics Data System (ADS)

    Dowdy, K. L.; Vonk, J. E.; Mann, P. J.; Zimov, N.; Bulygina, E. B.; Davydova, A.; Spencer, R. G.; Holmes, R. M.

    2012-12-01

    Northeast Siberian permafrost is dominated by frozen Yedoma deposits containing ca. 500 Gt of carbon, nearly a quarter of northern permafrost organic carbon (OC). Yedoma deposits are Pleistocene-age alluvial and/or aeolian accumulations characterized by high ice wedge content (~50%), making them particularly vulnerable to a warming climate and to surface collapse upon thaw. Dissolved OC in streams originating primarily from Yedoma has been shown to be highly biolabile, relative to waters containing more modern OC. The cause of this biolability, however, remains speculative. Here we investigate the influence of ice wedge input upon the bioavailability of Yedoma within streams from as a potential cause of Yedoma carbon biolability upon release into the Kolyma River from the thaw-eroding river exposures of Duvannyi Yar, NE Siberia. We measured biolability on (1) ice wedge, Kolyma, and Yedoma leachate controls; (2) ice wedge and Kolyma plus Yedoma OC (8 g/L); and (3) varying ratios of ice wedge water to Kolyma river water. Biolability assays were conducted using both 5-day BOD (biological oxygen demand) and 11-day BDOC (biodegradable dissolved organic carbon) incubations. We found that ancient DOC in Yedoma soil leachate alone was highly biolabile with losses of 52±0.1% C over a 5-day BOD incubation. Similarly, DOC contained in pure ice wedge water was found to be biolabile, losing 21±0% C during a 5-day BOD incubation. Increased ice wedge contributions led to higher overall C losses in identical Yedoma soil leachates, with 8.9±0.6% losses of Yedoma C with 100% ice wedge water, 7.1±1% (50% ice wedge/ 50% Kolyma) and 5±0.3% with 100% Kolyma River water. We discuss potential mechanisms for the increased loss of ancient C using associated measurements of nutrient availability, carbon quality (CDOM/FDOM) and extracellular enzyme activity rates. Our initial results indicate that ice wedge meltwater forming Yedoma streams makes Yedoma OC more bioavailable than it would

  18. The challenges of numerically simulating analogue brittle thrust wedges

    NASA Astrophysics Data System (ADS)

    Buiter, Susanne; Ellis, Susan

    2017-04-01

    Fold-and-thrust belts and accretionary wedges form when sedimentary and crustal rocks are compressed into thrusts and folds in the foreland of an orogen or at a subduction trench. For over a century, analogue models have been used to investigate the deformation characteristics of such brittle wedges. These models predict wedge shapes that agree with analytical critical taper theory and internal deformation structures that well resemble natural observations. In a series of comparison experiments for thrust wedges, called the GeoMod2004 (1,2) and GeoMod2008 (3,4) experiments, it was shown that different numerical solution methods successfully reproduce sandbox thrust wedges. However, the GeoMod2008 benchmark also pointed to the difficulties of representing frictional boundary conditions and sharp velocity discontinuities with continuum numerical methods, in addition to the well-known challenges of numerical plasticity. Here we show how details in the numerical implementation of boundary conditions can substantially impact numerical wedge deformation. We consider experiment 1 of the GeoMod2008 brittle thrust wedge benchmarks. This experiment examines a triangular thrust wedge in the stable field of critical taper theory that should remain stable, that is, without internal deformation, when sliding over a basal frictional surface. The thrust wedge is translated by lateral displacement of a rigid mobile wall. The corner between the mobile wall and the subsurface is a velocity discontinuity. Using our finite-element code SULEC, we show how different approaches to implementing boundary friction (boundary layer or contact elements) and the velocity discontinuity (various smoothing schemes) can cause the wedge to indeed translate in a stable manner or to undergo internal deformation (which is a fail). We recommend that numerical studies of sandbox setups not only report the details of their implementation of boundary conditions, but also document the modelling attempts that

  19. Effect of a trade between boattail angle and wedge size on the performance of a nonaxisymmetric wedge nozzle

    NASA Technical Reports Server (NTRS)

    Carson, George T., Jr.; Bare, E. Ann; Burley, James R., II

    1987-01-01

    An investigation was conducted in the Langley 16-Foot Transonic Tunnel to determine the effect of a boattail angle and wedge-size trade on the performance of nonaxisymmetric wedge nozzles installed on a generic twin-engine fighter aircraft model. Test data were obtained at static conditions and at Mach numbers from 0.60 to 1.25. Angle of attack was held constant at 0 deg. High-pressure air was used to simulate jet exhaust, and the nozzle pressure ratio was varied from 1.0 (jet off) to slightly over 15.0. For the configurations studied, the results indicate that wedge size can be reduced without affecting aeropropulsive performance.

  20. Periodic nanostructures from self assembled wedge-type block-copolymers

    DOEpatents

    Xia, Yan; Sveinbjornsson, Benjamin R.; Grubbs, Robert H.; Weitekamp, Raymond; Miyake, Garret M.; Piunova, Victoria; Daeffler, Christopher Scot

    2015-06-02

    The invention provides a class of wedge-type block copolymers having a plurality of chemically different blocks, at least a portion of which incorporates a wedge group-containing block providing useful properties. For example, use of one or more wedge group-containing blocks in some block copolymers of the invention significantly inhibits chain entanglement and, thus, the present block copolymers materials provide a class of polymer materials capable of efficient molecular self-assembly to generate a range of structures, such as periodic nanostructures and microstructures. Materials of the present invention include copolymers having one or more wedge group-containing blocks, and optionally for some applications copolymers also incorporating one or more polymer side group-containing blocks. The present invention also provides useful methods of making and using wedge-type block copolymers.

  1. Experimental and numerical investigations on melamine wedges.

    PubMed

    Schneider, S

    2008-09-01

    Melamine wedges are often used as acoustic lining material for anechoic chambers. It was proposed here to study the effects of the mounting conditions on the acoustic properties of the melamine wedges used in the large anechoic chamber at the LMA. The results of the impedance tube measurements carried out show that the mounting conditions must be taken into account when assessing the quality of an acoustic lining. As it can be difficult to simulate these mounting conditions in impedance tube experiments, a numerical method was developed, which can be used to complete the experiments or for parametric studies. By combining the finite and the boundary element method, it is possible to investigate acoustic linings with almost no restrictions as to the geometry, material behavior, or mounting conditions. The numerical method presented here was used to study the acoustic properties of the acoustic lining installed in the anechoic chamber at the LMA. Further experiments showed that the behavior of the melamine foam is anisotropic. Numerical simulations showed that this anisotropy can be used to advantage when designing an acoustic lining.

  2. P-Wave to Rayleigh-wave conversion coefficients for wedge corners; model experiments

    USGS Publications Warehouse

    Gangi, A.F.; Wesson, R.L.

    1978-01-01

    An analytic solution is not available for the diffraction of elastic waves by wedges; however, numerical solutions of finite-difference type are available for selected wedge angles. The P- to Rayleigh-wave conversion coefficients at wedge tips have been measured on two-dimensional seismic models for stress-free wedges with wedge angles, ??0, of 10, 30, 60, 90 and 120??. The conversion coefficients show two broad peaks and a minimum as a function of the angle between the wedge face and the direction of the incident P-wave. The minimum occurs for the P wave incident parallel to the wedge face and one maximum is near an incidence angle of 90?? to the wedge face. The amplitude of this maximum, relative to the other, decreases as the wedge angle increases. The asymmetry of the conversion coefficients, CPR(??; ??0), relative to parallel incidence (?? = 0) increases as the wedge angle increases. The locations of the maxima and the minimum as well as the asymmetry can be explained qualitatively. The conversion coefficients are measured with an accuracy of ??5% in those regions where there are no interfering waves. A comparison of the data for the 10?? wedge with the theoretical results for a half plane (0?? wedge) shows good correlation. ?? 1978.

  3. Ice Wedges as Winter Climate Archives - New Results from the Northeast Siberian Arctic and Discussion of the Paleoclimatic Value of Ice Wedges

    NASA Astrophysics Data System (ADS)

    Opel, T.; Meyer, H.; Laepple, T.; Rehfeld, K.; Mollenhauer, G.; Alexander, D.; Murton, J.

    2017-12-01

    Arctic climate has experienced major changes over the past millennia that are yet not fully understood in terms of external and internal controls, spatial, temporal, and seasonal patterns. The interpretation of stable isotope data in permafrost ice wedges provides unique information on past winter climate, not or not sufficiently captured by other Arctic climate archives. Ice wedges grow in polygonal patterns owing to frost cracking of the frozen ground in winter and frost-crack filling mostly by snowmelt in spring. Their oxygen isotope values are indicative of temperatures in the cold period of the year (meteorological winter and spring). Recently, an ice-wedge record from the Lena River Delta suggested for the first time, that Siberian winter temperatures were warming throughout the Holocene, contradicting most other Arctic paleoclimate reconstructions. As this was based on a single record, the representativity and spatial extent of the reconstructed winter warming signal remained unclear. In this two-part contribution, we first present a new ice-wedge δ18O record from the Oyogos Yar mainland coast (Northeast Siberian Arctic) and then discuss more generally the paleoclimatic value of ice wedges. The new Oyogos Yar ice-wedge record is based on paired stable-isotope and radiocarbon-age data and spans the last two millennia. It confirms the long-term winter warming signal as well as the unprecedented temperature rise in the last decades. This demonstrates that winter warming over the last millennia is a coherent feature in the Northeastern Siberian Arctic, supporting the hypothesis of an insolation-driven seasonal Holocene temperature evolution followed by a strong warming most likely related to anthropogenic forcing. Considering additional ice-wedge data from the Siberian Laptev Sea region we discuss the paleoclimatic value of ice wedges as high-quality winter climate archive. We assess potentials and challenges of this so far rather understudied source of

  4. Design, Construction, Demonstration and Delivery of an Automated Narrow Gap Welding System.

    DTIC Science & Technology

    1982-06-29

    DESIGN, CONSTRUCTION, DEMONSTRATION AND DELIVERY OF WE DA4I &NARROW GAP CONTRACT NO. NOOGOO-81-C-E923 TO DAVID TAYLOR NAVAL RESEARCH AND DEVELOPMENT...the automated * Narrow Gap welding process, is the narrow (3/8 - inch), square-butt joint *design. This narrow joint greatly reduces the volume of weld...AD-i45 495 DESIGN CONSTRUCTION DEMONSTRATION AiND DELIVERY OF RN 1/j AUrOMATED NARROW GAP WELDING SYSTEMI() CRC AUTOMATIC WELDING CO HOUSTON TX 29

  5. Lost in translation: bridging gaps between design and evidence-based design.

    PubMed

    Watkins, Nicholas; Keller, Amy

    2008-01-01

    The healthcare design community is adopting evidence-based design (EBD) at a startling rate. However, the role of research within an architectural practice is unclear. Reasons for the lack of clarity include multiple connotations of EBD, the tension between a research-driven market and market-driven research, and the competing expectations and standards of design practitioners and researchers. Research as part of EBD should be integral with the design process so that research directly contributes to building projects. Characteristics of a comprehensive programming methodology to close the gap between design and EBD are suggested.

  6. Laser Oscillator Incorporating a Wedged Polarization Rotator and a Porro Prism as Cavity Mirror

    NASA Technical Reports Server (NTRS)

    Li, Steven

    2011-01-01

    A laser cavity was designed and implemented by using a wedged polarization rotator and a Porro prism in order to reduce the parts count, and to improve the laser reliability. In this invention, a z-cut quartz polarization rotator is used to compensate the wavelength retardance introduced by the Porro prism. The polarization rotator rotates the polarization of the linear polarized beam with a designed angle that is independent of the orientation of the rotator. This unique property was used to combine the retardance compensation and a Risley prism to a single optical component: a wedged polarization rotator. This greatly simplifies the laser alignment procedure and reduces the number of the laser optical components.

  7. Study on the shock interference in a wedged convergent-divergent channel

    NASA Astrophysics Data System (ADS)

    Yu, F. M.; Wang, C. Z.

    The investigation of shock reflection-to-diffraction phenomena upon a wedged convergent-divergent channel produced by a planar incident shock wave have been done in the shock tube facility of Institute of Aeronautics and Astronautics, National Cheng-Kung University. The experiment proceeds upon seven wedged convergent-divergent channels with the forward and rear wedge angles arrangement of them are (50°, 50°), (35°, 35°), (50°, 35°), (35°, 50°), (50°, 0°), (35°, 0°), and (90°, 0°), respectively. They were tested at Mach numbers of 1.1, 1.2, 1.3, 1.4, 1.5 and 1.6, respectively. On the first wedged channel, following the regular reflection on a 50°- wedged surface by the incident shock wave, shock diffraction with Mach stem has been observed as it moves to the downstream wedge surface. On the apex of the wedge, the secondary reflected shock behaviors as a sector of the blast shock moving toward the centerline of the channel. From the color schlieren pictures it has been observed that there exists a pattern of blast-wave-type high gas density gradient region near the wedge apex. Following the Mach reflection from the 35° -wedged surface on which only the Mach stem diffracted across the apex and following with a small region of disturbed acoustic wave front. The shock interference, which proceeds by the Mach reflection-to-diffraction generates a very complicate vortical flow structure. The measurement of the peak pressure along centerline of the channel downstream of the wedge apex indicates that it is larger near the apex and it decreases downstream. It is larger for larger convergent wedge angle and It is smaller for larger divergent wedge angle.

  8. Microtopographic control on the ground thermal regime in ice wedge polygons

    NASA Astrophysics Data System (ADS)

    Abolt, Charles J.; Young, Michael H.; Atchley, Adam L.; Harp, Dylan R.

    2018-06-01

    The goal of this research is to constrain the influence of ice wedge polygon microtopography on near-surface ground temperatures. Ice wedge polygon microtopography is prone to rapid deformation in a changing climate, and cracking in the ice wedge depends on thermal conditions at the top of the permafrost; therefore, feedbacks between microtopography and ground temperature can shed light on the potential for future ice wedge cracking in the Arctic. We first report on a year of sub-daily ground temperature observations at 5 depths and 9 locations throughout a cluster of low-centered polygons near Prudhoe Bay, Alaska, and demonstrate that the rims become the coldest zone of the polygon during winter, due to thinner snowpack. We then calibrate a polygon-scale numerical model of coupled thermal and hydrologic processes against this dataset, achieving an RMSE of less than 1.1 °C between observed and simulated ground temperature. Finally, we conduct a sensitivity analysis of the model by systematically manipulating the height of the rims and the depth of the troughs and tracking the effects on ice wedge temperature. The results indicate that winter temperatures in the ice wedge are sensitive to both rim height and trough depth, but more sensitive to rim height. Rims act as preferential outlets of subsurface heat; increasing rim size decreases winter temperatures in the ice wedge. Deeper troughs lead to increased snow entrapment, promoting insulation of the ice wedge. The potential for ice wedge cracking is therefore reduced if rims are destroyed or if troughs subside, due to warmer conditions in the ice wedge. These findings can help explain the origins of secondary ice wedges in modern and ancient polygons. The findings also imply that the potential for re-establishing rims in modern thermokarst-affected terrain will be limited by reduced cracking activity in the ice wedges, even if regional air temperatures stabilize.

  9. Double-wedged Wollaston-type polarimeter design and integration to RTT150-TFOSC; initial tests, calibration, and characteristics

    NASA Astrophysics Data System (ADS)

    Helhel, S.; Khamitov, I.; Kahya, G.; Bayar, C.; Kaynar, S.; Gumerov, R.

    2015-10-01

    Photometric and spectroscopic observation capabilities of 1.5-m Russian-Turkish Telescope RTT150 has been broadened with the integration of presented polarimeter. The well-known double-wedged Wollaston-type dual-beam technique was preferred and applied to design and produce it. The designed polarimeter was integrated into the telescope detector TFOSC, and called TFOSC-WP. Its capabilities and limitations were attempted to be determined by a number of observation sets. Non-polarized and strongly polarized stars were observed to determine its limitations as well as its linearity. An instrumental intrinsic polarization was determined for the 1 × 5 arcmin field of view in equatorial coordinate system, the systematic error of polarization degree as 0.2 %, and position angle as 1.9∘. These limitations and capabilities are denoted as good enough to satisfy telescopes' present and future astrophysical space missions related to GAIA and SRG projects.

  10. Numerical study on dusty shock reflection over a double wedge

    NASA Astrophysics Data System (ADS)

    Yin, Jingyue; Ding, Juchun; Luo, Xisheng

    2018-01-01

    The dusty shock reflection over a double wedge with different length scales is systematically studied using an adaptive multi-phase solver. The non-equilibrium effect caused by the particle relaxation is found to significantly influence the shock reflection process. Specifically, it behaves differently for double wedges with different length scales of the first wedge L1. For a double wedge with L1 relatively longer than the particle relaxation length λ, the equilibrium shock dominates the shock reflection and seven typical reflection processes are obtained, which is similar to the pure gas counterpart. For a double wedge with L1 shorter than λ, the non-equilibrium effect manifests more evidently, i.e., three parts of the dusty shock system including the frozen shock, the relaxation zone, and the equilibrium shock together dominate the reflection process. As a result, the shock reflection is far more complicated than the pure gas counterpart and eleven transition processes are found under various wedge angles. These findings give a complete description of all possible processes of dusty shock reflection over a double wedge and may be useful for better understanding the non-equilibrium shock reflection over complex structures.

  11. The Substorm Current Wedge Revisited

    NASA Astrophysics Data System (ADS)

    Kepko, Larry; McPherron, Robert; Apatenkov, Sergey; Baumjohann, Wolfgang; Birn, Joachim; Lester, Mark; Nakamura, Rumi; Pulkkinen, Tuija; Sergeev, Victor

    2015-04-01

    Almost 40 years ago the concept of the substorm current wedge was developed to explain the magnetic signatures observed on the ground and in geosynchronous orbit during substorm expansion. In the ensuing decades new observations, including radar and low-altitude spacecraft, MHD simulations, and theoretical considerations have tremendously advanced our understanding of this system. The AMPTE/IRM, THEMIS and Cluster missions have added considerable observational knowledge, especially on the important role of fast flows in producing the stresses that generate the substorm current wedge. Recent detailed, multi-spacecraft, multi-instrument observations both in the magnetosphere and in the ionosphere have brought a wealth of new information about the details of the temporal evolution and structure of the current system. In this paper, we briefly review recent in situ and ground-based observations and theoretical work that have demonstrated a need for an update of the original picture. We present a revised, time-dependent picture of the substorm current wedge that follows its evolution from the initial substorm flows through substorm expansion and recovery, and conclude by identifying open questions.

  12. Experimental investigation of sound absorption of acoustic wedges for anechoic chambers

    NASA Astrophysics Data System (ADS)

    Belyaev, I. V.; Golubev, A. Yu.; Zverev, A. Ya.; Makashov, S. Yu.; Palchikovskiy, V. V.; Sobolev, A. F.; Chernykh, V. V.

    2015-09-01

    The results of measuring the sound absorption by acoustic wedges, which were performed in AC-3 and AC-11 reverberation chambers at the Central Aerohydrodynamic Institute (TsAGI), are presented. Wedges of different densities manufactured from superfine basaltic and thin mineral fibers were investigated. The results of tests of these wedges were compared to the sound absorption of wedges of the operating AC-2 anechoic facility at TsAGI. It is shown that basaltic-fiber wedges have better sound-absorption characteristics than the investigated analogs and can be recommended for facing anechoic facilities under construction.

  13. Isolating active orogenic wedge deformation in the southern Subandes of Bolivia

    NASA Astrophysics Data System (ADS)

    Weiss, Jonathan R.; Brooks, Benjamin A.; Foster, James H.; Bevis, Michael; Echalar, Arturo; Caccamise, Dana; Heck, Jacob; Kendrick, Eric; Ahlgren, Kevin; Raleigh, David; Smalley, Robert; Vergani, Gustavo

    2016-08-01

    A new GPS-derived surface velocity field for the central Andean backarc permits an assessment of orogenic wedge deformation across the southern Subandes of Bolivia, where recent studies suggest that great earthquakes (>Mw 8) are possible. We find that the backarc is not isolated from the main plate boundary seismic cycle. Rather, signals from subduction zone earthquakes contaminate the velocity field at distances greater than 800 km from the Chile trench. Two new wedge-crossing velocity profiles, corrected for seasonal and earthquake affects, reveal distinct regions that reflect (1) locking of the main plate boundary across the high Andes, (2) the location of and loading rate at the back of orogenic wedge, and (3) an east flank velocity gradient indicative of décollement locking beneath the Subandes. Modeling of the Subandean portions of the profiles indicates along-strike variations in the décollement locked width (WL) and wedge loading rate; the northern wedge décollement has a WL of ~100 km while accumulating slip at a rate of ~14 mm/yr, whereas the southern wedge has a WL of ~61 km and a slip rate of ~7 mm/yr. When compared to Quaternary estimates of geologic shortening and evidence for Holocene internal wedge deformation, the new GPS-derived wedge loading rates may indicate that the southern wedge is experiencing a phase of thickening via reactivation of preexisting internal structures. In contrast, we suspect that the northern wedge is undergoing an accretion or widening phase primarily via slip on relatively young thrust-front faults.

  14. PGE and Re-Os Isotope Behaviour in a Subduction-Modified Mantle Wedge: A Fresh Look into the Peridotites from the Ulten Zone, Eastern Alps

    NASA Astrophysics Data System (ADS)

    Aulbach, S.; Braga, R.; Gudelius, D.; Prelevic, D.; Meisel, T. C.

    2015-12-01

    Peridotites in the upper Austroalpine Ulten zone (Eastern Italy) sample the subduction-modified Variscan mantle wedge. Metasomatism of peridotites during four stages of mantle wedge evolution includes: (1) Intrusion of alkaline melts from an inner, subduction-modified wedge and cryptic enrichment of spinel lherzolites (SL); (2) Reaction with siliceous crustal melts after pressure increase, generating coarse-grained garnet amphibole peridotites (GAP); (3) Crystallisation of abundant amphibole (± apatite and dolomite) from residual hydrous fluids during and/or after peak metamorphism recorded by fine-grained GAP; [4] Subsequent influx of crustal fluids, causing retrograde formation of spinel chlorite amphibole peridotites (SAP) [1-5]. SL and coarse GAP are apparently more fertile, whereas fine GAP and SAP retain the most depleted major-element characteristics. Overall, samples fall on partial melting trends consistent with extraction of low degrees of melt (F≤0.15) at 2-1 GPa. SL and coarse GAP have ±flat PGE patterns normalised to Primitive Upper Mantle (PUM), or show small decreases or increases from compatible to incompatible PGE. This suggests retention of primary sulphide liquid at low degrees of melting, during which PGE concentrations are little fractionated [6]. Indeed, broad positive correlations between the PGE suggest a common host, likely sulphide, observed in the samples as assemblages of pn ± po and cpy. Most fine-GAP share these patterns, indicating robustness against massive hydrous fluid influx, while Os/Ir > PUM argue against strong Os scavenging by highly oxidising hydrous fluids. Nevertheless, elevated Ru/IrPUM in a subgroup of samples may indicate a role for spinel addition under oxidising conditions. Most samples have 187Os/188Os >PUM, despite sub-PUM Re/Os, which requires addition of, or isotopic equilibration with, 187Os-rich crustal components, most likely via the precipitation of metasomatic sulphide. [1] Nimis and Morten (2000) J

  15. A Wedge Absorber Experiment at MICE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neuffer, David; Mohayai, Tanaz; Rogers, Chris

    2017-05-01

    Emittance exchange mediated by wedge absorbers is required for longitudinal ionization cooling and for final transverse emittance minimization for a muon collider. A wedge absorber within the MICE beam line could serve as a demonstration of the type of emittance exchange needed for 6-D cooling, including the configurations needed for muon colliders, as well as configurations for low-energy muon sources. Parameters for this test are explored in simulation and possible experimental configurations with simulated results are presented.

  16. Designing broad phononic band gaps for in-plane modes

    NASA Astrophysics Data System (ADS)

    Li, Yang Fan; Meng, Fei; Li, Shuo; Jia, Baohua; Zhou, Shiwei; Huang, Xiaodong

    2018-03-01

    Phononic crystals are known as artificial materials that can manipulate the propagation of elastic waves, and one essential feature of phononic crystals is the existence of forbidden frequency range of traveling waves called band gaps. In this paper, we have proposed an easy way to design phononic crystals with large in-plane band gaps. We demonstrated that the gap between two arbitrarily appointed bands of in-plane mode can be formed by employing a certain number of solid or hollow circular rods embedded in a matrix material. Topology optimization has been applied to find the best material distributions within the primitive unit cell with maximal band gap width. Our results reveal that the centroids of optimized rods coincide with the point positions generated by Lloyd's algorithm, which deepens our understandings on the formation mechanism of phononic in-plane band gaps.

  17. Sample size calculations for stepped wedge and cluster randomised trials: a unified approach

    PubMed Central

    Hemming, Karla; Taljaard, Monica

    2016-01-01

    Objectives To clarify and illustrate sample size calculations for the cross-sectional stepped wedge cluster randomized trial (SW-CRT) and to present a simple approach for comparing the efficiencies of competing designs within a unified framework. Study Design and Setting We summarize design effects for the SW-CRT, the parallel cluster randomized trial (CRT), and the parallel cluster randomized trial with before and after observations (CRT-BA), assuming cross-sectional samples are selected over time. We present new formulas that enable trialists to determine the required cluster size for a given number of clusters. We illustrate by example how to implement the presented design effects and give practical guidance on the design of stepped wedge studies. Results For a fixed total cluster size, the choice of study design that provides the greatest power depends on the intracluster correlation coefficient (ICC) and the cluster size. When the ICC is small, the CRT tends to be more efficient; when the ICC is large, the SW-CRT tends to be more efficient and can serve as an alternative design when the CRT is an infeasible design. Conclusion Our unified approach allows trialists to easily compare the efficiencies of three competing designs to inform the decision about the most efficient design in a given scenario. PMID:26344808

  18. Planar shock reflection on a wedged concave reflector

    NASA Astrophysics Data System (ADS)

    Yu, Fan-Ming; Sheu, Kuen-Dong

    2001-04-01

    The investigation of shock reflection and shock diffraction phenomena upon a wedged concave reflector produced by a planar incident shock wave has been done in the shock tube facility of Institute of Aeronautics and Astronautics, National Cheng- Kung University. The experiment proceeds upon three wedged concave reflectors models the upper and lower wedge angles arrangement of them are (50 degrees, 50 degrees) - 35 degrees, 35 degrees) and (50 degrees, 35 degrees), respectively. They were tested at Mach numbers of 1.2 - 1.65 and 2.0. On the first reflector, following the regular reflection on the 50 degree-wedged surface by the incident shock wave, a Mach shock diffraction behavior has been observed as shock moves outward from the apex of the reflector. On the apex of the reflector, it behaviors as a sector of the blast shock moving on a diverging channel. On the shadowgraph pictures it has been observed there exists a pattern of gas dynamics focus upon the second reflector. The Mach reflection from the 35 degree- wedged surface as being generated by the planar incident shock wave, on which the overlapping of the two triple points from both wedged surface offers the focusing mechanism. The shock interference, which proceeds by the Mach shock reflection and the regular shock diffraction from the reflector, generates a very complicate rolling-up of slip lines system. On the third reflector, the mixed shock interference behavior has been observed of which two diffraction shocks from concave 50 degree-wedged surface and 35 degree-wedged surface interfere with each other. The measurement of the peak pressure along a ray from the model apex parallel to incident shock direction indicates that the measured maximum pressure rising is larger near the apex of the reflector. Considering the measured maximum pressure increment due to the reflection shocks indicate that the wave strength upon large apex angle reflector is greater than it is upon small apex angle reflector

  19. Assessing the local mechanical environment in medial opening wedge high tibial osteotomy using finite element analysis.

    PubMed

    Pauchard, Yves; Ivanov, Todor G; McErlain, David D; Milner, Jaques S; Giffin, J Robert; Birmingham, Trevor B; Holdsworth, David W

    2015-03-01

    High-tibial osteotomy (HTO) is a surgical technique aimed at shifting load away from one tibiofemoral compartment, in order the reduce pain and progression of osteoarthritis (OA). Various implants have been designed to stabilize the osteotomy and previous studies have been focused on determining primary stability (a global measure) that these designs provide. It has been shown that the local mechanical environment, characterized by bone strains and segment micromotion, is important in understanding healing and these data are not currently available. Finite element (FE) modeling was utilized to assess the local mechanical environment provided by three different fixation plate designs: short plate with spacer, long plate with spacer and long plate without spacer. Image-based FE models of the knee were constructed from healthy individuals (N = 5) with normal knee alignment. An HTO gap was virtually added without changing the knee alignment and HTO implants were inserted. Subsequently, the local mechanical environment, defined by bone compressive strain and wedge micromotion, was assessed. Furthermore, implant stresses were calculated. Values were computed under vertical compression in zero-degree knee extension with loads set at 1 and 2 times the subject-specific body weight (1 BW, 2 BW). All studied HTO implant designs provide an environment for successful healing at 1 BW and 2 BW loading. Implant von Mises stresses (99th percentile) were below 60 MPa in all experiments, below the material yield strength and significantly lower in long spacer plates. Volume fraction of high compressive strain ( > 3000 microstrain) was below 5% in all experiments and no significant difference between implants was detected. Maximum vertical micromotion between bone segments was below 200 μm in all experiments and significantly larger in the implant without a tooth. Differences between plate designs generally became apparent only at 2 BW loading. Results suggest that

  20. 21 CFR 884.5200 - Hemorrhoid prevention pressure wedge.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Hemorrhoid prevention pressure wedge. 884.5200... Devices § 884.5200 Hemorrhoid prevention pressure wedge. (a) Identification. A hemorrhoid prevention... hemorrhoids associated with vaginal childbirth. (b) Classification. Class II (special controls). The special...

  1. 21 CFR 884.5200 - Hemorrhoid prevention pressure wedge.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Hemorrhoid prevention pressure wedge. 884.5200... Devices § 884.5200 Hemorrhoid prevention pressure wedge. (a) Identification. A hemorrhoid prevention... hemorrhoids associated with vaginal childbirth. (b) Classification. Class II (special controls). The special...

  2. 21 CFR 884.5200 - Hemorrhoid prevention pressure wedge.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Hemorrhoid prevention pressure wedge. 884.5200... Devices § 884.5200 Hemorrhoid prevention pressure wedge. (a) Identification. A hemorrhoid prevention... hemorrhoids associated with vaginal childbirth. (b) Classification. Class II (special controls). The special...

  3. Erosion controls transpressional wedge kinematics

    NASA Astrophysics Data System (ADS)

    Leever, K. A.; Oncken, O.

    2012-04-01

    High resolution digital image analysis of analogue tectonic models reveals that erosion strongly influences the kinematics of brittle transpressional wedges. In the basally-driven experimental setup with low-angle transpression (convergence angle of 20 degrees) and a homogeneous brittle rheology, a doubly vergent wedge develops above the linear basal velocity discontinuity. In the erosive case, the experiment is interrupted and the wedge topography fully removed at displacement increments of ~3/4 the model thickness. The experiments are observed by a stereo pair of high resolution CCD cameras and the incremental displacement field calculated by Digital Particle Image Velocimetry (DPIV). From this dataset, fault slip on individual fault segments - magnitude and angle on the horizontal plane relative to the fault trace - is extracted using the method of Leever et al. (2011). In the non-erosive case, after an initial stage of strain localization, the wedge experiences two transient stages of (1) oblique slip and (2) localized strain partitioning. In the second stage, the fault slip angle on the pro-shear(s) rotates by some 30 degrees from oblique to near-orthogonal. Kinematic steady state is attained in the third stage when a through-going central strike-slip zone develops above the basal velocity discontinuity. In this stage, strain is localized on two main faults (or fault zones) and fully partitioned between plate boundary-parallel displacement on the central strike-slip zone and near-orthogonal reverse faulting at the front (pro-side) of the wedge. The fault slip angle on newly formed pro-shears in this stage is stable at 60-65 degrees (see also Leever et al., 2011). In contrast, in the erosive case, slip remains more oblique on the pro-shears throughout the experiment and a separate central strike-slip zone does not form, i.e. strain partitioning does not fully develop. In addition, more faults are active simultaneously. Definition of stages is based on slip on

  4. Fracture and contact problems for an elastic wedge

    NASA Technical Reports Server (NTRS)

    Erdogan, F.; Arin, K.

    1974-01-01

    The plane elastostatic contact problem for an infinite elastic wedge of arbitrary angle is discussed. The medium is loaded through a frictionless rigid wedge of a given symmetric profile. Using the Mellin transform formulation the mixed boundary value problem is reduced to a singular integral equation with the contact stress as the unknown function. With the application of the results to the fracture of the medium in mind, the main emphasis in the study has been on the investigation of the singular nature of the stress state around the apex of the wedge and on the determination of the contact pressure.

  5. Fracture and contact problems for an elastic wedge

    NASA Technical Reports Server (NTRS)

    Erdogan, F.; Arin, K.

    1976-01-01

    The paper deals with the plane elastostatic contact problem for an infinite elastic wedge of arbitrary angle. The medium is loaded through a frictionless rigid wedge of a given symmetric profile. Using the Mellin transform formulation the mixed boundary value problem is reduced to a singular integral equation with the contact stress as the unknown function. With the application of the results to the fracture of the medium in mind, the main emphasis in the study has been on the investigation of the singular nature of the stress state around the apex of the wedge and on the determination of the contact pressure.

  6. Glass Microbeads in Analog Models of Thrust Wedges.

    PubMed

    D'Angelo, Taynara; Gomes, Caroline J S

    2017-01-01

    Glass microbeads are frequently used in analog physical modeling to simulate weak detachment zones but have been neglected in models of thrust wedges. Microbeads differ from quartz sand in grain shape and in low angle of internal friction. In this study, we compared the structural characteristics of microbeads and sand wedges. To obtain a better picture of their mechanical behavior, we determined the physical and frictional properties of microbeads using polarizing and scanning electron microscopy and ring-shear tests, respectively. We built shortening experiments with different basal frictions and measured the thickness, slope and length of the wedges and also the fault spacings. All the microbeads experiments revealed wedge geometries that were consistent with previous studies that have been performed with sand. However, the deformation features in the microbeads shortened over low to intermediate basal frictions were slightly different. Microbeads produced different fault geometries than sand as well as a different grain flow. In addition, they produced slip on minor faults, which was associated with distributed deformation and gave the microbeads wedges the appearance of disharmonic folds. We concluded that the glass microbeads may be used to simulate relatively competent rocks, like carbonates, which may be characterized by small-scale deformation features.

  7. The effect of foot orthoses and in-shoe wedges during cycling: a systematic review

    PubMed Central

    2014-01-01

    Background The use of foot orthoses and in-shoe wedges in cycling are largely based on theoretical benefits and anecdotal evidence. This review aimed to systematically collect all published research on this topic, critically evaluate the methods and summarise the findings. Methods Study inclusion criteria were: all empirical studies that evaluated the effects of foot orthoses or in-shoe wedges on cycling; outcome measures that investigated physiological parameters, kinematics and kinetics of the lower limb, and power; and, published in English. Studies were located by data-base searching (Medline, CINAHL, Embase and SPORTDiscus) and hand-searching in February 2014. Selected studies were assessed for methodological quality using a modified Quality Index. Data were synthesised descriptively. Meta-analysis was not performed as the included studies were not sufficiently homogeneous to provide a meaningful summary. Results Six studies were identified as meeting the eligibility criteria. All studies were laboratory-based and used a repeated measures design. The quality of the studies varied, with Quality Index scores ranging from 7 to 10 out of 14. Five studies investigated foot orthoses and one studied in-shoe wedges. Foot orthoses were found to increase contact area in the midfoot, peak pressures under the hallux and were perceived to provide better arch support, compared to a control. With respect to physiological parameters, contrasting findings have been reported regarding the effect foot orthoses have on oxygen consumption. Further, foot orthoses have been shown to not provide effects on lower limb kinematics and perceived comfort. Both foot orthoses and in-shoe wedges have been shown to provide no effect on power. Conclusion In general, there is limited high-quality research on the effects foot orthoses and in-shoe wedges provide during cycling. At present, there is some evidence that during cycling foot orthoses: increase contact area under the foot and increase

  8. Design of a multispectral, wedge filter, remote-sensing instrument incorporating a multiport, thinned, CCD area array

    NASA Astrophysics Data System (ADS)

    Demro, James C.; Hartshorne, Richard; Woody, Loren M.; Levine, Peter A.; Tower, John R.

    1995-06-01

    The next generation Wedge Imaging Spectrometer (WIS) instruments currently in integration at Hughes SBRD incorporate advanced features to increase operation flexibility for remotely sensed hyperspectral imagery collection and use. These features include: a) multiple linear wedge filters to tailor the spectral bands to the scene phenomenology; b) simple, replaceable fore-optics to allow different spatial resolutions and coverages; c) data acquisition system (DAS) that collects the full data stream simultaneously from both WIS instruments (VNIR and SWIR/MWIR), stores the data in a RAID storage, and provides for down-loading of the data to MO disks; the WIS DAS also allows selection of the spectral band sets to be stored; d) high-performance VNIR camera subsystem based upon a 512 X 512 CCD area array and associated electronics.

  9. Influence of the posterior tibial slope on the flexion gap in total knee arthroplasty.

    PubMed

    Okazaki, Ken; Tashiro, Yasutaka; Mizu-uchi, Hideki; Hamai, Satoshi; Doi, Toshio; Iwamoto, Yukihide

    2014-08-01

    Adjusting the joint gap length to be equal in both extension and flexion is an important issue in total knee arthroplasty (TKA). It is generally acknowledged that posterior tibial slope affects the flexion gap; however, the extent to which changes in the tibial slope angle directly affect the flexion gap remains unclear. This study aimed to clarify the influence of tibial slope changes on the flexion gap in cruciate-retaining (CR) or posterior-stabilizing (PS) TKA. The flexion gap was measured using a tensor device with the femoral trial component in 20 cases each of CR- and PS-TKA. A wedge plate with a 5° inclination was placed on the tibial cut surface by switching its front-back direction to increase or decrease the tibial slope by 5°. The flexion gap after changing the tibial slope was compared to that of the neutral slope measured with a flat plate that had the same thickness as that of the wedge plate center. When the tibial slope decreased or increased by 5°, the flexion gap decreased or increased by 1.9 ± 0.6mm or 1.8 ± 0.4mm, respectively, with CR-TKA and 1.2 ± 0.4mm or 1.1 ± 0.3mm, respectively, with PS-TKA. The influence of changing the tibial slope by 5° on the flexion gap was approximately 2mm with CR-TKA and 1mm with PS-TKA. This information is useful when considering the effect of manipulating the tibial slope on the flexion gap when performing CR- or PS-TKA. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. An IBEM solution to the scattering of plane SH-waves by a lined tunnel in elastic wedge space

    NASA Astrophysics Data System (ADS)

    Liu, Zhongxian; Liu, Lei

    2015-02-01

    The indirect boundary element method (IBEM) is developed to solve the scattering of plane SH-waves by a lined tunnel in elastic wedge space. According to the theory of single-layer potential, the scattered-wave field can be constructed by applying virtual uniform loads on the surface of lined tunnel and the nearby wedge surface. The densities of virtual loads can be solved by establishing equations through the continuity conditions on the interface and zero-traction conditions on free surfaces. The total wave field is obtained by the superposition of free field and scattered-wave field in elastic wedge space. Numerical results indicate that the IBEM can solve the diffraction of elastic wave in elastic wedge space accurately and efficiently. The wave motion feature strongly depends on the wedge angle, the angle of incidence, incident frequency, the location of lined tunnel, and material parameters. The waves interference and amplification effect around the tunnel in wedge space is more significant, causing the dynamic stress concentration factor on rigid tunnel and the displacement amplitude of flexible tunnel up to 50.0 and 17.0, respectively, more than double that of the case of half-space. Hence, considerable attention should be paid to seismic resistant or anti-explosion design of the tunnel built on a slope or hillside.

  11. The crack and wedging problem for an orthotropic strip

    NASA Technical Reports Server (NTRS)

    Cinar, A.; Erdogan, F.

    1982-01-01

    The plane elasticity problem for an orthotropic strip containing a crack parallel to its boundaries is considered. The problem is formulated under general mixed mode loading conditions. The stress intensity factors depend on two dimensionless orthotropic constants only. For the crack problem the results are given for a single crack and two collinear cracks. The calculated results show that of the two orthotropic constants the influence of the stiffness ratio on the stress intensity factors is much more significant than that of the shear parameter. The problem of loading the strip by a rigid rectangular lengths continuous contact is maintained along the wedge strip interface; at a certain critical wedge length the separation starts at the midsection of the wedge, and the length of the separation zone increases rapidly with increasing wedge length.

  12. Finite-sample corrected generalized estimating equation of population average treatment effects in stepped wedge cluster randomized trials.

    PubMed

    Scott, JoAnna M; deCamp, Allan; Juraska, Michal; Fay, Michael P; Gilbert, Peter B

    2017-04-01

    Stepped wedge designs are increasingly commonplace and advantageous for cluster randomized trials when it is both unethical to assign placebo, and it is logistically difficult to allocate an intervention simultaneously to many clusters. We study marginal mean models fit with generalized estimating equations for assessing treatment effectiveness in stepped wedge cluster randomized trials. This approach has advantages over the more commonly used mixed models that (1) the population-average parameters have an important interpretation for public health applications and (2) they avoid untestable assumptions on latent variable distributions and avoid parametric assumptions about error distributions, therefore, providing more robust evidence on treatment effects. However, cluster randomized trials typically have a small number of clusters, rendering the standard generalized estimating equation sandwich variance estimator biased and highly variable and hence yielding incorrect inferences. We study the usual asymptotic generalized estimating equation inferences (i.e., using sandwich variance estimators and asymptotic normality) and four small-sample corrections to generalized estimating equation for stepped wedge cluster randomized trials and for parallel cluster randomized trials as a comparison. We show by simulation that the small-sample corrections provide improvement, with one correction appearing to provide at least nominal coverage even with only 10 clusters per group. These results demonstrate the viability of the marginal mean approach for both stepped wedge and parallel cluster randomized trials. We also study the comparative performance of the corrected methods for stepped wedge and parallel designs, and describe how the methods can accommodate interval censoring of individual failure times and incorporate semiparametric efficient estimators.

  13. Seasonal Ice Wedge Dynamics in Fosheim Peninsula, Ellesmere Island, Nunavut

    NASA Astrophysics Data System (ADS)

    Ward, M. K.; Pollard, W. H.

    2017-12-01

    Areas with ice-rice permafrost are vulnerable to thermokarst (lowering of the land surface from melting ground ice). The Fosheim Peninsula on Ellesmere Island, Nunavut is a high Arctic polar desert system with cold permafrost 500 m thick that is ice-rich in the upper 20 - 30 m. Our team has been monitoring changing permafrost conditions on the Fosheim since 1990. In this area ground ice consists mainly of ice-wedge ice and massive tabular ice bodies. With a mean annual temperature of - 19°C, the area is still sensitive to thermokarst as experienced in 2012; one of the warmest summers on record there was a three-fold increase in thermokarst, with the accelerated deepening of ice wedge troughs and the development of retrogressive thaw slumps. In this study, 7 ice wedges were monitored for 7 weeks in July and August, 2017. Ice wedges were chosen to represent different conditions including varying tough depths (0.36 m to 1.2 m), secondary wedge, varying plant cover (heavily covered to bare soil) and one wedge initially experienced ponding from snow melt that subsequently drained. Data collected included active layer depth measurements, soil moisture, ground temperatures at ice wedge through and polygon centres, dGPS and GPR surveys. Using Worldview 2 satellite imagery from 2008, 2012, 2016, these sites were compared to assess changes in polygons at a landscape scale. Ice wedges are ubiquitous to the arctic but may respond differently within different high Arctic environments. With the majority of studies being focused in the lower arctic, this study provides important field data from a high arctic site.

  14. Influence of the substorm current wedge on the Dst index

    NASA Astrophysics Data System (ADS)

    Friedrich, Erena; Rostoker, Gordon; Connors, Martin G.; McPherron, R. L.

    1999-03-01

    One of the major questions confronting researchers studying the nature of the solar-terrestrial interaction centers around whether or not the substorm expansive phase has any causal effect on the growth of the storm time ring current. This question is often addressed by using the Dst index as a proxy for the storm time ring current and inspecting the main phase growth of Dst in the context of the substorm expansive phases which occur in the same time frame as the ring current growth. In the past it has been assumed that the magnetic effects of the substorm current wedge have little influence on the Dst index because the current wedge is an asymmetric current system, while Dst is supposed to reflect changes in the symmetric component of the ring current. In this paper we shall shown that the substorm current wedge can have a significant effect on the present Dst index, primarily as a consequence of the fact that only four stations are presently used to formulate the index. Calculations are made assuming the instantaneous magnitude of the wedge current is constant at 1 MA. Hourly values of Dst may be as much as 50° smaller than those presented here because of variation of the wedge current over the hour. We shall show how the effect of the current wedge depends on the UT of the expansive phase onset, the angular extent of the current wedge, and the locale of the closure current in the magnetosphere. The fact that the substorm current wedge is a conjugate phenomenon has an important influence on the magnitude of the expansive phase effect in the Dst index.

  15. Climate adaptation wedges: a case study of premium wine in the western United States

    NASA Astrophysics Data System (ADS)

    Diffenbaugh, Noah S.; White, Michael A.; Jones, Gregory V.; Ashfaq, Moetasim

    2011-04-01

    Design and implementation of effective climate change adaptation activities requires quantitative assessment of the impacts that are likely to occur without adaptation, as well as the fraction of impact that can be avoided through each activity. Here we present a quantitative framework inspired by the greenhouse gas stabilization wedges of Pacala and Socolow. In our proposed framework, the damage avoided by each adaptation activity creates an 'adaptation wedge' relative to the loss that would occur without that adaptation activity. We use premium winegrape suitability in the western United States as an illustrative case study, focusing on the near-term period that covers the years 2000-39. We find that the projected warming over this period results in the loss of suitable winegrape area throughout much of California, including most counties in the high-value North Coast and Central Coast regions. However, in quantifying adaptation wedges for individual high-value counties, we find that a large adaptation wedge can be captured by increasing the severe heat tolerance, including elimination of the 50% loss projected by the end of the 2030-9 period in the North Coast region, and reduction of the projected loss in the Central Coast region from 30% to less than 15%. Increased severe heat tolerance can capture an even larger adaptation wedge in the Pacific Northwest, including conversion of a projected loss of more than 30% in the Columbia Valley region of Washington to a projected gain of more than 150%. We also find that warming projected over the near-term decades has the potential to alter the quality of winegrapes produced in the western US, and we discuss potential actions that could create adaptation wedges given these potential changes in quality. While the present effort represents an initial exploration of one aspect of one industry, the climate adaptation wedge framework could be used to quantitatively evaluate the opportunities and limits of climate adaptation

  16. Climate adaptation wedges: a case study of premium wine in the western United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diffenbaugh, Noah; White, Michael A; Jones, Gregory V

    2011-01-01

    Design and implementation of effective climate change adaptation activities requires quantitative assessment of the impacts that are likely to occur without adaptation, as well as the fraction of impact that can be avoided through each activity. Here we present a quantitative framework inspired by the greenhouse gas stabilization wedges of Pacala and Socolow. In our proposed framework, the damage avoided by each adaptation activity creates an 'adaptation wedge' relative to the loss that would occur without that adaptation activity. We use premium winegrape suitability in the western United States as an illustrative case study, focusing on the near-term period thatmore » covers the years 2000 39. We find that the projected warming over this period results in the loss of suitable winegrape area throughout much of California, including most counties in the high-value North Coast and Central Coast regions. However, in quantifying adaptation wedges for individual high-value counties, we find that a large adaptation wedge can be captured by increasing the severe heat tolerance, including elimination of the 50% loss projected by the end of the 2030 9 period in the North Coast region, and reduction of the projected loss in the Central Coast region from 30% to less than 15%. Increased severe heat tolerance can capture an even larger adaptation wedge in the Pacific Northwest, including conversion of a projected loss of more than 30% in the Columbia Valley region of Washington to a projected gain of more than 150%. We also find that warming projected over the near-term decades has the potential to alter the quality of winegrapes produced in the western US, and we discuss potential actions that could create adaptation wedges given these potential changes in quality. While the present effort represents an initial exploration of one aspect of one industry, the climate adaptation wedge framework could be used to quantitatively evaluate the opportunities and limits of climate

  17. Nonlinear dynamics of ice-wedge networks and resulting sensitivity to severe cooling events.

    PubMed

    Plug, L J; Werner, B T

    2002-06-27

    Patterns of subsurface wedges of ice that form along cooling-induced tension fractures, expressed at the ground surface by ridges or troughs spaced 10 30 m apart, are ubiquitous in polar lowlands. Fossilized ice wedges, which are widespread at lower latitudes, have been used to infer the duration and mean temperature of cold periods within Proterozoic and Quaternary climates, and recent climate trends have been inferred from fracture frequency in active ice wedges. Here we present simulations from a numerical model for the evolution of ice-wedge networks over a range of climate scenarios, based on the interactions between thermal tensile stress, fracture and ice wedges. We find that short-lived periods of severe cooling permanently alter the spacing between ice wedges as well as their fracture frequency. This affects the rate at which the widths of ice wedges increase as well as the network's response to subsequent climate change. We conclude that wedge spacing and width in ice-wedge networks mainly reflect infrequent episodes of rapidly falling ground temperatures rather than mean conditions.

  18. Vertebral Osteotomies in Ankylosing Spondylitis—Comparison of Outcomes Following Closing Wedge Osteotomy versus Opening Wedge Osteotomy: A Systematic Review

    PubMed Central

    Ravinsky, Robert A.; Ouellet, Jean-Albert; Brodt, Erika D.; Dettori, Joseph R.

    2013-01-01

    Study Design Systematic review. Study Rationale To seek out and assess the best quality evidence available comparing opening wedge osteotomy (OWO) and closing wedge osteotomy (CWO) in patients with ankylosing spondylitis to determine whether their results differ with regard to several different subjective and objective outcome measures. Objective The aim of this study is to determine whether there is a difference in subjective and objective outcomes when comparing CWO and OWO in patients with ankylosing spondylitis suffering from clinically significant thoracolumbar kyphosis with respect to quality-of-life assessments, complication risks, and the amount of correction of the spine achieved at follow-up. Methods A systematic review was undertaken of articles published up to July 2012. Electronic databases and reference lists of key articles were searched to identify studies comparing effectiveness and safety outcomes between adult patients with ankylosing spondylitis who received closing wedge versus opening wedge osteotomies. Studies that included pediatric patients, polysegmental osteotomies, or revision procedures were excluded. Two independent reviewers assessed the strength of evidence using the GRADE criteria and disagreements were resolved by consensus. Results From a total of 67 possible citations, 4 retrospective cohorts (class of evidence III) met our inclusion criteria and form the basis for this report. No differences in Oswestry Disability Index, visual analog scale for pain, Scoliosis Research Society (SRS)-24 score, SRS-22 score, and patient satisfaction were reported between the closing and opening wedge groups across two studies. Regarding radiological outcomes following closing versus opening osteotomies, mean change in sagittal vertical axis ranged from 8.9 to 10.8 cm and 8.0 to 10.9 cm, respectively, across three studies; mean change in lumbar lordosis ranged from 36 to 47 degrees and 19 to 41 degrees across four studies; and mean change

  19. The crack and wedging problem for an orthotropic strip

    NASA Technical Reports Server (NTRS)

    Cinar, A.; Erdogan, F.

    1983-01-01

    The plane elasticity problem for an orthotropic strip containing a crack parallel to its boundaries is considered. The problem is formulated under general mixed mode loading conditions. The stress intensity factors depend on two dimensionless orthotropic constants only. For the crack problem the results are given for a single crack and two collinear cracks. The calculated results show that of the two orthotropic constants the influence of the stiffness ratio on the stress intensity factors is much more significant than that of the shear parameter. The problem of loading the strip by a rigid rectangular lengths continuous contact is maintained along the wedge strip interface; at a certain critical wedge length the separation starts at the midsection of the wedge, and the length of the separation zone increases rapidly with increasing wedge length. Previously announced in STAR as N82-26707

  20. Operational characteristics of Wedge and Strip image readout systems

    NASA Technical Reports Server (NTRS)

    Siegmund, O. H. W.; Lampton, M.; Bixler, J.; Bowyer, S.; Malina, R. F.

    1986-01-01

    Application of the Wedge and Strip readout system in microchannel plate detectors for the Extreme Ultraviolet Explorer and FAUST space astronomy programs is discussed. Anode designs with high resolution (greater than 600 x 600 pixels) in imaging and spectroscopy applications have been developed. Extension of these designs to larger formats (100 mm) with higher resolution (3000 x 3000 pixels) are considered. It is shown that the resolution and imaging are highly stable, and that the flat field performance is essentially limited by photon statistics. Very high speed event response has also been achieved with output pulses having durations of less than 10 nanoseconds.

  1. Augmented wedge-shaped glenoid component for the correction of glenoid retroversion: a finite element analysis.

    PubMed

    Hermida, Juan C; Flores-Hernandez, Cesar; Hoenecke, Heinz R; D'Lima, Darryl D

    2014-03-01

    This study undertook a computational analysis of a wedged glenoid component for correction of retroverted glenoid arthritic deformity to determine whether a wedge-shaped glenoid component design with a built-in correction for version reduces excessive stresses in the implant, cement, and glenoid bone. Recommendations for correcting retroversion deformity are asymmetric reaming of the anterior glenoid, bone grafting of the posterior glenoid, or a glenoid component with posterior augmentation. Eccentric reaming has the disadvantages of removing normal bone, reducing structural support for the glenoid component, and increasing the risk of bone perforation by the fixation pegs. Bone grafting to correct retroverted deformity does not consistently generate successful results. Finite element models of 2 scapulae models representing a normal and an arthritic retroverted glenoid were implanted with a standard glenoid component (in retroversion or neutral alignment) or a wedged component. Glenohumeral forces representing in vivo loading were applied and stresses and strains computed in the bone, cement, and glenoid component. The retroverted glenoid components generated the highest compressive stresses and decreased cyclic fatigue life predictions for trabecular bone. Correction of retroversion by the wedged glenoid component significantly decreased stresses and predicted greater bone fatigue life. The cement volume estimated to survive 10 million cycles was the lowest for the retroverted components and the highest for neutrally implanted glenoid components and for wedged components. A wedged glenoid implant is a viable option to correct severe arthritic retroversion, reducing the need for eccentric reaming and the risk for implant failure. Copyright © 2014 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.

  2. Three-Dimensional Vertebral Wedging in Mild and Moderate Adolescent Idiopathic Scoliosis

    PubMed Central

    Scherrer, Sophie-Anne; Begon, Mickaël; Leardini, Alberto; Coillard, Christine; Rivard, Charles-Hilaire; Allard, Paul

    2013-01-01

    Background Vertebral wedging is associated with spinal deformity progression in adolescent idiopathic scoliosis. Reporting frontal and sagittal wedging separately could be misleading since these are projected values of a single three-dimensional deformation of the vertebral body. The objectives of this study were to determine if three-dimensional vertebral body wedging is present in mild scoliosis and if there are a preferential vertebral level, position and plane of deformation with increasing scoliotic severity. Methodology Twenty-seven adolescent idiopathic scoliotic girls with mild to moderate Cobb angles (10° to 50°) participated in this study. All subjects had at least one set of bi-planar radiographs taken with the EOS® X-ray imaging system prior to any treatment. Subjects were divided into two groups, separating the mild (under 20°) from the moderate (20° and over) spinal scoliotic deformities. Wedging was calculated in three different geometric planes with respect to the smallest edge of the vertebral body. Results Factorial analyses of variance revealed a main effect for the scoliosis severity but no main effect of vertebral Levels (apex and each of the three vertebrae above and below it) (F = 1.78, p = 0.101). Main effects of vertebral Positions (apex and above or below it) (F = 4.20, p = 0.015) and wedging Planes (F = 34.36, p<0.001) were also noted. Post-hoc analysis demonstrated a greater wedging in the inferior group of vertebrae (3.6°) than the superior group (2.9°, p = 0.019) and a significantly greater wedging (p≤0.03) along the sagittal plane (4.3°). Conclusions Vertebral wedging was present in mild scoliosis and increased as the scoliosis progressed. The greater wedging of the inferior group of vertebrae could be important in estimating the most distal vertebral segment to be restrained by bracing or to be fused in surgery. Largest vertebral body wedging values obtained in the sagittal plane support the claim

  3. SU-E-T-100: Designing a QA Tool for Enhance Dynamic Wedges Based On Dynalog Files

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yousuf, A; Hussain, A

    2014-06-01

    Purpose: A robust quality assurance (QA) program for computer controlled enhanced dynamic wedge (EDW) has been designed and tested. Calculations to perform such QA test is based upon the EDW dynamic log files generated during dose delivery. Methods: Varian record and verify system generates dynamic log (dynalog) files during dynamic dose delivery. The system generated dynalog files contain information such as date and time of treatment, energy, monitor units, wedge orientation, and type of treatment. It also contains the expected calculated segmented treatment tables (STT) and the actual delivered STT for the treatment delivery as a verification record. These filesmore » can be used to assess the integrity and precision of the treatment plan delivery. The plans were delivered with a 6 MV beam from a Varian linear accelerator. For available EDW angles (10°, 15°, 20°, 25°, 30°, 45°, and 60°) Varian STT values were used to manually calculate monitor units for each segment. It can also be used to calculate the EDW factors. Independent verification of fractional MUs per segment was performed against those generated from dynalog files. The EDW factors used to calculate MUs in TPS were dosimetrically verified in solid water phantom with semiflex chamber on central axis. Results: EDW factors were generated from the STT provided by Varian and verified against practical measurements. The measurements were in agreement of the order of 1 % to the calculated EDW data. Variation between the MUs per segment obtained from dynalog files and those manually calculated was found to be less than 2%. Conclusion: An efficient and easy tool to perform routine QA procedure of EDW is suggested. The method can be easily implemented in any institution without a need for expensive QA equipment. An error of the order of ≥2% can be easily detected.« less

  4. Design of a gap tunable flux qubit with FastHenry

    NASA Astrophysics Data System (ADS)

    Akhtar, Naheed; Zheng, Yarui; Nazir, Mudassar; Wu, Yulin; Deng, Hui; Zheng, Dongning; Zhu, Xiaobo

    2016-12-01

    In the preparations of superconducting qubits, circuit design is a vital process because the parameters and layout of the circuit not only determine the way we address the qubits, but also strongly affect the qubit coherence properties. One of the most important circuit parameters, which needs to be carefully designed, is the mutual inductance among different parts of a superconducting circuit. In this paper we demonstrate how to design a gap-tunable flux qubit by layout design and inductance extraction using a fast field solver FastHenry. The energy spectrum of the gap-tunable flux qubit shows that the measured parameters are close to the design values. Project supported by the National Natural Science Foundation of China (Grant Nos. 11374344, 11404386, and 91321208), the National Basic Research Program of China (Grant No. 2014CB921401), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB07010300).

  5. Regional Landscape Response to Wedge-Top Basin Formation

    NASA Astrophysics Data System (ADS)

    Ruetenik, G.; Moucha, R.; Hoke, G. D.; Val, P.

    2017-12-01

    Wedge-top basins are the result of regionally variable uplift along thrust faults downstream of a mountain range and provide an ideal environment to study the regional stream and surface response to local variations in rock uplift. In this study, we simulate the formation and evolution of a wedge-top basin using a landscape evolution model. In line with a previous study, we find that during deformation in the fold-and-thrust belt adjacent to a wedge-top basin, both channel slope and erosion rates are reduced, and these changes propagate as a wave of low erosion into the uplands. For a uniform background uplift rate, this reduced rate of erosion results in a net surface uplift and a decreased slope within and upstream of the wedge-top basin. Following the eventual breach of the basin's bounding thrust belt, a wave of high erosion propagates through the basin and increases the channel slope. We expand upon previous studies by testing our model against a wide range of model parameters, although in general we find that the onset of increased erosion can be delayed by up to several million years. The amount of surface uplift is highly dependent on flexural isostasy and therefore it is heavily influenced by the elastic thickness and erodbility parameters. Observed paleoerosion rates in a paired wedge-top foreland sequence in the Argentine Precordillera reveal similar histories of paleo-erosion, and present day stream profiles show evidence that support model outcomes.

  6. Assessing dose–response effects of national essential medicine policy in China: comparison of two methods for handling data with a stepped wedge-like design and hierarchical structure

    PubMed Central

    Ren, Yan; Yang, Min; Li, Qian; Pan, Jay; Chen, Fei; Li, Xiaosong; Meng, Qun

    2017-01-01

    Objectives To introduce multilevel repeated measures (RM) models and compare them with multilevel difference-in-differences (DID) models in assessing the linear relationship between the length of the policy intervention period and healthcare outcomes (dose–response effect) for data from a stepped-wedge design with a hierarchical structure. Design The implementation of national essential medicine policy (NEMP) in China was a stepped-wedge-like design of five time points with a hierarchical structure. Using one key healthcare outcome from the national NEMP surveillance data as an example, we illustrate how a series of multilevel DID models and one multilevel RM model can be fitted to answer some research questions on policy effects. Setting Routinely and annually collected national data on China from 2008 to 2012. Participants 34 506 primary healthcare facilities in 2675 counties of 31 provinces. Outcome measures Agreement and differences in estimates of dose–response effect and variation in such effect between the two methods on the logarithm-transformed total number of outpatient visits per facility per year (LG-OPV). Results The estimated dose–response effect was approximately 0.015 according to four multilevel DID models and precisely 0.012 from one multilevel RM model. Both types of model estimated an increase in LG-OPV by 2.55 times from 2009 to 2012, but 2–4.3 times larger SEs of those estimates were found by the multilevel DID models. Similar estimates of mean effects of covariates and random effects of the average LG-OPV among all levels in the example dataset were obtained by both types of model. Significant variances in the dose–response among provinces, counties and facilities were estimated, and the ‘lowest’ or ‘highest’ units by their dose–response effects were pinpointed only by the multilevel RM model. Conclusions For examining dose–response effect based on data from multiple time points with hierarchical structure and the

  7. Inadequacy of ethical conduct and reporting of stepped wedge cluster randomized trials: Results from a systematic review.

    PubMed

    Taljaard, Monica; Hemming, Karla; Shah, Lena; Giraudeau, Bruno; Grimshaw, Jeremy M; Weijer, Charles

    2017-08-01

    Background/aims The use of the stepped wedge cluster randomized design is rapidly increasing. This design is commonly used to evaluate health policy and service delivery interventions. Stepped wedge cluster randomized trials have unique characteristics that complicate their ethical interpretation. The 2012 Ottawa Statement provides comprehensive guidance on the ethical design and conduct of cluster randomized trials, and the 2010 CONSORT extension for cluster randomized trials provides guidelines for reporting. Our aims were to assess the adequacy of the ethical conduct and reporting of stepped wedge trials to date, focusing on research ethics review and informed consent. Methods We conducted a systematic review of stepped wedge cluster randomized trials in health research published up to 2014 in English language journals. We extracted details of study intervention and data collection procedures, as well as reporting of research ethics review and informed consent. Two reviewers independently extracted data from each trial; discrepancies were resolved through discussion. We identified the presence of any research participants at the cluster level and the individual level. We assessed ethical conduct by tabulating reporting of research ethics review and informed consent against the presence of research participants. Results Of 32 identified stepped wedge trials, only 24 (75%) reported review by a research ethics committee, and only 16 (50%) reported informed consent from any research participants-yet, all trials included research participants at some level. In the subgroup of 20 trials with research participants at cluster level, only 4 (20%) reported informed consent from such participants; in 26 trials with individual-level research participants, only 15 (58%) reported their informed consent. Interventions (regardless of whether targeting cluster- or individual-level participants) were delivered at the group level in more than two-thirds of trials; nine trials (28

  8. Flow rate limitation in open wedge channel under microgravity

    NASA Astrophysics Data System (ADS)

    Wei, YueXing; Chen, XiaoQian; Huang, YiYong

    2013-08-01

    A study of flow rate limitation in an open wedge channel is reported in this paper. Under microgravity condition, the flow is controlled by the convection and the viscosity in the channel as well as the curvature of the liquid free surface. A maximum flow rate is achieved when the curvature cannot balance the pressure difference leading to a collapse of the free surface. A 1-dimensional theoretical model is used to predict the critical flow rate and calculate the shape of the free surface. Computational Fluid Dynamics tool is also used to simulate the phenomenon. Results show that the 1-dimensional model overestimates the critical flow rate because extra pressure loss is not included in the governing equation. Good agreement is found in 3-dimensional simulation results. Parametric study with different wedge angles and channel lengths show that the critical flow rate increases with increasing the cross section area; and decreases with increasing the channel length. The work in this paper can help understand the surface collapsing without gravity and for the design in propellant management devices in satellite tanks.

  9. Wedge Waveguides and Resonators for Quantum Plasmonics

    PubMed Central

    2015-01-01

    Plasmonic structures can provide deep-subwavelength electromagnetic fields that are useful for enhancing light–matter interactions. However, because these localized modes are also dissipative, structures that offer the best compromise between field confinement and loss have been sought. Metallic wedge waveguides were initially identified as an ideal candidate but have been largely abandoned because to date their experimental performance has been limited. We combine state-of-the-art metallic wedges with integrated reflectors and precisely placed colloidal quantum dots (down to the single-emitter level) and demonstrate quantum-plasmonic waveguides and resonators with performance approaching theoretical limits. By exploiting a nearly 10-fold improvement in wedge-plasmon propagation (19 μm at a vacuum wavelength, λvac, of 630 nm), efficient reflectors (93%), and effective coupling (estimated to be >70%) to highly emissive (∼90%) quantum dots, we obtain Ag plasmonic resonators at visible wavelengths with quality factors approaching 200 (3.3 nm line widths). As our structures offer modal volumes down to ∼0.004λvac3 in an exposed single-mode waveguide–resonator geometry, they provide advantages over both traditional photonic microcavities and localized-plasmonic resonators for enhancing light–matter interactions. Our results confirm the promise of wedges for creating plasmonic devices and for studying coherent quantum-plasmonic effects such as long-distance plasmon-mediated entanglement and strong plasmon–matter coupling. PMID:26284499

  10. Are Pericentric Inversions Reorganizing Wedge Shell Genomes?

    PubMed Central

    García-Souto, Daniel; Pérez-García, Concepción

    2017-01-01

    Wedge shells belonging to the Donacidae family are the dominant bivalves in exposed beaches in almost all areas of the world. Typically, two or more sympatric species of wedge shells differentially occupy intertidal, sublittoral, and offshore coastal waters in any given locality. A molecular cytogenetic analysis of two sympatric and closely related wedge shell species, Donax trunculus and Donax vittatus, was performed. Results showed that the karyotypes of these two species were both strikingly different and closely alike; whilst metacentric and submetacentric chromosome pairs were the main components of the karyotype of D. trunculus, 10–11 of the 19 chromosome pairs were telocentric in D. vittatus, most likely as a result of different pericentric inversions. GC-rich heterochromatic bands were present in both species. Furthermore, they showed coincidental 45S ribosomal RNA (rRNA), 5S rRNA and H3 histone gene clusters at conserved chromosomal locations, although D. trunculus had an additional 45S rDNA cluster. Intraspecific pericentric inversions were also detected in both D. trunculus and D. vittatus. The close genetic similarity of these two species together with the high degree of conservation of the 45S rRNA, 5S rRNA and H3 histone gene clusters, and GC-rich heterochromatic bands indicate that pericentric inversions contribute to the karyotype divergence in wedge shells. PMID:29215567

  11. Intervertebral disc adaptation to wedging deformation.

    PubMed

    Stokes, Ian A F; Aronsson, David D; Clark, Katherine C; Roemhildt, Maria L

    2006-01-01

    Although scoliosis includes wedge deformities of both vertebrae and discs, little is known about the causes of the discal changes, and whether they result from mechanical influences on growth and/or remodelling. An external apparatus attached to transvertebral pins applied compression and 15 degrees of angulation to each of two adjacent young rat caudal intervertebral discs for 5 weeks (four animals), or for 10 weeks (four animals). Each week, micro-CT scanning documented the in vivo discal wedging. After euthanasia, tail segments (three vertebrae and the 2 angulated discs) were excised and their flexibility was measured over a range of lateral bending. The angle of maximum flexibility was recorded. Then discs were fixed in situ (with the external apparatus in place) and sectioned for polarized light microscopy. The disc-wedging deformity averaged 15 degrees initially, it averaged 20 degrees after 5 weeks, and then reduced to 10 degrees (in 10 week animals). The lateral bending flexibility showed a distinct maximum at an average of 1.1 degrees from the in vivo position in the 5-week animals, indicating structural remodeling of the discs almost to the deformed geometry. The 10-week animals had maximum flexibility at 1.4 degrees from the in vivo position (no significant difference between 5 and 10-week animals.) Collagen crimp angles [Cassidy et al., Conn Tiss Res 1989, 23:75-88] were not significantly different between convex and concave sides, again suggesting that remodeling had occurred. In a mechanically induced scoliosis deformity in skeletally immature rats, the intervertebral discs underwent remodeling within 5 weeks. This indicates that this animal model is suitable for studying adaptive wedging changes in human scoliosis.

  12. Proximal opening wedge osteotomy with wedge-plate fixation compared with proximal chevron osteotomy for the treatment of hallux valgus: a prospective, randomized study.

    PubMed

    Glazebrook, Mark; Copithorne, Peter; Boyd, Gordon; Daniels, Timothy; Lalonde, Karl-André; Francis, Patricia; Hickey, Michael

    2014-10-01

    Hallux valgus with an increased intermetatarsal angle is usually treated with a proximal metatarsal osteotomy. The proximal chevron osteotomy is commonly used but is technically difficult. This study compares the proximal opening wedge osteotomy of the first metatarsal with the proximal chevron osteotomy for the treatment of hallux valgus with an increased intermetatarsal angle. This prospective, randomized multicenter (three-center) study was based on the clinical outcome scores of the Short Form-36, the American Orthopaedic Foot & Ankle Society forefoot questionnaire, and the visual analog scale for pain, activity, and patient satisfaction. Subjects were assessed prior to surgery and at three, six, and twelve months postoperatively. Surgeon preference was evaluated based on questionnaires and the operative times required for each procedure. No significant differences were found for any of the patients' clinical outcome measurements between the two procedures. The proximal opening wedge osteotomy was found to lengthen, and the proximal chevron osteotomy was found to shorten, the first metatarsal. The intermetatarsal angles improved (decreased) significantly, from 14.8° ± 3.2° to 9.1° ± 2.9 (mean and standard deviation) after a proximal opening wedge osteotomy and from 14.6° ± 3.9° to 11.3° ± 4.0° after a proximal chevron osteotomy (p < 0.05 for both). Operative time required for performing a proximal opening wedge osteotomy is similar to that required for performing a proximal chevron osteotomy (mean and standard deviation, 67.1 ± 16.5 minutes compared with 69.9 ± 18.6 minutes; p = 0.510). Opening wedge and proximal chevron osteotomies have comparable radiographic outcomes and comparable clinical outcomes for pain, satisfaction, and function. The proximal opening wedge osteotomy lengthens, and the proximal chevron osteotomy shortens, the first metatarsal. The proximal opening wedge osteotomy was subjectively less technically demanding and was

  13. The use of sternal wedge osteotomy in pectus surgery: when is it necessary?

    PubMed

    Kara, Murat; Gundogdu, Ahmet Gokhan; Kadioglu, Salih Zeki; Cayirci, Ertug Can; Taskin, Necati

    2016-09-01

    The Ravitch procedure is a well-established surgical procedure for correction of chest wall deformities. Sternal wedge osteotomy is an important part of this procedure. We studied the incidence of wedge osteotomy with respect to the type of chest wall deformity in patients undergoing surgical correction with the use of a recently developed chest wall stabilization system. A total of 47 patients, 39 (83%) male and 8 (17%) female with a mean age of 14.9 ± 2.1 years, underwent the Ravitch procedure. Twenty-four (51.1%) had pectus carinatum, 19 (40.4%) had pectus excavatum, and 4 (8.5%) had pectus arcuatum. A conventional or oblique sternal wedge osteotomy was performed as indicated, followed by chest wall stabilization using the MedXpert system. Of the 47 patients, 27 (57.4%) had a sternal wedge osteotomy. All cases of pectus arcuatum and redo cases underwent sternal wedge osteotomy. Pectus excavatum cases tended to have a greater incidence of wedge osteotomy compared to pectus carinatum cases (68.4% vs. 41.7%, p = 0.052). Patients with more resected ribs had a greater rate of wedge osteotomy (63.4%) compared to those with fewer resected ribs (16.7%, p = 0.043). A sternal wedge osteotomy is more commonly performed in patients with pectus excavatum compared to those with pectus carinatum. All redo and pectus arcuatum cases need a wedge osteotomy for proper correction. Wedge osteotomy is very likely in more aggressive corrections with more rib resections. © The Author(s) 2016.

  14. Seismic reflection images of the accretionary wedge of Costa Rica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shipley, T.H.; Stoffa, P.L.; McIntosh, K.

    The large-scale structure of modern accretionary wedges is known almost entirely from seismic reflection investigations using single or grids of two-dimensional profiles. The authors will report on the first three-dimensional seismic reflection data volume collected of a wedge. This data set covers a 9-km-wide {times} 22-km-long {times} 6-km-thick volume of the accretionary wedge just arcward of the Middle America Trench off Costa Rica. The three-dimensional processing has improved the imaging ability of the multichannel data, and the data volume allows mapping of structures from a few hundred meters to kilometers in size. These data illustrate the relationships between the basement,more » the wedge shape, and overlying slope sedimentary deposits. Reflections from within the wedge define the gross structural features and tectonic processes active along this particular convergent margin. So far, the analysis shows that the subdued basement relief (horst and graben structures seldom have relief of more than a few hundred meters off Costa Rica) does affect the larger scale through going structural features within the wedge. The distribution of mud volcanoes and amplitude anomalies associated with the large-scale wedge structures suggests that efficient fluid migration paths may extend from the top of the downgoing slab at the shelf edge out into the lower and middle slope region at a distance of 50-100 km. Offscraping of the uppermost (about 45 m) sediment occurs within 4 km of the trench, creating a small pile of sediments near the trench lower slope. Underplating of parts of the 400-m-thick subducted sedimentary section begins at a very shallow structural level, 4-10 km arcward of the trench. Volumetrically, the most important accretionary process is underplating.« less

  15. Stress singularities at the vertex of a cylindrically anisotropic wedge

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.; Boduroglu, H.

    1980-01-01

    The plane elasticity problem for a cylindrically anisotropic solid is formulated. The form of the solution for an infinite wedge shaped domain with various homogeneous boundary conditions is derived and the nature of the stress singularity at the vertex of the wedge is studied. The characteristic equations giving the stress singularity and the angular distribution of the stresses around the vertex of the wedge are obtained for three standard homogeneous boundary conditions. The numerical examples show that the singular behavior of the stresses around the vertex of an anisotropic wedge may be significantly different from that of the isotropic material. Some of the results which may be of practical importance are that for a half plane the stress state at r = 0 may be singular and for a crack the power of stress singularity may be greater or less than 1/2.

  16. Investigation of two-dimensional wedge exhaust nozzles for advanced aircraft

    NASA Technical Reports Server (NTRS)

    Maiden, D. L.; Petit, J. E.

    1975-01-01

    Two-dimensional wedge nozzle performance characteristics were investigated in a series of wind-tunnel tests. An isolated single-engine/nozzle model was used to study the effects of internal expansion area ratio, aftbody cowl boattail angle, and wedge length. An integrated twin-engine/nozzle model, tested with and without empenage surfaces, included cruise, acceleration, thrust vectoring and thrust reversing nozzle operating modes. Results indicate that the thrust-minus-aftbody drag performance of the twin two-dimensional nozzle integration is significantly higher, for speeds greater than Mach 0.8, than the performance achieved with twin axisymmetric nozzle installations. Significant jet-induced lift was obtained on an aft-mounted lifting surface using a cambered wedge center body to vector thrust. The thrust reversing capabilities of reverser panels installed on the two-dimensional wedge center body were very effective for static or in-flight operation.

  17. Degradation and stabilization of ice wedges: Implications for assessing risk of thermokarst in northern Alaska

    NASA Astrophysics Data System (ADS)

    Kanevskiy, Mikhail; Shur, Yuri; Jorgenson, Torre; Brown, Dana R. N.; Moskalenko, Nataliya; Brown, Jerry; Walker, Donald A.; Raynolds, Martha K.; Buchhorn, Marcel

    2017-11-01

    Widespread degradation of ice wedges has been observed during the last decades in numerous areas within the continuous permafrost zone of Eurasia and North America. To study ice-wedge degradation, we performed field investigations at Prudhoe Bay and Barrow in northern Alaska during 2011-2016. In each study area, a 250-m transect was established with plots representing different stages of ice-wedge degradation/stabilization. Field work included surveying ground- and water-surface elevations, thaw-depth measurements, permafrost coring, vegetation sampling, and ground-based LiDAR scanning. We described cryostratigraphy of frozen soils and stable isotope composition, analyzed environmental characteristics associated with ice-wedge degradation and stabilization, evaluated the vulnerability and resilience of ice wedges to climate change and disturbances, and developed new conceptual models of ice-wedge dynamics that identify the main factors affecting ice-wedge degradation and stabilization and the main stages of this quasi-cyclic process. We found significant differences in the patterns of ice-wedge degradation and stabilization between the two areas, and the patterns were more complex than those previously described because of the interactions of changing topography, water redistribution, and vegetation/soil responses that can interrupt or reinforce degradation. Degradation of ice wedges is usually triggered by an increase in the active-layer thickness during exceptionally warm and wet summers or as a result of flooding or disturbance. Vulnerability of ice wedges to thermokarst is controlled by the thickness of the intermediate layer of the upper permafrost, which overlies ice wedges and protects them from thawing. In the continuous permafrost zone, degradation of ice wedges rarely leads to their complete melting; and in most cases wedges eventually stabilize and can then resume growing, indicating a somewhat cyclic and reversible process. Stabilization of ice wedges

  18. 28. REPRESENTATIVE CENTER WEDGE. BALANCE WHEELS ON TRACK, WITH RACK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. REPRESENTATIVE CENTER WEDGE. BALANCE WHEELS ON TRACK, WITH RACK TO OUTSIDE, SHOWN TO RIGHT OF THE WEDGE. PHOTO TAKEN AT SOUTH SWING SPAN. - George P. Coleman Memorial Bridge, Spanning York River at U.S. Route 17, Yorktown, York County, VA

  19. Acoustic field of a wedge-shaped section of a spherical cap transducer

    NASA Astrophysics Data System (ADS)

    Ketterling, Jeffrey A.

    2003-12-01

    The acoustic pressure field at an arbitrary point in space is derived for a wedge-shaped section of a spherical cap transducer using the spatial impulse response (SIR) method. For a spherical surface centered at the origin, a wedge shape is created by taking cuts in the X-Y and X-Z planes and removing the smallest surface component. Analytic expressions are derived for the SIR based on spatial location. The expressions utilize the SIR solutions for a spherical cap transducer [Arditi et al., Ultrason. Imaging 3, 37-61 (1981)] with additional terms added to account for the reduced surface area of the wedge. Results from the numerical model are compared to experimental measurements from a wedge transducer with an 8-cm outer diameter and 9-cm geometric focus. The experimental and theoretical -3-dB beamwidths agreed to within 10%+/-5%. The SIR model for a wedge-shaped transducer is easily extended to other spherically curved transducer geometries that consist of combinations of wedge sections and spherical caps.

  20. Acoustic field of a wedge-shaped section of a spherical cap transducer.

    PubMed

    Ketterling, Jeffrey A

    2003-12-01

    The acoustic pressure field at an arbitrary point in space is derived for a wedge-shaped section of a spherical cap transducer using the spatial impulse response (SIR) method. For a spherical surface centered at the origin, a wedge shape is created by taking cuts in the X-Y and X-Z planes and removing the smallest surface component. Analytic expressions are derived for the SIR based on spatial location. The expressions utilize the SIR solutions for a spherical cap transducer [Arditi et al., Ultrason. Imaging 3, 37-61 (1981)] with additional terms added to account for the reduced surface area of the wedge. Results from the numerical model are compared to experimental measurements from a wedge transducer with an 8-cm outer diameter and 9-cm geometric focus. The experimental and theoretical -3-dB beamwidths agreed to within 10% +/- 5%. The SIR model for a wedge-shaped transducer is easily extended to other spherically curved transducer geometries that consist of combinations of wedge sections and spherical caps.

  1. A regional-scale estimation of ice wedge ice volumes in the Canadian High Arctic

    NASA Astrophysics Data System (ADS)

    Templeton, M.; Pollard, W. H.; Grand'Maison, C. B.

    2016-12-01

    Ice wedges are both prominent and environmentally vulnerable features in continuous permafrost environments. As the world's Arctic regions begin to warm, concern over the potential effects of ice wedge melt out has become an immediate issue, receiving much attention in the permafrost literature. In this study we estimate the volume of ice wedge ice for large areas in the Canadian High Arctic through the use of high resolution satellite imagery and the improved capabilities of Geographic Information Systems (GIS). The methodology used for this study is similar to that of one performed in Siberia and Alaska by Ulrich et al, in 2014. Utilizing Ulrich's technique, this study detected ice wedge polygons from satellite imagery using ArcGIS. The average width and depth of these ice wedges were obtained from a combination of field data and long-term field studies for the same location. The assumptions used in the analysis of ice wedge volume have been tested, including trough width being representative of ice wedge width, and ice wedge ice content (Pollard and French 1980). This study used specific field sites located near Eureka on Ellesmere Island (N80°01', W85°43') and at Expedition Fiord on Axel Heiberg Island (N79°23', W90°59'). The preliminary results indicate that the methodology used by Ulrich et al, 2014 is transferrable to the Canadian High Arctic, and that ice wedge volumes range between 3-10% of the upper part of permafrost. These findings are similar to previous studies and their importance is made all the more evident by the dynamic nature of ice wedges where it could be argued that they are a key driver of thermokarst terrain. The ubiquitous nature of ice wedges across arctic terrain highlights the importance and the need to improve our understanding of ice wedge dynamics, as subsidence from ice wedge melt-out could lead to large scale landscape change.

  2. Design of ultra compact polarization splitter based on complete photonic band gap

    NASA Astrophysics Data System (ADS)

    Sinha, R. K.; Nagpal, Yogita

    2005-11-01

    Certain select structures in photonic crystals (PhCs) exhibit complete photonic band gap i.e. a frequency region where the photonic band gaps for both polarizations (i.e. transverse electric and transverse magnetic modes) exist and overlap. One of the most fundamental applications of the photonic band gap structures is the design of photonic crystal waveguides, which can be made by inserting linear defects in the photonic crystal structures. By setting closely two parallel 2D PhC waveguides, a directional waveguide coupler can be designed, which can be used to design a polarization splitter. In this paper we design a polarization splitter in a photonic crystal structure composed of two dimensional honeycomb pattern of dielectric rods in air. This photonic crystal structure exhibits a complete photonic band gap that extends from λ = 1.49 μm to λ = 1.61 μm, where lambda is the wavelength in free space, providing a large bandwidth of 120 nm. A polarization splitter can be made by designing a polarization selective coupler. The coupling lengths at various wavelengths for both polarizations have been calculated using the Finite Difference Time Domain method. It has been shown that the coupling length, for TE polarization is much smaller as compared to that for the TM polarization. This principle is used to design a polarization splitter of length 32 μm at λ = 1.55 μm. Further, the spectral response of the extinction ratios for both polarizations in the two waveguides at propagation distance of 32 μm has been studied.

  3. Effects of altering heel wedge properties on gait with the Intrepid Dynamic Exoskeletal Orthosis.

    PubMed

    Ikeda, Andrea J; Fergason, John R; Wilken, Jason M

    2018-06-01

    The Intrepid Dynamic Exoskeletal Orthosis is a custom-made dynamic response carbon fiber device. A heel wedge, which sits in the shoe, is an integral part of the orthosis-heel wedge-shoe system. Because the device restricts ankle movement, the system must compensate to simulate plantarflexion and allow smooth forward progression during gait. To determine the influence of wedge height and durometer on the walking gait of individuals using the Intrepid Dynamic Exoskeletal Orthosis. Repeated measures. Twelve individuals walked over level ground with their Intrepid Dynamic Exoskeletal Orthosis and six different heel wedges of soft or firm durometer and 1, 2, or 3 cm height. Center of pressure velocity, joint moments, and roll-over shape were calculated for each wedge. Height and durometer significantly affected time to peak center of pressure velocity, time to peak internal dorsiflexion and knee extension moments, time to ankle moment zero crossing, and roll-over shape center of curvature anterior-posterior position. Wedge height had a significant influence on peak center of pressure velocity, peak dorsiflexion moment, time to peak knee extension moment, and roll-over shape radius and vertical center of curvature. Changes in wedge height and durometer systematically affected foot loading. Participants preferred wedges which produced ankle moment zero crossing timing, peak internal knee extension moment timing, and roll-over shape center of curvature anterior-posterior position close to that of able-bodied individuals. Clinical relevance Adjusting the heel wedge is a simple, straightforward way to adjust the orthosis-heel wedge-shoe system. Changing wedge height and durometer significantly alters loading of the foot and has great potential to improve an individual's gait.

  4. Localization of observables in the Rindler wedge

    NASA Astrophysics Data System (ADS)

    Asorey, M.; Balachandran, A. P.; Marmo, G.; de Queiroz, A. R.

    2017-11-01

    One of the striking features of QED is that charged particles create a coherent cloud of photons. The resultant coherent state vectors of photons generate a nontrivial representation of the localized algebra of observables that do not support a representation of the Lorentz group: Lorentz symmetry is spontaneously broken. We show in particular that Lorentz boost generators diverge in this representation, a result shown also by Balachandran et al. [Eur. Phys. J. C 75, 89 (2015), 10.1140/epjc/s10052-015-3305-0] (see also the work by Balachandran et al. [Mod. Phys. Lett. A 28, 1350028 (2013), 10.1142/S0217732313500284]. Localization of observables, for example in the Rindler wedge, uses Poincaré invariance in an essential way [Int. J. Geom. Methods Mod. Phys. 14, 1740008 (2017)., 10.1142/S0219887817400084]. Hence, in the presence of charged fields, the photon observables cannot be localized in the Rindler wedge. These observations may have a bearing on the black hole information loss paradox, as the physics in the exterior of the black hole has points of resemblance to that in the Rindler wedge.

  5. Managing Uncertainty in Water Infrastructure Design Using Info-gap Robustness

    NASA Astrophysics Data System (ADS)

    Irias, X.; Cicala, D.

    2013-12-01

    Info-gap theory, a tool for managing deep uncertainty, can be of tremendous value for design of water systems in areas of high seismic risk. Maintaining reliable water service in those areas is subject to significant uncertainties including uncertainty of seismic loading, unknown seismic performance of infrastructure, uncertain costs of innovative seismic-resistant construction, unknown costs to repair seismic damage, unknown societal impacts from downtime, and more. Practically every major earthquake that strikes a population center reveals additional knowledge gaps. In situations of such deep uncertainty, info-gap can offer advantages over traditional approaches, whether deterministic approaches that use empirical safety factors to address the uncertainties involved, or probabilistic methods that attempt to characterize various stochastic properties and target a compromise between cost and reliability. The reason is that in situations of deep uncertainty, it may not be clear what safety factor would be reasonable, or even if any safety factor is sufficient to address the uncertainties, and we may lack data to characterize the situation probabilistically. Info-gap is a tool that recognizes up front that our best projection of the future may be wrong. Thus, rather than seeking a solution that is optimal for that projection, info-gap seeks a solution that works reasonably well for all plausible conditions. In other words, info-gap seeks solutions that are robust in the face of uncertainty. Info-gap has been used successfully across a wide range of disciplines including climate change science, project management, and structural design. EBMUD is currently using info-gap to help it gain insight into possible solutions for providing reliable water service to an island community within its service area. The island, containing about 75,000 customers, is particularly vulnerable to water supply disruption from earthquakes, since it has negligible water storage and is

  6. Refined numerical solution of the transonic flow past a wedge

    NASA Technical Reports Server (NTRS)

    Liang, S.-M.; Fung, K.-Y.

    1985-01-01

    A numerical procedure combining the ideas of solving a modified difference equation and of adaptive mesh refinement is introduced. The numerical solution on a fixed grid is improved by using better approximations of the truncation error computed from local subdomain grid refinements. This technique is used to obtain refined solutions of steady, inviscid, transonic flow past a wedge. The effects of truncation error on the pressure distribution, wave drag, sonic line, and shock position are investigated. By comparing the pressure drag on the wedge and wave drag due to the shocks, a supersonic-to-supersonic shock originating from the wedge shoulder is confirmed.

  7. Double-Sided Wedge Model For Retreating Subduction Zones: Applications to the Apenninic and Hellenic Subduction Zones (Invited)

    NASA Astrophysics Data System (ADS)

    Brandon, M. T.; Willett, S.; Rahl, J. M.; Cowan, D. S.

    2009-12-01

    We propose a new model for the evolution of accreting wedges at retreating subduction zones. Advance and retreat refer to the polarity of the velocity of the overriding plate with respect to subduction zone. Advance indicates a velocity toward the subduction zone (e.g., Andes) and retreat, away from the subduction zone (e.g. Apennines, Crete). The tectonic mode of a subduction zone, whether advancing or retreating, is a result of both the rollback of the subducting plate and the absolute motion of the overriding plate. The Hellenic and Apenninic wedges are both associated with retreating subduction zones. The Hellenic wedge has been active for about 100 Ma, whereas the Apenninic wedge has been active for about 30 Ma. Comparison of maximum metamorphic pressures for exhumed rocks in these wedges (25 and 30 km, respectively) with the maximum thickness of the wedges at present (30 and 35 km, respectively) indicates that each wedge has maintained a relatively steady size during its evolution. This conclusion is based on the constraint that both frictional and viscous wedges are subject to the constraint of a steady wedge taper, so that thickness and width are strongly correlated. Both wedges show clear evidence of steady accretion during their full evolution, with accretionary fluxes of about 60 and 200 km2 Ma-1. These wedges also both show steady drift of material from the front to the rear of the wedge, with horizontal shortening dominating in the front of the wedge, and horizontal extension within the back of the wedge. We propose that these wedges represent two back-to-back wedges, with a convergent wedge on the leading side (proside), and a divergent wedge on the trailing side (retroside). In this sense, the wedges are bound by two plates. The subducting plate is familiar. It creates a thrust-sense traction beneath the proside of the wedge. The second plate is an “educting” plate, which is creates a normal-sense traction beneath the retroside of the wedge. The

  8. Single crystal metal wedges for surface acoustic wave propagation

    DOEpatents

    Fisher, E.S.

    1980-05-09

    An ultrasonic testing device has been developed to evaluate flaws and inhomogeneities in the near-surface region of a test material. A metal single crystal wedge is used to generate high frequency Rayleigh surface waves in the test material surface by conversion of a slow velocity, bulk acoustic mode in the wedge into a Rayleigh wave at the metal-wedge test material interface. Particular classes of metals have been found to provide the bulk acoustic modes necessary for production of a surface wave with extremely high frequency and angular collimation. The high frequency allows flaws and inhomogeneities to be examined with greater resolution. The high degree of angular collimation for the outgoing ultrasonic beam permits precision angular location of flaws and inhomogeneities in the test material surface.

  9. Single crystal metal wedges for surface acoustic wave propagation

    DOEpatents

    Fisher, Edward S.

    1982-01-01

    An ultrasonic testing device has been developed to evaluate flaws and inhomogeneities in the near-surface region of a test material. A metal single crystal wedge is used to generate high frequency Rayleigh surface waves in the test material surface by conversion of a slow velocity, bulk acoustic mode in the wedge into a Rayleigh wave at the metal-wedge test material interface. Particular classes of metals have been found to provide the bulk acoustic modes necessary for production of a surface wave with extremely high frequency and angular collimation. The high frequency allows flaws and inhomogeneities to be examined with greater resolution. The high degree of angular collimation for the outgoing ultrasonic beam permits precision angular location of flaws and inhomogeneities in the test material surface.

  10. Mechanics of fold-and-thrust belts and accretionary wedges Cohesive Coulomb theory

    NASA Technical Reports Server (NTRS)

    Dahlen, F. A.; Suppe, J.; Davis, D.

    1984-01-01

    A self-consistent theory for the mechanics of thin-skinned accretionary Coulomb wedges is developed and applied to the active fold-and-thrust belt of western Taiwan. The state of stress everywhere within a critical wedge is determined by solving the static equilibrium equations subject to the appropriate boundary conditions. The influence of wedge cohesion, which gives rise to a concave curvature of the critical topographic surface and affects the orientation of the principal stresses and Coulomb fracture within the wedge, is considered. The shape of the topographic surface and the angles at which thrust faults step up from the basal decollement in the Taiwanese belt is analyzed taking into account the extensive structural and fluid-pressure data available there. It is concluded that the gross geometry and structure of the Taiwan wedge are consistent with normal laboratory frictional and fracture strengths of sedimentary rocks.

  11. Minimum number of clusters and comparison of analysis methods for cross sectional stepped wedge cluster randomised trials with binary outcomes: A simulation study.

    PubMed

    Barker, Daniel; D'Este, Catherine; Campbell, Michael J; McElduff, Patrick

    2017-03-09

    Stepped wedge cluster randomised trials frequently involve a relatively small number of clusters. The most common frameworks used to analyse data from these types of trials are generalised estimating equations and generalised linear mixed models. A topic of much research into these methods has been their application to cluster randomised trial data and, in particular, the number of clusters required to make reasonable inferences about the intervention effect. However, for stepped wedge trials, which have been claimed by many researchers to have a statistical power advantage over the parallel cluster randomised trial, the minimum number of clusters required has not been investigated. We conducted a simulation study where we considered the most commonly used methods suggested in the literature to analyse cross-sectional stepped wedge cluster randomised trial data. We compared the per cent bias, the type I error rate and power of these methods in a stepped wedge trial setting with a binary outcome, where there are few clusters available and when the appropriate adjustment for a time trend is made, which by design may be confounding the intervention effect. We found that the generalised linear mixed modelling approach is the most consistent when few clusters are available. We also found that none of the common analysis methods for stepped wedge trials were both unbiased and maintained a 5% type I error rate when there were only three clusters. Of the commonly used analysis approaches, we recommend the generalised linear mixed model for small stepped wedge trials with binary outcomes. We also suggest that in a stepped wedge design with three steps, at least two clusters be randomised at each step, to ensure that the intervention effect estimator maintains the nominal 5% significance level and is also reasonably unbiased.

  12. Contemporary sand wedge development in seasonally frozen ground and paleoenvironmental implications

    NASA Astrophysics Data System (ADS)

    Wolfe, Stephen A.; Morse, Peter D.; Neudorf, Christina M.; Kokelj, Steven V.; Lian, Olav B.; O'Neill, H. Brendan

    2018-05-01

    Contemporary sand wedges and sand veins are active in seasonally frozen ground within the extensive discontinuous permafrost zone in Northwest Territories, Canada. The region has a subarctic continental climate with 291 mm a-1 precipitation, -4.1 °C mean annual air temperature, warm summers (July mean 17.0 °C), and cold winters (January mean -26.6 °C). Five years of continuous observations indicate that interannual variation of the ground thermal regime is dominantly controlled by winter air temperature and snow cover conditions. At sandy sites, thin snow cover and high thermal conductivity promote rapid freezing, high rates of ground cooling, and low near-surface ground temperatures (-15 to -25 °C), resulting in thermal contraction cracking to depths of 1.2 m. Cracking potentials are high in sandy soils when air temperatures are <-30 °C on successive days, mean freezing season air temperatures are ≤-17 °C, and snow cover is <0.15 m thick. In contrast, surface conditions in peatlands maintain permafrost, but thermal contraction cracking does not occur because thicker snow cover and the thermal properties of peat prolong freezeback and maintain higher winter ground temperatures. A combination of radiocarbon dating, optical dating, and stratigraphic observations were used to differentiate sand wedge types and formation histories. Thermal contraction cracks that develop in the sandy terrain are filled by surface (allochthonous) and/or host (autochthonous) material during the thaw season. Epigenetic sand wedges infilled with allochthonous sand develop within former beach sediments beneath an active eolian sand sheet. Narrower and deeper syngenetic wedges developed within aggrading eolian sand sheets, whereas wider and shallower antisyngenetic wedges developed in areas of active erosion. Thermal contraction cracking beneath vegetation-stabilized surfaces leads to crack infilling by autochthonous host and overlying organic material, with resultant downturning and

  13. Minimum work analysis on the critical taper accretionary wedges- insights from analogue modeling

    NASA Astrophysics Data System (ADS)

    Santimano, Tasca; Rosenau, Matthias; Oncken, Onno

    2014-05-01

    The Critical taper theory (CTT) is a fundamental concept for the understanding of mountain building processes. Based on force balance it predicts the preferred steady state geometry of an accretionary wedge system and its tectonic regime (extensive, compressive, stable). However, it does not specify which structures are formed and reactivated to reach the preferred state. The latter can be predicted by the minimum work concept. Here we test both concepts and their interplay by analysing two simple sand wedge models which differ only in the thickness of the basal detachment (a layer of glass beads). While the steady state critical taper is controlled by internal and basal friction coefficients and therefore the same in all experiments, different processes can minimise work by 1. reducing gravitational work e.g. by lowering the amount of uplift or volume uplifted, or 2. reducing frictional work e.g. by lowering the load or due to low friction coefficient along thrusts. Since a thick detachment allows entrainment of low friction material and therefore lowering of the friction along active thrusts, we speculate that the style of wedge growth will differ between the two models. We observe that the wedge with a thin basal detachment localizes strain at the toe of the wedge periodically and reactivate older faults to reach the critical topography. On the contrary, in the wedge with the thicker detachment layer, friction along thrusts is lowered due to the entrainment of low friction material from the detachment zone, subsequently increasing the lifetime of a thrust. Long thrust episodes are always followed by a fault of shorter lifetime, with the aim of reaching the critical taper. From the two experiments, we analyze the time-series evolution of the wedge to infer the work done by the two styles of deformation and predict the trend over time to differ but the maximum work to be similar Our observations show that the critical taper theory determines the geometry of the

  14. Design of air-gapped magnetic-core inductors for superimposed direct and alternating currents

    NASA Technical Reports Server (NTRS)

    Ohri, A. K.; Wilson, T. G.; Owen, H. A., Jr.

    1976-01-01

    Using data on standard magnetic-material properties and standard core sizes for air-gap-type cores, an algorithm designed for a computer solution is developed which optimally determines the air-gap length and locates the quiescent point on the normal magnetization curve so as to yield an inductor design with the minimum number of turns for a given ac voltage and frequency and with a given dc bias current superimposed in the same winding. Magnetic-material data used in the design are the normal magnetization curve and a family of incremental permeability curves. A second procedure, which requires a simpler set of calculations, starts from an assigned quiescent point on the normal magnetization curve and first screens candidate core sizes for suitability, then determines the required turns and air-gap length.

  15. Fidelity considerations in translational research: Eating As Treatment - a stepped wedge, randomised controlled trial of a dietitian delivered behaviour change counselling intervention for head and neck cancer patients undergoing radiotherapy.

    PubMed

    Beck, Alison Kate; Baker, Amanda; Britton, Ben; Wratten, Chris; Bauer, Judith; Wolfenden, Luke; Carter, Gregory

    2015-10-15

    The confidence with which researchers can comment on intervention efficacy relies on evaluation and consideration of intervention fidelity. Accordingly, there have been calls to increase the transparency with which fidelity methodology is reported. Despite this, consideration and/or reporting of fidelity methods remains poor. We seek to address this gap by describing the methodology for promoting and facilitating the evaluation of intervention fidelity in The EAT (Eating As Treatment) project: a multi-site stepped wedge randomised controlled trial of a dietitian delivered behaviour change counselling intervention to improve nutrition (primary outcome) in head and neck cancer patients undergoing radiotherapy. In accordance with recommendations from the National Institutes of Health Behaviour Change Consortium Treatment Fidelity Workgroup, we sought to maximise fidelity in this stepped wedge randomised controlled trial via strategies implemented from study design through to provider training, intervention delivery and receipt. As the EAT intervention is designed to be incorporated into standard dietetic consultations, we also address unique challenges for translational research. We offer a strong model for improving the quality of translational findings via real world application of National Institutes of Health Behaviour Change Consortium recommendations. Greater transparency in the reporting of behaviour change research is an important step in improving the progress and quality of behaviour change research. ACTRN12613000320752 (Date of registration 21 March 2013).

  16. Wedge and spring assembly for securing coils in electromagnets and dynamoelectric machines

    DOEpatents

    Lindner, Melvin; Cottingham, James G.

    1996-03-12

    A wedge and spring assembly for use in electromagnets or dynamoelectric machines having a housing with an axis therethrough and a plurality of coils supported on salient poles that extend radially inward from the housing toward the housing axis to define a plurality of interpole spaces. The wedge and spring assembly includes a nonmagnetic retainer spring and a nonmagnetic wedge. The retainer spring is formed to fit into one of the interpole spaces, and has juxtaposed ends defining between them a slit extending in a direction generally parallel to the housing axis. The wedge for insertion into the slit provides an outwardly directed force on respective portions of the juxtaposed ends to expand the slit so that respective portions of the retainer spring engage areas of the coils adjacent thereto, thereby resiliently holding the coils against their respective salient poles. The retainer spring is generally triangular shaped to fit within the interpole space, and the wedge is generally T-shaped.

  17. Wedge and spring assembly for securing coils in electromagnets and dynamoelectric machines

    DOEpatents

    Lindner, M.; Cottingham, J.G.

    1996-03-12

    A wedge and spring assembly for use in electromagnets or dynamoelectric machines is disclosed having a housing with an axis therethrough and a plurality of coils supported on salient poles that extend radially inward from the housing toward the housing axis to define a plurality of interpole spaces. The wedge and spring assembly includes a nonmagnetic retainer spring and a nonmagnetic wedge. The retainer spring is formed to fit into one of the interpole spaces, and has juxtaposed ends defining between them a slit extending in a direction generally parallel to the housing axis. The wedge for insertion into the slit provides an outwardly directed force on respective portions of the juxtaposed ends to expand the slit so that respective portions of the retainer spring engage areas of the coils adjacent thereto, thereby resiliently holding the coils against their respective salient poles. The retainer spring is generally triangular shaped to fit within the interpole space, and the wedge is generally T-shaped. 6 figs.

  18. Interaction of disturbances with an oblique detonation wave attached to a wedge

    NASA Technical Reports Server (NTRS)

    Lasseigne, D. G.; Hussaini, M. Y.

    1993-01-01

    The linear response of an oblique overdriven detonation to impose free stream disturbances or to periodic movements of the wedge is examined. The free stream disturbances are assumed to be steady vorticity waves and the wedge motions are considered to be time periodic oscillations either about a fixed pivot point or along the plane of symmetry of the wedge aligned with the incoming stream. The detonation is considered to be a region of infinitesimal thickness in which a finite amount of heat is released. The response to the imposed disturbances is a function of the Mach number of the incoming flow, the wedge angle, and the exothermocity of the reaction within the detonation. It is shown that as the degree of overdrive increases, the amplitude of the response increases significantly; furthermore, a fundamental difference in the dependence of the response on the parameters of the problem is found between the response to a free stream disturbance and to a disturbance emanating from the wedge surface.

  19. Seismic evidence for a cold serpentinized mantle wedge beneath Mount St Helens

    PubMed Central

    Hansen, S. M.; Schmandt, B.; Levander, A.; Kiser, E.; Vidale, J. E.; Abers, G. A.; Creager, K. C.

    2016-01-01

    Mount St Helens is the most active volcano within the Cascade arc; however, its location is unusual because it lies 50 km west of the main axis of arc volcanism. Subduction zone thermal models indicate that the down-going slab is decoupled from the overriding mantle wedge beneath the forearc, resulting in a cold mantle wedge that is unlikely to generate melt. Consequently, the forearc location of Mount St Helens raises questions regarding the extent of the cold mantle wedge and the source region of melts that are responsible for volcanism. Here using, high-resolution active-source seismic data, we show that Mount St Helens sits atop a sharp lateral boundary in Moho reflectivity. Weak-to-absent PmP reflections to the west are attributed to serpentinite in the mantle-wedge, which requires a cold hydrated mantle wedge beneath Mount St Helens (<∼700 °C). These results suggest that the melt source region lies east towards Mount Adams. PMID:27802263

  20. RANS Analyses of Turbofan Nozzles with Internal Wedge Deflectors for Noise Reduction

    NASA Technical Reports Server (NTRS)

    DeBonis, James R.

    2009-01-01

    Computational fluid dynamics (CFD) was used to evaluate the flow field and thrust performance of a promising concept for reducing the noise at take-off of dual-stream turbofan nozzles. The concept, offset stream technology, reduces the jet noise observed on the ground by diverting (offsetting) a portion of the fan flow below the core flow, thickening and lengthening this layer between the high-velocity core flow and the ground observers. In this study a wedge placed in the internal fan stream is used as the diverter. Wind, a Reynolds averaged Navier-Stokes (RANS) code, was used to analyze the flow field of the exhaust plume and to calculate nozzle performance. Results showed that the wedge diverts all of the fan flow to the lower side of the nozzle, and the turbulent kinetic energy on the observer side of the nozzle is reduced. This reduction in turbulent kinetic energy should correspond to a reduction in noise. However, because all of the fan flow is diverted, the upper portion of the core flow is exposed to the freestream, and the turbulent kinetic energy on the upper side of the nozzle is increased, creating an unintended noise source. The blockage due to the wedge reduces the fan mass flow proportional to its blockage, and the overall thrust is consequently reduced. The CFD predictions are in very good agreement with experimental flow field data, demonstrating that RANS CFD can accurately predict the velocity and turbulent kinetic energy fields. While this initial design of a large scale wedge nozzle did not meet noise reduction or thrust goals, this study identified areas for improvement and demonstrated that RANS CFD can be used to improve the concept.

  1. Constructing entanglement wedges for Lifshitz spacetimes with Lifshitz gravity

    NASA Astrophysics Data System (ADS)

    Cheyne, Jonathan; Mattingly, David

    2018-03-01

    Holographic relationships between entanglement entropy on the boundary of a spacetime and the area of minimal surfaces in the bulk provide an important entry in the bulk/boundary dictionary. While constructing the necessary causal and entanglement wedges is well understood in asymptotically AdS spacetimes, less is known about the equivalent constructions in spacetimes with different asymptotics. In particular, recent attempts to construct entanglement and causal wedges for asymptotically Lifshitz solutions in relativistic gravitational theories have proven problematic. We note a simple observation, that a Lifshitz bulk theory, specifically a covariant formulation of Hořava-Lifshitz gravity coupled to matter, has causal propagation defined by Lifshitz modes. We use these modes to construct causal and entanglement wedges and compute the geometric entanglement entropy, which in such a construction matches the field theory prescription.

  2. Investigation of turbulent wedges generated by different single surface roughness elements

    NASA Astrophysics Data System (ADS)

    Traphan, Dominik; Meinlschmidt, Peter; Lutz, Otto; Peinke, Joachim; Gülker, Gerd

    2013-11-01

    It is known that small faults on rotor blades of wind turbines can cause significant power loss. In order to better understand the governing physical effects, in this experimental study, the formation of a turbulent wedge over a flat plate induced by single surface roughness elements is under investigation. The experiments are performed at different ambient pressure gradients, thus allowing conclusions about the formation of a turbulent wedge over an airfoil. With respect to typical initial faults on operating airfoils, the roughness elements are modified in both size and shape (raised or recessed). None intrusive experimental methods, such as stereoscopic PIV and LDA, enable investigations based on temporally and spatially highly resolved velocity measurements. In this way, a spectral analysis of the turbulent boundary layer is performed and differences in coherent structures within the wedge are identified. These findings are correlated with global measurements of the wedge carried out by infrared thermography. This correlation aims to enable distinguishing the cause and main properties of a turbulent wedge by the easy applicable method of infrared thermography, which is of practical relevance in the field of condition monitoring of wind turbines.

  3. Porous Titanium Wedges in Lateral Column Lengthening for Adult-Acquired Flatfoot Deformity.

    PubMed

    Moore, Spencer H; Carstensen, S Evan; Burrus, M Tyrrell; Cooper, Truitt; Park, Joseph S; Perumal, Venkat

    2017-10-01

    Lateral column lengthening (LCL) is a common procedure for reconstruction of stage II flexible adult-acquired flatfoot deformity (AAFD). The recent development of porous titanium wedges for this procedure provides an alternative to allograft and autograft. The purpose of this study was to report radiographic and clinical outcomes achieved with porous titanium wedges in LCL. A retrospective analysis of 34 feet in 30 patients with AAFD that received porous titanium wedges for LCL from January 2011 to October 2014. Deformity correction was assessed using both radiographic and clinical parameters. Radiographic correction was assessed using the lateral talo-first metatarsal angle, the talonavicular uncoverage percentage, and the first metatarsocuneiform height. The hindfoot valgus angle was measured. Patients were followed from a minimum of 6 months up to 4 years (mean 16.1 months). Postoperative radiographs demonstrated significant correction in all 3 radiographic criteria and the hindfoot valgus angle. We had no cases of nonunion, no wedge migration, and no wedges have been removed to date. The most common complication was calcaneocuboid joint pain (14.7%). Porous titanium wedges in LCL can achieve good radiographic and clinical correction of AAFD with a low rate of nonunion and other complications. Level IV: Case series.

  4. Design, Construction, Demonstration and Delivery of an Automated Narrow Gap Welding System.

    DTIC Science & Technology

    1983-03-31

    evaluated on the Narrow Gap welding system. By using the combinational qas shielding assembly, it is now possible to reduce the gas flow rates to a value...AD-A145 496 DESIGN CONSTRUCTION DEMONSTRATION AND DE IVER OF AN AUTOMATED NARROW GAP WELDING SYSTEM(U) CRC AUTOMATIC WELDING CO HODSTON SX 31 MAR 83...STANDARDS-963 - A CRC REPORT NO. NAV A/W 7 0PHASE 3 REPORT ON SDESIGN, CONSTRUCTION, DEMONSTRATION AND DELIVERY OF AN AUTOMATED NARROW GAP WELDING

  5. Capillary surfaces in a wedge: Differing contact angles

    NASA Technical Reports Server (NTRS)

    Concus, Paul; Finn, Robert

    1994-01-01

    The possible zero-gravity equilibrium configurations of capillary surfaces u(x, y) in cylindrical containers whose sections are (wedge) domains with corners are investigated mathematically, for the case in which the contact angles on the two sides of the wedge may differ. In such a situation the behavior can depart in significant qualitative ways from that for which the contact angles on the two sides are the same. Conditions are described under which such qualitative changes must occur. Numerically computed surfaces are depicted to indicate the behavior.

  6. Closing the gap on Achilles tendon rupture: A cadaveric study quantifying the tendon apposition achieved with commonly used immobilisation practices.

    PubMed

    Collins, Ruaraidh; Sudlow, Alexis; Loizou, Constantinos; Loveday, David T; Smith, George

    2018-04-01

    The relative benefits of surgical and conservative treatment of Achilles tendon rupture are widely debated. With modern conservative management protocols, the re-rupture risk appears to fall to one similar to surgical repair with negligible loss of function. Conservative management typically employs a period of time in an equinus cast with sequential ankle dorsiflexion in a functional orthosis. The optimal duration of immobilisation and rate of dorsiflexion is unknown. We aimed to quantify the change in Achilles tendon approximation achieved in common immobilisation techniques to assist the design of rehabilitation protocols. Twelve fresh-frozen cadaveric specimens had 2.5cm of Achilles tendon excised. The gap between the tendon ends were measured via windowed full equinus casts and compared with functional boots with successively removed heel wedges. The greatest tendon apposition was achieved with the equinus cast. Each wedge removed decreased the reapproximation by approximately 5mm. This paper supports the early use of maximal equinus casting in early management of acute Achilles tendon ruptures. Copyright © 2017 European Foot and Ankle Society. Published by Elsevier Ltd. All rights reserved.

  7. Transonic flow past a wedge profile with detached bow wave

    NASA Technical Reports Server (NTRS)

    Vincenti, Walter G; Wagoner, Cleo B

    1952-01-01

    A theoretical study has been made of the aerodynamic characteristics at zero angle of attack of a thin, doubly symmetrical double-wedge profile in the range of supersonic flight speed in which the bow wave is detached. The analysis utilizes the equations of the transonic small-disturbance theory and involves no assumptions beyond those implicit in this theory. The mixed flow about the front half of the profile is calculated by relaxation solution of boundary conditions along the shock polar and sonic line. The purely subsonic flow about the rear of the profile is found by means of the method of characteristics specialized to the transonic small-disturbance theory. Complete calculations were made for four values of the transonic similarity parameter. These were found sufficient to bridge the gap between the previous results of Guderley and Yoshihara at a Mach number of 1 and the results which are readily obtained when the bow wave is attached and the flow is completely supersonic.

  8. Late Holocene ice wedges near Fairbanks, Alaska, USA: Environmental setting and history of growth

    USGS Publications Warehouse

    Hamilton, T.D.; Ager, T.A.; Robinson, S.W.

    1983-01-01

    Test trenches excavated into muskeg near Fairbanks in 1969 exposed a polygonal network of active ice wedges. The wedges occur in peat that has accumulated since about 3500 yr BP and have grown episodically as the permafrost table fluctuated in response to fires, other local site conditions and perhaps regional climatic changes. Radiocarbon dates suggest one or two episodes of ice-wedge growth between about 3500 and 2000 yr BP as woody peat accumulated at the site. Subsequent wedge truncation evidently followed a fire that charred the peat. Younger peat exhibits facies changes between sedge-rich components that filled troughs over the ice wedges and woody bryophytic deposits that formed beyond the troughs. A final episode of wedge development took place within the past few hundred years. Pollen data from the site indicate that boreal forest was present throughout the past 6000 yr, but that it underwent a gradual transition from a predominantly deciduous to a spruce-dominated assemblage. This change may reflect either local site conditions or a more general climatic shift to cooler, moister summers in late Holocene time. The history of ice-wedge growth shows that wedges can form and grow to more than 1 m apparent width under mean annual temperatures that probably are close to those of the Fairbanks area today (-3.5°C) and under vegetation cover similar to that of the interior Alaskan boreal forest. The commonly held belief that ice wedges develop only below mean annual air temperatures of -6 to -8°C in the zone of continuous permafrost is invalid.

  9. Vertebral body or intervertebral disc wedging: which contributes more to thoracolumbar kyphosis in ankylosing spondylitis patients?

    PubMed Central

    Liu, Hao; Qian, Bang-Ping; Qiu, Yong; Wang, Yan; Wang, Bin; Yu, Yang; Zhu, Ze-Zhang

    2016-01-01

    Abstract Both vertebral body wedging and disc wedging are found in ankylosing spondylitis (AS) patients with thoracolumbar kyphosis. However, their relative contribution to thoracolumbar kyphosis is not fully understood. The objective of this study was to compare different contributions of vertebral and disc wedging to the thoracolumbar kyphosis in AS patients, and to analyze the relationship between the apical vertebral wedging angle and thoracolumbar kyphosis. From October 2009 to October 2013, a total of 59 consecutive AS patients with thoracolumbar kyphosis with a mean age of 38.1 years were recruited in this study. Based on global kyphosis (GK), 26 patients with GK < 70° were assigned to group A, and the other 33 patients with GK ≥ 70° were included in group B. Each GK was divided into disc wedge angles and vertebral wedge angles. The wedging angle of each disc and vertebra comprising the thoracolumbar kyphosis was measured, and the proportion of the wedging angle to the GK was calculated accordingly. Intergroup and intragroup comparisons were subsequently performed to investigate the different contributions of disc and vertebra to the GK. The correlation between the apical vertebral wedging angle and GK was calculated by Pearson correlation analysis. The duration of disease and sex were also recorded in this study. With respect to the mean disease duration, significant difference was observed between the two groups (P < 0.01). The wedging angle and wedging percentage of discs were significantly higher than those of vertebrae in group A (34.8° ± 2.5° vs 26.7° ± 2.7°, P < 0.01 and 56.6% vs 43.4%, P < 0.01), whereas disc wedging and disc wedging percentage were significantly lower than vertebrae in group B (37.6° ± 7.0° vs 50.1° ± 5.1°, P < 0.01 and 42.7% vs 57.3%, P < 0.01). The wedging of vertebrae was significantly higher in group B than in group A (50.1° ± 5.1° vs 26.7° ± 2.7°, P < 0

  10. Knowledge to action: Rationale and design of the Patient-Centered Care Transitions in Heart Failure (PACT-HF) stepped wedge cluster randomized trial.

    PubMed

    Van Spall, Harriette G C; Lee, Shun Fu; Xie, Feng; Ko, Dennis T; Thabane, Lehana; Ibrahim, Quazi; Mitoff, Peter R; Heffernan, Michael; Maingi, Manish; Tjandrawidjaja, Michael C; Zia, Mohammad I; Panju, Mohamed; Perez, Richard; Simek, Kim D; Porepa, Liane; Graham, Ian D; Haynes, R Brian; Haughton, Dilys; Connolly, Stuart J

    2018-05-01

    Heart Failure (HF) is a common cause of hospitalization in older adults. The transition from hospital to home is high-risk, and gaps in transitional care can increase the risk of re-hospitalization and death. Combining health care services supported by meta-analyses, we designed the PACT-HF transitional care model. Adopting an integrated Knowledge Translation (iKT) approach in which decision-makers and clinicians are partners in research, we implement and test the effectiveness of PACT-HF among patients hospitalized for HF. We use a pragmatic stepped wedge cluster randomized trial design to introduce the complex health service intervention to 10 large hospitals in a randomized sequence until all hospitals initiate the intervention. The goal is for all patients hospitalized with HF to receive self-care education, multidisciplinary care, and early follow-up with their health care providers; and in addition, for high-risk patients to receive post-discharge nurse-led home visits and outpatient care in Heart Function clinics. This requires integration of care across hospitals, home care agencies, and outpatient clinics in our publicly funded health care system. While hospitals are the unit of recruitment and analysis, patients (estimated sample size of 3200) are the unit of analysis. Primary outcomes are hierarchically ordered as time to composite all-cause readmissions / emergency department (ED) visits / death at 3 months and time to composite all-cause readmissions / ED visits at 30 days. In a nested study of 8 hospitals, we measure the patient-centered outcomes of Discharge Preparedness, Care Transitions Quality, and Quality Adjusted Life Years (QALY); and the 6-month health care resource use and costs. We obtain all clinical and cost outcomes via linkages to provincial administrative databases. This protocol describes the implementation and testing of a transitional care model comprising health care services informed by high-level evidence. The study adopts an i

  11. Pilot Study: Foam Wedge Chin Support Static Tolerance Testing

    DTIC Science & Technology

    2017-10-24

    AFRL-SA-WP-SR-2017-0026 Pilot Study : Foam Wedge Chin Support Static Tolerance Testing Austin M. Fischer, BS1; William W...COVERED (From – To) April – October 2017 4. TITLE AND SUBTITLE Pilot Study : Foam Wedge Chin Support Static Tolerance Testing 5a. CONTRACT NUMBER...prototype to mitigate the increase in helmet weight and forward center of gravity. The purpose of this pilot study was to determine the feasibility and

  12. Contact and crack problems for an elastic wedge. [stress concentration in elastic half spaces

    NASA Technical Reports Server (NTRS)

    Erdogan, F.; Gupta, G. D.

    1974-01-01

    The contact and the crack problems for an elastic wedge of arbitrary angle are considered. The problem is reduced to a singular integral equation which, in the general case, may have a generalized Cauchy kernel. The singularities under the stamp as well as at the wedge apex were studied, and the relevant stress intensity factors are defined. The problem was solved for various wedge geometries and loading conditions. The results may be applicable to certain foundation problems and to crack problems in symmetrically loaded wedges in which cracks initiate from the apex.

  13. Assessing dose-response effects of national essential medicine policy in China: comparison of two methods for handling data with a stepped wedge-like design and hierarchical structure.

    PubMed

    Ren, Yan; Yang, Min; Li, Qian; Pan, Jay; Chen, Fei; Li, Xiaosong; Meng, Qun

    2017-02-22

    To introduce multilevel repeated measures (RM) models and compare them with multilevel difference-in-differences (DID) models in assessing the linear relationship between the length of the policy intervention period and healthcare outcomes (dose-response effect) for data from a stepped-wedge design with a hierarchical structure. The implementation of national essential medicine policy (NEMP) in China was a stepped-wedge-like design of five time points with a hierarchical structure. Using one key healthcare outcome from the national NEMP surveillance data as an example, we illustrate how a series of multilevel DID models and one multilevel RM model can be fitted to answer some research questions on policy effects. Routinely and annually collected national data on China from 2008 to 2012. 34 506 primary healthcare facilities in 2675 counties of 31 provinces. Agreement and differences in estimates of dose-response effect and variation in such effect between the two methods on the logarithm-transformed total number of outpatient visits per facility per year (LG-OPV). The estimated dose-response effect was approximately 0.015 according to four multilevel DID models and precisely 0.012 from one multilevel RM model. Both types of model estimated an increase in LG-OPV by 2.55 times from 2009 to 2012, but 2-4.3 times larger SEs of those estimates were found by the multilevel DID models. Similar estimates of mean effects of covariates and random effects of the average LG-OPV among all levels in the example dataset were obtained by both types of model. Significant variances in the dose-response among provinces, counties and facilities were estimated, and the 'lowest' or 'highest' units by their dose-response effects were pinpointed only by the multilevel RM model. For examining dose-response effect based on data from multiple time points with hierarchical structure and the stepped wedge-like designs, multilevel RM models are more efficient, convenient and informative than

  14. The Ronda peridotite (Spain): A natural template for seismic anisotropy in subduction wedges

    NASA Astrophysics Data System (ADS)

    Précigout, Jacques; Almqvist, Bjarne S. G.

    2014-12-01

    The origin of seismic anisotropy in mantle wedges remains elusive. Here we provide documentation of shear wave anisotropy (AVs) inferred from mineral fabric across a lithosphere-scale vestige of deformed mantle wedge in the Ronda peridotite. As predicted for most subduction wedges, this natural case exposes a transition from A-type to B-type olivine fabric that occurs with decreasing temperature and enhanced grain boundary sliding at the expense of dislocation creep. We show that B-type fabric AVs (maximum of 6%) does not support geophysical observations and modeling, which requires 8% AVs. However, an observed transitional olivine fabric (A/B) develops at intermediate temperatures (800-1000°C) and can generate AVs ≥ 8%. We predict that the A/B-type fabric can account for shear wave splitting in contrasting subduction settings, exemplified by the Ryukyu and Honshu subduction wedges. The Ronda peridotite therefore serves as a natural template to decipher the mantle wedge deformation from seismic anisotropy.

  15. Designer Disordered Complex Media: Hyperuniform Photonic and Phononic Band Gap Materials

    NASA Astrophysics Data System (ADS)

    Amoah, Timothy

    In this thesis we investigate designer disordered complex media for photonics and phononics applications. Initially we focus on the photonic properties and we analyse hyperuniform disordered structures (HUDS) using numerical simulations. Photonic HUDS are a new class of photonic solids, which display large, isotropic photonic band gaps (PBG) comparable in size to the ones found in photonic crystals (PC). We review their complex interference properties, including the origin of PBGs and potential applications. HUDS combine advantages of both isotropy due to disorder (absence of long-range order) and controlled scattering properties from uniform local topology due to hyperuniformity (constrained disorder). The existence of large band gaps in HUDS contradicts the longstanding intuition that Bragg scattering and long-range translational order is required in PBG formation, and demonstrates that interactions between Mie-like local resonances and multiple scattering can induce on their own PBGs. The discussion is extended to finite height effects of planar architectures such as pseudo-band-gaps in photonic slabs as well as the vertical confinement in the presence of disorder. The particular case of a silicon-on-insulator compatible hyperuniform disordered network structure is considered for TE polarised light. We address technologically realisable designs of HUDS including localisation of light in point-defect-like optical cavities and the guiding of light in freeform PC waveguide analogues. Using finite-difference time domain and band structure computer simulations, we show that it is possible to construct optical cavities in planar hyperuniform disordered solids with isotropic band gaps that effciently confine TE polarised radiation. We thus demonstrate that HUDS are a promising general-purpose design platform for integrated optical micro-circuitry. After analysing HUDS for photonic applications we investigate them in the context of elastic waves towards phononics

  16. Slamming pressures on the bottom of a free-falling vertical wedge

    NASA Astrophysics Data System (ADS)

    Ikeda, C. M.; Judge, C. Q.

    2013-11-01

    High-speed planing boats are subjected to repeat impacts due to slamming, which can cause structural damage and injury to passengers. A first step in understanding and predicting the physics of a craft re-entering the water after becoming partially airborne is an experimental vertical drop test of a prismastic wedge (deadrise angle, β =20° beam, B = 300 mm; and length, L = 600 mm). The acrylic wedge was mounted to a rig allowing it to free-fall into a deep-water tank (5.2m × 5.2m × 4.2m deep) from heights 0 <= H <= 635 mm, measured from the keel to the free surface. The wedge was instrumented to record vertical position, acceleration, and pressure on the bottom surface. A pressure mapping system, capable of measuring several points over the area of the thin (0.1 mm) film sensor at sampling rates up to 20 kHz, is used and compared to surface-mounted pressure transducers (sampled at 10 kHz). A high speed camera (1000 fps, resolution of 1920 × 1200 pixels) is mounted above the wedge model to record the wetted surface as the wedge descended below the free surface. The pressure measurements taken with both conventional surface pressure transducers and the pressure mapping system agree within 10% of the peak pressure values (0.7 bar, typical). Supported by the Office of Naval Research.

  17. [Spectral Study on the Effects of Angle-Tuned Filter Wedge Angle Parameter to Reflecting Characteristics].

    PubMed

    Yu, Kan; Huang, De-xiu; Yin, Juan-juan; Bao, Jia-qi

    2015-08-01

    Three-port tunable optical filter is a key device in the all-optic intelligent switching network and dense wavelength division multiplexing system. The characteristics of the reflecting spectrum, especially the reflectivity and the isolation degree are very important to the three-port filter. Angle-tuned thin film filter is widely used as a three-port tunable filter for its high rectangular degree and good temperature stability. The characteristics of the reflecting spectrum are greatly influenced not only by the incident angle, but also by the wedge angle parameter of the non-paralleled wedge thin film filter. In the present paper, the influences of the wedge angle parameter to the reflectivity and the half bandwidth are analyzed, and the reflecting spectrum characterstics are simulationed in different wedge angle parameter and polarity. The wedge angle-tuned thin film filter with 0.8° wedge angle parameter is fabricated. The experimental results show that keeping the wedge angle the same orientation to the incident angle will worsen the reflectivity and the rectangular degree of the reflecting spectrum. However, keeping the wedge angle orientation reverse to the incident angle will enhance the reflectivity and decrease the bandwidth, which will give higher reflectivity and isolation degree to the three-port filter than that of high parallel degree angle-tuned thin film filter.

  18. Estimation of treatment efficacy with complier average causal effects (CACE) in a randomized stepped wedge trial.

    PubMed

    Gruber, Joshua S; Arnold, Benjamin F; Reygadas, Fermin; Hubbard, Alan E; Colford, John M

    2014-05-01

    Complier average causal effects (CACE) estimate the impact of an intervention among treatment compliers in randomized trials. Methods used to estimate CACE have been outlined for parallel-arm trials (e.g., using an instrumental variables (IV) estimator) but not for other randomized study designs. Here, we propose a method for estimating CACE in randomized stepped wedge trials, where experimental units cross over from control conditions to intervention conditions in a randomized sequence. We illustrate the approach with a cluster-randomized drinking water trial conducted in rural Mexico from 2009 to 2011. Additionally, we evaluated the plausibility of assumptions required to estimate CACE using the IV approach, which are testable in stepped wedge trials but not in parallel-arm trials. We observed small increases in the magnitude of CACE risk differences compared with intention-to-treat estimates for drinking water contamination (risk difference (RD) = -22% (95% confidence interval (CI): -33, -11) vs. RD = -19% (95% CI: -26, -12)) and diarrhea (RD = -0.8% (95% CI: -2.1, 0.4) vs. RD = -0.1% (95% CI: -1.1, 0.9)). Assumptions required for IV analysis were probably violated. Stepped wedge trials allow investigators to estimate CACE with an approach that avoids the stronger assumptions required for CACE estimation in parallel-arm trials. Inclusion of CACE estimates in stepped wedge trials with imperfect compliance could enhance reporting and interpretation of the results of such trials.

  19. Starting of generic inlet with blunted wedges

    NASA Astrophysics Data System (ADS)

    Borovoy, V.; Mosharov, V.; Radchenko, V.; Skuratov, A.; Struminskaya, I.

    2017-06-01

    Bluntness e¨ect of gas-compressing wedges on starting and §ow structure in an air inlet was investigated experimentally. The inlet was of internal compression type with §at walls and rectangular cross section. The experiments were carried out in the wind tunnel UT-1M at Mach numbers M = 5 and 8 and Reynolds numbers Re∞L from 2.8 · 106 to 23 · 106. The §ow characteristics were measured by panoramic optical methods. Data demonstrating in§uence of wedge bluntness radius on the inlet starting were obtained at di¨erent Mach and Reynolds numbers as well as at di¨erent contraction ratios. Ambiguity of the §ow regime in the inlet under certain conditions was found.

  20. Wedge geometry, frictional properties and interseismic coupling of the Java megathrust

    NASA Astrophysics Data System (ADS)

    Koulali, Achraf; McClusky, Simon; Cummins, Phil; Tregoning, Paul

    2018-06-01

    The mechanical interaction between rocks at fault zones is a key element for understanding how earthquakes nucleate and propagate. Therefore, estimating frictional properties along fault planes allows us to infer the degree of elastic strain accumulation throughout the seismic cycle. The Java subduction zone is an active plate boundary where high seismic activity has long been documented. However, very little is known about the seismogenic processes of the megathrust, especially its shallowest portion where onshore geodetic networks are insensitive to recover the pattern of elastic strain. Here, we use the geometry of the offshore accretionary prism to infer frictional properties along the Java subduction zone, using Coulomb critical taper theory. We show that large portions of the inner wedge in the eastern part of the Java subduction megathrust are in a critical state, where the wedge is on the verge of failure everywhere. We identify four clusters with an internal coefficient of friction μint of ∼ 0.8 and hydrostatic pore pressure within the wedge. The average effective coefficient of friction ranges between 0.3 and 0.4, reflecting a strong décollement. Our results also show that the aftershock sequence of the 1994 Mw 7.9 earthquake halted adjacent to a critical segment of the wedge, suggesting that critical taper wedge areas in the eastern Java subduction interface may behave as a permanent barrier to large earthquake rupture. In contrast, in western Java topographic slope and slab dip profiles suggest that the wedge is mechanically stable, i.e deformation is restricted to sliding along the décollement, and likely to coincide with a seismogenic portion of the megathrust. We discuss the seismic hazard implications and highlight the importance of considering the segmentation of the Java subduction zone when assessing the seismic hazard of this region.

  1. Dual Double-Wedge Pseudo-Depolarizer with Anamorphic PSF

    NASA Technical Reports Server (NTRS)

    Hill, Peter; Thompson, Patrick

    2012-01-01

    A polarized scene, which may occur at oblique illumination angles, creates a radiometric signal that varies as a function of viewing angle. One common optical component that is used to minimize such an effect is a polarization scrambler or depolarizer. As part of the CLARREO mission, the SOLARIS instrument project at Goddard Space Flight Center has developed a new class of polarization scramblers using a dual double-wedge pseudo-depolarizer that produces an anamorphic point spread function (PSF). The SOLARIS instrument uses two Wollaston type scramblers in series, each with a distinct wedge angle, to image a pseudo-depolarized scene that is free of eigenstates. Since each wedge is distinct, the scrambler is able to produce an anamorphic PSF that maintains high spatial resolution in one dimension by sacrificing the spatial resolution in the other dimension. This scrambler geometry is ideal for 1-D imagers, such as pushbroom slit spectrometers, which require high spectral resolution, high spatial resolution, and low sensitivity to polarized light. Moreover, the geometry is applicable to a wide range of scientific instruments that require both high SNR (signal-to-noise ratio) and low sensitivity to polarized scenes

  2. Analysis of Fault Spacing in Thrust-Belt Wedges Using Numerical Modeling

    NASA Astrophysics Data System (ADS)

    Regensburger, P. V.; Ito, G.

    2017-12-01

    Numerical modeling is invaluable in studying the mechanical processes governing the evolution of geologic features such as thrust-belt wedges. The mechanisms controlling thrust fault spacing in wedges is not well understood. Our numerical model treats the thrust belt as a visco-elastic-plastic continuum and uses a finite-difference, marker-in-cell method to solve for conservation of mass and momentum. From these conservation laws, stress is calculated and Byerlee's law is used to determine the shear stress required for a fault to form. Each model consists of a layer of crust, initially 3-km-thick, carried on top of a basal décollement, which moves at a constant speed towards a rigid backstop. A series of models were run with varied material properties, focusing on the angle of basal friction at the décollement, the angle of friction within the crust, and the cohesion of the crust. We investigate how these properties affected the spacing between thrusts that have the most time-integrated history of slip and therefore have the greatest effect on the large-scale undulations in surface topography. The surface position of these faults, which extend through most of the crustal layer, are identifiable as local maxima in positive curvature of surface topography. Tracking the temporal evolution of faults, we find that thrust blocks are widest when they first form at the front of the wedge and then they tend to contract over time as more crustal material is carried to the wedge. Within each model, thrust blocks form with similar initial widths, but individual thrust blocks develop differently and may approach an asymptotic width over time. The median of thrust block widths across the whole wedge tends to decrease with time. Median fault spacing shows a positive correlation with both wedge cohesion and internal friction. In contrast, median fault spacing exhibits a negative correlation at small angles of basal friction (<17˚) and a positive correlation with larger angles

  3. Total knee arthroplasty after failed high tibial osteotomy: a systematic review of open versus closed wedge osteotomy.

    PubMed

    Han, Jae Hwi; Yang, Jae-Hyuk; Bhandare, Nikhl N; Suh, Dong Won; Lee, Jong Seong; Chang, Yong Suk; Yeom, Ji Woong; Nha, Kyung Wook

    2016-08-01

    Medial opening wedge high tibial osteotomy (HTO) has become increasingly popular as an alternative to lateral closing wedge osteotomy for the treatment of medial compartment knee osteoarthritis with varus deformity. The present systematic review was conducted to provide an objective analysis of total knee arthroplasty (TKA) outcomes following previous knee osteotomy (medial opening wedge vs. lateral closing wedge). A literature search of online databases (MEDLINE, EMBASE, Cochrane Library database) was made, in addition to manual search of major orthopaedic journals. The methodological quality of each of the studies was assessed on the Newcastle-Ottawa Scale and Effective Practice and Organization of Care. A total of ten studies were included in the review. There were eight studies with Level IV and two studies with Level III evidence. Eight studies reported clinical and radiologic scores. Comparative studies between TKA following medial opening and lateral closing wedge HTO did not demonstrate statistically significant clinical and radiologic differences. The revision rates were similar. However, more technical issues during TKA surgery after lateral closing wedge HTO were mentioned than the medial open wedge group. The quadriceps snip, tibial tubercle osteotomy, and lateral soft tissue release were more frequently needed in the lateral closing wedge HTO group. In addition, because of loss of proximal tibia bone geometry in the lateral closing wedge HTO group, concerns such as tibia stem impingement in the lateral tibial cortex was noted. The present systematic review suggests that TKA after medial opening and lateral closing wedge HTO showed similar performance. Clinical and radiologic outcome including revision rates did not statistically differ from included studies. However, there are more surgical technical concerns in TKA conversion from lateral closing wedge HTO than from the medial opening wedge HTO group. IV.

  4. The influence of physical wedges on penumbra and in-field dose uniformity in ocular proton beams.

    PubMed

    Baker, Colin; Kacperek, Andrzej

    2016-04-01

    A physical wedge may be partially introduced into a proton beam when treating ocular tumours in order to improve dose conformity to the distal border of the tumour and spare the optic nerve. Two unwanted effects of this are observed: a predictable broadening of the beam penumbra on the wedged side of the field and, less predictably, an increase in dose within the field along a relatively narrow volume beneath the edge (toe) of the wedge, as a result of small-angle proton scatter. Monte Carlo simulations using MCNPX and direct measurements with radiochromic (GAFCHROMIC(®) EBT2) film were performed to quantify these effects for aluminium wedges in a 60 MeV proton beam as a function of wedge angle and position of the wedge relative to the patient. For extreme wedge angles (60° in eye tissue) and large wedge-to-patient distances (70 mm in this context), the 90-10% beam penumbra increased from 1.9 mm to 9.1 mm. In-field dose increases from small-angle proton scatter were found to contribute up to 21% additional dose, persisting along almost the full depth of the spread-out-Bragg peak. Profile broadening and in-field dose enhancement are both minimised by placing the wedge as close as possible to the patient. Use of lower atomic number wedge materials such as PMMA reduce the magnitude of both effects as a result of a reduced mean scattering angle per unit energy loss; however, their larger physical size and greater variation in density are undesirable. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  5. Laser-based linear and nonlinear guided elastic waves at surfaces (2D) and wedges (1D).

    PubMed

    Hess, Peter; Lomonosov, Alexey M; Mayer, Andreas P

    2014-01-01

    The characteristic features and applications of linear and nonlinear guided elastic waves propagating along surfaces (2D) and wedges (1D) are discussed. Laser-based excitation, detection, or contact-free analysis of these guided waves with pump-probe methods are reviewed. Determination of material parameters by broadband surface acoustic waves (SAWs) and other applications in nondestructive evaluation (NDE) are considered. The realization of nonlinear SAWs in the form of solitary waves and as shock waves, used for the determination of the fracture strength, is described. The unique properties of dispersion-free wedge waves (WWs) propagating along homogeneous wedges and of dispersive wedge waves observed in the presence of wedge modifications such as tip truncation or coatings are outlined. Theoretical and experimental results on nonlinear wedge waves in isotropic and anisotropic solids are presented. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Calibration of the Wedge Prism

    Treesearch

    Charles B. Briscoe

    1957-01-01

    Since the introduction of plotless cruising in this country by Grosenbaugh and the later suggestion of using a wedge prism as an angle gauge by Bruce this method of determining basal area has been widely adopted in the South. One of the factors contributing to the occasionally unsatisfactory results obtained is failure to calibrate the prism used. As noted by Bruce the...

  7. What happens to full-f gyrokinetic transport and turbulence in a toroidal wedge simulation?

    DOE PAGES

    Kim, Kyuho; Chang, C. S.; Seo, Janghoon; ...

    2017-01-24

    Here, in order to save the computing time or to fit the simulation size into a limited computing hardware in a gyrokinetic turbulence simulation of a tokamak plasma, a toroidal wedge simulation may be utilized in which only a partial toroidal section is modeled with a periodic boundary condition in the toroidal direction. The most severe restriction in the wedge simulation is expected to be in the longest wavelength turbulence, i.e., ion temperature gradient (ITG) driven turbulence. The global full-f gyrokinetic code XGC1 is used to compare the transport and turbulence properties from a toroidal wedge simulation against the fullmore » torus simulation in an ITG unstable plasma in a model toroidal geometry. It is found that (1) the convergence study in the wedge number needs to be conducted all the way down to the full torus in order to avoid a false convergence, (2) a reasonably accurate simulation can be performed if the correct wedge number N can be identified, (3) the validity of a wedge simulation may be checked by performing a wave-number spectral analysis of the turbulence amplitude |δΦ| and assuring that the variation of δΦ between the discrete kθ values is less than 25% compared to the peak |δΦ|, and (4) a frequency spectrum may not be used for the validity check of a wedge simulation.« less

  8. What happens to full-f gyrokinetic transport and turbulence in a toroidal wedge simulation?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Kyuho; Chang, C. S.; Seo, Janghoon

    Here, in order to save the computing time or to fit the simulation size into a limited computing hardware in a gyrokinetic turbulence simulation of a tokamak plasma, a toroidal wedge simulation may be utilized in which only a partial toroidal section is modeled with a periodic boundary condition in the toroidal direction. The most severe restriction in the wedge simulation is expected to be in the longest wavelength turbulence, i.e., ion temperature gradient (ITG) driven turbulence. The global full-f gyrokinetic code XGC1 is used to compare the transport and turbulence properties from a toroidal wedge simulation against the fullmore » torus simulation in an ITG unstable plasma in a model toroidal geometry. It is found that (1) the convergence study in the wedge number needs to be conducted all the way down to the full torus in order to avoid a false convergence, (2) a reasonably accurate simulation can be performed if the correct wedge number N can be identified, (3) the validity of a wedge simulation may be checked by performing a wave-number spectral analysis of the turbulence amplitude |δΦ| and assuring that the variation of δΦ between the discrete kθ values is less than 25% compared to the peak |δΦ|, and (4) a frequency spectrum may not be used for the validity check of a wedge simulation.« less

  9. A possible mechanism for earthquakes found in the mantle wedge of the Nazca subduction zone

    NASA Astrophysics Data System (ADS)

    Warren, L. M.; Chang, Y.; Prieto, G. A.

    2017-12-01

    Beneath Colombia, the Cauca cluster of intermediate-depth earthquakes extends for 200 km along the trench (3.5°N-5.5°N, 77.0°W-75.3°W) and, with 58 earthquakes per year with local magnitude ML >= 2.5, has a higher rate of seismicity than the subduction zone immediately to the north or south. By precisely locating 433 cluster earthquakes from 1/2010-3/2014 with data from the Colombian National Seismic Network, we found that the earthquakes are located both in a continuous Nazca plate subducting at an angle of 33°-43° and in the overlying mantle wedge. The mantle wedge earthquakes (12% of the earthquakes) form two isolated 40-km-tall columns extending perpendicular to the subducting slab. Using waveform inversion, we computed focal mechanisms for 69 of the larger earthquakes. The focal mechanisms are variable, but the intraslab earthquakes are generally consistent with an in-slab extensional stress axis oriented 25° counterclockwise from the down-dip direction. We suggest that the observed mantle wedge earthquakes are the result of hydrofracture in a relatively cool mantle wedge. This segment of the Nazca Plate is currently subducting at a normal angle, but Wagner et al. (2017) suggested that a flat slab slowly developed in the region between 9-5.9 Ma and persisted until 4 Ma. During flat slab subduction, the overlying mantle wedge typically cools because it is cut off from mantle corner flow. After hydrous minerals in the slab dehydrate, the dehydrated fluid is expelled from the slab and migrates through the mantle wedge. If a cool mantle wedge remains today, fluid dehydrated from the slab may generate earthquakes by hydrofracture, with the mantle wedge earthquakes representing fluid migration pathways. Dahm's (2000) model of water-filled fracture propagation in the mantle wedge shows hydrofractures propagating normal to the subducting slab and extending tens of km into the mantle wedge, as we observe.

  10. A Dual Wedge Microneedle for sampling of perilymph solution via round window membrane

    PubMed Central

    Watanabe, Hirobumi; Cardoso, Luis; Lalwani, Anil K.; Kysar, Jeffrey W.

    2017-01-01

    Objective Precision medicine for inner-ear disease is hampered by the absence of a methodology to sample inner-ear fluid atraumatically. The round window membrane (RWM) is an attractive portal for accessing cochlear fluids as it heals spontaneously. In this study, we report on the development of a microneedle for perilymph sampling that minimizes size of RWM perforation, facilitates quick aspiration, and provides precise volume control. Methods Considering the mechanical anisotropy of the RWM and hydrodynamics through a microneedle, a 31G stainless steel pipe was machined into wedge-shaped design via electrical discharge machining. Guinea pig RWM was penetrated in vitro, and 1 μ1 of perilymph was sampled and analyzed via UV-vis spectroscopy. Results The prototype wedge shaped needle created oval perforation with minor and major diameter of 143 and 344 μm (n=6). The sampling duration and standard deviation of aspirated volume were seconds and 6.8% respectively. The protein concentration was 1.74 mg/mL. Conclusion The prototype needle facilitated precise perforation of RWMs and rapid aspiration of cochlear fluid with precise volume control. The needle design is promising and requires testing in human cadaveric temporal bone and further optimization to become clinically viable. PMID:26888440

  11. Observations of Lower Mississippi River Estuarine Dynamics: Effects of the Salt Wedge on Sediment Deposition

    NASA Astrophysics Data System (ADS)

    Ramirez, M. T.; Allison, M. A.

    2017-12-01

    The lowermost Mississippi River is subject to salt-wedge estuarine conditions during seasonally low flow, when seaward flow is unable to overcome density stratification. Previous studies in the Mississippi River salt wedge have shown the deposition of a fine sediment layer accumulating several mm/day beneath the reach where the salt wedge is present. Field studies were conducted during low flow in 2012-2015 utilizing ADCP, CTD, LISST, and physical samples to observe the physics of the salt wedge reach and to calculate rates and character of sediment trapping beneath the salt wedge. The field observations were summarized using a two-layer box-model representation of the reach to calculate water and sediment budgets entering, exiting, and stored within the reach. The salt wedge reach was found to be net depositional at rates up to 1.8 mm/day. The mechanism for transferring sediment mass from the downstream-flowing fluvial layer to the upstream-flowing marine layer appears to be flocculation, evidenced in LISST data by a spike in sediment particle diameters at the halocline. Applying reach-averaged rates of sediment trapping to a time-integrated model of salt-wedge position, we calculated annual totals ranging from 0.025 to 2.2 million tons of sediment deposited beneath the salt wedge, depending on salt-wedge persistence and upstream extent. Most years this seasonal deposit is remobilized during spring flood following the low-flow estuarine season, which may affect the timing of sediment delivery to the Gulf of Mexico, as well as particulate organic carbon, whose transport trajectory mirrors that of mineral sediment. These results are also relevant to ongoing dredging efforts necessary to maintain the economically-important navigation pathway through the lower Mississippi River, as well as planned efforts to use Mississippi River sedimentary resources to build land in the degrading Louisiana deltaic coast.

  12. Surgical quality of wedge resection affects overall survival in patients with early stage non-small cell lung cancer.

    PubMed

    Ajmani, Gaurav S; Wang, Chi-Hsiung; Kim, Ki Wan; Howington, John A; Krantz, Seth B

    2018-07-01

    Very few studies have examined the quality of wedge resection in patients with non-small cell lung cancer. Using the National Cancer Database, we evaluated whether the quality of wedge resection affects overall survival in patients with early disease and how these outcomes compare with those of patients who receive stereotactic radiation. We identified 14,328 patients with cT1 to T2, N0, M0 disease treated with wedge resection (n = 10,032) or stereotactic radiation (n = 4296) from 2005 to 2013 and developed a subsample of propensity-matched wedge and radiation patients. Wedge quality was grouped as high (negative margins, >5 nodes), average (negative margins, ≤5 nodes), and poor (positive margins). Overall survival was compared between patients who received wedge resection of different quality and those who received radiation, adjusting for demographic and clinical variables. Among patients who underwent wedge resection, 94.6% had negative margins, 44.3% had 0 nodes examined, 17.1% had >5 examined, and 3.0% were nodally upstaged; 16.7% received a high-quality wedge, which was associated with a lower risk of death compared with average-quality resection (adjusted hazard ratio [aHR], 0.74; 95% confidence interval [CI], 0.67-0.82). Compared with stereotactic radiation, wedge patients with negative margins had significantly reduced hazard of death (>5 nodes: aHR, 0.50; 95% CI, 0.43-0.58; ≤5 nodes: aHR, 0.65; 95% CI, 0.60-0.70). There was no significant survival difference between margin-positive wedge and radiation. Lymph nodes examined and margins obtained are important quality metrics in wedge resection. A high-quality wedge appears to confer a significant survival advantage over lower-quality wedge and stereotactic radiation. A margin-positive wedge appears to offer no benefit compared with radiation. Copyright © 2018 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  13. Rainfall induced groundwater mound in wedge-shaped promontories: The Strack-Chernyshov model revisited

    NASA Astrophysics Data System (ADS)

    Kacimov, A. R.; Kayumov, I. R.; Al-Maktoumi, A.

    2016-11-01

    An analytical solution to the Poisson equation governing Strack's discharge potential (squared thickness of a saturated zone in an unconfined aquifer) is obtained in a wedge-shaped domain with given head boundary conditions on the wedge sides (specified water level in an open water body around a porous promontory). The discharge vector components, maximum elevation of the water table in promontory vertical cross-sections, quantity of groundwater seeping through segments of the wedge sides, the volume of fresh groundwater in the mound are found. For acute angles, the solution to the problem is non-unique and specification of the behaviour at infinity is needed. A ;basic; solution is distinguished, which minimizes the water table height above a horizontal bedrock. MODFLOW simulations are carried out in a finite triangular island and compare solutions with a constant-head, no-flow and ;basic; boundary condition on one side of the triangle. Far from the tip of an infinite-size promontory one has to be cautious with truncation of the simulated flow domains and imposing corresponding boundary conditions. For a right and obtuse wedge angles, there are no positive solutions for the case of constant accretion on the water table. In a particular case of a confined rigid wedge-shaped aquifer and incompressible fluid, from an explicit solution to the Laplace equation for the hydraulic head with arbitrary time-space varying boundary conditions along the promontory rays, essentially 2-D transient Darcian flows within the wedge are computed. They illustrate that surface water waves on the promontory boundaries can generate strong Darcian waves inside the porous wedge. Evaporation from the water table and sea-water intruded interface (rather than a horizontal bed) are straightforward generalizations for the Poissonian Strack potential.

  14. SU-E-T-178: Clinical Feasibility of Multi-Leaf Collimator Based Dynamic Wedge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeong, C; Kwak, J; Ahn, S

    2015-06-15

    Purpose: A multi-leaf collimator (MLC) based dynamic wedge (MDW), which provide similar dose profile of physical wedge (PW) along x-jaw direction while significant monitor unit (MU) reduction, was developed and investigated for clinical use. Methods: A novel technique was used to create the wedge profile using MLC. A modification was applied to the DICOM-RT format file of the plan made with the PW to replace PW with MDW. The Varian enhanced dynamic wedge profile was used to produce MLC sequence, while the MU of the wedged field was recalculated using PW factor and fluence map. The profiles for all possiblemore » MDWs to substitute PWs were verified in 6/15 MV x-ray irradiations. New plans with MDWs were compared with the original plans in 5 rectal, 5 RT breast and 5 liver cases. Results: The wedge profile of the MDW fields were well matched with those of PWs inside the fields while less scatter than PW out of the fields. For plan comparisons of the clinical cases no significant dose discrepancy was observed between MDW plan and PW’s with the dose volume histograms. The maximum and mean doses in PTVs are agreed within 1.0%. The Result of OARs of MDW plans are slightly improved in the maximum doses (3.22 ∼ 150.4 cGy) and the mean doses (17.18 ∼ 85.52 cGy) on average for all cases while the prescribed doses are 45 Gy for rectal cases, 40 or 45 Gy for liver cases and 50 Gy for breast cases. The MUs of the fields which replace PW with MDW are reduced to 68% of those of PW. Conclusion: We developed a novel dynamic wedge technique with MLC that shows clinical advantage compared to PW.« less

  15. Evaluation of a Wedge on a Force Balance as a Flow Angle Probe

    DTIC Science & Technology

    1975-02-01

    pitot rake attached to the Captive Trajectory System (CTS), and (3) measurement of flow angles in the same region with a probe attached to the CTS...localized pressures. Although it was the characteristics of supersonic flow which led to this conclusion, and even though the wedge design was based...vary the open area from near zero to 10 percent. Suction through the porous walls is used to maximize flow uniformity and to develop supersonic flow

  16. Effect of Shockwave Curvature on Run Distance Observed with a Modified Wedge Test

    NASA Astrophysics Data System (ADS)

    Lee, Richard; Dorgan, Robert; Sutherland, Gerrit; Benedetta, Ashley; Milby, Christopher

    2011-06-01

    The effect of wave curvature on shock initiation in PBXN-110 was investigated using a modified wedge test configuration. Various thicknesses of PBXN-110 donor slabs were used to define the shockwave curvature introduced to wedge samples of the same explosive. The donor slabs were initiated with line-wave generators so that the introduced shock would be the same shape, magnitude and duration across the entire input surface of the wedge. The shock parameters were varied for a given donor thickness via different widths of PMMA spacers placed between the donor and the wedge. A framing camera was used to observe where initiation occurred along the face of the wedge. Initiation always occurred at the center of the shock front instead of the sides like that reported by others using a much smaller test format. Results were compared to CTH calculations to indicate if there were effects associated with highly curved shock fronts that could not be adequately predicted. The run distance predicted in CTH for a 50.8 mm thick donor slab (low curvature) compared favorably with experimental results. However, results from thinner donor slabs (higher curvature) indicate a more sensitive behavior than the simulations predicted.

  17. Controlling direct contact force for wet adhesion with different wedged film stabilities

    NASA Astrophysics Data System (ADS)

    Li, Meng; Xie, Jun; Shi, Liping; Huang, Wei; Wang, Xiaolei

    2018-04-01

    In solid–liquid–solid adhesive systems, wedged films often feature instability at microscopic thicknesses, which can easily disrupt the adhesive strength of their remarkable direct contact force. Here, sodium dodecyl sulfate (SDS) was employed to tune the instability of adhesion in wedged glass–water–rubber films, achieving controllable direct contact. Experimental results showed that the supplement of SDS molecules significantly weakened the direct contact force for wet adhesion and eliminated it at high concentrations. The underlying reason was suggested to be the repulsive double-layer force caused by SDS molecules, which lowers the instability of the wedged film and balances the preload, disrupting the direct contact in wet adhesion.

  18. Physical optics-based diffraction coefficient for a wedge with different face impedances.

    PubMed

    Umul, Yusuf Ziya

    2018-03-20

    A new diffraction field expression is introduced with the aid of the modified theory of physical optics for a wedge with different face impedances. First, the scattered geometrical optics fields are determined when both faces of the wedge are illuminated by the incident wave. The geometrical optics waves are then expressed in terms of the sum of two different fields that occur for different impedance wedges. The diffracted fields are determined for the two cases separately, and the total diffracted field is obtained as a sum of these waves. Lastly, the uniform field expressions are obtained, and the resultant fields are numerically compared with the solution of Maliuzhinets.

  19. How to predict deformation for geometrically and mechanically non-uniform accretionary wedges

    NASA Astrophysics Data System (ADS)

    Souloumiac, Pauline; Cubas, Nadaya; Caër, Typhaine

    2017-04-01

    The mechanical understanding of fold-and-thrust belts and accretionary prisms strongly relies on the critical taper theory (CTT). The latter considers their mechanics as analogous to sand pushed by a moving bulldozer along a frictional décollement. The wedge evolves into a critical geometry, corresponding to a point of internal state of stress for which the whole wedge including the basal décollement is on the verge of Coulomb failure. If the décollement is planar and material properties are homogeneous and cohesionless, the critical wedge is triangular. The force of the CCT relies on the fact that conditions for stress equilibrium, Coulomb yielding of the wedge and basal frictional sliding have an analytical solution. However, this theory suffers from several limits. As stated above, the analytical solution applies for perfectly triangular wedges. However, the critical taper is shaped by internal thrusts that lead to a non-uniform topographic slope. What is then the scale of topographic variability for which the CCT will stand? The second limit is that CCT applies for homogeneous frictional properties in the wedge and as well as along the décollement. We can also wonder if there is a scaling parameter for which variations of properties along the decollement would impact the topography. We here show how the limit analysis, an efficient semi-analytical approach, can help us to overcome these limits. We aim to provide simple analytical solutions to structural geologists to evaluate the critical state of their field study cases. We first show that the effect of topographic slope variability relies on a competition between the surface of potential hanging-walls and the surface of theoretical critical hanging-walls. Dips of thrust and backthrust are controlled by the frictional parameters. Along a wedge with a non-regular topography, an out-of-sequence system will appear if there is a position along the wedge for which the hanging-wall will have a lower surface than

  20. Proposal 11913-IR Filter Wedge Check

    NASA Astrophysics Data System (ADS)

    Sabbi, E.; MacKenty, J.; Borders, T.

    2010-08-01

    Variations in the thickness of a filter alter the path of the incoming light beam, causing an apparent displacement of the observed sources. Proposal 11913 was designed to verify the coplanarity of the WFC3/ IR filters, i.e. whether any of them was wedged, and if so, to evaluate the impact on the astrometry. We found that, with the exception of the F098M and F126N filters, the positions of stars observed through different filters, without moving the telescope, differ on average by less then 0.14 ±0.06 pixels and match the CEI specifications. In addition we found that the positional shifts increase along the X-axis and decrease along the Y-axis as a function of wavelength. The observed shifts are consistent with the fact that the refractive corrector plate (RCP) is tilted ~8.6 degree to the center of the field center chief ray.

  1. Analysis of coal seam thickness and seismic wave amplitude: A wedge model

    NASA Astrophysics Data System (ADS)

    Zou, Guangui; Xu, Zhiliang; Peng, Suping; Fan, Feng

    2018-01-01

    Coal seam thickness is of great significance in mining coal resources. The focus of this study is to determine the relationship between coal seam thickness and seismic wave amplitude, and the factors influencing this relationship. We used a wedge model to analyze this relationship and its influencing factors. The results show that wave interference from the top and bottom interfaces is the primary reason for the linear relationship between seismic wave amplitude and wedge thickness, when the thickness of the wedge is less than one quarter of the wavelength. This relationship is influenced by the dominant frequency, reflection coefficients from the top and bottom boundaries, depth, thickness, and angle of the wedge. However, when the lateral shift between the reflected waves is smaller than the radius of the first Fresnel zone, the wedge angle and change in lithology at the top and bottom layers are considered to have little effect on the amplitude of the interference wave. The difference in the dominant frequency of seismic waves can be reduced by filtering, and the linear relationship between amplitude and coal thickness can be improved. Field data from Sihe coal mine was analyzed, and the error was found to be within 4% of the predicted seismic wave amplitude. The above conclusions could help predict the thickness of coal seam by seismic amplitude.

  2. Direct band gap silicon crystals predicted by an inverse design method

    NASA Astrophysics Data System (ADS)

    Oh, Young Jun; Lee, In-Ho; Lee, Jooyoung; Kim, Sunghyun; Chang, Kee Joo

    2015-03-01

    Cubic diamond silicon has an indirect band gap and does not absorb or emit light as efficiently as other semiconductors with direct band gaps. Thus, searching for Si crystals with direct band gaps around 1.3 eV is important to realize efficient thin-film solar cells. In this work, we report various crystalline silicon allotropes with direct and quasi-direct band gaps, which are predicted by the inverse design method which combines a conformation space annealing algorithm for global optimization and first-principles density functional calculations. The predicted allotropes exhibit energies less than 0.3 eV per atom and good lattice matches, compared with the diamond structure. The structural stability is examined by performing finite-temperature ab initio molecular dynamics simulations and calculating the phonon spectra. The absorption spectra are obtained by solving the Bethe-Salpeter equation together with the quasiparticle G0W0 approximation. For several allotropes with the band gaps around 1 eV, photovoltaic efficiencies are comparable to those of best-known photovoltaic absorbers such as CuInSe2. This work is supported by the National Research Foundation of Korea (2005-0093845 and 2008-0061987), Samsung Science and Technology Foundation (SSTF-BA1401-08), KIAS Center for Advanced Computation, and KISTI (KSC-2013-C2-040).

  3. WEDGE ABSORBERS FOR MUON COOLING WITH A TEST BEAM AT MICE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neuffer, David; Acosta, J.; Summers, D.

    2016-10-18

    Emittance exchange mediated by wedge absorbers is required for longitudinal ionization cooling and for final transverse emittance minimization for a muon collider. A wedge absorber within the MICE beam line could serve as a demonstration of the type of emittance exchange needed for 6-D cooling, including the configurations needed for muon colliders. Parameters for this test are explored in simulation and possible experimental configurations with simulated results are presented.

  4. Effect of Foot Progression Angle and Lateral Wedge Insole on a Reduction in Knee Adduction Moment.

    PubMed

    Tokunaga, Ken; Nakai, Yuki; Matsumoto, Ryo; Kiyama, Ryoji; Kawada, Masayuki; Ohwatashi, Akihiko; Fukudome, Kiyohiro; Ohshige, Tadasu; Maeda, Tetsuo

    2016-10-01

    This study evaluated the effect of foot progression angle on the reduction in knee adduction moment caused by a lateral wedged insole during walking. Twenty healthy, young volunteers walked 10 m at their comfortable velocity wearing a lateral wedged insole or control flat insole in 3 foot progression angle conditions: natural, toe-out, and toe-in. A 3-dimensional rigid link model was used to calculate the external knee adduction moment, the moment arm of ground reaction force to knee joint center, and the reduction ratio of knee adduction moment and moment arm. The result indicated that the toe-out condition and lateral wedged insole decreased the knee adduction moment in the whole stance phase. The reduction ratio of the knee adduction moment and the moment arm exhibited a close relationship. Lateral wedged insoles decreased the knee adduction moment in various foot progression angle conditions due to decrease of the moment arm of the ground reaction force. Moreover, the knee adduction moment during the toe-out gait with lateral wedged insole was the smallest due to the synergistic effect of the lateral wedged insole and foot progression angle. Lateral wedged insoles may be a valid intervention for patients with knee osteoarthritis regardless of the foot progression angle.

  5. Design of phononic band gaps in functionally graded piezocomposite materials by using topology optimization

    NASA Astrophysics Data System (ADS)

    Vatanabe, Sandro L.; Silva, Emílio C. N.

    2011-04-01

    One of the properties of composite materials is the possibility of having phononic band gaps, within which sound and vibrations at certain frequencies do not propagate. These materials are called Phononic Crystals (PCs). PCs with large band gaps are of great interest for many applications, such as transducers, elastic/ acoustic filters, noise control, and vibration shields. Most of previous works concentrates on PCs made of elastic isotropic materials; however, band gaps can be enlarged by using non-isotropic materials, such as piezoelectric materials. Since the main property of PCs is the presence of band gaps, one possible way to design structures which have a desired band gap is through Topology Optimization Method (TOM). TOM is a computational technique that determines the layout of a material such that a prescribed objective is maximized. Functionally Graded Materials (FGM) are composite materials whose properties vary gradually and continuously along a specific direction within the domain of the material. One of the advantages of applying the FGM concept to TOM is that it is not necessary a discrete 0-1 result, once the material gradation is part of the solution. Therefore, the interpretation step becomes easier and the dispersion diagram obtained from the optimization is not significantly modified. In this work, the main objective is to optimize the position and width of piezocomposite materials band gaps. Finite element analysis is implemented with Bloch-Floquet theory to solve the dynamic behavior of two-dimensional functionally graded unit cells. The results demonstrate that phononic band gaps can be designed by using this methodology.

  6. Spacing of Imbricated Thrust Faults and the Strength of Thrust-Belts and Accretionary Wedges

    NASA Astrophysics Data System (ADS)

    Ito, G.; Regensburger, P. V.; Moore, G. F.

    2017-12-01

    The pattern of imbricated thrust blocks is a prominent characteristic of the large-scale structure of thrust-belts and accretionary wedges around the world. Mechanical models of these systems have a rich history from laboratory analogs, and more recently from computational simulations, most of which, qualitatively reproduce the regular patterns of imbricated thrusts seen in nature. Despite the prevalence of these patterns in nature and in models, our knowledge of what controls the spacing of the thrusts remains immature at best. We tackle this problem using a finite difference, particle-in-cell method that simulates visco-elastic-plastic deformation with a Mohr-Coulomb brittle failure criterion. The model simulates a horizontal base that moves toward a rigid vertical backstop, carrying with it an overlying layer of crust. The crustal layer has a greater frictional strength than the base, is cohesive, and is initially uniform in thickness. As the layer contracts, a series of thrust blocks immerge sequentially and form a wedge having a mean taper consistent with that predicted by a noncohesive, critical Coulomb wedge. The widths of the thrust blocks (or spacing between adjacent thrusts) are greatest at the front of the wedge, tend to decrease with continued contraction, and then tend toward a pseudo-steady, minimum width. Numerous experiments show that the characteristic spacing of thrusts increases with the brittle strength of the wedge material (cohesion + friction) and decreases with increasing basal friction for low (<8°) taper angles. These relations are consistent with predictions of the elastic stresses forward of the frontal thrust and at what distance the differential stress exceeds the brittle threshold to form a new frontal thrust. Hence the characteristic spacing of the thrusts across the whole wedge is largely inherited at the very front of the wedge. Our aim is to develop scaling laws that will illuminate the basic physical processes controlling

  7. Vertebral body or intervertebral disc wedging: which contributes more to thoracolumbar kyphosis in ankylosing spondylitis patients?: A retrospective study.

    PubMed

    Liu, Hao; Qian, Bang-Ping; Qiu, Yong; Wang, Yan; Wang, Bin; Yu, Yang; Zhu, Ze-Zhang

    2016-09-01

    Both vertebral body wedging and disc wedging are found in ankylosing spondylitis (AS) patients with thoracolumbar kyphosis. However, their relative contribution to thoracolumbar kyphosis is not fully understood. The objective of this study was to compare different contributions of vertebral and disc wedging to the thoracolumbar kyphosis in AS patients, and to analyze the relationship between the apical vertebral wedging angle and thoracolumbar kyphosis.From October 2009 to October 2013, a total of 59 consecutive AS patients with thoracolumbar kyphosis with a mean age of 38.1 years were recruited in this study. Based on global kyphosis (GK), 26 patients with GK < 70° were assigned to group A, and the other 33 patients with GK ≥ 70° were included in group B. Each GK was divided into disc wedge angles and vertebral wedge angles. The wedging angle of each disc and vertebra comprising the thoracolumbar kyphosis was measured, and the proportion of the wedging angle to the GK was calculated accordingly. Intergroup and intragroup comparisons were subsequently performed to investigate the different contributions of disc and vertebra to the GK. The correlation between the apical vertebral wedging angle and GK was calculated by Pearson correlation analysis. The duration of disease and sex were also recorded in this study.With respect to the mean disease duration, significant difference was observed between the two groups (P < 0.01). The wedging angle and wedging percentage of discs were significantly higher than those of vertebrae in group A (34.8° ± 2.5° vs 26.7° ± 2.7°, P < 0.01 and 56.6% vs 43.4%, P < 0.01), whereas disc wedging and disc wedging percentage were significantly lower than vertebrae in group B (37.6° ± 7.0° vs 50.1° ± 5.1°, P < 0.01 and 42.7% vs 57.3%, P < 0.01). The wedging of vertebrae was significantly higher in group B than in group A (50.1° ± 5.1° vs 26.7° ± 2.7°, P < 0

  8. Effect of shockwave curvature on run distance observed with a modified wedge test

    NASA Astrophysics Data System (ADS)

    Lee, Richard; Dorgan, Robert J.; Sutherland, Gerrit; Benedetta, Ashley; Milby, Christopher

    2012-03-01

    The effect of wave curvature on shock initiation in PBXN-110 was investigated using a modified wedge test configuration. Various widths of PBXN-110 donor slabs were used to define the shockwave curvature introduced to wedge samples of the same explosive. The donor slabs were initiated with line-wave generators so that the shock from the donor would be the same shape, magnitude and duration across the entire input surface of the wedge. The shock parameters were varied for a given donor with PMMA spacers placed between the donor and the wedge sample. A high-speed electronic framing camera was used to observe where initiation occurred along the face of the wedge. Initiation always occurred at the center of the shock front instead of along the sides like that reported by others using a much smaller test format. Results were compared to CTH calculations to indicate if there were effects associated with highly curved shock fronts that could not be adequately predicted. The run distance predicted in CTH for a 50.8 mm wide donor slab (low curvature) compared favorably with experimental results. However, results from thinner donor slabs (higher curvature) indicate a more sensitive behavior than the simulations predicted.

  9. Measuring the reionization 21 cm fluctuations using clustering wedges

    NASA Astrophysics Data System (ADS)

    Raut, Dinesh; Choudhury, Tirthankar Roy; Ghara, Raghunath

    2018-03-01

    One of the main challenges in probing the reionization epoch using the redshifted 21 cm line is that the magnitude of the signal is several orders smaller than the astrophysical foregrounds. One of the methods to deal with the problem is to avoid a wedge-shaped region in the Fourier k⊥ - k∥ space which contains the signal from the spectrally smooth foregrounds. However, measuring the spherically averaged power spectrum using only modes outside this wedge (i.e. in the reionization window) leads to a bias. We provide a prescription, based on expanding the power spectrum in terms of the shifted Legendre polynomials, which can be used to compute the angular moments of the power spectrum in the reionization window. The prescription requires computation of the monopole, quadrupole, and hexadecapole moments of the power spectrum using the theoretical model under consideration and also the knowledge of the effective extent of the foreground wedge in the k⊥ - k∥ plane. One can then calculate the theoretical power spectrum in the window which can be directly compared with observations. The analysis should have implications for avoiding any bias in the parameter constraints using 21 cm power spectrum data.

  10. 49 CFR 215.113 - Defective plain bearing wedge.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD FREIGHT CAR SAFETY STANDARDS Freight Car Components... car, if a plain bearing wedge on that car is— (a) Missing; (b) Cracked; (c) Broken; or (d) Not located...

  11. 49 CFR 215.113 - Defective plain bearing wedge.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD FREIGHT CAR SAFETY STANDARDS Freight Car Components... car, if a plain bearing wedge on that car is— (a) Missing; (b) Cracked; (c) Broken; or (d) Not located...

  12. 49 CFR 215.113 - Defective plain bearing wedge.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD FREIGHT CAR SAFETY STANDARDS Freight Car Components... car, if a plain bearing wedge on that car is— (a) Missing; (b) Cracked; (c) Broken; or (d) Not located...

  13. 49 CFR 215.113 - Defective plain bearing wedge.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD FREIGHT CAR SAFETY STANDARDS Freight Car Components... car, if a plain bearing wedge on that car is— (a) Missing; (b) Cracked; (c) Broken; or (d) Not located...

  14. 49 CFR 215.113 - Defective plain bearing wedge.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD FREIGHT CAR SAFETY STANDARDS Freight Car Components... car, if a plain bearing wedge on that car is— (a) Missing; (b) Cracked; (c) Broken; or (d) Not located...

  15. The need to balance merits and limitations from different disciplines when considering the stepped wedge cluster randomized trial design.

    PubMed

    de Hoop, Esther; van der Tweel, Ingeborg; van der Graaf, Rieke; Moons, Karel G M; van Delden, Johannes J M; Reitsma, Johannes B; Koffijberg, Hendrik

    2015-10-30

    Various papers have addressed pros and cons of the stepped wedge cluster randomized trial design (SWD). However, some issues have not or only limitedly been addressed. Our aim was to provide a comprehensive overview of all merits and limitations of the SWD to assist researchers, reviewers and medical ethics committees when deciding on the appropriateness of the SWD for a particular study. We performed an initial search to identify articles with a methodological focus on the SWD, and categorized and discussed all reported advantages and disadvantages of the SWD. Additional aspects were identified during multidisciplinary meetings in which ethicists, biostatisticians, clinical epidemiologists and health economists participated. All aspects of the SWD were compared to the parallel group cluster randomized design. We categorized the merits and limitations of the SWD to distinct phases in the design and conduct of such studies, highlighting that their impact may vary depending on the context of the study or that benefits may be offset by drawbacks across study phases. Furthermore, a real-life illustration is provided. New aspects are identified within all disciplines. Examples of newly identified aspects of an SWD are: the possibility to measure a treatment effect in each cluster to examine the (in)consistency in effects across clusters, the detrimental effect of lower than expected inclusion rates, deviation from the ordinary informed consent process and the question whether studies using the SWD are likely to have sufficient social value. Discussions are provided on e.g. clinical equipoise, social value, health economical decision making, number of study arms, and interim analyses. Deciding on the use of the SWD involves aspects and considerations from different disciplines not all of which have been discussed before. Pros and cons of this design should be balanced in comparison to other feasible design options as to choose the optimal design for a particular

  16. Modification of the fault logic circuit of a high-energy linear accelerator to accommodate selectively coded, large-field wedges.

    PubMed

    Miller, R W; van de Geijn, J

    1987-01-01

    A modification to the fault logic circuit that controls the collimator (COLL) fault is described. This modification permits the use of large-field wedges by adding an additional input into the reference voltage that determines the fault condition. The resistor controlling the amount of additional voltage is carried on board each wedge, within the wedge plug. This allows each wedge to determine its own, individual field size limit. Additionally, if no coding resistor is provided, the factory-supplied reference voltage is used, which sets the maximum allowable field size to 15 cm. This permits the use of factory-supplied wedges in conjunction with selected, large-field wedges, allowing proper sensing of the field size maximum in all conditions.

  17. Impingement of water droplets on wedges and diamond airfoils at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Serafini, John S

    1953-01-01

    An analytical solution has been obtained for the equations of motion of water droplets impinging on a wedge in a two-dimensional supersonic flow field with a shock wave attached to the wedge. The closed-form solution yields analytical expressions for the equation of the droplet trajectory, the local rate of impingement and the impingement velocity at any point on the wedge surface, and the total rate of impingement. The analytical expressions are utilized to determine the impingement on the forward surfaces of diamond airfoils in supersonic flow fields with attached shock waves. The results presented include the following conditions: droplet diameters from 2 to 100 microns, pressure altitudes from sea level to 30,000 feet, free-stream static temperatures from 420 degrees to 460 degrees R. Also, free-stream Mach numbers from 1.1 to 2.0, semi-apex angles for the wedge from 1.14 degrees to 7.97 degrees, thickness-to-chord ratios for the diamond airfoil from 0.02 to 0.14, chord lengths from 1 to 20 feet, and angles of attack from zero to the inverse tangent of the airfoil thickness-to-chord ratio.

  18. Dispersion analysis and measurement of circular cylindrical wedge-like acoustic waveguides.

    PubMed

    Yu, Tai-Ho

    2015-09-01

    This study investigated the propagation of flexural waves along the outer edge of a circular cylindrical wedge, the phase velocities, and the corresponding mode displacements. Thus far, only approximate solutions have been derived because the corresponding boundary-value problems are complex. In this study, dispersion curves were determined using the bi-dimensional finite element method and derived through the separation of variables and the Hamilton principle. Modal displacement calculations clarified that the maximal deformations appeared at the outer edge of the wedge tip. Numerical examples indicated how distinct thin-film materials deposited on the outer surface of the circular cylindrical wedge influenced the dispersion curves. Additionally, dispersion curves were measured using a laser-induced guided wave, a knife-edge measurement scheme, and a two-dimensional fast Fourier transform method. Both the numerical and experimental results correlated closely, thus validating the numerical solution. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Crossing the boundary: experimental investigation of water entry conditions of V-shaped wedges

    NASA Astrophysics Data System (ADS)

    Xiao, Tingben; Yohann, Daniel; Vincent, Lionel; Jung, Sunghwan; Kanso, Eva

    2016-11-01

    Seabirds that plunge-dive at high speeds exhibit remarkable abilities to withstand and mitigate impact forces. To minimize these forces, diving birds streamline their shape at impact, entering water with their sharp beak first. Here, we investigate the impact forces on rigid V-shaped wedges crossing the air-water interface at high Weber numbers. We vary the impact velocity V by adjusting the height from which the wedge is dropped. Both a high-speed camera and a force transducer are used to characterize the impact. We found that the splash base and air cavity show little dependence on the impact velocity when rescaling by inertial time d / V , where d is the breadth of the wedge. The peak impact force occurs at time tp smaller than the submersion time ts such that the ratio tp /ts is almost constant for all wedges and impact velocities V. We also found that the maximum impact force, like drag force, scales as AV2 , where A is the cross-sectional area of the wedge. We then propose analytical models of the impact force and splash dynamics. The theoretical predictions agree well with our experimental results. We conclude by commenting on the relevance of these results to understanding the mechanics of diving seabirds. We acknowledge support from the National Science Foundation.

  20. Technical note: A new wedge-shaped ionization chamber component module for BEAMnrc to model the integral quality monitoring system®

    NASA Astrophysics Data System (ADS)

    Oderinde, Oluwaseyi Michael; du Plessis, FCP

    2017-12-01

    The purpose of this study was to develop a new component module (CM) namely IQM to accurately model the integral quality monitoring (IQM) system® to be used in the BEAMnrc Monte Carlo (MC) code. The IQM is essentially a double wedge ionization chamber with the central electrode plate bisecting the wedge. The IQM CM allows the user to characterize the double wedge of this ionization chamber and BEAMnrc can then accurately calculate the dose in this CM including its enclosed air regions. This has been verified against measured data. The newly created CM was added into the standard BEAMnrc CMs, and it will be made available through the NRCC website. The BEAMnrc graphical user interface (GUI) and particle ray-tracing techniques were used to validate the IQM geometry. In subsequent MC simulations, the dose scored in the IQM was verified against measured data over a range of square fields ranging from 1 × 1-30 × 30 cm2. The IQM system is designed for the present day need for a device that could verify beam output in real-time during treatment. This CM is authentic, and it can serve as a basis for researchers that have an interest in real-time beam delivery checking using wedge-shaped ionization chamber based instruments like the IQM.

  1. Map design and production issues for the Utah Gap Analysis Project

    USGS Publications Warehouse

    Hutchinson, John A.; Wittmann, J.H.

    1997-01-01

    The cartographic preparation and printing of four maps for the Utah GAP Project presented a wide range of challenges in cartographic design and production. In meeting these challenges, the map designers had to balance the purpose of the maps together with their legibility and utility against both the researchers' desire to show as much detail as possible and the technical limitations inherent in the printing process. This article describes seven design and production issues in order to illustrate the challenges of making maps from a merger of satellite data and GIS databases, and to point toward future investigation and development.

  2. Radiographic Outcomes Following Lateral Column Lengthening With a Porous Titanium Wedge.

    PubMed

    Gross, Christopher E; Huh, Jeannie; Gray, Joni; Demetracopoulos, Constantine; Nunley, James A

    2015-08-01

    Lateral column lengthening (LCL) is commonly utilized in treating stage II posterior tibialis tendon dysfunction. This study aimed to analyze the outcomes of LCL with porous titanium wedges compared to historic controls of iliac crest autograft and allograft. We hypothesized that the use of a porous titanium wedge would have radiographic improvement and union rates similar to those with the use of autograft and allograft in LCL. Between May 2009 and May 2014, 28 feet in 26 patients were treated with LCL using a porous titanium wedge. Of the 26 patients, 9 were males (34.6%). The average age for males was 43 years (range, 17.9-58.7), 48.7 years (range, 21-72.3) for females. Mean follow-up was 14.6 months. Radiographs were examined for correction of the flatfoot deformity and forefoot abduction. All complications were noted. Radiographically, the patients had a significant deformity correction in the anteroposterior talo-first metatarsal angle, talonavicular coverage angle, lateral talo-first metatarsal angle, and calcaneal pitch. All but 1 patient (96%) had bony incorporation of the porous titanium wedge. The average preoperative visual analog scale pain score was 5; all patients but 3 (12%) had improvements in their pain score, with a mean change of 3.4. LCL with porous titanium had low nonunion rates, improved radiographic correction, and pain relief. Level IV, case series. © The Author(s) 2015.

  3. Stable isotope and gas properties of two ice wedges from Cape Mamontov Klyk, Laptev Sea, Northern Siberia

    NASA Astrophysics Data System (ADS)

    Boereboom, T.; Samyn, D.; Meyer, H.; Tison, J.-L.

    2011-12-01

    This paper presents and discusses the texture, fabric and gas properties (contents of total gas, O2, N2, CO2, and CH4) of two ice wedges from Cape Mamontov Klyk, Laptev Sea, Northern Siberia. The two ice wedges display contrasting structures: one being of relatively "clean" ice and the other showing clean ice at its centre as well as debris-rich ice on its sides (referred to as ice-sand wedge). A comparison of gas properties, crystal size, fabrics and stable isotope data (δ18O and δD) allows discriminating between three different facies of ice with specific paleoenvironmental signatures, suggesting different climatic conditions and rates of biological activity. More specifically, total gas content and composition reveal variable intensities of meltwater infiltration and show the impact of biological processes with contrasting contributions from anaerobic and aerobic conditions. Stable isotope data are shown to be valid for discussing changes in paleoenvironmental conditions and/or decipher different sources for the snow feeding into the ice wedges with time. Our data also give support to the previous assumption that the composite ice wedge was formed in Pleistocene and the ice wedge in Holocene times. This study sheds more light on the conditions of ice wedge growth under changing environmental conditions.

  4. Design and application of gas-gap heat switches

    NASA Technical Reports Server (NTRS)

    Chan, C. K.; Ross, R. G., Jr.

    1990-01-01

    Gas-gap heat switches can serve as an effective means of thermally disconnecting a standby cryocooler when the primary (operating) cooler is connected and vice versa. The final phase of the development and test of a cryogenic heat switch designed for loads ranging from 2 watts at 8 K, to 100 watts at 80 K are described. Achieved heat-switch on/off conductance ratio ranged from 11,000 at 8 K to 2200 at 80 K. A particularly challenging element of heat-switch design is achieving satisfactory operation when large temperatures differentials exist across the switch. A special series of tests and analyses was conducted and used in this Phase-2 activity to evaluate the developed switches for temperature differentials ranging up to 200 K. Problems encountered at the maximum levels are described and analyzed, and means of avoiding the problems in the future are presented. A comprehensive summary of the overall heat-switch design methodology is also presented with special emphasis on lessons learned over the course of the 4-year development effort.

  5. Development of mix design procedures for gap-graded asphalt-rubber asphalt concrete

    DOT National Transportation Integrated Search

    2007-11-01

    A research project was conducted to identify and document current modifications to ARIZONA 815c (75-blow Marshall method) used to develop gap-graded asphalt rubber asphalt concrete (GG AR AC) mix designs, and to develop and test improvements to provi...

  6. Modeling the Evolution of Localized Strain in Orogenic Wedges: From Short-term Deformation to Long-term Tectonic States

    NASA Astrophysics Data System (ADS)

    Weiss, J. R.; Ito, G.; Brooks, B. A.; Olive, J. A. L.; Foster, J. H.; Howell, S. M.

    2015-12-01

    Some of the most destructive earthquakes on Earth are associated with active orogenic wedges. Despite a sound understanding of the basic mechanics that govern whole wedge structure over geologic time scales and a growing body of studies that have characterized the deformation associated with historic to recent earthquakes, first order questions remain about the linkage of the two sets of processes at the intermediate seismotectonic timescales. Numerical models have the power to test the effects of specific mechanical conditions on the evolution of observables at active orogenic wedges. Here we use a two-dimensional, continuum mechanics-based, finite difference method with a visco-elasto-plastic rheology coupled with surface processes to investigate the spatiotemporal distribution of deformation during wedge growth. The model simulates the contraction of a crustal layer overlying a weak base (décollement) against a rigid backstop and the spontaneous nucleation and evolution of fault zones due to cohesive, Mohr-Coulomb failure with strain weakening. Consistent with critical wedge theory, the average slope across the wedge is controlled by the relative frictional strengths of the wedge and décollement. Initial calculations predict changes in wedge deformation on short geologic timescales (103-105yrs) that involve episodes of widening as new, foreland-verging thrusts nucleate near the surface beyond the wedge toe and propagate down-dip to intersect the décollement. All the while, the wedge thickens via slip on older, internal fault zones. The aim of this study is to identify the parameters controlling the timescales of 1) episodic widening versus thickening and 2) nucleation and life-span of individual fault zones. These are initial steps needed to link earthquake observations to the long-term tectonic states inferred at various orogenic belts around the world.

  7. Sojourner, Wedge, & Shark

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This Imager for Mars Pathfinder (IMP) image taken near the end of daytime operations on Sol 50 shows the Sojourner rover between the rocks 'Wedge' (foreground) and 'Shark' (behind rover). The rover successfully deployed its Alpha Proton X-Ray Spectrometer on Shark on Sol 52.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  8. Numerical simulations of negative-index refraction in wedge-shaped metamaterials.

    PubMed

    Dong, Z G; Zhu, S N; Liu, H; Zhu, J; Cao, W

    2005-07-01

    A wedge-shaped structure made of split-ring resonators (SRR) and wires is numerically simulated to evaluate its refraction behavior. Four frequency bands, namely, the stop band, left-handed band, ultralow-index band, and positive-index band, are distinguished according to the refracted field distributions. Negative phase velocity inside the wedge is demonstrated in the left-handed band and the Snell's Law is conformed in terms of its refraction behaviors in different frequency bands. Our results confirmed that negative index of refraction indeed exists in such a composite metamaterial and also provided a convincing support to the results of previous Snell's Law experiments.

  9. Spatial variability of E. coli in an urban salt-wedge estuary.

    PubMed

    Jovanovic, Dusan; Coleman, Rhys; Deletic, Ana; McCarthy, David

    2017-01-15

    This study investigated the spatial variability of a common faecal indicator organism, Escherichia coli, in an urban salt-wedge estuary in Melbourne, Australia. Data were collected through comprehensive depth profiling in the water column at four sites and included measurements of temperature, salinity, pH, dissolved oxygen, turbidity, and E. coli concentrations. Vertical variability of E. coli was closely related to the salt-wedge dynamics; in the presence of a salt-wedge, there was a significant decrease in E. coli concentrations with depth. Transverse variability was low and was most likely dwarfed by the analytical uncertainties of E. coli measurements. Longitudinal variability was also low, potentially reflecting minimal die-off, settling, and additional inputs entering along the estuary. These results were supported by a simple mixing model that predicted E. coli concentrations based on salinity measurements. Additionally, an assessment of a sentinel monitoring station suggested routine monitoring locations may produce conservative estimates of E. coli concentrations in stratified estuaries. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Subduction zone evolution and low viscosity wedges and channels

    NASA Astrophysics Data System (ADS)

    Manea, Vlad; Gurnis, Michael

    2007-12-01

    Dehydration of subducting lithosphere likely transports fluid into the mantle wedge where the viscosity is decreased. Such a decrease in viscosity could form a low viscosity wedge (LVW) or a low viscosity channel (LVC) on top of the subducting slab. Using numerical models, we investigate the influence of low viscosity wedges and channels on subduction zone structure. Slab dip changes substantially with the viscosity reduction within the LVWs and LVCs. For models with or without trench rollback, overthickening of slabs is greatly reduced by LVWs or LVCs. Two divergent evolutionary pathways have been found depending on the maximum depth extent of the LVW and wedge viscosity. Assuming a viscosity contrast of 0.1 with background asthenosphere, models with a LVW that extends down to 400 km depth show a steeply dipping slab, while models with an LVW that extends to much shallower depth, such as 200 km, can produce slabs that are flat lying beneath the overriding plate. There is a narrow range of mantle viscosities that produces flat slabs (5 to10 × 10 19 Pa s) and the slab flattening process is enhanced by trench rollback. Slab can be decoupled from the overriding plate with a LVC if the thickness is at least a few 10 s of km, the viscosity reduction is at least a factor of two and the depth extent of the LVC is several hundred km. These models have important implications for the geochemical and spatial evolution of volcanic arcs and the state of stress within the overriding plate. The models explain the poor correlation between traditional geodynamic controls, subducting plate age and convergence rates, on slab dip. We predict that when volcanic arcs change their distance from the trench, they could be preceded by changes in arc chemistry. We predict that there could be a larger volatile input into the wedge when arcs migrate toward the trench and visa-versa. The transition of a subduction zone into the flat-lying regime could be preceded by changes in the volatile

  11. Cumulative effects of climate change and ice-wedge degradation, Prudhoe Bay oilfield Alaska

    NASA Astrophysics Data System (ADS)

    Walker, D. A.; Kanevskiy, M. Z.; Shur, Y.; Raynolds, M. K.; Buchhorn, M.

    2016-12-01

    Development of Arctic oil & gas resources requires extensive networks of roads, pipelines and other forms of infrastructure. The Prudhoe Bay Oilfield is the largest Arctic oilfield in North America with a long, well-documented history. In a previous publication we analyzed the historical record of high-resolution aerial photos to document the long-term changes to infrastructure extent (1949-2010) for the entire oilfield, and an integrated-geoecological-historical-change-mapping (IGHCM) approach to document terrain changes within 22-km2 areas of the oilfield. We reported the recent widespread expansion of thermokarst, starting in about 1989. Here we examine the annual air-photo record to better pinpoint the years of major change. We also conducted detailed field studies of roadside changes using topographic surveys and soil, vegetation and ice-wedge coring studies. Both sites exhibit extensive ice-wedge degradation that is caused by a combination of a long-term warming trend a series of exceptionally warm summers, and infrastructure-related factors that melted the tops of ice wedges. Near-road thermokarst is enhanced by warmer soils associated with road dust, roadside flooding, near-road pipelines, communication cables, and altered snow regimes. These strongly affect roadside ecosystems and the infrastructure itself. Changes to ecosystems include altered hydrology with the drying of polygon centers and the formation of well-developed high-centered polygons occurs in some areas. Other areas develop extensive flooding and erosion of ice-wedge troughs. An unexpected result of flooding is the stabilization of ice-wedge degradation in some areas because the increased productivity of sedges in the flooded areas is producing large amounts of organic material that protects the tops of ice wedges from further degradation. The large increases in productivity in roadside areas also attract large flocks of waterfowl. Changes to the soils with the addition of thick layers of

  12. Effect of Laterally Wedged Insoles on the External Knee Adduction Moment across Different Reference Frames.

    PubMed

    Yamaguchi, Satoshi; Kitamura, Masako; Ushikubo, Tomohiro; Murata, Atsushi; Akagi, Ryuichiro; Sasho, Takahisa

    2015-01-01

    Biomechanical effects of laterally wedged insoles are assessed by reduction in the knee adduction moment. However, the degree of reduction may vary depending on the reference frame with which it is calculated. The purpose of this study was to clarify the effect of reference frame on the reduction in the knee adduction moment by laterally wedged insoles. Twenty-nine healthy participants performed gait trials with a laterally wedged insole and with a flat insole as a control. The knee adduction moment, including the first and second peaks and the angular impulse, were calculated using four different reference frames: the femoral frame, tibial frame, laboratory frame and the Joint Coordinate System. There were significant effects of reference frame on the knee adduction moment first and second peaks (P < 0.001 for both variables), while the effect was not significant for the angular impulse (P = 0.84). No significant interaction between the gait condition and reference frame was found in either of the knee adduction moment variables (P = 0.99 for all variables), indicating that the effects of laterally wedged insole on the knee adduction moments were similar across the four reference frames. On the other hand, the average percent changes ranged from 9% to 16% for the first peak, from 16% to 18% for the second peak and from 17% to 21% for the angular impulse when using the different reference frames. The effects of laterally wedged insole on the reduction in the knee adduction moment were similar across the reference frames. On the other hand, Researchers need to recognize that when the percent change was used as the parameter of the efficacy of laterally wedged insole, the choice of reference frame may influence the interpretation of how laterally wedged insoles affect the knee adduction moment.

  13. Assessment of Neutron Contamination Originating from the Presence of Wedge and Block in Photon Beam Radiotherapy.

    PubMed

    Bahreyni Toossi, M T; Khajetash, B; Ghorbani, M

    2018-03-01

    One of the main causes of induction of secondary cancer in radiation therapy is neutron contamination received by patients during treatment. Objective: In the present study the impact of wedge and block on neutron contamination production is investigated. The evaluations are conducted for a 15 MV Siemens Primus linear accelerator. Simulations were performed using MCNPX Monte Carlo code. 30˚, 45˚ and 60˚ wedges and a cerrobend block with dimensions of 1.5 × 1.5 × 7 cm 3 were simulated. The investigation were performed in the 10 × 10 cm 2 field size at source to surface distance of 100 cm for depth of 0.5, 2, 3 and 4 cm in a water phantom. Neutron dose was calculated using F4 tally with flux to dose conversion factors and F6 tally. Results showed that the presence of wedge increases the neutron contamination when the wedge factor was considered. In addition, 45˚ wedge produced the most amount of neutron contamination. If the block is in the center of the field, the cerrobend block caused less neutron contamination than the open field due to absorption of neutrons and photon attenuation. The results showed that neutron contamination is less in steeper depths. The results for two tallies showed practically equivalent results. Wedge causes neutron contamination hence should be considered in therapeutic protocols in which wedge is used. In terms of clinical aspects, the results of this study show that superficial tissues such as skin will tolerate more neutron contamination than the deep tissues.

  14. Effects of Lateral and Medial Wedged Insoles on Knee and Ankle Internal Joint Moments During Walking in Healthy Men.

    PubMed

    Fukuchi, Claudiane A; Lewinson, Ryan T; Worobets, Jay T; Stefanyshyn, Darren J

    2016-11-01

    Wedged insoles have been used to treat knee pathologies and to prevent injuries. Although they have received much attention for the study of knee injury, the effects of wedges on ankle joint biomechanics are not well understood. This study sought to evaluate the immediate effects of lateral and medial wedges on knee and ankle internal joint loading and center of pressure (CoP) in men during walking. Twenty-one healthy men walked at 1.4 m/sec in five footwear conditions: neutral, 6° (LW6) and 9° (LW9) lateral wedges, and 6° (MW6) and 9° (MW9) medial wedges. Peak internal knee abduction moments and angular impulses, internal ankle inversion moments and angular impulses, and mediolateral CoP were analyzed. Analysis of variance with post hoc analysis and Pearson correlations were performed to detect differences between conditions. No differences in internal knee joint loading were found between neutral and any of the wedge conditions. However, as the wedge angle increased from medial to lateral, the internal ankle inversion moment (LW6: P = .020; LW9: P < .001; MW6: P = .046; MW9: P < .001) and angular impulse (LW9: P = .012) increased, and the CoP shifted laterally (LW9: P < .001) and medially (MW9: P < .001) compared with the neutral condition. Neither lateral nor medial wedges were effective in altering internal knee joint loading during walking. However, the greater internal ankle inversion moment and angular impulse observed with lateral wedges could lead to a higher risk of ankle injury. Thus, caution should be taken when lateral wedges need to be prescribed.

  15. Computational Protein Engineering: Bridging the Gap between Rational Design and Laboratory Evolution

    PubMed Central

    Barrozo, Alexandre; Borstnar, Rok; Marloie, Gaël; Kamerlin, Shina Caroline Lynn

    2012-01-01

    Enzymes are tremendously proficient catalysts, which can be used as extracellular catalysts for a whole host of processes, from chemical synthesis to the generation of novel biofuels. For them to be more amenable to the needs of biotechnology, however, it is often necessary to be able to manipulate their physico-chemical properties in an efficient and streamlined manner, and, ideally, to be able to train them to catalyze completely new reactions. Recent years have seen an explosion of interest in different approaches to achieve this, both in the laboratory, and in silico. There remains, however, a gap between current approaches to computational enzyme design, which have primarily focused on the early stages of the design process, and laboratory evolution, which is an extremely powerful tool for enzyme redesign, but will always be limited by the vastness of sequence space combined with the low frequency for desirable mutations. This review discusses different approaches towards computational enzyme design and demonstrates how combining newly developed screening approaches that can rapidly predict potential mutation “hotspots” with approaches that can quantitatively and reliably dissect the catalytic step can bridge the gap that currently exists between computational enzyme design and laboratory evolution studies. PMID:23202907

  16. Porous Flow and Diffusion of Water in the Mantle Wedge: Melting and Hydration Patterns

    NASA Astrophysics Data System (ADS)

    Conder, J. A.

    2005-12-01

    It is widely accepted that melting at volcanic arcs is primarily triggered by fluxing the mantle wedge from the dehydrating subducting slab. However, there is less concensus regarding how water moves into and within the mantle wedge. There are at least four possible mechanisms for water migration in the wedge: buoyant porous flow, diffusion through mineral crystals, advection of hydrated minerals, and compositionally buoyant diapers. The latter two mechanisms require at least one of the first two to occur to get water from the slab into the wedge before they can function. Using geodynamic models of mantle flow in a simplified subduction setting, we explore the implications of diffusion and porous flow of water in the wedge, particularly as they would affect the time for recycling water through the subduction factory and the predicted pattern of basalt hydration across the arc. The slab is assumed to dehydrate in a continuous fashion as the solubility of water in subducted oceanic crust decreases with temperature and pressure and the water then enters the wedge via one of the two transport mechanisms. Diffusion is controlled by temperature and by which minerals are present. Although olivine dominates the mantle mineral fraction, pyroxenes may control the diffusion of water in the wedge as the diffusivity of pyroxene is one or more orders of magnitude greater than olivine. Even assuming the faster diffusion rate of orthopyroxene in the models, diffusion can only be an important transport mechanism when subduction rates are slower than ~3 cm/yr. Flux melting occurs in the wedge above where the slab is ~100-160 km deep with the maximum above where the slab is ~120 km deep. Models including porous flow can result in melting at higher subduction rates provided the permeability of the mantle is greater than 10-17 m2. The true magnitude of the permeability likely varies with the corresponding porosity created by the free phase. With porous flow, melting occurs 20-30 km

  17. Integrated waste management as a climate change stabilization wedge.

    PubMed

    Bahor, Brian; Van Brunt, Michael; Stovall, Jeff; Blue, Katherine

    2009-11-01

    Anthropogenic sources of greenhouse gas emissions are known to contribute to global increases in greenhouse gas concentrations and are widely believed to contribute to climate change. A reference carbon dioxide concentration of 383 ppm for 2007 is projected to increase to a nominal 500 ppm in less than 50 years according to business as usual models. This concentration change is equivalent to an increase of 7 billion tonnes of carbon per year (7 Gt C year(-1)). The concept of a stabilization wedge was introduced by Pacala and Socolow (Science, 305, 968-972, 2004) to break the 7 Gt C year(- 1) into more manageable 1 Gt C year(- 1) reductions that would be achievable with current technology. A total of fifteen possible 'wedges' were identified; however, an integrated municipal solid waste (MSW) management system based on the European Union's waste management hierarchy was not evaluated as a wedge. This analysis demonstrates that if the tonnage of MSW is allocated to recycling, waste to energy and landfilling in descending order in lieu of existing 'business-as-usual' practices with each option using modern technology and best practices, the system would reduce greenhouse gas emissions by more than 1 Gt C year( -1). This integrated waste management system reduces CO(2) by displacing fossil electrical generation and avoiding manufacturing energy consumption and methane emissions from landfills.

  18. Wedge Shock and Nozzle Exhaust Plume Interaction in a Supersonic Jet Flow

    NASA Technical Reports Server (NTRS)

    Castner, Raymond; Zaman, Khairul; Fagan, Amy; Heath, Christopher

    2014-01-01

    Fundamental research for sonic boom reduction is needed to quantify the interaction of shock waves generated from the aircraft wing or tail surfaces with the nozzle exhaust plume. Aft body shock waves that interact with the exhaust plume contribute to the near-field pressure signature of a vehicle. The plume and shock interaction was studied using computational fluid dynamics and compared with experimental data from a coaxial convergent-divergent nozzle flow in an open jet facility. A simple diamond-shaped wedge was used to generate the shock in the outer flow to study its impact on the inner jet flow. Results show that the compression from the wedge deflects the nozzle plume and shocks form on the opposite plume boundary. The sonic boom pressure signature of the nozzle exhaust plume was modified by the presence of the wedge. Both the experimental results and computational predictions show changes in plume deflection.

  19. Redistribution of knee stress using laterally wedged insole intervention: Finite element analysis of knee-ankle-foot complex.

    PubMed

    Liu, Xuan; Zhang, Ming

    2013-01-01

    Laterally wedged insoles are widely applied in the conservative treatment for medial knee osteoarthritis. Experimental studies have been conducted to understand the effectiveness of such an orthotic intervention. However, the information was limited to the joint external loading such as knee adduction moment. The internal stress distribution is difficult to be obtained from in vivo experiment alone. Thus, a three-dimensional finite element model of the human knee-ankle-foot complex, together with orthosis, was developed in this study and used to investigate the redistribution of knee stress using laterally wedged insole intervention. Laterally wedged insoles with wedge angles of 0, 5, and 10° were fabricated for intervention. The subject-specific geometry of the lower extremity with details was characterized in the reconstruction of MR images. Motion analysis data and muscle forces were input to drive the model. The established finite element model was employed to investigate the loading responses of tibiofemoral articulation in three wedge angle conditions during simulated walking stance phase. With either of the 5° or 10° laterally wedged insole, significant decreases in von Mises stress and contact force at the medial femur cartilage region and the medial meniscus were predicted comparing with the 0° insole. The diminished stress and contact force at the medial compartment of the knee joint demonstrate the immediate effect of the laterally wedged insoles. The intervention may contribute to medial knee osteoarthritis rehabilitation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. The effects of wedge roughness on Mach formation

    NASA Astrophysics Data System (ADS)

    Needham, C. E.; Happ, H. J.; Dawson, D. F.

    A modified HULL hydrodynamic model was used to simulate shock reflection on wedges fitted with bumps representing varying degrees of roughness. The protuberances ranged from 0.02-0.2 cm in size. The study was directed at the feasibility of and techniques for defining parametric fits for surface roughness in the HULL code. Of interest was the self-similarity of the flows, so increasingly larger protuberances would simply enhance the resolution of the calculations. The code was designed for compressible, inviscid, nonconducting fluid flows. An equation of state provides closure and a finite difference algorithm is applied to solve governing equations for conservation of mass, momentum and energy. Self-similarity failed as the surface bumps grew larger and protruded further into the flowfield. It is noted that bumps spaced further apart produced greater interference for the passage of the Mach stem than did bumps placed closer together.

  1. A novel and fast method for proton range verification using a step wedge and 2D scintillator.

    PubMed

    Shen, Jiajian; Allred, Bryce C; Robertson, Daniel G; Liu, Wei; Sio, Terence T; Remmes, Nicholas B; Keole, Sameer R; Bues, Martin

    2017-09-01

    To implement and evaluate a novel and fast method for proton range verification by using a planar scintillator and step wedge. A homogenous proton pencil beam plan with 35 energies was designed and delivered to a 2D flat scintillator with a step wedge. The measurement was repeated 15 times (3 different days, 5 times per day). The scintillator image was smoothed, the Bragg peak and distal fall off regions were fitted by an analytical equation, and the proton range was calculated using simple trigonometry. The accuracy of this method was verified by comparing the measured ranges to those obtained using an ionization chamber and a scanning water tank, the gold standard. The reproducibility was evaluated by comparing the ranges over 15 repeated measurements. The sensitivity was evaluated by delivering to same beam to the system with a film inserted under the wedge. The range accuracy of all 35 proton energies measured over 3 days was within 0.2 mm. The reproducibility in 15 repeated measurements for all 35 proton ranges was ±0.045 mm. The sensitivity to range variation is 0.1 mm for the worst case. This efficient procedure permits measurement of 35 proton ranges in less than 3 min. The automated data processing produces results immediately. The setup of this system took less than 5 min. The time saving by this new method is about two orders of magnitude when compared with the time for water tank range measurements. A novel method using a scintillator with a step wedge to measure the proton range was implemented and evaluated. This novel method is fast and sensitive, and the proton range measured by this method was accurate and highly reproducible. © 2017 American Association of Physicists in Medicine.

  2. Thermal regime of an ice-wedge polygon landscape near Barrow, Alaska

    NASA Astrophysics Data System (ADS)

    Daanen, R. P.; Liljedahl, A. K.

    2017-12-01

    Tundra landscapes are changing all over the circumpolar Arctic due to permafrost degradation. Soil cracking and infilling of meltwater repeated over thousands of years form ice wedges, which produce the characteristic surface pattern of ice-wedge polygon tundra. Rapid top-down thawing of massive ice leads to differential ground subsidence and sets in motion a series of short- and long-term hydrological and ecological changes. Subsequent responses in the soil thermal regime drive further permafrost degradation and/or stabilization. Here we explore the soil thermal regime of an ice-wedge polygon terrain near Utqiagvik (formerly Barrow) with the Water balance Simulation Model (WaSiM). WaSiM is a hydro-thermal model developed to simulate the water balance at the watershed scale and was recently refined to represent the hydrological processes unique to cold climates. WaSiM includes modules that represent surface runoff, evapotranspiration, groundwater, and soil moisture, while active layer freezing and thawing is based on a direct coupling of hydrological and thermal processes. A new snow module expands the vadose zone calculations into the snow pack, allowing the model to simulate the snow as a porous medium similar to soil. Together with a snow redistribution algorithm based on local topography, this latest addition to WaSiM makes simulation of the ground thermal regime much more accurate during winter months. Effective representation of ground temperatures during winter is crucial in the simulation of the permafrost thermal regime and allows for refined predictions of future ice-wedge degradation or stabilization.

  3. "Citizen Jane": Rethinking Design Principles for Closing the Gender Gap in Computing.

    ERIC Educational Resources Information Center

    Raphael, Chad

    This paper identifies three rationales in the relevant literature for closing the gender gap in computing: economic, cultural and political. Each rationale implies a different set of indicators of present inequalities, disparate goals for creating equality, and distinct principles for software and web site design that aims to help girls overcome…

  4. Unlocking the Secrets of the Mantle Wedge: New Insights Into Melt Generation Processes in Subduction Zones

    NASA Astrophysics Data System (ADS)

    Grove, T. L.

    2007-05-01

    Recent laboratory studies of the melting and crystallization behavior of mantle peridotite and subduction zone lavas have led to new insights into melting processes in island arc settings. Melting of the mantle wedge in the presence of H2O begins at much lower temperatures than previously thought. The solidus of mantle peridotite at 3 GPa is ~ 800 °C, which is 200 °C below previous estimates. At pressures greater than 2.4 GPa chlorite becomes a stable phase on the solidus and it remains stable until ~ 3.5 GPa. Therefore, melting over this pressure range occurs in the presence of chlorite, which contains ~ 12 wt. % H2O. Chlorite stabilized on the peridotite solidus by slab-derived H2O may be the ultimate source of H2O for subduction zone magmatism. Thus, chlorite could transport large amounts of H2O into the descending mantle wedge to depths where it can participate in melting to generate hydrous arc magmas. Our ability to identify primitive mantle melts at subduction zones has led to the following observations. 1) Primitive mantle melts show evidence of final equilibration at shallow depths near the mantle - crust boundary. 2) They contain variable amounts of dissolved H2O (up to 6 wt. %). 3) They record variable extents of melting (up to > 25 wt. %). To produce melts with such variable characteristics requires more than one melting process and requires consideration of a new type of melting called hydrous flux melting. Flux melting occurs when the H2O - rich melt initially produced on the solidus near the base of the mantle wedge ascends and continuously reacts with overlying hotter, shallower mantle. The mantle melts and magmatic H2O content is constantly diluted as the melt ascends and reacts with shallower, hotter mantle. Anhydrous mantle melts are also found in close temporal and spatial proximity to hydrous flux melts. These melts are extracted at similar depths near the top of the mantle wedge when mantle is advected up and into the wedge corner and melted

  5. Lateral Wedge Insoles as a Conservative Treatment for Pain in Patients With Medial Knee Osteoarthritis

    PubMed Central

    Parkes, Matthew J.; Maricar, Nasimah; Lunt, Mark; LaValley, Michael P.; Jones, Richard K.; Segal, Neil A.; Takahashi-Narita, Kayoko; Felson, David T.

    2015-01-01

    IMPORTANCE There is no consensus regarding the efficacy of lateral wedge insoles as a treatment for pain in medial knee osteoarthritis. OBJECTIVE To evaluate whether lateral wedge insoles reduce pain in patients with medial knee osteoarthritis compared with an appropriate control. DATA SOURCES Databases searched include the Cochrane Central Register of Controlled Trials, EMBASE, AMED, MEDLINE, CINAHL Plus, ScienceDirect, SCOPUS, Web of Science, and BIOSIS from inception to May 2013, with no limits on study date or language. The metaRegister of Controlled Trials and the NHS Evidence website were also searched. STUDY SELECTION Included were randomized trials comparing shoe-based treatments (lateral heel wedge insoles or shoes with variable stiffness soles) aimed at reducing medial knee load, with a neutral or no wedge control condition in patients with painful medial knee osteoarthritis. Studies must have included patient-reported pain as an outcome. DATA EXTRACTION AND SYNTHESIS Trial data were extracted independently by 2 researchers using a standardized form. Risk of bias was assessed using the Cochrane Risk of Bias tool by 2 observers. Eligible studies were pooled using a random-effects approach. MAIN OUTCOME AND MEASURES Change in self-reported knee pain at follow-up. RESULTS Twelve trials met inclusion criteria with a total of 885 participants of whom 502 received lateral wedge treatment. The pooled standardized mean difference (SMD) suggested a favorable association with lateral wedges compared with control (SMD, −0.47; 95% CI, −0.80 to −0.14); however, substantial heterogeneity was present (I2 = 82.7%). This effect size represents an effect of −2.12 points on the 20-point Western Ontario and McMaster Universities Arthritis Index (WOMAC) pain scale. Larger trials with a lower risk of bias suggested a null association. Meta-regression analyses showed that higher effect sizes (unstandardized β, 1.07 [95% CI, 0.28 to 1.87] for trials using a no treatment

  6. [Effectiveness of penile ventral scrotum cohesion place wedge cutting and improved Brisson technique for congenital buried penis].

    PubMed

    Zhang, Huafeng

    2013-09-01

    To investigate the effectiveness of the penile ventral scrotum cohesion place wedge cutting and improved Brisson technique for congenital buried penis. Between March 2010 and June 2012, 68 boys with congenital buried penis were treated by the penile ventral scrotum cohesion place wedge cutting and improved Brisson technique, with a median age of 4 years and 10 months (range, 3 months-13 years). Of 68 cases, 14 were classified as phimosis type, 14 as rope belt type, 20 as moderate type, and 20 as severe type. The body of penis developed well and had no deformity. After operation, complications were observed, and the effectiveness was evaluated by the designed questionnaire. Early postoperative complications occurred in 11 cases, including obvious adhesion of the outside wrapping mouth in 4 cases, scrotal skin bloat in 5 cases, and distal foreskin necrosis in 2 cases; long-term complications occurred in 9 cases, including abdominal incision scar formation in 4 cases, wrapping mouth scar stricture in 3 cases, and short penis in 2 cases. Primary healing of incision was obtained in the other boys. Fifty-four cases were followed up 6-12 months (mean, 8 months). According to the designed questionnaire, satisfaction rate with the overall view in parents was 77.78% (42/54); the clinical improvement rate was 85.19% (46/54); exposure of the penis was satisfactory in parents of 50 cases; and the parents had no psychological burden of penis exposure in 46 cases, which were significantly improved when compared with preoperative ones (P < 0.05). The boys had no psychological burden of penis exposure in 29 cases (53.70%) after operation, showing no significant difference when compared with preoperative one (18 cases, 33.33%) (chi2 = 1.22, P = 0.31). Application of the penile ventral scrotum cohesion place wedge cutting and improved Brisson technique can effectively correct congenital buried penis.

  7. Design of single-winding energy-storage reactors for dc-to-dc converters using air-gapped magnetic-core structures

    NASA Technical Reports Server (NTRS)

    Ohri, A. K.; Wilson, T. G.; Owen, H. A., Jr.

    1977-01-01

    A procedure is presented for designing air-gapped energy-storage reactors for nine different dc-to-dc converters resulting from combinations of three single-winding power stages for voltage stepup, current stepup and voltage stepup/current stepup and three controllers with control laws that impose constant-frequency, constant transistor on-time and constant transistor off-time operation. The analysis, based on the energy-transfer requirement of the reactor, leads to a simple relationship for the required minimum volume of the air gap. Determination of this minimum air gap volume then permits the selection of either an air gap or a cross-sectional core area. Having picked one parameter, the minimum value of the other immediately leads to selection of the physical magnetic structure. Other analytically derived equations are used to obtain values for the required turns, the inductance, and the maximum rms winding current. The design procedure is applicable to a wide range of magnetic material characteristics and physical configurations for the air-gapped magnetic structure.

  8. A Thick, Deformed Sedimentary Wedge in an Erosional Subduction Zone, Southern Costa Rica

    NASA Astrophysics Data System (ADS)

    Silver, E. A.; Kluesner, J. W.; Edwards, J. H.; Vannucchi, P.

    2014-12-01

    A paradigm of erosional subduction zones is that the lower part of the wedge is composed of strong, crystalline basement (Clift and Vannucchi, Rev. Geophys., 42, RG2001, 2004). The CRISP 3D seismic reflection study of the southern part of the Costa Rica subduction zone shows quite the opposite. Here the slope is underlain by a series of fault-cored anticlines, with faults dipping both landward and seaward that root into the plate boundary. Deformation intensity increases with depth, and young, near-surface deformation follows that of the deeper structures but with basin inversions indicating a dynamic evolution (Edwards et al., this meeting). Fold wavelength increases landward, consistent with the folding of a landward-thickening wedge. Offscraping in accretion is minimal because incoming sediments on the lower plate are very thin. Within the wedge, thrust faulting dominates at depth in the wedge, whereas normal faulting dominates close to the surface, possibly reflecting uplift of the deforming anticlines. Normal faults form a mesh of NNW and ENE-trending structures, whereas thrust faults are oriented approximately parallel to the dominant fold orientation, which in turn follows the direction of roughness on the subducting plate. Rapid subduction erosion just prior to 2 Ma is inferred from IODP Expedition 334 (Vannucchi et al., 2013, Geology, 49:995-998). Crystalline basement may have been largely removed from the slope region during this rapid erosional event, and the modern wedge may consist of rapidly redeposited material (Expedition 344 Scientists, 2013) that has been undergoing deformation since its inception, producing a structure quite different from that expected of an eroding subduction zone.

  9. Effect of a pelvic wedge and belt on the medial and lateral hamstring muscles during knee flexion.

    PubMed

    Yoo, Won-Gyu

    2017-01-01

    [Purpose] This study developed a pelvic wedge and belt and investigated their effects on the selective activation of medial and lateral hamstring muscles during knee flexion. [Subjects and Methods] Nine adults were enrolled. The participants performed exercises without and with the pelvic wedge and belt, and the electromyographic activities of the medial and lateral hamstring muscles were recorded. [Results] The activity of the medial hamstring was increased significantly when using the pelvic wedge and belt, while the activity of the lateral hamstring did not differ significantly. [Conclusion] The pelvic wedge and belt provide a self-locked position during knee flexion in the prone position. Prone knee flexion in this position is an effective self-exercise for balanced strengthening of the medial hamstring.

  10. Effect of a pelvic wedge and belt on the medial and lateral hamstring muscles during knee flexion

    PubMed Central

    Yoo, Won-gyu

    2017-01-01

    [Purpose] This study developed a pelvic wedge and belt and investigated their effects on the selective activation of medial and lateral hamstring muscles during knee flexion. [Subjects and Methods] Nine adults were enrolled. The participants performed exercises without and with the pelvic wedge and belt, and the electromyographic activities of the medial and lateral hamstring muscles were recorded. [Results] The activity of the medial hamstring was increased significantly when using the pelvic wedge and belt, while the activity of the lateral hamstring did not differ significantly. [Conclusion] The pelvic wedge and belt provide a self-locked position during knee flexion in the prone position. Prone knee flexion in this position is an effective self-exercise for balanced strengthening of the medial hamstring. PMID:28210048

  11. A multi-scale segmentation approach to filling gaps in Landsat ETM+ SLC-off images

    USGS Publications Warehouse

    Maxwell, S.K.; Schmidt, Gail L.; Storey, James C.

    2007-01-01

    On 31 May 2003, the Landsat Enhanced Thematic Plus (ETM+) Scan Line Corrector (SLC) failed, causing the scanning pattern to exhibit wedge-shaped scan-to-scan gaps. We developed a method that uses coincident spectral data to fill the image gaps. This method uses a multi-scale segment model, derived from a previous Landsat SLC-on image (image acquired prior to the SLC failure), to guide the spectral interpolation across the gaps in SLC-off images (images acquired after the SLC failure). This paper describes the process used to generate the segment model, provides details of the gap-fill algorithm used in deriving the segment-based gap-fill product, and presents the results of the gap-fill process applied to grassland, cropland, and forest landscapes. Our results indicate this product will be useful for a wide variety of applications, including regional-scale studies, general land cover mapping (e.g. forest, urban, and grass), crop-specific mapping and monitoring, and visual assessments. Applications that need to be cautious when using pixels in the gap areas include any applications that require per-pixel accuracy, such as urban characterization or impervious surface mapping, applications that use texture to characterize landscape features, and applications that require accurate measurements of small or narrow landscape features such as roads, farmsteads, and riparian areas.

  12. Sandbox Simulations of the Evolution of a Subduction Wedge following Subduction Initiation

    NASA Astrophysics Data System (ADS)

    Brandon, M. T.; Ma, K. F.; DeWolf, W.

    2012-12-01

    Subduction wedges at accreting subduction zones are bounded by a landward dipping pro-shear zone (= subduction thrust) and a seaward-dipping retro-shear zone in the overriding plate. For the Cascadia subduction zone, the surface trace of the retro-shear zone corresponds to the east side of the Coast Ranges of Oregon and Washington and the Insular Mountains of Vancouver Island. This coastal high or forearc high shows clear evidence of long-term uplift and erosion along its entire length, indicating that it is an active part of the Cascadia subduction wedge. The question addressed here is what controls the location of the retro-shear zone? In the popular double-sided wedge model of Willet et al (Geology 1993), the retro-shear zone remains pinned to the S point, which is interpreted to represent where the upper-plate Moho intersects the subduction zone. For this interpretation, the relatively strong mantle is considered to operate as a flat backstop. That model, however. is somewhat artificial in that the two plates collide in a symmetric fashion with equal crustal thicknesses on both sides. Using sandbox experiments, we explore a more realistic configuration where the upper and lower plate are separated by a gentle dipping (10 degree) pro-shear zone, to simulate the initial asymmetric geometry of the subduction thrust immediately after initiation of subduction. The entire lithosphere must fail along some plane for subduction to begin and this failure plane must dip in the direction of subduction. Thus, the initial geometry of the overriding plate is better approximated as a tapered wedge than as a layer of uniform thickness, as represented in the Willett et al models. We demonstrate this model using time-lapse movies of a sand wedge above a mylar subducting plate. We use particle image velocimetry (PIV) to show the evolution of strain and structure within the overriding plate. Material accreted to the tapered end of the overriding plate drives deformation and causes

  13. Three-dimensional semi-analytical solution to groundwater flow in confined and unconfined wedge-shaped aquifers

    NASA Astrophysics Data System (ADS)

    Sedghi, Mohammad Mahdi; Samani, Nozar; Sleep, Brent

    2009-06-01

    The Laplace domain solutions have been obtained for three-dimensional groundwater flow to a well in confined and unconfined wedge-shaped aquifers. The solutions take into account partial penetration effects, instantaneous drainage or delayed yield, vertical anisotropy and the water table boundary condition. As a basis, the Laplace domain solutions for drawdown created by a point source in uniform, anisotropic confined and unconfined wedge-shaped aquifers are first derived. Then, by the principle of superposition the point source solutions are extended to the cases of partially and fully penetrating wells. Unlike the previous solution for the confined aquifer that contains improper integrals arising from the Hankel transform [Yeh HD, Chang YC. New analytical solutions for groundwater flow in wedge-shaped aquifers with various topographic boundary conditions. Adv Water Resour 2006;26:471-80], numerical evaluation of our solution is relatively easy using well known numerical Laplace inversion methods. The effects of wedge angle, pumping well location and observation point location on drawdown and the effects of partial penetration, screen location and delay index on the wedge boundary hydraulic gradient in unconfined aquifers have also been investigated. The results are presented in the form of dimensionless drawdown-time and boundary gradient-time type curves. The curves are useful for parameter identification, calculation of stream depletion rates and the assessment of water budgets in river basins.

  14. The chronology of Late Pleistocene thermal contraction cracking derived from sand wedge OSL dating in central and southern France

    NASA Astrophysics Data System (ADS)

    Andrieux, Eric; Bateman, Mark D.; Bertran, Pascal

    2018-03-01

    Much of France remained unglaciated during the Late Quaternary and was subjected to repeated phases of periglacial activity. Numerous periglacial features have been reported but disentangling the environmental and climatic conditions they formed under, the timing and extent of permafrost and the role of seasonal frost has remained elusive. The primary sandy infillings of relict sand-wedges and composite-wedge pseudomorphs record periglacial activity. As they contain well-bleached quartz-rich aeolian material they are suitable for optically stimulated luminescence dating (OSL). This study aims to reconstruct when wedge activity took place in two regions of France; Northern Aquitaine and in the Loire valley. Results from single-grain OSL measurements identify multiple phases of activity within sand wedges which suggest that wedge activity in France occurred at least 11 times over the last 100 ka. The most widespread events of thermal contraction cracking occurred between ca. 30 and 24 ka (Last Permafrost Maximum) which are concomitant with periods of high sand availability (MIS 2). Although most phases of sand-wedge growth correlate well with known Pleistocene cold periods, the identification of wedge activity during late MIS 5 and the Younger Dryas strongly suggests that these features do not only indicate permafrost but also deep seasonal ground freezing in the context of low winter insolation. These data also suggest that the overall young ages yielded by North-European sand-wedges likely result from poor record of periglacial periods concomitant with low sand availability and/or age averaging inherent with standard luminescence methods.

  15. Dose conformation to the spine during palliative treatments using dynamic wedges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ormsby, Matthew A., E-mail: Matthew.Ormsby@usoncology.com; Herndon, R. Craig; Kaczor, Joseph G.

    2013-07-01

    Radiation therapy is commonly used to alleviate pain associated with metastatic disease of the spine. Often, isodose lines are manipulated using dynamic or physical wedges to encompass the section of spine needing treatment while minimizing dose to normal tissue. We will compare 2 methods used to treat the entire thoracic spine. The first method treats the thoracic spine with a single, nonwedged posterior-anterior (PA) field. Dose is prescribed to include the entire spine. Isodose lines tightly conform to the top and bottom vertebrae, but vertebrae between these 2 received more than enough coverage. The second method uses a combination ofmore » wedges to create an isodose line that mimics the curvature of the thoracic spine. This “C”-shaped curvature is created by overlapping 2 fields with opposing dynamic wedges. Machine constraints limit the treatment length and therefore 2 isocenters are used. Each of the 2 PA fields contributes a portion of the total daily dose. This technique creates a “C”-shaped isodose line that tightly conforms to the thoracic spine, minimizing normal tissue dose. Spinal cord maximum dose is reduced, as well as mean dose to the liver, esophagus, and heart.« less

  16. Gastric Volvulus with Segmental Necrosis Treated with Wedge Resection and Gastrogastrostomy.

    PubMed

    Merz, Alexa Elizabeth; Preston, Jennifer Francis

    2017-12-01

    Ischemic necrosis is a feared complication of acute gastric volvulus, occurring in 11% of patients presenting with the condition and responsible for mortality in 30%. In such cases, there are few well-validated options for surgical reconstruction. We present the case of a 77-year-old woman with intraabdominal mesenteroaxial gastric volvulus with segmental ischemic gastric necrosis who underwent wedge gastrectomy and hand-sewn gastrogastrostomy. She did well postoperatively and experienced no significant gastrointestinal complications. Gastric wedge resection with gastrogastrostomy presents a novel surgical intervention for a rare and highly morbid entity. We hope to add it to the repertoire of surgeons facing acute gastric volvulus complicated by segmental necrosis.

  17. Local transmural action potential gradients are absent in the isolated, intact dog heart but present in the corresponding coronary-perfused wedge.

    PubMed

    Boukens, Bastiaan J; Meijborg, Veronique M F; Belterman, Charly N; Opthof, Tobias; Janse, Michiel J; Schuessler, Richard B; Coronel, Ruben; Efimov, Igor R

    2017-05-01

    The left ventricular (LV) coronary-perfused canine wedge preparation is a model commonly used for studying cardiac repolarization. In wedge studies, transmembrane potentials typically are recorded; whereas, extracellular electrical recordings are commonly used in intact hearts. We compared electrically measured activation recovery interval (ARI) patterns in the intact heart with those recorded at the same location in the LV wedge preparation. We also compared electrically recorded and optically obtained ARIs in the LV wedge preparation. Five Langendorff-perfused canine hearts were paced from the right atrium. Local activation and repolarization times were measured with eight transmural needle electrodes. Subsequently, left ventricular coronary-perfused wedge preparations were prepared from these hearts while the electrodes remained in place. Three electrodes remained at identical positions as in the intact heart. Both electrograms and optical action potentials were recorded (pacing cycle length 400-4000 msec) and activation and repolarization patterns were analyzed. ARIs found in the subepicardium were shorter than in the subendocardium in the LV wedge preparation but not in the intact heart. The transmural ARI gradient recorded at the cut surface of the wedge was not different from that recorded internally. ARIs recorded internally and at the cut surface in the LV wedge preparation, both correlated with optically recorded action potentials. ARI and RT gradients in the LV wedge preparation differed from those in the intact canine heart, implying that those observations in human LV wedge preparations also should be extrapolated to the intact human heart with caution. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  18. Linking Serpentinite Geochemistry with Possible Alteration and Evolution of Supra-Subduction Wedge Mantle

    NASA Astrophysics Data System (ADS)

    Scambelluri, M.; Cannaò, E.; Agostini, S.; Gilio, M.

    2016-12-01

    Serpentinites are able to transport and release volatiles and fluid-mobile elements (FME) found in arc magmas. Constraining the trace element compositions of these rocks and of fluids released by de-serpentinization improves our knowledge of mass transfer from subduction zones to volcanic arcs, and of the role of slab and wedge mantle in this global process. Studies of high-pressure ultramafic rocks exhumed from plate interface settings reveal the fluid/rock interactions atop the slab and the processes that can affect the mantle wedge. Alpine eclogite-facies antigorite serpentinite (Voltri Massif) and fully de-serpentinized meta-peridotite (Cima di Gagnone) are enriched in sediment-derived As, Sb, U, Pb before peak dehydration. Their Sr, Pb and B isotopic compositions are reset during prograde (forearc) interaction with slab fluids. The eclogitic garnet and olivine from the Cima di Gagnone metaperidotite trap primary inclusions of the fluid released during breakdown of antigorite and chlorite. The inclusions display FME enrichments (high Cl, S; variable Cs, Rb, Ba, B, Pb, As, Sb) indicating element release from rocks to fluids during dehydration under subarc conditions. Our studies show that serpentinized mantle rocks from subduction zones sequester FME from slab fluids and convey these components and radiogenic isotopes into the mantle wedge upon dehydration. The geochemical processes revealed by such plate-interface rocks can apply to the supra-subduction mantle. Shallow element release from slabs to mantle wedge, downdrag of this altered mantle and its subsequent (subarc) dehydration transfers crust-derived FMEs to the arc magma sources without the need of concomitant subarc dehydration/melting of metasedimentary slab components. The slab signature detected in arc lavas can thus result from geochemical mixing of sediment, oceanic crust and ultramafic reservoirs into altered wedge-mantle rocks, rather than being attributed to multiple fluids.

  19. [Postoperative complications of labia minora reduction. Comparative study between wedge and edge resection].

    PubMed

    Ouar, N; Guillier, D; Moris, V; Revol, M; Francois, C; Cristofari, S

    2017-06-01

    Labia minora reduction interventions rise in Europe and in North America. Several techniques are described. The objective of this study was to compare postoperative complications of the two most practiced interventions: wedge resection and edge resection. Primary labia minora reductions realized in our unit between October 2009 and July 2016 have been retrospectively identified. Two techniques were used by two surgeons: edge resection technique and wedge resection technique. The main evaluation criterion was the occurrence and the quantity of wound dehiscence: superior to 50% (total or subtotal) and inferior to 50% (partial). Patients were systematically examined at 1 week, 1 month and 6 months postoperatively. Data analysis between both groups was made with an exact Fisher test. Mean follow-up was 5.3 months after intervention. Sixty-four patients have been included, 42 wedge resections (group C) and 22 edge resections (group L). Global complication rate at 1 month was 13% (n=8). Among wedge resections 14% (n=6) developed complication and 2% (n=9) among edge resection. Seven surgical revisions were necessary: 5 for wound dehiscence (4 in the group C and 1 in the group L) and 2 for hematoma, one in each group. Three (5%) partial wound dehiscence (inferior to 50%) have been identified and let in secondary intention healing: 2 (19%) in the group C and 1 (27%) in the group L. Complication rates between both techniques were not significantly different. Postoperative wound dehiscence is the main labia minora reduction complication. Our global complication rate, 13%, matches with the current literature. A tendency can be shown where wedge resection is more likely to develop wound dehiscence than edge resection. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  20. Proximal Opening Wedge Osteotomy Provides Satisfactory Midterm Results With a Low Complication Rate.

    PubMed

    Oravakangas, Rami; Leppilahti, Juhana; Laine, Vesa; Niinimäki, Tuukka

    2016-01-01

    Hallux valgus is one of the most common foot deformities. Proximal opening wedge osteotomy is used for the treatment of moderate and severe hallux valgus with metatarsus primus varus. However, hypermobility of the first tarsometatarsal joint can compromise the results of the operation, and a paucity of midterm results are available regarding proximal open wedge osteotomy surgery. The aim of the present study was to assess the midterm results of proximal open wedge osteotomy in a consecutive series of patients with severe hallux valgus. Thirty-one consecutive adult patients (35 feet) with severe hallux valgus underwent proximal open wedge osteotomy. Twenty patients (35.5%) and 23 feet (34.3%) were available for the final follow-up examination. The mean follow-up duration was 5.8 (range 4.6 to 7.0) years. The radiologic measurements and American Orthopaedic Foot and Ankle Society hallux-metatarsophalangeal-interphalangeal scores were recorded pre- and postoperatively, and subjective questionnaires were completed and foot scan analyses performed at the end of the follow-up period. The mean hallux valgus angle decreased from 38° to 23°, and the mean intermetatarsal angle correction decreased from 17° to 10°. The mean improvement in the American Orthopaedic Foot and Ankle Society hallux metatarsophalangeal-interphalangeal score increased from 52 to 84. Two feet (5.7%) required repeat surgery because of recurrent hallux valgus. No nonunions were identified. Proximal open wedge osteotomy provided satisfactory midterm results in the treatment of severe hallux valgus, with a low complication rate. The potential instability of the first tarsometatarsal joint does not seem to jeopardize the midterm results of the operation. Copyright © 2016 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  1. Nature of the Coastal Range Wedge Along the Rupture Area of the 2015, Illapel Chile Earthquake Mw 8.4

    NASA Astrophysics Data System (ADS)

    Farías, M.; Comte, D.; Roecker, S. W.; Brandon, M. T.

    2017-12-01

    Wedge theory is usually applied to the pro-side of active subduction margins, where fold-and-thrust belts related to frontal accretion develop, but rarely to the entire wedge, where the retro-side is also relevant. We present a new 3D body wave tomographic image that combines data from the Chile-Illapel Aftershock Experiment (CHILLAX) with previous temporary seismic networks, with the aim of illuminating the nature of the wedge of the continental margin above the seismogenic part of the subducting slab. The downdip extent of the coupled part, called the S-point in the wedge theory, corresponds to the place where upper plate completely decouples from the subducting slab. This point is characterized by a Vp/Vs contrast at about 60 km depth that extends upward-and-eastward in a west-dipping ramp-like geometry. This ramp emerges about 180 km from the trench, near the topographic break related to the front of the Andean retro-side. The Coastal wedge domain is characterized by a monotonous east-dipping homocline with the older rocks of this region along the coast. The offshore region, corresponding to the pro-side, exhibits normal faulting and a very small frontal accretionary complex. Normal faulting in this region is related to rapid uplift of marine terraces since ca. 2 Ma, suggesting strong basal accretion and thus high friction on the thrust. In fact, the epicentral region of the 2015 Illapel Earthquake coincides with the highest elevations along the coast, i.e., the region with the highest slope of the margin. In this region, the lack of a continental forearc basin suggests an overlapping between the Andean and Coastal wedges. The western edge of the Andean wedge is also part of the homocline about 10 km east of the topographic boundary between both wedges, suggesting that the Coastal wedge has been deforming a part of the retro-side of the Andean wedge during the Miocene. The east-ward tilting of the retro-side was acquired mainly before the late Miocene, since at

  2. How Wedge You Teach the Unit-Angle Concept?

    ERIC Educational Resources Information Center

    Millsaps, Gayle M.

    2012-01-01

    The concepts of angle and angle measure have been acknowledged as difficult for elementary school students to grasp (Strutchens, Martin, and Kenney 2003). The Wedge activity (Browning and Garza-Kling 2009; Van de Walle 2004; Wilson 1990) can provide an opportunity for students to examine their understanding of angle measurement and to rethink what…

  3. An Experimental Investigation of Transonic Flow Past Two-Dimensional Wedge and Circular-Arc Sections Using A Mach-Zehnder Interferometer

    NASA Technical Reports Server (NTRS)

    Bryson, Arthur Earl, Jr

    1952-01-01

    Report presents the results of interferometer measurements of the flow field near two-dimensional wedge and circular-arc sections of zero angle of attack at high-subsonic and low-supersonic velocities. Both subsonic flow with local supersonic zone and supersonic flow with detached shock wave have been investigated. Pressure distributions and drag coefficients as a function of Mach number have been obtained. The wedge data are compared with the theoretical work on flow past wedge sections of Guderley and Yoshihara, Vincenti and Wagner, and Cole. Pressure distributions and drag coefficients for the wedge and circular-arc sections are presented throughout the entire transonic range of velocities.

  4. Gap Resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Labutti, Kurt; Foster, Brian; Lapidus, Alla

    Gap Resolution is a software package that was developed to improve Newbler genome assemblies by automating the closure of sequence gaps caused by repetitive regions in the DNA. This is done by performing the follow steps:1) Identify and distribute the data for each gap in sub-projects. 2) Assemble the data associated with each sub-project using a secondary assembler, such as Newbler or PGA. 3) Determine if any gaps are closed after reassembly, and either design fakes (consensus of closed gap) for those that closed or lab experiments for those that require additional data. The software requires as input a genomemore » assembly produce by the Newbler assembler provided by Roche and 454 data containing paired-end reads.« less

  5. Gage Measures Recessed Gaps

    NASA Technical Reports Server (NTRS)

    Zepeda, J. L.

    1983-01-01

    New tool measures separation between recessed parallel surfaces. Tiles have overhanging edges, tool designed to slip into gap from end so it extends through 0.040-inch crack. Measure gaps between 0.200 and 0.400 inch so gap fillers of proper thickness can be selected. Useful in numerous industrial situation involving gap measurements in inaccessable places.

  6. Treatment of Insertional Achilles Pathology With Dorsal Wedge Calcaneal Osteotomy in Athletes.

    PubMed

    Georgiannos, Dimitrios; Lampridis, Vasilis; Vasiliadis, Angelos; Bisbinas, Ilias

    2017-04-01

    Insertional Achilles tendinopathy and retrocalcaneal bursitis is difficult to treat, and several operative techniques have been used after failure of conservative management. Dorsal wedge calcaneal osteotomy has been described for the treatment of insertional Achilles pathology. It was hypothesized that dorsal wedge calcaneal osteotomy would be an effective and safe method for the treatment of athletes with insertional Achilles pathology unrelieved by nonoperative measures. Fifty-two athletes (64 feet) who had painful Achilles tendon syndrome unrelieved by 6 months of nonoperative measures were treated surgically. Dorsally based wedge calcaneal osteotomy was performed through a lateral approach, and 2 staples were used for fixation. Patients were scored pre- and postoperatively with the American Orthopaedic Foot & Ankle Society (AOFAS) ankle-hindfoot and Victorian Institute of Sports of Australia-Achilles (VISA-A) scores. At a minimum follow-up of 3 years, the patients' AOFAS and VISA-A scores improved from 59.5 ± 15.0 and 65.9 ± 11.1 preoperatively to 95.7 ± 6.2 and 90.2 ± 8.4 postoperatively, respectively. Clinical results were considered excellent in 38 patients, good in 12 patients, and fair in 2 patients. Return to previous sports activity time was 21 (SD, 8.0) weeks. One patient necessitated a revision operation. Operative treatment of insertional Achilles pathology in athletes with dorsal closing wedge calcaneal osteotomy was a safe and effective method that allowed for a quicker return to previous level of sports activities compared with other techniques. Level IV, retrospective case series.

  7. Dehydration of chlorite explains anomalously high electrical conductivity in the mantle wedges.

    PubMed

    Manthilake, Geeth; Bolfan-Casanova, Nathalie; Novella, Davide; Mookherjee, Mainak; Andrault, Denis

    2016-05-01

    Mantle wedge regions in subduction zone settings show anomalously high electrical conductivity (~1 S/m) that has often been attributed to the presence of aqueous fluids released by slab dehydration. Laboratory-based measurements of the electrical conductivity of hydrous phases and aqueous fluids are significantly lower and cannot readily explain the geophysically observed anomalously high electrical conductivity. The released aqueous fluid also rehydrates the mantle wedge and stabilizes a suite of hydrous phases, including serpentine and chlorite. In this present study, we have measured the electrical conductivity of a natural chlorite at pressures and temperatures relevant for the subduction zone setting. In our experiment, we observe two distinct conductivity enhancements when chlorite is heated to temperatures beyond its thermodynamic stability field. The initial increase in electrical conductivity to ~3 × 10(-3) S/m can be attributed to chlorite dehydration and the release of aqueous fluids. This is followed by a unique, subsequent enhancement of electrical conductivity of up to 7 × 10(-1) S/m. This is related to the growth of an interconnected network of a highly conductive and chemically impure magnetite mineral phase. Thus, the dehydration of chlorite and associated processes are likely to be crucial in explaining the anomalously high electrical conductivity observed in mantle wedges. Chlorite dehydration in the mantle wedge provides an additional source of aqueous fluid above the slab and could also be responsible for the fixed depth (120 ± 40 km) of melting at the top of the subducting slab beneath the subduction-related volcanic arc front.

  8. Dehydration of chlorite explains anomalously high electrical conductivity in the mantle wedges

    PubMed Central

    Manthilake, Geeth; Bolfan-Casanova, Nathalie; Novella, Davide; Mookherjee, Mainak; Andrault, Denis

    2016-01-01

    Mantle wedge regions in subduction zone settings show anomalously high electrical conductivity (~1 S/m) that has often been attributed to the presence of aqueous fluids released by slab dehydration. Laboratory-based measurements of the electrical conductivity of hydrous phases and aqueous fluids are significantly lower and cannot readily explain the geophysically observed anomalously high electrical conductivity. The released aqueous fluid also rehydrates the mantle wedge and stabilizes a suite of hydrous phases, including serpentine and chlorite. In this present study, we have measured the electrical conductivity of a natural chlorite at pressures and temperatures relevant for the subduction zone setting. In our experiment, we observe two distinct conductivity enhancements when chlorite is heated to temperatures beyond its thermodynamic stability field. The initial increase in electrical conductivity to ~3 × 10−3 S/m can be attributed to chlorite dehydration and the release of aqueous fluids. This is followed by a unique, subsequent enhancement of electrical conductivity of up to 7 × 10−1 S/m. This is related to the growth of an interconnected network of a highly conductive and chemically impure magnetite mineral phase. Thus, the dehydration of chlorite and associated processes are likely to be crucial in explaining the anomalously high electrical conductivity observed in mantle wedges. Chlorite dehydration in the mantle wedge provides an additional source of aqueous fluid above the slab and could also be responsible for the fixed depth (120 ± 40 km) of melting at the top of the subducting slab beneath the subduction-related volcanic arc front. PMID:27386526

  9. Epoch of reionization window. II. Statistical methods for foreground wedge reduction

    NASA Astrophysics Data System (ADS)

    Liu, Adrian; Parsons, Aaron R.; Trott, Cathryn M.

    2014-07-01

    For there to be a successful measurement of the 21 cm epoch of reionization (EoR) power spectrum, it is crucial that strong foreground contaminants be robustly suppressed. These foregrounds come from a variety of sources (such as Galactic synchrotron emission and extragalactic point sources), but almost all share the property of being spectrally smooth and, when viewed through the chromatic response of an interferometer, occupy a signature "wedge" region in cylindrical k⊥k∥ Fourier space. The complement of the foreground wedge is termed the "EoR window" and is expected to be mostly foreground-free, allowing clean measurements of the power spectrum. This paper is a sequel to a previous paper that established a rigorous mathematical framework for describing the foreground wedge and the EoR window. Here, we use our framework to explore statistical methods by which the EoR window can be enlarged, thereby increasing the sensitivity of a power spectrum measurement. We adapt the Feldman-Kaiser-Peacock approximation (commonly used in galaxy surveys) for 21 cm cosmology and also compare the optimal quadratic estimator to simpler estimators that ignore covariances between different Fourier modes. The optimal quadratic estimator is found to suppress foregrounds by an extra factor of ˜105 in power at the peripheries of the EoR window, boosting the detection of the cosmological signal from 12σ to 50σ at the midpoint of reionization in our fiducial models. If numerical issues can be finessed, decorrelation techniques allow the EoR window to be further enlarged, enabling measurements to be made deep within the foreground wedge. These techniques do not assume that foreground is Gaussian distributed, and we additionally prove that a final round of foreground subtraction can be performed after decorrelation in a way that is guaranteed to have no cosmological signal loss.

  10. Perturbation solutions for flow through symmetrical hoppers with inserts and asymmetrical wedge hoppers

    NASA Astrophysics Data System (ADS)

    Cox, G. M.; Mccue, S. W.; Thamwattana, N.; Hill, J. M.

    Under certain circumstances, an industrial hopper which operates under the "funnel-flow" regime can be converted to the "mass-flow" regime with the addition of a flow-corrective insert. This paper is concerned with calculating granular flow patterns near the outlet of hoppers that incorporate a particular type of insert, the cone-in-cone insert. The flow is considered to be quasi-static, and governed by the Coulomb-Mohr yield condition together with the non-dilatant double-shearing theory. In two-dimensions, the hoppers are wedge-shaped, and as such the formulation for the wedge-in-wedge hopper also includes the case of asymmetrical hoppers. A perturbation approach, valid for high angles of internal friction, is used for both two-dimensional and axially symmetric flows, with analytic results possible for both leading order and correction terms. This perturbation scheme is compared with numerical solutions to the governing equations, and is shown to work very well for angles of internal friction in excess of 45°.

  11. AMS Blanket and TTCS Wedge Install during EVA 32

    NASA Image and Video Library

    2015-10-28

    Close-up view of the Alpha Magnetic Spectrometer-02 (AMS-02), in the area where the Tracker Thermal Control System (TTCS) wedge will be installed. Image was taken by Extravehicular Crewmember 2 (EV2) during Extravehicular Activity 32 (EVA 32) and released on social media.

  12. Complex Anisotropic Structure of the Mantle Wedge Beneath Kamchatka Volcanoes

    NASA Astrophysics Data System (ADS)

    Levin, V.; Park, J.; Gordeev, E.; Droznin, D.

    2002-12-01

    A wedge of mantle material above the subducting lithospheric plate at a convergent margin is among the most dynamic environments of the Earth's interior. Deformation and transport of solid and volatile phases within this region control the fundamental process of elemental exchange between the surficial layers and the interior of the planet. A helpful property in the study of material deformation and transport within the upper mantle is seismic anisotropy, which may reflect both microscopic effects of preferentialy aligned crystals of olivine and orthopyroxene and macroscopic effects of systematic cracks, melt lenses, layering etc. Through the mapping of anisotropic properties within the mantle wedge we can establish patterns of deformation. Volatile content affects olivine alignment, so regions of anomalous volatile content may be evident. Indicators of seismic anisotropy commonly employed in upper mantle studies include shear wave birefringence and mode-conversion between compressional and shear body waves. When combined together, these techniques offer complementary constraints on the location and intensity of anisotropic properties. The eastern coast of southern Kamchatka overlies a vigorous convergent margin where the Pacific plate descends at a rate of almost 80 mm/yr towards the northwest. We extracted seismic anisotropy indicators from two data sets sensitive to the anisotropic properties of the uppermost mantle. Firstly, we evaluated teleseismic receiver functions for a number of sites, and found ample evidence for anisotropicaly-influenced P-to-S mode conversion. Secondly, we measured splitting in S waves of earthquakes with sources within the downgoing slab. The first set of observations provides constraints on the depth ranges where strong changes in anisotropic properties take place. The local splitting data provides constraints on the cumulative strength of anisotropic properties along specific pathways through the mantle wedge and possibly parts of

  13. FBX aqueous chemical dosimeter for measurement of virtual wedge profiles.

    PubMed

    Semwal, Manoj K; Bansal, Anil K; Thakur, Pradeep K; Vidyasagar, Pandit B

    2008-10-24

    We investigated the ferrous sulfate-benzoic acid-xylenol orange (FBX) aqueous chemical dosimeter for measurement of virtual (dynamic) wedge profiles on a linear accelerator. The layout for irradiation of the FBX-filled tubes mimicked a conventional linear detector array geometry. A comparison of the resulting measurements with film-measured profiles showed that, in the main beam region, the difference between the FBX system and the film system was within +/-2% and that, in the penumbra region, the difference varied from +/-1 mm to +/-2.5 mm in terms of positional equivalence, depending on the size of the dosimeter tubes. We thus believe that the energy-independent FBX dosimetry system can measure virtual wedge profiles with reasonable accuracy at reasonable cost. However, efficiency improvement is required before this dosimetry system can be accepted into routine practice.

  14. Crossflow Instability on a Wedge-Cone at Mach 3.5

    NASA Technical Reports Server (NTRS)

    Beeler, George B.; Wilkinson, Stephen P.; Balakumar, P.; McDaniel, Keith S.

    2012-01-01

    As a follow-on activity to the HyBoLT flight experiment, a six degree half angle wedge-cone model at zero angle of attack has been employed to experimentally and computationally study the boundary layer crossflow instability at Mach 3.5 under low disturbance freestream conditions. Computed meanflow and linear stability analysis results are presented along with corresponding experimental Pitot probe data. Using a model-mounted probe survey apparatus, data acquired to date show a well defined stationary crossflow vortex pattern on the flat wedge surface. This effort paves the way for additional detailed, calibrated flow field measurements of the crossflow instability, both stationary and traveling modes, and transition-to-turbulence under quiet flow conditions as a means of validating existing stability theory and providing a foundation for dynamic flight instrumentation development.

  15. Systematic review finds major deficiencies in sample size methodology and reporting for stepped-wedge cluster randomised trials

    PubMed Central

    Martin, James; Taljaard, Monica; Girling, Alan; Hemming, Karla

    2016-01-01

    Background Stepped-wedge cluster randomised trials (SW-CRT) are increasingly being used in health policy and services research, but unless they are conducted and reported to the highest methodological standards, they are unlikely to be useful to decision-makers. Sample size calculations for these designs require allowance for clustering, time effects and repeated measures. Methods We carried out a methodological review of SW-CRTs up to October 2014. We assessed adherence to reporting each of the 9 sample size calculation items recommended in the 2012 extension of the CONSORT statement to cluster trials. Results We identified 32 completed trials and 28 independent protocols published between 1987 and 2014. Of these, 45 (75%) reported a sample size calculation, with a median of 5.0 (IQR 2.5–6.0) of the 9 CONSORT items reported. Of those that reported a sample size calculation, the majority, 33 (73%), allowed for clustering, but just 15 (33%) allowed for time effects. There was a small increase in the proportions reporting a sample size calculation (from 64% before to 84% after publication of the CONSORT extension, p=0.07). The type of design (cohort or cross-sectional) was not reported clearly in the majority of studies, but cohort designs seemed to be most prevalent. Sample size calculations in cohort designs were particularly poor with only 3 out of 24 (13%) of these studies allowing for repeated measures. Discussion The quality of reporting of sample size items in stepped-wedge trials is suboptimal. There is an urgent need for dissemination of the appropriate guidelines for reporting and methodological development to match the proliferation of the use of this design in practice. Time effects and repeated measures should be considered in all SW-CRT power calculations, and there should be clarity in reporting trials as cohort or cross-sectional designs. PMID:26846897

  16. Reconstruction of Bulk Operators within the Entanglement Wedge in Gauge-Gravity Duality

    NASA Astrophysics Data System (ADS)

    Dong, Xi; Harlow, Daniel; Wall, Aron C.

    2016-07-01

    In this Letter we prove a simple theorem in quantum information theory, which implies that bulk operators in the anti-de Sitter/conformal field theory (AdS/CFT) correspondence can be reconstructed as CFT operators in a spatial subregion A , provided that they lie in its entanglement wedge. This is an improvement on existing reconstruction methods, which have at most succeeded in the smaller causal wedge. The proof is a combination of the recent work of Jafferis, Lewkowycz, Maldacena, and Suh on the quantum relative entropy of a CFT subregion with earlier ideas interpreting the correspondence as a quantum error correcting code.

  17. Reconstruction of Bulk Operators within the Entanglement Wedge in Gauge-Gravity Duality.

    PubMed

    Dong, Xi; Harlow, Daniel; Wall, Aron C

    2016-07-08

    In this Letter we prove a simple theorem in quantum information theory, which implies that bulk operators in the anti-de Sitter/conformal field theory (AdS/CFT) correspondence can be reconstructed as CFT operators in a spatial subregion A, provided that they lie in its entanglement wedge. This is an improvement on existing reconstruction methods, which have at most succeeded in the smaller causal wedge. The proof is a combination of the recent work of Jafferis, Lewkowycz, Maldacena, and Suh on the quantum relative entropy of a CFT subregion with earlier ideas interpreting the correspondence as a quantum error correcting code.

  18. Monoplanar versus biplanar medial open-wedge proximal tibial osteotomy for varus gonarthrosis: a comparison of clinical and radiological outcomes.

    PubMed

    Elmalı, Nurzat; Esenkaya, Irfan; Can, Murat; Karakaplan, Mustafa

    2013-12-01

    We compared clinical and radiological results of two proximal tibial osteotomy (PTO) techniques: monoplanar medial open-wedge osteotomy and biplanar retrotubercle medial open-wedge osteotomy, stabilised by a wedged plate. We evaluated 88 knees in 78 patients. Monoplanar medial open-wedge PTO was performed on 56 knees in 50 patients with a mean age of 55 ± 9 years. Biplanar retrotubercle medial open-wedge PTO was performed on 32 knees in 28 patients with a mean age of 57 ± 7 years. Mean follow-up periods were 40.6 ± 7 months for the monoplanar PTO group and 38 ± 5 months for the biplanar retrotubercle PTO group. Clinical outcome was evaluated using the hospital for special surgery scoring system, and radiological outcome was evaluated by the measurements of femorotibial angle (FTA), patellar height and tibial slope changes. In both groups, post-operative HSS scores increased significantly. No significant difference was found between groups in FTA alteration, but the FTA decreased significantly in both groups. Patellar index ratios decreased significantly in the monoplanar PTO group (Insall-Salvati Index by 0.07, Blackburne-Peel Index by 0.07), but not in the biplanar retrotubercle PTO group. Tibial slopes were increased significantly in the monoplanar PTO group, but not in the retrotubercle PTO group. Biplanar retrotubercle medial open-wedge osteotomy and monoplanar medial open-wedge osteotomy are both clinically effective for the treatment for varus gonarthrosis. Retrotubercle osteotomy also prevents patella infera and tibial slope changes radiologically.

  19. Design, conditioning, and performance of a high voltage, high brightness dc photoelectron gun with variable gap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maxson, Jared; Bazarov, Ivan; Dunham, Bruce

    2014-09-15

    A new high voltage photoemission gun has been constructed at Cornell University which features a segmented insulator and a movable anode, allowing the cathode-anode gap to be adjusted. In this work, we describe the gun's overall mechanical and high voltage design, the surface preparation of components, as well as the clean construction methods. We present high voltage conditioning data using a 50 mm cathode-anode gap, in which the conditioning voltage exceeds 500 kV, as well as at smaller gaps. Finally, we present simulated emittance results obtained from a genetic optimization scheme using voltage values based on the conditioning data. Thesemore » results indicate that for charges up to 100 pC, a 30 mm gap at 400 kV has equal or smaller 100% emittance than a 50 mm gap at 450 kV, and also a smaller core emittance, when placed as the source for the Cornell energy recovery linac photoinjector with bunch length constrained to be <3 ps rms. For 100 pC up to 0.5 nC charges, the 50 mm gap has larger core emittance than the 30 mm gap, but conversely smaller 100% emittance.« less

  20. Effects of a free school breakfast programme on school attendance, achievement, psychosocial function, and nutrition: a stepped wedge cluster randomised trial

    PubMed Central

    2010-01-01

    Background Approximately 55,000 children in New Zealand do not eat breakfast on any given day. Regular breakfast skipping has been associated with poor diets, higher body mass index, and adverse effects on children's behaviour and academic performance. Research suggests that regular breakfast consumption can improve academic performance, nutrition and behaviour. This paper describes the protocol for a stepped wedge cluster randomised trial of a free school breakfast programme. The aim of the trial is to determine the effects of the breakfast intervention on school attendance, achievement, psychosocial function, dietary habits and food security. Methods/Design Sixteen primary schools in the North Island of New Zealand will be randomised in a sequential stepped wedge design to a free before-school breakfast programme consisting of non-sugar coated breakfast cereal, milk products, and/or toast and spreads. Four hundred children aged 5-13 years (approximately 25 per school) will be recruited. Data collection will be undertaken once each school term over the 2010 school year (February to December). The primary trial outcome is school attendance, defined as the proportion of students achieving an attendance rate of 95% or higher. Secondary outcomes are academic achievement (literacy, numeracy, self-reported grades), sense of belonging at school, psychosocial function, dietary habits, and food security. A concurrent process evaluation seeks information on parents', schools' and providers' perspectives of the breakfast programme. Discussion This randomised controlled trial will provide robust evidence of the effects of a school breakfast programme on students' attendance, achievement and nutrition. Furthermore the study provides an excellent example of the feasibility and value of the stepped wedge trial design in evaluating pragmatic public health intervention programmes. Trial Registration Number Australian New Zealand Clinical Trials Registry (ANZCTR) - ACTRN

  1. Analysis and Design of Ultra Wide-Band and High-Power Microwave Pulse Interactions With Electronic Circuits and Systems

    DTIC Science & Technology

    2007-02-28

    upset, latch -up or failure of systems of digital components. A digital system can be in many different states, depending on its internal functioning...the Interface between Isorefractive Half-spaces A Y,A0 + B I (c). Cavity-Backed Gap in a Corner (d). A Right-Angle Isorefractive Wedge Structure z LL...ikjI I E2,:, (e) . A +-l l(ii (c). e Ca ity-Backedfraptive MatCoeria (d. BeRgt-Angl Isorefractive Wedge -Structur B V-T A.. D .F V-0 G x V-:x C E Y’-2

  2. Analytical solutions for two-dimensional Stokes flow singularities in a no-slip wedge of arbitrary angle

    PubMed Central

    Brzezicki, Samuel J.

    2017-01-01

    An analytical method to find the flow generated by the basic singularities of Stokes flow in a wedge of arbitrary angle is presented. Specifically, we solve a biharmonic equation for the stream function of the flow generated by a point stresslet singularity and satisfying no-slip boundary conditions on the two walls of the wedge. The method, which is readily adapted to any other singularity type, takes full account of any transcendental singularities arising at the corner of the wedge. The approach is also applicable to problems of plane strain/stress of an elastic solid where the biharmonic equation also governs the Airy stress function. PMID:28690412

  3. Analytical solutions for two-dimensional Stokes flow singularities in a no-slip wedge of arbitrary angle.

    PubMed

    Crowdy, Darren G; Brzezicki, Samuel J

    2017-06-01

    An analytical method to find the flow generated by the basic singularities of Stokes flow in a wedge of arbitrary angle is presented. Specifically, we solve a biharmonic equation for the stream function of the flow generated by a point stresslet singularity and satisfying no-slip boundary conditions on the two walls of the wedge. The method, which is readily adapted to any other singularity type, takes full account of any transcendental singularities arising at the corner of the wedge. The approach is also applicable to problems of plane strain/stress of an elastic solid where the biharmonic equation also governs the Airy stress function.

  4. The importance of mantle wedge heterogeneity to subduction zone magmatism and the origin of EM1

    NASA Astrophysics Data System (ADS)

    Turner, Stephen J.; Langmuir, Charles H.; Dungan, Michael A.; Escrig, Stephane

    2017-08-01

    The composition of the convecting asthenospheric mantle that feeds the mantle wedge can be investigated via rear-arc lavas that have minimal slab influence. This "ambient mantle wedge" composition (the composition of the wedge prior to the addition of a slab component) varies substantially both worldwide and within individual arcs. 143Nd/144Nd measurements of rear-arc samples that have minimal slab influence are similar to 143Nd/144Nd in the stratovolcanoes of the adjacent volcanic fronts, suggesting that 143Nd/144Nd of arc-front volcanics are largely inherited from the ambient mantle composition. 143Nd/144Nd correlates with ratios such as Th/U, Zr/Nb, and La/Sm, indicating that these ratios also are strongly influenced by ambient wedge heterogeneity. The same phenomenon is observed among individual volcanoes from the Chilean Southern Volcanic Zone (SVZ), where along-strike variability of the volcanic front tracks that of rear-arc monogenetic volcanics. Depleted mantle wedges are more strongly influenced by slab-derived components than are enriched wedges. This leads to surprising trace element correlations in the global dataset, such as between Pb/Nb and Zr/Nb, which are not explicable by variable compositions or fluxes of slab components. Depleted ambient mantle is present beneath arcs with back-arc spreading; relatively enriched mantle is present adjacent to continents. Ambient mantle wedge heterogeneity both globally and regionally forms isotope mixing trajectories for Sr, Nd and Hf between depleted mantle and EM1-type enriched compositions as represented by Gough Island basalts. Making use of this relationship permits a quantitative match with the SVZ data. It has been suggested that EM1-type mantle reservoirs are the result of recycled lower continental crust, though such models do not account for certain trace element ratios such as Ce/Pb and Nb/U or the surprisingly homogeneous trace element compositions of EM1 volcanics. A model in which the EM1 end

  5. RANS Analyses of Turbofan Nozzles with Wedge Deflectors for Noise Reduction

    NASA Technical Reports Server (NTRS)

    DeBonis, James R.

    2008-01-01

    Computational fluid dynamics (CFD) was used to evaluate a promising concept for reducing the noise at take-off of dual-stream, turbofan nozzles. The concept, offset stream technology, reduces the jet noise observed on the ground by diverting (offsetting) the majority of the fan flow below the core flow, thickening this layer between the high velocity core flow and the ground observers. In this study a wedge placed in the internal fan stream is used as the diverter. Wind, a Reynolds Averaged Navier-Stokes (RANS) code, was used to analyze the flowfield of the exhaust plume and to calculate nozzle performance. Results showed that the wedge effectively diverts the fan flow and the turbulent kinetic energy on the observer side of the nozzle is reduced. The reduction in turbulent kinetic energy should correspond to a reduction in noise. The blockage due to the wedge reduces the fan massflow proportional to its blockage and the overall thrust is consequently reduced. The CFD predictions are in very good agreement with experimental data. This noise reduction concept shows promise for reduced jet noise at a small reduction in thrust. It has been demonstrated that RANS CFD can be used to optimize this concept.

  6. First metatarsal closing base wedge osteotomy using real-time fluoroscopy.

    PubMed

    Toepp, F C; Salcedo, M

    1991-01-01

    A minimal incision surgery approach to metatarsus primus adductus is presented. The percutaneous closing base wedge osteotomy is performed using real-time intraoperative fluoroscopy. The advantages and disadvantages of this minimal incision surgical procedure are discussed.

  7. Mass stranding of wedge-tailed shearwater chicks in Hawaii

    USGS Publications Warehouse

    Work, Thierry M.; Rameyer, Robert

    1999-01-01

    Unusual numbers of wedge-tailed shearwater (Puffinus pacificus) chicks stranded on Oahu (Hawaii, USA) in 1994. Compared to healthy wedge-tailed shearwater (WTSW) chicks, stranded chicks were underweight, dehydrated, leukopenic, lymphopenic, eosinopenic, and heterophilic; some birds were toxemic and septic. Stranded chicks also were hypoglycemic and had elevated aspartate amino transferase levels. Most chicks apparently died from emaciation, dehydration, or bacteremia. Because many birds with bacteremia also had severe necrosis of the gastrointestinal (GI) mucosa associated with bacteria, we suspect the GI tract to be the source of disseminated bacterial infection. The identity of the bacteria was not confirmed. The daily number of chicks stranded was significantly related to average wind speeds, and the mortality coincided with the fledging period for WTSW. Strong southeasterly winds were a distinguishing meteorologic factor in 1994 and contributed to the distribution of stranded chicks on Oahu. More objective data on WTSW demographics would enhance future efforts to determine predisposing causes of WTSW wrecks and their effects on seabird colonies.

  8. An automated optical wedge calibrator for Dobson ozone spectrophotometers

    NASA Technical Reports Server (NTRS)

    Evans, R. D.; Komhyr, W. D.; Grass, R. D.

    1994-01-01

    The Dobson ozone spectrophotometer measures the difference of intensity between selected wavelengths in the ultraviolet. The method uses an optical attenuator (the 'Wedge') in this measurement. The knowledge of the relationship of the wedge position to the attenuation is critical to the correct calculation of ozone from the measurement. The procedure to determine this relationship is time-consuming, and requires a highly skilled person to perform it correctly. The relationship has been found to change with time. For reliable ozone values, the procedure should be done on a Dobson instrument at regular intervals. Due to the skill and time necessary to perform this procedure, many instruments have gone as long as 15 years between procedures. This article describes an apparatus that performs the procedure under computer control, and is adaptable to the majority of existing Dobson instruments. Part of the apparatus is usable for normal operation of the Dobson instrument, and would allow computer collection of the data and real-time ozone measurements.

  9. Mechanical aspects of degree of cement bonding and implant wedge effect.

    PubMed

    Yoon, Yong-San; Oxland, Thomas R; Hodgson, Antony J; Duncan, Clive P; Masri, Bassam A; Choi, Donok

    2008-11-01

    The degree of bonding between the femoral stem and cement in total hip replacement remains controversial. Our objective was to determine the wedge effect by debonding and stem taper angle on the structural behavior of axisymmetric stem-cement-bone cylinder models. Stainless steel tapered plugs with a rough (i.e. bonded) or smooth (i.e. debonded) surface finish were used to emulate the femoral stem. Three different stem taper angles (5 degrees , 7.5 degrees , 10 degrees ) were used for the debonded constructs. Non-tapered and tapered (7.5 degrees ) aluminum cylindrical shells were used to emulate the diaphyseal and metaphyseal segments of the femur. The cement-aluminum cylinder interface was designed to have a shear strength that simulated bone-cement interfaces ( approximately 8MPa). The test involved applying axial compression at a rate of 0.02mm/s until failure. Six specimens were tested for each combination of the variables. Finite element analysis was used to enhance the understanding of the wedge effect. The debonded stems sustained about twice as much load as the bonded stem, regardless of taper angle. The metaphyseal model carried 35-50% greater loads than the diaphyseal models and the stem taper produced significant differences. Based on the finite element analysis, failure was most probably by shear at the cement-bone interface. Our results in this simplified model suggest that smooth (i.e. debonded) stems have greater failure loads and will incur less slippage or shear failure at the cement-bone interface than rough (i.e. bonded) stems.

  10. Harnessing the bistable composite shells to design a tunable phononic band gap structure

    NASA Astrophysics Data System (ADS)

    Li, Yi; Xu, Yanlong

    2018-02-01

    By proposing a system composed of an array of bistable composite shells immersed in air, we develop a new class of periodic structure to control the propagation of sound. Through numerical investigation, we find that the acoustic band gap of this system can be switched on and off by triggering the snap through deformation of the bistable composite shells. The shape of cross section and filling fraction of unit cell can be altered by different number of bistable composite shells, and they have strong impact on the position and width of the band gap. The proposed concept paves the way of using the bistable structures to design a new class of metamaterials that can be enable to manipulate sound.

  11. Three-dimensional Numerical Models of the Cocos-northern Nazca Slab Gap

    NASA Astrophysics Data System (ADS)

    Jadamec, M.; Fischer, K. M.

    2012-12-01

    In contrast to anisotropy beneath the middle of oceanic plates, seismic observations in subduction zones often indicate mantle flow patterns that are not easily explained by simple coupling of the subducting and overriding plates to the mantle. For example, in the Costa Rica-Nicaragua subduction zone local S shear wave splitting measurements combined with geochemical data indicate trench parallel flow in the mantle wedge with flow rates of 6.3-19 cm/yr, which is on order of or may be up to twice the subducting plate velocity. We construct geographically referenced high-resolution three-dimensional (3D) geodynamic models of the Cocos-northern Nazca subduction system to investigate what is driving the northwest directed, and apparently rapid, trench-parallel flow in the mantle wedge beneath Costa Rica-Nicaragua. We use the SlabGenerator code to construct a 3D plate configuration that is used as input to the community mantle convection code, CitcomCU. Models are run on over 400 CPUs on XSEDE, with a mesh resolution of up to 3 km at the plate boundary. Seismicity and seismic tomography delineate the shape and depth of the Cocos and northern Nazca slabs. The subducting plate thermal structure is based on a plate cooling model and ages from the seafloor age grid. Overriding plate thickness is constrained by the ages from the sea floor age grid where available and the depth to the lithosphere-asthenosphere boundary from the greatest negative gradient in absolute shear wave velocity. The geodynamic models test the relative controls of the change in the dip of the Cocos plate and the slab gap between the Cocos and northern Nazca plates in driving the mantle flow beneath Central America. The models also investigate the effect of a non-Newtonian rheology in dynamically generating a low viscosity mantle wedge and how this controls mantle flow rates. To what extent the Cocos-northern Nazca slab gap channelizes mantle flow between Central and South America has direct application

  12. Extraordinary optical transmission through wedge-shape metallic slits array embedded with rectangular cavities

    NASA Astrophysics Data System (ADS)

    Qi, Yunping; Zhang, Xuewei; Hu, Yue; Nan, Xianghong; Wang, Xiangxian

    2017-10-01

    The non-resonantly enhanced optical transmission phenomenon of sub-wavelength metallic slits on a thin film is significant for broadband light integrated devices. In order to improve the EOT characteristics of sub-wavelength metallic slits further more, in this paper, wedge-shape metallic slits array embedded with rectangular cavities structure is proposed and its transmission properties are investigated using the finite element method. The results show that wedgeshape metallic slits array can achieve higher transmission compared with straight slits array embedded with rectangular cavities and the light is strongly localized and enhanced at the slit exits. We describe the phenomenon with a transmission line model. The width of entrance of the slit influences the transmission property: the transmittance can be 94%, after optimizing the structure parameters, with the widths 150nm and 30nm at the entrance and exit of the slit, respectively. The thickness of metal film influences the transmission peak position and transmission rate: when the increase of the thickness of the metal film, the transmittance increases and the transmission peak is red-shift, however, the law of long wavelength range is opposite. In addition, the effects of structural period of wedge-shaped slits embedded with rectangular cavities structure on the transmission property are also studied. These results would be helpful for optical signal transmission and the design of near field optical conductor devices with higher transmission capability.

  13. Structural deformation and detailed architecture of accretionary wedge in the northern Manila subduction zone

    NASA Astrophysics Data System (ADS)

    Gao, J.; Wu, S.; Yao, Y.; Chen, C.

    2017-12-01

    The South China Sea (SCS) which located at the southeast edge of the Eurasian plate, is heavily influenced by the Philippine Sea plate and the Indo-Australian plate. As eastern boundary of the SCS, Manila subduction zone was created by the northwestern movement of the Philippine Sea plate, recorded the key information on formation and evolution of the SCS and often triggered off earthquakes and tsunami in the East and South Asia. Using high resolution multi-channel seismic data across the northern Manila subduction zone, this study analyzed sedimentary characteristics of oceanic basin and trench, and fine described features of structural deformation and architecture of accretionary wedge and magmatism to discuss the time of subduction inception, thrust motion and influence of seamount subduction on the geometry of the Manila trench. Results show that lower slope of accretionary wedge mainly consist of imbricated thrusts with blind thrust as the frontal fault and structural wedge whereas upper slope was obscure for intensely structural deformation and magmatism. All the thrust faults merged into a detachment fault/surface which may root in Lower Miocene or even older strata, cut off the Miocene near buried seamount and extended the Pliocene upward, suggesting that this detachment fault was obviously influenced by buried seamount and basement high below the accretionary wedge. Magmatism began to be active from late Miocene and continued to be intense during Pliocene and Quaternary in the oceanic basin, trench and accretionary wedge. Based on characteristics of sedimentary and structural deformation, this study proposed that accretionary wedge of the northern Manila subduction zone formed before 16.5 Ma and propagated to the SCS through piggyback propagation thrusting when seafloor spreading of the SCS was still ongoing before 15 Ma. Subduction of extended continental crust in the northeastern SCS created a significantly concaving eastward to geometric shape of the

  14. Kinematic segmentation of accretive wedges based on scaled sandbox experiments and their application to nature

    NASA Astrophysics Data System (ADS)

    Lohrmann, J.; Kukowski, N.; Oncken, O.

    2003-04-01

    Recording the incremental displacement field of scaled analogue simulations provides detailed data on wedge kinematics and timing of internal deformation. This is a very efficient tool to develop kinematic concepts and test mechanical theories, e.g. the critical-taper theory. Such models could not be validated until now by the available geological and geophysical data, since there was no information about the incremental displacement field. Recent GPS measurements and seismological investigations at convergent margins provide well-constrained strain-rates and kinematics of short-termed processes. These data allow the kinematic models that are based on analogue simulations to be tested against field observations. We investigate convergent accretive sand wedges in scaled analogue simulations. We define three kinematic segments based on distinctive wedge taper, displacement field and timing of deformation (recorded at a slow sampling rate, which represents the geological scale). Only one of these segments is in a critical state of stress, whereas the other segments are either in a sub-critical or stable state of stress. Such a kinematic segmentation is not predicted for ideally homogeneous wedge-shaped bodies by the critical-taper theory, but can be explained by the formation of localised weak shear zones, which preferentially accommodate deformation. These weak zones are formed in granular analogue materials, and also in natural rocks, since these materials show a strain-softening phase prior to the achievement of stable mechanical conditions. Therefore we suggest that the kinematic segmentation of convergent sand wedges should also be observed in natural settings, such as accretionary wedges, foreland fold-and-thrust belts and even entire orogens. To validate this hypothesis we compare strain rates from GPS measurements and kinematics deduced from focal mechanisms with the respective data from sandbox experiments. We present a strategy to compare strain rates and

  15. Analog modeling of the deformation and kinematics of the Calabrian accretionary wedge

    NASA Astrophysics Data System (ADS)

    Dellong, David; Gutscher, Marc-Andre; Klingelhoefer, Frauke; Graindorge, David; Kopp, Heidrun; Mercier de Lepinay, Bernard; Dominguez, Stephane; Malavieille, Jacques

    2017-04-01

    The Calabrian accretionary wedge in the Ionian Sea, is the site of slow, deformation related to the overall convergence between Africa and Eurasia and the subduction zone beneath Calabria. High-resolution swath bathymetric data and seismic profiling image a complex network of compressional and strike-slip structures. Major Mesozoic rift structures (Malta Escarpment) are also present and appear to be reactivated in places by normal faulting. Ongoing normal faulting also occurs in the straits of Messina area (1908 M7.2 earthquake). We applied analog modeling using granular materials as well as ductile (silicone) in some experiments. The objective was to test the predictions of certain kinematic models regarding the location and kinematics of a major lateral slab edge tear fault. One experiment, using two independently moving backstops, demonstrates that the relative kinematics of the Calabrian and Peloritan blocks can produce a zone of dextral transtension and subsidence which corresponds well to the asymmetric rift observed in seismic data in the southward prolongation of the straits of Messina faults. However, the expected dextral offset in the deformation front of the accretionary wedge is not observed in bathymetry. In fact sinistral motion is observed along the boundary between two lobes of the accretionary wedge suggesting the dextral motion is absorbed along a network of transcurrent faults within the eastern lobe. Bathymetric and seismic observations indicate that the major dextral boundary along the western boundary of the accretionary wedge is the Alfeo fault system, whose southern termination is the focal point of a striking set of radial slip-lines. Further analog modeling experiments attempted to reproduce these structures, with mixed results.

  16. Effects of medially wedged foot orthoses on knee and hip joint running mechanics in females with and without patellofemoral pain syndrome.

    PubMed

    Boldt, Andrew R; Willson, John D; Barrios, Joaquin A; Kernozek, Thomas W

    2013-02-01

    We examined the effects of medially wedged foot orthoses on knee and hip joint mechanics during running in females with and without patellofemoral pain syndrome (PFPS). We also tested if these effects depend on standing calcaneal eversion angle. Twenty female runners with and without PFPS participated. Knee and hip joint transverse and frontal plane peak angle, excursion, and peak internal knee and hip abduction moment were calculated while running with and without a 6° full-length medially wedged foot orthoses. Separate 3-factor mixed ANOVAs (group [PFPS, control] x condition [medial wedge, no medial wedge] x standing calcaneal angle [everted, neutral, inverted]) were used to test the effect of medially wedged orthoses on each dependent variable. Knee abduction moment increased 3% (P = .03) and hip adduction excursion decreased 0.6° (P < .01) using medially wedged foot orthoses. No significant group x condition or calcaneal angle x condition effects were observed. The addition of medially wedged foot orthoses to standardized running shoes had minimal effect on knee and hip joint mechanics during running thought to be associated with the etiology or exacerbation of PFPS symptoms. These effects did not appear to depend on injury status or standing calcaneal posture.

  17. Hydrous melt-rock reaction in the shallow mantle wedge

    NASA Astrophysics Data System (ADS)

    Mitchell, A.; Grove, T. L.

    2017-12-01

    In subduction zone magmatism, hotter, deeper hydrous mantle melts rise and interact with the shallower, cooler depleted mantle in the uppermost part of the mantle wedge. Here, we experimentally investigate these hydrous reactions using three different ratios of a 1.6 GPa mantle melt and an overlying 1.2 GPa harzburgite from 1060 to 1260 °C. At low ratios of melt/mantle (20:80 and 5:95), the crystallizing assemblages are dunites, harzburgites, and lherzolites (as a function of temperature). When the ratio of deeper melt to overlying mantle is 70:30, the crystallizing assemblage is a wehrlite. This shows that wehrlites, which are observed in ophiolites and mantle xenoliths, can be formed by large amounts of deeper melt fluxing though the mantle wedge during ascent. In all cases, orthopyroxene dissolves in the melt, and olivine crystallizes along with pyroxenes and spinel. The amount of reaction between deeper melts and overlying mantle, simulated here by the three starting compositions, imposes a strong influence on final melt compositions, particularly in terms of depletion. At the lowest melt/mantle ratios, the resulting melt is an extremely depleted Al-poor, high-Si andesite. As the fraction of melt to mantle increases, final melts resemble primitive basaltic andesites found in arcs globally. Wall rock temperature is a key variable; over a span of <80 °C, reaction with deeper melt creates the entire range of mantle lithologies from a depleted dunite to a harzburgite to a refertilized lherzolite. Together, the experimental phase equilibria, melt compositions, and calculated reaction coefficients provide a framework for understanding how melt-wall rock reaction occurs in the natural system during melt ascent in the mantle wedge.

  18. The design of patient decision support interventions: addressing the theory-practice gap.

    PubMed

    Elwyn, Glyn; Stiel, Mareike; Durand, Marie-Anne; Boivin, Jacky

    2011-08-01

    Although an increasing number of decision support interventions for patients (including decision aids) are produced, few make explicit use of theory. We argue the importance of using theory to guide design. The aim of this work was to address this theory-practice gap and to examine how a range of selected decision-making theories could inform the design and evaluation of decision support interventions. We reviewed the decision-making literature and selected relevant theories. We assessed their key principles, theoretical pathways and predictions in order to determine how they could inform the design of two core components of decision support interventions, namely, information and deliberation components and to specify theory-based outcome measures. Eight theories were selected: (1) the expected utility theory; (2) the conflict model of decision making; (3) prospect theory; (4) fuzzy-trace theory; (5) the differentiation and consolidation theory; (6) the ecological rationality theory; (7) the rational-emotional model of decision avoidance; and finally, (8) the Attend, React, Explain, Adapt model of affective forecasting. Some theories have strong relevance to the information design (e.g. prospect theory); some are more relevant to deliberation processes (conflict theory, differentiation theory and ecological validity). None of the theories in isolation was sufficient to inform the design of all the necessary components of decision support interventions. It was also clear that most work in theory-building has focused on explaining or describing how humans think rather than on how tools could be designed to help humans make good decisions. It is not surprising therefore that a large theory-practice gap exists as we consider decision support for patients. There was no relevant theory that integrated all the necessary contributions to the task of making good decisions in collaborative interactions. Initiatives such as the International Patient Decision Aids Standards

  19. Measurement of Rayleigh Wave Beams Using Angle Beam Wedge Transducers as the Transmitter and Receiver with Consideration of Beam Spreading

    PubMed Central

    Zhang, Shuzeng; Li, Xiongbing; Jeong, Hyunjo

    2017-01-01

    A theoretical model, along with experimental verification, is developed to describe the generation, propagation and reception of a Rayleigh wave using angle beam wedge transducers. The Rayleigh wave generation process using an angle beam wedge transducer is analyzed, and the actual Rayleigh wave sound source distributions are evaluated numerically. Based on the reciprocity theorem and considering the actual sound source, the Rayleigh wave beams are modeled using an area integral method. The leaky Rayleigh wave theory is introduced to investigate the reception of the Rayleigh wave using the angle beam wedge transducers, and the effects of the wave spreading in the wedge and transducer size are considered in the reception process. The effects of attenuations of the Rayleigh wave and leaky Rayleigh wave are discussed, and the received wave results with different sizes of receivers are compared. The experiments are conducted using two angle beam wedge transducers to measure the Rayleigh wave, and the measurement results are compared with the predictions using different theoretical models. It is shown that the proposed model which considers the wave spreading in both the sample and wedges can be used to interpret the measurements reasonably. PMID:28632183

  20. Measurement of Rayleigh Wave Beams Using Angle Beam Wedge Transducers as the Transmitter and Receiver with Consideration of Beam Spreading.

    PubMed

    Zhang, Shuzeng; Li, Xiongbing; Jeong, Hyunjo

    2017-06-20

    A theoretical model, along with experimental verification, is developed to describe the generation, propagation and reception of a Rayleigh wave using angle beam wedge transducers. The Rayleigh wave generation process using an angle beam wedge transducer is analyzed, and the actual Rayleigh wave sound source distributions are evaluated numerically. Based on the reciprocity theorem and considering the actual sound source, the Rayleigh wave beams are modeled using an area integral method. The leaky Rayleigh wave theory is introduced to investigate the reception of the Rayleigh wave using the angle beam wedge transducers, and the effects of the wave spreading in the wedge and transducer size are considered in the reception process. The effects of attenuations of the Rayleigh wave and leaky Rayleigh wave are discussed, and the received wave results with different sizes of receivers are compared. The experiments are conducted using two angle beam wedge transducers to measure the Rayleigh wave, and the measurement results are compared with the predictions using different theoretical models. It is shown that the proposed model which considers the wave spreading in both the sample and wedges can be used to interpret the measurements reasonably.

  1. Configuration and Generation of Substorm Current Wedge

    NASA Astrophysics Data System (ADS)

    Chu, Xiangning

    The substorm current wedge (SCW), a core element of substorm dynamics coupling the magnetotail to the ionosphere, is crucial in understanding substorms. It has been suggested that the field-aligned currents (FACs) in the SCW are caused by either pressure gradients or flow vortices, or both. Our understanding of FAC generations is based predominately on numerical simulations, because it has not been possible to organize spacecraft observations in a coordinate system determined by the SCW. This dissertation develops an empirical inversion model of the current wedge and inverts midlatitude magnetometer data to obtain the parameters of the current wedge for three solar cycles. This database enables statistical data analysis of spacecraft plasma and magnetic field observations relative to the SCW coordinate. In chapter 2, a new midlatitude positive bay (MPB) index is developed and calculated for three solar cycles of data. The MPB index is processed to determine the substorm onset time, which is shown to correspond to the auroral breakup onset with at most 1-2 minutes difference. Substorm occurrence rate is found to depend on solar wind speed while substorm duration is rather constant, suggesting that substorm process has an intrinsic pattern independent of external driving. In chapter 3, an SCW inversion technique is developed to determine the strength and locations of the FACs in an SCW. The inversion parameters for FAC strength and location, and ring current strength are validated by comparison with other measurements. In chapter 4, the connection between earthward flows and auroral poleward expansion is examined using improved mapping, obtained from a newly-developed dynamic magnetospheric model by superimposing a standard magnetospheric field model with substorm current wedge obtained from the inversion technique. It is shown that the ionospheric projection of flows observed at a fixed point in the equatorial plane map to the bright aurora as it expands poleward

  2. The role of heterogeneous fluid pressures in the shape of critical-taper submarine wedges, with application to Barbados

    NASA Astrophysics Data System (ADS)

    Yeh, En-Chao; Suppe, John

    2014-05-01

    Some classic accretionary wedges such as Nankai trough and Barbados are mechanically heterogeneous based on their spatial variation in taper, showing inward decrease in surface slope α without covariation in detachment dip β. Possible sources of regional heterogeniety include variation in fluid pressure, density, cohesion and fault strength, which can be constrained by the seismic or borehole observable parameter, fluid-retention depth Z_FRD, below which compaction is strongly diminished. In particular the Hubbert-Rubey fluid-pressure weakening can be addressed as (1-lambda)~0.6Z_FRD/Z. We recast the heterogeneous critical-taper wedge theory of Dahlen (1990) in terms of the observable Z_FRD/H, where H is the detachment depth, which allows for real world applications. For example, seismic velocity and borehole data from the Barbados shows that the fluid-retention depth Z_FRD is approximately constant and Z_FRD/H decreases inward. This leads to a factor of four inward decreases in wedge strength, dominated by fluid pressure, with only a second-order role for density and cohesion. An inward decrease in wedge strength should by itself produce an increase in taper, therefore the observed decreasing taper must be dominated by decreasing fault strength mu_b* from 0.03 to 0.01. Static fluid-pressures along the detachment in equilibrium with the overlying wedge predict the observed wedge geometry well, given a constant intrinsic friction coefficient mu_b=0.15.

  3. Current from a nano-gap hyperbolic diode using shape-factors: Theory

    NASA Astrophysics Data System (ADS)

    Jensen, Kevin L.; Shiffler, Donald A.; Peckerar, Martin; Harris, John R.; Petillo, John J.

    2017-08-01

    Quantum tunneling by field emission from nanoscale features or sharp field emission structures for which the anode-cathode gap is nanometers in scale ("nano diodes") experience strong deviations from the planar image charge lowered tunneling barrier used in the Murphy and Good formulation of the Fowler-Nordheim equation. These deviations alter the prediction of total current from a curved surface. Modifications to the emission barrier are modeled using a hyperbolic (prolate spheroidal) geometry to determine the trajectories along which the Gamow factor in a WKB-like treatment is undertaken; a quadratic equivalent potential is determined, and a method of shape factors is used to evaluate the corrected total current from a protrusion or wedge geometry.

  4. Magmatism significantly alters the thermal structure of the wedge

    NASA Astrophysics Data System (ADS)

    Rees Jones, D. W.; Katz, R. F.; Rudge, J. F.; Tian, M.

    2016-12-01

    The temperature structure of the mantle wedge is typically modelled as a balance between thermal diffusion and advection by the solid mantle [e.g., 1]. The thermal state of the wedge promotes melting and melt transport in the natural system, but the thermal consequences of these processes have been neglected from previous models. We show that advective transport of sensible and latent heat by liquid magma can locally alter the temperature structure from canonical models by up to 200K. Liquids are liberated from the subducting slab by de-volatilization reactions. They trigger melting and become silicic en route to the surface, where they cause arc volcanism. These liquids transport heat advectively, and consume or supply latent heat as they melt or freeze. To analyse these effects, we parameterise melting in the presence of volatile species. We combine this with a one-dimensional "melting-column model," previously used to understand mid-ocean ridge volcanism. Our calculations highlight the thermal and chemical response to melt transport across the mantle wedge. Finally, we solve two-dimensional geodynamic models with a prescribed slab flux [2]. These models allow us to identify the most thermally significant fluxes of melt in the system. Perturbations of 200K are found at the base of the overriding lithosphere. This thermal signature of melt migration should be considered when interpreting heat flow, petrologic and seismic data [e.g., 3]. Such a thermal perturbation is likely to affect the chemistry of arc volcanoes, the solid mantle flow and, perhaps, the location of the volcanos themselves [4]. [1] van Keken, P. E., Currie, C., King, S. D., Behn, M. D., Cagnioncle, A., He, J., et al. (2008). A community benchmark for subduction zone modeling. PEPI, doi:10.1016/j.pepi.2008.04.015 [2] Wilson, C. R., Spiegelman, M., van Keken, P. E., & Hacker, B. R. (2014). Fluid flow in subduction zones: The role of solid rheology and compaction pressure. EPSL, doi:10.1016/j

  5. Evidence for Patchy Sediment Underthrusting and a Strong, Drained Outer Accretionary Wedge in Central Cascadia: Implications for Dynamic Slip Conditions

    NASA Astrophysics Data System (ADS)

    Tobin, H. J.; Webb, S. I.

    2017-12-01

    The central Cascadia subduction zone forearc in the region offshore Washington, where a hot, young incoming plate is covered by a 2-3 km thick sedimentary sequence, features a wide, very narrowly-tapered outer accretionary wedge composed of landward vergent thrust sheets. Longstanding questions for this region include the position and host-rock environment of the plate boundary décollement fault, the thickness of sedimentary strata underthrust beneath the wedge with the downgoing plate, and the effective stress or pore fluid pressure condition in the wedge and along its base. We have analyzed nine multichannel seismic lines of the 2012 COAST multi-channel seismic reflection survey using both time- and depth- migrated seismic sections for structural interpretation. Results show that there is evidence for two parallel décollement levels, with up to 200 - 500 meters thickness of a mostly-underthrust sequence in places, but which is absent entirely in others. This patchy distribution is mapped and related to features of the overlying wedge structure. We also analyzed the seismic interval velocity distribution produced during pre-stack depth migration imaging, and used it to compute estimated porosity, pore fluid pressure, and effective stress via empirical physical properties transforms. We find that the wedge shows evidence for at most only modest, localized excess pore pressure, and instead most of the wedge appears to be at near-hydrostatic, drained condition. Modest overpressure ratios of up to only 0.15 are detected, localized in the footwalls of thrust splays. We find no evidence for overpressure zones in the underthrust sequence below the upper décollement, in contrast to findings from several other wedges worldwide. Taken together, the accretionary wedge structure and apparent low pore pressure condition here is consistent with a mechanically strong wedge overlying a base that is very weak, at least transiently. By analogy with recent work from Sumatra

  6. SU-E-T-362: Enhanced Dynamic Wedge Output Factors for Varian 2300CD and the Case for a Reference Database

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Njeh, C

    2015-06-15

    Purpose: Dose inhomogeneity in treatment planning can be compensated using physical wedges. Enhanced dynamic wedges (EDW) were introduced by Varian to overcome some of the short comings of physical wedges. The objectives of this study were to measure EDW output factors for 6 MV and 20 MV photon energies for a Varian 2300CD. Secondly to review the literature in terms of published enhanced dynamic wedge output factors (EDWOF) for different Varian models and thereby adding credence to the case of the validity of reference databases. Methods: The enhanced dynamic wedge output factors were measured for the Varian 2300CD for bothmore » 6 MV and 20 MV photon energies. Twelve papers with published EDWOF for different Varian Linac models were found in the literature. Results: The EDWOF for 6 MV varied from 0.980 for a 5×5 cm 10 degree wedge to 0.424 for 20×20 cm 60 degree wedge. Similarly for 20 MV, the EDWOF varied from 0.986 for 5×5 cm 10 degree wedge to 0.529 for 20×20 cm 60 degree wedge. EDWOF are highly dependent on field size. Comparing our results with the published mean, we found an excellent agreement for 6 MV EDWOF with the percentage differences ranging from 0.01% to 0.57% with a mean of 0.03%. The coefficient of variation of published EDWOF ranged from 0.17% to 0.85% and 0.1% to 0.9% for the for 6 MV and 18MV photon energies respectively. This paper provides the first published EDWOF for 20 MV photon energy. In addition, we have provided the first compendium of EDWOFs for different Varian linac models. Conclusion: The consistency of EDWOF across models and institution provide further support that, a standard data set of basic photon and electron dosimetry could be established, as a guide for future commissioning, beam modeling and quality assurance purposes.« less

  7. Resolution of the Band Gap Prediction Problem for Materials Design

    DOE PAGES

    Crowley, Jason M.; Tahir-Kheli, Jamil; Goddard, William A.

    2016-03-04

    An important property with any new material is the band gap. Standard density functional theory methods grossly underestimate band gaps. This is known as the band gap problem. Here in this paper, we show that the hybrid B3PW91 density functional returns band gaps with a mean absolute deviation (MAD) from experiment of 0.22 eV over 64 insulators with gaps spanning a factor of 500 from 0.014 to 7 eV. The MAD is 0.28 eV over 70 compounds with gaps up to 14.2 eV, with a mean error of -0.03 eV. To benchmark the quality of the hybrid method, we comparedmore » the hybrid method to the rigorous GW many-body perturbation theory method. Surprisingly, the MAD for B3PW91 is about 1.5 times smaller than the MAD for GW. Furthermore, B3PW91 is 3-4 orders of magnitude faster computationally. Hence, B3PW91 is a practical tool for predicting band gaps of materials before they are synthesized and represents a solution to the band gap prediction problem.« less

  8. Advancing engagement methods for trials: the CORE study relational model of engagement for a stepped wedge cluster randomised controlled trial of experience-based co-design for people living with severe mental illnesses.

    PubMed

    Richard, Lauralie; Piper, Donella; Weavell, Wayne; Callander, Rosemary; Iedema, Rick; Furler, John; Pierce, David; Godbee, Kali; Gunn, Jane; Palmer, Victoria J

    2017-04-08

    Engagement is essential in trials research but is rarely embedded across all stages of the research continuum. The development, use, effectiveness and value of engagement in trials research is poorly researched and understood, and models of engagement are rarely informed by theory. This article describes an innovative methodological approach for the development and application of a relational model of engagement in a stepped wedge designed cluster randomised controlled trial (RCT), the CORE study. The purpose of the model is to embed engagement across the continuum of the trial which will test if an experience-based co-design intervention improves psychosocial recovery for people affected by severe mental illness. The model was developed in three stages and used a structured iterative approach. A context mapping assessment of trial sites was followed by a literature review on recruitment and retention of hard-to-reach groups in complex interventions and RCTs. Relevant theoretical and philosophical underpinnings were identified by an additional review of literature to inform model development and enactment of engagement activities. Policy, organisational and service user data combined with evidence from the literature on barriers to recruitment provided contextual information. Four perspectives support the theoretical framework of the relational model of engagement and this is organised around two facets: the relational and continuous. The relational facet is underpinned by relational ethical theories and participatory action research principles. The continuous facet is supported by systems thinking and translation theories. These combine to enact an ethics of engagement and evoke knowledge mobilisation to reach the higher order goals of the model. Engagement models are invaluable for trials research, but there are opportunities to advance their theoretical development and application, particularly within stepped wedge designed studies where there may be a

  9. Role of ground ice dynamics and ecological feedbacks in recent ice wedge degradation and stabilization

    USGS Publications Warehouse

    Mark Torre Jorgenson,; Mikhail Kanevskiy,; Yuri Shur,; Natalia Moskalenko,; Dana Brown,; Wickland, Kimberly P.; Striegl, Robert G.; Koch, Joshua C.

    2015-01-01

    Ground ice is abundant in the upper permafrost throughout the Arctic and fundamentally affects terrain responses to climate warming. Ice wedges, which form near the surface and are the dominant type of massive ice in the Arctic, are particularly vulnerable to warming. Yet processes controlling ice wedge degradation and stabilization are poorly understood. Here we quantified ice wedge volume and degradation rates, compared ground ice characteristics and thermal regimes across a sequence of five degradation and stabilization stages and evaluated biophysical feedbacks controlling permafrost stability near Prudhoe Bay, Alaska. Mean ice wedge volume in the top 3 m of permafrost was 21%. Imagery from 1949 to 2012 showed thermokarst extent (area of water-filled troughs) was relatively small from 1949 (0.9%) to 1988 (1.5%), abruptly increased by 2004 (6.3%) and increased slightly by 2012 (7.5%). Mean annual surface temperatures varied by 4.9°C among degradation and stabilization stages and by 9.9°C from polygon center to deep lake bottom. Mean thicknesses of the active layer, ice-poor transient layer, ice-rich intermediate layer, thermokarst cave ice, and wedge ice varied substantially among stages. In early stages, thaw settlement caused water to impound in thermokarst troughs, creating positive feedbacks that increased net radiation, soil heat flux, and soil temperatures. Plant growth and organic matter accumulation in the degraded troughs provided negative feedbacks that allowed ground ice to aggrade and heave the surface, thus reducing surface water depth and soil temperatures in later stages. The ground ice dynamics and ecological feedbacks greatly complicate efforts to assess permafrost responses to climate change.

  10. Role of ground ice dynamics and ecological feedbacks in recent ice wedge degradation and stabilization

    NASA Astrophysics Data System (ADS)

    Jorgenson, M. T.; Kanevskiy, M.; Shur, Y.; Moskalenko, N.; Brown, D. R. N.; Wickland, K.; Striegl, R.; Koch, J.

    2015-11-01

    Ground ice is abundant in the upper permafrost throughout the Arctic and fundamentally affects terrain responses to climate warming. Ice wedges, which form near the surface and are the dominant type of massive ice in the Arctic, are particularly vulnerable to warming. Yet processes controlling ice wedge degradation and stabilization are poorly understood. Here we quantified ice wedge volume and degradation rates, compared ground ice characteristics and thermal regimes across a sequence of five degradation and stabilization stages and evaluated biophysical feedbacks controlling permafrost stability near Prudhoe Bay, Alaska. Mean ice wedge volume in the top 3 m of permafrost was 21%. Imagery from 1949 to 2012 showed thermokarst extent (area of water-filled troughs) was relatively small from 1949 (0.9%) to 1988 (1.5%), abruptly increased by 2004 (6.3%) and increased slightly by 2012 (7.5%). Mean annual surface temperatures varied by 4.9°C among degradation and stabilization stages and by 9.9°C from polygon center to deep lake bottom. Mean thicknesses of the active layer, ice-poor transient layer, ice-rich intermediate layer, thermokarst cave ice, and wedge ice varied substantially among stages. In early stages, thaw settlement caused water to impound in thermokarst troughs, creating positive feedbacks that increased net radiation, soil heat flux, and soil temperatures. Plant growth and organic matter accumulation in the degraded troughs provided negative feedbacks that allowed ground ice to aggrade and heave the surface, thus reducing surface water depth and soil temperatures in later stages. The ground ice dynamics and ecological feedbacks greatly complicate efforts to assess permafrost responses to climate change.

  11. Neoproterozoic sand wedges: crack formation in frozen soils under diurnal forcing during a snowball Earth

    NASA Astrophysics Data System (ADS)

    Maloof, Adam C.; Kellogg, James B.; Anders, Alison M.

    2002-11-01

    Thermal contraction cracking of permafrost produced sand-wedge polygons at sea level on the paleo-equator during late Neoproterozoic glacial episodes. These sand wedges have been used as evidence for high (≥54°) paleo-obliquity of the Earth's ecliptic, because cracks that form wedges are hypothesized to require deep seasonal cooling so the depth of the stressed layer in the ground reaches ≥1 m, similar to the measured depths of cracks that form wedges. To test the counter hypothesis that equatorial cracks opened under a climate characterized by a strong diurnal cycle and low mean annual temperature (snowball Earth conditions), we examine crack formation in frozen ground subject to periodic temperature variations. We derive analytical expressions relating the Newtonian viscosity to the potential crack depth, concluding that cracks will form only in frozen soils with viscosities greater than ˜10 14 Pa s. We also show numerical calculations of crack growth in frozen soils with stress- and temperature-dependent rheologies and find that fractures may propagate to depths 3-25 times the depth of the thermally stressed layer in equatorial permafrost during a snowball Earth because the mean annual temperature is low enough to keep the ground cold and brittle to relatively great depths.

  12. Accretion in the wake of terrane collision: The Neogene accretionary wedge off Kenai Peninsula, Alaska

    USGS Publications Warehouse

    Fruehn, J.; von Huene, Roland E.; Fisher, M.A.

    1999-01-01

    Subduction accretion and repeated terrane collision shaped the Alaskan convergent margin. The Yakutat Terrane is currently colliding with the continental margin below the central Gulf of Alaska. During the Neogene the terrane's western part was subducted after which a sediment wedge accreted along the northeast Aleutian Trench. This wedge incorporates sediment eroded from the continental margin and marine sediments carried into the subduction zone on the Pacific plate. Prestack depth migration was performed on six seismic reflection lines to resolve the structure within this accretionary wedge and its backstop. The lateral extent of the structures is constrained by high-resolution swath bathymetry and seismic lines collected along strike. Accretionary structure consists of variably sized thrust slices that were deformed against a backstop during frontal accretion and underplating. Toward the northeast the lower slope steepens, the wedge narrows, and the accreted volume decreases notwith-standing a doubling of sediments thickness in the trench. In the northeasternmost transect, near the area where the terrane's trailing edge subducts, no frontal accretion is observed and the slope is eroded. The structures imaged along the seismic lines discussed here most likely result from progressive evolution from erosion to accretion, as the trailing edge of the Yakutat Terrane is subducting.

  13. 3D seismic investigation of the structural and stratigraphic characteristics of the Pagasa Wedge, Southwest Palawan Basin, Philippines, and their tectonic implications

    NASA Astrophysics Data System (ADS)

    Ilao, Kimberly A.; Morley, Christopher K.; Aurelio, Mario A.

    2018-04-01

    The Pagasa Wedge is a poorly imaged deepwater orogenic wedge that has been variously interpreted as representing an accretionary prism, a former accretionary prism modified by thrusting onto a thinned continental margin, and a gravity-driven fold-thrust belt. This study, using 2D and 3D seismic data, together with well information indicates that at least the external part of the wedge is dominantly composed of mass transport complexes, capped by syn-kinematic sediments that have thrusts and normal faults superimposed upon them. Drilling shows that despite stratigraphic repetition of Eocene Middle Miocene units, there is stratigraphic omission of Oligocene and Early Miocene units. This absence suggests that mass transport processes have introduced the Eocene section into the wedge rather than tectonic thrusting. The accretionary prism stage (Oligocene) of the Central Palawan Ophiolite history appears to be marked by predominantly north-vergent deformation. The Deep Regional Unconformity (∼17 Ma) likely indicates the approximate time when obduction ceased in Palawan. The Pagasa Wedge is a late-stage product of the convergence history that was active in its final phase sometime above the top of the Nido Limestone (∼16 Ma) and the base of the Tabon Limestone in the Aboabo-A1X well (∼9 Ma). The top of the wedge is traditionally associated with the Middle Miocene Unconformity (MMU), However the presence of multiple unconformities, diachronous formation tops, local tectonic unconformities and regional diachronous events (e.g. migrating forebulges) all suggest simply giving a single age (or assigning a single unconformity, such as the MMU as defining the top of the Pagasa Wedge is inappropriate. The overall NE-SW trend of the wedge, and the dominant NW transport of structures within the wedge diverge from the more northerly transport direction determined from outcrops in Palawan, and also from the Nido Limestone in the SW part of the Pagasa Wedge. Possibly this NW

  14. [Radiocarbon dating of pollen and spores in wedge ice from Iamal and Kolyma].

    PubMed

    Vasil'chuk, A K

    2004-01-01

    Radiocarbon dating of pollen concentrate from late Pleistocene syngenetic wedge ice was carried out using acceleration mass spectrometry (AMS) in Seyakha and Bizon sections. Comparison of the obtained dating with palynological analysis and AMS radiocarbon dating previously obtained for other organic fractions of the same samples allowed us to evaluate accuracy of dating of different fractions. Quantitative tests for data evaluation were considered in terms of possible autochthonous or allochthonous accumulation of the material on the basis of pre-Pleistocene pollen content in these samples. Paleoecological information content of pollen spectra from late Pleistocene syngenetic wedge ice was evaluated.

  15. The Effects of a Heel Wedge on Hip, Pelvis and Trunk Biomechanics During Squatting in Resistance Trained Individuals.

    PubMed

    Charlton, Jesse M; Hammond, Connor A; Cochrane, Christopher K; Hatfield, Gillian L; Hunt, Michael A

    2017-06-01

    Barbell back squats are a popular exercise for developing lower extremity strength and power. However, this exercise has potential injury risks, particularly to the lumbar spine, pelvis, and hip joint. Previous literature suggests heel wedges as a means of favorably adjusting trunk and pelvis kinematics with the intention of reducing such injury risks. Yet no direct biomechanical research exists to support these recommendations. Therefore, the purpose of this study was to examine the effects of heel wedges compared with barefoot on minimally loaded barbell back squats. Fourteen trained male participants performed a barbell back squat in bare feet or with their feet raised bilaterally with a 2.5-cm wooden block while 3-dimensional kinematics, kinetics, and electromyograms were collected. The heel wedge condition elicited significantly less forward trunk flexion angles at peak knee flexion, and peak external hip joint moments (p ≤ 0.05) compared with barefoot conditions. However, no significant differences were observed between conditions for trunk and pelvis angle differences at peak knee flexion (p > 0.05). Lastly, no peak or root mean square differences in muscle activity were elicited between conditions (p > 0.05). Our results lend support for the suggestions provided in literature aimed at using heel wedges as a means of reducing excessive forward trunk flexion. However, the maintenance of a neutral spine, another important safety factor, is not affected by the use of heel wedges. Therefore, heel wedges may be a viable modification for reduction of excessive forward trunk flexion but not for reduction in relative trunk-pelvis flexion during barbell back squats.

  16. The Cimmerian accretionary wedge of Anarak, Central Iran

    NASA Astrophysics Data System (ADS)

    Zanchi, Andrea; Malaspina, Nadia; Zanchetta, Stefano; Berra, Fabrizio; Benciolini, Luca; Bergomi, Maria; Cavallo, Alessandro; Javadi, Hamid Reza; Kouhpeyma, Meyssam

    2015-04-01

    The occurrence in Iran of several ophiolite belts dating between Late Palaeozoic to Triassic poses several questions on the possible existence of various sutures marking the closure of the Palaeotethys ocean between Eurasia and this Gondwana-derived microplate. In this scenario, the Anarak region in Central Iran still represents a conundrum. Contrasting geochronological, paleontological, paleomagnetic data and reported field evidence suggest different origins for the Anarak Metamorphic Complex (AMC). The AMC is either interpreted, as: (1) relict of an accretionary wedge developed at the Eurasia margin during the Palaeotethys subduction as part of the Cimmerian suture zone of NE Iran, displaced to Central Iran by a large counter-clockwise rotation of the central Iranian blocks; (2) autochthonous unit forming a secondary branch of the main suture zone. Our structural, petrographic and geochemical data indicate that the AMC consists of several metamorphic units also including dismembered "ophiolites" which display different tectono-metamorphic evolutions. Three main ductile deformational events can be distinguished in the AMC. The Morghab and Chah Gorbeh complexes preserve a different M1 metamorphism, characterized by blueschist relics in the S1 foliation of the former unit, and greenschist assemblages in the latter. They share a subsequent similar D2 deformational and M2 metamorphic history, showing a prograde metamorphism with syn- to post-deformation growth of blueschist facies mineral assemblages on pre-existing greenschist facies associations. High pressure, low temperature (HP/LT) metamorphism responsible for the growth of sodic amphibole has been recognized also within marble lenses at the contact between the Chah Gorbeh Complex and serpentinites. Evidence of HP/LT metamorphism also occurs in glaucophane-bearing meta-pillow lavas and serpentinites, which contain antigorite and form most of the "ophiolites" within the AMC. Structural relationships show that the

  17. Designing a clinical dashboard to fill information gaps in the emergency department.

    PubMed

    Swartz, Jordan L; Cimino, James J; Fred, Matthew R; Green, Robert A; Vawdrey, David K

    2014-01-01

    Data fragmentation within electronic health records causes gaps in the information readily available to clinicians. We investigated the information needs of emergency medicine clinicians in order to design an electronic dashboard to fill information gaps in the emergency department. An online survey was distributed to all emergency medicine physicians at a large, urban academic medical center. The survey response rate was 48% (52/109). The clinical information items reported to be most helpful while caring for patients in the emergency department were vital signs, electrocardiogram (ECG) reports, previous discharge summaries, and previous lab results. Brief structured interviews were also conducted with 18 clinicians during their shifts in the emergency department. From the interviews, three themes emerged: 1) difficulty accessing vital signs, 2) difficulty accessing point-of-care tests, and 3) difficulty comparing the current ECG with the previous ECG. An emergency medicine clinical dashboard was developed to address these difficulties.

  18. Prediction of in-depth gap heating ratios from wing glove model test data. [space shuttle orbiter

    NASA Technical Reports Server (NTRS)

    1977-01-01

    In-depth gap heating ratios were predicted down RSI tile sidewalls based on temperature measurements obtained from the JSC arc-jet Wing Glove model tests in order to develop gap heating ratios which resulted in the best possible fit of test data and to produce a set of engineering verification heating ratios similar in shape to one another which could be used at various body points on the Orbiter during reentry. The Rockwell TPS Multidimensional heat conduction program was used to perform 3-D thermal analyses using a 3.0 in. thick section of a curved RSI tile with 283 nodal points. Correlation with test data shows that the predicted heating ratios were significantly higher down in the gap than the zero pressure values for T/C stacks 39 and 38 on the Wing Glove model. For stack 37 (in a low pressure region), the baseline heating ratio overpredicted the temperature data. This analysis, which showed that the heating ratios were a strong function of the product of pressure and pressure gradient, will be used to compare with recent Gap/Step and Ames Double Wedge test/analysis results in the effort to identify the Orbiter gap response to high delta P flight environment.

  19. Enhancing the hermeneutic single-case efficacy design: Bridging the research-practice gap.

    PubMed

    Wall, Jessie M; Kwee, Janelle L; Hu, Monica; McDonald, Marvin J

    2017-09-01

    Systematic case study designs are emerging as alternative paradigm strategies for psychotherapy and social science research. Through enhanced sensitivity to context, these designs examine idiographic profiles of causal processes. We specifically advocate the use of the hermeneutic single-case efficacy design (HSCED). HSCED has recently been used to investigate the efficacy of an existing therapy with a new population (Observed and Experiential Integration for athlete performance barriers) and an emerging therapy (Lifespan Integration Therapy). We describe innovations in HSCED that were implemented for these studies. These developments include (a) integrating psychotherapists as case developers, (b) incorporating multiple cases in one investigation, and (c) tailoring the repertoire of assessment tools. These extensions strategically incorporated principles of contextual paradigms in HSCED, thus complementing single-case designs that neglect idiographic contexts. We discuss recommendations for using HSCED in practice-based research, highlighting its potential as a bridge to address the research-practice gap.

  20. Brownian diffusion and thermophoresis mechanisms in Casson fluid over a moving wedge

    NASA Astrophysics Data System (ADS)

    Ullah, Imran; Shafie, Sharidan; Khan, Ilyas; Hsiao, Kai Long

    2018-06-01

    The effect of Brownian diffusion and thermophoresis on electrically conducting mixed convection flow of Casson fluid induced by moving wedge is investigated in this paper. It is assumed that the wedge is saturated in a porous medium and experiences the thermal radiation and chemical reaction effects. The transformed nonlinear governing equations are solved numerically by Keller box scheme. Findings reveal that increase in Casson and magnetic parameters reduced the boundary layer thickness. The effect of Brownian motion and thermophoresis parameters are more pronounced on temperature profile as compared to nanoparticles concentration. The presence of thermal radiation assisted the heat transfer rate significantly. The influence of magnetic parameter is observed less significant on temperature and nanoparticles concentration.

  1. Wedge-and-strip anodes for centroid-finding position-sensitive photon and particle detectors

    NASA Technical Reports Server (NTRS)

    Martin, C.; Jelinsky, P.; Lampton, M.; Malina, R. F.

    1981-01-01

    The paper examines geometries employing position-dependent charge partitioning to obtain a two-dimensional position signal from each detected photon or particle. Requiring three or four anode electrodes and signal paths, images have little distortion and resolution is not limited by thermal noise. An analysis of the geometrical image nonlinearity between event centroid location and the charge partition ratios is presented. In addition, fabrication and testing of two wedge-and-strip anode systems are discussed. Images obtained with EUV radiation and microchannel plates verify the predicted performance, with further resolution improvements achieved by adopting low noise signal circuitry. Also discussed are the designs of practical X-ray, EUV, and charged particle image systems.

  2. Neogene-Quaternary evolution of the offshore sector of the Southern Apennines accretionary wedge, Gulf of Taranto, Italy

    NASA Astrophysics Data System (ADS)

    Teofilo, G.; Antoncecchi, I.; Caputo, R.

    2018-07-01

    Southern Apennines represent a collisional orogenic belt whose compressional regime is commonly assumed to have ceased during Middle Quaternary. On the other hand, to the south the Calabria Arc is still characterized by subduction and the principal aim of the present research is to shed some light on the space and time transition from the ceased collision to the active subduction. Accordingly, we investigated the offshore sector of the Southern Apennines accretionary wedge, corresponding to the Taranto Gulf. To gain insights into the offshore accretionary wedge, we reconstructed a 3D geological and tectonic model by interpreting a grid of 40 seismic reflection lines (1100 km, 80 intersections), within an area of ca. 104 km2, calibrated with 17 wells. The geometric and chronological constraints allow documenting a systematic Messinian-Quaternary thrust migration from internal towards external sectors of the wedge. The migrating deformational process was essentially associated with a leading-imbricate thrust system with a general NE-younging direction, where we could recognize and distinguish some major advancing phases characterized by alternating fast thrust propagation events and strain accumulation periods within the wedge. This process is well emphasized by the jump of the foredeep and piggy-back basins. The NE-wards wedge migration was also associated with a lithospheric-scale flexural folding that generated a set of normal faults striking parallel to the coeval thrusts, likely reactivating optimally oriented structures inherited from Mesozoic events. Finally, a persisting thrust activity up to the latest Quaternary and possibly up to Present in correspondence of the externalmost sector of the accretionary wedge has been documented and explained in terms of strain partitioning in the frame of a recent oblique convergence. The results of this research have possible implications for the seismic hazard assessment of the broader region which is possibly greater

  3. Chlorite Stability in the Mantle Wedge and its Role in Subduction Zone Melting Processes

    NASA Astrophysics Data System (ADS)

    Grove, T. L.; Chatterjee, N.; Medard, E.; Parman, S. W.

    2006-12-01

    New experimental constraints on the H2O-saturated melting behavior of mantle peridotite (Grove et al., 2006, EPSL 249: 74 - 89) show that chlorite is a stable phase on the vapor-saturated solidus of peridotite at a pressure of 2 GPa and higher. Hydrous melting in the presence of chlorite begins at 860 °C at 2 GPa and the solidus temperature decreases continuously to 800 °C at 3.2 GPa. The solidus phases include olivine, orthopyroxene, high-Ca clinopyroxene and spinel + chlorite over the pressure range of 2 to 2.4 GPa. Garnet + chlorite + ilmenite are present above 2.4 GPa. At 2.8 to 3.2 GPa, chlorite is stable on the vapor- saturated solidus, but it reacts out 20 to 40 °C above the solidus. The temperature-pressure range for chlorite stability and vapor-saturated melting behavior involving chlorite are similar to those inferred for the mantle wedge above the subducted slab by geodynamic thermal models. Thus, chlorite may be a stable phase within the mantle wedge and may play a role in the onset of hydrous mantle melting. The factors that lead to the initiation of melting in subduction zones have remained enigmatic. The occurrence of volcanic fronts above the mantle wedge-subducted slab interface near a depth of 100 km in most arcs has not been conclusively explained. Melting must somehow be linked to processes that involve the release of water from the slab into the overlying mantle wedge, but why does melting always begin at or below 100 km? A potential melt triggering mechanism is that H2O released from dehydration reactions in the subducted oceanic lithosphere at pressures > 2 GPa rises into the overlying mantle and reacts with peridotite to form chlorite. This chloritized peridotite is pulled down by mantle flow to pressures of 3 to 3.5 GPa. Increases in temperature in the mantle wedge above the subducted slab lead to chlorite breakdown and/or vapor-saturated melting initiation. When mantle peridotite is hydrated ~ 13 wt. % chlorite is produced for a bulk H2

  4. Base pressure associated with incompressible flow past wedges at high Reynolds numbers

    NASA Technical Reports Server (NTRS)

    Warpinski, N. R.; Chow, W. L.

    1979-01-01

    A model is suggested to study the viscid-inviscid interaction associated with steady incompressible flow past wedges of arbitrary angles. It is shown from this analysis that the determination of the nearly constant pressure (base pressure) prevailing within the near wake is really the heart of the problem and this pressure can only be determined from these interactive considerations. The basic free streamline flow field is established through two discrete parameters which should adequately describe the inviscid flow around the body and the wake. The viscous flow processes such as boundary-layer buildup along the wedge surface, jet mixing, recompression, and reattachment which occurs along the region attached to the inviscid flow in the sense of the boundary-layer concept, serve to determine the aforementioned parameters needed for the establishment of the inviscid flow. It is found that the point of reattachment behaves as a saddle point singularity for the system of equations describing the viscous recompression process. Detailed results such as the base pressure, pressure distributions on the wedge surface, and the wake geometry as well as the influence of the characteristic Reynolds number are obtained. Discussion of these results and their comparison with the experimental data are reported.

  5. Lateral Wedge Insoles for Reducing Biomechanical Risk Factors for Medial Knee Osteoarthritis Progression: A Systematic Review and Meta-Analysis.

    PubMed

    Arnold, John B; Wong, Daniel X; Jones, Richard K; Hill, Catherine L; Thewlis, Dominic

    2016-07-01

    Lateral wedge insoles are intended to reduce biomechanical risk factors of medial knee osteoarthritis (OA) progression, such as increased knee joint load; however, there has been no definitive consensus on this topic. The aim of this systematic review and meta-analysis was to establish the within-subject effects of lateral wedge insoles on knee joint load in people with medial knee OA during walking. Six databases were searched from inception until February 13, 2015. Included studies reported on the immediate biomechanical effects of lateral wedge insoles during walking in people with medial knee OA. Primary outcomes of interest relating to the biomechanical risk of disease progression were the first and second peak external knee adduction moment (EKAM) and knee adduction angular impulse (KAAI). Eligible studies were pooled using random-effects meta-analysis. Eighteen studies were included with a total of 534 participants. Lateral wedge insoles resulted in a small but statistically significant reduction in the first peak EKAM (standardized mean difference [SMD] -0.19; 95% confidence interval [95% CI] -0.23, -0.15) and second peak EKAM (SMD -0.25; 95% CI -0.32, -0.19) with a low level of heterogeneity (I(2)  = 5% and 30%, respectively). There was a favorable but small reduction in the KAAI with lateral wedge insoles (SMD -0.14; 95% CI -0.21, -0.07, I(2)  = 31%). Risk of methodologic bias scores (quality index) ranged from 8 to 13 out of 16. Lateral wedge insoles cause small reductions in the EKAM and KAAI during walking in people with medial knee OA. Current evidence demonstrates that lateral wedge insoles appear ineffective at attenuating structural changes in people with medial knee OA as a whole and may be better suited to targeted use in biomechanical phenotypes associated with larger reductions in knee load. © 2016, American College of Rheumatology.

  6. Three-dimensional finite-element elastic analysis of a thermally cycled single-edge wedge geometry specimen

    NASA Technical Reports Server (NTRS)

    Bizon, P. T.; Hill, R. J.; Guilliams, B. P.; Drake, S. K.; Kladden, J. L.

    1979-01-01

    An elastic stress analysis was performed on a wedge specimen (prismatic bar with single-wedge cross section) subjected to thermal cycles in fluidized beds. Seven different combinations consisting of three alloys (NASA TAZ-8A, 316 stainless steel, and A-286) and four thermal cycling conditions were analyzed. The analyses were performed as a joint effort of two laboratories using different models and computer programs (NASTRAN and ISO3DQ). Stress, strain, and temperature results are presented.

  7. Effectiveness of a Wedge Probe to Measure Sonic Boom Signatures in a Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Wilcox, Floyd J., Jr.; Elmiligui, Alaa A.

    2013-01-01

    A wind tunnel investigation was conducted in the Langley Unitary Plan Wind Tunnel (UPWT) to determine the effectiveness of a wedge probe to measure sonic boom pressure signatures compared to a slender conical probe. A generic business jet model at a constant angle of attack and at a single model to probe separation distance was used to generate a sonic boom signature. Pressure signature data were acquired with both the wedge probe and a slender conical probe for comparison. The test was conducted at a Mach number of 2.0 and a free-stream unit Reynolds number of 2 million per foot. The results showed that the wedge probe was not effective in measuring the sonic boom pressure signature of the aircraft model in the supersonic wind tunnel. Data plots and a discussion of the results are presented. No tabulated data or flow visualization photographs are included.

  8. Technography and Design-Actuality Gap-Analysis of Internet Computer Technologies-Assisted Education: Western Expectations and Global Education

    ERIC Educational Resources Information Center

    Greenhalgh-Spencer, Heather; Jerbi, Moja

    2017-01-01

    In this paper, we provide a design-actuality gap-analysis of the internet infrastructure that exists in developing nations and nations in the global South with the deployed internet computer technologies (ICT)-assisted programs that are designed to use internet infrastructure to provide educational opportunities. Programs that specifically…

  9. Designing a Clinical Dashboard to Fill Information Gaps in the Emergency Department

    PubMed Central

    Swartz, Jordan L.; Cimino, James J.; Fred, Matthew R.; Green, Robert A.; Vawdrey, David K.

    2014-01-01

    Data fragmentation within electronic health records causes gaps in the information readily available to clinicians. We investigated the information needs of emergency medicine clinicians in order to design an electronic dashboard to fill information gaps in the emergency department. An online survey was distributed to all emergency medicine physicians at a large, urban academic medical center. The survey response rate was 48% (52/109). The clinical information items reported to be most helpful while caring for patients in the emergency department were vital signs, electrocardiogram (ECG) reports, previous discharge summaries, and previous lab results. Brief structured interviews were also conducted with 18 clinicians during their shifts in the emergency department. From the interviews, three themes emerged: 1) difficulty accessing vital signs, 2) difficulty accessing point-of-care tests, and 3) difficulty comparing the current ECG with the previous ECG. An emergency medicine clinical dashboard was developed to address these difficulties. PMID:25954420

  10. [A Patient with a Wedge-shaped Pulmonary Lesion Associated with Streptococcus parasanguinis].

    PubMed

    Miyamoto, Hiroya; Gomi, Harumi; Ishioka, Haruhiko; Shirokawa, Taijiro

    2016-05-01

    An 84-year-old man was admitted to our hospital with bloody sputum. He was found to have a right lower lobe wedge-shaped nodular lesion with chest X-ray and computed tomography of the chest. Ceftriaxone and minocycline were started empirically based on a working diagnosis of community-acquired pneumonia. Streptococcus parasanguinis was isolated with sputum cultures obtained on three consecutive days and was identified based on its biochemical properties. S. parasanguinis is a member of the sanguinis group of viridans Streptococci. It is known as a causative pathogen for endocarditis. There are very few reports of S. parasanguinis associated with pulmonary infections. The present report describes the association of S. parasanguinis with a wedge-shaped nodular lesion in the lungs.

  11. Generation of vector beams using a double-wedge depolarizer: Non-quantum entanglement

    NASA Astrophysics Data System (ADS)

    Samlan, C. T.; Viswanathan, Nirmal K.

    2016-07-01

    Propagation of horizontally polarized Gaussian beam through a double-wedge depolarizer generates vector beams with spatially varying state of polarization. Jones calculus is used to show that such beams are maximally nonseparable on the basis of even (Gaussian)-odd (Hermite-Gaussian) mode parity and horizontal-vertical polarization state. The maximum nonseparability in the two degrees of freedom of the vector beam at the double wedge depolarizer output is verified experimentally using a modified Sagnac interferometer and linear analyser projected interferograms to measure the concurrence 0.94±0.002 and violation of Clauser-Horne-Shimony-Holt form of Bell-like inequality 2.704±0.024. The investigation is carried out in the context of the use of vector beams for metrological applications.

  12. CFD Simulations of the IHF Arc-Jet Flow: Compression-Pad/Separation Bolt Wedge Tests

    NASA Technical Reports Server (NTRS)

    Gokcen, Tahir; Skokova, Kristina A.

    2017-01-01

    This paper reports computational analyses in support of two wedge tests in a high enthalpy arc-jet facility at NASA Ames Research Center. These tests were conducted using two different wedge models, each placed in a free jet downstream of a corresponding different conical nozzle in the Ames 60-MW Interaction Heating Facility. Panel test articles included a metallic separation bolt imbedded in the compression-pad and heat shield materials, resulting in a circular protuberance over a flat plate. As part of the test calibration runs, surface pressure and heat flux measurements on water-cooled calibration plates integrated with the wedge models were also obtained. Surface heating distributions on the test articles as well as arc-jet test environment parameters for each test configuration are obtained through computational fluid dynamics simulations, consistent with the facility and calibration measurements. The present analysis comprises simulations of the non-equilibrium flow field in the facility nozzle, test box, and flow field over test articles, and comparisons with the measured calibration data.

  13. Determination of refractive index of a simple negative, positive, or zero power lens using wedged plated interferometer

    NASA Technical Reports Server (NTRS)

    Shukla, R. P.; Perera, G. M.; George, M. C.; Venkateswarlu, P.

    1990-01-01

    A nondestructive technique for measuring the refractive index of a negative lens using a wedged plate interferometer is described. The method can be also used for measuring the refractive index of convex or zero power lenses. Schematic diagrams are presented for the use of a wedged plate interferometer for measuring the refractive index of a concave lens and of a convex lens.

  14. An explicit analytical solution for sound propagation in a three-dimensional penetrable wedge with small apex angle.

    PubMed

    Petrov, Pavel S; Sturm, Frédéric

    2016-03-01

    A problem of sound propagation in a shallow-water waveguide with a weakly sloping penetrable bottom is considered. The adiabatic mode parabolic equations are used to approximate the solution of the three-dimensional (3D) Helmholtz equation by modal decomposition of the acoustic pressure field. The mode amplitudes satisfy parabolic equations that admit analytical solutions in the special case of the 3D wedge. Using the analytical formula for modal amplitudes, an explicit and remarkably simple expression for the acoustic pressure in the wedge is obtained. The proposed solution is validated by the comparison with a solution of the 3D penetrable wedge problem obtained using a fully 3D parabolic equation that includes a leading-order cross term correction.

  15. Investigating Segmentation in Cascadia: Anisotropic Crustal Structure and Mantle Wedge Serpentinization from Receiver Functions

    NASA Astrophysics Data System (ADS)

    Krueger, Hannah E.; Wirth, Erin A.

    2017-10-01

    The Cascadia subduction zone exhibits along-strike segmentation in structure, processes, and seismogenic behavior. While characterization of seismic anisotropy can constrain deformation processes at depth, the character of seismic anisotropy in Cascadia remains poorly understood. This is primarily due to a lack of seismicity in the subducting Juan de Fuca slab, which limits shear wave splitting and other seismological analyses that interrogate the fine-scale anisotropic structure of the crust and mantle wedge. We investigate lower crustal anisotropy and mantle wedge structure by computing P-to-S receiver functions at 12 broadband seismic stations along the Cascadia subduction zone. We observe P-to-SV converted energy consistent with previously estimated Moho depths. Several stations exhibit evidence of an "inverted Moho" (i.e., a downward velocity decrease across the crust-mantle boundary), indicative of a serpentinized mantle wedge. Stations with an underlying hydrated mantle wedge appear prevalent from northern Washington to central Oregon, but sparse in southern Oregon and northern California. Transverse component receiver functions are complex, suggesting anisotropic and/or dipping crustal structure. To constrain the orientation of crustal anisotropy we compute synthetic receiver functions using manual forward modeling. We determine that the lower crust shows variable orientations of anisotropy along-strike, with highly complex anisotropy in northern Cascadia, and generally NW-SE and NE-SW orientations of slow-axis anisotropy in central and southern Cascadia, respectively. The orientations of anisotropy from this work generally agree with those inferred from shear wave splitting of tremor studies at similar locations, lending confidence to this relatively new method of inferring seismic anisotropy from slow earthquakes.

  16. Deformation in the mantle wedge associated with Laramide flat-slab subduction

    NASA Astrophysics Data System (ADS)

    Behr, W. M.; Smith, D.

    2013-12-01

    Early Tertiary crustal deformation preserved ~1500 km from the plate boundary in the western U.S. is considered by most to be related to a narrow segment of shallow Farallon-slab subduction, similar to the modern Pampean flat-slab of the central Andes. Evidence that the slab shallowed enough to penetrate several hundred kilometers inboard of the plate boundary includes a) shearing off of lithosphere and underplating of schists derived from the accretionary wedge beneath the volcanic arc; b) a cessation of arc magmatism and eastward sweeping of the magmatic front; and c) mid-Tertiary eruptions as far east as the Four Corners region of serpentinized ultramafic microbreccia (SUM) sourced from very cold, hydrated mantle lithosphere. Included within the SUM diatremes are eclogites interpreted to represent fragments of the slab itself and/or remnants of older rock from the mantle wedge metasomatized and recrystallized to eclogite along the top of the slab. Also included within the SUM diatremes are deformed peridotites that represent pieces of the variably hydrated mantle wedge as well as tectonically eroded and entrained fragments of the plate interface. These include weakly deformed to strongly foliated tectonites, spectacularly sheared mylonites and ultramylonites, and cataclasites, formed at temperatures ranging from 500-650°C. Some of the deformed samples contain hydrous minerals, including antigorite, chlorite, and/or tremolite/pargasite that were formed in-situ prior to or during deformation. We investigate the rheological and seismic properties of the peridotite samples using detailed microstructural and petrological analyses. Initial EBSD data indicate that an antigorite-bearing mylonite exhibits a B-type olivine LPO, whereas an ultramylonite that lacks hydrous minerals exhibits an A-type olivine LPO. This is consistent with experimental data that indicate B-type LPOs form under hydrous conditions; and it suggests that these rocks record a transition from

  17. Structure of the Sumatra wedge affected by the 26th December 2004 :Effects of the lower plate volcanic ridges.

    NASA Astrophysics Data System (ADS)

    Rangin, C.; Sibuet, J. C.; Lin, J. Y.; Le Pichon, X.

    2009-04-01

    Detailed swath-bathymetry, coupled with echo-sounder data were collected offshore the northern tip of Sumatra over the rupture area of the 26th December 2004 Mw=9.2 earthquake during the Sumatra aftershock cruise. 20 ocean bottom seismometers were also deployed in the northern Sumatra area., and more than 1000 events were identified during the 12 days recording period. We mapped recently active steeply dipping thrust fault zone within the western termination of the Sunda accreted wedge. Main N10°W trending out of sequence thrust fault zones with a discrete westward vergency and some component of dextral strike-slip motion were continuously mapped within the wedge, on the basis of bathymetry and low frequency sounder profiles. The interplate boundary does not appear to extend into the frontal part of the wedge but most probably merges in its central part along these major faults, the Lower and Upper Splay Faults. After relocation, the seismicity shows different pattern in each side of this Upper Splay Fault. East of this boundary, beneath the Aceh basin, the earthquake depths ranged from 30 to 60 km allow us to illustrate the subducted plate. In the western part, the aftershock distribution is strongly influenced by the N-S orientated oceanic fracture zones. Two clusters of earthquakes between 10 and 50 km in depth trending along N-S direction are observed in the lower wedge that we interpret to be reactive fracture zones. The lower wedge is interpreted as the northern prolongation below the wedge of the lower plate NS oceanic fracture zone ridges affected by NS trending left lateral strike-slip faults. This wedge outer ridge is in the process of being transferred to the upper plate. On the other hand the central ridge is interpreted as possible stacked volcanic ridge slivers already incorporated into the upper plate along the subduction buttress (the inner ridge of the wedge). We propose that the tectonic interaction of the volcanic Indian Ocean fracture ridges of

  18. Lateral Opening-wedge Distal Femoral Osteotomy: Pain Relief, Functional Improvement, and Survivorship at 5 Years.

    PubMed

    Cameron, James I; McCauley, Julie C; Kermanshahi, Arash Y; Bugbee, William D

    2015-06-01

    Distal femoral varus osteotomy may be used to treat valgus knee malalignment or to protect a knee compartment in which cartilage restoration surgery (such as osteochondral or meniscus allografting) has been performed. Medial closing-wedge osteotomy has demonstrated good success in treatment of osteoarthritis in published series, but few studies have evaluated distal femoral lateral opening-wedge osteotomy in terms of correction of deformity, pain and function, and survivorship. (1) Does lateral opening-wedge osteotomy lead to accurate correction? (2) What pain and function levels do patients experience after lateral opening-wedge osteotomy? (3) What are the nonunion, complication, and reoperation rates after lateral opening-wedge osteotomy? Between 2000 and 2010, we performed 40 distal femoral osteotomies. Two knees (two patients) underwent a medial closing-wedge osteotomy and were excluded from the present study. Thirty-eight knees (97%) in 36 patients were lateral opening-wedge varus-producing osteotomies; of those, 31 knees (82%) in 30 patients had followup at a minimum of 2 years (mean, 5 years; SD, 2; range, 2-12 years) and comprised the study population. The indications for osteotomy included symptomatic lateral compartment arthritis with clinical valgus deformity or a cartilage or meniscal defect in the lateral compartment with clinical valgus alignment. The study population was stratified into two groups based on reason for osteotomy: patients with isolated symptomatic lateral compartment arthritis (arthritis group; 19 knees [61%]) and patients who underwent joint preservation procedures including osteochondral allograft transplantation or meniscal allograft transplantation (joint preservation group; 12 knees [39%]). Data collection from our institution's osteotomy database included patient demographics, lower extremity coronal alignment, and operative details. Pain and function were measured preoperatively and postoperatively using the International

  19. Design and characterization of the first peptidomimetic molecule that prevents acidification-induced closure of cardiac gap junctions

    PubMed Central

    Verma, Vandana; Larsen, Bjarne Due; Coombs, Wanda; Lin, Xianming; Sarrou, Eliana; Taffet, Steven M.; Delmar, Mario

    2010-01-01

    Background Gap junctions are potential targets for pharmacological intervention. We have previously developed a series of peptide sequences that prevent closure of Cx43 channels, bind to cardiac Cx43 and prevent acidification-induced uncoupling of cardiac gap junctions. Objective We aimed to identify and validate the minimum core active structure in peptides containing an RR-N/Q-Y motif. Based on that information, we sought to generate a peptidomimetic molecule that acts on the chemical regulation of Cx43 channels. Methods Experiments were based on a combination of biochemical, spectroscopic and electrophysiological techniques, as well as molecular modeling of active pharmacophores with Cx43 activity. Results Molecular modeling analysis indicated that the functional elements of the side chains in the motif RRXY form a triangular structure. Experimental data revealed that compounds containing such a structure bind to Cx43 and prevent Cx43 chemical gating. These results provided us with the first platform for drug design targeted to the carboxyl terminal of Cx43. Using that platform, we designed and validated a peptidomimetic compound (ZP2519; molecular weight 619 Da) that prevented octanol-induced uncoupling of Cx43 channels, and pH gating of cardiac gap junctions. Conclusion Structure-based drug design can be applied to the development of pharmacophores that act directly on Cx43. Small molecules containing these pharmacophores can serve as tools to determine the role of gap junction regulation in the control of cardiac rhythm. Future studies will determine whether these compounds can function as pharmacological agents for the treatment of a selected subset of cardiac arrhythmias. PMID:20601149

  20. Forest Management Devolution: Gap Between Technicians' Design and Villagers' Practices in Madagascar

    NASA Astrophysics Data System (ADS)

    Rives, Fanny; Carrière, Stéphanie M.; Montagne, Pierre; Aubert, Sigrid; Sibelet, Nicole

    2013-10-01

    In the 1980s, tropical forest-management principles underwent a shift toward approaches giving greater responsibilities to rural people. One argument for such a shift were the long-term relations established between rural people and their natural resources. In Madagascar, a new law was drawn up in 1996 (Gelose law), which sought to integrate rural people into forest management. A gap was observed between the changes foreseen by the projects implementing the Gelose law and the actual changes. In this article, we use the concept of the social-ecological system (SES) to analyze that gap. The differences existing between the planned changes set by the Gelose contract in the village of Ambatoloaka (northwest of Madagascar) and the practices observed in 2010 were conceptualized as a gap between two SESs. The first SES is the targeted one (i.e., a virtual one); it corresponds to the designed Gelose contract. The second SES is the observed one. It is characterized by the heterogeneity of forest users and uses, which have several impacts on forest management, and by very dynamic social and ecological systems. The observed SES has been reshaped contingent on the constraints and opportunities offered by the Gelose contract as well as on other ecological and social components. The consequences and opportunities that such an SES reshaping would offer to improve the implementation of the Gelose law are discussed. The main reasons explaining the gap between the two SESs are as follows: (1) the clash between static and homogeneous perceptions in the targeted SES and the dynamics and heterogeneity that characterize the observed SES; and (2) the focus on one specific use of forest ecosystems (i.e., charcoal-making) in the targeted SES. Forest management in the observed SES depends on several uses of forest ecosystems.

  1. Reduced knee joint loading with lateral and medial wedge insoles for management of knee osteoarthritis: a protocol for a randomized controlled trial.

    PubMed

    Lewinson, Ryan T; Collins, Kelsey H; Vallerand, Isabelle A; Wiley, J Preston; Woodhouse, Linda J; Reimer, Raylene A; Worobets, Jay T; Herzog, Walter; Stefanyshyn, Darren J

    2014-12-03

    Knee osteoarthritis (OA) progression has been linked to increased peak external knee adduction moments (KAMs). Although some trials have attempted to reduce pain and improve function in OA by reducing KAMs with a wedged footwear insole intervention, KAM reduction has not been specifically controlled for in trial designs, potentially explaining the mixed results seen in the literature. Therefore, the primary purpose of this trial is to identify the effects of reduced KAMs on knee OA pain and function. Forty-six patients with radiographically confirmed diagnosis medial knee OA will be recruited for this 3 month randomized controlled trial. Recruitment will be from Alberta and surrounding areas. Eligibility criteria include being between the ages of 40 and 85 years, have knee OA primarily localized to the medial tibiofemoral compartment, based on the American College of Rheumatology diagnostic criteria and be classified as having a Kellgren-Lawrence grade of 1 to 3. Patients will visit the laboratory at baseline for testing that includes dual x-ray absorptiometry, biomechanical testing, and surveys (KOOS, PASE activity scale, UCLA activity scale, comfort visual analog scale). At baseline, patients will be randomized to either a wedged insole group to reduce KAMs, or a waitlist control group where no intervention is provided. The survey tests will be repeated at 3 months, and response to wedged insoles over 3 months will be evaluated. This study represents the first step in systematically evaluating the effects of reduced KAMs on knee OA management by using a patient-specific wedged insole prescription procedure rather than providing the same insole to all patients. The results of this trial will provide indications as to whether reduced KAMs are an effective strategy for knee OA management, and whether a personalized approach to footwear insole prescription is warranted. NCT02067208.

  2. [Closing wedge osteotomy of the tibial head in treatment of single compartment arthrosis].

    PubMed

    Jakob, R P; Jacobi, M

    2004-02-01

    Closing wedge high tibial osteotomy is an efficient method for the treatment of medial osteoarthritis of the knee. Prerequisites of successful surgery are proper indication and planning as well as the understanding of biomechanics and pathophysiology. The technique of osteotomy to choose (opening or closing wedge) depends on the type of malalignment and on additional pathologies. The surgical technique demands high precision to realize the planned correction and to avoid complications. Implants with angular stability provide advantages compared to traditional implants. Correct indication and surgical technique results in a desirable follow-up, which often lasts for at least 10 years. The effect on the prognosis of the young patient with cartilage damage is still unclear.

  3. Severe winter cooling during the Younger Dryas in northern Alaska - evidence from the stable isotope composition of a buried ice-wedge system

    NASA Astrophysics Data System (ADS)

    Meyer, Hanno; Schirrmeister, Lutz; Yoshikawa, Kenji; Opel, Thomas; Wetterich, Sebastian; Hubberten, Hans-W.; Brown, Jerry

    2010-05-01

    The Younger Dryas (YD) interval, from approximately 12.9 to 11.5 kyr cal BP, a rapid reversion to glacial climate conditions at the Pleistocene-Holocene transition, has generally been attributed to the release of meltwater from the Laurentide Ice Sheet to the North Atlantic or Arctic oceans. The reaction of the North Pacific region to this "shutdown" of the thermohaline circulation in the North Atlantic during Younger Dryas is, however, little understood. The YD cold interval is of great interest for understanding rapid natural climate change, especially with regard to recent global warming scenarios. Various archives such as glacier ice, tree rings, lacustrine and marine sediments provide evidence for strong climate variability during the Late Glacial-Holocene transition. In our study, we investigated a relict, buried ice-wedge system within the continuous permafrost zone near Barrow, northern Alaska (71°18'N, 156°40'W). The Barrow ice-wedge system is buried under about three meters of Late Glacial/early Holocene ice-rich sediments. The ice wedges are accessible through a shaft which extends into an underground excavation, where a detailed description and sampling with an electrical chain saw were carried out. Permafrost is not only susceptible to recent climate change, it also may store evidence of these changes in ground ice, especially in ice wedges. Ice wedges can be assessed by stable water isotope methods similar to glacier ice climate reconstructions. Ice wedges are assumed to be indicative of winter climate conditions, because the seasonality of thermal contraction cracking and of the infill of frost cracks are generally related to winter and spring, respectively. In this paper, we present a winter climate record from ice wedges in permafrost of northern Alaska, a region, where paleoclimate records extending beyond the Late Glacial-Holocene transition are generally rather sparse, often restricted to lake sediments and rely mostly on summer indicators

  4. Viscid-inviscid interaction associated with incompressible flow past wedges at high Reynolds number

    NASA Technical Reports Server (NTRS)

    Warpinski, N. R.; Chow, W. L.

    1977-01-01

    An analytical method is suggested for the study of the viscid inviscid interaction associated with incompressible flow past wedges with arbitrary angles. It is shown that the determination of the nearly constant pressure (base pressure) prevailing within the near wake is really the heart of the problem, and the pressure can only be established from these interactive considerations. The basic free streamline flow field is established through two discrete parameters which adequately describe the inviscid flow around the body and the wake. The viscous flow processes such as the boundary layer buildup, turbulent jet mixing, and recompression are individually analyzed and attached to the inviscid flow in the sense of the boundary layer concept. The interaction between the viscous and inviscid streams is properly displayed by the fact that the aforementioned discrete parameters needed for the inviscid flow are determined by the viscous flow condition at the point of reattachment. It is found that the reattachment point behaves as a saddle point singularity for the system of equations describing the recompressive viscous flow processes, and this behavior is exploited for the establishment of the overall flow field. Detailed results such as the base pressure, pressure distributions on the wedge, and the geometry of the wake are determined as functions of the wedge angle.

  5. SU-E-T-82: A Study On Enhanced Dynamic Wedge (EDW) Dosimetry Using 2D Seven29 Ion Chamber Array Detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Syam; Aparna

    2015-06-15

    Purpose: To study the dosimetric properties of Enhanced Dynamic Wedge (EDW) using PTW Seven29 ion chamber array Methods: PTW Seven29 ion chamber array and Solid Water phantoms for different depths were used for the study. The study was carried out in Varian Clinac ix with photon energies, 6MV & 15MV. Primarily the solid water phantoms with the 2D array were scanned using a CT scanner (GE Optima 580) at different depths. These scanned images were used for EDW planning in an Eclipse treatment planning system (version 10). Planning was done for different wedge angles and for different depths for 6MVmore » & 15MV. A dose of 100 CGy was delivered in each cases. For each delivery, calculated the Monitoring Unit (MU) required. Same set-up was created before delivering the plans in Varian Clinac-ix. For each clinically relevant depth and for different wedge angles, the same MU was delivered as calculated. Different wedged dose distributions where reconstructed from the measured 2D array data using the in-house developed excel program. Results: It is observed that the shoulder like region in the profile which reduces as depth increases. For the same depth and energy, the percentage difference between planned and measured dose is lesser than 3%. For smaller wedge angles, the percentage difference is found to be greater than 3% for the largest wedge angle. Standard deviation between measured doses at shoulder region for planned and measured profiles is 0.08 and 0.02 respectively. Standard deviations between planned and measured wedge factors for different depths (2.5cm, 5cm, 10cm, and 15cm) are (0.0021, 0.0007, 0.0050, 0.0001) for 6MV and (0.0024, 0.0191, 0.0013, 0.0005) for 15MV respectively. Conclusion: The 2D Seven29 ion chamber array is a good tool for the Enhanced Dynamic Wedge (EDW) dosimetry.« less

  6. Comparison between Closing-Wedge and Opening-Wedge High Tibial Osteotomy in Patients with Medial Knee Osteoarthritis: A Systematic Review and Meta-analysis.

    PubMed

    Sun, Hao; Zhou, Lin; Li, Fengsheng; Duan, Jun

    2017-02-01

    Young active patients with medial knee osteoarthritis (OA) combined with varus leg alignment can be treated with high tibial osteotomy (HTO) to stop the progression of OA and avoid or postpone total knee arthroplasty (TKA). Closing-wedge osteotomy (CWO) and opening-wedge osteotomy (OWO) are the most commonly used osteotomy techniques. The purpose of this study was to compare the clinical and radiologic outcomes and complications between OWO and CWO. We retrospectively evaluated 23 studies including 17 clinical trials from published databases from their inception to May 2015. We evaluated the clinical outcomes including operation time, visual analog scale (VAS), maximal flexion, and hospital for special surgery knee (HSS) score. The radiologic outcomes included patellar height measured by posterior tibial slope angle, hip-knee-ankle (HKA) angle, femorotibial (FT) axis, and limb length. Complications recorded included the incidence of deep vein thrombosis (DVT), common peroneal nerve injury, opposite cortical fracture, etc. There were no differences in most of the clinical outcomes except the operation time. OWO increased the posterior slope angle and limb length, decreased the patellar height, and provided higher accuracy of correction. CWO led to a higher incidence of opposite cortical fracture. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  7. CFD Simulations of the IHF Arc-Jet Flow: Compression-Pad Separation Bolt Wedge Tests

    NASA Technical Reports Server (NTRS)

    Gokcen, Tahir; Skokova, Kristina A.

    2017-01-01

    This paper reports computational analyses in support of two wedge tests in a high enthalpy arc-jet facility at NASA Ames Research Center. These tests were conducted using two different wedge models, each placed in a free jet downstream of a corresponding different conical nozzle in the Ames 60-MW Interaction Heating Facility. Each panel test article included a metallic separation bolt imbedded in Orion compression-pad and heatshield materials, resulting in a circular protuberance over a flat plate. The protuberances produce complex model flowfields, containing shock-shock and shock-boundary layer interactions, and multiple augmented heating regions on the test plate. As part of the test calibration runs, surface pressure and heat flux measurements on water-cooled calibration plates integrated with the wedge models were also obtained. Surface heating distributions on the test articles as well as arc-jet test environment parameters for each test configuration are obtained through computational fluid dynamics simulations, consistent with the facility and calibration measurements. The present analysis comprises simulations of the non-equilibrium flow field in the facility nozzle, test box, and flow field over test articles, and comparisons with the measured calibration data.

  8. CFD Simulations of the IHF Arc-Jet Flow: Compression-Pad/Separation Bolt Wedge Tests

    NASA Technical Reports Server (NTRS)

    Goekcen, Tahir; Skokova, Kristina A.

    2017-01-01

    This paper reports computational analyses in support of two wedge tests in a high enthalpy arc-jet facility at NASA Ames Research Center. These tests were conducted using two different wedge models, each placed in a free jet downstream of a corresponding different conical nozzle in the Ames 60-MW Interaction Heating Facility. Each panel test article included a metallic separation bolt imbedded in Orion compression-pad and heatshield materials, resulting in a circular protuberance over a flat plate. The protuberances produce complex model flowfields, containing shock-shock and shock-boundary layer interactions, and multiple augmented heating regions on the test plate. As part of the test calibration runs, surface pressure and heat flux measurements on water-cooled calibration plates integrated with the wedge models were also obtained. Surface heating distributions on the test articles as well as arc-jet test environment parameters for each test configuration are obtained through computational fluid dynamics simulations, consistent with the facility and calibration measurements. The present analysis comprises simulations of the nonequilibrium flowfield in the facility nozzle, test box, and flowfield over test articles, and comparisons with the measured calibration data.

  9. Exemplar-based inpainting as a solution to the missing wedge problem in electron tomography.

    PubMed

    Trampert, Patrick; Wang, Wu; Chen, Delei; Ravelli, Raimond B G; Dahmen, Tim; Peters, Peter J; Kübel, Christian; Slusallek, Philipp

    2018-04-21

    A new method for dealing with incomplete projection sets in electron tomography is proposed. The approach is inspired by exemplar-based inpainting techniques in image processing and heuristically generates data for missing projection directions. The method has been extended to work on three dimensional data. In general, electron tomography reconstructions suffer from elongation artifacts along the beam direction. These artifacts can be seen in the corresponding Fourier domain as a missing wedge. The new method synthetically generates projections for these missing directions with the help of a dictionary based approach that is able to convey both structure and texture at the same time. It constitutes a preprocessing step that can be combined with any tomographic reconstruction algorithm. The new algorithm was applied to phantom data, to a real electron tomography data set taken from a catalyst, as well as to a real dataset containing solely colloidal gold particles. Visually, the synthetic projections, reconstructions, and corresponding Fourier power spectra showed a decrease of the typical missing wedge artifacts. Quantitatively, the inpainting method is capable to reduce missing wedge artifacts and improves tomogram quality with respect to full width half maximum measurements. Copyright © 2018. Published by Elsevier B.V.

  10. Plastic ingestion by Newell's (Puffinus newelli) and wedge-tailed shearwaters (Ardenna pacifica) in Hawaii.

    PubMed

    Kain, Elizabeth C; Lavers, Jennifer L; Berg, Carl J; Raine, André F; Bond, Alexander L

    2016-12-01

    The ingestion of plastic by seabirds has been used as an indicator of pollution in the marine environment. On Kaua'i, HI, USA, 50.0 % of Newell's (Puffinus newelli) and 76.9 % of wedge-tailed shearwater (Ardenna pacifica) fledglings necropsied during 2007-2014 contained plastic items in their digestive tract, while 42.1 % of adult wedge-tailed shearwaters had ingested plastic. For both species, the frequency of plastic ingestion has increased since the 1980s with some evidence that the mass and the number of items ingested per bird have also increased. The color of plastic ingested by the shearwaters was assessed relative to beach-washed plastics by using Jaccard's index (where J = 1 complete similarity). The color (J = 0.65-0.68) of items ingested by both species, and the type ingested by wedge-tailed shearwaters (J = 0.85-0.87), overlapped with plastic available in the local environment indicating moderate selection for plastic color and type. This study has shown that the Hawaiian populations of shearwaters, like many seabird species, provide useful but worrying insights into plastic pollution and the health of our oceans.

  11. Effects of laterally wedged insoles on symptoms and disease progression in medial knee osteoarthritis: a protocol for a randomised, double-blind, placebo controlled trial

    PubMed Central

    Bennell, Kim; Bowles, Kelly-Ann; Payne, Craig; Cicuttini, Flavia; Osborne, Richard; Harris, Anthony; Hinman, Rana

    2007-01-01

    Background Whilst laterally wedged insoles, worn inside the shoes, are advocated as a simple, inexpensive, non-toxic self-administered intervention for knee osteoarthritis (OA), there is currently limited evidence to support their use. The aim of this randomised, double-blind controlled trial is to determine whether laterally wedges insoles lead to greater improvements in knee pain, physical function and health-related quality of life, and slower structural disease progression as well as being more cost-effective, than control flat insoles in people with medial knee OA. Methods/Design Two hundred participants with painful radiographic medial knee OA and varus malalignment will be recruited from the community and randomly allocated to lateral wedge or control insole groups using concealed allocation. Participants will be blinded as to which insole is considered therapeutic. Blinded follow up assessment will be conducted at 12 months after randomisation. The outcome measures are valid and reliable measures recommended for OA clinical trials. Questionnaires will assess changes in pain, physical function and health-related quality-of-life. Magnetic resonance imaging will measure changes in tibial cartilage volume. To evaluate cost-effectiveness, participants will record the use of all health-related treatments in a log-book returned to the assessor on a monthly basis. To test the effect of the intervention using an intention-to-treat analysis, linear regression modelling will be applied adjusting for baseline outcome values and other demographic characteristics. Discussion Results from this trial will contribute to the evidence regarding the effectiveness of laterally wedged insoles for the management of medial knee OA. Trial registration ACTR12605000503628; NCT00415259. PMID:17892539

  12. Wedge imaging spectrometer: application to drug and pollution law enforcement

    NASA Astrophysics Data System (ADS)

    Elerding, George T.; Thunen, John G.; Woody, Loren M.

    1991-08-01

    The Wedge Imaging Spectrometer (WIS) represents a novel implementation of an imaging spectrometer sensor that is compact and rugged and, therefore, suitable for use in drug interdiction and pollution monitoring activities. With performance characteristics equal to comparable conventional imaging spectrometers, it would be capable of detecting and identifying primary and secondary indicators of drug activities and pollution events. In the design, a linear wedge filter is mated to an area array of detectors to achieve two-dimensional sampling of the combined spatial/spectral information passed by the filter. As a result, the need for complex and delicate fore optics is avoided, and the size and weight of the instrument are approximately 50% that of comparable sensors. Spectral bandwidths can be controlled to provide relatively narrow individual bandwidths over a broad spectrum, including all visible and infrared wavelengths. This sensor concept has been under development at the Hughes Aircraft Co. Santa Barbara Research Center (SBRC), and hardware exists in the form of a brassboard prototype. This prototype provides 64 spectral bands over the visible and near infrared region (0.4 to 1.0 micrometers ). Implementation issues have been examined, and plans have been formulated for packaging the sensor into a test-bed aircraft for demonstration of capabilities. Two specific areas of utility to the drug interdiction problem are isolated: (1) detection and classification of narcotic crop growth areas and (2) identification of coca processing sites, cued by the results of broad-area survey and collateral information. Vegetation stress and change-detection processing may also be useful in detecting active from dormant airfields. For pollution monitoring, a WIS sensor could provide data with fine spectral and spatial resolution over suspect areas. On-board or ground processing of the data would isolate the presence of polluting effluents, effects on vegetation caused by

  13. Rotating wedge filter photometer for high altitude sounding rocket application.

    PubMed

    Holm, C; Maehlum, B N; Narheim, B T

    1972-02-01

    A scanning photometer is described, utilizing a rotating wedge interference filter as the wavelength scanning element around 6300 A. A detailed description of the filter production is given, emphasizing the procedure for in situ wavelength control during fabrication. Subsequently, the complete photometer is briefly described, and some results from its applications on an auroral sounding rocket flight are presented.

  14. Quasi-experimental designs in practice-based research settings: design and implementation considerations.

    PubMed

    Handley, Margaret A; Schillinger, Dean; Shiboski, Stephen

    2011-01-01

    Although randomized controlled trials are often a gold standard for determining intervention effects, in the area of practice-based research (PBR), there are many situations in which individual randomization is not possible. Alternative approaches to evaluating interventions have received increased attention, particularly those that can retain elements of randomization such that they can be considered "controlled" trials. Methodological design elements and practical implementation considerations for two quasi-experimental design approaches that have considerable promise in PBR settings--the stepped-wedge design, and a variant of this design, a wait-list cross-over design, are presented along with a case study from a recent PBR intervention for patients with diabetes. PBR-relevant design features include: creation of a cohort over time that collects control data but allows all participants (clusters or patients) to receive the intervention; staggered introduction of clusters; multiple data collection points; and one-way cross-over into the intervention arm. Practical considerations include: randomization versus stratification, training run in phases; and extended time period for overall study completion. Several design features of practice based research studies can be adapted to local circumstances yet retain elements to improve methodological rigor. Studies that utilize these methods, such as the stepped-wedge design and the wait-list cross-over design, can increase the evidence base for controlled studies conducted within the complex environment of PBR.

  15. On steady two-dimensional Carreau fluid flow over a wedge in the presence of infinite shear rate viscosity

    NASA Astrophysics Data System (ADS)

    Khan, Masood; Sardar, Humara

    2018-03-01

    This paper investigates the steady two-dimensional flow over a moving/static wedge in a Carreau viscosity model with infinite shear rate viscosity. Additionally, heat transfer analysis is performed. Using suitable transformations, nonlinear partial differential equations are transformed into ordinary differential equations and solved numerically using the Runge-Kutta Fehlberg method coupled with the shooting technique. The effects of various physical parameters on the velocity and temperature distributions are displayed graphically and discussed qualitatively. A comparison with the earlier reported results has been made with an excellent agreement. It is important to note that the increasing values of the wedge angle parameter enhance the fluid velocity while the opposite trend is observed for the temperature field for both shear thinning and thickening fluids. Generally, our results reveal that the velocity and temperature distributions are marginally influenced by the viscosity ratio parameter. Further, it is noted that augmented values of viscosity ratio parameter thin the momentum and thermal boundary layer thickness in shear thickening fluid and reverse is true for shear thinning fluid. Moreover, it is noticed that the velocity in case of moving wedge is higher than static wedge.

  16. Geomorphology, kinematic history, and earthquake behavior of the active Kuwana wedge thrust anticline, central Japan

    NASA Astrophysics Data System (ADS)

    Ishiyama, Tatsuya; Mueller, Karl; Togo, Masami; Okada, Atsumasa; Takemura, Keiji

    2004-12-01

    We combine surface mapping of fault and fold scarps that deform late Quaternary alluvial strata with interpretation of a high-resolution seismic reflection profile to develop a kinematic model and determine fault slip rates for an active blind wedge thrust system that underlies Kuwana anticline in central Japan. Surface fold scarps on Kuwana anticline are closely correlated with narrow fold limbs and angular hinges on the seismic profile that suggest at least ˜1.3 km of fault slip completely consumed by folding in the upper 4 km of the crust. The close coincidence and kinematic link between folded terraces and the underlying thrust geometry indicate that Kuwana anticline has accommodated slip at an average rate of 2.2 ± 0.5 mm/yr on a 27°, west dipping thrust fault since early-middle Pleistocene time. In contrast to classical fault bend folds the fault slip budget in the stacked wedge thrusts also indicates that (1) the fault tip propagated upward at a low rate relative to the accrual of fault slip and (2) fault slip is partly absorbed by numerous bedding plane flexural-slip faults above the tips of wedge thrusts. An historic earthquake that occurred on the Kuwana blind thrust system possibly in A.D. 1586 is shown to have produced coseismic surface deformation above the doubly vergent wedge tip. Structural analyses of Kuwana anticline coupled with tectonic geomorphology at 103-105 years timescales illustrate the significance of active folds as indicators of slip on underlying blind thrust faults and thus their otherwise inaccessible seismic hazards.

  17. Forearc Basin Stratigraphy and Interactions With Accretionary Wedge Growth According to the Critical Taper Concept

    NASA Astrophysics Data System (ADS)

    Noda, Atsushi

    2018-03-01

    Forearc basins are important constituents of sediment traps along subduction zones; the basin stratigraphy records various events that the basin experienced. Although the linkage between basin formation and accretionary wedge growth suggests that mass balance exerts a key control on their evolution, the interaction processes between basin and basement remain poorly understood. This study performed 2-D numerical simulations in which basin stratigraphy was controlled by changes in sediment fluxes with accretionary wedge growth according to the critical taper concept. The resultant stratigraphy depended on the degree of filling (i.e., whether the basin was underfilled or overfilled) and the volume balance between the sediment flux supplied to the basin from the hinterland and the accommodation space in the basin. The trenchward progradation of deposition with onlapping contacts on the trenchside basin floor occurred during the underfilled phase, which formed a wedge-shaped sedimentary unit. In contrast, the landward migration of the depocenter, with the tilting of strata, was characteristic for the overfilled phase. Condensed sections marked stratigraphic boundaries, indicating when sediment supply or accommodation space was limited. The accommodation-limited intervals could have formed during the end of wedge uplift or when the taper angle decreased and possibly associated with the development of submarine canyons as conduits for bypassing sediments from the hinterland. Variations in sediment fluxes and their balance exerted a strong influence on the stratigraphic patterns in forearc basins. Assessing basin stratigraphy could be a key to evaluating how subduction zones evolve through their interactions with changing surface processes.

  18. Effect of a high-density foam seating wedge on back pain intensity when used by 14 to 16-year-old school students: a randomised controlled trial.

    PubMed

    Candy, Elizabeth A; Farewell, Daniel; Jerosch-Herold, Christina; Shepstone, Lee; Watts, Richard A; Stephenson, Richard C

    2012-12-01

    No previous randomised controlled trials had been undertaken investigating the effect of school seating on back pain in 14 to 16 year olds. This study was designed to test the effect of the use of a high-density foam wedge on normal school seating on the intensity of back pain. Randomised controlled trial. Suffolk, a predominantly rural county in eastern England. One hundred and eighty-five students with back pain were recruited from 12 schools. Randomisation was stratified by school. The control and intervention groups included 92 and 83 students, respectively. Following a 1-week baseline observation period, each student in the intervention group was given a wedge to use on their school chairs. The primary outcome measure was pain intensity (numerical rating scale, 0 to 10) recorded in pain diaries over 4 weeks. Random effects models were used to analyse the pain intensity data. Ninety-seven students (46 control group, 51 intervention group) completed the trial. For the intervention group, pain intensity was reduced significantly over the 3 weeks of wedge use. The average reduction in pain intensity was estimated to be 0.709 points (95% confidence interval 0.341 to 1.077), representing a 58% reduction in back pain for those in the intervention group. Use of a wedge reduced the intensity of back pain significantly, especially in the evenings. The results suggest that further research into the longer-term effect of seating on pain intensity in adolescents should be considered. Copyright © 2011 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.

  19. A six-month followup of a randomized trial comparing the efficacy of a lateral-wedge insole with subtalar strapping and an in-shoe lateral-wedge insole in patients with varus deformity osteoarthritis of the knee.

    PubMed

    Toda, Yoshitaka; Tsukimura, Noriko

    2004-10-01

    To assess the effect of a lateral-wedge insole with elastic strapping of the subtalar joint on the femorotibial angle in patients with varus deformity of the knee. The efficacy of a wedged insole with subtalar straps and that of a traditional wedged insole shoe insert were compared. Sixty-six female outpatients with knee osteoarthritis (OA) were randomized (according to birth date) to be treated with either the strapped or the traditional inserted insole. Standing radiographs with unilateral insole use were used to analyze the femorotibial angles for each patient. In both groups, the baseline and 6-month visual analog scale (VAS) scores for subjective knee pain and the Lequesne index scores for knee OA were compared. The 61 patients who completed the 6-month study were evaluated. At baseline, there was no significant difference in the femorotibial angle (P = 0.66) and the VAS score (P = 0.75) between the 2 groups. At the 6-month assessment, the 29 subjects wearing the subtalar-strapped insole demonstrated a significantly decreased femorotibial angle (P < 0.0001) and significantly improved VAS scores (P = 0.001) and Lequesne index scores (P = 0.033) compared with their baseline assessments. These significant differences were not observed in the 32 subjects assigned to the traditional shoe-inserted wedged insole. These results suggest that an insole with a subtalar strap maintained the valgus correction of the femorotibial angle in patients with varus knee OA for 6 months, indicating longer-term clinical improvement with the strapped insert compared with the traditional insert. Copyright 2004 American College of Rheumatology

  20. Comparison of infinite and wedge fringe settings in Mach Zehnder interferometer for temperature field measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haridas, Divya; P, Vibin Antony; Sajith, V.

    2014-10-15

    Interferometric method, which utilizes the interference of coherent light beams, is used to determine the temperature distribution in the vicinity of a vertical heater plate. The optical components are arranged so as to obtain wedge fringe and infinite fringe patterns and isotherms obtained in each case were compared. In wedge fringe setting, image processing techniques has been used for obtaining isotherms by digital subtraction of initial parallel fringe pattern from deformed fringe pattern. The experimental results obtained are compared with theoretical correlations. The merits and demerits of the fringe analysis techniques are discussed on the basis of the experimental results.

  1. Electromagnetic sensing for the monitoring of structures and infrastructures: a model for the diffraction by penetrable wedges

    NASA Astrophysics Data System (ADS)

    Riccio, G.; Gennarelli, G.

    2012-04-01

    As well-known, the observation of structures and infrastructures by radar remote sensing involves the investigation of the high-frequency electromagnetic scattering by canonical shapes, such as cylinders and wedges. For instance, the ruptures caused by natural disasters can be represented in the form of a wedge-shaped fracture [1]. They modify the electromagnetic response of the scene under investigation and the Geometrical Theory of Diffraction (GTD) can be used as efficient tool for describing this occurrence. Diffraction by a wedge is a well-covered topic in the scientific literature, but the available results mainly concern impenetrable structures. The aim of this work is to provide Uniform Asymptotic Physical Optics (UAPO) diffraction coefficients in the case of lossless penetrable wedges illuminated by plane waves having normal incidence with respect to the edge. To this end, the original problem is subdivided into two parts relevant to the internal region of the wedge and the surrounding space. For what concerns the evaluation of the field diffracted in the outer region, equivalent electric and magnetic PO surface currents are used as sources in the radiation integral. They lie on the external faces of the wedge and their expressions change in accordance with the incidence direction. As a matter of fact, they involve the reflection and transmission Fresnel's coefficients when one external face is directly illuminated, and only the reflection Fresnel's coefficients if both the external faces are considered. A useful approximation and a uniform asymptotic evaluation of the resulting radiation integrals allow one to obtain the diffraction coefficients in terms of the Geometrical Optics (GO) response and the standard transition function of the Uniform Theory of Diffraction (UTD) [2]. The evaluation of the field diffracted in the inner region is tackled and solved by using equivalent PO surface currents on the internal faces of the wedge. Once such currents are

  2. 16 CFR Figure 1 to Part 1213 - Wedge Block for Tests in § 1213.4(a), (b), and (c)

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Wedge Block for Tests in § 1213.4(a), (b), and (c) 1 Figure 1 to Part 1213 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER... 1 to Part 1213—Wedge Block for Tests in § 1213.4(a), (b), and (c) ER22DE99.007 ...

  3. Nonlinear Instability of Hypersonic Flow past a Wedge

    NASA Technical Reports Server (NTRS)

    Seddougui, Sharon O.; Bassom, Andrew P.

    1991-01-01

    The nonlinear stability of a compressible flow past a wedge is investigated in the hypersonic limit. The analysis follows the ideas of a weakly nonlinear approach. Interest is focussed on Tollmien-Schlichting waves governed by a triple deck structure and it is found that the attached shock can profoundly affect the stability characteristics of the flow. In particular, it is shown that nonlinearity tends to have a stabilizing influence. The nonlinear evolution of the Tollmien-Schlichting mode is described in a number of asymptotic limits.

  4. Prophylactic Z-plasty - correcting helical rim deformity from wedge excision.

    PubMed

    Kim, Peter

    2010-09-01

    Wedge excision is a popular and well documented surgical method for treating a wide range of skin lesions and cancers of the ear in the general practice setting. In the majority of cases, this is a simple and cosmetically pleasing treatment. However, it may create helical rim deformity. This article describes a simple method of preventing such deformity using prophylactic Z-plasty.

  5. 16 CFR Figure 1 to Part 1508 - Crib Slat Loading Wedge

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Crib Slat Loading Wedge 1 Figure 1 to Part 1508 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT REGULATIONS REQUIREMENTS FOR FULL-SIZE BABY CRIBS Pt. 1508, Fig. 1 Figure 1 to Part 1508—Crib Slat Loading...

  6. Anomalous Seismic Radiation in the Shallow Subduction Zone Explained by Extensive Poroplastic Deformation in the Overriding Wedge

    NASA Astrophysics Data System (ADS)

    Hirakawa, E. T.; Ma, S.

    2012-12-01

    The deficiency of high-frequency seismic radiation from shallow subduction zone earthquakes was first recognized in tsunami earthquakes (Kanamori, 1972), which produce larger tsunamis than expected from short-period (20 s) surface wave excitation. Shallow subduction zone earthquakes were also observed to have unusually low energy-to-moment ratios compared to regular subduction zone earthquakes (e.g., Newman and Okal, 1998; Venkataraman and Kanamori, 2004; Lay et al., 2012). What causes this anomalous radiation and how it relates to large tsunami generation has remained unclear. Here we show that these anomalous observations can be due to extensive poroplastic deformation in the overriding wedge, which provides a unifying interpretation. Ma (2012) showed that the pore pressure increase in the wedge due to up-dip rupture propagation significantly weakens the wedge, leading to widespread Coulomb failure in the wedge. Widespread failure gives rise to slow rupture velocity and large seafloor uplift (landward from the trench) in the case of a shallow fault dip. Here we extend this work and demonstrate that the large seafloor uplift due to the poroplastic deformation significantly dilates the fault behind the rupture front, which reduces the normal stress on the fault and increases the stress drop, slip, and rupture duration. The spectral amplitudes of the moment-rate time function is significantly less at high frequencies than those from elastic simulations. Large tsunami generation and deficiency of high-frequency radiation are thus two consistent manifestations of the same mechanism (poroplastic deformation). Although extensive poroplastic deformation in the wedge represents a significant portion of total seismic moment release, the plastic deformation is shown to act as a large energy sink, leaving less energy to be radiated and leading to low energy-to-moment ratios as observed for shallow subduction zone earthquakes.

  7. DNA barcoding reveals seasonal shifts in diet and consumption of deep-sea fishes in wedge-tailed shearwaters

    PubMed Central

    Ando, Haruko; Horikoshi, Kazuo; Suzuki, Hajime; Isagi, Yuji

    2018-01-01

    The foraging ecology of pelagic seabirds is difficult to characterize because of their large foraging areas. In the face of this difficulty, DNA metabarcoding may be a useful approach to analyze diet compositions and foraging behaviors. Using this approach, we investigated the diet composition and its seasonal variation of a common seabird species on the Ogasawara Islands, Japan: the wedge-tailed shearwater Ardenna pacifica. We collected fecal samples during the prebreeding (N = 73) and rearing (N = 96) periods. The diet composition of wedge-tailed shearwater was analyzed by Ion Torrent sequencing using two universal polymerase chain reaction primers for the 12S and 16S mitochondrial DNA regions that targeted vertebrates and mollusks, respectively. The results of a BLAST search of obtained sequences detected 31 and 1 vertebrate and mollusk taxa, respectively. The results of the diet composition analysis showed that wedge-tailed shearwaters frequently consumed deep-sea fishes throughout the sampling season, indicating the importance of these fishes as a stable food resource. However, there was a marked seasonal shift in diet, which may reflect seasonal changes in food resource availability and wedge-tailed shearwater foraging behavior. The collected data regarding the shearwater diet may be useful for in situ conservation efforts. Future research that combines DNA metabarcoding with other tools, such as data logging, may provide further insight into the foraging ecology of pelagic seabirds. PMID:29630670

  8. Better Gas-Gap Thermal Switches For Sorption Compressors

    NASA Technical Reports Server (NTRS)

    Bhandari, Pradeep; Rodriguez, Jose

    1995-01-01

    Gas-gap thermal switches associated with sorption compressors of some heat pumps and cryogenic systems designed for higher performance, according to proposal, by introducing controlled turbulent flows into gas gaps. Utilizes convection in turbulent flow to transfer heat at greater rate. Design takes advantage of flow of working fluid. Working fluid also serve as heat transfer medium in gas gap.

  9. Mind the Gap: The Effect of Keyboard Key Gap and Pitch on Typing Speed, Accuracy, and Usability, Part 3.

    PubMed

    Madison, Heather; Pereira, Anna; Korshøj, Mette; Taylor, Laura; Barr, Alan; Rempel, David

    2015-11-01

    The aim of this study was to evaluate the effects of key gap (distance between edges of keys) on computer keyboards on typing speed, percentage error, preference, and usability. In Parts 1 and 2 of this series, a small key pitch (center-to-center distance between keys) was found to reduce productivity and usability, but the findings were confounded by gap. In this study, key gap was varied while holding key pitch constant. Participants (N = 25) typed on six keyboards, which differed in gap between keys (1, 3, or 5 mm) and pitch (16 or 17 mm; distance between centers of keys), while typing speed, accuracy, usability, and preference were measured. There was no statistical interaction between gap and pitch. Accuracy was better for keyboards with a gap of 5 mm compared to a 1-mm gap (p = .04). Net typing speed (p = .02), accuracy (p = .002), and most usability measures were better for keyboards with a pitch of 17 mm compared to a 16-mm pitch. The study findings support keyboard designs with a gap between keys of 5 mm over 1 mm and a key pitch of 17 mm over 16 mm. These findings may influence keyboard standards and design, especially the design of small keyboards used with portable devices, such as tablets and laptops. © 2015, Human Factors and Ergonomics Society.

  10. Diffraction of a Shock Wave on a Wedge in a Dusty Gas

    NASA Astrophysics Data System (ADS)

    Surov, V. S.

    2017-09-01

    Within the framework of one- and multivelocity dusty-gas models, the author has investigated, on a curvilinear grid, flow in reflection of a shock wave from the wedge-shaped surface in an air-droplet mixture using the Godunov method with a linearized Riemannian solver.

  11. Is a synthetic augmentation in medial open wedge high tibial osteotomies superior to no augmentation in terms of bone-healing?

    PubMed

    Ferner, Felix; Dickschas, Joerg; Ostertag, Helmut; Poske, Ulrich; Schwitulla, Judith; Harrer, Joerg; Strecker, Wolf

    2016-01-01

    Medial open-wedge high tibial osteotomy (MOWHTO) is an established method to treat unicompartimental osteoarthritis of the knee joint. However, augmentation of the created tibial gap after osteotomy is controversially discussed. We performed a prospective investigation of 49 consecutive cases of MOWHTO at our department. Patients were divided into two groups: group A consisted of 19 patients while group B consisted of 30 patients. In group A, the augmentation of the opening gap after osteotomy was filled with a synthetic bone graft, whereas group B received no augmentation. As an indicator for bone healing we investigated the non-union rate in our study population and compared the non-union-rate between the two groups. The non-union rate was 28% in group A (five of 19 patients had to undergo revision) which received synthetic augmentation, while it was 3.3% in group B (one of 30 patients had to undergo revision) which received no augmentation. The difference between the groups was statistically significant (p-value 0.027). With regard to bone healing after MOWHTO, synthetic augmentation was not superior to no augmentation in terms of non-union rates after surgery. In fact, we registered a significantly higher rate of non-union after augmentation with synthetic bone graft. III. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. The effects of tibia profile, distraction angle, and knee load on wedge instability and hinge fracture: A finite element study.

    PubMed

    Weng, Pei-Wei; Chen, Chia-Hsien; Luo, Chu-An; Sun, Jui-Sheng; Tsuang, Yang-Hwei; Cheng, Cheng-Kung; Lin, Shang-Chih

    2017-04-01

    Several plate systems for high tibial osteotomy (HTO) have been developed to stabilize the opening wedge of an osteotomized tibia. Among them, the TomoFix system, having a quasi-straight and T-shaped design, has been widely adopted in the literature. However, this system is implemented by inserting a lag (i.e., cortical) screw through the proximal combi-hole, to deform the plate and pull the distal tibia toward the plate. This process potentially induces plate springback and creates an elastic preload on the osteotomized tibia, especially at the lateral hinge of the distracted wedge. Using the finite-element method, this study aims to investigate the contoured effect of lag-screw application on the biomechanical behavior of the tibia-plate construct. Two tibial profiles (normal and more concave), three distraction angles (6°, 9°, and 12°), and three knee loads (intraoperative: contouring plate; postoperative: weight and nonweight bearing) are systematically varied in this study. The wedge instability and fracture risk at the lateral hinge are chosen as the comparison indices. The results show the necessity of preoperative planning for a precontoured procedure, rather than elastic deformation using a lag screw. Within the intraoperative period, a more concave tibial profile and/or reduced distraction angle (i.e., 6° or 9°) necessitate a higher compressive load to elastically deform the plate, thereby deteriorating the lateral-hinge fracture risk. A precontoured plate is recommended in the case that the proximal tibia is highly concave and the distraction angle is insufficient to stretch the tibial profile. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  13. Gaps, tears and seismic anisotropy around the subducting slabs of the Antilles

    NASA Astrophysics Data System (ADS)

    Schlaphorst, David; Kendall, J.-Michael; Baptie, Brian; Latchman, Joan L.; Tait, Steve

    2017-02-01

    Seismic anisotropy in and beneath the subducting slabs of the Antilles is investigated using observations of shear-wave splitting. We use a combination of teleseismic and local events recorded at three-component broadband seismic stations on every major island in the area to map anisotropy in the crust, the mantle wedge and the slab/sub-slab mantle. To date this is the most comprehensive study of anisotropy in this region, involving 52 stations from 8 seismic networks. Local event delay times (0.21 ± 0.12 s) do not increase with depth, indicating a crustal origin in anisotropy and an isotropic mantle wedge. Teleseismic delay times are much larger (1.34 ± 0.47 s), with fast shear-wave polarisations that are predominantly parallel to trend of the arc. These observations can be interpreted three ways: (1) the presence of pre-existing anisotropy in the subducting slab; (2) anisotropy due to sub-slab mantle flow around the eastern margin of the nearly stationary Caribbean plate; (3) some combination of both mechanisms. However, there are two notable variations in the trench-parallel pattern of anisotropy - trench-perpendicular alignment is observed in narrow regions east of Puerto Rico and south of Martinique. These observations support previously proposed ideas of eastward sublithospheric mantle flow through gaps in the slab. Furthermore, the pattern of anisotropy south of Martinique, near Saint Lucia is consistent with a previously proposed location for the boundary between the North and South American plates.

  14. Effect of soft tissue laxity of the knee joint on limb alignment correction in open-wedge high tibial osteotomy.

    PubMed

    Lee, Dae-Hee; Park, Sung-Chul; Park, Hyung-Joon; Han, Seung-Beom

    2016-12-01

    Open-wedge high tibial osteotomy (HTO) cannot always accurately correct limb alignment, resulting in under- or over-correction. This study assessed the relationship between soft tissue laxity of the knee joint and alignment correction in open-wedge HTO. This prospective study involved 85 patients (86 knees) undergoing open-wedge HTO for primary medial osteoarthritis. The mechanical axis (MA), weight-bearing line (WBL) ratio, and joint line convergence angle (JLCA) were measured on radiographs preoperatively and after 6 months, and the differences between the pre- and post-surgery values were calculated. Post-operative WBL ratios of 57-67 % were classified as acceptable correction. WBL ratios <57 and >67 % were classified as under- and over-corrections, respectively. Preoperative JLCA correlated positively with differences in MA (r = 0.358, P = 0.001) and WBL ratio (P = 0.003). Difference in JLCA showed a stronger correlation than preoperative JLCA with differences in MA (P < 0.001) and WBL ratio (P < 0.001). Difference in JLCA was the only predictor of both difference in MA (P < 0.001) and difference in WBL ratio (P < 0.001). The difference between pre- and post-operative JLCA differed significantly between the under-correction, acceptable-correction, and over-correction groups (P = 0.033). Preoperative JLCA, however, did not differ significantly between the three groups. Neither preoperative JLCA nor difference in JLCA correlated with change in posterior slope. Preoperative degree of soft tissue laxity in the knee joint was related to the degree of alignment correction, but not to alignment correction error, in open-wedge HTO. Change in soft tissue laxity around the knee from before to after open-wedge HTO correlated with both correction amount and correction error. Therefore, a too large change in JLCA from before to after open-wedge osteotomy may be due to an overly large reduction in JLCA following osteotomy, suggesting alignment over

  15. Stress intensity factors in a cracked infinite elastic wedge loaded by a rigid punch

    NASA Technical Reports Server (NTRS)

    Erdogan, F.; Civelek, M. B.

    1978-01-01

    A plane elastic wedge-shaped solid was split through the application of a rigid punch. It was assumed that the coefficient of friction on the the contact area was constant, and the problem had a plane of symmetry with respect to loading and geometry, with the crack in the plane of symmetry. The problem was formulated in terms of a system of integral equations with the contact stress and the derivative of the crack surface displacement as the unknown functions. The solution was obtained for an internal crack and for an edge crack. The results include primarily the stress intensity factors at the crack tips, and the measure of the stress singularity at the wedge apex, and at the end points of the contact area.

  16. 50 CFR Figure 17 to Part 223 - Boone Wedge Cut Escape Opening

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 10 2012-10-01 2012-10-01 false Boone Wedge Cut Escape Opening 17 Figure 17 to Part 223 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS THREATENED MARINE AND ANADROMOUS SPECIES Pt...

  17. A non-deltaic clinoform wedge fed by multiple sources off São Sebastião Island, southeastern Brazilian Shelf

    NASA Astrophysics Data System (ADS)

    Vieira, Ivo; Lobo, Francisco José; Montoya-Montes, Isabel; Siegle, Eduardo; Passos, Jorge Luiz; De Mahiques, Michel Michaelovitch

    2018-02-01

    São Sebastião Island (SSI) marks the latitudinal boundary between two sedimentological and geochemical provinces in the São Paulo Bight, an arc-shaped sector of the southeastern Brazilian Shelf. The island is separated from the continent by the narrow, deep São Sebastião Channel (SSC). A relatively thick sediment wedge—the São Sebastião Wedge (SSW)—has been formed offshore SSI. This study explores the possible genetic and evolutionary mechanisms of the wedge, bearing in mind that clinoform wedges can form at considerable distances from major fluvial sources. For that, a marine geological database has been interpreted comprising high-resolution seismic data, a surficial sediment map and several sediment cores, from which radiocarbon dates were obtained and sedimentation rates deduced. A wave model was also applied to obtain the dominant wave directions. The SSW is a wedge-shaped deposit, and its internal structure presents three seismic units. The two lowest are wedge shaped and arranged in a backstepping pattern. The most recent unit is mostly aggradational and can be divided into three seismic subunits. Sedimentological data show that at least the most recent unit is composed of a mixture of sands and silts. Modeled wave conditions indicate a major influence from southerly waves that are able to remobilize shelf sediments and to create a bypass sediment zone until the foreset of the deposit is reached at the water depths where the SSW is found. Taken together, these data suggest that the SSW formed through contributions from different sediment sources, and should be regarded as an intermediate case of a non-deltaic clinoform wedge. Sand transport in the area involves wind-driven currents passing through the SSC and sediment remobilization by energetic southerly waves. Fine-grained sediment is derived mostly from the joint contributions of many minor catchments located north of the island, and this sediment is later transported southwestward by the

  18. Wedge disclination dipole in an embedded nanowire within the surface/interface elasticity

    NASA Astrophysics Data System (ADS)

    Shodja, Hossein M.; Rezazadeh-Kalehbasti, Shaghayegh; Gutkin, Mikhail Yu

    2013-12-01

    The elastic behavior of an arbitrary oriented wedge disclination dipole located inside a nanowire, which in turn is embedded in an infinite matrix, is studied within the surface/interface theory of elasticity. The corresponding boundary value problem is provided using complex potential functions. The potential functions are defined through modeling the wedge disclination in terms of an equivalent distribution of edge dislocations. The interface effects on the stress field and strain energy of the disclination dipole and image forces acting on it, the influence of relative shear moduli of the nanowire and the matrix, as well as the different characteristics of the interface are studied thoroughly. It is shown that the positive interface modulus leads to increased strain energy and extra repulsive forces on the disclination dipole. The noticeable effect of the negative interface modulus is the non-classical oscillations in the stress field of the disclination dipole and an extra attractive image force on it.

  19. Effect of open wedge high tibial osteotomy on the lateral compartment in sheep. Part I: Analysis of the lateral meniscus.

    PubMed

    Madry, Henning; Ziegler, Raphaela; Orth, Patrick; Goebel, Lars; Ong, Mei Fang; Kohn, Dieter; Cucchiarini, Magali; Pape, Dietrich

    2013-01-01

    To evaluate whether medial open wedge high tibial osteotomy (HTO) results in structural and biochemical changes in the lateral meniscus in adult sheep. Three experimental groups with biplanar osteotomies of the right proximal tibiae were tested: (a) closing wedge HTO resulting in 4.5° of tibial varus, (b) open wedge HTO resulting in 4.5° of tibial valgus (standard correction) and (c) open wedge HTO resulting in 9.5° of valgus (overcorrection), each of which was compared to the contralateral knees with normal limb axes. After 6 months, the lateral menisci were macroscopically and microscopically evaluated. The proteoglycan and DNA contents of the red-red and white-white zones of the anterior, middle and posterior third were determined. Semiquantitative macroscopic and microscopic grading revealed no structural differences between groups. The red-red zone of the middle third of the lateral menisci of animals that underwent overcorrection exhibited a significant 0.7-fold decrease in mean DNA contents compared with the control knee without HTO (P = 0.012). Comparative estimation of the DNA and proteoglycan contents and proteoglycan/DNA ratios of all other parts and zones of the lateral menisci did not reveal significant differences between groups. Open wedge HTO does not lead to significant macroscopic and microscopic structural changes in the lateral meniscus after 6 months in vivo. Overcorrection significantly decreases the proliferative activity of the cells in the red-red zone of the middle third in the sheep model.

  20. Wedge cutting of mild steel by CO 2 laser and cut-quality assessment in relation to normal cutting

    NASA Astrophysics Data System (ADS)

    Yilbas, B. S.; Karatas, C.; Uslan, I.; Keles, O.; Usta, Y.; Yilbas, Z.; Ahsan, M.

    2008-10-01

    In some applications, laser cutting of wedge surfaces cannot be avoided in sheet metal processing and the quality of the end product defines the applicability of the laser-cutting process in such situations. In the present study, CO 2 laser cutting of the wedge surfaces as well as normal surfaces (normal to laser beam axis) is considered and the end product quality is assessed using the international standards for thermal cutting. The cut surfaces are examined by the optical microscopy and geometric features of the cut edges such as out of flatness and dross height are measured from the micrographs. A neural network is introduced to classify the striation patterns of the cut surfaces. It is found that the dross height and out of flatness are influenced significantly by the laser output power, particularly for wedge-cutting situation. Moreover, the cut quality improves at certain value of the laser power intensity.

  1. Patella height is not altered by descending medial open-wedge high tibial osteotomy (HTO) compared to ascending HTO.

    PubMed

    Krause, Matthias; Drenck, Tobias Claus; Korthaus, Alexander; Preiss, Achim; Frosch, Karl-Heinz; Akoto, Ralph

    2018-06-01

    The primary purpose of the study was to gain insight into geometric changes of the patellar height (PH) and posterior tibial slope (PTS) after a biplanar ascending medial open-wedge high tibial osteotomy (HTO) compared to biplanar descending medial open-wedge HTO in patients with genu varum. Sixty-four patients (mean age 45.2 ± 8.7 years, females n = 24, males n = 40) with varus malalignment and medial gonarthrosis were retrospectively studied. Patients received either a biplanar ascending or descending medial open-wedge HTO. Radiographic analysis included the assessment of standing total leg axis, PH, and PTS prior to and after surgery. In the ascending HTO group, PH decreased significantly by 4.0% (p = 0.037, Caton-Deschamps index) after an average leg axis valgus-producing correction of 7.1° ± 2.8°. In the descending HTO group, with an average leg axis correction of 7.0° ± 3.7°, there were no significant PH changes. There were no significant differences between the ascending and descending HTO groups regarding PTS or leg axis. The mean post-operative leg axis between ascending (1.6° ± 1.9°) and descending HTO (1.9° ± 2.4°) was not significantly different. Compared to the biplanar ascending medial open-wedge HTO, the descending HTO did not influence patella height or increase the posterior tibial slope. In order to respect patellofemoral and slope-related knee kinematics, a biplanar descending medial open-wedge HTO has proven useful to control patella height and posterior tibial slope. These findings underscore the importance of the preoperative patella height assessment in the osteotomy planning and subsequent choice of the biplanar osteotomy direction. IV.

  2. Development of the RAIDS extreme ultraviolet wedge and strip detector. [Remote Atmospheric and Ionospheric Detector System

    NASA Technical Reports Server (NTRS)

    Kayser, D. C.; Chater, W. T.; Christensen, A. B.; Howey, C. K.; Pranke, J. B.

    1988-01-01

    In the next few years the Remote Atmospheric and Ionospheric Detector System (RAIDS) package will be flown on a Tiros spacecraft. The EUV spectrometer experiment contains a position-sensitive detector based on wedge and strip anode technology. A detector design has been implemented in brazed alumina and kovar to provide a rugged bakeable housing and anode. A stack of three 80:1 microchannel plates is operated at 3500-4100 V. to achieve a gain of about 10 to the 7th. The top MCP is to be coated with MgF for increased quantum efficiency in the range of 50-115 nm. A summary of fabrication techniques and detector performance characteristics is presented.

  3. Design and methodology of the Geo-social Analysis of Physicians' settlement (GAP-Study) in Germany.

    PubMed

    Groneberg, David A; Boll, Michael; Bauer, Jan

    2016-01-01

    Unequally distributed disease burdens within populations are well-known and occur worldwide. They are depending on residents' social status and/or ethnic background. Country-specific health care systems - especially the coverage and distribution of health care providers - are both a potential cause as well as an important solution for health inequalities. Registers are built of all accredited physicians and psychotherapists within the outpatient care system in German metropolises by utilizing the database of the Associations of Statutory Health Insurance Physicians. The physicians' practice neighborhood will be analyzed under socioeconomic and demographic perspectives. Therefore, official city districts' statistics will be assigned to the physicians and psychotherapists according to their practice location. Averages of neighborhood indicators will be calculated for each specialty. Moreover, advanced studies will inspect differences by physicians' gender or practice type. Geo-spatial analyses of the intra-city practices distribution will complete the settlement characteristics of physicians and psychotherapists within the outpatient care system in German metropolises. The project "Geo-social Analysis of Physicians' settlement" (GAP) is designed to elucidate gaps of physician coverage within the outpatient care system, dependent on neighborhood residents' social status or ethnics in German metropolises. The methodology of the GAP-Study enables the standardized investigation of physicians' settlement behavior in German metropolises and their inter-city comparisons. The identification of potential gaps within the physicians' coverage should facilitate the delineation of approaches for solving health care inequality problems.

  4. Changes in patellofemoral alignment do not cause clinical impact after open-wedge high tibial osteotomy.

    PubMed

    Lee, Yong Seuk; Lee, Sang Bok; Oh, Won Seok; Kwon, Yong Eok; Lee, Beom Koo

    2016-01-01

    The objectives of this study were (1) to evaluate the clinical and radiologic outcomes of open-wedge high tibial osteotomy focusing on patellofemoral alignment and (2) to search for correlation between variables and patellofemoral malalignment. A total of 46 knees (46 patients) from 32 females and 14 males who underwent open-wedge high tibial osteotomy were included in this retrospective case series. Outcomes were evaluated using clinical scales and radiologic parameters at the last follow-up. Pre-operative and final follow-up values were compared for the outcome analysis. For the focused analysis of the patellofemoral joint, correlation analyses between patellofemoral variables and pre- and post-operative weight-bearing line (WBL), clinical score, posterior slope, Blackburn Peel ratio, lateral patellar tilt, lateral patellar shift, and congruence angle were performed. The minimum follow-up period was 2 years and median follow-up period was 44 months (range 24-88 months). The percentage of weight-bearing line was shifted from 17.2 ± 11.1 to 56.7 ± 12.7%, and it was statistically significant (p < 0.01). Regarding the clinical results, statistical significance was observed using all scores (p < 0.01). In the radiologic evaluation, patellar descent was observed with statistical significance (p < 0.01). Last follow-up lateral patellar tilt was decreased with statistical significance (p < 0.01). In correlation analysis between variables of patellofemoral malalignment, the pre-operative weight-bearing line showed an association with the change in lateral patellar tilt and lateral patellar shift (correlation coefficient: 0.3). After open-wedge high tibial osteotomy, clinical results showed improvement, compared to pre-operative values. The patellar tilt and lateral patellar shift were not changed; however, descent of the patella was observed. Therefore, mild patellofemoral problems should not be a contraindication of the open-wedge high tibial osteotomy. Case series

  5. Role of Underground Erosion of Ice Wedges in Drainage System Formation

    NASA Astrophysics Data System (ADS)

    Fortier, D.; Shur, Y.; Allard, M.

    2006-12-01

    Natural rapid development of a new drainage system was studied on Bylot Island, Nunavut, Canada (73° 10' N, 80° 05' W). Formation of sinkholes eroded in ice wedges evolved in underground tunnels cut in ice- rich permafrost (average water content of 130%). The tunnel scouring process occurred mainly during snowmelt runoff and was manifestly a function of the intensity of the water flow entering the permafrost. When surface water flowed into the ground, the active layer was still frozen and the temperature of the permafrost at a depth of 3 m was below -15°C. Forced convection with a high convective heat transfer coefficient provided high rate of tunnels enlargement. The erosion rate was much higher in the beginning of runoff, when its velocity and discharge were high but water and soil were colder, than later in the summer, when water and soil temperature was much warmer but water discharge and velocity much lower. Widening of tunnels was followed by creep subsidence and collapse of their roofs and development of gullies. The drainage has generally developed along the elevation gradient. Some deviation from it was caused by temporal obstruction to water flow from collapsed blocks of soil. In such cases water found the way through connecting ice wedges. Retrogressive erosion escarpments exposed to flowing water retreated at a maximum rate of 1 to 5 meters per day for a total of 15 to 50 m during the summer. Escarpment exposed to atmospheric heat and solar radiation receded at a rate of 0.6 and 10 m per summer with a mean of 4 meters during the first year of exposition. Such slopes were nearly stabilized after 4 years with retreat rate of only a few centimeters per year in 2002. In four years, the underground tunnel network evolved into a continuous system of gullies over 750 m long and covering an area of about 20,000 m2. The main factors affecting rapid development of the new drainage system are the rate and volume of runoff, the presence of ice wedges, their

  6. Effects of foot orthoses with medial arch support and lateral wedge on knee adduction moment in patients with medial knee osteoarthritis.

    PubMed

    Dessery, Yoann; Belzile, Étienne; Turmel, Sylvie; Corbeil, Philippe

    2017-08-01

    There is contradictory evidence regarding whether the addition of medial arch supports to laterally wedged insoles reduces knee adduction moment, improves comfort, and reduces knee pain during the late stance phase of gait. To verify if such effects occur in participants with medial knee osteoarthritis. Randomized single-blinded study. Gait analysis was performed on 18 patients affected by medial knee osteoarthritis. Pain and comfort scores, frontal plane kinematics and kinetics of ankle, knee, and hip were compared in four conditions: without foot orthosis, with foot orthoses, with medial arch support, and with foot orthoses with medial arch support and lateral wedge insoles with 6° and 10° inclination. Lower-extremity gait kinetics were characterized by a significant decrease, greater than 6%, in second peak knee adduction moment in laterally wedged insole conditions compared to the other conditions ( p < 0.001; effect size = 0.6). No significant difference in knee adduction moment was observed between laterally wedged insole conditions. In contrast, a significant increase of 7% in knee adduction moment during the loading response was observed in the customized foot orthoses without lateral inclination condition ( p < 0.001; effect size = 0.3). No difference was found in comfort or pain ratings between conditions. Our study suggests that customized foot orthoses with a medial arch support may only be suitable for the management of medial knee osteoarthritis when a lateral wedge is included. Clinical relevance Our data suggest that customized foot orthoses with medial arch support and a lateral wedge reduce knee loading in patients with medial knee osteoarthritis (KOA). We also found evidence that medial arch support may increase knee loading, which could potentially be detrimental in KOA patients.

  7. Fluxes and burial of particulate organic carbon along the Adriatic mud-wedge (Mediterranean Sea)

    NASA Astrophysics Data System (ADS)

    Tesi, T.; Langone, L.; Giani, M.; Ravaioli, M.; Miserocchi, S.

    2012-04-01

    Clinoform-shaped deposits are ubiquitous sedimentological bodies of modern continental margins, including both carbonate and silicoclastic platforms. They formed after the attainment of the modern sea level high-stand (mid-late Holocene) when river outlets and shoreline migrated landward. As clinoform-shape deposits are essential building blocks of the infill of sedimentary basins, they are sites of intense organic carbon (OC) deposition and account for a significant fraction of OC burial in the ocean during interglacial periods. In this study, we focused on sigmoid clinoforms that are generally associated with low-energy environments. In particular, we characterized the modern accumulation and burial of OC along the late-Holocene sigmoid in the Western Adriatic Sea (Mediterranean Sea). This sedimentary body consists of a mud wedge recognizable on seismic profiles as a progradational unit lying on top the maximum flooding surface that marks the time of maximum landward shift of the shoreline attained around 5.5 kyr cal BP. In the last two decades, several projects have investigated sediment dynamics and organic geochemistry along the Adriatic mud wedge (e.g., PRISMA, EURODELTA, EuroSTRATAFORM, PASTA, CIPE, VECTOR). All these studies increased our understanding of strata formation and organic matter cycling in this epicontinental margin. The overarching goal of this study was to combine the results gained during these projects with newly acquired data to assess fluxes to seabed and burial efficiency of organic carbon along the uppermost strata of the Adriatic mud-wedge. Our study benefited of an extensive number of radionuclide-based (Pb-210, and Cs-137) sediment accumulation rates and numerous biogeochemical data of surface sediments and sediment cores (organic carbon, total nitrogen, radiocarbon measurements, carbon stable isotopes, and biomarkers). In addition, because the accumulation of river-borne sediment may or may not be linked to a specific source, another

  8. Stratification and salt-wedge in the Seomjin river estuary under the idealized tidal influence

    NASA Astrophysics Data System (ADS)

    Hwang, Jin Hwan; Jang, Dongmin; Kim, Yong Hoon

    2017-12-01

    Advection, straining, and vertical mixing play primary roles in the process of estuarine stratification. Estuaries can be classified as salt-wedge, partially-mixed or well-mixed depending on the vertical density structure determined by the balancing of advection, mixing and straining. In particular, straining plays a major role in the stratification of the estuarine water body along the estuarine channel. Also, the behavior of a salt wedge with a halocline shape in a stratified channel can be controlled by the competition between straining and mixing induced by buoyancy from the riverine source and tidal forcing. The present study uses Finite Volume Coastal Ocean Model (FVCOM) to show that straining and vertical mixing play major roles in controlling along-channel flow and stratification structures in the Seomjin river estuary (SRE) under idealized conditions. The Potential Energy Anomaly (PEA) dynamic equation quantifies the governing processes thereby enabling the determination of the stratification type. By comparing terms in the equation, we examined how the relative strengths of straining and mixing alter the stratification types in the SRE due to changes in river discharge and the depth resulting from dredging activities. SRE under idealized tidal forcing tends to be partially-mixed based on an analysis of the balance between terms and the vertical structure of salinity, and the morphological and hydrological change in SRE results in the shift of stratification type. While the depth affects the mixing, the freshwater discharge mainly controls the straining, and the balance between mixing and straining determines the final state of the stratification in an estuarine channel. As a result, the development and location of a salt wedge along the channel in a partially mixed and highly stratified condition is also determined by the ratio of straining to mixing. Finally, our findings confirm that the contributions of mixing and straining can be assessed by using the

  9. Deep long-period earthquakes west of the volcanic arc in Oregon: evidence of serpentine dehydration in the fore-arc mantle wedge

    USGS Publications Warehouse

    Vidale, John E.; Schmidt, David A.; Malone, Stephen D.; Hotovec-Ellis, Alicia J.; Moran, Seth C.; Creager, Kenneth C.; Houston, Heidi

    2014-01-01

    Here we report on deep long-period earthquakes (DLPs) newly observed in four places in western Oregon. The DLPs are noteworthy for their location within the subduction fore arc: 40–80 km west of the volcanic arc, well above the slab, and near the Moho. These “offset DLPs” occur near the top of the inferred stagnant mantle wedge, which is likely to be serpentinized and cold. The lack of fore-arc DLPs elsewhere along the arc suggests that localized heating may be dehydrating the serpentinized mantle wedge at these latitudes and causing DLPs by dehydration embrittlement. Higher heat flow in this region could be introduced by anomalously hot mantle, associated with the western migration of volcanism across the High Lava Plains of eastern Oregon, entrained in the corner flow proximal to the mantle wedge. Alternatively, fluids rising from the subducting slab through the mantle wedge may be the source of offset DLPs. As far as we know, these are among the first DLPs to be observed in the fore arc of a subduction-zone system.

  10. Electromagnetic pulse scattering by a wedge moving in a free space with relativistic velocity

    NASA Astrophysics Data System (ADS)

    Ciarkowski, Adam

    Recently, increased interest is observed in studying scattering of electromagnetic signals by objects moving with large velocities. The velocities considered can attain relativistic values. Interesting phenomena characteristic of this class of problems were observed, in this number the Doppler shift of equiphase surfaces in the diffracted wave. Apart from new techniques elaborated to attack general scattering problems involving moving objects, specific scaterring problems are also examined. Of special interest are moving scatterers with edges. The simplest scaterrer with this property is a wedge, which in particular case reduces to a half-plane. There is a number of recent works in which diffraction of specific electromagnetic signals by these objects in motion are analyzed. In most cases time-harmonic excitation fields are being assumed. This contribution is concerned with the analysis of 2D scattering of an electromagnetic pulse by a perfectly conducting wedge moving in a free space with relativistic velocity. The exciting field is a pulsed plane-wave signal, with its envelope described by a Dirac delta function. This choice is motivated by the fact that solutions to excitation fields with different envelopes can be obtained from that found here by its integration with an appropriate weight function. In this sense this solution plays a role of a Green function. In our analysis we neglect any dispersion phenomena connected with the surrounding medium. The results herein obtained may be useful in modelling phenomena connected with the space technology. In our analysis we apply the Frame Hopping Method. In particular we first Lorentz transform the pulse signal from the laboratory frame of reference where this field is defined, to the frame where the wedge is at rest. In the latter frame we Fourier transform the resulting field to the complex frequency domain, thus arriving at the problem of time-harmonic diffraction by the wedge at rest. This problem has the exact

  11. SU-E-T-562: Scanned Percent Depth Dose Curve Discrepancy for Photon Beams with Physical Wedge in Place (Varian IX) Using Different Sensitive Volume Ion Chambers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, H; Sarkar, V; Rassiah-Szegedi, P

    2014-06-01

    Purpose: To investigate and report the discrepancy of scanned percent depth dose (PDD) for photon beams with physical wedge in place when using ion chambers with different sensitive volumes. Methods/Materials: PDD curves of open fields and physical wedged fields (15, 30, 45, and 60 degree wedge) were scanned for photon beams (6MV and 10MV, Varian iX) with field size of 5x5 and 10x10 cm using three common scanning chambers with different sensitive volumes - PTW30013 (0.6cm3), PTW23323 (0.1cm3) and Exradin A16 (0.007cm3). The scanning system software used was OmniPro version 6.2, and the scanning water tank was the Scanditronix Wellhoffermore » RFA 300.The PDD curves from the three chambers were compared. Results: Scanned PDD curves of the same energy beams for open fields were almost identical between three chambers, but the wedged fields showed non-trivial differences. The largest differences were observed between chamber PTW30013 and Exradin A16. The differences increased as physical wedge angle increased. The differences also increased with depth, and were more pronounced for 6MV beam. Similar patterns were shown for both 5x5 and 10x10 cm field sizes. For open fields, all PDD values agreed with each other within 1% at 10cm depth and within 1.62% at 20 cm depth. For wedged fields, the difference of PDD values between PTW30013 and A16 reached 4.09% at 10cm depth, and 5.97% at 20 cm depth for 6MV with 60 degree physical wedge. Conclusion: We observed a significant difference in scanned PDD curves of photon beams with physical wedge in place obtained when using different sensitive volume ion chambers. The PDD curves scanned with the smallest sensitive volume ion chamber showed significant difference from larger chamber results, beyond 10cm depth. We believe this to be caused by varying response to beam hardening by the wedges.« less

  12. Note: The design of thin gap chamber simulation signal source based on field programmable gate array.

    PubMed

    Hu, Kun; Lu, Houbing; Wang, Xu; Li, Feng; Liang, Futian; Jin, Ge

    2015-01-01

    The Thin Gap Chamber (TGC) is an important part of ATLAS detector and LHC accelerator. Targeting the feature of the output signal of TGC detector, we have designed a simulation signal source. The core of the design is based on field programmable gate array, randomly outputting 256-channel simulation signals. The signal is generated by true random number generator. The source of randomness originates from the timing jitter in ring oscillators. The experimental results show that the random number is uniform in histogram, and the whole system has high reliability.

  13. Note: The design of thin gap chamber simulation signal source based on field programmable gate array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Kun; Wang, Xu; Li, Feng

    The Thin Gap Chamber (TGC) is an important part of ATLAS detector and LHC accelerator. Targeting the feature of the output signal of TGC detector, we have designed a simulation signal source. The core of the design is based on field programmable gate array, randomly outputting 256-channel simulation signals. The signal is generated by true random number generator. The source of randomness originates from the timing jitter in ring oscillators. The experimental results show that the random number is uniform in histogram, and the whole system has high reliability.

  14. Posterior tibial slope in medial opening-wedge high tibial osteotomy: 2-D versus 3-D navigation.

    PubMed

    Yim, Ji Hyeon; Seon, Jong Keun; Song, Eun Kyoo

    2012-10-01

    Although opening-wedge high tibial osteotomy (HTO) is used to correct deformities, it can simultaneously alter tibial slope in the sagittal plane because of the triangular configuration of the proximal tibia, and this undesired change in tibial slope can influence knee kinematics, stability, and joint contact pressure. Therefore, medial opening-wedge HTO is a technically demanding procedure despite the use of 2-dimensional (2-D) navigation. The authors evaluated the posterior tibial slope pre- and postoperatively in patients who underwent navigation-assisted opening-wedge HTO and compared posterior slope changes for 2-D and 3-dimensional (3-D) navigation versions. Patients were randomly divided into 2 groups based on the navigation system used: group A (2-D guidance for coronal alignment; 17 patients) and group B (3-D guidance for coronal and sagittal alignments; 17 patients). Postoperatively, the mechanical axis was corrected to a mean valgus of 2.81° (range, 1°-5.4°) in group A and 3.15° (range, 1.5°-5.6°) in group B. A significant intergroup difference existed for the amount of posterior tibial slope change (Δ slope) pre- and postoperatively (P=.04).Opening-wedge HTO using navigation offers accurate alignment of the lower limb. In particular, the use of 3-D navigation results in significantly less change in the posterior tibial slope postoperatively than does the use of 2-D navigation. Accordingly, the authors recommend the use of 3-D navigation systems because they provide real-time intraoperative information about coronal, sagittal, and transverse axes and guide the maintenance of the native posterior tibial slope. Copyright 2012, SLACK Incorporated.

  15. Arc-parallel extension and fluid flow in an ancient accretionary wedge: The San Juan Islands, Washington

    USGS Publications Warehouse

    Schermer, Elizabeth R.; Gillaspy, J.R.; Lamb, R.

    2007-01-01

    Structural analysis of the Lopez Structural Complex, a major Late Cretaceous terrane-bounding fault zone in the San Juan thrust system, reveals a sequence of events that provides insight into accretionary wedge mechanics and regional tectonics. After formation of regional ductile flattening and shear-related fabrics, the area was crosscut by brittle structures including: (1) southwest-vergent thrusts, (2) extension veins and normal faults related to northwest-southeast extension, and (3) conjugate strike-slip structures that record northwest-southeast extension and northeast-southwest shortening. Aragonite-bearing veins are associated with thrust and normal faults, but only rarely with strike-slip faults. High-pressure, low-temperature (HP-LT) minerals constrain the conditions for brittle deformation to ???20 km and <250 ??C. The presence of similar structures elsewhere indicates that the brittle structural sequence is typical of the San Juan nappes. Sustained HP-LT conditions are possible only if structures formed in an accretionary prism during active subduction, which suggests that these brittle structures record internal wedge deformation at depth and early during uplift of the San Juan nappes. The structures are consistent with orogen-normal shortening and vertical thickening followed by vertical thinning and along-strike extension. The kinematic evolution may be related initially to changes in wedge strength, followed by response to overthickening of the wedge in an unbuttressed, obliquely convergent setting. The change in vein mineralogy indicates that exhumation occurred prior to the strike-slip event. The pressure and temperature conditions and spatial and temporal extent of small faults associated with fluid flow suggest a link between these structures and the silent earthquake process. ?? 2007 Geological Society of America.

  16. Design and Operation of a Two-Color Interferometer to Measure Plasma and Neutral Gas Densities in a Laser-Triggered Spark Gap Switch

    NASA Astrophysics Data System (ADS)

    Camacho, J. F.; Ruden, E. L.; Domonkos, M. T.; Schmitt-Sody, A.; Lucero, A.

    2014-10-01

    A Mach-Zehnder imaging interferometer, operating with 1064-nm and 532-nm wavelength beams from a short-pulse laser and a frequency-doubled branch, respectively, has been designed and built to simultaneously measure plasma free electron and neutral gas densities profiles within a laser-triggered spark gap switch with a 5-mm gap. The switch will be triggered by focusing a separate 532-nm or 1064-nm laser pulse along the gap's axis to trigger low-jitter breakdown. Illuminating the gap transverse to this axis, the diagnostic will generate interferograms for each wavelength, which will then be numerically converted to phase-shift maps. These will be used to calculate independent line-integrated free electron and neutral density profiles by exploiting their different frequency dispersion curves. The density profiles themselves, then, will be calculated by Abel inversion. Details of the interferometer's design will be presented along with density data obtained using a variety of fill gasses at various pressures. Other switch parameters will be varied as well in order to characterize more fully the performance of the switch.

  17. Harnessing the polariton drag effect to design an electrically controlled optical switch.

    PubMed

    Berman, Oleg L; Kezerashvili, Roman Ya; Kolmakov, German V

    2014-10-28

    We propose a design of a Y-shaped electrically controlled optical switch based on the studies of propagation of an exciton-polariton condensate in a patterned optical microcavity with an embedded quantum well. The polaritons are driven by a time-independent force due to the microcavity wedge shape and by a time-dependent drag force owing to the interaction of excitons in a quantum well and the electric current running in a neighboring quantum well. It is demonstrated that by applying the drag force one can direct more than 90% of the polariton flow toward the desired branch of the switch with no hysteresis. By considering the transient dynamics of the polariton condensate, we estimate the response speed of the switch as 9.1 GHz. We also propose a design of the polariton switch in a flat microcavity based on the geometrically identical Y-shaped quantum wells where the polariton flow is only induced by the drag force. The latter setup enables one to design a multiway switch that can act as an electrically controlled optical transistor with on and off functions. Finally, we performed the simulations for a microcavity with an embedded gapped graphene layer and demonstrated that in this case the response speed of the switch can be increased up to 14 GHz for the same switch size. The simulations also show that the energy gap in the quasiparticle spectrum in graphene can be utilized as an additional parameter that controls the propagation of the signals in the switch.

  18. Unsteady slip flow of Carreau nanofluid over a wedge with nonlinear radiation and new mass flux condition

    NASA Astrophysics Data System (ADS)

    Khan, M.; Azam, M.; Alshomrani, A. S.

    This article addresses a numerical investigation for the unsteady 2D slip flow of Carreau nanofluid past a static and/or moving wedge with the nonlinear radiation. A zero nanoparticle mass flux and convective boundary conditions are implemented. Further, the most recently devised model for nanofluid is adopted that incorporates the effects of Brownian motion and thermophoresis. A set of suitable transformation is demonstrated to alter the nonlinear partial differential equations into nonlinear ordinary differential equations and then tackled numerically by employing bvp4c in Matlab package. The numerical computations for the wall heat flux (Nusselt number) and wall mass flux (Sherwood number) are also performed. Effects of several controlling parameters on the velocity, temperature and nanoparticles concentration are explored and discussed in detail. Our study reveals that the temperature and the associated thermal boundary layer thickness are enhancing function of the temperature ratio parameter for both shear thickening and shear thinning fluids. Moreover, it is noticed that the velocity in case of moving wedge is higher than static wedge.

  19. Fabrication of wedged multilayer Laue lenses

    DOE PAGES

    Prasciolu, M.; Leontowich, A. F. G.; Krzywinski, J.; ...

    2015-01-01

    We present a new method to fabricate wedged multilayer Laue lenses, in which the angle of diffracting layers smoothly varies in the lens to achieve optimum diffracting efficiency across the entire pupil of the lens. This was achieved by depositing a multilayer onto a flat substrate placed in the penumbra of a straight-edge mask. The distance between the mask and the substrate was calibrated and the multilayer Laue lens was cut in a position where the varying layer thickness and the varying layer tilt simultaneously satisfy the Fresnel zone plate condition and Bragg’s law for all layers in the stack.more » This method can be used to extend the achievable numerical aperture of multilayer Laue lenses to reach considerably smaller focal spot sizes than achievable with lenses composed of parallel layers.« less

  20. Numerical simulation for heat transfer performance in unsteady flow of Williamson fluid driven by a wedge-geometry

    NASA Astrophysics Data System (ADS)

    Hamid, Aamir; Hashim; Khan, Masood

    2018-06-01

    The main concern of this communication is to investigate the two-layer flow of a non-Newtonian rheological fluid past a wedge-shaped geometry. One remarkable aspect of this article is the mathematical formulation for two-dimensional flow of Williamson fluid by incorporating the effect of infinite shear rate viscosity. The impacts of heat transfer mechanism on time-dependent flow field are further studied. At first, we employ the suitable non-dimensional variables to transmute the time-dependent governing flow equations into a system of non-linear ordinary differential equations. The converted conservation equations are numerically integrated subject to physically suitable boundary conditions with the aid of Runge-Kutta Fehlberg integration procedure. The effects of involved pertinent parameters, such as, moving wedge parameter, wedge angle parameter, local Weissenberg number, unsteadiness parameter and Prandtl number on the non-dimensional velocity and temperature distributions have been evaluated. In addition, the numerical values of the local skin friction coefficient and the local Nusselt number are compared and presented through tables. The outcomes of this study indicate that the rate of heat transfer increases with the growth of both wedge angle parameter and unsteadiness parameter. Moreover, a substantial rise in the fluid velocity is observed with enhancement in the viscosity ratio parameter while an opposite trend is true for the non-dimensional temperature field. A comparison is presented between the current study and already published works and results found to be in outstanding agreement. Finally, the main findings of this article are highlighted in the last section.

  1. SAPS/SAID revisited: A causal relation to the substorm current wedge

    NASA Astrophysics Data System (ADS)

    Mishin, Evgeny; Nishimura, Yukitoshi; Foster, John

    2017-08-01

    We present multispacecraft observations of enhanced flow/electric field channels in the inner magnetosphere and conjugate subauroral ionosphere, i.e., subauroral polarization streams (SAPS) near dusk and subauroral ion drifts (SAID) near midnight. The channels collocate with ring current (RC) injections lagging the onset of substorms by a few to ˜20 min, i.e., significantly shorter than the gradient-curvature drift time of tens of keV ions. The time lag is of the order of the propagation time of reconnection-injected hot plasma jets to the premidnight plasmasphere and the substorm current wedge (SCW) to dusk. The observations confirm and expand on the previous results on the SAID features that negate the paradigm of voltage and current generators. Fast-time duskside SAPS/RC injections appear intimately related to a two-loop circuit of the substorm current wedge (SCW2L). We suggest that the poleward electric field inherent in the SCW2L circuit, which demands closure of the Region 1 and Region 2 sense field-aligned currents via meridional currents, is the ultimate cause of fast RC injections and SAPS on the duskside.

  2. SAID/SAPS Revisited: A Causal Relation to the Substorm Current Wedge

    NASA Astrophysics Data System (ADS)

    Mishin, E. V.

    2017-12-01

    We present multi-spacecraft observations of enhanced flow/electric field channels in the inner magnetosphere and conjugate subauroral ionosphere, i.e., subauroral polarization streams (SAPS) near dusk and subauroral ion drifts (SAID) near midnight. The channels collocate with ring current (RC) injections lagging the onset of substorms by a few to ˜20 minutes, i.e., significantly shorter than the gradient-curvature drift time of tens of keV ions. The time lag is of the order of the propagation time of reconnection-injected hot plasma jets to the premidnight plasmasphere and the substorm current wedge (SCW) to dusk. The observations confirm and expand on the previous results on the SAID features that negate the paradigm of voltage and current generators. Fast-time duskside SAPS/RC injections appear intimately related to a two-loop circuit of the substorm current wedge (SCW2L). We suggest that the poleward electric field inherent in the SCW2L circuit, which demands closure of the Region 1- and Region 2-sense field-aligned currents via meridional currents, is the ultimate cause of fast RC injections and SAPS on the duskside.

  3. Multi-turn multi-gap transmission line resonators - Concept, design and first implementation at 4.7T and 7T.

    PubMed

    Frass-Kriegl, Roberta; Laistler, Elmar; Hosseinnezhadian, Sajad; Schmid, Albrecht Ingo; Moser, Ewald; Poirier-Quinot, Marie; Darrasse, Luc; Ginefri, Jean-Christophe

    2016-12-01

    A novel design scheme for monolithic transmission line resonators (TLRs) is presented - the multi-turn multi-gap TLR (MTMG-TLR) design. The MTMG-TLR design enables the construction of TLRs with multiple turns and multiple gaps. This presents an additional degree of freedom in tuning self-resonant TLRs, as their resonance frequency is fully determined by the coil geometry (e.g. diameter, number of turns, conductor width, etc.). The novel design is evaluated at 4.7T and 7T by simulations and experiments, where it is demonstrated that MTMG-TLRs can be used for MRI, and that the B 1 distribution of MTMG-TLRs strongly depends on the number and distribution of turns. A comparison to conventional loop coils revealed that the B 1 performance of MTMG-TLRs is comparable to a loop coil with the same mean diameter; however, lower 10g SAR values were found for MTMG-TLRs. The MTMG-TLR design is expected to bring most benefits at high static field, where it allows for independent size and frequency selection, which cannot be achieved with standard TLR design. However, it also enables more accurate geometric optimization at low static field. Thereby, the MTMG-TLR design preserves the intrinsic advantages of TLRs, i.e. mechanical flexibility, high SAR efficiency, mass production, and coil miniaturization. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Optical position measurement for a large gap magnetic suspension system: Design and performance analysis

    NASA Technical Reports Server (NTRS)

    Welch, Sharon S.; Clemmons, James I., Jr.; Shelton, Kevin J.; Duncan, Walter C.

    1994-01-01

    An optical measurement system (OMS) has been designed and tested for a large gap magnetic suspension system (LGMSS). The LGMSS will be used to study control laws for magnetic suspension systems for vibration isolation and pointing applications. The LGMSS features six degrees of freedom and consists of a planar array of electromagnets that levitate and position a cylindrical element containing a permanent magnet core. The OMS provides information on the location and orientation of the element to the LGMSS control system to stabilize suspension. The hardware design of this optical sensing system and the tracking algorithms are presented. The results of analyses and experiments are presented that define the accuracy limits of the optical sensing system and that quantify the errors in position estimation.

  5. Assessment of tennis elbow using the Marcy Wedge-Pro.

    PubMed Central

    Smith, R W; Mani, R; Cawley, M I; Englisch, W; Eckenberger, P

    1993-01-01

    The Marcy Wedge-Pro (MWP), a device used in training by tennis players, was employed in the assessment of tennis elbow. The MWP was used to measure the ability of patients to perform wrist extension exercises, since pain resulting from this specific activity is a prominent symptom of the condition. The MWP results were compared with clinical measures and found to identify accurately patients who responded to treatment (P < 0.05). This study illustrates the potential of the MWP to assess tennis elbow quantitatively. Images Figure 1 PMID:8130959

  6. Distribution of resistive and conductive structures in Nankai accretionary wedge reveals contrasting stress paths

    NASA Astrophysics Data System (ADS)

    Conin, Marianne; Bourlange, Sylvain; Henry, Pierre; Boiselet, Aurelien; Gaillot, Philippe

    2014-01-01

    In this article, we study the characteristics and spatial distribution of the deformation structures along the Kumano transect of the Nankai accretionary wedge, and use this information to interpret the stress path followed by the sediments. Deformation structures are identified from logging while drilling (LWD) resistivity images of the materials surrounding the drill hole and from 3-dimensional X-ray CT-images of cores acquired during the IODP NanTroSEIZE project. The relative resistivity of the structures identified on logs and the strike, dip, and density of structures identified on CT scan images are measured. The analysis of dip and strike of structures indicates that most of the resistive structures identified on logging data correspond to compactive shear bands. Results also indicate that conductive structures predominate at the toe of the prism and above the main out of sequence thrust, in locations where past and recent erosion occurred. We propose several mechanisms that could explain the relation between erosion and the absence of compactive shear bands. We conclude that sediments followed different stress paths depending on their location within the wedge, and that those differences explain the distribution of deformation structures within the wedge. We also show the coexistence of dilatant and compactant structures in fault zones including the frontal thrust and mega splay fault, and we interpret the coexistence of these structures as a possible consequence of a transient fluid pressure.

  7. Proximal Tibia Medial Biplanar Retrotubercle Open Wedge Osteotomy for Varus Knees with Medial Gonarthrosis

    PubMed Central

    Türkmen, İsmail; Esenkaya, İrfan; Ünay, Koray; Türkmensoy, Fatih; Özkut, Afşar Timuçin

    2014-01-01

    Objectives: The purpose of this study is to evaluate the early results of proximal tibia medial biplanar retrotubercle open wedge osteotomy for varus gonarthrosis and compare the results with the literatüre. Methods: The results of proximal tibia medial biplanar retrotubercle open wedge osteotomy for 23 knees of 22 patients with medial gonarthrosis were evaluated clinically and radiologically. Results: Twenty of the patients were female and two were male. Mean age of the patients was 56.24; mean boy mass index was 31.95 and preoperative HSS (Hospital for Special Surgery) score was 68.7. Mean tibiofemoral axis was 186.39° and mean Insall-Salvatti index value was 1.04 preoperatively. Mean follow up period was 30.19 months. Mean HSS score was 86.48, femorotibial anatomic axis angle was 175° and Insall-Salvati index value 1.06 during the last follow-up. The improvement of the HSS score and the femorotibial anatomic axis angle was statistically significant. However, the change in Insall Salvati index values was statistically insignificant. Nonfatal pulmonary embolus in 1 patient, and deep vein thrombosis that occured one year after the procedure in 1 patient, rhabdomyolysis in 1 patient and loss of correction (relapse) in 1 patient were encountered as complications. Conclusion: Our results show that proximal tibia medial biplanar retrotubercle open wedge osteotomy improves the frontal and sagittal plane deformities without changing the patellar tendon length. Hence, possible patellofemoral problems are prevented and the clinical results are improved.

  8. Computational Analysis of Arc-Jet Wedge Tests Including Ablation and Shape Change

    NASA Technical Reports Server (NTRS)

    Goekcen, Tahir; Chen, Yih-Kanq; Skokova, Kristina A.; Milos, Frank S.

    2010-01-01

    Coupled fluid-material response analyses of arc-jet wedge ablation tests conducted in a NASA Ames arc-jet facility are considered. These tests were conducted using blunt wedge models placed in a free jet downstream of the 6-inch diameter conical nozzle in the Ames 60-MW Interaction Heating Facility. The fluid analysis includes computational Navier-Stokes simulations of the nonequilibrium flowfield in the facility nozzle and test box as well as the flowfield over the models. The material response analysis includes simulation of two-dimensional surface ablation and internal heat conduction, thermal decomposition, and pyrolysis gas flow. For ablating test articles undergoing shape change, the material response and fluid analyses are coupled in order to calculate the time dependent surface heating and pressure distributions that result from shape change. The ablating material used in these arc-jet tests was Phenolic Impregnated Carbon Ablator. Effects of the test article shape change on fluid and material response simulations are demonstrated, and computational predictions of surface recession, shape change, and in-depth temperatures are compared with the experimental measurements.

  9. Experimental simulation of frost wedging-induced crack propagation in alpine rockwall

    NASA Astrophysics Data System (ADS)

    Jia, Hailiang; Leith, Kerry; Krautblatter, Michael

    2016-04-01

    Frost wedging is widely presumed to be the principal mechanism responsible for shattering jointed low-porosity rocks in high alpine rockwalls. The interaction of ice and rock physics regulates the efficacy of frost wedging. In order to better understand temporal aspects of this interaction, we present results of a series of laboratory experiments monitoring crack widening as a result of ice formation in an artificial crack (4mm wide, 80mm deep) cut 20 mm from the end of a rectangular granite block. Our results indicate that i) freezing direction plays a key role in determining the magnitude of crack widening; in short-term (1 day) experiments, maximum crack widening during top-down freezing (associated with 'autumn' conditions) was around 0.11mm, while inside-out freezing (resulting from 'spring' conditions) produced only 0.02 mm of deformation; ii) neither ice, nor water pressure (direct tension and hydraulic fracturing respectively) caused measurable irreversible crack widening during short-term tests, as the calculated maximum stress intensity at the crack tip was less than the fracture toughness of our granite sample; iii) development of ice pressure is closely related to the mechanical properties of the fracture in which it forms, and as such, the interaction of ice and rock is intrinsically dynamic; iv) irreversible crack widening (about 0.03mm) was only observed following a long-term (53 day) experiment representing a simplified transition from autumn to winter conditions. We suggest this is the result of stress corrosion aided by strong opening during freezing, and to a lesser degree by ice segregation up to one week after the initial freezing period, and downward migration of liquid water during the remainder of the test. Our results suggest the fundamental assumption of frost wedging, that rapid freezing from open ends of cracks can seal water inside the crack and thus cause damage through excessive stresses induced by volumetric expansion seems

  10. Crystallization of soft matter under confinement at interfaces and in wedges

    NASA Astrophysics Data System (ADS)

    Archer, Andrew J.; Malijevský, Alexandr

    2016-06-01

    The surface freezing and surface melting transitions that are exhibited by a model two-dimensional soft matter system are studied. The behaviour when confined within a wedge is also considered. The system consists of particles interacting via a soft purely repulsive pair potential. Density functional theory (DFT) is used to calculate density profiles and thermodynamic quantities. The external potential due to the confining walls is modelled via a hard wall with an additional repulsive Yukawa potential. The surface phase behaviour depends on the range and strength of this repulsion: when the repulsion is weak, the wall promotes freezing at the surface of the wall. The thickness of this frozen layer grows logarithmically as the bulk liquid-solid phase coexistence is approached. Our mean-field DFT predicts that this crystalline layer at the wall must be nucleated (i.e. there is a free energy barrier) and its formation is necessarily a first-order transition, referred to as ‘prefreezing’, by analogy with the prewetting transition. However, in contrast to the latter, prefreezing cannot terminate in a critical point, since the phase transition involves a change in symmetry. If the wall-fluid interaction is sufficiently long ranged and the repulsion is strong enough, surface melting can occur instead. Then the interface between the wall and the bulk crystalline solid is wetted by the liquid phase as the chemical potential is decreased towards the value at liquid-solid coexistence. It is observed that the finite thickness fluid film at the wall has a broken translational symmetry due to its proximity to the bulk crystal, and so the nucleation of the wetting film can be either first order or continuous. Our mean-field theory predicts that for certain wall potentials there is a premelting critical point analogous to the surface critical point for the prewetting transition. When the fluid is confined within a linear wedge, this can strongly promote freezing when the

  11. The prevention and reduction of weight loss in an acute tertiary care setting: protocol for a pragmatic stepped wedge randomised cluster trial (the PRoWL project)

    PubMed Central

    2013-01-01

    Background Malnutrition, with accompanying weight loss, is an unnecessary risk in hospitalised persons and often remains poorly recognised and managed. The study aims to evaluate a hospital-wide multifaceted intervention co-facilitated by clinical nurses and dietitians addressing the nutritional care of patients, particularly those at risk of malnutrition. Using the best available evidence on reducing and preventing unplanned weight loss, the intervention (introducing universal nutritional screening; the provision of oral nutritional supplements; and providing red trays and additional support for patients in need of feeding) will be introduced by local ward teams in a phased way in a large tertiary acute care hospital. Methods/Design A pragmatic stepped wedge randomised cluster trial with repeated cross section design will be conducted. The unit of randomisation is the ward, with allocation by a random numbers table. Four groups of wards (n = 6 for three groups, n = 7 for one group) will be randomly allocated to each intervention time point over the trial. Two trained local facilitators (a nurse and dietitian for each group) will introduce the intervention. The primary outcome measure is change in patient’s body weight, secondary patient outcomes are: length of stay, all-cause mortality, discharge destinations, readmission rates and ED presentations. Patient outcomes will be measured on one ward per group, with 20 patients measured per ward per time period by an unblinded researcher. Including baseline, measurements will be conducted at five time periods. Staff perspectives on the context of care will be measured with the Alberta Context Tool. Discussion Unplanned and unwanted weight loss in hospital is common. Despite the evidence and growing concern about hospital nutrition there are very few evaluations of system-wide nutritional implementation programs. This project will test the implementation of a nutritional intervention across one hospital system using a

  12. The salt wedge position in a bar-blocked estuary subject to pulsed inflows

    NASA Astrophysics Data System (ADS)

    Coates, Michael J.; Guo, Yakun

    2003-09-01

    A series of laboratory experiments were carried out to investigate the response of a bar-blocked, saltwedge estuary to the imposition of both steady freshwater inflows and transient inflows that simulate storm events in the catchment area or the regular water releases from upstream reservoirs. The trapped salt water forms a wedge within the estuary, which migrates downstream under the influence of the freshwater inflow. The experiments show that the wedge migration occurs in two stages, namely (i) an initial phase characterized by intense shear-induced mixing at the nose of the wedge, followed by (ii) a relatively quiescent phase with significantly reduced mixing in which the wedge migrates more slowly downstream. Provided that the transition time tT between these two regimes satisfies tT> g' h4L/ q3α, as was the case for all our experiments and is likely to be the case for most estuaries, then the transition occurs at time tT=1.2( gα3L6/ g' 3q2) 1/6, where g'= gΔ ρ/ ρ0 is the reduced gravity, g the acceleration due to gravity, Δ ρ the density excess of the saline water over the density ρ0 of the freshwater, q the river inflow rate per unit width, and L and α are the length and bottom slope of the estuary, respectively. A simple model, based on conversion of the kinetic energy of the freshwater inflow into potential energy to mix the salt layer, was developed to predict the displacement xw over time t of the saltwedge nose from its initial position. For continuous inflows subject to t< tT, the model predicts the saltwedge displacement as xw/ h=1.1 ( t/ τ) 1/3, where the normalizing length and time scales are h=( q2/ g) 1/3 and τ= g' α2h4L/ q3, respectively. For continuous inflows subject to t> tT, the model predicts the displacement as xw/ h=0.45 N1/6( t/ τ) 1/6/ α, where N= q2/ g' h2L is a non-dimensional number for the problem. This model shows very good agreement with the experiments. For repeated, pulsed discharges subject to t< tT, the saltwedge

  13. Role of Neogene Exhumation and Sedimentation on Critical-Wedge Kinematics in the Zagros Orogenic Belt, Northeastern Iraq, Kurdistan

    NASA Astrophysics Data System (ADS)

    Koshnaw, R. I.; Horton, B. K.; Stockli, D. F.; Barber, D. E.; Tamar-Agha, M. Y.; Kendall, J. J.

    2014-12-01

    The Zagros orogenic belt and foreland basin formed during the Cenozoic Arabia-Eurasia collision, but the precise histories of shortening and sediment accumulation remain ambiguous, especially at the NW extent of the fold-thrust belt in Iraqi Kurdistan. This region is characterized by well-preserved successions of Cenozoic clastic foreland-basin fill and deformed Paleozoic-Mesozoic hinterland bedrock. The study area provides an excellent opportunity to investigate the linkage between orogenic wedge behavior and surface processes of erosion and deposition. The aim of this research is to test whether the Zagros orogenic wedge advanced steadily under critical to supercritical wedge conditions involving in-sequence thrusting with minimal erosion or propagated intermittently under subcritical condition involving out-of-sequence deformation with intense erosion. These endmember modes of mountain building can be assessed by integrating geo/thermochronologic and basin analyses techniques, including apatite (U-Th)/He thermochronology, detrital zircon U-Pb geochronology, stratigraphic synthesis, and seismic interpretations. Preliminary apatite (U-Th)/He data indicate activation of the Main Zagros Fault (MZF) at ~10 Ma with frontal thrusts initiating at ~8 Ma. However, thermochronometric results from the intervening Mountain Front Flexure (MFF), located between the MZF and the frontal thrusts, suggest rapid exhumation at ~6 Ma. These results suggest that the MFF, represented by the thrust-cored Qaradagh anticline, represents a major episode of out-of-sequence deformation. Detrital zircon U-Pb analyses from the Neogene foreland-basin deposits show continuous sediment derivation from sources to the NNE in Iraq and western Iran, suggesting that out-of-sequence thrusting did not significantly alter sedimentary provenance. Rather, intense hinterland erosion and recycling of older foreland-basin fill dominated sediment delivery to the basin. The irregular distribution of

  14. Wedge Experiment Modeling and Simulation for Reactive Flow Model Calibration

    NASA Astrophysics Data System (ADS)

    Maestas, Joseph T.; Dorgan, Robert J.; Sutherland, Gerrit T.

    2017-06-01

    Wedge experiments are a typical method for generating pop-plot data (run-to-detonation distance versus input shock pressure), which is used to assess an explosive material's initiation behavior. Such data can be utilized to calibrate reactive flow models by running hydrocode simulations and successively tweaking model parameters until a match between experiment is achieved. Typical simulations are performed in 1D and typically use a flyer impact to achieve the prescribed shock loading pressure. In this effort, a wedge experiment performed at the Army Research Lab (ARL) was modeled using CTH (SNL hydrocode) in 1D, 2D, and 3D space in order to determine if there was any justification in using simplified models. A simulation was also performed using the BCAT code (CTH companion tool) that assumes a plate impact shock loading. Results from the simulations were compared to experimental data and show that the shock imparted into an explosive specimen is accurately captured with 2D and 3D simulations, but changes significantly in 1D space and with the BCAT tool. The difference in shock profile is shown to only affect numerical predictions for large run distances. This is attributed to incorrectly capturing the energy fluence for detonation waves versus flat shock loading. Portions of this work were funded through the Joint Insensitive Munitions Technology Program.

  15. Development and Status of Cu Ball/Wedge Bonding in 2012

    NASA Astrophysics Data System (ADS)

    Schneider-Ramelow, Martin; Geißler, Ute; Schmitz, Stefan; Grübl, Wolfgang; Schuch, Bernhard

    2013-03-01

    Starting in the 1980s and continuing right into the last decade, a great deal of research has been published on Cu ball/wedge (Cu B/W) wire bonding. Despite this, the technology has not been established in industrial manufacturing to any meaningful extent. Only spikes in the price of Au, improvements in equipment and techniques, and better understanding of the Cu wire-bonding process have seen Cu B/W bonding become more widespread—initially primarily for consumer goods manufacturing. Cu wire bonding is now expected to soon be used for at least 20% of all ball/wedge-bonded components, and its utilization in more sophisticated applications is around the corner. In light of this progress, the present paper comprehensively reviews the existing literature on this topic and discusses wire-bonding materials, equipment, and tools in the ongoing development of Cu B/W bonding technology. Key bonding techniques, such as flame-off, how to prevent damage to the chip (cratering), and bond formation on various common chip and substrate finishes are also described. Furthermore, apart from discussing quality assessment of Cu wire bonds in the initial state, the paper also provides an overview of Cu bonding reliability, in particular regarding Cu balls on Al metalization at high temperatures and in humidity (including under the influence of halide ions).

  16. Stabilization Wedges and the Management of Global Carbon for the next 50 years

    ScienceCinema

    Socolow, Robert

    2018-05-24

    More than 40 years after receiving a Ph.D. in physics, I am still working on problems where conservation laws matter. In particular, for the problems I work on now, the conservation of the carbon atom matters. I will tell the saga of an annual flow of 8 billion tons of carbon associated with the global extraction of fossil fuels from underground. Until recently, it was taken for granted that virtually all of this carbon will move within weeks through engines of various kinds and then into the atmosphere. For compelling environmental reasons, I and many others are challenging this complacent view, asking whether the carbon might wisely be directed elsewhere. To frame this and similar discussions, Steve Pacala and I introduced the 'stabilization wedge' in 2004 as a useful unit for discussing climate stabilization. Updating the definition, a wedge is the reduction of CO2 emissions by one billion tons of carbon per year in 2057, achieved by any strategy generated as a result of deliberate attention to global carbon. Each strategy uses already commercialized technology, generally at much larger scale than today. Implementing seven wedges should enable the world to achieve the interim goal of emitting no more CO2 globally in 2057 than today. This would place humanity, approximately, on a path to stabilizing CO2 at less than double the pre-industrial concentration, and it would put those at the helm in the following 50 years in a position to drive CO2 emissions to a net of zero in the following 50 years. Arguably, the tasks of the two half-centuries are comparably difficult.

  17. Temperature of Heating and Cooling of Massive, Thin, and Wedge-Shaped Plates from Hard-to-Machine Steels During Their Grinding

    NASA Astrophysics Data System (ADS)

    Dement‧ev, V. B.; Ivanova, T. N.; Dolginov, A. M.

    2017-01-01

    Grinding of flat parts occurs by solid abrasive particles due to the physicomechanical process of deformation and to the action of a process liquid at high temperatures in a zone small in volume and difficult for observation. The rate of heating and cooling depends on the change in the intensity of the heat flux and in the velocity and time of action of the heat source. A study has been made of the regularities of the influence of each of these parameters on the depth and character of structural transformations during the grinding of flat parts from hard-to-machine steels. A procedure to calculate temperature in grinding massive, thin, and wedge-shaped parts has been developed with account taken of the geometric and thermophysical parameters of the tool and the treated part, and also of cutting regimes. The procedure can be used as a constituent part in developing a system for automatic design of the technological process of grinding of flat surfaces. A relationship between the temperature in the grinding zone and the regimes of treatment has been established which makes it possible to control the quality of the surface layer of massive, thin, and wedge-shaped plates from hard-to-machine steels. The rational boundaries of shift of cutting regimes have been determined.

  18. Single-port video-assisted thoracoscopic wedge resection: novel approaches in different genders.

    PubMed

    Xu, Kai; Bian, Wen; Xie, Hongya; Ma, Haitao; Ni, Bin

    2016-08-01

    To discuss the feasibility, safety and superiority of novel approaches in single-port video-assisted thoracoscopic wedge resection in different genders. The clinical data of patients who underwent thoracoscopic pulmonary wedge resection were analysed. A total of 197 consecutive male patients from January 2012 to December 2014, and 72 female patients from June 2013 to December 2014 were included retrospectively. Of the males, 65 received a transareolar single-port procedure (TASP Group) and 132 received a standard two-port procedure (Standard Group A). Among the females, 18 were treated with a subxiphoid single-port procedure (SXSP Group), and 54 were treated with the standard procedure (Standard Group B). The general clinical materials and surgical outcomes were evaluated. All patients underwent total thoracoscopic wedge resection successfully, and no severe complications were observed. In men, there were no significant differences in operation time, blood loss, postoperative drainage amount, chest drainage duration, postoperative hospital stay or pain score on the first postoperative day (P = 0.827; 0.423; 0.174; 0.440; 0.115; 0.159, respectively). The pain scores of the TASP Group on the day before and after removal of the chest tube were lower (P = 0.006; 0.023, respectively) than those of Standard Group A, and the incision-associated paraesthesia in the third and sixth month after operation was reduced (P = 0.041; 0.026, respectively). The incision satisfaction degree was significantly improved in the TASP Group (P = 0.001). In women, there were no significant differences in blood loss, drainage amount, chest drainage duration or postoperative hospital stay (P = 0.680; 0.757; 0.651; 0.608, respectively). The operation time of the SXSP Group was longer (P = 0.000), and the pain scores on the first postoperative day and the days before and after removal were all significantly lower (P = 0.000; 0.000; 0.000, respectively) than those of the Standard Group B

  19. Multi-linear model set design based on the nonlinearity measure and H-gap metric.

    PubMed

    Shaghaghi, Davood; Fatehi, Alireza; Khaki-Sedigh, Ali

    2017-05-01

    This paper proposes a model bank selection method for a large class of nonlinear systems with wide operating ranges. In particular, nonlinearity measure and H-gap metric are used to provide an effective algorithm to design a model bank for the system. Then, the proposed model bank is accompanied with model predictive controllers to design a high performance advanced process controller. The advantage of this method is the reduction of excessive switch between models and also decrement of the computational complexity in the controller bank that can lead to performance improvement of the control system. The effectiveness of the method is verified by simulations as well as experimental studies on a pH neutralization laboratory apparatus which confirms the efficiency of the proposed algorithm. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  20. Muon Intensity Increase by Wedge Absorbers for Low-E Muon Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neuffer, D. V.; Stratakis, D.; Bradley, J.

    2017-09-01

    Low energy muon experiments such as mu2e and g-2 have a limited energy spread acceptance. Following techniques developed in muon cooling studies and the MICE experiment, the number of muons within the desired energy spread can be increased by the matched use of wedge absorbers. More generally, the phase space of muon beams can be manipulated by absorbers in beam transport lines. Applications with simulation results are presented.

  1. Clinical, radiological and histological evaluation of biphasic calcium phosphate bioceramic wedges filling medial high tibial valgisation osteotomies.

    PubMed

    Rouvillain, J L; Lavallé, F; Pascal-Mousselard, H; Catonné, Y; Daculsi, G

    2009-10-01

    We report clinical, radiological and histological findings following high tibial valgisation osteotomy (HTVO) using micro-macroporous biphasic calcium phosphate wedges fixed with a plate and locking screws. From 1999 to 2002, 43 knees were operated on and studied prospectively. All underwent clinical and radiological follow-up at days 1, 90, and 365 to evaluate consolidation and bone substitute interfaces. Additionally, biopsies were taken for histology at least 1 year after implantation from 10 patients who requested plate removal. Radiologically, consolidation was observed in 98% of cases. At 1 year, correction was unchanged in 95% of cases. Histological analysis revealed considerable MBCP resorption and bone ingrowth, both into the pores and replacing the bioceramic material. Polarised light microscopy confirmed normal bony architecture with trabecular and/or dense lamellar bone growth at the expense of the wedge implants. X-ray and micro-CT scan revealed a well organised and mineralised structure in the newly-formed bone. This study shows that using MBCP wedges in combination with orientable locking screws and a plate is a simple, safe and fast surgical technique for HTVO. The is the first study to examine the results by histological analysis, which confirmed good outcomes.

  2. A general radiation model for sound fields and nearfield acoustical holography in wedge propagation spaces.

    PubMed

    Hoffmann, Falk-Martin; Fazi, Filippo Maria; Williams, Earl G; Fontana, Simone

    2017-09-01

    In this work an expression for the solution of the Helmholtz equation for wedge spaces is derived. Such propagation spaces represent scenarios for many acoustical problems where a free field assumption is not eligible. The proposed sound field model is derived from the general solution of the wave equation in cylindrical coordinates, using sets of orthonormal basis functions. The latter are modified to satisfy several boundary conditions representing the reflective behaviour of wedge-shaped propagation spaces. This formulation is then used in the context of nearfield acoustical holography (NAH) and to obtain the expression of the Neumann Green function. The model and its suitability for NAH is demonstrated through both numerical simulations and measured data, where the latter was acquired for the specific case of a loudspeaker on a hemi-cylindrical rigid baffle.

  3. Final Report: Rational Design of Wide Band Gap Buffer Layers for High-Efficiency Thin-Film Photovoltaics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lordi, Vincenzo

    The main objective of this project is to enable rational design of wide band gap buffer layer materials for CIGS thin-film PV by building understanding of the correlation of atomic-scale defects in the buffer layer and at the buffer/absorber interface with device electrical properties. Optimized wide band gap buffers are needed to reduce efficiency loss from parasitic absorption in the buffer. The approach uses first-principles materials simulations coupled with nanoscale analytical electron microscopy as well as device electrical characterization. Materials and devices are produced by an industrial partner in a manufacturing line to maximize relevance, with the goal of enablingmore » R&D of new buffer layer compositions or deposition processes to push device efficiencies above 21%. Cadmium sulfide (CdS) is the reference material for analysis, as the prototypical high-performing buffer material.« less

  4. Transport and optical properties of c-axis oriented wedge shaped GaN nanowall network grown by molecular beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhasker, H. P.; Dhar, S.; Thakur, Varun

    2014-02-21

    The transport and optical properties of wedge-shaped nanowall network of GaN grown spontaneously on cplane sapphire substrate by Plasma-Assisted Molecular Beam Epitaxy (PAMBE) show interesting behavior. The electron mobility at room temperature in these samples is found to be orders of magnitude higher than that of a continuous film. Our study reveals a strong correlation between the mobility and the band gap in these nanowall network samples. However, it is seen that when the thickness of the tips of the walls increases to an extent such that more than 70% of the film area is covered, it behaves close tomore » a flat sample. In the sample with lower surface coverage (≈40% and ≈60%), it was observed that the conductivity, mobility as well as the band gap increase with the decrease in the average tip width of the walls. Photoluminescence (PL) experiments show a strong and broad band edge emission with a large (as high as ≈ 90 meV) blue shift, compared to that of a continuous film, suggesting a confinement of carriers on the top edges of the nanowalls. The PL peak width remains wide at all temperatures suggesting the existence of a high density of tail states at the band edge, which is further supported by the photoconductivity result. The high conductivity and mobility observed in these samples is believed to be due to a “dissipation less” transport of carriers, which are localized at the top edges (edge states) of the nanowalls.« less

  5. The Substorm Current Wedge: Further Insights from MHD Simulations

    NASA Technical Reports Server (NTRS)

    Birn, J.; Hesse, M.

    2015-01-01

    Using a recent magnetohydrodynamic simulation of magnetotail dynamics, we further investigate the buildup and evolution of the substorm current wedge (SCW), resulting from flow bursts generated by near-tail reconnection. Each flow burst generates an individual current wedge, which includes the reduction of cross-tail current and the diversion to region 1 (R1)-type field-aligned currents (earthward on the dawn and tailward on the duskside), connecting the tail with the ionosphere. Multiple flow bursts generate initially multiple SCW patterns, which at later times combine to a wider single SCW pattern. The standard SCWmodel is modified by the addition of several current loops, related to particular magnetic field changes: the increase of Bz in a local equatorial region (dipolarization), the decrease of |Bx| away from the equator (current disruption), and increases in |By| resulting from azimuthally deflected flows. The associated loop currents are found to be of similar magnitude, 0.1-0.3 MA. The combined effect requires the addition of region 2 (R2)-type currents closing in the near tail through dawnward currents but also connecting radially with the R1 currents. The current closure at the inner boundary, taken as a crude proxy of an idealized ionosphere, demonstrates westward currents as postulated in the original SCW picture as well as North-South currents connecting R1- and R2-type currents, which were larger than the westward currents by a factor of almost 2. However, this result should be applied with caution to the ionosphere because of our neglect of finite resistance and Hall effects.

  6. Cognitive stimulation therapy as a sustainable intervention for dementia in sub-Saharan Africa: feasibility and clinical efficacy using a stepped-wedge design.

    PubMed

    Paddick, Stella-Maria; Mkenda, Sarah; Mbowe, Godfrey; Kisoli, Aloyce; Gray, William K; Dotchin, Catherine L; Ternent, Laura; Ogunniyi, Adesola; Kissima, John; Olakehinde, Olaide; Mushi, Declare; Walker, Richard W

    2017-06-01

    Cognitive stimulation therapy (CST) is a psychosocial group-based intervention for dementia shown to improve cognition and quality of life with a similar efficacy to cholinesterase inhibitors. Since CST can be delivered by non-specialist healthcare workers, it has potential for use in low-resource environments, such as sub-Saharan Africa (SSA). We aimed to assess the feasibility and clinical effectiveness of CST in rural Tanzania using a stepped-wedge design. Participants and their carers were recruited through a community dementia screening program. Inclusion criteria were DSM-IV diagnosis of dementia of mild/moderate severity following detailed assessment. No participant had a previous diagnosis of dementia and none were taking a cholinesterase inhibitor. Primary outcomes related to the feasibility of conducting CST in this setting. Key clinical outcomes were changes in quality of life and cognition. The assessing team was blind to treatment group membership. Thirty four participants with mild/moderate dementia were allocated to four CST groups. Attendance rates were high (85%) and we were able to complete all 14 sessions for each group within the seven week timeframe. Substantial improvements in cognition, anxiety, and behavioral symptoms were noted following CST, with smaller improvements in quality of life measures. The number needed to treat was two for a four-point cognitive (adapted Alzheimer's Disease Assessment Scale-Cognitive) improvement. This intervention has the potential to be low-cost, sustainable, and adaptable to other settings across SSA, particularly if it can be delivered by non-specialist health workers.

  7. Crack resistance determination of material by wedge splitting a chevron-notched specimen

    NASA Astrophysics Data System (ADS)

    Deryugin, Ye. Ye.

    2017-12-01

    An original method is proposed for the crack resistance determination of a material by wedge splitting of a chevron-notched specimen. It was developed at the Institute of Strength Physics and Materials Science SB RAS in the laboratory of Physical Mesomechanics and Nondestructive Methods of Control. An example of the crack resistance test of technical titanium VT1-0 is considered.

  8. Hard-sphere fluid adsorbed in an annular wedge: The depletion force of hard-body colloidal physics

    NASA Astrophysics Data System (ADS)

    Herring, A. R.; Henderson, J. R.

    2007-01-01

    and molecular sized mixtures, respectively. This proposal implies that nanocolloidal systems lie in between the two limits, so that the depletion force no longer scales linearly with the colloid radius. That is, by decreasing the size ratio from mesoscopic to molecular sized solutes, one moves smoothly between the Derjaguin and the DFT predictions for the depletion force scaled by the colloid radius. We describe the results of a simulation study designed specifically as a test of compatibility with this complex scenario. Grand canonical simulation procedures applied to hard-sphere fluid adsorbed in a series of annular wedges, representing the depletion regime of hard-body colloidal physics, confirm that neither the Derjaguin approximation, nor advanced formulations of DFT, apply at moderate to high solvent density when the geometry is appropriate to nanosized colloids. Our simulations also allow us to report structural characteristics of hard-body solvent adsorbed in hard annular wedges. Both these aspects are key ingredients in the proposal that unifies the disparate predictions, via the introduction of new physics. Our data are consistent with this proposed physics, although as yet limited to a single colloidal size asymmetry.

  9. Sample size determination for GEE analyses of stepped wedge cluster randomized trials.

    PubMed

    Li, Fan; Turner, Elizabeth L; Preisser, John S

    2018-06-19

    In stepped wedge cluster randomized trials, intact clusters of individuals switch from control to intervention from a randomly assigned period onwards. Such trials are becoming increasingly popular in health services research. When a closed cohort is recruited from each cluster for longitudinal follow-up, proper sample size calculation should account for three distinct types of intraclass correlations: the within-period, the inter-period, and the within-individual correlations. Setting the latter two correlation parameters to be equal accommodates cross-sectional designs. We propose sample size procedures for continuous and binary responses within the framework of generalized estimating equations that employ a block exchangeable within-cluster correlation structure defined from the distinct correlation types. For continuous responses, we show that the intraclass correlations affect power only through two eigenvalues of the correlation matrix. We demonstrate that analytical power agrees well with simulated power for as few as eight clusters, when data are analyzed using bias-corrected estimating equations for the correlation parameters concurrently with a bias-corrected sandwich variance estimator. © 2018, The International Biometric Society.

  10. Investigation of a Wedge Adhesion Test for Edge Seals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kempe, Michael; Wohlgemuth, John; Miller, David

    2016-09-26

    Many photovoltaic (PV) technologies have been found to be sensitive to moisture that diffuses into a PV package. Even with the use of impermeable frontsheets and backsheets, moisture can penetrate from the edges of a module. To limit this moisture ingress pathway from occurring, manufacturers often use a low permeability polyisobutylene (PIB) based edge seal filled with desiccant to further restrict moisture ingress. Moisture ingress studies have shown that these materials are capable of blocking moisture for the 25-year life of a module; but to do so, they must remain well-adhered and free of cracks. This work focuses on adaptingmore » the Boeing Wedge test for use with edge seals laminated using glass substrates as part of a strategy to assess the long-term durability of edge seals. The advantage of this method is that it duplicates the residual stresses and strains that a glass/glass module may have when the lamination process results in some residual glass bending that puts the perimeter in tension. Additionally, this method allows one to simultaneously expose the material to thermal stress, humidity, mechanical stress, and ultraviolet radiation. The disadvantage of this method generally is that we are limited by the fracture toughness of the glass substrates that the edge seal is adhered to. However, the low toughness of typical uncrosslinked or sparsely crosslinked PIB makes them suitable for this technique. We present data obtained during the development of the wedge test for use with PV edge seal materials. This includes development of the measuring techniques and evaluation of the test method with relevant materials. We find consistent data within a given experiment, along with the theoretical independence of fracture toughness measurements with wedge thickness. This indicates that the test methodology is reproducible. However, even though individual experimental sets are consistent, the reproducibility between experimental sets is poor. We believe this

  11. [The clinical evaluation of the lateral wedged insole fixed elastically on the subtalar joint of patients with osteoarthritis of the knee].

    PubMed

    Toda, Y

    2001-06-01

    We assessed the clinical efficacy of a lateral wedged insole with elastic fixation of the subtalar joint for conservative treatment of osteoarthritis of the knee. Novel insoles with elastic subtalar fixation (fixed insole) and a traditional shoe insert wedged insoles (inserted insole) were prepared. Seventy-one new female outpatients with osteoarthritis of the knee (knee OA) were treated with wedged insoles for 3 months. Randomization was performed according to birth date. The Severity Index of Lequesne, et al at the final assessment was compared with that at baseline in both the inserted and fixed insole groups. There were 37 participants in the inserted group and 34 participants in the fixed insole group. Regarding discomfort during nocturnal bed rest, 21 out of 34 (61%) participants were positive at the baseline assessment, however, only 8 out of 34 (27%) were positive at the final assessment in the fixed insole group (P = 0.033). In the fixed insole group, the number of participants complained immediate pain after walking was decreased from 28 (82%) at the baseline assessment to 17 (50%) at the final assessments (P = 0.0104). These significant differences were not found in the group with the inserted insole. Thus, clinical efficacy of lateral wedged insole may be emphasized with elastic fixation of the subtalar joint.

  12. Band gap in tubular pillar phononic crystal plate.

    PubMed

    Shu, Fengfeng; Liu, Yongshun; Wu, Junfeng; Wu, Yihui

    2016-09-01

    In this paper, a phononic crystal (PC) plate with tubular pillars is presented and investigated. The band structures and mode displacement profiles are calculated by using finite element method. The result shows that a complete band gap opens when the ratio of the pillar height to the plate thickness is about 1.6. However, for classic cylinder pillar structures, a band gap opens when the ratio is equal or greater than 3. A tubular pillar design with a void room in it enhances acoustic multiple scattering and gives rise to the opening of the band gap. In order to verify it, a PC structure with double tubular pillars different in size (one within the other) is introduced and a more than 2times band gap enlargement is observed. Furthermore, the coupling between the resonant mode and the plate mode around the band gap is characterized, as well as the effect of the geometrical parameters on the band gap. The behavior of such structure could be utilized to design a pillar PC with stronger structural stability and to enlarge band gaps. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Effect of open wedge high tibial osteotomy on the lateral tibiofemoral compartment in sheep. Part II: standard and overcorrection do not cause articular cartilage degeneration.

    PubMed

    Ziegler, Raphaela; Goebel, Lars; Cucchiarini, Magali; Pape, Dietrich; Madry, Henning

    2014-07-01

    To evaluate whether medial open wedge high tibial osteotomy (HTO) results in structural changes in the articular cartilage in the lateral tibiofemoral compartment of adult sheep. Three experimental groups received biplanar osteotomies of the right proximal tibiae: (a) closing wedge HTO (4.5° of tibial varus), (b) opening wedge HTO (4.5° tibial valgus; standard correction), and (c) opening wedge HTO (9.5° of valgus; overcorrection), each of which was compared to the contralateral knees that only received an arthrotomy. After 6 months, the macroscopic and microscopic characteristics of the articular cartilage of the lateral tibiofemoral compartment were assessed. The articular cartilage in the central region of the lateral tibial plateau in sheep had a higher safranin O staining intensity and was 4.6-fold thicker than in the periphery (covered by the lateral meniscus). No topographical variation in the type-II collagen immunoreactivity was seen. All lateral tibial plateaus showed osteoarthritic changes in regions not covered by the lateral meniscus. No osteoarthritis was seen in the peripheral submeniscal regions of the lateral tibial plateau and the lateral femoral condyle. Opening wedge HTO resulting in both standard and overcorrection was not associated with significant macroscopic and microscopic structural changes between groups in the articular cartilage of the lateral tibial plateau and femoral condyle after 6 months in vivo. Opening wedge HTO resulting in both standard and overcorrection is a safe procedure for the articular cartilage in an intact lateral tibiofemoral compartment of adult sheep at 6 months postoperatively.

  14. Automatic Road Gap Detection Using Fuzzy Inference System

    NASA Astrophysics Data System (ADS)

    Hashemi, S.; Valadan Zoej, M. J.; Mokhtarzadeh, M.

    2011-09-01

    Automatic feature extraction from aerial and satellite images is a high-level data processing which is still one of the most important research topics of the field. In this area, most of the researches are focused on the early step of road detection, where road tracking methods, morphological analysis, dynamic programming and snakes, multi-scale and multi-resolution methods, stereoscopic and multi-temporal analysis, hyper spectral experiments, are some of the mature methods in this field. Although most researches are focused on detection algorithms, none of them can extract road network perfectly. On the other hand, post processing algorithms accentuated on the refining of road detection results, are not developed as well. In this article, the main is to design an intelligent method to detect and compensate road gaps remained on the early result of road detection algorithms. The proposed algorithm consists of five main steps as follow: 1) Short gap coverage: In this step, a multi-scale morphological is designed that covers short gaps in a hierarchical scheme. 2) Long gap detection: In this step, the long gaps, could not be covered in the previous stage, are detected using a fuzzy inference system. for this reason, a knowledge base consisting of some expert rules are designed which are fired on some gap candidates of the road detection results. 3) Long gap coverage: In this stage, detected long gaps are compensated by two strategies of linear and polynomials for this reason, shorter gaps are filled by line fitting while longer ones are compensated by polynomials.4) Accuracy assessment: In order to evaluate the obtained results, some accuracy assessment criteria are proposed. These criteria are obtained by comparing the obtained results with truly compensated ones produced by a human expert. The complete evaluation of the obtained results whit their technical discussions are the materials of the full paper.

  15. Database of Inlet and Exhaust Noise Shielding for Wedge-Shaped Airframe

    NASA Technical Reports Server (NTRS)

    Gerhold, Carl H.; Clark, Lorenzo R.

    2001-01-01

    An experiment to measure the noise shielding of the blended wing body design concept was developed using a simplified wedge-shaped airframe. The experimental study was conducted in the Langley Anechoic Noise Research Facility. A wideband, omnidirective sound source in a simulated engine nacelle was held at locations representative of a range of engine locations above the wing. The sound field around the model was measured with the airframe and source in place and with source alone, using an-array of microphones on a rotating hoop that is also translated along an axis parallel to the airframe axis. The insertion loss was determined from the difference between the two resulting contours. Although no attempt was made to simulate the noise characteristics of a particular engine, the broadband noise source radiated sound over a range of scaled frequencies encompassing 1 and 2 times the blade passage frequency representative of a large, high-bypass-ratio turbofan engine. The measured data show that significant shielding of the inlet-radiated noise is obtained in the area beneath and upstream of the model. The data show the sensitivity of insertion loss to engine location.

  16. Distribution of active faulting along orogenic wedges: Minimum-work models and natural analogue

    NASA Astrophysics Data System (ADS)

    Yagupsky, Daniel L.; Brooks, Benjamin A.; Whipple, Kelin X.; Duncan, Christopher C.; Bevis, Michael

    2014-09-01

    Numerical 2-D models based on the principle of minimum work were used to examine the space-time distribution of active faulting during the evolution of orogenic wedges. A series of models focused on thin-skinned thrusting illustrates the effects of arid conditions (no erosion), unsteady state conditions (accretionary influx greater than erosional efflux) and steady state conditions (accretionary influx balances erosional efflux), on the distribution of fault activity. For arid settings, a general forward accretion sequence prevails, although a significant amount of internal deformation is registered: the resulting fault pattern is a rather uniform spread along the profile. Under fixed erosional efficiency settings, the frontal advance of the wedge-front is inhibited, reaching a steady state after a given forward propagation. Then, the applied shortening is consumed by surface ruptures over a narrow frontal zone. Under a temporal increase in erosional efficiency (i.e., transient non-steady state mass balance conditions), a narrowing of the synthetic wedge results; a rather diffuse fault activity distribution is observed during the deformation front retreat. Once steady balanced conditions are reached, a single long-lived deformation front prevails. Fault activity distribution produced during the deformation front retreat of the latter scenario, compares well with the structural evolution and hinterlandward deformation migration identified in southern Bolivian Subandes (SSA) from late Miocene to present. This analogy supports the notion that the SSA is not in steady state, but is rather responding to an erosional efficiency increase since late Miocene. The results shed light on the impact of different mass balance conditions on the vastly different kinematics found in mountain ranges, suggesting that those affected by growing erosion under a transient unbalanced mass flux condition tend to distribute deformation along both frontal and internal faults, while others

  17. Opening-wedge high tibial osteotomy with a locked low-profile plate: surgical technique.

    PubMed

    Kolb, Werner; Guhlmann, Hanno; Windisch, Christoph; Koller, Heiko; Grützner, Paul; Kolb, Klaus

    2010-09-01

    High tibial osteotomy has been recognized as a beneficial treatment for osteoarthritis of the medial compartment of the knee. The purpose of this prospective study was to assess the short-term results of opening-wedge high tibial osteotomies with locked plate fixation. From September 2002 to November 2005, fifty-one consecutive medial opening-wedge high tibial osteotomies were performed. The mean age of the patients at the time of the index operation was forty-nine years. The preoperative and postoperative factors analyzed included the grade of arthritis of the tibiofemoral compartment (the Ahlbäck radiographic grade), the anatomic tibiofemoral angle, patellar height, the Hospital for Special Surgery rating system score, and the Lysholm and Gillquist knee score. Postoperatively, one superficial wound infection occurred. Fifty of the fifty-one osteotomies healed after an average period of 12.9 weeks (range, eight to sixteen weeks) without bone grafts. A nonunion developed in a sixty-two-year-old patient who was a cigarette smoker. The average postoperative tibiofemoral angle was 9° of valgus. Forty-nine patients were followed for a mean of fifty-two months. The average score on the Hospital for Special Surgery rating system was 86 points at the time of the most recent follow-up. The rating was excellent in twenty-eight patients (57%), good in twelve (24%), fair in four (8%), and poor in five (10%). The average score on the Lysholm and Gillquist knee-scoring scale was 83 points. According to these scores, the outcome was excellent in nine patients (18%), good in thirty-one (63%), fair in three (6%), and poor in six (12%). Four knees failed after an average of thirty-six months. Our results suggest that an opening-wedge high tibial osteotomy with locked plate fixation allows a correct valgus angle to be achieved with good short-term results.

  18. Performance characteristics of a wedge nozzle installed on an F-18 propulsion wind tunnel model

    NASA Technical Reports Server (NTRS)

    Petit, J. E.; Capone, F. J.

    1979-01-01

    The results of two-dimensional wedge non-axisymmetric nozzle (2D-AIN) tests to determine its performance relative to the baseline axisymmetric nozzle using an F-18 jet effects wind tunnel model are presented. Configurations and test conditions simulated forward thrust-minus drag, thrust vectoring/induced lift, and thrust reversing flight conditions from Mach .6 to 1.20 and attack angles up to 10 degrees. Results of the model test program indicate that non-axisymmetric nozzles can be installed on a twin engine fighter aircraft model with equivalent thrust minus drag performance as the baseline axisymmetric nozzles. Thrust vectoring capability of the non-axisymmetric nozzles provided significant jet-induced lift on the nozzle/aftbody and horizontal tail surfaces. Thrust reversing panels deployed from the 2D-AIN centerbody wedge were very effective for static and inflight operation

  19. NOVEL CHAMBER DESIGN FOR AN IN-VACUUM CRYO-COOLED MINI-GAP UNDULATOR.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HU, J.-P.; FOERSTER, C.L.; SKARITKA, J.R.

    2006-05-24

    A stainless steel, Ultra-High Vacuum (UHV) chamber, featuring a large vertical rectangular port (53''W by 16''H), has been fabricated to house the one-meter magnet assembly of a newly installed undulator insertion device for beamline X-25 at the National Synchrotron Light Source. To achieve UHV, the new chamber is equipped with a differential ion pump, NEG pump, nude ion gauge, residual gas analyzer, and an all metal roughing valve. Temperature of the magnet assembly is maintained below 90 C during vacuum bake. The large rectangular port cover is sealed to the main flange of the chamber using a one-piece flat aluminummore » gasket and special sealing surfaces developed exclusively by Nor-Cal Products, Inc. The large flange provides easy access to the gap of the installed magnet girders for in situ magnetic measurements and shimming. Special window ports were designed into the cover and chamber for manipulation of optical micrometers external to the chamber to provide precise measurements of the in-vacuum magnet gap. The vacuum chamber assembly features independently vacuum-isolated feedthroughs that can be used for either water-or-cryogenic refrigeration-cooling of the monolithic magnet girders. This would allow for cryogenic-cooled permanent magnet operation and has been successfully tested within temperature range of +100 C to -150 C. Details of the undulator assembly for beamline X-25 is described in the paper.« less

  20. Longitudinal pavement joint performance : a field study of infrared heated and notched wedge joint construction.

    DOT National Transportation Integrated Search

    2012-12-01

    This report presents the findings of a field study in Maine, constructed during summer 2012 using : two different joint technologies and an infrared heater. MaineDOT has previously used an infrared : heater and notch-wedge apparatus to improve longit...

  1. Soil carbon sequestration is a climate stabilization wedge: comments on Sommer and Bossio (2014).

    PubMed

    Lassaletta, Luis; Aguilera, Eduardo

    2015-04-15

    Sommer and Bossio (2014) model the potential soil organic carbon (SOC) sequestration in agricultural soils (croplands and grasslands) during the next 87 years, concluding that this process cannot be considered as a climate stabilization wedge. We argue, however, that the amounts of SOC potentially sequestered in both scenarios (pessimistic and optimistic) fulfil the requirements for being considered as wedge because in both cases at least 25 GtC would be sequestered during the next 50 years. We consider that it is precisely in the near future, and meanwhile other solutions are developed, when this stabilization effort is most urgent even if after some decades the sequestration rate is significantly reduced. Indirect effects of SOC sequestration on mitigation could reinforce the potential of this solution. We conclude that the sequestration of organic carbon in agricultural soils as a climate change mitigation tool still deserves important attention for scientists, managers and policy makers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Relation of the auroral substorm to the substorm current wedge

    NASA Astrophysics Data System (ADS)

    McPherron, Robert L.; Chu, Xiangning

    2016-12-01

    The auroral substorm is an organized sequence of events seen in the aurora near midnight. It is a manifestation of the magnetospheric substorm which is a disturbance of the magnetosphere brought about by the solar wind transfer of magnetic flux from the dayside to the tail lobes and its return through the plasma sheet to the dayside. The most dramatic feature of the auroral substorm is the sudden brightening and poleward expansion of the aurora. Intimately associated with this expansion is a westward electrical current flowing across the bulge of expanding aurora. This current is fed by a downward field-aligned current (FAC) at its eastern edge and an upward current at its western edge. This current system is called the substorm current wedge (SCW). The SCW forms within a minute of auroral expansion. FAC are created by pressure gradients and field line bending from shears in plasma flow. Both of these are the result of pileup and diversion of plasma flows in the near-earth plasma sheet. The origins of these flows are reconnection sites further back in the tail. The auroral expansion can be explained by a combination of a change in field line mapping caused by the substorm current wedge and a tailward growth of the outer edge of the pileup region. We illustrate this scenario with a complex substorm and discuss some of the problems associated with this interpretation.

  3. Measured Two-Dimensional Ice-Wedge Polygon Thermal and Active Layer Dynamics

    NASA Astrophysics Data System (ADS)

    Cable, W.; Romanovsky, V. E.; Busey, R.

    2016-12-01

    Ice-wedge polygons are perhaps the most dominant permafrost related features in the arctic landscape. The microtopography of these features, that includes rims, troughs, and high and low polygon centers, alters the local hydrology. During winter, wind redistribution of snow leads to an increased snowpack depth in the low areas, while the slightly higher areas often have very thin snow cover, leading to differences across the landscape in vegetation communities and soil moisture between higher and lower areas. To investigate the effect of microtopographic caused variation in surface conditions on the ground thermal regime, we established temperature transects, composed of five vertical array thermistor probes (VATP), across four different development stages of ice-wedge polygons near Barrow, Alaska. Each VATP had 16 thermistors from the surface to a depth of 1.5 m, for a total of 80 temperature measurements per polygon. We found snow cover, timing and depth, and active layer soil moisture to be major controlling factors in the observed thermal regimes. In troughs and in the centers of low-centered polygons, the combined effect of typically saturated soils and increased snow accumulation resulted in the highest mean annual ground temperatures (MAGT) and latest freezeback dates. While the centers of high-centered polygons, with thinner snow cover and a dryer active layer, had the lowest MAGT, earliest freezeback dates, and shallowest active layer. Refreezing of the active layer initiated at nearly the same time for all locations and polygons however, we found large differences in the proportion of downward versus upward freezing and the length of time required to complete the refreezing process between polygon types and locations. Using our four polygon stages as a space for time substitution, we conclude that ice-wedge degradation resulting in surface subsidence and trough deepening can lead to overall drying of the active layer and increased skewedness of snow

  4. Wide gap Chern Mott insulating phases achieved by design

    NASA Astrophysics Data System (ADS)

    Guo, Hongli; Gangopadhyay, Shruba; Koeksal, Okan; Pentcheva, Rossitza; Pickett, Warren E.

    Chern insulators are exciting both as a novel electronic phase and for their novel and potentially useful boundary transport properties. Honeycomb lattices occupied by heavy transition metal ions,have been proposed by Okamoto and coworkers as Chern insulators, but finding a concrete example has been challenging due to an assortment of broken symmetry phases that thwart the topological character. Building on accumulated knowledge of the behavior of the 3 d series, we tune spin-orbit and interaction strength together with strain to design two Chern insulator systems (one with Ru, one with Os) with bandgaps up to 130 meV and Chern numbers calC = - 1 and calC = 2 . We find, in this class, that a trade-off between larger spin-orbit coupling and strong interactions leads to a larger gap, whereas the stronger SOC correlates with the larger magnitude of the Hall conductivity. Symmetry lowering in the course of structural relaxation hampers retaining QAH character, as pointed out previously. Fortunately there is only mild structural symmetry breaking of the bilayer in these robust Chern phases.Recent (111) growth of insulating, magnetic phases in closely related materials with this orientation supports the likelihood that synthesis and exploitation will follow. Supported partially by the NSF DMREF program.

  5. Bridging a cultural gap

    NASA Astrophysics Data System (ADS)

    Leviatan, Talma

    2008-09-01

    There has been a broad wave of change in tertiary calculus courses in the past decade. However, the much-needed change in tertiary pre-calculus programmes—aimed at bridging the gap between high-school mathematics and tertiary mathematics—is happening at a far slower pace. Following a discussion on the nature of the gap and the objectives of a potential bridging programme, this paper aims at demonstrating that the gap can be bridged, by presenting an ongoing modular bridging programme especially designed for the diverse types of student populations in teachers training colleges. We also present here some innovative teaching and assessment methods that were judged essential for the success of these programmes—focusing mainly on the "Questionnaire Based Instruction Method". Finally we suggest directions of follow up and research.

  6. Predicting orogenic wedge styles as a function of analogue erosion law and material softening

    NASA Astrophysics Data System (ADS)

    Mary, Baptiste C. L.; Maillot, Bertrand; Leroy, Yves M.

    2013-10-01

    The evolution of a compressive frictional wedge on a weak, frictional and planar décollement, subjected to frontal accretion, is predicted with a two step method called sequential limit analysis. The first step consists in finding, with the kinematic approach of limit analysis, the length of the active décollement and the dips of the emerging ramp and of the conjugate shear plane composing the emerging thrust fold. The second step leads to a modification of the geometry, first, because of the thrust fold development due to compression and, second, because of erosion. Erosion consists in removing periodically any material above a fictitious line at a selected slope, as done in analogue experiments. This application of sequential limit analysis generalizes the critical Coulomb wedge theory since it follows the internal deformation development. With constant frictional properties, the deformation is mostly diffuse, a succession of thrust folds being activated so that the topographic slope reaches exactly the theoretical, critical value. Frictional weakening on the ramps results in a deformation style composed of thrust sheets and horses. Applying an erosion slope at the critical topographic value leads to exhumation in the frontal, central, or rear region of the wedge depending on the erosion period and the weakening. Erosion at slopes slightly above or below the critical value results in exhumation toward the foreland or the hinterland, respectively, regardless of the erosion period. Exhumation is associated with duplexes, imbricate fans, antiformal stacks, and major backthrusting. Comparisons with sandbox experiments confirm that the thickness, dips, vergence, and exhumation of thrust sheets can be reproduced with friction and erosion parameters within realistic ranges of values.

  7. Numerical Simulation of Supersonic Gap Flow

    PubMed Central

    Jing, Xu; Haiming, Huang; Guo, Huang; Song, Mo

    2015-01-01

    Various gaps in the surface of the supersonic aircraft have a significant effect on airflows. In order to predict the effects of attack angle, Mach number and width-to-depth ratio of gap on the local aerodynamic heating environment of supersonic flow, two-dimensional compressible Navier-Stokes equations are solved by the finite volume method, where convective flux of space term adopts the Roe format, and discretization of time term is achieved by 5-step Runge-Kutta algorithm. The numerical results reveal that the heat flux ratio is U-shaped distribution on the gap wall and maximum at the windward corner of the gap. The heat flux ratio decreases as the gap depth and Mach number increase, however, it increases as the attack angle increases. In addition, it is important to find that chamfer in the windward corner can effectively reduce gap effect coefficient. The study will be helpful for the design of the thermal protection system in reentry vehicles. PMID:25635395

  8. Numerical simulation of supersonic gap flow.

    PubMed

    Jing, Xu; Haiming, Huang; Guo, Huang; Song, Mo

    2015-01-01

    Various gaps in the surface of the supersonic aircraft have a significant effect on airflows. In order to predict the effects of attack angle, Mach number and width-to-depth ratio of gap on the local aerodynamic heating environment of supersonic flow, two-dimensional compressible Navier-Stokes equations are solved by the finite volume method, where convective flux of space term adopts the Roe format, and discretization of time term is achieved by 5-step Runge-Kutta algorithm. The numerical results reveal that the heat flux ratio is U-shaped distribution on the gap wall and maximum at the windward corner of the gap. The heat flux ratio decreases as the gap depth and Mach number increase, however, it increases as the attack angle increases. In addition, it is important to find that chamfer in the windward corner can effectively reduce gap effect coefficient. The study will be helpful for the design of the thermal protection system in reentry vehicles.

  9. Effects of subduction and slab gaps on mantle flow beneath the Lesser Antilles based on observations of seismic anisotropy

    NASA Astrophysics Data System (ADS)

    Schlaphorst, David; Kendall, J.-Michael; Baptie, Brian; Latchman, Joan L.; Bouin, Marie-Paule

    2016-04-01

    Subduction is a key process in the formation of continental crust. However, the interaction of the mantle with the subducting slab is not fully understood and varies between subduction zones. The flow geometry and stress patterns influence seismic anisotropy; since anisotropic layers lead to variations in the speed of seismic waves as a function of the direction of wave propagation, mantle flow can be constrained by investigating the structure of these anisotropic layers. In this study we investigate seismic anisotropy in the eastern Greater and the Lesser Antilles along a subduction environment, including the crust and the upper mantle as regions of interest. We use a combination of teleseismic and local events recorded at three-component broadband seismic stations on every major island in the area to observe and distinguish between anisotropy in the crust, the mantle wedge and the sub-slab mantle. Local event delay times (0.21±0.12s) do not increase with depth, indicating a crustal origin and an isotropic mantle wedge. Teleseismic delay times are larger (1.34±0.47s), indicating sub-slab anisotropy. The results suggest trench-parallel mantle flow, with the exception of trench-perpendicular alignment in narrow regions east of Puerto Rico and south of Martinique, suggesting mantle flow through gaps in the slab. This agrees with the continuous northward mantle flow that is caused by the subducting slab proposed by previous studies of that region. We were able to identify a pattern previously unseen by other studies; on St. Lucia a trench-perpendicular trend also indicated by the stations around can be observed. This pattern can be explained by a mantle flow through a gap induced by the subduction of the boundary zone between the North and South American plates. This feature has been proposed for that area using tomographic modelling (van Benthem et al., 2013). It is based on previous results by Wadge & Shepherd (1984), who observed a vertical gap in the Wadati

  10. Sedimentation of Jurassic fan-delta wedges in the Xiahuayuan basin reflecting thrust-fault movements of the western Yanshan fold-and-thrust belt, China

    NASA Astrophysics Data System (ADS)

    Lin, Chengfa; Liu, Shaofeng; Zhuang, Qitian; Steel, Ronald J.

    2018-06-01

    Mesozoic thrusting within the Yanshan fold-and-thrust belt of North China resulted in a series of fault-bounded intramontane basins whose infill and evolution remain poorly understood. In particular, the bounding faults and adjacent sediment accumulations along the western segments of the belt are almost unstudied. A sedimentological and provenance analysis of the Lower Jurassic Xiahuayuan Formation and the Upper Jurassic Jiulongshan Formation have been mapped to show two distinctive clastic wedges: an early Jurassic wedge representing a mass-flow-dominated, Gilbert-type fan delta with a classic tripartite architecture, and an late Jurassic shoal-water fan delta without steeply inclined strata. The basinward migration of the fan-delta wedges, together with the analysis of their conglomerate clast compositions, paleocurrent data and detrital zircon U-Pb age spectra, strongly suggest that the northern-bounding Xuanhuan thrust fault controlled their growth during accumulation of the Jiulongshan Formation. Previous studies have suggested that the fan-delta wedge of the Xiahuayuan Formation was also syntectonic, related to movement on the Xuanhua thrust fault. Two stages of thrusting therefore exerted an influence on the formation and evolution of the Xiahuayuan basin during the early-late Jurassic.

  11. Femoral head wedge resection for the treatment of avascular necrosis of the femoral head after pediatric femoral neck fracture: a case report.

    PubMed

    Kim, Ha Yong; Cha, Yong Han; Choy, Won Sik; Jeung, Sang Wook; Min, Yeon Seung

    2018-05-01

    This research focuses on femoral head wedge resection for the treatment of avascular necrosis (AVN) of the femoral head. A 9-year-old girl presented to the emergency room complaining of right hip pain that occurred after a pedestrian car accident. After 8 months of internal fixation using cannulated screws for Delbet-type 2 fracture of the femoral neck, AVN of the femoral head developed in the patient. Even though valgus-derotation-extension intertrochanteric osteotomy was performed for the treatment of AVN, it progressed further and femoral head wedge resection was performed to recover the femoral head sphericity. After 3 years of follow-up, radiograph results showed appropriate and satisfactory congruency and containment. This research shows that the treatment of AVN of the femoral head using femoral head wedge resection is an effective method that can yield excellent results.

  12. Limited climate control of the Chugach/St. Elias thrust wedge in southern Alaska demonstrated by orogenic widening during Pliocene to Quaternary climate change

    NASA Astrophysics Data System (ADS)

    Meigs, Andrew

    2014-05-01

    Critical taper wedge theory is the gold standard by which climate control of convergent orogenic belts is inferred. The theory predicts (and models reproduce) that an orogenic belt narrows if erosion increases in erosion in the face of a constant tectonic influx. Numerous papers now argue on the basis of thermochronologic data that the Chugach/ St. Elias Range (CSE) of southern Alaska narrowed as a direct response to Quaternary climate change because glaciers dominated erosion of the orogenic belt. The CSE formed in response to collision of a microplate with North America and is notable because glacial erosion has dominated the CSE for the past 5 to 6 Ma. An increase in sediment accumulation rates in the foreland basin over that time suggests that glacial erosion become more efficient. If correct, it is possible that glacial erosion outpaced rock influx thereby inducing a climatically controlled narrowing of the orogenic wedge during the Quaternary. Growth strata preserved within the wedge provide a test of that interpretation because they demonstrate the spatial and temporal pattern of deformation during the Pliocene to Quaternary climate transition. A thrust front established between 6 and 5 Ma jumped towards the foreland by 30 and 15 km at 1.8 and 0.25 Ma, respectively. Distributed deformation within the thrust belt accompanied the thrust front relocations. Continuous exhumation recorded by low-temperature thermochronometers occurred contemporaneously with the shortening, parallel the structural not the topographic grain, and ages become younger towards the foreland as well. Interpreted in terms of critical wedge theory, continuous distributed deformation reflects a sub-critical wedge taper resulting from the combined effects of persistent exhumation and incremental accretion and orogenic widening via thrust front jumps into the undeformed foreland. Taper angle varies according to published cross-sections and ranges from 3 to 9 degrees. If the wedge oscillated

  13. Polarization sensitive localization based super-resolution microscopy with a birefringent wedge

    NASA Astrophysics Data System (ADS)

    Sinkó, József; Gajdos, Tamás; Czvik, Elvira; Szabó, Gábor; Erdélyi, Miklós

    2017-03-01

    A practical method has been presented for polarization sensitive localization based super-resolution microscopy using a birefringent dual wedge. The measurement of the polarization degree at the single molecule level can reveal the chemical and physical properties of the local environment of the fluorescent dye molecule and can hence provide information about the sub-diffraction sized structure of biological samples. Polarization sensitive STORM imaging of the F-Actins proved correlation between the orientation of fluorescent dipoles and the axis of the fibril.

  14. Near-Surface Profiles of Water Stable Isotope Components and Indicated Transitional History of Ice-Wedge Polygons Near Barrow

    NASA Astrophysics Data System (ADS)

    Iwahana, G.; Wilson, C.; Newman, B. D.; Heikoop, J. M.; Busey, R.

    2017-12-01

    Wetlands associated with ice-wedge polygons are commonly distributed across the Arctic Coastal Plain of northern Alaska, a region underlain by continuous permafrost. Micro-topography of the ice-wedge polygons controls local hydrology, and the micro-topography could be altered due to factors such like surface vegetation, wetness, freeze-thaw cycles, and permafrost degradation/aggradation under climate change. Understanding status of the wetlands in the near future is important because it determines biogeochemical cycle, which drives release of greenhouse gases from the ground. However, transitional regime of the ice-wedge polygons under the changing climate is not fully understood. In this study, we analyzed geochemistry of water extracted from frozen soil cores sampled down to about 1m depth in 2014 March at NGEE-Arctic sites in the Barrow Environmental Observatory. The cores were sampled from troughs/rims/centers of five different low-centered or flat-centered polygons. The frozen cores are divided into 5-10cm cores for each location, thawed in sealed plastic bags, and then extracted water was stored in vials. Comparison between the profiles of geochemistry indicated connection of soil water in the active layer at different location in a polygon, while it revealed that distinctly different water has been stored in permafrost layer at troughs/rims/centers of some polygons. Profiles of volumetric water content (VWC) showed clear signals of freeze-up desiccation in the middle of saturated active layers as low VWC anomalies at most sampling points. Water in the active layer and near-surface permafrost was classified into four categories: ice wedge / fresh meteoric / transitional / highly fractionated water. The overall results suggested prolonged separation of water in the active layer at the center of low-centered polygons without lateral connection in water path in the past.

  15. Characterization of CNRS Fizeau wedge laser tuner

    NASA Technical Reports Server (NTRS)

    1984-01-01

    A fringe detection and measurement system was constructed for use with the CNRS Fizeau wedge laser tuner, consisting of three circuit boards. The first board is a standard Reticon RC-100 B motherboard which is used to provide the timing, video processing, and housekeeping functions required by the Reticon RL-512 G photodiode array used in the system. The sampled and held video signal from the motherboard is processed by a second, custom fabricated circuit board which contains a high speed fringe detection and locating circuit. This board includes a dc level discriminator type fringe detector, a counter circuit to determine fringe center, a pulsed laser triggering circuit, and a control circuit to operate the shutter for the He-Ne reference laser beam. The fringe center information is supplied to the third board, a commercial single board computer, which governs the data collection process and interprets the results.

  16. Analysis of Sagittal Parameters in Patients Undergoing One- or Two-Level Closing Wedge Osteotomy for Correcting Thoracolumbar Kyphosis Secondary to Ankylosing Spondylitis.

    PubMed

    Hua, Wen-Bin; Zhang, Yu-Kun; Gao, Yong; Liu, Xian-Zhe; Yang, Shu-Hua; Wu, Xing-Huo; Wang, Jing; Yang, Cao

    2017-07-15

    Retrospective analysis of clinical records. To assess and compare the improvement in sagittal balance after one- or two-level closing wedge osteotomy for correcting thoracolumbar kyphosis secondary to ankylosing spondylitis (AS). Closing wedge osteotomy represents a common approach to correct kyphosis in AS. Although several reports have described the outcomes of one- or two-level closing wedge osteotomy in terms of sagittal parameters, data comparing the outcomes of these procedures are scarce. Between January 2010 and December 2014, 22 patients with AS underwent closing wedge osteotomy (one-level, 12 patients; two-level, 10 patients) for correcting thoracolumbar kyphosis (mean follow-up, 24.8 months; range, 12-60 months). Preoperative and postoperative chin-brow vertical angle, and the sagittal parameters of the vertebral osteotomy segment were documented and compared. Perioperative and postoperative complications were also recorded. The chin-brow vertical angle improved significantly, from 55.0° ± 27.3° to 4.7° ± 4.9° and from 38.2° ± 14.9° to 3.2° ± 5.4° in the one-level and two-level groups, respectively. The total correction (thoracic kyphosis and lumbar lordosis) was 32.8° ± 18.2° and 53.7° ± 9.4° in the one-level and two-level groups, respectively. No death, complete paralysis, or vascular complications occurred during the procedure, but cerebrospinal fluid leak was noted in one and two patients from the one-level and two-level groups, respectively. A distal pedicle screw adjacent to the osteotomy segment became loose during surgery in one patient (one-level group). Postoperatively, no transient neurological deficit, infection, delay union, or loosening or breaking of the internal fixation devices was observed. Osteotomy site fusion was achieved in all patients, and the Oswestry Disability Index scores improved significantly. Closing wedge osteotomy is effective and safe for correcting thoracolumbar kyphosis in

  17. Transumbilical Thoracoscopy Versus Conventional Thoracoscopy for Lung Wedge Resection: Safety and Efficacy in a Live Canine Model.

    PubMed

    Chen, Tzu-Ping; Yen-Chu; Wu, Yi-Cheng; Yeh, Chi-Ju; Liu, Chien-Ying; Hsieh, Ming-Ju; Yuan, Hsu-Chia; Ko, Po-Jen; Liu, Yun-Hen

    2015-12-01

    Transumbilical single-port surgery has been associated with less postoperative pain and offers better cosmetic outcomes than conventional 3-port laparoscopic surgery. This study compares the safety and efficacy of transumbilical thoracoscopy and conventional thoracoscopy for lung wedge resection. The animals (n = 16) were randomly assigned to the transumbilical thoracoscopic approach group (n = 8) or conventional thoracoscopic approach group (n = 8). Transumbilical lung resection was performed via an umbilical incision and a diaphragmatic incision. In the conventional thoracoscopic group, lung resection was completed through a thoracic incision. For both procedures, we compared the surgical outcomes, for example, operating time and operative complications; physiologic parameters, for example, respiratory rate and body temperature; inflammatory parameters, for example, white blood cell count; and pulmonary parameters, for example, arterial blood gas levels. The animals were euthanized 2 weeks after the surgery for gross and histologic evaluations. The lung wedge resection was successfully performed in all animals. There was no significant difference in the mean operating times or complications between the transumbilical and the conventional thoracoscopic approach groups. With regard to the physiologic impact of the surgeries, the transumbilical approach was associated with significant elevations in body temperature on postoperative day 1, when compared with the standard thoracoscopic approach. This study suggests that both approaches for performing lung wedge resection were comparable in efficacy and postoperative complications. © The Author(s) 2014.

  18. Formation of forearc basins by collision between seamounts and accretionary wedges: an example from the New Hebrides subduction zone

    USGS Publications Warehouse

    Collot, J.-Y.; Fisher, M.A.

    1989-01-01

    Seabeam data reveal two deep subcircular reentrants in the lower arc slope of the New Hebrides island arc that may illustrate two stages in the development of a novel type of forearc basin. The Malekula reentrant lies just south of the partly subducted Bougainville seamount. This proximity, as well as the similarity in morphology between the reentrant and an indentation in the lower arc slope off Japan, suggests that the Malekula reentrant formed by the collision of a seamount with the arc. An arcuate fold-thrust belt has formed across the mouth of the reentrant, forming the toe of a new accretionary wedge. The Efate reentrant may show the next stage in basin development. This reentrant lies landward of a lower-slope ridge that may have begun to form as an arcuate fold-thrust belt across the mouth of a reentrant. This belt may have grown by continued accretion at the toe of the wedge, by underplating beneath the reentrant, and by trapping of sediment shed from the island arc. These processes could result in a roughly circular forearc basin. Basins that may have formed by seamount collision lie within the accretionary wedge adjacent to the Aleutian trenches. -Authors

  19. Living on the wedge: female control of paternity in a cooperatively polyandrous cichlid

    PubMed Central

    Kohda, Masanori; Heg, Dik; Makino, Yoshimi; Takeyama, Tomohiro; Shibata, Jun-ya; Watanabe, Katsutoshi; Munehara, Hiroyuki; Hori, Michio; Awata, Satoshi

    2009-01-01

    Theories suggest that, in cooperatively breeding species, female control over paternity and reproductive output may affect male reproductive skew and group stability. Female paternity control may come about through cryptic female choice or female reproductive behaviour, but experimental studies are scarce. Here, we show a new form of female paternity control in a cooperatively polyandrous cichlid fish (Julidochromis transcriptus), in which females prefer wedge-shaped nesting sites. Wedge-shaped sites allowed females to manipulate the siring success of the group member males by spawning the clutch at the spot where the large males were just able to enter and fertilize the outer part of the clutch. Small males fertilized the inner part of the clutch, protected from the large aggressive males, leading to low male reproductive skew. Small males provided more brood care than large males. Multiple paternity induced both males to provide brood care and reduced female brood care accordingly. This is, to our knowledge, the first documented case in a species with external fertilization showing female mating behaviour leading to multiple male paternity and increased male brood care as a result. PMID:19726479

  20. Intersectionopoly: A Simulation of the Wage Gap

    ERIC Educational Resources Information Center

    Paino, Maria; May, Matthew; Burrington, Lori A.; Becker, Jacob H.

    2017-01-01

    This article describes a simulation activity designed to teach students about the wage gap. The wage gap is an important topic in many sociology classrooms, but it can be difficult to convey the accumulated disadvantage experienced by women and racial/ethnic minorities to students using in-class discussions, lectures, or assigned readings alone.…

  1. Stem thrust prediction model for W-K-M double wedge parallel expanding gate valves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eldiwany, B.; Alvarez, P.D.; Wolfe, K.

    1996-12-01

    An analytical model for determining the required valve stem thrust during opening and closing strokes of W-K-M parallel expanding gate valves was developed as part of the EPRI Motor-Operated Valve Performance Prediction Methodology (EPRI MOV PPM) Program. The model was validated against measured stem thrust data obtained from in-situ testing of three W-K-M valves. Model predictions show favorable, bounding agreement with the measured data for valves with Stellite 6 hardfacing on the disks and seat rings for water flow in the preferred flow direction (gate downstream). The maximum required thrust to open and to close the valve (excluding wedging andmore » unwedging forces) occurs at a slightly open position and not at the fully closed position. In the nonpreferred flow direction, the model shows that premature wedging can occur during {Delta}P closure strokes even when the coefficients of friction at different sliding surfaces are within the typical range. This paper summarizes the model description and comparison against test data.« less

  2. Late extension in compressional wedges above a weak, viscous décollement: results from analogue modeling

    NASA Astrophysics Data System (ADS)

    Borderie, Sandra; Vendeville, Bruno C.; Graveleau, Fabien; Witt, César

    2016-04-01

    Extension during convergence is a structural process commonly encountered in different geodynamic settings, such as accretionary wedges subjected to tectonic erosion, or mountain belts undergoing post-orogenic collapse. This has been investigated with experimental models at the scale of doubly-vergent wedges (Haq and Davis 2008; Bonini et al. 2000, Buck and Sokoutis 1994) but not thoroughly at the scale of fold-and-thrust belts. During an experimental investigation carried out on the behavior of segmented fold-and-thrust belts induced by stratigraphic inheritance in the foreland series (Borderie et al., EGU this session), unexpected shallow normal faulting occurred. The models comprised one basal frictional décollement (glass microbeads) and one upper viscous décollement embedded in the cover (silicone polymer). Extension took place during the late stages of the experiments and it was localized at the transition zone between the rear domain of the wedge and the frontal fold-and-thrust belt that detached on the upper viscous décollement. Normal faults strike parallel to the compressional structures and mainly dip toward the foreland. They root in the viscous décollement. Through a series of parametrized experiments dedicated to constrain the timing of formation of these extensional structures, we could evidence that these normal faults appear once the bulk shortening in the rear domain has created enough uplift of the internal zone by antiformal stacking and enough forelandward tilting of the upper viscous décollement. These two latter mechanisms are direct consequences of the whole wedge dynamics that links the thrust fault dynamics in the upper shallow sedimentary sequence and the thrust dynamics of the deep subsalt basement. The occurrence of this extension depends on the initial position of the upper viscous décollement and notably the position of the internal pinchout relative to the position of the backstop. Additional tests have also demonstrated that

  3. Impact of elementary school-located influenza vaccinations: A stepped wedge trial across a community.

    PubMed

    Szilagyi, Peter G; Schaffer, Stanley; Rand, Cynthia M; Goldstein, Nicolas P N; Hightower, A Dirk; Younge, Mary; Eagan, Ashley; Blumkin, Aaron; Albertin, Christina S; DiBitetto, Kristine; Concannon, Cathleen; Vincelli, Phyllis; Yoo, Byung-Kwang; Humiston, Sharon G

    2018-05-11

    Influenza vaccination rates among children are low and novel strategies are needed to raise coverage. We measured the impact of school-located influenza vaccination (SLIV) on coverage, examined whether SLIV substitutes for practice-based influenza vaccination ("substitution"), and estimated whether a second year of experience with SLIV increases its impact. We implemented a stepped wedge study design with schools as clusters. In Year 1, we randomly allocated schools to SLIV or control. In Year 2, all schools performed SLIV. We used emails (suburban schools) or backpack fliers (both urban and suburban schools) to notify parents, and offered web-based (suburban) or paper-based vaccination (urban) consent forms. Local health department nurses administered SLIV vaccinations and billed insurers. We analyzed state immunization registry data to measure influenza vaccination rates. 42 schools (38,078 children) participated over 2 years. Overall vaccination rates were 5 and 7 percentage points higher among SLIV- school children versus control-school children in suburban (aOR 1.36, 95% CI 1.25-1.49 in Years 1-2 SLIV vs. Year 1 control schools) and urban schools (aOR 1.22, 95% CI 1.10-1.36), respectively, adjusting for prior year's vaccination and other covariates. While no substitution occurred among children attending suburban schools, some substitution occurred among children attending urban schools, although overall vaccination rates were still higher in urban schools due to SLIV. Compared to an initial year of SLIV, more children were vaccinated in a second year of SLIV at urban (8.3% vs. 6.8%, aOR 1.24, 95% CI 1.04-1.47) but not suburban schools (3.5% vs. 2.7%, aOR 1.24, 95% CI 0.98-1.57). In this stepped wedge trial, SLIV increased overall influenza vaccination rates in suburban and urban schools. Some substitution for primary care vaccination occurred in urban settings. A second year of SLIV expanded its reach slightly in urban schools. Copyright © 2018 Elsevier

  4. Big mantle wedge, anisotropy, slabs and earthquakes beneath the Japan Sea

    NASA Astrophysics Data System (ADS)

    Zhao, Dapeng

    2017-09-01

    The Japan Sea is a part of the western Pacific trench-arc-backarc system and has a complex bathymetry and intense seismic activities in the crust and upper mantle. Local seismic tomography revealed strong lateral heterogeneities in the crust and uppermost mantle beneath the eastern margin of the Japan Sea, which was determined using P and S wave arrival times of suboceanic earthquakes relocated precisely with sP depth phases. Ambient-noise tomography revealed a thin crust and a thin lithosphere beneath the Japan Sea and significant low-velocity (low-V) anomalies in the shallow mantle beneath the western and eastern margins of the Japan Sea. Observations with ocean-bottom seismometers and electromagnetometers revealed low-V and high-conductivity anomalies at depths of 200-300 km in the big mantle wedge (BMW) above the subducting Pacific slab, and the anomalies are connected with the low-V zone in the normal mantle wedge beneath NE Japan, suggesting that both shallow and deep slab dehydrations occur and contribute to the arc and back-arc magmatism. The Pacific slab has a simple geometry beneath the Japan Sea, and earthquakes occur actively in the slab down to a depth of ∼600 km beneath the NE Asian margin. Teleseismic P and S wave tomography has revealed that the Philippine Sea plate has subducted aseismically down to the mantle transition zone (MTZ, 410-660 km) depths beneath the southern Japan Sea and the Tsushima Strait, and a slab window is revealed within the aseismic Philippine Sea slab. Seismic anisotropy tomography revealed a NW-SE fast-velocity direction in the BMW, which reflects corner flows induced by the fast deep subduction of the Pacific slab. Large deep earthquakes (M > 7.0; depth > 500 km) occur frequently beneath the Japan Sea western margin, which may be related to the formation of the Changbai and Ulleung intraplate volcanoes. A metastable olivine wedge is revealed within the cold core of the Pacific slab at the MTZ depth, which may be related

  5. Using health technology assessment to identify gaps in evidence and inform study design for comparative effectiveness research.

    PubMed

    Tunis, Sean R; Turkelson, Charles

    2012-12-01

    Health technology assessment (HTA) is primarily used as a tool to ensure that clinical and policy decisions are made with the benefit of a systematic analysis of all completed research. This article describes the progress and potential for HTA reports to improve the quality and relevance of future research and to better serve the information needs of patients, clinicians, payers, and other decision makers. We conducted a review of the current published literature and working papers describing past, ongoing, and future initiatives that rely on HTA reports to identify gaps in evidence and improve the design of future research. Although still in a developmental stage, significant progress is under way to improve methods for using HTA reports for the systematic identification of research gaps, prioritization of future research, and improvement of study designs. Several well-defined frameworks have been developed to assist those who produce HTA to become more effective in these additional domains of work. A recurring element of this work is the importance of meaningfully involving stakeholders in the process of defining future research needs and designing studies to address them. Patients, clinicians, and payers are important audiences for completed research and are now recognized as serving an important role in determining what future research is needed. There are substantial opportunities to improve the quality, relevance, and efficiency of clinical research. Recent efforts are beginning to demonstrate the potential to build on the work invested in developing HTA reports to provide a roadmap toward these objectives.

  6. Fluid and mass transfer into the cold mantle wedge of subduction zones: budgets and seismic constraints

    NASA Astrophysics Data System (ADS)

    Abers, G. A.; Hacker, B. R.; Van Keken, P. E.; Nakajima, J.; Kita, S.

    2015-12-01

    Dehydration of subducting plates should hydrate the shallow overlying mantle wedge where mantle is cold. In the shallow mantle wedge hydrous phases, notably serpentines, chlorite, brucite and talc should be stable to form a significant reservoir for H2O. Beneath this cold nose thermal models suggest only limited slab dehydration occurs at depths less than ca. 80 km except in warm subduction zones, but fluids may flow updip from deeper within the subducting plate to hydrate the shallow mantle. We estimate the total water storage capacity in cold noses, at temperatures where hydrous phases are stable, to be roughly 2-3% the mass of the global ocean. At modern subduction flux rates its full hydration could be achieved in 50-100 Ma if all subducting water devolatilized in the upper 100 km flows into the wedge; these estimates have at least a factor of two uncertainty. To investigate the extent to which wedge hydration actually occurs we compile and generate seismic images of forearc mantle regions. The compilation includes P- and S-velocity images with good sampling below the Moho and above the downgoing slab in forearcs, from active-source imaging, local earthquake tomography and receiver functions, while avoiding areas of complex tectonics. Well-resolved images exist for Cascadia, Alaska, the Andes, Central America, North Island New Zealand, and Japan. We compare the observed velocities to those predicted from thermal-petrologic models. Among these forearcs, Cascadia stands out as having upper-mantle seismic velocities lower than overriding crust, consistent with high (>50%) hydration. Most other forearcs show Vp close to 8.0 km/s and Vp/Vs of 1.73-1.80. We compare these observations to velocities predicted from thermal-mineralogical models. Velocities are slightly slower than expected for dry peridotite and allow 10-20% hydration, but also could also be explained as relict accreted rock, or delaminated, relaminated, or offscraped crustal material mixed with mantle

  7. Open wedge high tibial osteotomies: Calcium-phosphate ceramic spacer versus autologous bonegraft.

    PubMed

    Gouin, F; Yaouanc, F; Waast, D; Melchior, B; Delecrin, J; Passuti, N

    2010-10-01

    Valgus tibial osteotomy (VTO) is a well-known procedure for the treatment of medial compartment femoro-tibial osteoarthritis. Good and very good results have been reported with calcium phosphate wedges, which avoid the inconveniences of autologous grafts use. The hypothesis of this study is that with equivalent results in the treatment of osteoarthritis of the knee, the use of calcium phosphate wedges (BMCaPh) to fill the bone defect created by osteotomy would result in fewer specific complications and less pain associated with autologous grafts (AUTO) harvesting. This prospective, controlled, randomised study included one arm that received a macroporous, biphasic calcium phosphate wedge (BMCaPh group) and one arm that received an autologous tricortical graft (AUTO group) for filling. The same plate with locked screws was used for fixation in all cases. All patients underwent at least two years of clinical and radiographic post-operative follow-up. Forty patients were included. Loss of correction occurred in six of the twenty-two patients in the BMCaPh group (27%), resulting in three early surgical revisions, compared to one loss of correction in the AUTO group. Lateral cortical hinge tears were a risk factor for loss of correction for the entire cohort and in the BMCaPh group. (relative risk 13.3 [1.9-92]. Moreover, union took significantly longer and pain lasted significantly longer in the BMCaPh group, although results were comparable at 6 months. A significant number of undesirable events (loss of correction) occurred in this study, limiting the number of included patients. Nevertheless, the results show that although there was no difference in the two groups for overall complications, number of revisions all causes combined, or clinical results, filling with BMCaPh was less tolerated and increased the risk of loss of correction when local mechanical conditions of the knee were unfavourable (lateral cortical hinge tears). Moreover, although it is not possible

  8. Engineering of multi-segmented light tunnel and flattop focus with designed axial lengths and gaps

    NASA Astrophysics Data System (ADS)

    Yu, Yanzhong; Huang, Han; Zhou, Mianmian; Zhan, Qiwen

    2018-01-01

    Based on the radiation pattern from a sectional-uniform line source antenna, a three-dimensional (3D) focus engineering technique for the creation of multi-segmented light tunnel and flattop focus with designed axial lengths and gaps is proposed. Under a 4Pi focusing system, the fields radiated from sectional-uniform magnetic and electromagnetic current line source antennas are employed to generate multi-segmented optical tube and flattop focus, respectively. Numerical results demonstrate that the produced light tube and flattop focus remain homogeneous along the optical axis; and their lengths of the nth segment and the nth gap between consecutive segments can be easily adjusted and only depend on the sizes of the nth section and the nth blanking between adjacent sectional antennas. The optical tube is a pure azimuthally polarized field but for the flattop focus the longitudinal polarization is dominant on the optical axis. To obtain the required pupil plane illumination for constructing the above focal field with prescribed characteristics, the inverse problem of the antenna radiation field is solved. These peculiar focusing fields might find potential applications in multi-particle acceleration, multi-particle trapping and manipulation.

  9. Facilitating police recording of the alcohol‐related characteristics of assault incidents: A stepped wedge implementation trial

    PubMed Central

    Hacker, Andrew; Kingsland, Melanie; Lecathelinais, Christophe; Tindall, Jennifer; Bowman, Jennifer A.; Wolfenden, Luke

    2015-01-01

    Abstract Introduction and Aims Enforcement of liquor licensing laws is limited by inadequate police information systems. This study aimed to: (i) determine the effectiveness of an intervention in facilitating police recording of the alcohol consumption characteristics of people involved in assaults; and (ii) describe such characteristics by geographic area and setting of alcohol consumption. Design and Methods A stepped wedge trial was conducted across New South Wales, Australia. An intervention to facilitate police recording of alcohol consumption information for people involved in incidents was implemented. For people involved in an assault the proportion for which alcohol consumption information was recorded was assessed. The proportion of assaults that were alcohol related, the proportions of people that consumed alcohol prior to the assault, were intoxicated, and had consumed alcohol in various settings, are described. Results Post‐intervention, alcohol consumption information was recorded for 85–100% of people involved in an assault incident. The proportion of incidents recorded as alcohol‐related increased significantly (26–44.5%; P < 0.0001). The proportion of assaults classified as alcohol related was significantly greater in regional/rural areas (50–47%) than in metropolitan areas (38%). More people in metropolitan areas (54%) consumed alcohol on licensed premises prior to an assault than in regional/rural areas (39–42%), with approximately 70% of persons intoxicated regardless of setting of alcohol consumption. Twenty per cent of premises accounted for 60% of assaults linked to licensed premises. Discussion and Conclusions The intervention was effective in enhancing the recording of alcohol‐related information for assault incidents. Such information could enhance targeted policing of liquor licensing laws. [Wiggers JH, Hacker A, Kingsland M, Lecathelinais C, Tindall J, Bowman JA, Wolfenden L. Facilitating police recording of the

  10. Characterization of CNRS Fizeau wedge laser tuner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    A fringe detection and measurement system was constructed for use with the CNRS Fizeau wedge laser tuner, consisting of three circuit boards. The first board is a standard Reticon RC-100 B motherboard which is used to provide the timing, video processing, and housekeeping functions required by the Reticon RL-512 G photodiode array used in the system. The sampled and held video signal from the motherboard is processed by a second, custom-fabricated circuit board which contains a high-speed fringe detection and locating circuit. This board includes a dc level-discriminator-type fringe detector, a counter circuit to determine fringe center, a pulsed lasermore » triggering circuit, and a control circuit to operate the shutter for the He-Ne reference laser beam. The fringe center information is supplied to the third board, a commercial single board computer, which governs the data-collection process and interprets the results.« less

  11. Significant strain accumulation between the deformation front and landward out-of-sequence thrusts in accretionary wedge of SW Taiwan revealed by cGPS and SAR interferometry

    NASA Astrophysics Data System (ADS)

    Tsai, M. C.

    2017-12-01

    High strain accumulation across the fold-and-thrust belt in Southwestern Taiwan are revealed by the Continuous GPS (cGPS) and SAR interferometry. This high strain is generally accommodated by the major active structures in fold-and-thrust belt of western Foothills in SW Taiwan connected to the accretionary wedge in the incipient are-continent collision zone. The active structures across the high strain accumulation include the deformation front around the Tainan Tableland, the Hochiali, Hsiaokangshan, Fangshan and Chishan faults. Among these active structures, the deformation pattern revealed from cGPS and SAR interferometry suggest that the Fangshan transfer fault may be a left-lateral fault zone with thrust component accommodating the westward differential motion of thrust sheets on both side of the fault. In addition, the Chishan fault connected to the splay fault bordering the lower-slope and upper-slope of the accretionary wedge which could be the major seismogenic fault and an out-of-sequence thrust fault in SW Taiwan. The big earthquakes resulted from the reactivation of out-of-sequence thrusts have been observed along the Nankai accretionary wedge, thus the assessment of the major seismogenic structures by strain accumulation between the frontal décollement and out-of-sequence thrusts is a crucial topic. According to the background seismicity, the low seismicity and mid-crust to mantle events are observed inland and the lower- and upper- slope domain offshore SW Taiwan, which rheologically implies the upper crust of the accretionary wedge is more or less aseimic. This result may suggest that the excess fluid pressure from the accretionary wedge not only has significantly weakened the prism materials as well as major fault zone, but also makes the accretionary wedge landward extension, which is why the low seismicity is observed in SW Taiwan area. Key words: Continuous GPS, SAR interferometry, strain rate, out-of-sequence thrust.

  12. Pretest 3-D finite element modeling of the wedge pillar portion of the WIPP (Waste Isolation Pilot Plant) Geomechanical Evaluation (Room G) in situ experiment. [Waste Isolation Pilot Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Preece, D.S.

    Pretest 3-D finite element calculations have been performed on the wedge pillar portion of the WIPP Geomechanical Evaluation Experiment. The wedge pillar separates two drifts that intersect at an angle of 7.5/sup 0/. Purpose of the experiment is to provide data on the creep behavior of the wedge and progressive failure at the tip. The first set of calculations utilized a symmetry plane on the center-line of the wedge which allowed treatment of the entire configuration by modeling half of the geometry. Two 3-D calculations in this first set were performed with different drift widths to study the influence ofmore » drift size on closure and maximum stress. A cross-section perpendicular to the wedge was also analyzed with 2-D finite element models and the results compared to the 3-D results. In another set of 3-D calculations both drifts were modeled but with less distance between the drifts and the outer boundaries. Results of these calculations are compared with results from the other calculations to better understand the influence of boundary conditions.« less

  13. Soil Physicochemical Characteristics from Ice Wedge Polygons, Barrow, Alaska, Ver. 1

    DOE Data Explorer

    Chowdhury, Taniya; Graham, David

    2013-12-08

    This dataset provides details about soil cores (active layer and permafrost) collected from ice-wedge polygons during field expeditions to Barrow Environmental Observatory, Alaska in April, 2012 and 2013. Core information available are exact core locations; soil horizon descriptions and characteristics; and fundamental soil physico-chemical properties. In February 2016, two columns (carbon and carbon:nitrogen in soil layer) were added to the data but no existing data values changed. See documentation. The new filename is version 2. In July 2016, data for two soil cores were added. The new filename is version 3.

  14. The longitudinal prevalence of MRSA in care home residents and the effectiveness of improving infection prevention knowledge and practice on colonisation using a stepped wedge study design

    PubMed Central

    Horner, C; Barr, B; Hall, D; Hodgson, G; Parnell, P; Tompkins, D

    2012-01-01

    Objectives To determine the prevalence and health outcomes of meticillin-resistant Staphylococcus aureus (MRSA) colonisation in elderly care home residents. To measure the effectiveness of improving infection prevention knowledge and practice on MRSA prevalence. Setting Care homes for elderly residents in Leeds, UK. Participants Residents able to give informed consent. Design A controlled intervention study, using a stepped wedge design, comprising 65 homes divided into three groups. Baseline MRSA prevalence was determined by screening the nares of residents (n=2492). An intervention based upon staff education and training on hand hygiene was delivered at three different times according to group number. Scores for three assessment methods, an audit of hand hygiene facilities, staff hand hygiene observations and an educational questionnaire, were collected before and after the intervention. After each group of homes received the intervention, all participants were screened for MRSA nasal colonisation. In total, four surveys took place between November 2006 and February 2009. Results MRSA prevalence was 20%, 19%, 22% and 21% in each survey, respectively. There was a significant improvement in scores for all three assessment methods post-intervention (p≤0.001). The intervention was associated with a small but significant increase in MRSA prevalence (p=0.023). MRSA colonisation was associated with previous and subsequent MRSA infection but was not significantly associated with subsequent hospitalisation or mortality. Conclusions The intervention did not result in a decrease in the prevalence of MRSA colonisation in care home residents. Additional measures will be required to reduce endemic MRSA colonisation in care homes. PMID:22240647

  15. GAP Peptide Synthesis via Design of New GAP Protecting Group: An Fmoc/tBu Synthesis of Thymopentin Free from Polymers, Chromatography and Recrystallization

    PubMed Central

    Seifert, Cole W.; Paniagua, Armando; White, Gabrielle A.; Cai, Lucy

    2016-01-01

    A novel method for Fmoc/tBu solution-phase peptide synthesis and the development of a new benzyl-type GAP protecting group is reported. This new GAP protecting group is utilized in place of a polymer support, facilitating C→N Fmoc peptide synthesis without chromatography, recrystallization, or polymer supports. The GAP group can be added and removed in high yield, and was used to synthesize over 1 gram of the immunostimulant, thymopentin, in high overall yield (83%) and purity (99%). PMID:28663711

  16. Analysis and Design Considerations of a High-Power Density, Dual Air Gap, Axial-Field Brushless, Permanent Magnet Motor.

    NASA Astrophysics Data System (ADS)

    Cho, Chahee Peter

    1995-01-01

    Until recently, brush dc motors have been the dominant drive system because they provide easily controlled motor speed over a wide range, rapid acceleration and deceleration, convenient control of position, and lower product cost. Despite these capabilities, the brush dc motor configuration does not satisfy the design requirements for the U.S. Navy's underwater propulsion applications. Technical advances in rare-earth permanent magnet materials, in high-power semiconductor transistor technology, and in various rotor position-sensing devices have made using brushless permanent magnet motors a viable alternative. This research investigates brushless permanent magnet motor technology, studying the merits of dual-air gap, axial -field, brushless, permanent magnet motor configuration in terms of power density, efficiency, and noise/vibration levels. Because the design objectives for underwater motor applications include high-power density, high-performance, and low-noise/vibration, the traditional, simplified equivalent circuit analysis methods to assist in meeting these goals were inadequate. This study presents the development and verification of detailed finite element analysis (FEA) models and lumped parameter circuit models that can calculate back electromotive force waveforms, inductance, cogging torque, energized torque, and eddy current power losses. It is the first thorough quantification of dual air-gap, axial -field, brushless, permanent magnet motor parameters and performance characteristics. The new methodology introduced in this research not only facilitates the design process of an axial field, brushless, permanent magnet motor but reinforces the idea that the high-power density, high-efficiency, and low-noise/vibration motor is attainable.

  17. Bi-directional evolutionary optimization for photonic band gap structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Fei; School of Civil Engineering, Central South University, Changsha 410075; Huang, Xiaodong, E-mail: huang.xiaodong@rmit.edu.au

    2015-12-01

    Toward an efficient and easy-implement optimization for photonic band gap structures, this paper extends the bi-directional evolutionary structural optimization (BESO) method for maximizing photonic band gaps. Photonic crystals are assumed to be periodically composed of two dielectric materials with the different permittivity. Based on the finite element analysis and sensitivity analysis, BESO starts from a simple initial design without any band gap and gradually re-distributes dielectric materials within the unit cell so that the resulting photonic crystal possesses a maximum band gap between two specified adjacent bands. Numerical examples demonstrated the proposed optimization algorithm can successfully obtain the band gapsmore » from the first to the tenth band for both transverse magnetic and electric polarizations. Some optimized photonic crystals exhibit novel patterns markedly different from traditional designs of photonic crystals.« less

  18. A 2-year follow-up of a study to compare the efficacy of lateral wedged insoles with subtalar strapping and in-shoe lateral wedged insoles in patients with varus deformity osteoarthritis of the knee.

    PubMed

    Toda, Y; Tsukimura, N

    2006-03-01

    This study was conducted in order to assess the effect of wearing a lateral wedged insole with a subtalar strap for 2 years in patients with osteoarthritis varus deformity of the knee (knee OA). The setting was an outpatient clinic. The efficacies of the strapped insole and a traditional shoe insert wedged insole (the inserted insole), as a positive control, were compared at the baseline and after 2 years of treatment. Randomization was performed according to birth date. The 61 female outpatients with knee OA who completed a prior 6-month study were asked to wear their respective insoles continuously as treatment during the course of the 2-year study. The femorotibial angle (FTA) was assessed by standing radiographs obtained while the subjects were barefoot and the Lequesne index of the knee OA at 2 years was compared with those at baseline in each insole group. There were 61 patients in the original study, but 13 patients (21.3%) did not want to wear the insole continuously and five (8.2%) withdrew for other reasons. The 42 patients who completed the 2-year study were evaluated. At the 2-year assessment, participants wearing the subtalar strapped insole (n=21) demonstrated significantly decreased FTA (P=0.015), and significantly improved Lequesne index (P=0.031) in comparison with their baseline assessments. These significant differences were not found in the group with the traditional shoe inserted wedged insole (n=21). Only those participants using the subtalar strapped insole demonstrated significant change in the FTA in comparison with the baseline assessments. If the insole with a subtalar strap maintains FTA for more than 2 years, it may restrict the progression of degenerative articular cartilage lesions of knee OA.

  19. Two-dimensional Numerical Models of Accretionary Wedges Deformation in Response to Subduction and Obduction: Evidence from the Middle Part of the Manila Trench

    NASA Astrophysics Data System (ADS)

    Ma, L.; Ding, W.; Chen, L.; Gerya, T.

    2016-12-01

    The Manila Trench is located at the eastern boundary of the South China Sea (SCS). It was created by the subduction of the South China Sea Plate beneath the Philippine Sea Plate since the early Neogene, and also influenced by the northwestern movement of the Philippine Sea Plate. There is wide discussion whether the dual-subduction and widespread seamounts in the South China Sea would have play important roles in the 'S-shaped' geometry and the different diving angle along the Manila Trench. Multi-beam tectono-geomorphological studies on the accretionary wedges have suggested that: (1) the stress direction of the subduction along the middle part of the Manila Trench, between 17o and 18 o N, is NW55 o; (2) The Manila Trench is actually caused by obduction due to the northwestern movement of the Philippine Sea Plate. Although the NW 55 o stress direction has been supported by detailed analysis on the trend of the folds, thrust faults, extension fractures and large sea-floor canyon, its obduction-origin is purely based on regional structure. Here we use 2D numerical modeling experiments to investigate the deformation style of accretionary wedge in response to the seamounts subduction and obduction, and provide new insights into the mechanism responsible for the Luzon obduction along the Manila Trench. Our preliminary results show that: (1) the accretionary wedge is eroded faster in subduction model; (2) the velocity field direction of the slab differs in two models at the beginning of seamount subduction, which is vertical in obduction model, but oblique in subduction model; (3) both sides of the accretionary wedge deform strongly in subduction model, whereas in obduction model only the leading edge shows intensive deformation. Further modelling will focus on other parts of the Manila Trench with different slab age and subduction velocity to see their tectonic influences on the accretionary wedges.

  20. Architecture, kinematics, and exhumation of a convergent orogenic wedge: A thermochronological investigation of tectonic-climatic interactions within the central St. Elias orogen, Alaska

    NASA Astrophysics Data System (ADS)

    Berger, Aaron L.; Spotila, James A.; Chapman, James B.; Pavlis, Terry L.; Enkelmann, Eva; Ruppert, Natalia A.; Buscher, Jamie T.

    2008-06-01

    The kinematics and architecture of orogenic systems along the leading edges of accreting terranes may be heavily influenced by climate, but little research has been devoted to the long-term effects of glacial erosion on orogenesis. Here we use low-temperature apatite and zircon (U-Th)/He and fission-track thermochronometry, along with subsidiary structural relationships and seismicity, to develop a new architectural model of the St. Elias orogen in southern Alaska, which is one of the best examples of a glaciated orogenic wedge worldwide. These data illustrate that the orogen consists of a deformational backstop on the leeward flank and a rapidly deforming and eroding, thin-skinned fold and thrust belt on the windward flank. A structure beneath the Bagley ice field separates these distinct deformational domains, which we propose is a backthrust that makes the orogen doubly-vergent. Thermochronometry within the orogenic wedge suggests that denudation and deformation are strongly influenced by glacial erosion. Long-term exhumation, at rates of up to 4 mm/yr, is concentrated within a narrow zone along the windward flank, where glacier equilibrium lines intersect the orogenic wedge. The onset of enhanced glaciation also coincided with a marked acceleration in exhumation across the orogenic wedge, accelerated backthrust motion, and a major shift in deformation away from the North American-Yakutat terrane suture (Chugach St. Elias fault). We propose that accelerated glacial erosion forced the redistribution of strain along the backthrust and an en echelon array of forethrusts that lie beneath the zone of heaviest glaciation, which in turn are systematically truncated by the backthrust. This focusing of deformation matches predictions from analytical models of orogenic wedges and implies a high degree of coupling between climate and tectonics in this glacially-dominated orogen.

  1. An info-gap application to robust design of a prestressed space structure under epistemic uncertainties

    NASA Astrophysics Data System (ADS)

    Hot, Aurélien; Weisser, Thomas; Cogan, Scott

    2017-07-01

    Uncertainty quantification is an integral part of the model validation process and is important to take into account during the design of mechanical systems. Sources of uncertainty are diverse but generally fall into two categories: aleatory due to random process and epistemic resulting from a lack of knowledge. This work focuses on the behavior of solar arrays in their stowed configuration. To avoid impacts during launch, snubbers are used to prestress the panels. Since the mechanical properties of the snubbers and the associated preload configurations are difficult to characterize precisely, an info-gap approach is proposed to investigate the influence of such uncertainties on design configurations obtained for different values of safety factors. This eventually allows to revise the typical values of these factors and to reevaluate them with respect to a targeted robustness level. The proposed methodology is illustrated using a simplified finite element model of a solar array.

  2. Ultra-wide acoustic band gaps in pillar-based phononic crystal strips

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coffy, Etienne, E-mail: etienne.coffy@femto-st.fr; Lavergne, Thomas; Addouche, Mahmoud

    2015-12-07

    An original approach for designing a one dimensional phononic crystal strip with an ultra-wide band gap is presented. The strip consists of periodic pillars erected on a tailored beam, enabling the generation of a band gap that is due to both Bragg scattering and local resonances. The optimized combination of both effects results in the lowering and the widening of the main band gap, ultimately leading to a gap-to-midgap ratio of 138%. The design method used to improve the band gap width is based on the flattening of phononic bands and relies on the study of the modal energy distributionmore » within the unit cell. The computed transmission through a finite number of periods corroborates the dispersion diagram. The strong attenuation, in excess of 150 dB for only five periods, highlights the interest of such ultra-wide band gap phononic crystal strips.« less

  3. Experimental investigation of material nonlinearity using the Rayleigh surface waves excited and detected by angle beam wedge transducers.

    PubMed

    Zhang, Shuzeng; Li, Xiongbing; Jeong, Hyunjo; Hu, Hongwei

    2018-05-12

    Angle beam wedge transducers are widely used in nonlinear Rayleigh wave experiments as they can generate Rayleigh wave easily and produce high intensity nonlinear waves for detection. When such a transducer is used, the spurious harmonics (source nonlinearity) and wave diffraction may occur and will affect the measurement results, so it is essential to fully understand its acoustic nature. This paper experimentally investigates the nonlinear Rayleigh wave beam fields generated and received by angle beam wedge transducers, in which the theoretical predictions are based on the acoustic model developed previously for angle beam wedge transducers [S. Zhang, et al., Wave Motion, 67, 141-159, (2016)]. The source of the spurious harmonics is fully characterized by scrutinizing the nonlinear Rayleigh wave behavior in various materials with different driving voltages. Furthermore, it is shown that the attenuation coefficients for both fundamental and second harmonic Rayleigh waves can be extracted by comparing the measurements with the predictions when the experiments are conducted at many locations along the propagation path. A technique is developed to evaluate the material nonlinearity by making appropriate corrections for source nonlinearity, diffraction and attenuation. The nonlinear parameters of three aluminum alloy specimens - Al 2024, Al 6061 and Al 7075 - are measured, and the results indicate that the measurement results can be significantly improved using the proposed method. Copyright © 2018. Published by Elsevier B.V.

  4. Comparison of Mechanical Axis and Dynamic Range Assessed with Weight Bearing Radiographs and Navigation System in Closed Wedge High Tibial Osteotomy

    PubMed Central

    Bae, Dae Kyung; Lee, Jong Whan; Cho, Seong Jin; Song, Sang Jun

    2017-01-01

    Purpose To compare navigation and weight bearing radiographic measurements of mechanical axis (MA) before and after closed wedge high tibial osteotomy (HTO) and to evaluate post-osteotomy changes in MA assessed during application of external varus or valgus force. Materials and Methods Data from 30 consecutive patients (30 knees) who underwent computer-assisted closed-wedge HTO were prospectively analyzed. Pre- and postoperative weight bearing radiographic evaluation of MA was performed. Under navigation guidance, pre- and post-osteotomy MA values were measured in an unloaded position. Any change in the post-osteotomy MA in response to external varus or valgus force, which was named as dynamic range, was evaluated with the navigation system. The navigation and weight bearing radiographic measurements were compared. Results Although there was a positive correlation between navigation and radiographic measurements, the reliability of navigation measurements of coronal alignment was reduced after osteotomy and wedge closing. The mean post-osteotomy MA value measured with the navigation was 3.5°±0.8° valgus in an unloaded position. It was 1.3°±0.8° valgus under varus force and 5.8°±1.1° valgus under valgus force. The average dynamic range was >±2°. Conclusions Potential differences between the postoperative MAs assessed by weight bearing radiographs and the navigation system in unloaded position should be considered during computer-assisted closed wedge HTO. Care should be taken to keep the dynamic range within the permissible range of alignment goal in HTO. PMID:28854769

  5. Wide gap Chern Mott insulating phases achieved by design

    NASA Astrophysics Data System (ADS)

    Guo, Hongli; Gangopadhyay, Shruba; Köksal, Okan; Pentcheva, Rossitza; Pickett, Warren E.

    2017-12-01

    Quantum anomalous Hall insulators, which display robust boundary charge and spin currents categorized in terms of a bulk topological invariant known as the Chern number (Thouless et al Phys. Rev. Lett. 49, 405-408 (1982)), provide the quantum Hall anomalous effect without an applied magnetic field. Chern insulators are attracting interest both as a novel electronic phase and for their novel and potentially useful boundary charge and spin currents. Honeycomb lattice systems such as we discuss here, occupied by heavy transition-metal ions, have been proposed as Chern insulators, but finding a concrete example has been challenging due to an assortment of broken symmetry phases that thwart the topological character. Building on accumulated knowledge of the behavior of the 3d series, we tune spin-orbit and interaction strength together with strain to design two Chern insulator systems with bandgaps up to 130 meV and Chern numbers C = -1 and C = 2. We find, in this class, that a trade-off between larger spin-orbit coupling and strong interactions leads to a larger gap, whereas the stronger spin-orbit coupling correlates with the larger magnitude of the Hall conductivity. Symmetry lowering in the course of structural relaxation hampers obtaining quantum anomalous Hall character, as pointed out previously; there is only mild structural symmetry breaking of the bilayer in these robust Chern phases. Recent growth of insulating, magnetic phases in closely related materials with this orientation supports the likelihood that synthesis and exploitation will follow.

  6. On the instability of hypersonic flow past a wedge

    NASA Technical Reports Server (NTRS)

    Cowley, Stephen; Hall, Philip

    1988-01-01

    The instability of a compressible flow past a wedge is investigated in the hypersonic limit. Particular attention is given to the Tollmien-Schlichting waves governed by triple-deck theory though some discussion of inviscid modes is given. It is shown that the attached shock has a significant effect on the growth rates of Tollmien-Schlichting waves. Moreover, the presence of the shock allows for more than one unstable Tollmien-Schlichting wave. Indeed, an infinite discrete spectrum of unstable waves is induced by the shock, but these modes are unstable over relatively small but high frequency ranges. The shock is shown to have little effect on the inviscid modes considered by previous authors and an asymptotic description of inviscid modes in the hypersonic limit is given.

  7. Mantle wedge infiltrated with saline fluids from dehydration and decarbonation of subducting slab

    PubMed Central

    Kawamoto, Tatsuhiko; Yoshikawa, Masako; Kumagai, Yoshitaka; Mirabueno, Ma. Hannah T.; Okuno, Mitsuru; Kobayashi, Tetsuo

    2013-01-01

    Slab-derived fluids play an important role in heat and material transfer in subduction zones. Dehydration and decarbonation reactions of minerals in the subducting slab have been investigated using phase equilibria and modeling of fluid flow. Nevertheless, direct observations of the fluid chemistry and pressure–temperature conditions of fluids are few. This report describes CO2-bearing saline fluid inclusions in spinel-harzburgite xenoliths collected from the 1991 Pinatubo pumice deposits. The fluid inclusions are filled with saline solutions with 5.1 ± 1.0% (wt) NaCl-equivalent magnesite crystals, CO2-bearing vapor bubbles, and a talc and/or chrysotile layer on the walls. The xenoliths contain tremolite amphibole, which is stable in temperatures lower than 830 °C at the uppermost mantle. The Pinatubo volcano is located at the volcanic front of the Luzon arc associated with subduction of warm oceanic plate. The present observation suggests hydration of forearc mantle and the uppermost mantle by slab-derived CO2-bearing saline fluids. Dehydration and decarbonation take place, and seawater-like saline fluids migrate from the subducting slab to the mantle wedge. The presence of saline fluids is important because they can dissolve more metals than pure H2O and affect the chemical evolution of the mantle wedge. PMID:23716664

  8. Mantle wedge infiltrated with saline fluids from dehydration and decarbonation of subducting slab.

    PubMed

    Kawamoto, Tatsuhiko; Yoshikawa, Masako; Kumagai, Yoshitaka; Mirabueno, Ma Hannah T; Okuno, Mitsuru; Kobayashi, Tetsuo

    2013-06-11

    Slab-derived fluids play an important role in heat and material transfer in subduction zones. Dehydration and decarbonation reactions of minerals in the subducting slab have been investigated using phase equilibria and modeling of fluid flow. Nevertheless, direct observations of the fluid chemistry and pressure-temperature conditions of fluids are few. This report describes CO2-bearing saline fluid inclusions in spinel-harzburgite xenoliths collected from the 1991 Pinatubo pumice deposits. The fluid inclusions are filled with saline solutions with 5.1 ± 1.0% (wt) NaCl-equivalent magnesite crystals, CO2-bearing vapor bubbles, and a talc and/or chrysotile layer on the walls. The xenoliths contain tremolite amphibole, which is stable in temperatures lower than 830 °C at the uppermost mantle. The Pinatubo volcano is located at the volcanic front of the Luzon arc associated with subduction of warm oceanic plate. The present observation suggests hydration of forearc mantle and the uppermost mantle by slab-derived CO2-bearing saline fluids. Dehydration and decarbonation take place, and seawater-like saline fluids migrate from the subducting slab to the mantle wedge. The presence of saline fluids is important because they can dissolve more metals than pure H2O and affect the chemical evolution of the mantle wedge.

  9. GAP Final Technical Report 12-14-04

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrew J. Bordner, PhD, Senior Research Scientist

    2004-12-14

    The Genomics Annotation Platform (GAP) was designed to develop new tools for high throughput functional annotation and characterization of protein sequences and structures resulting from genomics and structural proteomics, benchmarking and application of those tools. Furthermore, this platform integrated the genomic scale sequence and structural analysis and prediction tools with the advanced structure prediction and bioinformatics environment of ICM. The development of GAP was primarily oriented towards the annotation of new biomolecular structures using both structural and sequence data. Even though the amount of protein X-ray crystal data is growing exponentially, the volume of sequence data is growing even moremore » rapidly. This trend was exploited by leveraging the wealth of sequence data to provide functional annotation for protein structures. The additional information provided by GAP is expected to assist the majority of the commercial users of ICM, who are involved in drug discovery, in identifying promising drug targets as well in devising strategies for the rational design of therapeutics directed at the protein of interest. The GAP also provided valuable tools for biochemistry education, and structural genomics centers. In addition, GAP incorporates many novel prediction and analysis methods not available in other molecular modeling packages. This development led to signing the first Molsoft agreement in the structural genomics annotation area with the University of oxford Structural Genomics Center. This commercial agreement validated the Molsoft efforts under the GAP project and provided the basis for further development of the large scale functional annotation platform.« less

  10. Mantle wedge serpentinisation in a cold subduction setting: implications for slow-slip, subsidence, and large, negative, gravity anomalies

    NASA Astrophysics Data System (ADS)

    Stern, T. A.; Dimech, J.; Henrys, S.; Horgan, H. J.; Lamb, S. H.

    2016-12-01

    Seismic exploration of the crust in the behind-subduction region of New Zealand's southern Hikurangi margin provides new evidence for a link between serpentinization, megathrust slow slip events and large (-150 mgal) negative gravity anomalies. Our analysis focuses on a high resolution, crustal scale, migrated, seismic reflection data set collected with a 10-km-long streamer. A dominant feature of the data is a localized region of relatively bright reflectors, at a depth of 30 km where the overlying Australian plate Moho abuts the subducted Pacific plate. The reflectors are arched in a feature that resembles a hanging-wall anticline faulted. We interpret these features to image the top of a serpentinized mantle wedge, because: (1) a drop in the frequency content of reflections below the high amplitude reflectors indicates strong attenuation (Q 20±10) of seismic energy in the wedge; (2) there is a polarity/impedance contrast reversal implying a drop in seismic P-wave speed; and (3) large regions of Moho reflectivity adjacent to the bright reflectivity are weak or absent. We suggest that the mantle wedge in the southern portion of the Hikurangi margin is cold enough for peridotite to be hydrated and altered to antigorite, thereby giving rise to the observed seismic reflection characteristics and creating a lower viscosity mantle wedge. In the past 4 My, a roughly circular sedimentary basin, up to 4 km deep, has developed in the region, and this basin is associated with a -150 mgal free-air and Bouguer gravity anomaly. We propose that serpentinite is implicated in both the subsidence, due to induced pressure gradients as it undergoes corner flow above the subducted slab, and the strong negative gravity anomaly. Serpentinisation of 50% will lower the density of peridotite by about 300 kg/m3, and this could account for up to -100 mgal of the observed anomaly. Finally, the proximity of recently documented slow-slip events to the proposed zone of serpentinisation

  11. Steric engineering of metal-halide perovskites with tunable optical band gaps

    NASA Astrophysics Data System (ADS)

    Filip, Marina R.; Eperon, Giles E.; Snaith, Henry J.; Giustino, Feliciano

    2014-12-01

    Owing to their high energy-conversion efficiency and inexpensive fabrication routes, solar cells based on metal-organic halide perovskites have rapidly gained prominence as a disruptive technology. An attractive feature of perovskite absorbers is the possibility of tailoring their properties by changing the elemental composition through the chemical precursors. In this context, rational in silico design represents a powerful tool for mapping the vast materials landscape and accelerating discovery. Here we show that the optical band gap of metal-halide perovskites, a key design parameter for solar cells, strongly correlates with a simple structural feature, the largest metal-halide-metal bond angle. Using this descriptor we suggest continuous tunability of the optical gap from the mid-infrared to the visible. Precise band gap engineering is achieved by controlling the bond angles through the steric size of the molecular cation. On the basis of these design principles we predict novel low-gap perovskites for optimum photovoltaic efficiency, and we demonstrate the concept of band gap modulation by synthesising and characterising novel mixed-cation perovskites.

  12. Critical taper wedge mechanics of fold-and-thrust belts on Venus - Initial results from Magellan

    NASA Technical Reports Server (NTRS)

    Suppe, John; Connors, Chris

    1992-01-01

    Examples of fold-and-thrust belts from a variety of tectonic settings on Venus are introduced. Predictions for the mechanics of fold-and-thrust belts on Venus are examined on the basis of wedge theory, rock mechanics data, and currently known conditions on Venus. The theoretical predictions are then compared with new Magellan data.

  13. Physical modeling and monitoring of the process of thermal-erosion of an ice-wedge during a partially-controlled field experiment (Bylot Island, NU, Canada)

    NASA Astrophysics Data System (ADS)

    Godin, E.; Fortier, D.

    2013-12-01

    Syngenetic ice-wedges polygons are widespread periglacial features of the Arctic. On Bylot Island, Nunavut, Canada, numerous thermo-erosion gullies up to several 100's m in length developed in polygonal wetlands during the last decades. These gullies contributed to drainage of these wetlands and changed dramatically local ecological conditions. Concentrated and repeated snowmelt surface runoff infiltrated frost cracks, where convective heat transfer between flowing water and ice initiated piping in ice wedges leading to the rapid development of tunnels and gullies in the permafrost (Fortier D. et al., 2007). We conducted field experiments to quantify the convection process and speed of ice wedges ablation. The experiments were accomplished between the 23/06/2013 and the 05/07/2013 over A; an exposed sub-horizontal ice-wedge surface and B; a tunnel in an ice-wedge crack. The ice was instrumented with graduated sticks to calculate the ice ablation following the flow of a defined amount of water. A fixed quantity of water obtained from a nearby waterfall was diverted over the ice through a PVC pipe. Water temperature Wt (K), quantity Wq (L s-1 or m3 s-1), ice ablation rate Iar (m s-1) and convective heat transfer coefficient α (W m-2 K) were obtained during the 5 experiments. The objective of this paper is to quantify the heat transfer process from field measurements from an ice wedge under ablation and to compare with coefficients from previous researches and in the literature. For each experiment with the ice-surface scenario, water temperature varied between 280 K and 284 K. Discharge varied between 0.0001 and 0.0003 m3 s-1. Ablation rate varied between 1.8 * 10-5 and 0.0004 m s-1. Heat transfer coefficient varied between 706 and 11 655 W m-2 K and between 54 and 4802 W of heat was transferred to ice. For each experiment with the tunnel scenario, water temperature was 284 K × 1 K. Discharge was 0.0002 m3 s-1. Ablation rate varied between 0.0001 and 0.0003 m s-1

  14. Electromagnetic and scalar diffraction by a right-angled wedge with a uniform surface impedance

    NASA Technical Reports Server (NTRS)

    Hwang, Y. M.

    1974-01-01

    The diffraction of an electromagnetic wave by a perfectly-conducting right-angled wedge with one surface covered by a dielectric slab or absorber is considered. The effect of the coated surface is approximated by a uniform surface impedance. The solution of the normally incident electromagnetic problem is facilitated by introducing two scalar fields which satisfy a mixed boundary condition on one surface of the wedge and a Neumann of Dirichlet boundary condition on the other. A functional transformation is employed to simplify the boundary conditions so that eigenfunction expansions can be obtained for the resulting Green's functions. The eigenfunction expansions are transformed into the integral representations which then are evaluated asymptotically by the modified Pauli-Clemmow method of steepest descent. A far zone approximation is made to obtain the scattered field from which the diffraction coefficient is found for scalar plane, cylindrical or sperical wave incident on the edge. With the introduction of a ray-fixed coordinate system, the dyadic diffraction coefficient for plane or cylindrical EM waves normally indicent on the edge is reduced to the sum of two dyads which can be written alternatively as a 2 X 2 diagonal matrix.

  15. Arthroscopic repair of the posterior horn of the medial meniscus with opening wedge high tibial osteotomy: surgical technique.

    PubMed

    Jung, Kwang Am; Kim, Sung Jae; Lee, Su Chan; Jeong, Jae Hoon; Song, Moon Bok; Lee, Choon Key

    2009-07-01

    Simultaneous repair of a radial tear at the tibial attachment site of the posterior horn of the medial meniscus under special circumstances requiring tibial valgus osteotomy is technically difficult. First, most patients who need an osteotomy have a narrowed medial tibiofemoral joint space. In such a situation, the pull-out suture technique is more difficult to perform than in a normal joint space. Second, pulling out suture strands that penetrate the posterior horn of the medial meniscus to the anterior tibial cortex increases the risk of transection during osteotomy. We performed a meniscus repair combined with an opening wedge tibial valgus osteotomy without complications and present our technique as a new method for use in selective cases necessitating both meniscus repair of a complete radial tear and opening wedge tibial osteotomy.

  16. Natural orifice transgastric endoscopic wedge hepatic resection in an experimental model using an intuitively controlled master and slave transluminal endoscopic robot (MASTER).

    PubMed

    Phee, S J; Ho, K Y; Lomanto, D; Low, S C; Huynh, V A; Kencana, A P; Yang, K; Sun, Z L; Chung, S C Sydney

    2010-09-01

    The lack of triangulation of standard endoscopic devices limits the degree of freedom for surgical maneuvers during natural orifice transluminal endoscopic surgery (NOTES). This study explored the feasibility of adapting an intuitively controlled master and slave transluminal endoscopic robot (MASTER) the authors developed to facilitate wedge hepatic resection in NOTES. The MASTER consists of a master controller, a telesurgical workstation, and a slave manipulator that holds two end-effectors: a grasper, and a monopolar electrocautery hook. The master controller is attached to the wrist and fingers of the operator and connected to the manipulator by electrical and wire cables. Movements of the operator are detected and converted into control signals driving the slave manipulator via a tendon-sheath power transmission mechanism allowing nine degrees of freedom. Using this system, wedge hepatic resection was performed through the transgastric route on two female pigs under general anesthesia. Entry into the peritoneal cavity was via a 10-mm incision made on the anterior wall of the stomach by the electrocautery hook. Wedge hepatic resection was performed using the robotic grasper and hook. Hemostasis was achieved with the electrocautery hook. After the procedure, the resected liver tissue was retrieved through the mouth using the grasper. Using the MASTER, transgastric wedge hepatic resection was successfully performed on two pigs with no laparoscopic assistance. The entire procedure took 9.4 min (range, 8.5-10.2 min), with 7.1 min (range, 6-8.2 min) spent on excision of the liver tissue. The robotics-controlled device was able to grasp, retract, and excise the liver specimen successfully in the desired plane. This study demonstrated for the first time that the MASTER could effectively mitigate the technical constraints normally encountered in NOTES procedures. With it, the triangulation of surgical tools and the manipulation of tissue became easy, and wedge hepatic

  17. Opening wedge trapezial osteotomy as possible treatment for early trapeziometacarpal osteoarthritis: a biomechanical investigation of radial subluxation, contact area, and contact pressure.

    PubMed

    Cheema, Tahseen; Salas, Christina; Morrell, Nathan; Lansing, Letitia; Reda Taha, Mahmoud M; Mercer, Deana

    2012-04-01

    Radial subluxation and cartilage thinning have been associated with initiation and accelerated development of osteoarthritis of the trapeziometacarpal joint. Few investigators have reported on the benefits of opening wedge trapezial osteotomy for altering the contact mechanics of the trapeziometacarpal joint as a possible deterrent to the initiation or progression of osteoarthritis. We used cadaveric specimens to determine whether opening wedge osteotomy of the trapezium was successful in reducing radial subluxation of the metacarpal base and to quantify the contact area and pressure on the trapezial surface during simulated lateral pinch. We used 8 fresh-frozen specimens in this study. The flexor pollicis longus, abductor pollicis longus, adductor pollicis, abductor pollicis brevis, and flexor pollicis brevis/opponens pollicis tendons were each loaded to simulate the thumb in lateral pinch position. We measured radial subluxation from anteroposterior radiographs before and after placement of a 15° wedge. We used real-time sensors to analyze contact pressure and contact area distribution on the trapezium. Center of force in the normal joint under lateral pinch loading was primarily located in the dorsal region of the trapezium. After wedge placement, contact pressure increased in the ulnar-dorsal region by 76%. Mean contact area increased in the ulnar-dorsal region from 0.05 to 0.07 cm(2), and in the ulnar-volar region from 0.003 to 0.024 cm(2). The average reduction in joint subluxation was 64%. The 15° opening wedge osteotomy of the trapezium reduced radial subluxation of the metacarpal on the trapezium and increased contact pressure and contact area away from the diseased compartments of the trapezial surface. Trapezial osteotomy addresses the 2 preeminent theories about the initiation and progression of osteoarthritis. By reducing radial subluxation and altering contact pressure and contact area, trapezial osteotomy may prove an alternative to first

  18. Implementation of immunochemical faecal occult blood test in general practice: a study protocol using a cluster-randomised stepped-wedge design.

    PubMed

    Juul, Jakob Søgaard; Bro, Flemming; Hornung, Nete; Andersen, Berit Sanne; Laurberg, Søren; Olesen, Frede; Vedsted, Peter

    2016-07-11

    Colorectal cancer is a common malignancy and a leading cause of cancer-related death. Half of patients with colorectal cancer initially present with non-specific or vague symptoms. In the need for a safe low-cost test, the immunochemical faecal occult blood test (iFOBT) may be part of the evaluation of such patients in primary care. Currently, Danish general practitioners have limited access to this test. The aim of this article is to describe a study that will assess the uptake and clinical use of iFOBT in general practice. Furthermore, it will investigate the diagnostic value and the clinical implications of using iFOBT in general practice on patients presenting with non-alarm symptoms of colorectal cancer. The study uses a cluster-randomised stepped-wedge design and is conducted in the Central Denmark Region among 836 GPs in 381 general practices. The municipalities of the Region and their appertaining general practitioners will be included sequentially in the study during the first 7 months of the 1-year study period. The following intervention has been developed for the study: a mandatory intervention providing all general practitioners with a starting package of 10 iFOBTs, a clinical instruction on iFOBT use in general practice and online information material from the date of inclusion, and an optional intervention consisting of a continuous medical education on colorectal cancer diagnostics and use of iFOBT. This study is among the first and largest trials to investigate the diagnostic use and the clinical value of iFOBT on patients presenting with non-alarm symptoms of colorectal cancer. The findings will be of national and international importance for the future planning of colorectal cancer diagnostics, particularly for 'low-risk-but-not-no-risk' patients with non-alarm symptoms of colorectal cancer. A Trial of the Implementation of iFOBT in General Practice NCT02308384 . Date of registration: 26 November 2014.

  19. 2D Traveling Wave Array Employing a Trapezoidal Dielectric Wedge for Beam Steering

    NASA Technical Reports Server (NTRS)

    Host, Nicholas K.; Chen, Chi-Chih; Volakis, John L.; Miranada, Felix A.

    2014-01-01

    This presentation addresses the progress made so far in the development of an antenna array with reconfigurable transmission line feeds connecting each element in series. In particular, 2D traveling wave array employing trapezoidal Dielectric Wedge for Beam Steering will be discussed. The presentation includes current status of the effort and suggested future work. The work is being done as part of the NASA Office of the Chief Technologist's Space Technology Research Fellowship (NSTRF).

  20. Ivrea mantle wedge and arc of the Western Alps (II): Kinematic evolution of the Alps-Apennines orogenic system

    NASA Astrophysics Data System (ADS)

    Schmid, Stefan; Kissling, Eduard; van Hinsbergen, Douwe J. J.; Molli, Giancarlo

    2017-04-01

    Integration of geological and geophysical data on the deep structure of the Alps (Kissling et al. 2017) reveals that the deep-seated Ivrea mantle played a crucial role during the formation of the arc of the Western Alps. Exhumation of the mantle beneath the Ivrea Zone to shallow crustal depths during Mesozoic rifting led to the formation of a strong Ivrea mantle wedge; its strength exceeds that of surrounding mostly quartz-bearing units, and consequently allows for indentation and wedging of a quasi-rigid Ivrea mantle wedge into the Western Alps during Alpine orogeny. A first early stage (pre-35 Ma) of the West-Alpine orogenic evolution is characterized by top-NNW thrusting in sinistral transpression causing at least some 260km displacement of internal Western Alps and E-W-striking Alps farther east, together with the Adria micro-plate, towards N to NNW with respect to stable Europe. It is during the second stage (35-25 Ma) that the Ivrea mantle wedge played a crucial role by accentuating the arc. This stage is associated with top-WNW thrusting in the external zones of the central portion of the arc and lateral indentation and wedging of the Ivrea mantle slice beneath the already existing nappe pile towards WNW by some 100-150km. The final stage of arc formation (25-0 Ma) is associated with orogeny in the Apennines leading to oroclinal bending in the southernmost Western Alps that by now became parts of the Apenninic orogen, in connection with the 50° counterclockwise rotation of the Corsica-Sardinia block and the Ligurian Alps. The lithological composition of some tectonic units originating from the Alpine Tethys (Piemont-Liguria Ocean) found in the Alps and the northern Apennines has much in common. The non-metamorphic parts of the Piemont-Liguria derived units form the upper plate of the Western Alps that is devoid of Austroalpine elements, while the lower plate includes highly metamorphic units derived from the same Piemont-Liguria Ocean. This points to a