Sample records for gapless edge states

  1. Parafermionic zero modes in gapless edge states

    NASA Astrophysics Data System (ADS)

    Clarke, David

    It has been recently demonstrated1 that Majorana zero modes may occur in the gapless edge of Abelian quantum Hall states at a boundary between different edge phases bordering the same bulk. Such a zero mode is guaranteed to occur when an edge phase that supports fermionic excitations borders one that does not. Here we generalize to the non-charge conserving case such as may occur when a superconductor abuts the quantum Hall edge. We find that not only Majorana zero modes, but their ℤN generalizations (known as parafermionic zero modes) may occur at boundaries between edge phases in a fractional quantum Hall state. In particular, we find thst the ν = 1 / 3 fractional quantum Hall state supports topologically distinct edge phases separated by ℤ3 parafermionic zero modes when charge conservation is broken. Paradoxically, an arrangement of phases can be made such that only an odd number of localized parafermionic zero modes occur around the edge of a quantum Hall droplet. Such an arrangement is not allowed in a gapped system, but here the paradox is resolved due to an extended zero mode in the edge spectrum. LPS-MPO-CMTC, JQI-NSF-PFC, Microsoft Station Q.

  2. Gapless edges of 2d topological orders and enriched monoidal categories

    NASA Astrophysics Data System (ADS)

    Kong, Liang; Zheng, Hao

    2018-02-01

    In this work, we give a mathematical description of a chiral gapless edge of a 2d topological order (without symmetry). We show that the observables on the 1+1D world sheet of such an edge consist of a family of topological edge excitations, boundary CFT's and walls between boundary CFT's. These observables can be described by a chiral algebra and an enriched monoidal category. This mathematical description automatically includes that of gapped edges as special cases. Therefore, it gives a unified framework to study both gapped and gapless edges. Moreover, the boundary-bulk duality also holds for gapless edges. More precisely, the unitary modular tensor category that describes the 2d bulk phase is exactly the Drinfeld center of the enriched monoidal category that describes the gapless/gapped edge. We propose a classification of all gapped and chiral gapless edges of a given bulk phase. In the end, we explain how modular-invariant bulk rational conformal field theories naturally emerge on certain gapless walls between two trivial phases.

  3. Diagnosing Topological Edge States via Entanglement Monogamy.

    PubMed

    Meichanetzidis, K; Eisert, J; Cirio, M; Lahtinen, V; Pachos, J K

    2016-04-01

    Topological phases of matter possess intricate correlation patterns typically probed by entanglement entropies or entanglement spectra. In this Letter, we propose an alternative approach to assessing topologically induced edge states in free and interacting fermionic systems. We do so by focussing on the fermionic covariance matrix. This matrix is often tractable either analytically or numerically, and it precisely captures the relevant correlations of the system. By invoking the concept of monogamy of entanglement, we show that highly entangled states supported across a system bipartition are largely disentangled from the rest of the system, thus, usually appearing as gapless edge states. We then define an entanglement qualifier that identifies the presence of topological edge states based purely on correlations present in the ground states. We demonstrate the versatility of this qualifier by applying it to various free and interacting fermionic topological systems.

  4. Diagnosing Topological Edge States via Entanglement Monogamy

    NASA Astrophysics Data System (ADS)

    Meichanetzidis, K.; Eisert, J.; Cirio, M.; Lahtinen, V.; Pachos, J. K.

    2016-04-01

    Topological phases of matter possess intricate correlation patterns typically probed by entanglement entropies or entanglement spectra. In this Letter, we propose an alternative approach to assessing topologically induced edge states in free and interacting fermionic systems. We do so by focussing on the fermionic covariance matrix. This matrix is often tractable either analytically or numerically, and it precisely captures the relevant correlations of the system. By invoking the concept of monogamy of entanglement, we show that highly entangled states supported across a system bipartition are largely disentangled from the rest of the system, thus, usually appearing as gapless edge states. We then define an entanglement qualifier that identifies the presence of topological edge states based purely on correlations present in the ground states. We demonstrate the versatility of this qualifier by applying it to various free and interacting fermionic topological systems.

  5. Acoustic valley edge states in a graphene-like resonator system

    NASA Astrophysics Data System (ADS)

    Yang, Yahui; Yang, Zhaoju; Zhang, Baile

    2018-03-01

    The concept of valley physics, as inspired by the recent development in valleytronic materials, has been extended to acoustic crystals for manipulation of air-borne sound. Many valleytronic materials follow the model of a gapped graphene. Yet the previously demonstrated valley acoustic crystal adopted a mirror-symmetry-breaking mechanism, lacking a direct counterpart in condensed matter systems. In this paper, we investigate a two-dimensional (2D) periodic acoustic resonator system with inversion symmetry breaking, as an analogue of a gapped graphene monolayer. It demonstrates the quantum valley Hall topological phase for sound waves. Similar to a gapped graphene, gapless topological valley edge states can be found at a zigzag domain wall separating different domains with opposite valley Chern numbers, while an armchair domain wall hosts no gapless edge states. Our study offers a route to simulate novel valley phenomena predicted in gapped graphene and other 2D materials with classical acoustic waves.

  6. Controlling the layer localization of gapless states in bilayer graphene with a gate voltage

    NASA Astrophysics Data System (ADS)

    Jaskólski, W.; Pelc, M.; Bryant, Garnett W.; Chico, Leonor; Ayuela, A.

    2018-04-01

    Experiments in gated bilayer graphene with stacking domain walls present topological gapless states protected by no-valley mixing. Here we research these states under gate voltages using atomistic models, which allow us to elucidate their origin. We find that the gate potential controls the layer localization of the two states, which switches non-trivially between layers depending on the applied gate voltage magnitude. We also show how these bilayer gapless states arise from bands of single-layer graphene by analyzing the formation of carbon bonds between layers. Based on this analysis we provide a model Hamiltonian with analytical solutions, which explains the layer localization as a function of the ratio between the applied potential and interlayer hopping. Our results open a route for the manipulation of gapless states in electronic devices, analogous to the proposed writing and reading memories in topological insulators.

  7. Two-dimensional symmetry-protected topological orders and their protected gapless edge excitations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Xie; Liu Zhengxin; Wen Xiaogang

    2011-12-15

    Topological insulators in free fermion systems have been well characterized and classified. However, it is not clear in strongly interacting boson or fermion systems what symmetry-protected topological orders exist. In this paper, we present a model in a two-dimensional (2D) interacting spin system with nontrivial onsite Z{sub 2} symmetry-protected topological order. The order is nontrivial because we can prove that the one-dimensional (1D) system on the boundary must be gapless if the symmetry is not broken, which generalizes the gaplessness of Wess-Zumino-Witten model for Lie symmetry groups to any discrete symmetry groups. The construction of this model is related tomore » a nontrivial 3-cocycle of the Z{sub 2} group and can be generalized to any symmetry group. It potentially leads to a complete classification of symmetry-protected topological orders in interacting boson and fermion systems of any dimension. Specifically, this exactly solvable model has a unique gapped ground state on any closed manifold and gapless excitations on the boundary if Z{sub 2} symmetry is not broken. We prove the latter by developing the tool of a matrix product unitary operator to study the nonlocal symmetry transformation on the boundary and reveal the nontrivial 3-cocycle structure of this transformation. Similar ideas are used to construct a 2D fermionic model with onsite Z{sub 2} symmetry-protected topological order.« less

  8. Symmetry-protected gapless Z2 spin liquids

    NASA Astrophysics Data System (ADS)

    Lu, Yuan-Ming

    2018-03-01

    Despite rapid progress in understanding gapped topological states, much less is known about gapless topological phases of matter, especially in strongly correlated electrons. In this work, we discuss a large class of robust gapless quantum spin liquids in frustrated magnets made of half-integer spins, which are described by gapless fermionic spinons coupled to dynamical Z2 gauge fields. Requiring U(1 ) spin conservation, time-reversal, and certain space-group symmetries, we show that certain spinon symmetry fractionalization class necessarily leads to a gapless spectrum. These gapless excitations are stable against any perturbations, as long as the required symmetries are preserved. Applying these gapless criteria to spin-1/2 systems on square, triangular, and kagome lattices, we show that all gapped symmetric Z2 spin liquids in Abrikosov-fermion representation can also be realized in Schwinger-boson representation. This leads to 64 gapped Z2 spin liquids on square lattice, and 8 gapped states on both kagome and triangular lattices.

  9. Tunable Acoustic Valley-Hall Edge States in Reconfigurable Phononic Elastic Waveguides

    NASA Astrophysics Data System (ADS)

    Liu, Ting-Wei; Semperlotti, Fabio

    2018-01-01

    We investigate the occurrence of acoustic topological edge states in a 2D phononic elastic waveguide due to a phenomenon that is the acoustic analog of the quantum valley Hall effect. We show that a topological transition takes place between two lattices having broken space-inversion symmetry due to the application of a tunable strain field. This condition leads to the formation of gapless edge states at the domain walls, as further illustrated by the analysis of the bulk-edge correspondence and of the associated topological invariants. Interestingly, topological edge states can also be triggered at the boundary of a single domain, when boundary conditions are properly selected. We also show that the static modulation of the strain field allows us to tune the response of the material between the different supported edge states. Although time-reversal symmetry is still intact in this material system, the edge states are topologically protected when intervalley mixing is either weak or negligible. This characteristic enables selective valley injection, which is achieved via synchronized source strategy.

  10. Topological winding properties of spin edge states in the Kane-Mele graphene model

    NASA Astrophysics Data System (ADS)

    Wang, Zhigang; Hao, Ningning; Zhang, Ping

    2009-09-01

    We study the spin edge states in the quantum spin-Hall (QSH) effect on a single-atomic layer graphene-ribbon system with both intrinsic and Rashba spin-orbit couplings. The Harper equation for solving the energies of the spin edge states is derived. The results show that in the QSH phase, there are always two pairs of gapless spin-filtered edge states in the bulk energy gap, corresponding to two pairs of zero points of the Bloch function on the complex-energy Riemann surface (RS). The topological aspect of the QSH phase can be distinguished by the difference of the winding numbers of the spin edge states with different polarized directions cross the holes of the RS, which is equivalent to the Z2 topological invariance proposed by Kane and Mele [Phys. Rev. Lett. 95, 146802 (2005)].

  11. Ferromagnetism in the Hubbard Model with a Gapless Nearly-Flat Band

    NASA Astrophysics Data System (ADS)

    Tanaka, Akinori

    2018-01-01

    We present a version of the Hubbard model with a gapless nearly-flat lowest band which exhibits ferromagnetism in two or more dimensions. The model is defined on a lattice obtained by placing a site on each edge of the hypercubic lattice, and electron hopping is assumed to be only between nearest and next nearest neighbor sites. The lattice, where all the sites are identical, is simple, and the corresponding single-electron band structure, where two cosine-type bands touch without an energy gap, is also simple. We prove that the ground state of the model is unique and ferromagnetic at half-filling of the lower band, if the lower band is nearly flat and the strength of on-site repulsion is larger than a certain value which is independent of the lattice size. This is the first example of ferromagnetism in three dimensional non-singular models with a gapless band structure.

  12. Josephson Radiation from Gapless Andreev Bound States in HgTe-Based Topological Junctions

    NASA Astrophysics Data System (ADS)

    Deacon, R. S.; Wiedenmann, J.; Bocquillon, E.; Domínguez, F.; Klapwijk, T. M.; Leubner, P.; Brüne, C.; Hankiewicz, E. M.; Tarucha, S.; Ishibashi, K.; Buhmann, H.; Molenkamp, L. W.

    2017-04-01

    Frequency analysis of the rf emission of oscillating Josephson supercurrent is a powerful passive way of probing properties of topological Josephson junctions. In particular, measurements of the Josephson emission enable the detection of topological gapless Andreev bound states that give rise to emission at half the Josephson frequency fJ rather than conventional emission at fJ. Here, we report direct measurement of rf emission spectra on Josephson junctions made of HgTe-based gate-tunable topological weak links. The emission spectra exhibit a clear signal at half the Josephson frequency fJ/2 . The linewidths of emission lines indicate a coherence time of 0.3-4 ns for the fJ/2 line, much shorter than for the fJ line (3-4 ns). These observations strongly point towards the presence of topological gapless Andreev bound states and pave the way for a future HgTe-based platform for topological quantum computation.

  13. Gapless Spin-Liquid Ground State in the S =1 /2 Kagome Antiferromagnet

    NASA Astrophysics Data System (ADS)

    Liao, H. J.; Xie, Z. Y.; Chen, J.; Liu, Z. Y.; Xie, H. D.; Huang, R. Z.; Normand, B.; Xiang, T.

    2017-03-01

    The defining problem in frustrated quantum magnetism, the ground state of the nearest-neighbor S =1 /2 antiferromagnetic Heisenberg model on the kagome lattice, has defied all theoretical and numerical methods employed to date. We apply the formalism of tensor-network states, specifically the method of projected entangled simplex states, which combines infinite system size with a correct accounting for multipartite entanglement. By studying the ground-state energy, the finite magnetic order appearing at finite tensor bond dimensions, and the effects of a next-nearest-neighbor coupling, we demonstrate that the ground state is a gapless spin liquid. We discuss the comparison with other numerical studies and the physical interpretation of this result.

  14. Signature of magnetic-dependent gapless odd frequency states at superconductor/ferromagnet interfaces

    PubMed Central

    Di Bernardo, A.; Diesch, S.; Gu, Y.; Linder, J.; Divitini, G.; Ducati, C.; Scheer, E.; Blamire, M.G.; Robinson, J.W.A.

    2015-01-01

    The theory of superconductivity developed by Bardeen, Cooper and Schrieffer (BCS) explains the stabilization of electron pairs into a spin-singlet, even frequency, state by the formation of an energy gap within which the density of states is zero. At a superconductor interface with an inhomogeneous ferromagnet, a gapless odd frequency superconducting state is predicted, in which the Cooper pairs are in a spin-triplet state. Although indirect evidence for such a state has been obtained, the gap structure and pairing symmetry have not so far been determined. Here we report scanning tunnelling spectroscopy of Nb superconducting films proximity coupled to epitaxial Ho. These measurements reveal pronounced changes to the Nb subgap superconducting density of states on driving the Ho through a metamagnetic transition from a helical antiferromagnetic to a homogeneous ferromagnetic state for which a BCS-like gap is recovered. The results prove odd frequency spin-triplet superconductivity at superconductor/inhomogeneous magnet interfaces. PMID:26329811

  15. Gapless topological order, gravity, and black holes

    NASA Astrophysics Data System (ADS)

    Rasmussen, Alex; Jermyn, Adam S.

    2018-04-01

    In this work we demonstrate that linearized gravity exhibits gapless topological order with an extensive ground state degeneracy. This phenomenon is closely related both to the topological order of the pyrochlore U (1 ) spin liquid and to recent work by Hawking and co-workers, who used the soft-photon and graviton theorems to demonstrate that the vacuum in linearized gravity is not unique. We first consider lattice models whose low-energy behavior is described by electromagnetism and linearized gravity, and then argue that the topological nature of these models carries over into the continuum. We demonstrate that these models can have many ground states without making assumptions about the topology of spacetime or about the high-energy nature of the theory, and show that the infinite family of symmetries described by Hawking and co-workers is simply the different topological sectors. We argue that in this context black holes appear as topological defects in the infrared theory, and that this suggests a potential approach to understanding both the firewall paradox and information encoding in gravitational theories. Finally, we use insights from the soft-boson theorems to make connections between deconfined gauge theories with continuous gauge groups and gapless topological order.

  16. Bulk-edge correspondence, spectral flow and Atiyah-Patodi-Singer theorem for the Z2-invariant in topological insulators

    NASA Astrophysics Data System (ADS)

    Yu, Yue; Wu, Yong-Shi; Xie, Xincheng

    2017-03-01

    We study the bulk-edge correspondence in topological insulators by taking Fu-Kane spin pumping model as an example. We show that the Kane-Mele invariant in this model is Z2 invariant modulo the spectral flow of a single-parameter family of 1 + 1-dimensional Dirac operators with a global boundary condition induced by the Kramers degeneracy of the system. This spectral flow is defined as an integer which counts the difference between the number of eigenvalues of the Dirac operator family that flow from negative to non-negative and the number of eigenvalues that flow from non-negative to negative. Since the bulk states of the insulator are completely gapped and the ground state is assumed being no more degenerate except the Kramers, they do not contribute to the spectral flow and only edge states contribute to. The parity of the number of the Kramers pairs of gapless edge states is exactly the same as that of the spectral flow. This reveals the origin of the edge-bulk correspondence, i.e., why the edge states can be used to characterize the topological insulators. Furthermore, the spectral flow is related to the reduced η-invariant and thus counts both the discrete ground state degeneracy and the continuous gapless excitations, which distinguishes the topological insulator from the conventional band insulator even if the edge states open a gap due to a strong interaction between edge modes. We emphasize that these results are also valid even for a weak disordered and/or weak interacting system. The higher spectral flow to categorize the higher-dimensional topological insulators is expected.

  17. Experimental observation of edge transport in graphene nanostructures

    NASA Astrophysics Data System (ADS)

    Kinikar, Amogh; Sai, T. Phanindra; Bhattacharyya, Semonti; Agarwala, Adhip; Biswas, Tathagata; Sarker, Sanjoy K.; Krishnamurthy, H. R.; Jain, Manish; Shenoy, Vijay B.; Ghosh, Arindam

    The zizzag edges of graphene, whether single or few layers, host zero energy gapless states and are perfect 1D ballistic conductors. Conclusive observations of electrical conduction through edge states has been elusive. We report the observation of edge bound transport in atomic-scale constrictions of single and multilayer suspended graphene created stochastically by nanomechanical exfoliation of graphite. We observe that the conductance is quantized in near multiples of e2/h. Non-equilibrium transport shows a split zero bias anomaly and, the magneto-conductance is hysteretic; indicating that the electron transport is through spin polarized edge states in the presence of electron-electron interaction. Atomic force microscope scans on the graphite surface post exfoliation reveal that the final constriction is usually a single layer graphene with a constricting angle of 30o. Tearing along crystallographic angles suggests the tears occur along zigzag and armchair configurations with high fidelity of the edge morphology. We acknowledge the financial support from the DST, Government of India. SS acknowledges support from the NSF (DMR-1508680).

  18. Gapless bosonic excitation without symmetry breaking: An algebraic spin liquid with soft gravitons

    NASA Astrophysics Data System (ADS)

    Xu, Cenke

    2006-12-01

    A quantum ground state of matter is realized in a bosonic model on a three-dimensional fcc lattice with emergent low energy excitations. The phase obtained is a stable gapless boson liquid phase, with algebraic boson density correlations. The stability of this phase is protected against the instanton effect and superfluidity by self-duality and large gauge symmetries on both sides of the duality. The gapless collective excitations of this phase closely resemble the graviton, although they have a soft ω˜k2 dispersion relation. There are three branches of gapless excitations in this phase, one of which is gapless scalar trace mode, the other two have the same polarization and gauge symmetries as the gravitons. The dynamics of this phase is described by a set of Maxwell’s equations. The defects carrying gauge charges can drive the system into the superfluid order when the defects are condensed; also the topological defects are coupled to the dual gauge field in the same manner as the charge defects couple to the original gauge field, after the condensation of the topological defects, the system is driven into the Mott insulator phase. In the two-dimensional case, the gapless soft graviton as well as the algebraic liquid phase are destroyed by the vertex operators in the dual theory, and the stripe order is most likely to take place close to the two-dimensional quantum critical point at which the vertex operators are tuned to zero.

  19. Quantized edge modes in atomic-scale point contacts in graphene

    NASA Astrophysics Data System (ADS)

    Kinikar, Amogh; Phanindra Sai, T.; Bhattacharyya, Semonti; Agarwala, Adhip; Biswas, Tathagata; Sarker, Sanjoy K.; Krishnamurthy, H. R.; Jain, Manish; Shenoy, Vijay B.; Ghosh, Arindam

    2017-07-01

    The zigzag edges of single- or few-layer graphene are perfect one-dimensional conductors owing to a set of gapless states that are topologically protected against backscattering. Direct experimental evidence of these states has been limited so far to their local thermodynamic and magnetic properties, determined by the competing effects of edge topology and electron-electron interaction. However, experimental signatures of edge-bound electrical conduction have remained elusive, primarily due to the lack of graphitic nanostructures with low structural and/or chemical edge disorder. Here, we report the experimental detection of edge-mode electrical transport in suspended atomic-scale constrictions of single and multilayer graphene created during nanomechanical exfoliation of highly oriented pyrolytic graphite. The edge-mode transport leads to the observed quantization of conductance close to multiples of G0 = 2e2/h. At the same time, conductance plateaux at G0/2 and a split zero-bias anomaly in non-equilibrium transport suggest conduction via spin-polarized states in the presence of an electron-electron interaction.

  20. Quantized edge modes in atomic-scale point contacts in graphene.

    PubMed

    Kinikar, Amogh; Phanindra Sai, T; Bhattacharyya, Semonti; Agarwala, Adhip; Biswas, Tathagata; Sarker, Sanjoy K; Krishnamurthy, H R; Jain, Manish; Shenoy, Vijay B; Ghosh, Arindam

    2017-07-01

    The zigzag edges of single- or few-layer graphene are perfect one-dimensional conductors owing to a set of gapless states that are topologically protected against backscattering. Direct experimental evidence of these states has been limited so far to their local thermodynamic and magnetic properties, determined by the competing effects of edge topology and electron-electron interaction. However, experimental signatures of edge-bound electrical conduction have remained elusive, primarily due to the lack of graphitic nanostructures with low structural and/or chemical edge disorder. Here, we report the experimental detection of edge-mode electrical transport in suspended atomic-scale constrictions of single and multilayer graphene created during nanomechanical exfoliation of highly oriented pyrolytic graphite. The edge-mode transport leads to the observed quantization of conductance close to multiples of G 0  = 2e 2 /h. At the same time, conductance plateaux at G 0 /2 and a split zero-bias anomaly in non-equilibrium transport suggest conduction via spin-polarized states in the presence of an electron-electron interaction.

  1. Bosonic anomalies, induced fractional quantum numbers, and degenerate zero modes: The anomalous edge physics of symmetry-protected topological states

    NASA Astrophysics Data System (ADS)

    Wang, Juven C.; Santos, Luiz H.; Wen, Xiao-Gang

    2015-05-01

    The boundary of symmetry-protected topological states (SPTs) can harbor new quantum anomaly phenomena. In this work, we characterize the bosonic anomalies introduced by the 1+1D non-onsite-symmetric gapless edge modes of (2+1)D bulk bosonic SPTs with a generic finite Abelian group symmetry (isomorphic to G =∏iZNi=ZN1×ZN2×ZN3×⋯ ). We demonstrate that some classes of SPTs (termed "Type II") trap fractional quantum numbers (such as fractional ZN charges) at the 0D kink of the symmetry-breaking domain walls, while some classes of SPTs (termed "Type III") have degenerate zero energy modes (carrying the projective representation protected by the unbroken part of the symmetry), either near the 0D kink of a symmetry-breaking domain wall, or on a symmetry-preserving 1D system dimensionally reduced from a thin 2D tube with a monodromy defect 1D line embedded. More generally, the energy spectrum and conformal dimensions of gapless edge modes under an external gauge flux insertion (or twisted by a branch cut, i.e., a monodromy defect line) through the 1D ring can distinguish many SPT classes. We provide a manifest correspondence from the physical phenomena, the induced fractional quantum number, and the zero energy mode degeneracy to the mathematical concept of cocycles that appears in the group cohomology classification of SPTs, thus achieving a concrete physical materialization of the cocycles. The aforementioned edge properties are formulated in terms of a long wavelength continuum field theory involving scalar chiral bosons, as well as in terms of matrix product operators and discrete quantum lattice models. Our lattice approach yields a regularization with anomalous non-onsite symmetry for the field theory description. We also formulate some bosonic anomalies in terms of the Goldstone-Wilczek formula.

  2. Topologically protected unidirectional edge spin waves

    NASA Astrophysics Data System (ADS)

    Wang, Xiang Rong; Wang, Xiansi; Su, Ying

    Magnetic materials are highly correlated spin systems that do not respect the time-reversal symmetry. The low-energy excitations of magnetic materials are spin waves whose quanta are magnons. Like electronic materials that can be topologically nontrivial, a magnetic material can also be topologically nontrivial with topologically protected unidirectional edge states. These edge states should be superb channels of processing and manipulating spin waves because they are robust against perturbations and geometry changes, unlike the normal spin wave states that are very sensitive to the system changes and geometry. Therefore, the magnetic topological matter is of fundamental interest and technologically useful in magnonics. Here, we show that ferromagnetically interacting spins on a two-dimensional honeycomb lattice with nearest-neighbour interactions and governed by the Landau-Lifshitz-Gilbert equation, can be topologically nontrivial with gapped bulk spin waves and gapless edge spin waves. These edge spin waves are indeed very robust against defects under topological protection. Because of the unidirectional nature of these topologically protected edge spin waves, an interesting functional magnonic device called beam splitter can be made out of a domain wall in a strip. It is shown that an in-coming spin wave beam along one edge splits into two spin wave beams propagating along two opposite directions on the other edge after passing through a domain wall. This work was supported by Hong Kong GRF Grants (Nos. 163011151 and 16301816) and the Grant from NNSF of China (No. 11374249). X.S.W acknowledge support from UESTC.

  3. Unpaired Majorana modes in Josephson-Junction Arrays with gapless bulk excitations

    DOE PAGES

    Pino, M.; Tsvelik, A.; Ioffe, L. B.

    2015-11-06

    In this study, the search for Majorana bound states in solid-state physics has been limited to materials that display a gap in their bulk spectrum. We show that such unpaired states appear in certain quasi-one-dimensional Josephson-junction arrays with gapless bulk excitations. The bulk modes mediate a coupling between Majorana bound states via the Ruderman-Kittel-Yosida-Kasuya mechanism. As a consequence, the lowest energy doublet acquires a finite energy difference. For a realistic set of parameters this energy splitting remains much smaller than the energy of the bulk eigenstates even for short chains of length L~10.

  4. Persistence of the gapless spin liquid in the breathing kagome Heisenberg antiferromagnet

    NASA Astrophysics Data System (ADS)

    Iqbal, Yasir; Poilblanc, Didier; Thomale, Ronny; Becca, Federico

    2018-03-01

    The nature of the ground state of the spin S =1 /2 Heisenberg antiferromagnet on the kagome lattice with breathing anisotropy (i.e., with different superexchange couplings J▵ and J▿ within elementary up- and down-pointing triangles) is investigated within the framework of Gutzwiller projected fermionic wave functions and Monte Carlo methods. We analyze the stability of the U(1 ) Dirac spin liquid with respect to the presence of fermionic pairing that leads to a gapped Z2 spin liquid. For several values of the ratio J▿/J▵ , the size scaling of the energy gain due to the pairing fields and the variational parameters are reported. Our results show that the energy gain of the gapped spin liquid with respect to the gapless state either vanishes for large enough system size or scales to zero in the thermodynamic limit. Similarly, the optimized pairing amplitudes (responsible for opening the spin gap) are shown to vanish in the thermodynamic limit. Our outcome is corroborated by the application of one and two Lanczos steps to the gapless and gapped wave functions, for which no energy gain of the gapped state is detected when improving the quality of the variational states. Finally, we discuss the competition with the "simplex" Z2 resonating-valence-bond spin liquid, valence-bond crystal, and nematic states in the strongly anisotropic regime, i.e., J▿≪J▵ .

  5. Edge physics of the quantum spin Hall insulator from a quantum dot excited by optical absorption.

    PubMed

    Vasseur, Romain; Moore, Joel E

    2014-04-11

    The gapless edge modes of the quantum spin Hall insulator form a helical liquid in which the direction of motion along the edge is determined by the spin orientation of the electrons. In order to probe the Luttinger liquid physics of these edge states and their interaction with a magnetic (Kondo) impurity, we consider a setup where the helical liquid is tunnel coupled to a semiconductor quantum dot that is excited by optical absorption, thereby inducing an effective quantum quench of the tunneling. At low energy, the absorption spectrum is dominated by a power-law singularity. The corresponding exponent is directly related to the interaction strength (Luttinger parameter) and can be computed exactly using boundary conformal field theory thanks to the unique nature of the quantum spin Hall edge.

  6. Competing magnetic and spin-gapless semiconducting behavior in fully compensated ferrimagnetic CrVTiAl: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Venkateswara, Y.; Gupta, Sachin; Samatham, S. Shanmukharao; Varma, Manoj Raama; Enamullah, Suresh, K. G.; Alam, Aftab

    2018-02-01

    We report the structural, magnetic, and transport properties of the polycrystalline CrVTiAl alloy along with first-principles calculations. The alloy crystallizes in a LiMgPdSn-type structure with a lattice parameter of 6.14 Å at room temperature. The absence of the (111) peak along with the presence of a weak (200) peak indicates the antisite disorder of Al with Cr and V atoms, which is different from the pure DO3 type. Magnetization measurements reveal a magnetic transition near 710 K, a coercive field of ˜100 Oe at 3 K, and a moment of ˜10-3μB/f .u . These observations are indicative of fully compensated ferrimagnetism in the alloy, which is confirmed by theoretical modeling. The temperature coefficient of resistivity is found to be negative, signaling the semiconducting nature. However, the absence of exponential dependence indicates the semiconducting nature with gapless/spin-gapless behavior. Electronic and magnetic properties of CrVTiAl for all three possible crystallographic configurations are studied theoretically. All the configurations are found to be different forms of semiconductors. The ground-state configuration is a fully compensated ferrimagnet with band gaps of 0.58 and 0.30 eV for the spin-up and -down bands, respectively. The next-higher-energy configuration is also fully compensated ferrimagnetic but has a spin-gapless semiconducting nature. The highest-energy configuration corresponds to a nonmagnetic, gapless semiconductor. The energy differences among these configurations are quite small (<1 mRy /atom ), which hints that, at finite temperatures, the alloy exists in a disordered phase, which is a mixture of the three configurations. By taking into account the theoretical and experimental findings, we conclude that CrVTiAl is a fully compensated ferrimagnet with a predominantly spin-gapless semiconducting nature.

  7. Antiferromagnetic phase of the gapless semiconductor V3Al

    NASA Astrophysics Data System (ADS)

    Jamer, M. E.; Assaf, B. A.; Sterbinsky, G. E.; Arena, D.; Lewis, L. H.; Saúl, A. A.; Radtke, G.; Heiman, D.

    2015-03-01

    Discovering new antiferromagnetic (AF) compounds is at the forefront of developing future spintronic devices without fringing magnetic fields. The AF gapless semiconducting D 03 phase of V3Al was successfully synthesized via arc-melting and annealing. The AF properties were established through synchrotron measurements of the atom-specific magnetic moments, where the magnetic dichroism reveals large and oppositely oriented moments on individual V atoms. Density functional theory calculations confirmed the stability of a type G antiferromagnetism involving only two-thirds of the V atoms, while the remaining V atoms are nonmagnetic. Magnetization, x-ray diffraction, and transport measurements also support the antiferromagnetism. This archetypal gapless semiconductor may be considered as a cornerstone for future spintronic devices containing AF elements.

  8. Gaplessness and the Coulomb anomaly in the strongly disordered films of molybdenum carbide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulkarni, P., E-mail: prasanna1609@gmail.com; Szabo, P.; Zemlicka, M.

    2016-05-23

    Gaplessness was observed in the disordered films of MoC close to the superconductor to insulator transition. The transition temperature decreases and the superconducting gap tends to close as the film thickness is reduced to 3 nm from 20 nm. The gaplessness is attributed to the enhanced Coulomb interactions due to the loss of screening in the presence of strong disorder in the films.

  9. Gapless Andreev bound states in the quantum spin Hall insulator HgTe.

    PubMed

    Bocquillon, Erwann; Deacon, Russell S; Wiedenmann, Jonas; Leubner, Philipp; Klapwijk, Teunis M; Brüne, Christoph; Ishibashi, Koji; Buhmann, Hartmut; Molenkamp, Laurens W

    2017-02-01

    In recent years, Majorana physics has attracted considerable attention because of exotic new phenomena and its prospects for fault-tolerant topological quantum computation. To this end, one needs to engineer the interplay between superconductivity and electronic properties in a topological insulator, but experimental work remains scarce and ambiguous. Here, we report experimental evidence for topological superconductivity induced in a HgTe quantum well, a 2D topological insulator that exhibits the quantum spin Hall (QSH) effect. The a.c. Josephson effect demonstrates that the supercurrent has a 4π periodicity in the superconducting phase difference, as indicated by a doubling of the voltage step for multiple Shapiro steps. In addition, this response like that of a superconducting quantum interference device to a perpendicular magnetic field shows that the 4π-periodic supercurrent originates from states located on the edges of the junction. Both features appear strongest towards the QSH regime, and thus provide evidence for induced topological superconductivity in the QSH edge states.

  10. Moiré edge states in twisted graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Fleischmann, M.; Gupta, R.; Weckbecker, D.; Landgraf, W.; Pankratov, O.; Meded, V.; Shallcross, S.

    2018-05-01

    The edge physics of graphene based systems is well known to be highly sensitive to the atomic structure at the boundary, with localized zero mode edge states found only on the zigzag-type termination of the lattice. Here we demonstrate that the graphene twist bilayer supports an additional class of edge states, that (i) are found for all edge geometries and thus are robust against edge roughness, (ii) occur at energies coinciding with twist induced Van Hove singularities in the bulk and (iii) possess an electron density strongly modulated by the moiré lattice. Interestingly, these "moiré edge states" exist only for certain lattice commensurations and thus the edge physics of the twist bilayer is, in dramatic contrast to that of the bulk, not uniquely determined by the twist angle.

  11. Preparation of edge states by shaking boundaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Z.C.; Center for Quantum Sciences and School of Physics, Northeast Normal University, Changchun 130024; Hou, S.C.

    2016-10-15

    Preparing topological states of quantum matter, such as edge states, is one of the most important directions in condensed matter physics. In this work, we present a proposal to prepare edge states in Aubry–André–Harper (AAH) model with open boundaries, which takes advantage of Lyapunov control to design operations. We show that edge states can be obtained with almost arbitrary initial states. A numerical optimalization for the control is performed and the dependence of control process on the system size is discussed. The merit of this proposal is that the shaking exerts only on the boundaries of the model. As amore » by-product, a topological entangled state is achieved by elaborately designing the shaking scheme.« less

  12. Conserving and gapless Hartree-Fock-Bogoliubov theory for the three-dimensional dilute Bose gas

    NASA Astrophysics Data System (ADS)

    Zhang, Ya-Hui; Li, Dingping

    2013-11-01

    The excitation spectrum for the three-dimensional Bose gas in the Bose-Einstein condensation phase is calculated nonperturbatively with the modified Hartree-Fock-Bogoliubov theory, which is both conserving and gapless. From improved Φ-derivable theory, the diagrams needed to preserve the Ward-Takahashi identity are re-summed in a systematic and nonperturbative way. It is valid up to the critical temperature where the dispersion relation of the low-energy excitation spectrum changes from linear to quadratic. Because including the higher-order fluctuation, the results show significant improvement on the calculation of the shift of critical temperature with other conserving and gapless theories.

  13. NANOCI-Nanotechnology Based Cochlear Implant With Gapless Interface to Auditory Neurons.

    PubMed

    Senn, Pascal; Roccio, Marta; Hahnewald, Stefan; Frick, Claudia; Kwiatkowska, Monika; Ishikawa, Masaaki; Bako, Peter; Li, Hao; Edin, Fredrik; Liu, Wei; Rask-Andersen, Helge; Pyykkö, Ilmari; Zou, Jing; Mannerström, Marika; Keppner, Herbert; Homsy, Alexandra; Laux, Edith; Llera, Miguel; Lellouche, Jean-Paul; Ostrovsky, Stella; Banin, Ehud; Gedanken, Aharon; Perkas, Nina; Wank, Ute; Wiesmüller, Karl-Heinz; Mistrík, Pavel; Benav, Heval; Garnham, Carolyn; Jolly, Claude; Gander, Filippo; Ulrich, Peter; Müller, Marcus; Löwenheim, Hubert

    2017-09-01

    : Cochlear implants (CI) restore functional hearing in the majority of deaf patients. Despite the tremendous success of these devices, some limitations remain. The bottleneck for optimal electrical stimulation with CI is caused by the anatomical gap between the electrode array and the auditory neurons in the inner ear. As a consequence, current devices are limited through 1) low frequency resolution, hence sub-optimal sound quality and 2), large stimulation currents, hence high energy consumption (responsible for significant battery costs and for impeding the development of fully implantable systems). A recently completed, multinational and interdisciplinary project called NANOCI aimed at overcoming current limitations by creating a gapless interface between auditory nerve fibers and the cochlear implant electrode array. This ambitious goal was achieved in vivo by neurotrophin-induced attraction of neurites through an intracochlear gel-nanomatrix onto a modified nanoCI electrode array located in the scala tympani of deafened guinea pigs. Functionally, the gapless interface led to lower stimulation thresholds and a larger dynamic range in vivo, and to reduced stimulation energy requirement (up to fivefold) in an in vitro model using auditory neurons cultured on multi-electrode arrays. In conclusion, the NANOCI project yielded proof of concept that a gapless interface between auditory neurons and cochlear implant electrode arrays is feasible. These findings may be of relevance for the development of future CI systems with better sound quality and performance and lower energy consumption. The present overview/review paper summarizes the NANOCI project history and highlights achievements of the individual work packages.

  14. Effective Hamiltonian for protected edge states in graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winkler, R.; Deshpande, H.

    Edge states in topological insulators (TIs) disperse symmetrically about one of the time-reversal invariant momenta Λ in the Brillouin zone (BZ) with protected degeneracies at Λ. Commonly TIs are distinguished from trivial insulators by the values of one or multiple topological invariants that require an analysis of the bulk band structure across the BZ. We propose an effective two-band Hamiltonian for the electronic states in graphene based on a Taylor expansion of the tight-binding Hamiltonian about the time-reversal invariant M point at the edge of the BZ. This Hamiltonian provides a faithful description of the protected edge states for bothmore » zigzag and armchair ribbons, though the concept of a BZ is not part of such an effective model. In conclusion, we show that the edge states are determined by a band inversion in both reciprocal and real space, which allows one to select Λ for the edge states without affecting the bulk spectrum.« less

  15. Effective Hamiltonian for protected edge states in graphene

    DOE PAGES

    Winkler, R.; Deshpande, H.

    2017-06-15

    Edge states in topological insulators (TIs) disperse symmetrically about one of the time-reversal invariant momenta Λ in the Brillouin zone (BZ) with protected degeneracies at Λ. Commonly TIs are distinguished from trivial insulators by the values of one or multiple topological invariants that require an analysis of the bulk band structure across the BZ. We propose an effective two-band Hamiltonian for the electronic states in graphene based on a Taylor expansion of the tight-binding Hamiltonian about the time-reversal invariant M point at the edge of the BZ. This Hamiltonian provides a faithful description of the protected edge states for bothmore » zigzag and armchair ribbons, though the concept of a BZ is not part of such an effective model. In conclusion, we show that the edge states are determined by a band inversion in both reciprocal and real space, which allows one to select Λ for the edge states without affecting the bulk spectrum.« less

  16. Edge states in a ferromagnetic honeycomb lattice with armchair boundaries

    NASA Astrophysics Data System (ADS)

    Pantaleón, Pierre A.; Xian, Y.

    2018-02-01

    We investigate the properties of magnon edge states in a ferromagnetic honeycomb lattice with armchair boundaries. In contrast with fermionic graphene, we find novel edge states due to the missing bonds along the boundary sites. After introducing an external on-site potential at the outermost sites we find that the energy spectra of the edge states are tunable. Additionally, when a non-trivial gap is induced, we find that some of the edge states are topologically protected and also tunable. Our results may explain the origin of the novel edge states recently observed in photonic lattices. We also discuss the behavior of these edge states for further experimental confirmations.

  17. Gapless quantum excitations from an icelike splayed ferromagnetic ground state in stoichiometric Yb 2 Ti 2 O 7

    DOE PAGES

    Gaudet, J.; Ross, K. A.; Kermarrec, E.; ...

    2016-02-03

    We know the ground state of the quantum spin ice candidate magnet Yb 2Ti 2O 7 to be sensitive to weak disorder at the similar to 1% level which occurs in single crystals grown from the melt. Powders produced by solid state synthesis tend to be stoichiometric and display large and sharp heat capacity anomalies at relatively high temperatures, T-C similar to 0.26 K. We have carried out neutron elastic and inelastic measurements on well characterized and equilibrated stoichiometric powder samples of Yb 2Ti 2O 7 which show resolution-limited Bragg peaks to appear at low temperatures, but whose onset correlatesmore » with temperatures much higher than T-C. The corresponding magnetic structure is best described as an icelike splayed ferromagnet. In the spin dynamics of Yb 2Ti 2O 7 we see the gapless on an energy scale <0.09 meV at all temperatures and organized into a continuum of scattering with vestiges of highly overdamped ferromagnetic spin waves present. These excitations differ greatly from conventional spin waves predicted for Yb 2Ti 2O 7's mean field ordered state, but appear robust to weak disorder as they are largely consistent with those displayed by nonstoichiometric crushed single crystals and single crystals, as well as by powder samples of Yb 2Ti 2O 7's sister quantum magnet Yb 2Ti 2O 7.« less

  18. Edge effect on a vacancy state in semi-infinite graphene

    NASA Astrophysics Data System (ADS)

    Deng, Hai-Yao; Wakabayashi, Katsunori

    2014-09-01

    The edge effect on a single vacancy state of semi-infinite graphene (SIG) has been studied using Green's function method within the tight-binding model. In the case of infinite graphene, it is known that a vacancy induces a zero-energy resonance state, whose wave function decays inversely with distance (R) from the vacancy and is not normalizable. However, for SIG with an armchair edge, we find that the corresponding wave function decays as R-2 and hence becomes normalizable owing to the intervalley interference caused by the armchair edge. For SIG with a zigzag edge, the vacancy state depends on the sublattice of the vacancy. When the vacancy and the edge belong to different sublattices, the vacancy has no effect on the zero-energy vacancy state. In contrast, when the vacancy is located on the same sublattice as the edge, the resonance state disappears but the wave function at zero energy is strongly distorted near the vacancy. Our results reveal that the presence of edges crucially changes the vacancy state in graphene, and thus such a state can be used to probe the edge structure.

  19. Topology and Edge Modes in Quantum Critical Chains

    NASA Astrophysics Data System (ADS)

    Verresen, Ruben; Jones, Nick G.; Pollmann, Frank

    2018-02-01

    We show that topology can protect exponentially localized, zero energy edge modes at critical points between one-dimensional symmetry-protected topological phases. This is possible even without gapped degrees of freedom in the bulk—in contrast to recent work on edge modes in gapless chains. We present an intuitive picture for the existence of these edge modes in the case of noninteracting spinless fermions with time-reversal symmetry (BDI class of the tenfold way). The stability of this phenomenon relies on a topological invariant defined in terms of a complex function, counting its zeros and poles inside the unit circle. This invariant can prevent two models described by the same conformal field theory (CFT) from being smoothly connected. A full classification of critical phases in the noninteracting BDI class is obtained: Each phase is labeled by the central charge of the CFT, c ∈1/2 N , and the topological invariant, ω ∈Z . Moreover, c is determined by the difference in the number of edge modes between the phases neighboring the transition. Numerical simulations show that the topological edge modes of critical chains can be stable in the presence of interactions and disorder.

  20. Optimization of edge state velocity in the integer quantum Hall regime

    NASA Astrophysics Data System (ADS)

    Sahasrabudhe, H.; Novakovic, B.; Nakamura, J.; Fallahi, S.; Povolotskyi, M.; Klimeck, G.; Rahman, R.; Manfra, M. J.

    2018-02-01

    Observation of interference in the quantum Hall regime may be hampered by a small edge state velocity due to finite phase coherence time. Therefore designing two quantum point contact (QPCs) interferometers having a high edge state velocity is desirable. Here we present a new simulation method for designing heterostructures with high edge state velocity by realistically modeling edge states near QPCs in the integer quantum Hall effect (IQHE) regime. Using this simulation method, we also predict the filling factor at the center of QPCs and their conductance at different gate voltages. The 3D Schrödinger equation is split into 1D and 2D parts. Quasi-1D Schrödinger and Poisson equations are solved self-consistently in the IQHE regime to obtain the potential profile, and quantum transport is used to solve for the edge state wave functions. The velocity of edge states is found to be /B , where is the expectation value of the electric field for the edge state. Anisotropically etched trench gated heterostructures with double-sided delta doping have the highest edge state velocity among the structures considered.

  1. Investigating the edge state of graphene nanoribbons by a chemical approach: Synthesis and magnetic properties of zigzag-edged nanographene molecules

    NASA Astrophysics Data System (ADS)

    Konishi, Akihito; Hirao, Yasukazu; Kurata, Hiroyuki; Kubo, Takashi

    2013-12-01

    The edge state, which is a peculiar magnetic state in zigzag-edged graphene nanoribbons (GNRs) originating from an electron-electron correlation in an edge-localized π-state, has promising applications for magnetic and spintronics devices and has attracted much attention of physicists, chemists, and engineers. For deeper understanding the edge state, precise fabrication of edge structures in GNRs has been highly demanded. We focus on [a.b]periacene, which are polycyclic aromatic hydrocarbons (PAHs) that have zigzag and armchair edges on molecular periphery, as a model compound for the understanding and actually prepare and characterize them. This review summarizes our recent studies on the origin of the edge state by investigating [a.b]periacene in terms of the relationship between the molecular structure and spin-localizing character.

  2. Edge-entanglement spectrum correspondence in a nonchiral topological phase and Kramers-Wannier duality

    NASA Astrophysics Data System (ADS)

    Ho, Wen Wei; Cincio, Lukasz; Moradi, Heidar; Gaiotto, Davide; Vidal, Guifre

    2015-03-01

    In a system with chiral topological order, there is a remarkable correspondence between the edge and entanglement spectra: the low-energy spectrum of the system in the presence of a physical edge coincides with the lowest part of the entanglement spectrum (ES) across a virtual cut of the system into two parts, up to rescaling and shifting. This correspondence is believed to be due to the existence of protected gapless edge modes. In this paper, we explore whether the edge-entanglement spectrum correspondence extends to nonchiral topological phases, where there are no protected gapless edge modes. Specifically, we consider the Wen-plaquette model, which is equivalent to the Kitaev toric code model and has Z2 topological order (quantum double of Z2) . The unperturbed Wen-plaquette model displays an exact correspondence: both the edge and entanglement spectra within each topological sector a (a =1 ,⋯,4 ) are flat and equally degenerate. Here, we show, through a detailed microscopic calculation, that in the presence of generic local perturbations: (i) the effective degrees of freedom for both the physical edge and the entanglement cut consist of a (spin-1 /2 ) spin chain, with effective Hamiltonians Hedgea and Henta, respectively, both of which have a Z2 symmetry enforced by the bulk topological order; (ii) there is in general no match between the low-energy spectra of Hedgea and Henta, that is, there is no edge-ES correspondence. However, if supplement the Z2 topological order with a global symmetry (translational invariance along the edge/entanglement cut), i.e., by considering the Wen-plaquette model as a symmetry-enriched topological phase (SET), then there is a finite domain in Hamiltonian space in which both Hedgea and Henta realize the critical Ising model, whose low-energy effective theory is the c =1 /2 Ising CFT. This is achieved because the presence of the global symmetry implies that the effective degrees of freedom of both the edge and entanglement

  3. Edge states at the interface of non-Hermitian systems

    NASA Astrophysics Data System (ADS)

    Yuce, C.

    2018-04-01

    Topological edge states appear at the interface of two topologically distinct Hermitian insulators. We study the extension of this idea to non-Hermitian systems. We consider P T -symmetric and topologically distinct non-Hermitian insulators with real spectra and study topological edge states at the interface of them. We show that P T symmetry is spontaneously broken at the interface during the topological phase transition. Therefore, topological edge states with complex energy eigenvalues appear at the interface. We apply our idea to a complex extension of the Su-Schrieffer-Heeger model.

  4. Hybrid matrix method for stable numerical analysis of the propagation of Dirac electrons in gapless bilayer graphene superlattices

    NASA Astrophysics Data System (ADS)

    Briones-Torres, J. A.; Pernas-Salomón, R.; Pérez-Álvarez, R.; Rodríguez-Vargas, I.

    2016-05-01

    Gapless bilayer graphene (GBG), like monolayer graphene, is a material system with unique properties, such as anti-Klein tunneling and intrinsic Fano resonances. These properties rely on the gapless parabolic dispersion relation and the chiral nature of bilayer graphene electrons. In addition, propagating and evanescent electron states coexist inherently in this material, giving rise to these exotic properties. In this sense, bilayer graphene is unique, since in most material systems in which Fano resonance phenomena are manifested an external source that provides extended states is required. However, from a numerical standpoint, the presence of evanescent-divergent states in the eigenfunctions linear superposition representing the Dirac spinors, leads to a numerical degradation (the so called Ωd problem) in the practical applications of the standard Coefficient Transfer Matrix (K) method used to study charge transport properties in Bilayer Graphene based multi-barrier systems. We present here a straightforward procedure based in the hybrid compliance-stiffness matrix method (H) that can overcome this numerical degradation. Our results show that in contrast to standard matrix method, the proposed H method is suitable to study the transmission and transport properties of electrons in GBG superlattice since it remains numerically stable regardless the size of the superlattice and the range of values taken by the input parameters: the energy and angle of the incident electrons, the barrier height and the thickness and number of barriers. We show that the matrix determinant can be used as a test of the numerical accuracy in real calculations.

  5. Theory of Magnetic Edge States in Chiral Graphene Nanoribbons

    NASA Astrophysics Data System (ADS)

    Capaz, Rodrigo; Yazyev, Oleg; Louie, Steven

    2011-03-01

    Using a model Hamiltonian approach including electron Coulomb interactions, we systematically investigate the electronic structure and magnetic properties of chiral graphene nanoribbons. We show that the presence of magnetic edge states is an intrinsic feature of any smooth graphene nanoribbons with chiral edges, and discover a number of structure-property relations. Specifically, we describe how the edge-state energy gap, zone-boundary edge-state energy splitting, and magnetic moment per edge length depend on the nanoribbon width and chiral angle. The role of environmental screening effects is also studied. Our results address a recent experimental observation of signatures of magnetic ordering at smooth edges of chiral graphene nanoribbons and provide an avenue towards tuning their properties via the structural and environmental degrees of freedom. This work was supported by National Science Foundation Grant No. DMR10-1006184, the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 and the ONR MURI program. RBC acknowledges financial support from Brazilian agencies CNPq, FAPERJ and INCT-Nanomateriais de Carbono.

  6. Engineering topological edge states in two dimensional magnetic photonic crystal

    NASA Astrophysics Data System (ADS)

    Yang, Bing; Wu, Tong; Zhang, Xiangdong

    2017-01-01

    Based on a perturbative approach, we propose a simple and efficient method to engineer the topological edge states in two dimensional magnetic photonic crystals. The topological edge states in the microstructures can be constructed and varied by altering the parameters of the microstructure according to the field-energy distributions of the Bloch states at the related Bloch wave vectors. The validity of the proposed method has been demonstrated by exact numerical calculations through three concrete examples. Our method makes the topological edge states "designable."

  7. Edge states and phase diagram for graphene under polarized light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yi -Xiang; Li, Fuxiang

    2016-03-22

    In this paper, we investigate the topological phase transitions in graphene under the modulation of circularly polarized light, by analyzing the changes of edge states and its topological structures. A full phase diagram, with several different topological phases, is presented in the parameter space spanned by the driving frequency and light strength. We find that the high-Chern number behavior is very common in the driven system. While the one-photon resonance can create the chiral edge states in the π-gap, the two-photon resonance will induce the counter-propagating edge modes in the zero-energy gap. When the driving light strength is strong, themore » number and even the chirality of the edge states may change in the π-gap. The robustness of the edge states to disorder potential is also examined. We close by discussing the feasibility of experimental proposals.« less

  8. Robustness of edge states in topological quantum dots against global electric field

    NASA Astrophysics Data System (ADS)

    Qu, Jin-Xian; Zhang, Shu-Hui; Liu, Ding-Yang; Wang, Ping; Yang, Wen

    2017-07-01

    The topological insulator has attracted increasing attention as a new state of quantum matter featured by the symmetry-protected edge states. Although the qualitative robustness of the edge states against local perturbations has been well established, it is not clear how these topological edge states respond quantitatively to a global perturbation. Here, we study the response of topological edge states in a HgTe quantum dot to an external in-plane electric field—a paradigmatic global perturbation in solid-state environments. We find that the stability of the topological edge state could be larger than that of the ground bulk state by several orders of magnitudes. This robustness may be verified by standard transport measurements in the Coulomb blockage regime. Our work may pave the way towards utilizing these topological edge states as stable memory devices for charge and/or spin information and stable emitter of single terahertz photons or entangled terahertz photon pairs for quantum communication.

  9. Mapping Catalytically Relevant Edge Electronic States of MoS2

    PubMed Central

    2018-01-01

    Molybdenum disulfide (MoS2) is a semiconducting transition metal dichalcogenide that is known to be a catalyst for both the hydrogen evolution reaction (HER) as well as for hydro-desulfurization (HDS) of sulfur-rich hydrocarbon fuels. Specifically, the edges of MoS2 nanostructures are known to be far more catalytically active as compared to unmodified basal planes. However, in the absence of the precise details of the geometric and electronic structure of the active catalytic sites, a rational means of modulating edge reactivity remain to be developed. Here we demonstrate using first-principles calculations, X-ray absorption spectroscopy, as well as scanning transmission X-ray microscopy (STXM) imaging that edge corrugations yield distinctive spectroscopic signatures corresponding to increased localization of hybrid Mo 4d states. Independent spectroscopic signatures of such edge states are identified at both the S L2,3 and S K-edges with distinctive spatial localization of such states observed in S L2,3-edge STXM imaging. The presence of such low-energy hybrid states at the edge of the conduction band is seen to correlate with substantially enhanced electrocatalytic activity in terms of a lower Tafel slope and higher exchange current density. These results elucidate the nature of the edge electronic structure and provide a clear framework for its rational manipulation to enhance catalytic activity. PMID:29721532

  10. Electrically tunable robust edge states in graphene-based topological photonic crystal slabs

    NASA Astrophysics Data System (ADS)

    Song, Zidong; Liu, HongJun; Huang, Nan; Wang, ZhaoLu

    2018-03-01

    Topological photonic crystals are optical structures supporting topologically protected unidirectional edge states that exhibit robustness against defects. Here, we propose a graphene-based all-dielectric photonic crystal slab structure that supports two-dimensionally confined topological edge states. These topological edge states can be confined in the out-of-plane direction by two parallel graphene sheets. In the structure, the excitation frequency range of topological edge states can be dynamically and continuously tuned by varying bias voltage across the two parallel graphene sheets. Utilizing this kind of architecture, we construct Z-shaped channels to realize topological edge transmission with diffrerent frequencies. The proposal provides a new degree of freedom to dynamically control topological edge states and potential applications for robust integrated photonic devices and optical communication systems.

  11. The Existence of Topological Edge States in Honeycomb Plasmonic Lattices

    NASA Astrophysics Data System (ADS)

    Wang, Li

    In this paper, we investigate the band properties of 2D honeycomb plasmonic lattices consisting of metallic nanoparticles. By means of the coupled dipole method and quasi-static approximation, we theoretically analyze the band structures stemming from near-field interaction of localized surface plasmon polaritons for both the infinite lattice and ribbons. Naturally, the interaction of point dipoles decouples into independent out-of-plane and in-plane polarizations. For the out-of-plane modes, both the bulk spectrum and the range of the momentum k∥ where edge states exist in ribbons are similar to the electronic bands in graphene. Nevertheless, the in-plane polarized modes show significant differences, which do not only possess additional non-flat edge states in ribbons, but also have different distributions of the flat edge states in reciprocal space. For in-plane polarized modes, we derived the bulk-edge correspondence, namely, the relation between the number of flat edge states at a fixed k∥, Zak phases of the bulk bands and the winding number associated with the bulk hamiltonian, and verified it through four typical ribbon boundaries, i.e. zigzag, bearded zigzag, armchair, and bearded armchair. Our approach gives a new topological understanding of edge states in such plasmonic systems, and may also apply to other 2D vector wave systems.

  12. Effect of disorder on the magnetic and electronic structure of a prospective spin-gapless semiconductor MnCrVAl

    DOE PAGES

    Kharel, P.; Herran, J.; Lukashev, P.; ...

    2016-12-19

    Recent discovery of a new class of materials, spin-gapless semiconductors (SGS), has attracted considerable attention in the last few years, primarily due to potential applications in the emerging field of spin-based electronics (spintronics). Here, we investigate structural, electronic, and magnetic properties of one potential SGS compound, MnCrVAl, using various experimental and theoretical techniques. Our calculations show that this material exhibits ≈ 0.5 eV band gap for the majority-spin states, while for the minority-spin it is nearly gapless. The calculated magnetic moment for the completely ordered structure is 2.9 μB/f.u., which is different from our experimentally measured value of almost zero.more » Here, this discrepancy is explained by the structural disorder. In particular, A2 type disorder, where Mn or Cr atoms exchange their positions with Al atoms, results in induced antiferromagnetic exchange coupling, which, at a certain level of disorder, effectively reduces the total magnetic moment to zero. This is consistent with our x-ray diffraction measurements which indicate the presence of A2 disorder in all of our samples. In addition, we also show that B2 disorder does not result in antiferromagnetic exchange coupling and therefore does not significantly reduce the total magnetic moment.« less

  13. Magnetism of Nanographene-Based Microporous Carbon and Its Applications: Interplay of Edge Geometry and Chemistry Details in the Edge State

    NASA Astrophysics Data System (ADS)

    Enoki, Toshiaki; Kiguchi, Manabu

    2018-03-01

    This paper is a contribution to the Physical Review Applied collection in memory of Mildred S. Dresselhaus. Nanographenes have important edge geometry dependence in their electronic structures. In armchair edges, electron wave interference works to contribute to energetic stability. Meanwhile, zigzag edges possess an edge-localized and spin-polarized nonbonding edge state, which causes electronic, magnetic, and chemical activities. In addition to the geometry dependence, the electronic structures are seriously affected by edge chemistry details. The edge chemistry dependence together with edge geometries on the electronic structures are discussed with samples of randomly networked nanographenes (microporous activated carbon fibers) in pristine state and under high-temperature annealing. In the pristine sample with the edges oxidized in ambient atmospheric conditions, the edge state, which is otherwise unstable, can be stabilized because of the charge transfer from nanographene to terminating oxygen. Nanographene, whose edges consist of a combination of magnetic zigzag edges and nonmagnetic armchair edges, is found to be ferrimagnetic with a nonzero net magnetic moment created under the interplay between a strong intrazigzag-edge ferromagnetic interaction and intermediate-strength interzigzag-edge antiferromagnetic-ferromagnetic interaction. At heat-treatment temperatures just below the fusion start (approximately 1500 K), the edge-terminating structure is changed from oxygen-containing groups to hydrogen in the nanographene network. Additionally, hydrogen-terminated zigzag edges, which are present as the majority and chemically unstable, play a triggering role in fusion above 1500 K. The fusion start brings about an insulator-to-metal transition at TI -M˜1500 K . Local fusions taking place percolatively between nanographenes work to expand the π -bond network, eventually resulting in the development of antiferromagnetic short-range order toward spin glass in the

  14. The existence of topological edge states in honeycomb plasmonic lattices

    NASA Astrophysics Data System (ADS)

    Wang, Li; Zhang, Ruo-Yang; Xiao, Meng; Han, Dezhuan; Chan, C. T.; Wen, Weijia

    2016-10-01

    In this paper, we investigate the band properties of 2D honeycomb plasmonic lattices consisting of metallic nanoparticles. By means of the coupled dipole method and quasi-static approximation, we theoretically analyze the band structures stemming from near-field interaction of localized surface plasmon polaritons for both the infinite lattice and ribbons. Naturally, the interaction of point dipoles decouples into independent out-of-plane and in-plane polarizations. For the out-of-plane modes, both the bulk spectrum and the range of the momentum k ∥ where edge states exist in ribbons are similar to the electronic bands in graphene. Nevertheless, the in-plane polarized modes show significant differences, which do not only possess additional non-flat edge states in ribbons, but also have different distributions of the flat edge states in reciprocal space. For in-plane polarized modes, we derived the bulk-edge correspondence, namely, the relation between the number of flat edge states at a fixed {k}\\parallel , Zak phases of the bulk bands and the winding number associated with the bulk Hamiltonian, and verified it through four typical ribbon boundaries, i.e. zigzag, bearded zigzag, armchair, and bearded armchair. Our approach gives a new topological understanding of edge states in such plasmonic systems, and may also apply to other 2D ‘vector wave’ systems.

  15. Melting of Domain Wall in Charge Ordered Dirac Electron of Organic Conductor α-(BEDT-TTF)2I3

    NASA Astrophysics Data System (ADS)

    Ohki, Daigo; Matsuno, Genki; Omori, Yukiko; Kobayashi, Akito

    2018-05-01

    The origin of charge order melting is identified by using the real space dependent mean-field theory in the extended Hubbard model describing an organic Dirac electron system α-(BEDT-TTF)2I3. In this model, the width of a domain wall which arises between different types of the charge ordered phase exhibits a divergent increase with decreasing the strength of electron-electron correlations. By analyzing the finite-size effect carefully, it is shown that the divergence coincides with a topological transition where a pair of Dirac cones merges in keeping with a finite gap. It is also clarified that the gap opening point and the topological transition point are different, which leads to the existence of an exotic massive Dirac electron phase with melted-type domain wall and gapless edge states. The present result also indicated that multiple metastable states are emerged in massive Dirac Electron phase. In the trivial charge ordered phase, the gapless domain-wall bound state takes place instead of the gapless edge states, accompanying with a form change of the domain wall from melted-type into hyperbolic-tangent-type.

  16. Gapless spin excitations in the S = 1 / 2 Kagome- and triangular-lattice Heisenberg antiferromagnets

    NASA Astrophysics Data System (ADS)

    Sakai, Tôru; Nakano, Hiroki

    2018-05-01

    The S = 1 / 2 kagome- and triangular-lattice Heisenberg antiferromagnets are investigated using the numerical exact diagonalization and the finite-size scaling analysis. The behaviour of the field derivative at zero magnetization is examined for both systems. The present result indicates that the spin excitation is gapless for each system.

  17. Optically detecting the edge-state of a three-dimensional topological insulator under ambient conditions by ultrafast infrared photoluminescence spectroscopy

    PubMed Central

    Maezawa, Shun-ya; Watanabe, Hiroshi; Takeda, Masahiro; Kuroda, Kenta; Someya, Takashi; Matsuda, Iwao; Suemoto, Tohru

    2015-01-01

    Ultrafast infrared photoluminescence spectroscopy was applied to a three-dimensional topological insulator TlBiSe2 under ambient conditions. The dynamics of the luminescence exhibited bulk-insulating and gapless characteristics bounded by the bulk band gap energy. The existence of the topologically protected surface state and the picosecond-order relaxation time of the surface carriers, which was distinguishable from the bulk response, were observed. Our results provide a practical method applicable to topological insulators under ambient conditions for device applications. PMID:26552784

  18. Gate-Controlled Transmission of Quantum Hall Edge States in Bilayer Graphene.

    PubMed

    Li, Jing; Wen, Hua; Watanabe, Kenji; Taniguchi, Takashi; Zhu, Jun

    2018-02-02

    The edge states of the quantum Hall and fractional quantum Hall effect of a two-dimensional electron gas carry key information of the bulk excitations. Here we demonstrate gate-controlled transmission of edge states in bilayer graphene through a potential barrier with tunable height. The backscattering rate is continuously varied from 0 to close to 1, with fractional quantized values corresponding to the sequential complete backscattering of individual modes. Our experiments demonstrate the feasibility to controllably manipulate edge states in bilayer graphene, thus opening the door to more complex experiments.

  19. Gate-Controlled Transmission of Quantum Hall Edge States in Bilayer Graphene

    NASA Astrophysics Data System (ADS)

    Li, Jing; Wen, Hua; Watanabe, Kenji; Taniguchi, Takashi; Zhu, Jun

    2018-02-01

    The edge states of the quantum Hall and fractional quantum Hall effect of a two-dimensional electron gas carry key information of the bulk excitations. Here we demonstrate gate-controlled transmission of edge states in bilayer graphene through a potential barrier with tunable height. The backscattering rate is continuously varied from 0 to close to 1, with fractional quantized values corresponding to the sequential complete backscattering of individual modes. Our experiments demonstrate the feasibility to controllably manipulate edge states in bilayer graphene, thus opening the door to more complex experiments.

  20. Ballistic edge states in Bismuth nanowires revealed by SQUID interferometry.

    PubMed

    Murani, Anil; Kasumov, Alik; Sengupta, Shamashis; Kasumov, Yu A; Volkov, V T; Khodos, I I; Brisset, F; Delagrange, Raphaëlle; Chepelianskii, Alexei; Deblock, Richard; Bouchiat, Hélène; Guéron, Sophie

    2017-07-05

    The protection against backscattering provided by topology is a striking property. In two-dimensional insulators, a consequence of this topological protection is the ballistic nature of the one-dimensional helical edge states. One demonstration of ballisticity is the quantized Hall conductance. Here we provide another demonstration of ballistic transport, in the way the edge states carry a supercurrent. The system we have investigated is a micrometre-long monocrystalline bismuth nanowire with topological surfaces, that we connect to two superconducting electrodes. We have measured the relation between the Josephson current flowing through the nanowire and the superconducting phase difference at its ends, the current-phase relation. The sharp sawtooth-shaped phase-modulated current-phase relation we find demonstrates that transport occurs selectively along two ballistic edges of the nanowire. In addition, we show that a magnetic field induces 0-π transitions and ϕ 0 -junction behaviour, providing a way to manipulate the phase of the supercurrent-carrying edge states and generate spin supercurrents.

  1. Ballistic edge states in Bismuth nanowires revealed by SQUID interferometry

    PubMed Central

    Murani, Anil; Kasumov, Alik; Sengupta, Shamashis; Kasumov, Yu A.; Volkov, V. T.; Khodos, I. I.; Brisset, F.; Delagrange, Raphaëlle; Chepelianskii, Alexei; Deblock, Richard; Bouchiat, Hélène; Guéron, Sophie

    2017-01-01

    The protection against backscattering provided by topology is a striking property. In two-dimensional insulators, a consequence of this topological protection is the ballistic nature of the one-dimensional helical edge states. One demonstration of ballisticity is the quantized Hall conductance. Here we provide another demonstration of ballistic transport, in the way the edge states carry a supercurrent. The system we have investigated is a micrometre-long monocrystalline bismuth nanowire with topological surfaces, that we connect to two superconducting electrodes. We have measured the relation between the Josephson current flowing through the nanowire and the superconducting phase difference at its ends, the current–phase relation. The sharp sawtooth-shaped phase-modulated current–phase relation we find demonstrates that transport occurs selectively along two ballistic edges of the nanowire. In addition, we show that a magnetic field induces 0–π transitions and φ0-junction behaviour, providing a way to manipulate the phase of the supercurrent-carrying edge states and generate spin supercurrents. PMID:28677681

  2. (d -2 ) -Dimensional Edge States of Rotation Symmetry Protected Topological States

    NASA Astrophysics Data System (ADS)

    Song, Zhida; Fang, Zhong; Fang, Chen

    2017-12-01

    We study fourfold rotation-invariant gapped topological systems with time-reversal symmetry in two and three dimensions (d =2 , 3). We show that in both cases nontrivial topology is manifested by the presence of the (d -2 )-dimensional edge states, existing at a point in 2D or along a line in 3D. For fermion systems without interaction, the bulk topological invariants are given in terms of the Wannier centers of filled bands and can be readily calculated using a Fu-Kane-like formula when inversion symmetry is also present. The theory is extended to strongly interacting systems through the explicit construction of microscopic models having robust (d -2 )-dimensional edge states.

  3. Gate-controlled tunneling of quantum Hall edge states in bilayer graphene

    NASA Astrophysics Data System (ADS)

    Zhu, Jun; Li, Jing; Wen, Hua

    Controlled tunneling of integer and fractional quantum Hall edge states provides a powerful tool to probe the physics of 1D systems and exotic particle statistics. Experiments in GaAs 2DEGs employ either a quantum point contact or a line junction tunnel barrier. It is generally difficult to independently control the filling factors νL and νR on the two sides of the barrier. Here we show that in bilayer graphene both νL and νR as well as their Landau level structures can be independently controlled using a dual-split-gate structure. In addition, the height of the line-junction tunnel barrier implemented in our experiments is tunable via a 5th gate. By measuring the tunneling resistance across the junction RT we examine the equilibration of the edge states in a variety of νL/νR scenarios and under different barrier heights. Edge states from both sides are fully mixed in the case of a low barrier. As the barrier height increases, we observe plateaus in RT that correspond to sequential complete backscattering of edge states. Gate-controlled manipulation of edge states offers a new angle to the exploration of quantum Hall magnetism and fractional quantum Hall effect in bilayer graphene.

  4. Realizing topological edge states in a silicon nitride microring-based photonic integrated circuit.

    PubMed

    Yin, Chenxuan; Chen, Yujie; Jiang, Xiaohui; Zhang, Yanfeng; Shao, Zengkai; Xu, Pengfei; Yu, Siyuan

    2016-10-15

    Topological edge states in a photonic integrated circuit based on the platform of silicon nitride are demonstrated with a two-dimensional coupled resonator optical waveguide array involving the synthetic magnetic field for photons at near-infrared wavelengths. Measurements indicate that the topological edge states can be observed at certain wavelengths, with light travelling around the boundary of the array. Combined with the induced disorders in fabrication near the edge, the system shows the defect immunity under the topological protection of edge states.

  5. Rigorous decoupling between edge states in frustrated spin chains and ladders

    NASA Astrophysics Data System (ADS)

    Chepiga, Natalia; Mila, Frédéric

    2018-05-01

    We investigate the occurrence of exact zero modes in one-dimensional quantum magnets of finite length that possess edge states. Building on conclusions first reached in the context of the spin-1/2 X Y chain in a field and then for the spin-1 J1-J2 Heisenberg model, we show that the development of incommensurate correlations in the bulk invariably leads to oscillations in the sign of the coupling between edge states, and hence to exact zero energy modes at the crossing points where the coupling between the edge states rigorously vanishes. This is true regardless of the origin of the frustration (e.g., next-nearest-neighbor coupling or biquadratic coupling for the spin-1 chain), of the value of the bulk spin (we report on spin-1/2, spin-1, and spin-2 examples), and of the value of the edge-state emergent spin (spin-1/2 or spin-1).

  6. Decoherence of high-energy electrons in weakly disordered quantum Hall edge states

    NASA Astrophysics Data System (ADS)

    Nigg, Simon E.; Lunde, Anders Mathias

    2016-07-01

    We investigate theoretically the phase coherence of electron transport in edge states of the integer quantum Hall effect at filling factor ν =2 , in the presence of disorder and inter edge state Coulomb interaction. Within a Fokker-Planck approach, we calculate analytically the visibility of the Aharonov-Bohm oscillations of the current through an electronic Mach-Zehnder interferometer. In agreement with recent experiments, we find that the visibility is independent of the energy of the current-carrying electrons injected high above the Fermi sea. Instead, it is the amount of disorder at the edge that sets the phase space available for inter edge state energy exchange and thereby controls the visibility suppression.

  7. Exact edge, bulk, and bound states of finite topological systems

    NASA Astrophysics Data System (ADS)

    Duncan, Callum W.; Öhberg, Patrik; Valiente, Manuel

    2018-05-01

    Finite topologically nontrivial systems are characterized, among many other unique properties, by the presence of bound states at their physical edges. These topological edge modes can be distinguished from usual Shockley waves energetically, as their energies remain finite and in gap even when the boundaries of the system represent an effectively infinite and sharp energetic barrier. Theoretically, the existence of topological edge modes can be shown by means of the bulk-edge correspondence and topological invariants. On a clean one-dimensional lattice and reducible two-dimensional models, in either the commensurate or semi-infinite case, the edge modes can be essentially obtained analytically, as shown previously [Y. Hatsugai, Phys. Rev. Lett. 71, 3697 (1993), 10.1103/PhysRevLett.71.3697; D. Hügel and B. Paredes, Phys. Rev. A 89, 023619 (2014), 10.1103/PhysRevA.89.023619]. In this work, we put forward a method for obtaining the spectrum and wave functions of topological edge modes for arbitrary finite lattices, including the incommensurate case. A small number of parameters are easily determined numerically, with the form of the eigenstates remaining fully analytical. We also obtain the bulk modes in the finite system analytically and their associated eigenenergies, which lie within the infinite-size limit continuum. Our method is general and can be easily applied to obtain the properties of nontopological models and/or extended to include impurities. As an example, we consider a relevant case of an impurity located next to one edge of a one-dimensional system, equivalent to a softened boundary in a separable two-dimensional model. We show that a localized impurity can have a drastic effect on the original topological edge modes of the system. Using the periodic Harper and Hofstadter models to illustrate our method, we find that, on increasing the impurity strength, edge states can enter or exit the continuum, and a trivial Shockley state bound to the impurity

  8. Lasing in topological edge states of a one-dimensional lattice

    NASA Astrophysics Data System (ADS)

    St-Jean, P.; Goblot, V.; Galopin, E.; Lemaître, A.; Ozawa, T.; Le Gratiet, L.; Sagnes, I.; Bloch, J.; Amo, A.

    2017-10-01

    Topology describes properties that remain unaffected by smooth distortions. Its main hallmark is the emergence of edge states localized at the boundary between regions characterized by distinct topological invariants. Because their properties are inherited from the topology of the bulk, these edge states present a strong immunity to distortions of the underlying architecture. This feature offers new opportunities for robust trapping of light in nano- and micrometre-scale systems subject to fabrication imperfections and environmentally induced deformations. Here, we report lasing in such topological edge states of a one-dimensional lattice of polariton micropillars that implements an orbital version of the Su-Schrieffer-Heeger Hamiltonian. We further demonstrate that lasing in these states persists under local deformations of the lattice. These results open the way to the implementation of chiral lasers in systems with broken time-reversal symmetry and, when combined with polariton interactions, to the study of nonlinear phenomena in topological photonics.

  9. Role of chiral quantum Hall edge states in nuclear spin polarization.

    PubMed

    Yang, Kaifeng; Nagase, Katsumi; Hirayama, Yoshiro; Mishima, Tetsuya D; Santos, Michael B; Liu, Hongwu

    2017-04-20

    Resistively detected NMR (RDNMR) based on dynamic nuclear polarization (DNP) in a quantum Hall ferromagnet (QHF) is a highly sensitive method for the discovery of fascinating quantum Hall phases; however, the mechanism of this DNP and, in particular, the role of quantum Hall edge states in it are unclear. Here we demonstrate the important but previously unrecognized effect of chiral edge modes on the nuclear spin polarization. A side-by-side comparison of the RDNMR signals from Hall bar and Corbino disk configurations allows us to distinguish the contributions of bulk and edge states to DNP in QHF. The unidirectional current flow along chiral edge states makes the polarization robust to thermal fluctuations at high temperatures and makes it possible to observe a reciprocity principle of the RDNMR response. These findings help us better understand complex NMR responses in QHF, which has important implications for the development of RDNMR techniques.

  10. Selective Equilibration of Spin-Polarized Quantum Hall Edge States in Graphene

    NASA Astrophysics Data System (ADS)

    Amet, F.; Williams, J. R.; Watanabe, K.; Taniguchi, T.; Goldhaber-Gordon, D.

    2014-05-01

    We report on transport measurements of dual-gated, single-layer graphene devices in the quantum Hall regime, allowing for independent control of the filling factors in adjoining regions. Progress in device quality allows us to study scattering between edge states when the fourfold degeneracy of the Landau level is lifted by electron correlations, causing edge states to be spin and/or valley polarized. In this new regime, we observe a dramatic departure from the equilibration seen in more disordered devices: edge states with opposite spins propagate without mixing. As a result, the degree of equilibration inferred from transport can reveal the spin polarization of the ground state at each filling factor. In particular, the first Landau level is shown to be spin polarized at half filling, providing an independent confirmation of a conclusion of Young et al. [Nat. Phys. 8, 550 (2012)]. The conductance in the bipolar regime is strongly suppressed, indicating that copropagating edge states, even with the same spin, do not equilibrate along PN interfaces. We attribute this behavior to the formation of an insulating ν =0 stripe at the PN interface.

  11. Topological helical edge states in water waves over a topographical bottom

    NASA Astrophysics Data System (ADS)

    Wu, Shiqiao; Wu, Ying; Mei, Jun

    2018-02-01

    We present the discovery of topologically protected helical edge states in water wave systems, which are realized in water wave propagating over a topographical bottom whose height is modulated periodically in a two-dimensional triangular pattern. We develop an effective Hamiltonian to characterize the dispersion relation and use spin Chern numbers to classify the topology. Through full-wave simulations we unambiguously demonstrate the robustness of the helical edge states which are immune to defects and disorders so that the backscattering loss is significantly reduced. A spin splitter is designed for water wave systems, where helical edge states with different spin orientations are spatially separated with each other, and potential applications are discussed.

  12. Symmetrical metallic and magnetic edge states of nanoribbon from semiconductive monolayer PtS2

    NASA Astrophysics Data System (ADS)

    Liu, Shan; Zhu, Heyu; Liu, Ziran; Zhou, Guanghui

    2018-03-01

    Transition metal dichalcogenides (TMD) MoS2 or graphene could be designed to metallic nanoribbons, which always have only one edge show metallic properties due to symmetric protection. In present work, a nanoribbon with two parallel metallic and magnetic edges was designed from a noble TMD PtS2 by employing first-principles calculations based on density functional theory (DFT). Edge energy, bonding charge density, band structure, density of states (DOS) and simulated scanning tunneling microscopy (STM) of four possible edge states of monolayer semiconductive PtS2 were systematically studied. Detailed calculations show that only Pt-terminated edge state among four edge states was relatively stable, metallic and magnetic. Those metallic and magnetic properties mainly contributed from 5d orbits of Pt atoms located at edges. What's more, two of those central symmetric edges coexist in one zigzag nanoribbon, which providing two atomic metallic wires thus may have promising application for the realization of quantum effects, such as Aharanov-Bohm effect and atomic power transmission lines in single nanoribbon.

  13. Protected Pseudohelical Edge States in Z2-Trivial Proximitized Graphene

    NASA Astrophysics Data System (ADS)

    Frank, Tobias; Högl, Petra; Gmitra, Martin; Kochan, Denis; Fabian, Jaroslav

    2018-04-01

    We investigate topological properties of models that describe graphene on realistic substrates which induce proximity spin-orbit coupling in graphene. A Z2 phase diagram is calculated for the parameter space of (generally different) intrinsic spin-orbit coupling on the two graphene sublattices, in the presence of Rashba coupling. The most fascinating case is that of staggered intrinsic spin-orbit coupling which, despite being topologically trivial, Z2=0 , does exhibit edge states protected by time-reversal symmetry for zigzag ribbons as wide as micrometers. We call these states pseudohelical as their helicity is locked to the sublattice. The spin character and robustness of the pseudohelical modes is best exhibited on a finite flake, which shows that the edge states have zero g factor, carry a pure spin current in the cross section of the flake, and exhibit spin-flip reflectionless tunneling at the armchair edges.

  14. Observation of topological edge states of acoustic metamaterials at subwavelength scale

    NASA Astrophysics Data System (ADS)

    Dai, Hongqing; Jiao, Junrui; Xia, Baizhan; Liu, Tingting; Zheng, Shengjie; Yu, Dejie

    2018-05-01

    Topological states are of key importance for acoustic wave systems owing to their unique transport properties. In this study, we develop a hexagonal array of hexagonal columns with Helmholtz resonators to obtain subwavelength Dirac cones. Rotation operations are performed to open the Dirac cones and obtain acoustic valley vortex states. In addition, we calculate the angular-dependent frequencies for the band edges at the K-point. Through a topological phase transition, the topological phase of pattern A can change into that of pattern B. The calculations for the bulk dispersion curves show that the acoustic metamaterials exhibit BA-type and AB-type topological edge states. Experimental results demonstrate that a sound wave can transmit well along the topological path. This study could reveal a simple approach to create acoustic topological edge states at the subwavelength scale.

  15. Topological gapped edge states in fractional quantum Hall-superconductor heterostructures

    NASA Astrophysics Data System (ADS)

    Cook, Ashley; Repellin, Cécile; Regnault, Nicolas; Neupert, Titus

    We propose and implement a numerical setup for studying edge states of fractional quantum Hall droplets with a superconducting instability. We focus on a time-reversal symmetric bilayer fractional quantum Hall system of Laughlin ν = 1 / 3 states. The fully gapped edges carry a topological parafermionic degree of freedom that can encode quantum information protected against local perturbations. We numerically simulate such a system using exact diagonalization by restricting the calculation to the Laughlin quasihole subspace. We study the quantization of the total charge on each edge and show that the ground states are permuted by spin flux insertion and the parafermionic Josephson effect, evidencing their topological nature and the Cooper pairing of fractionalized quasiparticles. The full affiliation for Author 3 is: Laboratoire Pierre Aigrain, Ecole Normale Supérieure-PSL Research University, CNRS, Université Pierre et Marie Curie-Sorbonne Universités, Université Paris Diderot-Sorbonne Paris Cité, 24 rue Lhomond, 75231 Paris.

  16. Topological phononic states of underwater sound based on coupled ring resonators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Cheng; Li, Zheng; Ni, Xu

    We report a design of topological phononic states for underwater sound using arrays of acoustic coupled ring resonators. In each individual ring resonator, two degenerate acoustic modes, corresponding to clockwise and counter-clockwise propagation, are treated as opposite pseudospins. The gapless edge states arise in the bandgap resulting in protected pseudospin-dependent sound transportation, which is a phononic analogue of the quantum spin Hall effect. We also investigate the robustness of the topological sound state, suggesting that the observed pseudospin-dependent sound transportation remains unless the introduced defects facilitate coupling between the clockwise and counter-clockwise modes (in other words, the original mode degeneracymore » is broken). The topological engineering of sound transportation will certainly promise unique design for next generation of acoustic devices in sound guiding and switching, especially for underwater acoustic devices.« less

  17. Spin-split silicon states at step edges of Si(553)-Au

    NASA Astrophysics Data System (ADS)

    Biedermann, K.; Regensburger, S.; Fauster, Th.; Himpsel, F. J.; Erwin, S. C.

    2012-06-01

    The quasi-one-dimensional Si(553)-Au surface is investigated with time-resolved two-photon photoemission and laser-based photoemission. Several occupied and unoccupied states inside and outside the bulk band gap of silicon were found near the center of the surface Brillouin zone. A nondispersing unoccupied state 0.62 eV above the Fermi level with a lifetime of 125 fs matches the spin-split silicon step-edge state predicted by density functional theory calculations. Two occupied bands can be associated with the bands calculated for nonpolarized step-edge atoms.

  18. Numerical investigation of gapped edge states in fractional quantum Hall-superconductor heterostructures

    NASA Astrophysics Data System (ADS)

    Repellin, Cécile; Cook, Ashley M.; Neupert, Titus; Regnault, Nicolas

    2018-03-01

    Fractional quantum Hall-superconductor heterostructures may provide a platform towards non-abelian topological modes beyond Majoranas. However their quantitative theoretical study remains extremely challenging. We propose and implement a numerical setup for studying edge states of fractional quantum Hall droplets with a superconducting instability. The fully gapped edges carry a topological degree of freedom that can encode quantum information protected against local perturbations. We simulate such a system numerically using exact diagonalization by restricting the calculation to the quasihole-subspace of a (time-reversal symmetric) bilayer fractional quantum Hall system of Laughlin ν = 1/3 states. We show that the edge ground states are permuted by spin-dependent flux insertion and demonstrate their fractional 6π Josephson effect, evidencing their topological nature and the Cooper pairing of fractionalized quasiparticles. The versatility and efficiency of our setup make it a well suited method to tackle wider questions of edge phases and phase transitions in fractional quantum Hall systems.

  19. First principles study on the electronic structures and transport properties of armchair/zigzag edge hybridized graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Yi, Xiuying; Long, Mengqiu; Liu, Anhua; Li, Mingjun; Xu, Hui

    2018-05-01

    Graphene nanoribbons (GNRs) can be mainly classified into armchair graphene nanoribbons (aGNRs) and zigzag graphene nanoribbons (zGNRs) by different edge chiral directions. In this work, by introducing Stone-Wales defects on the edges of the V-shaped aGNRs, we propose a kind of armchair/zigzag edge hybridized GNRs (a/zHGNRs) and using the density functional theory and the nonequilibrium Green's function method, the band structures and electronic transport properties of the a/zHGNRs have been calculated. Our results show that an indirect bandgap appears in the band structures of the a/zHGNRs, which is very different from the direct bandgap of aGNRs and gapless of zGNRs. We also find that the valance band is mainly derived from the armchair partial atoms on the hybridized edge, while the conduction band comes mainly from the zigzag partial atoms of the hybridized edge. Meanwhile, the bandgap also oscillates with a period of three when the ribbon width increases. In addition, our quantum transport calculations show that there is a remarkable transition between the semiconductor and the metal with different ribbon widths in the a/zHGNRs devices, and the corresponding physical analysis is given.

  20. Evidence for edge state photoluminescence in graphene quantum dots

    NASA Astrophysics Data System (ADS)

    Lingam, Kiran; Podila, Ramakrishna; Qian, Haijun; Serkiz, Steve; Rao, Apparao M.

    2013-03-01

    For a practical realization of graphene-based logic devices, opening of a band gap in graphene is crucial and has proved challenging. To this end, several synthesis techniques including unzipping of carbon nanotubes, chemical vapor deposition and other bottom-up fabrication techniques have been pursued for the bulk production of graphene nanoribbons (GNRs) and graphene quantum dots (GQDs). However, only a limited progress has been made towards a fundamental understanding of the electronic and optical properties of GQDs. In particular, the origin of strong photoluminescence (PL) in GQDs, which has been attributed to the presence of emissive surface traps and/or the edge states in GQD, remains inconclusive to date. Here, we experimentally show that the PL is independent of the functional groups attached to the GQDs. Following a series of annealing experiments, we further show that the PL in GQDs originates from the edge states, and an edge-passivation subsequent to synthesis quenches PL. These results are consistent with comparative studies on other carbon nanostructures such as GNRs and carbon nano-onions.

  1. Edge states at phase boundaries and their stability

    NASA Astrophysics Data System (ADS)

    Asorey, M.; Balachandran, A. P.; Pérez-Pardo, J. M.

    2016-10-01

    We analyze the effects of Robin-like boundary conditions on different quantum field theories of spin 0, 1/2 and 1 on manifolds with boundaries. In particular, we show that these conditions often lead to the appearance of edge states. These states play a significant role in physical phenomena like quantum Hall effect and topological insulators. We prove in a rigorous way the existence of spectral lower bounds on the kinetic term of different Hamiltonians, even in the case of Abelian gauge fields where it is a non-elliptic differential operator. This guarantees the stability and consistency of massive field theories with masses larger than the lower bound of the kinetic term. Moreover, we find an upper bound for the deepest edge state. In the case of Abelian gauge theories, we analyze a generalization of Robin boundary conditions. For Dirac fermions, we analyze the cases of Atiyah-Patodi-Singer and chiral bag boundary conditions. The explicit dependence of the bounds on the boundary conditions and the size of the system is derived under general assumptions.

  2. Few-layer 1T‧ MoTe2 as gapless semimetal with thickness dependent carrier transport

    NASA Astrophysics Data System (ADS)

    Song, Peng; Hsu, Chuanghan; Zhao, Meng; Zhao, Xiaoxu; Chang, Tay-Rong; Teng, Jinghua; Lin, Hsin; Loh, Kian Ping

    2018-07-01

    Semimetal MoTe2 can be a type II Weyl semimetal in the bulk, but monolayer of this material is predicted to be quantum spin hall insulators. This dramatic change in electronic properties with number of layers is an excellent example of the dimensional effects of quantum transport. However, a detailed experimental study of the carrier transport and band structure of ultrathin semimetal MoTe2 is lacking so far. We performed magneto-transport measurements to study the conduction behavior and quantum phase coherence of 1T‧ MoTe2 as a function of its thickness. We show that due to a unique two-band transport mechanism (synergetic contribution from electron conduction and hole conduction), the conduction behavior of 1T‧ MoTe2 changes from metallic to p-type unipolar, and finally to ambipolar as the thickness decreases, suggesting that this effect can be used in devices by effectively controlling the thickness. Our transport studies, optical measurements and first-principles electronic structure calculations reveal that 1T‧ MoTe2 remains gapless down to a few (~2–3) layers. Despite being gapless, 1T‧ MoTe2 exhibits metal-insulator transition at 3-layer thickness, due to enhanced carrier localization effect.

  3. Helical edge states and fractional quantum Hall effect in a graphene electron-hole bilayer

    NASA Astrophysics Data System (ADS)

    Sanchez-Yamagishi, Javier D.; Luo, Jason Y.; Young, Andrea F.; Hunt, Benjamin M.; Watanabe, Kenji; Taniguchi, Takashi; Ashoori, Raymond C.; Jarillo-Herrero, Pablo

    2017-02-01

    Helical 1D electronic systems are a promising route towards realizing circuits of topological quantum states that exhibit non-Abelian statistics. Here, we demonstrate a versatile platform to realize 1D systems made by combining quantum Hall (QH) edge states of opposite chiralities in a graphene electron-hole bilayer at moderate magnetic fields. Using this approach, we engineer helical 1D edge conductors where the counterpropagating modes are localized in separate electron and hole layers by a tunable electric field. These helical conductors exhibit strong non-local transport signals and suppressed backscattering due to the opposite spin polarizations of the counterpropagating modes. Unlike other approaches used for realizing helical states, the graphene electron-hole bilayer can be used to build new 1D systems incorporating fractional edge states. Indeed, we are able to tune the bilayer devices into a regime hosting fractional and integer edge states of opposite chiralities, paving the way towards 1D helical conductors with fractional quantum statistics.

  4. Edge states in gated bilayer-monolayer graphene ribbons and bilayer domain walls

    NASA Astrophysics Data System (ADS)

    Mirzakhani, M.; Zarenia, M.; Peeters, F. M.

    2018-05-01

    Using the effective continuum model, the electron energy spectrum of gated bilayer graphene with a step-like region of decoupled graphene layers at the edge of the sample is studied. Different types of coupled-decoupled interfaces are considered, i.e., zigzag (ZZ) and armchair junctions, which result in significant different propagating states. Two non-valley-polarized conducting edge states are observed for ZZ type, which are mainly located around the ZZ-ended graphene layers. Additionally, we investigated both BA-BA and BA-AB domain walls in the gated bilayer graphene within the continuum approximation. Unlike the BA-BA domain wall, which exhibits gapped insulating behaviour, the domain walls surrounded by different stackings of bilayer regions feature valley-polarized edge states. Our findings are consistent with other theoretical calculations, such as from the tight-binding model and first-principles calculations, and agree with experimental observations.

  5. The New Global Gapless GLASS Albedo Product from 1981 to 2014

    NASA Astrophysics Data System (ADS)

    Dou, B.; Liu, Q.; Qu, Y.; Wang, L.; Feng, Y.; Nie, A.; Li, X.; Zhang, J.; Niu, H.; Cai, E.; Zhao, L.

    2016-12-01

    Long-time series and various spatial resolution albedo products are needed for climate change and environmental studies at both global and regional scale. To meet these requirements, GLASS (Global LAnd Surface Satellites) gapless albedo product from 1981 to 2010 was firstly released in 2012 and widely used in long-term earth change researches. However, only shortwave albedo product in spatial resolution of 0.05 degree and 1 km were provided, which limits extensive applications for visible and near-infrared bands. Thus, new GLASS albedo product are produced and comprehensively enhanced in time series, algorithm and product content. Five major updates are conducted: 1) Time region is expanded from 1981-2010 to 1981-2014; 2) Physically ART (radiative transfer theory) and TCOWA (Three-Component Ocean Water Albedo) models rather than previous RTLSR (Rose-Thick Li-Sparse Reciprocal kernel combination) model are adopted for snow and inland water albedo estimation, respectively; 3) global shortwave, visible, and near-infrared albedos in spatial resolution of 0.05 degree and 1 km are released; 4) Clear-sky albedo is provided beyond the traditional black-sky albedo and white sky-albedo for amateurish user; 5) 250 m albedo product is provided in part of global for regional application. In this study, we firstly detail the updates of this inspiring product. Then the product is compared with the previous GLASS albedo product and preliminary assessed against field measurements under various land covers. Significant improvements are reported for snow and water albedo. The results demonstrate that the new GLASS albedo product is a gapless, long-term continuous, and self-consistent data-set. Comparing to previous GLASS albedo product, lower black-sky albedo and higher white-sky albedo are proved for permanent snow-cover region. Moreover, higher albedo of inland water and seasonal snow-cover mountain are captured. This product brings new chance and view to understanding long

  6. Electrical manipulation of edge states in graphene and the effect on quantum Hall transport

    NASA Astrophysics Data System (ADS)

    Ostahie, B.; NiÅ£ǎ, M.; Aldea, A.

    2015-04-01

    We investigate the properties of Dirac electrons in a finite graphene sample under a perpendicular magnetic field that emerge when an in-plane electric bias is also applied. The numerical analysis of the Hofstadter spectrum and of the edge-type wave functions evidence the presence of shortcut edge states that appear under the influence of the electric field. The states are characterized by a specific spatial distribution, which follows only partially the perimeter, and exhibit ridges that connect opposite sides of the graphene plaquette. Two kinds of such states have been found in different regions of the spectrum, and their particular spatial localization is shown along with the diamagnetic moments that reveal their chirality. By simulating a four-lead Hall device, we investigate the transport properties and observe unconventional plateaus of the integer quantum Hall effect that are associated with the presence of the shortcut edge states. We show the contributions of the novel states to the conductance matrix that determine the new transport properties. The shortcut edge states resulting from the splitting of the n =0 Landau level represent a special case, giving rise to nontrivial transverse and longitudinal resistance.

  7. Topological guiding of elastic waves in phononic metamaterials based on 2D pentamode structures.

    PubMed

    Guo, Yuning; Dekorsy, Thomas; Hettich, Mike

    2017-12-22

    A topological state with protected propagation of elastic waves is achieved by appropriately engineering a phononic metamaterial based on 2D pentamode structures in silicon. Gapless edge states in the designed structure, which are characterized by pseudospin-dependent transport, provide backscattering-immune propagation of the elastic wave along bend paths. The role of the states responsible for forward and backward transfer can be interchanged by design.

  8. Lattice constant changes leading to significant changes of the spin-gapless features and physical nature in a inverse Heusler compound Zr2MnGa

    NASA Astrophysics Data System (ADS)

    Wang, Xiaotian; Cheng, Zhenxiang; Khenata, Rabah; Wu, Yang; Wang, Liying; Liu, Guodong

    2017-12-01

    The spin-gapless semiconductors with parabolic energy dispersions [1-3] have been recently proposed as a new class of materials for potential applications in spintronic devices. In this work, according to the Slater-Pauling rule, we report the fully-compensated ferrimagnetic (FCF) behavior and spin-gapless semiconducting (SGS) properties for a new inverse Heusler compound Zr2MnGa by means of the plane-wave pseudo-potential method based on density functional theory. With the help of GGA-PBE, the electronic structures and the magnetism of Zr2MnGa compound at its equilibrium and strained lattice constants are systematically studied. The calculated results show that the Zr2MnGa is a new SGS at its equilibrium lattice constant: there is an energy gap between the conduction and valence bands for both the majority and minority electrons, while there is no gap between the majority electrons in the valence band and the minority electrons in the conduction band. Remarkably, not only a diverse physical nature transition, but also different types of spin-gapless features can be observed with the change of the lattice constants. Our calculated results of Zr2MnGa compound indicate that this material has great application potential in spintronic devices.

  9. Characterization of multifunctional skin-material for morphing leading-edge applications

    NASA Astrophysics Data System (ADS)

    Geier, Sebastian; Kintscher, Markus; Mahrholz, Thorsten; Wierach, Peter; Monner, Hans-Peter; Wiedemann, Martin

    2013-04-01

    Former research on morphing droop-nose applications revealed great economical and social ecological advantages in terms of providing gapless surfaces for long areas of laminar flow. Furthermore a droop-nose for laminar flow applications provides a low noise exposing high-lift system at the leading-edge. Various kinematic concepts for the active deployment of such devices are already published but the major challenge is still an open issue: a skin material which meets the compromise of needed stiffness and flexibility. Moreover additional functions have to be added to keep up with standard systems. As a result of several national and European projects the DLR developed a gapless 3D smart droop-nose concept, which was successfully analyzed in a low speed wind tunnel test under relevant loads to prove the functionality and efficiency. The main structure of this concept is made of commercial available glass fiber reinforced plastics (GRFP). This paper presents elementary tests to characterize material lay-ups and their integrity by applying different loads under extreme thermal conditions using aged specimens. On the one hand the presented work is focused on the integrity of material-interfaces and on the other hand the efficiency and feasibility of embedded functions. It can be concluded that different preparations, different adhesives and used materials have their significant influence to the interface stability and mechanical property of the whole lay-up. Especially the laminate design can be optimized due to the e. g. mechanical exploitation of the added systems beyond their main function in order to reduce structural mass.

  10. Magnon edge states in the hardcore- Bose-Hubbard model.

    PubMed

    Owerre, S A

    2016-11-02

    Quantum Monte Carlo (QMC) simulation has uncovered nonzero Berry curvature and bosonic edge states in the hardcore-Bose-Hubbard model on the gapped honeycomb lattice. The competition between the chemical potential and staggered onsite potential leads to an interesting quantum phase diagram comprising the superfluid phase, Mott insulator, and charge density wave insulator. In this paper, we present a semiclassical perspective of this system by mapping to a spin-1/2 quantum XY model. We give an explicit analytical origin of the quantum phase diagram, the Berry curvatures, and the edge states using semiclassical approximations. We find very good agreement between the semiclassical analyses and the QMC results. Our results show that the topological properties of the hardcore-Bose-Hubbard model are the same as those of magnon in the corresponding quantum spin system. Our results are applicable to systems of ultracold bosonic atoms trapped in honeycomb optical lattices.

  11. Stacked bilayer phosphorene: strain-induced quantum spin Hall state and optical measurement

    PubMed Central

    Zhang, Tian; Lin, Jia-He; Yu, Yan-Mei; Chen, Xiang-Rong; Liu, Wu-Ming

    2015-01-01

    Bilayer phosphorene attracted considerable interest, giving a potential application in nanoelectronics owing to its natural bandgap and high carrier mobility. However, very little is known regarding the possible usefulness in spintronics as a quantum spin Hall (QSH) state of material characterized by a bulk energy gap and gapless spin-filtered edge states. Here, we report a strain-induced topological phase transition from normal to QSH state in bilayer phosphorene, accompanied by band-inversion that changes number from 0 to 1, which is highly dependent on interlayer stacking. When the bottom layer is shifted by 1/2 unit-cell along zigzag/armchair direction with respect to the top layer, the maximum topological bandgap 92.5 meV is sufficiently large to realize QSH effect even at room-temperature. An optical measurement of QSH effect is therefore suggested in view of the wide optical absorption spectrum extending to far infra-red, making bilayer phosphorene a promising candidate for opto-spintronic devices. PMID:26370771

  12. Electrical control of flying spin precession in chiral 1D edge states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakajima, Takashi; Komiyama, Susumu; Lin, Kuan-Ting

    2013-12-04

    Electrical control and detection of spin precession are experimentally demonstrated by using spin-resolved edge states in the integer quantum Hall regime. Spin precession is triggered at a corner of a biased metal gate, where electron orbital motion makes a sharp turn leading to a nonadiabatic change in the effective magnetic field via spin-orbit interaction. The phase of precession is controlled by the group velocity of edge-state electrons tuned by gate bias voltage: Spin-FET-like coherent control of spin precession is thus realized by all-electrical means.

  13. Robust edge states in amorphous gyromagnetic photonic lattices

    NASA Astrophysics Data System (ADS)

    Mansha, Shampy; Chong, Y. D.

    2017-09-01

    We numerically study amorphous analogs of a two-dimensional photonic Chern insulator. The amorphous lattices consist of gyromagnetic rods that break time-reversal symmetry, with the lattice sites generated by a close-packing algorithm. The level of short-range order is adjustable, and there is no long-range order. The topologically nontrivial gaps of the photonic Chern insulator are found to persist into the amorphous regime, so long as there is sufficient short-range order. Strongly nonreciprocal robust transmission occurs via edge states, which are shown to propagate ballistically despite the absence of long-range order, and to be exponentially localized along the lattice edge. Interestingly, there is an enhancement of nonreciprocal transmission even at very low levels of short-range order, where there are no discernible spectral gaps.

  14. Spin injection and inverse Edelstein effect in the surface states of topological Kondo insulator SmB6

    PubMed Central

    Song, Qi; Mi, Jian; Zhao, Dan; Su, Tang; Yuan, Wei; Xing, Wenyu; Chen, Yangyang; Wang, Tianyu; Wu, Tao; Chen, Xian Hui; Xie, X. C.; Zhang, Chi; Shi, Jing; Han, Wei

    2016-01-01

    There has been considerable interest in exploiting the spin degrees of freedom of electrons for potential information storage and computing technologies. Topological insulators (TIs), a class of quantum materials, have special gapless edge/surface states, where the spin polarization of the Dirac fermions is locked to the momentum direction. This spin–momentum locking property gives rise to very interesting spin-dependent physical phenomena such as the Edelstein and inverse Edelstein effects. However, the spin injection in pure surface states of TI is very challenging because of the coexistence of the highly conducting bulk states. Here, we experimentally demonstrate the spin injection and observe the inverse Edelstein effect in the surface states of a topological Kondo insulator, SmB6. At low temperatures when only surface carriers are present, a clear spin signal is observed. Furthermore, the magnetic field angle dependence of the spin signal is consistent with spin–momentum locking property of surface states of SmB6. PMID:27834378

  15. Spin injection and inverse Edelstein effect in the surface states of topological Kondo insulator SmB 6

    DOE PAGES

    Song, Qi; Mi, Jian; Zhao, Dan; ...

    2016-11-11

    There has been considerable interest in exploiting the spin degrees of freedom of electrons for potential information storage and computing technologies. Topological insulators (TIs), a class of quantum materials, have special gapless edge/surface states, where the spin polarization of the Dirac fermions is locked to the momentum direction. This spin–momentum locking property gives rise to very interesting spin-dependent physical phenomena such as the Edelstein and inverse Edelstein effects. However, the spin injection in pure surface states of TI is very challenging because of the coexistence of the highly conducting bulk states. Here, we experimentally demonstrate the spin injection and observemore » the inverse Edelstein effect in the surface states of a topological Kondo insulator, SmB 6. At low temperatures when only surface carriers are present, a clear spin signal is observed. Moreover, the magnetic field angle dependence of the spin signal is consistent with spin–momentum locking property of surface states of SmB6.« less

  16. Pseudo-time-reversal symmetry and topological edge states in two-dimensional acoustic crystals

    PubMed Central

    Mei, Jun; Chen, Zeguo; Wu, Ying

    2016-01-01

    We propose a simple two-dimensional acoustic crystal to realize topologically protected edge states for acoustic waves. The acoustic crystal is composed of a triangular array of core-shell cylinders embedded in a water host. By utilizing the point group symmetry of two doubly degenerate eigenstates at the Γ point, we can construct pseudo-time-reversal symmetry as well as pseudo-spin states in this classical system. We develop an effective Hamiltonian for the associated dispersion bands around the Brillouin zone center, and find the inherent link between the band inversion and the topological phase transition. With numerical simulations, we unambiguously demonstrate the unidirectional propagation of acoustic edge states along the interface between a topologically nontrivial acoustic crystal and a trivial one, and the robustness of the edge states against defects with sharp bends. Our work provides a new design paradigm for manipulating and transporting acoustic waves in a topologically protected manner. Technological applications and devices based on our design are expected in various frequency ranges of interest, spanning from infrasound to ultrasound. PMID:27587311

  17. Transport phenomena in helical edge state interferometers: A Green's function approach

    NASA Astrophysics Data System (ADS)

    Rizzo, Bruno; Arrachea, Liliana; Moskalets, Michael

    2013-10-01

    We analyze the current and the shot noise of an electron interferometer made of the helical edge states of a two-dimensional topological insulator within the framework of nonequilibrium Green's functions formalism. We study, in detail, setups with a single and with two quantum point contacts inducing scattering between the different edge states. We consider processes preserving the spin as well as the effect of spin-flip scattering. In the case of a single quantum point contact, a simple test based on the shot-noise measurement is proposed to quantify the strength of the spin-flip scattering. In the case of two single point contacts with the additional ingredient of gate voltages applied within a finite-size region at the top and bottom edges of the sample, we identify two types of interference processes in the behavior of the currents and the noise. One such process is analogous to that taking place in a Fabry-Pérot interferometer, while the second one corresponds to a configuration similar to a Mach-Zehnder interferometer. In the helical interferometer, these two processes compete.

  18. Electrostatic potential barrier for electron emission at graphene edges induced by the nearly free electron states

    NASA Astrophysics Data System (ADS)

    Gao, Yanlin; Okada, Susumu

    2017-05-01

    Using the density functional theory, we studied the electronic structures of zigzag graphene nanoribbons with hydroxyl, H, ketone, aldehyde, or carboxyl terminations under a lateral electric field. The critical electric field for electron emission is proportional to the work function of the functionalized edges except the hydroxylated edge, which leads to the anomalous electric field outside the edge, owing to the electrons in the nearly free electron (NFE) state in the vacuum region. The strong electric field also causes a potential barrier for the electron emission from the H-terminated edge owing to the downward shift of the NFE state.

  19. Effects of strain on the half-metallicity and spin gapless feature of Ti2YSi (Y = Fe, Co) alloys

    NASA Astrophysics Data System (ADS)

    Fan, Xiaoguang; Li, Jincheng; Jin, Yingjiu

    2018-05-01

    Half-metals and spin gapless semiconductors (SGSs), which exhibit 100% spin polarization at the Fermi level, are considered important candidates for spintronics. Using first-principles calculations, we have investigated the effects of uniform strain and tetragonal distortion on the half-metallicity and spin gapless feature of inverse Heusler Ti2YSi (Y = Fe and Co) alloys. Results show that for uniform strains, the half-metallicity occurs in the ranges of lattice parameters from 5.938 Å to 6.535 Å for Ti2FeSi and from 5.924 Å to 6.840 Å for Ti2CoSi. Tetragonal distortions over the ranges of ‑2.0% to +2.5% and ‑2.6% to +4.1% could destroy the half-metallicity for Ti2FeSi and Ti2CoSi, respectively. On the other hand, Ti2CoSi is an SGS at lattice constants of 5.968-6.023 Å. An interesting finding is that Ti2CoSi reproduces the SGS character with increasing the lattice parameters to 6.784-6.840 Å. Small tetragonal distortions with ±0.2% will destroy the SGS character of Ti2CoSi.

  20. High-Harmonic Generation in Solids with and without Topological Edge States

    NASA Astrophysics Data System (ADS)

    Bauer, Dieter; Hansen, Kenneth K.

    2018-04-01

    High-harmonic generation in the two topological phases of a finite, one-dimensional, periodic structure is investigated using a self-consistent time-dependent density functional theory approach. For harmonic photon energies smaller than the band gap, the harmonic yield is found to differ by up to 14 orders of magnitude for the two topological phases. This giant topological effect is explained by the degree of destructive interference in the harmonic emission of all valence-band (and edge-state) electrons, which strongly depends on whether or not topological edge states are present. The combination of strong-field laser physics with topological condensed matter opens up new possibilities to electronically control strong-field-based light or particle sources or—conversely—to steer by all optical means topological electronics.

  1. Manipulating the one-dimensional topological edge state of Bi bilayer nanoribbons via magnetic orientation and electric field

    NASA Astrophysics Data System (ADS)

    Kim, Jeongwoo; Wu, Ruqian

    2018-03-01

    Despite the superiority of two-dimensional (2D) topological insulators (TIs) over their three-dimensional (3D) counterparts in various aspects and the essential distinction between them in structural symmetry, the variation of the topological one-dimensional (1D) edge states upon magnetic interaction and their application for spintronic devices have not been sufficiently illuminated. Here, we reveal that 1D edge states of 2D TIs have a unique magnetic response never observed in 2D surface states of 3D TIs, and using this exotic nature we propose a way to utilize the spin-polarized channel for spintronic applications. We investigate the effects of width and magnetic decoration on the 1D topological edge state of Bi bilayer nanoribbons (BNRs). Through the Zak phase, we find that the zero-energy states are enforced at the magnetic domain boundaries in the Cr-decorated BNR and directly examine their robustness using short-range magnetic domain structures. We also demonstrate that 1D edge states of BNRs can be selectively and reversibly controlled by the combination of magnetic reorientation and electric field without compromising their structural integrity. Our work provides a fundamental understanding of 1D topological edge states and shows the opportunity of using these features in spintronic devices.

  2. Photonic simulation of topological superconductor edge state and zero-energy mode at a vortex

    PubMed Central

    Tan, Wei; Chen, Liang; Ji, Xia; Lin, Hai-Qing

    2014-01-01

    Photonic simulations of quantum Hall edge states and topological insulators have inspired considerable interest in recent years. Interestingly, there are theoretical predictions for another type of topological states in topological superconductors, but debates over their experimental observations still remain. Here we investigate the photonic analogue of the px + ipy model of topological superconductor. Two essential characteristics of topological superconductor, particle-hole symmetry and px + ipy pairing potentials, are well emulated in photonic systems. Its topological features are presented by chiral edge state and zero-energy mode at a vortex. This work may fertilize the study of photonic topological states, and open up the possibility for emulating wave behaviors in superconductors. PMID:25488408

  3. Topologically protected edge states for out-of-plane and in-plane bulk elastic waves.

    PubMed

    Huo, Shao-Yong; Chen, Jiu-Jiu; Huang, Hong-Bo

    2018-04-11

    Topological phononic insulators (TPnIs) show promise for application in the manipulation of acoustic waves for the design of low-loss transmission and perfectly integrated communication devices. Since solid phononic crystals exist as a transverse polarization mode and a mixed longitudinal-transverse polarization mode, the realization of topological edge states for both out-of-plane and in-plane bulk elastic waves is desirable to enhance the controllability of the edge waves in solid systems. In this paper, a two-dimensional (2D) solid/solid hexagonal-latticed phononic system that simultaneously supports the topologically protected edge states for out-of-plane and in-plane bulk elastic waves is investigated. Firstly, two pairs of two-fold Dirac cones, respectively corresponding to the out-of-plane and in-plane waves, are obtained at the same frequency by tuning the crystal parameters. Then, a strategy of zone folding is invoked to form double Dirac cones. By shrinking and expanding the steel scatterer, the lattice symmetry is broken, and band inversions induced, giving rise to an intriguing topological phase transition. Finally, the topologically protected edge states for both out-of-plane and in-plane bulk elastic waves, which can be simultaneously located at the frequency range from 1.223 to 1.251 MHz, are numerically observed. Robust pseudospin-dependent elastic edge wave propagation along arbitrary paths is further demonstrated. Our results will significantly broaden its practical application in the engineering field.

  4. Topologically protected edge states for out-of-plane and in-plane bulk elastic waves

    NASA Astrophysics Data System (ADS)

    Huo, Shao-Yong; Chen, Jiu-Jiu; Huang, Hong-Bo

    2018-04-01

    Topological phononic insulators (TPnIs) show promise for application in the manipulation of acoustic waves for the design of low-loss transmission and perfectly integrated communication devices. Since solid phononic crystals exist as a transverse polarization mode and a mixed longitudinal-transverse polarization mode, the realization of topological edge states for both out-of-plane and in-plane bulk elastic waves is desirable to enhance the controllability of the edge waves in solid systems. In this paper, a two-dimensional (2D) solid/solid hexagonal-latticed phononic system that simultaneously supports the topologically protected edge states for out-of-plane and in-plane bulk elastic waves is investigated. Firstly, two pairs of two-fold Dirac cones, respectively corresponding to the out-of-plane and in-plane waves, are obtained at the same frequency by tuning the crystal parameters. Then, a strategy of zone folding is invoked to form double Dirac cones. By shrinking and expanding the steel scatterer, the lattice symmetry is broken, and band inversions induced, giving rise to an intriguing topological phase transition. Finally, the topologically protected edge states for both out-of-plane and in-plane bulk elastic waves, which can be simultaneously located at the frequency range from 1.223 to 1.251 MHz, are numerically observed. Robust pseudospin-dependent elastic edge wave propagation along arbitrary paths is further demonstrated. Our results will significantly broaden its practical application in the engineering field.

  5. Fermionic edge states and new physics

    NASA Astrophysics Data System (ADS)

    Govindarajan, T. R.; Tibrewala, Rakesh

    2015-08-01

    We investigate the properties of the Dirac operator on manifolds with boundaries in the presence of the Atiyah-Patodi-Singer boundary condition. An exact counting of the number of edge states for boundaries with isometry of a sphere is given. We show that the problem with the above boundary condition can be mapped to one where the manifold is extended beyond the boundary and the boundary condition is replaced by a delta function potential of suitable strength. We also briefly highlight how the problem of the self-adjointness of the operators in the presence of moving boundaries can be simplified by suitable transformations which render the boundary fixed and modify the Hamiltonian and the boundary condition to reflect the effect of moving boundary.

  6. Design and experimental observation of valley-Hall edge states in diatomic-graphene-like elastic waveguides

    NASA Astrophysics Data System (ADS)

    Zhu, Hongfei; Liu, Ting-Wei; Semperlotti, Fabio

    2018-05-01

    We report on the design and experimental validation of a two-dimensional phononic elastic waveguide exhibiting topological valley-Hall edge states. The lattice structure of the waveguide is inspired by diatomic graphene, and it is imprinted in an initially flat plate by means of geometric indentations. The indentations are distributed according to a hexagonal lattice structure which guarantees the existence of Dirac dispersion at the boundary of the Brillouin zone. Starting from this basic material, domain walls capable of supporting edge states can be obtained by contrasting waveguides having broken space-inversion symmetry (SIS) achieved by using local resonant elements. Our theoretical study shows that such material maps into the acoustic analog of the quantum valley-Hall effect, while numerical and experimental results confirm the existence of protected edge states traveling along the walls of topologically distinct domains.

  7. Edge states and topological phase transitions in chains of dielectric nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruk, Sergey; Slobozhanyuk, Alexey; Denkova, Denitza

    Recently introduced field of topological photonics aims to explore the concepts of topological insulators for novel phenomena in optics. Here polymeric chains of subwavelength silicon nanodisks are studied and it is demonstrated that these chains can support two types of topological edge modes based on magnetic and electric Mie resonances, and their topological properties are fully dictated by the spatial arrangement of the nanoparticles in the chain. Here, it is observed experimentally and described how theoretically topological phase transitions at the nanoscale define a change from trivial to nontrivial topological states when the edge mode is excited.

  8. Edge states and topological phase transitions in chains of dielectric nanoparticles

    DOE PAGES

    Kruk, Sergey; Slobozhanyuk, Alexey; Denkova, Denitza; ...

    2017-01-12

    Recently introduced field of topological photonics aims to explore the concepts of topological insulators for novel phenomena in optics. Here polymeric chains of subwavelength silicon nanodisks are studied and it is demonstrated that these chains can support two types of topological edge modes based on magnetic and electric Mie resonances, and their topological properties are fully dictated by the spatial arrangement of the nanoparticles in the chain. Here, it is observed experimentally and described how theoretically topological phase transitions at the nanoscale define a change from trivial to nontrivial topological states when the edge mode is excited.

  9. Interplay between snake and quantum edge states in a graphene Hall bar with a pn-junction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milovanović, S. P., E-mail: slavisa.milovanovic@uantwerpen.be; Peeters, F. M., E-mail: francois.peeters@uantwerpen.be; Ramezani Masir, M., E-mail: mrmphys@gmail.com

    2014-09-22

    The magneto- and Hall resistance of a locally gated cross shaped graphene Hall bar is calculated. The edge of the top gate is placed diagonally across the center of the Hall cross. Four-probe resistance is calculated using the Landauer-Büttiker formalism, while the transmission coefficients are obtained using the non-equilibrium Green's function approach. The interplay between transport due to edge channels and snake states is investigated. When two edge channels are occupied, we predict oscillations in the Hall and the bend resistance as function of the magnetic field, which are a consequence of quantum interference between the occupied snake states.

  10. Anchoring transition metal elements on graphene-like ZnO monolayer by CO molecule to obtain spin gapless semiconductor

    NASA Astrophysics Data System (ADS)

    Lei, Jie; Xu, Ming-Chun; Hu, Shu-Jun

    2017-09-01

    Graphene-like zinc oxide monolayer (g-ZnO) is a newfound two-dimensional material. Here we utilize the transition metal (TM) elements (Cr, Mn, Fe, Co, Ni, and Cu) to functionalize the g-ZnO with the aim of designing novel spintronics materials by using first-principles calculations. Our results show that although the adsorption of TM atoms can endow g-ZnO with magnetization and impurity states in the bandgap, the interaction between TM elements and g-ZnO is weak. We found that the attachment of CO molecule on TM is able to stabilize the TM elements on g-ZnO based on the 'donation and back-donation' mechanism. As a result, the adsorption energy of the CO-TM complex on g-ZnO is as high as 1.41-2.11 eV. Furthermore, the incorporation of CO molecule modulates the magnetic and electronic properties of the TM-decorated g-ZnO. In particular, the CO-Mn-g-ZnO is predicted to be a spin gapless semiconductor.

  11. Electrically tunable spin filtering for electron tunneling between spin-resolved quantum Hall edge states and a quantum dot

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiyama, H., E-mail: kiyama@meso.t.u-tokyo.ac.jp; Fujita, T.; Teraoka, S.

    2014-06-30

    Spin filtering with electrically tunable efficiency is achieved for electron tunneling between a quantum dot and spin-resolved quantum Hall edge states by locally gating the two-dimensional electron gas (2DEG) leads near the tunnel junction to the dot. The local gating can change the potential gradient in the 2DEG and consequently the edge state separation. We use this technique to electrically control the ratio of the dot–edge state tunnel coupling between opposite spins and finally increase spin filtering efficiency up to 91%, the highest ever reported, by optimizing the local gating.

  12. Superconducting topological surface states in the noncentrosymmetric bulk superconductor PbTaSe2.

    PubMed

    Guan, Syu-You; Chen, Peng-Jen; Chu, Ming-Wen; Sankar, Raman; Chou, Fangcheng; Jeng, Horng-Tay; Chang, Chia-Seng; Chuang, Tien-Ming

    2016-11-01

    The search for topological superconductors (TSCs) is one of the most urgent contemporary problems in condensed matter systems. TSCs are characterized by a full superconducting gap in the bulk and topologically protected gapless surface (or edge) states. Within each vortex core of TSCs, there exists the zero-energy Majorana bound states, which are predicted to exhibit non-Abelian statistics and to form the basis of the fault-tolerant quantum computation. To date, no stoichiometric bulk material exhibits the required topological surface states (TSSs) at the Fermi level ( E F ) combined with fully gapped bulk superconductivity. We report atomic-scale visualization of the TSSs of the noncentrosymmetric fully gapped superconductor PbTaSe 2 . Using quasi-particle scattering interference imaging, we find two TSSs with a Dirac point at E ≅ 1.0 eV, of which the inner TSS and the partial outer TSS cross E F , on the Pb-terminated surface of this fully gapped superconductor. This discovery reveals PbTaSe 2 as a promising candidate for TSC.

  13. Coexistence of Topological Edge State and Superconductivity in Bismuth Ultrathin Film.

    PubMed

    Sun, Hao-Hua; Wang, Mei-Xiao; Zhu, Fengfeng; Wang, Guan-Yong; Ma, Hai-Yang; Xu, Zhu-An; Liao, Qing; Lu, Yunhao; Gao, Chun-Lei; Li, Yao-Yi; Liu, Canhua; Qian, Dong; Guan, Dandan; Jia, Jin-Feng

    2017-05-10

    Ultrathin freestanding bismuth film is theoretically predicted to be one kind of two-dimensional topological insulators. Experimentally, the topological nature of bismuth strongly depends on the situations of the Bi films. Film thickness and interaction with the substrate often change the topological properties of Bi films. Using angle-resolved photoemission spectroscopy, scanning tunneling microscopy or spectroscopy and first-principle calculation, the properties of Bi(111) ultrathin film grown on the NbSe 2 superconducting substrate have been studied. We find the band structures of the ultrathin film is quasi-freestanding, and one-dimensional edge state exists on Bi(111) film as thin as three bilayers. Superconductivity is also detected on different layers of the film and the pairing potential exhibits an exponential decay with the layer thicknesses. Thus, the topological edge state can coexist with superconductivity, which makes the system a promising platform for exploring Majorana Fermions.

  14. Quantification of Magnetic Surface and Edge States in an FeGe Nanostripe by Off-Axis Electron Holography

    NASA Astrophysics Data System (ADS)

    Song, Dongsheng; Li, Zi-An; Caron, Jan; Kovács, András; Tian, Huanfang; Jin, Chiming; Du, Haifeng; Tian, Mingliang; Li, Jianqi; Zhu, Jing; Dunin-Borkowski, Rafal E.

    2018-04-01

    Whereas theoretical investigations have revealed the significant influence of magnetic surface and edge states on Skyrmonic spin texture in chiral magnets, experimental studies of such chiral states remain elusive. Here, we study chiral edge states in an FeGe nanostripe experimentally using off-axis electron holography. Our results reveal the magnetic-field-driven formation of chiral edge states and their penetration lengths at 95 and 240 K. We determine values of saturation magnetization MS by analyzing the projected in-plane magnetization distributions of helices and Skyrmions. Values of MS inferred for Skyrmions are lower by a few percent than those for helices. We attribute this difference to the presence of chiral surface states, which are predicted theoretically in a three-dimensional Skyrmion model. Our experiments provide direct quantitative measurements of magnetic chiral boundary states and highlight the applicability of state-of-the-art electron holography for the study of complex spin textures in nanostructures.

  15. Magnetic-flux-driven topological quantum phase transition and manipulation of perfect edge states in graphene tube.

    PubMed

    Lin, S; Zhang, G; Li, C; Song, Z

    2016-08-24

    We study the tight-binding model for a graphene tube with perimeter N threaded by a magnetic field. We show exactly that this model has different nontrivial topological phases as the flux changes. The winding number, as an indicator of topological quantum phase transition (QPT) fixes at N/3 if N/3 equals to its integer part [N/3], otherwise it jumps between [N/3] and [N/3] + 1 periodically as the flux varies a flux quantum. For an open tube with zigzag boundary condition, exact edge states are obtained. There exist two perfect midgap edge states, in which the particle is completely located at the boundary, even for a tube with finite length. The threading flux can be employed to control the quantum states: transferring the perfect edge state from one end to the other, or generating maximal entanglement between them.

  16. Optically Unraveling the Edge Chirality-Dependent Band Structure and Plasmon Damping in Graphene Edges.

    PubMed

    Duan, Jiahua; Chen, Runkun; Cheng, Yuan; Yang, Tianzhong; Zhai, Feng; Dai, Qing; Chen, Jianing

    2018-05-01

    The nontrivial topological origin and pseudospinorial character of electron wavefunctions make edge states possess unusual electronic properties. Twenty years ago, the tight-binding model calculation predicted that zigzag termination of 2D sheets of carbon atoms have peculiar edge states, which show potential application in spintronics and modern information technologies. Although scanning probe microscopy is employed to capture this phenomenon, the experimental demonstration of its optical response remains challenging. Here, the propagating graphene plasmon provides an edge-selective polaritonic probe to directly detect and control the electronic edge state at ambient condition. Compared with armchair, the edge-band structure in the bandgap gives rise to additional optical absorption and strongly absorbed rim at zigzag edge. Furthermore, the optical conductivity is reconstructed and the anisotropic plasmon damping in graphene systems is revealed. The reported approach paves the way for detecting edge-specific phenomena in other van der Waals materials and topological insulators. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Topological magnetoplasmon

    PubMed Central

    Jin, Dafei; Lu, Ling; Wang, Zhong; Fang, Chen; Joannopoulos, John D.; Soljačić, Marin; Fu, Liang; Fang, Nicholas X.

    2016-01-01

    Classical wave fields are real-valued, ensuring the wave states at opposite frequencies and momenta to be inherently identical. Such a particle–hole symmetry can open up new possibilities for topological phenomena in classical systems. Here we show that the historically studied two-dimensional (2D) magnetoplasmon, which bears gapped bulk states and gapless one-way edge states near-zero frequency, is topologically analogous to the 2D topological p+ip superconductor with chiral Majorana edge states and zero modes. We further predict a new type of one-way edge magnetoplasmon at the interface of opposite magnetic domains, and demonstrate the existence of zero-frequency modes bounded at the peripheries of a hollow disk. These findings can be readily verified in experiment, and can greatly enrich the topological phases in bosonic and classical systems. PMID:27892453

  18. Topological magnetoplasmon

    DOE PAGES

    Jin, Dafei; Lu, Ling; Wang, Zhong; ...

    2016-11-28

    Classical wave fields are real-valued, ensuring the wave states at opposite frequencies and momenta to be inherently identical. Such a particle–hole symmetry can open up new possibilities for topological phenomena in classical systems. Here we show that the historically studied two-dimensional (2D) magnetoplasmon, which bears gapped bulk states and gapless one-way edge states near-zero frequency, is topologically analogous to the 2D topological p+ip superconductor with chiral Majorana edge states and zero modes. We further predict a new type of one-way edge magnetoplasmon at the interface of opposite magnetic domains, and demonstrate the existence of zero-frequency modes bounded at the peripheriesmore » of a hollow disk. Finally, these findings can be readily verified in experiment, and can greatly enrich the topological phases in bosonic and classical systems.« less

  19. Gapless Spin Excitations in the Field-Induced Quantum Spin Liquid Phase of α -RuCl3

    NASA Astrophysics Data System (ADS)

    Zheng, Jiacheng; Ran, Kejing; Li, Tianrun; Wang, Jinghui; Wang, Pengshuai; Liu, Bin; Liu, Zheng-Xin; Normand, B.; Wen, Jinsheng; Yu, Weiqiang

    2017-12-01

    α -RuCl3 is a leading candidate material for the observation of physics related to the Kitaev quantum spin liquid (QSL). By combined susceptibility, specific-heat, and nuclear-magnetic-resonance measurements, we demonstrate that α -RuCl3 undergoes a quantum phase transition to a QSL in a magnetic field of 7.5 T applied in the a b plane. We show further that this high-field QSL phase has gapless spin excitations over a field range up to 16 T. This highly unconventional result, unknown in either Heisenberg or Kitaev magnets, offers insight essential to establishing the physics of α -RuCl3 .

  20. Rashba sandwiches with topological superconducting phases

    NASA Astrophysics Data System (ADS)

    Volpez, Yanick; Loss, Daniel; Klinovaja, Jelena

    2018-05-01

    We introduce a versatile heterostructure harboring various topological superconducting phases characterized by the presence of helical, chiral, or unidirectional edge states. Changing parameters, such as an effective Zeeman field or chemical potential, one can tune between these three topological phases in the same setup. Our model relies only on conventional nontopological ingredients. The bilayer setup consists of an s -wave superconductor sandwiched between two two-dimensional electron gas layers with strong Rashba spin-orbit interaction. The interplay between two different pairing mechanisms, proximity induced direct and crossed Andreev superconducting pairings, gives rise to multiple topological phases. In particular, helical edge states occur if crossed Andreev superconducting pairing is dominant. In addition, an in-plane Zeeman field leads to a two-dimensional gapless topological phase with unidirectional edge states, which were previously predicted to exist only in noncentrosymmetric superconductors. If the Zeeman field is tilted out of the plane, the system is in a topological phase hosting chiral edge states.

  1. The Edge States of the BF System and the London Equations

    NASA Astrophysics Data System (ADS)

    Balachandran, A. P.; Teotonio-Sobrinho, P.

    It is known that the 3D Chern-Simons interaction describes the scaling limit of a quantum Hall system and predicts edge currents in a sample with boundary, the currents generating a chiral U(1) Kac-Moody algebra. It is no doubt also recognized that, in a somewhat similar way, the 4D BF interaction (with B a two-form, dB the dual *j of the electromagnetic current, and F the electromagnetic field form) describes the scaling limit of a superconductor. We show in this paper that there are edge excitations in this model as well for manifolds with boundaries. They are the modes of a scalar field with invariance under the group of diffeomorphisms (diffeos) of the bounding spatial two-manifold. Not all diffeos of this group seem implementable by operators in quantum theory, the implementable group being a subgroup of volume-preserving diffeos. The BF system in this manner can lead to the w1+∞ algebra and its variants. Lagrangians for fields on the bounding manifold which account for the edge observables on quantization are also presented. They are the analogs of the (1+1)-dimensional massless scalar field Lagrangian describing the edge modes of an Abelian Chern-Simons theory with a disk as the spatial manifold. We argue that the addition of “Maxwell” terms constructed from F∧*F and dB∧*dB does not affect the edge states, and that the augmented Lagrangian has an infinite number of conserved charges—the aforementioned scalar field modes—localized at the edges. This Lagrangian is known to describe London equations and a massive vector field. A (3+1)-dimensional generalization of the Hall effect involving vortices coupled to B is also proposed.

  2. 12 CFR 225.121 - Acquisition of Edge corporation affiliate by State member banks of registered bank holding company.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 3 2010-01-01 2010-01-01 false Acquisition of Edge corporation affiliate by... Acquisition of Edge corporation affiliate by State member banks of registered bank holding company. (a) The... of the holding company's Edge corporation subsidiary organized under section 25(a) of the Federal...

  3. Lattice spin models for non-Abelian chiral spin liquids

    DOE PAGES

    Lecheminant, P.; Tsvelik, A. M.

    2017-04-26

    Here, we suggest a class of two-dimensional lattice spin Hamiltonians describing non-Abelian SU(2) chiral spin liquids—spin analogs of fractional non-Abelian quantum Hall states—with gapped bulk and gapless chiral edge excitations described by the SU(2) n Wess-Zumino-Novikov-Witten conformal field theory. The models are constructed from an array of generalized spin-n/2 ladders with multi-spin-exchange interactions which are coupled by isolated spins. Such models allow a controllable analytic treatment starting from the one-dimensional limit and are characterized by a bulk gap and non-Abelian SU(2) n gapless edge excitations.

  4. LT-STM/STS studies of clean armchair edge

    NASA Astrophysics Data System (ADS)

    Ju, Zheng; Zhang, Wenhan; Wu, Weida; Weida Wu Team

    It was predicted and observed that the passivated zigzag edges of graphene host highly localized edge state. This edge state is predicted to be spin-polarized, which is appealing for spintronic applications. In contrast, no edge state was expected at passivated armchair graphene edge. Here we report low temperature scanning tunneling microscopy and spectroscopy (STM/STS) studies of electronic properties of clean monoatomic step edges on cleaved surface of HOPG. Most of step edges are armchair edges, in agreement with previous STM results. We observed only (√{ 3} ×√{ 3}) R30° superstructure near armchair edges, which has been reported in previous STM studies. On the other hand, no honeycomb superstructure was observed in our STM data. In addition, our STM results reveal an intriguing localized electronic state at clean armchair edges. Spectroscopic and spatial evolution of this edge state will be presented. This work is supported by NSF DMR-1506618.

  5. Nickel L-edge and K-edge X-ray absorption spectroscopy of non-innocent Ni[S₂C₂(CF₃)₂]₂(n) series (n = -2, -1, 0): direct probe of nickel fractional oxidation state changes.

    PubMed

    Gu, Weiwei; Wang, Hongxin; Wang, Kun

    2014-05-07

    A series of nickel dithiolene complexes Ni[S2C2(CF3)2]2(n) (n = -2, -1, 0) has been investigated using Ni L- and K-edge X-ray absorption spectroscopy (XAS). The L3 centroid shifts about 0.3 eV for a change of one unit in the formal oxidation state (or 0.3 eV per oxi), corresponding to ~33% of the shift for Ni oxides or fluorides (about 0.9 eV per oxi). The K-edge XAS edge position shifts about 0.7 eV per oxi, corresponding to ~38% of that for Ni oxides (1.85 eV per oxi). In addition, Ni L sum rule analysis found the Ni(3d) ionicity in the frontier orbitals being 50.5%, 44.0% and 38.5% respectively (for n = -2, -1, 0), in comparison with their formal oxidation states (of Ni(II), Ni(III), and Ni(IV)). For the first time, direct and quantitative measurement of the Ni fractional oxidation state changes becomes possible for Ni dithiolene complexes, illustrating the power of L-edge XAS and L sum rule analysis in such a study. The Ni L-edge and K-edge XAS can be used in a complementary manner to better assess the oxidation states for Ni.

  6. Majorana edge States in atomic wires coupled by pair hopping.

    PubMed

    Kraus, Christina V; Dalmonte, Marcello; Baranov, Mikhail A; Läuchli, Andreas M; Zoller, P

    2013-10-25

    We present evidence for Majorana edge states in a number conserving theory describing a system of spinless fermions on two wires that are coupled by pair hopping. Our analysis is based on a combination of a qualitative low energy approach and numerical techniques using the density matrix renormalization group. In addition, we discuss an experimental realization of pair-hopping interactions in cold atom gases confined in optical lattices.

  7. Edge states in the climate system: exploring global instabilities and critical transitions

    NASA Astrophysics Data System (ADS)

    Lucarini, Valerio; Bódai, Tamás

    2017-07-01

    Multistability is a ubiquitous feature in systems of geophysical relevance and provides key challenges for our ability to predict a system’s response to perturbations. Near critical transitions small causes can lead to large effects and—for all practical purposes—irreversible changes in the properties of the system. As is well known, the Earth climate is multistable: present astronomical and astrophysical conditions support two stable regimes, the warm climate we live in, and a snowball climate characterized by global glaciation. We first provide an overview of methods and ideas relevant for studying the climate response to forcings and focus on the properties of critical transitions in the context of both stochastic and deterministic dynamics, and assess strengths and weaknesses of simplified approaches to the problem. Following an idea developed by Eckhardt and collaborators for the investigation of multistable turbulent fluid dynamical systems, we study the global instability giving rise to the snowball/warm multistability in the climate system by identifying the climatic edge state, a saddle embedded in the boundary between the two basins of attraction of the stable climates. The edge state attracts initial conditions belonging to such a boundary and, while being defined by the deterministic dynamics, is the gate facilitating noise-induced transitions between competing attractors. We use a simplified yet Earth-like intermediate complexity climate model constructed by coupling a primitive equations model of the atmosphere with a simple diffusive ocean. We refer to the climatic edge states as Melancholia states and provide an extensive analysis of their features. We study their dynamics, their symmetry properties, and we follow a complex set of bifurcations. We find situations where the Melancholia state has chaotic dynamics. In these cases, we have that the basin boundary between the two basins of attraction is a strange geometric set with a nearly zero

  8. Topological edge states and impurities: Manifestation in the local static and dynamical characteristics of dimerized quantum chains

    NASA Astrophysics Data System (ADS)

    Zvyagin, A. A.

    2018-04-01

    Based on the results of exact analytic calculations, we show that topological edge states and impurities in quantum dimerized chains manifest themselves in various local static and dynamical characteristics, which can be measured in experiments. In particular, topological edge states can be observed in the magnetic field behavior of the local magnetization or magnetic susceptibility of dimerized spin chains as jumps (for the magnetization) and features (for the static susceptibility) at zero field. In contrast, impurities reveal themselves in similar jumps and features, however, at nonzero values of the critical field. We also show that dynamical characteristics of dimerized quantum chains also manifest the features, related to the topological edge states and impurities. Those features, as a rule, can be seen more sharply than the manifestation of bulk extended states in, e.g., the dynamical local susceptibility. Such peculiarities can be observed in one-dimensional dimerized spin chains, e.g., in NMR experiments, or in various realizations of quantum dimerized chains in optical experiments.

  9. Fast Preparation of Critical Ground States Using Superluminal Fronts

    NASA Astrophysics Data System (ADS)

    Agarwal, Kartiek; Bhatt, R. N.; Sondhi, S. L.

    2018-05-01

    We propose a spatiotemporal quench protocol that allows for the fast preparation of ground states of gapless models with Lorentz invariance. Assuming the system initially resides in the ground state of a corresponding massive model, we show that a superluminally moving "front" that locally quenches the mass, leaves behind it (in space) a state arbitrarily close to the ground state of the gapless model. Importantly, our protocol takes time O (L ) to produce the ground state of a system of size ˜Ld (d spatial dimensions), while a fully adiabatic protocol requires time ˜O (L2) to produce a state with exponential accuracy in L . The physics of the dynamical problem can be understood in terms of relativistic rarefaction of excitations generated by the mass front. We provide proof of concept by solving the proposed quench exactly for a system of free bosons in arbitrary dimensions, and for free fermions in d =1 . We discuss the role of interactions and UV effects on the free-theory idealization, before numerically illustrating the usefulness of the approach via simulations on the quantum Heisenberg spin chain.

  10. A High-Resolution Time-of-Flight Clinical PET Detection System Using a Gapless PMT-Quadrant-Sharing Method

    NASA Astrophysics Data System (ADS)

    Wong, Wai-Hoi; Li, Hongdi; Zhang, Yuxuan; Ramirez, Rocio; An, Shaohui; Wang, Chao; Liu, Shitao; Dong, Yun; Baghaei, Hossain

    2015-10-01

    We developed a high-resolution Photomultiplier-Quadrant-Sharing (PQS) PET system for human imaging. This system is made up of 24 detector panels. Each panel (bank) consists of 3 ×7 detector blocks, and each block has 16 ×16 LYSO crystals of 2.35 ×2.35 ×15.2 mm3. We used a novel detector-grinding scheme that is compatible with the PQS detector-pixel-decoding requirements to make a gapless cylindrical detector ring for maximizing detection efficiency while delivering an ultrahigh spatial-resolution for a whole-body PET camera with a ring diameter of 87 cm and axial field of view of 27.6 cm. This grinding scheme enables two adjacent gapless panels to share one row of the PMTs to extend the PQS configuration beyond one panel and thus maximize the economic benefit (in PMT usage) of the PQS design. The entire detector ring has 129,024 crystals, all of which are clearly decoded using only 576 PMTs (38-mm diameter). Thus, each PMT on average decodes 224 crystals to achieve a high crystal-pitch resolution of 2.44 mm ×2.44 mm. The detector blocks were mass-produced with our slab-sandwich-slice technique using a set of optimized mirror-film patterns (between crystals) to maximize light output and achieve high spatial and timing resolution. This detection system with time-of-flight capability was placed in a human PET/CT gantry. The reconstructed image resolution of the system was about 2.87 mm using 2D-filtered back-projection. The time-of-flight resolution was 473 ps. The preliminary images of phantoms and clinical studies presented in this work demonstrate the capability of this new PET/CT system to produce high-quality images.

  11. Signatures of a Nonthermal Metastable State in Copropagating Quantum Hall Edge Channels

    NASA Astrophysics Data System (ADS)

    Itoh, Kosuke; Nakazawa, Ryo; Ota, Tomoaki; Hashisaka, Masayuki; Muraki, Koji; Fujisawa, Toshimasa

    2018-05-01

    A Tomonaga-Luttinger (TL) liquid is known as an integrable system, in which a nonequilibrium many-body state survives without relaxing to a thermalized state. This intriguing characteristic is tested experimentally in copropagating quantum Hall edge channels at bulk filling factor ν =2 . The unidirectional transport allows us to investigate the time evolution by measuring the spatial evolution of the electronic states. The initial state is prepared with a biased quantum point contact, and its spatial evolution is measured with a quantum-dot energy spectrometer. We find strong evidence for a nonthermal metastable state in agreement with the TL theory before the system relaxes to thermal equilibrium with coupling to the environment.

  12. Effect of annealing ambient on anisotropic retraction of film edges during solid-state dewetting of thin single crystal films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Gye Hyun; Thompson, Carl V., E-mail: cthomp@mit.edu; Ma, Wen

    During solid-state dewetting of thin single crystal films, film edges retract at a rate that is strongly dependent on their crystallographic orientations. Edges with kinetically stable in-plane orientations remain straight as they retract, while those with other in-plane orientations develop in-plane facets as they retract. Kinetically stable edges have retraction rates that are lower than edges with other orientations and thus determine the shape of the natural holes that form during solid-state dewetting. In this paper, measurements of the retraction rates of kinetically stable edges for single crystal (110) and (100) Ni films on MgO are presented. Relative retraction ratesmore » of kinetically stable edges with different crystallographic orientations are observed to change under different annealing conditions, and this accordingly changes the initial shapes of growing holes. The surfaces of (110) and (100) films were also characterized using low energy electron diffraction, and different surface reconstructions were observed under different ambient conditions. The observed surface structures were found to correlate with the observed changes in the relative retraction rates of the kinetically stable edges.« less

  13. Mach-Zehnder interferometry using spin- and valley-polarized quantum Hall edge states in graphene.

    PubMed

    Wei, Di S; van der Sar, Toeno; Sanchez-Yamagishi, Javier D; Watanabe, Kenji; Taniguchi, Takashi; Jarillo-Herrero, Pablo; Halperin, Bertrand I; Yacoby, Amir

    2017-08-01

    Confined to a two-dimensional plane, electrons in a strong magnetic field travel along the edge in one-dimensional quantum Hall channels that are protected against backscattering. These channels can be used as solid-state analogs of monochromatic beams of light, providing a unique platform for studying electron interference. Electron interferometry is regarded as one of the most promising routes for studying fractional and non-Abelian statistics and quantum entanglement via two-particle interference. However, creating an edge-channel interferometer in which electron-electron interactions play an important role requires a clean system and long phase coherence lengths. We realize electronic Mach-Zehnder interferometers with record visibilities of up to 98% using spin- and valley-polarized edge channels that copropagate along a pn junction in graphene. We find that interchannel scattering between same-spin edge channels along the physical graphene edge can be used to form beamsplitters, whereas the absence of interchannel scattering along gate-defined interfaces can be used to form isolated interferometer arms. Surprisingly, our interferometer is robust to dephasing effects at energies an order of magnitude larger than those observed in pioneering experiments on GaAs/AlGaAs quantum wells. Our results shed light on the nature of edge-channel equilibration and open up new possibilities for studying exotic electron statistics and quantum phenomena.

  14. Proximity-induced superconductivity within the InAs/GaSb edge conducting state

    NASA Astrophysics Data System (ADS)

    Kononov, A.; Kostarev, V. A.; Semyagin, B. R.; Preobrazhenskii, V. V.; Putyato, M. A.; Emelyanov, E. A.; Deviatov, E. V.

    2017-12-01

    We experimentally investigate Andreev transport through the interface between an indium superconductor and the edge of the InAs/GaSb bilayer. To cover all possible regimes of the InAs/GaSb spectrum, we study samples with 10-nm-, 12-nm-, and 14-nm-thick InAs quantum wells. For the trivial case of a direct band insulator in 10 nm samples, differential resistance demonstrates standard Andreev reflection. For InAs/GaSb structures with band inversion (12 and 14 nm samples), we observe distinct low-energy structures, which we regard as direct evidence for the proximity-induced superconductivity within the current-carrying edge state. For 14 nm InAs well samples, we additionally observe mesoscopiclike resistance fluctuations, which are subjected to threshold suppression in low magnetic fields.

  15. Gapless genome assembly of Colletotrichum higginsianum reveals chromosome structure and association of transposable elements with secondary metabolite gene clusters.

    PubMed

    Dallery, Jean-Félix; Lapalu, Nicolas; Zampounis, Antonios; Pigné, Sandrine; Luyten, Isabelle; Amselem, Joëlle; Wittenberg, Alexander H J; Zhou, Shiguo; de Queiroz, Marisa V; Robin, Guillaume P; Auger, Annie; Hainaut, Matthieu; Henrissat, Bernard; Kim, Ki-Tae; Lee, Yong-Hwan; Lespinet, Olivier; Schwartz, David C; Thon, Michael R; O'Connell, Richard J

    2017-08-29

    The ascomycete fungus Colletotrichum higginsianum causes anthracnose disease of brassica crops and the model plant Arabidopsis thaliana. Previous versions of the genome sequence were highly fragmented, causing errors in the prediction of protein-coding genes and preventing the analysis of repetitive sequences and genome architecture. Here, we re-sequenced the genome using single-molecule real-time (SMRT) sequencing technology and, in combination with optical map data, this provided a gapless assembly of all twelve chromosomes except for the ribosomal DNA repeat cluster on chromosome 7. The more accurate gene annotation made possible by this new assembly revealed a large repertoire of secondary metabolism (SM) key genes (89) and putative biosynthetic pathways (77 SM gene clusters). The two mini-chromosomes differed from the ten core chromosomes in being repeat- and AT-rich and gene-poor but were significantly enriched with genes encoding putative secreted effector proteins. Transposable elements (TEs) were found to occupy 7% of the genome by length. Certain TE families showed a statistically significant association with effector genes and SM cluster genes and were transcriptionally active at particular stages of fungal development. All 24 subtelomeres were found to contain one of three highly-conserved repeat elements which, by providing sites for homologous recombination, were probably instrumental in four segmental duplications. The gapless genome of C. higginsianum provides access to repeat-rich regions that were previously poorly assembled, notably the mini-chromosomes and subtelomeres, and allowed prediction of the complete SM gene repertoire. It also provides insights into the potential role of TEs in gene and genome evolution and host adaptation in this asexual pathogen.

  16. Amplitude-dependent topological edge states in nonlinear phononic lattices

    NASA Astrophysics Data System (ADS)

    Pal, Raj Kumar; Vila, Javier; Leamy, Michael; Ruzzene, Massimo

    2018-03-01

    This work investigates the effect of nonlinearities on topologically protected edge states in one- and two-dimensional phononic lattices. We first show that localized modes arise at the interface between two spring-mass chains that are inverted copies of each other. Explicit expressions derived for the frequencies of the localized modes guide the study of the effect of cubic nonlinearities on the resonant characteristics of the interface, which are shown to be described by a Duffing-like equation. Nonlinearities produce amplitude-dependent frequency shifts, which in the case of a softening nonlinearity cause the localized mode to migrate to the bulk spectrum. The case of a hexagonal lattice implementing a phononic analog of a crystal exhibiting the quantum spin Hall effect is also investigated in the presence of weakly nonlinear cubic springs. An asymptotic analysis provides estimates of the amplitude dependence of the localized modes, while numerical simulations illustrate how the lattice response transitions from bulk-to-edge mode-dominated by varying the excitation amplitude. In contrast with the interface mode of the first example studies, this occurs both for hardening and softening springs. The results of this study provide a theoretical framework for the investigation of nonlinear effects that induce and control topologically protected wave modes through nonlinear interactions and amplitude tuning.

  17. Topological Valley Transport at Bilayer Graphene Domain Walls

    DTIC Science & Technology

    2015-04-22

    2015. Published online 22 April 2015. 1. McCann, E. Asymmetry gap in the electronic band structure of bilayer graphene . Phys. Rev. B 74, 161403 (2006...6. Yao, W., Yang, S. A. & Niu, Q. Edge states in graphene : from gapped flat- band to gapless chiral modes. Phys. Rev. Lett. 102, 096801 (2009). 7...induced in bilayer graphene by an external electric field1–5, and such gapped bilayer graphene is predicted to be a topo- logical insulating phase

  18. π Spin Berry Phase in a Quantum-Spin-Hall-Insulator-Based Interferometer: Evidence for the Helical Spin Texture of the Edge States

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Deng, Wei-Yin; Hou, Jing-Min; Shi, D. N.; Sheng, L.; Xing, D. Y.

    2016-08-01

    The quantum spin Hall insulator is characterized by helical edge states, with the spin polarization of the electron being locked to its direction of motion. Although the edge-state conduction has been observed, unambiguous evidence of the helical spin texture is still lacking. Here, we investigate the coherent edge-state transport in an interference loop pinched by two point contacts. Because of the helical character, the forward interedge scattering enforces a π spin rotation. Two successive processes can only produce a nontrivial 2 π or trivial 0 spin rotation, which can be controlled by the Rashba spin-orbit coupling. The nontrivial spin rotation results in a geometric π Berry phase, which can be detected by a π phase shift of the conductance oscillation relative to the trivial case. Our results provide smoking gun evidence for the helical spin texture of the edge states. Moreover, it also provides the opportunity to all electrically explore the trajectory-dependent spin Berry phase in condensed matter.

  19. Inner edge magnetisms in carbon honeycombs

    NASA Astrophysics Data System (ADS)

    Liu, Xiaofei; Guo, Wanlin

    2018-04-01

    We show by comprehensive ab initio calculations that sp2 carbon honeycombs recently synthesised by Krainyukova et al. [Phys. Rev. Lett. 116, 055501 (2016)] exhibit antiferromagnetism, not only at the inner edge of the zigzag ribbon component but also at the chain of sp2 carbon that joins three zigzag ribbons. The π antiferromagnetism at the joint chain has spin orientations that alternatively change along the axis and stems from a super-exchange mechanism. Along with the spin-polarization, the joint chain conduction channel opens an energy gap. The spin-polarization of the zigzag edge due to the magnetic instability of the localized edge states is less stable in energy. Through hole doping, the zigzag edge antiferromagnetism is enhanced and stabilized as the magnetic ground state, along with the re-opening of the joint chain conduction channel. When the carbon honeycombs are reconstructed into sp3-sp2 hybrid honeycombs, the π states of the joint are diminished, but the zigzag edge magnetism is preserved. Our results propose carbon honeycombs as novel magnetic carbon with competing polarization configurations.

  20. Tunable magnetic states on the zigzag edges of hydrogenated and halogenated group-IV nanoribbons

    NASA Astrophysics Data System (ADS)

    Wang, Tzu-Cheng; Hsu, Chia-Hsiu; Huang, Zhi-Quan; Chuang, Feng-Chuan; Su, Wan-Sheng; Guo, Guang-Yu

    2016-12-01

    The magnetic and electronic properties of hydrogenated and halogenated group-IV zigzag nanoribbons (ZNRs) are investigated by first-principles density functional calculations. Fascinatingly, we find that all the ZNRs have magnetic edges with a rich variety of electronic and magnetic properties tunable by selecting the parent and passivating elements as well as controlling the magnetization direction and external strain. In particular, the electric property of the edge band structure can be tuned from the conducting to insulating with a band gap up to 0.7 eV. The last controllability would allow us to develop magnetic on-off nano-switches. Furthermore, ZNRs such as SiI, Ge, GeI and SnH, have fully spin-polarized metallic edge states and thus are promising materials for spintronics. The calculated magnetocrystalline anisotropy energy can be as large as ~9 meV/edge-site, being 2×103 time greater than that of bulk Ni and Fe (~5 μeV/atom), and thus has great potential for high density magneto-electric data-storage devices. Finally, the calculated exchange coupling strength and thus magnetic transition temperature increases as the applied strain goes from -5% to 5%. Our findings thus show that these ZNRs would have exciting applications in next-generation electronic and spintronic nano-devices.

  1. Topological phase transition and evolution of edge states in In-rich InGaN/GaN quantum wells under hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    Łepkowski, S. P.; Bardyszewski, W.

    2017-02-01

    Combining the k · p method with the third-order elasticity theory, we perform a theoretical study of the pressure-induced topological phase transition and the pressure evolution of topologically protected edge states in InN/GaN and In-rich InGaN/GaN quantum wells. We show that for a certain range of the quantum well parameters, thanks to a negative band gap pressure coefficient, it is possible to continuously drive the system from the normal insulator state through the topological insulator into the semimetal phase. The critical pressure for the topological phase transition depends not only on the quantum well thickness but also on the width of the Hall bar, which determines the coupling between the edge states localized at the opposite edges. We also find that in narrow Hall bar structures, near the topological phase transition, a significant Rashba-type spin splitting of the lower and upper branches of the edge state dispersion curve appears. This effect originates from the lack of the mirror symmetry of the quantum well potential caused by the built-in electric field, and can be suppressed by increasing the Hall bar width. When the pressure increases, the energy dispersion of the edge states becomes more parabolic-like and the spin splitting decreases. A further increase of pressure leads to the transition to a semimetal phase, which occurs due to the closure of the indirect 2D bulk band gap. The difference between the critical pressure at which the system becomes semimetallic, and the pressure for the topological phase transition, correlates with the variation of the pressure coefficient of the band gap in the normal insulator state.

  2. Topological phase transition and evolution of edge states in In-rich InGaN/GaN quantum wells under hydrostatic pressure.

    PubMed

    Łepkowski, S P; Bardyszewski, W

    2017-02-08

    Combining the k · p method with the third-order elasticity theory, we perform a theoretical study of the pressure-induced topological phase transition and the pressure evolution of topologically protected edge states in InN/GaN and In-rich InGaN/GaN quantum wells. We show that for a certain range of the quantum well parameters, thanks to a negative band gap pressure coefficient, it is possible to continuously drive the system from the normal insulator state through the topological insulator into the semimetal phase. The critical pressure for the topological phase transition depends not only on the quantum well thickness but also on the width of the Hall bar, which determines the coupling between the edge states localized at the opposite edges. We also find that in narrow Hall bar structures, near the topological phase transition, a significant Rashba-type spin splitting of the lower and upper branches of the edge state dispersion curve appears. This effect originates from the lack of the mirror symmetry of the quantum well potential caused by the built-in electric field, and can be suppressed by increasing the Hall bar width. When the pressure increases, the energy dispersion of the edge states becomes more parabolic-like and the spin splitting decreases. A further increase of pressure leads to the transition to a semimetal phase, which occurs due to the closure of the indirect 2D bulk band gap. The difference between the critical pressure at which the system becomes semimetallic, and the pressure for the topological phase transition, correlates with the variation of the pressure coefficient of the band gap in the normal insulator state.

  3. Topological edge states in ultra thin Bi(110) puckered crystal lattice

    NASA Astrophysics Data System (ADS)

    Wang, Baokai; Hsu, Chuanghan; Chang, Guoqing; Lin, Hsin; Bansil, Arun

    We discuss the electronic structure of a 2-ML Bi(110) film with a crystal structure similar to that of black phosphorene. In the absence of Spin-Orbit coupling (SOC), the film is found to be a semimetal with two kinds of Dirac cones, which are classified by their locations in the Brillouin zone. All Dirac nodes are protected by crystal symmetry and carry non-zero winding numbers. When considering ribbons, along specific directions, projections of Dirac nodes serve as starting or ending points of edge bands depending on the sign of their carried winding number. After the inclusion of the SOC, all Dirac nodes are gapped out. Correspondingly, the edge states connecting Dirac nodes split and cross each other, and thus form a Dirac node at the boundary of the 1D Brillouin zone, which suggests that the system is a Quantum Spin Hall insulator. The nontrivial Quantum Spin Hall phase is also confirmed by counting the product of parities of the occupied bands at time-reversal invariant points.

  4. Picosecond sulfur K-edge X-ray absorption spectroscopy with applications to excited state proton transfer

    DOE PAGES

    Van Kuiken, Benjamin E.; Ross, Matthew R.; Strader, Matthew L.; ...

    2017-05-08

    Picosecond X-ray absorption (XA) spectroscopy at the S K-edge (~2.4 keV) is demonstrated and used to monitor excited state dynamics in a small organosulfur molecule (2-Thiopyridone, 2TP) following optical excitation. Multiple studies have reported that the thione (2TP) is converted into the thiol (2-Mercaptopyridine, 2MP) following photoexcitation. However, the timescale and photochemical pathway of this reaction remain uncertain. In this work, time-resolved XA spectroscopy at the S K-edge is used to monitor the formation and decay of two transient species following 400nm excitation of 2TP dissolved in acetonitrile. The first transient species forms within the instrument response time (70 ps)more » and decays within 6 ns. The second transient species forms on a timescale of ~400 ps and decays on a 15 ns timescale. Time-dependent density functional theory is used to identify the first and second transient species as the lowestlying triplet states of 2TP and 2MP, respectively. This study demonstrates transient S K-edge XA spectroscopy as a sensitive and viable probe of time-evolving charge dynamics near sulfur sites in small molecules with future applications towards studying complex biological and material systems.« less

  5. Role of helical edge modes in the chiral quantum anomalous Hall state.

    PubMed

    Mani, Arjun; Benjamin, Colin

    2018-01-22

    Although indications are that a single chiral quantum anomalous Hall(QAH) edge mode might have been experimentally detected. There have been very many recent experiments which conjecture that a chiral QAH edge mode always materializes along with a pair of quasi-helical quantum spin Hall (QSH) edge modes. In this work we deal with a substantial 'What If?' question- in case the QSH edge modes, from which these QAH edge modes evolve, are not topologically-protected then the QAH edge modes wont be topologically-protected too and thus unfit for use in any applications. Further, as a corollary one can also ask if the topological-protection of QSH edge modes does not carry over during the evolution process to QAH edge modes then again our 'What if?' scenario becomes apparent. The 'how' of the resolution of this 'What if?' conundrum is the main objective of our work. We show in similar set-ups affected by disorder and inelastic scattering, transport via trivial QAH edge mode leads to quantization of Hall resistance and not that via topological QAH edge modes. This perhaps begs a substantial reinterpretation of those experiments which purported to find signatures of chiral(topological) QAH edge modes albeit in conjunction with quasi helical QSH edge modes.

  6. The Edge, Fall 1999.

    ERIC Educational Resources Information Center

    Edge, 1999

    1999-01-01

    "The Edge" is a Canadian publication for youth. The mandate of the Edge is to support and celebrate all career journeys embraced by youth. This issue contains career profile articles covering three jobs: crane operator, indoor climbing instructor, and product certification tester. Career trends and the state of today's workplace are also…

  7. Tunable hybridization of Majorana bound states at the quantum spin Hall edge

    NASA Astrophysics Data System (ADS)

    Keidel, Felix; Burset, Pablo; Trauzettel, Björn

    2018-02-01

    Confinement at the helical edge of a topological insulator is possible in the presence of proximity-induced magnetic (F) or superconducting (S) order. The interplay of both phenomena leads to the formation of localized Majorana bound states (MBS) or likewise (under certain resonance conditions) the formation of ordinary Andreev bound states (ABS). We investigate the properties of bound states in junctions composed of alternating regions of F or S barriers. Interestingly, the direction of magnetization in F regions and the relative superconducting phase between S regions can be exploited to hybridize MBS or ABS at will. We show that the local properties of MBS translate into a particular nonlocal superconducting pairing amplitude. Remarkably, the symmetry of the pairing amplitude contains information about the nature of the bound state that it stems from. Hence this symmetry can in principle be used to distinguish MBS from ABS, owing to the strong connection between local density of states and nonlocal pairing in our setup.

  8. Observation of valleylike edge states of sound at a momentum away from the high-symmetry points

    NASA Astrophysics Data System (ADS)

    Xia, Bai-Zhan; Zheng, Sheng-Jie; Liu, Ting-Ting; Jiao, Jun-Rui; Chen, Ning; Dai, Hong-Qing; Yu, De-Jie; Liu, Jian

    2018-04-01

    In condensed matter physics, topologically protected edge transportation has drawn extensive attention over recent years. Thus far, the topological valley edge states have been produced near the Dirac cones fixed at the high-symmetry points of the Brillouin zone. In this paper, we demonstrate a unique valleylike phononic crystal (PnC) with the position-varying Dirac cones at the high-symmetry lines of the Brillouin zone boundary. The emergence of such Dirac cones, characterized by the vortex structure in a momentum space, is attributed to the unavoidable band crossing protected by the mirror symmetry. The Dirac cones can be unbuckled and a complete band gap can be induced through breaking the mirror symmetry. Interestingly, by simply rotating the square columns, we realize the valleylike vortex states and the band inversion effect which leads to the valley Hall phase transition. Along the valleylike PnC interfaces separating two distinct acoustic valley Hall phases, the valleylike protected edge transport of sound in domain walls is observed in both the simulations and the experiments. These results are promising for the exploration of alternative topological phenomena in the valleylike PnCs beyond the graphenelike lattice.

  9. Dynamics and Hall-edge-state mixing of localized electrons in a two-channel Mach-Zehnder interferometer

    NASA Astrophysics Data System (ADS)

    Bellentani, Laura; Beggi, Andrea; Bordone, Paolo; Bertoni, Andrea

    2018-05-01

    We present a numerical study of a multichannel electronic Mach-Zehnder interferometer, based on magnetically driven noninteracting edge states. The electron path is defined by a full-scale potential landscape on the two-dimensional electron gas at filling factor 2, assuming initially only the first Landau level as filled. We tailor the two beamsplitters with 50 % interchannel mixing and measure Aharonov-Bohm oscillations in the transmission probability of the second channel. We perform time-dependent simulations by solving the electron Schrödinger equation through a parallel implementation of the split-step Fourier method, and we describe the charge-carrier wave function as a Gaussian wave packet of edge states. We finally develop a simplified theoretical model to explain the features observed in the transmission probability, and we propose possible strategies to optimize gate performances.

  10. A k · p treatment of edge states in narrow 2D topological insulators, with standard boundary conditions for the wave function and its derivative.

    PubMed

    Klipstein, P C

    2018-07-11

    For 2D topological insulators with strong electron-hole hybridization, such as HgTe/CdTe quantum wells, the widely used 4  ×  4 k · p Hamiltonian based on the first electron and heavy hole sub-bands yields an equal number of physical and spurious solutions, for both the bulk states and the edge states. For symmetric bands and zero wave vector parallel to the sample edge, the mid-gap bulk solutions are identical to the edge solutions. In all cases, the physical edge solution is exponentially localized to the boundary and has been shown previously to satisfy standard boundary conditions for the wave function and its derivative, even in the limit of an infinite wall potential. The same treatment is now extended to the case of narrow sample widths, where for each spin direction, a gap appears in the edge state dispersions. For widths greater than 200 nm, this gap is less than half of the value reported for open boundary conditions, which are called into question because they include a spurious wave function component. The gap in the edge state dispersions is also calculated for weakly hybridized quantum wells such as InAs/GaSb/AlSb. In contrast to the strongly hybridized case, the edge states at the zone center only have pure exponential character when the bands are symmetric and when the sample has certain characteristic width values.

  11. d +i d chiral superconductivity in a triangular lattice from trigonal bipyramidal complexes

    NASA Astrophysics Data System (ADS)

    Lu, Chen; Zhang, Li-Da; Wu, Xianxin; Yang, Fan; Hu, Jiangping

    2018-04-01

    We model the newly predicted high-Tc superconducting candidates constructed by corner-shared trigonal bipyramidal complexes with an effective three-orbital tight-binding Hamiltonian and investigate the pairing symmetry of their superconducting states driven by electron-electron interactions. Our combined weak- and strong-coupling-based calculations consistently identify the chiral d +i d superconductivity as the leading pairing symmetry in a wide doping range with realistic interaction parameters. This pairing state has a nontrivial topological Chern number and can host gapless chiral edge modes, and the vortex cores under magnetic field can carry Majorana zero modes.

  12. Direct imaging of band profile in single layer MoS2 on graphite: quasiparticle energy gap, metallic edge states, and edge band bending.

    PubMed

    Zhang, Chendong; Johnson, Amber; Hsu, Chang-Lung; Li, Lain-Jong; Shih, Chih-Kang

    2014-05-14

    Using scanning tunneling microscopy and spectroscopy, we probe the electronic structures of single layer MoS2 on graphite. The apparent quasiparticle energy gap of single layer MoS2 is measured to be 2.15 ± 0.06 eV at 77 K, albeit a higher second conduction band threshold at 0.2 eV above the apparent conduction band minimum is also observed. Combining it with photoluminescence studies, we deduce an exciton binding energy of 0.22 ± 0.1 eV (or 0.42 eV if the second threshold is use), a value that is lower than current theoretical predictions. Consistent with theoretical predictions, we directly observe metallic edge states of single layer MoS2. In the bulk region of MoS2, the Fermi level is located at 1.8 eV above the valence band maximum, possibly due to the formation of a graphite/MoS2 heterojunction. At the edge, however, we observe an upward band bending of 0.6 eV within a short depletion length of about 5 nm, analogous to the phenomena of Fermi level pinning of a 3D semiconductor by metallic surface states.

  13. Markov random field model-based edge-directed image interpolation.

    PubMed

    Li, Min; Nguyen, Truong Q

    2008-07-01

    This paper presents an edge-directed image interpolation algorithm. In the proposed algorithm, the edge directions are implicitly estimated with a statistical-based approach. In opposite to explicit edge directions, the local edge directions are indicated by length-16 weighting vectors. Implicitly, the weighting vectors are used to formulate geometric regularity (GR) constraint (smoothness along edges and sharpness across edges) and the GR constraint is imposed on the interpolated image through the Markov random field (MRF) model. Furthermore, under the maximum a posteriori-MRF framework, the desired interpolated image corresponds to the minimal energy state of a 2-D random field given the low-resolution image. Simulated annealing methods are used to search for the minimal energy state from the state space. To lower the computational complexity of MRF, a single-pass implementation is designed, which performs nearly as well as the iterative optimization. Simulation results show that the proposed MRF model-based edge-directed interpolation method produces edges with strong geometric regularity. Compared to traditional methods and other edge-directed interpolation methods, the proposed method improves the subjective quality of the interpolated edges while maintaining a high PSNR level.

  14. Tunable magnetic states on the zigzag edges of hydrogenated and halogenated group-IV nanoribbons

    NASA Astrophysics Data System (ADS)

    Chuang, Feng-Chuan; Wang, Tzu-Cheng; Hsu, Chia-Hsiu; Huang, Zhi-Quan; Su, Wan-Sheng; Guo, Guang-Yu

    The magnetic and electronic properties of hydrogenated and halogenated group-IV zigzag nanoribbons (ZNRs) are investigated by first-principles density functional calculations. Fascinatingly, we find that all the ZNRs have magnetic edges with a rich variety of electronic and magnetic properties tunable by selecting the parent and passivating elements as well as controlling the magnetization direction and external strain. In particular, the electric property of the edge band structure can be tuned from the conducting to insulating with a band gap up to 0.7 eV, depending on the parent and passivating elements as well as the applied strain, magnetic configuration and magnetization orientation. The last controllability would allow us to develop magnetic on-off nano-switches. Furthermore, ZNRs such as SiI, Ge, GeI and SnH, have fully spin-polarized metallic edge states and thus are promising materials for spintronics. The calculated magnetocrystalline anisotropy energy can be as large as 9 meV/edge-site, being 2000 time greater than that of bulk Ni and Fe ( 5 μeV/atom), and thus has great potential for high density magneto-electric data-storage devices. Finally, the calculated exchange coupling strength and thus magnetic transition temperature increases as the applied strain goes from -5 % to 5 %. Our findings thus show that these ZNRs would have exciting applications in next-generation electronic and spintronic nano-devices.

  15. Edge effects on the electronic properties of phosphorene nanoribbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Xihong, E-mail: xihong.peng@asu.edu; Copple, Andrew; Wei, Qun

    2014-10-14

    Two dimensional few-layer black phosphorus crystal structures have recently been fabricated and have demonstrated great potential in electronic applications. In this work, we employed first principles density functional theory calculations to study the edge and quantum confinement effects on the electronic properties of the phosphorene nanoribbons (PNR). Different edge functionalization groups, such as H, F, Cl, OH, O, S, and Se, in addition to a pristine case were studied for a series of ribbon widths up to 3.5 nm. It was found that the armchair-PNRs (APNRs) are semiconductors for all edge groups considered in this work. However, the zigzag-PNRs (ZPNRs)more » show either semiconductor or metallic behavior in dependence on their edge chemical species. Family 1 edges (i.e., H, F, Cl, OH) form saturated bonds with P atoms in the APNRs and ZPNRs, and the edge states keep far away from the band gap. However, Family 2 edges (pristine, O, S, Se) form weak unsaturated bonds with the p{sub z} orbital of the phosphorus atoms and bring edge states within the band gap of the ribbons. For the ZPNRs, the edge states of Family 2 are present around the Fermi level within the band gap, which close up the band gap of the ZPNRs. For the APNRs, these edge states are located at the bottom of the conduction band and result in a reduced band gap.« less

  16. Origin of spin gapless semiconductor behavior in CoFeCrGa: Theory and Experiment

    DOE PAGES

    Bainsla, Lakhan; Mallick, A. I.; Raja, M. Manivel; ...

    2015-07-08

    Despite a plethora of materials suggested for spintronic applications, a new class of materials has emerged, namely spin gapless semiconductors (SGS), which offers potentially more advantageous properties than existing ones. These magnetic semiconductors exhibit a finite band gap for one spin channel and a closed gap for the other. Supported by electronic-structure calculations, we report evidence of SGS behavior in equiatomic quaternary CoFeCrGa, having a cubic Heusler (prototype LiMgPdSn) structure but exhibiting chemical disorder (DO 3 structure). CoFeCrGa is found to transform from SGS to half-metallic phase under pressure, which is attributed to unique electronic-structure features. The saturation magnetization (Mmore » S) was obtained at 8K agrees with the Slater-Pauling rule and the Curie temperature (T C) is found to exceed 400K. Carrier concentration (up to 250K) and electrical conductivity are observed to be nearly temperature independent, prerequisites for SGS. The anomalous Hall coefficient is estimated to be 185S/cm at 5K. Considering the SGS properties and high T C, this material appears to be promising for spintronic applications.« less

  17. Coherence recovery mechanisms of quantum Hall edge states

    NASA Astrophysics Data System (ADS)

    Goremykina, Anna S.; Sukhorukov, Eugene V.

    2018-03-01

    This paper is motivated by an unexpected observation in a recent experiment [S. Tewari et al., Phys. Rev. B 93, 035420 (2016)., 10.1103/PhysRevB.93.035420], where a robust coherence recovery, starting from a certain energy, was detected for an electron injected into a quantum Hall edge at a filling factor of 2. After passing through a quantum dot, the electron then tunnels into the edge with a subsequent propagation towards a symmetric Mach-Zender interferometer (MZI). Afterwards, the visibility of Aharonov-Bohm (AB) oscillations is measured. An earlier study, based on the bosonization framework with a linear spectrum of the edge excitations, predicted a decay of the visibility with increasing energy. We associate this result with the destructive interference of the two quasiparticles (charge and neutral modes), formed at the edge out of the incoming electron wave packet (WP). However, in reality, it might be suppressed due to an imbalance between the quasiparticles, for instance, in the presence of dispersion and/or dissipation. This idea could also be explored further experimentally by applying a periodic potential to the arms of the MZI and thus creating the imbalance. Yet another possibility to restore phase coherence, also based on dispersion and dissipation, accounts for a drop in the energy density of the electron WP by the time it arrives at the interferometer, leading to a significantly smaller dephasing inside it. We then show that the energy density is defined by a parameter completely independent of the injected energy, which naturally explains the emergence of threshold energy in the experiment.

  18. Edge magnetism of Heisenberg model on honeycomb lattice.

    PubMed

    Huang, Wen-Min; Hikihara, Toshiya; Lee, Yen-Chen; Lin, Hsiu-Hau

    2017-03-07

    Edge magnetism in graphene sparks intense theoretical and experimental interests. In the previous study, we demonstrated the existence of collective excitations at the zigzag edge of the honeycomb lattice with long-ranged Néel order. By employing the Schwinger-boson approach, we show that the edge magnons remain robust even when the long-ranged order is destroyed by spin fluctuations. Furthermore, in the effective field-theory limit, the dynamics of the edge magnon is captured by the one-dimensional relativistic Klein-Gordon equation. It is intriguing that the boundary field theory for the edge magnon is tied up with its bulk counterpart. By performing density-matrix renormalization group calculations, we show that the robustness may be attributed to the closeness between the ground state and the Néel state. The existence of edge magnon is not limited to the honeycomb structure, as demonstrated in the rotated-square lattice with zigzag edges as well. The universal behavior indicates that the edge magnons may attribute to the uncompensated edges and can be detected in many two-dimensional materials.

  19. Effects of Edge on-Site Potential in a Honeycomb Topological Magnon Insulator

    NASA Astrophysics Data System (ADS)

    Pantaleón, Pierre A.; Xian, Yang

    2018-06-01

    While the deviation of the edge on-site potential from the bulk values in a magnonic topological honeycomb lattice leads to the formation of edge states in a bearded boundary, this is not the case for a zigzag termination, where no edge state is found. In a semi-infinite lattice, the intrinsic on-site interactions along the boundary sites generate an effective defect and this gives rise to Tamm-like edge states. If a nontrivial gap is induced, both Tamm-like and topologically protected edge states appear in the band structure. The effective defect can be strengthened by an external on-site potential, and the dispersion relation, velocity and magnon density of the edge states all become tunable.

  20. One-way propagation of bulk states and robust edge states in photonic crystals with broken inversion and time-reversal symmetries

    NASA Astrophysics Data System (ADS)

    Lu, Jin-Cheng; Chen, Xiao-Dong; Deng, Wei-Min; Chen, Min; Dong, Jian-Wen

    2018-07-01

    The valley is a flexible degree of freedom for light manipulation in photonic systems. In this work, we introduce the valley concept in magnetic photonic crystals with broken inversion symmetry. One-way propagation of bulk states is demonstrated by exploiting the pseudo-gap where bulk states only exist at one single valley. In addition, the transition between Hall and valley-Hall nontrivial topological phases is also studied in terms of the competition between the broken inversion and time-reversal symmetries. At the photonic boundary between two topologically distinct photonic crystals, we illustrate the one-way propagation of edge states and demonstrate their robustness against defects.

  1. Structure of edge-state inner products in the fractional quantum Hall effect

    NASA Astrophysics Data System (ADS)

    Fern, R.; Bondesan, R.; Simon, S. H.

    2018-04-01

    We analyze the inner products of edge state wave functions in the fractional quantum Hall effect, specifically for the Laughlin and Moore-Read states. We use an effective description for these inner products given by a large-N expansion ansatz proposed in a recent work by J. Dubail, N. Read, and E. Rezayi [Phys. Rev. B 86, 245310 (2012), 10.1103/PhysRevB.86.245310]. As noted by these authors, the terms in this ansatz can be constrained using symmetry, a procedure we perform to high orders. We then check this conjecture by calculating the overlaps exactly for small system sizes and compare the numerics with our high-order expansion. We find the effective description to be very accurate.

  2. Real-space imaging of a topologically protected edge state with ultracold atoms in an amplitude-chirped optical lattice

    PubMed Central

    Leder, Martin; Grossert, Christopher; Sitta, Lukas; Genske, Maximilian; Rosch, Achim; Weitz, Martin

    2016-01-01

    To describe a mobile defect in polyacetylene chains, Su, Schrieffer and Heeger formulated a model assuming two degenerate energy configurations that are characterized by two different topological phases. An immediate consequence was the emergence of a soliton-type edge state located at the boundary between two regions of different configurations. Besides giving first insights in the electrical properties of polyacetylene materials, interest in this effect also stems from its close connection to states with fractional charge from relativistic field theory. Here, using a one-dimensional optical lattice for cold rubidium atoms with a spatially chirped amplitude, we experimentally realize an interface between two spatial regions of different topological order in an atomic physics system. We directly observe atoms confined in the edge state at the intersection by optical real-space imaging and characterize the state as well as the size of the associated energy gap. Our findings hold prospects for the spectroscopy of surface states in topological matter and for the quantum simulation of interacting Dirac systems. PMID:27767054

  3. Topological aspect and transport property in multi-band spin-triplet chiral p-wave superconductor Sr2RuO4

    NASA Astrophysics Data System (ADS)

    Imai, Yoshiki; Wakabayashi, Katsunori; Sigrist, Manfred

    2015-03-01

    Considering the superconductor Sr2RuO4, we analyze a three-band tight-binding model with one hole-like and two electron-like Fermi surfaces corresponding to the α, β and γ bands of Sr2RuO4 by means of a self-consistent Bogoliubov-de Gennes approach for ribbonshaped system to investigate topological properties and edge states. In the superconducting phase two types of gapless edge states can be identified, one of which displays an almost flat dispersion at zero energy, while the other, originating from the γ band, has a linear dispersion and constitutes a genuine chiral edge states. Not only a charge current appears at the edges but also a spin current due to the multi-band effect in the superconducting phase. In particular, the chiral edge state from the γ band is closely tied to topological properties, and the chiral p-wave superconducting states are characterized by an integer topological number, the so-called Chern number. We show that the γ band is close to a Lifshitz transition. Since the sign of the Chern number may be very sensitive to the surface condition, we consider the effect of the surface reconstruction observed in Sr2RuO4 on the topological property and show the possibility of the hole-like Fermi surface at the surface.

  4. Magnetotransport Properties of Graphene Nanoribbons with Zigzag Edges

    NASA Astrophysics Data System (ADS)

    Wu, Shuang; Liu, Bing; Shen, Cheng; Li, Si; Huang, Xiaochun; Lu, Xiaobo; Chen, Peng; Wang, Guole; Wang, Duoming; Liao, Mengzhou; Zhang, Jing; Zhang, Tingting; Wang, Shuopei; Yang, Wei; Yang, Rong; Shi, Dongxia; Watanabe, Kenji; Taniguchi, Takashi; Yao, Yugui; Wang, Weihua; Zhang, Guangyu

    2018-05-01

    The determination of the electronic structure by edge geometry is unique to graphene. In theory, an evanescent nonchiral edge state is predicted at the zigzag edges of graphene. Up to now, the approach used to study zigzag-edged graphene has mostly been limited to scanning tunneling microscopy. The transport properties have not been revealed. Recent advances in hydrogen plasma-assisted "top-down" fabrication of zigzag-edged graphene nanoribbons (Z-GNRs) have allowed us to investigate edge-related transport properties. In this Letter, we report the magnetotransport properties of Z-GNRs down to ˜70 nm wide on an h -BN substrate. In the quantum Hall effect regime, a prominent conductance peak is observed at Landau ν =0 , which is absent in GNRs with nonzigzag edges. The conductance peak persists under perpendicular magnetic fields and low temperatures. At a zero magnetic field, a nonlocal voltage signal, evidenced by edge conduction, is detected. These prominent transport features are closely related to the observable density of states at the hydrogen-etched zigzag edge of graphene probed by scanning tunneling spectroscopy, which qualitatively matches the theoretically predicted electronic structure for zigzag-edged graphene. Our study gives important insights for the design of new edge-related electronic devices.

  5. Edge Singularities and Quasilong-Range Order in Nonequilibrium Steady States.

    PubMed

    De Nardis, Jacopo; Panfil, Miłosz

    2018-05-25

    The singularities of the dynamical response function are one of the most remarkable effects in many-body interacting systems. However in one dimension these divergences only exist strictly at zero temperature, making their observation very difficult in most cold atomic experimental settings. Moreover the presence of a finite temperature destroys another feature of one-dimensional quantum liquids: the real space quasilong-range order in which the spatial correlation functions exhibit power-law decay. We consider a nonequilibrium protocol where two interacting Bose gases are prepared either at different temperatures or chemical potentials and then joined. We show that the nonequilibrium steady state emerging at large times around the junction displays edge singularities in the response function and quasilong-range order.

  6. Edge Singularities and Quasilong-Range Order in Nonequilibrium Steady States

    NASA Astrophysics Data System (ADS)

    De Nardis, Jacopo; Panfil, Miłosz

    2018-05-01

    The singularities of the dynamical response function are one of the most remarkable effects in many-body interacting systems. However in one dimension these divergences only exist strictly at zero temperature, making their observation very difficult in most cold atomic experimental settings. Moreover the presence of a finite temperature destroys another feature of one-dimensional quantum liquids: the real space quasilong-range order in which the spatial correlation functions exhibit power-law decay. We consider a nonequilibrium protocol where two interacting Bose gases are prepared either at different temperatures or chemical potentials and then joined. We show that the nonequilibrium steady state emerging at large times around the junction displays edge singularities in the response function and quasilong-range order.

  7. Miniature Trailing Edge Effector for Aerodynamic Control

    NASA Technical Reports Server (NTRS)

    Lee, Hak-Tae (Inventor); Bieniawski, Stefan R. (Inventor); Kroo, Ilan M. (Inventor)

    2008-01-01

    Improved miniature trailing edge effectors for aerodynamic control are provided. Three types of devices having aerodynamic housings integrated to the trailing edge of an aerodynamic shape are presented, which vary in details of how the control surface can move. A bucket type device has a control surface which is the back part of a C-shaped member having two arms connected by the back section. The C-shaped section is attached to a housing at the ends of the arms, and is rotatable about an axis parallel to the wing trailing edge to provide up, down and neutral states. A flip-up type device has a control surface which rotates about an axis parallel to the wing trailing edge to provide up, down, neutral and brake states. A rotating type device has a control surface which rotates about an axis parallel to the chord line to provide up, down and neutral states.

  8. Magnetic edge states in Aharonov-Bohm graphene quantum rings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farghadan, R., E-mail: rfarghadan@kashanu.ac.ir; Heidari Semiromi, E.; Saffarzadeh, A.

    2013-12-07

    The effect of electron-electron interaction on the electronic structure of Aharonov-Bohm (AB) graphene quantum rings (GQRs) is explored theoretically using the single-band tight-binding Hamiltonian and the mean-field Hubbard model. The electronic states and magnetic properties of hexagonal, triangular, and circular GQRs with different sizes and zigzag edge terminations are studied. The results show that, although the AB oscillations in the all types of nanoring are affected by the interaction, the spin splitting in the AB oscillations strongly depends on the geometry and the size of graphene nanorings. We found that the total spin of hexagonal and circular rings is zeromore » and therefore, no spin splitting can be observed in the AB oscillations. However, the non-zero magnetization of the triangular rings breaks the degeneracy between spin-up and spin-down electrons, which produces spin-polarized AB oscillations.« less

  9. Odd-frequency superconducting pairing and subgap density of states at the edge of a two-dimensional topological insulator without magnetism

    NASA Astrophysics Data System (ADS)

    Cayao, Jorge; Black-Schaffer, Annica M.

    2017-10-01

    We investigate the emergence and consequences of odd-frequency spin-triplet s -wave pairing in superconducting hybrid junctions at the edge of a two-dimensional topological insulator without any magnetism. More specifically, we consider several different normal-superconductor hybrid systems at the topological insulator edge, where spin-singlet s -wave superconducting pairing is proximity induced from an external conventional superconductor. We perform fully analytical calculations and show that odd-frequency mixed spin-triplet s -wave pairing arises due to the unique spin-momentum locking in the topological insulator edge state and the naturally nonconstant pairing potential profile in hybrid systems. Importantly, we establish a one-to-one correspondence between the local density of states (LDOS) at low energies and the odd-frequency spin-triplet pairing in NS, NSN, and SNS junctions along the topological insulator edge; at interfaces the enhancement in the LDOS can directly be attributed to the contribution of odd-frequency pairing. Furthermore, in SNS junctions we show that the emergence of the zero-energy LDOS peak at the superconducting phase ϕ =π is associated purely with odd-frequency pairing in the middle of the junction.

  10. Emergence of nontrivial magnetic excitations in a spin-liquid state of kagomé volborthite

    PubMed Central

    Watanabe, Daiki; Sugii, Kaori; Shimozawa, Masaaki; Suzuki, Yoshitaka; Yajima, Takeshi; Ishikawa, Hajime; Hiroi, Zenji; Shibauchi, Takasada; Matsuda, Yuji; Yamashita, Minoru

    2016-01-01

    When quantum fluctuations destroy underlying long-range ordered states, novel quantum states emerge. Spin-liquid (SL) states of frustrated quantum antiferromagnets, in which highly correlated spins fluctuate down to very low temperatures, are prominent examples of such quantum states. SL states often exhibit exotic physical properties, but the precise nature of the elementary excitations behind such phenomena remains entirely elusive. Here, we use thermal Hall measurements that can capture the unexplored property of the elementary excitations in SL states, and report the observation of anomalous excitations that may unveil the unique features of the SL state. Our principal finding is a negative thermal Hall conductivity κxy which the charge-neutral spin excitations in a gapless SL state of the 2D kagomé insulator volborthite Cu3V2O7(OH)2⋅2H2O exhibit, in much the same way in which charged electrons show the conventional electric Hall effect. We find that κxy is absent in the high-temperature paramagnetic state and develops upon entering the SL state in accordance with the growth of the short-range spin correlations, demonstrating that κxy is a key signature of the elementary excitation formed in the SL state. These results suggest the emergence of nontrivial elementary excitations in the gapless SL state which feel the presence of fictitious magnetic flux, whose effective Lorentz force is found to be less than 1/100 of the force experienced by free electrons. PMID:27439874

  11. Extremely efficient internal exciton dissociation through edge states in layered 2D perovskites

    NASA Astrophysics Data System (ADS)

    Blancon, J.-C.; Tsai, H.; Nie, W.; Stoumpos, C. C.; Pedesseau, L.; Katan, C.; Kepenekian, M.; Soe, C. M. M.; Appavoo, K.; Sfeir, M. Y.; Tretiak, S.; Ajayan, P. M.; Kanatzidis, M. G.; Even, J.; Crochet, J. J.; Mohite, A. D.

    2017-03-01

    Understanding and controlling charge and energy flow in state-of-the-art semiconductor quantum wells has enabled high-efficiency optoelectronic devices. Two-dimensional (2D) Ruddlesden-Popper perovskites are solution-processed quantum wells wherein the band gap can be tuned by varying the perovskite-layer thickness, which modulates the effective electron-hole confinement. We report that, counterintuitive to classical quantum-confined systems where photogenerated electrons and holes are strongly bound by Coulomb interactions or excitons, the photophysics of thin films made of Ruddlesden-Popper perovskites with a thickness exceeding two perovskite-crystal units (>1.3 nanometers) is dominated by lower-energy states associated with the local intrinsic electronic structure of the edges of the perovskite layers. These states provide a direct pathway for dissociating excitons into longer-lived free carriers that substantially improve the performance of optoelectronic devices.

  12. Bifurcations of edge states—topologically protected and non-protected—in continuous 2D honeycomb structures

    NASA Astrophysics Data System (ADS)

    Fefferman, C. L.; Lee-Thorp, J. P.; Weinstein, M. I.

    2016-03-01

    Edge states are time-harmonic solutions to energy-conserving wave equations, which are propagating parallel to a line-defect or ‘edge’ and are localized transverse to it. This paper summarizes and extends the authors’ work on the bifurcation of topologically protected edge states in continuous two-dimensional (2D) honeycomb structures. We consider a family of Schrödinger Hamiltonians consisting of a bulk honeycomb potential and a perturbing edge potential. The edge potential interpolates between two different periodic structures via a domain wall. We begin by reviewing our recent bifurcation theory of edge states for continuous 2D honeycomb structures (http://arxiv.org/abs/1506.06111). The topologically protected edge state bifurcation is seeded by the zero-energy eigenstate of a one-dimensional Dirac operator. We contrast these protected bifurcations with (more common) non-protected bifurcations from spectral band edges, which are induced by bound states of an effective Schrödinger operator. Numerical simulations for honeycomb structures of varying contrasts and ‘rational edges’ (zigzag, armchair and others), support the following scenario: (a) for low contrast, under a sign condition on a distinguished Fourier coefficient of the bulk honeycomb potential, there exist topologically protected edge states localized transverse to zigzag edges. Otherwise, and for general edges, we expect long lived edge quasi-modes which slowly leak energy into the bulk. (b) For an arbitrary rational edge, there is a threshold in the medium-contrast (depending on the choice of edge) above which there exist topologically protected edge states. In the special case of the armchair edge, there are two families of protected edge states; for each parallel quasimomentum (the quantum number associated with translation invariance) there are edge states which propagate in opposite directions along the armchair edge.

  13. Edge currents in frustrated Josephson junction ladders

    NASA Astrophysics Data System (ADS)

    Marques, A. M.; Santos, F. D. R.; Dias, R. G.

    2016-09-01

    We present a numerical study of quasi-1D frustrated Josephson junction ladders with diagonal couplings and open boundary conditions, in the large capacitance limit. We derive a correspondence between the energy of this Josephson junction ladder and the expectation value of the Hamiltonian of an analogous tight-binding model, and show how the overall superconducting state of the chain is equivalent to the minimum energy state of the tight-binding model in the subspace of one-particle states with uniform density. To satisfy the constraint of uniform density, the superconducting state of the ladder is written as a linear combination of the allowed k-states of the tight-binding model with open boundaries. Above a critical value of the parameter t (ratio between the intra-rung and inter-rung Josephson couplings) the ladder spontaneously develops currents at the edges, which spread to the bulk as t is increased until complete coverage is reached. Above a certain value of t, which varies with ladder size (t = 1 for an infinite-sized ladder), the edge currents are destroyed. The value t = 1 corresponds, in the tight-binding model, to the opening of a gap between two bands. We argue that the disappearance of the edge currents with this gap opening is not coincidental, and that this points to a topological origin for these edge current states.

  14. Mapping the conduction band edge density of states of γ-In2Se3 by diffuse reflectance spectra

    NASA Astrophysics Data System (ADS)

    Kumar, Pradeep; Vedeshwar, Agnikumar G.

    2018-03-01

    It is demonstrated that the measured diffuse reflectance spectra of γ-In2Se3 can be used to map the conduction band edge density of states through Kubelka-Munk analysis. The Kubelka-Munk function derived from the measured spectra almost mimics the calculated density of states in the vicinity of conduction band edge. The calculation of density of states was carried out using first-principles approach yielding the structural, electronic, and optical properties. The calculations were carried out implementing various functionals and only modified Tran and Blaha (TB-MBJ) results tally closest with the experimental result of band gap. The electronic and optical properties were calculated using FP-LAPW + lo approach based on the Density Functional Theory formalism implementing only TB-mBJ functional. The electron and hole effective masses have been calculated as me * = 0.25 m 0 and mh * = 1.11 m 0 , respectively. The optical properties clearly indicate the anisotropic nature of γ-In2Se3.

  15. Atom-Dependent Edge-Enhanced Second-Harmonic Generation on MoS2 Monolayers.

    PubMed

    Lin, Kuang-I; Ho, Yen-Hung; Liu, Shu-Bai; Ciou, Jian-Jhih; Huang, Bo-Ting; Chen, Christopher; Chang, Han-Ching; Tu, Chien-Liang; Chen, Chang-Hsiao

    2018-02-14

    Edge morphology and lattice orientation of single-crystal molybdenum disulfide (MoS 2 ) monolayers, a transition metal dichalcogenide (TMD), possessing a triangular shape with different edges grown by chemical vapor deposition are characterized by atomic force microscopy and transmission electron microscopy. Multiphoton laser scanning microscopy is utilized to study one-dimensional atomic edges of MoS 2 monolayers with localized midgap electronic states, which result in greatly enhanced optical second-harmonic generation (SHG). Microscopic S-zigzag edge and S-Mo Klein edge (bare Mo atoms protruding from a S-zigzag edge) terminations and the edge-atom dependent resonance energies can therefore be deduced based on SHG images. Theoretical calculations based on density functional theory clearly explain the lower energy of the S-zigzag edge states compared to the corresponding S-Mo Klein edge states. Characterization of the atomic-scale variation of edge-enhanced SHG is a step forward in this full-optical and high-yield technique of atomic-layer TMDs.

  16. Frequencies of the Edge-Magnetoplasmon Excitations in Gated Quantum Hall Edges

    NASA Astrophysics Data System (ADS)

    Endo, Akira; Koike, Keita; Katsumoto, Shingo; Iye, Yasuhiro

    2018-06-01

    We have investigated microwave transmission through the edge of quantum Hall systems by employing a coplanar waveguide (CPW) fabricated on the surface of a GaAs/AlGaAs two-dimensional electron gas (2DEG) wafer. An edge is introduced to the slot region of the CPW by applying a negative bias Vg to the central electrode (CE) and depleting the 2DEG below the CE. We observe peaks attributable to the excitation of edge magnetoplasmons (EMP) at a fundamental frequency f0 and at its harmonics if0 (i = 2,3, \\ldots ). The frequency f0 increases with decreasing Vg, indicating that EMP propagates with higher velocity for more negative Vg. The dependence of f0 on Vg is interpreted in terms of the variation in the distance between the edge state and the CE, which alters the velocity by varying the capacitive coupling between them. The peaks are observed to continue, albeit with less clarity, up to the regions of Vg where 2DEG still remains below the CE.

  17. Topological valley-chiral edge states of Lamb waves in elastic thin plates

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Mei, Jun

    2018-05-01

    We investigate the nontrivial topology of the band structure of Lamb waves in a thin phononic crystal plate. When inversion symmetry is broken, a valley pseudospin degree of freedom is formed around K and K‧ valleys for the A0 Lamb mode, which is decoupled from the S0 and SH0 modes in the low-frequency regime. Chiral edge states are explicitly demonstrated, which are immune to defects and exhibit unidirectional transport behaviors when intervalley scattering is weak. The quantum valley Hall effect is thus simulated in a simple way in the context of Lamb waves.

  18. Induced Superconductivity in the Quantum Spin Hall Edge

    NASA Astrophysics Data System (ADS)

    Ren, Hechen; Hart, Sean; Wagner, Timo; Leubner, Philipp; Muehlbauer, Mathias; Bruene, Christoph; Buhmann, Hartmut; Molenkamp, Laurens; Yacoby, Amir

    2014-03-01

    Two-dimensional topological insulators have a gapped bulk and helical edge states, making it a quantum spin Hall insulator. Combining such edge states with superconductivity can be an excellent platform for observing and manipulating localized Majorana fermions. In the context of condensed matter, these are emergent electronic states that obey non-Abelian statistics and hence support fault-tolerant quantum computing. To realize such theoretical constructions, an essential step is to show these edge channels are capable of carrying coherent supercurrent. In our experiment, we fabricate Josephson junctions with HgTe/HgCdTe quantum wells, a two-dimensional material that becomes a quantum spin Hall insulator when the quantum well is thicker than 6.3 nm and the bulk density is depleted. In this regime, we observe supercurrents whose densities are confined to the edges of the junctions, with edge widths ranging from 180 nm to 408 nm. To verify the topological nature of these edges, we measure identical junctions with HgTe/HgCdTe quantum wells thinner than 6.3 nm and observe only uniform supercurrent density across the junctions. This research is supported by Microsoft Corporation Project Q, the NSF DMR-1206016, the DOE SCGF Program, the German Research Foundation, and EU ERC-AG program.

  19. Topological Luttinger liquids from decorated domain walls

    NASA Astrophysics Data System (ADS)

    Parker, Daniel E.; Scaffidi, Thomas; Vasseur, Romain

    2018-04-01

    We introduce a systematic construction of a gapless symmetry-protected topological phase in one dimension by "decorating" the domain walls of Luttinger liquids. The resulting strongly interacting phases provide a concrete example of a gapless symmetry-protected topological (gSPT) phase with robust symmetry-protected edge modes. Using boundary conformal field theory arguments, we show that while the bulks of such gSPT phases are identical to conventional Luttinger liquids, their boundary critical behavior is controlled by a different, strongly coupled renormalization group fixed point. Our results are checked against extensive density matrix renormalization group calculations.

  20. Edge-mode superconductivity in a two-dimensional topological insulator.

    PubMed

    Pribiag, Vlad S; Beukman, Arjan J A; Qu, Fanming; Cassidy, Maja C; Charpentier, Christophe; Wegscheider, Werner; Kouwenhoven, Leo P

    2015-07-01

    Topological superconductivity is an exotic state of matter that supports Majorana zero-modes, which have been predicted to occur in the surface states of three-dimensional systems, in the edge states of two-dimensional systems, and in one-dimensional wires. Localized Majorana zero-modes obey non-Abelian exchange statistics, making them interesting building blocks for topological quantum computing. Here, we report superconductivity induced in the edge modes of semiconducting InAs/GaSb quantum wells, a two-dimensional topological insulator. Using superconducting quantum interference we demonstrate gate-tuning between edge-dominated and bulk-dominated regimes of superconducting transport. The edge-dominated regime arises only under conditions of high-bulk resistivity, which we associate with the two-dimensional topological phase. These experiments establish InAs/GaSb as a promising platform for the confinement of Majoranas into localized states, enabling future investigations of non-Abelian statistics.

  1. Hidden edge Dirac point and robust quantum edge transport in InAs/GaSb quantum wells

    NASA Astrophysics Data System (ADS)

    Li, Chang-An; Zhang, Song-Bo; Shen, Shun-Qing

    2018-01-01

    The robustness of quantum edge transport in InAs/GaSb quantum wells in the presence of magnetic fields raises an issue on the fate of topological phases of matter under time-reversal symmetry breaking. A peculiar band structure evolution in InAs/GaSb quantum wells is revealed: the electron subbands cross the heavy hole subbands but anticross the light hole subbands. The topologically protected band crossing point (Dirac point) of the helical edge states is pulled to be close to and even buried in the bulk valence bands when the system is in a deeply inverted regime, which is attributed to the existence of the light hole subbands. A sizable Zeeman energy gap verified by the effective g factors of edge states opens at the Dirac point by an in-plane or perpendicular magnetic field; however, it can also be hidden in the bulk valance bands. This provides a plausible explanation for the recent observation on the robustness of quantum edge transport in InAs/GaSb quantum wells subjected to strong magnetic fields.

  2. Topological Defects in Topological Insulators and Bound States at Topological Superconductor Vortices.

    PubMed

    Parente, Vincenzo; Campagnano, Gabriele; Giuliano, Domenico; Tagliacozzo, Arturo; Guinea, Francisco

    2014-03-04

    The scattering of Dirac electrons by topological defects could be one of the most relevant sources of resistance in graphene and at the boundary surfaces of a three-dimensional topological insulator (3D TI). In the long wavelength, continuous limit of the Dirac equation, the topological defect can be described as a distortion of the metric in curved space, which can be accounted for by a rotation of the Gamma matrices and by a spin connection inherited with the curvature. These features modify the scattering properties of the carriers. We discuss the self-energy of defect formation with this approach and the electron cross-section for intra-valley scattering at an edge dislocation in graphene, including corrections coming from the local stress. The cross-section contribution to the resistivity, ρ, is derived within the Boltzmann theory of transport. On the same lines, we discuss the scattering of a screw dislocation in a two-band 3D TI, like Bi 1-x Sb x , and we present the analytical simplified form of the wavefunction for gapless helical states bound at the defect. When a 3D TI is sandwiched between two even-parity superconductors, Dirac boundary states acquire superconductive correlations by proximity. In the presence of a magnetic vortex piercing the heterostructure, two Majorana states are localized at the two interfaces and bound to the vortex core. They have a half integer total angular momentum each, to match with the unitary orbital angular momentum of the vortex charge.

  3. Extremely efficient internal exciton dissociation through edge states in layered 2D perovskites

    DOE PAGES

    Blancon, Jean -Christophe Robert; Tsai, Hsinhan; Nie, Wanyi; ...

    2017-03-09

    Understanding and controlling charge and energy flow in state-of-the-art semiconductor quantum wells has enabled high-efficiency optoelectronic devices. Two-dimensional (2D) Ruddlesden-Popper perovskites are solution-processed quantum wells wherein the band gap can be tuned by varying the perovskite-layer thickness, which modulates the effective electron-hole confinement. We report that, counterintuitive to classical quantum-confined systems where photogenerated electrons and holes are strongly bound by Coulomb interactions or excitons, the photophysics of thin films made of Ruddlesden-Popper perovskites with a thickness exceeding two perovskite-crystal units (>1.3 nanometers) is dominated by lower-energy states associated with the local intrinsic electronic structure of the edges of the perovskitemore » layers. Furthermore, these states provide a direct pathway for dissociating excitons into longer-lived free carriers that substantially improve the performance of optoelectronic devices.« less

  4. Electronic structure and electric polarity of edge-functionalized graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Taira, Remi; Yamanaka, Ayaka; Okada, Susumu

    2017-08-01

    On the basis of the density functional theory combined with the effective screening medium method, we studied the electronic structure of graphene nanoribbons with zigzag edges, which are terminated by functional groups. The work function of the nanoribbons is sensitive to the functional groups. The edge state inherent in the zigzag edges is robust against edge functionalization. OH termination causes the injection of electrons into the nearly free electron states situated alongside the nanoribbons, resulting in the formation of free electron channels outside the nanoribbons. We also demonstrated that the polarity of zigzag graphene nanoribbons is controllable by the asymmetrical functionalization of their edges.

  5. Geometry, topology, and response in condensed matter systems

    NASA Astrophysics Data System (ADS)

    Varjas, Daniel

    Topological order provides a new paradigm to view phases of matter. Unlike conventional symmetry breaking order, these states are not distinguished by different patterns of symmetry breaking, instead by their intricate mathematical structure, topology. By the bulk-boundary correspondence, the nontrivial topology of the bulk results in robust gapless excitations on symmetry preserving surfaces. We utilize both of these views to study topological phases together with the analysis of their quantized physical responses to perturbations. First we study the edge excitations of strongly interacting abelian fractional quantum Hall liquids on an infinite strip geometry. We use the infinite density matrix renormalization group method to numerically measure edge exponents in model systems, including subleading orders. Using analytic methods we derive a generalized Luttinger's theorem that relates momenta of edge excitations. Next we consider topological crystalline insulators protected by space group symmetry. After reviewing the general formalism, we present results about the quantization of the magnetoelectric response protected by orientation-reversing space group symmetries. We construct and analyze insulating and superconducting tight-binding models with glide symmetry in three dimensions to illustrate the general result. Following this, we derive constraints on weak indices of three dimensional topological insulators imposed by space group symmetries. We focus on spin-orbit coupled insulators with and without time reversal invariance and consider both symmorphic and nonsymmorphic symmetries. Finally, we calculate the response of metals and generalize the notion of the magnetoelectric effect to noninteracting gapless systems. We use semiclassical dynamics to study the magnetopiezoelectric effect, the current response to elastic strain in static external magnetic fields.

  6. Homoclinic tangle on the edge of shear turbulence.

    PubMed

    van Veen, Lennaert; Kawahara, Genta

    2011-09-09

    Experiments and simulations lend mounting evidence for the edge state hypothesis on subcritical transition to turbulence, which asserts that simple states of fluid motion mediate between laminar and turbulent shear flow as their stable manifolds separate the two in state space. In this Letter we describe flows homoclinic to a time-periodic edge state that display the essential properties of turbulent bursting. During a burst, vortical structures and the associated energy dissipation are highly localized near the wall, in contrast with the familiar regeneration cycle.

  7. Bulk-edge correspondence in topological transport and pumping

    NASA Astrophysics Data System (ADS)

    Imura, Ken-Ichiro; Yoshimura, Yukinori; Fukui, Takahiro; Hatsugai, Yasuhiro

    2018-03-01

    The bulk-edge correspondence (BEC) refers to a one-to-one relation between the bulk and edge properties ubiquitous in topologically nontrivial systems. Depending on the setup, BEC manifests in different forms and govern the spectral and transport properties of topological insulators and semimetals. Although the topological pump is theoretically old, BEC in the pump has been established just recently [1] motivated by the state-of-the-art experiments using cold atoms [2, 3]. The center of mass (CM) of a system with boundaries shows a sequence of quantized jumps in the adiabatic limit associated with the edge states. Despite that the bulk is adiabatic, the edge is inevitably non-adiabatic in the experimental setup or in any numerical simulations. Still the pumped charge is quantized and carried by the bulk. Its quantization is guaranteed by a compensation between the bulk and edges. We show that in the presence of disorder the pumped charge continues to be quantized despite the appearance of non-quantized jumps.

  8. Quantum phase transitions in effective spin-ladder models for graphene zigzag nanoribbons

    NASA Astrophysics Data System (ADS)

    Koop, Cornelie; Wessel, Stefan

    2017-10-01

    We examine the magnetic correlations in quantum spin models that were derived recently as effective low-energy theories for electronic correlation effects on the edge states of graphene nanoribbons. For this purpose, we employ quantum Monte Carlo simulations to access the large-distance properties, accounting for quantum fluctuations beyond mean-field-theory approaches to edge magnetism. For certain chiral nanoribbons, antiferromagnetic interedge couplings were previously found to induce a gapped quantum disordered ground state of the effective spin model. We find that the extended nature of the intraedge couplings in the effective spin model for zigzag nanoribbons leads to a quantum phase transition at a large, finite value of the interedge coupling. This quantum critical point separates the quantum disordered region from a gapless phase of stable edge magnetism at weak intraedge coupling, which includes the ground states of spin-ladder models for wide zigzag nanoribbons. To study the quantum critical behavior, the effective spin model can be related to a model of two antiferromagnetically coupled Haldane-Shastry spin-half chains with long-ranged ferromagnetic intrachain couplings. The results for the critical exponents are compared also to several recent renormalization-group calculations for related long-ranged interacting quantum systems.

  9. Far infrared edge photoresponse and persistent edge transport in an inverted InAs/GaSb heterostructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dyer, G. C.; Olson, B. V.; Hawkins, S. D.

    2016-01-04

    Direct current (DC) transport and far infrared photoresponse were studied an InAs/GaSb double quantum well with an inverted band structure. The DC transport depends systematically upon the DC bias configuration and operating temperature. Surprisingly, it reveals robust edge conduction despite prevalent bulk transport in our device of macroscopic size. Under 180 GHz far infrared illumination at oblique incidence, we measured a strong photovoltaic response. We conclude that quantum spin Hall edge transport produces the observed transverse photovoltages. Overall, our experimental results support a hypothesis that the photoresponse arises from direct coupling of the incident radiation field to edge states.

  10. First principles investigation of half-metallicity and spin gapless semiconductor in CH3NH3Cr x Pb1- x I3 mixed perovskites

    NASA Astrophysics Data System (ADS)

    Huang, H. M.; Zhu, Z. W.; Zhang, C. K.; He, Z. D.; Luo, S. J.

    2018-04-01

    The structural, electronic and magnetic properties of organic-inorganic hybrid mixed perovskites CH3NH3Cr x Pb1- x I3 ( x = 0.25, 0.50, 0.75, 1.00) in cubic, tetragonal and orthorhombic phases have been investigated by first-principles calculation. The results indicate that the tetragonal CH3NH3Cr0.75Pb0.25I3 is a spin gapless semiconductor with Curie temperature of 663 K estimated using mean field approximation. All other CH3NH3Cr x Pb1- x I3 mixed perovskites are half-metallic ferromagnets together with 100% spin polarization, and their total magnetic moment are 4.00, 8.00, 12.00 and 16.00 µB per unit cell for x = 0.25, 0.50, 0.75 and 1.00, respectively. The effect of <100>, <110> and <111> orientation of organic cation CH3NH3 + on the electronic properties of CH3NH3Cr0.50Pb0.50I3 was investigated. The results show that the CH3NH3 + in different orientations have a slight effect on the lattice constants, the energy gap in minority-spin states, half-metallic gap, local magnetic moment, and Curie temperature.

  11. Spin-dependent electron scattering at graphene edges on Ni(111).

    PubMed

    Garcia-Lekue, A; Balashov, T; Olle, M; Ceballos, G; Arnau, A; Gambardella, P; Sanchez-Portal, D; Mugarza, A

    2014-02-14

    We investigate the scattering of surface electrons by the edges of graphene islands grown on Ni(111). By combining local tunneling spectroscopy and ab initio electronic structure calculations we find that the hybridization between graphene and Ni states results in strongly reflecting graphene edges. Quantum interference patterns formed around the islands reveal a spin-dependent scattering of the Shockley bands of Ni, which we attribute to their distinct coupling to bulk states. Moreover, we find a strong dependence of the scattering amplitude on the atomic structure of the edges, depending on the orbital character and energy of the surface states.

  12. Transition metal atomic multiplets in the ligand K-edge x-ray absorption spectra and multiple oxidation states in the L2,3 emission of strongly correlated compounds

    NASA Astrophysics Data System (ADS)

    Jiménez-Mier, J.; Olalde-Velasco, P.; Yang, W.-L.; Denlinger, J.

    2014-07-01

    We present results that show that atomic multiplet ligand field calculations are in very good agreement with experimental x-ray absorption spectra at the L2,3 edge of transition metal (TM) di-fluorides (MF2, MCrCu). For chromium more than one TM oxidation state is needed to achieve such an agreement. We also show that signature of the TM atomic multiplet can be found at the pre-edge of the fluorine K-edge x-ray absorption spectra. TM atomic multiplet ligand field calculations with a structureless core hole show good agreement with the observed pre-edges in the experimental fluorine absorption spectra. Preliminary results for the comparison between calculated and experimental resonant x-ray emission spectra for nominal CrF2 with more than one oxidation state indicate the presence of three chromium oxidation states in the bulk.

  13. Spin-gapless and half-metallic ferromagnetism in potassium and calcium δ-doped GaN digital magnetic heterostructures for possible spintronic applications: insights from first principles

    NASA Astrophysics Data System (ADS)

    Du, Jiangtao; Dong, Shengjie; Zhou, Baozeng; Zhao, Hui; Feng, Liefeng

    2017-04-01

    The reports previously issued predominantly paid attention to the d-block magnetic elements δ-doped digital magnetic materials. In this work, GaN δ-doped with non-magnetic main group s-block elements K and Ca as digital magnetic heterostructures were purposed and explored theoretically. We found that K- and Ca-embedded GaN digital alloys exhibit spin-gapless and half-metallic ferromagnetic characteristics, respectively. All compounds obey the Slater-Pauling rule with diverse electronic and magnetic properties. For these digital ferromagnetic heterostructures, spin polarization occurs in nitrogen within a confined space around the δ-doped layer, demonstrating a hole-mediated two-dimensional magnetic phenomenon.

  14. Edge-closed laminated structures for thin-film heads

    NASA Astrophysics Data System (ADS)

    Herman, D. A.; Argyle, B. E.; Lee, H.-P.; Trouilloud, P. O.; Petek, B.

    1991-04-01

    Magnetic film laminations containing nonmagnetic spacers have been explored with the hope of eliminating domain walls to diminish Barkhausen instabilities. Such laminates have limitations however, which originate in their ``edge-curling walls'' (ECWs).1 We have developed a new structure, free of ECWs, in which flux closure at opposing edges occurs via edge-shorting material added to circulate the easy-axis flux of the flat layers. We show experimentally with Kerr-effect imaging that (1) this edge-closed laminated (ECL) structure can support an (ECW-free) ``easy-axis'' (EA) magnetic state under conditions as modeled recently by Slonczewski,2 and (2) that this EA state is quite robust in the face of imperfect structure fabrication. This is, if the imperfections are not too severe, the resultant states depart minimally from the pure EA state and conduct hard-axis-driven flux nearly as well. Flat-film ECL elements in diamond, stripe, and recording-head-yoke shapes, plus experimental heads with ECL top yokes, were fabricated. Our domain images verify some key predictions from Slonczewski's static equilibrium modeling; additional results taken in applied magnetic fields extend the micromagnetic understanding. The sketch shows a typical domain pattem for a yoke-shaped element. The most stable state in the open portion of the yoke is the single domain shown. This remanent pattern was stable in the face of (slowly varying) external fields up to the 150 Oe that could be applied. The pole tip region contained a few 180° walls as indicated. On close inspection, these walls were seen to end in vestigial, nontouching, closure domains as predicted by the model when only partial flux closure occurs via the edge shorting material. The wall spacing in the tip varied somewhat following saturation-demagnetization cycles. The dynamic stability of this EA state was investigated in the experimental heads having ECL top yokes. The pseudodynamic LAMOM technique3 was applied using ``write

  15. The protonation states of oxo-bridged Mn(IV) dimers resolved by experimental and computational Mn K pre-edge X-ray absorption spectroscopy.

    PubMed

    Krewald, Vera; Lassalle-Kaiser, Benedikt; Boron, Thaddeus T; Pollock, Christopher J; Kern, Jan; Beckwith, Martha A; Yachandra, Vittal K; Pecoraro, Vincent L; Yano, Junko; Neese, Frank; DeBeer, Serena

    2013-11-18

    In nature, the protonation of oxo bridges is a commonly encountered mechanism for fine-tuning chemical properties and reaction pathways. Often, however, the protonation states are difficult to establish experimentally. This is of particular importance in the oxygen evolving complex of photosystem II, where identification of the bridging oxo protonation states is one of the essential requirements toward unraveling the mechanism. In order to establish a combined experimental and theoretical protocol for the determination of protonation states, we have systematically investigated a series of Mn model complexes by Mn K pre-edge X-ray absorption spectroscopy. An ideal test case for selective bis-μ-oxo-bridge protonation in a Mn dimer is represented by the system [Mn(IV)2(salpn)2(μ-OHn)2](n+). Although the three species [Mn(IV)2(salpn)2(μ-O)2], [Mn(IV)2(salpn)2(μ-O)(μ-OH)](+) and [Mn(IV)2(salpn)2(μ-OH)2](2+) differ only in the protonation of the oxo bridges, they exhibit distinct differences in the pre-edge region while maintaining the same edge energy. The experimental spectra are correlated in detail to theoretically calculated spectra. A time-dependent density functional theory approach for calculating the pre-edge spectra of molecules with multiple metal centers is presented, using both high spin (HS) and broken symmetry (BS) electronic structure solutions. The most intense pre-edge transitions correspond to an excitation of the Mn 1s core electrons into the unoccupied orbitals of local e(g) character (d(z)(2) and d(xy) based in the chosen coordinate system). The lowest energy experimental feature is dominated by excitations of 1s-α electrons, and the second observed feature is primarily attributed to 1s-β electron excitations. The observed energetic separation is due to spin polarization effects in spin-unrestricted density functional theory and models final state multiplet effects. The effects of spin polarization on the calculated Mn K pre-edge spectra, in

  16. Topological Defects in Topological Insulators and Bound States at Topological Superconductor Vortices

    PubMed Central

    Parente, Vincenzo; Campagnano, Gabriele; Giuliano, Domenico; Tagliacozzo, Arturo; Guinea, Francisco

    2014-01-01

    The scattering of Dirac electrons by topological defects could be one of the most relevant sources of resistance in graphene and at the boundary surfaces of a three-dimensional topological insulator (3D TI). In the long wavelength, continuous limit of the Dirac equation, the topological defect can be described as a distortion of the metric in curved space, which can be accounted for by a rotation of the Gamma matrices and by a spin connection inherited with the curvature. These features modify the scattering properties of the carriers. We discuss the self-energy of defect formation with this approach and the electron cross-section for intra-valley scattering at an edge dislocation in graphene, including corrections coming from the local stress. The cross-section contribution to the resistivity, ρ, is derived within the Boltzmann theory of transport. On the same lines, we discuss the scattering of a screw dislocation in a two-band 3D TI, like Bi1−xSbx, and we present the analytical simplified form of the wavefunction for gapless helical states bound at the defect. When a 3D TI is sandwiched between two even-parity superconductors, Dirac boundary states acquire superconductive correlations by proximity. In the presence of a magnetic vortex piercing the heterostructure, two Majorana states are localized at the two interfaces and bound to the vortex core. They have a half integer total angular momentum each, to match with the unitary orbital angular momentum of the vortex charge. PMID:28788537

  17. Cone and trumpet concentrators in light of the general edge-ray theorem

    NASA Astrophysics Data System (ADS)

    Ries, Harald; Spirkl, Wolfgang; Winston, Roland

    1995-08-01

    Cone and trumpet are nonimaging concentrators which do not obey the traditional edge-ray principle. The latter states that edge rays from the source should be transferred to the edge of the target. These concentrators have traditionally been described in terms of the heuristic flow line principle. The edge-ray theorem has been generalized to include nonimaging reflectors with multiple reflections. One includes all multiply reflected rays as an auxiliary domain. The general edge-ray theorem then states that the edge rays to the union of source and auxiliary domain must be reflected to edge of the union of target and auxiliary domain by the first reflection. We show the setup for which cone and trumpet constitute perfect nonimaging concentrators in the light of the generalized edge-ray theorem. We discuss the cases where cones are very good approximations for the solutions of nonimaging problems.

  18. Majorana spin liquids, topology, and superconductivity in ladders

    NASA Astrophysics Data System (ADS)

    Le Hur, Karyn; Soret, Ariane; Yang, Fan

    2017-11-01

    We theoretically address spin chain analogs of the Kitaev quantum spin model on the honeycomb lattice. The emergent quantum spin-liquid phases or Anderson resonating valence-bond (RVB) states can be understood, as an effective model, in terms of p -wave superconductivity and Majorana fermions. We derive a generalized phase diagram for the two-leg ladder system with tunable interaction strengths between chains allowing us to vary the shape of the lattice (from square to honeycomb ribbon or brickwall ladder). We evaluate the winding number associated with possible emergent (topological) gapless modes at the edges. In the Az phase, as a result of the emergent Z2 gauge fields and π -flux ground state, one may build spin-1/2 (loop) qubit operators by analogy to the toric code. In addition, we show how the intermediate gapless B phase evolves in the generalized ladder model. For the brick-wall ladder, the B phase is reduced to one line, which is analyzed through perturbation theory in a rung tensor product states representation and bosonization. Finally, we show that doping with a few holes can result in the formation of hole pairs and leads to a mapping with the Su-Schrieffer-Heeger model in polyacetylene; a superconducting-insulating quantum phase transition for these hole pairs is accessible, as well as related topological properties.

  19. Zero-energy state in graphene in a high magnetic field.

    PubMed

    Checkelsky, Joseph G; Li, Lu; Ong, N P

    2008-05-23

    The fate of the charge-neutral Dirac point in graphene in a high magnetic field H has been investigated at low temperatures (T approximately 0.3 K). In samples with small gate-voltage offset V0, the resistance R0 at the Dirac point diverges steeply with H, signaling a crossover to a state with a very large R0. The approach to this state is highly unusual. Despite the steep divergence in R0, the profile of R0 vs T in fixed H saturates to a T-independent value below 2 K, consistent with gapless charge-carrying excitations.

  20. Edge Modes and Teleportation in a Topologically Insulating Quantum Wire

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghrear, Majd; Mackovic, Brie; Semenoff, Gordon W.

    We find a simple model of an insulating state of a quantum wire which has a single isolated edge mode. We argue that, when brought to proximity, the edge modes on independent wires naturally form Bell entangled states which could be used for elementary quantum processes such as teleportation. We give an example of an algorithm which teleports the spin state of an electron from one quantum wire to another.

  1. Electronic Structures of Silicene Nanoribbons: Two-Edge-Chemistry Modification and First-Principles Study.

    PubMed

    Yao, Yin; Liu, Anping; Bai, Jianhui; Zhang, Xuanmei; Wang, Rui

    2016-12-01

    In this paper, we investigate the structural and electronic properties of zigzag silicene nanoribbons (ZSiNRs) with edge-chemistry modified by H, F, OH, and O, using the ab initio density functional theory method and local spin-density approximation. Three kinds of spin polarized configurations are considered: nonspin polarization (NM), ferromagnetic spin coupling for all electrons (FM), ferromagnetic ordering along each edge, and antiparallel spin orientation between the two edges (AFM). The H, F, and OH groups modified 8-ZSiNRs have the AFM ground state. The directly edge oxidized (O1) ZSiNRs yield the same energy and band structure for NM, FM, and AFM configurations, owning to the same s p (2) hybridization. And replacing the Si atoms on the two edges with O atoms (O2) yields FM ground state. The edge-chemistry-modified ZSiNRs all exhibit metallic band structures. And the modifications introduce special edge state strongly localized at the Si atoms in the edge, except for the O1 form. The modification of the zigzag edges of silicene nanoribbons is a key issue to apply the silicene into the field effect transistors (FETs) and gives more necessity to better understand the experimental findings.

  2. Interaction of gusts with forest edges

    NASA Astrophysics Data System (ADS)

    Ruck, Bodo; Tischmacher, Michael

    2012-05-01

    Experimental investigations in an atmospheric boundary layer wind tunnel were carried out in order to study the interaction of gusts with forest edges. Summarizing the state of knowledge in the field of forest damages generated by extreme storms, there is a strong indication that in many cases, windthrow of trees starts near the forest edge from where it spreads into the stand. The high-transient interaction between gusts and (porous) forest edges produce unsteady flow phenomena not known so far. From a fluid mechanical point of view, the flow type resembles a forward-facing porous step flow, which is significantly influenced by the characteristics of the oncoming atmospheric boundary layer flow and the shape and `porous properties' of the forest edge. The paper reports systematic investigations on the interaction of artificially generated gusts and forest edge models in an atmospheric boundary layer wind tunnel. The experimental investigations were carried out with a laser-based time-resolved PIV-system and high speed photography. Different flow phenomena like gust streching, vortex formation, Kelvin-Helmholtz instabilities or wake production of turbulence could be measured or visualized contributing to the understanding of the complex flow perfomance over the forest edge.

  3. Fractional quantum Hall effect in the interacting Hofstadter model via tensor networks

    NASA Astrophysics Data System (ADS)

    Gerster, M.; Rizzi, M.; Silvi, P.; Dalmonte, M.; Montangero, S.

    2017-11-01

    We show via tensor network methods that the Harper-Hofstadter Hamiltonian for hard-core bosons on a square geometry supports a topological phase realizing the ν =1/2 fractional quantum Hall (FQH) effect on the lattice. We address the robustness of the ground-state degeneracy and of the energy gap, measure the many-body Chern number, and characterize the system using Green functions, showing that they decay algebraically at the edges of open geometries, indicating the presence of gapless edge modes. Moreover, we estimate the topological entanglement entropy by taking a combination of lattice bipartitions that reproduces the topological structure of the original proposals by Kitaev and Preskill [Phys. Rev. Lett. 96, 110404 (2006), 10.1103/PhysRevLett.96.110404] and Levin and Wen [Phys. Rev. Lett. 96, 110405 (2006), 10.1103/PhysRevLett.96.110405]. The numerical results show that the topological contribution is compatible with the expected value γ =1/2 . Our results provide extensive evidence that FQH states are within reach of state-of-the-art cold-atom experiments.

  4. Wigner crystalline edges in ν<~1 quantum dots

    NASA Astrophysics Data System (ADS)

    Goldmann, Eyal; Renn, Scot R.

    1999-12-01

    We investigate the edge reconstruction phenomenon believed to occur in quantum dots in the quantum Hall regime when the filling fraction is ν<~1. Our approach involves the examination of large dots (<= 40 electrons) using a partial diagonalization technique in which the occupancies of the deep interior orbitals are frozen. To interpret the results of this calculation, we evaluate the overlap between the diagonalized ground state and a set of trial wave functions which we call projected necklace (PN) states. A PN state is simply the angular momentum projection of a maximum density droplet surrounded by a ring of localized electrons. Our calculations reveal that PN states have up to 99% overlap with the diagonalized ground states, and are lower in energy than the states identified in Chamon and Wen's study of the edge reconstruction.

  5. Tunnel junction of helical edge states: Determining and controlling spin-preserving and spin-flipping processes through transconductance

    NASA Astrophysics Data System (ADS)

    Sternativo, Pietro; Dolcini, Fabrizio

    2014-01-01

    When a constriction is realized in a 2D quantum spin Hall system, electron tunneling between helical edge states occurs via two types of channels allowed by time-reversal symmetry, namely spin-preserving (p) and spin-flipping (f) tunneling processes. Determining and controlling the effects of these two channels is crucial to the application of helical edge states in spintronics. We show that, despite that the Hamiltonian terms describing these two processes do not commute, the scattering matrix entries of the related 4-terminal setup always factorize into products of p-term and f-term contributions. Such factorization provides an operative way to determine the transmission coefficients Tp and Tf related to each of the two processes, via transconductance measurements. Furthermore, these transmission coefficients are also found to be controlled independently by a suitable combination of two gate voltages applied across the junction. This result holds for an arbitrary profile of the tunneling amplitudes, including disorder in the tunnel region, enabling us to discuss the effect of the finite length of the tunnel junction, and the space modulation of both magnitude and phase of the tunneling amplitudes.

  6. Topological phase in a two-dimensional metallic heavy-fermion system

    NASA Astrophysics Data System (ADS)

    Yoshida, Tsuneya; Peters, Robert; Fujimoto, Satoshi; Kawakami, Norio

    2013-04-01

    We report on a topological insulating state in a heavy-fermion system away from half filling, which is hidden within a ferromagnetic metallic phase. In this phase, the cooperation of the RKKY interaction and the Kondo effect, together with the spin-orbit coupling, induces a spin-selective gap, bringing about topologically nontrivial properties. This topological phase is robust against a change in the chemical potential in a much wider range than the gap size. We analyze these remarkable properties by using dynamical mean field theory and the numerical renormalization group. Its topological properties support a gapless chiral edge mode, which exhibits a non-Tomonaga-Luttinger liquid behavior due to the coupling with bulk ferromagnetic spin fluctuations. We also propose that the effects of the spin fluctuations on the edge mode can be detected via the NMR relaxation time measurement.

  7. Identification of the iron oxidation state and coordination geometry in iron oxide- and zeolite-based catalysts using pre-edge XAS analysis.

    PubMed

    Boubnov, Alexey; Lichtenberg, Henning; Mangold, Stefan; Grunwaldt, Jan Dierk

    2015-03-01

    Analysis of the oxidation state and coordination geometry using pre-edge analysis is attractive for heterogeneous catalysis and materials science, especially for in situ and time-resolved studies or highly diluted systems. In the present study, focus is laid on iron-based catalysts. First a systematic investigation of the pre-edge region of the Fe K-edge using staurolite, FePO4, FeO and α-Fe2O3 as reference compounds for tetrahedral Fe(2+), tetrahedral Fe(3+), octahedral Fe(2+) and octahedral Fe(3+), respectively, is reported. In particular, high-resolution and conventional X-ray absorption spectra are compared, considering that in heterogeneous catalysis and material science a compromise between high-quality spectroscopic data acquisition and simultaneous analysis of functional properties is required. Results, which were obtained from reference spectra acquired with different resolution and quality, demonstrate that this analysis is also applicable to conventionally recorded pre-edge data. For this purpose, subtraction of the edge onset is preferentially carried out using an arctangent and a first-degree polynomial, independent of the resolution and quality of the data. For both standard and high-resolution data, multiplet analysis of pre-edge features has limitations due to weak transitions that cannot be identified. On the other hand, an arbitrary empirical peak fitting assists the analysis in that non-local transitions can be isolated. The analysis of the oxidation state and coordination geometry of the Fe sites using a variogram-based method is shown to be effective for standard-resolution data and leads to the same results as for high-resolution spectra. This method, validated by analysing spectra of reference compounds and their well defined mixtures, is finally applied to track structural changes in a 1% Fe/Al2O3 and a 0.5% Fe/BEA zeolite catalyst during reduction in 5% H2/He. The results, hardly accessible by other techniques, show that Fe(3+) is

  8. Dynamics of edge currents in a linearly quenched Haldane model

    NASA Astrophysics Data System (ADS)

    Mardanya, Sougata; Bhattacharya, Utso; Agarwal, Amit; Dutta, Amit

    2018-03-01

    In a finite-time quantum quench of the Haldane model, the Chern number determining the topology of the bulk remains invariant, as long as the dynamics is unitary. Nonetheless, the corresponding boundary attribute, the edge current, displays interesting dynamics. For the case of sudden and adiabatic quenches the postquench edge current is solely determined by the initial and the final Hamiltonians, respectively. However for a finite-time (τ ) linear quench in a Haldane nanoribbon, we show that the evolution of the edge current from the sudden to the adiabatic limit is not monotonic in τ and has a turning point at a characteristic time scale τ =τ0 . For small τ , the excited states lead to a huge unidirectional surge in the edge current of both edges. On the other hand, in the limit of large τ , the edge current saturates to its expected equilibrium ground-state value. This competition between the two limits lead to the observed nonmonotonic behavior. Interestingly, τ0 seems to depend only on the Semenoff mass and the Haldane flux. A similar dynamics for the edge current is also expected in other systems with topological phases.

  9. Scanned gate microscopy of inter-edge channel scattering in the quantum Hall regime

    NASA Astrophysics Data System (ADS)

    Woodside, Michael T.; Vale, Chris; McEuen, Paul L.; Kadow, C.; Maranowski, K. D.; Gossard, A. C.

    2000-03-01

    Novel scanned probe techniques have recently been used to study in detail the microscopic properties of 2D electron gases in the quantum Hall regime [1]. We report local measurements of the scattering between edge states in a quantum Hall conductor with non-equilibrium edge state populations. Using an atomic force microscope (AFM) tip as a local gate to perturb the edge states, we find that the scattering is dominated by individual, microscopic scattering sites, which we directly image and characterise. The dependence of the scattering on the AFM tip voltage reveals that it involves tunneling both through quasi-bound impurity states and through disorder-induced weak links between the edge states. [1] S. H. Tessmer et al., Nature 392, 51 (1998); K. L. McCormick et al., Phys. Rev. B 59, 4654 (1999); A. Yacoby et al., Solid State Comm. 111, 1 (1999).

  10. Intrinsic quantum anomalous hall effect in a two-dimensional anilato-based lattice.

    PubMed

    Ni, Xiaojuan; Jiang, Wei; Huang, Huaqing; Jin, Kyung-Hwan; Liu, Feng

    2018-06-13

    Using first-principles calculations, we predict an intrinsic quantum anomalous Hall (QAH) state in a monolayer anilato-based metal-organic framework M2(C6O4X2)3 (M = Mn and Tc, X = F, Cl, Br and I). The spin-orbit coupling of M d orbitals opens a nontrivial band gap up to 18 meV at the Dirac point. The electron counting rule is used to explain the intrinsic nature of the QAH state. The calculated nonzero Chern number, gapless edge states and quantized Hall conductance all confirm the nontrivial topological properties in the anilato-based lattice. Our findings provide an organic materials platform for the realization of the QAH effect without the need for magnetic and charge doping, which are highly desirable for the development of low-energy-consumption spintronic devices.

  11. Effects of edge magnetism on the Kohn anomalies of zigzag graphene nanoribbons.

    PubMed

    Culchac, F J; Capaz, Rodrigo B

    2016-02-12

    The effects of edge magnetism on the Kohn anomaly (KA) of the G-band phonons of zigzag graphene nanoribbons (ZGNRs) are studied using a combination of the tight-binding and mean-field Hubbard models. We show that the opening of an energy gap, induced by magnetic ordering, significantly changes the KA effects, particularly for narrow ribbons in which the gap is larger than the phonon energy. Therefore, the G-band phonon frequency and lifetime are altered for a magnetically-ordered edge state with respect to an unpolarized edge state. The effects of temperature, ZGNR width, doping and transverse electric fields are systematically investigated. We propose using this effect to probe the magnetic order of edge states in graphene nanoribbons using Raman spectroscopy.

  12. Decay and the double-decay properties of edge bands of phosphorene ribbons

    NASA Astrophysics Data System (ADS)

    Yang, M.; Duan, H.-J.; Wang, R.-Q.

    2015-11-01

    Phosphorene (a monolayer of black phosphorus) recently spurred much attention due to its potential for application. We notice there are two types of zigzag edge and two types of armchair edge for phosphorene lattice. We study the winding number of various types of edge of phosphorene ribbons and conclude that, besides on the typical zigzag edge, the flat zero-energy edge band can be found in the ribbon of another nontypical armchair edge. The localization of these edge bands is investigated analytically. We find every single edge state of the atypical armchair edge decays to the bulk at two different decay rates.

  13. Conduction Band-Edge Non-Parabolicity Effects on Impurity States in (In,Ga)N/GaN Cylindrical QWWs

    NASA Astrophysics Data System (ADS)

    Haddou El, Ghazi; Anouar, Jorio

    2014-02-01

    In this paper, the conduction band-edge non-parabolicity (NP) and the circular cross-section radius effects on hydrogenic shallow-donor impurity ground-state binding energy in zinc-blende (ZB) InGaN/GaN cylindrical QWWs are reported. The finite potential barrier between (In,Ga)N well and GaN environment is considered. Two models of the conduction band-edge non-parabolicity are taking into account. The variational approach is used within the framework of single band effective-mass approximation with one-parametric 1S-hydrogenic trial wave-function. It is found that NP effect is more pronounced in the wire of radius equal to effective Bohr radius than in large and narrow wires. Moreover, the binding energy peak shifts to narrow wire under NP effect. A good agreement is shown compared to the findings results.

  14. Magnetoconductance signatures of chiral domain-wall bound states in magnetic topological insulators

    NASA Astrophysics Data System (ADS)

    Tiwari, Kunal L.; Coish, W. A.; Pereg-Barnea, T.

    2017-12-01

    Recent magnetoconductance measurements performed on magnetic topological insulator candidates have revealed butterfly-shaped hysteresis. This hysteresis has been attributed to the formation of gapless chiral domain-wall bound states during a magnetic-field sweep. We treat this phenomenon theoretically, providing a link between microscopic magnetization dynamics and butterfly hysteresis in magnetoconductance. Further, we illustrate how a spatially resolved conductance measurement can probe the most striking feature of the domain-wall bound states: their chirality. This work establishes a regime where a definitive link between butterfly hysteresis in longitudinal magneto-conductance and domain-wall bound states can be made. This analysis provides an important tool for the identification of magnetic topological insulators.

  15. Analysis of X-ray adsorption edges: L 2,3 edge of FeCl 4 -

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bagus, Paul S.; Nelin, Connie J.; Ilton, Eugene S.

    We describe a detailed analysis of the features of the X-ray adsorption spectra at the Fe L 2,3 edge of FeCl 4. The objective of this analysis is to explain the origin of the complex features in relation to properties of the wavefunctions, especially for the excited states. These properties include spin-orbit and ligand field splittings where a novel aspect of the dipole selection rules is applied to understand the influence of these splittings on the spectra. We also explicitly take account of the intermediate coupling of the open core and valence shell electrons. Our analysis also includes comparison ofmore » theory and experiment for the Fe L 2,3 edge and comparison of theoretical predictions for the Fe 3+ cation and FeCl 4-. The electronic structure is obtained from theoretical wavefunctions for the ground and excited states.« less

  16. Are quantum spin Hall edge modes more resilient to disorder, sample geometry and inelastic scattering than quantum Hall edge modes?

    PubMed

    Mani, Arjun; Benjamin, Colin

    2016-04-13

    On the surface of 2D topological insulators, 1D quantum spin Hall (QSH) edge modes occur with Dirac-like dispersion. Unlike quantum Hall (QH) edge modes, which occur at high magnetic fields in 2D electron gases, the occurrence of QSH edge modes is due to spin-orbit scattering in the bulk of the material. These QSH edge modes are spin-dependent, and chiral-opposite spins move in opposing directions. Electronic spin has a larger decoherence and relaxation time than charge. In view of this, it is expected that QSH edge modes will be more robust to disorder and inelastic scattering than QH edge modes, which are charge-dependent and spin-unpolarized. However, we notice no such advantage accrues in QSH edge modes when subjected to the same degree of contact disorder and/or inelastic scattering in similar setups as QH edge modes. In fact we observe that QSH edge modes are more susceptible to inelastic scattering and contact disorder than QH edge modes. Furthermore, while a single disordered contact has no effect on QH edge modes, it leads to a finite charge Hall current in the case of QSH edge modes, and thus a vanishing of the pure QSH effect. For more than a single disordered contact while QH states continue to remain immune to disorder, QSH edge modes become more susceptible--the Hall resistance for the QSH effect changes sign with increasing disorder. In the case of many disordered contacts with inelastic scattering included, while quantization of Hall edge modes holds, for QSH edge modes a finite charge Hall current still flows. For QSH edge modes in the inelastic scattering regime we distinguish between two cases: with spin-flip and without spin-flip scattering. Finally, while asymmetry in sample geometry can have a deleterious effect in the QSH case, it has no impact in the QH case.

  17. First-Principles Fe L 2,3 -Edge and O K-Edge XANES and XMCD Spectra for Iron Oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sassi, Michel; Pearce, Carolyn I.; Bagus, Paul S.

    X-ray absorption near-edge structure (XANES) and X-ray magnetic circular dichroism (XMCD) spectroscopies are tools in widespread use for providing detailed local atomic structure, oxidation state, and magnetic structure information for materials and organometallic complexes. The analysis of these spectra for transition-metal L-edges is routinely performed on the basis of ligand-field multiplet theory because one- and two-particle mean-field ab initio methods typically cannot describe the multiplet structure. Here we show that multireference configuration interaction (MRCI) calculations can satisfactorily reproduce measured XANES spectra for a range of complex iron oxide materials including hematite and magnetite. MRCI Fe L2,3-edge XANES and XMCD spectramore » of Fe(II)O6, Fe(III)O6, and Fe(III)O4 in magnetite are found to be in very good qualitative agreement with experiment and multiplet calculations. Point-charge embedding and small distortions of the first-shell oxygen ligands have only small effects. Oxygen K-edge XANES/XMCD spectra for magnetite investigated by a real-space Green’s function approach complete the very good qualitative agreement with experiment. Material-specific differences in local coordination and site symmetry are well reproduced, making the approach useful for assigning spectral features to specific oxidation states and coordination environments.« less

  18. Edge-Based Image Compression with Homogeneous Diffusion

    NASA Astrophysics Data System (ADS)

    Mainberger, Markus; Weickert, Joachim

    It is well-known that edges contain semantically important image information. In this paper we present a lossy compression method for cartoon-like images that exploits information at image edges. These edges are extracted with the Marr-Hildreth operator followed by hysteresis thresholding. Their locations are stored in a lossless way using JBIG. Moreover, we encode the grey or colour values at both sides of each edge by applying quantisation, subsampling and PAQ coding. In the decoding step, information outside these encoded data is recovered by solving the Laplace equation, i.e. we inpaint with the steady state of a homogeneous diffusion process. Our experiments show that the suggested method outperforms the widely-used JPEG standard and can even beat the advanced JPEG2000 standard for cartoon-like images.

  19. The End-to-end Demonstrator for improved decision making in the water sector in Europe (EDgE)

    NASA Astrophysics Data System (ADS)

    Wood, Eric; Wanders, Niko; Pan, Ming; Sheffield, Justin; Samaniego, Luis; Thober, Stephan; Kumar, Rohinni; Prudhomme, Christel; Houghton-Carr, Helen

    2017-04-01

    High-resolution simulations of water resources from hydrological models are vital to supporting important climate services. Apart from a high level of detail, both spatially and temporally, it is important to provide simulations that consistently cover a range of timescales, from historical reanalysis to seasonal forecast and future projections. In the new EDgE project commissioned by the ECMWF (C3S) we try to fulfill these requirements. EDgE is a proof-of-concept project which combines climate data and state-of-the-art hydrological modelling to demonstrate a water-oriented information system implemented through a web application. EDgE is working with key European stakeholders representative of private and public sectors to jointly develop and tailor approaches and techniques. With these tools, stakeholders are assisted in using improved climate information in decision-making, and supported in the development of climate change adaptation and mitigation policies. Here, we present the first results of the EDgE modelling chain, which is divided into three main processes: 1) pre-processing and downscaling; 2) hydrological modelling; 3) post-processing. Consistent downscaling and bias corrections for historical simulations, seasonal forecasts and climate projections ensure that the results across scales are robust. The daily temporal resolution and 5km spatial resolution ensure locally relevant simulations. With the use of four hydrological models (PCR-GLOBWB, VIC, mHM, Noah-MP), uncertainty between models is properly addressed, while consistency is guaranteed by using identical input data for static land surface parameterizations. The forecast results are communicated to stakeholders via Sectoral Climate Impact Indicators (SCIIs) that have been created in collaboration with the end-user community of the EDgE project. The final product of this project is composed of 15 years of seasonal forecast and 10 climate change projections, all combined with four hydrological

  20. Mitigating pavement edge drop off.

    DOT National Transportation Integrated Search

    2015-12-01

    The objective of this research was to investigate and document practices currently being used by the : Nebraska Department of Roads (NDOR) districts and other State DOTs to mitigate pavement edge : drop off. The NDOR has developed (or borrowed) and i...

  1. Evidence of a Shockley-Read-Hall Defect State Independent of Band-Edge Energy in InAs / In ( As , Sb ) Type-II Superlattices

    DOE PAGES

    Aytac, Y.; Olson, B. V.; Kim, J. K.; ...

    2016-06-01

    A set of seven InAs/InAsSb type-II superlattices (T2SLs) were designed to have speci c bandgap energies between 290 meV (4.3 m) and 135 meV (9.2 m) in order to study the e ects of the T2SL bandgap energy on the minority carrier lifetime. A temperature dependent optical pump-probe technique is used to measure the carrier lifetimes, and the e ect of a mid-gap defect level on the carrier recombination dynamics is reported. The Shockley-Read-Hall (SRH) defect state is found to be at energy of approximately -250 12 meV relative to the valence band edge of bulk GaSb for the entiremore » set of T2SL structures, even though the T2SL valence band edge shifts by 155 meV on the same scale. These results indicate that the SRH defect state in InAs/InAsSb T2SLs is singular and is nearly independent of the exact position of the T2SL bandgap or band edge energies. They also suggest the possibility of engineering the T2SL structure such that the SRH state is removed completely from the bandgap, a result that should signi cantly increase the minority carrier lifetime.« less

  2. Evidence of a Shockley-Read-Hall Defect State Independent of Band-Edge Energy in InAs / In ( As , Sb ) Type-II Superlattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aytac, Y.; Olson, B. V.; Kim, J. K.

    A set of seven InAs/InAsSb type-II superlattices (T2SLs) were designed to have speci c bandgap energies between 290 meV (4.3 m) and 135 meV (9.2 m) in order to study the e ects of the T2SL bandgap energy on the minority carrier lifetime. A temperature dependent optical pump-probe technique is used to measure the carrier lifetimes, and the e ect of a mid-gap defect level on the carrier recombination dynamics is reported. The Shockley-Read-Hall (SRH) defect state is found to be at energy of approximately -250 12 meV relative to the valence band edge of bulk GaSb for the entiremore » set of T2SL structures, even though the T2SL valence band edge shifts by 155 meV on the same scale. These results indicate that the SRH defect state in InAs/InAsSb T2SLs is singular and is nearly independent of the exact position of the T2SL bandgap or band edge energies. They also suggest the possibility of engineering the T2SL structure such that the SRH state is removed completely from the bandgap, a result that should signi cantly increase the minority carrier lifetime.« less

  3. Spin Mode Switching at the Edge of a Quantum Hall System.

    PubMed

    Khanna, Udit; Murthy, Ganpathy; Rao, Sumathi; Gefen, Yuval

    2017-11-03

    Quantum Hall states can be characterized by their chiral edge modes. Upon softening the edge potential, the edge has long been known to undergo spontaneous reconstruction driven by charging effects. In this Letter we demonstrate a qualitatively distinct phenomenon driven by exchange effects, in which the ordering of the edge modes at ν=3 switches abruptly as the edge potential is made softer, while the ordering in the bulk remains intact. We demonstrate that this phenomenon is robust, and has many verifiable experimental signatures in transport.

  4. Ground-state and Thermodynamic Properties of an S = 1 Kitaev Model

    NASA Astrophysics Data System (ADS)

    Koga, Akihisa; Tomishige, Hiroyuki; Nasu, Joji

    2018-06-01

    We study the ground-state and thermodynamic properties of an S = 1 Kitaev model. We first clarify the existence of global parity symmetry in addition to the local symmetry on each plaquette, which enables us to perform large-scale calculations on up to 24 sites. It is found that the ground state should be singlet, and its energy is estimated as E/N ˜ -0.65J, where J is the Kitaev exchange coupling. We find that the lowest excited state belongs to the same subspace as the ground state, and that the gap decreases monotonically with increasing system size, which suggests that the ground state of the S = 1 Kitaev model is gapless. Using the thermal pure quantum states, we clarify the finite temperature properties characteristic of the Kitaev models with S ≤ 2.

  5. Chemistry of one-dimensional metallic edge states in MoS2 nanoclusters

    NASA Astrophysics Data System (ADS)

    Lauritsen, J. V.; Nyberg, M.; Vang, R. T.; Bollinger, M. V.; Clausen, B. S.; Topsøe, H.; Jacobsen, K. W.; Lægsgaard, E.; Nørskov, J. K.; Besenbacher, F.

    2003-03-01

    Nanostructures often have unusual properties that are linked to their small size. We report here on extraordinary chemical properties associated with the edges of two-dimensional MoS2 nanoclusters, which we show to be able to hydrogenate and break up thiophene (C4H4S) molecules. By combining atomically resolved scanning tunnelling microscopy images of single-layer MoS2 nanoclusters and density functional theory calculations of the reaction energetics, we show that the chemistry of the MoS2 nanoclusters can be associated with one-dimensional metallic states located at the perimeter of the otherwise insulating nanoclusters. The new chemistry identified in this work has significant implications for an important catalytic reaction, since MoS2 nanoclusters constitute the basis of hydrotreating catalysts used to clean up sulfur-containing molecules from oil products in the hydrodesulfurization process.

  6. Topological crystalline materials: General formulation, module structure, and wallpaper groups

    NASA Astrophysics Data System (ADS)

    Shiozaki, Ken; Sato, Masatoshi; Gomi, Kiyonori

    2017-06-01

    We formulate topological crystalline materials on the basis of the twisted equivariant K theory. Basic ideas of the twisted equivariant K theory are explained with application to topological phases protected by crystalline symmetries in mind, and systematic methods of topological classification for crystalline materials are presented. Our formulation is applicable to bulk gapful topological crystalline insulators/superconductors and their gapless boundary and defect states, as well as bulk gapless topological materials such as Weyl and Dirac semimetals, and nodal superconductors. As an application of our formulation, we present a complete classification of topological crystalline surface states, in the absence of time-reversal invariance. The classification works for gapless surface states of three-dimensional insulators, as well as full gapped two-dimensional insulators. Such surface states and two-dimensional insulators are classified in a unified way by 17 wallpaper groups, together with the presence or the absence of (sublattice) chiral symmetry. We identify the topological numbers and their representations under the wallpaper group operation. We also exemplify the usefulness of our formulation in the classification of bulk gapless phases. We present a class of Weyl semimetals and Weyl superconductors that are topologically protected by inversion symmetry.

  7. Exploring nonlinear topological states of matter with exciton-polaritons: Edge solitons in kagome lattice.

    PubMed

    Gulevich, D R; Yudin, D; Skryabin, D V; Iorsh, I V; Shelykh, I A

    2017-05-11

    Matter in nontrivial topological phase possesses unique properties, such as support of unidirectional edge modes on its interface. It is the existence of such modes which is responsible for the wonderful properties of a topological insulator - material which is insulating in the bulk but conducting on its surface, along with many of its recently proposed photonic and polaritonic analogues. We show that exciton-polariton fluid in a nontrivial topological phase in kagome lattice, supports nonlinear excitations in the form of solitons built up from wavepackets of topological edge modes - topological edge solitons. Our theoretical and numerical results indicate the appearance of bright, dark and grey solitons dwelling in the vicinity of the boundary of a lattice strip. In a parabolic region of the dispersion the solitons can be described by envelope functions satisfying the nonlinear Schrödinger equation. Upon collision, multiple topological edge solitons emerge undistorted, which proves them to be true solitons as opposed to solitary waves for which such requirement is waived. Importantly, kagome lattice supports topological edge mode with zero group velocity unlike other types of truncated lattices. This gives a finer control over soliton velocity which can take both positive and negative values depending on the choice of forming it topological edge modes.

  8. Topological Edge Modes in Active Mikado Networks

    NASA Astrophysics Data System (ADS)

    Zhou, Di; Zhang, Leyou; Mao, Xiaoming

    Mechanical properties of disordered fiber networks are not only important in understanding a broad range of natural (such as the cytoskeleton and the extracellular matrix) and manmade materials (such as aerogels and porous media) but also exhibit interesting and rich physics. In this talk, we discuss how topological floppy edge modes can emerge from these fiber networks as a result of active driving. It is known that straight fibers in a network carries a state of self-stress and bears a bulk floppy mode. We find that, interestingly, by driving the network with a tiny perturbation, the bulk modes evolve into edge modes. We introduce a new transfer matrix formulation that can be applied to this strongly disordered system, to characterize the topological edge modes. We also discuss possible implications of these edge modes in biological processes. NSF-DMR-1609051.

  9. Assignment of Pre-edge Features in the Ru K-edge X-ray Absorption Spectra of Organometallic Ruthenium Complexes

    PubMed Central

    Getty, Kendra; Delgado-Jaime, Mario Ulises

    2010-01-01

    The nature of the lowest energy bound-state transition in the Ru K-edge X-ray Absorption Spectra for a series of Grubbs-type ruthenium complexes was investigated. The pre-edge feature was unambiguously assigned as resulting from formally electric dipole forbidden Ru 4d←1s transitions. The intensities of these transitions are extremely sensitive to the ligand environment and the symmetry of the metal centre. In centrosymmetric complexes the pre-edge is very weak since it is limited by the weak electric quadrupole intensity mechanism. By contrast, upon breaking centrosymmetry, Ru 5p-4d mixing allows for introduction of electric dipole allowed character resulting in a dramatic increase in the pre-edge intensity. The information content of this approach is explored as it relates to complexes of importance in olefin metathesis and its relevance as a tool for the study of reactive intermediates. PMID:20151030

  10. Cutting edge technology to enhance nursing classroom instruction at Coppin State University.

    PubMed

    Black, Crystal Day; Watties-Daniels, A Denyce

    2006-01-01

    Educational technologies have changed the paradigm of the teacher-student relationship in nursing education. Nursing students expect to use and to learn from cutting edge technology during their academic careers. Varied technology, from specified software programs (Tegrity and Blackboard) to the use of the Internet as a research medium, can enhance student learning. The authors provide an overview of current cutting edge technologies in nursing classroom instruction and its impact on future nursing practice.

  11. Mn K-Edge XANES and Kβ XES Studies of Two Mn–Oxo Binuclear Complexes: Investigation of Three Different Oxidation States Relevant to the Oxygen-Evolving Complex of Photosystem II

    PubMed Central

    Visser, Hendrik; Anxolabéhère-Mallart, Elodie; Bergmann, Uwe; Glatzel, Pieter; Robblee, John H.; Cramer, Stephen P.; Girerd, Jean-Jacques; Sauer, Kenneth; Klein, Melvin P.; Yachandra, Vittal K.

    2014-01-01

    Two structurally homologous Mn compounds in different oxidation states were studied to investigate the relative influence of oxidation state and ligand environment on Mn K-edge X-ray absorption near-edge structure (XANES) and Mn Kβ X-ray emission spectroscopy (Kβ XES). The two manganese compounds are the di-μ-oxo compound [L′2MnIIIO2MnIVL′2](ClO4)3, where L′ is 1,10-phenanthroline (Cooper, S. R.; Calvin, M. J. Am. Chem. Soc. 1977, 99, 6623–6630) and the linear mono-μ-oxo compound [LMnIIIOMnIIIL](ClO4)2, where L− is the monoanionic N,N-bis(2-pyridylmethyl)-N′-salicylidene-1,2-diaminoethane ligand (Horner, O.; Anxolabéhère-Mallart, E.; Charlot, M. F.; Tchertanov, L.; Guilhem, J.; Mattioli, T. A.; Boussac, A.; Girerd, J.-J. Inorg. Chem. 1999, 38, 1222–1232). Preparative bulk electrolysis in acetonitrile was used to obtain higher oxidation states of the compounds: the MnIVMnIV species for the di-μ-oxo compound and the MnIIIMnIV and MnIVMnIV species for the mono-μ-oxo compound. IR, UV/vis, EPR, and EXAFS spectra were used to determine the purity and integrity of the various sample solutions. The Mn K-edge XANES spectra shift to higher energy upon oxidation when the ligand environment remains similar. However, shifts in energy are also observed when only the ligand environment is altered. This is achieved by comparing the di-μ-oxo and linear mono-μ-oxo Mn–Mn moieties in equivalent oxidation states, which represent major structural changes. The magnitude of an energy shift due to major changes in ligand environment can be as large as that of an oxidation-state change. Therefore, care must be exercised when correlating the Mn K-edge energies to manganese oxidation states without taking into account the nature of the ligand environment and the overall structure of the compound. In contrast to Mn K-edge XANES, Kβ XES spectra show less dependence on ligand environment. The Kβ1,3 peak energies are comparable for the di-μ-oxo and mono

  12. Swords with Blunt Edges

    ERIC Educational Resources Information Center

    Popham, W. James

    2004-01-01

    Many U.S. educators now wonder whether they're teachers or targets. This mentality stems from the specter of their school being sanctioned for failing the state accountability tests mandated under No Child Left Behind (NCLB). According to this author, most of those tests are like blunt-edged swords: They function badly in two directions. While…

  13. X-ray Absorption Spectroscopy Systematics at the Tungsten L-Edge

    PubMed Central

    2015-01-01

    A series of mononuclear six-coordinate tungsten compounds spanning formal oxidation states from 0 to +VI, largely in a ligand environment of inert chloride and/or phosphine, was interrogated by tungsten L-edge X-ray absorption spectroscopy. The L-edge spectra of this compound set, comprised of [W0(PMe3)6], [WIICl2(PMePh2)4], [WIIICl2(dppe)2][PF6] (dppe = 1,2-bis(diphenylphosphino)ethane), [WIVCl4(PMePh2)2], [WV(NPh)Cl3(PMe3)2], and [WVICl6], correlate with formal oxidation state and have usefulness as references for the interpretation of the L-edge spectra of tungsten compounds with redox-active ligands and ambiguous electronic structure descriptions. The utility of these spectra arises from the combined correlation of the estimated branching ratio of the L3,2-edges and the L1 rising-edge energy with metal Zeff, thereby permitting an assessment of effective metal oxidation state. An application of these reference spectra is illustrated by their use as backdrop for the L-edge X-ray absorption spectra of [WIV(mdt)2(CO)2] and [WIV(mdt)2(CN)2]2– (mdt2– = 1,2-dimethylethene-1,2-dithiolate), which shows that both compounds are effectively WIV species even though the mdt ligands exist at different redox levels in the two compounds. Use of metal L-edge XAS to assess a compound of uncertain formulation requires: (1) Placement of that data within the context of spectra offered by unambiguous calibrant compounds, preferably with the same coordination number and similar metal ligand distances. Such spectra assist in defining upper and/or lower limits for metal Zeff in the species of interest. (2) Evaluation of that data in conjunction with information from other physical methods, especially ligand K-edge XAS. (3) Increased care in interpretation if strong π-acceptor ligands, particularly CO, or π-donor ligands are present. The electron-withdrawing/donating nature of these ligand types, combined with relatively short metal–ligand distances, exaggerate the difference

  14. Dynamical generation of Floquet Majorana flat bands in s-wave superconductors

    NASA Astrophysics Data System (ADS)

    Poudel, A.; Ortiz, G.; Viola, L.

    2015-04-01

    We present quantum control techniques to engineer flat bands of symmetry-protected Majorana edge modes in s-wave superconductors. Specifically, we show how periodic control may be employed for designing time-independent effective Hamiltonians, which support Floquet Majorana flat bands, starting from equilibrium conditions that are either topologically trivial or only support a Majorana pair per edge. In the first approach, a suitable modulation of the chemical potential simultaneously induces Majorana flat bands and dynamically activates a pre-existing chiral symmetry which is responsible for their protection. In the second approach, the application of effective parity kicks dynamically generates a desired chiral symmetry by suppressing chirality-breaking terms in the static Hamiltonian. Our results demonstrate how the use of time-dependent control enlarges the range of possibilities for realizing gapless topological superconductivity, potentially enabling access to topological states of matter that have no known equilibrium counterpart.

  15. Edge detection and localization with edge pattern analysis and inflection characterization

    NASA Astrophysics Data System (ADS)

    Jiang, Bo

    2012-05-01

    In general edges are considered to be abrupt changes or discontinuities in two dimensional image signal intensity distributions. The accuracy of front-end edge detection methods in image processing impacts the eventual success of higher level pattern analysis downstream. To generalize edge detectors designed from a simple ideal step function model to real distortions in natural images, research on one dimensional edge pattern analysis to improve the accuracy of edge detection and localization proposes an edge detection algorithm, which is composed by three basic edge patterns, such as ramp, impulse, and step. After mathematical analysis, general rules for edge representation based upon the classification of edge types into three categories-ramp, impulse, and step (RIS) are developed to reduce detection and localization errors, especially reducing "double edge" effect that is one important drawback to the derivative method. But, when applying one dimensional edge pattern in two dimensional image processing, a new issue is naturally raised that the edge detector should correct marking inflections or junctions of edges. Research on human visual perception of objects and information theory pointed out that a pattern lexicon of "inflection micro-patterns" has larger information than a straight line. Also, research on scene perception gave an idea that contours have larger information are more important factor to determine the success of scene categorization. Therefore, inflections or junctions are extremely useful features, whose accurate description and reconstruction are significant in solving correspondence problems in computer vision. Therefore, aside from adoption of edge pattern analysis, inflection or junction characterization is also utilized to extend traditional derivative edge detection algorithm. Experiments were conducted to test my propositions about edge detection and localization accuracy improvements. The results support the idea that these edge

  16. Edge-Induced Shear Banding in Entangled Polymeric Fluids.

    PubMed

    Hemingway, Ewan J; Fielding, Suzanne M

    2018-03-30

    Despite decades of research, the question of whether solutions and melts of highly entangled polymers exhibit shear banding as their steady state response to a steadily imposed shear flow remains controversial. From a theoretical viewpoint, an important unanswered question is whether the underlying constitutive curve of shear stress σ as a function of shear rate γ[over ˙] (for states of homogeneous shear) is monotonic, or has a region of negative slope, dσ/dγ[over ˙]<0, which would trigger banding. Attempts to settle the question experimentally via velocimetry of the flow field inside the fluid are often confounded by an instability of the free surface where the sample meets the outside air, known as "edge fracture." Here we show by numerical simulation that in fact even only very modest edge disturbances-which are the precursor of full edge fracture but might well, in themselves, go unnoticed experimentally-can cause strong secondary flows in the form of shear bands that invade deep into the fluid bulk. Crucially, this is true even when the underlying constitutive curve is monotonically increasing, precluding true bulk shear banding in the absence of edge effects.

  17. Edge-Induced Shear Banding in Entangled Polymeric Fluids

    NASA Astrophysics Data System (ADS)

    Hemingway, Ewan J.; Fielding, Suzanne M.

    2018-03-01

    Despite decades of research, the question of whether solutions and melts of highly entangled polymers exhibit shear banding as their steady state response to a steadily imposed shear flow remains controversial. From a theoretical viewpoint, an important unanswered question is whether the underlying constitutive curve of shear stress σ as a function of shear rate γ ˙ (for states of homogeneous shear) is monotonic, or has a region of negative slope, d σ /d γ ˙ <0 , which would trigger banding. Attempts to settle the question experimentally via velocimetry of the flow field inside the fluid are often confounded by an instability of the free surface where the sample meets the outside air, known as "edge fracture." Here we show by numerical simulation that in fact even only very modest edge disturbances—which are the precursor of full edge fracture but might well, in themselves, go unnoticed experimentally—can cause strong secondary flows in the form of shear bands that invade deep into the fluid bulk. Crucially, this is true even when the underlying constitutive curve is monotonically increasing, precluding true bulk shear banding in the absence of edge effects.

  18. Doppler lidar wind measurement with the edge technique

    NASA Technical Reports Server (NTRS)

    Korb, C. Laurence; Gentry, Bruce M.

    1992-01-01

    The edge technique is a new and powerful method for measuring small frequency shifts. Range resolved lidar measurements of winds can be made with high accuracy and high vertical resolution using the edge technique to measure the Doppler shift of an atmospheric backscattered signal from a pulsed laser. The edge technique can be used at near-infrared or visible wavelengths using well developed solid state lasers and detectors with various edge filters. In the edge technique, the laser frequency is located on the steep slope of the spectral response function of a high resolution optical filter. Due to the steep slope of the edge, very small frequency shifts cause large changes in measured signal. The frequency of the outgoing laser pulse is determined by measuring its location on the edge of the filter. This is accomplished by sending a small portion of the beam to the edge detection setup where the incoming light is split into two channels - an edge filter and an energy monitor channel. The energy monitor signal is used to normalize the edge filter signal for magnitude. The laser return backscattered from the atmosphere is collected by a telescope and directed through the edge detection setup to determine its frequency (location on the edge) in a similar manner for each range element. The Doppler shift, and thus the wind, is determined from a differential measurement of the frequency of the outgoing laser pulse and the frequency of the laser return backscattered from the atmosphere. We have conducted simulations of the performance of an edge lidar system using an injection seeded pulsed Nd:YAG laser at 1.06 microns. The central fringe of a Fabry-Perot etalon is used as a high resolution edge filter to measure the shift of the aerosol return.

  19. Gapped boundary phases of topological insulators via weak coupling

    DOE PAGES

    Seiberg, Nathan; Witten, Edward

    2016-11-04

    The standard boundary state of a topological insulator in 3 + 1 dimensions has gapless charged fermions. We present model systems that reproduce this standard gapless boundary state in one phase, but also have gapped phases with topological order. Our models are weakly coupled and all the dynamics is explicit. We rederive some known boundary states of topological insulators and construct new ones. Consistency with the standard spin/charge relation of condensed matter physics places a nontrivial constraint on models

  20. STM/STS investigation of edge structure in epitaxial graphene

    NASA Astrophysics Data System (ADS)

    Ridene, M.; Girard, J. C.; Travers, L.; David, C.; Ouerghi, A.

    2012-08-01

    In this paper, we have used low temperature scanning tunneling microscopy and spectroscopy (LT-STM/STS) to study zigzag or armchair edges of epitaxial graphene on 6H-SiC (0001). The monolayer carbon structures exhibit occasionally one-dimensional ridge (1D) in close vicinity to step edge. This ridge exhibits different edges orientations in armchair-zigzag transition which give rise to different local density of states (LDOS) along this 1D structure. This ridge formation is likely explained by residual compressive in-plane stresses.

  1. Edge mixing dynamics in graphene p–n junctions in the quantum Hall regime

    PubMed Central

    Matsuo, Sadashige; Takeshita, Shunpei; Tanaka, Takahiro; Nakaharai, Shu; Tsukagoshi, Kazuhito; Moriyama, Takahiro; Ono, Teruo; Kobayashi, Kensuke

    2015-01-01

    Massless Dirac electron systems such as graphene exhibit a distinct half-integer quantum Hall effect, and in the bipolar transport regime co-propagating edge states along the p–n junction are realized. Additionally, these edge states are uniformly mixed at the junction, which makes it a unique structure to partition electrons in these edge states. Although many experimental works have addressed this issue, the microscopic dynamics of electron partition in this peculiar structure remains unclear. Here we performed shot-noise measurements on the junction in the quantum Hall regime as well as at zero magnetic field. We found that, in sharp contrast with the zero-field case, the shot noise in the quantum Hall regime is finite in the bipolar regime, but is strongly suppressed in the unipolar regime. Our observation is consistent with the theoretical prediction and gives microscopic evidence that the edge states are uniquely mixed along the p–n junction. PMID:26337445

  2. Photoinduced Chern insulating states in semi-Dirac materials

    NASA Astrophysics Data System (ADS)

    Saha, Kush

    2016-08-01

    Two-dimensional (2D) semi-Dirac materials are characterized by a quadratic dispersion in one direction and a linear dispersion along the orthogonal direction. We study the topological phase transition in such 2D systems in the presence of an electromagnetic field. We show that a Chern insulating state emerges in a semi-Dirac system with two gapless Dirac nodes in the presence of light. In particular, we show that the intensity of a circularly polarized light can be used as a knob to generate topological states with nonzero Chern number. In addition, for fixed intensity and frequency of the light, a semi-Dirac system with two gapped Dirac nodes with trivial band topology can reveal the topological transition as a function of polarization of the light.

  3. Helicons, magnetoplasma edge, and faraday rotation in solid state plasmas at microwave frequencies.

    PubMed

    Furdyna, J K

    1967-04-01

    The effect of magnetic field on propagation of electromagnetic waves through free carrier plasmas in semiconductors is discussed. The Faraday configuration and the parameter ranges omega(c),omega(p) > omega and omega(c) > tau(-1) are specifically considered. Dispersion of helicon waves, propagation near the magnetoplasma edge (omega(p)(2) = omegaomega(c)), and the Faraday rotation are developed in terms of the one-electron Drude theory. Microwave transmission measurements at 35 Gc/s on n-type InSb are presented. Experiments near the magnetoplasma edge yield the value of the static dielectric constant of the InSb lattice K(l) = 19.3 +/- 0.8. Faraday rotation, observed beyond the edge, is found to be extremely large. Some practical possibilities for this effect are considered.

  4. Infinite coherence time of edge spins in finite-length chains

    NASA Astrophysics Data System (ADS)

    Maceira, Ivo A.; Mila, Frédéric

    2018-02-01

    Motivated by the recent observation that exponentially long coherence times can be achieved for edge spins in models with strong zero modes, we study the impact of level crossings in finite-length spin chains on the dynamics of the edge spins. Focusing on the X Y spin-1 /2 chain with a transverse or longitudinal magnetic field, two models relevant to understanding recent experimental results on cobalt adatoms, we show that the edge spins can remain coherent for an infinite time even for a finite-length chain if the magnetic field is tuned to a value at which there is a level crossing. Furthermore, we show that the edge spins remain coherent for any initial state for the integrable case of a transverse field because all states have level crossings at the same value of the field, while the coherence time is increasingly large for lower temperatures in the case of a longitudinal field, which is nonintegrable.

  5. Information processing in echo state networks at the edge of chaos.

    PubMed

    Boedecker, Joschka; Obst, Oliver; Lizier, Joseph T; Mayer, N Michael; Asada, Minoru

    2012-09-01

    We investigate information processing in randomly connected recurrent neural networks. It has been shown previously that the computational capabilities of these networks are maximized when the recurrent layer is close to the border between a stable and an unstable dynamics regime, the so called edge of chaos. The reasons, however, for this maximized performance are not completely understood. We adopt an information-theoretical framework and are for the first time able to quantify the computational capabilities between elements of these networks directly as they undergo the phase transition to chaos. Specifically, we present evidence that both information transfer and storage in the recurrent layer are maximized close to this phase transition, providing an explanation for why guiding the recurrent layer toward the edge of chaos is computationally useful. As a consequence, our study suggests self-organized ways of improving performance in recurrent neural networks, driven by input data. Moreover, the networks we study share important features with biological systems such as feedback connections and online computation on input streams. A key example is the cerebral cortex, which was shown to also operate close to the edge of chaos. Consequently, the behavior of model systems as studied here is likely to shed light on reasons why biological systems are tuned into this specific regime.

  6. Spin liquid state in the disordered triangular lattice Sc 2Ga 2CuO 7 revealed by NMR

    DOE PAGES

    Khuntia, P.; Kumar, R.; Mahajan, A. V.; ...

    2016-04-18

    We present microscopic magnetic properties of a two-dimensional triangular lattice Sc 2Ga 2CuO 7, consisting of single and double triangular Cu planes. An antiferromagnetic (AFM) exchange interaction J/k B ≈ 35 K between Cu 2+ (S = 1/2) spins in the triangular biplane is obtained from the analysis of intrinsic magnetic susceptibility data. The intrinsic magnetic susceptibility, extracted from 71Ga NMR shift data, displays the presence of AFM short range spin correlations and remains finite down to 50 mK, suggesting a nonsinglet ground state. The nuclear spin-lattice relaxation rate (1/T 1) reveals a slowing down of Cu 2+ spin fluctuationsmore » with decreasing T down to 100 mK. Magnetic specific heat (C m) and 1/T 1 exhibit power law behavior at low temperatures, implying the gapless nature of the spin excitation spectrum. The absence of long range magnetic ordering down to ~J/700, nonzero spin susceptibility at low T, and the power law behavior of C m and 1/T 1 suggest a gapless quantum spin liquid (QSL) state. Our results demonstrate that persistent spin dynamics induced by frustration maintain a quantum-disordered state at T → 0 in this triangular lattice antiferromagnet. Furthermore, this suggests that the low energy modes are dominated by spinon excitations in the QSL state due to randomness engendered by disorder and frustration.« less

  7. Spatial characterization of the edge barrier in wide superconducting films

    NASA Astrophysics Data System (ADS)

    Sivakov, A. G.; Turutanov, O. G.; Kolinko, A. E.; Pokhila, A. S.

    2018-03-01

    The current-induced destruction of superconductivity is discussed in wide superconducting thin films, whose width is greater than the magnetic field penetration depth, in weak magnetic fields. Particular attention is paid to the role of the boundary potential barrier (the Bin-Livingston barrier) in critical state formation and detection of the edge responsible for this critical state with different mutual orientations of external perpendicular magnetic field and transport current. Critical and resistive states of the film were visualized using the space-resolving low-temperature laser scanning microscopy (LTLSM) method, which enables detection of critical current-determining areas on the film edges. Based on these observations, a simple technique was developed for investigation of the critical state separately at each film edge, and for the estimation of residual magnetic fields in cryostats. The proposed method only requires recording of the current-voltage characteristics of the film in a weak magnetic field, thus circumventing the need for complex LTLSM techniques. Information thus obtained is particularly important for interpretation of studies of superconducting film single-photon light emission detectors.

  8. Quantum spin Hall effect and topological phase transition in InN x Bi y Sb1-x-y /InSb quantum wells

    NASA Astrophysics Data System (ADS)

    Song, Zhigang; Bose, Sumanta; Fan, Weijun; Zhang, Dao Hua; Zhang, Yan Yang; Shen Li, Shu

    2017-07-01

    Quantum spin Hall (QSH) effect, a fundamentally new quantum state of matter and topological phase transitions are characteristics of a kind of electronic material, popularly referred to as topological insulators (TIs). TIs are similar to ordinary insulator in terms of their bulk bandgap, but have gapless conducting edge-states that are topologically protected. These edge-states are facilitated by the time-reversal symmetry and they are robust against nonmagnetic impurity scattering. Recently, the quest for new materials exhibiting non-trivial topological state of matter has been of great research interest, as TIs find applications in new electronics and spintronics and quantum-computing devices. Here, we propose and demonstrate as a proof-of-concept that QSH effect and topological phase transitions can be realized in {{InN}}x{{Bi}}y{{Sb}}1-x-y/InSb semiconductor quantum wells (QWs). The simultaneous incorporation of nitrogen and bismuth in InSb is instrumental in lowering the bandgap, while inducing opposite kinds of strain to attain a near-lattice-matching conducive for lattice growth. Phase diagram for bandgap shows that as we increase the QW thickness, at a critical thickness, the electronic bandstructure switches from a normal to an inverted type. We confirm that such transition are topological phase transitions between a traditional insulator and a TI exhibiting QSH effect—by demonstrating the topologically protected edge-states using the bandstructure, edge-localized distribution of the wavefunctions and edge-state spin-momentum locking phenomenon, presence of non-zero conductance in spite of the Fermi energy lying in the bandgap window, crossover points of Landau levels in the zero-mode indicating topological band inversion in the absence of any magnetic field and presence of large Rashba spin-splitting, which is essential for spin-manipulation in TIs.

  9. Transaortic Alfieri Edge-to-Edge Repair for Functional Mitral Regurgitation.

    PubMed

    Imasaka, Ken-Ichi; Tayama, Eiki; Morita, Shigeki; Toriya, Ryohei; Tomita, Yukihiro

    2018-03-01

    There is controversy about handling functional mitral regurgitation in patients undergoing aortic valve or proximal aortic operations. We describe a transaortic Alfieri edge-to-edge repair for functional mitral regurgitation that reduces operative excessive invasion and prolonged cardiopulmonary bypass time. Between May 2013 and December 2016, 10 patients underwent transaortic Alfieri edge-to-edge mitral repair. There were no operative deaths. The severity of mitral regurgitation immediately after the operation by transesophageal echocardiography was none or trivial in all patients. A transaortic Alfieri edge-to-edge repair for functional mitral regurgitation is a simple and safe approach. Copyright © 2018 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  10. X-ray absorption spectroscopy systematics at the tungsten L-edge.

    PubMed

    Jayarathne, Upul; Chandrasekaran, Perumalreddy; Greene, Angelique F; Mague, Joel T; DeBeer, Serena; Lancaster, Kyle M; Sproules, Stephen; Donahue, James P

    2014-08-18

    A series of mononuclear six-coordinate tungsten compounds spanning formal oxidation states from 0 to +VI, largely in a ligand environment of inert chloride and/or phosphine, was interrogated by tungsten L-edge X-ray absorption spectroscopy. The L-edge spectra of this compound set, comprised of [W(0)(PMe3)6], [W(II)Cl2(PMePh2)4], [W(III)Cl2(dppe)2][PF6] (dppe = 1,2-bis(diphenylphosphino)ethane), [W(IV)Cl4(PMePh2)2], [W(V)(NPh)Cl3(PMe3)2], and [W(VI)Cl6], correlate with formal oxidation state and have usefulness as references for the interpretation of the L-edge spectra of tungsten compounds with redox-active ligands and ambiguous electronic structure descriptions. The utility of these spectra arises from the combined correlation of the estimated branching ratio of the L3,2-edges and the L1 rising-edge energy with metal Zeff, thereby permitting an assessment of effective metal oxidation state. An application of these reference spectra is illustrated by their use as backdrop for the L-edge X-ray absorption spectra of [W(IV)(mdt)2(CO)2] and [W(IV)(mdt)2(CN)2](2-) (mdt(2-) = 1,2-dimethylethene-1,2-dithiolate), which shows that both compounds are effectively W(IV) species even though the mdt ligands exist at different redox levels in the two compounds. Use of metal L-edge XAS to assess a compound of uncertain formulation requires: (1) Placement of that data within the context of spectra offered by unambiguous calibrant compounds, preferably with the same coordination number and similar metal ligand distances. Such spectra assist in defining upper and/or lower limits for metal Zeff in the species of interest. (2) Evaluation of that data in conjunction with information from other physical methods, especially ligand K-edge XAS. (3) Increased care in interpretation if strong π-acceptor ligands, particularly CO, or π-donor ligands are present. The electron-withdrawing/donating nature of these ligand types, combined with relatively short metal-ligand distances, exaggerate

  11. Living on the edge: roads and edge effects on small mammal populations.

    PubMed

    Fuentes-Montemayor, Elisa; Cuarón, Alfredo D; Vázquez-Domínguez, Ella; Benítez-Malvido, Julieta; Valenzuela-Galván, David; Andresen, Ellen

    2009-07-01

    1. Roads may affect wildlife populations through habitat loss and disturbances, as they create an abrupt linear edge, increasing the proportion of edge exposed to a different habitat. Three types of edge effects have been recognized: abiotic, direct biotic, and indirect biotic. 2. We explored the direct biotic edge effects of 3- to 4-m wide roads, and also a previously unrecognized type of edge effect: social. We live-trapped two threatened endemic rodents from Cozumel Island (Oryzomys couesi cozumelae and Reithrodontomys spectabilis) in 16 plots delimited by roads on two sides, to compare edge effects between two adjacent edges (corners), single-edge and interior forest, on life history and social variables. 3. No significant edge effects were observed on the life-history variables, with the exception of differences in body condition between males and females of O. c. cozumelae near edges. Both species showed significant and contrasting effects on their social variables. 4. O. c. cozumelae was distributed according to its age and sex: the proportion of adults and males was higher in interior than near edges, while juveniles and females were more abundant near edges. More nonreproductive females were present in corners than in single-edge and interior, while the opposite distribution was observed for nonreproductive males. 5. The distribution of R. spectabilis was related to its age and reproductive condition, but not to its sex. The proportion of adults was significantly higher in corners, while juveniles were only caught in single-edge and interior quadrants. The proportion of reproductive individuals was higher in edge than interior quadrants, while reproductive females were only present in edge quadrants. 6. We found significant differences between the quadrants with the greatest edge exposure in comparison with other quadrants. The social edge effects we identified complement the typology of edge effects recognized in ecological literature. Our study provides

  12. Near-edge study of gold-substituted YBa2Cu3O(7-delta)

    NASA Technical Reports Server (NTRS)

    Ruckman, Mark W.; Hepp, Aloysius F.

    1991-01-01

    The valence of Cu and Au in YBa2Au0.3Cu2.7O7-delta was investigated using X-ray absorption near edge structure (XANES). X-ray and neutron diffraction studies indicate that Au goes on the Cu(1) site and Cu K-edge XANES shows that this has little effect on the oxidation state of the remaining copper. The Au L3 edge develops a white line feature whose position lies between that of trivalent gold oxide and monovalent potassium gold cyanide, and whose height relative to the edge step is smaller than in the two reference compounds. The appearance of the Au L3 edge suggests that fewer Au 3d states are involved in forming the Au-O bond in YBa2Au0.3Cu2.7O7-delta than in trivalent gold oxide.

  13. Near-edge study of gold-substituted YBa2Cu3O(7-delta)

    NASA Technical Reports Server (NTRS)

    Ruckman, Mark W.; Hepp, Aloysius F.

    1991-01-01

    The valence of Cu and Au in YBa2Au0.3Cu2.7O7-delta was investigated using x-ray absorption near edge structure (XANES). X-ray and neutron diffraction studies indicate that Au goes on the Cu(1) site and Cu K-edge XANES shows that this has little effect on the oxidation state of the remaining copper. The Au L3 edge develops a white line feature whose position lies between that of trivalent gold oxide and monovalent potassium gold cyanide, and whose height relative to the edge step is smaller than in the two reference compounds. The appearance of the Au L3 edge suggests that fewer Au 3d states are involved in forming the Au-O bond in YBa2Au0.3Cu2.7O7-delta than in trivalent gold oxide.

  14. Exogenous antioxidants—Double-edged swords in cellular redox state

    PubMed Central

    Bohn, Torsten

    2010-01-01

    The balance between oxidation and antioxidation is believed to be critical in maintaining healthy biological systems. Under physiological conditions, the human antioxidative defense system including e.g., superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione (GSH) and others, allows the elimination of excess reactive oxygen species (ROS) including, among others superoxide anions (O2.-), hydroxyl radicals (OH.), alkoxyl radicals (RO.) and peroxyradicals (ROO.). However, our endogenous antioxidant defense systems are incomplete without exogenous originating reducing compounds such as vitamin C, vitamin E, carotenoids and polyphenols, playing an essential role in many antioxidant mechanisms in living organisms. Therefore, there is continuous demand for exogenous antioxidants in order to prevent oxidative stress, representing a disequilibrium redox state in favor of oxidation. However, high doses of isolated compounds may be toxic, owing to prooxidative effects at high concentrations or their potential to react with beneficial concentrations of ROS normally present at physiological conditions that are required for optimal cellular functioning. This review aims to examine the double-edged effects of dietary originating antioxidants with a focus on the most abundant compounds, especially polyphenols, vitamin C, vitamin E and carotenoids. Different approaches to enrich our body with exogenous antioxidants such as via synthetic antioxidants, diets rich in fruits and vegetables and taking supplements will be reviewed and experimental and epidemiological evidences discussed, highlighting that antioxidants at physiological doses are generally safe, exhibiting interesting health beneficial effects. PMID:20972369

  15. Edge-functionalization of armchair graphene nanoribbons with pentagonal-hexagonal edge structures.

    PubMed

    Ryou, Junga; Park, Jinwoo; Kim, Gunn; Hong, Suklyun

    2017-06-21

    Using density functional theory calculations, we have studied the edge-functionalization of armchair graphene nanoribbons (AGNRs) with pentagonal-hexagonal edge structures. While the AGNRs with pentagonal-hexagonal edge structures (labeled (5,6)-AGNRs) are metallic, the edge-functionalized (5,6)-AGNRs with substitutional atoms opens a band gap. We find that the band structures of edge-functionalized (5,6)-N-AGNRs by substitution resemble those of defect-free (N-1)-AGNR at the Γ point, whereas those at the X point show the original ones of the defect-free N-AGNR. The overall electronic structures of edge-functionalized (5,6)-AGNRs depend on the number of electrons, supplied by substitutional atoms, at the edges of functionalized (5,6)-AGNRs.

  16. Laminar Flow Control Leading Edge Systems in Simulated Airline Service

    NASA Technical Reports Server (NTRS)

    Wagner, R. D.; Maddalon, D. V.; Fisher, D. F.

    1988-01-01

    Achieving laminar flow on the wings of a commercial transport involves difficult problems associated with the wing leading edge. The NASA Leading Edge Flight Test Program has made major progress toward the solution of these problems. The effectiveness and practicality of candidate laminar flow leading edge systems were proven under representative airline service conditions. This was accomplished in a series of simulated airline service flights by modifying a JetStar aircraft with laminar flow leading edge systems and operating it out of three commercial airports in the United States. The aircraft was operated as an airliner would under actual air traffic conditions, in bad weather, and in insect infested environments.

  17. Polarity control of h-BN nanoribbon edges by strain and edge termination.

    PubMed

    Yamanaka, Ayaka; Okada, Susumu

    2017-03-29

    We studied the polarity of h-BN nano-flakes in terms of their edge geometries, edge hydrogen termination, and uniaxial strain by evaluating their electrostatic potential using density functional theory. Our calculations have shown that the polarity of the nanoribbons is sensitive to their edge shape, edge termination, and uniaxial tensile strain. Polarity inversion of the ribbons can be induced by controlling the hydrogen concentration at the edges and the uniaxial tensile strain. The polarity inversion indicates that h-BN nanoribbons can exhibit non-polar properties at a particular edge hydrogen concentration and tensile strain, even though the nanoribbons essentially have polarity at the edge. We also found that the edge angle affects the polarity of nanoribbons with hydrogenated edges.

  18. Effect of edge modification on the zigzag BC2N nanoribbons

    NASA Astrophysics Data System (ADS)

    Xiao, Xiang; Li, Hong; Tie, Jun; Lu, Jing

    2016-08-01

    We use first principles calculations to investigate the effects of edge modification with nonmetal species on zigzag-edged BC2N nanoribbons (ZBC2NNRs). These ZBC2NNRs show either semiconducting or metallic behaviors depending on the edge modifications and ribbon widths. We find that the O-modification induces a ferromagnetic ground state with a metallic behavior for all the ribbon widths investigated. And when the ribbon width is more than 3.32 nm (NZ ⩾ 16), an antiferromagnetic ground state with a half-metallic behavior is realized in the H-passivated ZBC2NNRs. These versatile electronic properties render the ZBC2NNRs a promising candidate material in nanoelectronics and nanospintronics.

  19. Selective Population of Edge States in a 2D Topological Band System.

    PubMed

    Galilo, Bogdan; Lee, Derek K K; Barnett, Ryan

    2015-12-11

    We consider a system of interacting spin-one atoms in a hexagonal lattice under the presence of a synthetic gauge field. Quenching the quadratic Zeeman field is shown to lead to a dynamical instability of the edge modes. This, in turn, leads to a spin current along the boundary of the system which grows exponentially fast in time following the quench. Tuning the magnitude of the quench can be used to selectively populate edge modes of different momenta. Implications of the intrinsic symmetries of the Hamiltonian on the dynamics are discussed. The results hold for atoms with both antiferromagnetic and ferromagnetic interactions.

  20. The effect of site geometry, Ti content and Ti oxidation state on the Ti K-edge XANES spectrum of synthetic hibonite

    NASA Astrophysics Data System (ADS)

    Doyle, P. M.; Berry, A. J.; Schofield, P. F.; Mosselmans, J. F. W.

    2016-08-01

    The Al-rich oxide hibonite (CaAl12O19) is modeled to be the second mineral to condense from a gas of solar composition and is found within calcium-aluminum-rich inclusions and the matrix of chondritic meteorites. Both Ti3+ and Ti4+ are reported in meteoritic hibonite, so hibonite has been proposed as a single mineral oxybarometer that could be used to elucidate conditions within the first 0.2 Myrs of the Solar System. Synthetic hibonites with Ti3+/(Ti3+ + Ti4+) (hereafter Ti3+/ΣTi) ranging between 0 and 1 were prepared as matrix-matched standards for meteoritic hibonite. The largest yield of both Ti-free and Ti-bearing hibonite at ∼1300 and ∼1400 °C was obtained by a single sinter under reducing conditions. In situ micro-beam Ti K-edge X-ray absorption near edge structure (XANES) spectra were recorded from the synthetic hibonites, as well as from terrestrial hibonite. Spectral features in the post-crest region were shown to correlate with the Ti4+ content. Furthermore, Ti4+ on the M2 trigonal bipyramidal and the adjoining M4 octahedral sites appears to cause variability in the post-crest region as a function of orientation. For this suite of synthetic hibonites it was observed that the pre-edge peak region is not influenced by orientation, but is controlled by Ti3+/ΣTi, site geometry and/or Ti concentration. In particular, the pre-edge peak intensities reflect Ti coordination environment and distortion of the M4 octahedral site. Therefore, although pre-edge peak intensities have previously been used to determine Ti3+/ΣTi in meteoritic minerals, we excluded use of the pre-edge peak intensities for quantifying Ti valence states in hibonite. The energy of the absorption edge at a normalized intensity of 0.8 (E0.8) and the energy of the minimum between the pre-edge region and the absorption edge (Em1) were found to vary systematically with Ti3+/ΣTi. Ti3+/ΣTi in hibonite as a function of Em1 was modeled by a quadratic function that may be used to quantify Ti3

  1. First principles study of edge carboxylated graphene quantum dots

    NASA Astrophysics Data System (ADS)

    Abdelsalam, Hazem; Elhaes, Hanan; Ibrahim, Medhat A.

    2018-05-01

    The structure stability and electronic properties of edge carboxylated hexagonal and triangular graphene quantum dots are investigated using density functional theory. The calculated binding energies show that the hexagonal clusters with armchair edges have the highest stability among all the quantum dots. The binding energy of carboxylated graphene quantum dots increases by increasing the number of carboxyl groups. Our study shows that the total dipole moment significantly increases by adding COOH with the highest value observed in triangular clusters. The edge states in triangular graphene quantum dots with zigzag edges produce completely different energy spectrum from other dots: (a) the energy gap in triangular zigzag is very small as compared to other clusters and (b) the highest occupied molecular orbital is localized at the edges which is in contrast to other clusters where it is distributed over the cluster surface. The enhanced reactivity and the controllable energy gap by shape and edge termination make graphene quantum dots ideal for various nanodevice applications such as sensors. The infrared spectra are presented to confirm the stability of the quantum dots.

  2. Metal-free spin and spin-gapless semiconducting heterobilayers: monolayer boron carbonitrides on hexagonal boron nitride.

    PubMed

    Pan, Hongzhe; Zhang, Hongyu; Sun, Yuanyuan; Ding, Yingchun; Chen, Jie; Du, Youwei; Tang, Nujiang

    2017-06-07

    The interfaces between monolayer boron carbonitrides and hexagonal boron nitride (h-BN) play an important role in their practical applications. Herein, we respectively investigate the structural and electronic properties of two metal-free heterobilayers constructed by vertically stacking two-dimensional (2D) spintronic materials (B 4 CN 3 and B 3 CN 4 ) on a h-BN monolayer from the viewpoints of lattice match and lattice mismatch models using density functional calculations. It is found that both B 4 CN 3 and B 3 CN 4 monolayers can be stably adsorbed on the h-BN monolayer due to the van der Waals interactions. Intriguingly, we demonstrate that the bipolar magnetic semiconductor (BMS) behavior of the B 4 CN 3 layer and the spin gapless semiconductor (SGS) property of the B 3 CN 4 layer can be well preserved in the B 4 CN 3 /BN and B 3 CN 4 /BN heterobilayers, respectively. The magnetic moments and spintronic properties of the two systems originate mainly from the 2p z electrons of the carbon atoms in the B 4 CN 3 and B 3 CN 4 layers. Furthermore, the BMS behavior of the B 4 CN 3 /BN bilayer is very robust while the electronic property of the B 3 CN 4 /BN bilayer is sensitive to interlayer couplings. These theoretical results are helpful both in understanding the interlayer coupling between B 4 CN 3 or B 3 CN 4 and h-BN monolayers and in providing a possibility of fabricating 2D composite B 4 CN 3 /BN and B 3 CN 4 /BN metal-free spintronic materials theoretically.

  3. Fuzzy Edge Connectivity of Graphical Fuzzy State Space Model in Multi-connected System

    NASA Astrophysics Data System (ADS)

    Harish, Noor Ainy; Ismail, Razidah; Ahmad, Tahir

    2010-11-01

    Structured networks of interacting components illustrate complex structure in a direct or intuitive way. Graph theory provides a mathematical modeling for studying interconnection among elements in natural and man-made systems. On the other hand, directed graph is useful to define and interpret the interconnection structure underlying the dynamics of the interacting subsystem. Fuzzy theory provides important tools in dealing various aspects of complexity, imprecision and fuzziness of the network structure of a multi-connected system. Initial development for systems of Fuzzy State Space Model (FSSM) and a fuzzy algorithm approach were introduced with the purpose of solving the inverse problems in multivariable system. In this paper, fuzzy algorithm is adapted in order to determine the fuzzy edge connectivity between subsystems, in particular interconnected system of Graphical Representation of FSSM. This new approach will simplify the schematic diagram of interconnection of subsystems in a multi-connected system.

  4. Anti-impulse-noise Edge Detection via Anisotropic Morphological Directional Derivatives.

    PubMed

    Shui, Peng-Lang; Wang, Fu-Ping

    2017-07-13

    Traditional differential-based edge detection suffers from abrupt degradation in performance when images are corrupted by impulse noises. The morphological operators such as the median filters and weighted median filters possess the intrinsic ability to counteract impulse noise. In this paper, by combining the biwindow configuration with weighted median filters, anisotropic morphological directional derivatives (AMDD) robust to impulse noise are proposed to measure the local grayscale variation around a pixel. For ideal step edges, the AMDD spatial response and directional representation are derived. The characteristics and edge resolution of two kinds of typical biwindows are analyzed thoroughly. In terms of the AMDD spatial response and directional representation of ideal step edges, the spatial matched filter is used to extract the edge strength map (ESM) from the AMDDs of an image. The spatial and directional matched filters are used to extract the edge direction map (EDM). Embedding the extracted ESM and EDM into the standard route of the differential-based edge detection, an anti-impulse-noise AMDD-based edge detector is constructed. It is compared with the existing state-of-the-art detectors on a recognized image dataset for edge detection evaluation. The results show that it attains competitive performance in noise-free and Gaussian noise cases and the best performance in impulse noise cases.

  5. Experimental demonstration of topologically protected efficient sound propagation in an acoustic waveguide network

    NASA Astrophysics Data System (ADS)

    Wei, Qi; Tian, Ye; Zuo, Shu-Yu; Cheng, Ying; Liu, Xiao-Jun

    2017-03-01

    Acoustic topological states support sound propagation along the boundary in a one-way direction with inherent robustness against defects and disorders, leading to the revolution of the manipulation on acoustic waves. A variety of acoustic topological states relying on circulating fluid, chiral coupling, or temporal modulation have been proposed theoretically. However, experimental demonstration has so far remained a significant challenge, due to the critical limitations such as structural complexity and high losses. Here, we experimentally demonstrate an acoustic anomalous Floquet topological insulator in a waveguide network. The acoustic gapless edge states can be found in the band gap when the waveguides are strongly coupled. The scheme features simple structure and high-energy throughput, leading to the experimental demonstration of efficient and robust topologically protected sound propagation along the boundary. The proposal may offer a unique, promising application for design of acoustic devices in acoustic guiding, switching, isolating, filtering, etc.

  6. ON EDGE CHIPPING TESTING AND SOME PERSONAL PERSPECTIVES ON THE STATE OF THE ART OF MECHANICAL TESTING

    PubMed Central

    Quinn, G. D.

    2014-01-01

    Objective The edge chipping test is used to measure the fracture resistance of dental restoration ceramics and resin composites. This paper focuses on the progress of evaluating chipping resistance of these materials and also on the progress of standardization of this test method. This paper also makes observations about the state of the art of mechanical testing of ceramic and composite restorative materials in general. Interlaboratory comparative studies (“round robins”) are recommended. Methods An edge chipping machine was used to evaluate dozens of materials including porcelains, glass ceramics, aluminas, zirconias, filled resin-composites, new hybrid ceramic-resin composites, laminated composite ceramics, and even polymethyl methacrylate based denture materials. Force versus distance data were collected over a broad range with different indenters. Several chipping resistance parameters were quantified. Results Older restorative materials such as feldspathic porcelains and veneering materials had limited chipping resistance, but more modern ceramics and filled composites show significant improvements. A yttria-partially stabilized zirconia had the greatest resistance to chipping. Much of the early work on edge chipping resistance of brittle materials emphasized linear force versus distance trends obtained with relatively blunt Rockwell C indenters. More recently, trends for dental restorative materials with alternative sharper indenters have been nonlinear. A new phenomenological model with a simple quadratic function fits all data exceptionally well. It is loosely based on an energy balance between indenter work and fracture and deformation energies in the chipped material. Significance Although a direct comparison of our laboratory scale tests on idealized simple geometries to clinical outcomes has not yet been done, anecdotal evidence suggests the procedure does produce clinically relevant rankings and outcomes. Despite the variations in the trends and

  7. Determination of the ground state of an Au-supported FePc film based on the interpretation of Fe K - and L -edge x-ray magnetic circular dichroism measurements

    NASA Astrophysics Data System (ADS)

    Natoli, Calogero R.; Krüger, Peter; Bartolomé, Juan; Bartolomé, Fernando

    2018-04-01

    We determine the magnetic ground state of the FePc molecule on Au-supported thin films based on the observed values of orbital anisotropy and spectroscopic x-ray magnetic circular dichroism (XMCD) measurements at the Fe K and L edges. Starting from ab initio molecular orbital multiplet calculations for the isolated molecule, we diagonalize the spin-orbit interaction in the subspace spanned by the three lowest spin triplet states of 3A2 g and 3Eg symmetry in the presence of a saturating magnetic field at a polar angle θ with respect to the normal to the plane of the film, plus an external perturbation representing the effect of the molecules in the stack on the FePc molecule under consideration. We find that the orbital moment of the ground state strongly depends on the magnetic field direction in agreement with the sum rule analysis of the L23-edge XMCD data. We calculate integrals over the XMCD spectra at the Fe K and L23 edges as used in the sum rules and explicitly show that they agree with the expectation values of the orbital moment and effective spin moment of the ground state. On the basis of this analysis, we can rule out alternative candidates proposed in the literature.

  8. Algorithm for Automated Detection of Edges of Clouds

    NASA Technical Reports Server (NTRS)

    Ward, Jennifer G.; Merceret, Francis J.

    2006-01-01

    An algorithm processes cloud-physics data gathered in situ by an aircraft, along with reflectivity data gathered by ground-based radar, to determine whether the aircraft is inside or outside a cloud at a given time. A cloud edge is deemed to be detected when the in/out state changes, subject to a hysteresis constraint. Such determinations are important in continuing research on relationships among lightning, electric charges in clouds, and decay of electric fields with distance from cloud edges.

  9. Power spectrum weighted edge analysis for straight edge detection in images

    NASA Astrophysics Data System (ADS)

    Karvir, Hrishikesh V.; Skipper, Julie A.

    2007-04-01

    Most man-made objects provide characteristic straight line edges and, therefore, edge extraction is a commonly used target detection tool. However, noisy images often yield broken edges that lead to missed detections, and extraneous edges that may contribute to false target detections. We present a sliding-block approach for target detection using weighted power spectral analysis. In general, straight line edges appearing at a given frequency are represented as a peak in the Fourier domain at a radius corresponding to that frequency, and a direction corresponding to the orientation of the edges in the spatial domain. Knowing the edge width and spacing between the edges, a band-pass filter is designed to extract the Fourier peaks corresponding to the target edges and suppress image noise. These peaks are then detected by amplitude thresholding. The frequency band width and the subsequent spatial filter mask size are variable parameters to facilitate detection of target objects of different sizes under known imaging geometries. Many military objects, such as trucks, tanks and missile launchers, produce definite signatures with parallel lines and the algorithm proves to be ideal for detecting such objects. Moreover, shadow-casting objects generally provide sharp edges and are readily detected. The block operation procedure offers advantages of significant reduction in noise influence, improved edge detection, faster processing speed and versatility to detect diverse objects of different sizes in the image. With Scud missile launcher replicas as target objects, the method has been successfully tested on terrain board test images under different backgrounds, illumination and imaging geometries with cameras of differing spatial resolution and bit-depth.

  10. Quantum quench in a p+ip superfluid: Winding numbers and topological states far from equilibrium

    NASA Astrophysics Data System (ADS)

    Foster, Matthew S.; Dzero, Maxim; Gurarie, Victor; Yuzbashyan, Emil A.

    2013-09-01

    We study the nonadiabatic dynamics of a two-dimensional p+ip superfluid following an instantaneous quantum quench of the BCS coupling constant. The model describes a topological superconductor with a nontrivial BCS (trivial BEC) phase appearing at weak- (strong-) coupling strengths. We extract the exact long-time asymptotics of the order parameter Δ(t) by exploiting the integrability of the classical p-wave Hamiltonian, which we establish via a Lax construction. Three different types of asymptotic behavior can occur depending upon the strength and direction of the interaction quench. We refer to these as the nonequilibrium phases {I, II, III}, characterized as follows. In phase I, the order parameter asymptotes to zero due to dephasing. In phase II, Δ→Δ∞, a nonzero constant. Phase III is characterized by persistent oscillations of Δ(t). For quenches within phases I and II, we determine the topological character of the asymptotic states. We show that two different formulations of the bulk topological winding number, although equivalent in the BCS or BEC ground states, must be regarded as independent out of equilibrium. The first winding number Q characterizes the Anderson pseudospin texture of the initial state; we show that Q is generically conserved. For Q≠0, this leads to the prediction of a “gapless topological” state when Δ asymptotes to zero. The presence or absence of Majorana edge modes in a sample with a boundary is encoded in the second winding number W, which is formulated in terms of the retarded Green's function. We establish that W can change following a quench across the quantum critical point. When the order parameter asymptotes to a nonzero constant, the final value of W is well defined and quantized. We discuss the implications for the (dis)appearance of Majorana edge modes. Finally, we show that the parity of zeros in the bulk out-of-equilibrium Cooper-pair distribution function constitutes a Z2-valued quantum number, which is

  11. Symmetry Enriched Topological Phases and Their Edge Theories

    NASA Astrophysics Data System (ADS)

    Heinrich, Christopher

    In this thesis we investigate topological phases of matter that have a global, unbroken symmetry group--also known as symmetry enriched topological (SET) phases. We address three questions about these phases: (1) how can we build exactly solvable models that realize them? (2) how can we determine if their edge theories can be gapped without breaking the symmetry? and (3) how do we understand the phenomenon of decoupled charge and neutral modes which occurs in certain fractional quantum Hall states? More specifically, we address the first question by constructing exactly solvable models for a wide class of symmetry enriched topological (SET) phases, which we call symmetry-enriched string nets. The construction applies to 2D bosonic SET phases with finite unitary onsite symmetry group G, and we conjecture that our models realize every phase in this class that can be described by a commuting projector Hamiltonian. As an example, we present a model for a phase with the same anyon excitations as the toric code and with a Z2 symmetry which exchanges the e and m type anyons. We further illustrate our construction with a number of additional examples. For the second question, we focus on the edge theories of 2D SET phases with Z2 symmetry. The central problem we seek to solve is to determine which edge theories can be gapped without breaking the symmetry. Previous attempts to answer this question in special cases relied on constructing perturbations of a particular type to gap the edge. This method proves the edge can be gapped when the appropriate perturbations can be found, but is inconclusive if they cannot be found. We build on this previous work by deriving a necessary and sufficient algebraic condition for when the edge can be gapped. Our results apply to Z2 symmetry protected topological phases as well as Abelian Z2 SET phases. Finally, in the fourth chapter, we describe solvable models that capture how impurity scattering in certain fractional quantum Hall edges

  12. Super-resolved terahertz microscopy by knife-edge scan

    NASA Astrophysics Data System (ADS)

    Giliberti, V.; Flammini, M.; Ciano, C.; Pontecorvo, E.; Del Re, E.; Ortolani, M.

    2017-08-01

    We present a compact, all solid-state THz confocal microscope operating at 0.30 THz that achieves super-resolution by using the knife-edge scan approach. In the final reconstructed image, a lateral resolution of 60 μm ≍ λ/17 is demonstrated when the knife-edge is deep in the near-field of the sample surface. When the knife-edge is lifted up to λ/4 from the sample surface, a certain degree of super-resolution is maintained with a resolution of 0.4 mm, i.e. more than a factor 2 if compared to the diffraction-limited scheme. The present results open an interesting path towards super-resolved imaging with in-depth information that would be peculiar to THz microscopy systems.

  13. Chiral sp-orbital paired superfluid of fermionic atoms in a 2D spin-dependent optical lattice

    NASA Astrophysics Data System (ADS)

    Liu, Bo; Li, Xiaopeng; Wu, Biao; Liu, W. Vincent

    2014-03-01

    Recent progress in realizing synthetic quantum orbital materials in chequerboard and hexagonal optical lattices opens an avenue towards exploiting unconventional quantum states, advancing our understanding of correlated quantum matter. Here, we unveil a chiral sp -orbital paired superfluid state for an interacting two-component Fermi gas in a 2D spin-dependent optical lattice. Surprisingly, this novel state is found to exist in a wide regime of experimentally tunable interaction strengths. The coexistence of this chiral superfluid and the ferro-orbital order is reminiscent of that of magnetism and superconductivity which is a long-standing issue in condensed matter physics. The topological properties are demonstrated by the existence of gapless chiral fermions in the presence of domain wall defects, reminiscent of quantum Hall edge states. Such properties can be measured by radio frequency spectroscopy in cold atomic experiments. Work supported in part by U.S. ARO, AFOSR, and DARPA-OLE-ARO, Kaufman Foundation, and NSF of China.

  14. Edge Evaluation Using Local Edge Coherence

    DTIC Science & Technology

    1980-12-01

    response within each region. (The operators discussed below also compute an esti- mate of the direction of brightness change .) In the next step, the edges...worth remarking on is that Abdou and Pratt vary the relative strength of signal to noise by holding the contrast constant and changing the standard...threshold level on the basis of the busyness of the resulting thresholded image.) In applications where edge extraction is an important part of the processing

  15. Leading-edge flow criticality as a governing factor in leading-edge vortex initiation in unsteady airfoil flows

    NASA Astrophysics Data System (ADS)

    Ramesh, Kiran; Granlund, Kenneth; Ol, Michael V.; Gopalarathnam, Ashok; Edwards, Jack R.

    2018-04-01

    A leading-edge suction parameter (LESP) that is derived from potential flow theory as a measure of suction at the airfoil leading edge is used to study initiation of leading-edge vortex (LEV) formation in this article. The LESP hypothesis is presented, which states that LEV formation in unsteady flows for specified airfoil shape and Reynolds number occurs at a critical constant value of LESP, regardless of motion kinematics. This hypothesis is tested and validated against a large set of data from CFD and experimental studies of flows with LEV formation. The hypothesis is seen to hold except in cases with slow-rate kinematics which evince significant trailing-edge separation (which refers here to separation leading to reversed flow on the aft portion of the upper surface), thereby establishing the envelope of validity. The implication is that the critical LESP value for an airfoil-Reynolds number combination may be calibrated using CFD or experiment for just one motion and then employed to predict LEV initiation for any other (fast-rate) motion. It is also shown that the LESP concept may be used in an inverse mode to generate motion kinematics that would either prevent LEV formation or trigger the same as per aerodynamic requirements.

  16. Non-Dirac Chern insulators with large band gaps and spin-polarized edge states.

    PubMed

    Xue, Y; Zhang, J Y; Zhao, B; Wei, X Y; Yang, Z Q

    2018-05-10

    Based on first-principles calculations and k·p models, we demonstrate that PbC/MnSe heterostructures are a non-Dirac type of Chern insulator with very large band gaps (244 meV) and exotically half-metallic edge states, providing the possibilities of realizing very robust, completely spin polarized, and dissipationless spintronic devices from the heterostructures. The achieved extraordinarily large nontrivial band gap can be ascribed to the contribution of the non-Dirac type electrons (composed of px and py) and the very strong atomic spin-orbit coupling (SOC) interaction of the heavy Pb element in the system. Surprisingly, the band structures are found to be sensitive to the different exchange and correlation functionals adopted in the first-principles calculations. Chern insulators with various mechanisms are acquired from them. These discoveries show that the predicted nontrivial topology in PbC/MnSe heterostructures is robust and can be observed in experiments at high temperatures. The system has great potential to have attractive applications in future spintronics.

  17. Bulk boundary correspondence and the existence of Majorana bound states on the edges of 2D topological superconductors

    NASA Astrophysics Data System (ADS)

    Sedlmayr, Nicholas; Kaladzhyan, Vardan; Dutreix, Clément; Bena, Cristina

    2017-11-01

    The bulk-boundary correspondence establishes a connection between the bulk topological index of an insulator or superconductor, and the number of topologically protected edge bands or states. For topological superconductors in two dimensions, the first Chern number is related to the number of protected bands within the bulk energy gap, and is therefore assumed to give the number of Majorana band states in the system. Here we show that this is not necessarily the case. As an example, we consider a hexagonal-lattice topological superconductor based on a model of graphene with Rashba spin-orbit coupling, proximity-induced s -wave superconductivity, and a Zeeman magnetic field. We explore the full Chern number phase diagram of this model, extending what is already known about its parity. We then demonstrate that, despite the high Chern numbers that can be seen in some phases, these do not strictly always contain Majorana bound states.

  18. ESIM: Edge Similarity for Screen Content Image Quality Assessment.

    PubMed

    Ni, Zhangkai; Ma, Lin; Zeng, Huanqiang; Chen, Jing; Cai, Canhui; Ma, Kai-Kuang

    2017-10-01

    In this paper, an accurate full-reference image quality assessment (IQA) model developed for assessing screen content images (SCIs), called the edge similarity (ESIM), is proposed. It is inspired by the fact that the human visual system (HVS) is highly sensitive to edges that are often encountered in SCIs; therefore, essential edge features are extracted and exploited for conducting IQA for the SCIs. The key novelty of the proposed ESIM lies in the extraction and use of three salient edge features-i.e., edge contrast, edge width, and edge direction. The first two attributes are simultaneously generated from the input SCI based on a parametric edge model, while the last one is derived directly from the input SCI. The extraction of these three features will be performed for the reference SCI and the distorted SCI, individually. The degree of similarity measured for each above-mentioned edge attribute is then computed independently, followed by combining them together using our proposed edge-width pooling strategy to generate the final ESIM score. To conduct the performance evaluation of our proposed ESIM model, a new and the largest SCI database (denoted as SCID) is established in our work and made to the public for download. Our database contains 1800 distorted SCIs that are generated from 40 reference SCIs. For each SCI, nine distortion types are investigated, and five degradation levels are produced for each distortion type. Extensive simulation results have clearly shown that the proposed ESIM model is more consistent with the perception of the HVS on the evaluation of distorted SCIs than the multiple state-of-the-art IQA methods.

  19. Surface-state-dominated transport in crystals of the topological crystalline insulator In-doped Pb 1-xSn xTe

    DOE PAGES

    Zhong, Ruidan; He, Xugang; Schneeloch, J. A.; ...

    2015-05-29

    Three-dimensional topological insulators and topological crystalline insulators represent new quantum states of matter, which are predicted to have insulating bulk states and spin-momentum-locked gapless surface states. Experimentally, it has proven difficult to achieve the high bulk resistivity that would allow surface states to dominate the transport properties over a substantial temperature range. Here we report a series of indium-doped Pb 1-xSn xTe compounds that manifest huge bulk resistivities together with evidence consistent with the topological character of the surface states for x ≳ 0.35, based on thickness-dependent transport studies and magnetoresistance measurements. For these bulk-insulating materials, the surface states determinemore » the resistivity for temperatures beyond 20 K.« less

  20. Critical edge between frozen extinction and chaotic life

    NASA Astrophysics Data System (ADS)

    Monetti, Roberto A.; Albano, Ezequiel V.

    1995-12-01

    The cellular automata ``game of life'' (GL) proposed by J. Conway simulates the dynamic evolution of a society of living organisms. It has been extensively studied in order to understand the emergence of complexity and diversity from a set of local rules. More recently, the capability of GL to self-oranize into a critical state has opened an interesting debate. In this work we adopt a different approach: by introducing stochastic rules in the GL it is found that ``life'' exhibits a very rich critical behavior. Discontinuous (first-order) irreversible phase transitions (IPT's) between an extinct phase and a steady state supporting life are found. A precise location of the critical edge is achieved by means of an epidemic analysis, which also allows us to determine dynamic critical exponents. Furthermore, by means of a damage spreading study we conclude that the living phase is chaotic. The edge of the frozen-chaotic transition coincides with that of the IPT's life extinction. Close to the edge, fractal spreading of the damage is observed; however, deep inside the living phase such spreading becomes homogeneous. (c) 1995 The American Physical Society

  1. A high-efficiency spin polarizer based on edge and surface disordered silicene nanoribbons

    NASA Astrophysics Data System (ADS)

    Xu, Ning; Zhang, Haiyang; Wu, Xiuqiang; Chen, Qiao; Ding, Jianwen

    2018-07-01

    Using the tight-binding formalism, we explore the effect of weak disorder upon the conductance of zigzag edge silicene nanoribbons (SiNRs), in the limit of phase-coherent transport. We find that the fashion of the conductance varies with disorder, and depends strongly on the type of disorder. Conductance dips are observed at the Van Hove singularities, owing to quasilocalized states existing in surface disordered SiNRs. A conductance gap is observed around the Fermi energy for both edge and surface disordered SiNRs, because edge states are localized. The average conductance of the disordered SiNRs decreases exponentially with the increase of disorder, and finally tends to disappear. The near-perfect spin polarization can be realized in SiNRs with a weak edge or surface disorder, and also can be attained by both the local electric field and the exchange field.

  2. Localization and mobility edges in one-dimensional deterministic potentials

    NASA Astrophysics Data System (ADS)

    Tong, Peiqing

    1994-10-01

    In this paper, we study the localization properties of the wave function of a one-dimensional tight-binding electron moving in an asymptotic periodic potential, Vn=λ cos(2πQn+παnν), where n is the site index and 0<ν<1. For Q rational, the electronic energy band consists of many subbands, and the number of subbands is determined by Q. For λ<2, there are two mobility edges where the eigenstates at the subband center are all extended, whereas the subband-edge states are all localized in every subband. We develop some heuristic arguments to calculate exactly the mobility edges for this model and carry out numerical work to study the localization properties of the model. Our theoretical results are essentially in exact agreement with the numerical results. We calculate the critical exponents δ and β at mobility edges. We also study the nature of the localized, extended eigenstates and mobility edges of this system as a function of λ, α, and ν.

  3. Elastically Deformable Side-Edge Link for Trailing-Edge Flap Aeroacoustic Noise Reduction

    NASA Technical Reports Server (NTRS)

    Khorrami, Mehdi R. (Inventor); Lockard, David P. (Inventor); Moore, James B. (Inventor); Su, Ji (Inventor); Turner, Travis L. (Inventor); Lin, John C. (Inventor); Taminger, Karen M. (Inventor); Kahng, Seun K. (Inventor); Verden, Scott A. (Inventor)

    2014-01-01

    A system is provided for reducing aeroacoustic noise generated by an aircraft having wings equipped with trailing-edge flaps. The system includes a plurality of elastically deformable structures. Each structure is coupled to and along one of the side edges of one of the trailing-edge flaps, and is coupled to a portion of one of the wings that is adjacent to the one of the side edges. The structures elastically deform when the trailing-edge flaps are deployed away from the wings.

  4. Mapping Forest Edge Using Aerial Lidar

    NASA Astrophysics Data System (ADS)

    MacLean, M. G.

    2014-12-01

    Slightly more than 60% of Massachusetts is covered with forest and this land cover type is invaluable for the protection and maintenance of our natural resources and is a carbon sink for the state. However, Massachusetts is currently experiencing a decline in forested lands, primarily due to the expansion of human development (Thompson et al., 2011). Of particular concern is the loss of "core areas" or the areas within forests that are not influenced by other land cover types. These areas are of significant importance to native flora and fauna, since they generally are not subject to invasion by exotic species and are more resilient to the effects of climate change (Campbell et al., 2009). However, the expansion of development has reduced the amount of this core area, but the exact amount is still unknown. Current methods of estimating core area are not particularly precise, since edge, or the area of the forest that is most influenced by other land cover types, is quite variable and situation dependent. Therefore, the purpose of this study is to devise a new method for identifying areas that could qualify as "edge" within the Harvard Forest, in Petersham MA, using new remote sensing techniques. We sampled along eight transects perpendicular to the edge of an abandoned golf course within the Harvard Forest property. Vegetation inventories as well as Photosynthetically Active Radiation (PAR) at different heights within the canopy were used to determine edge depth. These measurements were then compared with small-footprint waveform aerial LiDAR datasets and imagery to model edge depths within Harvard Forest.

  5. Giant topological nontrivial band gaps in chloridized gallium bismuthide.

    PubMed

    Li, Linyang; Zhang, Xiaoming; Chen, Xin; Zhao, Mingwen

    2015-02-11

    Quantum spin Hall (QSH) effect is promising for achieving dissipationless transport devices but presently is achieved only at extremely low temperature. Searching for the large-gap QSH insulators with strong spin-orbit coupling (SOC) is the key to increase the operating temperature. We demonstrate theoretically that this can be solved in the chloridized gallium bismuthide (GaBiCl2) monolayer, which has nontrivial gaps of 0.95 eV at the Γ point, and 0.65 eV for bulk, as well as gapless edge states in the nanoribbon structures. The nontrivial gaps due to the band inversion and SOC are robust against external strain. The realization of the GaBiCl2 monolayer will be beneficial for achieving QSH effect and related applications at high temperatures.

  6. Charge and Spin-State Characterization of Cobalt Bis( o-dioxolene) Valence Tautomers Using Co Kβ X-ray Emission and L-Edge X-ray Absorption Spectroscopies

    DOE PAGES

    Liang, H. Winnie; Kroll, Thomas; Nordlund, Dennis; ...

    2016-12-30

    The valence tautomeric states of Co(phen)(3,5-DBQ) 2 and Co(tmeda)(3,5-DBQ) 2, where 3,5-DBQ is either the semiquinone (SQ –) or catecholate (Cat 2–) form of 3,5-di- tert-butyl-1,2-benzoquinone, have been examined by a series of cobalt-specific X-ray spectroscopies. In this work, we have utilized the sensitivity of 1s3p X-ray emission spectroscopy (Kβ XES) to the oxidation and spin states of 3d transition-metal ions to determine the cobalt-specific electronic structure of valence tautomers. A comparison of their Kβ XES spectra with the spectra of cobalt coordination complexes with known oxidation and spin states demonstrates that the low-temperature valence tautomer can be described asmore » a low-spin Co III configuration and the high-temperature valence tautomer as a high-spin Co II configuration. This conclusion is further supported by Co L-edge X-ray absorption spectroscopy (L-edge XAS) of the high-temperature valence tautomers and ligand-field atomic-multiplet calculations of the Kβ XES and L-edge XAS spectra. In conclusion, the nature and strength of the magnetic exchange interaction between the cobalt center and SQ – in cobalt valence tautomers is discussed in view of the effective spin at the Co site from Kβ XES and the molecular spin moment from magnetic susceptibility measurements.« less

  7. Charge and Spin-State Characterization of Cobalt Bis( o-dioxolene) Valence Tautomers Using Co Kβ X-ray Emission and L-Edge X-ray Absorption Spectroscopies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, H. Winnie; Kroll, Thomas; Nordlund, Dennis

    The valence tautomeric states of Co(phen)(3,5-DBQ) 2 and Co(tmeda)(3,5-DBQ) 2, where 3,5-DBQ is either the semiquinone (SQ –) or catecholate (Cat 2–) form of 3,5-di- tert-butyl-1,2-benzoquinone, have been examined by a series of cobalt-specific X-ray spectroscopies. In this work, we have utilized the sensitivity of 1s3p X-ray emission spectroscopy (Kβ XES) to the oxidation and spin states of 3d transition-metal ions to determine the cobalt-specific electronic structure of valence tautomers. A comparison of their Kβ XES spectra with the spectra of cobalt coordination complexes with known oxidation and spin states demonstrates that the low-temperature valence tautomer can be described asmore » a low-spin Co III configuration and the high-temperature valence tautomer as a high-spin Co II configuration. This conclusion is further supported by Co L-edge X-ray absorption spectroscopy (L-edge XAS) of the high-temperature valence tautomers and ligand-field atomic-multiplet calculations of the Kβ XES and L-edge XAS spectra. In conclusion, the nature and strength of the magnetic exchange interaction between the cobalt center and SQ – in cobalt valence tautomers is discussed in view of the effective spin at the Co site from Kβ XES and the molecular spin moment from magnetic susceptibility measurements.« less

  8. Access to a New Plasma Edge State with High Density and Pressures using Quiescent H-mode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solomon, Wayne M.; Snyder, P. B.; Burrell, K. H.

    2014-07-01

    A path to a new high performance regime has been discovered in tokamaks that could improve the attractiveness of a fusion reactor. Experiments on DIII-D using a quiescent H-mode edge have navigated a valley of improved edge peeling-ballooning stability that opens up with strong plasma shaping at high density, leading to a doubling of the edge pressure over standard edge localized mode (ELM)ing H-mode at these parameters. The thermal energy confinement time increases both as a result of the increased pedestal height and improvements in the core transport and reduced low-k turbulence. Calculations of the pedestal height and width asmore » a function of density using constraints imposed by peeling-ballooning and kinetic-ballooning theory are in quantitative agreement with the measurements.« less

  9. Theory of nitrogen doping of carbon nanoribbons: Edge effects

    DOE PAGES

    Jiang, Jie; Turnbull, Joseph; Lu, Wenchang; ...

    2012-01-01

    Nitrogen doping of a carbon nanoribbon is profoundly affected by its one-dimensional character, symmetry, and interaction with edge states. Using state-of-the-art ab initio calculations, including hybrid exact-exchange density functional theory, we find that, for N-doped zigzag ribbons, the electronic properties are strongly dependent upon sublattice effects due to the non-equivalence of the two sublattices. For armchair ribbons, N-doping effects are different depending upon the ribbon family: for families 2 and 0, the N-induced levels are in the conduction band, while for family 1 the N levels are in the gap. In zigzag nanoribbons, nitrogen close to the edge is amore » deep center, while in armchair nanoribbons its behavior is close to an effective-mass-like donor with the ionization energy dependent on the value of the band gap. In chiral nanoribbons, we find strong dependence of the impurity level and formation energy upon the edge position of the dopant, while such site-specificity is not manifested in the magnitude of the magnetization.« less

  10. Capacity improvement of the carbon-based electrochemical capacitor by zigzag-edge introduced graphene

    NASA Astrophysics Data System (ADS)

    Tamura, Naoki; Tomai, Takaaki; Oka, Nobuto; Honma, Itaru

    2018-01-01

    The electrochemical properties of graphene edge has been attracted much attention. Especially, zigzag edge has high electrochemical activity because neutral radical exits on edge. However, due to a lack of efficient production method for zigzag graphene, the electrochemical properties of zigzag edge have not been experimentally demonstrated and the capacitance enhancement of carbonaceous materials in energy storage devices by the control in their edge states is still challenge. In this study, we fabricated zigzag-edge-rich graphene by a one-step method combining graphene exfoliation in supercritical fluid and anisotropic etching by catalytic nanoparticles. This efficient production of zigzag-edge-rich graphene allows us to investigate the electrochemical activity of zigzag edge. By cyclic voltammetry, we revealed the zigzag edge-introduced graphene exhibited unique redox reaction in aqueous acid solution. Moreover, by the calculation on the density function theory (DFT), this unique redox potential for zigzag edge-introduced graphene can be attributed to the proton-insertion/-extraction reactions at the zigzag edge. This finding indicates that the graphene edge modification can contribute to the further increase in the capacitance of the carbon-based electrochemical capacitor.

  11. Role of edge superconducting states in trapping of multi-quanta vortices by microholes. Application of the bitter decoration technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bezryadin, A.; Pannetier, B.

    1996-01-01

    The Bitter decoration technique is used to study the trapping of single and multiple quanta vortices by a lattice of circular microholes. By keeping a thin superconducting layer (the bottom) inside each hole the authors are able to visualise the trapped vortices. From this they determine, for the first time, the filling factor FF, i.e. the number of vortices captured inside a hole. In all cases the sample is cooled at a constant field before making the decoration. Two qualitatively different states of the vortex crystal are observed: (1) In case when the interhole distance is much larger than themore » coherence length, the filling factor averaged over many identical holes () is a stepwise function of the magnetic flux (of the external field) through the hole, because each hole captures the same number of vortices. The density of fluxoids inside the openings is higher than in the uniform film, but much lower than it should be in the state of equilibrium. The authors claim that the number of trapped vortices is determined by the edge superconducting states which appear around each hole at the modified third critical field H{sub c3}* > H{sub c2}. Below H{sub c2} such states produce a surface barrier of a new type. This barrier for the vortex entrance and exit is due to the strong increase of the order parameter near the hole edge. It keeps constant the number of captured vortices during the cooling at a fixed field. (2) An increase of the hole density or of the hole radius initiates a sharp redistribution of fluxoids: all of them drop inside holes. This first order transition leads to a localization of all vortices and consequently to a qualitative change of the transport properties (TAFF in this case). In the resulting new state the filling factor is not any more the same for neighboring holes and its averaged value is equal to the frustration of the hole network.« less

  12. Full-waveform data for building roof step edge localization

    NASA Astrophysics Data System (ADS)

    Słota, Małgorzata

    2015-08-01

    Airborne laser scanning data perfectly represent flat or gently sloped areas; to date, however, accurate breakline detection is the main drawback of this technique. This issue becomes particularly important in the case of modeling buildings, where accuracy higher than the footprint size is often required. This article covers several issues related to full-waveform data registered on building step edges. First, the full-waveform data simulator was developed and presented in this paper. Second, this article provides a full description of the changes in echo amplitude, echo width and returned power caused by the presence of edges within the laser footprint. Additionally, two important properties of step edge echoes, peak shift and echo asymmetry, were noted and described. It was shown that these properties lead to incorrect echo positioning along the laser center line and can significantly reduce the edge points' accuracy. For these reasons and because all points are aligned with the center of the beam, regardless of the actual target position within the beam footprint, we can state that step edge points require geometric corrections. This article presents a novel algorithm for the refinement of step edge points. The main distinguishing advantage of the developed algorithm is the fact that none of the additional data, such as emitted signal parameters, beam divergence, approximate edge geometry or scanning settings, are required. The proposed algorithm works only on georeferenced profiles of reflected laser energy. Another major advantage is the simplicity of the calculation, allowing for very efficient data processing. Additionally, the developed method of point correction allows for the accurate determination of points lying on edges and edge point densification. For this reason, fully automatic localization of building roof step edges based on LiDAR full-waveform data with higher accuracy than the size of the lidar footprint is feasible.

  13. The Facilitator's Edge: Group Sessions for Edge-ucators.

    ERIC Educational Resources Information Center

    Handcock, Helen

    The Facilitator's Edge is a workshop series based on the life/work messages of The Edge magazine. The workshops are deigned to help educators, youth workers, and their career practitioners facilitate conscious career building. This manual consists of five group sessions, each focusing on a different career-building theme. "Megatrends and…

  14. The influence of coordination geometry and valency on the K-edge absorption near edge spectra of selected chromium compounds

    NASA Astrophysics Data System (ADS)

    Pantelouris, A.; Modrow, H.; Pantelouris, M.; Hormes, J.; Reinen, D.

    2004-05-01

    X-ray absorption spectra at the chromium K-edge are reported for a number of selected chromium compounds of known chemical structure. The spectra were obtained with use of synchrotron radiation available at the ELectron Stretcher Accelerator ELSA in Bonn. The compounds studied include the tetrahedrally coordinated compounds Ca 2Ge 0.8Cr 0.2O 4, Ba 2Ge 0.1Cr 0.9O 4, Sr 2CrO 4, Ca 2(PO 4) x(CrO 4) 1- xCl ( x=0.25,0.5), Ca 5(CrO 4) 3Cl, CrO 3, the octahedrally coordinated compounds Cr(II)-acetate, CrCl 3, CrF 3, Cr 2O 3, KCr(SO 4) 2 · 12H 2O, CrO 2 and cubic coordinated metallic chromium. In these compounds chromium exhibits a wide range of formal oxidation states (0 to VI). The absorption features in the near edge region are shown to be characteristic of the spatial environment of the absorbing atom. The occurrence of a single pre-edge line easily allows one to distinguish between tetrahedral and octahedral coordination geometry, whereas the energy position of the absorption edge is found to be very sensitive to the valency of the excited chromium atom. Calculations of the ionisation potential of Cr in different oxidation states using the non-relativistic Hartree-Fock method (Froese-Fischer) confirm that the ionisation limit shifts to higher energy with increasing Cr valency. More detailed information on the electronic structure of the different compounds is gained by real-space full multiple scattering calculations using the FEFF8 code.

  15. Cue competition affects temporal dynamics of edge-assignment in human visual cortex.

    PubMed

    Brooks, Joseph L; Palmer, Stephen E

    2011-03-01

    Edge-assignment determines the perception of relative depth across an edge and the shape of the closer side. Many cues determine edge-assignment, but relatively little is known about the neural mechanisms involved in combining these cues. Here, we manipulated extremal edge and attention cues to bias edge-assignment such that these two cues either cooperated or competed. To index their neural representations, we flickered figure and ground regions at different frequencies and measured the corresponding steady-state visual-evoked potentials (SSVEPs). Figural regions had stronger SSVEP responses than ground regions, independent of whether they were attended or unattended. In addition, competition and cooperation between the two edge-assignment cues significantly affected the temporal dynamics of edge-assignment processes. The figural SSVEP response peaked earlier when the cues causing it cooperated than when they competed, but sustained edge-assignment effects were equivalent for cooperating and competing cues, consistent with a winner-take-all outcome. These results provide physiological evidence that figure-ground organization involves competitive processes that can affect the latency of figural assignment.

  16. Edge printability: techniques used to evaluate and improve extreme wafer edge printability

    NASA Astrophysics Data System (ADS)

    Roberts, Bill; Demmert, Cort; Jekauc, Igor; Tiffany, Jason P.

    2004-05-01

    The economics of semiconductor manufacturing have forced process engineers to develop techniques to increase wafer yield. Improvements in process controls and uniformities in all areas of the fab have reduced film thickness variations at the very edge of the wafer surface. This improved uniformity has provided the opportunity to consider decreasing edge exclusions, and now the outermost extents of the wafer must be considered in the yield model and expectations. These changes have increased the requirements on lithography to improve wafer edge printability in areas that previously were not even coated. This has taxed all software and hardware components used in defining the optical focal plane at the wafer edge. We have explored techniques to determine the capabilities of extreme wafer edge printability and the components of the systems that influence this printability. We will present current capabilities and new detection techniques and the influence that the individual hardware and software components have on edge printability. We will show effects of focus sensor designs, wafer layout, utilization of dummy edge fields, the use of non-zero overlay targets and chemical/optical edge bead optimization.

  17. Stability and dynamics of the edge pedestal in the low collisionality regime: physics mechanisms for steady-state ELM-free operation

    NASA Astrophysics Data System (ADS)

    Snyder, P. B.; Burrell, K. H.; Wilson, H. R.; Chu, M. S.; Fenstermacher, M. E.; Leonard, A. W.; Moyer, R. A.; Osborne, T. H.; Umansky, M.; West, W. P.; Xu, X. Q.

    2007-08-01

    Understanding the physics of the edge pedestal and edge localized modes (ELMs) is of great importance for ITER and the optimization of the tokamak concept. The peeling-ballooning model has quantitatively explained many observations, including ELM onset and pedestal constraints, in the standard H-mode regime. The ELITE code has been developed to efficiently evaluate peeling-ballooning stability for comparison with observation and predictions for future devices. We briefly review recent progress in the peeling-ballooning model, including experimental validation of ELM onset and pedestal height predictions, and nonlinear 3D simulations of ELM dynamics, which together lead to an emerging understanding of the physics of the onset and dynamics of ELMs in the standard intermediate to high collisionality regime. We also discuss new studies of the apparent power dependence of the pedestal, and studies of the impact of sheared toroidal flow. Recently, highly promising low collisionality regimes without ELMs have been discovered, including the quiescent H-mode (QH) and resonant magnetic perturbation (RMP) regimes. We present recent observations from the DIII-D tokamak of the density, shape and rotation dependence of QH discharges, and studies of the peeling-ballooning stability in this regime. We propose a model of the QH-mode in which the observed edge harmonic oscillation (EHO) is a saturated kink/peeling mode which is destabilized by current and rotation, and drives significant transport, allowing a near steady-state edge plasma. The model quantitatively predicts the observed density dependence and qualitatively predicts observed mode structure, rotation dependence and outer gap dependence. Low density RMP discharges are found to operate in a similar regime, but with the EHO replaced by an applied magnetic perturbation.

  18. Edge-based image restoration.

    PubMed

    Rareş, Andrei; Reinders, Marcel J T; Biemond, Jan

    2005-10-01

    In this paper, we propose a new image inpainting algorithm that relies on explicit edge information. The edge information is used both for the reconstruction of a skeleton image structure in the missing areas, as well as for guiding the interpolation that follows. The structure reconstruction part exploits different properties of the edges, such as the colors of the objects they separate, an estimate of how well one edge continues into another one, and the spatial order of the edges with respect to each other. In order to preserve both sharp and smooth edges, the areas delimited by the recovered structure are interpolated independently, and the process is guided by the direction of the nearby edges. The novelty of our approach lies primarily in exploiting explicitly the constraint enforced by the numerical interpretation of the sequential order of edges, as well as in the pixel filling method which takes into account the proximity and direction of edges. Extensive experiments are carried out in order to validate and compare the algorithm both quantitatively and qualitatively. They show the advantages of our algorithm and its readily application to real world cases.

  19. Edge enhancement improves disruptive camouflage by emphasising false edges and creating pictorial relief.

    PubMed

    Egan, John; Sharman, Rebecca J; Scott-Brown, Kenneth C; Lovell, Paul George

    2016-12-06

    Disruptive colouration is a visual camouflage composed of false edges and boundaries. Many disruptively camouflaged animals feature enhanced edges; light patches are surrounded by a lighter outline and/or a dark patches are surrounded by a darker outline. This camouflage is particularly common in amphibians, reptiles and lepidopterans. We explored the role that this pattern has in creating effective camouflage. In a visual search task utilising an ultra-large display area mimicking search tasks that might be found in nature, edge enhanced disruptive camouflage increases crypsis, even on substrates that do not provide an obvious visual match. Specifically, edge enhanced camouflage is effective on backgrounds both with and without shadows; i.e. this is not solely due to background matching of the dark edge enhancement element with the shadows. Furthermore, when the dark component of the edge enhancement is omitted the camouflage still provided better crypsis than control patterns without edge enhancement. This kind of edge enhancement improved camouflage on all background types. Lastly, we show that edge enhancement can create a perception of multiple surfaces. We conclude that edge enhancement increases the effectiveness of disruptive camouflage through mechanisms that may include the improved disruption of the object outline by implying pictorial relief.

  20. Edge enhancement improves disruptive camouflage by emphasising false edges and creating pictorial relief

    PubMed Central

    Egan, John; Sharman, Rebecca J.; Scott-Brown, Kenneth C.; Lovell, Paul George

    2016-01-01

    Disruptive colouration is a visual camouflage composed of false edges and boundaries. Many disruptively camouflaged animals feature enhanced edges; light patches are surrounded by a lighter outline and/or a dark patches are surrounded by a darker outline. This camouflage is particularly common in amphibians, reptiles and lepidopterans. We explored the role that this pattern has in creating effective camouflage. In a visual search task utilising an ultra-large display area mimicking search tasks that might be found in nature, edge enhanced disruptive camouflage increases crypsis, even on substrates that do not provide an obvious visual match. Specifically, edge enhanced camouflage is effective on backgrounds both with and without shadows; i.e. this is not solely due to background matching of the dark edge enhancement element with the shadows. Furthermore, when the dark component of the edge enhancement is omitted the camouflage still provided better crypsis than control patterns without edge enhancement. This kind of edge enhancement improved camouflage on all background types. Lastly, we show that edge enhancement can create a perception of multiple surfaces. We conclude that edge enhancement increases the effectiveness of disruptive camouflage through mechanisms that may include the improved disruption of the object outline by implying pictorial relief. PMID:27922058

  1. Experimental investigation of edge hardening and edge cracking sensitivity of burr-free parts

    NASA Astrophysics Data System (ADS)

    Senn, Sergei; Liewald, Mathias

    2018-05-01

    This experimental study is focused on characterisation of edge hardening of sheet metal and remaining formability of differently prepared cutted edges. Edge cracking sensitivity of counter cutted, shear cutted, recutted and water-jet cutted components are compared and evaluated. Subsequently, edge hardening and hole expansion ratio were correlated for material HC420 LA with sheet thickness of t = 2 mm. As other studies show, the cutting edge surface quality influences the hole expansion ratio: a high clear cut surface increases formability of cutting edges, whereas micro cracks and rough surfaces result into a large fracture surface, which impact remaining formability noticeably. Thus, cutting edges with lower edge hardening behaviour in conjunction with a higher clear cut surface exhibit higher hole expansion ratios. Counter cutting and the recutting do show a similar effect on edge hardening. Using the hole expansion test, it was possible to prove that counter cutted components show a significantly lower edge cracking sensitivity in comparison to conventionally shear cutted components. The hole expansion ratio of counter cutted specimens looks balanced and is comparable to the hole expansion ratio measured from specimens with recutted or water jet cutted edges. The significant difference of the investigated cutting processes is characterized by size of clear cutting area. This area of recutted edges emerges larger than the area of counter cutted specimens, which evidently leads to an increased hole expansion ratio of recutted specimens compared to conventionally shear cutted ones. However, it is important to note that the hole expansion ratio of counter cutted and recutted specimens appear fairly balanced, but counter cutted samples indeed can be produced burr-free. Using counter cutting technology, it is possible to produce burr free surfaces with high edge formability.

  2. On the impact of multi-axial stress states on trailing edge bondlines in wind turbine rotor blades

    NASA Astrophysics Data System (ADS)

    Noever Castelos, Pablo; Balzani, Claudio

    2016-09-01

    For a reliable design of wind turbine systems all of their components have to be designed to withstand the loads appearing in the turbine's lifetime. When performed in an integral manner this is called systems engineering, and is exceptionally important for components that have an impact on the entire wind turbine system, such as the rotor blade. Bondlines are crucial subcomponents of rotor blades, but they are not much recognized in the wind energy research community. However, a bondline failure can lead to the loss of a rotor blade, and potentially of the entire turbine, and is extraordinarily relevant to be treated with strong emphasis when designing a wind turbine. Modern wind turbine rotor blades with lengths of 80 m and more offer a degree of flexibility that has never been seen in wind energy technology before. Large deflections result in high strains in the adhesive connections, especially at the trailing edge. The latest edition of the DNV GL guideline from end of 2015 demands a three-dimensional stress analysis of bondlines, whereas before an isolated shear stress proof was sufficient. In order to quantify the lack of safety from older certification guidelines this paper studies the influence of multi-axial stress states on the ultimate and fatigue load resistance of trailing edge adhesive bonds. For this purpose, detailed finite element simulations of the IWES IWT-7.5-164 reference wind turbine blades are performed. Different yield criteria are evaluated for the prediction of failure and lifetime. The results show that the multi-axial stress state is governed by span-wise normal stresses. Those are evidently not captured in isolated shear stress proofs, yielding non-conservative estimates of lifetime and ultimate load resistance. This finding highlights the importance to include a three-dimensional stress state in the failure analysis of adhesive bonds in modern wind turbine rotor blades, and the necessity to perform a three-dimensional characterization

  3. Response of Helical Luttinger Liquid in InAs/GaSb Edges to a Magnetic Field

    NASA Astrophysics Data System (ADS)

    Li, Tingxin; Tong, Bingbing; Liu, Xiaoxue; Han, Zhongdong; Zhang, Chi; Sullivan, Gerard; Du, Rui-Rui

    Electron-electron interactions have been shown to play an important role in InAs/GaSb quantum spin Hall (QSH) edge states, leading to power-law behaviors of the helical edge conductance as a function of temperature and bias voltage (Li et al., Phys. Rev. Lett. 115 136804). A variety of inelastic and/or multiparticle backscattering processes could occur in helical edges when taking electron-electron interactions into account. On the other hand, in the presence of an external magnetic field, single-particle elastic backscattering is also allowed in QSH edge due to the breaking of time-reversal symmetry (TRS). It would be interesting to pursue experimental investigations for the combined effect of electron-electron interactions and TRS breaking on QSH edge transport. We report work in progress for low temperature conductance measurements of the helical edge in InAs/GaSb under perpendicular or in-plane magnetic fields. We found that the magnetic field responses are generally correlated with the interaction strength in the edge states. The work at Peking University were supported by NBRPC Grants (No. 2012CB921301 and No. 2014CB920901), and by Collaborative Innovation Center of Quantum Matter.

  4. Edge ohmic heating and improved confinement on HT-6M Tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, X.

    1995-04-01

    An improved confinement has been observed on HT-6M tokamak after application of Edge Ohmic Heating (EOH) which makes plasma current rapidly ramp up from an initial steady state (I{sub p}=55 kA) within a small time scale (0.4 ms) to a second steady state (I{sub p}=60 kA) with a ramp rate of 12 MA/sec. The improved confinement is characterized by (a) increased average density n{sub e}; (b) reduced H{sub alpha} radiation; (c) reduced density fluctuations both in the center and at the edge; (d) a steeper n{sub e} and T{sub e} profile at the edge; (e) the changed profiles of plasmamore » parameters n{sub e}(r), q(r) and j(r); (f) transferred the oscillation modes of the soft-X ray signals from Mirnov fluctuation (12 kHz) to sawtooth oscillation (1.7 kHz). The changes of edge fluctuation, radial electric field and bremsstrahlung during EOH were measured and discussed in details. The measured values of {beta}{sub p}+l{sub i}/2 and soft-X ray sawtooth inversion radius implied the anomalous current penetration. 10 refs., 2 figs.« less

  5. Atomic multiplets at the L2,3 edge of 3d transition metals and the ligand K edge in x-ray absorption spectroscopy of ionic systems

    NASA Astrophysics Data System (ADS)

    Olalde-Velasco, P.; Jiménez-Mier, J.; Denlinger, J.; Yang, W.-L.

    2013-06-01

    Experimental X-ray absorption spectra at the fluorine K and transition metal L2,3 absorption edges of the MF2 (M=Cr-Ni) family are presented. Ligand field calculations in D4h symmetry show very good agreement with the transition metal L2,3 XAS spectra. To successfully explain nominal Cr2+ L2,3 XAS spectrum in CrF2, the inclusion of Cr+ and Cr3+ was needed implying the presence of a disproportionation reaction. The multiplet calculations were then modified to remove the structure of the 2p hole in the calculated M 2p→3d absorption spectra. These results for the 3dn+1 states are in one to one correspondence with the leading edge structures found at the fluorine K edge. A direct comparison with the metal L2,3 edges also indicates that there is evidence of the metal multiplet at the fluorine K pre-edge structures.

  6. Formation of gapless Z 2 spin liquid phase manganites in the (Sm1- y Gd y )0.55Sr0.45MnO3 system in zero magnetic field: Topological phase transitions to states with low and high density of 2D-vortex pairs induced by the magnetic field

    NASA Astrophysics Data System (ADS)

    Bukhan'ko, F. N.; Bukhan'ko, A. F.

    2017-12-01

    The evolution of the ground state of the manganese spin ensemble in the (Sm1- y Gd y )0.55Sr0.45MnO3 in the case of isovalent substitution of rare-earth samarium ions with large radii with gadolinium ions with significantly smaller radii is studied. The measured temperature dependences of the ac magnetic susceptibility and the field dependences of the dc magnetizations are analyzed using the Heisenberg-Kitaev model describing the transition from the ordered spin state with classical isotropic AFM exchange to the frustrated spin state with quantum highly anisotropic FM exchange. A continuous transition from the 3D ferromagnetic state of manganese spins in the initial sample with y = 0 to zigzag AFM ordering of CE-type spins in ab planes for y = 0.5, coexisting in samples with y = 0.5, 0.6, and 0.7 at temperatures below T N ≅ 48.5 K with a disordered phase such as a quantum Griffiths phase is identified. As the gadolinium concentration further increases, the CE-type zigzag AFM structure is molten, which leads to the appearance of an unusual phase in Gd0.55Sr0.45MnO3 in the temperature range close to the absolute zero. This phase has characteristic features of a gapless Z 2 quantum spin liquid in zero external magnetic field. The step changes in the magnetization isotherms measured at 4.2 K in the field range of ±75 kOe are explained by quantum phase transitions of the Z 2 spin liquid to a phase with topological order in weak magnetic fields and a polarized phase in strong fields. The significant difference between critical fields and magnetization jumps in isotherms indicates the existence of hysteretic phenomena in quantum spin liquid magnetization-demagnetization processes caused by the difference between localization-delocalization of 2D vortex pairs induced by a magnetic field in a quantum spin liquid with disorder.

  7. Assessment of alternatives in vegetation management at the edge of pavement.

    DOT National Transportation Integrated Search

    2010-05-01

    WSDOT has historically maintained a bare ground strip (formerly referred to as Zone 1) along : most state highway pavement edges with the use of non-selective herbicides. However, many : other state DOTs and county road maintenance organizations do n...

  8. Superpixel edges for boundary detection

    DOEpatents

    Moya, Mary M.; Koch, Mark W.

    2016-07-12

    Various embodiments presented herein relate to identifying one or more edges in a synthetic aperture radar (SAR) image comprising a plurality of superpixels. Superpixels sharing an edge (or boundary) can be identified and one or more properties of the shared superpixels can be compared to determine whether the superpixels form the same or two different features. Where the superpixels form the same feature the edge is identified as an internal edge. Where the superpixels form two different features, the edge is identified as an external edge. Based upon classification of the superpixels, the external edge can be further determined to form part of a roof, wall, etc. The superpixels can be formed from a speckle-reduced SAR image product formed from a registered stack of SAR images, which is further segmented into a plurality of superpixels. The edge identification process is applied to the SAR image comprising the superpixels and edges.

  9. Spatial-Spectral Approaches to Edge Detection in Hyperspectral Remote Sensing

    NASA Astrophysics Data System (ADS)

    Cox, Cary M.

    This dissertation advances geoinformation science at the intersection of hyperspectral remote sensing and edge detection methods. A relatively new phenomenology among its remote sensing peers, hyperspectral imagery (HSI) comprises only about 7% of all remote sensing research - there are five times as many radar-focused peer reviewed journal articles than hyperspectral-focused peer reviewed journal articles. Similarly, edge detection studies comprise only about 8% of image processing research, most of which is dedicated to image processing techniques most closely associated with end results, such as image classification and feature extraction. Given the centrality of edge detection to mapping, that most important of geographic functions, improving the collective understanding of hyperspectral imagery edge detection methods constitutes a research objective aligned to the heart of geoinformation sciences. Consequently, this dissertation endeavors to narrow the HSI edge detection research gap by advancing three HSI edge detection methods designed to leverage HSI's unique chemical identification capabilities in pursuit of generating accurate, high-quality edge planes. The Di Zenzo-based gradient edge detection algorithm, an innovative version of the Resmini HySPADE edge detection algorithm and a level set-based edge detection algorithm are tested against 15 traditional and non-traditional HSI datasets spanning a range of HSI data configurations, spectral resolutions, spatial resolutions, bandpasses and applications. This study empirically measures algorithm performance against Dr. John Canny's six criteria for a good edge operator: false positives, false negatives, localization, single-point response, robustness to noise and unbroken edges. The end state is a suite of spatial-spectral edge detection algorithms that produce satisfactory edge results against a range of hyperspectral data types applicable to a diverse set of earth remote sensing applications. This work

  10. Forests on the edge: Microenvironmental drivers of carbon cycle response to edge effects

    NASA Astrophysics Data System (ADS)

    Reinmann, A.; Hutyra, L.; Smith, I. A.; Thompson, J.

    2017-12-01

    Twenty percent of the world's forest is within 100 m of a forest edge, but much of our understanding of forest carbon (C) cycling comes from large, intact ecosystems, which creates an important mismatch between the landscapes we study and those we aim to characterize. The temperate broadleaf forest is the most heavily fragmented forest biome in the world and its growth and carbon storage responses to forest edge effects appear to be the opposite of those in the tropical and boreal regions. We used field measurements to quantify the drivers of temperate forest C cycling response to edge effects, characterizing vegetative growth, respiration, and forest structure. We find large gradients in air and soil temperature from the forest interior to edge (up to 4 and 10° C, respectively) and the magnitude of this gradient is inversely correlated to the size of the forest edge growth enhancement. Further, leaf area index increases with proximity to the forest edge. While we also find increases in soil respiration between the forest interior and edge, this flux is small relative to aboveground growth enhancement near the edge. These findings represent an important advancement in our understanding of forest C cycle response to edge effects and will greatly improve our capacity to constrain biogenic C fluxes in fragmented and heterogeneous landscapes.

  11. Edge modulation of electronics and transport properties of cliff-edge phosphorene nanoribbons

    NASA Astrophysics Data System (ADS)

    Guo, Caixia; Wang, Tianxing; Xia, Congxin; Liu, Yufang

    2017-12-01

    Based on the first-principles calculations, we study the electronic structures and transport properties of cliff-like edge phosphorene nanoribbons (CPNRs), considering different types of edge passivation. The band structures of bare CPNRs possess the metallic features; while hydrogen (H), fluorine (F), chlorine (Cl) and oxygen (O) atoms-passivated CPNRs are semiconductor materials, and the band gap values monotonically decrease when the ribbon width increases. Moreover, the H and F-passivated CPNRs exhibit the direct band gap characteristics, while the Cl and O-passivated cases show the features of indirect band gap. In addition, the edge passivated CPNRs are more energetically stable than bare edge case. Meanwhile, our results also show that the transport properties of the CPNRs can be obviously influenced by the different edge passivation.

  12. Mach-Zehnder interferometry using broken symmetry quantum Hall edges in graphene

    NASA Astrophysics Data System (ADS)

    Wei, Di; van der Sar, Toeno; Sanchez-Yamagishi, Javier; Watanabe, Kenji; Taniguchi, Takashi; Jarillo-Herrero, Pablo; Halperin, Bertrand; Yacoby, Amir

    Graphene has emerged as a unique platform for studying electron optics, particularly in the presence of a magnetic field. Here, we engineer a Mach-Zehnder interferometer using quantum Hall edge states that co-propagate along a single gate-defined NP interface. We use encapsulated monolayer graphene, clean enough to lift the four-fold spin and valley degeneracy. In order to create two separate co-propagating paths, we exploit the suppression of edge state scattering along gate defined edges, and use scattering sites at the ends of the NP interface to form our beam splitters. We observe conductance oscillations as a function of magnetic and electric field indicative of coherent transport, and measure values consistent with spin-selective scattering. We can tune our interferometer to regimes of high visibility (>98 %), surpassing the values reported for GaAs quantum-well Mach-Zehnder interferometers. These results demonstrate a promising method to observe interference between fractional charges in graphene.

  13. Access to a new plasma edge state with high density and pressures using the quiescent H mode

    DOE PAGES

    Solomon, Wayne M.; Snyder, Philip B.; Burrell, Keith H.; ...

    2014-09-24

    A path to a new high performance regime has been discovered in tokamaks that could improve the attractiveness of a fusion reactor. Experiments on DIII-D using a quiescent H-mode edge have navigated a valley of improved edge peeling-ballooning stability that opens up with strong plasma shaping at high density, leading to a doubling of the edge pressure over the standard H mode with edge localized modes at these parameters. The thermal energy confinement time increases as a result of both the increased pedestal height and improvements in the core transport and reduced low-k turbulence. As a result, calculations of themore » pedestal height and width as a function of density using constraints imposed by peeling-ballooning and kinetic-ballooning theory are in quantitative agreement with the measurements.« less

  14. Edge Bioinformatics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lo, Chien-Chi

    2015-08-03

    Edge Bioinformatics is a developmental bioinformatics and data management platform which seeks to supply laboratories with bioinformatics pipelines for analyzing data associated with common samples case goals. Edge Bioinformatics enables sequencing as a solution and forward-deployed situations where human-resources, space, bandwidth, and time are limited. The Edge bioinformatics pipeline was designed based on following USE CASES and specific to illumina sequencing reads. 1. Assay performance adjudication (PCR): Analysis of an existing PCR assay in a genomic context, and automated design of a new assay to resolve conflicting results; 2. Clinical presentation with extreme symptoms: Characterization of a known pathogen ormore » co-infection with a. Novel emerging disease outbreak or b. Environmental surveillance« less

  15. Entanglement spectrum as a generalization of entanglement entropy: identification of topological order in non-Abelian fractional quantum Hall effect states.

    PubMed

    Li, Hui; Haldane, F D M

    2008-07-04

    We study the "entanglement spectrum" (a presentation of the Schmidt decomposition analogous to a set of "energy levels") of a many-body state, and compare the Moore-Read model wave function for the nu=5/2 fractional quantum Hall state with a generic 5/2 state obtained by finite-size diagonalization of the second-Landau-level-projected Coulomb interactions. Their spectra share a common "gapless" structure, related to conformal field theory. In the model state, these are the only levels, while in the "generic" case, they are separated from the rest of the spectrum by a clear "entanglement gap", which appears to remain finite in the thermodynamic limit. We propose that the low-lying entanglement spectrum can be used as a "fingerprint" to identify topological order.

  16. Edge remap for solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamm, James R.; Love, Edward; Robinson, Allen C.

    We review the edge element formulation for describing the kinematics of hyperelastic solids. This approach is used to frame the problem of remapping the inverse deformation gradient for Arbitrary Lagrangian-Eulerian (ALE) simulations of solid dynamics. For hyperelastic materials, the stress state is completely determined by the deformation gradient, so remapping this quantity effectively updates the stress state of the material. A method, inspired by the constrained transport remap in electromagnetics, is reviewed, according to which the zero-curl constraint on the inverse deformation gradient is implicitly satisfied. Open issues related to the accuracy of this approach are identified. An optimization-based approachmore » is implemented to enforce positivity of the determinant of the deformation gradient. The efficacy of this approach is illustrated with numerical examples.« less

  17. Losing your edge: climate change and the conservation value of range-edge populations.

    PubMed

    Rehm, Evan M; Olivas, Paulo; Stroud, James; Feeley, Kenneth J

    2015-10-01

    Populations occurring at species' range edges can be locally adapted to unique environmental conditions. From a species' perspective, range-edge environments generally have higher severity and frequency of extreme climatic events relative to the range core. Under future climates, extreme climatic events are predicted to become increasingly important in defining species' distributions. Therefore, range-edge genotypes that are better adapted to extreme climates relative to core populations may be essential to species' persistence during periods of rapid climate change. We use relatively simple conceptual models to highlight the importance of locally adapted range-edge populations (leading and trailing edges) for determining the ability of species to persist under future climates. Using trees as an example, we show how locally adapted populations at species' range edges may expand under future climate change and become more common relative to range-core populations. We also highlight how large-scale habitat destruction occurring in some geographic areas where many species range edge converge, such as biome boundaries and ecotones (e.g., the arc of deforestation along the rainforest-cerrado ecotone in the southern Amazonia), can have major implications for global biodiversity. As climate changes, range-edge populations will play key roles in helping species to maintain or expand their geographic distributions. The loss of these locally adapted range-edge populations through anthropogenic disturbance is therefore hypothesized to reduce the ability of species to persist in the face of rapid future climate change.

  18. Ground state of a Heisenberg chain with next-nearest-neighbor bond alternation

    NASA Astrophysics Data System (ADS)

    Capriotti, Luca; Becca, Federico; Sorella, Sandro; Parola, Alberto

    2003-05-01

    We investigate the ground-state properties of the spin-half J1-J2 Heisenberg chain with a next-nearest-neighbor spin-Peierls dimerization using conformal field theory and Lanczos exact diagonalizations. In agreement with the results of a recent bosonization analysis by Sarkar and Sen [Phys. Rev. B 65, 172408 (2002)], we find that for small frustration (J2/J1) the system is in a Luttinger spin-fluid phase, with gapless excitations, and a finite spin-wave velocity. In the regime of strong frustration the ground state is spontaneously dimerized and the bond alternation reduces the triplet gap, leading to a slight enhancement of the critical point separating the Luttinger phase from the gapped one. An accurate determination of the phase boundary is obtained numerically from the study of the excitation spectrum.

  19. Network evolution by nonlinear preferential rewiring of edges

    NASA Astrophysics Data System (ADS)

    Xu, Xin-Jian; Hu, Xiao-Ming; Zhang, Li-Jie

    2011-06-01

    The mathematical framework for small-world networks proposed in a seminal paper by Watts and Strogatz sparked a widespread interest in modeling complex networks in the past decade. However, most of research contributing to static models is in contrast to real-world dynamic networks, such as social and biological networks, which are characterized by rearrangements of connections among agents. In this paper, we study dynamic networks evolved by nonlinear preferential rewiring of edges. The total numbers of vertices and edges of the network are conserved, but edges are continuously rewired according to the nonlinear preference. Assuming power-law kernels with exponents α and β, the network structures in stationary states display a distinct behavior, depending only on β. For β>1, the network is highly heterogeneous with the emergence of starlike structures. For β<1, the network is widely homogeneous with a typical connectivity. At β=1, the network is scale free with an exponential cutoff.

  20. On spinodal points and Lee-Yang edge singularities

    NASA Astrophysics Data System (ADS)

    An, X.; Mesterházy, D.; Stephanov, M. A.

    2018-03-01

    We address a number of outstanding questions associated with the analytic properties of the universal equation of state of the φ4 theory, which describes the critical behavior of the Ising model and ubiquitous critical points of the liquid–gas type. We focus on the relation between spinodal points that limit the domain of metastability for temperatures below the critical temperature, i.e. T < Tc , and Lee-Yang edge singularities that restrict the domain of analyticity around the point of zero magnetic field H for T > Tc . The extended analyticity conjecture (due to Fonseca and Zamolodchikov) posits that, for T < Tc , the Lee-Yang edge singularities are the closest singularities to the real H axis. This has interesting implications, in particular, that the spinodal singularities must lie off the real H axis for d < 4 , in contrast to the commonly known result of the mean-field approximation. We find that the parametric representation of the Ising equation of state obtained in the \\renewcommandε{\\varepsilon} \

  1. NbN/MgO/NbN edge-geometry tunnel junctions

    NASA Technical Reports Server (NTRS)

    Hunt, B. D.; Leduc, H. G.; Cypher, S. R.; Stern, J. A.; Judas, A.

    1989-01-01

    The fabrication and low-frequency testing of the first edge-geometry NbN/MgO/NbN superconducting tunnel junctions are reported. The use of an edge geometry allows very small junction areas to be obtained, while the all-NbN electrodes permit operation at 8-10 K with a potential maximum operating frequency above 1 THz. Edge definition in the base NbN film was accomplished utilizing Ar ion milling with an Al2O3 milling mask, followed by a lower energy ion cleaning step. This process has produced all-refractory-material tunnel junctions with areas as small as 0.1 sq micron, resistance-area products less than 21 ohm sq micron, and subgap to normal state resistance ratios larger than 18.

  2. A Thermostructural Analysis of a Diboride Composite Leading Edge

    NASA Technical Reports Server (NTRS)

    Kowalski, Tom; Buesking, Kent; Kolodziej, Paul; Bull, Jeff

    1996-01-01

    In an effort to support the design of zirconium diboride composite leading edges for hypersonic vehicles, a finite element model (FEM) of a prototype leading edge was created and finite element analysis (FEA) was employed to assess its thermal and structural response to aerothermal boundary conditions. Unidirectional material properties for the structural components of the leading edge, a continuous fiber reinforced diboride composite, were computed with COSTAR. These properties agree well with those experimentally measured. To verify the analytical approach taken with COSMOS/M, an independent FEA of one of the leading edge assembly components was also done with COSTAR. Good agreement was obtained between the two codes. Both showed that a unidirectional lay-up had the best margin of safety for a simple loading case. Both located the maximum stress in the same region and ply. The magnitudes agreed within 4 percent. Trajectory based aerothermal heating was then applied to the leading edge assembly FEM created with COSMOS/M to determine steady state temperature response, displacement, stresses, and contact forces due to thermal expansion and thermal strains. Results show that the leading edge stagnation line temperature reached 4700 F. The maximum computed failure index for the laminated composite components peaks at 4.2, and is located at the bolt flange in layer 2 of the side bracket. The temperature gradient in the tip causes a compressive stress of 279 ksi along its width and substantial tensile stresses within its depth.

  3. Tunable electronic properties of partially edge-hydrogenated armchair boron-nitrogen-carbon nanoribbons.

    PubMed

    Alaal, Naresh; Medhekar, Nikhil; Shukla, Alok

    2018-04-18

    We employ a first-principles calculations based density-functional-theory (DFT) approach to study the electronic properties of partially and fully edge-hydrogenated armchair boron-nitrogen-carbon (BNC) nanoribbons (ABNCNRs), with widths between 0.85 nm to 2.3 nm. Due to the partial passivation of edges, the electrons, which do not participate in the bonding, form new energy states located near the Fermi-level. Because of these additional bands, some ABNCNRs exhibit metallic behavior, which is quite uncommon in armchair nanoribbons. Our calculations reveal that metallic behavior is observed for the following passivation patterns: (i) when the B atom from one edge and the N atom from another edge are unpassivated. (ii) when the N atoms from both the edges are unpassivated. (iii) when the C atom from one edge and the N atom from another edge are unpassivated. Furthermore, spin-polarization is also observed for certain passivation schemes, which is also quite uncommon for armchair nanoribbons. Thus, our results suggest that the ABNCNRs exhibit a wide range of electronic and magnetic properties in that the fully edge-hydrogenated ABNCNRs are direct band gap semiconductors, while the partially edge-hydrogenated ones are either semiconducting, or metallic, while simultaneously exhibiting spin polarization, based on the nature of passivation. We also find that the ribbons with larger widths are more stable as compared to the narrower ones.

  4. Absence of quantum anomalous Hall state in 4 d transition-metal-doped B i2S e3 : An ab initio study

    NASA Astrophysics Data System (ADS)

    Deng, Bei; Liu, Feng; Zhu, Junyi

    2017-11-01

    The realization of insulating ferromagnetic states in topological insulator (TI) systems, with sufficiently high Curie temperatures (TC) and large magnetically induced gaps, has been the key bottleneck towards the realization of the quantum anomalous Hall effect (QAHE). Despite the limited reports on 3 d or 4 f transition-metal (TM)-doped B i2S e3 , there remains a lack of systematic studies on 4 d TMs, which may be potential candidates since the atomic sizes of 4 d TMs and that of Bi are similar. Here, we report a theoretical work that probes the magnetic behaviors of the 4 d TM-doped B i2S e3 system. We discovered that among the 4 d TMs, Nb and Mo can create magnetic moments of 1.76 and 2.96 μ B in B i2S e3 , respectively. While Mo yields a stable gapless antiferromagnetic ground state, Nb favors a strong ferromagnetic order, with the magnetic coupling strength (TC) ˜6 times of that induced by the traditional Cr impurity. Yet, we found that Nb is still unfavorable to support the QAH state in B i2S e3 because of the reduced correlation in the t2 g band that gives a gapless character. This rationale is not only successful in interpreting why Nb, the strongest candidate among 4 d TMs for achieving ferromagnetism in B i2S e3 , actually cannot lead to QAHE in the B i2S e3 system even with the assistance of codoping but also is particularly important to fully understand the mechanism of acquisition of insulating ferromagnetic states inside TI. On the other hand, we discovered that Mo-doped B i2S e3 favors strong antiferromagnetic states and may lead to superconducting states.

  5. Development of edge effects around experimental ecosystem hotspots is affected by edge density and matrix type

    USDA-ARS?s Scientific Manuscript database

    Ecological edge effects are sensitive to landscape context. In particular, edge effects can be altered by matrix type and by the presence of other nearby edges. We experimentally altered patch configurations in an African savanna to determine how edge density and matrix type influence edge effect de...

  6. Gain media edge treatment to suppress amplified spontaneous emission in a high power laser

    DOEpatents

    Hackel, Lloyd A [Livermore, CA; Soules, Thomas F [Livermore, CA; Fochs, Scott N [Livermore, CA; Rotter, Mark D [San Ramon, CA; Letts, Stephan A [San Ramon, CA

    2011-02-22

    A novel method and apparatus for suppressing ASE and/or parasitic oscillation modes in a laser is introduced. By roughening one or more peripheral edges of a solid-state crystal or ceramic laser gain media and by bonding such edges to a predetermined electromagnetic absorbing material arranged adjacent to the entire outer surface of the peripheral edges of the roughened laser gain media, ASE, parasitic oscillation modes and/or residual pump energy can be effectively suppressed.

  7. Experimental observation of anomalous topological edge modes in a slowly driven photonic lattice

    PubMed Central

    Mukherjee, Sebabrata; Spracklen, Alexander; Valiente, Manuel; Andersson, Erika; Öhberg, Patrik; Goldman, Nathan; Thomson, Robert R.

    2017-01-01

    Topological quantum matter can be realized by subjecting engineered systems to time-periodic modulations. In analogy with static systems, periodically driven quantum matter can be topologically classified by topological invariants, whose non-zero value guarantees the presence of robust edge modes. In the high-frequency limit of the drive, topology is described by standard topological invariants, such as Chern numbers. Away from this limit, these topological numbers become irrelevant, and novel topological invariants must be introduced to capture topological edge transport. The corresponding edge modes were coined anomalous topological edge modes, to highlight their intriguing origin. Here we demonstrate the experimental observation of these topological edge modes in a 2D photonic lattice, where these propagating edge states are shown to coexist with a quasi-localized bulk. Our work opens an exciting route for the exploration of topological physics in time-modulated systems operating away from the high-frequency regime. PMID:28051060

  8. On the generation of side-edge flap noise. [part span trailing edge flaps

    NASA Technical Reports Server (NTRS)

    Howe, M. S.

    1981-01-01

    A theory is proposed for estimating the noise generated at the side edges of part span trailing edge flaps in terms of pressure fluctuations measured just in-board of the side edge of the upper surface of the flap. Asymptotic formulae are developed in the opposite extremes of Lorentz contracted acoustic wavelength large/small compared with the chord of the flap. Interpolation between these limiting results enables the field shape and its dependence on subsonic forward flight speed to be predicted over the whole frequency range. It is shown that the mean width of the side edge gap between the flap and the undeflected portion of the airfoil has a significant influence on the intensity of the radiated sound. It is estimated that the noise generated at a single side edge of a full scale part span flap can exceed that produced along the whole of the trailing edge of the flap by 3 dB or more.

  9. Origin of the 1 eV-reflectivity edges in high-T c superconducting cuprates

    NASA Astrophysics Data System (ADS)

    Tajima, S.; Uchida, S.; Kaneko, T.; Tomeno, I.; Kosuge, M.; Yamauchi, H.; Koshizuka, N.

    1992-05-01

    The reflectivity edge commonly observed at around 1 eV in the optical spectrum is investigated for a number of high- Tc superconducting cuprates. We have found that the edge energy ( ωedge) is almost independent of doping concentration in each material but varies widely among the materials dependent on the average CuO 2-plane spacing d c. This is consistent with a view supposing that the observed reflectivity edge corresponds to the plasma edge associated with the renormalized two-dimensional band, which would be nearly half-filled and has been reconstructed on doping from the gap-separated states of the charge transfer insulator as a result of reduced renormalization. We could not find a universal correlation between Tc and ω'p2.

  10. K-shell photoabsorption edge of strongly coupled aluminum driven by laser-converted radiation

    NASA Astrophysics Data System (ADS)

    Zhao, Yang; Zhang, Zhiyu; Qing, Bo; Yang, Jiamin; Zhang, Jiyan; Wei, Minxi; Yang, Guohong; Song, Tianming; Xiong, Gang; Lv, Min; Hu, Zhimin; Deng, Bo; Hu, Xin; Zhang, Wenhai; Shang, Wanli; Hou, Lifei; Du, Huabing; Zhan, Xiayu; Yu, Ruizhen

    2017-03-01

    The first observation of the K-shell photoabsorption edge of strongly coupled aluminum generated by intense x-ray radiation-driven shocks is reported. By using a “dog bone” gold hohlraum as an x-ray converter, colliding shocks compression and preheating shielding are achieved to generate an unexplored state with a density of 5.5 g/cm3 and temperature of 0.43 eV (the ion-ion coupling parameter Γii is around 240). The time-resolved K-shell photoabsorption edges are measured with a crystal spectrometer using a short x-ray backlighter. The broadenings and redshifts of the edges are studied by using the slope fitting of the edge and quantum molecular dynamics calculations. This work shows that the K-edge of aluminum driven by laser-converted radiation provides a novel capability to probe WDM at extended conditions.

  11. Infective endocarditis following transcatheter edge-to-edge mitral valve repair: A systematic review.

    PubMed

    Asmarats, Lluis; Rodriguez-Gabella, Tania; Chamandi, Chekrallah; Bernier, Mathieu; Beaudoin, Jonathan; O'Connor, Kim; Dumont, Eric; Dagenais, François; Paradis, Jean-Michel; Rodés-Cabau, Josep

    2018-05-10

    To assess the clinical characteristics, management, and outcomes of patients diagnosed with infective endocarditis (IE) after edge-to-edge mitral valve repair with the MitraClip device. Transcatheter edge-to-edge mitral valve repair has emerged as an alternative to surgery in high-risk patients. However, few data exist on IE following transcatheter mitral procedures. Four electronic databases (PubMed, Google Scholar, Embase, and Cochrane Library) were searched for original published studies on IE after edge-to-edge transcatheter mitral valve repair from 2003 to 2017. A total of 10 publications describing 12 patients with definitive IE (median age 76 years, 55% men) were found. The mean logistic EuroSCORE/EuroSCORE II were 41% and 45%, respectively. The IE episode occurred early (within 12 months post-procedure) in nine patients (75%; within the first month in five patients). Staphylococcus aureus was the most frequent (60%) causal microorganism, and severe mitral regurgitation was present in all cases but one. Surgical mitral valve replacement (SMVR) was performed in most (67%) patients, and the mortality associated with the IE episode was high (42%). IE following transcatheter edge-to-edge mitral valve repair is a rare but life-threatening complication, usually necessitating SMVR despite the high-risk profile of the patients. These results highlight the importance of adequate preventive measures and a prompt diagnosis and treatment of this serious complication. © 2018 Wiley Periodicals, Inc.

  12. Unidirectional edge modes launched by surface fluctuation in magnetic metamaterials

    NASA Astrophysics Data System (ADS)

    Chen, Huajin; Luo, Youzhu; Liang, Chenghua; Li, Zhenglin; Liu, Shiyang; Lin, Zhifang

    2018-03-01

    We demonstrate theoretically that the surface fluctuation can be used to launch the unidirectional electromagnetic edge mode for a Gaussian beam incident normal to the magnetic metamaterials (MMs) composed of an array of ferrite rods with the uppermost layer introduced position or size fluctuation in the coupling region. Such an edge mode is solely allowed to propagate in one direction due to the time-reversal symmetry breaking in MMs under the exertion of an external magnetic field, and it is substantially enhanced by the magnetic surface plasmon resonance. The nonreciprocal excitation of the edge states can also be understood by examining the scattering amplitudes of different partial waves, which indicate that the 1st order of the angular momentum channel plays a crucial role in realizing the nonreciprocity. The present research might be significant for the implementation of unidirectional absorption and the reexamination of bound states in the continuum in the context of MMs. In addition, the unique optical property can be exploited to design electromagnetic waveguide devices, such as one-way waveguide and wave bender, which are strongly robust against the obstacles placed in the channel of designed devices, facilitating to realize optical integrated circuits.

  13. Transport and magnetic properties in topological materials

    NASA Astrophysics Data System (ADS)

    Liang, Tian

    The notion of topology has been the central topic of the condensed matter physics in recent years, ranging from 2D quantum hall (QH) and quantum spin hall (QSH) states, 3D topological insulators (TIs), topological crystalline insulators (TCIs), 3D Dirac/Weyl semimetals, and topological superconductors (TSCs) etc. The key notion of the topological materials is the bulk edge correspondence, i.e., in order to preserve the symmetry of the whole system (bulk+edge), edge states must exist to counter-compensate the broken symmetry of the bulk. Combined with the fact that the bulk is topologically protected, the edge states are robust due to the bulk edge correspondence. This leads to interesting phenomena of chiral edge states in 2D QH, helical edge states in 2D QSH, "parity anomaly'' (time reversal anomaly) in 3D TI, helical edge states in the mirror plane of TCI, chiral anomaly in Dirac/Weyl semimetals, Majorana fermions in the TSCs. Transport and magnetic properties of topological materials are investigated to yield intriguing phenomena. For 3D TI Bi1.1Sb0.9Te 2S, anomalous Hall effect (AHE) is observed, and for TCI Pb1-x SnxSe, Seebeck/Nernst measurements reveal the anomalous sign change of Nernst signals as well as the massive Dirac fermions. Ferroelectricity and pressure measurements show that TCI Pb1-xSnxTe undergoes quantum phase transition (QPT) from trivial insulator through Weyl semimetal to anomalous insulator. Dirac semimetals Cd3As2, Na 3Bi show interesting results such as the ultrahigh mobility 10 7cm2V-1s-1 protected from backscattering at zero magnetic field, as well as anomalous Nernst effect (ANE) for Cd3As2, and the negative longitudinal magnetoresistance (MR) due to chiral anomaly for Na3Bi. In-plane and out-of-plane AHE are observed for semimetal ZrTe5 by in-situ double-axes rotation measurements. For interacting system Eu2Ir2O7, full angle torque magnetometry measurements reveal the existence of orthogonal magnetization breaking the symmetry of

  14. Gain media edge treatment to suppress amplified spontaneous emission in a high power laser

    DOEpatents

    Hackel, Lloyd A.; Soules, Thomas F.; Fochs, Scott N.; Rotter, Mark D.; Letts, Stephan A.

    2008-12-09

    A novel method and apparatus for suppressing ASE and parasitic oscillation modes in a high average power laser is introduced. By roughening one or more peripheral edges of a solid-state crystal or ceramic laser gain media and by bonding such edges using a substantially high index bonding elastomer or epoxy to a predetermined electromagnetic absorbing arranged adjacent to the entire outer surface of the peripheral edges of the roughened laser gain media, ASE and parasitic oscillation modes can be effectively suppressed.

  15. Nanoindentation near the edge

    Treesearch

    J.E. Jakes; C.R. Frihart; J.F. Beecher; R.J. Moon; P.J. Resto; Z.H. Melgarejo; O.M. Saurez; H. Baumgart; A.A. Elmustafa; D.S. Stone

    2009-01-01

    Whenever a nanoindent is placed near an edge, such as the free edge of the specimen or heterophase interface intersecting the surface, the elastic discontinuity associated with the edge produces artifacts in the load-depth data. Unless properly handled in the data analysis, the artifacts can produce spurious results that obscure any real trends in properties as...

  16. Interpretation of thermal conductance of the ν =5 /2 edge

    NASA Astrophysics Data System (ADS)

    Simon, Steven H.

    2018-03-01

    Recent experiments [Banerjee et al., arXiv:1710.00492] have measured thermal conductance of the ν =5 /2 edge in a GaAs electron gas and found it to be quantized as K ≈5 /2 (in appropriate dimensionless units). This result is unexpected, as prior numerical work predicts that the ν =5 /2 state should be the anti-Pfaffian phase of matter, which should have quantized K =3 /2 . The purpose of this Rapid Communication is to propose a possible solution to this conflict: If the Majorana edge mode of the anti-Pfaffian does not thermally equilibrate with the other edge modes, then K =5 /2 is expected. I briefly discuss a possible reason for this nonequilibration and what should be examined further to determine if this is the case.

  17. Manipulating Topological Edge Spins in One-Dimensional Optical Lattice

    NASA Astrophysics Data System (ADS)

    Liu, Xiong-Jun; Liu, Zheng-Xin; Cheng, Meng

    2013-03-01

    We propose to observe and manipulate topological edge spins in 1D optical lattice based on currently available experimental platforms. Coupling the atomic spin states to a laser-induced periodic Zeeman field, the lattice system can be driven into a symmetry protected topological (SPT) phase, which belongs to the chiral unitary (AIII) class protected by particle number conservation and chiral symmetries. In free-fermion case the SPT phase is classified by a Z invariant which reduces to Z4 with interactions. The zero edge modes of the SPT phase are spin-polarized, with left and right edge spins polarized to opposite directions and forming a topological spin-qubit (TSQ). We demonstrate a novel scheme to manipulate the zero modes and realize single spin control in optical lattice. The manipulation of TSQs has potential applications to quantum computation. We acknowledge the support from JQI-NSF-PFC, Microsoft-Q, and DARPA- QuEST.

  18. Turbulence Measurements on a Flap-Edge Model

    NASA Technical Reports Server (NTRS)

    Moriarty, Patrick; Bradshaw, Peter; Cantwell, Brian; Ross, James

    1998-01-01

    Turbulence measurements have been made on a flap-edge and leading-edge slat model using hot-wire anemometry, and, later, particle image velocimetry. The properties of hot-wire anemometry were studied using facilities at NASA Ames Research Center. Hot-film probes were used because of their durability, but cross-films were limited by non-linear end effects. As a warm-up exercise, hot-film probes were used to measure velocities in the farfield wake of a cylinder with an airfoil in the near-field wake. The airfoil reduced the drag coefficient of the system by 10%. A single-wire hot-film probe was used to measure velocity profiles over the top of a NACA 63(sub 2)-215 Mod. B wing with a Fowler flap and leading,-edge slat. Results showed the size of slat wake was dependent upon the slat deflection angle. Velocity increased through the slat gap with increased deflection. The acoustically modified slat decreased the chance of separation. Measurements were taken at the flap edge with a single hot-film. Trends in the data indicate velocity and turbulence levels increase at the flap edge. The acoustically modified flap modifies the mean flow near the flap edge. Correlations were made between the hot-film signal and the unsteady pressure transducers on the wing which were published in a NASA CDTM. The principles of Particle Image Velocimetry (PIV) were studied at Florida State University. Spectral PIV was used to measure the spectra of a subsonic jet. Measured frequencies were close to the predicted frequency of jet shedding. Spectral PIV will be used to measure the spectra of the slat flow in the second 7 x lO-ft. wind tunnel test. PIV has an advantage that it can measure velocity and spectra of the entire flowfield instantaneously. However, problems arise when trying, to store this massive amount of PIV data. Support for this research has continued through a NASA Graduate Student Program Fellowship which will end in June 1999. The thesis should be completed by this time.

  19. Finite element analysis for edge-to-edge technique to treat post-mitral valve repair systolic anterior motion.

    PubMed

    Zhong, Qi; Zeng, Wenhua; Huang, Xiaoyang; Zhao, Xiaojia

    2014-01-01

    Systolic anterior motion of the mitral valve is an uncommon complication of mitral valve repair, which requires immediate supplementary surgical action. Edge-to-edge suture is considered as an effective technique to treat post-mitral valve repair systolic anterior motion by clinical researchers. However, the fundamentals and quantitative analysis are vacant to validate the effectiveness of the additional edge-to-edge surgery to repair systolic anterior motion. In the present work, finite element models were developed to simulate a specific clinical surgery for patients with posterior leaflet prolapse, so as to analyze the edge-to-edge technique quantificationally. The simulated surgery procedure concluded several actions such as quadrangular resection, mitral annuloplasty and edge-to-edge suture. And the simulated results were compared with echocardiography and measurement data of the patients under the mitral valve surgery, which shows good agreement. The leaflets model with additional edge-to-edge suture has a shorter mismatch length than that of the model merely under quadrangular resection and mitral annuloplasty actions at systole, which assures a better coaptation status. The stress on the leaflets after edge-to-edge suture is lessened as well.

  20. Effects of nuclear spins on the transport properties of the edge of two-dimensional topological insulators

    NASA Astrophysics Data System (ADS)

    Hsu, Chen-Hsuan; Stano, Peter; Klinovaja, Jelena; Loss, Daniel

    2018-03-01

    The electrons in the edge channels of two-dimensional topological insulators can be described as a helical Tomonaga-Luttinger liquid. They couple to nuclear spins embedded in the host materials through the hyperfine interaction, and are therefore subject to elastic spin-flip backscattering on the nuclear spins. We investigate the nuclear-spin-induced edge resistance due to such backscattering by performing a renormalization-group analysis. Remarkably, the effect of this backscattering mechanism is stronger in a helical edge than in nonhelical channels, which are believed to be present in the trivial regime of InAs/GaSb quantum wells. In a system with sufficiently long edges, the disordered nuclear spins lead to an edge resistance which grows exponentially upon lowering the temperature. On the other hand, electrons from the edge states mediate an anisotropic Ruderman-Kittel-Kasuya-Yosida nuclear spin-spin interaction, which induces a spiral nuclear spin order below the transition temperature. We discuss the features of the spiral order, as well as its experimental signatures. In the ordered phase, we identify two backscattering mechanisms, due to charge impurities and magnons. The backscattering on charge impurities is allowed by the internally generated magnetic field, and leads to an Anderson-type localization of the edge states. The magnon-mediated backscattering results in a power-law resistance, which is suppressed at zero temperature. Overall, we find that in a sufficiently long edge the nuclear spins, whether ordered or not, suppress the edge conductance to zero as the temperature approaches zero.

  1. Wave-Ice and Air-Ice-Ocean Interaction During the Chukchi Sea Ice Edge Advance

    DTIC Science & Technology

    2014-09-30

    During cruise CU-B UAF UW Airborne expendable Ice Buoy (AXIB) Ahead, at and inside ice edge Surface meteorology T, SLP ~1 year CU-B UW...Balance (IMB) buoys Inside ice edge w/ >50cm thickness Ice mass balance T in snow-ice-ocean, T, SLP at surface ~1 year WHOI CRREL (SeaState DRI

  2. Mortality after percutaneous edge-to-edge mitral valve repair: a contemporary review.

    PubMed

    Kortlandt, Friso A; de Beenhouwer, Thomas; Swaans, Martin J; Post, Marco C; van der Heyden, Jan A S; Eefting, Frank D; Rensing, Benno J W M

    2016-04-01

    Percutaneous edge-to-edge mitral valve (MV) repair is a relatively new treatment option for mitral regurgitation (MR). After the feasibility and safety having been proved in low-surgical-risk patients, the use of this procedure has shifted more to the treatment of high-risk patients. With the absence of randomized controlled trials (RCT) for this particular subgroup, observational studies try to add evidence to the safety aspect of this procedure. These also provide short- and mid-term mortality figures. Several mortality predictors have been identified, which may help the optimal selection of patients who will benefit most from this technique. In this article we provide an overview of the literature about mortality and its predictors in patients treated with the percutaneous edge-to-edge device.

  3. Surface State-Dominated Photoconduction and THz Generation in Topological Bi2Te2Se Nanowires

    PubMed Central

    2017-01-01

    Topological insulators constitute a fascinating class of quantum materials with nontrivial, gapless states on the surface and insulating bulk states. By revealing the optoelectronic dynamics in the whole range from femto- to microseconds, we demonstrate that the long surface lifetime of Bi2Te2Se nanowires allows us to access the surface states by a pulsed photoconduction scheme and that there is a prevailing bolometric response of the surface states. The interplay of the surface and bulk states dynamics on the different time scales gives rise to a surprising physical property of Bi2Te2Se nanowires: their pulsed photoconductance changes polarity as a function of laser power. Moreover, we show that single Bi2Te2Se nanowires can be used as THz generators for on-chip high-frequency circuits at room temperature. Our results open the avenue for single Bi2Te2Se nanowires as active modules in optoelectronic high-frequency and THz circuits. PMID:28081604

  4. X-ray absorption near edge structure/electron energy loss near edge structure calculation using the supercell orthogonalized linear combination of atomic orbitals method

    NASA Astrophysics Data System (ADS)

    Ching, Wai-Yim; Rulis, Paul

    2009-03-01

    Over the last eight years, a large number of x-ray absorption near edge structure (XANES) and/or electron energy loss near edge structure (ELNES) spectroscopic calculations for complex oxides and nitrides have been performed using the supercell-OLCAO (orthogonalized linear combination of atomic orbitals) method, obtaining results in very good agreement with experiments. The method takes into account the core-hole effect and includes the dipole matrix elements calculated from ab initio wavefunctions. In this paper, we describe the method in considerable detail, emphasizing the special advantages of this method for large complex systems. Selected results are reviewed and several hitherto unpublished results are also presented. These include the Y K edge of Y ions segregated to the core of a Σ31 grain boundary in alumina, O K edges of water molecules, C K edges in different types of single walled carbon nanotubes, and the Co K edge in the cyanocobalamin (vitamin B12) molecule. On the basis of these results, it is argued that the interpretation of specific features of the calculated XANES/ELNES edges is not simple for complex material systems because of the delocalized nature of the conduction band states. The long-standing notion of the 'fingerprinting' technique for spectral interpretation of experimental data is not tenable. A better approach is to fully characterize the structure under study, using either crystalline data or accurate ab initio modeling. Comparison between calculated XANES/ELNES spectra and available measurements enables us to ascertain the validity of the modeled structure. For complex crystals or structures, it is necessary to use the weighted sum of the spectra from structurally nonequivalent sites for comparison with the measured data. Future application of the supercell-OLCAO method to complex biomolecular systems is also discussed.

  5. Nonaxisymmetric modelling in BOUT++; toward global edge fluid turbulence in stellarators

    NASA Astrophysics Data System (ADS)

    Shanahan, Brendan; Hill, Peter; Dudson, Ben

    2016-10-01

    As Wendelstein 7-X has been optimized for neoclassical transport, turbulent transport could potentially become comparable to neoclassical losses. Furthermore, the imminent installation of an island divertor merits global edge modelling to determine heat flux profiles and the efficacy of the system. Currently, however, nonaxisymmetric edge plasma modelling is limited to either steady state (non-turbulent) transport modelling, or computationally expensive gyrokinetics. The implementation of the Flux Coordinate Independent (FCI) approach to parallel derivatives has allowed the extension of the BOUT++ edge fluid turbulence framework to nonaxisymmetric geometries. Here we first investigate the implementation of the FCI method in BOUT++ by modelling diffusion equations in nonaxisymmetric geometries with and without boundary interaction, and quantify the inherent error. We then present the results of non-turbulent transport modelling and compare with analytical theory. The ongoing extension of BOUT++ to nonaxisymmetric configurations, and the prospects of stellarator edge fluid turbulence simulations will be discussed.

  6. Reflection symmetry detection using locally affine invariant edge correspondence.

    PubMed

    Wang, Zhaozhong; Tang, Zesheng; Zhang, Xiao

    2015-04-01

    Reflection symmetry detection receives increasing attentions in recent years. The state-of-the-art algorithms mainly use the matching of intensity-based features (such as the SIFT) within a single image to find symmetry axes. This paper proposes a novel approach by establishing the correspondence of locally affine invariant edge-based features, which are superior to the intensity based in the aspects that it is insensitive to illumination variations, and applicable to textureless objects. The locally affine invariance is achieved by simple linear algebra for efficient and robust computations, making the algorithm suitable for detections under object distortions like perspective projection. Commonly used edge detectors and a voting process are, respectively, used before and after the edge description and matching steps to form a complete reflection detection pipeline. Experiments are performed using synthetic and real-world images with both multiple and single reflection symmetry axis. The test results are compared with existing algorithms to validate the proposed method.

  7. Edge currents shunt the insulating bulk in gapped graphene

    NASA Astrophysics Data System (ADS)

    Zhu, M. J.; Kretinin, A. V.; Thompson, M. D.; Bandurin, D. A.; Hu, S.; Yu, G. L.; Birkbeck, J.; Mishchenko, A.; Vera-Marun, I. J.; Watanabe, K.; Taniguchi, T.; Polini, M.; Prance, J. R.; Novoselov, K. S.; Geim, A. K.; Ben Shalom, M.

    2017-02-01

    An energy gap can be opened in the spectrum of graphene reaching values as large as 0.2 eV in the case of bilayers. However, such gaps rarely lead to the highly insulating state expected at low temperatures. This long-standing puzzle is usually explained by charge inhomogeneity. Here we revisit the issue by investigating proximity-induced superconductivity in gapped graphene and comparing normal-state measurements in the Hall bar and Corbino geometries. We find that the supercurrent at the charge neutrality point in gapped graphene propagates along narrow channels near the edges. This observation is corroborated by using the edgeless Corbino geometry in which case resistivity at the neutrality point increases exponentially with increasing the gap, as expected for an ordinary semiconductor. In contrast, resistivity in the Hall bar geometry saturates to values of about a few resistance quanta. We attribute the metallic-like edge conductance to a nontrivial topology of gapped Dirac spectra.

  8. High-performance thermoelectricity in edge-over-edge zinc-porphyrin molecular wires.

    PubMed

    Noori, Mohammed; Sadeghi, Hatef; Lambert, Colin J

    2017-04-20

    If high efficiency organic thermoelectric materials could be identified, then these would open the way to a range of energy harvesting technologies and Peltier coolers using flexible and transparent thin-film materials. We have compared the thermoelectric properties of three zinc porphyrin (ZnP) dimers and a ZnP monomer and found that the "edge-over-edge" dimer formed from stacked ZnP rings possesses a high electrical conductance, negligible phonon thermal conductance and a high Seebeck coefficient of the order of 300 μV K -1 . These combine to yield a predicted room-temperature figure of merit of ZT ≈ 4, which is the highest room-temperature ZT ever reported for a single organic molecule. This high value of ZT is a consequence of the low phonon thermal conductance arising from the stacked nature of the porphyrin rings, which hinders phonon transport through the edge-over-edge molecule and enhances the Seebeck coefficient.

  9. Spatial structure of correlations around a quantum impurity at the edge of a two-dimensional topological insulator

    NASA Astrophysics Data System (ADS)

    Allerdt, Andrew; Feiguin, A. E.; Martins, G. B.

    2017-07-01

    We calculate exact zero-temperature real-space properties of a substitutional magnetic impurity coupled to the edge of a zigzag silicenelike nanoribbon. Using a Lanczos transformation [A. Allerdt et al., Phys. Rev. B 91, 085101 (2015), 10.1103/PhysRevB.91.085101] and the density-matrix renormalization-group method, we obtain a realistic description of stanene and germanene that includes the bulk and the edges as boundary one-dimensional helical metallic states. Our results for substitutional impurities indicate that the development of a Kondo state and the structure of the spin correlations between the impurity and the electron spins in the metallic edge state depend considerably on the location of the impurity. More specifically, our real-space resolution allows us to conclude that there is a sharp distinction between the impurity being located at a crest or a trough site at the zigzag edge. We also observe, as expected, that the spin correlations are anisotropic due to an emerging Dzyaloshinskii-Moriya interaction with the conduction electrons and that the edges scatter from the impurity and "snake" or circle around it. Our estimates for the Kondo temperature indicate that there is a very weak enhancement due to the presence of spin-orbit coupling.

  10. Interaction of Nanostructured Calcium Silicate Hydrate with Ibuprofen Drug Molecules: X-ray Absorption Near Edge Structure (XANES) Study at the Ca, Si and O K-edge

    NASA Astrophysics Data System (ADS)

    Guo, X. X.; Sham, T. K.; Zhu, Y. J.; Hu, Y. F.

    2013-04-01

    Mesoporous calcium silicate hydrate (CSH) nanostructure has been proven to be bioactive and biocompatible, and has a bright future in the application of bone treatment among other applications. X-ray absorption near edge structure (XANES) is a powerful tool for the study of the interactions of calcium silicate hydrates with drug molecules because it is element specific and it probes the unoccupied electronic states. Herein, we report the use of the calcium, silicon and oxygen K-edge XANES spectroscopy to identify how drug molecules interact with different groups in calcium silicate hydrate mesoporous nano-carriers with different morphologies. Significant changes are observed in XANES spectra after drug loading into the calcium silicate hydrate system, especially at the Si and O K-edge. The implications of these findings are discussed.

  11. Information Commons Features Cutting-Edge Conservation and Technology

    ERIC Educational Resources Information Center

    Gilroy, Marilyn

    2011-01-01

    This article features Richard J. Klarchek Information Commons (IC) at Loyola University Chicago, an all-glass library building on the shore of Chicago's Lake Michigan that is not only a state-of-the-art digital research library and study space--it also runs on cutting-edge energy technology. The building has attracted attention and visitors from…

  12. Si K EDGE STRUCTURE AND VARIABILITY IN GALACTIC X-RAY BINARIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schulz, Norbert S.; Corrales, Lia; Canizares, Claude R.

    2016-08-10

    We survey the Si K edge structure in various absorbed Galactic low-mass X-ray binaries (LMXBs) to study states of silicon in the inter- and circum-stellar medium. The bulk of these LMXBs lie toward the Galactic bulge region and all have column densities above 10{sup 22} cm{sup −2}. The observations were performed using the Chandra High Energy Transmission Grating Spectrometer. The Si K edge in all sources appears at an energy value of 1844 ± 0.001 eV. The edge exhibits significant substructure that can be described by a near edge absorption feature at 1849 ± 0.002 eV and a far edgemore » absorption feature at 1865 ± 0.002 eV. Both of these absorption features appear variable with equivalent widths up to several mÅ. We can describe the edge structure using several components: multiple edge functions, near edge absorption excesses from silicates in dust form, signatures from X-ray scattering optical depths, and a variable warm absorber from ionized atomic silicon. The measured optical depths of the edges indicate much higher values than expected from atomic silicon cross sections and interstellar medium abundances, and they appear consistent with predictions from silicate X-ray absorption and scattering. A comparison with models also indicates a preference for larger dust grain sizes. In many cases, we identify Si xiii resonance absorption and determine ionization parameters between log ξ = 1.8 and 2.8 and turbulent velocities between 300 and 1000 km s{sup −1}. This places the warm absorber in close vicinity of the X-ray binaries. In some data, we observe a weak edge at 1.840 keV, potentially from a lesser contribution of neutral atomic silicon.« less

  13. The Edge supersonic transport

    NASA Technical Reports Server (NTRS)

    Agosta, Roxana; Bilbija, Dushan; Deutsch, Marc; Gallant, David; Rose, Don; Shreve, Gene; Smario, David; Suffredini, Brian

    1992-01-01

    As intercontinental business and tourism volumes continue their rapid expansion, the need to reduce travel times becomes increasingly acute. The Edge Supersonic Transport Aircraft is designed to meet this demand by the year 2015. With a maximum range of 5750 nm, a payload of 294 passengers and a cruising speed of M = 2.4, The Edge will cut current international flight durations in half, while maintaining competitive first class, business class, and economy class comfort levels. Moreover, this transport will render a minimal impact upon the environment, and will meet all Federal Aviation Administration Part 36, Stage III noise requirements. The cornerstone of The Edge's superior flight performance is its aerodynamically efficient, dual-configuration design incorporating variable-geometry wingtips. This arrangement combines the benefits of a high aspect ratio wing at takeoff and low cruising speeds with the high performance of an arrow-wing in supersonic cruise. And while the structural weight concerns relating to swinging wingtips are substantial, The Edge looks to ever-advancing material technologies to further increase its viability. Heeding well the lessons of the past, The Edge design holds economic feasibility as its primary focus. Therefore, in addition to its inherently superior aerodynamic performance, The Edge uses a lightweight, largely windowless configuration, relying on a synthetic vision system for outside viewing by both pilot and passengers. Additionally, a fly-by-light flight control system is incorporated to address aircraft supersonic cruise instability. The Edge will be produced at an estimated volume of 400 aircraft and will be offered to airlines in 2015 at $167 million per transport (1992 dollars).

  14. Effect of a modified optic edge design on visual function: textured-edge versus round-anterior, slope-side edge.

    PubMed

    Hayashi, Ken; Hayashi, Hideyuki

    2004-08-01

    To compare the impairment in visual function caused by glare with 2 acrylic intraocular lenses (IOLs) with different modified optic edges. Hayashi Eye Hospital, Fukuoka, Japan. Fifty-four patients had implantation of an IOL with a textured edge (Alcon MA60AC) in 1 eye and an IOL with a round-anterior, sloped-sided edge (AMO AR40e) in the opposite eye. Visual acuity was measured at 5 contrast visual targets (100%, 25%, 10%, 5%, and 2.5%) (contrast visual acuity) under photopic and mesopic conditions with and without a glare source approximately 1 month after surgery using the Contrast Sensitivity Accurate Tester (Menicon CAT-2000). The mean mesopic contrast visual acuity at moderate- to low-contrast visual targets was significantly worse in the presence of a glare source in both groups, whereas photopic contrast visual acuity did not change significantly. There were no significant differences between the 2 groups in the mean visual acuity or in photopic or mesopic lighting contrast visual acuity with and without a glare source. Furthermore, there was no significant difference in loss of contrast visual acuity in the presence of glare. Mesopic contrast sensitivity with both acrylic IOLs was impaired significantly in the presence of glare, but the impairment of contrast sensitivity from glare was approximately the same between eyes with a textured-edge IOL and eyes with a round-anterior, sloped-sided edge IOL.

  15. Quantized transport and steady states of Floquet topological insulators

    NASA Astrophysics Data System (ADS)

    Esin, Iliya; Rudner, Mark S.; Refael, Gil; Lindner, Netanel H.

    2018-06-01

    Robust electronic edge or surface modes play key roles in the fascinating quantized responses exhibited by topological materials. Even in trivial materials, topological bands and edge states can be induced dynamically by a time-periodic drive. Such Floquet topological insulators (FTIs) inherently exist out of equilibrium; the extent to which they can host quantized transport, which depends on the steady-state population of their dynamically induced edge states, remains a crucial question. In this work, we obtain the steady states of two-dimensional FTIs in the presence of the natural dissipation mechanisms present in solid state systems. We give conditions under which the steady-state distribution resembles that of a topological insulator in the Floquet basis. In this state, the distribution in the Floquet edge modes exhibits a sharp feature akin to a Fermi level, while the bulk hosts a small density of excitations. We determine the regimes where topological edge-state transport persists and can be observed in FTIs.

  16. Magnetic field dependence of electronic properties of MoS2 quantum dots with different edges

    NASA Astrophysics Data System (ADS)

    Chen, Qiao; Li, L. L.; Peeters, F. M.

    2018-02-01

    Using the tight-binding approach, we investigate the energy spectrum of square, triangular, and hexagonal MoS2 quantum dots (QDs) in the presence of a perpendicular magnetic field. Novel edge states emerge in MoS2 QDs, which are distributed over the whole edge which we call ring states. The ring states are robust in the presence of spin-orbit coupling (SOC). The corresponding energy levels of the ring states oscillate as a function of the perpendicular magnetic field which are related to Aharonov-Bohm oscillations. Oscillations in the magnetic field dependence of the energy levels and the peaks in the magneto-optical spectrum emerge (disappear) as the ring states are formed (collapsed). The period and the amplitude of the oscillation decrease with the size of the MoS2 QDs.

  17. Sizable band gap in organometallic topological insulator

    NASA Astrophysics Data System (ADS)

    Derakhshan, V.; Ketabi, S. A.

    2017-01-01

    Based on first principle calculation when Ceperley-Alder and Perdew-Burke-Ernzerh type exchange-correlation energy functional were adopted to LSDA and GGA calculation, electronic properties of organometallic honeycomb lattice as a two-dimensional topological insulator was calculated. In the presence of spin-orbit interaction bulk band gap of organometallic lattice with heavy metals such as Au, Hg, Pt and Tl atoms were investigated. Our results show that the organometallic topological insulator which is made of Mercury atom shows the wide bulk band gap of about ∼120 meV. Moreover, by fitting the conduction and valence bands to the band-structure which are produced by Density Functional Theory, spin-orbit interaction parameters were extracted. Based on calculated parameters, gapless edge states within bulk insulating gap are indeed found for finite width strip of two-dimensional organometallic topological insulators.

  18. Living on the Edge: Parasite Prevalence Changes Dramatically across a Range Edge in an Invasive Gecko.

    PubMed

    Coates, Andrew; Barnett, Louise K; Hoskin, Conrad; Phillips, Ben L

    2017-02-01

    Species interactions can determine range limits, and parasitism is the most intimate of such interactions. Intriguingly, the very conditions on range edges likely change host-parasite dynamics in nontrivial ways. Range edges are often associated with clines in host density and with environmental transitions, both of which may affect parasite transmission. On advancing range edges, founder events and fitness/dispersal costs of parasitism may also cause parasites to be lost on range edges. Here we examine the prevalence of three species of parasite across the range edge of an invasive gecko, Hemidactylus frenatus, in northeastern Australia. The gecko's range edge spans the urban-woodland interface at the edge of urban areas. Across this edge, gecko abundance shows a steep decline, being lower in the woodland. Two parasite species (a mite and a pentastome) are coevolved with H. frenatus, and these species become less prevalent as the geckos become less abundant. A third species of parasite (another pentastome) is native to Australia and has no coevolutionary history with H. frenatus. This species became more prevalent as the geckos become less abundant. These dramatic shifts in parasitism (occurring over 3.5 km) confirm that host-parasite dynamics can vary substantially across the range edge of this gecko host.

  19. Quantum transport of two-species Dirac fermions in dual-gated three-dimensional topological insulators

    DOE PAGES

    Xu, Yang; Miotkowski, Ireneusz; Chen, Yong P.

    2016-05-04

    Topological insulators are a novel class of quantum matter with a gapped insulating bulk, yet gapless spin-helical Dirac fermion conducting surface states. Here, we report local and non-local electrical and magneto transport measurements in dual-gated BiSbTeSe 2 thin film topological insulator devices, with conduction dominated by the spatially separated top and bottom surfaces, each hosting a single species of Dirac fermions with independent gate control over the carrier type and density. We observe many intriguing quantum transport phenomena in such a fully tunable two-species topological Dirac gas, including a zero-magnetic-field minimum conductivity close to twice the conductance quantum at themore » double Dirac point, a series of ambipolar two-component half-integer Dirac quantum Hall states and an electron-hole total filling factor zero state (with a zero-Hall plateau), exhibiting dissipationless (chiral) and dissipative (non-chiral) edge conduction, respectively. As a result, such a system paves the way to explore rich physics, ranging from topological magnetoelectric effects to exciton condensation.« less

  20. Two-dimensional topological superconducting phases emerged from d-wave superconductors in proximity to antiferromagnets

    NASA Astrophysics Data System (ADS)

    Zhu, Guo-Yi; Wang, Ziqiang; Zhang, Guang-Ming

    2017-05-01

    Motivated by the recent observations of nodeless superconductivity in the monolayer CuO2 grown on the Bi2Sr2CaCu2O8+δ substrates, we study the two-dimensional superconducting (SC) phases described by the two-dimensional t\\text-J model in proximity to an antiferromagnetic (AF) insulator. We found that i) the nodal d-wave SC state can be driven via a continuous transition into a nodeless d-wave pairing state by the proximity-induced AF field. ii) The energetically favorable pairing states in the strong field regime have extended s-wave symmetry and can be nodal or nodeless. iii) Between the pure d-wave and s-wave paired phases, there emerge two topologically distinct SC phases with (s+\\text{i}d) symmetry, i.e., the weak and strong pairing phases, and the weak pairing phase is found to be a Z 2 topological superconductor protected by valley symmetry, exhibiting robust gapless nonchiral edge modes. These findings strongly suggest that the high-T c superconductors in proximity to antiferromagnets can realize fully gapped symmetry-protected topological SC.

  1. Big-data-based edge biomarkers: study on dynamical drug sensitivity and resistance in individuals.

    PubMed

    Zeng, Tao; Zhang, Wanwei; Yu, Xiangtian; Liu, Xiaoping; Li, Meiyi; Chen, Luonan

    2016-07-01

    Big-data-based edge biomarker is a new concept to characterize disease features based on biomedical big data in a dynamical and network manner, which also provides alternative strategies to indicate disease status in single samples. This article gives a comprehensive review on big-data-based edge biomarkers for complex diseases in an individual patient, which are defined as biomarkers based on network information and high-dimensional data. Specifically, we firstly introduce the sources and structures of biomedical big data accessible in public for edge biomarker and disease study. We show that biomedical big data are typically 'small-sample size in high-dimension space', i.e. small samples but with high dimensions on features (e.g. omics data) for each individual, in contrast to traditional big data in many other fields characterized as 'large-sample size in low-dimension space', i.e. big samples but with low dimensions on features. Then, we demonstrate the concept, model and algorithm for edge biomarkers and further big-data-based edge biomarkers. Dissimilar to conventional biomarkers, edge biomarkers, e.g. module biomarkers in module network rewiring-analysis, are able to predict the disease state by learning differential associations between molecules rather than differential expressions of molecules during disease progression or treatment in individual patients. In particular, in contrast to using the information of the common molecules or edges (i.e.molecule-pairs) across a population in traditional biomarkers including network and edge biomarkers, big-data-based edge biomarkers are specific for each individual and thus can accurately evaluate the disease state by considering the individual heterogeneity. Therefore, the measurement of big data in a high-dimensional space is required not only in the learning process but also in the diagnosing or predicting process of the tested individual. Finally, we provide a case study on analyzing the temporal expression

  2. Fabrication and Testing of a Leading-Edge-Shaped Heat Pipe

    NASA Technical Reports Server (NTRS)

    Glass, David E.; Merrigan, Michael A.; Sena, J. Tom; Reid, Robert S.

    1998-01-01

    The development of a refractory-composite/heat-pipe-cooled leading edge has evolved from the design stage to the fabrication and testing of a full size, leading-edge-shaped heat pipe. The heat pipe had a 'D-shaped' cross section and was fabricated from arc cast Mo-4lRe. An artery was included in the wick. Several issues were resolved with the fabrication of the sharp leading edge radius heat pipe. The heat pipe was tested in a vacuum chamber at Los Alamos National Laboratory using induction heating and was started up from the frozen state several times. However, design temperatures and heat fluxes were not obtained due to premature failure of the heat pipe resulting from electrical discharge between the induction heating apparatus and the heat pipe. Though a testing anomaly caused premature failure of the heat pipe, successful startup and operation of the heat pipe was demonstrated.

  3. Many-Body Effects in the Mesoscopic x-Ray Edge Problem

    NASA Astrophysics Data System (ADS)

    Hentschel, M.; R"Oder, G.; Ullmo, D.

    Many-body phenomena, a key interest in the investigation ofbulk solid state systems, are studied here in the context of the x-ray edge problem for mesoscopic systems. We investigate the many-body effects associated with the sudden perturbation following the x-ray excition of a core electron into the conduction band. For small systems with dimensions at the nanoscale we find considerable deviations from the well-understood metallic case where Anderson orthogonality catastrophe and the Mahan-Nozières-DeDominicis response cause characteristic deviations of the photoabsorption cross section from the naive expectation. Whereas the K-edge is typically rounded in metallic systems, we find a slightly peaked K-edge in generic mesoscopic systems with chaotic-coherent electron dynamics. Thus the behavior of the photoabsorption cross section at threshold depends on the system size and is different for the metallic and the mesoscopic case.

  4. Probing ultrafast ππ*/nπ* internal conversion in organic chromophores via K-edge resonant absorption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolf, T. J. A.; Myhre, R. H.; Cryan, J. P.

    Many photoinduced processes including photosynthesis and human vision happen in organic molecules and involve coupled femtosecond dynamics of nuclei and electrons. Organic molecules with heteroatoms often possess an important excited-state relaxation channel from an optically allowed ππ* to a dark nπ* state. The ππ*/nπ* internal conversion is difficult to investigate, as most spectroscopic methods are not exclusively sensitive to changes in the excited-state electronic structure. Here, we report achieving the required sensitivity by exploiting the element and site specificity of near-edge soft X-ray absorption spectroscopy. As a hole forms in the n orbital during ππ*/nπ* internal conversion, the absorption spectrummore » at the heteroatom K-edge exhibits an additional resonance. We demonstrate the concept using the nucleobase thymine at the oxygen K-edge, and unambiguously show that ππ*/nπ* internal conversion takes place within (60 ± 30) fs. Furthermore, high-level-coupled cluster calculations confirm the method’s impressive electronic structure sensitivity for excited-state investigations.« less

  5. Probing ultrafast ππ*/nπ* internal conversion in organic chromophores via K-edge resonant absorption

    DOE PAGES

    Wolf, T. J. A.; Myhre, R. H.; Cryan, J. P.; ...

    2017-06-22

    Many photoinduced processes including photosynthesis and human vision happen in organic molecules and involve coupled femtosecond dynamics of nuclei and electrons. Organic molecules with heteroatoms often possess an important excited-state relaxation channel from an optically allowed ππ* to a dark nπ* state. The ππ*/nπ* internal conversion is difficult to investigate, as most spectroscopic methods are not exclusively sensitive to changes in the excited-state electronic structure. Here, we report achieving the required sensitivity by exploiting the element and site specificity of near-edge soft X-ray absorption spectroscopy. As a hole forms in the n orbital during ππ*/nπ* internal conversion, the absorption spectrummore » at the heteroatom K-edge exhibits an additional resonance. We demonstrate the concept using the nucleobase thymine at the oxygen K-edge, and unambiguously show that ππ*/nπ* internal conversion takes place within (60 ± 30) fs. Furthermore, high-level-coupled cluster calculations confirm the method’s impressive electronic structure sensitivity for excited-state investigations.« less

  6. Strength evaluation of butt joint by stress intensity factor of small edge crack near interface edge

    NASA Astrophysics Data System (ADS)

    Sato, T.; Oda, K.; Tsutsumi, N.

    2018-06-01

    Failure of the bonded dissimilar materials generally initiates near the interface, or just from the interface edge due to the stress singularity at the interface edge. In this study, the stress intensity factor of an edge crack close to the interface between the dissimilar materials is analyzed. The small edge crack is strongly dominated by the singular stress field near the interface edge. The analysis of stress intensity factor of small edge crack near the interface in bi-material and butt joint plates is carried out by changing the length and the location of the crack and the region dominated by the interface edge is examined. It is found that the dimensionless stress intensity factor of small crack, normalized by the singular stress at the crack tip point in the bonded plate without the crack, is equal to 1.12, independent of the material combination and adhesive layer thickness, when the relative crack length with respect to the crack location is less than 0.01. The adhesive strength of the bonded plate with various adhesive layer thicknesses can be expressed as the constant critical stress intensity factor of the small edge crack.

  7. Magneto-electronic properties of graphene nanoribbons with various edge structures passivated by phosphorus and hydrogen atoms.

    PubMed

    Yu, Z L; Wang, D; Zhu, Z; Zhang, Z H

    2015-10-07

    The electronic and magnetic structures of graphene nanoribbons (GNRs) with various edge structures passivated by P atoms are investigated systematically, and compared with H passivation as well. GNRs with the entire reconstructed Klein edge or armchair edge are found to be nonmagnetic regardless of P or H passivation. However, if the edge of GNRs is a mixture of zigzag edge and reconstructed Klein edge, they are nonmagnetic for H passivation but significantly magnetic for P passivation, which could be attributed to the "charge transfer doping" effect. And the corresponding magnetic device shows a noticeable negative differential resistance phenomenon and an excellent spin filtering effect under AP configuration, which originate from the special energy band structure. The GNRs with zigzag edge, reconstructed Klein edge, or mixed edge shapes are all metals in the nonmagnetic state regardless of the H or P atoms involved. The relationship between the energy gap and the width in armchair-edged GNRs by P passivation with a dimer structure also satisfies the 3p periodicity, but different in detail from the case of H passivation. The calculated edge formation energy indicates that P-passivated GNRs are energetically more favorable, suggesting that they can stably exist in the experiment.

  8. Electronic Bandgap and Edge Reconstruction in Phosphorene Materials

    DOE PAGES

    Liang, Liangbo; Wang, Jun; Lin, Wenzhi; ...

    2014-11-12

    Single-layer black phosphorous (BP), or phosphorene, is a highly-anisotropic two-dimensional elemental material possessing promising semiconductor properties for flexible electronics. However, the direct bandgap of single-layer black phosphorus predicted theoretically has not been directly measured, and the properties of its edges have not been considered in detail. Here we report atomic scale electronic variation related to strain-induced anisotropic deformation of the puckered honeycomb structure of freshly cleaved black phosphorus using a highresolved scanning tunneling spectroscopy (STS) survey along the light (x) and heavy (y) effective mass directions. Through a combination of STS measurements and first-principles calculations, a model for edge reconstructionmore » is also determined. The reconstruction is shown to self-passivate any dangling bond by switching the oxidation state of phosphorous from +3 to +5.« less

  9. Two-dimensional model of the interaction of a plane acoustic wave with nozzle edge and wing trailing edge.

    PubMed

    Faranosov, Georgy A; Bychkov, Oleg P

    2017-01-01

    The interaction of a plane acoustic wave with two-dimensional model of nozzle edge and trailing edge is investigated theoretically by means of the Wiener-Hopf technique. The nozzle edge and the trailing edge are simulated by two half-planes with offset edges. Shear layer behind the nozzle edge is represented by a vortex sheet supporting Kelvin-Helmholtz instability waves. The considered configuration combines two well-known models (nozzle edge and trailing edge), and reveals additional interesting physical aspects. To obtain the solution, the matrix Wiener-Hopf equation is solved in conjunction with a requirement that the full Kutta condition is imposed at the edges. Factorization of the kernel matrix is performed by the combination of Padé approximation and the pole removal technique. This procedure is used to obtain numerical results. The results indicate that the diffracted acoustic field may be significantly intensified due to scattering of hydrodynamic instability waves into sound waves provided that the trailing edge is close enough to the vortex sheet. Similar mechanism may be responsible for the intensification of jet noise near a wing.

  10. Enhanced visible light photocatalytic activity in N-doped edge- and corner-truncated octahedral Cu2O

    NASA Astrophysics Data System (ADS)

    Zou, Mingming; Liu, Honghong; Feng, Lu; Thomas, Tiju; Yang, Minghui

    2017-03-01

    Edge- and corner-truncated octahedral Cu2O is successfully synthesized using an aqueous mixture of CuCl2, sodium dodecyl sulfate, NaOH, and NH2OH3·HCl. Cu2O1-xNx(150 °C, 30 min) samples are synthesized by nitridation of Cu2O using an ammonothermal process. Cu retains a formal valence state through and beyond the nitridation process. N concentration in this sample is 1.73 at%, out of which 1.08 at% is substitutional in nature. Photocatalytic activity of Cu2O1-xNx(150 °C, 30 min) sample is investigated and compared to that of pristine edge- and corner-truncated octahedral Cu2O. Results show that Cu2O1-xNx(150 °C, 30 min) sample with dominant {110} facets has a higher photocatalytic activity than the pristine Cu2O material. Higher surface energy and a greater density of the ;Cu; dangling bonds on {110} facets of edge- and corner-truncated octahedral Cu2O1-xNx is the plausible reason for the observed optimum catalytic activity. Furthermore defect states induced by nitridation results in improved visible light adsorption. And also the band edge states changes which brought about by N doping. This is an interesting result since it bypasses the usual challenge faced by pristine Cu2O which have band edge states between which transitions are normally forbidden. Selective radical quenching experiments suggest that photocatalytic activity of Cu2O1-xNx is due to formation of hydroxyl radicals in water, subsequent to photogeneration of charge carriers in the photocatalyst.

  11. Imaging electronic states on topological semimetals using scanning tunneling microscopy

    DOE PAGES

    Gyenis, András; Inoue, Hiroyuki; Jeon, Sangjun; ...

    2016-10-18

    Following the intense studies on topological insulators, significant efforts have recently been devoted to the search for gapless topological systems. These materials not only broaden the topological classification of matter but also provide a condensed matter realization of various relativistic particles and phenomena previously discussed mainly in high energy physics. Weyl semimetals host massless, chiral, low-energy excitations in the bulk electronic band structure, whereas a symmetry protected pair of Weyl fermions gives rise to massless Dirac fermions.Weemployed scanning tunneling microscopy/spectroscopy to explore the behavior of electronic states both on the surface and in the bulk of topological semimetal phases. Bymore » mapping the quasiparticle interference (QPI) and emerging Landau levels at high magnetic field in Dirac semimetals Cd 3As 2 and Na 3Bi, we observed extended Dirac-like bulk electronic bands. QPI imaged on Weyl semimetal TaAs demonstrated the predicted momentum dependent delocalization of Fermi arc surface states in the vicinity of the surface projected Weyl nodes.« less

  12. First Order Statistics of Speckle around a Scatterer Volume Density Edge and Edge Detection in Ultrasound Images.

    NASA Astrophysics Data System (ADS)

    Li, Yue

    1990-01-01

    Ultrasonic imaging plays an important role in medical imaging. But the images exhibit a granular structure, commonly known as speckle. The speckle tends to mask the presence of low-contrast lesions and reduces the ability of a human observer to resolve fine details. Our interest in this research is to examine the problem of edge detection and come up with methods for improving the visualization of organ boundaries and tissue inhomogeneity edges. An edge in an image can be formed either by acoustic impedance change or by scatterer volume density change (or both). The echo produced from these two kinds of edges has different properties. In this work, it has been proved that the echo from a scatterer volume density edge is the Hilbert transform of the echo from a rough impedance boundary (except for a constant) under certain conditions. This result can be used for choosing the correct signal to transmit to optimize the performance of edge detectors and characterizing an edge. The signal to noise ratio of the echo produced by a scatterer volume density edge is also obtained. It is found that: (1) By transmitting a signal with high bandwidth ratio and low center frequency, one can obtain a higher signal to noise ratio. (2) For large area edges, the farther the transducer is from the edge, the larger is the signal to noise ratio. But for small area edges, the nearer the transducer is to the edge, the larger is the signal to noise ratio. These results enable us to maximize the signal to noise ratio by adjusting these parameters. (3) The signal to noise ratio is not only related to the ratio of scatterer volume densities at the edge, but also related to the absolute value of scatterer volume densities. Some of these results have been proved through simulation and experiment. Different edge detection methods have been used to detect simulated scatterer volume density edges to compare their performance. A so-called interlaced array method has been developed for speckle

  13. Supercomputer modelling of an electronic structure for KCl nanocrystal with edge dislocation with the use of semiempirical and nonempirical models

    NASA Astrophysics Data System (ADS)

    Timoshenko, Yu K.; Shunina, V. A.; Shashkin, A. I.

    2018-03-01

    In the present work we used semiempirical and non-empirical models for electronic states of KCl nanocrystal containing edge dislocation for comparison of the obtained results. Electronic levels and local densities of states were calculated. As a result we found a reasonable qualitative correlation of semiempirical and non-empirical results. Using the results of computer modelling we discuss the problem of localization of electronic states near the line of edge dislocation.

  14. Red edge spectral measurements from sugar maple leaves

    NASA Technical Reports Server (NTRS)

    Vogelmann, J. E.; Rock, B. N.; Moss, D. M.

    1993-01-01

    Many sugar maple stands in the northeastern United States experienced extensive insect damage during the 1988 growing season. Chlorophyll data and high spectral resolution spectrometer laboratory reflectance data were acquired for multiple collections of single detached sugar maple leaves variously affected by the insect over the 1988 growing season. Reflectance data indicated consistent and diagnostic differences in the red edge portion (680-750 nm) of the spectrum among the various samples and populations of leaves. These included differences in the red edge inflection point (REIP), a ratio of reflectance at 740-720 nm (RE3/RE2), and a ratio of first derivative values at 715-705 nm (D715/D705). All three red edge parameters were highly correlated with variation in total chlorophyll content. Other spectral measures, including the Normalized Difference Vegetation Index (NDVI) and the Simple Vegetation Index Ratio (VI), also varied among populations and over the growing season, but did not correlate well with total chlorophyll content. Leaf stacking studies on light and dark backgrounds indicated REIP, RE3/RE2 and D715/D705 to be much less influenced by differences in green leaf biomass and background condition than either NDVI or VI.

  15. Divertor target shape optimization in realistic edge plasma geometry

    NASA Astrophysics Data System (ADS)

    Dekeyser, W.; Reiter, D.; Baelmans, M.

    2014-07-01

    Tokamak divertor design for next-step fusion reactors heavily relies on numerical simulations of the plasma edge. Currently, the design process is mainly done in a forward approach, where the designer is strongly guided by his experience and physical intuition in proposing divertor shapes, which are then thoroughly assessed by numerical computations. On the other hand, automated design methods based on optimization have proven very successful in the related field of aerodynamic design. By recasting design objectives and constraints into the framework of a mathematical optimization problem, efficient forward-adjoint based algorithms can be used to automatically compute the divertor shape which performs the best with respect to the selected edge plasma model and design criteria. In the past years, we have extended these methods to automated divertor target shape design, using somewhat simplified edge plasma models and geometries. In this paper, we build on and extend previous work to apply these shape optimization methods for the first time in more realistic, single null edge plasma and divertor geometry, as commonly used in current divertor design studies. In a case study with JET-like parameters, we show that the so-called one-shot method is very effective is solving divertor target design problems. Furthermore, by detailed shape sensitivity analysis we demonstrate that the development of the method already at the present state provides physically plausible trends, allowing to achieve a divertor design with an almost perfectly uniform power load for our particular choice of edge plasma model and design criteria.

  16. Using Solution- and Solid-State S K-edge X-ray Absorption Spectroscopy with Density Functional Theory to Evaluate M–S Bonding for MS42- (M = Cr, Mo, W) Dianions

    PubMed Central

    Olson, Angela C.; Keith, Jason M.; Batista, Enrique R.; Boland, Kevin S.; Daly, Scott R.; Kozimor, Stosh A.; MacInnes, Molly M.; Martin, Richard L.; Scott, Brian L.

    2014-01-01

    Herein, we have evaluated relative changes in M–S electronic structure and orbital mixing in Group 6 MS42- dianions using solid- and solution-phase S K-edge X-ray absorption spectroscopy (XAS; M = Mo, W), as well as density functional theory (DFT; M = Cr, Mo, W) and time-dependent density functional theory (TDDFT) calculations. To facilitate comparison with solution measurements (conducted in acetonitrile), theoretical models included gas-phase calculations as well as those that incorporated an acetonitrile dielectric, the latter of which provided better agreement with experiment. Two pre-edge features arising from S 1s → e* and t2* electron excitations were observed in the S K-edge XAS spectra and were reasonably assigned as 1A1 → 1T2 transitions. For MoS42-, both solution-phase pre-edge peak intensities were consistent with results from the solid-state spectra. For WS42-, solution- and solid-state pre-edge peak intensities for transitions involving e* were equivalent, while transitions involving the t2* orbitals were less intense in solution. Experimental and computational results have been presented in comparison to recent analyses of MO42- dianions, which allowed M–S and M–O orbital mixing to be evaluated as the principle quantum number (n) for the metal valence d orbitals increased (3d, 4d, 5d). Overall, the M–E (E = O, S) analyses revealed distinct trends in orbital mixing. For example, as the Group 6 triad was descended, e* (π*) orbital mixing remained constant in the M–S bonds, but increased appreciably for M–O interactions. For the t2* orbitals (σ* + π*), mixing decreased slightly for M–S bonding and increased only slightly for the M–O interactions. These results suggested that the metal and ligand valence orbital energies and radial extensions delicately influenced the orbital compositions for isoelectronic ME42- (E = O, S) dianions. PMID:25311904

  17. Edge control in CNC polishing, paper 2: simulation and validation of tool influence functions on edges.

    PubMed

    Li, Hongyu; Walker, David; Yu, Guoyu; Sayle, Andrew; Messelink, Wilhelmus; Evans, Rob; Beaucamp, Anthony

    2013-01-14

    Edge mis-figure is regarded as one of the most difficult technical issues for manufacturing the segments of extremely large telescopes, which can dominate key aspects of performance. A novel edge-control technique has been developed, based on 'Precessions' polishing technique and for which accurate and stable edge tool influence functions (TIFs) are crucial. In the first paper in this series [D. Walker Opt. Express 20, 19787-19798 (2012)], multiple parameters were experimentally optimized using an extended set of experiments. The first purpose of this new work is to 'short circuit' this procedure through modeling. This also gives the prospect of optimizing local (as distinct from global) polishing for edge mis-figure, now under separate development. This paper presents a model that can predict edge TIFs based on surface-speed profiles and pressure distributions over the polishing spot at the edge of the part, the latter calculated by finite element analysis and verified by direct force measurement. This paper also presents a hybrid-measurement method for edge TIFs to verify the simulation results. Experimental and simulation results show good agreement.

  18. Balancing the edge effects budget: bay scallop settlement and loss along a seagrass edge.

    PubMed

    Carroll, John M; Furman, Bradley T; Tettelbach, Stephen T; Peterson, Bradley J

    2012-07-01

    Edge effects are a dominant subject in landscape ecology literature, yet they are highly variable and poorly understood. Often, the literature suggests simple models for edge effects-positive (enhancement at the edge), negative (enhancement at the interior), or no effect (neutral)--on a variety of metrics, including abundance, diversity, and mortality. In the marine realm, much of this work has focused on fragmented seagrass habitats due to their importance for a variety of commercially important species. In this study, the settlement, recruitment, and survival of bay scallops was investigated across a variety of seagrass patch treatments. By simultaneously collecting settlers (those viable larvae available to settle and metamorphose) and recruits (those settlers that survive some period of time, in this case, 6 weeks) on the same collectors, we were able to demonstrate a "balance" between positive and negative edge effects, resulting in a net neutral effect. Scallop settlement was significantly enhanced along seagrass edges, regardless of patch type while survival was elevated within patch interiors. However, recruitment (the net result of settlement and post-settlement loss) did not vary significantly from edge to center, representing a neutral effect. Further, results suggest that post-settlement loss, most likely due to predation, appears to be the dominant mechanism structuring scallop abundance, not patterns in settlement. These data illustrate the complexity of edge effects, and suggest that the metric used to investigate the effect (be it abundance, survival, or other metrics) can often influence the magnitude and direction of the perceived effect. Traditionally, high predation along a habitat edge would have indicated an "ecological trap" for the species in question; however, this study demonstrates that, at the population level, an ecological trap may not exist.

  19. Interaction between Edge-Driven Convection and Mantle Plumes

    NASA Astrophysics Data System (ADS)

    Manjón-Cabeza Córdoba, A.; Ballmer, M.

    2017-12-01

    Intraplate volcanism can occur in a variety of geodynamic settings. Its characteristics can inform about the underlying mantle dynamics. A non-negligible number of intraplate oceanic volcanoes are located close to continental shelves (e.g. Bermuda, Canary Islands, Cape Verde…). In these regions, any putative plumes would interact with Edge-Driven Convection (EDC), a mode of Small-Scale Convection that is triggered along steps of lithospheric thickness. We have systematically explored 2-D geodynamic models of EDC, varying e.g. the viscosity of the mantle, geometry of the edge, potential temperature, etc. In addition, we study the influence of a mantle plume with variable excess temperature and buoyancy flux at a given distance to the edge. The mantle-convection code is coupled with a new melting parameterization that considers the depletion effect on productivity. We apply this parameterization not only to predict the extent of melting for a given lithology, but also the major-element composition of extracted melts for comparison with geochemical data. Results show that the first EDC upwellings are always localized in the oceanic domain at a distance from the continental margin that depends on mantle viscosity. The initial geometry of the edge does not have a significant influence on the "steady-state" shape of EDC. Depending on the distance of the plume from the edge and plume vigor, the plume is either deflected or enhanced by EDC. The mix of materials that melts in the mantle, as well as the amount of melting, is controlled by the interaction of the plume with EDC (e.g., with melting restricted to fertile heterogeneities in the end-member EDC case). Because several model parameters affect this interaction and related melting, a joint analysis of major-element and trace-element composition of hotspot lavas is required to constrain mantle processes.

  20. Universality of entropy scaling in one dimensional gapless models.

    PubMed

    Korepin, V E

    2004-03-05

    We consider critical models in one dimension. We study the ground state in the thermodynamic limit (infinite lattice). We are interested in an entropy of a subsystem. We calculate the entropy of a part of the ground state from a space interval (0,x). At zero temperature it describes the entanglement of the part of the ground state from this interval with the rest of the ground state. We obtain an explicit formula for the entropy of the subsystem at any temperature. At zero temperature our formula reproduces a logarithmic formula, discovered by Vidal, Latorre, Rico, and Kitaev for spin chains. We prove our formula by means of conformal field theory and the second law of thermodynamics. Our formula is universal. We illustrate it for a Bose gas with a delta interaction and for the Hubbard model.

  1. Unexpected edge conduction in mercury telluride quantum wells under broken time-reversal symmetry

    DOE PAGES

    Ma, Eric Yue; Calvo, M. Reyes; Wang, Jing; ...

    2015-05-26

    The realization of quantum spin Hall effect in HgTe quantum wells is considered a milestone in the discovery of topological insulators. Quantum spin Hall states are predicted to allow current flow at the edges of an insulating bulk, as demonstrated in various experiments. A key prediction yet to be experimentally verified is the breakdown of the edge conduction under broken time-reversal symmetry. Here we first establish a systematic framework for the magnetic field dependence of electrostatically gated quantum spin Hall devices. We then study edge conduction of an inverted quantum well device under broken time-reversal symmetry using microwave impedance microscopy,more » and compare our findings to a non-inverted device. At zero magnetic field, only the inverted device shows clear edge conduction in its local conductivity profile, consistent with theory. Surprisingly, the edge conduction persists up to 9 T with little change. Finally, this indicates physics beyond simple quantum spin Hall model, including material-specific properties and possibly many-body effects.« less

  2. Role of Edges in Complex Network Epidemiology

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Jiang, Zhi-Hong; Wang, Hui; Xie, Fei; Chen, Chao

    2012-09-01

    In complex network epidemiology, diseases spread along contacting edges between individuals and different edges may play different roles in epidemic outbreaks. Quantifying the efficiency of edges is an important step towards arresting epidemics. In this paper, we study the efficiency of edges in general susceptible-infected-recovered models, and introduce the transmission capability to measure the efficiency of edges. Results show that deleting edges with the highest transmission capability will greatly decrease epidemics on scale-free networks. Basing on the message passing approach, we get exact mathematical solution on configuration model networks with edge deletion in the large size limit.

  3. Effect of dispersal at range edges on the structure of species ranges

    USGS Publications Warehouse

    Bahn, V.; O'Connor, R.J.; Krohn, W.B.

    2006-01-01

    Range edges are of particular interest to ecology because they hold key insights into the limits of the realized niche and associated population dynamics. A recent feature of Oikos summarized the state of the art on range edge ecology. While the typical question is what causes range edges, another important question is how range edges influence the distribution of abundances across a species geographic range when dispersal is present. We used a single species population dynamics model on a coupled-lattice to determine the effects of dispersal on peripheral populations as compared to populations at the core of the range. In the absence of resource gradients, the reduced neighborhood and thus lower connectivity or higher isolation among populations at the range edge alone led to significantly lower population sizes in the periphery of the range than in the core. Lower population sizes mean higher extinction risks and lower adaptability at the range edge, which could inhibit or slow range expansions, and thus effectively stabilize range edges. The strength of this effect depended on the potential population growth rate and the maximum dispersal distance. Lower potential population growth rates led to a stronger effect of dispersal resulting in a higher difference in population sizes between the two areas. The differential effect of dispersal on population sizes at the core and periphery of the range in the absence of resource gradients implies that traditional, habitat-based distribution models could result in misleading conclusions about the habitat quality in the periphery. Lower population sizes at the periphery are also relevant to conservation, because habitat removal not only eliminates populations but also creates new edges. Populations bordering these new edges may experience declines, due to their increased isolation. ?? OIKOS.

  4. [Characterization of High Andean forest edges and implications for their ecological restoration (Colombia)].

    PubMed

    Montenegro, Alba Lucía; Vargas Ríos, Orlando

    2008-09-01

    The growth of a forest patch through colonization of the adjacent matrix is mostly determined by the particular characteristics of the edge zone. Knowing how these characteristics are related to a specific edge type and how they influence the regeneration process, is important for High Andean forest edges restoration. This study aimed to characterize three types of High Andean forest edge in Cogua Forest Reserve (Colombia): 1) edge of Chusquea scandens, 2) "paramizado", and 3) old edge, characterized for being in a later successional state. Two forest patches were chosen for each edge type and 13 criteria were analyzed; these were of topographic order, micro-environmental order, vegetation structure and species composition. In each patch the vegetation was evaluated by means of two 60 m transects perpendicular to the edge and along the matrix-edge-interior of the forest gradient. All woody plant species were identified and counted to determine their abundance. Environmental variables (air temperature, relative humidity, wind speed, and light radiation) were measured in one of the transects. Three of the 13 criteria were of little importance in shaping the type of edge habitat (slope, patch shape and area). The others were closely related with the micro-environmental conditions and in turn with the vegetation structure and composition; this relationship confers particular characteristics to each edge type. The microclimate and floristic edge limits coincided; edges extend between 10 and 20 m into the forest depending on the edge type. The paramizado edge has the smallest environmental self-regulation capacity and is more exposed to fluctuations of the studied variables, because of its greatest exposition to the wind action and loss of the tallest trees (between 10 and 15 m) which regulate the understorey microclimate. This low environmental buffer capacity prevents the establishing of mature forest species (for example, Schefflera sp. and Oreopanax bogotensis

  5. Thermodynamics of a dilute XX chain in a field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Timonin, P. N., E-mail: pntim@live.ru

    Gapless phases in ground states of low-dimensional quantum spin systems are rather ubiquitous. Their peculiarity is a remarkable sensitivity to external perturbations due to permanent criticality of such phases manifested by a slow (power-low) decay of pair correlations and the divergence of the corresponding susceptibility. A strong influence of various defects on the properties of the system in such a phase can then be expected. Here, we consider the influence of vacancies on the thermodynamics of the simplest quantum model with a gapless phase, the isotropic spin-1/2 XX chain. The existence of the exact solution of this model gives amore » unique opportunity to describe in detail the dramatic effect of dilution on the gapless phase—the appearance of an infinite series of quantum phase transitions resulting from level crossing under the variation of a longitudinal magnetic field. We calculate the jumps in the field dependences of the ground-state longitudinal magnetization, susceptibility, entropy, and specific heat appearing at these transitions and show that they result in a highly nonlinear temperature dependence of these parameters at low T. Also, the effect of enhancement of the magnetization and longitudinal correlations in the dilute chain is established. The changes of the pair spin correlators under dilution are also analyzed. The universality of the mechanism of the quantum transition generation suggests that similar effects of dilution can also be expected in gapless phases of other low-dimensional quantum spin systems.« less

  6. Iron K-edge X-ray absorption near-edge structure spectroscopy of aerodynamically levitated silicate melts and glasses

    DOE PAGES

    Alderman, O. L. G.; Wilding, M. C.; Tamalonis, A.; ...

    2017-01-26

    Here, the local structure about Fe(II) and Fe(III) in silicate melts was investigated in-situ using iron K-edge X-ray absorption near-edge structure (XANES) spectroscopy. An aerodynamic levitation and laser heating system was used to allow access to high temperatures without contamination, and was combined with a chamber and gas mixing system to allow the iron oxidation state, Fe 3+/ΣFe, to be varied by systematic control of the atmospheric oxygen fugacity. Eleven alkali-free, mostly iron-rich and depolymerized base compositions were chosen for the experiments, including pure oxide FeO, olivines (Fe,Mg) 2SiO 4, pyroxenes (Fe,Mg)SiO 3, calcic FeO-CaSiO 3, and a calcium aluminosilicatemore » composition, where total iron content is denoted by FeO for convenience. Melt temperatures varied between 1410 and 2160 K and oxygen fugacities between FMQ – 2.3(3) to FMQ + 9.1(3) log units (uncertainties in parentheses) relative to the fayalite-magnetite-β-quartz (FMQ) buffer.« less

  7. Stemflow Acid Neutralization Capacity in a Broadleaved Deciduous Forest: The Role of Edge Effects

    NASA Astrophysics Data System (ADS)

    Levia, D. F., Jr.; Shiklomanov, A.

    2014-12-01

    The fragmentation of forests is occurring at an accelerated rate in parts of the United States. Forest fragmentation creates edge habitat that affects the biogeochemistry of forests. Atmospheric deposition is known to increase at the forest edge in comparison to the forest interior. Past research has demonstrated the critical role of edge effects on throughfall chemistry but no known work has examined the relationship between stemflow chemistry and edge effects. To fill this data gap, we quantified the stemflow acid neutralization capacity (ANC) of nineteen Liriodendron tulipifera L. (yellow poplar) trees between forest edge and interior locations in the Piedmont of the mid-Atlantic USA. ANC was measured directly by potentiometric titration. Both stemflow pH and ANC were higher for L. tulipifera trees on the forest edge as opposed to those in interior locations (p < 0.01), although marked variability was observed among individual trees. It is critical to note that the ANC of stemflow of edge trees is almost certainly contextual, depending on geographic locality. This is to say that stemflow from edge trees may neutralize acid inputs in some locations (as in our case) but lead to enhanced acidification of aqueous inputs to forest soils in other locales where the dry deposition of acid anions is high. The experimental results have ramifications for forest management schema seeking to increase or decrease the extent of edge habitat in forest fragments.

  8. Method for wafer edge profile extraction using optical images obtained in edge defect inspection process

    NASA Astrophysics Data System (ADS)

    Okamoto, Hiroaki; Sakaguchi, Naoshi; Hayano, Fuminori

    2010-03-01

    It is becoming increasingly important to monitor wafer edge profiles in the immersion lithography era. A Nikon edge defect inspection tool acquires the circumferential optical images of the wafer edge during its inspection process. Nikon's unique illumination system and optics make it possible to then convert the brightness data of the captured images to quantifiable edge profile information. During this process the wafer's outer shape is also calculated. Test results show that even newly shipped bare wafers may not have a constant shape over 360 degree. In some cases repeated deformations with 90 degree pitch are observed.

  9. Percutaneous Edge-to-Edge Transcatheter Mitral Valve Repair: Current Indications and Future Perspectives.

    PubMed

    Pepe, Martino; De Cillis, Emanuela; Acquaviva, Tommaso; Cecere, Annagrazia; D'Alessandro, Pasquale; Giordano, Arturo; Ciccone, Marco Matteo; Bortone, Alessandro Santo

    2018-06-01

    Mitral regurgitation (MR) is the most prevalent valvular heart disease (VHD) and represents an important cause of heart failure. Medical therapy has a limited role in improving symptoms and does not hinder the progression of valvular disease. Surgery is the treatment of choice for severe symptomatic MR; valve repair is currently the preferred surgical approach because it reduces peri-operative mortality and ensures a good medium- to long-term survival outcome. Nevertheless, a non-negligible proportion of patients with indications for surgical correction are considered to be at prohibitive perioperative risk, mainly because of old age and multiple comorbidities. The introduction of percutaneous interventions to clinical practice has changed the natural history of this population. Percutaneous edge-to-edge transcatheter mitral valve repair (Mitraclip®, Abbott Vascular, Menlo Park, CA) is a state-of-the-art therapy for approaching MR in patients with a high surgical risk. Despite having been only recently introduced, this transvenous transfemoral percutaneous intervention has already been performed in more than 40,000 subjects worldwide, with reassuring post-operative results in terms of safety, feasibility, mortality and morbidity. Since Mitraclip® is considered to be minimally invasive, it is currently indicated in "frail" patients with severe comorbidities. We provide a critical review of the literature to clarify current indications, procedural details, patient selection criteria, and future perspectives for this innovative technique.

  10. Observation and Manipulation of Visible Edge Plasmons in Bi2Te3 Nanoplates.

    PubMed

    Lu, Xiaowei; Hao, Qunqing; Cen, Mengjia; Zhang, Guanhua; Sun, Julong; Mao, Libang; Cao, Tun; Zhou, Chuanyao; Jiang, Peng; Yang, Xueming; Bao, Xinhe

    2018-05-09

    Noble metals, like Ag and Au, are the most intensively studied plasmonic materials in the visible range. Plasmons in semiconductors, however, are usually believed to be in the infrared wavelength region due to the intrinsic low carrier concentrations. Herein, we observe the edge plasmon modes of Bi 2 Te 3 , a narrow-band gap semiconductor, in the visible spectral range using photoemission electron microscopy (PEEM). The Bi 2 Te 3 nanoplates excited by 400 nm femtosecond laser pulses exhibit strong photoemission intensities along the edges, which follow a cos 4 dependence on the polarization state of incident beam. Because of the phase retardation effect, plasmonic response along different edges can be selectively exited. The thickness-dependent photoemission intensities exclude the spin-orbit induced surface states as the origin of these plasmonic modes. Instead, we propose that the interband transition-induced nonequilibrium carriers might play a key role. Our results not only experimentally demonstrate the possibility of visible plasmons in semiconducting materials but also open up a new avenue for exploring the optical properties of topological insulator materials using PEEM.

  11. Environmental Dataset Gateway (EDG) Search Widget

    EPA Pesticide Factsheets

    Use the Environmental Dataset Gateway (EDG) to find and access EPA's environmental resources. Many options are available for easily reusing EDG content in other other applications. This allows individuals to provide direct access to EPA's metadata outside the EDG interface. The EDG Search Widget makes it possible to search the EDG from another web page or application. The search widget can be included on your website by simply inserting one or two lines of code. Users can type a search term or lucene search query in the search field and retrieve a pop-up list of records that match that search.

  12. Experimental and finite element analyses of multifunctional skins for morphing wing applications

    NASA Astrophysics Data System (ADS)

    Geier, Sebastian; Kintscher, Markus; Mahrholz, Thorsten; Wierach, Peter; Monner, Hans-Peter; Wiedemann, Martin

    2016-04-01

    As a consequence of operational efficiency because of rising energy costs, future transport systems need to be mission-adaptive. Especially in aircraft design the limits of lightweight construction, reduced aerodynamic drag and optimized propulsion are pushed further and further. The first two aspects can be addressed by using a morphing leading edge. Great economic advantages can be expected as a result of gapless surfaces which feature longer areas of laminar flow. Instead of focusing on the kinematics, which are already published in a great number of varieties, this paper emphasizes as major challenge, the qualification of a multi-material layup which meets the compromise of needed stiffness, flexibility and essential functions to match the flight worthiness requirements, such as erosion shielding, impact safety, lighting protection and de-icing. It is the aim to develop an gapless leading edge device and to prepare the path for higher technology readiness levels resulting in an airborne application. During several national and European projects the DLR developed a gapless smart droop nose concept, which functionality was successfully demonstrated using a two-dimensional 5 m in span prototype in low speed (up to 50 m/s) wind tunnel tests. The basic structure is made of commercially available and certified glass-fiber reinforced plastics (GFRP, Hexcel Hexply 913). This paper presents 4-point bending tests to characterize the composite with its integrated functions. The integrity and aging/fatigue issues of different material combinations are analyzed by experiments. It can be demonstrated that only by adding functional layers the mentioned requirements such as erosion-shielding or de-icing can be satisfied. The total thickness of the composite skin increases by more than 100 % when required functions are integrated as additional layers. This fact has a tremendous impact on the maximum strain of the outer surface if it features a complete monolithic build

  13. Gaps, Pseudogaps, and the Nature of Charge in Holographic Fermion Models

    NASA Astrophysics Data System (ADS)

    Vanacore, Garrett; Phillips, Philip

    Building on prior holographic constructions of Fermi arcs and Mott physics, we investigate the landscape of gapped and gapless strongly-correlated phases resulting from bulk fermion interactions in gauge/gravity duality. We test a proposed connection between bulk chiral symmetry and gapless boundary states, and discuss implications for discrete symmetry breaking in pseudogapped systems like the cuprate superconductors. Numerical methods are used to treat gravitational backreaction of bulk fermions, allowing more rigorous investigation of the existence of holographic Fermi surfaces and their adherence to Luttinger's rule. We use these techniques to study deviations from Luttinger's rule in holography, testing a recent claim that momentum-deconfined charges are at the heart of the Mott state.

  14. Ex vivo hydrodynamics after central and paracommissural edge-to-edge technique: A further step toward transcatheter tricuspid repair?

    PubMed

    Stock, Sina; Bohm, Heidemarie; Scharfschwerdt, Michael; Richardt, Doreen; Meyer-Saraei, Roza; Tsvelodub, Stanislav; Sievers, Hans-Hinrich

    2018-03-01

    Transcatheter approaches in heart valve disease became tremendously important and are currently established in the aortic position, but transcatheter tricuspid repair is still in its beginning and remains challenging. Replicating the surgical edge-to-edge technique, for example, with the MitraClip System (Abbott Vascular, Santa Clara, Calif), represents a promising option and has been reported successfully in small numbers of cases. However, up to now, few data considering the edge-to-edge technique as a transcatheter approach are available. This study aims to determine the ex vivo hydrodynamics after the central and paracommissural edge-to-edge technique in different pathologies. Because of basal or apical dislocation of papillary muscles, leaflet prolapse or tethering was simulated in porcine tricuspid valves mounted on a flexible holding device. Central and paracommissural edge-to-edge techniques were evaluated successively in these pathologies. Regurgitant volume and mean transvalvular gradient were determined in a pulse duplicator. In this ex vivo model, the isolated edge-to-edge technique reduced tricuspid regurgitation. In the prolapse model, regurgitant volume decreased significantly after central edge-to-edge technique (from 49.4 ± 13.6 mL/stroke to 39.3 ± 14.1 mL/stroke). In the tethering model, both the central and the paracommissural edge-to-edge techniques led to a significant decrease (from 48.7 ± 13.9 to 43.6 ± 15.6 and to 41.1 ± 13.8 mL/stroke). In all cases, the reduction of regurgitant volume was achieved at the cost of significantly increased mean transvalvular gradient. This study provides a reduction of tricuspid regurgitation after the edge-to-edge technique in the specific experimental setup. Whether this reduction is sufficient to treat tricuspid regurgitation successfully in clinical practice remains to be established. Transcatheter approaches need to be evaluated further, probably with regard to concomitant annuloplasty

  15. Energetics of edge oxidization of graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Yasuma, Airi; Yamanaka, Ayaka; Okada, Susumu

    2018-06-01

    On the basis of the density functional theory, we studied the geometries and energetics of O atoms adsorbed on graphene edges for simulating the initial stage of the edge oxidization of graphene. Our calculations showed that oxygen atoms are preferentially adsorbed onto the graphene edges with the zigzag portion, resulting in a large adsorption energy of about 5 eV. On the other hand, the edges with armchair shape are rarely oxidized, or the oxidization causes substantial structural reconstructions, because of the stable covalent bond at the armchair edge with the triple bond nature. Furthermore, the energetics sensitively depends on the edge angles owing to the inhomogeneity of the charge density at the edge atomic sites.

  16. The digital step edge

    NASA Technical Reports Server (NTRS)

    Haralick, R. M.

    1982-01-01

    The facet model was used to accomplish step edge detection. The essence of the facet model is that any analysis made on the basis of the pixel values in some neighborhood has its final authoritative interpretation relative to the underlying grey tone intensity surface of which the neighborhood pixel values are observed noisy samples. Pixels which are part of regions have simple grey tone intensity surfaces over their areas. Pixels which have an edge in them have complex grey tone intensity surfaces over their areas. Specially, an edge moves through a pixel only if there is some point in the pixel's area having a zero crossing of the second directional derivative taken in the direction of a non-zero gradient at the pixel's center. To determine whether or not a pixel should be marked as a step edge pixel, its underlying grey tone intensity surface was estimated on the basis of the pixels in its neighborhood.

  17. Surface state-dominated photoconduction and THz-generation in topological Bi2Te2Se-nanowires

    NASA Astrophysics Data System (ADS)

    Seifert, Paul; Vaklinova, Kristina; Kern, Klaus; Burghard, Marko; Holleitner, Alexander

    Topological insulators constitute a fascinating class of quantum materials with non-trivial, gapless states on the surface and trivial, insulating bulk states. In revealing the optoelectronic dynamics in the whole range from femto- to microseconds, we demonstrate that the long surface lifetime of Bi2Te2Se-nanowires allows to access the surface states by a pulsed photoconduction scheme and that there is a prevailing bolometric response of the surface states. The interplay of the surface state dynamics on the different timescales gives rise to a surprising physical property of Bi2Te2Se-nanowires: their pulsed photoconductance changes polarity as a function of laser power. Moreover, we show that single Bi2Te2Se-nanowires can be used as THz-generators for on-chip high-frequency circuits at room temperature. Our results open the avenue for single Bi2Te2Se-nanowires as active modules in optoelectronic high-frequency and THz-circuits. We acknowledge financial support by the ERC Grant NanoReal (n306754).

  18. Modified edge-to-edge technique for correction of congenital mitral regurgitation in infants and children.

    PubMed

    Zhang, Gang; Zhang, Fusheng; Zhu, Mei; Zhang, Wenlong; Fan, Quanxin; Zou, Chengwei; Wang, Anbiao

    2011-10-01

    Since 2008, 28 patients with congenital mitral regurgitation have undergone mitral valve repair with a modified edge-to-edge technique at our institution. The regurgitant mitral leaflet was sutured with a pledget-reinforced, horizontal mattress suture with No. 4-0 polypropylene on the ventricle side and a pledget-reinforced mattress suture with Gore-Tex sutures (W.L. Gore & Associates, Flagstaff, AZ) and Dacron pledgets (Chest, Shanghai) placed on the anterior and posterior annulus corresponding to the edge-to-edge suturing site. Early results are encouraging, but a longer follow-up is needed. Copyright © 2011 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  19. Edge-effect interactions in fragmented and patchy landscapes.

    PubMed

    Porensky, Lauren M; Young, Truman P

    2013-06-01

    Ecological edges are increasingly recognized as drivers of landscape patterns and ecosystem processes. In fragmented and patchy landscapes (e.g., a fragmented forest or a savanna with scattered termite mounds), edges can become so numerous that their effects pervade the entire landscape. Results of recent studies in such landscapes show that edge effects can be altered by the presence or proximity of other nearby edges. We considered the theoretical significance of edge-effect interactions, illustrated various landscape configurations that support them and reviewed existing research on this topic. Results of studies from a variety of locations and ecosystem types show that edge-effect interactions can have significant consequences for ecosystems and conservation, including higher tree mortality rates in tropical rainforest fragments, reduced bird densities in grassland fragments, and bush encroachment and reduced wildlife densities in a tropical savanna. To clarify this underappreciated concept and synthesize existing work, we devised a conceptual framework for edge-effect interactions. We first worked to reduce terminological confusion by clarifying differences among terms such as edge intersection and edge interaction. For cases in which nearby edge effects interact, we proposed three possible forms of interaction: strengthening (presence of a second edge causes stronger edge effects), weakening (presence of a second edge causes weaker edge effects), and emergent (edge effects change completely in the presence of a second edge). By clarifying terms and concepts, this framework enables more precise descriptions of edge-effect interactions and facilitates comparisons of results among disparate study systems and response variables. A better understanding of edge-effect interactions will pave the way for more appropriate modeling, conservation, and management in complex landscapes. © 2013 Society for Conservation Biology.

  20. Using solution- and solid-state S K-edge X-ray absorption spectroscopy with density functional theory to evaluate M-S bonding for MS4(2-) (M = Cr, Mo, W) dianions.

    PubMed

    Olson, Angela C; Keith, Jason M; Batista, Enrique R; Boland, Kevin S; Daly, Scott R; Kozimor, Stosh A; MacInnes, Molly M; Martin, Richard L; Scott, Brian L

    2014-12-14

    Herein, we have evaluated relative changes in M-S electronic structure and orbital mixing in Group 6 MS4(2-) dianions using solid- and solution-phase S K-edge X-ray absorption spectroscopy (XAS; M = Mo, W), as well as density functional theory (DFT; M = Cr, Mo, W) and time-dependent density functional theory (TDDFT) calculations. To facilitate comparison with solution measurements (conducted in acetonitrile), theoretical models included gas-phase calculations as well as those that incorporated an acetonitrile dielectric, the latter of which provided better agreement with experiment. Two pre-edge features arising from S 1s → e* and t electron excitations were observed in the S K-edge XAS spectra and were reasonably assigned as (1)A1 → (1)T2 transitions. For MoS4(2-), both solution-phase pre-edge peak intensities were consistent with results from the solid-state spectra. For WS4(2-), solution- and solid-state pre-edge peak intensities for transitions involving e* were equivalent, while transitions involving the t orbitals were less intense in solution. Experimental and computational results have been presented in comparison to recent analyses of MO4(2-) dianions, which allowed M-S and M-O orbital mixing to be evaluated as the principle quantum number (n) for the metal valence d orbitals increased (3d, 4d, 5d). Overall, the M-E (E = O, S) analyses revealed distinct trends in orbital mixing. For example, as the Group 6 triad was descended, e* (π*) orbital mixing remained constant in the M-S bonds, but increased appreciably for M-O interactions. For the t orbitals (σ* + π*), mixing decreased slightly for M-S bonding and increased only slightly for the M-O interactions. These results suggested that the metal and ligand valence orbital energies and radial extensions delicately influenced the orbital compositions for isoelectronic ME4(2-) (E = O, S) dianions.

  1. Scattering amplitudes of massive Nambu-Goldstone bosons

    NASA Astrophysics Data System (ADS)

    Brauner, Tomáš; Jakobsen, Martin F.

    2018-01-01

    Massive Nambu-Goldstone (mNG) bosons are quasiparticles the gap of which is determined exactly by symmetry. They appear whenever a symmetry is broken spontaneously in the ground state of a quantum many-body system and at the same time explicitly by the system's chemical potential. In this paper, we revisit mNG bosons and show that apart from their gap symmetry also protects their scattering amplitudes. Just like for ordinary gapless Nambu-Goldstone (NG) bosons, the scattering amplitudes of mNG bosons vanish in the long-wavelength limit. Unlike for gapless NG bosons, this statement holds for any scattering process involving one or more external mNG states; there are no kinematic singularities associated with the radiation of a soft mNG boson from an on-shell initial or final state.

  2. Simulation of Sentinel-2A Red Edge Bands with RPAS Based Multispectral Data

    NASA Astrophysics Data System (ADS)

    Davids, Corine; Storvold, Rune; Haarpaintner, Jorg; Arnason, Kolbeinn

    2016-08-01

    Very high spatial and spectral resolution multispectral data was collected over the Hallormstađur test site in eastern Iceland using a fixed wing remotely piloted aerial system as part of the EU FP7 project North State (www.northstatefp7.eu). The North State project uses forest variable estimates derived from optical and radar satellite data as either input or validation for carbon flux models. The RPAS data from the Hallormsstađur forest test site in Iceland is here used to simulate Landsat and Sentinel-2A data and to explore the advantages of the new Sentinel-2A red edge bands for forest vegetation mapping. Simple supervised classification shows that the inclusion of the red edge bands improves the tree species classification considerably.

  3. Band-edge positions in G W : Effects of starting point and self-consistency

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Pasquarello, Alfredo

    2014-10-01

    We study the effect of starting point and self-consistency within G W on the band-edge positions of semiconductors and insulators. Compared to calculations based on a semilocal starting point, the use of a hybrid-functional starting point shows a larger quasiparticle correction for both band-edge states. When the self-consistent treatment is employed, the band-gap opening is found to result mostly from a shift of the valence-band edge. Within the non-self-consistent methods, we analyse the performance of empirical and nonempirical schemes in which the starting point is optimally tuned. We further assess the accuracy of the band-edge positions through the calculation of ionization potentials of surfaces. The ionization potentials for most systems are reasonably well described by one-shot calculations. However, in the case of TiO2, we find that the use of self-consistency is critical to obtain a good agreement with experiment.

  4. A feasibility study of heat-pipe-cooled leading edges for hypersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    Silverstein, C. C.

    1971-01-01

    A theoretical study of the use of heat pipe structures for cooling the leading edges of hypersonic cruise aircraft was carried out over a Mach number range of 6 to 12. Preliminary design studies showed that a heat pipe cooling structure with a 33-in. chordwise length could maintain the maximum temperature of a 65 deg sweepback wing with a 0.5-in. leading edge radius below 1600 F during cruise at Mach 8. A few relatively minor changes in the steady-state design of the structure were found necessary to insure satisfactory cooling during the climb to cruise speed and altitude. It was concluded that heat pipe cooling is an attractive, feasible technique for limiting leading edge temperatures of hypersonic cruise aircraft.

  5. Phonon stiffen and soften at zigzag- and armchair-dominated edges of exfoliated bilayer graphene ribbon presented by Raman spectra

    NASA Astrophysics Data System (ADS)

    Xia, Minggang; Zhou, Xiaohua; Xin, Duqiang; Xu, Qiang

    2018-01-01

    The Raman spectra at the edge of the exfoliated bilayer graphene ribbon (GR) were investigated in detail. Results show that both G and 2D phonons stiffen (wave number increases) at zigzag-dominated edge, while they soften at armchair-dominated edge compared with those at the middle position in the GR. Furthermore, the full widths at half maximum intensity of both G and 2D Raman peaks narrow at the zigzag-dominated edge, while they broaden at the armchair-dominated edge. The stiffness and softness are attributed to the C-C bonds at the edge. For zigzag-dominated edge, the stiffness may originate in the increase of the force constant induced by the shrinking of C-C bond. For armchair-dominated edge, the softness may be due to the decrease of the force constant induced by the unsaturated hanging bonds at edge, which is different from Kohn anomaly and charge doping. The analysis is in agreement well with others calculation results about C-C bonds and the edge energy. These results may be useful to understand physical properties at the bilayer graphene edge and for applications in the device by taking advantage of the edge states in bilayer graphene.

  6. Scanning tunneling spectroscopic (STS) studies of the bulk magnetic doping effects on the surface state of Bi2Se3

    NASA Astrophysics Data System (ADS)

    Chen, C.-C.; Teague, M. L.; Woodward, N. D.; Yeh, N.-C.; He, L.; Kou, X.; Lang, M.; Wang, K.-L.

    2014-03-01

    We report STS studies of MBE-grown undoped and Cr-doped Bi2Se3 bi-layers on InP (111) and as a function of the updoped layer thickness and the Cr-doping level (x) . Our studies reveal gapless Dirac spectra at all temperatures (T) for samples with an undoped top layer larger than 5 QLs, implying that the interlayer magnetic correlation length ξ⊥ is < ~ 5-QL. For samples with an undoped top layer smaller than 5 QLs, STS reveals gapped spectra at T gapless regions and an in-plane magnetic correlation length ξ| | ~ 8-QL. We also find spatially localized double and single resonance peaks in the gapless regions, and their areal densities peak near Tc. We attribute the resonance sites to isolated Cr impurities, which couple with the spins of surrounding Dirac electrons and form localized topological spin textures of a long lifetime. With increasing interlayer magnetic field, the resonance sites diminish and the gap distribution becomes more homogeneous. Work supported by DARPA.

  7. Quantifying edge significance on maintaining global connectivity

    PubMed Central

    Qian, Yuhua; Li, Yebin; Zhang, Min; Ma, Guoshuai; Lu, Furong

    2017-01-01

    Global connectivity is a quite important issue for networks. The failures of some key edges may lead to breakdown of the whole system. How to find them will provide a better understanding on system robustness. Based on topological information, we propose an approach named LE (link entropy) to quantify the edge significance on maintaining global connectivity. Then we compare the LE with the other six acknowledged indices on the edge significance: the edge betweenness centrality, degree product, bridgeness, diffusion importance, topological overlap and k-path edge centrality. Experimental results show that the LE approach outperforms in quantifying edge significance on maintaining global connectivity. PMID:28349923

  8. Temperature and radiation effects at the fluorine K-edge in LiF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwartz, Craig P.; Ponce, Francisco; Friedrich, Stephan

    Here, the fluorine K-edge of LiF is studied both experimentally and theoretically as a function of temperature. Instantaneous thermal fluctuations in atomic positions are shown in molecular dynamics simulations to increase in amplitude from 0.029 to 0.064 nm in the temperature range from 40 to 298 K. This is sufficient to cause instantaneous deviations from local octahedral atomic symmetry in this rock-salt crystal, resulting in altered electronic structure. The lowered symmetry of the lowest core-excited states of fluorine atoms is evident in X-ray absorption spectra at the F K-edge. In addition, sufficient radiation exposure produces a new X-ray absorption peak,more » below the F K-edge of LiF, which is assigned to defects in LiF based on both calculations and comparison to previous experiments.« less

  9. Temperature and radiation effects at the fluorine K-edge in LiF

    DOE PAGES

    Schwartz, Craig P.; Ponce, Francisco; Friedrich, Stephan; ...

    2017-05-30

    Here, the fluorine K-edge of LiF is studied both experimentally and theoretically as a function of temperature. Instantaneous thermal fluctuations in atomic positions are shown in molecular dynamics simulations to increase in amplitude from 0.029 to 0.064 nm in the temperature range from 40 to 298 K. This is sufficient to cause instantaneous deviations from local octahedral atomic symmetry in this rock-salt crystal, resulting in altered electronic structure. The lowered symmetry of the lowest core-excited states of fluorine atoms is evident in X-ray absorption spectra at the F K-edge. In addition, sufficient radiation exposure produces a new X-ray absorption peak,more » below the F K-edge of LiF, which is assigned to defects in LiF based on both calculations and comparison to previous experiments.« less

  10. Thermostructural applications of heat pipes for cooling leading edges of high-speed aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Camarda, Charles J.; Glass, David E.

    1992-01-01

    Heat pipes have been considered for use on wing leading edge for over 20 years. Early concepts envisioned metal heat pipes cooling a metallic leading edge. Several superalloy/sodium heat pipes were fabricated and successfully tested for wing leading edge cooling. Results of radiant heat and aerothermal testing indicate the feasibility of using heat pipes to cool the stagnation region of shuttle-type space transportation systems. The test model withstood a total seven radiant heating tests, eight aerothermal tests, and twenty-seven supplemental radiant heating tests. Cold-wall heating rates ranged from 21 to 57 Btu/sq ft-s and maximum operating temperatures ranged from 1090 to 1520 F. Follow-on studies investigated the application of heat pipes to cool the stagnation regions of single-stage-to-orbit and advanced shuttle vehicles. Results of those studies indicate that a 'D-shaped' structural design can reduce the mass of the heat-pipe concept by over 44 percent compared to a circular heat-pipe geometry. Simple analytical models for heat-pipe startup from the frozen state (working fluid initially frozen) were adequate to approximate transient, startup, and steady-state heat-pipe performance. Improvement in analysis methods has resulted in the development of a finite-element analysis technique to predict heat-pipe startup from the frozen state. However, current requirements of light-weight design and reliability suggest that metallic heat pipes embedded in a refractory composite material should be used. This concept is the concept presently being evaluated for NASP. A refractory-composite/heat-pipe-cooled wing leading edge is currently being considered for the National Aero-Space Plane (NASP). This concept uses high-temperature refractory-metal/lithium heat pipes embedded within a refractory-composite structure and is significantly lighter than an actively cooled wing leading edge because it eliminates the need for active cooling during ascent and descent. Since the

  11. Thermostructural applications of heat pipes for cooling leading edges of high-speed aerospace vehicles

    NASA Astrophysics Data System (ADS)

    Camarda, Charles J.; Glass, David E.

    1992-10-01

    Heat pipes have been considered for use on wing leading edge for over 20 years. Early concepts envisioned metal heat pipes cooling a metallic leading edge. Several superalloy/sodium heat pipes were fabricated and successfully tested for wing leading edge cooling. Results of radiant heat and aerothermal testing indicate the feasibility of using heat pipes to cool the stagnation region of shuttle-type space transportation systems. The test model withstood a total seven radiant heating tests, eight aerothermal tests, and twenty-seven supplemental radiant heating tests. Cold-wall heating rates ranged from 21 to 57 Btu/sq ft-s and maximum operating temperatures ranged from 1090 to 1520 F. Follow-on studies investigated the application of heat pipes to cool the stagnation regions of single-stage-to-orbit and advanced shuttle vehicles. Results of those studies indicate that a 'D-shaped' structural design can reduce the mass of the heat-pipe concept by over 44 percent compared to a circular heat-pipe geometry. Simple analytical models for heat-pipe startup from the frozen state (working fluid initially frozen) were adequate to approximate transient, startup, and steady-state heat-pipe performance. Improvement in analysis methods has resulted in the development of a finite-element analysis technique to predict heat-pipe startup from the frozen state. However, current requirements of light-weight design and reliability suggest that metallic heat pipes embedded in a refractory composite material should be used. This concept is the concept presently being evaluated for NASP. A refractory-composite/heat-pipe-cooled wing leading edge is currently being considered for the National Aero-Space Plane (NASP). This concept uses high-temperature refractory-metal/lithium heat pipes embedded within a refractory-composite structure and is significantly lighter than an actively cooled wing leading edge because it eliminates the need for active cooling during ascent and descent. Since the

  12. Theory of L -edge spectroscopy of strongly correlated systems

    NASA Astrophysics Data System (ADS)

    Lüder, Johann; Schött, Johan; Brena, Barbara; Haverkort, Maurits W.; Thunström, Patrik; Eriksson, Olle; Sanyal, Biplab; Di Marco, Igor; Kvashnin, Yaroslav O.

    2017-12-01

    X-ray absorption spectroscopy measured at the L edge of transition metals (TMs) is a powerful element-selective tool providing direct information about the correlation effects in the 3 d states. The theoretical modeling of the 2 p →3 d excitation processes remains to be challenging for contemporary ab initio electronic structure techniques, due to strong core-hole and multiplet effects influencing the spectra. In this work, we present a realization of the method combining the density-functional theory with multiplet ligand field theory, proposed in Haverkort et al. [Phys. Rev. B 85, 165113 (2012), 10.1103/PhysRevB.85.165113]. In this approach, a single-impurity Anderson model (SIAM) is constructed, with almost all parameters obtained from first principles, and then solved to obtain the spectra. In our implementation, we adopt the language of the dynamical mean-field theory and utilize the local density of states and the hybridization function, projected onto TM 3 d states, in order to construct the SIAM. The developed computational scheme is applied to calculate the L -edge spectra for several TM monoxides. A very good agreement between the theory and experiment is found for all studied systems. The effect of core-hole relaxation, hybridization discretization, possible extensions of the method as well as its limitations are discussed.

  13. DAVs: Red Edge and Outbursts

    NASA Astrophysics Data System (ADS)

    Luan, Jing

    2018-04-01

    As established by ground based surveys, white dwarfs with hydrogen atmospheres pulsate as they cool across the temperature range, 12500K< Teff < 10800K . Known as DAVs or ZZ Ceti stars, their oscillations are attributed to overstable g-modes excited by convective driving. The effective temperature at the blue edge of the instability strip is slightly lower than that at which a surface convection zone appears. The temperature at the red edge is a two-decade old puzzle. Recently, Kepler discovered a number of cool DAVs exhibiting sporadic outbursts separated by days, each lasting several hours, and releasing \\sim 10^{33}-10^{34} {erg}. We provide quantitative explanations for both the red edge and the outbursts. The minimal frequency for overstable modes rises abruptly near the red edge. Although high frequency overstable modes exist below the red edge, their photometric amplitudes are generally too small to be detected by ground based observations. Nevertheless, these overstable parent modes can manifest themselves through nonlinear mode couplings to damped daughter modes which generate limit cycles giving rise to photometric outbursts.

  14. Free-edge stress analysis of glass-epoxy laminates with matrix cracks

    NASA Technical Reports Server (NTRS)

    Fish, John C.; O'Brien, T. K.

    1992-01-01

    The effect of matrix cracks on the composite delamination and interlaminar stresses is investigated in (+15/90n/-15)s glass-epoxy laminates (with values of n equal to 0, 1, 2, or 3) subjected to monotonically increasing tension loads. Three-dimensional (3D) and quasi-3D (Q3D) finite-element analyses are used to model the free-edge stress states in the laminates with and without a matrix crack, respectively. The Q3D results show that in-plane transverse tensile stresses exist in the +15 deg plies near the free edges of all of the laminates used and that only the interlaminar shear stress is high at the +15/theta interface. The results of 3D analysis indicate that large tensile interlaminar normal as well as shear stresses develop at the intersection of the matrix crack and the free edge. This suggests that the interlaminar normal stress plays a significant role in the failure of these laminates.

  15. Band-edge engineering for controlled multi-modal nanolasing in plasmonic superlattices

    DOE PAGES

    Wang, Danqing; Yang, Ankun; Wang, Weijia; ...

    2017-07-10

    Single band-edge states can trap light and function as high-quality optical feedback for microscale lasers and nanolasers. However, access to more than a single band-edge mode for nanolasing has not been possible because of limited cavity designs. Here, we describe how plasmonic superlattices-finite-arrays of nanoparticles (patches) grouped into microscale arrays-can support multiple band-edge modes capable of multi-modal nanolasing at programmed emission wavelengths and with large mode spacings. Different lasing modes show distinct input-output light behaviour and decay dynamics that can be tailored by nanoparticle size. By modelling the superlattice nanolasers with a four-level gain system and a time-domain approach, wemore » reveal that the accumulation of population inversion at plasmonic hot spots can be spatially modulated by the diffractive coupling order of the patches. Furthermore, we show that symmetry-broken superlattices can sustain switchable nanolasing between a single mode and multiple modes.« less

  16. Hypersonic Engine Leading Edge Experiments in a High Heat Flux, Supersonic Flow Environment

    NASA Technical Reports Server (NTRS)

    Gladden, Herbert J.; Melis, Matthew E.

    1994-01-01

    A major concern in advancing the state-of-the-art technologies for hypersonic vehicles is the development of an aeropropulsion system capable of withstanding the sustained high thermal loads expected during hypersonic flight. Three aerothermal load related concerns are the boundary layer transition from laminar to turbulent flow, articulating panel seals in high temperature environments, and strut (or cowl) leading edges with shock-on-shock interactions. A multidisciplinary approach is required to address these technical concerns. A hydrogen/oxygen rocket engine heat source has been developed at the NASA Lewis Research Center as one element in a series of facilities at national laboratories designed to experimentally evaluate the heat transfer and structural response of the strut (or cowl) leading edge. A recent experimental program conducted in this facility is discussed and related to cooling technology capability. The specific objective of the experiment discussed is to evaluate the erosion and oxidation characteristics of a coating on a cowl leading edge (or strut leading edge) in a supersonic, high heat flux environment. Heat transfer analyses of a similar leading edge concept cooled with gaseous hydrogen is included to demonstrate the complexity of the problem resulting from plastic deformation of the structures. Macro-photographic data from a coated leading edge model show progressive degradation over several thermal cycles at aerothermal conditions representative of high Mach number flight.

  17. Tunneling Spectroscopy of Quantum Hall States in Bilayer Graphene

    NASA Astrophysics Data System (ADS)

    Wang, Ke; Harzheim, Achim; Watanabe, Kenji; Taniguchi, Takashi; Kim, Philip

    In the quantum Hall (QH) regime, ballistic conducting paths along the physical edges of a sample appear, leading to quantized Hall conductance and vanishing longitudinal magnetoconductance. These QH edge states are often described as ballistic compressible strips separated by insulating incompressible strips, the spatial profiles of which can be crucial in understanding the stability and emergence of interaction driven QH states. In this work, we present tunneling transport between two QH edge states in bilayer graphene. Employing locally gated device structure, we guide and control the separation between the QH edge states in bilayer graphene. Using resonant Landau level tunneling as a spectroscopy tool, we measure the energy gap in bilayer graphene as a function of displacement field and probe the emergence and evolution of incompressible strips.

  18. An Automated Cloud-edge Detection Algorithm Using Cloud Physics and Radar Data

    NASA Technical Reports Server (NTRS)

    Ward, Jennifer G.; Merceret, Francis J.; Grainger, Cedric A.

    2003-01-01

    An automated cloud edge detection algorithm was developed and extensively tested. The algorithm uses in-situ cloud physics data measured by a research aircraft coupled with ground-based weather radar measurements to determine whether the aircraft is in or out of cloud. Cloud edges are determined when the in/out state changes, subject to a hysteresis constraint. The hysteresis constraint prevents isolated transient cloud puffs or data dropouts from being identified as cloud boundaries. The algorithm was verified by detailed manual examination of the data set in comparison to the results from application of the automated algorithm.

  19. Influence of point defects on the near edge structure of hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    McDougall, Nicholas L.; Partridge, Jim G.; Nicholls, Rebecca J.; Russo, Salvy P.; McCulloch, Dougal G.

    2017-10-01

    Hexagonal boron nitride (hBN) is a wide-band-gap semiconductor with applications including gate insulation layers in graphene transistors, far-ultraviolet light emitting devices and as hydrogen storage media. Due to its complex microstructure, defects in hBN are challenging to identify. Here, we combine x-ray absorption near edge structure (XANES) spectroscopy with ab initio theoretical modeling to identify energetically favorable defects. Following annealing of hBN samples in vacuum and oxygen, the B and N K edges exhibited angular-dependent peak modifications consistent with in-plane defects. Theoretical calculations showed that the energetically favorable defects all produce signature features in XANES. Comparing these calculations with experiments, the principle defects were attributed to substitutional oxygen at the nitrogen site, substitutional carbon at the boron site, and hydrogen passivated boron vacancies. Hydrogen passivation of defects was found to significantly affect the formation energies, electronic states, and XANES. In the B K edge, multiple peaks above the major 1 s to π* peak occur as a result of these defects and the hydrogen passivated boron vacancy produces the frequently observed doublet in the 1 s to σ* transition. While the N K edge is less sensitive to defects, features attributable to substitutional C at the B site were observed. This defect was also calculated to have mid-gap states in its band structure that may be responsible for the 4.1-eV ultraviolet emission frequently observed from this material.

  20. Edge Fracture in Complex Fluids.

    PubMed

    Hemingway, Ewan J; Kusumaatmaja, Halim; Fielding, Suzanne M

    2017-07-14

    We study theoretically the edge fracture instability in sheared complex fluids, by means of linear stability analysis and direct nonlinear simulations. We derive an exact analytical expression for the onset of edge fracture in terms of the shear-rate derivative of the fluid's second normal stress difference, the shear-rate derivative of the shear stress, the jump in shear stress across the interface between the fluid and the outside medium (usually air), the surface tension of that interface, and the rheometer gap size. We provide a full mechanistic understanding of the edge fracture instability, carefully validated against our simulations. These findings, which are robust with respect to choice of rheological constitutive model, also suggest a possible route to mitigating edge fracture, potentially allowing experimentalists to achieve and accurately measure flows stronger than hitherto possible.

  1. Edge Modeling by Two Blur Parameters in Varying Contrasts.

    PubMed

    Seo, Suyoung

    2018-06-01

    This paper presents a method of modeling edge profiles with two blur parameters, and estimating and predicting those edge parameters with varying brightness combinations and camera-to-object distances (COD). First, the validity of the edge model is proven mathematically. Then, it is proven experimentally with edges from a set of images captured for specifically designed target sheets and with edges from natural images. Estimation of the two blur parameters for each observed edge profile is performed with a brute-force method to find parameters that produce global minimum errors. Then, using the estimated blur parameters, actual blur parameters of edges with arbitrary brightness combinations are predicted using a surface interpolation method (i.e., kriging). The predicted surfaces show that the two blur parameters of the proposed edge model depend on both dark-side edge brightness and light-side edge brightness following a certain global trend. This is similar across varying CODs. The proposed edge model is compared with a one-blur parameter edge model using experiments of the root mean squared error for fitting the edge models to each observed edge profile. The comparison results suggest that the proposed edge model has superiority over the one-blur parameter edge model in most cases where edges have varying brightness combinations.

  2. Fatal Injuries of Law Enforcement/Correctional Officers Attacked with Sharp-Edged Weapons.

    PubMed

    Chenpanas, Patsy; Bir, Cynthia

    2017-05-01

    According to the National Law Enforcement Memorial Fund, there were 117 law enforcement fatalities in the United States in 2015. Assaults with sharp-edged weapons have resulted in a total of over 400 fatalities in the United States. The goal of the current research was to examine sharp-edged weapon assaults against law enforcement and correctional agents that resulted in a fatal outcome. A total of twelve autopsy reports were reviewed from across the United States. Four cases involved law enforcement officers, seven involved correctional officers, and one was an off-duty border officer. The male-to-female ratio was 11:1. A total of 70.2% of the wounds analyzed were stab wounds (n = 85), and 29.8% of the wounds were slash wounds (n = 36). Based on this review, the neck, shoulder, and chest regions were the most vulnerable to single fatal stab/slash wounds. Multiple stab/slash wounds often resulted in exsanguination. The use of body armor was only noted in one case. © 2016 American Academy of Forensic Sciences.

  3. Recruiting first generation college students into the Geosciences: Alaska's EDGE project

    NASA Astrophysics Data System (ADS)

    Prakash, A.; Connor, C.

    2008-12-01

    Funded in 2005-2008, by the National Science Foundation's Geoscience Education Division, the Experiential Discoveries in Geoscience Education (EDGE) project was designed to use glacier and watershed field experiences as venues for geospatial data collected by Alaska's grade 6-12 middle and high school teachers and their students. EDGE participants were trained in GIS and learned to analyze geospatial data to answer questions about the warming Alaska environment and to determine rates of ongoing glacier recession. Important emphasis of the program was the recruitment of Alaska Native students of Inupiat, Yup'ik, Athabascan, and Tlingit populations, living in both rural and urban areas around the state. Twelve of Alaska's 55 school districts have participated in the EDGE program. To engage EDGE students in the practice of scientific inquiry, each was required to carry out a semester scale research project using georeferenced data, guided by their EDGE teacher and mentor. Across Alaska students investigated several Earth systems processes including freezing conditions of lake ice; the changes in water quality in storm drains after rainfall events; movements of moose, bears, and bison across Alaskan landscapes; changes in permafrost depth in western Alaska; and the response of migrating waterfowl to these permafrost changes. Students correlated the substrate beneath their schools with known earthquake intensities; measured cutbank and coastal erosion on northern rivers and southeastern shorelines; tracked salmon infiltration of flooded logging roads; noted the changing behavior of eagles during late winter salmon runs; located good areas for the use of tidal power for energy production; tracked the extent and range of invasive plant species with warming; and the change of forests following deglaciation. Each cohort of EDGE students and teachers finished the program by attended a 3-day EDGE symposium at which students presented their research projects first in a

  4. Out-of-plane spin polarization of edge currents in Chern insulator with Rashba spin-orbit interaction

    NASA Astrophysics Data System (ADS)

    Chen, Tsung-Wei; Hsiao, Chin-Lun; Hu, Chong-Der

    2016-07-01

    We investigate the change in the non-zero Chern number and out-of-plane spin polarization of the edge currents in a honeycomb lattice with the Haldane-Rashba interaction. This interaction breaks the time-reversal symmetry due to the Haldane phase caused by a current loop at the site-I and site-II atoms, and also accounts for the Rashba-type spin-orbit interaction. The Rashba spin-orbit interaction increases the number of Dirac points and the band-touching phenomenon can be generated by tuning the on-site potential in the non-zero Haldane phase. By using the Pontryagin winding number and numerical Berry curvature methods, we find that the Chern number pattern is {+2, -1, 0} and {-2, +1, 0} for the positive and negative Haldane phase, respectively. A non-zero Chern number is called a Chern-insulating phase. We discovered that changes in both the Haldane phase and on-site potential leads to a change in the orientation of the bulk spin polarization of site-I and site-II atoms. Interestingly, in a ribbon with a zigzag edge, which naturally has site-I atoms at one outer edge and site-II atoms at the opposite outer edge, the spin polarization of the edge states approximately obeys the properties of bulk spin polarization regardless of the change in the Chern number. In addition, even when the Chern number changes from  +2 to  -1 (or  -2 to  +1), by tuning the strength of the on-site potential, the sign of the spin polarization of the edge states persists. This approximate bulk-edge correspondence of the spin polarization in the Haldane-Rashba system would play an important role in spintronics, because it enables us to control the orientation of the spin polarization in a single Chern-insulating phase.

  5. Out-of-plane spin polarization of edge currents in Chern insulator with Rashba spin-orbit interaction.

    PubMed

    Chen, Tsung-Wei; Hsiao, Chin-Lun; Hu, Chong-Der

    2016-07-13

    We investigate the change in the non-zero Chern number and out-of-plane spin polarization of the edge currents in a honeycomb lattice with the Haldane-Rashba interaction. This interaction breaks the time-reversal symmetry due to the Haldane phase caused by a current loop at the site-I and site-II atoms, and also accounts for the Rashba-type spin-orbit interaction. The Rashba spin-orbit interaction increases the number of Dirac points and the band-touching phenomenon can be generated by tuning the on-site potential in the non-zero Haldane phase. By using the Pontryagin winding number and numerical Berry curvature methods, we find that the Chern number pattern is {+2, -1, 0} and {-2, +1, 0} for the positive and negative Haldane phase, respectively. A non-zero Chern number is called a Chern-insulating phase. We discovered that changes in both the Haldane phase and on-site potential leads to a change in the orientation of the bulk spin polarization of site-I and site-II atoms. Interestingly, in a ribbon with a zigzag edge, which naturally has site-I atoms at one outer edge and site-II atoms at the opposite outer edge, the spin polarization of the edge states approximately obeys the properties of bulk spin polarization regardless of the change in the Chern number. In addition, even when the Chern number changes from  +2 to  -1 (or  -2 to  +1), by tuning the strength of the on-site potential, the sign of the spin polarization of the edge states persists. This approximate bulk-edge correspondence of the spin polarization in the Haldane-Rashba system would play an important role in spintronics, because it enables us to control the orientation of the spin polarization in a single Chern-insulating phase.

  6. Outcome after percutaneous edge-to-edge mitral repair for functional and degenerative mitral regurgitation: a systematic review and meta-analysis.

    PubMed

    Chiarito, Mauro; Pagnesi, Matteo; Martino, Enrico Antonio; Pighi, Michele; Scotti, Andrea; Biondi-Zoccai, Giuseppe; Latib, Azeem; Landoni, Giovanni; Mario, Carlo Di; Margonato, Alberto; Maisano, Francesco; Feldman, Ted; Alfieri, Ottavio; Colombo, Antonio; Godino, Cosmo

    2018-02-01

    Differences in terms of safety and efficacy of percutaneous edge-to-edge mitral repair between patients with functional and degenerative mitral regurgitation (MR) are not well established. We performed a systematic review and meta-analysis to clarify these differences. PubMed, EMBASE, Google scholar database and international meeting abstracts were searched for all studies about MitraClip. Studies with <25 patients or where 1-year results were not delineated between MR aetiology were excluded. This study is registered with PROSPERO. A total of nine studies investigating the mid-term outcome of percutaneous edge-to-edge repair in patients with functional versus degenerative MR were included in the meta-analysis (n=2615). At 1 year, there were not significant differences among groups in terms of patients with MR grade≤2 (719/1304 vs 295/504; 58% vs 54%; risk ratio (RR) 1.12; 95% CI: 0.86 to 1.47; p=0.40), while there was a significantly lower rate of mitral valve re-intervention in patients with functional MR compared with those with degenerative MR (77/1770 vs 80/818; 4% vs 10%; RR 0.60; 95% CI: 0.38 to 0.97; p=0.04). One-year mortality rate was 16% (408/2498) and similar among groups (RR 1.26; 95% CI: 0.90 to 1.77; p=0.18). Functional MR group showed significantly higher percentage of patients in New York Heart Association class III/IV (234/1480 vs 49/583; 16% vs 8%; p<0.01) and re-hospitalisation for heart failure (137/605 vs 31/220; 23% vs 14%; p=0.03). No differences were found in terms of single leaflet device attachment (25/969 vs 20/464; 3% vs 4%; p=0.81) and device embolisation (no events reported in both groups) at 1 year. This meta-analysis suggests that percutaneous edge-to-edge repair is likely to be an efficacious and safe option in patients with both functional and degenerative MR. Large, randomised studies are ongoing and awaited to fully assess the clinical impact of the procedure in these two different MR aetiologies. © Article author

  7. Cell edge detection in JPEG2000 wavelet domain - analysis on sigmoid function edge model.

    PubMed

    Punys, Vytenis; Maknickas, Ramunas

    2011-01-01

    Big virtual microscopy images (80K x 60K pixels and larger) are usually stored using the JPEG2000 image compression scheme. Diagnostic quantification, based on image analysis, might be faster if performed on compressed data (approx. 20 times less the original amount), representing the coefficients of the wavelet transform. The analysis of possible edge detection without reverse wavelet transform is presented in the paper. Two edge detection methods, suitable for JPEG2000 bi-orthogonal wavelets, are proposed. The methods are adjusted according calculated parameters of sigmoid edge model. The results of model analysis indicate more suitable method for given bi-orthogonal wavelet.

  8. Enhanced thermoelectric performance in three-dimensional superlattice of topological insulator thin films.

    PubMed

    Fan, Zheyong; Zheng, Jiansen; Wang, Hui-Qiong; Zheng, Jin-Cheng

    2012-10-16

    We show that certain three-dimensional (3D) superlattice nanostructure based on Bi2Te3 topological insulator thin films has better thermoelectric performance than two-dimensional (2D) thin films. The 3D superlattice shows a predicted peak value of ZT of approximately 6 for gapped surface states at room temperature and retains a high figure of merit ZT of approximately 2.5 for gapless surface states. In contrast, 2D thin films with gapless surface states show no advantage over bulk Bi2Te3. The enhancement of the thermoelectric performance originates from a combination of the reduction of lattice thermal conductivity by phonon-interface scattering, the high mobility of the topologically protected surface states, the enhancement of Seebeck coefficient, and the reduction of electron thermal conductivity by energy filtering. Our study shows that the nanostructure design of topological insulators provides a possible new way of ZT enhancement.

  9. Supersonic Leading Edge Receptivity

    NASA Technical Reports Server (NTRS)

    Maslov, Anatoly A.

    1998-01-01

    This paper describes experimental studies of leading edge boundary layer receptivity for imposed stream disturbances. Studies were conducted in the supersonic T-325 facility at ITAM and include data for both sharp and blunt leading edges. The data are in agreement with existing theory and should provide guidance for the development of more complete theories and numerical computations of this phenomena.

  10. Optimal frequency domain textural edge detection filter

    NASA Technical Reports Server (NTRS)

    Townsend, J. K.; Shanmugan, K. S.; Frost, V. S.

    1985-01-01

    An optimal frequency domain textural edge detection filter is developed and its performance evaluated. For the given model and filter bandwidth, the filter maximizes the amount of output image energy placed within a specified resolution interval centered on the textural edge. Filter derivation is based on relating textural edge detection to tonal edge detection via the complex low-pass equivalent representation of narrowband bandpass signals and systems. The filter is specified in terms of the prolate spheroidal wave functions translated in frequency. Performance is evaluated using the asymptotic approximation version of the filter. This evaluation demonstrates satisfactory filter performance for ideal and nonideal textures. In addition, the filter can be adjusted to detect textural edges in noisy images at the expense of edge resolution.

  11. Probing 5 f -state configurations in URu 2 Si 2 with U L III -edge resonant x-ray emission spectroscopy

    DOE PAGES

    Booth, Corwin H.; Medling, S. A.; Tobin, J. G.; ...

    2016-07-15

    Resonant x-ray emission spectroscopy (RXES) was employed at the U LIII absorption edge and the L α1 emission line to explore the 5f occupancy, nf, and the degree of 5f-orbital delocalization in the hidden-order compound URu 2Si 2. By comparing to suitable reference materials such as UF 4, UCd 11, and α-U, we conclude that the 5f orbital in URu 2Si 2 is at least partially delocalized with n f=2.87±0.08, and does not change with temperature down to 10 K within the estimated error. These results place further constraints on theoretical explanations of the hidden order, especially those requiring amore » localized f 2 ground state.« less

  12. Evaluation of potential benefits of wider and brighter edge line pavement markings.

    DOT National Transportation Integrated Search

    2010-07-01

    This report documents the findings of a two-year study that investigated the potential benefits of wider : edge line pavement markings. There were four general tasks discussed in the report: 1) review of literature, : 2) survey of the state of the pr...

  13. Edge of polar cap patches

    NASA Astrophysics Data System (ADS)

    Hosokawa, K.; Taguchi, S.; Ogawa, Y.

    2016-04-01

    On the night of 4 December 2013, a sequence of polar cap patches was captured by an all-sky airglow imager (ASI) in Longyearbyen, Norway (78.1°N, 15.5°E). The 630.0 nm airglow images from the ASI of 4 second exposure time, oversampled the emission of natural lifetime (with quenching) of at least ˜30 sec, introduce no observational blurring effects. By using such high-quality ASI images, we succeeded in visualizing an asymmetry in the gradients between the leading/trailing edges of the patches in a 2-D fashion. The gradient in the leading edge was found to be 2-3 times steeper than that in the trailing edge. We also identified fingerlike structures, appearing only along the trailing edge of the patches, whose horizontal scale size ranged from 55 to 210 km. These fingers are considered to be manifestations of plasma structuring through the gradient-drift instability (GDI), which is known to occur only along the trailing edge of patches. That is, the current 2-D observations visualized, for the first time, how GDI stirs the patch plasma and such a mixing process makes the trailing edge more gradual. This result strongly implies a close connection between the GDI-driven plasma stirring and the asymmetry in the large-scale shape of patches and then suggests that the fingerlike structures can be used as markers to estimate the fine-scale structure in the plasma flow within patches.

  14. Computational Study of Porous Treatment for Altering Flap Side-Edge Flowfield

    NASA Technical Reports Server (NTRS)

    Choudhari, Meelan; Khorrami, Mehdi R.

    2003-01-01

    Reynolds-averaged Navier-Stokes calculations are used to investigate porous side-edge treatment as a passive means for flap noise reduction. Steady-state simulations are used to infer effects of the treatment on acoustically relevant features of the mean flow near the flap side edge. Application of the porous treatment over a miniscule fraction of the wetted flap area (scaling with the flap thickness) results in significantly weaker side-edge vortex structures via modification of the vortex initiation and roll-up processes. At high flap deflections, the region of axial flow reversal associated with the breakdown of the side-edge vortex is also eliminated, indicating an absence of vortex bursting in the presence of the treatment. Potential ramifications of the mean-flow modifications for flap-noise reduction are examined in the light of lessons learned from recent studies on flap noise. Computations confirm that any noise reduction benefit via the porous treatment would be achieved without compromising the aerodynamic effectiveness of the flap. Results of the parameter study contribute additional insight into the measured data from the 7x10 wind tunnel at NASA Ames and provide preliminary guidance for specifying optimal treatment characteristics in terms of treatment location, spatial extent, and flow resistance of the porous skin.

  15. Illusory displacement of equiluminous kinetic edges.

    PubMed

    Ramachandran, V S; Anstis, S M

    1990-01-01

    A stationary window was cut out of a stationary random-dot pattern. When a field of dots was moved continuously behind the window (a) the window appeared to move in the same direction even though it was stationary, (b) the position of the 'kinetic edges' defining the window was also displaced along the direction of dot motion, and (c) the edges of the window tended to fade on steady fixation even though the dots were still clearly visible. The illusory displacement was enhanced considerably if the kinetic edge was equiluminous and if the 'window' region was seen as 'figure' rather than 'ground'. Since the extraction of kinetic edges probably involves the use of direction-selective cells, the illusion may provide insights into how the visual system uses the output of these cells to localize the kinetic edges.

  16. Giant edge spin accumulation in a symmetric quantum well with two subbands

    NASA Astrophysics Data System (ADS)

    Khaetskii, Alexander; Egues, J. Carlos

    We have studied the edge spin accumulation due to an electric current in a high mobility two-dimensional electron gas formed in a symmetric well with two subbands. This study is strongly motivated by recent experiments which demonstrated the spin accumulation near the edges of a symmetric bilayer GaAs structure in contrast to no effect in a single-layer configuration. The intrinsic mechanism of the spin-orbit interaction we consider arises from the coupling between two subband states of opposite parities. Following the method developed in, we show that the presence of a gap in the system (i.e., the energy separation between the two subband bottoms) changes drastically the picture of the edge spin accumulation. We obtain a parametrically large magnitude of the edge spin density for a two-subband well as compared to the usual single-subband structure, and show that by changing the gap from zero up to 1 ÷2 K, the magnitude of the effect changes by three orders of magnitude. It opens up the possibility for the design of new interesting spintronic devices. We acknowledge financial support from FAPESP.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu Cenke

    In this paper, we calculate the entanglement Renyi entropy of two coupled gapless systems in general spatial dimension d. The gapless systems can be either conformal field theories or Fermi liquids. We assume the two systems are coupled uniformly in an h-dimensional submanifold of the space, with 0{<=}h{<=}d. We will focus on the scaling of the Renyi entropy with the size of the system, and its scaling with the intersystem coupling constant g. Three approaches will be used for our calculation: (1) exact calculation with ground-state wave functional, (2) perturbative calculation with functional path integral, and (3) scaling argument.

  18. Urbanization impacts on mammals across urban-forest edges and a predictive model of edge effects.

    PubMed

    Villaseñor, Nélida R; Driscoll, Don A; Escobar, Martín A H; Gibbons, Philip; Lindenmayer, David B

    2014-01-01

    With accelerating rates of urbanization worldwide, a better understanding of ecological processes at the wildland-urban interface is critical to conserve biodiversity. We explored the effects of high and low-density housing developments on forest-dwelling mammals. Based on habitat characteristics, we expected a gradual decline in species abundance across forest-urban edges and an increased decline rate in higher contrast edges. We surveyed arboreal mammals in sites of high and low housing density along 600 m transects that spanned urban areas and areas turn on adjacent native forest. We also surveyed forest controls to test whether edge effects extended beyond our edge transects. We fitted models describing richness, total abundance and individual species abundance. Low-density housing developments provided suitable habitat for most arboreal mammals. In contrast, high-density housing developments had lower species richness, total abundance and individual species abundance, but supported the highest abundances of an urban adapter (Trichosurus vulpecula). We did not find the predicted gradual decline in species abundance. Of four species analysed, three exhibited no response to the proximity of urban boundaries, but spilled over into adjacent urban habitat to differing extents. One species (Petaurus australis) had an extended negative response to urban boundaries, suggesting that urban development has impacts beyond 300 m into adjacent forest. Our empirical work demonstrates that high-density housing developments have negative effects on both community and species level responses, except for one urban adapter. We developed a new predictive model of edge effects based on our results and the literature. To predict animal responses across edges, our framework integrates for first time: (1) habitat quality/preference, (2) species response with the proximity to the adjacent habitat, and (3) spillover extent/sensitivity to adjacent habitat boundaries. This framework will

  19. Exciting Reflectionless, Unidirectional Edge Mode in Bianisotropic Meta-waveguide Using Rotating Dipole Antenna

    NASA Astrophysics Data System (ADS)

    Xiao, Bo; Antonsen, Thomas; Ott, Edward; Anlage, Steven; Ma, Tzuhsuan; Shvets, Gennady

    Electronic chiral edge states in Quantum Hall Effect systems has attracted a lot of attention in recent years because of its unique directionality and robustness against scattering from disorder. Its electromagnetic counterpart can be found in photonic crystals, which is a material with periodic dielectric constant. Here we present the experimental results demonstrating the unidirectional edge mode inside a bi-anisotropic meta-waveguide (BMW) structure. It is a parallel plate waveguide with metal rods placed in a hexagonal lattice. Half of the rods are attached to the top plate while the other half are attached to the bottom plate creating a domain wall. The edge mode is excited by two loop antennas placed perpendicular to each other within one wavelength, generating a rotating magnetic dipole that couples to the left or right-going mode. The transmission measurement are taken along the BMW boundary and shows high transmission only around the edge, thus confirming the presence of an edge mode. We also demonstrated that very high directivity can be achieved when the input amplitude and phase of the two loop antennas are tuned properly This work is funded by the ONR under Grants No. N00014130474 and N000141512134, and the Center for Nanophysics and Advanced Materials (CNAM).

  20. Simulation studies of structure and edge tension of lipid bilayer edges: effects of tail structure and force-field.

    PubMed

    West, Ana; Ma, Kevin; Chung, Jonathan L; Kindt, James T

    2013-08-15

    Molecular dynamics simulations of lipid bilayer ribbons have been performed to investigate the structures and line tensions associated with free bilayer edges. Simulations carried out for dioleoyl phosphatidylcholine with three different force-field parameter sets yielded edge line tensions of 45 ± 2 pN, over 50% greater than the most recently reported experimentally determined value for this lipid. Edge tensions obtained from simulations of a series of phosphatidylcholine lipid bilayer ribbons with saturated acyl tails of length 12-16 carbons and with monounsaturated acyl tails of length 14-18 carbons could be correlated with the excess area associated with forming the edge, through a two-parameter fit. Saturated-tail lipids underwent local thickening near the edge, producing denser packing that correlated with lower line tensions, while unsaturated-tail lipids showed little or no local thickening. In a dipalmitoyl phosphatidylcholine ribbon initiated in a tilted gel-phase structure, lipid headgroups tended to tilt toward the nearer edge producing a herringbone pattern, an accommodation that may account for the reported edge-induced stabilization of an ordered structure at temperatures near a lipid gel-fluid phase transition.

  1. Flap-edge aeroacoustic measurements and predictions

    NASA Astrophysics Data System (ADS)

    Brooks, Thomas F.; Humphreys, William M.

    2003-03-01

    An aeroacoustic model test has been conducted to investigate the mechanisms of sound generation on high-lift wing configurations. This paper presents an analysis of flap side-edge noise, which is often the most dominant source. A model of a main element wing section with a half-span flap was tested at low speeds of up to a Mach number of 0.17, corresponding to a wing chord Reynolds number of approximately 1.7 million. Results are presented for flat (or blunt), flanged, and round flap-edge geometries, with and without boundary-layer tripping, deployed at both moderate and high flap angles. The acoustic database is obtained from a small aperture directional array (SADA) of microphones, which was constructed to electronically steer to different regions of the model and to obtain farfield noise spectra and directivity from these regions. The basic flap-edge aerodynamics is established by static surface pressure data, as well as by computational fluid dynamics (CFD) calculations and simplified edge flow analyses. Distributions of unsteady pressure sensors over the flap allow the noise source regions to be defined and quantified via cross-spectral diagnostics using the SADA output. It is found that shear layer instability and related pressure scatter is the primary noise mechanism. For the flat edge flap, two noise prediction methods based on unsteady-surface-pressure measurements are evaluated and compared to measured noise. One is a new causality spectral approach developed here. The other is a new application of an edge-noise scatter prediction method. The good comparisons for both approaches suggest that the prediction models capture much of the physics. Areas of disagreement appear to reveal when the assumed edge noise mechanism does not fully define the noise production. For the different edge conditions, extensive spectra and directivity are presented. The complexity of the directivity results demonstrate the strong role of edge source geometry and frequency in

  2. Comparative dynamics of avian communities across edges and interiors of North American ecoregions

    USGS Publications Warehouse

    Karanth, K.K.; Nichols, J.D.; Sauer, J.R.; Hines, J.E.

    2006-01-01

    Aim Based on a priori hypotheses, we developed predictions about how avian communities might differ at the edges vs. interiors of ecoregions. Specifically, we predicted lower species richness and greater local turnover and extinction probabilities for regional edges. We tested these predictions using North American Breeding Bird Survey (BBS) data across nine ecoregions over a 20-year time period. Location Data from 2238 BBS routes within nine ecoregions of the United States were used. Methods The estimation methods used accounted for species detection probabilities < 1. Parameter estimates for species richness, local turnover and extinction probabilities were obtained using the program COMDYN. We examined the difference in community-level parameters estimated from within exterior edges (the habitat interface between ecoregions), interior edges (the habitat interface between two bird conservation regions within the same ecoregion) and interior (habitat excluding interfaces). General linear models were constructed to examine sources of variation in community parameters for five ecoregions (containing all three habitat types) and all nine ecoregions (containing two habitat types). Results Analyses provided evidence that interior habitats and interior edges had on average higher bird species richness than exterior edges, providing some evidence of reduced species richness near habitat edges. Lower average extinction probabilities and turnover rates in interior habitats (five-region analysis) provided some support for our predictions about these quantities. However, analyses directed at all three response variables, i.e. species richness, local turnover, and local extinction probability, provided evidence of an interaction between habitat and region, indicating that the relationships did not hold in all regions. Main conclusions The overall predictions of lower species richness, higher local turnover and extinction probabilities in regional edge habitats, as opposed to

  3. Chemical forms of sulfur in geological and archeological asphaltenes from Middle East, France, and Spain determined by sulfur K- and L-edge X-ray absorption near-edge structure spectroscopy

    NASA Astrophysics Data System (ADS)

    Sarret, Géraldine; Connan, Jacques; Kasrai, Masoud; Bancroft, G. Michael; Charrié-Duhaut, Armelle; Lemoine, Sylvie; Adam, Pierre; Albrecht, Pierre; Eybert-Bérard, Laurent

    1999-11-01

    Asphaltene samples extracted from archeological and geological bitumens from the Middle East, France, and Spain were studied by sulfur K- and L-edge X-ray absorption near-edge structure (XANES) spectroscopy in combination with isotopic analyses (δ 13C and δD). Within each series, the samples were genetically related by their δ 13C values. The gross and elemental composition and the δD values were used to characterize the weathering state of the samples. Sulfur K- and L-edge XANES results show that in all the samples, dibenzothiophenes are the dominant forms of sulfur. In the least oxidized asphaltenes, minor species include disulfides, alkyl and aryl sulfides, and sulfoxides. With increasing alteration the proportion of oxidized sulfur (sulfoxides, sulfones, sulfonates and sulfates) increases, whereas the disulfide and sulfide content decreases. This evolution is observed in all the series, regardless of the origin of the asphaltenes. This work illustrates the advantages of XANES spectroscopy as a selective probe for determining sulfur speciation in natural samples. It also shows that S K- and L-edge XANES spectroscopy are complementary for identifying the oxidized and reduced forms of sulfur, respectively.

  4. Real-time edge tracking using a tactile sensor

    NASA Technical Reports Server (NTRS)

    Berger, Alan D.; Volpe, Richard; Khosla, Pradeep K.

    1989-01-01

    Object recognition through the use of input from multiple sensors is an important aspect of an autonomous manipulation system. In tactile object recognition, it is necessary to determine the location and orientation of object edges and surfaces. A controller is proposed that utilizes a tactile sensor in the feedback loop of a manipulator to track along edges. In the control system, the data from the tactile sensor is first processed to find edges. The parameters of these edges are then used to generate a control signal to a hybrid controller. Theory is presented for tactile edge detection and an edge tracking controller. In addition, experimental verification of the edge tracking controller is presented.

  5. Flap Edge Aeroacoustic Measurements and Predictions

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas F.; Humphreys, William M., Jr.

    2000-01-01

    An aeroacoustic model test has been conducted to investigate the mechanisms of sound generation on high-lift wing configurations. This paper presents an analysis of flap side-edge noise, which is often the most dominant source. A model of a main element wing section with a half-span flap was tested at low speeds of up to a Mach number of 0.17, corresponding to a wing chord Reynolds number of approximately 1.7 million. Results are presented for flat (or blunt), flanged, and round flap-edge geometries, with and without boundary-layer tripping, deployed at both moderate and high flap angles. The acoustic database is obtained from a Small Aperture Directional Array (SADA) of microphones, which was constructed to electronically steer to different regions of the model and to obtain farfield noise spectra and directivity from these regions. The basic flap-edge aerodynamics is established by static surface pressure data, as well as by Computational Fluid Dynamics (CFD) calculations and simplified edge flow analyses. Distributions of unsteady pressure sensors over the flap allow the noise source regions to be defined and quantified via cross-spectral diagnostics using the SADA output. It is found that shear layer instability and related pressure scatter is the primary noise mechanism. For the flat edge flap, two noise prediction methods based on unsteady surface pressure measurements are evaluated and compared to measured noise. One is a new causality spectral approach developed here. The other is a new application of an edge-noise scatter prediction method. The good comparisons for both approaches suggest that much of the physics is captured by the prediction models. Areas of disagreement appear to reveal when the assumed edge noise mechanism does not fully define the noise production. For the different edge conditions, extensive spectra and directivity are presented. Significantly, for each edge configuration, the spectra for different flow speeds, flap angles, and

  6. Flap Edge Aeroacoustic Measurements and Predictions

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas F.; Humphreys, William M., Jr.

    2000-01-01

    An aeroacoustic model test has been conducted to investigate the mechanisms of sound generation on high-lift wing configurations. This paper presents an analysis of flap side-edge noise, which is often the most dominant source. A model of a main element wing section with a half-span flap was tested at low speeds of up to a Mach number of 0.17, corresponding to a wing chord Reynolds number of approximately 1.7 million. Results are presented for flat (or blunt), flanged, and round flap-edge geometries, with and without boundary-layer tripping, deployed at both moderate and high flap angles. The acoustic database is obtained from a Small Aperture Directional Array (SADA) of microphones, which was constructed to electronically steer to different regions of the model and to obtain farfield noise spectra and directivity from these regions. The basic flap-edge aerodynamics is established by static surface pressure data, as well as by Computational Fluid Dynamics (CFD) calculations and simplified edge flow analyses. Distributions of unsteady pressure sensors over the flap allow the noise source regions to be defined and quantified via cross-spectral diagnostics using the SADA output. It is found that shear layer instability and related pressure scatter is the primary noise mechanism. For the flat edge flap, two noise prediction methods based on unsteady-surface-pressure measurements are evaluated and compared to measured noise. One is a new causality spectral approach developed here. The other is a new application of an edge-noise scatter prediction method. The good comparisons for both approaches suggest that much of the physics is captured by the prediction models. Areas of disagreement appear to reveal when the assumed edge noise mechanism does not fully define, the noise production. For the different edge conditions, extensive spectra and directivity are presented. Significantly, for each edge configuration, the spectra for different flow speeds, flap angles, and

  7. Image Edge Tracking via Ant Colony Optimization

    NASA Astrophysics Data System (ADS)

    Li, Ruowei; Wu, Hongkun; Liu, Shilong; Rahman, M. A.; Liu, Sanchi; Kwok, Ngai Ming

    2018-04-01

    A good edge plot should use continuous thin lines to describe the complete contour of the captured object. However, the detection of weak edges is a challenging task because of the associated low pixel intensities. Ant Colony Optimization (ACO) has been employed by many researchers to address this problem. The algorithm is a meta-heuristic method developed by mimicking the natural behaviour of ants. It uses iterative searches to find the optimal solution that cannot be found via traditional optimization approaches. In this work, ACO is employed to track and repair broken edges obtained via conventional Sobel edge detector to produced a result with more connected edges.

  8. Flexural edge waves generated by steady-state propagation of a loaded rectilinear crack in an elastically supported thin plate

    NASA Astrophysics Data System (ADS)

    Nobili, Andrea; Radi, Enrico; Lanzoni, Luca

    2017-08-01

    The problem of a rectilinear crack propagating at constant speed in an elastically supported thin plate and acted upon by an equally moving load is considered. The full-field solution is obtained and the spotlight is set on flexural edge wave generation. Below the critical speed for the appearance of travelling waves, a threshold speed is met which marks the transformation of decaying edge waves into edge waves propagating along the crack and dying away from it. Yet, besides these, and for any propagation speed, a pair of localized edge waves, which rapidly decay behind the crack tip, is also shown to exist. These waves are characterized by a novel dispersion relation and fade off from the crack line in an oscillatory manner, whence they play an important role in the far field behaviour. Dynamic stress intensity factors are obtained and, for speed close to the critical speed, they show a resonant behaviour which expresses the most efficient way to channel external work into the crack. Indeed, this behaviour is justified through energy considerations regarding the work of the applied load and the energy release rate. Results might be useful in a wide array of applications, ranging from fracturing and machining to acoustic emission and defect detection.

  9. Flexural edge waves generated by steady-state propagation of a loaded rectilinear crack in an elastically supported thin plate.

    PubMed

    Nobili, Andrea; Radi, Enrico; Lanzoni, Luca

    2017-08-01

    The problem of a rectilinear crack propagating at constant speed in an elastically supported thin plate and acted upon by an equally moving load is considered. The full-field solution is obtained and the spotlight is set on flexural edge wave generation. Below the critical speed for the appearance of travelling waves, a threshold speed is met which marks the transformation of decaying edge waves into edge waves propagating along the crack and dying away from it. Yet, besides these, and for any propagation speed, a pair of localized edge waves, which rapidly decay behind the crack tip, is also shown to exist. These waves are characterized by a novel dispersion relation and fade off from the crack line in an oscillatory manner, whence they play an important role in the far field behaviour. Dynamic stress intensity factors are obtained and, for speed close to the critical speed, they show a resonant behaviour which expresses the most efficient way to channel external work into the crack. Indeed, this behaviour is justified through energy considerations regarding the work of the applied load and the energy release rate. Results might be useful in a wide array of applications, ranging from fracturing and machining to acoustic emission and defect detection.

  10. Physical states and finite-size effects in Kitaev's honeycomb model: Bond disorder, spin excitations, and NMR line shape

    NASA Astrophysics Data System (ADS)

    Zschocke, Fabian; Vojta, Matthias

    2015-07-01

    Kitaev's compass model on the honeycomb lattice realizes a spin liquid whose emergent excitations are dispersive Majorana fermions and static Z2 gauge fluxes. We discuss the proper selection of physical states for finite-size simulations in the Majorana representation, based on a recent paper by F. L. Pedrocchi, S. Chesi, and D. Loss [Phys. Rev. B 84, 165414 (2011), 10.1103/PhysRevB.84.165414]. Certain physical observables acquire large finite-size effects, in particular if the ground state is not fermion-free, which we prove to generally apply to the system in the gapless phase and with periodic boundary conditions. To illustrate our findings, we compute the static and dynamic spin susceptibilities for finite-size systems. Specifically, we consider random-bond disorder (which preserves the solubility of the model), calculate the distribution of local flux gaps, and extract the NMR line shape. We also predict a transition to a random-flux state with increasing disorder.

  11. Edge-to-edge repair for prevention and treatment of mitral valve systolic anterior motion.

    PubMed

    Myers, Patrick O; Khalpey, Zain; Maloney, Ann M; Brinster, Derek R; D'Ambra, Michael N; Cohn, Lawrence H

    2013-10-01

    The edge-to-edge technique has been proposed to prevent systolic anterior motion (SAM) of the mitral valve. There is limited clinical data available on outcomes of this technique for this indication. We reviewed the midterm results of this technique for SAM prevention and treatment. A total of 2226 patients had mitral valve repair between 2000 and 2011, 1148 of which were for myxomatous mitral regurgitation. Beginning in 2000, predictability of postrepair SAM based on the prebypass, intraoperative transesophageal echocardiogram arose in our program. The edge-to-edge technique was used in 65 patients (5.7%) for SAM management, in 53 patients preemptively for transesophageal echocardiogram-based SAM prediction, and in 12 patients for postrepair SAM treatment. There was no operative mortality. Postoperative mitral regurgitation was significantly improved in all patients compared with the preoperative grade (P < .001). SAM was completely eliminated, the mean mitral regurgitation grade in the postoperative period was 0.7 ± 0.9, and the mean transmitral gradient was 1.3 ± 2.2 mm Hg. During a mean follow-up of 26 months, 1 patient in the SAM treatment group presented late recurrence of SAM and no patients developed mitral stenosis (mean transmitral gradient, 2.0 ± 2.6 mm Hg; P = .12). Without SAM prediction and preemptive edge-to-edge technique, the expected rate of SAM would have been 5.7%; however, the observed rate was 1% (12 of 1148 patients). Initiating an expectation for prebypass SAM prediction, combined with a surgical SAM prevention strategy, resulted in a reduced prevalence of SAM compared with our model of observed to-expected-ratios and to published norms. Copyright © 2013 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.

  12. Core level electron energy-loss spectra of minerals: pre-edge fine structures at the oxygen K-edge . Comment on ``Water in minerals detectable by electron energy-loss spectroscopy EELS'' by R. Wirth, Phys Chem Minerals (1997) 24:561-568

    NASA Astrophysics Data System (ADS)

    van Aken, P. A.; Liebscher, B.; Styrsa, V. J.

    In a recent paper entitled ``Water in minerals detectable by electron energy-loss spectroscopy EELS'' by R. Wirth, it has been claimed that OH-- and H2O-bearing minerals exhibit a characteristic peak in the ELNES spectra at about 528 eV prior to the onset of the O K-edge at 532 eV, which could be used for (semi-)quantitative determination of water- or OH-contents on a nanometer scale. It is shown here by parallel electron energy-loss spectroscopy (PEELS) recorded in a transmission electron microscope (TEM) that O K-pre-edge peaks with very high intensities may also exist in water-free compounds and minerals, in particular when they contain transition metals. These spectral features arise from covalent mixing of the metal and oxygen states, which introduces oxygen p character in unoccupied states of mainly metal character. The point is illustrated by the comparison of hematite (α-Fe2O3) and lepidocrocite (γ-FeOOH) O K-edge PEELS spectra which exhibit similar intensities of the pre-edge peak, despite of their grossly different OH- contents. As a consequence, the general validity of the method proposed by Wirth is questioned.

  13. Edge Currents and Stability in DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, D M; Fenstermacher, M E; Finkenthal, D K

    2004-12-01

    Understanding the stability physics of the H-mode pedestal in tokamak devices requires an accurate measurement of plasma current in the pedestal region with good spatial resolution. Theoretically, the high pressure gradients achieved in the edge of H-mode plasmas should lead to generation of a significant edge current density peak through bootstrap and Pfirsh-Schl{umlt u}ter effects. This edge current is important for the achievement of second stability in the context of coupled magneto hydrodynamic (MHD) modes which are both pressure (ballooning) and current (peeling) driven. Many aspects of edge localized mode (ELM) behavior can be accounted for in terms of anmore » edge current density peak, with the identification of Type 1 ELMs as intermediate-n toroidal mode number MHD modes being a natural feature of this model. The development of a edge localized instabilities in tokamak experiments code (ELITE) based on this model allows one to efficiently calculate the stability and growth of the relevant modes for a broad range of plasma parameters and thus provides a framework for understanding the limits on pedestal height. This however requires an accurate assessment of the edge current. While estimates of j{sub edge} can be made based on specific bootstrap models, their validity may be limited in the edge (gradient scalelengths comparable to orbit size, large changes in collisionality, etc.). Therefore it is highly desirable to have an actual measurement. Such measurements have been made on the DIII-D tokamak using combined polarimetry and spectroscopy of an injected lithium beam. By analyzing one of the Zeeman-split 2S-2P lithium resonance line components, one can obtain direct information on the local magnetic field components. These values allow one to infer details of the edge current density. Because of the negligible Stark mixing of the relevant atomic levels in lithium, this method of determining j(r) is insensitive to the large local electric fields

  14. Identifying anthropogenic uranium compounds using soft X-ray near-edge absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Ward, Jesse D.; Bowden, Mark; Tom Resch, C.; Eiden, Gregory C.; Pemmaraju, C. D.; Prendergast, David; Duffin, Andrew M.

    2017-01-01

    Uranium ores mined for industrial use are typically acid-leached to produce yellowcake and then converted into uranium halides for enrichment and purification. These anthropogenic chemical forms of uranium are distinct from their mineral counterparts. The purpose of this study is to use soft X-ray absorption spectroscopy to characterize several common anthropogenic uranium compounds important to the nuclear fuel cycle. Chemical analyses of these compounds are important for process and environmental monitoring. X-ray absorption techniques have several advantages in this regard, including element-specificity, chemical sensitivity, and high spectral resolution. Oxygen K-edge spectra were collected for uranyl nitrate, uranyl fluoride, and uranyl chloride, and fluorine K-edge spectra were collected for uranyl fluoride and uranium tetrafluoride. Interpretation of the data is aided by comparisons to calculated spectra. The effect of hydration state on the sample, a potential complication in interpreting oxygen K-edge spectra, is discussed. These compounds have unique spectral signatures that can be used to identify unknown samples.

  15. Edge map analysis in chest X-rays for automatic pulmonary abnormality screening.

    PubMed

    Santosh, K C; Vajda, Szilárd; Antani, Sameer; Thoma, George R

    2016-09-01

    Our particular motivator is the need for screening HIV+ populations in resource-constrained regions for the evidence of tuberculosis, using posteroanterior chest radiographs (CXRs). The proposed method is motivated by the observation that abnormal CXRs tend to exhibit corrupted and/or deformed thoracic edge maps. We study histograms of thoracic edges for all possible orientations of gradients in the range [Formula: see text] at different numbers of bins and different pyramid levels, using five different regions-of-interest selection. We have used two CXR benchmark collections made available by the U.S. National Library of Medicine and have achieved a maximum abnormality detection accuracy (ACC) of 86.36 % and area under the ROC curve (AUC) of 0.93 at 1 s per image, on average. We have presented an automatic method for screening pulmonary abnormalities using thoracic edge map in CXR images. The proposed method outperforms previously reported state-of-the-art results.

  16. Evaluation of OLED and edge-lit LED lighting panels

    NASA Astrophysics Data System (ADS)

    Mou, Xi; Narendran, Nadarajah; Zhu, Yiting; Freyssinier, Jean Paul

    2016-09-01

    Solid-state lighting (SSL) offers a new technology platform for lighting designers and end-users to illuminate spaces with low energy demand. Two types of SSL sources include organic light-emitting diodes (OLEDs) and light-emitting diodes (LEDs). OLED is an area light source, and its primary competing technology is the edge-lit LED panel. Generally, both of these technologies are considered similar in shape and appearance, but there is little understanding of how people perceive discomfort glare from large area light sources. The objective of this study was to evaluate discomfort glare for the two lighting technologies under similar operating conditions by gathering observers' reactions. The human factors study results showed no statistically significant difference in human response to discomfort glare between OLED and edge-lit LED panels when the two light sources produced the same lighting stimulus. This means both technologies appeared equally glary beyond a certain luminance.

  17. Experimental analyses of trailing edge flows

    NASA Technical Reports Server (NTRS)

    Petrie, S. L.; Emmer, D. S.

    1984-01-01

    An experimental study of several of the trailing edge and wake turbulence properties for a NACA 64A010 airfoil section was completed. The experiment was conducted at the Ohio State University Aeronautical and Astronautical Research Laboratory in the 6 inch X 22 inch transonic wind tunnel facility. The data were obtained at a free stream Mach number of 0.80 and a flow Reynolds number (based on chord length) of 5 million. The principle diagnostic tool was a dual-component laser Doppler velocimeter. The experimental data included surface static pressures, chordwise and vertical mean velocities, RMS turbulence intensities, local flow angles, and a determination of turbulence kinetic energy in the wake. Two angles of attack (0 and 2 degrees) were investigated. At these incidence angles, four flow field surveys were obtained ranging in position from the surface of the airfoil, between the transonic shock and the trailing edge, to the far-wake. At both angles of attack, the turbulence intensities and turbulence kinetic energy were observed to decay in the streamwise direction. In the far wake, for the non-lifting case, the turbulence intensities were nearly isotropic. For the two degree case, the horizontal component of the turbulence intensity was observed to be substantially higher than the vertical component.

  18. Compressive Membrane Capability Estimates in Laterally Edge Restrained Reinforced Concrete One-Way Slabs

    DTIC Science & Technology

    1999-05-01

    by THE UNITED STATES ARMY, I DEPARTMENT OF CIVIL AND MECHANICAL ENGINEERINGI UNITED STATES MILITARY ACADEMY and DEPARTMENT OF CIVIL AND ENVIRONMENTAL ...SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING I MONITORING AG-ENCY REPORT NUMBER Department of Civil and Environmental ...LATERALLY EDGE RESTRAINED REINFORCED CONCRETE ONE-WAY SLABS Ronald Wayne Welch, Ph.D. Department of Civil and Environmental Engineering University of

  19. Improved Edge Performance in MRF

    NASA Technical Reports Server (NTRS)

    Shorey, Aric; Jones, Andrew; Durnas, Paul; Tricard, Marc

    2004-01-01

    The fabrication of large segmented optics requires a polishing process that can correct the figure of a surface to within a short distance from its edges-typically, a few millimeters. The work here is to develop QED's Magnetorheological Finishing (MRF) precision polishing process to minimize residual edge effects.

  20. Classification and characterization of topological insulators and superconductors

    NASA Astrophysics Data System (ADS)

    Mong, Roger

    surface spectrum can be computed from bulk quantities. Specifically, we present an analytic prescription for computing the edge dispersion E(k) of a tight-binding Dirac Hamiltonian terminated at an abrupt crystalline edge, based on the bulk Hamiltonian. The result is presented as a geometric formula, relating the existence of surface states as well as their energy dispersion to properties of the bulk Hamiltonian. We further prove the bulk-boundary correspondence for this specific class of systems, connecting the Chern number and the chiral edge modes for quantum Hall systems given in terms of Dirac Hamiltonians. In similar spirit, we examine the existence of Majorana zero modes in superconducting doped-TIs. We find that Majorana zero modes indeed appear but only if the doped Fermi energy is below a critical chemical potential. The critical doping is associated with a topological phase transition of vortex lines, which supports gapless excitations spanning their length. For weak pairing, the critical point is dependent on the non-abelian Berry phase of the bulk Fermi surface. Finally, we investigate the transport properties on the surfaces of TIs. While the surfaces of “strong topological insulators” - TIs with an odd number of Dirac cones in their surface spectrum - have been well studied in literature, studies of their counterpart “weak topological insulators” (WTIs) are meager, with conflicting claims. Because WTIs have an even number of Dirac cones in their surface spectrum, they are thought to be unstable to disorder, which leads to an insulating surface. Here we argue that the presence of disorder alone will not localize the surface states, rather, presence of a time-reversal symmetric mass term is required for localization. Through numerical simulations, we show that in the absence of the mass term the surface always flow to a stable metallic phase and the conductivity obeys a one-parameter scaling relation, just as in the

  1. The dressed atom as binary phase modulator: towards attojoule/edge optical phase-shift keying.

    PubMed

    Kerckhoff, Joseph; Armen, Michael A; Pavlichin, Dmitri S; Mabuchi, Hideo

    2011-03-28

    We use a single 133Cs atom strongly coupled to an optical resonator to induce random binary phase modulation of a near infra-red, ∼ 500 pW laser beam, with each modulation edge caused by the dissipation of a single photon (≈ 0.23 aJ) by the atom. While our ability to deterministically induce phase edges with an additional optical control beam is limited thus far, theoretical analysis of an analogous, solid-state system indicates that efficient external control should be achievable in demonstrated nanophotonic systems.

  2. Visual navigation using edge curve matching for pinpoint planetary landing

    NASA Astrophysics Data System (ADS)

    Cui, Pingyuan; Gao, Xizhen; Zhu, Shengying; Shao, Wei

    2018-05-01

    Pinpoint landing is challenging for future Mars and asteroid exploration missions. Vision-based navigation scheme based on feature detection and matching is practical and can achieve the required precision. However, existing algorithms are computationally prohibitive and utilize poor-performance measurements, which pose great challenges for the application of visual navigation. This paper proposes an innovative visual navigation scheme using crater edge curves during descent and landing phase. In the algorithm, the edge curves of the craters tracked from two sequential images are utilized to determine the relative attitude and position of the lander through a normalized method. Then, considering error accumulation of relative navigation, a method is developed. That is to integrate the crater-based relative navigation method with crater-based absolute navigation method that identifies craters using a georeferenced database for continuous estimation of absolute states. In addition, expressions of the relative state estimate bias are derived. Novel necessary and sufficient observability criteria based on error analysis are provided to improve the navigation performance, which hold true for similar navigation systems. Simulation results demonstrate the effectiveness and high accuracy of the proposed navigation method.

  3. Enhanced thermoelectric performance in three-dimensional superlattice of topological insulator thin films

    PubMed Central

    2012-01-01

    We show that certain three-dimensional (3D) superlattice nanostructure based on Bi2Te3 topological insulator thin films has better thermoelectric performance than two-dimensional (2D) thin films. The 3D superlattice shows a predicted peak value of ZT of approximately 6 for gapped surface states at room temperature and retains a high figure of merit ZT of approximately 2.5 for gapless surface states. In contrast, 2D thin films with gapless surface states show no advantage over bulk Bi2Te3. The enhancement of the thermoelectric performance originates from a combination of the reduction of lattice thermal conductivity by phonon-interface scattering, the high mobility of the topologically protected surface states, the enhancement of Seebeck coefficient, and the reduction of electron thermal conductivity by energy filtering. Our study shows that the nanostructure design of topological insulators provides a possible new way of ZT enhancement. PMID:23072433

  4. Image segmentation on adaptive edge-preserving smoothing

    NASA Astrophysics Data System (ADS)

    He, Kun; Wang, Dan; Zheng, Xiuqing

    2016-09-01

    Nowadays, typical active contour models are widely applied in image segmentation. However, they perform badly on real images with inhomogeneous subregions. In order to overcome the drawback, this paper proposes an edge-preserving smoothing image segmentation algorithm. At first, this paper analyzes the edge-preserving smoothing conditions for image segmentation and constructs an edge-preserving smoothing model inspired by total variation. The proposed model has the ability to smooth inhomogeneous subregions and preserve edges. Then, a kind of clustering algorithm, which reasonably trades off edge-preserving and subregion-smoothing according to the local information, is employed to learn the edge-preserving parameter adaptively. At last, according to the confidence level of segmentation subregions, this paper constructs a smoothing convergence condition to avoid oversmoothing. Experiments indicate that the proposed algorithm has superior performance in precision, recall, and F-measure compared with other segmentation algorithms, and it is insensitive to noise and inhomogeneous-regions.

  5. Transcatheter Treatment of Tricuspid Regurgitation Using Edge-to-Edge Repair: Procedural Results, Clinical Implications and Predictors for Success.

    PubMed

    Lurz, Philipp; Besler, Christian; Noack, Thilo; Forner, Anna Flo; Bevilacqua, Carmine; Seeburger, Joerg; Rommel, Karl-Philipp; Blazek, Stephan; Hartung, Philipp; Zimmer, Marion; Mohr, Friedrich; Schuler, Gerhard; Linke, Axel; Ender, Joerg; Thiele, Holger

    2018-04-10

    To analyze the feasibility, safety and effectiveness of Tricuspid valve (TV) repair using the MitraClip system in patients at high surgical risk. Forty-two elderly high-risk patients (76.8±7.3 years, EuroScore II 8.1±5.7) with isolated TR or combined TR and mitral regurgitation (MR) underwent edge-to-edge repair of the TV (n=11) or combined edge-to-edge repair of the TV and mitral valve (n=31). Procedural details, success rate, impact on TR severity and predictors for success at 30 day follow-up were analyzed. Successful edge-to-edge repair of TR was achieved in 35/42 patients (83%, 68 clips in total, 94% in the anteroseptal commissure, 6% in the posteroseptal commissure). In 5 patients, grasping of the leaflets was impossible and two patients had no decrease in TR after clipping. In those with procedural success, clipping of the TV led to a reduction in effective regurgitant orifice area by -62,5 % (from 0.8±0.4 to 0.3±0.2 cm2; p<0.0001). In both, patients with isolated TV and combined procedures, 6 minute walking distance improved (from 285±118 to 344±81 and 225±113 to 261±130 m, p=0.02 and 0.03, respectively). Predominant anteroseptal or central TR was identified as predictor of procedural success (p=0.025). Edge-to-edge repair of the TV is feasible with promising reduction in TR, which could result in clinical improvement.

  6. Influence of Wafer Edge Geometry on Removal Rate Profile in Chemical Mechanical Polishing: Wafer Edge Roll-Off and Notch

    NASA Astrophysics Data System (ADS)

    Fukuda, Akira; Fukuda, Tetsuo; Fukunaga, Akira; Tsujimura, Manabu

    2012-05-01

    In the chemical mechanical polishing (CMP) process, uniform polishing up to near the wafer edge is essential to reduce edge exclusion and improve yield. In this study, we examine the influences of inherent wafer edge geometries, i.e., wafer edge roll-off and notch, on the CMP removal rate profile. We clarify the areas in which the removal rate profile is affected by the wafer edge roll-off and the notch, as well as the intensity of their effects on the removal rate profile. In addition, we propose the use of a small notch to reduce the influence of the wafer notch and present the results of an examination by finite element method (FEM) analysis.

  7. Urbanization Impacts on Mammals across Urban-Forest Edges and a Predictive Model of Edge Effects

    PubMed Central

    Villaseñor, Nélida R.; Driscoll, Don A.; Escobar, Martín A. H.; Gibbons, Philip; Lindenmayer, David B.

    2014-01-01

    With accelerating rates of urbanization worldwide, a better understanding of ecological processes at the wildland-urban interface is critical to conserve biodiversity. We explored the effects of high and low-density housing developments on forest-dwelling mammals. Based on habitat characteristics, we expected a gradual decline in species abundance across forest-urban edges and an increased decline rate in higher contrast edges. We surveyed arboreal mammals in sites of high and low housing density along 600 m transects that spanned urban areas and areas turn on adjacent native forest. We also surveyed forest controls to test whether edge effects extended beyond our edge transects. We fitted models describing richness, total abundance and individual species abundance. Low-density housing developments provided suitable habitat for most arboreal mammals. In contrast, high-density housing developments had lower species richness, total abundance and individual species abundance, but supported the highest abundances of an urban adapter (Trichosurus vulpecula). We did not find the predicted gradual decline in species abundance. Of four species analysed, three exhibited no response to the proximity of urban boundaries, but spilled over into adjacent urban habitat to differing extents. One species (Petaurus australis) had an extended negative response to urban boundaries, suggesting that urban development has impacts beyond 300 m into adjacent forest. Our empirical work demonstrates that high-density housing developments have negative effects on both community and species level responses, except for one urban adapter. We developed a new predictive model of edge effects based on our results and the literature. To predict animal responses across edges, our framework integrates for first time: (1) habitat quality/preference, (2) species response with the proximity to the adjacent habitat, and (3) spillover extent/sensitivity to adjacent habitat boundaries. This framework will

  8. Edge strength of CAD/CAM materials.

    PubMed

    Pfeilschifter, Maria; Preis, Verena; Behr, Michael; Rosentritt, Martin

    2018-05-16

    To investigate the edge force of CAD/CAM materials as a function of (a) material, (b) thickness, and (c) distance from the margin. Materials intended for processing with CAD/CAM were investigated: eight resin composites, one resin-infiltrated ceramic, and a clinically proven lithiumdisilicate ceramic (reference). To measure edge force (that is, load to failure/crack), plates (d = 1 mm) were fixed and loaded with a Vickers diamond indenter (1 mm/min, Zwick 1446) at a distance of 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0 mm from the edge. Edge force was defined as a loading force at a distance of 0.5 mm. The type of failure was determined. To investigate the influence of the thickness, all data were determined on 1-mm and 2-mm plates. To test the influence of bonding and an underlying dentin, individual 1-mm plates were bonded to a 1-mm-thick dentin-like (concerning modulus of elasticity) resin composite. For the 1-mm plates, edge force varied between 64.4 ± 24.2 N (Shofu Block HC) and 183.2 ± 63.3 N (ceramic reference), with significant (p ≤ 0.001) differences between the materials. For the 2-mm plates, values between 129.2 ± 32.5 N (Lava Ultimate) and 230.3 ± 67.5 N (Cerasmart) were found. Statistical comparison revealed no significant differences (p > 0.109) between the materials. Brilliant Crios (p = 0.023), Enamic (p = 0.000), Shofu Blocks HC (p = 0.009), and Grandio Bloc (p = 0.002) showed significantly different edge force between the 1-mm- and 2-mm-thick plates. The failure pattern was either cracking, (severe) chipping, or fracture. Material, material thickness, and distance from the edge impact the edge force of CAD/CAM materials. CAD/CAM materials should be carefully selected on the basis of their individual edge force and performance during milling. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Optical Assessment of Soft Contact Lens Edge-Thickness.

    PubMed

    Tankam, Patrice; Won, Jungeun; Canavesi, Cristina; Cox, Ian; Rolland, Jannick P

    2016-08-01

    To assess the edge shape of soft contact lenses using Gabor-Domain Optical Coherence Microscopy (GD-OCM) with a 2-μm imaging resolution in three dimensions and to generate edge-thickness profiles at different distances from the edge tip of soft contact lenses. A high-speed custom-designed GD-OCM system was used to produce 3D images of the edge of an experimental soft contact lens (Bausch + Lomb, Rochester, NY) in four different configurations: in air, submerged into water, submerged into saline with contrast agent, and placed onto the cornea of a porcine eyeball. An algorithm to compute the edge-thickness was developed and applied to cross-sectional images. The proposed algorithm includes the accurate detection of the interfaces between the lens and the environment, and the correction of the refraction error. The sharply defined edge tip of a soft contact lens was visualized in 3D. Results showed precise thickness measurement of the contact lens edge profile. Fifty cross-sectional image frames for each configuration were used to test the robustness of the algorithm in evaluating the edge-thickness at any distance from the edge tip. The precision of the measurements was less than 0.2 μm. The results confirmed the ability of GD-OCM to provide high-definition images of soft contact lens edges. As a nondestructive, precise, and fast metrology tool for soft contact lens measurement, the integration of GD-OCM in the design and manufacturing of contact lenses will be beneficial for further improvement in edge design and quality control. In the clinical perspective, the in vivo evaluation of the lens fitted onto the cornea will advance our understanding of how the edge interacts with the ocular surface. The latter will provide insights into the impact of long-term use of contact lenses on the visual performance.

  10. Optical Assessment of Soft Contact Lens Edge-Thickness

    PubMed Central

    Tankam, Patrice; Won, Jungeun; Canavesi, Cristina; Cox, Ian; Rolland, Jannick P.

    2016-01-01

    Purpose To assess the edge shape of soft contact lenses using Gabor-Domain Optical Coherence Microscopy (GD-OCM) with a 2 μm imaging resolution in three dimensions, and to generate edge-thickness profiles at different distances from the edge tip of soft contact lenses. Methods A high-speed custom-designed GD-OCM system was used to produce 3D images of the edge of an experimental soft contact lens (Bausch + Lomb, Rochester NY) in four different configurations: in air, submerged into water, submerged into saline with contrast agent, and placed onto the cornea of a porcine eyeball. An algorithm to compute the edge-thickness was developed and applied to cross-sectional images. The proposed algorithm includes the accurate detection of the interfaces between the lens and the environment, and the correction of the refraction error. Results The sharply defined edge tip of a soft contact lens was visualized in 3D. Results showed precise thickness measurement of the contact lens edge profile. 50 cross-sectional image frames for each configuration were used to test the robustness of the algorithm in evaluating the edge-thickness at any distance from the edge tip. The precision of the measurements was less than 0.2 μm. Conclusions The results confirmed the ability of GD-OCM to provide high definition images of soft contact lens edges. As a non-destructive, precise, and fast metrology tool for soft contact lens measurement, the integration of GD-OCM in the design and manufacturing of contact lenses will be beneficial for further improvement in edge design and quality control. In the clinical perspective, the in-vivo evaluation of the lens fitted onto the cornea will advance our understanding of how the edge interacts with the ocular surface. The latter will provide insights into the impact of long-term use of contact lenses on the visual performance. PMID:27232902

  11. 16 CFR 1211.12 - Requirements for edge sensors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Requirements for edge sensors. 1211.12... Requirements for edge sensors. (a) Normal operation test. (1) When installed on a representative door edge, an edge sensor shall actuate upon the application of a 15 pounds (66.7 N) or less force in the direction...

  12. 16 CFR 1211.12 - Requirements for edge sensors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Requirements for edge sensors. 1211.12... Requirements for edge sensors. (a) Normal operation test. (1) When installed on a representative door edge, an edge sensor shall actuate upon the application of a 15 pounds (66.7 N) or less force in the direction...

  13. Surgical revision after percutaneous mitral valve repair by edge-to-edge device: when the strategy fails in the highest risk surgical population.

    PubMed

    Alozie, Anthony; Westphal, Bernd; Kische, Stephan; Kaminski, Alexander; Paranskaya, Liliya; Bozdag-Turan, Ilkay; Ortak, Jasmin; Schubert, Jochen; Steinhoff, Gustav; Ince, Hüseyin

    2014-07-01

    Percutaneous edge-to-edge devices for non-surgical repair of mitral valve regurgitation are under clinical evaluation in high-risk patients deemed not suitable for conventional surgery. To address guidelines for initial therapy decision, we here report on 13 cases of surgery after failed percutaneous edge-to-edge mitral valve repair or attempted repair, and discuss methodology and prognostic factors for operative outcome in this high-risk situation. Thirteen patients referred to our cardiothoracic unit after failed percutaneous mitral valve repair or attempted repair using the edge-to-edge technique, were treated surgically for mitral valve failure between June 2010 and December 2012. Pathology of mitral valve before and after interventional mitral valve repair (especially prevalent mode of failure) was evaluated and classified for each individual patient by echocardiography and intraoperative direct visualization. Number of implanted edge-to-edge devices were identified. Preoperative risk scores were matched with intraoperative observations and histopathological findings of valve tissue. Postoperative morbidity and mortality were analysed with respect to mitral valve and patient-related data. Three of 10 patients were referred with severe mitral valve regurgitation/stenosis after initially successful percutaneous edge-to-edge therapy or attempted therapy. In 3 patients, ≥ 2 edge-to-edge devices were implanted leading to very tight edge-to-edge leaflet connection and fibrosis. All patients underwent successful surgical mitral valve replacement and concomitant complete cardiac surgery (CABG, aortic or tricuspid valve surgery, ASD closure and pulmonary vein isolation for atrial fibrillation). The likelihood of repair was reduced with respect to multiple edge-to-edge technology. One device could not be harvested surgically because of embolization. One patient died on the second postoperative day due to sepsis with multiple organ failure. The remaining 12 patients

  14. 29 CFR 1917.112 - Guarding of edges.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Guarding of edges. 1917.112 Section 1917.112 Labor... (CONTINUED) MARINE TERMINALS Terminal Facilities § 1917.112 Guarding of edges. (a) Vehicle protection. (1... provided at the waterside edges of aprons and bulkheads, except where vehicles are prohibited. Curbs or...

  15. Edge-diffraction effects in RCS predictions and their importance in systems analysis

    NASA Astrophysics Data System (ADS)

    Friess, W. F.; Klement, D.; Ruppel, M.; Stein, Volker

    1996-06-01

    In developing RCS prediction codes a variety of physical effects such as the edge diffraction effect have to be considered with the consequence that the computer effort increases considerably. This fact limits the field of application of such codes, especially if the RCS data serve as input parameters for system simulators which very often need these data for a high number of observation angles and/or frequencies. Vice versa the issues of a system analysis can be used to estimate the relevance of physical effects under system viewpoints and to rank them according to their magnitude. This paper tries to evaluate the importance of RCS predictions containing an edge diffracted field for systems analysis. A double dihedral with a strong depolarizing behavior and a generic airplane design containing many arbitrarily oriented edges are used as test structures. Data of the scattered field are generated by the RCS computer code SIGMA with and without including edge diffraction effects. These data are submitted to the code DORA to determine radar range and radar detectibility and to a SAR simulator code to generate SAR imagery. In both cases special scenarios are assumed. The essential features of the computer codes in their current state are described, the results are presented and discussed under systems viewpoints.

  16. Nanometric edge profile measurement of cutting tools on a diamond turning machine

    NASA Astrophysics Data System (ADS)

    Asai, Takemi; Arai, Yoshikazu; Cui, Yuguo; Gao, Wei

    2008-10-01

    Single crystal diamond tools are used for fabrication of precision parts [1-5]. Although there are many types of tools that are supplied, the tools with round nose are popular for machining very smooth surfaces. Tools with small nose radii, small wedge angles and included angles are also being utilized for fabrication of micro structured surfaces such as microlens arrays [6], diffractive optical elements and so on. In ultra precision machining, tools are very important as a part of the machining equipment. The roughness or profile of machined surface may become out of desired tolerance. It is thus necessary to know the state of the tool edge accurately. To meet these requirements, an atomic force microscope (AFM) for measuring the 3D edge profiles of tools having nanometer-scale cutting edge radii with high resolution has been developed [7-8]. Although the AFM probe unit is combined with an optical sensor for aligning the measurement probe with the tools edge top to be measured in short time in this system, this time only the AFM probe unit was used. During the measurement time, that was attached onto the ultra precision turning machine to confirm the possibility of profile measurement system.

  17. Edge Currents and Stability in DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, D M; Fenstermacher, M E; Finkenthal, D K

    2005-05-05

    Understanding the stability physics of the H-mode pedestal in tokamak devices requires an accurate measurement of plasma current in the pedestal region with good spatial resolution. Theoretically, the high pressure gradients achieved in the edge of H-mode plasmas should lead to generation of a significant edge current density peak through bootstrap and Pfirsh-Schlueter effects. This edge current is important for the achievement of second stability in the context of coupled magneto hydrodynamic (MHD) modes which are both pressure (ballooning) and current (peeling) driven [1]. Many aspects of edge localized mode (ELM) behavior can be accounted for in terms of anmore » edge current density peak, with the identification of Type 1 ELMs as intermediate-n toroidal mode number MHD modes being a natural feature of this model [2]. The development of a edge localized instabilities in tokamak experiments code (ELITE) based on this model allows one to efficiently calculate the stability and growth of the relevant modes for a broad range of plasma parameters [3,4] and thus provides a framework for understanding the limits on pedestal height. This however requires an accurate assessment of the edge current. While estimates of j{sub edge} can be made based on specific bootstrap models, their validity may be limited in the edge (gradient scale lengths comparable to orbit size, large changes in collisionality, etc.). Therefore it is highly desirable to have an actual measurement. Such measurements have been made on the DIII-D tokamak using combined polarimetry and spectroscopy of an injected lithium beam. [5,6]. By analyzing one of the Zeeman-split 2S-2P lithium resonance line components, one can obtain direct information on the local magnetic field components. These values allow one to infer details of the edge current density. Because of the negligible Stark mixing of the relevant atomic levels in lithium, this method of determining j(r) is insensitive to the large local

  18. Computing the Edge-Neighbour-Scattering Number of Graphs

    NASA Astrophysics Data System (ADS)

    Wei, Zongtian; Qi, Nannan; Yue, Xiaokui

    2013-11-01

    A set of edges X is subverted from a graph G by removing the closed neighbourhood N[X] from G. We denote the survival subgraph by G=X. An edge-subversion strategy X is called an edge-cut strategy of G if G=X is disconnected, a single vertex, or empty. The edge-neighbour-scattering number of a graph G is defined as ENS(G) = max{ω(G/X)-|X| : X is an edge-cut strategy of G}, where w(G=X) is the number of components of G=X. This parameter can be used to measure the vulnerability of networks when some edges are failed, especially spy networks and virus-infected networks. In this paper, we prove that the problem of computing the edge-neighbour-scattering number of a graph is NP-complete and give some upper and lower bounds for this parameter.

  19. Moveable Leading Edge Device for a Wing

    NASA Technical Reports Server (NTRS)

    Pitt, Dale M. (Inventor); Eckstein, Nicholas Stephen (Inventor)

    2013-01-01

    A method and apparatus for managing a flight control surface system. A leading edge section on a wing of an aircraft is extended into a deployed position. A deformable section connects the leading edge section to a trailing section. The deformable section changes from a deformed shape to an original shape when the leading edge section is moved into the deployed position. The leading edge section on the wing is moved from the deployed position to an undeployed position. The deformable section changes to the deformed shape inside of the wing.

  20. Analysis of edge birefringence.

    PubMed Central

    Oldenbourg, R

    1991-01-01

    We present an experimental and theoretical study of the phenomenon of edge birefringence that appears near boundaries of transparent objects which are observed with high extinction and high resolution polarized light microscopy. As test objects, thin flakes of isotropic KCl crystals were immersed in media of various refractive indices. The measured retardation near crystal edges increased linearly with both the crystal thickness (tested between 0.3 and 1 micron), and the difference in refractive indices n between crystal (n = 1.49) and immersion liquids (n between 1.36 and 1.62). The specific edge birefringence, i.e., the retardation per thickness and per refractive index difference, is 0.029 on the high refractive index side of the boundary and -0.015 on the low refractive index side. The transition through zero birefringence specifies the position of a boundary at a much higher precision than predicted by the diffraction limit of the optical setup. The theoretical study employs a ray tracing procedure modeling the change in phase and polarization of rays passing through the specimen. We find good agreement between the model calculations and the experimental results indicating that edge birefringence can be attributed to the change in polarization of light that is refracted and reflected by dielectric interfaces. Images FIGURE 1 FIGURE 3 FIGURE 4 PMID:1932552

  1. Edge grouping combining boundary and region information.

    PubMed

    Stahl, Joachim S; Wang, Song

    2007-10-01

    This paper introduces a new edge-grouping method to detect perceptually salient structures in noisy images. Specifically, we define a new grouping cost function in a ratio form, where the numerator measures the boundary proximity of the resulting structure and the denominator measures the area of the resulting structure. This area term introduces a preference towards detecting larger-size structures and, therefore, makes the resulting edge grouping more robust to image noise. To find the optimal edge grouping with the minimum grouping cost, we develop a special graph model with two different kinds of edges and then reduce the grouping problem to finding a special kind of cycle in this graph with a minimum cost in ratio form. This optimal cycle-finding problem can be solved in polynomial time by a previously developed graph algorithm. We implement this edge-grouping method, test it on both synthetic data and real images, and compare its performance against several available edge-grouping and edge-linking methods. Furthermore, we discuss several extensions of the proposed method, including the incorporation of the well-known grouping cues of continuity and intensity homogeneity, introducing a factor to balance the contributions from the boundary and region information, and the prevention of detecting self-intersecting boundaries.

  2. Gait alterations can reduce the risk of edge loading.

    PubMed

    Wesseling, Mariska; Meyer, Christophe; De Groote, Friedl; Corten, Kristoff; Simon, Jean-Pierre; Desloovere, Kaat; Jonkers, Ilse

    2016-06-01

    Following metal-on-metal hip arthroplasty, edge loading (i.e., loading near the edge of a prosthesis cup) can increase wear and lead to early revision. The position and coverage angle of the prosthesis cup influence the risk of edge loading. This study investigates the effect of altered gait patterns, more specific hip, and pelvis kinematics, on the orientation of hip contact force and the consequent risk of antero-superior edge loading using muscle driven simulations of gait. With a cup orientation of 25° anteversion and 50° inclination and a coverage angle of 168°, many gait patterns presented risk of edge loading. Specifically at terminal double support, 189 out of 405 gait patterns indicated a risk of edge loading. At this time instant, the high hip contact forces and the proximity of the hip contact force to the edge of the cup indicated the likelihood of the occurrence of edge loading. Although the cup position contributed most to edge loading, altering kinematics considerably influenced the risk of edge loading. Increased hip abduction, resulting in decreasing hip contact force magnitude, and decreased hip extension, resulting in decreased risk on edge loading, are gait strategies that could prevent edge loading. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1069-1076, 2016. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  3. Total edge irregularity strength of (n,t)-kite graph

    NASA Astrophysics Data System (ADS)

    Winarsih, Tri; Indriati, Diari

    2018-04-01

    Let G(V, E) be a simple, connected, and undirected graph with vertex set V and edge set E. A total k-labeling is a map that carries vertices and edges of a graph G into a set of positive integer labels {1, 2, …, k}. An edge irregular total k-labeling λ :V(G)\\cup E(G)\\to \\{1,2,\\ldots,k\\} of a graph G is a labeling of vertices and edges of G in such a way that for any different edges e and f, weights wt(e) and wt(f) are distinct. The weight wt(e) of an edge e = xy is the sum of the labels of vertices x and y and the label of the edge e. The total edge irregularity strength of G, tes(G), is defined as the minimum k for which a graph G has an edge irregular total k-labeling. An (n, t)-kite graph consist of a cycle of length n with a t-edge path (the tail) attached to one vertex of a cycle. In this paper, we investigate the total edge irregularity strength of the (n, t)-kite graph, with n > 3 and t > 1. We obtain the total edge irregularity strength of the (n, t)-kite graph is tes((n, t)-kite) = \\lceil \\frac{n+t+2}{3}\\rceil .

  4. Overview of Edge Simulation Laboratory (ESL)

    NASA Astrophysics Data System (ADS)

    Cohen, R. H.; Dorr, M.; Hittinger, J.; Rognlien, T.; Umansky, M.; Xiong, A.; Xu, X.; Belli, E.; Candy, J.; Snyder, P.; Colella, P.; Martin, D.; Sternberg, T.; van Straalen, B.; Bodi, K.; Krasheninnikov, S.

    2006-10-01

    The ESL is a new collaboration to build a full-f electromagnetic gyrokinetic code for tokamak edge plasmas using continuum methods. Target applications are edge turbulence and transport (neoclassical and anomalous), and edge-localized modes. Initially the project has three major threads: (i) verification and validation of TEMPEST, the project's initial (electrostatic) edge code which can be run in 4D (neoclassical and transport-timescale applications) or 5D (turbulence); (ii) design of the next generation code, which will include more complete physics (electromagnetics, fluid equation option, improved collisions) and advanced numerics (fully conservative, high-order discretization, mapped multiblock grids, adaptivity), and (iii) rapid-prototype codes to explore the issues attached to solving fully nonlinear gyrokinetics with steep radial gradiens. We present a brief summary of the status of each of these activities.

  5. Abnormal blueshift of the absorption edge in graphene nanodots

    NASA Astrophysics Data System (ADS)

    Sheng, Weidong

    2018-06-01

    In a conventional semiconductor, when the dielectric screening effect is suppressed, the exciton binding energy increases and the corresponding excitonic transition would exhibit a redshift in the spectrum. In this work, I study the optical properties of hexagonal graphene nanodots by using a configuration interaction approach and reveal that the edge of the absorption spectrum shows an abnormal blueshift as the environmental dielectric constant ɛr decreases. The two dominant many-body effects in the nanodot: the quasiparticle and excitonic effects are both found to scale almost linearly with ɛr-1. The former is shown to have a larger proportionality constant and thus accounts for the blueshift of the absorption edge. In contrast to the long-range Coulomb interaction, the on-site Coulomb energy is found to have a negative impact on the bright excitonic states. In the presence of a strong dielectric screening effect, a strong short-range Coulomb interaction is revealed to be responsible for the disintegration of the bright exciton.

  6. Active edge maps for medical image registration

    NASA Astrophysics Data System (ADS)

    Kerwin, William; Yuan, Chun

    2001-07-01

    Applying edge detection prior to performing image registration yields several advantages over raw intensity- based registration. Advantages include the ability to register multicontrast or multimodality images, immunity to intensity variations, and the potential for computationally efficient algorithms. In this work, a common framework for edge-based image registration is formulated as an adaptation of snakes used in boundary detection. Called active edge maps, the new formulation finds a one-to-one transformation T(x) that maps points in a source image to corresponding locations in a target image using an energy minimization approach. The energy consists of an image component that is small when edge features are well matched in the two images, and an internal term that restricts T(x) to allowable configurations. The active edge map formulation is illustrated here with a specific example developed for affine registration of carotid artery magnetic resonance images. In this example, edges are identified using a magnitude of gradient operator, image energy is determined using a Gaussian weighted distance function, and the internal energy includes separate, adjustable components that control volume preservation and rigidity.

  7. Wing Leading Edge Debris Analysis

    NASA Technical Reports Server (NTRS)

    Shah, Sandeep; Jerman, Gregory

    2004-01-01

    This is a slide presentation showing the Left Wing Leading Edge (WLE) heat damage observations: Heavy "slag" deposits on select RCC panels. Eroded and knife-edged RCC rib sections. Excessive overheating and slumping of carrier panel tiles. Missing or molten attachment bolts but intact bushing. Deposit mainly on "inside" RCC panel. Deposit on some fractured RCC surface

  8. A new method of edge detection for object recognition

    USGS Publications Warehouse

    Maddox, Brian G.; Rhew, Benjamin

    2004-01-01

    Traditional edge detection systems function by returning every edge in an input image. This can result in a large amount of clutter and make certain vectorization algorithms less accurate. Accuracy problems can then have a large impact on automated object recognition systems that depend on edge information. A new method of directed edge detection can be used to limit the number of edges returned based on a particular feature. This results in a cleaner image that is easier for vectorization. Vectorized edges from this process could then feed an object recognition system where the edge data would also contain information as to what type of feature it bordered.

  9. Measuring the Edge Recombination Velocity of Monolayer Semiconductors.

    PubMed

    Zhao, Peida; Amani, Matin; Lien, Der-Hsien; Ahn, Geun Ho; Kiriya, Daisuke; Mastandrea, James P; Ager, Joel W; Yablonovitch, Eli; Chrzan, Daryl C; Javey, Ali

    2017-09-13

    Understanding edge effects and quantifying their impact on the carrier properties of two-dimensional (2D) semiconductors is an essential step toward utilizing this material for high performance electronic and optoelectronic devices. WS 2 monolayers patterned into disks of varying diameters are used to experimentally explore the influence of edges on the material's optical properties. Carrier lifetime measurements show a decrease in the effective lifetime, τ effective , as a function of decreasing diameter, suggesting that the edges are active sites for carrier recombination. Accordingly, we introduce a metric called edge recombination velocity (ERV) to characterize the impact of 2D material edges on nonradiative carrier recombination. The unpassivated WS 2 monolayer disks yield an ERV ∼ 4 × 10 4 cm/s. This work quantifies the nonradiative recombination edge effects in monolayer semiconductors, while simultaneously establishing a practical characterization approach that can be used to experimentally explore edge passivation methods for 2D materials.

  10. Single-Particle Mobility Edge in a One-Dimensional Quasiperiodic Optical Lattice

    NASA Astrophysics Data System (ADS)

    Lüschen, Henrik P.; Scherg, Sebastian; Kohlert, Thomas; Schreiber, Michael; Bordia, Pranjal; Li, Xiao; Das Sarma, S.; Bloch, Immanuel

    2018-04-01

    A single-particle mobility edge (SPME) marks a critical energy separating extended from localized states in a quantum system. In one-dimensional systems with uncorrelated disorder, a SPME cannot exist, since all single-particle states localize for arbitrarily weak disorder strengths. However, in a quasiperiodic system, the localization transition can occur at a finite detuning strength and SPMEs become possible. In this Letter, we find experimental evidence for the existence of such a SPME in a one-dimensional quasiperiodic optical lattice. Specifically, we find a regime where extended and localized single-particle states coexist, in good agreement with theoretical simulations, which predict a SPME in this regime.

  11. Numerical study of delta wing leading edge blowing

    NASA Technical Reports Server (NTRS)

    Yeh, David; Tavella, Domingo; Roberts, Leonard

    1988-01-01

    Spanwise and tangential leading edge blowing as a means of controlling the position and strength of the leading edge vortices are studied by numerical solution of the three-dimensional Navier-Stokes equations. The leading edge jet is simulated by defining a permeable boundary, corresponding to the jet slot, where suitable boundary conditions are implemented. Numerical results are shown to compare favorably with experimental measurements. It is found that the use of spanwise leading edge blowing at moderate angle of attack magnifies the size and strength of the leading edge vortices, and moves the vortex cores outboard and upward. The increase in lift primarily comes from the greater nonlinear vortex lift. However, spanwise blowing causes earlier vortex breakdown, thus decreasing the stall angle. The effects of tangential blowing at low to moderate angles of attack tend to reduce the pressure peaks associated with leading edge vortices and to increase the suction peak around the leading edge, so that the integrated value of the surface pressure remains about the same. Tangential leading edge blowing in post-stall conditions is shown to re-establish vortical flow and delay vortex bursting, thus increasing C sub L sub max and stall angle.

  12. Densified edge seals for fuel cell components

    DOEpatents

    DeCasperis, Anthony J.; Roethlein, Richard J.; Breault, Richard D.

    1982-01-01

    A porous fuel cell component, such as an electrode substrate, has a densified edge which forms an improved gas seal during operation when soaked with electrolyte. The edges are made from the same composition as the rest of the component and are made by compressing an increased thickness of this material along the edges during the fabrication process.

  13. Cyclotron resonance of dirac fermions in InAs/GaSb/InAs quantum wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishtopenko, S. S.; Ikonnikov, A. V., E-mail: antikon@ipmras.ru; Maremyanin, K. V.

    2017-01-15

    The band structure of three-layer symmetric InAs/GaSb/InAs quantum wells confined between AlSb barriers is analyzed theoretically. It is shown that, depending on the thicknesses of the InAs and GaSb layers, a normal band structure, a gapless state with a Dirac cone at the center of the Brillouin zone, or inverted band structure (two-dimensional topological insulator) can be realized in this system. Measurements of the cyclotron resonance in structures with gapless band spectra carried out for different electron concentrations confirm the existence of massless Dirac fermions in InAs/GaSb/InAs quantum wells.

  14. Edge Probability and Pixel Relativity-Based Speckle Reducing Anisotropic Diffusion.

    PubMed

    Mishra, Deepak; Chaudhury, Santanu; Sarkar, Mukul; Soin, Arvinder Singh; Sharma, Vivek

    2018-02-01

    Anisotropic diffusion filters are one of the best choices for speckle reduction in the ultrasound images. These filters control the diffusion flux flow using local image statistics and provide the desired speckle suppression. However, inefficient use of edge characteristics results in either oversmooth image or an image containing misinterpreted spurious edges. As a result, the diagnostic quality of the images becomes a concern. To alleviate such problems, a novel anisotropic diffusion-based speckle reducing filter is proposed in this paper. A probability density function of the edges along with pixel relativity information is used to control the diffusion flux flow. The probability density function helps in removing the spurious edges and the pixel relativity reduces the oversmoothing effects. Furthermore, the filtering is performed in superpixel domain to reduce the execution time, wherein a minimum of 15% of the total number of image pixels can be used. For performance evaluation, 31 frames of three synthetic images and 40 real ultrasound images are used. In most of the experiments, the proposed filter shows a better performance as compared to the state-of-the-art filters in terms of the speckle region's signal-to-noise ratio and mean square error. It also shows a comparative performance for figure of merit and structural similarity measure index. Furthermore, in the subjective evaluation, performed by the expert radiologists, the proposed filter's outputs are preferred for the improved contrast and sharpness of the object boundaries. Hence, the proposed filtering framework is suitable to reduce the unwanted speckle and improve the quality of the ultrasound images.

  15. [Vital traits of woody species in High Andean forest edges of the Cogua Forest Reserve (Colombia)].

    PubMed

    Montenegro, Alba Lucía; Vargas, Orlando

    2008-06-01

    The Cogua Forest Reserve was studied throughout eight months to detect the existence of functional species-groups associated with edge wood forest. A second goal was to determine which species were the most successful in edge areas and their particular vital traits. The regeneration and growth of the forest patches to the adjacent matrix depends on the establishment of these species and their tolerance to both habitats. Three types of High Andean edge forest were studied. Two forest patches were chosen for each of the three edge types: Chusquea scandens edge, "paramune" and old-edge; the name of the latter was given because of its advanced successional state. In each patch, the vegetation was evaluated in two 60 m transects perpendicular to the edge and along the matrix-edge-interior gradient of the forest. All woody species were identified and counted to determine their abundance. A total of nine species were chosen as representative of High Andean forest edges in the reserve, because of their high abundance in this environment, their presence in both patches of each edge type and their ability to colonize the adjacent matrix. Each species was evaluated using 20 vital attributes of individual, leaf, and reproductive traits. Six species groups were found through a Correspondence Analysis. However, all nine species have high variation and plasticity levels for the attributes, even inside the groups. This trend suggests that while they are not clearly differentiated functional groups, they probably are representing different strategies within a single functional group of great plasticity. Tibouchina grossa and Pentacalia Pulchella are found in all edge and matrix types; the other species are found in all edge types, except by Gaiadendron punctatum and Weinmannia tomentosa, absent in the Chusquea scandens edge. All nine species are important elements in the restoration of forest edges, mainly where they are more abundant, evidencing their success in the particular

  16. Solid energy calibration standards for P K-edge XANES: electronic structure analysis of PPh4Br.

    PubMed

    Blake, Anastasia V; Wei, Haochuan; Donahue, Courtney M; Lee, Kyounghoon; Keith, Jason M; Daly, Scott R

    2018-03-01

    P K-edge X-ray absorption near-edge structure (XANES) spectroscopy is a powerful method for analyzing the electronic structure of organic and inorganic phosphorus compounds. Like all XANES experiments, P K-edge XANES requires well defined and readily accessible calibration standards for energy referencing so that spectra collected at different beamlines or under different conditions can be compared. This is especially true for ligand K-edge X-ray absorption spectroscopy, which has well established energy calibration standards for Cl (Cs 2 CuCl 4 ) and S (Na 2 S 2 O 3 ·5H 2 O), but not neighboring P. This paper presents a review of common P K-edge XANES energy calibration standards and analysis of PPh 4 Br as a potential alternative. The P K-edge XANES region of commercially available PPh 4 Br revealed a single, highly resolved pre-edge feature with a maximum at 2146.96 eV. PPh 4 Br also showed no evidence of photodecomposition when repeatedly scanned over the course of several days. In contrast, we found that PPh 3 rapidly decomposes under identical conditions. Density functional theory calculations performed on PPh 3 and PPh 4 + revealed large differences in the molecular orbital energies that were ascribed to differences in the phosphorus oxidation state (III versus V) and molecular charge (neutral versus +1). Time-dependent density functional theory calculations corroborated the experimental data and allowed the spectral features to be assigned. The first pre-edge feature in the P K-edge XANES spectrum of PPh 4 Br was assigned to P 1s → P-C π* transitions, whereas those at higher energy were P 1s → P-C σ*. Overall, the analysis suggests that PPh 4 Br is an excellent alternative to other solid energy calibration standards commonly used in P K-edge XANES experiments.

  17. Spatial and temporal habitat-use patterns of wood turtles at the western edge of their distribution

    Treesearch

    Donald J. Brown; Mark D. Nelson; David J. Rugg; Richard R. Buech; Deahn M. Donner

    2016-01-01

    Wood Turtles (Glyptemys insculpta) are a state threatened species at the western edge of their geographic distribution in Minnesota, United States. There is currently little published information regarding habitat use of western populations to assist with conservation initiatives. The primary purpose of this study was to investigate habitat use of...

  18. Six-month outcome after transcatheter edge-to-edge repair of severe tricuspid regurgitation in patients with heart failure.

    PubMed

    Orban, Mathias; Besler, Christian; Braun, Daniel; Nabauer, Michael; Zimmer, Marion; Orban, Martin; Noack, Thilo; Mehilli, Julinda; Hagl, Christian; Seeburger, Joerg; Borger, Michael; Linke, Axel; Thiele, Holger; Massberg, Steffen; Ender, Joerg; Lurz, Philipp; Hausleiter, Jörg

    2018-06-01

    Severe tricuspid regurgitation (TR) is common in patients with right-sided heart failure (HF) and causes substantial morbidity and mortality. Treatment options beyond medical therapy are limited for high-risk patients. Transcatheter edge-to-edge tricuspid valve (TV) repair showed procedural safety and short-term efficacy. Impact on mid-term outcome is unclear. This dual-centre observational study evaluates the mid-term safety, efficacy and clinical outcome after edge-to-edge TV repair for severe TR in patients with HF. Overall, 50 patients with right-sided HF and severe TR were treated with the transcatheter edge-to-edge repair technique; 14 patients were treated for isolated TR and 36 patients for combined mitral regurgitation (MR) and TR. At 6-month follow-up (available for 98% of patients), a persistent reduction of at least one echocardiographic TR grade was achieved in 90% of patients and New York Heart Association class improved in 79% of patients. The 6-minute walk distance increased by 44% (+84 m, P < 0.001), the median N-terminal pro-B-type natriuretic peptide decreased by 30% (from 3625 to 2526 pg/mL, P = 0.002), and the quality of life score improved by 16% (decrease of 6 points in the Minnesota Living with Heart Failure Questionnaire score, P = 0.056). The improvements were comparable in patients undergoing isolated TR or combined MR and TR treatment. During follow-up, 8 patients died, 14 were hospitalized for worsening of HF, 2 underwent TV surgery, and 2 received a second TV clip procedure. Transcatheter edge-to-edge TV repair for severe TR is safe and effective in reducing TR. It appears to be associated with improved clinical outcome in the majority of patients. © 2018 The Authors. European Journal of Heart Failure © 2018 European Society of Cardiology.

  19. Research on reducing the edge effect in magnetorheological finishing.

    PubMed

    Hu, Hao; Dai, Yifan; Peng, Xiaoqiang; Wang, Jianmin

    2011-03-20

    The edge effect could not be avoided in most optical manufacturing methods based on the theory of computer controlled optical surfacing. The difference between the removal function at the workpiece edge and that inside it is also the primary cause for edge effect in magnetorheological finishing (MRF). The change of physical dimension and removal ratio of the removal function is investigated through experiments. The results demonstrate that the situation is different when MRF "spot" is at the leading edge or at the trailing edge. Two methods for reducing the edge effect are put into practice after analysis of the processing results. One is adopting a small removal function for dealing with the workpiece edge, and the other is utilizing the removal function compensation. The actual processing results show that these two ways are both effective on reducing the edge effect in MRF.

  20. Knife-edge seal for vacuum bagging

    NASA Technical Reports Server (NTRS)

    Rauschl, J. A.

    1980-01-01

    Cam actuated clamps pinch bagging material between long knife edge (mounted to clamps) and high temperature rubber cushion bonded to baseplate. No adhesive, tape, or sealing groove is needed to seal edge of bagging sheet against base plate.