Sample records for gaps size effect

  1. Effect of air gap on apparent temperature of body wearing various sizes of T-shirt

    NASA Astrophysics Data System (ADS)

    Takatera, M.; Uchiyama, E.; Zhu, C.; Kim, KO; Ishizawa, H.

    2017-10-01

    We investigated the effect of air gap on the apparent temperature. Using the developed thermocouple fabric and a thermal manikin, we measured temperature distribution of the measuring garments due to the change of T-shirt sizes. We were able to measure the apparent temperature distribution at points near a body while wearing different sizes of T-shirts. It was observed that the temperature distribution depending on different air gap between clothing and body. The apparent temperature depends on garment size and place. The effect of air gap on apparent temperature of body was experimentally confirmed.

  2. The effect of gap fluctuations on interacting and non-interacting polarization for nano-superconducting grains in electron- and hole-doped cuprates

    NASA Astrophysics Data System (ADS)

    Afzali, R.; Alizadeh, A.

    2017-12-01

    The behavior of non-interacting and interacting polarization under influence of fluctuations of the superconducting gap with D-wave symmetry and under consideration of the gap dependence on nano- grain size is obtained in terms of the frequency, temperature and the size at zero and finite temperatures for rectangular cuprate nano-superconducting grains. By using Eliashberg equations and applying the relations of the fermionic dispersion for the hole-doped and electron-doped cuprates, we numerically compute the real part of size-dependent polarization for both types of cuprates. We show that the peak of real part of polarization moves to higher frequency by including the additional fluctuating part of gap (or the nano-size effect). Also, we obtain the temperatures for different frequencies, in which the effect of gap fluctuations fades. In the case of size-dependent gap, there is a critical frequency; for frequencies lower (higher) than the critical frequency, the nano-effect weakens (improves) the superconducting state. Moreover, it is concluded that the real part of polarization for hole- doped cuprates in terms of the grain size has more significant amount in comparison with electron-doped ones.

  3. Electrical properties of titanium dioxide nanoparticle on microelectrode: Gap size effect

    NASA Astrophysics Data System (ADS)

    Nadzirah, Sh.; Hashim, U.; Zakaria, M. R.; Rusop, M.

    2018-05-01

    TiO2 nanoparticle based interdigitated microelectrode was fabricated by spin-coating and conventional photolithography approaches. Aluminum metal was deposited by thermal evaporator on silicon dioxide substrate. The effect of aluminum microelectrode gap sizes (4, 5 and 6 µm) on the electrical performance was investigated using picoammeter. Extremely small output current values of three different gap sizes were acquired. A characteristic electrical behavior was observed for the studied geometry. The configuration demonstrated a reduction in the output current from 2.28E-10, 1.32E-9 and 2.38E-9 A with increasing gap size.

  4. The effects of gap size on some microclimate variables during late summer and autumn in a temperate broadleaved deciduous forest.

    PubMed

    Abd Latif, Zulkiflee; Blackburn, George Alan

    2010-03-01

    The creation of gaps can strongly influence forest regeneration and habitat diversity within forest ecosystems. However, the precise characteristics of such effects depend, to a large extent, upon the way in which gaps modify microclimate and soil water content. Hence, the aim of this study was to understand the effects of gap creation and variations in gap size on forest microclimate and soil water content. The study site, in North West England, was a mixed temperate broadleaved deciduous forest dominated by mature sessile oak (Quercus petraea), beech (Fagus sylvatica) and ash (Fraxinus excelsior) with some representatives of sycamore (Acer pseudoplatanus). Solar radiation (I), air temperature (T(A)), soil temperature (T(S)), relative humidity (h), wind speed (v) and soil water content (Psi) were measured at four natural treefall gaps created after a severe storm in 2006 and adjacent sub-canopy sites. I, T(A), T(S), and Psi increased significantly with gap size; h was consistently lower in gaps than the sub-canopy but did not vary with gap size, while the variability of v could not be explained by the presence or size of gaps. There were systematic diurnal patterns in all microclimate variables in response to gaps, but no such patterns existed for Psi. These results further our understanding of the abiotic and consequent biotic responses to gaps in broadleaved deciduous forests created by natural treefalls, and provide a useful basis for evaluating the implications of forest management practices.

  5. Gap formation following climatic events in spatially structured plant communities

    PubMed Central

    Liao, Jinbao; De Boeck, Hans J.; Li, Zhenqing; Nijs, Ivan

    2015-01-01

    Gaps play a crucial role in maintaining species diversity, yet how community structure and composition influence gap formation is still poorly understood. We apply a spatially structured community model to predict how species diversity and intraspecific aggregation shape gap patterns emerging after climatic events, based on species-specific mortality responses. In multispecies communities, average gap size and gap-size diversity increased rapidly with increasing mean mortality once a mortality threshold was exceeded, greatly promoting gap recolonization opportunity. This result was observed at all levels of species richness. Increasing interspecific difference likewise enhanced these metrics, which may promote not only diversity maintenance but also community invasibility, since more diverse niches for both local and exotic species are provided. The richness effects on gap size and gap-size diversity were positive, but only expressed when species were sufficiently different. Surprisingly, while intraspecific clumping strongly promoted gap-size diversity, it hardly influenced average gap size. Species evenness generally reduced gap metrics induced by climatic events, so the typical assumption of maximum evenness in many experiments and models may underestimate community diversity and invasibility. Overall, understanding the factors driving gap formation in spatially structured assemblages can help predict community secondary succession after climatic events. PMID:26114803

  6. [Effects of forest gap size on the architecture of Quercus variablis seedlings on the south slope of Qinling Mountains, west China].

    PubMed

    Yu, Bi-yun; Zhang, Wen-hui; He, Ting; You, Jian-jian; Li, Gang

    2014-12-01

    Typical sampling method was conducted to survey the effects of forest gap size on branch architecture, leaf characteristics and their vertical distribution of Quercus variablis seedlings from different size gaps in natural secondary Q. variablis thinning forest, on the south slope of Qinling Mountains. The results showed that gap size significantly affected the diameter, crown area of Q. variablis seedlings. The gap size positively correlated with diameter and negatively correlated with crown area, while it had no significant impact on seedling height, crown length and crown rates. The overall bifurcation ratio, stepwise bifurcation ratio, and ratio of branch diameter followed as large gap > middle gap > small gap > understory. The vertical distribution of first-order branches under different size gaps mainly concentrated at the middle and upper part of trunk, larger diameter first-order branches were mainly distributed at the lower part of trunk, and the angle of first-order branch increased at first and then declined with the increasing seedling height. With the increasing forest gap size, the leaf length, leaf width and average leaf area of seedlings all gradually declined, while the average leaf number per plant and relative total leaf number increased, the leaf length-width ratio kept stable, the relative leaf number was mainly distributed at the middle and upper parts of trunk, the changes of leaf area index was consistent with the change of the relative total number of leaves. There was no significant difference between the diameters of middle gap and large gap seedlings, but the diameter of middle gap seedlings was higher than that of large gap, suggesting the middle gap would benefit the seedlings regeneration and high-quality timber cultivation. To promote the regeneration of Q. variabilis seedlings, and to cultivate high-quality timber, appropriate thinning should be taken to increase the number of middle gaps in the management of Q. variabilis forest.

  7. Gap-based silviculture in a sierran mixed-conifer forest: effects of gap size on early survival and 7-year seedling growth

    Treesearch

    Robert A. York; John J. Battles; Robert C. Heald

    2007-01-01

    Experimental canopy gaps ranging in size from 0.1 to 1.0 ha (0.25 to 2.5 acres) were created in a mature mixed conifer forest at Blodgett Forest Research Station, California. Following gap creation, six species were planted in a wagon-wheel design and assessed for survival after two growing seasons. Study trees were measured after seven years to describe the effect of...

  8. Effects of Forest Gaps on Soil Properties in Castanopsis kawakamii Nature Forest.

    PubMed

    He, Zhongsheng; Liu, Jinfu; Su, Songjin; Zheng, Shiqun; Xu, Daowei; Wu, Zeyan; Hong, Wei; Wang, James Li-Ming

    2015-01-01

    The aim of this study is to analyze the effects of forest gaps on the variations of soil properties in Castanopsis kawakamii natural forest. Soil physical and chemical properties in various sizes and development stages were studied in C. kawakamii natural forest gaps. The results showed that forest gaps in various sizes and development stages could improve soil pore space structure and water characteristics, which may effectively promote the water absorbing capacity for plant root growth and play an important role in forest regeneration. Soil pore space structure and water characteristics in small gaps showed more obvious improvements, followed by the medium and large gaps. Soil pore space structure and water characteristics in the later development stage of forest gaps demonstrated more obvious improvements, followed by the early and medium development stages. The contents of hydrolysable N and available K in various sizes and development stages of forest gaps were higher than those of non-gaps, whereas the contents of total N, total P, available P, organic matter, and organic carbon were lower. The contents of total N, hydrolysable N, available K, organic matter, and organic carbon in medium gaps were higher than those of large and small gaps. The disturbance of forest gaps could improve the soils' physical and chemical properties and increase the population species' richness, which would provide an ecological basis for the species coexistence in C. kawakamii natural forest.

  9. Plant canopy gap-size analysis theory for improving optical measurements of leaf-area index

    NASA Astrophysics Data System (ADS)

    Chen, Jing M.; Cihlar, Josef

    1995-09-01

    Optical instruments currently available for measuring the leaf-area index (LAI) of a plant canopy all utilize only the canopy gap-fraction information. These instruments include the Li-Cor LAI-2000 Plant Canopy Analyzer, Decagon, and Demon. The advantages of utilizing both the canopy gap-fraction and gap-size information are shown. For the purpose of measuring the canopy gap size, a prototype sunfleck-LAI instrument named Tracing Radiation and Architecture of Canopies (TRAC), has been developed and tested in two pure conifer plantations, red pine (Pinus resinosa Ait.) and jack pine (Pinus banksiana Lamb). A new gap-size-analysis theory is presented to quantify the effect of canopy architecture on optical measurements of LAI based on the gap-fraction principle. The theory is an improvement on that of Lang and Xiang [Agric. For. Meteorol. 37, 229 (1986)]. In principle, this theory can be used for any heterogeneous canopies.

  10. Gap size, within-gap position, and canopy structure effects on conifer seedling establishment

    Treesearch

    Andrew N. Gray; T.A. Spies

    1996-01-01

    Emergence, establishment and growth of Abies amabilis, Pseudotsuga menziesii and Tsuga heterophylla were studied for 2 years in variously sized canopy gaps created in four stands on the west slope of the Cascade Range in central Oregon and southern Washington, USA. Seedlings originating from seeds sown on...

  11. Small-size controlled vacuum spark-gap in an external magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asyunin, V. I., E-mail: asvi@mail.ru; Davydov, S. G.; Dolgov, A. N., E-mail: alnikdolgov@mail.ru

    2015-02-15

    It is demonstrated that the operation of a small-size controlled spark-gap can be controlled by applying a uniform external magnetic field. It is shown that the magnetic field of such a simple configuration efficiently suppresses the effect of localization of the discharge current after multiple actuations of the spark-gap.

  12. [Effects of forest gap size on the growth and form quality of Taxus wallichina var. mairei in Cunninghamia lanceolata forests].

    PubMed

    Ou, Jian de; Wu, Zhi Zhuang; Luo, Ning

    2016-10-01

    In order to clarify the effects of forest gap size on the growth and stem form quality of Taxus wallichina var. mairei and effectiveness of the precious timbers cultivation, 25 sample plots in Cunninghamia lanceolata forest gaps were established in Mingxi County, Fujian Province, China to determine the indices of the growth, stem form and branching indices of T. wallichina var. mairei seedlings. The relationships between the gap size and growth, stem form and branching were investigated. The 25 sample plots were located at five microhabitats which were classified based on gap size as follows: Class1, 2, 3, 4 and 5, which had a gap size of 25-50 m 2 , 50-75 m 2 , 75-100 m 2 , 100-125 m 2 and 125-150 m 2 , respectively. The evaluation index system of precious timbers was built by using hierarchical analysis. The 5 classes of forest gaps were evaluated comprehensively by using the multiobjective decision making method. The results showed that gap size significantly affected 11 indices, i.e., height, DBH, crown width, forking rate, stem straightness, stem fullness, taperingness, diameter height ratio, height under living branch, interval between branches, and max-branch base diameter. Class1and 2 both significantly promoted the growth of height, DBH and crown width, and both significantly inhibited forking rate and taperingness, and improved stem straightness. Class2 significantly improved stem fullness and diameter height ratio. Class1and 2 significantly improved height under living branch and reduced max-branch base diameter. Class 1 significantly increased interval between branches. Class1and2 significantly improved the comprehensive evaluation score of precious timbers. This study suggested that controlled cutting intensity could be used to create forest gaps of 25-75 m 2 , which improved the precious timber cultivating process of T. wallichina var. mairei in C. lanceolata forests.

  13. [Edge effects of forest gap in Pinus massoniana plantations on the decomposition of leaf litter recalcitrant components of Cinnamomum camphora and Toona ciliata.

    PubMed

    Zhang, Yan; Zhang, Dan Ju; Li, Xun; Liu, Hua; Zhang, Ming Jin; Yang, Wan Qin; Zhang, Jian

    2016-04-22

    The objective of the study was to evaluate the dynamics of recalcitrant components during foliar litter decomposition under edge effects of forest gap in Pinus massoniana plantations in the low hilly land, Sichuan basin. A field litterbag experiment was conducted in seven forest gaps with different sizes (100, 225, 400, 625, 900, 1225, 1600 m 2 ) which were generated by thinning P. massoniana plantations. The degradation rate of four recalcitrant components, i.e., condensed tannins, total phenol, lignin and cellulose in foliar litter of two native species (Cinnamomum camphora and Toona ciliata) at the gap edge and under the closed canopy were measured. The results showed that the degradation rate of recalcitrant components in T. ciliata litter except for cellulose at the gap edge were significantly higher than that under the closed canopy. For C. camphora litter, only the degradation of lignin at the gap edge was higher than that under the closed canopy. After one-year decomposition, four recalcitrant components in two types of foliar litter exhibited an increment of degradation rate, and the degradation rate of condensed tannin was the fastest, followed by total phenol and cellulose, but the lignin degradation rate was the slowest. With the increase of gap size, except for cellulose, the degradation rate ofthe other three recalcitrant components of the T. ciliata at the edge of medium sized gaps (400 and 625 m 2 ) were significantly higher than at the edge of other gaps. However, lignin in the C. camphora litter at the 625 m 2 gap edge showed the greatest degradation rate. Both temperature and litter initial content were significantly correlated with litter recalcitrant component degradation. Our results suggested that medium sized gaps (400-625 m 2 ) had a more significant edge effect on the degradation of litter recalcitrant components in the two native species in P. massoniana plantations, however, the effect also depended on species.

  14. Gradient and size effects on spinodal and miscibility gaps

    NASA Astrophysics Data System (ADS)

    Tsagrakis, Ioannis; Aifantis, Elias C.

    2018-05-01

    A thermodynamically consistent model of strain gradient elastodiffusion is developed. Its formulation is based on the enhancement of a robust theory of gradient elasticity, known as GRADELA, to account for a Cahn-Hilliard type of diffusion. Linear stability analysis is employed to determine the influence of concentration and strain gradients on the spinodal decomposition. For finite domains, spherically symmetric conditions are considered, and size effects on spinodal and miscibility gaps are discussed. The theoretical predictions are in agreement with the experimental trends, i.e., both gaps shrink as the grain diameter decreases and they are completely eliminated for crystals smaller than a critical size.

  15. Gap length effect on electron energy distribution in capacitive radio frequency discharges

    NASA Astrophysics Data System (ADS)

    You, S. J.; Kim, S. S.; Kim, Jung-Hyung; Seong, Dae-Jin; Shin, Yong-Hyeon; Chang, H. Y.

    2007-11-01

    A study on the dependence of electron energy distribution function (EEDF) on discharge gap size in capacitive rf discharges was conducted. The evolution of the EEDF over a gap size range from 2.5to7cm in 65mTorr Ar discharges was investigated both experimentally and theoretically. The measured EEDFs exhibited typical bi-Maxwellian forms with low energy electron groups. A significant depletion in the low energy portion of the bi-Maxwellian was found with decreasing gap size. The results show that electron heating by bulk electric fields, which is the main heating process of the low-energy electrons, is greatly enhanced as the gap size decreases, resulting in the abrupt change of the EEDF. The calculated EEDFs based on nonlocal kinetic theory are in good agreement with the experiments.

  16. Band Gaps for Elastic Wave Propagation in a Periodic Composite Beam Structure Incorporating Microstructure and Surface Energy Effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, G. Y.; Gao, X. -L.; Bishop, J. E.

    Here, a new model for determining band gaps for elastic wave propagation in a periodic composite beam structure is developed using a non-classical Bernoulli–Euler beam model that incorporates the microstructure, surface energy and rotational inertia effects. The Bloch theorem and transfer matrix method for periodic structures are employed in the formulation. The new model reduces to the classical elasticity-based model when both the microstructure and surface energy effects are not considered. The band gaps predicted by the new model depend on the microstructure and surface elasticity of each constituent material, the unit cell size, the rotational inertia, and the volumemore » fraction. To quantitatively illustrate the effects of these factors, a parametric study is conducted. The numerical results reveal that the band gap predicted by the current non-classical model is always larger than that predicted by the classical model when the beam thickness is very small, but the difference is diminishing as the thickness becomes large. Also, it is found that the first frequency for producing the band gap and the band gap size decrease with the increase of the unit cell length according to both the current and classical models. In addition, it is observed that the effect of the rotational inertia is larger when the exciting frequency is higher and the unit cell length is smaller. Furthermore, it is seen that the volume fraction has a significant effect on the band gap size, and large band gaps can be obtained by tailoring the volume fraction and material parameters.« less

  17. Band Gaps for Elastic Wave Propagation in a Periodic Composite Beam Structure Incorporating Microstructure and Surface Energy Effects

    DOE PAGES

    Zhang, G. Y.; Gao, X. -L.; Bishop, J. E.; ...

    2017-11-20

    Here, a new model for determining band gaps for elastic wave propagation in a periodic composite beam structure is developed using a non-classical Bernoulli–Euler beam model that incorporates the microstructure, surface energy and rotational inertia effects. The Bloch theorem and transfer matrix method for periodic structures are employed in the formulation. The new model reduces to the classical elasticity-based model when both the microstructure and surface energy effects are not considered. The band gaps predicted by the new model depend on the microstructure and surface elasticity of each constituent material, the unit cell size, the rotational inertia, and the volumemore » fraction. To quantitatively illustrate the effects of these factors, a parametric study is conducted. The numerical results reveal that the band gap predicted by the current non-classical model is always larger than that predicted by the classical model when the beam thickness is very small, but the difference is diminishing as the thickness becomes large. Also, it is found that the first frequency for producing the band gap and the band gap size decrease with the increase of the unit cell length according to both the current and classical models. In addition, it is observed that the effect of the rotational inertia is larger when the exciting frequency is higher and the unit cell length is smaller. Furthermore, it is seen that the volume fraction has a significant effect on the band gap size, and large band gaps can be obtained by tailoring the volume fraction and material parameters.« less

  18. Inhibition of quantum size effects from surface dangling bonds: The first principles study on different morphology SiC nanowires

    NASA Astrophysics Data System (ADS)

    Li, Yan-Jing; Li, Shu-Long; Gong, Pei; Li, Ya-Lin; Fang, Xiao-Yong; Jia, Ya-Hui; Cao, Mao-Sheng

    2018-06-01

    In recent years, we investigated the structure and photoelectric properties of Silicon carbide nanowires (SiCNWs) with different morphologies and sizes by using the first-principle in density functional theory, and found a phenomenon that is opposite to quantum size effect, namely, the band gap of nanowires increases with the increase of the diameter. To reveal the nature of this phenomenon, we further carry out the passivation of SiCNWs. The results show that the hydrogenated SiCNWs are direct band gap semiconductors, and the band gap decreases with the diameter increasing, which indicates the dangling bonds of the SiCNWs suppress its quantum size effect. The optical properties of SiCNWs with different diameters before and after hydrogenated are compared, we found that these surface dangling bonds lead to spectral shift which is different with quantum size effect of SiCNWs. These results have potential scientific value to deepen the understanding of the photoelectric properties of SiCNWs and to promote the development of optoelectronic devices.

  19. The effects of gap size and disturbance type on invasion of wet pine savanna by cogongrass, Imperata cylindrica (Poaceae)

    USGS Publications Warehouse

    King, S.E.; Grace, J.B.

    2000-01-01

    Cogongrass is a nonindigenous species perceived to threaten native communities of the southeastern United States through modification of species composition and alteration of community processes. To examine how gap size and disturbance type influence the invasion of wet pine savannas by cogongrass, we performed three field experiments to evaluate the response of cogongrass seeds and transplanted seedlings to four different gap sizes, four types of site disturbance, and recent burning of savanna vegetation. Cogongrass germinated, survived, and grew in all gap sizes, from 0 to 100 cm in diameter. Similarly, disturbance type had no effect on germination or seedling and transplant survival. Tilling, however, significantly enhanced transplanted seedling growth, resulting in a tenfold increase in biomass over the other disturbance types. Seedling survival to 1 and 2 mo was greater in burned savanna than unburned savanna, although transplant survival and growth were not affected by burning. Results of this study suggest that cogongrass can germinate, survive, and grow in wet pine savanna communities regardless of gap size or type of disturbance, including burning. Burning of savanna vegetation may enhance establishment by improving early seedling survival, and soil disturbance can facilitate invasion of cogongrass by enhancing plant growth.

  20. The effects of gap size and disturbance type on invasion of wet pine savanna by cogongrass, Imperata cylindrica (Poaceae).

    PubMed

    King, S E; Grace, J B

    2000-09-01

    Cogongrass is a nonindigenous species perceived to threaten native communities of the southeastern United States through modification of species composition and alteration of community processes. To examine how gap size and disturbance type influence the invasion of wet pine savannas by cogongrass, we performed three field experiments to evaluate the response of cogongrass seeds and transplanted seedlings to four different gap sizes, four types of site disturbance, and recent burning of savanna vegetation. Cogongrass germinated, survived, and grew in all gap sizes, from 0 to 100 cm in diameter. Similarly, disturbance type had no effect on germination or seedling and transplant survival. Tilling, however, significantly enhanced transplanted seedling growth, resulting in a tenfold increase in biomass over the other disturbance types. Seedling survival to 1 and 2 mo was greater in burned savanna than unburned savanna, although transplant survival and growth were not affected by burning. Results of this study suggest that cogongrass can germinate, survive, and grow in wet pine savanna communities regardless of gap size or type of disturbance, including burning. Burning of savanna vegetation may enhance establishment by improving early seedling survival, and soil disturbance can facilitate invasion of cogongrass by enhancing plant growth.

  1. Study on tip leakage vortex cavitating flows using a visualization method

    NASA Astrophysics Data System (ADS)

    Zhao, Yu; Jiang, Yutong; Cao, Xiaolong; Wang, Guoyu

    2018-01-01

    Experimental investigations of unsteady cavitating flows in a hydrofoil tip leakage region with different gap sizes are conducted to highlight the development of gap cavitation. The experiments were taken in a closed cavitation tunnel, during which high-speed camera had been used to capture the cavitation patterns. A new visualization method based on image processing was developed to capture time-dependent cavitation patterns. The results show that the visualization method can effectively capture the cavitation patterns in the tip region, including both the attached cavity in the gap and the tip leakage vortex (TLV) cavity near the trailing edge. Moreover, with the decrease of cavitation number, the TLV cavity develops from a rapid onset-growth-collapse process to a continuous process, and extends both upstream and downstream. The attached cavity in the gap develops gradually stretching beyond the gap and combines with the vortex cavity to form the triangle cavitating region. Furthermore, the influences of gap size on the cavitation are also discussed. The gap size has a great influence on the loss across the gap, and hence the locations of the inception attached cavity. Besides, inception locations and extending direction of the TLV cavity with different gap sizes also differ. The TLV in the case with τ = 0.061 is more likely to be jet-like compared with that in the case with τ = 0.024, and the gap size has a great influence on the TLV strength.

  2. "Narrowing the transmission gap: A synthesis of three decades of research on intergenerational transmission of attachment": Correction.

    PubMed

    2018-04-01

    Reports an error in "Narrowing the transmission gap: A synthesis of three decades of research on intergenerational transmission of attachment" by Marije L. Verhage, Carlo Schuengel, Sheri Madigan, R. M. Pasco Fearon, Mirjam Oosterman, Rosalinda Cassibba, Marian J. Bakermans-Kranenburg and Marinus H. van IJzendoorn ( Psychological Bulletin , 2016[Apr], Vol 142[4], 337-366). In the article, there are errors in Table 7. The percentages of the attachment classifications do not add up to 100%. The corrected version of Table 7 is provided in the erratum. (The following abstract of the original article appeared in record 2015-55801-001.) Twenty years ago, meta-analytic results (k = 19) confirmed the association between caregiver attachment representations and child-caregiver attachment (Van IJzendoorn, 1995). A test of caregiver sensitivity as the mechanism behind this intergenerational transmission showed an intriguing "transmission gap." Since then, the intergenerational transmission of attachment and the transmission gap have been studied extensively, and now extend to diverse populations from all over the globe. Two decades later, the current review revisited the effect sizes of intergenerational transmission, the heterogeneity of the transmission effects, and the size of the transmission gap. Analyses were carried out with a total of 95 samples (total N = 4,819). All analyses confirmed intergenerational transmission of attachment, with larger effect sizes for secure-autonomous transmission (r = .31) than for unresolved transmission (r = .21), albeit with significantly smaller effect sizes than 2 decades earlier (r = .47 and r = .31, respectively). Effect sizes were moderated by risk status of the sample, biological relatedness of child-caregiver dyads, and age of the children. Multivariate moderator analyses showed that unpublished and more recent studies had smaller effect sizes than published and older studies. Path analyses showed that the transmission could not be fully explained by caregiver sensitivity, with more recent studies narrowing but not bridging the "transmission gap." Implications for attachment theory as well as future directions for research are discussed. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  3. Soil properties in old-growth Douglas-fir gaps in the western Cascade Mountains of Oregon

    Treesearch

    Robert P. Griffiths; Andrew N. Gray; Thomas A. Spies

    2010-01-01

    This study had three objectives: (1) to determine if there are correlations between aboveground vegetation and belowground soil properties within large 50-m-diameter gaps, (2) to determine how large gaps influence forest soils compared with nongap soils, and (3) to measure the effects of differently sized gaps on gap soils. Circular canopy gaps were created in old-...

  4. [Effects of forest gap size and within-gap position on the microclimate in Pinus koraiensis-dominated broadleaved mixed forest].

    PubMed

    Feng, Jing; Duan, Wen-Biao; Chen, Li-Xin

    2012-07-01

    HOBO automatic weather stations were installed in the central parts and at the south, north, east, and west edges of large, medium, and small gaps in a Pinus koraiensis-dominated broadleaved mixed forest in Xiaoxing' anling Mountains to measure the air temperature, relative humidity, and photosynthetic photon flux density (PPFD) in these locations and the total radiation and precipitation in the gap centres from June to September 2010, taking the closed forest stand and open field as the controls. The differences in the microclimate between various size forest gaps and between the gap centers and their edges as well as the variations of the microclimatic factors over time were analyzed, and the effects of sunny and overcast days on the diurnal variations of the microclimatic factors within forest gaps were compared, aimed to offer basic data and practice reference for gap regeneration and sustainable management of Pinus koraiensis-dominated broadleaved mixed forest. The PPFD was decreased in the order of large gap, medium gap, and small gap. For the same gaps, the PPFD in gap centre was greater than that in gap edge. The mean monthly air temperature and total radiation in gap centres were declined in the sequence of July, June, August, and September, and the amplitudes of the two climatic factors were decreased in the order of open field, large gap, medium gap, small gap, and closed forest stand. The mean monthly relative humidity in gap centres dropped in the order of August, July, September, and June, and the amplitude of this climatic factor was decreased in the sequence of closed forest stand, small gap, medium gap, large gap, and open field. The total and monthly precipitations for the three different size gaps and open field during measurement period generally decreased in the order of open field, large gap, medium gap, small gap, and closed forest stand. In sunny days, the variations of PPFD, air temperature, and relative humidity were greater in large gap than in small gap, but in overcast days, it was in opposite.

  5. Effect of data gaps on correlation dimension computed from light curves of variable stars

    NASA Astrophysics Data System (ADS)

    George, Sandip V.; Ambika, G.; Misra, R.

    2015-11-01

    Observational data, especially astrophysical data, is often limited by gaps in data that arises due to lack of observations for a variety of reasons. Such inadvertent gaps are usually smoothed over using interpolation techniques. However the smoothing techniques can introduce artificial effects, especially when non-linear analysis is undertaken. We investigate how gaps can affect the computed values of correlation dimension of the system, without using any interpolation. For this we introduce gaps artificially in synthetic data derived from standard chaotic systems, like the Rössler and Lorenz, with frequency of occurrence and size of missing data drawn from two Gaussian distributions. Then we study the changes in correlation dimension with change in the distributions of position and size of gaps. We find that for a considerable range of mean gap frequency and size, the value of correlation dimension is not significantly affected, indicating that in such specific cases, the calculated values can still be reliable and acceptable. Thus our study introduces a method of checking the reliability of computed correlation dimension values by calculating the distribution of gaps with respect to its size and position. This is illustrated for the data from light curves of three variable stars, R Scuti, U Monocerotis and SU Tauri. We also demonstrate how a cubic spline interpolation can cause a time series of Gaussian noise with missing data to be misinterpreted as being chaotic in origin. This is demonstrated for the non chaotic light curve of variable star SS Cygni, which gives a saturated D2 value, when interpolated using a cubic spline. In addition we also find that a careful choice of binning, in addition to reducing noise, can help in shifting the gap distribution to the reliable range for D2 values.

  6. The Emergence of Frequency Effects in Eye Movements

    ERIC Educational Resources Information Center

    Vanyukov, Polina M.; Warren, Tessa; Wheeler, Mark E.; Reichle, Erik D.

    2012-01-01

    A visual search experiment employed strings of Landolt "C"s to examine how the gap size of and frequency of exposure to distractor strings affected eye movements. Increases in gap size were associated with shorter first-fixation durations, gaze durations, and total times, as well as fewer fixations. Importantly, both the number and duration of…

  7. Do deer and shrubs override canopy gap size effects on growth and survival of yellow birch, northern red oak, eastern white pine, and eastern hemlock seedlings?

    Treesearch

    Cristel C. Kern; Peter B. Reich; Rebecca A. Montgomery; Terry F. Strong

    2012-01-01

    Innovative forestry practices that use natural disturbance and stand developmental processes as models to increase forest complexity are now being considered as a way to conserve biodiversity while managing for a range of objectives.We evaluated the influence of harvest-created gap size (6, 10, 20, 30, and 46 m diameter gaps and uncut references) over 12 growing...

  8. Effect of particle size on band gap and DC electrical conductivity of TiO2 nanomaterial

    NASA Astrophysics Data System (ADS)

    Avinash, B. S.; Chaturmukha, V. S.; Jayanna, H. S.; Naveen, C. S.; Rajeeva, M. P.; Harish, B. M.; Suresh, S.; Lamani, Ashok R.

    2016-05-01

    Materials reduced to the Nano scale can exhibit different properties compared to what they exhibit on a micro scale, enabling unique applications. When TiO2 is reduced to Nano scale it shows unique properties, of which the electrical aspect is highly important. This paper presents increase in the energy gap and decrease in conductivity with decrease in particle size of pure Nano TiO2 synthesized by hydrolysis and peptization of titanium isopropoxide. Aqueous solution with various pH and peptizing the resultant suspension will form Nano TiO2 at different particle sizes. As the pH of the solution is made acidic reduction in the particle size is observed. And it is confirmed from XRD using Scherer formula and SEM, as prepared samples are studied for UV absorbance, and DC conductivity from room temperature to 400°C. From the tauc plot it was observed, and calculated the energy band gap increases as the particle size decreases and shown TiO2 is direct band gap. From Arrhenius plot clearly we encountered, decrease in the conductivity for the decrease in particle size due to hopping of charge carriers and it is evident that, we can tailor the band gap by varying particle size.

  9. Impact of the Nanoscale Gap Morphology on the Plasmon Coupling in Asymmetric Nanoparticle Dimer Antennas.

    PubMed

    Popp, Paul S; Herrmann, Janning F; Fritz, Eva-Corinna; Ravoo, Bart Jan; Höppener, Christiane

    2016-03-23

    Coupling of plasmon resonances in metallic gap antennas is of interest for a wide range of applications due to the highly localized strong electric fields supported by these structures, and their high sensitivity to alterations of their structure, geometry, and environment. Morphological alterations of asymmetric nanoparticle dimer antennas with (sub)-nanometer size gaps are assigned to changes of their optical response in correlative dark-field spectroscopy and high-resolution transmission electron microscopy (HR-TEM) investigations. This multimodal approach to investigate individual dimer structures clearly demonstrates that the coupling of the plasmon modes, in addition to well-known parameters such as the particle geometry and the gap size, is also affected by the relative alignment of both nanoparticles. The investigations corroborate that the alignment of the gap forming facets, and with that the gap area, is crucial for their scattering properties. The impact of a flat versus a rounded gap structure on the optical properties of equivalent dimers becomes stronger with decreasing gap size. These results hint at a higher confinement of the electric field in the gap and possibly a different onset of quantum transport effects for flat and rounded gap antennas in corresponding structures for very narrow gaps. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. The effects of temperature, hydrostatic pressure and size on optical gain for GaAs spherical quantum dot laser with hydrogen impurity

    NASA Astrophysics Data System (ADS)

    Owji, Erfan; Keshavarz, Alireza; Mokhtari, Hosein

    2016-10-01

    In this paper, the effects of temperature, hydrostatic pressure and size on optical gain for GaAs spherical quantum dot laser with hydrogen impurity are investigated. For this purpose, the effects of temperature, pressure and quantum dot size on the band gap energy, effective mass, and dielectric constant are studied. The eigenenergies and eigenstates for valence and conduction band are calculated by using Runge-Kutta numerical method. Results show that changes in the temperature, pressure and size lead to the alteration of the band gap energy and effective mass. Also, increasing the temperature redshifts the optical gain peak and at special temperature ranges lead to increasing or decreasing of it. Further, by reducing the size, temperature-dependent of optical gain is decreased. Additionally, enhancing of the hydrostatic pressure blueshifts the peak of optical gain, and its behavior as a function of pressure which depends on the size. Finally, increasing the radius rises the redshifts of the peak of optical gain.

  11. A long-term study of tree seedling recruitment in Southern Appalachian forests: the effects of canopy gaps and shrub understories

    Treesearch

    Brian Beckage; James S. Clark; Barton D. Clinton; Bruce L. Haines

    2000-01-01

    We examined the importance of intermediate-sized gaps and a dense shrub layer on tree seedling recruitment in a Southern Appalachian deciduous forest. We created 12 canopy gaps under two contrasting understory conditions: 6 gaps were dominated by the dense, shade-producing shrub, Rhododendron maximum L., while the remaining gaps were relatively open...

  12. Regeneration Patterns in Canopy Gaps of Mixed-oak Forests of the Southern Appalachians: Influences of Topographic Position and Evergreen Understory

    Treesearch

    Barton D. Clinton; Lindsay R. Boring; Wayne T. Swank

    1994-01-01

    Canopy gaps in southern Appalachian mixed-oak forests were assessed for the effects of topographic, gap and stand variables on density of wood seedlings. Seedling density was significantly correlated with percent slope and positively with gap age (l-5 yr). Density varied substantially among topographic positions and increased with gap size. Species richness...

  13. Skills Gaps in Australian Firms

    ERIC Educational Resources Information Center

    Lindorff, Margaret

    2011-01-01

    This paper reports the results of a survey of more than 2000 managers examining perceptions of skills gaps in a range of Australian firms. It finds that three quarters report a skills gap, and almost one third report skills gaps across the whole organisation. Firm size and industry differences exist in perceptions of the effect of the skills gap…

  14. Marginal adaptation of mineral trioxide aggregate (MTA) compared with amalgam as a root-end filling material: a low-vacuum (LV) versus high-vacuum (HV) SEM study.

    PubMed

    Shipper, G; Grossman, E S; Botha, A J; Cleaton-Jones, P E

    2004-05-01

    To compare the marginal adaptation of mineral trioxide aggregate (MTA) or amalgam root-end fillings in extracted teeth under low-vacuum (LV) versus high-vacuum (HV) scanning electron microscope (SEM) viewing conditions. Root-end fillings were placed in 20 extracted single-rooted maxillary teeth. Ten root ends were filled with MTA and the other 10 root ends were filled with amalgam. Two 1 mm thick transverse sections of each root-end filling were cut 0.50 mm (top) and 1.50 mm (bottom) from the apex. Gap size was recorded at eight fixed points along the dentine-filling material interface on each section when uncoated wet (LV wet (LVW)) and dry under LV (0.3 Torr) in a JEOL JSM-5800 SEM and backscatter emission (LV dry uncoated (LVDU)). The sections were then air-dried, gold-coated and gap size was recorded once again at the fixed points under HV (10(-6) Torr; HV dry coated (HVDC)). Specimen cracking, and the size and extent of the crack were noted. Gap sizes at fixed points were smallest under LVW and largest under HVDC SEM conditions. Gaps were smallest in MTA root-end fillings. A General Linear Models Analysis, with gap size as the dependent variable, showed significant effects for extent of crack in dentine, material and viewing condition (P = 0.0001). This study showed that MTA produced a superior marginal adaptation to amalgam, and that LVW conditions showed the lowest gap size. Gap size was influenced by the method of SEM viewing. If only HV SEM viewing conditions are used for MTA and amalgam root-end fillings, a correction factor of 3.5 and 2.2, respectively, may be used to enable relative comparisons of gap size to LVW conditions.

  15. Sensitive detection of surface- and size-dependent direct and indirect band gap transitions in ferritin.

    PubMed

    Colton, J S; Erickson, S D; Smith, T J; Watt, R K

    2014-04-04

    Ferritin is a protein nano-cage that encapsulates minerals inside an 8 nm cavity. Previous band gap measurements on the native mineral, ferrihydrite, have reported gaps as low as 1.0 eV and as high as 2.5-3.5 eV. To resolve this discrepancy we have used optical absorption spectroscopy, a well-established technique for measuring both direct and indirect band gaps. Our studies included controls on the protein nano-cage, ferritin with the native ferrihydrite mineral, and ferritin with reconstituted ferrihydrite cores of different sizes. We report measurements of an indirect band gap for native ferritin of 2.140 ± 0.015 eV (579.7 nm), with a direct transition appearing at 3.053 ± 0.005 eV (406.1 nm). We also see evidence of a defect-related state having a binding energy of 0.220 ± 0.010 eV . Reconstituted ferrihydrite minerals of different sizes were also studied and showed band gap energies which increased with decreasing size due to quantum confinement effects. Molecules that interact with the surface of the mineral core also demonstrated a small influence following trends in ligand field theory, altering the native mineral's band gap up to 0.035 eV.

  16. A novel approach for fit analysis of thermal protective clothing using three-dimensional body scanning.

    PubMed

    Lu, Yehu; Song, Guowen; Li, Jun

    2014-11-01

    The garment fit played an important role in protective performance, comfort and mobility. The purpose of this study is to quantify the air gap to quantitatively characterize a three-dimensional (3-D) garment fit using a 3-D body scanning technique. A method for processing of scanned data was developed to investigate the air gap size and distribution between the clothing and human body. The mesh model formed from nude and clothed body was aligned, superimposed and sectioned using Rapidform software. The air gap size and distribution over the body surface were analyzed. The total air volume was also calculated. The effects of fabric properties and garment size on air gap distribution were explored. The results indicated that average air gap of the fit clothing was around 25-30 mm and the overall air gap distribution was similar. The air gap was unevenly distributed over the body and it was strongly associated with the body parts, fabric properties and garment size. The research will help understand the overall clothing fit and its association with protection, thermal and movement comfort, and provide guidelines for clothing engineers to improve thermal performance and reduce physiological burden. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  17. Effect of the Axial Spacing between Vanes and Blades on a Transonic Gas Turbine Performance and Blade Loading

    NASA Astrophysics Data System (ADS)

    Chang, Dongil; Tavoularis, Stavros

    2013-03-01

    Unsteady numerical simulations have been conducted to investigate the effect of axial spacing between the stator vanes and the rotor blades on the performance of a transonic, single-stage, high-pressure, axial turbine. Three cases were considered, the normal case, which is based on the geometry of a commercial jet engine and has an axial spacing at 50% blade span equal to 42% of the vane axial chord, as well as two other cases with axial spacings equal to 31 and 52% vane axial chords, respectively. Present interest has focused on the effect of axial gap size on the instantaneous and time-averaged flows as well as on the blade loading and the turbine performance. Decreasing the gap size reduced the pressure and increased the Mach number in the core flows in the gap region. However, the flows near the two endwalls did not follow monotonic trends with the gap size change; instead, the Mach numbers for both the small gap and the large gap cases were lower than that for the normal case. This Mach number decrease was attributed to increased turbulence due to the increased wake strength for the small gap case and an increased wake width for the large gap case. In all considered cases, large pressure fluctuations were observed in the front region of the blade suction side. These pressure fluctuations were strongest for the smaller spacing. The turbine efficiencies of the cases with the larger and smaller spacings were essentially the same, but both were lower than that of the normal case. The stator loss for the smaller spacing case was lower than the one for the larger spacing case, whereas the opposite was true for the rotor loss.

  18. Microsite controls on tree seedling establishment in conifer forest canopy gaps

    Treesearch

    Andrew N. Gray; Thomas A. Spies

    1997-01-01

    Tree seedling establishment and growth were studied in experimental canopy gaps to assess the effect of heterogeneity of regeneration microsites within and among gaps in mature conifer forests. Seedlings were studied for two years in closed-canopy areas and in recently created gaps ranging in size from 40 to 2000 m2 in four stands of mature (90-...

  19. Bioinspired wingtip devices: a pathway to improve aerodynamic performance during low Reynolds number flight.

    PubMed

    Lynch, Michael; Mandadzhiev, Boris; Wissa, Aimy

    2018-03-20

    Birds are highly capable and maneuverable fliers, traits not currently shared with current small unmanned aerial vehicles. They are able to achieve these flight capabilities by adapting the shape of their wings during flight in a variety of complex manners. One feature of bird wings, the primary feathers, separate to form wingtip gaps at the distal end of the wing. This paper presents bio-inspired wingtip devices with varying wingtip gap sizes, defined as the chordwise distance between wingtip devices, for operation in low Reynolds number conditions of Re  =  100 000, where many bird species operate. Lift and drag data was measured for planar and nonplanar wingtip devices with the total wingtip gap size ranging from 0% to 40% of the wing's mean chord. For a planar wing with a gap size of 20%, the mean coefficient of lift in the pre-stall region is increased by 7.25%, and the maximum coefficient of lift is increased by 5.6% compared to a configuration with no gaps. The nonplanar wingtip device was shown to reduce the induced drag. The effect of wingtip gap sizes is shown to be independent of the planarity/nonplanarity of the wingtip device, thereby allowing designers to decouple the wingtip parameters to tune the desired lift and drag produced.

  20. Comparing Students With and Without Reading Difficulties on Reading Comprehension Assessments: A Meta-Analysis.

    PubMed

    Collins, Alyson A; Lindström, Esther R; Compton, Donald L

    Researchers have increasingly investigated sources of variance in reading comprehension test scores, particularly with students with reading difficulties (RD). The purpose of this meta-analysis was to determine if the achievement gap between students with RD and typically developing (TD) students varies as a function of different reading comprehension response formats (e.g., multiple choice, cloze). A systematic literature review identified 82 eligible studies. All studies administered reading comprehension assessments to students with RD and TD students in Grades K-12. Hedge's g standardized mean difference effect sizes were calculated, and random effects robust variance estimation techniques were used to aggregate average weighted effect sizes for each response format. Results indicated that the achievement gap between students with RD and TD students was larger for some response formats (e.g., picture selection ES g = -1.80) than others (e.g., retell ES g = -0.60). Moreover, for multiple-choice, cloze, and open-ended question response formats, single-predictor metaregression models explored potential moderators of heterogeneity in effect sizes. No clear patterns, however, emerged in regard to moderators of heterogeneity in effect sizes across response formats. Findings suggest that the use of different response formats may lead to variability in the achievement gap between students with RD and TD students.

  1. Poster - 53: Improving inter-linac DMLC IMRT dose precision by fine tuning of MLC leaf calibration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakonechny, Keith; Tran, Muoi; Sasaki, David

    Purpose: To develop a method to improve the inter-linac precision of DMLC IMRT dosimetry. Methods: The distance between opposing MLC leaf banks (“gap size”) can be finely tuned on Varian linacs. The dosimetric effect due to small deviations from the nominal gap size (“gap error”) was studied by introducing known errors for several DMLC sliding gap sizes, and for clinical plans based on the TG119 test cases. The plans were delivered on a single Varian linac and the relationship between gap error and the corresponding change in dose was measured. The plans were also delivered on eight Varian 2100 seriesmore » linacs (at two institutions) in order to quantify the inter-linac variation in dose before and after fine tuning the MLC calibration. Results: The measured dose differences for each field agreed well with the predictions of LoSasso et al. Using the default MLC calibration, the variation in the physical MLC gap size was determined to be less than 0.4 mm between all linacs studied. The dose difference between the linacs with the largest and smallest physical gap was up to 5.4% (spinal cord region of the head and neck TG119 test case). This difference was reduced to 2.5% after fine tuning the MLC gap calibration. Conclusions: The inter-linac dose precision for DMLC IMRT on Varian linacs can be improved using a simple modification of the MLC calibration procedure that involves fine adjustment of the nominal gap size.« less

  2. Diversifying the composition and structure of managed late-successional forests with harvest gaps: What is the optimal gap size?

    Treesearch

    Christel C. Kern; Anthony W. D’Amato; Terry F. Strong

    2013-01-01

    Managing forests for resilience is crucial in the face of uncertain future environmental conditions. Because harvest gap size alters the species diversity and vertical and horizontal structural heterogeneity, there may be an optimum range of gap sizes for conferring resilience to environmental uncertainty. We examined the impacts of different harvest gap sizes on...

  3. [Effect of gap size between tooth and restorative materials on microbiolism based caries in vitro].

    PubMed

    Lu, Wen-bin; Li, Yun

    2012-05-01

    To evaluate the effect of gap size between tooth and restorative materials on microbiolism based caries in vitro. Tooth blocks made of human molars without caries and the same size composite resin blocks were selected and prepared. Tooth-resin matrix was mounted on resin base with a gap size of 0, 25, 50, 100, 190, 250 µm and a control group was dealed with adhesive system. Six experimental groups and one control group were included, with 8 samples in one group and a total of 56 samples. The samples were cultured by a 14-day sequential batch culture technique. The development of outer surface lesion and wall lesion was assessed with confocal laser scanning microscope (CLSM) by measuring the maximum lesion depth, fluorescence areas and average fluorescence value. The data were collected and statistically analyzed. The deposits of the tooth-restoration interface and the development of the carious lesion were observed by scanning electron microscope (SEM). Most groups showed outer surface lesion and wall surface lesions observed by CLSM and SEM except 2 samples in control group. There was no significant difference on the outer surface lesion (P > 0.05). The maximum lesion depth [(1145.37 ± 198.98), (1190.12 ± 290.80) µm respectively], the maximum lesion length, fluorescence areas and average fluorescence value of 190 and 250 µm groups' wall lesions were significantly higher than the 0, 25, 50 and 100 µm groups [the maximum lesion depth was (205.25 ± 122.61), (303.87 ± 118.80), (437.75 ± 154.88), (602.87 ± 269.13) µm respectively], P < 0.01. With the increase of the gap size, the demineralization developed more seriously. While the maximum lesion depth, the maximum lesion length and fluorescence areas of 0, 25, 50 µm groups' wall lesions were of no significant difference. There was close relationship between gap size and wall lesion when the gap was above 100 µm at tooth-composite resin interface. The existence of gap was the main influencing factor on the development of microbiolism based caries lesion.

  4. Voltage and pace-capture mapping of linear ablation lesions overestimates chronic ablation gap size.

    PubMed

    O'Neill, Louisa; Harrison, James; Chubb, Henry; Whitaker, John; Mukherjee, Rahul K; Bloch, Lars Ølgaard; Andersen, Niels Peter; Dam, Høgni; Jensen, Henrik K; Niederer, Steven; Wright, Matthew; O'Neill, Mark; Williams, Steven E

    2018-04-26

    Conducting gaps in lesion sets are a major reason for failure of ablation procedures. Voltage mapping and pace-capture have been proposed for intra-procedural identification of gaps. We aimed to compare gap size measured acutely and chronically post-ablation to macroscopic gap size in a porcine model. Intercaval linear ablation was performed in eight Göttingen minipigs with a deliberate gap of ∼5 mm left in the ablation line. Gap size was measured by interpolating ablation contact force values between ablation tags and thresholding at a low force cut-off of 5 g. Bipolar voltage mapping and pace-capture mapping along the length of the line were performed immediately, and at 2 months, post-ablation. Animals were euthanized and gap sizes were measured macroscopically. Voltage thresholds to define scar were determined by receiver operating characteristic analysis as <0.56 mV (acutely) and <0.62 mV (chronically). Taking the macroscopic gap size as gold standard, error in gap measurements were determined for voltage, pace-capture, and ablation contact force maps. All modalities overestimated chronic gap size, by 1.4 ± 2.0 mm (ablation contact force map), 5.1 ± 3.4 mm (pace-capture), and 9.5 ± 3.8 mm (voltage mapping). Error on ablation contact force map gap measurements were significantly less than for voltage mapping (P = 0.003, Tukey's multiple comparisons test). Chronically, voltage mapping and pace-capture mapping overestimated macroscopic gap size by 11.9 ± 3.7 and 9.8 ± 3.5 mm, respectively. Bipolar voltage and pace-capture mapping overestimate the size of chronic gap formation in linear ablation lesions. The most accurate estimation of chronic gap size was achieved by analysis of catheter-myocardium contact force during ablation.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oyewale, S; Pokharel, S; Rana, S

    Purpose: To compare the percentage depth dose (PDD) computational accuracy of Adaptive Convolution (AC) and Collapsed Cone Convolution (CCC) algorithms in the presence of air gaps. Methods: A 30×30×30 cm{sup 3} solid water phantom with two 5cm air gaps was scanned with a CT simulator unit and exported into the Phillips Pinnacle™ treatment planning system. PDDs were computed using the AC and CCC algorithms. Photon energy of 6 MV was used with field sizes of 3×3 cm{sup 2}, 5×5 cm{sup 2}, 10×10 cm{sup 2}, 15×15 cm{sup 2}, and 20×20 cm{sup 2}. Ionization chamber readings were taken at different depths inmore » water for all the field sizes. The percentage differences in the PDDs were computed with normalization to the depth of maximum dose (dmax). The calculated PDDs were then compared with measured PDDs. Results: In the first buildup region, both algorithms overpredicted the dose for all field sizes and under-predicted for all other subsequent buildup regions. After dmax in the three water media, AC under-predicted the dose for field sizes 3×3 and 5×5 cm{sup 2} and overpredicted for larger field sizes, whereas CCC under-predicted for all field sizes. Upon traversing the first air gap, AC showed maximum differences of –3.9%, −1.4%, 2.0%, 2.5%, 2.9% and CCC had maximum differences of −3.9%, −3.0%,–3.1%, −2.7%, −1.8% for field sizes 3×3, 5×5, 10×10, 15×15, and 20×20 cm{sup 2} respectively. Conclusion: The effect of air gaps causes a significant difference in the PDDs computed by both the AC and CCC algorithms in secondary build-up regions. AC computed larger values for the PDDs except at smaller field sizes. For CCC, the size of the errors in prediction of the PDDs has an inverse relationship with respect to field size. These effects should be considered in treatment planning where significant air gaps are encountered.« less

  6. Optimization of air gap for two-dimensional imaging system using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Zeniya, Tsutomu; Takeda, Tohoru; Yu, Quanwen; Hyodo, Kazuyuki; Yuasa, Tetsuya; Aiyoshi, Yuji; Hiranaka, Yukio; Itai, Yuji; Akatsuka, Takao

    2000-11-01

    Since synchrotron radiation (SR) has several excellent properties such as high brilliance, broad continuous energy spectrum and small divergence, we can obtain x-ray images with high contrast and high spatial resolution by using of SR. In 2D imaging using SR, air gap method is very effective to reduce the scatter contamination. However, to use air gap method, the geometrical effect of finite source size of SR must be considered because spatial resolution of image is degraded by air gap. For 2D x-ray imaging with SR, x-ray mammography was chosen to examine the effect of air gap method. We theoretically discussed the optimization of air gap distance suing effective scatter point source model proposed by Muntz, and executed experiment with a newly manufactured monochromator with asymmetrical reflection and an imaging plate.

  7. [Effects of forest gap size and uprooted microsite on the microclimate in Pinus koraiensis-dominated broad-leaved mixed forest].

    PubMed

    Duan, Wen-biao; Du, Shan; Chen, Li-xin; Wang, Li-xia; Wei, Quan-shuai; Zhao, Jian-hui

    2013-08-01

    Three representative forest gaps with pit-mound microsites formed by uprooted trees were selected within the 2.55 hm2 plot in a Pinus koraiensis-dominated broad-leaved mixed forest in Xiao Xing'an Mountains of Northeast China. The cleared land and closed stand were set up as the controls, and the PAR, air temperature and relative humidity in the centers of different size gaps and in mound top as well as the total radiation and precipitation in the gap centers were measured between July and September, 2011 by using multichannel automatic meteorological stations. The differences of the microclimate between the gap centers and mound top in different months were compared, and the monthly and diurnal variations of the microclimatic factors in the gap centers and in the mound top under typical weather conditions were analyzed. The results showed that the mean monthly PAR and air temperature in the three gaps of different sizes were in the order of large gap > medium gap > small gap, and the mean monthly relative humidity was in the order of small gap > medium gap > large gap. For the same size gap, the mean monthly PAR and air temperature were higher in the mound top than in the gap center, whereas the mean monthly relative humidity was higher in the gap center than in the mound top. Both the mean monthly total radiation and the mean monthly air temperature in the forest gaps and in the controls were in the order of July > August > September and of cleared land > large gap > medium gap > small gap > closed stand, while the mean monthly relative humidity was in the order of closed stand > small gap > medium gap > large gap > cleared land. The differences in the mean monthly relative humidity between closed stand and various gaps and between closed stand and cleared land reached significant level. The monthly precipitation from July to September decreased in the order of cleared land > large gap > medium gap > small gap > closed stand. Whether in sunny days or in overcast days, the mean daily PAR and air temperature were higher in mound top than in gap center, and the mean daily relative humidity was in opposite. Whether in mound top or in gap center, the mean daily PAR and air temperature were higher in sunny days than in overcast days, while the mean daily relative humidity was higher in overcast days than in sunny days.

  8. Trade-off between competition and facilitation defines gap colonization in mountains

    PubMed Central

    Lembrechts, Jonas J.; Milbau, Ann; Nijs, Ivan

    2015-01-01

    Recent experimental observations show that gap colonization in small-stature (e.g. grassland and dwarf shrubs) vegetation strongly depends on the abiotic conditions within them. At the same time, within-gap variation in biotic interactions such as competition and facilitation, caused by distance to the gap edge, would affect colonizer performance, but a theoretical framework to explore such patterns is missing. Here, we model how competition, facilitation and environmental conditions together determine the small-scale patterns of gap colonization along a cold gradient in mountains, by simulating colonizer survival in gaps of various sizes. Our model adds another dimension to the known effects of biotic interactions along a stress gradient by focussing on the trade-off between competition and facilitation in the within-gap environment. We show that this trade-off defines a peak in colonizer survival at a specific distance from the gap edge, which progressively shifts closer to the edge as the environment gets colder, ultimately leaving a large fraction of gaps unsuitable for colonization in facilitation-dominated systems. This is reinforced when vegetation size and temperature amelioration are manipulated simultaneously with temperature in order to simulate an elevational gradient more realistically. Interestingly, all other conditions being equal, the magnitude of the realized survival peak was always lower in large than in small gaps, making large gaps harder to colonize. The model is relevant to predict effects of non-native plant invasions and climate warming on colonization processes in mountains. PMID:26558706

  9. Biomechanical comparison of single-row arthroscopic rotator cuff repair technique versus transosseous repair technique.

    PubMed

    Tocci, Stephen L; Tashjian, Robert Z; Leventhal, Evan; Spenciner, David B; Green, Andrew; Fleming, Braden C

    2008-01-01

    This study determined the effect of tear size on gap formation of single-row simple-suture arthroscopic rotator cuff repair (ARCR) vs transosseous Mason-Allen suture open RCR (ORCR) in 13 pairs of human cadaveric shoulders. A massive tear was created in 6 pairs and a large tear in 7. Repairs were cyclically tested in low-load and high-load conditions, with no significant difference in gap formation. Under low-load, gapping was greater in massive tears. Under high-load, there was a trend toward increased gap with ARCR for large tears. All repairs of massive tears failed in high-load. Gapping was greater posteriorly in massive tears for both techniques. Gap formation of a modeled RCR depends upon the tear size. ARCR of larger tears may have higher failure rates than ORCR, and the posterior aspect appears to be the site of maximum gapping. Specific attention should be directed toward maximizing initial fixation of larger rotator cuff tears, especially at the posterior aspect.

  10. Determination of the band parameters of bulk 2H-MX2 (M = Mo, W; X = S, Se) by angle-resolved photoemission spectroscopy

    PubMed Central

    Kim, Beom Seo; Rhim, Jun-Won; Kim, Beomyoung; Kim, Changyoung; Park, Seung Ryong

    2016-01-01

    Monolayer MX2 (M = Mo, W; X = S, Se) has recently been drawn much attention due to their application possibility as well as the novel valley physics. On the other hand, it is also important to understand the electronic structures of bulk MX2 for material applications since it is very challenging to grow large size uniform and sustainable monolayer MX2. We performed angle-resolved photoemission spectroscopy and tight binding calculations to investigate the electronic structures of bulk 2H-MX2. We could extract all the important electronic band parameters for bulk 2H-MX2, including the band gap, direct band gap size at K (-K) point and spin splitting size. Upon comparing the parameters for bulk 2H-MX2 (our work) with mono- and multi-layer MX2 (published), we found that stacked layers, substrates for thin films, and carrier concentration significantly affect the parameters, especially the band gap size. The origin of such effect is discussed in terms of the screening effect. PMID:27805019

  11. Out-of-Plane Disorder Effects on the Energy Gaps and Electronic Charge Order in Bi2Sr1.7R0.3CuO6+δ (R = La and Eu)

    NASA Astrophysics Data System (ADS)

    Kurosawa, Tohru; Takeyama, Kohsaku; Baar, Stefan; Shibata, Yuto; Kataoka, Moeko; Mizuta, Shusei; Yoshida, Hiroshi; Momono, Naoki; Oda, Migaku; Ido, Masayuki

    2016-04-01

    We performed STM/STS experiments at 8 K in Bi2Sr1.7R0.3CuO6+δ (R-Bi2201) systems that had optimal (OP) hole-doping levels (˜0.17) but different Tc values, 35 K for R = La and 20 K for R = Eu, and examined out-of-plane disorder effects on the superconducting (SC) gap (SCG) and the pseudogap (PG) which is associated with the so-called "checkerboard charge order" (CCO). As out-of-plane disorders are strengthened by replacing La with Eu in OP R-Bi2201, the antinodal PG size ΔPG increases from ˜30 to ˜60 meV, the nodal SCG size ΔSC seems to decrease from ˜7 to ˜4 meV, and the pairing gap amplitude Δ0 or d-wave gap size at the antinodes is almost unchanged (Δ0 ˜ 15 meV). These gap sizes for OP doping in Eu-Bi2201 are comparable to those for an underdoping level of ˜0.1 in La-Bi2201. Although out-of-plane disorders strongly affect the electronic system of the Cu-O plane, they have no effect on the period of the CCO, which is five times the lattice constant (5a) along the Cu-O bond directions for OP doping and 4a for p ˜ 0.1. We suggest that the concentration of holes doped into the Cu-O plane may be an essential factor for determining the period of the CCO.

  12. Gap Size Uncertainty Quantification in Advanced Gas Reactor TRISO Fuel Irradiation Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pham, Binh T.; Einerson, Jeffrey J.; Hawkes, Grant L.

    The Advanced Gas Reactor (AGR)-3/4 experiment is the combination of the third and fourth tests conducted within the tristructural isotropic fuel development and qualification research program. The AGR-3/4 test consists of twelve independent capsules containing a fuel stack in the center surrounded by three graphite cylinders and shrouded by a stainless steel shell. This capsule design enables temperature control of both the fuel and the graphite rings by varying the neon/helium gas mixture flowing through the four resulting gaps. Knowledge of fuel and graphite temperatures is crucial for establishing the functional relationship between fission product release and irradiation thermal conditions.more » These temperatures are predicted for each capsule using the commercial finite-element heat transfer code ABAQUS. Uncertainty quantification reveals that the gap size uncertainties are among the dominant factors contributing to predicted temperature uncertainty due to high input sensitivity and uncertainty. Gap size uncertainty originates from the fact that all gap sizes vary with time due to dimensional changes of the fuel compacts and three graphite rings caused by extended exposure to high temperatures and fast neutron irradiation. Gap sizes are estimated using as-fabricated dimensional measurements at the start of irradiation and post irradiation examination dimensional measurements at the end of irradiation. Uncertainties in these measurements provide a basis for quantifying gap size uncertainty. However, lack of gap size measurements during irradiation and lack of knowledge about the dimension change rates lead to gap size modeling assumptions, which could increase gap size uncertainty. In addition, the dimensional measurements are performed at room temperature, and must be corrected to account for thermal expansion of the materials at high irradiation temperatures. Uncertainty in the thermal expansion coefficients for the graphite materials used in the AGR-3/4 capsules also increases gap size uncertainty. This study focuses on analysis of modeling assumptions and uncertainty sources to evaluate their impacts on the gap size uncertainty.« less

  13. Indirect effects of emerald ash borer-induced ash mortality and canopy gap formation on epigaeic beetles.

    PubMed

    Gandhi, Kamal J K; Smith, Annemarie; Hartzler, Diane M; Herms, Daniel A

    2014-06-01

    Exotic herbivorous insects have drastically and irreversibly altered forest structure and composition of North American forests. For example, emerald ash borer (Agrilus planipennis Fairmaire) from Asia has caused wide-scale mortality of ash trees (Fraxinus spp.) in eastern United States and Canada. We studied the effects of forest changes resulting from emerald ash borer invasion on epigaeic or ground beetles (Coleoptera: Carabidae) along a gradient of ash dieback and gap sizes in southeastern Michigan. Ground beetles were sampled in hydric, mesic, and xeric habitats in which black (Fraxinus nigra Marshall), green (Fraxinus pennsylvanica Marshall), and white (Fraxinus americana L.) ash were the most common species, respectively. During 2006-2007, we trapped 2,545 adult ground beetles comprising 52 species. There was a negative correlation between percent ash tree mortality in 2006 and catches of all beetles. Catches of Agonum melanarium Dejean (in 2006) and Pterostichus mutus (Say) (in 2006-2007) were negatively correlated with tree mortality and gap size, respectively. However, catches of Pterostichus corvinus Dejean were positively correlated with gap size in 2006. As ash mortality and average gap size increased from 2006 to 2007, catches of all beetles as well as P. mutus and Pterostichus stygicus (Say) increased (1.3-3.9 times), while species diversity decreased, especially in mesic and xeric stands. Cluster analysis revealed that beetle assemblages in hydric and mesic stand diverged (25 and 40%, respectively) in their composition from 2006 to 2007, and that hydric stands had the most unique beetle assemblages. Overall, epigaeic beetle assemblages were altered in ash stands impacted by emerald ash borer; however, these impacts may dissipate as canopy gaps close.

  14. Study of radiative heat transfer in Ångström- and nanometre-sized gaps

    DOE PAGES

    Cui, Longji; Jeong, Wonho; Fernández-Hurtado, Víctor; ...

    2017-02-15

    Radiative heat transfer in Ångström- and nanometre-sized gaps is of great interest because of both its technological importance and open questions regarding the physics of energy transfer in this regime. Here in this paper we report studies of radiative heat transfer in few Å to 5nm gap sizes, performed under ultrahigh vacuum conditions between a Au-coated probe featuring embedded nanoscale thermocouples and a heated planar Au substrate that were both subjected to various surface-cleaning procedures. By drawing on the apparent tunnelling barrier height as a signature of cleanliness, we found that upon systematically cleaning via a plasma or locally pushingmore » the tip into the substrate by a few nanometres, the observed radiative conductances decreased from unexpectedly large values to extremely small ones—below the detection limit of our probe—as expected from our computational results. Our results show that it is possible to avoid the confounding effects of surface contamination and systematically study thermal radiation in Ångström- and nanometre-sized gaps.« less

  15. Spatial and temporal patterns of beetles associated with coarse woody debris in managed bottomland hardwood forests.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ulyshen, M., D.; Hanula, J., L.; Horn, S.

    2004-05-13

    For. Ecol. and Mgt. 199:259-272. Malaise traps were used to sample beetles in artificial canopy gaps of different size (0.13 ha, 0.26 ha, and0.50 ha) and age in a South Carolina bottomland hardwood forest. Traps were placed at the center, edge, and in the surrounding forest of each gap. Young gaps (ý 1 year) had large amounts of coarse woody debris compared to the surrounding forest, while older gaps (ý 6 years) had virtually none. The total abundance and diversity of wood-dwelling beetles (Buprestidae, Cerambycidae, Brentidae, Bostrichidae, and Curculionidae (Scolytinae and Platypodinae)) was higher in the center of young gapsmore » than in the center of old gaps. The abundance was higher in the center of young gaps than in the surrounding forest, while the forest surrounding old gaps and the edge of old gaps had a higher abundance and diversity of wood-dwelling beetles than did the center of old gaps. There was no difference in wood-dwelling beetle abundance between gaps of different size, but diversity was lower in 0.13 ha old gaps than in 0.26 ha or 0.50 ha old gaps. We suspect that gap size has more of an effect on woodborer abundance than indicated here because malaise traps sample a limited area. The predaceous beetle family Cleridae showed a very similar trend to that of the woodborers. Coarse woody debris is an important resource for many organisms, and our results lend further support to forest management practices that preserve coarse woody debris created during timber removal.« less

  16. Probing Gap Plasmons Down to Subnanometer Scales Using Collapsible Nanofingers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Boxiang; Yao, Yuhan; Groenewald, Roelof E.

    Gap plasmonic nanostructures are of great interest due to their ability to concentrate light into small volumes. Theoretical studies, considering quantum mechanical effects, have predicted the optimal spatial gap between adjacent nanoparticles to be in the subnanometer regime in order to achieve the strongest possible field enhancement. In this paper, we present a technology to fabricate gap plasmonic structures with subnanometer resolution, high reliability, and high throughput using collapsible nanofingers. This approach enables us to systematically investigate the effects of gap size and tunneling barrier height. Finally, the experimental results are consistent with previous findings as well as with amore » straightforward theoretical model that is presented here.« less

  17. Probing Gap Plasmons Down to Subnanometer Scales Using Collapsible Nanofingers

    DOE PAGES

    Song, Boxiang; Yao, Yuhan; Groenewald, Roelof E.; ...

    2017-06-09

    Gap plasmonic nanostructures are of great interest due to their ability to concentrate light into small volumes. Theoretical studies, considering quantum mechanical effects, have predicted the optimal spatial gap between adjacent nanoparticles to be in the subnanometer regime in order to achieve the strongest possible field enhancement. In this paper, we present a technology to fabricate gap plasmonic structures with subnanometer resolution, high reliability, and high throughput using collapsible nanofingers. This approach enables us to systematically investigate the effects of gap size and tunneling barrier height. Finally, the experimental results are consistent with previous findings as well as with amore » straightforward theoretical model that is presented here.« less

  18. An Evaluation of the Gap Sizes of 3-Unit Fixed Dental Prostheses Milled from Sintering Metal Blocks.

    PubMed

    Jung, Jae-Kwan

    2017-01-01

    This study assessed the clinical acceptability of sintering metal-fabricated 3-unit fixed dental prostheses (FDPs) based on gap sizes. Ten specimens were prepared on research models by milling sintering metal blocks or by the lost-wax technique (LWC group). Gap sizes were assessed at 12 points per abutment (premolar and molar), 24 points per specimen (480 points in a total in 20 specimens). The measured points were categorized as marginal, axial wall, and occlusal for assessment in a silicone replica. The silicone replica was cut through the mesiodistal and buccolingual center. The four sections were magnified at 160x, and the thickness of the light body silicone was measured to determine the gap size, and gap size means were compared. For the premolar part, the mean (standard deviation) gap size was nonsignificantly ( p = 0.139) smaller in the SMB group (68.6 ± 35.6  μ m) than in the LWC group (69.6 ± 16.9  μ m). The mean molar gap was nonsignificantly smaller ( p = 0.852) in the LWC (73.9 ± 25.6  μ m) than in the SMB (78.1 ± 37.4  μ m) group. The gap sizes were similar between the two groups. Because the gap sizes were within the previously proposed clinically accepted limit, FDPs prepared by sintered metal block milling are clinically acceptable.

  19. An Evaluation of the Gap Sizes of 3-Unit Fixed Dental Prostheses Milled from Sintering Metal Blocks

    PubMed Central

    2017-01-01

    This study assessed the clinical acceptability of sintering metal-fabricated 3-unit fixed dental prostheses (FDPs) based on gap sizes. Ten specimens were prepared on research models by milling sintering metal blocks or by the lost-wax technique (LWC group). Gap sizes were assessed at 12 points per abutment (premolar and molar), 24 points per specimen (480 points in a total in 20 specimens). The measured points were categorized as marginal, axial wall, and occlusal for assessment in a silicone replica. The silicone replica was cut through the mesiodistal and buccolingual center. The four sections were magnified at 160x, and the thickness of the light body silicone was measured to determine the gap size, and gap size means were compared. For the premolar part, the mean (standard deviation) gap size was nonsignificantly (p = 0.139) smaller in the SMB group (68.6 ± 35.6 μm) than in the LWC group (69.6 ± 16.9 μm). The mean molar gap was nonsignificantly smaller (p = 0.852) in the LWC (73.9 ± 25.6 μm) than in the SMB (78.1 ± 37.4 μm) group. The gap sizes were similar between the two groups. Because the gap sizes were within the previously proposed clinically accepted limit, FDPs prepared by sintered metal block milling are clinically acceptable. PMID:28246605

  20. Trade-off between competition and facilitation defines gap colonization in mountains.

    PubMed

    Lembrechts, Jonas J; Milbau, Ann; Nijs, Ivan

    2015-11-10

    Recent experimental observations show that gap colonization in small-stature (e.g. grassland and dwarf shrubs) vegetation strongly depends on the abiotic conditions within them. At the same time, within-gap variation in biotic interactions such as competition and facilitation, caused by distance to the gap edge, would affect colonizer performance, but a theoretical framework to explore such patterns is missing. Here, we model how competition, facilitation and environmental conditions together determine the small-scale patterns of gap colonization along a cold gradient in mountains, by simulating colonizer survival in gaps of various sizes. Our model adds another dimension to the known effects of biotic interactions along a stress gradient by focussing on the trade-off between competition and facilitation in the within-gap environment. We show that this trade-off defines a peak in colonizer survival at a specific distance from the gap edge, which progressively shifts closer to the edge as the environment gets colder, ultimately leaving a large fraction of gaps unsuitable for colonization in facilitation-dominated systems. This is reinforced when vegetation size and temperature amelioration are manipulated simultaneously with temperature in order to simulate an elevational gradient more realistically. Interestingly, all other conditions being equal, the magnitude of the realized survival peak was always lower in large than in small gaps, making large gaps harder to colonize. The model is relevant to predict effects of non-native plant invasions and climate warming on colonization processes in mountains. Published by Oxford University Press on behalf of the Annals of Botany Company.

  1. Feasibility of 3D printed air slab diode caps for small field dosimetry.

    PubMed

    Perrett, Benjamin; Charles, Paul; Markwell, Tim; Kairn, Tanya; Crowe, Scott

    2017-09-01

    Commercial diode detectors used for small field dosimetry introduce a field-size-dependent over-response relative to an ideal, water-equivalent dosimeter due to high density components in the body of the detector. An air gap above the detector introduces a field-size-dependent under-response, and can be used to offset the field-size-dependent detector over-response. Other groups have reported experimental validation of caps containing air gaps for use with several types of diodes in small fields. This paper examines two designs for 3D printed diode air caps for the stereotactic field diode (SFD)-a cap containing a sealed air cavity, and a cap with an air cavity at the face of the SFD. Monte Carlo simulations of both designs were performed to determine dimensions for an air cavity to introduce the desired dosimetric correction. Various parameter changes were also simulated to estimate the dosimetric uncertainties introduced by 3D printing. Cap layer dimensions, cap density changes due to 3D printing, and unwanted air gaps were considered. For the sealed design the optimal air gap size for water-equivalent cap material was 0.6 mm, which increased to 1.0 mm when acrylonitrile butadiene styrene in the cap was simulated. The unsealed design had less variation, a 0.4 mm air gap is optimal in both situations. Unwanted air pockets in the bore of the cap and density changes introduced by the 3D printing process can potentially introduce significant dosimetric effects. These effects may be limited by using fine print resolutions and minimising the volume of cap material.

  2. Influence of fracture geometry on bone healing under locking plate fixations: A comparison between oblique and transverse tibial fractures.

    PubMed

    Miramini, Saeed; Zhang, Lihai; Richardson, Martin; Mendis, Priyan; Ebeling, Peter R

    2016-10-01

    Mechano-regulation plays a crucial role in bone healing and involves complex cellular events. In this study, we investigate the change of mechanical microenvironment of stem cells within early fracture callus as a result of the change of fracture obliquity, gap size and fixation configuration using mechanical testing in conjunction with computational modelling. The research outcomes show that angle of obliquity (θ) has significant effects on interfragmentary movement (IFM) which influences mechanical microenvironment of the callus cells. Axial IFM at near cortex of fracture decreases with θ, while shear IFM significantly increases with θ. While a large θ can increase shear IFM by four-fold compared to transverse fracture, it also result in the tension-stress effect at near cortex of fracture callus. In addition, mechanical stimuli for cell differentiation within the callus are found to be strongly negatively correlated to angle of obliquity and gap size. It is also shown that a relatively flexible fixation could enhance callus formation in presence of a large gap but could lead to excessive callus strain and interstitial fluid flow when a small transverse fracture gap is present. In conclusion, there appears to be an optimal fixation configuration for a given angle of obliquity and gap size. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  3. Density functional theory calculations for armchair stanene nanoribbons with fluorine and sulfur functionalization

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Lang, X. Y.; Jiang, Q.

    2018-07-01

    A systematic density functional theory calculation has been carried out to study the effect of edge terminating of F and S elements with different edge natures on the structure and electronic properties of armchair stanene nanoribbons (ASnNRs). Moreover, the corresponding size (ribbon width Na) dependence on these properties is also considered. The energy gap was found to be oscillated as a function of Na and could be classified into three distinct groups of 3m, 3m + 1 and 3m + 2. In addition, the energy gaps of ASnNRs saturated by S atoms differ from that did by F and H atoms in vibration trends as well VBM and CBM changes, where the energy gap is a direct energy gap with a moderate size.

  4. Fragmented Canopies Control the Regimes of Gravity Current Development

    NASA Astrophysics Data System (ADS)

    Barcelona, Aina; Serra, Teresa; Colomer, Jordi

    2018-03-01

    Coastal ecosystems (marine littoral regions, wetlands, and deltas) are regions of high biological productivity. However, they are also one of the world's most threatened ecosystems. Wetlands are characterized by aquatic vegetation adapted to high salinity levels and climatic variations. Wetland canopies buffer these hydrodynamic and atmospheric variations and help retain sediment by reducing current velocity during sea storms or runoff after periods of rain. This work focuses on the effect of the presence of a gap (i.e., nonvegetated zone) parallel to the direction of the main current has on the sedimentation and hydrodynamics of a gravity current. The study aims to (1) address the behavior of a gravity current in a vegetated region compared to one without vegetation (i.e., the gap), (2) determine the effect gap size has on how a gravity current evolves, and 3) determine the effect gap sizes have on the sedimentary rates from a gravity current. Laboratory experiments were carried out in a flume using four different sediment concentrations, four different canopy densities (884, 354, 177, and 0 plants·m-2) and three different gap widths (H/2, H, and 1.5H, where H is the height of the water). This work shows that a gravity current's evolution and its sedimentary rates depend on the fractional volume occupied by the vegetation. While current dynamics in experiments with wider gaps are similar to the nonvegetated case, for smaller gaps the dynamics are closer to the fully vegetated case. Nonetheless, the gravity current exhibits the same behavior in both the vegetated region and the gap.

  5. GAP SIZE AND SUCCESSIONAL PROCESSES IN SOUTHERN APPALACHIAN FORESTS

    EPA Science Inventory

    We used clearcut logging in establishing four replicated sizes of canopy openings (0.016, 0.08, 0.4, and 2.0 ha) in a southern Appalachian hardwood forest in 1981 to examine the long-term effects of disturbance size on plant community structure, biomass accumulation, aboveground ...

  6. Synthesis of colloidal Zn(Te,Se) alloy quantum dots

    NASA Astrophysics Data System (ADS)

    Asano, H.; Arai, K.; Kita, M.; Omata, T.

    2017-10-01

    Colloidal Zn(Te1-x Se x ) quantum dots (QDs), which are highly mismatched semiconductor alloys, were synthesized by the hot injection of an organometallic solution, and the composition and size dependence of their optical gap were studied together with the theoretical calculation using the finite-depth-well effective mass approximation. The optical gaps exhibited considerable negative deviation from the mole fraction weighted mean optical gaps of ZnTe and ZnSe, i.e. a large optical gap bowing was observed, similar to the bulk and thin-film alloys. The composition and size dependence of optical gaps agreed well with theoretically calculated ones employing a bowing parameter similar to that of the bulk alloys; therefore, the extent of the optical gap bowing in these alloy QDs is concluded to be the same as that in bulk and thin-film alloys. The optical gaps of Zn(Te1-x Se x ) QDs with diameters of 3.5-5 nm, where x ~ 0.35, were close to the energy corresponding to green light, indicating that those QDs are very promising as green QD-phosphors.

  7. Measuring Gap Fraction, Element Clumping Index and LAI in Sierra Forest Stands Using a Full-Waveform Ground-Based Lidar

    NASA Technical Reports Server (NTRS)

    Zhao, Feng; Strahler, Alan H.; Crystal L. Schaaf; Yao, Tian; Yang, Xiaoyuan; Wang, Zhuosen; Schull, Mitchell A.; Roman, Miguel O.; Woodcock, Curtis E.; Olofsson, Pontus; hide

    2012-01-01

    The Echidna Validation Instrument (EVI), a ground-based, near-infrared (1064 nm) scanning lidar, provides gap fraction measurements, element clumping index measurements, effective leaf area index (LAIe) and leaf area index (LAI) measurements that are statistically similar to those from hemispherical photos. In this research, a new method integrating the range dimension is presented for retrieving element clumping index using a unique series of images of gap probability (Pgap) with range from EVI. From these images, we identified connected gap components and found the approximate physical, rather than angular, size of connected gap component. We conducted trials at 30 plots within six conifer stands of varying height and stocking densities in the Sierra National Forest, CA, in August 2008. The element clumping index measurements retrieved from EVI Pgap image series for the hinge angle region are highly consistent (R2=0.866) with those of hemispherical photos. Furthermore, the information contained in connected gap component size profiles does account for the difference between our method and gap-size distribution theory based method, suggesting a new perspective to measure element clumping index with EVI Pgap image series and also a potential advantage of three dimensional Lidar data for element clumping index retrieval. Therefore further exploration is required for better characterization of clumped condition from EVI Pgap image series.

  8. Northward migrating trees establish in treefall gaps at the northern limit of the temperate-boreal ecotone, Ontario, Canada.

    PubMed

    Leithead, Mark D; Anand, Madhur; Silva, Lucas C R

    2010-12-01

    Climate change is expected to promote migration of species. In ecotones, areas of ecological tension, disturbances may provide opportunities for some migrating species to establish in otherwise competitive environments. The size of and time since disturbance may determine the establishment ability of these species. We investigated gap dynamics of an old-growth red pine (Pinus resinosa Sol. ex Aiton) forest in the Great Lakes-St. Lawrence forest in northern Ontario, Canada, a transition zone between temperate and boreal forest. We investigated the effects of gaps of different sizes and ages on tree species abundance and basal area. Our results show that tree species from the temperate forest further south, such as red maple (Acer rubrum L.), red oak (Quercus rubra L.), and white pine (Pinus strobus L.), establish more often in large, old gaps; however, tree species that have more northern distributions, such as black spruce (Picea mariana Mill.), paper birch (Betula papyrifera Marsh.), and red pine show no difference in establishment ability with gap size or age. These differences in composition could not be attributed to autogenic succession. We conclude that treefall gaps in this forest facilitate the establishment of northward migrating species, potentially providing a pathway for future forest migration in response to recent changes in climate.

  9. Material properties effects on the detonation spreading and propagation of diaminoazoxyfurazan (DAAF)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Francois, Elizabeth Green; Morris, John S; Novak, Alan M

    2010-01-01

    Recent dynamic testing of Diaminoazoxyfurazan (DAAF) has focused on understanding the material properties affecting the detonation propagation, spreading, behavior and symmetry. Small scale gap testing and wedge testing focus on the sensitivity to shock with the gap test including the effects of particle size and density. Floret testing investigates the detonation spreading as it is affected by particle size, density, and binder content. The polyrho testing illustrates the effects of density and binder content on the detonation velocity. Finally the detonation spreading effect can be most dramatically seen in the Mushroom and Onionskin tests where the variations due to densitymore » gradients, pressing methods and geometry can be seen on the wave breakout behavior.« less

  10. Structural, morphological, and optical properties of tin(IV) oxide nanoparticles synthesized using Camellia sinensis extract: a green approach

    NASA Astrophysics Data System (ADS)

    Selvakumari, J. Celina; Ahila, M.; Malligavathy, M.; Padiyan, D. Pathinettam

    2017-09-01

    Tin oxide (SnO2) nanoparticles were cost-effectively synthesized using nontoxic chemicals and green tea ( Camellia sinensis) extract via a green synthesis method. The structural properties of the obtained nanoparticles were studied using X-ray diffraction, which indicated that the crystallite size was less than 20 nm. The particle size and morphology of the nanoparticles were analyzed using scanning electron microscopy and transmission electron microscopy. The morphological analysis revealed agglomerated spherical nanoparticles with sizes varying from 5 to 30 nm. The optical properties of the nanoparticles' band gap were characterized using diffuse reflectance spectroscopy. The band gap was found to decrease with increasing annealing temperature. The O vacancy defects were analyzed using photoluminescence spectroscopy. The increase in the crystallite size, decreasing band gap, and the increasing intensities of the UV and visible emission peaks indicated that the green-synthesized SnO2 may play future important roles in catalysis and optoelectronic devices.

  11. Continuously Adjustable, Molecular-Sieving “Gate” on 5A Zeolite for Distinguishing Small Organic Molecules by Size

    PubMed Central

    Song, Zhuonan; Huang, Yi; Xu, Weiwei L.; Wang, Lei; Bao, Yu; Li, Shiguang; Yu, Miao

    2015-01-01

    Zeolites/molecular sieves with uniform, molecular-sized pores are important for many adsorption-based separation processes. Pore size gaps, however, exist in the current zeolite family. This leads to a great challenge of separating molecules with size differences at ~0.01 nm level. Here, we report a novel concept, pore misalignment, to form a continuously adjustable, molecular-sieving “gate” at the 5A zeolite pore entrance without sacrificing the internal capacity. Misalignment of the micropores of the alumina coating with the 5A zeolite pores was related with and facilely adjusted by the coating thickness. For the first time, organic molecules with sub-0.01 nm size differences were effectively distinguished via appropriate misalignment. This novel concept may have great potential to fill the pore size gaps of the zeolite family and realize size-selective adsorption separation. PMID:26358480

  12. Continuously adjustable, molecular-sieving “gate” on 5A zeolite for distinguishing small organic molecules by size

    DOE PAGES

    Song, Zhuonan; Huang, Yi; Xu, Weiwei L.; ...

    2015-09-11

    Zeolites/molecular sieves with uniform, molecular-sized pores are important for many adsorption-based separation processes. Pore size gaps, however, exist in the current zeolite family. This leads to a great challenge of separating molecules with size differences at ~0.01 nm level. Here, we report a novel concept, pore misalignment, to form a continuously adjustable, molecular-sieving “gate” at the 5A zeolite pore entrance without sacrificing the internal capacity. Misalignment of the micropores of the alumina coating with the 5A zeolite pores was related with and facilely adjusted by the coating thickness. For the first time, organic molecules with sub-0.01 nm size differences weremore » effectively distinguished via appropriate misalignment. Lastly, this novel concept may have great potential to fill the pore size gaps of the zeolite family and realize size-selective adsorption separation.« less

  13. Model of the multipolar engine with decreased cogging torque by asymmetrical distribution of the magnets

    NASA Astrophysics Data System (ADS)

    Goryca, Zbigniew; Paduszyński, Kamil; Pakosz, Artur

    2018-03-01

    This paper presents the results of field calculations of cogging torque for a 12-pole torque motor with an 18-slot stator. A constant angular velocity magnet and the same size gap between n-1 magnets were assumed. In these conditions, the effect of change of the n-th gap between magnets on the cogging torque was tested. Due to considerable length of the machine the calculations were performed using a 2D model. The n-th gap for which the cogging torque assumed the lowest value was evaluated. The cogging torque of the machine with symmetrical magnetic circuit (the same size of gap between magnets) was compared to the one of the asymmetrical machine. With proper choice of asymmetry, the cogging torque for the machine decreased by four times.

  14. Band gap narrowing in BaTiO{sub 3} nanoparticles facilitated by multiple mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramakanth, S.; James Raju, K. C., E-mail: kcjrsp@uohyd.ernet.in; School of Physics, University of Hyderabad, Hyderabad 500046

    2014-05-07

    In the present work, BaTiO{sub 3} nanoparticles of four different size ranges were prepared by sol-gel method. The optical band gap of these particles at some size ranges has come down to 2.53 eV from 3.2 eV, resulting in substantial increase in optical absorption by these ferroelectric nanoparticles making them potential candidates for light energy harvesting. XRD results show the presence of higher compressive strain in 23 nm and 54 nm size particles, they exhibit a higher band gap narrowing, whereas tensile strain is observed in 31 nm and 34 nm particles, and they do not show the marginal band gap narrowing. The 23 nm and 54 nmmore » particles also show a coupling of free carriers to phonons by increasing the intensity of LO phonon mode at 715 cm{sup −1}. The higher surface charge density is expected in case of enhanced surface optical Raman modes (638 cm{sup −1}) contained in 31 and 34 nm size particles. In addition to this, the red shift in an LO mode Raman spectral line at 305 cm{sup −1} with decrease in particle size depicts the presence of phonon confinement in it. The enhanced optical absorption in 23 nm and 54 nm size particles with a narrowed band gap of 3 eV and 2.53 eV is due to exchange correlation interactions between the carriers present in these particles. In 31 nm and 34 nm range particles, the absorption got bleached exhibiting increased band gaps of 3.08 eV and 3.2 eV, respectively. It is due to filling up of conduction band resulting from weakening of exchange correlation interactions between the charge carriers. Hence, it is concluded that the band gap narrowing in the nanoparticles of average size 23 nm/54 nm is a consequence of multiple effects like strain, electron-phonon interaction, and exchange correlation interactions between the carriers which is subdued in some other size ranges like 31 nm/34 nm.« less

  15. Interactions Between Wind Erosion, Vegetation Structure, and Soil Stability in Groundwater Dependent Plant Communities

    NASA Astrophysics Data System (ADS)

    Vest, K. R.; Elmore, A. J.; Okin, G. S.

    2009-12-01

    Desertification is a human induced global phenomenon causing a loss of biodiversity and ecosystem productivity. Semi-arid grasslands are vulnerable to anthropogenic impacts (i.e., groundwater pumping and surface water diversion) that decrease vegetation cover and increase bare soil area leading to a greater probability of soil erosion, potentially enhancing feedback processes associated with desertification. To enhance our understanding of interactions between anthropogenic, physical, and biological factors causing desertification, this study used a combination of modeling and field observations to examine the relationship between chronic groundwater pumping and vegetation cover change and its effects on soil erosion and stability. The work was conducted in Owens Valley California, where a long history of groundwater pumping and surface water diversion has lead to documented vegetation changes. The work examined hydrological, ecological and biogeochemical factors across thirteen sites in Owens Valley. We analyzed soil stability, vegetation and gap size, soil organic carbon, and we also installed Big Spring Number Eight (BSNE) catchers to calculate mass transport of aeolian sediment across sites. Mass transport calculations were used to validate a new wind erosion model that represents the effect of porous vegetation on surface windshear velocity. Results across two field seasons show that the model can be used to predict mass transport, and areas with increased groundwater pumping show a greater susceptibility to erosion. Sediment collected in BSNE catchers was positively correlated with site gap size. Additionally, areas with larger gap sizes have a greater threshold shear velocity and soil stability, yet mass transport was greater at these sites than at sites with smaller gap sizes. Although modeling is complicated by spatial variation in multiple model parameters (e.g., gap size, threshold shear velocity in gaps), our results support the hypothesis that soils with high organic matter are being eroded following the loss of vegetation cover due to groundwater decline leaving behind bare soil surfaces with less fertility hampering vegetation reestablishment. Desertification in this system is apparently easily initiated through groundwater decline due to the high friability of these meadow soils.

  16. The effect of disorder of small spheres on the photonic properties of the inverse binary NaCl-like structure

    NASA Astrophysics Data System (ADS)

    Pattabhiraman, Harini; Dijkstra, Marjolein

    2017-09-01

    Inverse opal structures are experimentally realisable photonic band gap materials. They suffer from the drawback of possessing band gaps that are extremely susceptible to structural disorders. A binary colloidal NaCl lattice, which is also experimentally realisable, is a promising alternative to these opals. In this work, we systematically analyse the effect of structural disorder of the small spheres on the photonic properties of an inverse binary NaCl lattice with a size ratio of 0.30 between the small and large spheres. The types of structural disorders studied include the position of the small spheres in the octahedral void of the large spheres, polydispersity in size of the small spheres, and the fraction of small spheres in the crystal. We find a low susceptibility of the band gap of the inverse NaCl lattice to the disorder of the small spheres.

  17. STM/STS study of the superconducting gap in SmFeAsO1-xFx

    NASA Astrophysics Data System (ADS)

    Kawashima, Yuki; Ichimura, Koichi; Katono, Kazuhiro; Kurosawa, Tohru; Oda, Migaku; Tanda, Satoshi; Kamihara, Yoichi; Hosono, Hideo

    2015-02-01

    We report an electron tunneling study of SmFeAsO1-xFx in the low doping region (x=0, 0.045, 0.046, 0.069) by low temperature UHV-STM/STS. Superconducting gaps are observed for each superconducting sample x=0.045 (Tc=12.9 K), x=0.046 (Tc=32.9 K) and x=0.069 (Tc=46.9 K). We obtained corresponding superconducting gap size of ΔSC = 9.5 ± 0.5 meV, 9.75±0.25 meV and 11±1 meV. While Tc increases, ΔSC is kept the same. This suggests that the effective attractive interaction is the same and that there is some mechanism that suppresses the superconductivity in the low doping region. On the other hand, similar gap structures were found in a non-superconducting sample with x=0 at 7.8 K. The obtained gap size was ΔN = 8.5 ± 1.5 meV, which is almost the same as the superconducting gap in the superconducting samples (x=0.045, 0.046, 0.069).

  18. Simulation and analysis of the interactions between split gradient coils and a split magnet cryostat in an MRI-PET system.

    PubMed

    Liu, Limei; Sanchez-Lopez, Hector; Poole, Michael; Liu, Feng; Crozier, Stuart

    2012-09-01

    Splitting a magnetic resonance imaging (MRI) magnet into two halves can provide a central region to accommodate other modalities, such as positron emission tomography (PET). This approach, however, produces challenges in the design of the gradient coils in terms of gradient performance and fabrication. In this paper, the impact of a central gap in a split MRI system was theoretically studied by analysing the performance of split, actively-shielded transverse gradient coils. In addition, the effects of the eddy currents induced in the cryostat on power loss, mechanical vibration and magnetic field harmonics were also investigated. It was found, as expected, that the gradient performance tended to decrease as the central gap increased. Furthermore, the effects of the eddy currents were heightened as a consequence of splitting the gradient assembly into two halves. An optimal central gap size was found, such that the split gradient coils designed with this central gap size could produce an engineering solution with an acceptable trade-off between gradient performance and eddy current effects. These investigations provide useful information on the inherent trade-offs in hybrid MRI imaging systems. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Spatial contagiousness of canopy disturbance in tropical rain forest: an individual-tree-based test.

    PubMed

    Jansen, Patrick A; van der Meer, Peter J; Bongers, Frans

    2008-12-01

    Spatial contagiousness of canopy dynamics-the tendency of canopy disturbances to occur nearby existing canopy openings due to an elevated risk of tree fall around gaps-has been demonstrated in many temperate-zone forests, but only inferentially for tropical forests. Hypothesized mechanisms increasing the risk of tree fall around tropical forest gaps are (1) increased tree exposure to wind around gaps, (2) reduced stability of trees alongside gaps due to crown asymmetry, or (3) reduced tree health around gaps due to damage from prior disturbances. One hypothesized consequence of elevated disturbance levels around gaps would be that gap-edge zones offer relatively favorable prospects for seedling recruitment, growth, and survival. We tested whether disturbance levels are indeed elevated around natural canopy gaps in a neotropical rain forest in French Guiana, and more so as gaps are larger. We followed the fate of 5660 trees >10 cm stem diameter over five years across 12 ha of old-growth forest and analyzed the risk and magnitude of canopy disturbance events in relation to tree diameter and the proximity and size of natural canopy gaps. We found that the cumulative incidence of disturbance over the five-year survey was not significantly elevated around preexisting gaps, and only weakly related to gap size. Also, neither the risk nor the magnitude of canopy disturbances increased significantly with the proximity of gaps. Moreover, canopy disturbance risk around gaps was independent of gap size, while the magnitude of disturbance events around gaps was weakly related to gap size. Tree size was the major driver of disturbance risk as well as magnitude. We did find an elevated incidence of disturbance inside preexisting gaps, but this "repeat disturbance" was due to an elevated disturbance risk inside gaps, not around gaps. Overall, we found no strong evidence for canopy dynamics in this rain forest being spatially contagious. Our findings are consistent with the traditional view of tropical rain forests as mosaics of patches with predictable regeneration cycles.

  20. Right sizing prevention. Food portion size effects on children's eating and weight.

    PubMed

    Birch, Leann L; Savage, Jennifer S; Fisher, Jennifer Orlet

    2015-05-01

    Experimental findings provide consistent evidence that increasing the portion size of palatable, energy dense entrees relative to an age appropriate reference portion increases children's energy intake of the entree and the meal. Most of these studies have been conducted on preschool aged children between 2 and 6 years of age, in childcare or laboratory settings, using repeated measures designs. In these studies, children's intake is compared across a series of meals, where the size of the entrée portion is varied and other aspects of the meal, including the portion size of other items on the menu, are held constant. This paper provides an overview of what we know from this research, what is not known about the effects of portion size on children's intake and weight status, and points to some of the important unanswered questions and gaps in the literature. Lastly, we discuss how individual characteristics may make someone more or less susceptible to large portions of foods and how the palatability of foods may moderate observed associations among portion size, children's intake, and weight status. Future studies that address the gaps identified in this paper are needed to inform policy and to develop effective and efficient interventions to prevent childhood obesity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. The Carboxyl Tail of Connexin32 Regulates Gap Junction Assembly in Human Prostate and Pancreatic Cancer Cells*

    PubMed Central

    Katoch, Parul; Mitra, Shalini; Ray, Anuttoma; Kelsey, Linda; Roberts, Brett J.; Wahl, James K.; Johnson, Keith R.; Mehta, Parmender P.

    2015-01-01

    Connexins, the constituent proteins of gap junctions, are transmembrane proteins. A connexin (Cx) traverses the membrane four times and has one intracellular and two extracellular loops with the amino and carboxyl termini facing the cytoplasm. The transmembrane and the extracellular loop domains are highly conserved among different Cxs, whereas the carboxyl termini, often called the cytoplasmic tails, are highly divergent. We have explored the role of the cytoplasmic tail of Cx32, a Cx expressed in polarized and differentiated cells, in regulating gap junction assembly. Our results demonstrate that compared with the full-length Cx32, the cytoplasmic tail-deleted Cx32 is assembled into small gap junctions in human pancreatic and prostatic cancer cells. Our results further document that the expression of the full-length Cx32 in cells, which express the tail-deleted Cx32, increases the size of gap junctions, whereas the expression of the tail-deleted Cx32 in cells, which express the full-length Cx32, has the opposite effect. Moreover, we show that the tail is required for the clustering of cell-cell channels and that in cells expressing the tail-deleted Cx32, the expression of cell surface-targeted cytoplasmic tail alone is sufficient to enhance the size of gap junctions. Our live-cell imaging data further demonstrate that gap junctions formed of the tail-deleted Cx32 are highly mobile compared with those formed of full-length Cx32. Our results suggest that the cytoplasmic tail of Cx32 is not required to initiate the assembly of gap junctions but for their subsequent growth and stability. Our findings suggest that the cytoplasmic tail of Cx32 may be involved in regulating the permeability of gap junctions by regulating their size. PMID:25548281

  2. Raman scattering enhanced within the plasmonic gap between an isolated Ag triangular nanoplate and Ag film

    NASA Astrophysics Data System (ADS)

    Li, Kuanguo; Jiang, Kang; Zhang, Lan; Wang, Yong; Mao, Lei; Zeng, Jie; Lu, Yonghua; Wang, Pei

    2016-04-01

    Enhanced electromagnetic field in the tiny gaps between metallic nanostructures holds great promise in optical applications. Herein, we report novel out-of-plane nanogaps composed of micrometer-sized Ag triangular nanoplates (AgTN) on Ag films. Notably, the new coupled plasmonic structure can dramatically enhance the surface-enhanced Raman scattering (SERS) by visible laser excitation, although the micrometer-sized AgTN has localized plasmon resonance at infrared wavelength. This enhancement is derived from the gap plasmon polariton between the AgTN and Ag film, which is excited via the antenna effect of the corner and edge of the AgTN. Systematic SERS studies indicated that the plasmon enhancement was on the order of corner > edge > face. These results were further verified by theoretical simulations. Our device paves the way for rational design of sensitive SERS substrates by judiciously choosing appropriate nanoparticles and optimizing the gap distance.

  3. The disengagement of visual attention in the gap paradigm across adolescence.

    PubMed

    Van der Stigchel, S; Hessels, R S; van Elst, J C; Kemner, C

    2017-12-01

    Attentional disengagement is important for successful interaction with our environment. The efficiency of attentional disengagement is commonly assessed using the gap paradigm. There is, however, a sharp contrast between the number of studies applying the gap paradigm to clinical populations and the knowledge about the underlying developmental trajectory of the gap effect. The aim of the present study was, therefore, to investigate attentional disengagement in a group of children aged 9-15. Besides the typically deployed gap and the overlap conditions, we also added a baseline condition in which the fixation point was removed at the moment that the target appeared. This allowed us to reveal the appropriate experimental conditions to unravel possible developmental differences. Correlational analyses showed that the size of the gap effect became smaller with increasing age, but only for the difference between the gap and the overlap conditions. This shows that there is a gradual increase in the capacity to disengage visual attention with increasing age, but that this effect only becomes apparent when the gap and the overlap conditions are compared. The gradual decrease of the gap effect with increasing age provides additional evidence that the attentional system becomes more efficient with increasing age and that this is a gradual process.

  4. Impact of high-frequency pumping on anomalous finite-size effects in three-dimensional topological insulators

    NASA Astrophysics Data System (ADS)

    Pervishko, Anastasiia A.; Yudin, Dmitry; Shelykh, Ivan A.

    2018-02-01

    Lowering of the thickness of a thin-film three-dimensional topological insulator down to a few nanometers results in the gap opening in the spectrum of topologically protected two-dimensional surface states. This phenomenon, which is referred to as the anomalous finite-size effect, originates from hybridization between the states propagating along the opposite boundaries. In this work, we consider a bismuth-based topological insulator and show how the coupling to an intense high-frequency linearly polarized pumping can further be used to manipulate the value of a gap. We address this effect within recently proposed Brillouin-Wigner perturbation theory that allows us to map a time-dependent problem into a stationary one. Our analysis reveals that both the gap and the components of the group velocity of the surface states can be tuned in a controllable fashion by adjusting the intensity of the driving field within an experimentally accessible range and demonstrate the effect of light-induced band inversion in the spectrum of the surface states for high enough values of the pump.

  5. Long-term fragmentation effects on the distribution and dynamics of canopy gaps in a tropical montane forest

    Treesearch

    Nicholas R. Vaughn; Gregory P. Asner; Christian P. Giardina

    2015-01-01

    Fragmentation alters forest canopy structure through various mechanisms, which in turn drive subsequent changes to biogeochemical processes and biological diversity. Using repeated airborne LiDAR (Light Detection and Ranging) mappings, we investigated the size distribution and dynamics of forest canopy gaps across a topical montane forest landscape in Hawaii naturally...

  6. Effects of electric and magnetic fields on the electronic properties of zigzag carbon and boron nitride nanotubes

    NASA Astrophysics Data System (ADS)

    Chegel, Raad; Behzad, Somayeh; Ahmadi, Eghbal

    2012-04-01

    We have investigated the electronic properties of zigzag CNTs and BNNTs under the external transverse electric field and axial magnetic field, using tight binding approximation. It was found that after switching on the electric and magnetic fields, the band modification such as distortion of the degeneracy, change in energy dispersion, subband spacing and band gap size reduction occurs. The band gap of zigzag BNNTs decreases linearly with increasing the electric field strength but the band gap variation for CNTs increases first and later decreases (Metallic) or first hold constant and then decreases (semiconductor). For type (II) CNTs, at a weak magnetic field, by increasing the electric field strength, the band gap remains constant first and then decreases and in a stronger magnetic field the band gap reduction becomes parabolic. For type (III) CNTs, in any magnetic field, the band gap increases slowly until reaches a maximum value and then decreases linearly. Unlike to CNTs, the magnetic field has less effects on the BNNTs band gap variation.

  7. Groundlayer vegetation gradients across oak woodland canopy gaps

    USGS Publications Warehouse

    Pavlovic, N.B.; Grundel, R.; Sluis, W.

    2006-01-01

    Frequency of groundlayer plants was measured across oak woodland canopy gaps at three sites in northwest Indiana to examine how vegetation varied with gap size, direction along the gap edge, and microhabitat. Microhabitats were defined as under the canopy adjacent to the gap, along the gap edge, and within the gap. Gap-sites consisted of gaps plus adjacent tree canopy. Gaps were classified as small (16 ± 1 m2), medium (97 ± 8), and large (310 ± 32). Neither richness nor diversity differed among microhabitats, gap sizes, or edges. Similarity between microhabitats wthin a gap-site increased as the distance between plots decreased and as the difference in PAR decreased, the latter explaining twice the variation in percent dissimilarity compared to Mg concentration, A horizon depth, and litter cover. Diervilla lonicera, Frageria virginiana, Helianthus divaricatus, Polygonatum pubescens, Quercus velutina, Smilacena stellata, and Tradescantia ohiensis decreased, whileTephrosia virginiana and legumes increased in frequency, from canopy to gap, and C4 grasses peaked at the gap edge, independent of gap size. Additional species frequency varied across the microhabitat gradient within specific sites. Sorghastrum nutans was three times more frequent in gaps at large sites than elsewhere. The vegetation in medium-sized gap-sites was more variable than within small and large gap-sites, suggesting greater environmental heterogeneity at that scale. Within gap-sites, vegetation was more heterogeneous within edges and canopies than in gaps. Edges were more similar in composition to gaps than to canopy groundlayer within gap-sites. Few species varied significantly in frequency around the gap edge. The oak woodland groundlayer on sandy substrates can be characterized as a mosaic of forb dominated vegetation that varies across light gradients associated with canopy gaps, transitioning to islands of grassland vegetation when gaps exceed 160 m2.

  8. Electronic structure of graphene- and BN-supported phosphorene

    NASA Astrophysics Data System (ADS)

    Davletshin, Artur R.; Ustiuzhanina, Svetlana V.; Kistanov, Andrey A.; Saadatmand, Danial; Dmitriev, Sergey V.; Zhou, Kun; Korznikova, Elena A.

    2018-04-01

    By using first-principles calculations, the effects of graphene and boron nitride (BN) substrates on the electronic properties of phosphorene are studied. Graphene-supported phosphorene is found to be metallic, while the BN-supported phosphorene is a semiconductor with a moderate band gap of 1.02 eV. Furthermore, the effects of the van der Waals interactions between the phosphorene and graphene or BN layers by means of the interlayer distance change are investigated. It is shown that the interlayer distance change leads to significant band gap size modulations and direct-indirect band gap transitions in the phosphorene-BN heterostructure. The presented band gap engineering of phosphorene may be a powerful technique for the fabrication of high-performance phosphorene-based nanodevices.

  9. Roles of size and kinematics in drag reduction for two tandem flexible foils

    NASA Astrophysics Data System (ADS)

    Chao, Li-Ming; Zhang, Dong; Pan, Guang

    2017-11-01

    The effect of size and kinematics difference between two tandem flexible foils on drag reduction have been numerically studied. Compared with single foil, it is found that the kinematics difference between two foils would not play a significant role in reducing drag, while the size difference between two foils significantly affects the drag reduction in this two foil system. For leading foil, it always enjoys drag reduction and the highest drag reduction can be observed at bigger size difference and gap distance between two foil as 22%. For trailing foil, it suffers drag increase when the gap distance between two foils is smaller, while it enjoys drag decrease when the size difference between two foils is bigger enough. The hydrodynamic interaction between such actively undulated foils also has been uncovered and used to explain the mechanisms of drag reduction.

  10. Effects of vibratory microscreening on proximate composition and recovery of poultry processing wastewater particulate matter.

    PubMed

    Kiepper, B H; Merka, W C; Fletcher, D L

    2008-12-01

    Experiments were conducted to compare the effects of tertiary microscreen gap size on the proximate composition and rate of recovery of particulate matter from poultry processing wastewater (PPW). A high-speed vibratory screen was installed within the wastewater treatment area of a southeast US broiler slaughter plant after the existing primary and secondary mechanical rotary screens. Microscreen panels with nominal gap size openings of 212, 106 and 45mum were investigated. The particulate matter samples recovered were subjected to proximate analysis to determine percent moisture, fat, protein, crude fiber and ash. The average percent wet weight moisture (%WW) content for all samples was 79.1. The average percent dry matter (%DM) fat, protein, crude fiber and ash were 63.5, 17.5, 4.8 and 1.5, respectively. The mean concentration of total solids (TS) recovered from all microscreen runs was 668mg/L, which represents a potential additional daily offal recovery rate of 12.1metric tons (MT) per 3.78 million L (1.0 million gallons US) of PPW. There was no significant difference in the performance of the three microscreen gap sizes with regard to proximate composition or mass of particulate matter recovered.

  11. Size Effects in Dye-Sensitized TiO2 Clusters

    NASA Astrophysics Data System (ADS)

    Marom, Noa; Körzdörfer, Thomas; Ren, Xinguo; Tkatchenko, Alexandre; Chelikowsky, James

    2014-03-01

    The development of solar cells is driven by the need for clean and sustainable energy. Organic and dye sensitized cells are considered as promising technologies, particularly for large area, low cost applications. However, the efficiency of such cells is still far from the theoretical limit. Ab initio simulations may be used for computer-aided design of new materials and nano-structures for more efficient solar cells. It is essential to obtain an accurate description of the electronic structure, including the fundamental gaps and energy level alignment at the interfaces in the device active region. This requires going beyond ground-state DFT to the GW approximation. A recently developed GW method [PRB 86, 041110R (2012)] is applied to dye-sensitized TiO2 clusters [PRB 84, 245115 (2011)]. The effect of cluster size on the energy level alignment at the dye-TiO2 interface is discussed. With the increase in the TiO2 cluster size its gap narrows. The gap of the molecule attached to the cluster subsequently narrows due to screening. As a result, the energy level alignment at the interface changes in an unexpected way [Marom, Körzdörfer, Ren, Tkatchenko, Chelikowsky, to be published].

  12. Public School Education: The Case for Reduced Class Size. Why the Present Class Size is Not Working and What Can We Do about It?

    ERIC Educational Resources Information Center

    Graham, Evol

    2009-01-01

    By reducing class size we will close the achievement gap in public school education, caused by prior neglect especially since the civil rights era of the sixties. Additional, highly qualified and specialized teachers will more effectively manage a smaller class size and serve more individual student needs in the crucial early grades, where a solid…

  13. Random-Walk Model of Diffusion in Three Dimensions in Brain Extracellular Space: Comparison with Microfiberoptic Photobleaching Measurements

    PubMed Central

    Jin, Songwan; Zador, Zsolt; Verkman, A. S.

    2008-01-01

    Diffusion through the extracellular space (ECS) in brain is important in drug delivery, intercellular communication, and extracellular ionic buffering. The ECS comprises ∼20% of brain parenchymal volume and contains cell-cell gaps ∼50 nm. We developed a random-walk model to simulate macromolecule diffusion in brain ECS in three dimensions using realistic ECS dimensions. Model inputs included ECS volume fraction (α), cell size, cell-cell gap geometry, intercellular lake (expanded regions of brain ECS) dimensions, and molecular size of the diffusing solute. Model output was relative solute diffusion in water versus brain ECS (Do/D). Experimental Do/D for comparison with model predictions was measured using a microfiberoptic fluorescence photobleaching method involving stereotaxic insertion of a micron-size optical fiber into mouse brain. Do/D for the small solute calcein in different regions of brain was in the range 3.0–4.1, and increased with brain cell swelling after water intoxication. Do/D also increased with increasing size of the diffusing solute, particularly in deep brain nuclei. Simulations of measured Do/D using realistic α, cell size and cell-cell gap required the presence of intercellular lakes at multicell contact points, and the contact length of cell-cell gaps to be least 50-fold smaller than cell size. The model accurately predicted Do/D for different solute sizes. Also, the modeling showed unanticipated effects on Do/D of changing ECS and cell dimensions that implicated solute trapping by lakes. Our model establishes the geometric constraints to account quantitatively for the relatively modest slowing of solute and macromolecule diffusion in brain ECS. PMID:18469079

  14. Random-walk model of diffusion in three dimensions in brain extracellular space: comparison with microfiberoptic photobleaching measurements.

    PubMed

    Jin, Songwan; Zador, Zsolt; Verkman, A S

    2008-08-01

    Diffusion through the extracellular space (ECS) in brain is important in drug delivery, intercellular communication, and extracellular ionic buffering. The ECS comprises approximately 20% of brain parenchymal volume and contains cell-cell gaps approximately 50 nm. We developed a random-walk model to simulate macromolecule diffusion in brain ECS in three dimensions using realistic ECS dimensions. Model inputs included ECS volume fraction (alpha), cell size, cell-cell gap geometry, intercellular lake (expanded regions of brain ECS) dimensions, and molecular size of the diffusing solute. Model output was relative solute diffusion in water versus brain ECS (D(o)/D). Experimental D(o)/D for comparison with model predictions was measured using a microfiberoptic fluorescence photobleaching method involving stereotaxic insertion of a micron-size optical fiber into mouse brain. D(o)/D for the small solute calcein in different regions of brain was in the range 3.0-4.1, and increased with brain cell swelling after water intoxication. D(o)/D also increased with increasing size of the diffusing solute, particularly in deep brain nuclei. Simulations of measured D(o)/D using realistic alpha, cell size and cell-cell gap required the presence of intercellular lakes at multicell contact points, and the contact length of cell-cell gaps to be least 50-fold smaller than cell size. The model accurately predicted D(o)/D for different solute sizes. Also, the modeling showed unanticipated effects on D(o)/D of changing ECS and cell dimensions that implicated solute trapping by lakes. Our model establishes the geometric constraints to account quantitatively for the relatively modest slowing of solute and macromolecule diffusion in brain ECS.

  15. Brazilian Soybean Yields and Yield Gaps Vary with Farm Size

    NASA Astrophysics Data System (ADS)

    Jeffries, G. R.; Cohn, A.; Griffin, T. S.; Bragança, A.

    2017-12-01

    Understanding the farm size-specific characteristics of crop yields and yield gaps may help to improve yields by enabling better targeting of technical assistance and agricultural development programs. Linking remote sensing-based yield estimates with property boundaries provides a novel view of the relationship between farm size and yield structure (yield magnitude, gaps, and stability over time). A growing literature documents variations in yield gaps, but largely ignores the role of farm size as a factor shaping yield structure. Research on the inverse farm size-productivity relationship (IR) theory - that small farms are more productive than large ones all else equal - has documented that yield magnitude may vary by farm size, but has not considered other yield structure characteristics. We examined farm size - yield structure relationships for soybeans in Brazil for years 2001-2015. Using out-of-sample soybean yield predictions from a statistical model, we documented 1) gaps between the 95th percentile of attained yields and mean yields within counties and individual fields, and 2) yield stability defined as the standard deviation of time-detrended yields at given locations. We found a direct relationship between soy yields and farm size at the national level, while the strength and the sign of the relationship varied by region. Soybean yield gaps were found to be inversely related to farm size metrics, even when yields were only compared to farms of similar size. The relationship between farm size and yield stability was nonlinear, with mid-sized farms having the most stable yields. The work suggests that farm size is an important factor in understanding yield structure and that opportunities for improving soy yields in Brazil are greatest among smaller farms.

  16. Influences of Herbivory and Canopy Opening Size on Forest Regeneration in a Southern Bottomland Hardwood Forest

    Treesearch

    Steven B. Castleberry; W. Mark Ford; Carl V. Miller; Winston P. Smith

    2000-01-01

    We examined the effects of white-tailed deer (Odocoileus virginianus) browsing and canopy opening size on relative abundance and diversity of woody and herbaceous regeneration in various sized forest openings in a southern, bottomland hardwood forest over three growing seasons (1995-1997). We created 36 canopy openings (gaps), ranging from 7 to 40m...

  17. Quantum Monte Carlo calculations of van der Waals interactions between aromatic benzene rings

    NASA Astrophysics Data System (ADS)

    Azadi, Sam; Kühne, T. D.

    2018-05-01

    The magnitude of finite-size effects and Coulomb interactions in quantum Monte Carlo simulations of van der Waals interactions between weakly bonded benzene molecules are investigated. To that extent, two trial wave functions of the Slater-Jastrow and Backflow-Slater-Jastrow types are employed to calculate the energy-volume equation of state. We assess the impact of the backflow coordinate transformation on the nonlocal correlation energy. We found that the effect of finite-size errors in quantum Monte Carlo calculations on energy differences is particularly large and may even be more important than the employed trial wave function. In addition to the cohesive energy, the singlet excitonic energy gap and the energy gap renormalization of crystalline benzene at different densities are computed.

  18. Alcohol marketing research: the need for a new agenda.

    PubMed

    Meier, Petra S

    2011-03-01

    This paper aims to contribute to a rethink of marketing research priorities to address policy makers' evidence needs in relation to alcohol marketing. Discussion paper reviewing evidence gaps identified during an appraisal of policy options to restrict alcohol marketing. Evidence requirements can be categorized as follows: (i) the size of marketing effects for the whole population and for policy-relevant population subgroups, (ii) the balance between immediate and long-term effects and the time lag, duration and cumulative build-up of effects and (iii) comparative effects of partial versus comprehensive marketing restrictions on consumption and harm. These knowledge gaps impede the appraisal and evaluation of existing and new interventions, because without understanding the size and timing of expected effects, researchers may choose inadequate time-frames, samples or sample sizes. To date, research has tended to rely on simplified models of marketing and has focused disproportionately on youth populations. The effects of cumulative exposure across multiple marketing channels, targeting of messages at certain population groups and indirect effects of advertising on consumption remain unclear. It is essential that studies into marketing effect sizes are geared towards informing policy decision-makers, anchored strongly in theory, use measures of effect that are well-justified and recognize fully the complexities of alcohol marketing efforts. © 2010 The Author, Addiction © 2010 Society for the Study of Addiction.

  19. Aerodynamics of a translating comb-like plate inspired by a fairyfly wing

    NASA Astrophysics Data System (ADS)

    Lee, Seung Hun; Kim, Daegyoum

    2017-08-01

    Unlike the smooth wings of common insects or birds, micro-scale insects such as the fairyfly have a distinctive wing geometry, comprising a frame with several bristles. Motivated by this peculiar wing geometry, we experimentally investigated the flow structure of a translating comb-like wing for a wide range of gap size, angle of attack, and Reynolds number, Re = O(10) - O(103), and the correlation of these parameters with aerodynamic performance. The flow structures of a smooth plate without a gap and a comb-like plate are significantly different at high Reynolds number, while little difference was observed at the low Reynolds number of O(10). At low Reynolds number, shear layers that were generated at the edges of the tooth of the comb-like plate strongly diffuse and eventually block a gap. This gap blockage increases the effective surface area of the plate and alters the formation of leading-edge and trailing-edge vortices. As a result, the comb-like plate generates larger aerodynamic force per unit area than the smooth plate. In addition to a quasi-steady phase after the comb-like plate travels several chords, we also studied a starting phase of the shear layer development when the comb-like plate begins to translate from rest. While a plate with small gap size can generate aerodynamic force at the starting phase as effectively as at the quasi-steady phase, the aerodynamic force drops noticeably for a plate with a large gap because the diffusion of the developing shear layers is not enough to block the gap.

  20. Managing for diversity: harvest gap size drives complex light, vegetation, and deer herbivory impacts on tree seedlings

    Treesearch

    Michael B. Walters; Evan J. Farinosi; John L. Willis; Kurt W. Gottschalk

    2016-01-01

    Many managed northern hardwood forests are characterized by low-diversity tree regeneration. Small harvest gaps, competition from shrub–herb vegetation, and browsing by white-tailed deer (Odocoileus virginianus) contribute to this pattern, but we know little about how these factors interact. With a stand-scale experiment, we examined the effects of...

  1. Effect of Display Technology on Perceived Scale of Space.

    PubMed

    Geuss, Michael N; Stefanucci, Jeanine K; Creem-Regehr, Sarah H; Thompson, William B; Mohler, Betty J

    2015-11-01

    Our goal was to evaluate the degree to which display technologies influence the perception of size in an image. Research suggests that factors such as whether an image is displayed stereoscopically, whether a user's viewpoint is tracked, and the field of view of a given display can affect users' perception of scale in the displayed image. Participants directly estimated the size of a gap by matching the distance between their hands to the gap width and judged their ability to pass unimpeded through the gap in one of five common implementations of three display technologies (two head-mounted displays [HMD] and a back-projection screen). Both measures of gap width were similar for the two HMD conditions and the back projection with stereo and tracking. For the displays without tracking, stereo and monocular conditions differed from each other, with monocular viewing showing underestimation of size. Display technologies that are capable of stereoscopic display and tracking of the user's viewpoint are beneficial as perceived size does not differ from real-world estimates. Evaluations of different display technologies are necessary as display conditions vary and the availability of different display technologies continues to grow. The findings are important to those using display technologies for research, commercial, and training purposes when it is important for the displayed image to be perceived at an intended scale. © 2015, Human Factors and Ergonomics Society.

  2. Effects of structural parameters on fluid flow and mixing performance in a curved microchannel with gaps and baffles

    NASA Astrophysics Data System (ADS)

    Li, Jian; Xia, Guodong; Li, Yifan; Tian, Xinping

    2013-07-01

    We provide three-dimensional numerical simulations of mixing performance in a newly proposed micromixer with different structural parameters. The same amount of gaps and baffles are arranged along the curved channel within a certain distance. The effects of their structural parameters on mixing efficiency are presented, which include either the position and feature size of gaps and baffles, or the curvature radius of curved channel. The high efficiency mixing mechanism of the curved channel with gaps and baffles can attribute to the interaction of the increased contact area for premixed liquids, the jet and throttling effect over every unit of gap and baffle, the developing of the multidirectional vortices along the curved channel. The mixing index is sensitive to the width of the gaps and baffles for some Reynolds number ranges, but is not sensitive to the curvature radius of the curved channel. The characteristic of the pressure drop depending on Reynolds number is also investigated in order to keep an appropriate balance with mixing property.

  3. Experimental and theoretical investigation of relative optical band gaps in graphene generations

    NASA Astrophysics Data System (ADS)

    Bhatnagar, Deepika; Singh, Sukhbir; Yadav, Sriniwas; Kumar, Ashok; Kaur, Inderpreet

    2017-01-01

    Size and chemical functionalization dependant optical band gaps in graphene family nanomaterials were investigated by experimental and theoretical study using Tauc plot and density functional theory (DFT). We have synthesized graphene oxide through a modified Hummer’s method using graphene nanoplatelets and sequentially graphene quantum dots through hydrothermal reduction. The experimental results indicate that the optical band gap in graphene generations was altered by reducing the size of graphene sheets and attachment of chemical functionalities like epoxy, hydroxyl and carboxyl groups plays a crucial role in varying optical band gaps. It is further confirmed by DFT calculations that the π orbitals were more dominatingly participating in transitions shown by projected density of states and the molecular energy spectrum represented the effect of attached functional groups along with discreteness in energy levels. Theoretical results were found to be in good agreement with experimental results. All of the above different variants of graphene can be used in native or modified form for sensor design and optoelectronic applications.

  4. Optimization of the performance of a tandem microchannel plate detector as a function of interplate spacing and voltage

    NASA Technical Reports Server (NTRS)

    Rogers, D.; Malina, R. F.

    1982-01-01

    The effect of varying the size of the gap voltage and spacing on the performance of a tandem pair of microchannel plates (MCP) is investigated. Results show that increasing the voltage in the gap increases the gain of the pair and also produces a narrower Gaussian pulse-height distribution, although beyond a critical voltage the gain of the channel plate pair is found to plateau. A model is developed which explains the nonlinear gain behavior of individual microchannels and the behavior of the electron cloud emitted from the first MCP as it spreads out between the two MCPs and hits the surface of the second. The model calculates the plateau voltage as a function of the gap size, the gain of each MCP, and the diameter of the channels, and is found to show good agreement with the observed results. It is concluded that interplate gaps of up to several millimeters can be accommodated without a significant degradation in pulse-height distribution.

  5. Tunable and sizable band gap in silicene by surface adsorption

    PubMed Central

    Quhe, Ruge; Fei, Ruixiang; Liu, Qihang; Zheng, Jiaxin; Li, Hong; Xu, Chengyong; Ni, Zeyuan; Wang, Yangyang; Yu, Dapeng; Gao, Zhengxiang; Lu, Jing

    2012-01-01

    Opening a sizable band gap without degrading its high carrier mobility is as vital for silicene as for graphene to its application as a high-performance field effect transistor (FET). Our density functional theory calculations predict that a band gap is opened in silicene by single-side adsorption of alkali atom as a result of sublattice or bond symmetry breaking. The band gap size is controllable by changing the adsorption coverage, with an impressive maximum band gap up to 0.50 eV. The ab initio quantum transport simulation of a bottom-gated FET based on a sodium-covered silicene reveals a transport gap, which is consistent with the band gap, and the resulting on/off current ratio is up to 108. Therefore, a way is paved for silicene as the channel of a high-performance FET. PMID:23152944

  6. ``Particle traps'' at planet gap edges in disks: effects of grain growth and fragmentation

    NASA Astrophysics Data System (ADS)

    Gonzalez, J.-F.; Laibe, G.; Maddison, S. T.; Pinte, C.; Ménard, F.

    2014-12-01

    We model the dust evolution in protoplanetary disks (PPD) with 3D, Smoothed Particle Hydrodynamics (SPH), two-phase (gas+dust) hydrodynamical simulations. The gas+dust dynamics, where aerodynamic drag leads to the vertical settling and radial migration of grains, is consistently treated. In a previous work, we characterized the spatial distribution of non-growing dust grains of different sizes in a disk containing a gap-opening planet and investigated the gap's detectability with ALMA. Here we take into account the effects of grain growth and fragmentation and study their impact on the distribution of solids in the disk. We show that rapid grain growth in the ``particle traps'' at the edges of planet gaps are strongly affected by fragmentation. We discuss the consequences for ALMA and NOEMA observations.

  7. Quasiparticle band gap of organic-inorganic hybrid perovskites: Crystal structure, spin-orbit coupling, and self-energy effects

    NASA Astrophysics Data System (ADS)

    Gao, Weiwei; Gao, Xiang; Abtew, Tesfaye A.; Sun, Yi-Yang; Zhang, Shengbai; Zhang, Peihong

    2016-02-01

    The quasiparticle band gap is one of the most important materials properties for photovoltaic applications. Often the band gap of a photovoltaic material is determined (and can be controlled) by various factors, complicating predictive materials optimization. An in-depth understanding of how these factors affect the size of the gap will provide valuable guidance for new materials discovery. Here we report a comprehensive investigation on the band gap formation mechanism in organic-inorganic hybrid perovskites by decoupling various contributing factors which ultimately determine their electronic structure and quasiparticle band gap. Major factors, namely, quasiparticle self-energy, spin-orbit coupling, and structural distortions due to the presence of organic molecules, and their influences on the quasiparticle band structure of organic-inorganic hybrid perovskites are illustrated. We find that although methylammonium cations do not contribute directly to the electronic states near band edges, they play an important role in defining the band gap by introducing structural distortions and controlling the overall lattice constants. The spin-orbit coupling effects drastically reduce the electron and hole effective masses in these systems, which is beneficial for high carrier mobilities and small exciton binding energies.

  8. Challenges facing gap-based silviculture and possible solutions for mesic northern forests in North America

    Treesearch

    Christel C. Kern; Julia I. Burton; Patricia Raymond; Anthony W. D' Amato; William S. Keeton; Alex Royo; Michael B. Walters; Christopher R. Webster; John L. Willis

    2017-01-01

    Gap-based silvicultural systems were developed under the assumption that richness, and diversity of tree species and other biota positively respond to variation in size of harvest-created canopy gaps. However, varying gap size alone often does not meet diversity objectives and broader goals to address contemporary forest conditions. Recent research highlights the need...

  9. Nonstandard convergence to jamming in random sequential adsorption: The case of patterned one-dimensional substrates

    NASA Astrophysics Data System (ADS)

    Verma, Arjun; Privman, Vladimir

    2018-02-01

    We study approach to the large-time jammed state of the deposited particles in the model of random sequential adsorption. The convergence laws are usually derived from the argument of Pomeau which includes the assumption of the dominance, at large enough times, of small landing regions into each of which only a single particle can be deposited without overlapping earlier deposited particles and which, after a certain time are no longer created by depositions in larger gaps. The second assumption has been that the size distribution of gaps open for particle-center landing in this large-time small-gaps regime is finite in the limit of zero gap size. We report numerical Monte Carlo studies of a recently introduced model of random sequential adsorption on patterned one-dimensional substrates that suggest that the second assumption must be generalized. We argue that a region exists in the parameter space of the studied model in which the gap-size distribution in the Pomeau large-time regime actually linearly vanishes at zero gap sizes. In another region, the distribution develops a threshold property, i.e., there are no small gaps below a certain gap size. We discuss the implications of these findings for new asymptotic power-law and exponential-modified-by-a-power-law convergences to jamming in irreversible one-dimensional deposition.

  10. Spatial scale and sampling resolution affect measures of gap disturbance in a lowland tropical forest: implications for understanding forest regeneration and carbon storage.

    PubMed

    Lobo, Elena; Dalling, James W

    2014-03-07

    Treefall gaps play an important role in tropical forest dynamics and in determining above-ground biomass (AGB). However, our understanding of gap disturbance regimes is largely based either on surveys of forest plots that are small relative to spatial variation in gap disturbance, or on satellite imagery, which cannot accurately detect small gaps. We used high-resolution light detection and ranging data from a 1500 ha forest in Panama to: (i) determine how gap disturbance parameters are influenced by study area size, and the criteria used to define gaps; and (ii) to evaluate how accurately previous ground-based canopy height sampling can determine the size and location of gaps. We found that plot-scale disturbance parameters frequently differed significantly from those measured at the landscape-level, and that canopy height thresholds used to define gaps strongly influenced the gap-size distribution, an important metric influencing AGB. Furthermore, simulated ground surveys of canopy height frequently misrepresented the true location of gaps, which may affect conclusions about how relatively small canopy gaps affect successional processes and contribute to the maintenance of diversity. Across site comparisons need to consider how gap definition, scale and spatial resolution affect characterizations of gap disturbance, and its inferred importance for carbon storage and community composition.

  11. Signal enhancement due to high-Z nanofilm electrodes in parallel plate ionization chambers with variable microgaps.

    PubMed

    Brivio, Davide; Sajo, Erno; Zygmanski, Piotr

    2017-12-01

    We developed a method for measuring signal enhancement produced by high-Z nanofilm electrodes in parallel plate ionization chambers with variable thickness microgaps. We used a laboratory-made variable gap parallel plate ionization chamber with nanofilm electrodes made of aluminum-aluminum (Al-Al) and aluminum-tantalum (Al-Ta). The electrodes were evaporated on 1 mm thick glass substrates. The interelectrode air gap was varied from 3 μm to 1 cm. The gap size was measured using a digital micrometer and it was confirmed by capacitance measurements. The electric field in the chamber was kept between 0.1 kV/cm and 1 kV/cm for all the gap sizes by applying appropriate compensating voltages. The chamber was exposed to 120 kVp X-rays. The current was measured using a commercial data acquisition system with temporal resolution of 600 Hz. In addition, radiation transport simulations were carried out to characterize the dose, D(x), high-energy electron current, J(x), and deposited charge, Q(x), as a function of distance, x, from the electrodes. A deterministic method was selected over Monte Carlo due to its ability to produce results with 10 nm spatial resolution without stochastic uncertainties. Experimental signal enhancement ratio, SER(G) which we defined as the ratio of signal for Al-air-Ta to signal for Al-air-Al for each gap size, was compared to computations. The individual contributions of dose, electron current, and charge deposition to the signal enhancement were determined. Experimental signals matched computed data for all gap sizes after accounting for several contributions to the signal: (a) charge carrier generated via ionization due to the energy deposited in the air gap, D(x); (b) high-energy electron current, J(x), leaking from high-Z electrode (Ta) toward low-Z electrode (Al); (c) deposited charge in the air gap, Q(x); and (d) the decreased collection efficiency for large gaps (>~500 μm). Q(x) accounts for the electrons below 100 eV, which are regarded as stopped by the radiation transport code but which can move and form electron current in small gaps (<100 μm). While the total energy deposited in the air gap increases with gap size for both samples, the average high-energy current and deposited charge are moderately decreasing with the air gap. When gap sizes are smaller than ~20 μm, the contribution to signal from dose approaches zero while contributions from high-energy current and deposited charges give rise to an offset signal. The measured signal enhancement ratio (SER) was 40.0 ± 5.0 for the 3 μm gap and rapidly decreasing with gap size down to 9.9 ± 1.2 for the 21 μm gap and to 6.6 ± 0.3 for the 100 μm gap. The uncertainties in SER were mostly due to uncertainties in gap size and data acquisition system. We developed an experimental method to determine the signal enhancement due to high-Z nanolayers in parallel plate ionization chambers with micrometer spatial resolution. As the water-equivalent thicknesses of these air gaps are 3 nm to 10 μm, the method may also be applicable for nanoscopic spatial resolution of other gap materials. The method may be extended to solid insulator materials with low Z. © 2017 American Association of Physicists in Medicine.

  12. The carboxyl tail of connexin32 regulates gap junction assembly in human prostate and pancreatic cancer cells.

    PubMed

    Katoch, Parul; Mitra, Shalini; Ray, Anuttoma; Kelsey, Linda; Roberts, Brett J; Wahl, James K; Johnson, Keith R; Mehta, Parmender P

    2015-02-20

    Connexins, the constituent proteins of gap junctions, are transmembrane proteins. A connexin (Cx) traverses the membrane four times and has one intracellular and two extracellular loops with the amino and carboxyl termini facing the cytoplasm. The transmembrane and the extracellular loop domains are highly conserved among different Cxs, whereas the carboxyl termini, often called the cytoplasmic tails, are highly divergent. We have explored the role of the cytoplasmic tail of Cx32, a Cx expressed in polarized and differentiated cells, in regulating gap junction assembly. Our results demonstrate that compared with the full-length Cx32, the cytoplasmic tail-deleted Cx32 is assembled into small gap junctions in human pancreatic and prostatic cancer cells. Our results further document that the expression of the full-length Cx32 in cells, which express the tail-deleted Cx32, increases the size of gap junctions, whereas the expression of the tail-deleted Cx32 in cells, which express the full-length Cx32, has the opposite effect. Moreover, we show that the tail is required for the clustering of cell-cell channels and that in cells expressing the tail-deleted Cx32, the expression of cell surface-targeted cytoplasmic tail alone is sufficient to enhance the size of gap junctions. Our live-cell imaging data further demonstrate that gap junctions formed of the tail-deleted Cx32 are highly mobile compared with those formed of full-length Cx32. Our results suggest that the cytoplasmic tail of Cx32 is not required to initiate the assembly of gap junctions but for their subsequent growth and stability. Our findings suggest that the cytoplasmic tail of Cx32 may be involved in regulating the permeability of gap junctions by regulating their size. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Shun; School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083; Lin Yuanhua

    Nanostructured BiFeO{sub 3} particles have been synthesized by a hydrothermal method, and the effects of particle size on photocatalytic activity and magnetic property of BiFeO{sub 3} were investigated. The optical absorption spectra indicate that the band-gap energy increases with decreasing crystalline size due to the quantum-size effect. The enhancement of room-temperature weak ferromagnetism can be observed in nanoscale BiFeO{sub 3} particles, which should be attributed to the size-confinement effect on the magnetic ordering. In addition, BiFeO{sub 3} nanoparticles with diameter about 5 nm show good photocatalytic performance by photodegradation of Congo red under visible-light ({lambda}>400 nm) irradiation.

  14. Convergent structural responses of tropical forests to diverse disturbance regimes.

    PubMed

    Kellner, James R; Asner, Gregory P

    2009-09-01

    Size frequency distributions of canopy gaps are a hallmark of forest dynamics. But it remains unknown whether legacies of forest disturbance are influencing vertical size structure of landscapes, or space-filling in the canopy volume. We used data from LiDAR remote sensing to quantify distributions of canopy height and sizes of 434,501 canopy gaps in five tropical rain forest landscapes in Costa Rica and Hawaii. The sites represented a wide range of variation in structure and natural disturbance history, from canopy gap dynamics in lowland Costa Rica and Hawaii, to stages and types of stand-level dieback on upland Mauna Kea and Kohala volcanoes. Large differences in vertical canopy structure characterized these five tropical rain forest landscapes, some of which were related to known disturbance events. Although there were quantitative differences in the values of scaling exponents within and among sites, size frequency distributions of canopy gaps followed power laws at all sites and in all canopy height classes. Scaling relationships in gap size at different heights in the canopy were qualitatively similar at all sites, revealing a remarkable similarity despite clearly defined differences in species composition and modes of prevailing disturbance. These findings indicate that power-law gap-size frequency distributions are ubiquitous features of these five tropical rain forest landscapes, and suggest that mechanisms of forest disturbance may be secondary to other processes in determining vertical and horizontal size structure in canopies.

  15. Air Gaps, Size Effect, and Corner-Turning in Ambient LX-17

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Souers, P C; Hernandez, A; Cabacungan, C

    2008-02-05

    Various ambient measurements are presented for LX-17. The size (diameter) effect has been measured with copper and Lucite confinement, where the failure radii are 4.0 and 6.5 mm, respectively. The air well corner-turn has been measured with an LX-07 booster, and the dead-zone results are comparable to the previous TATB-boosted work. Four double cylinders have been fired, and dead zones appear in all cases. The steel-backed samples are faster than the Lucite-backed samples by 0.6 {micro}s. Bare LX-07 and LX-17 of 12.7 mm-radius were fired with air gaps. Long acceptor regions were used to truly determine if detonation occurred ormore » not. The LX-07 crossed at 10 mm with a slight time delay. Steady state LX-17 crossed at 3.5 mm gap but failed to cross at 4.0 mm. LX-17 with a 12.7 mm run after the booster crossed a 1.5 mm gap but failed to cross 2.5 mm. Timing delays were measured where the detonation crossed the gaps. The Tarantula model is introduced as embedded in 0 reactive flow JWL++ and Linked Cheetah V4, mostly at 4 zones/mm. Tarantula has four pressure regions: off, initiation, failure and detonation. The physical basis of the input parameters is considered.« less

  16. Effect of Boundary Condition on the Shear Behaviour of Rock Joints in the Direct Shear Test

    NASA Astrophysics Data System (ADS)

    Bahaaddini, M.

    2017-05-01

    The common method for determination of the mechanical properties of the rock joints is the direct shear test. This paper aims to study the effect of boundary condition on the results of direct shear tests. Experimental studies undertaken in this research showed that the peak shear strength is mostly overestimated. This problem is more pronounced for steep asperities and under high normal stresses. Investigation of the failure mode of these samples showed that tensile cracks are generated at the boundary of sample close to the specimen holders and propagated inside the intact materials. In order to discover the reason of observed failure mechanism in experiments, the direct shear test was simulated using PFC2D. Results of numerical models showed that the gap zone size between the upper and lower specimen holders has a significant effect on the shear mechanism. For the high gap size, stresses concentrate at the vicinity of the tips of specimen holders and result in generation and propagation of tensile cracks inside the intact material. However, by reducing the gap size, stresses are concentrated on asperities, and damage of specimen at its boundary is not observed. Results of this paper show that understanding the shear mechanism of rock joints is an essential step prior to interpreting the results of direct shear tests.

  17. Effects of dynamical paths on the energy gap and the corrections to the free energy in path integrals of mean-field quantum spin systems

    NASA Astrophysics Data System (ADS)

    Koh, Yang Wei

    2018-03-01

    In current studies of mean-field quantum spin systems, much attention is placed on the calculation of the ground-state energy and the excitation gap, especially the latter, which plays an important role in quantum annealing. In pure systems, the finite gap can be obtained by various existing methods such as the Holstein-Primakoff transform, while the tunneling splitting at first-order phase transitions has also been studied in detail using instantons in many previous works. In disordered systems, however, it remains challenging to compute the gap of large-size systems with specific realization of disorder. Hitherto, only quantum Monte Carlo techniques are practical for such studies. Recently, Knysh [Nature Comm. 7, 12370 (2016), 10.1038/ncomms12370] proposed a method where the exponentially large dimensionality of such systems is condensed onto a random potential of much lower dimension, enabling efficient study of such systems. Here we propose a slightly different approach, building upon the method of static approximation of the partition function widely used for analyzing mean-field models. Quantum effects giving rise to the excitation gap and nonextensive corrections to the free energy are accounted for by incorporating dynamical paths into the path integral. The time-dependence of the trace of the time-ordered exponential of the effective Hamiltonian is calculated by solving a differential equation perturbatively, yielding a finite-size series expansion of the path integral. Formulae for the first excited-state energy are proposed to aid in computing the gap. We illustrate our approach using the infinite-range ferromagnetic Ising model and the Hopfield model, both in the presence of a transverse field.

  18. First principles study of size and external electric field effects on the atomic and electronic properties of gallium nitride nanostructures

    NASA Astrophysics Data System (ADS)

    Yilmaz, Hulusi

    A comprehensive density functional theory study of atomic and the electronic properties of wurtzite gallium nitride (GaN) nanostructures with different sizes and shapes is presented and the effect of external electric field on these properties is examined. We show that the atomic and electronic properties of [101¯0] facet single-crystal GaN nanotubes (quasi-1D), nanowires (1D) and nanolayers (2D) are mainly determined by the surface to volume ratio. The shape dependent quantum confinement and strain effects on the atomic and electronic properties of these GaN nanostructures are found to be negligible. Based on this similarity between the atomic and electronic properties of the small size GaN nanostructures, we calculated the atomic and electronic properties of the practical size (28.1 A wall thickness) single-crystal GaN nanotubes through computational much economical GaN nanoslabs (nanolayers). Our results show that, regardless of diameter, hydrogen saturated single-crystal GaN tubes with the wall thickness of 28.1 A are energetically stable and they have a noticeably larger band gap with respect to the band gap of bulk GaN. The band gap of unsaturated single-crystal GaN tubes, on the other hand, is always smaller than the band gap of the wurtzite bulk GaN. In a separate study, we show that a transverse electric field induces a homojunction across the diameter of initially semiconducting GaN single-crystal nanotubes and nanowires. The homojunction arises due to the decreased energy of the electronic states in the higher potential region with respect to the energy of those states in the lower potential region under the transverse electric field. Calculations on single-crystal GaN nanotubes and nanowires of different diameter and wall thickness show that the threshold electric field required for the semiconductor-homojunction induction increases with increasing wall thickness and decreases significantly with increasing diameter.

  19. Efficiency and Fidelity of Human DNA Polymerases λ and β during Gap-Filling DNA Synthesis

    PubMed Central

    Brown, Jessica A.; Pack, Lindsey R.; Sanman, Laura E.; Suo, Zucai

    2010-01-01

    The base excision repair (BER) pathway coordinates the replacement of 1 to 10 nucleotides at sites of single-base lesions. This process generates DNA substrates with various gap sizes which can alter the catalytic efficiency and fidelity of a DNA polymerase during gap-filling DNA synthesis. Here, we quantitatively determined the substrate specificity and base substitution fidelity of human DNA polymerase λ (Pol λ), an enzyme proposed to support the known BER DNA polymerase β (Pol β), as it filled 1- to 10-nucleotide gaps at 1-nucleotide intervals. Pol λ incorporated a correct nucleotide with relatively high efficiency until the gap size exceeded 9 nucleotides. Unlike Pol λ, Pol β did not have an absolute threshold on gap size as the catalytic efficiency for a correct dNTP gradually decreased as the gap size increased from 2 to 10 nucleotides and then recovered for non-gapped DNA. Surprisingly, an increase in gap size resulted in lower polymerase fidelity for Pol λ, and this downregulation of fidelity was controlled by its non-enzymatic N-terminal domains. Overall, Pol λ was up to 160-fold more error-prone than Pol β, thereby suggesting Pol λ would be more mutagenic during long gap-filling DNA synthesis. In addition, dCTP was the preferred misincorporation for Pol λ and its N-terminal domain truncation mutants. This nucleotide preference was shown to be dependent upon the identity of the adjacent 5′-template base. Our results suggested that both Pol λ and Pol β would catalyze nucleotide incorporation with the highest combination of efficiency and accuracy when the DNA substrate contains a single-nucleotide gap. Thus, Pol λ, like Pol β, is better suited to catalyze gap-filling DNA synthesis during short-patch BER in vivo, although, Pol λ may play a role in long-patch BER. PMID:20961817

  20. Surface dose measurements from air gaps under a bolus by using a MOSFET dosimeter in clinical oblique photon beams

    NASA Astrophysics Data System (ADS)

    Chung, Jin-Beom; Kim, Jae-Sung; Kim, In-Ah; Lee, Jeong-Woo

    2012-10-01

    This study is intended to investigate the effects of surface dose from air gaps under the bolus in clinically used oblique photon beams by using a Markus parallel-plate chamber and a metal-oxide semiconductor field-effect transistor (MOSFET) dosimeter. To evaluate the performances of the two detectors, the percentage surface doses of the MOSFET dosimeters in without an air gap under the bolus material were measured and compared with those of the Markus parallel-plate chamber. MOSFET dosimeters at the surface provided results mostly in good agreement with the parallelplate chamber. The MOSFET dosimeters seemed suitable for surface dose measurements having excellent accuracy for clinical used photon beams. The relative surface doses were measured with air gaps (2, 5, 10 mm) and without an air gap under 3 different bolus setups: (1) unbolused (no bolus), (2) 5-mm bolus, and (3) 10-mm bolus. The reductions in the surface dose substantially increased with small field size, thick bolus, and large air gap. The absolute difference in the reductions of the surface dose between the MOSFET dosimeter and the Markus parallel-plate chamber was less than 1.1%. Results at oblique angles of incidence showed larger reductions in surface dose with increasing angle of incidence. The largest reduction in surface dose was recorded for a 6 × 6 cm2 field at a 60° angle of incidence with an 10-mm air gap under a 10-mm bolus. When a 10-mm bolus was used, a reduction in the surface dose with an air gap of up to 10.5% could be achieved by varying the field size and the incident angle. Therefore, air gaps under the bolus should be avoided in radiotherapy treatment, especially for photon beam with highly oblique angles of incidence.

  1. Near-nadir scan overlap in Earth observations from VIIRS and MODIS

    NASA Astrophysics Data System (ADS)

    Blonski, Slawomir; Cao, Changyong

    2017-09-01

    Satellite multi-detector cross-track scanners, such as MODIS (Moderate Resolution Imaging Spectroradiometer) and VIIRS (Visible-Infrared Imaging Radiometer Suite), require synchronization of optical and orbital characteristics to avoid gaps in Earth coverage between scans. Prelaunch tests have revealed that such scan-to-scan gaps will occur near nadir in VIIRS observations from the future JPSS-1 (Joint Polar Satellite System) and JPSS-2 satellites. Our analysis of VIIRS geolocation products shows that the gaps do not occur for the instrument currently on orbit onboard the S-NPP (Suomi National Polar-orbiting Partnership) spacecraft. When the same analysis is applied to the MODIS data products, it reveals that small, near-nadir gaps exist in MODIS observations from both Aqua and Terra satellites. Although magnitude of the MODIS scan overlap gaps (up to 100 m for Terra and 25/175 m for Aqua) is quite small in comparison to the 1-km pixels, it is rather significant for the bands with the 250-m and 500-m pixels. Despite the size of the gaps, it appears that their effects on scientific analyses (e.g., NDVI) have not been reported since launch of the MODIS instruments. Because the gaps currently predicted for the JPSS-1 and -2 VIIRS are similar in size to the ones occurring for MODIS, one can expect that their effects on science data will be similarly negligible. A model that uses S-NPP orbit data as well as the S-NPP VIIRS telescope's focal length and scan rate predicts the overlap that agrees very well with the analysis of the geolocation data. For JPSS-1/-2 VIIRS focal length and scan rate, the model predicts scan overlap gaps of more than 100 m. With a shorter focal length and a faster scan rate than for the JPSS-1/-2 VIIRS, the scan overlap gaps are expected to be avoided altogether for VIIRS on the future JPSS-3 and -4 satellites.

  2. Spatial scale and sampling resolution affect measures of gap disturbance in a lowland tropical forest: implications for understanding forest regeneration and carbon storage

    PubMed Central

    Lobo, Elena; Dalling, James W.

    2014-01-01

    Treefall gaps play an important role in tropical forest dynamics and in determining above-ground biomass (AGB). However, our understanding of gap disturbance regimes is largely based either on surveys of forest plots that are small relative to spatial variation in gap disturbance, or on satellite imagery, which cannot accurately detect small gaps. We used high-resolution light detection and ranging data from a 1500 ha forest in Panama to: (i) determine how gap disturbance parameters are influenced by study area size, and the criteria used to define gaps; and (ii) to evaluate how accurately previous ground-based canopy height sampling can determine the size and location of gaps. We found that plot-scale disturbance parameters frequently differed significantly from those measured at the landscape-level, and that canopy height thresholds used to define gaps strongly influenced the gap-size distribution, an important metric influencing AGB. Furthermore, simulated ground surveys of canopy height frequently misrepresented the true location of gaps, which may affect conclusions about how relatively small canopy gaps affect successional processes and contribute to the maintenance of diversity. Across site comparisons need to consider how gap definition, scale and spatial resolution affect characterizations of gap disturbance, and its inferred importance for carbon storage and community composition. PMID:24452032

  3. Quantum-size-induced phase transitions in quantum dots: Indirect-band gap GaAs nanostructures

    NASA Astrophysics Data System (ADS)

    Zunger, Alex; Luo, Jun-Wei; Franceschetti, Alberto

    2008-03-01

    Quantum nanostructures are often advertised as having stronger absorption than the bulk material from which they are made, to the potential benefit of nanotechnology. However, nanostructures made of direct gap materials such as GaAs can convert to indirect-gap, weakly-aborbing systems when the quantum size becomes small. This is the case for spherical GaAs dots of radius 15 å or less (about 1000 atoms) embedded in a wide-gap matrix. The nature of the transition: γ-to-X or γ-to-L is however, controversial. The distinction can not be made on the basis of electronic structure techniques that misrepresent the magnitude of the various competing effective mass tensors (e.g, LDA or GGA) or wavefunction coupling (e.g, tight-binding). Using a carefully fit screened pseudopotential method we show that the transition occurs from γ to X, and, more importantly, that the transition involves a finite V (γ-X) interband coupling, manifested as an ``anti-crossing'' between the confined electron states of GaAs as the dot size crosses 15 å. The physics of this reciprocal-space γ-X transition, as well as the real-space (type II) transition in GaAs/AlGaAs will be briefly discussed.

  4. Development of a numerical model to predict physiological strain of firefighter in fire hazard.

    PubMed

    Su, Yun; Yang, Jie; Song, Guowen; Li, Rui; Xiang, Chunhui; Li, Jun

    2018-02-26

    This paper aims to develop a numerical model to predict heat stress of firefighter under low-level thermal radiation. The model integrated a modified multi-layer clothing model with a human thermoregulation model. We took the coupled radiative and conductive heat transfer in the clothing, the size-dependent heat transfer in the air gaps, and the controlling active and controlled passive thermal regulation in human body into consideration. The predicted core temperature and mean skin temperature from the model showed a good agreement with the experimental results. Parametric study was conducted and the result demonstrated that the radiative intensity had a significant influence on the physiological heat strain. The existence of air gap showed positive effect on the physiological heat strain when air gap size is small. However, when the size of air gap exceeds 6 mm, a different trend was observed due to the occurrence of natural convection. Additionally, the time length for the existence of the physiological heat strain was greater than the existence of the skin burn under various heat exposures. The findings obtained in this study provide a better understanding of the physiological strain of firefighter and shed light on textile material engineering for achieving higher protective performance.

  5. Guiding of Plasmons and Phonons in Complex Three Dimensional Structures

    DTIC Science & Technology

    2013-01-01

    typical sample. We employed X - ray diffraction (XRD) to measure the average grain size across the entire depth of the sample over spot sizes Figure...propagation distance L as the 1/e decay length of the field intensity along x ...as well as the network layout with subwavelegth gap size and internode distance on the order of the effective wavelength, a small 2 x 2 resonant

  6. Correction to the plant canopy gap-size analysis theory used by the Tracing Radiation and Architecture of Canopies instrument

    NASA Astrophysics Data System (ADS)

    Leblanc, Sylvain G.

    2002-12-01

    A plant canopy gap-size analyzer, the Tracing Radiation and Architecture of Canopies (TRAC), developed by Chen and Cihlar [Appl. Opt. 34, 6211 (1995)] and commercialized by 3rd Wave Engineering (Nepean, Canada), has been used around the world to quantify the fraction of photosynthetically active radiation absorbed by plant canopies, the leaf area index (LAI), and canopy architectural parameters. The TRAC is walked under a canopy along transects to measure sunflecks that are converted into a gap-size distribution. A numerical gap-removal technique is performed to remove gaps that are not theoretically possible in a random canopy. The resulting reduced gap-size distribution is used to quantify the heterogeneity of the canopy and to improve LAI measurements. It is explicitly shown here that the original derivation of the clumping index was missing a normalization factor. For a very clumped canopy with a large gap fraction, the resulting LAI can be more than 100% smaller than previously estimated. A test case is used to demonstrate that the new clumping index derivation allows a more accurate change of LAI to be measured.

  7. Correlation between the band gap expansion and melting temperature depression of nanostructured semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jianwei, E-mail: jwl189@163.com; Zhao, Xinsheng; Liu, Xinjuan

    The band gap and melting temperature of a semiconductor are tunable with the size and shape of the specimen at the nanometer scale, and related mechanisms remain as yet unclear. In order to understand the common origin of the size and shape effect on these two seemingly irrelevant properties, we clarify, correlate, formulate, and quantify these two properties of GaAs, GaN, InP, and InN nanocrystals from the perspectives of bond order-length-strength correlation using the core-shell configuration. The consistency in the theoretical predictions, experimental observations, and numerical calculations verify that the broken-bond-induced local bond contraction and strength gain dictates the bandmore » gap expansion, while the atomic cohesive energy loss due to bond number reduction depresses the melting point. The fraction of the under-coordinated atoms in the skin shell quantitatively determines the shape and size dependency. The atomic under-coordination in the skin down to a depth of two atomic layers inducing a change in the local chemical bond is the common physical origin.« less

  8. Symmetry in cold-to-hot and hot-to-cold valuation gaps.

    PubMed

    Fisher, Geoffrey; Rangel, Antonio

    2014-01-01

    Individuals commonly mispredict their future preferences when they make decisions in a visceral state different from their anticipated state at consumption. In the research reported here, we asked subjects to bid on different foods while exogenously varying their hunger levels at the time of decision and at the time of consumption. This procedure allowed us to test whether cold-to-hot and hot-to-cold gaps are symmetric in size and driven by similar mechanisms. We found that the effect size was symmetric: Hungry subjects overbid 20¢ for a snack they would eat later when they were satiated, and satiated subjects underbid 19¢ for a snack they would eat later when they were hungry. Furthermore, we found evidence that these gaps were driven by symmetric mechanisms that operate on the evaluation of visceral features of food, such as taste, as opposed to more cognitive features, such as healthiness.

  9. GAPS IN PROTOPLANETARY DISKS AS SIGNATURES OF PLANETS. II. INCLINED DISKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jang-Condell, Hannah; Turner, Neal J.

    2013-07-20

    We examine the observational appearance of partial gaps being opened by planets in protoplanetary disks, considering the effects of the inclination relative to the line of sight. We model the disks with static {alpha}-models with detailed radiative transfer, parameterizing the shape and size of the partially cleared gaps based on the results of hydrodynamic simulations. As in previous work, starlight falling across the gap leads to high surface brightness contrasts. The gap's trough is darkened by both shadowing and cooling, relative to the uninterrupted disk. The gap's outer wall is brightened by direct illumination and also by heating, which puffsmore » it up so that it intercepts more starlight. In this paper, we examine the effects of inclination on resolved images of disks with and without gaps at a wide range of wavelengths. The scattering surface's offset from the disk midplane creates a brightness asymmetry along the axis of inclination, making the disk's near side appear brighter than the far side in scattered light. Finite disk thickness also causes the projected distances of equidistant points on the disk surface to be smaller on the near side of the disk as compared to the far side. Consequently, the gap shoulder on the near side of the disk should appear brighter and closer to the star than on the far side. However, if the angular resolution of the observation is coarser than the width of the brightened gap shoulder, then the gap shoulder on the far side may appear brighter because of its larger apparent size. We present a formula to recover the scale height and inclination angle of an imaged disk using simple geometric arguments and measuring disk asymmetries. Resolved images of circumstellar disks have revealed clearings and gaps, such as the transitional disk in LkCa 15. Models created using our synthetic imaging attempting to match the morphology of observed scattered light images of LkCa 15 indicate that the H-band flux deficit in the inner {approx}0.''5 of the disk can be explained with a planet if mass is greater than 0.5 Jupiter mass.« less

  10. Nanoparticle heterodimers: The role of size and interparticle gap distance on the optical response

    NASA Astrophysics Data System (ADS)

    Mokkath, Junais Habeeb

    2018-05-01

    Composite plasmonic nanostructures with controlled size, shape and relative arrangement is a subject of significant current research interest. Much of this is stimulated by the prospects by generating enormous near-field enhancements of the surface and interparticle gap regions for potential applications in surface-enhanced spectroscopies. In this manuscript, using time-dependent density functional theory (TDDFT) calculations, we investigate how the optical response in size matched homodimers and size mismatched heterodimers composed of Aluminum modify while varying the size and interparticle gap distances in the sub-nanometer range. Both systems show interesting optical response evolution. In particular, the size mismatched heterodimers show even more complex optical response evolution due to a symmetry-breaking in the system.

  11. The influece of forest gaps on some properties of humus in a managed beech forest, northern Iran

    NASA Astrophysics Data System (ADS)

    Vajari, K. A.

    2015-10-01

    The present research focuses on the effect of eight-year-old artificially created gaps on some properties of humus in managed beech-dominated stand in Hyrcanian forest of northern Iran. In this study, six-teen gaps were sampled in site and were classified into four classes (small, medium, large, and very large) with four replications for each. Humus sampling was carried out at the centre and at the cardinal points within each gap as well as in the adjacent closed stand, separately, as composite samples. The variables of organic carbon, P, K, pH, and total N were measured for each sample. It was found that the gap size had significant effect only on total N (%) and organic carbon (%) in beech stand. The amount of potassium clearly differed among three positions in beech forest. The adjacent stand had higher significantly potassium than center and edge of gaps. Different amount of potassium was detected in gap center and gap edge. Comparison of humus properties between gaps and its adjacent stand pointed to the higher amount of potassium in adjacent stand than that in gaps but there was no difference between them regarding other humus properties. According to the results, it can be concluded that there is relatively similar condition among gaps and closed adjacent stands in terms of humus properties eight years after logging in the beech stand.

  12. The size effect to O2- -Ce4+ charge transfer emission and band gap structure of Sr2 CeO4.

    PubMed

    Wang, Wenjun; Pan, Yu; Zhang, Wenying; Liu, Xiaoguang; Li, Ling

    2018-04-24

    Sr 2 CeO 4 phosphors with different crystalline sizes were synthesized by the sol-gel method or the solid-state reaction. Their crystalline size, luminescence intensity of O 2- -Ce 4+ charge transfer and energy gaps were obtained through the characterization by X-ray diffraction, photoluminescence spectra, as well as UV-visible diffuse reflectance measurements. An inverse relationship between photoluminescence (PL) spectra and crystalline size was observed when the heating temperature was from 1000°C to 1300°C. In addition, band energy calculated for all samples showed that a reaction temperature of 1200°C for the solid-state method and 1100°C for sol-gel method gave the largest values, which corresponded with the smallest crystalline size. Correlation between PL intensity and crystalline size showed an inverse relationship. Band structure, density of states and partial density of states of the crystal were calculated to analyze the mechanism using the cambrige sequential total energy package (CASTEP) module integrated with Materials Studio software. Copyright © 2018 John Wiley & Sons, Ltd.

  13. Experimental study on pore structure and performance of sintered porous wick

    NASA Astrophysics Data System (ADS)

    He, Da; Wang, Shufan; Liu, Rutie; Wang, Zhubo; Xiong, Xiang; Zou, Jianpeng

    2018-02-01

    Porous wicks were prepared via powder metallurgy using NH4HCO3 powders as pore-forming agent. The pore-forming agent particle size was varied to control the pore structure and equivalent pore size distribution feature of porous wick. The effect of pore-forming agent particle size on the porosity, pore structures, equivalent pore size distribution and capillary pumping performance were investigated. Results show that with the particle size of pore-forming agent decrease, the green density and the volume shrinkage of the porous wicks gradually increase and the porosity reduces slightly. There are two types of pores inside the porous wick, large-sized prefabricated pores and small-sized gap pores. With the particle size of pore-forming agent decrease, the size of the prefabricated pores becomes smaller and the distribution tends to be uniform. Gap pores and prefabricated pores inside the wick can make up different types of pore channels. The equivalent pore size of wick is closely related to the structure of pore channels. Furthermore, the equivalent pore size distribution of wick shows an obvious double-peak feature when the pore-forming agent particle size is large. With the particle size of pore-forming agent decrease, the two peaks of equivalent pore size distribution approach gradually to each other, resulting in a single-peak feature. Porous wick with single-peak feature equivalent pore size distribution possesses the better capillary pumping performances.

  14. Experimental study on microsphere assisted nanoscope in non-contact mode

    NASA Astrophysics Data System (ADS)

    Ling, Jinzhong; Li, Dancui; Liu, Xin; Wang, Xiaorui

    2018-07-01

    Microsphere assisted nanoscope was proposed in existing literatures to capture super-resolution images of the nano-structures beneath the microsphere attached on sample surface. In this paper, a microsphere assisted nanoscope working in non-contact mode is designed and demonstrated, in which the microsphere is controlled with a gap separated to sample surface. With a gap, the microsphere is moved in parallel to sample surface non-invasively, so as to observe all the areas of interest. Furthermore, the influence of gap size on image resolution is studied experimentally. Only when the microsphere is close enough to the sample surface, super-resolution image could be obtained. Generally, the resolution decreases when the gap increases as the contribution of evanescent wave disappears. To keep an appropriate gap size, a quantitative method is implemented to estimate the gap variation by observing Newton's rings around the microsphere, serving as a real-time feedback for tuning the gap size. With a constant gap, large-area image with high resolution can be obtained during microsphere scanning. Our study of non-contact mode makes the microsphere assisted nanoscope more practicable and easier to implement.

  15. Modeling pedestrian gap crossing index under mixed traffic condition.

    PubMed

    Naser, Mohamed M; Zulkiple, Adnan; Al Bargi, Walid A; Khalifa, Nasradeen A; Daniel, Basil David

    2017-12-01

    There are a variety of challenges faced by pedestrians when they walk along and attempt to cross a road, as the most recorded accidents occur during this time. Pedestrians of all types, including both sexes with numerous aging groups, are always subjected to risk and are characterized as the most exposed road users. The increased demand for better traffic management strategies to reduce the risks at intersections, improve quality traffic management, traffic volume, and longer cycle time has further increased concerns over the past decade. This paper aims to develop a sustainable pedestrian gap crossing index model based on traffic flow density. It focusses on the gaps accepted by pedestrians and their decision for street crossing, where (Log-Gap) logarithm of accepted gaps was used to optimize the result of a model for gap crossing behavior. Through a review of extant literature, 15 influential variables were extracted for further empirical analysis. Subsequently, data from the observation at an uncontrolled mid-block in Jalan Ampang in Kuala Lumpur, Malaysia was gathered and Multiple Linear Regression (MLR) and Binary Logit Model (BLM) techniques were employed to analyze the results. From the results, different pedestrian behavioral characteristics were considered for a minimum gap size model, out of which only a few (four) variables could explain the pedestrian road crossing behavior while the remaining variables have an insignificant effect. Among the different variables, age, rolling gap, vehicle type, and crossing were the most influential variables. The study concludes that pedestrians' decision to cross the street depends on the pedestrian age, rolling gap, vehicle type, and size of traffic gap before crossing. The inferences from these models will be useful to increase pedestrian safety and performance evaluation of uncontrolled midblock road crossings in developing countries. Copyright © 2017 National Safety Council and Elsevier Ltd. All rights reserved.

  16. Semantic-gap-oriented active learning for multilabel image annotation.

    PubMed

    Tang, Jinhui; Zha, Zheng-Jun; Tao, Dacheng; Chua, Tat-Seng

    2012-04-01

    User interaction is an effective way to handle the semantic gap problem in image annotation. To minimize user effort in the interactions, many active learning methods were proposed. These methods treat the semantic concepts individually or correlatively. However, they still neglect the key motivation of user feedback: to tackle the semantic gap. The size of the semantic gap of each concept is an important factor that affects the performance of user feedback. User should pay more efforts to the concepts with large semantic gaps, and vice versa. In this paper, we propose a semantic-gap-oriented active learning method, which incorporates the semantic gap measure into the information-minimization-based sample selection strategy. The basic learning model used in the active learning framework is an extended multilabel version of the sparse-graph-based semisupervised learning method that incorporates the semantic correlation. Extensive experiments conducted on two benchmark image data sets demonstrated the importance of bringing the semantic gap measure into the active learning process.

  17. Thickness dependent band gap of Bi{sub 2-x}Sb{sub x}Te{sub 3} (x = 0, 0.05, 0.1) thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, M. M.; Soni, P. H., E-mail: phsoni-msu@yahoo.com; Desai, C. F.

    2016-05-23

    Thin films of Bi{sub 2}Te{sub 3}(Sb) were prepared on alkali halide crystal substrates. Sb content and the film thickness were varied. Bi{sub 2}Te{sub 3} is a narrow gap semiconductor. Bi-Sb is a continuous solid solution of substitutional type and Sb therefore was used to test its effect on the band gap. The film thickness variation was also taken up. The infra-red absorption spectra were used in the wave number range 400 cm{sup −1} to 4000 cm{sup −1}. The band gap obtained from the absorption data was found to increase with decreasing thickness since the thickness range used was from 30more » nm to 170 nm. This is a range corresponding to nanostructures and hence quantum size effect was observed as expected. The band gap also exhibited Sb content dependence. The detail results are have been reported and explained.« less

  18. A review of finite size effects in quasi-zero dimensional superconductors.

    PubMed

    Bose, Sangita; Ayyub, Pushan

    2014-11-01

    Quantum confinement and surface effects (SEs) dramatically modify most solid state phenomena as one approaches the nanometer scale, and superconductivity is no exception. Though we may expect significant modifications from bulk superconducting properties when the system dimensions become smaller than the characteristic length scales for bulk superconductors-such as the coherence length or the penetration depth-it is now established that there is a third length scale which ultimately determines the critical size at which Cooper pairing is destroyed. In quasi-zero-dimensional (0D) superconductors (e.g. nanocrystalline materials, isolated or embedded nanoparticles), one may define a critical particle diameter below which the mean energy level spacing arising from quantum confinement becomes equal to the bulk superconducting energy gap. The so-called Anderson criterion provides a remarkably accurate estimate of the limiting size for the destabilization of superconductivity in nanosystems. This review of size effects in quasi-0D superconductors is organized as follows. A general summary of size effects in nanostructured superconductors (section 1) is followed by a brief overview of their synthesis (section 2) and characterization using a variety of techniques (section 3). Section 4 reviews the size-evolution of important superconducting parameters-the transition temperature, critical fields and critical current-as the Anderson limit is approached from above. We then discuss the effect of thermodynamic fluctuations (section 5), which become significant in confined systems. Improvements in fabrication methods and the increasing feasibility of addressing individual nanoparticles using scanning probe techniques have lately opened up new directions in the study of nanoscale superconductivity. Section 6 reviews both experimental and theoretical aspects of the recently discovered phenomena of 'parity effect' and 'shell effect' that lead to a strong, non-monotonic size dependence of the superconducting energy gap and associated properties. Finally, we discuss in section 7 the properties of ordered heterostructures (bilayers and multilayers of alternating superconducting and normal phases) and disordered heterostructures (nanocomposites consisting of superconducting and normal phases), which are primarily controlled by the proximity effect.

  19. Invasibility of a nutrient-poor pasture through resident and non-resident herbs is controlled by litter, gap size and propagule pressure.

    PubMed

    Eckstein, R Lutz; Ruch, Diana; Otte, Annette; Donath, Tobias W

    2012-01-01

    Since inference concerning the relative effects of propagule pressure, biotic interactions, site conditions and species traits on the invasibility of plant communities is limited, we carried out a field experiment to study the role of these factors for absolute and relative seedling emergence in three resident and three non-resident confamilial herb species on a nutrient-poor temperate pasture. We set up a factorial field experiment with two levels each of the factors litter cover (0 and 400 g m(-2)), gap size (0.01 and 0.1 m(2)) and propagule pressure (5 and 50 seeds) and documented soil temperature, soil water content and relative light availability. Recruitment was recorded in spring and autumn 2010 and in spring 2011 to cover initial seedling emergence, establishment after summer drought and final establishment after the first winter. Litter alleviated temperature and moisture conditions and had positive effects on proportional and absolute seedling emergence during all phases of recruitment. Large gaps presented competition-free space with high light availability but showed higher temperature amplitudes and lower soil moisture. Proportional and absolute seedling recruitment was significantly higher in large than in small gaps. In contrast, propagule pressure facilitated absolute seedling emergence but had no effects on proportional emergence or the chance for successful colonisation. Despite significantly higher initial seedling emergence of resident than non-resident species, seed mass and other species-specific traits may be better predictors for idiosyncratic variation in seedling establishment than status. Our data support the fluctuating resource hypothesis and demonstrate that the reserve effect of seeds may facilitate seedling emergence. The direct comparison of propagule pressure with other environmental factors showed that propagule pressure affects absolute seedling abundance, which may be crucial for species that depend on other individuals for sexual reproduction. However, propagule batch size did not significantly affect the chance for successful colonisation of disturbed plots.

  20. Thermal tuning the reversible optical band gap of self-assembled polystyrene photonic crystals

    NASA Astrophysics Data System (ADS)

    Vakili Tahami, S. H.; Pourmahdian, S.; Shirkavand Hadavand, B.; Azizi, Z. S.; Tehranchi, M. M.

    2016-11-01

    Nano-sized polymeric colloidal particles could undergo self-organization into three-dimensional structures to produce desired optical properties. In this research, a facile emulsifier-free emulsion polymerization method was employed to synthesize highly mono-disperse sub-micron polystyrene colloids. A high quality photonic crystal (PhC) structure was prepared by colloidal polystyrene. The reversible thermal tuning effect on photonic band gap position as well as the attenuation of the band gap was investigated in detail. The position of PBG can be tuned from 420 nm to 400 nm by varying the temperature of the PhC structure, reversibly. This reversible effect provides a reconfigurable PhC structure which could be used as thermo-responsive shape memory polymers.

  1. The Circumstellar Disk HD 169142: Gas, Dust, and Planets Acting in Concert?

    NASA Astrophysics Data System (ADS)

    Pohl, A.; Benisty, M.; Pinilla, P.; Ginski, C.; de Boer, J.; Avenhaus, H.; Henning, Th.; Zurlo, A.; Boccaletti, A.; Augereau, J.-C.; Birnstiel, T.; Dominik, C.; Facchini, S.; Fedele, D.; Janson, M.; Keppler, M.; Kral, Q.; Langlois, M.; Ligi, R.; Maire, A.-L.; Ménard, F.; Meyer, M.; Pinte, C.; Quanz, S. P.; Sauvage, J.-F.; Sezestre, É.; Stolker, T.; Szulágyi, J.; van Boekel, R.; van der Plas, G.; Villenave, M.; Baruffolo, A.; Baudoz, P.; Le Mignant, D.; Maurel, D.; Ramos, J.; Weber, L.

    2017-11-01

    HD 169142 is an excellent target for investigating signs of planet-disk interaction due to previous evidence of gap structures. We perform J-band (˜1.2 μm) polarized intensity imaging of HD 169142 with VLT/SPHERE. We observe polarized scattered light down to 0.″16 (˜19 au) and find an inner gap with a significantly reduced scattered-light flux. We confirm the previously detected double-ring structure peaking at 0.″18 (˜21 au) and 0.″56 (˜66 au) and marginally detect a faint third gap at 0.″70-0.″73 (˜82-85 au). We explore dust evolution models in a disk perturbed by two giant planets, as well as models with a parameterized dust size distribution. The dust evolution model is able to reproduce the ring locations and gap widths in polarized intensity but fails to reproduce their depths. However, it gives a good match with the ALMA dust continuum image at 1.3 mm. Models with a parameterized dust size distribution better reproduce the gap depth in scattered light, suggesting that dust filtration at the outer edges of the gaps is less effective. The pileup of millimeter grains in a dust trap and the continuous distribution of small grains throughout the gap likely require more efficient dust fragmentation and dust diffusion in the dust trap. Alternatively, turbulence or charging effects might lead to a reservoir of small grains at the surface layer that is not affected by the dust growth and fragmentation cycle dominating the dense disk midplane. The exploration of models shows that extracting planet properties such as mass from observed gap profiles is highly degenerate. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO program 095.C-0273.

  2. Effects of Reduction Osteotomy on Gap Balancing During Total Knee Arthroplasty for Severe Varus Deformity.

    PubMed

    Niki, Yasuo; Harato, Kengo; Nagai, Katsuya; Suda, Yasunori; Nakamura, Masaya; Matsumoto, Morio

    2015-12-01

    This study aimed to assess the effects of down-sizing and lateralizing of the tibial component (reduction osteotomy) on gap balancing in TKA, and the clinical feasibility of an uncemented modular trabecular metal tibial tray in this technique. Reduction osteotomy was performed for 39 knees of 36 patients with knee OA with a mean tibiofemoral angle of 21° varus. In 20 knees, appropriate gap balance was achieved by release of the deep medial collateral ligament alone. Flexion gap imbalance could be reduced by approximately 1.7° and 2.8° for 4-mm osteotomy and 8-mm osteotomy, respectively. Within the first postoperative year, clinically-stable tibial component subsidence was observed in 9 knees, but it was not progressive, and the clinical results were excellent at a mean follow-up of 3.3 years. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Superconducting parity effect across the Anderson limit

    PubMed Central

    Vlaic, Sergio; Pons, Stéphane; Zhang, Tianzhen; Assouline, Alexandre; Zimmers, Alexandre; David, Christophe; Rodary, Guillemin; Girard, Jean-Christophe; Roditchev, Dimitri; Aubin, Hervé

    2017-01-01

    How small can superconductors be? For isolated nanoparticles subject to quantum size effects, P.W. Anderson in 1959 conjectured that superconductivity could only exist when the electronic level spacing δ is smaller than the superconducting gap energy Δ. Here we report a scanning tunnelling spectroscopy study of superconducting lead (Pb) nanocrystals grown on the (110) surface of InAs. We find that for nanocrystals of lateral size smaller than the Fermi wavelength of the 2D electron gas at the surface of InAs, the electronic transmission of the interface is weak; this leads to Coulomb blockade and enables the extraction of electron addition energy of the nanocrystals. For large nanocrystals, the addition energy displays superconducting parity effect, a direct consequence of Cooper pairing. Studying this parity effect as a function of nanocrystal volume, we find the suppression of Cooper pairing when the mean electronic level spacing overcomes the superconducting gap energy, thus demonstrating unambiguously the validity of the Anderson criterion. PMID:28240294

  4. A Decision Support System for Identifying and Ranking Critical Habitat Parcels on and in the Vicinity of Department of Defense Installations

    DTIC Science & Technology

    2011-01-01

    27 FIGURE 17. SIMULATED MOVEMENT OF MALE FLOATERS ACROSS A LANDSCAPE...effect of forest gaps larger than 150 m on both juvenile female forays and movement of floater females. Finally, we incorporated jumping by allowing...a portion of floater females to cross gaps of any size. Description of Model Changes Both high and low-level model modifications to the original

  5. Application of back-propagation artificial neural network (ANN) to predict crystallite size and band gap energy of ZnO quantum dots

    NASA Astrophysics Data System (ADS)

    Pelicano, Christian Mark; Rapadas, Nick; Cagatan, Gerard; Magdaluyo, Eduardo

    2017-12-01

    Herein, the crystallite size and band gap energy of zinc oxide (ZnO) quantum dots were predicted using artificial neural network (ANN). Three input factors including reagent ratio, growth time, and growth temperature were examined with respect to crystallite size and band gap energy as response factors. The generated results from neural network model were then compared with the experimental results. Experimental crystallite size and band gap energy of ZnO quantum dots were measured from TEM images and absorbance spectra, respectively. The Levenberg-Marquardt (LM) algorithm was used as the learning algorithm for the ANN model. The performance of the ANN model was then assessed through mean square error (MSE) and regression values. Based on the results, the ANN modelling results are in good agreement with the experimental data.

  6. Size speed bias or size arrival effect-How judgments of vehicles' approach speed and time to arrival are influenced by the vehicles' size.

    PubMed

    Petzoldt, Tibor

    2016-10-01

    Crashes at railway level crossings are a key problem for railway operations. It has been suggested that a potential explanation for such crashes might lie in a so-called size speed bias, which describes the phenomenon that observers underestimate the speed of larger objects, such as aircraft or trains. While there is some evidence that this size speed bias indeed exists, it is somewhat at odds with another well researched phenomenon, the size arrival effect. When asked to judge the time it takes an approaching object to arrive at a predefined position (time to arrival, TTA), observers tend to provide lower estimates for larger objects. In that case, road users' crossing decisions when confronted with larger vehicles should be rather conservative, which has been confirmed in multiple studies on gap acceptance. The aim of the experiment reported in this paper was to clarify the relationship between size speed bias and size arrival effect. Employing a relative judgment task, both speed and TTA estimates were assessed for virtual depictions of a train and a truck, using a car as a reference to compare against. The results confirmed the size speed bias for the speed judgments, with both train and truck being perceived as travelling slower than the car. A comparable bias was also present in the TTA estimates for the truck. In contrast, no size arrival effect could be found for the train or the truck, neither in the speed nor the TTA judgments. This finding is inconsistent with the fact that crossing behaviour when confronted with larger vehicles appears to be consistently more conservative. This discrepancy might be interpreted as an indication that factors other than perceived speed or TTA play an important role for the differences in gap acceptance between different types of vehicles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Study of quantum confinement effects in ZnO nanostructures

    NASA Astrophysics Data System (ADS)

    Movlarooy, Tayebeh

    2018-03-01

    Motivation to fact that zinc oxide nanowires and nanotubes with successful synthesis and the mechanism of formation, stability and electronic properties have been investigated; in this study the structural, electronic properties and quantum confinement effects of zinc oxide nanotubes and nanowires with different diameters are discussed. The calculations within density functional theory and the pseudo potential approximation are done. The electronic structure and energy gap for Armchair and zigzag ZnO nanotubes with a diameter of about 4 to 55 Angstrom and ZnO nanowires with a diameter range of 4 to 23 Å is calculated. The results revealed that due to the quantum confinement effects, by reducing the diameter of nanowires and nanotubes, the energy gap increases. Zinc oxide semiconductor nanostructures since having direct band gap with size-dependent and quantum confinement effect are recommended as an appropriate candidate for making nanoscale optoelectronic devices.

  8. Giant Enhancement in Radiative Heat Transfer in Sub-30 nm Gaps of Plane Parallel Surfaces.

    PubMed

    Fiorino, Anthony; Thompson, Dakotah; Zhu, Linxiao; Song, Bai; Reddy, Pramod; Meyhofer, Edgar

    2018-06-13

    Radiative heat transfer rates that exceed the blackbody limit by several orders of magnitude are expected when the gap size between plane parallel surfaces is reduced to the nanoscale. To date, experiments have only realized enhancements of ∼100 fold as the smallest gap sizes in radiative heat transfer studies have been limited to ∼50 nm by device curvature and particle contamination. Here, we report a 1,200-fold enhancement with respect to the far-field value in the radiative heat flux between parallel planar silica surfaces separated by gaps as small as ∼25 nm. Achieving such small gap sizes and the resultant dramatic enhancement in near-field energy flux is critical to achieve a number of novel near-field based nanoscale energy conversion systems that have been theoretically predicted but remain experimentally unverified.

  9. Arbuscular mycorrhizal colonization of giant sequoia (Sequoiadendron giganteum) in response to restoration practices.

    PubMed

    Fahey, Catherine; York, Robert A; Pawlowska, Teresa E

    2012-01-01

    Interactions with soil microbiota determine the success of restoring plants to their native habitats. The goal of our study was to understand the effects of restoration practices on interactions of giant sequoia Sequoiadendron giganteum with arbuscular mycorrhizal (AM) fungi (Glomeromycota). Natural regeneration of Sequoiadendron is threatened by the absence of severe fires that create forest canopy gaps. Generating artificial canopy gaps offers an alternative tool for giant sequoia restoration. We investigated the effect of regeneration practices, including (i) sapling location within gaps, (ii) gap size and (iii) soil substrate, on AM fungal colonization of giant sequoia sapling roots in a native giant sequoia grove of the Sierra Nevada, California. We found that the extent of AM fungal root colonization was positively correlated with sapling height and light availability, which were related to the location of the sapling within the gap and the gap size. While colonization frequency by arbuscules in saplings on ash substrate was higher relative to saplings in mineral soil, the total AM fungal root colonization was similar between the substrates. A negative correlation between root colonization by Glomeromycota and non-AM fungal species indicated antagonistic interactions between different classes of root-associated fungi. Using DNA genotyping, we identified six AM fungal taxa representing genera Glomus and Ambispora present in Sequoiadendron roots. Overall, we found that AM fungal colonization of giant sequoia roots was associated with availability of plant-assimilated carbon to the fungus rather than with the AM fungal supply of mineral nutrients to the roots. We conclude that restoration practices affecting light availability and carbon assimilation alter feedbacks between sapling growth and activity of AM fungi in the roots.

  10. The Development of Layered Photonic Band Gap Structures Using a Micro-Transfer Molding Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutherland, Kevin Jerome

    Photonic band gap (PBG) crystals are periodic dielectric structures that manipulate electromagnetic radiation in a manner similar to semiconductor devices manipulating electrons. Whereas a semiconductor material exhibits an electronic band gap in which electrons cannot exist, similarly, a photonic crystal containing a photonic band gap does not allow the propagation of specific frequencies of electromagnetic radiation. This phenomenon results from the destructive Bragg diffraction interference that a wave propagating at a specific frequency will experience because of the periodic change in dielectric permitivity. This gives rise to a variety of optical applications for improving the efficiency and effectiveness of opto-electronicmore » devices. These applications are reviewed later. Several methods are currently used to fabricate photonic crystals, which are also discussed in detail. This research involves a layer-by-layer micro-transfer molding ({mu}TM) and stacking method to create three-dimensional FCC structures of epoxy or titania. The structures, once reduced significantly in size can be infiltrated with an organic gain media and stacked on a semiconductor to improve the efficiency of an electronically pumped light-emitting diode. Photonic band gap structures have been proven to effectively create a band gap for certain frequencies of electro-magnetic radiation in the microwave and near-infrared ranges. The objective of this research project was originally two-fold: to fabricate a three dimensional (3-D) structure of a size scaled to prohibit electromagnetic propagation within the visible wavelength range, and then to characterize that structure using laser dye emission spectra. As a master mold has not yet been developed for the micro transfer molding technique in the visible range, the research was limited to scaling down the length scale as much as possible with the current available technology and characterizing these structures with other methods.« less

  11. Energy band gaps in graphene nanoribbons with corners

    NASA Astrophysics Data System (ADS)

    Szczȩśniak, Dominik; Durajski, Artur P.; Khater, Antoine; Ghader, Doried

    2016-05-01

    In the present paper, we study the relation between the band gap size and the corner-corner length in representative chevron-shaped graphene nanoribbons (CGNRs) with 120° and 150° corner edges. The direct physical insight into the electronic properties of CGNRs is provided within the tight-binding model with phenomenological edge parameters, developed against recent first-principle results. We show that the analyzed CGNRs exhibit inverse relation between their band gaps and corner-corner lengths, and that they do not present a metal-insulator transition when the chemical edge modifications are introduced. Our results also suggest that the band gap width for the CGNRs is predominantly governed by the armchair edge effects, and is tunable through edge modifications with foreign atoms dressing.

  12. Microhabitat Conditions in Wyoming's Sage-Grouse Core Areas: Effects on Nest Site Selection and Success.

    PubMed

    Dinkins, Jonathan B; Smith, Kurt T; Beck, Jeffrey L; Kirol, Christopher P; Pratt, Aaron C; Conover, Michael R

    2016-01-01

    The purpose of our study was to identify microhabitat characteristics of greater sage-grouse (Centrocercus urophasianus) nest site selection and survival to determine the quality of sage-grouse habitat in 5 regions of central and southwest Wyoming associated with Wyoming's Core Area Policy. Wyoming's Core Area Policy was enacted in 2008 to reduce human disturbance near the greatest densities of sage-grouse. Our analyses aimed to assess sage-grouse nest selection and success at multiple micro-spatial scales. We obtained microhabitat data from 928 sage-grouse nest locations and 819 random microhabitat locations from 2008-2014. Nest success was estimated from 924 nests with survival data. Sage-grouse selected nests with greater sagebrush cover and height, visual obstruction, and number of small gaps between shrubs (gap size ≥0.5 m and <1.0 m), while selecting for less bare ground and rock. With the exception of more small gaps between shrubs, we did not find any differences in availability of these microhabitat characteristics between locations within and outside of Core Areas. In addition, we found little supporting evidence that sage-grouse were selecting different nest sites in Core Areas relative to areas outside of Core. The Kaplan-Meier nest success estimate for a 27-day incubation period was 42.0% (95% CI: 38.4-45.9%). Risk of nest failure was negatively associated with greater rock and more medium-sized gaps between shrubs (gap size ≥2.0 m and <3.0 m). Within our study areas, Wyoming's Core Areas did not have differing microhabitat quality compared to outside of Core Areas. The close proximity of our locations within and outside of Core Areas likely explained our lack of finding differences in microhabitat quality among locations within these landscapes. However, the Core Area Policy is most likely to conserve high quality habitat at larger spatial scales, which over decades may have cascading effects on microhabitat quality available between areas within and outside of Core Areas.

  13. Mechanics of Fluid-Filled Interstitial Gaps. II. Gap Characteristics in Xenopus Embryonic Ectoderm.

    PubMed

    Barua, Debanjan; Parent, Serge E; Winklbauer, Rudolf

    2017-08-22

    The ectoderm of the Xenopus embryo is permeated by a network of channels that appear in histological sections as interstitial gaps. We characterized this interstitial space by measuring gap sizes, angles formed between adjacent cells, and curvatures of cell surfaces at gaps. From these parameters, and from surface-tension values measured previously, we estimated the values of critical mechanical variables that determine gap sizes and shapes in the ectoderm, using a general model of interstitial gap mechanics. We concluded that gaps of 1-4 μm side length can be formed by the insertion of extracellular matrix fluid at three-cell junctions such that cell adhesion is locally disrupted and a tension difference between cell-cell contacts and the free cell surface at gaps of 0.003 mJ/m 2 is generated. Furthermore, a cell hydrostatic pressure of 16.8 ± 1.7 Pa and an interstitial pressure of 3.9 ± 3.6 Pa, relative to the central blastocoel cavity of the embryo, was found to be consistent with the observed gap size and shape distribution. Reduction of cell adhesion by the knockdown of C-cadherin increased gap volume while leaving intracellular and interstitial pressures essentially unchanged. In both normal and adhesion-reduced ectoderm, cortical tension of the free cell surfaces at gaps does not return to the high values characteristic of the free surface of the whole tissue. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  14. Approaching the resolution limit of W-C nano-gaps using focused ion beam chemical vapour deposition

    NASA Astrophysics Data System (ADS)

    Dai, Jun; Chang, Hui; Maeda, Etsuo; Warisawa, Shin'ichi; Kometani, Reo

    2018-01-01

    Nano-gaps are fundamental building blocks for nanochannels, plasmonic nanostructures and superconducting Josephson junctions. We present a systematic study on the formation mechanism and resolution limit of W-C nano-gaps fabricated using focused-ion-beam chemical vapour deposition (FIB-CVD). First, the deposition size of the nanostructures is evaluated. The size averaged over 100 dots is 32 nm at FWHM. Line and space are also fabricated with the smallest size, having a spacing of only 5 nm at FWHM. Then, a model is developed to study the formation mechanism and provides the design basis for W-C nano-gaps. Both experimental and simulation results reveal that the shrinkage of W-C nano-gaps is accelerated as the Gaussian parts of the nano-wire profiles overlap. A Nano-gap with a length of 5 nm and height difference as high as 42 nm is synthesized. We believe that FIB-CVD opens avenues for novel functional nanodevices that can be potentially used for biosensing, photodetecting, or quantum computing.

  15. Echolocation behaviour of the big brown bat (Eptesicus fuscus) in an obstacle avoidance task of increasing difficulty.

    PubMed

    Sändig, Sonja; Schnitzler, Hans-Ulrich; Denzinger, Annette

    2014-08-15

    Four big brown bats (Eptesicus fuscus) were challenged in an obstacle avoidance experiment to localize vertically stretched wires requiring progressively greater accuracy by diminishing the wire-to-wire distance from 50 to 10 cm. The performance of the bats decreased with decreasing gap size. The avoidance task became very difficult below a wire separation of 30 cm, which corresponds to the average wingspan of E. fuscus. Two of the bats were able to pass without collisions down to a gap size of 10 cm in some of the flights. The other two bats only managed to master gap sizes down to 20 and 30 cm, respectively. They also performed distinctly worse at all other gap sizes. With increasing difficulty of the task, the bats changed their flight and echolocation behaviour. Especially at gap sizes of 30 cm and below, flight paths increased in height and flight speed was reduced. In addition, the bats emitted approach signals that were arranged in groups. At all gap sizes, the largest numbers of pulses per group were observed in the last group before passing the obstacle. The more difficult the obstacle avoidance task, the more pulses there were in the groups and the shorter the within-group pulse intervals. In comparable situations, the better-performing bats always emitted groups with more pulses than the less well-performing individuals. We hypothesize that the accuracy of target localization increases with the number of pulses per group and that each group is processed as a package. © 2014. Published by The Company of Biologists Ltd.

  16. Bridging the gaps: An overview of wood across time and space in diverse rivers

    NASA Astrophysics Data System (ADS)

    Wohl, Ellen

    2017-02-01

    Nearly 50 years of research focused on large wood (LW) in rivers provide a basis for understanding how wood enters rivers; how wood decays, breaks, and is transported downstream; and how at least temporarily stable wood influences channel geometry, fluxes of water, sediment, and organic matter, and the abundance and diversity of aquatic and riparian organisms. Field-based studies have led to qualitative conceptual models and to numerical stimulations of river processes involving wood. Numerous important gaps remain, however, in our understanding of wood dynamics. The majority of research on wood in rivers focuses on small- to medium-sized rivers, defined using the ratio of wood piece size to channel width as channels narrower than the locally typical wood-piece length (small) and slightly narrower than the longer wood pieces present (medium). Although diverse geographic regions and biomes are represented by one or a few studies in each region, the majority of research comes from perennial rivers draining temperate conifer forests. Regional syntheses most commonly focus on the Pacific Northwest region of North America where most of these studies originate. Consequently, significant gaps in our understanding include lack of knowledge of wood-related processes in large rivers, dryland rivers, and rivers of the high and low latitudes. Using a wood budget as an organizing framework, this paper identifies other gaps related to wood recruitment, transport, storage, and how beavers influence LW dynamics. With respect to wood recruitment, we lack information on the relative importance of mass tree mortality and transport of buried or surficial downed wood from the floodplain into the channel in diverse settings. Knowledge gaps related to wood transport include transport distances of LW and thresholds for LW mobility in small to medium rivers. With respect to wood storage, we have limited data on longitudinal trends in LW loads within unaltered large and great rivers and on fluctuations in LW load over time intervals greater than a few years. Other knowledge gaps relate to physical and ecological effects of wood, including the magnitude of flow resistance caused by LW; patterns of wood-related sediment storage for diverse river sizes and channel geometry; quantification of channel-floodplain-LW interactions; and potential threshold effects of LW in relation to physical processes and biotic communities. Finally, knowledge gaps are related to management of large wood and river corridors, including understanding the consequences of enormous historical reductions in LW load in rivers through the forested portions of the temperate zone; and how to effectively reintroduce and manage existing LW in river corridors, which includes enhancing public understanding of the importance of LW. Addressing these knowledge gaps requires more case studies from diverse rivers, as well as more syntheses and metadata analyses.

  17. Formation of anisotropic hollow-fiber membranes via thermally induced phase separation

    NASA Astrophysics Data System (ADS)

    Batarseh, Melanie Turkett

    The goal of this research project was to study the formation of anisotropic hollow fiber membranes via thermally induced phase separation (TIPS). This objective included developing a fundamental knowledge of the factors that contribute to anisotropy and studying how anisotropy can be controlled via operational parameters in hollow fiber spinning. The objective was met by creating a model to simulate the mass and heat transfer in the fiber wall during spinning and by experimentally varying spinning parameters and observing the affect on the membrane microstructure. The TIPS membrane formation process consists of forming a homogeneous solution of polymer and diluent and extruding the solution through a spinneret to form a hollow fiber. The fiber is cooled in an air gap followed by a quench bath, which results in phase separation of the solution into a diluent-rich phase dispersed in a continuous polymer-rich liquid phase. The diluent-rich domains grow in size until the polymer-rich phase crystallizes. Then the diluent is removed, and the spaces left behind become the pores of the microporous membrane. Therefore, the size of the diluent-rich domains when the polymer solidifies is related to the size of the pores in the finished membrane. Increasing the polymer concentration of the homogeneous solution or increasing the cooling rate of the phase separated solution decreases the domain size, and thus decreases pore size. An anisotropic membrane, which has a gradation of pore size from small pores at the feed-side to large pores at the permeate-side, can be formed by creating a concentration gradient or a cooling rate gradient across the membrane. In hollow fiber spinning, a concentration gradient can be created by allowing diluent to evaporate from the outside wall of the fiber in the air gap, and a cooling rate gradient can be created by quenching the fiber in a liquid bath. The spinning model calculates concentration and temperature profiles across the hollow fiber wall over time. The model results indicate that spinning temperature, air velocity, and air gap length have a significant effect on the concentration profile in the wall, and spinning temperature and quench temperature have a significant effect on the cooling rate profile. Experimental results indicate that increasing the air gap length from 5 to 50 cm. or increasing the quench temperature from 298 to 323 K has a significant effect on the anisotropic structure of the hollow fiber.

  18. Analysis of Automated Aircraft Conflict Resolution and Weather Avoidance

    NASA Technical Reports Server (NTRS)

    Love, John F.; Chan, William N.; Lee, Chu Han

    2009-01-01

    This paper describes an analysis of using trajectory-based automation to resolve both aircraft and weather constraints for near-term air traffic management decision making. The auto resolution algorithm developed and tested at NASA-Ames to resolve aircraft to aircraft conflicts has been modified to mitigate convective weather constraints. Modifications include adding information about the size of a gap between weather constraints to the routing solution. Routes that traverse gaps that are smaller than a specific size are not used. An evaluation of the performance of the modified autoresolver to resolve both conflicts with aircraft and weather was performed. Integration with the Center-TRACON Traffic Management System was completed to evaluate the effect of weather routing on schedule delays.

  19. Air Gaps, Size Effect, and Corner-Turning in Ambient LX-17

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Souers, P C; Hernandez, A; Cabacungen, C

    2007-05-30

    Various ambient measurements are presented for LX-17. The size (diameter) effect has been measured with copper and Lucite confinement, where the failure radii are 4.0 and 6.5 mm, respectively. The air well corner-turn has been measured with an LX-07 booster, and the dead-zone results are comparable to the previous TATB-boosted work. Four double cylinders have been fired, and dead zones appear in all cases. The steel-backed samples are faster than the Lucite-backed samples by 0.6 {micro}s. Bare LX-07 and LX-17 of 12.7 mm-radius were fired with air gaps. Long acceptor regions were used to truly determine if detonation occurred ormore » not. The LX-07 crossed at 10 mm with a slight time delay. Steady state LX-17 crossed at 3.5 mm gap but failed to cross at 4.0 mm. LX-17 with a 12.7 mm run after the booster crossed a 1.5 mm gap but failed to cross 2.5 mm. Timing delays were measured where the detonation crossed the gaps. The Tarantula model is introduced as embedded in the Linked Cheetah V4.0 reactive flow code at 4 zones/mm. Tarantula has four pressure regions: off, initiation, failure and detonation. A report card of 25 tests run with the same settings on LX-17 is shown, possibly the most extensive simultaneous calibration yet tried with an explosive. The physical basis of some of the input parameters is considered.« less

  20. Band gap in tubular pillar phononic crystal plate.

    PubMed

    Shu, Fengfeng; Liu, Yongshun; Wu, Junfeng; Wu, Yihui

    2016-09-01

    In this paper, a phononic crystal (PC) plate with tubular pillars is presented and investigated. The band structures and mode displacement profiles are calculated by using finite element method. The result shows that a complete band gap opens when the ratio of the pillar height to the plate thickness is about 1.6. However, for classic cylinder pillar structures, a band gap opens when the ratio is equal or greater than 3. A tubular pillar design with a void room in it enhances acoustic multiple scattering and gives rise to the opening of the band gap. In order to verify it, a PC structure with double tubular pillars different in size (one within the other) is introduced and a more than 2times band gap enlargement is observed. Furthermore, the coupling between the resonant mode and the plate mode around the band gap is characterized, as well as the effect of the geometrical parameters on the band gap. The behavior of such structure could be utilized to design a pillar PC with stronger structural stability and to enlarge band gaps. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Fishing and temperature effects on the size structure of exploited fish stocks.

    PubMed

    Tu, Chen-Yi; Chen, Kuan-Ting; Hsieh, Chih-Hao

    2018-05-08

    Size structure of fish stock plays an important role in maintaining sustainability of the population. Size distribution of an exploited stock is predicted to shift toward small individuals caused by size-selective fishing and/or warming; however, their relative contribution remains relatively unexplored. In addition, existing analyses on size structure have focused on univariate size-based indicators (SBIs), such as mean length, evenness of size classes, or the upper 95-percentile of the length frequency distribution; these approaches may not capture full information of size structure. To bridge the gap, we used the variation partitioning approach to examine how the size structure (composition of size classes) responded to fishing, warming and the interaction. We analyzed 28 exploited stocks in the West US, Alaska and North Sea. Our result shows fishing has the most prominent effect on the size structure of the exploited stocks. In addition, the fish stocks experienced higher variability in fishing is more responsive to the temperature effect in their size structure, suggesting that fishing may elevate the sensitivity of exploited stocks in responding to environmental effects. The variation partitioning approach provides complementary information to univariate SBIs in analyzing size structure.

  2. Computational reconstruction and fluid dynamics of in vivo thrombi from the microcirculation

    NASA Astrophysics Data System (ADS)

    Mirramezani, Mehran; Tomaiuolo, Maurizio; Stalker, Timothy; Shadden, Shawn

    2016-11-01

    Blood flow and mass transfer can have significant effects on clot growth, composition and stability during the hemostatic response. We integrate in vivo data with CFD to better understand transport processes during clot formation. By utilizing electron microscopy, we reconstructed the 3D thrombus structure formed after a penetrating laser injury in a mouse cremaster muscle. Random jammed packing is used to reconstruct the microenvironment of the platelet aggregate, with platelets modeled as ellipsoids. In our 3D model, Stokes flow is simulated to obtain the velocity field in the explicitly meshed gaps between platelets and the lumen surrounding the thrombus. Based on in vivo data, a clot is composed of a core of highly activated platelets covered by a shell of loosely adherent platelets. We studied the effects of clot size (thrombus growth), gap distribution (consolidation), and vessel blood flow rate on mean intrathrombus velocity. The results show that velocity is smaller in the core as compared to the shell, potentially enabling higher concentration of agonists in the core contributing to its activation. In addition, our results do not appear to be sensitive to the geometry of the platelets, but rather gap size plays more important role on intrathrombus velocity and transport.

  3. A systematic literature review on the efficacy–effectiveness gap: comparison of randomized controlled trials and observational studies of glucose-lowering drugs

    PubMed Central

    Ankarfeldt, Mikkel Z; Adalsteinsson, Erpur; Groenwold, Rolf HH; Ali, M Sanni; Klungel, Olaf H

    2017-01-01

    Aim To identify a potential efficacy–effectiveness gap and possible explanations (drivers of effectiveness) for differences between results of randomized controlled trials (RCTs) and observational studies investigating glucose-lowering drugs. Methods A systematic literature review was conducted in English language articles published between 1 January, 2000 and 31 January, 2015 describing either RCTs or observational studies comparing glucagon-like peptide-1 analogs (GLP-1) with insulin or comparing dipeptidyl peptidase-4 inhibitors (DPP-4i) with sulfonylurea, all with change in glycated hemoglobin (HbA1c) as outcome. Medline, Embase, Current Content, and Biosis were searched. Information on effect estimates, baseline characteristics of the study population, publication year, study duration, and number of patients, and for observational studies, characteristics related to confounding adjustment and selection- and information bias were extracted. Results From 312 hits, 11 RCTs and 7 observational studies comparing GLP-1 with insulin, and from 474 hits, 16 RCTs and 4 observational studies comparing DPP-4i with sulfonylurea were finally included. No differences were observed in baseline characteristics of the study populations (age, sex, body mass index, time since diagnosis of type 2 diabetes mellitus, and HbA1c) or effect sizes across study designs. Mean effect sizes ranged from −0.43 to 0.91 and from −0.80 to 1.13 in RCTs and observational studies, respectively, comparing GLP-1 with insulin, and from −0.13 to 2.70 and −0.20 to 0.30 in RCTs and observational studies, respectively, comparing DPP-4i and sulfonylurea. Generally, the identified observational studies held potential flaws with regard to confounding adjustment and selection- and information bias. Conclusions Neither potential drivers of effectiveness nor an efficacy–effectiveness gap were identified. However, the limited number of studies and potential problems with confounding adjustment, selection- and information bias in the observational studies, may have hidden a true efficacy-effectiveness gap. PMID:28176959

  4. Asymmetrical Deterministic Lateral Displacement Gaps for Dual Functions of Enhanced Separation and Throughput of Red Blood Cells

    PubMed Central

    Zeming, Kerwin Kwek; Salafi, Thoriq; Chen, Chia-Hung; Zhang, Yong

    2016-01-01

    Deterministic lateral displacement (DLD) method for particle separation in microfluidic devices has been extensively used for particle separation in recent years due to its high resolution and robust separation. DLD has shown versatility for a wide spectrum of applications for sorting of micro particles such as parasites, blood cells to bacteria and DNA. DLD model is designed for spherical particles and efficient separation of blood cells is challenging due to non-uniform shape and size. Moreover, separation in sub-micron regime requires the gap size of DLD systems to be reduced which exponentially increases the device resistance, resulting in greatly reduced throughput. This paper shows how simple application of asymmetrical DLD gap-size by changing the ratio of lateral-gap (GL) to downstream-gap (GD) enables efficient separation of RBCs without greatly restricting throughput. This method reduces the need for challenging fabrication of DLD pillars and provides new insight to the current DLD model. The separation shows an increase in DLD critical diameter resolution (separate smaller particles) and increase selectivity for non-spherical RBCs. The RBCs separate better as compared to standard DLD model with symmetrical gap sizes. This method can be applied to separate non-spherical bacteria or sub-micron particles to enhance throughput and DLD resolution. PMID:26961061

  5. Asymmetrical Deterministic Lateral Displacement Gaps for Dual Functions of Enhanced Separation and Throughput of Red Blood Cells.

    PubMed

    Zeming, Kerwin Kwek; Salafi, Thoriq; Chen, Chia-Hung; Zhang, Yong

    2016-03-10

    Deterministic lateral displacement (DLD) method for particle separation in microfluidic devices has been extensively used for particle separation in recent years due to its high resolution and robust separation. DLD has shown versatility for a wide spectrum of applications for sorting of micro particles such as parasites, blood cells to bacteria and DNA. DLD model is designed for spherical particles and efficient separation of blood cells is challenging due to non-uniform shape and size. Moreover, separation in sub-micron regime requires the gap size of DLD systems to be reduced which exponentially increases the device resistance, resulting in greatly reduced throughput. This paper shows how simple application of asymmetrical DLD gap-size by changing the ratio of lateral-gap (GL) to downstream-gap (GD) enables efficient separation of RBCs without greatly restricting throughput. This method reduces the need for challenging fabrication of DLD pillars and provides new insight to the current DLD model. The separation shows an increase in DLD critical diameter resolution (separate smaller particles) and increase selectivity for non-spherical RBCs. The RBCs separate better as compared to standard DLD model with symmetrical gap sizes. This method can be applied to separate non-spherical bacteria or sub-micron particles to enhance throughput and DLD resolution.

  6. Diabetes Increases Cryoinjury Size with Associated Effects on Cx43 Gap Junction Function and Phosphorylation in the Mouse Heart.

    PubMed

    Palatinus, Joseph A; Gourdie, Robert G

    2016-01-01

    Diabetic patients develop larger myocardial infarctions and have an increased risk of death following a heart attack. The poor response to myocardial injury in the diabetic heart is likely related to the many metabolic derangements from diabetes that create a poor substrate in general for wound healing, response to injury and infection. Studies in rodents have implicated a role for the gap junction protein connexin 43 (Cx43) in regulating the injury response in diabetic skin wounds. In this study, we sought to determine whether diabetes alters Cx43 molecular interactions or intracellular communication in the cryoinjured STZ type I diabetic mouse heart. We found that epicardial cryoinjury size is increased in diabetic mice and this increase is prevented by preinjury insulin administration. Consistent with these findings, we found that intercellular coupling via gap junctions is decreased after insulin administration in diabetic and nondiabetic mice. This decrease in coupling is associated with a concomitant increase in phosphorylation of Cx43 at serine 368, a residue known to decrease channel conductance. Taken together, our results suggest that insulin regulates both gap junction-mediated intercellular communication and injury propagation in the mouse heart.

  7. On the size and temperature dependence of the energy gap in cadmium-selenide quantum dots embedded in fluorophosphate glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lipatova, Zh. O., E-mail: zluka-yo@mail.ru; Kolobkova, E. V.; Babkina, A. N.

    2017-03-15

    The temperature and size dependences of the energy gap in CdSe quantum dots with diameters of 2.4, 4.0, and 5.2 nm embedded in fluorophosphate glasses are investigated. It is shown that the temperature coefficient of the band gap dE{sub g}/dT in the quantum dots differs from the bulk value and depends strictly on the dot size. It is found that, furthermore, the energy of each transition in these quantum dots is characterized by an individual temperature coefficient dE/dT.

  8. Mind the gap: the minimal detectable separation distance between two objects during active electrolocation.

    PubMed

    Fechler, K; Holtkamp, D; Neusel, G; Sanguinetti-Scheck, J I; Budelli, R; von der Emde, G

    2012-12-01

    In a food-rewarded two-alternative forced-choice procedure, it was determined how well the weakly electric elephantnose fish Gnathonemus petersii can sense gaps between two objects, some of which were placed in front of complex backgrounds. The results show that at close distances, G. petersii is able to detect gaps between two small metal cubes (2 cm × 2 cm × 2 cm) down to a width of c. 1·5 mm. When larger objects (3 cm × 3 cm × 3 cm) were used, gaps with a width of 2-3 mm could still be detected. Discrimination performance was better (c. 1 mm gap size) when the objects were placed in front of a moving background consisting of plastic stripes or plant leaves, indicating that movement in the environment plays an important role for object identification. In addition, the smallest gap size that could be detected at increasing distances was determined. A linear relationship between object distance and gap size existed. Minimal detectable gap sizes increased from c. 1·5 mm at a distance of 1 cm, to 20 mm at a distance of 7 cm. Measurements and simulations of the electric stimuli occurring during gap detection revealed that the electric images of two close objects influence each other and superimpose. A large gap of 20 mm between two objects induced two clearly separated peaks in the electric image, while a 2 mm gap caused just a slight indentation in the image. Therefore, the fusion of electric images limits spatial resolution during active electrolocation. Relative movements either between the fish and the objects or between object and background might improve spatial resolution by accentuating the fine details of the electric images. © 2012 The Authors. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.

  9. The propagation of light through fibre reinforced composites

    NASA Astrophysics Data System (ADS)

    Sargent, J. P.; Upstill, C.

    1986-06-01

    Features of a generalized technique for detecting and measuring submicron gaps between the fiber and the matrix in low fiber-volume fraction composite materials are outlined. Sample microphotographs are provided to illustrate visual evidence of the presence of water and air pockets at the fiber-matrix interface, and the differences in refractive index of composite material components and impurities such as oils. The imagery were obtained using a laser to illumine glass fiber reinforced epoxy samples. Attention is given to the geometric optics, evanescent wave optics and polarization effects associated with interfacial gaps. Finally, the scattering of light by the gaps and the corresponding size of the gaps are described statistically in terms of Rayleigh's theory, noting that only estimates will be possible for the scattering due to limitations of available computing power.

  10. The Ontogeny of Gap Crossing Behaviour in Bornean Orangutans (Pongo pygmaeus wurmbii)

    PubMed Central

    Chappell, Jackie; Phillips, Abigail C.; van Noordwijk, Maria A.; Mitra Setia, Tatang; Thorpe, Susannah K. S.

    2015-01-01

    For orangutans, the largest predominantly arboreal primates, discontinuous canopy presents a particular challenge. The shortest gaps between trees lie between thin peripheral branches, which offer the least stability to large animals. The affordances of the forest canopy experienced by orangutans of different ages however, must vary substantially as adult males are an order of magnitude larger in size than infants during the early stages of locomotor independence. Orangutans have developed a diverse range of locomotor behaviour to cross gaps between trees, which vary in their physical and cognitive demands. The aims of this study were to examine the ontogeny of orangutan gap crossing behaviours and to determine which factors influence the distance orangutans crossed. A non-invasive photographic technique was used to quantify forearm length as a measure of body size. We also recorded locomotor behaviour, support use and the distance crossed between trees. Our results suggest that gap crossing varies with both physical and cognitive development. More complex locomotor behaviours, which utilized compliant trunks and lianas, were used to cross the largest gaps, but these peaked in frequency much earlier than expected, between the ages of 4 and 5 years old, which probably reflects play behaviour to perfect locomotor techniques. Smaller individuals also crossed disproportionately large gaps relative to their size, by using support deformation. Our results suggest that orangutans acquire the full repertoire of gap crossing techniques, including the more cognitively demanding ones, before weaning, but adjust the frequency of the use of these techniques to their increasing body size. PMID:26154061

  11. The Ontogeny of Gap Crossing Behaviour in Bornean Orangutans (Pongo pygmaeus wurmbii).

    PubMed

    Chappell, Jackie; Phillips, Abigail C; van Noordwijk, Maria A; Mitra Setia, Tatang; Thorpe, Susannah K S

    2015-01-01

    For orangutans, the largest predominantly arboreal primates, discontinuous canopy presents a particular challenge. The shortest gaps between trees lie between thin peripheral branches, which offer the least stability to large animals. The affordances of the forest canopy experienced by orangutans of different ages however, must vary substantially as adult males are an order of magnitude larger in size than infants during the early stages of locomotor independence. Orangutans have developed a diverse range of locomotor behaviour to cross gaps between trees, which vary in their physical and cognitive demands. The aims of this study were to examine the ontogeny of orangutan gap crossing behaviours and to determine which factors influence the distance orangutans crossed. A non-invasive photographic technique was used to quantify forearm length as a measure of body size. We also recorded locomotor behaviour, support use and the distance crossed between trees. Our results suggest that gap crossing varies with both physical and cognitive development. More complex locomotor behaviours, which utilized compliant trunks and lianas, were used to cross the largest gaps, but these peaked in frequency much earlier than expected, between the ages of 4 and 5 years old, which probably reflects play behaviour to perfect locomotor techniques. Smaller individuals also crossed disproportionately large gaps relative to their size, by using support deformation. Our results suggest that orangutans acquire the full repertoire of gap crossing techniques, including the more cognitively demanding ones, before weaning, but adjust the frequency of the use of these techniques to their increasing body size.

  12. Synthesis of copper quantum dots by chemical reduction method and tailoring of its band gap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prabhash, P. G.; Nair, Swapna S., E-mail: swapna.s.nair@gmail.com

    Metallic copper nano particles are synthesized with citric acid and CTAB (cetyltrimethylammonium bromide) as surfactant and chlorides as precursors. The particle size and surface morphology are analyzed by High Resolution Transmission Electron Microscopy. The average size of the nano particle is found to be 3 - 10 nm. The optical absorption characteristics are done by UV-Visible spectrophotometer. From the Tauc plots, the energy band gaps are calculated and because of their smaller size the particles have much higher band gap than the bulk material. The energy band gap is changed from 3.67 eV to 4.27 eV in citric acid coatedmore » copper quantum dots and 4.17 eV to 4.52 eV in CTAB coated copper quantum dots.« less

  13. Absorption and emission spectroscopy of individual semiconductor nanostructures

    NASA Astrophysics Data System (ADS)

    McDonald, Matthew P.

    The advent of controllable synthetic methods for the production of semiconductor nanostructures has led to their use in a host of applications, including light-emitting diodes, field effect transistors, sensors, and even television displays. This is, in part, due to the size, shape, and morphologically dependent optical and electrical properties that make this class of materials extremely customizable; wire-, rod- and sphere-shaped nanocrystals are readily synthesized through common wet chemical methods. Most notably, confining the physical dimension of the nanostructure to a size below its Bohr radius (aB) results in quantum confinement effects that increase its optical energy gap. Not only the size, but the shape of a particle can be exploited to tailor its optical and electrical properties. For example, confined CdSe quantum dots (QDs) and nanowires (NWs) of equivalent diameter possess significantly different optical gaps. This phenomenon has been ascribed to electrostatic contributions arising from dielectric screening effects that are more pronounced in an elongated (wire-like) morphology. Semiconducting nanostructures have thus received significant attention over the past two decades. However, surprisingly little work has been done to elucidate their basic photophysics on a single particle basis. What has been done has generally been accomplished through emission-based measurements, and thus does not fully capture the full breadth of these intriguing systems. What is therefore needed then are absorption-based studies that probe the size and shape dependent evolution of nanostructure photophysics. This thesis summarizes the single particle absorption spectroscopy that we have carried out to fill this knowledge gap. Specifically, the diameter-dependent progression of one-dimensional (1D) excitonic states in CdSe NWs has been revealed. This is followed by a study that focuses on the polarization selection rules of 1D excitons within single CdSe NWs. Finally, shape effects are explored by probing the absorption spectra of CdSe nanowires and nanorods of varying length. All experimental studies are complemented by theoretical predictions from an effective mass model that takes electrostatic interactions into account. Thus, this thesis seeks to show the delicate interplay between quantum confinement and dielectric screening effects in single CdSe nanostructures.

  14. An anomalous interlayer exciton in MoS2

    NASA Astrophysics Data System (ADS)

    Azhikodan, Dilna; Nautiyal, Tashi; Shallcross, Sam; Sharma, Sangeeta

    2016-11-01

    The few layer transition metal dichalcogenides are two dimensional materials that have an intrinsic gap of the order of ≈2 eV. The reduced screening in two dimensions implies a rich excitonic physics and, as a consequence, many potential applications in the field of opto-electronics. Here we report that a layer perpendicular electric field, by which the gap size in these materials can be efficiently controlled, generates an anomalous inter-layer exciton whose binding energy is independent of the gap size. We show this originates from the rich gap control and screening physics of TMDCs in a bilayer geometry: gating the bilayer acts on one hand to increase intra-layer screening by reducing the gap and, on the other hand, to decrease the inter-layer screening by field induced charge depletion. This constancy of binding energy is both a striking exception to the universal reduction in binding energy with gap size that all materials are believed to follow, as well as evidence of a degree of control over inter-layer excitons not found in their well studied intra-layer counterparts.

  15. Characterizing the Variable Dust Permeability of Planet-induced Gaps

    NASA Astrophysics Data System (ADS)

    Weber, Philipp; Benítez-Llambay, Pablo; Gressel, Oliver; Krapp, Leonardo; Pessah, Martin E.

    2018-02-01

    Aerodynamic theory predicts that dust grains in protoplanetary disks will drift radially inward on comparatively short timescales. In this context, it has long been known that the presence of a gap opened by a planet can significantly alter the dust dynamics. In this paper, we carry out a systematic study employing long-term numerical simulations aimed at characterizing the critical particle size for retention outside a gap as a function of particle size, as well as various key parameters defining the protoplanetary disk model. To this end, we perform multifluid hydrodynamical simulations in two dimensions, including different dust species, which we treat as pressureless fluids. We initialize the dust outside of the planet’s orbit and study under which conditions dust grains are able to cross the gap carved by the planet. In agreement with previous work, we find that the permeability of the gap depends both on dust dynamical properties and the gas disk structure: while small dust follows the viscously accreting gas through the gap, dust grains approaching a critical size are progressively filtered out. Moreover, we introduce and compute a depletion factor that enables us to quantify the way in which higher viscosity, smaller planet mass, or a more massive disk can shift this critical size to larger values. Our results indicate that gap-opening planets may act to deplete the inner reaches of protoplanetary disks of large dust grains—potentially limiting the accretion of solids onto forming terrestrial planets.

  16. Modeling Plasma Formation in a Micro-gap at Microwave Frequency

    NASA Astrophysics Data System (ADS)

    Bowman, Arthur; Remillard, Stephen

    2013-03-01

    In the presence of a strong electric field, gas molecules become ionized, forming a plasma. The study of this dielectric breakdown at microwave frequency has important applications in improving the operation of radio frequency (RF) devices, where the high electric fields present in small gaps can easily ionize gases like air. A cone and tuner resonant structure was used to induce breakdown of diatomic Nitrogen in adjustable micro-gaps ranging from 13 to 1,156 μm. The electric field for plasma formation exhibited strong pressure dependence in the larger gap sizes, as predicted by previous theoretical and experimental work. Pressure is proportional to the frequency of collision between electrons and molecules, which increases with pressure when the gap is large, but levels off in the micro-gap region. A separate model of the breakdown electric field based on the characteristic diffusion length of the plasma also fit the data poorly for these smaller gap sizes. This may be explained by a hypothesis that dielectric breakdown at and below the 100 μm gap size occurs outside the gap, an argument that is supported by the observation of very high breakdown threshold electric fields in this region. Optical emissions revealed that vibrational and rotational molecular transitions of the first positive electronic system are suppressed in micro-gaps, indicating that transitions into the molecular ground state do not occur in micro-gap plasmas. Acknowledgements: National Science Foundation under NSF-REU Grant No. PHY/DMR-1004811, the Provost's Office of Hope College, and the Hope College Division of Natural and Applied Sciences.

  17. Small band gap superlattices as intrinsic long wavelength infrared detector materials

    NASA Technical Reports Server (NTRS)

    Smith, Darryl L.; Mailhiot, C.

    1990-01-01

    Intrinsic long wavelength (lambda greater than or equal to 10 microns) infrared (IR) detectors are currently made from the alloy (Hg, Cd)Te. There is one parameter, the alloy composition, which can be varied to control the properties of this material. The parameter is chosen to set the band gap (cut-off wavelength). The (Hg, Cd)Te alloy has the zincblend crystal structure. Consequently, the electron and light-hole effective masses are essentially inversely proportional to the band gap. As a result, the electron and light-hole effective masses are very small (M sub(exp asterisk)/M sub o approx. M sub Ih/M sub o approx. less than 0.01) whereas the heavy-hole effective mass is ordinary size (M sub hh(exp asterisk)/M sub o approx. 0.4) for the alloy compositions required for intrinsic long wavelength IR detection. This combination of effective masses leads to rather easy tunneling and relatively large Auger transition rates. These are undesirable characteristics, which must be designed around, of an IR detector material. They follow directly from the fact that (Hg, Cd)Te has the zincblend crystal structure and a small band gap. In small band gap superlattices, such as HgTe/CdTe, In(As, Sb)/InSb and InAs/(Ga,In)Sb, the band gap is determined by the superlattice layer thicknesses as well as by the alloy composition (for superlattices containing an alloy). The effective masses are not directly related to the band gap and can be separately varied. In addition, both strain and quantum confinement can be used to split the light-hole band away from the valence band maximum. These band structure engineering options can be used to reduce tunneling probabilities and Auger transition rates compared with a small band gap zincblend structure material. Researchers discuss the different band structure engineering options for the various classes of small band gap superlattices.

  18. The relationship between air layers and evaporative resistance of male Chinese ethnic clothing.

    PubMed

    Wang, Faming; Peng, Hui; Shi, Wen

    2016-09-01

    In this study, the air layer distribution and evaporative resistances of 39 sets of male Chinese ethnic clothing were investigated using a sweating thermal manikin and the three-dimensional (3D) body scanning technique. Relationships between the evaporative resistance and air layers (i.e., air gap thickness and air volume) were explored. The results demonstrated that the clothing total evaporative resistance increases with the increasing air gap size/air volume, but the rate of increase gradually decreases as the mean air gap size or the total air volume becomes larger. The clothing total evaporative resistance reaches its maximum when the average air gap size and the total air volume are 41.6 mm and 69.9 dm(3), respectively. Similar general trends were also found between local mean air gap size and clothing local evaporative resistance at different body parts. However, different body parts show varied rates of increase and decrease in the local evaporative resistance. The research findings provide a comprehensive database for predicting overall and local human thermal comfort while wearing male Chinese ethnic clothing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Gate-independent energy gap in noncovalently intercalated bilayer graphene on SiC(0001)

    NASA Astrophysics Data System (ADS)

    Li, Yuanchang

    2016-12-01

    Our first-principles calculations show that an energy gap around 0.12-0.25 eV can be engineered in epitaxial graphene on SiC(0001) through the noncovalent intercalation of transition or alkali metals but originated from the distinct mechanisms. The former is attributed to the combined effects of a metal-induced perpendicular electric field and interaction, while the latter is solely attributed to the built-in electric field. A great advantage of this scheme is that the gap size is almost independent of the gate voltage up to 1 V/nm, thus reserving the electric means to tune the Fermi level of graphene when configured as field-effect transistors. Given the recent progress in experimental techniques for intercalated graphene, our findings provide a practical way to incorporate graphene in the current semiconductor industry.

  20. Effect of synthesis method on structure, band gap and surface morphology of delafossite oxides, CuAlO2 and CuFeO2

    NASA Astrophysics Data System (ADS)

    Shah, Aadil Abass; Azam, Ameer

    2018-04-01

    In this research work we have reported the synthesis of two different delafossites, CuAlO2 and CuFeO2 by two different synthesis methods viz hydrothermal method and the combustion method. The effect of synthesis on structure, band gap and morphology of the synthesized delafossites was carried out using various techniques. The phase and structure of the synthesized delafossites were studied and confirmed using X-ray diffraction and the crystallite size was calculated. FTIR measurements showed the presence of different stretching modes and functional groups in the synthesized oxides. The surface morphology was studied using the scanning electron microscopy. The band gap of the synthesized delafossite oxides was found to be in the range of 2.8 and 3.3 eV.

  1. Visualizing the effect of dynamin inhibition on annular gap vesicle formation and fission

    PubMed Central

    Nickel, Beth; Boller, Marie; Schneider, Kimberly; Shakespeare, Teresa; Gay, Vernon; Murray, Sandra A.

    2013-01-01

    Summary Although gap junction plaque assembly has been extensively studied, mechanisms involved in plaque disassembly are not well understood. Disassembly involves an internalization process in which annular gap junction vesicles are formed. These vesicles undergo fission, but the molecular machinery needed for these fissions has not been described. The mechanoenzyme dynamin has been previously demonstrated to play a role in gap junction plaque internalization. To investigate the role of dynamin in annular gap junction vesicle fission, immunocytochemical, time-lapse and transmission electron microscopy were used to analyze SW-13 adrenocortical cells in culture. Dynamin was demonstrated to colocalize with gap junction plaques and vesicles. Dynamin inhibition, by siRNA knockdown or treatment with the dynamin GTPase inhibitor dynasore, increased the number and size of gap junction ‘buds’ suspended from the gap junction plaques. Buds, in control populations, were frequently released to form annular gap junction vesicles. In dynamin-inhibited populations, the buds were larger and infrequently released and thus fewer annular gap junction vesicles were formed. In addition, the number of annular gap junction vesicle fissions per hour was reduced in the dynamin-inhibited populations. We believe this to be the first report addressing the details of annular gap junction vesicle fissions and demonstrating a role of dynamin in this process. This information is crucial for elucidating the relationship between gap junctions, membrane regulation and cell behavior. PMID:23591819

  2. Visualizing the effect of dynamin inhibition on annular gap vesicle formation and fission.

    PubMed

    Nickel, Beth; Boller, Marie; Schneider, Kimberly; Shakespeare, Teresa; Gay, Vernon; Murray, Sandra A

    2013-06-15

    Although gap junction plaque assembly has been extensively studied, mechanisms involved in plaque disassembly are not well understood. Disassembly involves an internalization process in which annular gap junction vesicles are formed. These vesicles undergo fission, but the molecular machinery needed for these fissions has not been described. The mechanoenzyme dynamin has been previously demonstrated to play a role in gap junction plaque internalization. To investigate the role of dynamin in annular gap junction vesicle fission, immunocytochemical, time-lapse and transmission electron microscopy were used to analyze SW-13 adrenocortical cells in culture. Dynamin was demonstrated to colocalize with gap junction plaques and vesicles. Dynamin inhibition, by siRNA knockdown or treatment with the dynamin GTPase inhibitor dynasore, increased the number and size of gap junction 'buds' suspended from the gap junction plaques. Buds, in control populations, were frequently released to form annular gap junction vesicles. In dynamin-inhibited populations, the buds were larger and infrequently released and thus fewer annular gap junction vesicles were formed. In addition, the number of annular gap junction vesicle fissions per hour was reduced in the dynamin-inhibited populations. We believe this to be the first report addressing the details of annular gap junction vesicle fissions and demonstrating a role of dynamin in this process. This information is crucial for elucidating the relationship between gap junctions, membrane regulation and cell behavior.

  3. Herbivorous insect response to group selection cutting in a southeastern bottomland hardwood forest.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael D. Ulyshen; James L. Hanula; Scott Horn

    2005-04-01

    ABSTRACT Malaise and pitfall traps were used to sample herbivorous insects in canopy gaps created by group-selection cutting in a bottomland hardwood forest in South Carolina. The traps were placed at the centers, edges, and in the forest adjacent to gaps of different sizes (0.13, 0.26, and 0.50 ha) and ages (1 and 7 yr old) during four sampling periods in 2001. Overall, the abundance and species richness of insect herbivores were greater at the centers of young gaps than at the edge of young gaps or in the forest surrounding young gaps. There were no differences in abundance ormore » species richness among old gap locations (i.e., centers, edges, and forest), and we collected significantly more insects in young gaps than old gaps. The insect communities in old gaps were more similar to the forests surrounding them than young gap communities were to their respective forest locations, but the insect communities in the two forests locations (surrounding young and old gaps) had the highest percent similarity of all. Although both abundance and richness increased in the centers of young gaps with increasing gap size, these differences were not significant.Weattribute the increased numbers of herbivorous insects to the greater abundance of herbaceous plants available in young gaps.« less

  4. Pattern transfer with stabilized nanoparticle etch masks

    NASA Astrophysics Data System (ADS)

    Hogg, Charles R.; Picard, Yoosuf N.; Narasimhan, Amrit; Bain, James A.; Majetich, Sara A.

    2013-03-01

    Self-assembled nanoparticle monolayer arrays are used as an etch mask for pattern transfer into Si and SiOx substrates. Crack formation within the array is prevented by electron beam curing to fix the nanoparticles to the substrate, followed by a brief oxygen plasma to remove excess carbon. This leaves a dot array of nanoparticle cores with a minimum gap of 2 nm. Deposition and liftoff can transform the dot array mask into an antidot mask, where the gap is determined by the nanoparticle core diameter. Reactive ion etching is used to transfer the dot and antidot patterns into the substrate. The effect of the gap size on the etching rate is modeled and compared with the experimental results.

  5. Impact of the wetting layer thickness on the emission wavelength of direct band gap GeSn/Ge quantum dots

    NASA Astrophysics Data System (ADS)

    Ilahi, Bouraoui; Al-Saigh, Reem; Salem, Bassem

    2017-07-01

    The effects of the wetting layer thickness (t WL) on the electronic properties of direct band gap type-I strained dome shaped Ge(1-x)Sn x quantum dot (QD) embedded in Ge matrix is numerically studied. The emission wavelength and the energy difference between S and P electron levels have been evaluated as a function of t WL for different QD size and composition with constant height to diameter ratio. The emission wavelength is found to be red shifted by increasing the wetting layer thickness, with smaller size QD being more sensitive to the variation of t WL. Furthermore, the minimum Sn composition required to fit the directness criteria is found to reduce by increasing the wetting layer thickness.

  6. Standing in the Gaps: Examining the Effects of Early Gifted Education on Black Girl Achievement in STEM

    ERIC Educational Resources Information Center

    Young, Jemimah L.; Young, Jamaal R.; Ford, Donna Y.

    2017-01-01

    The purpose of this study was to explore the differential effects of access to gifted education on the mathematics and science achievement of fourth-grade Black girls. This study utilized mean difference effect sizes to examine the magnitude of differences between groups. By convention, White girls were included as a comparison group. Girls…

  7. Detecting tree-fall gap disturbances in tropical rain forests with airborne lidar

    NASA Astrophysics Data System (ADS)

    Espirito-Santo, F. D. B.; Saatchi, S.; Keller, M.

    2017-12-01

    Forest inventory studies in the Amazon indicate a large terrestrial carbon sink. However, field plots may fail to represent forest mortality processes at landscape-scales of tropical forests. Here we characterize the frequency distribution of tree-fall gap disturbances in natural forests of tropical forests using a novel combination of forest inventory and airborne lidar data. We quantify gap size frequency distribution along vertical and horizontal dimensions in ten Neotropical forest canopies distributed across gradients of climate and landscapes using airborne lidar measurements. We assessed all canopy openings related to each class of tree height which yields a three dimensional structure of the distribution of canopy gaps. Gap frequency distributions from lidar CHM data vary markedly with minimum gap size thresholds, but we found that natural forest disturbances (tree-fall gaps) follow a power-law distribution with narrow range of power-law exponents (-1.2 to -1.3). These power-law exponents from gap frequency distributions provide insights into how natural forest disturbances are distributed over tropical forest landscape.

  8. Testing glueline continuity in standard-size hardwood blanks by mechanical methods

    Treesearch

    David W. Patterson; Nathan D. Hesterman; Charles Gatchell

    1991-01-01

    Glueline continuity is very critical in standard-size hardwood blanks because the blanks are cut up into small furniture parts, and a small gap in the glueline of a blank may extend across the whole part—or a gap may appear as a crack in the final product. Strength is not a critical factor. The objective of this study was to determine if a gap in a glueline can be...

  9. Biofuel manufacturing from woody biomass: effects of sieve size used in biomass size reduction.

    PubMed

    Zhang, Meng; Song, Xiaoxu; Deines, T W; Pei, Z J; Wang, Donghai

    2012-01-01

    Size reduction is the first step for manufacturing biofuels from woody biomass. It is usually performed using milling machines and the particle size is controlled by the size of the sieve installed on a milling machine. There are reported studies about the effects of sieve size on energy consumption in milling of woody biomass. These studies show that energy consumption increased dramatically as sieve size became smaller. However, in these studies, the sugar yield (proportional to biofuel yield) in hydrolysis of the milled woody biomass was not measured. The lack of comprehensive studies about the effects of sieve size on energy consumption in biomass milling and sugar yield in hydrolysis process makes it difficult to decide which sieve size should be selected in order to minimize the energy consumption in size reduction and maximize the sugar yield in hydrolysis. The purpose of this paper is to fill this gap in the literature. In this paper, knife milling of poplar wood was conducted using sieves of three sizes (1, 2, and 4 mm). Results show that, as sieve size increased, energy consumption in knife milling decreased and sugar yield in hydrolysis increased in the tested range of particle sizes.

  10. Stability of fractional Chern insulators in the effective continuum limit of Harper-Hofstadter bands with Chern number |C |>1

    NASA Astrophysics Data System (ADS)

    Andrews, Bartholomew; Möller, Gunnar

    2018-01-01

    We study the stability of composite fermion fractional quantum Hall states in Harper-Hofstadter bands with Chern number |C |>1 . From composite fermion theory, states are predicted to be found at filling factors ν =r /(k r |C |+1 ),r ∈Z , with k =1 for bosons and k =2 for fermions. Here, we closely analyze these series in both cases, with contact interactions for bosons and nearest-neighbor interactions for (spinless) fermions. In particular, we analyze how the many-body gap scales as the bands are tuned to the effective continuum limit of Chern number |C | bands, realized near flux density nϕ=1 /|C | . Near these points, the Hofstadter model requires large magnetic unit cells that yield bands with perfectly flat dispersion and Berry curvature. We exploit the known scaling of energies in the effective continuum limit in order to maintain a fixed square aspect ratio in finite-size calculations. Based on exact diagonalization calculations of the band-projected Hamiltonian for these lattice geometries, we show that for both bosons and fermions, the vast majority of finite-size spectra yield the ground-state degeneracy predicted by composite fermion theory. For the chosen interactions, we confirm that states with filling factor ν =1 /(k |C |+1 ) are the most robust and yield a clear gap in the thermodynamic limit. For bosons with contact interactions in |C |=2 and |C |=3 bands, our data for the composite fermion states are compatible with a finite gap in the thermodynamic limit. We also report new evidence for gapped incompressible states stabilized for fermions with nearest-neighbor interactions in |C |>1 bands. For cases with a clear gap, we confirm that the thermodynamic limit commutes with the effective continuum limit within finite-size error bounds. We analyze the nature of the correlation functions for the Abelian composite fermion states and find that the correlation functions for |C |>1 states are smooth functions for positions separated by |C | sites along both axes, giving rise to |C| 2 sheets; some of which can be related by inversion symmetry. We also comment on two cases which are associated with a bosonic integer quantum Hall effect (BIQHE): For ν =2 in |C |=1 bands, we find a strong competing state with a higher ground-state degeneracy, so no clear BIQHE is found in the band-projected Hofstadter model; for ν =1 in |C |=2 bands, we present additional data confirming the existence of a BIQHE state.

  11. Evaluation of open-graded friction course mixture : technical assistance report.

    DOT National Transportation Integrated Search

    2004-10-01

    Open-graded friction course (OGFC) is a porous, gap-graded, predominantly single size aggregate bituminous mixture that contains a high percentage of air voids. The high air void content and the open structure of this mix promote the effective draina...

  12. The gastropod Phorcus sauciatus (Koch, 1845) along the north-west Iberian Peninsula: filling historical gaps

    NASA Astrophysics Data System (ADS)

    Rubal, Marcos; Veiga, Puri; Moreira, Juan; Sousa-Pinto, Isabel

    2014-03-01

    The intertidal gastropod Phorcus sauciatus is a subtropical grazer that reaches its northern boundary in the Iberian Peninsula. Distribution of P. sauciatus along the Iberian Peninsula shows, however, gaps in its distribution. The present study was aimed at detecting possible recent changes on the population structure and distribution of P. sauciatus along the north-west Atlantic coast of the Iberian Peninsula. To achieve this aim, we adopted a qualitative sampling design to explore the presence of P. sauciatus along a region within its historical gap of distribution (north Portuguese coast). In addition, a quantitative sampling design was adopted to test hypotheses about the abundance and size structure of P. sauciatus populations among regions with different historical records of its abundance and among shores with different exposure. Results showed that P. sauciatus was present along the north Portuguese coast. However, the abundance and size structure of the newly settled populations were significantly different to those of the historically recorded populations. Moreover, P. sauciatus was able to establish populations at sheltered shores. Considering these results, we propose models for the distribution of P. sauciatus along the Iberian Peninsula, based on effects of sea surface temperature, and to explain the size-frequency of their populations based on their density.

  13. Non-injection synthesis of monodisperse Cu-Fe-S nanocrystals and their size dependent properties.

    PubMed

    Gabka, Grzegorz; Bujak, Piotr; Żukrowski, Jan; Zabost, Damian; Kotwica, Kamil; Malinowska, Karolina; Ostrowski, Andrzej; Wielgus, Ireneusz; Lisowski, Wojciech; Sobczak, Janusz W; Przybylski, Marek; Pron, Adam

    2016-06-01

    It is demonstrated that ternary Cu-Fe-S nanocrystals differing in composition (from Cu-rich to Fe-rich), structure (chalcopyrite or high bornite) and size can be obtained from a mixture of CuCl, FeCl3, thiourea and oleic acid (OA) in oleylamine (OLA) using the heating up procedure. This new preparation method yields the smallest Cu-Fe-S nanocrystals ever reported to date (1.5 nm for the high bornite structure and 2.7 nm for the chalcopyrite structure). A comparative study of nanocrystals of the same composition (Cu1.6Fe1.0S2.0) but different in size (2.7 nm and 9.3 nm) revealed a pronounced quantum confinement effect, confirmed by three different techniques: UV-vis spectroscopy, cyclic voltammetry and Mössbauer spectroscopy. The optical band gap increased from 0.60 eV in the bulk material to 0.69 eV in the nanocrystals of 9.3 nm size and to 1.39 eV in nanocrystals of 2.7 nm size. The same trend was observed in the electrochemical band gaps, derived from cyclic voltammetry studies (band gaps of 0.74 eV and 1.54 eV). The quantum effect was also manifested in Mössbauer spectroscopy by an abrupt change in the spectrum from a quadrupole doublet to a Zeeman sextet below 10 K, which could be interpreted in terms of the well defined energy states in these nanoparticles, resulting from quantum confinement. The Mössbauer spectroscopic data confirmed, in addition to the results of XPS spectroscopy, the co-existence of Fe(iii) and Fe(ii) in the synthesized nanocrystals. The organic shell composition was investigated by NMR (after dissolution of the inorganic core) and IR spectroscopy. Both methods identified oleylamine (OLA) and 1-octadecene (ODE) as surfacial ligands, the latter being formed in situ via an elimination-hydrogenation reaction occurring between OLA and the nanocrystal surface.

  14. Proximity induced ferromagnetism, superconductivity, and finite-size effects on the surface states of topological insulator nanostructures

    NASA Astrophysics Data System (ADS)

    Sengupta, Parijat; Kubis, Tillmann; Tan, Yaohua; Klimeck, Gerhard

    2015-01-01

    Bi2Te3 and Bi2Se3 are well known 3D-topological insulators (TI). Films made of these materials exhibit metal-like surface states with a Dirac dispersion and possess high mobility. The high mobility metal-like surface states can serve as building blocks for a variety of applications that involve tuning their dispersion relationship and opening a band gap. A band gap can be opened either by breaking time reversal symmetry, the proximity effect of a superconductor or ferromagnet or adjusting the dimensionality of the TI material. In this work, methods that can be employed to easily open a band gap for the TI surface states are assessed. Two approaches are described: (1) Coating the surface states with a ferromagnet which has a controllable magnetization axis. The magnetization strength of the ferromagnet is incorporated as an exchange interaction term in the Hamiltonian. (2) An s-wave superconductor, because of the proximity effect, when coupled to a 3D-TI opens a band gap on the surface. Finally, the hybridization of the surface Dirac cones can be controlled by reducing the thickness of the topological insulator film. It is shown that this alters the band gap significantly.

  15. GASP: Gapped Ancestral Sequence Prediction for proteins

    PubMed Central

    Edwards, Richard J; Shields, Denis C

    2004-01-01

    Background The prediction of ancestral protein sequences from multiple sequence alignments is useful for many bioinformatics analyses. Predicting ancestral sequences is not a simple procedure and relies on accurate alignments and phylogenies. Several algorithms exist based on Maximum Parsimony or Maximum Likelihood methods but many current implementations are unable to process residues with gaps, which may represent insertion/deletion (indel) events or sequence fragments. Results Here we present a new algorithm, GASP (Gapped Ancestral Sequence Prediction), for predicting ancestral sequences from phylogenetic trees and the corresponding multiple sequence alignments. Alignments may be of any size and contain gaps. GASP first assigns the positions of gaps in the phylogeny before using a likelihood-based approach centred on amino acid substitution matrices to assign ancestral amino acids. Important outgroup information is used by first working down from the tips of the tree to the root, using descendant data only to assign probabilities, and then working back up from the root to the tips using descendant and outgroup data to make predictions. GASP was tested on a number of simulated datasets based on real phylogenies. Prediction accuracy for ungapped data was similar to three alternative algorithms tested, with GASP performing better in some cases and worse in others. Adding simple insertions and deletions to the simulated data did not have a detrimental effect on GASP accuracy. Conclusions GASP (Gapped Ancestral Sequence Prediction) will predict ancestral sequences from multiple protein alignments of any size. Although not as accurate in all cases as some of the more sophisticated maximum likelihood approaches, it can process a wide range of input phylogenies and will predict ancestral sequences for gapped and ungapped residues alike. PMID:15350199

  16. DUST COAGULATION IN THE VICINITY OF A GAP-OPENING JUPITER-MASS PLANET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carballido, Augusto; Matthews, Lorin S.; Hyde, Truell W., E-mail: Augusto_Carballido@baylor.edu

    We analyze the coagulation of dust in and around a gap opened by a Jupiter-mass planet. To this end, we carry out a high-resolution magnetohydrodynamic (MHD) simulation of the gap environment, which is turbulent due to the magnetorotational instability. From the MHD simulation, we obtain values of the gas velocities, densities, and turbulent stresses (a) close to the gap edge, (b) in one of the two gas streams that accrete onto the planet, (c) inside the low-density gap, and (d) outside the gap. The MHD values are then input into a Monte Carlo dust-coagulation algorithm which models grain sticking andmore » compaction. We also introduce a simple implementation for bouncing, for comparison purposes. We consider two dust populations for each region: one whose initial size distribution is monodisperse, with monomer radius equal to 1 μ m, and another one whose initial size distribution follows the Mathis–Rumpl–Nordsieck distribution for interstellar dust grains, with an initial range of monomer radii between 0.5 and 10 μ m. Without bouncing, our Monte Carlo calculations show steady growth of dust aggregates in all regions, and the mass-weighted (m-w) average porosity of the initially monodisperse population reaches extremely high final values of 98%. The final m-w porosities in all other cases without bouncing range between 30% and 82%. The efficiency of compaction is due to high turbulent relative speeds between dust particles. When bouncing is introduced, growth is slowed down in the planetary wake and inside the gap. Future studies will need to explore the effect of different planet masses and electric charge on grains.« less

  17. Understanding the Collaborative Planning Process in Homeless Services: Networking, Advocacy, and Local Government Support May Reduce Service Gaps.

    PubMed

    Jarpe, Meghan; Mosley, Jennifer E; Smith, Bikki Tran

    2018-06-07

    The Continuum of Care (CoC) process-a nationwide system of regional collaborative planning networks addressing homelessness-is the chief administrative method utilized by the US Department of Housing and Urban Development to prevent and reduce homelessness in the United States. The objective of this study is to provide a benchmark comprehensive picture of the structure and practices of CoC networks, as well as information about which of those factors are associated with lower service gaps, a key goal of the initiative. A national survey of the complete population of CoCs in the United States was conducted in 2014 (n = 312, 75% response rate). This survey is the first to gather information on all available CoC networks. Ordinary least squares (OLS) regression was used to determine the relationship between internal networking, advocacy frequency, government investment, and degree of service gaps for CoCs of different sizes. United States. Lead contacts for CoCs (n = 312) that responded to the 2014 survey. Severity of regional service gaps for people who are homeless. Descriptive statistics show that CoCs vary considerably in regard to size, leadership, membership, and other organizational characteristics. Several independent variables were associated with reduced regional service gaps: networking for small CoCs (β = -.39, P < .05) and local government support for midsized CoCs (β = -.10, P < .05). For large CoCs, local government support was again significantly associated with lower service gaps, but there was also a significant interaction effect between advocacy and networking (β = .04, P < .05). To reduce service gaps and better serve the homeless, CoCs should consider taking steps to improve networking, particularly when advocacy is out of reach, and cultivate local government investment and support.

  18. Towards a systematic assessment of errors in diffusion Monte Carlo calculations of semiconductors: Case study of zinc selenide and zinc oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Jaehyung; Wagner, Lucas K.; Ertekin, Elif, E-mail: ertekin@illinois.edu

    2015-12-14

    The fixed node diffusion Monte Carlo (DMC) method has attracted interest in recent years as a way to calculate properties of solid materials with high accuracy. However, the framework for the calculation of properties such as total energies, atomization energies, and excited state energies is not yet fully established. Several outstanding questions remain as to the effect of pseudopotentials, the magnitude of the fixed node error, and the size of supercell finite size effects. Here, we consider in detail the semiconductors ZnSe and ZnO and carry out systematic studies to assess the magnitude of the energy differences arising from controlledmore » and uncontrolled approximations in DMC. The former include time step errors and supercell finite size effects for ground and optically excited states, and the latter include pseudopotentials, the pseudopotential localization approximation, and the fixed node approximation. We find that for these compounds, the errors can be controlled to good precision using modern computational resources and that quantum Monte Carlo calculations using Dirac-Fock pseudopotentials can offer good estimates of both cohesive energy and the gap of these systems. We do however observe differences in calculated optical gaps that arise when different pseudopotentials are used.« less

  19. Preparation and characterization of nanocrystalline CuO powders with the different surfactants and complexing agent mediated precipitation method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajendran, V.; Gajendiran, J., E-mail: gaja.nanotech@gmail.com

    2014-08-15

    Highlights: • CuO nanostructures by surfactants mediated method. • Structural and optical properties of CuO nanostructures changes under the effect of surface modifier. • Citric acid assisted is the best, in terms of size, morphology and optical properties than that of CTAB, SDS and PEG-400. - Abstract: Nanostructures of copper oxide (CuO) was synthesized into crystallite sized ranging from 20 to 50 nm in the presence of different surfactants, and complex agent such as cityl tri methyl ammonium bromide (CTAB), sodium do decyl sulfate (SDS), poly ethylene glycol (PEG-400) and citric acid via a precipitation route. Variations in several parametersmore » and their effects on the structural and optical properties of CuO nanostructures (crystallite size, morphology and band gap) were investigated by XRD, FTIR, SEM and UV analysis. The UV–visible absorption spectra of the different surfactants and complexing agent assisted CuO nanostructures indicates that the estimated optical band gap energy value (1.94–1.98 eV) is higher than that of the bulk CuO value (1.4 eV), which is attributed to the quantum confinement effect. The formation mechanism of different surfactants and complexing agent assisted CuO nanostructures is also proposed.« less

  20. Pattern size tolerance of reverse offset printing: a proximity deformation effect related to local PDMS slipping

    NASA Astrophysics Data System (ADS)

    Kusaka, Yasuyuki; Kanazawa, Shusuke; Koutake, Masayoshi; Ushijima, Hirobumi

    2017-10-01

    We investigated the shape integrity of silver nanoparticle ink patterns formed by reverse offset printing, focusing particularly on the proximity effect of neighbouring patterns due to the local deformation of a polydimethylsiloxane (PDMS) blanket during contact with a hard cliché. We performed printing tests using a cliché having circular patterns with smaller neighbouring circles located at various distances (2-20 µm), and the results revealed that as we decrease the thickness of PDMS and the inter-pattern gap distance, and as we increase the printing indentations, the shape integrity of the printed pattern was worsened. A complementary numerical simulation of PDMS deformations suggested that the pattern distortion during the contact with clichés was caused by the horizontal deformation of PDMS during the printing, which becomes a significant burden when the uplifted region of PDMS is closer to the gap distance of each pattern. Our analysis further indicates that during printing, there is slipping of the ink at the PDMS interface. In addition, we examined the effects of a synchronization mismatch in a roll-to-sheet printing on the pattern size tolerance. The magnitude of the size distortions was severely influenced not only by the mismatch ratio but also by the nip width. This result verifies the scraping of the ink accompanied by the slipping of the PDMS during the printing process, and thereby determines the size tolerance of printed patterns in reverse offset printing. Finally, we discuss the optimization of process parameters to ensure the size integrity of reverse offset printing.

  1. Selection of forest canopy gaps by male Cerulean Warblers in West Virginia

    USGS Publications Warehouse

    Perkins, Kelly A.; Wood, Petra Bohall

    2014-01-01

    Forest openings, or canopy gaps, are an important resource for many forest songbirds, such as Cerulean Warblers (Setophaga cerulea). We examined canopy gap selection by this declining species to determine if male Cerulean Warblers selected particular sizes, vegetative heights, or types of gaps. We tested whether these parameters differed among territories, territory core areas, and randomly-placed sample plots. We used enhanced territory mapping techniques (burst sampling) to define habitat use within the territory. Canopy gap densities were higher within core areas of territories than within territories or random plots, indicating that Cerulean Warblers selected habitat within their territories with the highest gap densities. Selection of regenerating gaps with woody vegetation >12 m within the gap, and canopy heights >24 m surrounding the gap, occurred within territory core areas. These findings differed between two sites indicating that gap selection may vary based on forest structure. Differences were also found regarding the placement of territories with respect to gaps. Larger gaps, such as wildlife food plots, were located on the periphery of territories more often than other types and sizes of gaps, while smaller gaps, such as treefalls, were located within territory boundaries more often than expected. The creations of smaller canopy gaps, <100 m2, within dense stands are likely compatible with forest management for this species.

  2. Nano sulfide and oxide semiconductors as promising materials for studies by positron annihilation

    NASA Astrophysics Data System (ADS)

    Nambissan, P. M. G.

    2013-06-01

    A number of wide band gap sulfide and oxide semiconducting nanomaterial systems were investigated using the experimental techniques of positron lifetime and coincidence Doppler broadening measurements. The results indicated several features of the nanomaterial systems, which were found strongly related to the presence of vacancy-type defects and their clusters. Quantum confinement effects were displayed in these studies as remarkable changes in the positron lifetimes and the lineshape parameters around the same grain sizes below which characteristic blue shifts were observed in the optical absorption spectra. Considerable enhancement in the band gap and significant rise of the positron lifetimes were found occurring when the particle sizes were reduced to very low sizes. The results of doping or substitutions by other cations in semiconductor nanosystems were also interesting. Variously heat-treated TiO2 nanoparticles were studied recently and change of positron annihilation parameters across the anatase to rutile structural transition are carefully analyzed. Preliminary results of positron annihilation studies on Eu-doped CeO nanoparticles are also presented.

  3. Size-dependent energy levels of InSb quantum dots measured by scanning tunneling spectroscopy.

    PubMed

    Wang, Tuo; Vaxenburg, Roman; Liu, Wenyong; Rupich, Sara M; Lifshitz, Efrat; Efros, Alexander L; Talapin, Dmitri V; Sibener, S J

    2015-01-27

    The electronic structure of single InSb quantum dots (QDs) with diameters between 3 and 7 nm was investigated using atomic force microscopy (AFM) and scanning tunneling spectroscopy (STS). In this size regime, InSb QDs show strong quantum confinement effects which lead to discrete energy levels on both valence and conduction band states. Decrease of the QD size increases the measured band gap and the spacing between energy levels. Multiplets of equally spaced resonance peaks are observed in the tunneling spectra. There, multiplets originate from degeneracy lifting induced by QD charging. The tunneling spectra of InSb QDs are qualitatively different from those observed in the STS of other III-V materials, for example, InAs QDs, with similar band gap energy. Theoretical calculations suggest the electron tunneling occurs through the states connected with L-valley of InSb QDs rather than through states of the Γ-valley. This observation calls for better understanding of the role of indirect valleys in strongly quantum-confined III-V nanomaterials.

  4. SU-E-T-104: An Examination of Dose in the Buildup and Build-Down Regions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tome, W; Kuo, H; Phillips, J

    2015-06-15

    Purpose: To examine dose in the buildup and build-down regions and compare measurements made with various models and dosimeters Methods: Dose was examined in a 30×30cm {sup 2} phantom of water-equivalent plastic with 10cm of backscatter for various field sizes. Examination was performed with radiochromic film and optically-stimulated-luminescent-dosimeter (OSLD) chips, and compared against a plane-parallel chamber with a correction factor applied to approximate the response of an extrapolation chamber. For the build-down region, a correction factor to account for table absorption and chamber orientation in the posterior-anterior direction was applied. The measurement depths used for the film were halfway throughmore » their sensitive volumes, and a polynomial best fit curve was used to determine the dose to their surfaces. This chamber was also compared with the dose expected in a clinical kernel-based computer model, and a clinical Boltzmann-transport-equation-based (BTE) computer model. The two models were also compared against each other for cases with air gaps in the buildup region. Results: Within 3mm, all dosimeters and models agreed with the chamber within 10% for all field sizes. At the entrance surface, film differed in comparison with the chamber from +90% to +15%, the BTE-model by +140 to +3%, and the kernel-based model by +20% to −25%, decreasing with increasing field size. At the exit surface, film differed in comparison with the chamber from −10% to −15%, the BTE-model by −53% to −50%, the kernel-based model by −55% to −57%, mostly independent of field size. Conclusion: The largest differences compared with the chamber were found at the surface for all field sizes. Differences decreased with increasing field size and increasing depth in phantom. Air gaps in the buildup region cause dose buildup to occur again post-gap, but the effect decreases with increasing phantom thickness prior to the gap.« less

  5. Microhabitat Conditions in Wyoming’s Sage-Grouse Core Areas: Effects on Nest Site Selection and Success

    PubMed Central

    Beck, Jeffrey L.; Kirol, Christopher P.; Pratt, Aaron C.; Conover, Michael R.

    2016-01-01

    The purpose of our study was to identify microhabitat characteristics of greater sage-grouse (Centrocercus urophasianus) nest site selection and survival to determine the quality of sage-grouse habitat in 5 regions of central and southwest Wyoming associated with Wyoming’s Core Area Policy. Wyoming’s Core Area Policy was enacted in 2008 to reduce human disturbance near the greatest densities of sage-grouse. Our analyses aimed to assess sage-grouse nest selection and success at multiple micro-spatial scales. We obtained microhabitat data from 928 sage-grouse nest locations and 819 random microhabitat locations from 2008–2014. Nest success was estimated from 924 nests with survival data. Sage-grouse selected nests with greater sagebrush cover and height, visual obstruction, and number of small gaps between shrubs (gap size ≥0.5 m and <1.0 m), while selecting for less bare ground and rock. With the exception of more small gaps between shrubs, we did not find any differences in availability of these microhabitat characteristics between locations within and outside of Core Areas. In addition, we found little supporting evidence that sage-grouse were selecting different nest sites in Core Areas relative to areas outside of Core. The Kaplan-Meier nest success estimate for a 27-day incubation period was 42.0% (95% CI: 38.4–45.9%). Risk of nest failure was negatively associated with greater rock and more medium-sized gaps between shrubs (gap size ≥2.0 m and <3.0 m). Within our study areas, Wyoming’s Core Areas did not have differing microhabitat quality compared to outside of Core Areas. The close proximity of our locations within and outside of Core Areas likely explained our lack of finding differences in microhabitat quality among locations within these landscapes. However, the Core Area Policy is most likely to conserve high quality habitat at larger spatial scales, which over decades may have cascading effects on microhabitat quality available between areas within and outside of Core Areas. PMID:27002531

  6. Involving the male partner for interpreting the basal body temperature graph.

    PubMed

    Dunlop, A L; Allen, A S; Frank, E

    2001-07-01

    To determine if the male cohabiting partner of a woman may serve as a control for exogenous influences on basal body temperature (BBT). Twelve couples from the Atlanta area were enrolled for a total of 41 couple-cycles. Couples recorded their oral temperatures daily and used urinary test kits for luteinizing hormone to estimate the day of ovulation. The covariability between the pre-ovulatory temperature of the women and their partners was assessed. The gaps in the couples' temperatures (female temperature minus male temperature) were compared in the pre- and postovulatory phases. Considerable covariability was found between temperatures of partners in the pre-ovulatory phase (covariance parameter = 0.49; P <.001). The pre- and postovulatory temperature gaps for all couples were significantly different in size (P <.001). For all couple-cycles, the size of the mean postovulatory temperature gap was at least 0.3-degree Fahrenheit greater than the mean pre-ovulatory temperature gap. Recording the BBT of women's partners may improve interpretation and accuracy of the BBT method. An increase in the size of a couple's temperature gap accompanies the transition from the pre- to the postovulatory phase. By this method, a given couple could determine their unique temperature gap indicating this transition.

  7. A citrus waste-based biorefinery as a source of renewable energy: technical advances and analysis of engineering challenges.

    PubMed

    Rivas-Cantu, Raul C; Jones, Kim D; Mills, Patrick L

    2013-04-01

    An assessment of recent technical advances on pretreatment processes and its effects on enzymatic hydrolysis as the main steps of a proposed citrus processing waste (CPW) biorefinery is presented. Engineering challenges and relevant gaps in scientific and technical information for reliable design, modeling and scale up of a CPW biorefinery are also discussed. Some integrated physico-chemical pretreatments are proposed for testing for CPW, including high speed knife-grinding and simultaneous caustic addition. These new proposed processes and the effect of parameters such as particle size, surface area and morphology, pore volume and chemical composition of the diverse fractions resulting from pretreatment and enzymatic hydrolysis need to be evaluated and compared for pretreated and untreated samples of grapefruit processing waste. This assessment suggests the potential for filling the data gaps, and preliminary results demonstrate that the reduction of particle size and the increased surface area for the CPW will result in higher reaction rates and monosaccharide yields for the pretreated waste material.

  8. Finite-size effects in Luther-Emery phases of Holstein and Hubbard models

    NASA Astrophysics Data System (ADS)

    Greitemann, J.; Hesselmann, S.; Wessel, S.; Assaad, F. F.; Hohenadler, M.

    2015-12-01

    The one-dimensional Holstein model and its generalizations have been studied extensively to understand the effects of electron-phonon interaction. The half-filled case is of particular interest, as it describes a transition from a metallic phase with a spin gap due to attractive backscattering to a Peierls insulator with charge-density-wave order. Our quantum Monte Carlo results support the existence of a metallic phase with dominant power-law charge correlations, as described by the Luther-Emery fixed point. We demonstrate that for Holstein and also for purely fermionic models the spin gap significantly complicates finite-size numerical studies, and explains inconsistent previous results for Luttinger parameters and phase boundaries. On the other hand, no such complications arise in spinless models. The correct low-energy theory of the spinful Holstein model is argued to be that of singlet bipolarons with a repulsive, mutual interaction. This picture naturally explains the existence of a metallic phase, but also implies that gapless Luttinger liquid theory is not applicable.

  9. Tuning the photoluminescence of graphene quantum dots through the charge transfer effect of functional groups.

    PubMed

    Jin, Sung Hwan; Kim, Da Hye; Jun, Gwang Hoon; Hong, Soon Hyung; Jeon, Seokwoo

    2013-02-26

    The band gap properties of graphene quantum dots (GQDs) arise from quantum confinement effects and differ from those in semimetallic graphene sheets. Tailoring the size of the band gap and understanding the band gap tuning mechanism are essential for the applications of GQDs in opto-electronics. In this study, we observe that the photoluminescence (PL) of the GQDs shifts due to charge transfers between functional groups and GQDs. GQDs that are functionalized with amine groups and are 1-3 layers thick and less than 5 nm in diameter were successfully fabricated using a two-step cutting process from graphene oxides (GOs). The functionalized GQDs exhibit a redshift of PL emission (ca. 30 nm) compared to the unfunctionalized GQDs. Furthermore, the PL emissions of the GQDs and the amine-functionalized GQDs were also shifted by changes in the pH due to the protonation or deprotonation of the functional groups. The PL shifts resulted from charge transfers between the functional groups and GQDs, which can tune the band gap of the GQDs. Calculations from density functional theory (DFT) are in good agreement with our proposed mechanism for band gap tuning in the GQDs through the use of functionalization.

  10. Determination of band structure parameters and the quasi-particle gap of CdSe quantum dots by cyclic voltammetry.

    PubMed

    Inamdar, Shaukatali N; Ingole, Pravin P; Haram, Santosh K

    2008-12-01

    Band structure parameters such as the conduction band edge, the valence band edge and the quasi-particle gap of diffusing CdSe quantum dots (Q-dots) of various sizes were determined using cyclic voltammetry. These parameters are strongly dependent on the size of the Q-dots. The results obtained from voltammetric measurements are compared to spectroscopic and theoretical data. The fit obtained to the reported calculations based on the semi-empirical pseudopotential method (SEPM)-especially in the strong size-confinement region, is the best reported so far, according to our knowledge. For the smallest CdSe Q-dots, the difference between the quasi-particle gap and the optical band gap gives the electron-hole Coulombic interaction energy (J(e1,h1)). Interband states seen in the photoluminescence spectra were verified with cyclic voltammetry measurements.

  11. Analysis and characterization of microwave plasma generated with rectangular all-dielectric resonators

    NASA Astrophysics Data System (ADS)

    Kourtzanidis, K.; Raja, L. L.

    2017-04-01

    We report on a computational modeling study of small scale plasma discharge formation with rectangular dielectric resonators (DR). An array of rectangular dielectric slabs, separated by a gap of millimeter dimensions is used to provide resonant response when illuminated by an incident wave of 1.26 GHz. A coupled electromagnetic (EM) wave-plasma model is used to describe the breakdown, early response and steady state of the argon discharge. We characterize the plasma generation with respect to the input power, background gas pressure and gap size. It is found that the plasma discharge is generated mainly inside the gaps between the DR at positions that correspond to the antinodes of the resonant enhanced electric field pattern. The enhancement of the electric field inside the gaps is due to a combination of leaking and displacement current radiation from the DR. The plasma is sustained in over-critical densities due to the large skin depth with respect to the gap and plasma size. Electron densities are calculated in the order of {10}18{--}{10}19 {{{m}}}-3 for a gas pressure of 10 Torr, while they exceed 1020 {{{m}}}-3 in atmospheric conditions. Increase of input power leads to more intense ionization and thus faster plasma formation and results to a more symmetric plasma pattern. For low background gas pressure the discharge is diffusive and extends away from the gap region while in high pressure it is constricted inside the gap. An optimal gap size can be found to provide maximum EM energy transfer to the plasma. This fact demonstrates that the gap size dictates to a certain extent the resonant frequency and the Q-factor of the dielectric array and the breakdown fields can not be determined in a straight-forward way but they are functions of the resonators geometry and incident field frequency.

  12. Electronic transport with dielectric confinement in degenerate InN nanowires.

    PubMed

    Blömers, Ch; Lu, J G; Huang, L; Witte, C; Grützmacher, D; Lüth, H; Schäpers, Th

    2012-06-13

    In this Letter, we present the size effects on charge conduction in InN nanowires by comprehensive transport studies supported by theoretical analysis. A consistent model for highly degenerate narrow gap semiconductor nanowires is developed. In contrast to common knowledge of InN, there is no evidence of an enhanced surface conduction, however, high intrinsic doping exists. Furthermore, the room-temperature resistivity exhibits a strong increase when the lateral size becomes smaller than 80 nm and the temperature dependence changes from metallic to semiconductor-like. This effect is modeled by donor deactivation due to dielectric confinement, yielding a shift of the donor band to higher ionization energies as the size shrinks.

  13. Optical field enhancement of nanometer-sized gaps at near-infrared frequencies.

    PubMed

    Ahn, Jae Sung; Kang, Taehee; Singh, Dilip K; Bahk, Young-Mi; Lee, Hyunhwa; Choi, Soo Bong; Kim, Dai-Sik

    2015-02-23

    We report near-field and far-field measurements of transmission through nanometer-sized gaps at near-infrared frequencies with varying the gap size from 1 nm to 10 nm. In the far-field measurements, we excluded direct transmission on the metal film surface via interferometric method. Kirchhoff integral formalism was used to relate the far-field intensity to the electric field at the nanogaps. In near-field measurements, field enhancement factors of the nanogaps were quantified by measuring transmission of the nanogaps using near-field scanning optical microscopy. All the measurements produce similar field enhancements of about ten, which we put in the context of comparing with the giant field enhancements in the terahertz regime.

  14. Effect of eddy current damping on phononic band gaps generated by locally resonant periodic structures

    NASA Astrophysics Data System (ADS)

    Ozkaya, Efe; Yilmaz, Cetin

    2017-02-01

    The effect of eddy current damping on a novel locally resonant periodic structure is investigated. The frequency response characteristics are obtained by using a lumped parameter and a finite element model. In order to obtain wide band gaps at low frequencies, the periodic structure is optimized according to certain constraints, such as mass distribution in the unit cell, lower limit of the band gap, stiffness between the components in the unit cell, the size of magnets used for eddy current damping, and the number of unit cells in the periodic structure. Then, the locally resonant periodic structure with eddy current damping is manufactured and its experimental frequency response is obtained. The frequency response results obtained analytically, numerically and experimentally match quite well. The inclusion of eddy current damping to the periodic structure decreases amplitudes of resonance peaks without disturbing stop band width.

  15. Effects of sample size, number of markers, and allelic richness on the detection of spatial genetic pattern

    Treesearch

    Erin L. Landguth; Bradley C. Fedy; Sara J. Oyler-McCance; Andrew L. Garey; Sarah L. Emel; Matthew Mumma; Helene H. Wagner; Marie-Josee Fortin; Samuel A. Cushman

    2012-01-01

    The influence of study design on the ability to detect the effects of landscape pattern on gene flow is one of the most pressing methodological gaps in landscape genetic research. To investigate the effect of study design on landscape genetics inference, we used a spatially-explicit, individual-based program to simulate gene flow in a spatially continuous population...

  16. Role of antenna modes and field enhancement in second harmonic generation from dipole nanoantennas.

    PubMed

    de Ceglia, Domenico; Vincenti, Maria Antonietta; De Angelis, Costantino; Locatelli, Andrea; Haus, Joseph W; Scalora, Michael

    2015-01-26

    We study optical second harmonic generation from metallic dipole antennas with narrow gaps. Enhancement of the fundamental-frequency field in the gap region plays a marginal role on conversion efficiency. In the symmetric configuration, i.e., with the gap located at the center of the antenna axis, reducing gap size induces a significant red-shift of the maximum conversion efficiency peak. Either enhancement or inhibition of second-harmonic emission may be observed as gap size is decreased, depending on the antenna mode excited at the harmonic frequency. The second-harmonic signal is extremely sensitive to the asymmetry introduced by gap's displacements with respect to the antenna center. In this situation, second-harmonic light can couple to all the available antenna modes. We perform a multipolar analysis that allows engineering the far-field SH emission and find that the interaction with quasi-odd-symmetry modes generates radiation patterns with a strong dipolar component.

  17. Electronic theoretical study on the influence of torsional deformation on the electronic structure and optical properties of BN-doped graphene

    NASA Astrophysics Data System (ADS)

    Fan, Dazhi; Liu, Guili; Wei, Lin

    2018-06-01

    Based on the density functional theory, the effect of torsional deformation on the electronic structure and optical properties of boron nitride (BN)-doped graphene is studied by using the first-principles calculations. The band structure calculations show that the intrinsic graphene is a semi-metallic material with zero band gap and the torsional deformation has a large effect on its band gap, opening its band gap and turning it from the semi-metal to the medium band gap semiconductor. The doping of BN in graphene makes its band gap open and becomes a medium band gap semiconductor. When it is subjected to a torsional effect, it is found to have a weak influence on its band gap. In other words, the doping of BN makes the changes of the band gap of graphene no longer sensitive to torsional deformation. Optical properties show that the doping of BN leads to a significant decrease in the light absorption coefficient and reflectivity of the graphene at the characteristic peak and that of BN-doped graphene system is also weakened by torsional deformation at the characteristic peak. In the absorption spectrum, the absorption peaks of the doping system of the torsion angle of 2-20∘ are redshifted compared with that of the BN-doped system (the torsion angle is 0∘). In the reflection spectrum, the two reflection peaks are all redshifted relative to that of the BN-doped system (the torsion angle is 0∘) and when the torsion angle exceeds 12∘, the size relationship between the two peaks is interchanged. The results of this paper are of guiding significance for the study of graphene-based nanotube devices in terms of deformation.

  18. Adaptive kernel regression for freehand 3D ultrasound reconstruction

    NASA Astrophysics Data System (ADS)

    Alshalalfah, Abdel-Latif; Daoud, Mohammad I.; Al-Najar, Mahasen

    2017-03-01

    Freehand three-dimensional (3D) ultrasound imaging enables low-cost and flexible 3D scanning of arbitrary-shaped organs, where the operator can freely move a two-dimensional (2D) ultrasound probe to acquire a sequence of tracked cross-sectional images of the anatomy. Often, the acquired 2D ultrasound images are irregularly and sparsely distributed in the 3D space. Several 3D reconstruction algorithms have been proposed to synthesize 3D ultrasound volumes based on the acquired 2D images. A challenging task during the reconstruction process is to preserve the texture patterns in the synthesized volume and ensure that all gaps in the volume are correctly filled. This paper presents an adaptive kernel regression algorithm that can effectively reconstruct high-quality freehand 3D ultrasound volumes. The algorithm employs a kernel regression model that enables nonparametric interpolation of the voxel gray-level values. The kernel size of the regression model is adaptively adjusted based on the characteristics of the voxel that is being interpolated. In particular, when the algorithm is employed to interpolate a voxel located in a region with dense ultrasound data samples, the size of the kernel is reduced to preserve the texture patterns. On the other hand, the size of the kernel is increased in areas that include large gaps to enable effective gap filling. The performance of the proposed algorithm was compared with seven previous interpolation approaches by synthesizing freehand 3D ultrasound volumes of a benign breast tumor. The experimental results show that the proposed algorithm outperforms the other interpolation approaches.

  19. The Christiansen Effect in Saturn's narrow dusty rings and the spectral identification of clumps in the F ring

    USGS Publications Warehouse

    Hedman, M.M.; Nicholson, P.D.; Showalter, M.R.; Brown, R.H.; Buratti, B.J.; Clark, R.N.; Baines, K.; Sotin, Christophe

    2011-01-01

    Stellar occultations by Saturn's rings observed with the Visual and Infrared Mapping Spectrometer (VIMS) onboard the Cassini spacecraft reveal that dusty features such as the F ring and the ringlets in the Encke and the Laplace Gaps have distinctive infrared transmission spectra. These spectra show a narrow optical depth minimum at wavelengths around 2.87??m. This minimum is likely due to the Christiansen Effect, a reduction in the extinction of small particles when their (complex) refractive index is close to that of the surrounding medium. Simple Mie-scattering models demonstrate that the strength of this opacity dip is sensitive to the size distribution of particles between 1 and 100??m across. Furthermore, the spatial resolution of the occultation data is sufficient to reveal variations in the transmission spectra within and among these rings. In both the Encke Gap ringlets and F ring, the opacity dip weakens with increasing local optical depth, which is consistent with the larger particles being concentrated near the cores of these rings. The Encke Gap ringlets also show systematically weaker opacity dips than the F ring and Laplace Gap ringlet, implying that the former has a smaller fraction of grains less than ~30??m across. However, the strength of the opacity dip varies most dramatically within the F ring; certain compact regions of enhanced optical depth lack an opacity dip and therefore appear to have a greatly reduced fraction of grains in the few-micron size range. Such spectrally-identifiable structures probably represent a subset of the compact optically-thick clumps observed by other Cassini instruments. These variations in the ring's particle size distribution can provide new insights into the processes of grain aggregation, disruption and transport within dusty rings. For example, the unusual spectral properties of the F-ring clumps could perhaps be ascribed to small grains adhering onto the surface of larger particles in regions of anomalously low velocity dispersion. ?? 2011 Elsevier Inc.

  20. Optimization of Magneto-Rheological Damper for Maximizing Magnetic Flux Density in the Fluid Flow Gap Through FEA and GA Approaches

    NASA Astrophysics Data System (ADS)

    Krishna, Hemanth; Kumar, Hemantha; Gangadharan, Kalluvalappil

    2017-08-01

    A magneto rheological (MR) fluid damper offers cost effective solution for semiactive vibration control in an automobile suspension. The performance of MR damper is significantly depends on the electromagnetic circuit incorporated into it. The force developed by MR fluid damper is highly influenced by the magnetic flux density induced in the fluid flow gap. In the present work, optimization of electromagnetic circuit of an MR damper is discussed in order to maximize the magnetic flux density. The optimization procedure was proposed by genetic algorithm and design of experiments techniques. The result shows that the fluid flow gap size less than 1.12 mm cause significant increase of magnetic flux density.

  1. Larger sized wire arrays on 1.5 MA Z-pinch generator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Safronova, A. S., E-mail: alla@unr.edu; Kantsyrev, V. L., E-mail: alla@unr.edu; Weller, M. E., E-mail: alla@unr.edu

    Experiments on the UNR Zebra generator with Load Current Multiplier (LCM) allow for implosions of larger sized wire array loads than at standard current of 1 MA. Advantages of larger sized planar wire array implosions include enhanced energy coupling to plasmas, better diagnostic access to observable plasma regions, and more complex geometries of the wire loads. The experiments with larger sized wire arrays were performed on 1.5 MA Zebra with LCM (the anode-cathode gap was 1 cm, which is half the gap used in the standard mode). In particular, larger sized multi-planar wire arrays had two outer wire planes frommore » mid-atomic-number wires to create a global magnetic field (gmf) and plasma flow between them. A modified central plane with a few Al wires at the edges was put in the middle between outer planes to influence gmf and to create Al plasma flow in the perpendicular direction (to the outer arrays plasma flow). Such modified plane has different number of empty slots: it was increased from 6 up to 10, hence increasing the gap inside the middle plane from 4.9 to 7.7 mm, respectively. Such load configuration allows for more independent study of the flows of L-shell mid-atomic-number plasma (between the outer planes) and K-shell Al plasma (which first fills the gap between the edge wires along the middle plane) and their radiation in space and time. We demonstrate that such configuration produces higher linear radiation yield and electron temperatures as well as advantages of better diagnostics access to observable plasma regions and how the load geometry (size of the gap in the middle plane) influences K-shell Al radiation. In particular, K-shell Al radiation was delayed compared to L-shell mid-atomic-number radiation when the gap in the middle plane was large enough (when the number of empty slots was increased up to ten)« less

  2. Scarification and gap size have interacting effects on northern temperate seedling establishment

    Treesearch

    John L. Willis; Michael B. Walters; Kurt W. Gottschalk

    2015-01-01

    After decades focused on promoting economically valuable species, management of northern temperate forests has increasingly become focused on promoting tree species diversity. Unfortunately, many formerly common species that could contribute to diversity including yellow birch (Betula alleghaniensis Britton.), paper birch (Betula papyrifera...

  3. Effect of Organizational Factors on Information Security Implementations

    ERIC Educational Resources Information Center

    Perez, Rafael G.

    2013-01-01

    The purpose of this quantitative inferential study is to determine the level of correlation between the organizational factors of information security awareness, balanced security processes, and organizational structure with the size of the estimation gap of information security implementations mediated by the end user intentionality. The study…

  4. Effect of actuating voltage and discharge gap on plasma assisted detonation initiation process

    NASA Astrophysics Data System (ADS)

    Siyin, ZHOU; Xueke, CHE; Wansheng, NIE; Di, WANG

    2018-06-01

    The influence of actuating voltage and discharge gap on plasma assisted detonation initiation by alternating current dielectric barrier discharge was studied in detail. A loose coupling method was used to simulate the detonation initiation process of a hydrogen–oxygen mixture in a detonation tube under different actuating voltage amplitudes and discharge gap sizes. Both the discharge products and the detonation forming process assisted by the plasma were analyzed. It was found that the patterns of the temporal and spatial distributions of discharge products in one cycle keep unchanged as changing the two discharge operating parameters. However, the adoption of a higher actuating voltage leads to a higher active species concentration within the discharge zone, and atom H is the most sensitive to the variations of the actuating voltage amplitude among the given species. Adopting a larger discharge gap results in a lower concentration of the active species, and all species have the same sensitivity to the variations of the gap. With respect to the reaction flow of the detonation tube, the corresponding deflagration to detonation transition (DDT) time and distance become slightly longer when a higher actuating voltage is chosen. The acceleration effect of plasma is more prominent with a smaller discharge gap, and the benefit builds gradually throughout the DDT process. Generally, these two control parameters have little effect on the amplitude of the flow field parameters, and they do not alter the combustion degree within the reaction zone.

  5. Circumbinary discs: Numerical and physical behaviour

    NASA Astrophysics Data System (ADS)

    Thun, Daniel; Kley, Wilhelm; Picogna, Giovanni

    2017-08-01

    Aims: Discs around a central binary system play an important role in star and planet formation and in the evolution of galactic discs. These circumbinary discs are strongly disturbed by the time varying potential of the binary system and display a complex dynamical evolution that is not well understood. Our goal is to investigate the impact of disc and binary parameters on the dynamical aspects of the disc. Methods: We study the evolution of circumbinary discs under the gravitational influence of the binary using two-dimensional hydrodynamical simulations. To distinguish between physical and numerical effects we apply three hydrodynamical codes. First we analyse in detail numerical issues concerning the conditions at the boundaries and grid resolution. We then perform a series of simulations with different binary parameters (eccentricity, mass ratio) and disc parameters (viscosity, aspect ratio) starting from a reference model with Kepler-16 parameters. Results: Concerning the numerical aspects we find that the length of the inner grid radius and the binary semi-major axis must be comparable, with free outflow conditions applied such that mass can flow onto the central binary. A closed inner boundary leads to unstable evolutions. We find that the inner disc turns eccentric and precesses for all investigated physical parameters. The precession rate is slow with periods (Tprec) starting at around 500 binary orbits (Tbin) for high viscosity and a high aspect ratio H/R where the inner hole is smaller and more circular. Reducing α and H/R increases the gap size and Tprec reaches 2500 Tbin. For varying binary mass ratios qbin the gap size remains constant, whereas Tprec decreases with increasing qbin. For varying binary eccentricities ebin we find two separate branches in the gap size and eccentricity diagram. The bifurcation occurs at around ecrit ≈ 0.18 where the gap is smallest with the shortest Tprec. For ebin lower and higher than ecrit, the gap size and Tprec increase. Circular binaries create the most eccentric discs. Movies associated to Figs. 1 and 8 are available at http://www.aanda.org

  6. Inner disk clearing around the Herbig Ae star HD 139614: Evidence for a planet-induced gap?

    NASA Astrophysics Data System (ADS)

    Matter, A.; Labadie, L.; Augereau, J. C.; Kluska, J.; Crida, A.; Carmona, A.; Gonzalez, J. F.; Thi, W. F.; Le Bouquin, J.-B.; Olofsson, J.; Lopez, B.

    2016-02-01

    Spatially resolving the inner dust cavity (or gap) of the so-called (pre-)transitional disks is a key to understanding the connection between the processes of planetary formation and disk dispersal. The disk around the Herbig star HD 139614 is of particular interest since it presents a pretransitional nature with an au-sized gap structure that is spatially resolved by mid-infrared interferometry in the dust distribution. With the aid of new near-infrared interferometric observations, we aim to characterize the 0.1-10 au region of the HD 139614 disk further and then identify viable mechanisms for the inner disk clearing. We report the first multiwavelength modeling of the interferometric data acquired on HD 139614 with the VLTI instruments PIONIER, AMBER, and MIDI, complemented by Herschel/PACS photometric measurements. We first performed a geometrical modeling of the new near-infrared interferometric data, followed by radiative transfer modeling of the complete dataset using the code RADMC3D. We confirm the presence of a gap structure in the warm μm-sized dust distribution, extending from about 2.5 au to 6 au, and constrained the properties of the inner dust component: e.g., a radially increasing dust surface density profile, and a depletion in dust of ~103 relative to the outer disk. Since self-shadowing and photoevaporation appears unlikely to be responsible for the au-sized gap of HD 139614, we thus tested if dynamical clearing could be a viable mechanism using hydrodynamical simulations to predict the structure of the gaseous disk. Indeed, a narrow au-sized gap is consistent with the expected effect of the interaction between a single giant planet and the disk. Assuming that small dust grains are well coupled to the gas, we found that an approximately 3 Mjup planet located at ~4.5 au from the star could, in less than 1 Myr, reproduce most of the aspects of the dust surface density profile, while no significant depletion (in gas) occurred in the inner disk, in contrast to the dust. However, this "dust-depleted" inner disk could be explained by the expected dust filtration by the gap and the efficient dust growth/fragmentation occurring in the inner disk regions. Our results support the hypothesis of a giant planet opening a gap and shaping the inner region of the HD 139614 disk. This makes HD 139614 an exciting candidate specifically for witnessing planet-disk interaction. Based on observations collected at the European Southern Observatory, Chile (ESO IDs : 385.C-0886, 087.C-0811, 089.C-0456, and 190.C-0963).

  7. Toroidal-Core Microinductors Biased by Permanent Magnets

    NASA Technical Reports Server (NTRS)

    Lieneweg, Udo; Blaes, Brent

    2003-01-01

    The designs of microscopic toroidal-core inductors in integrated circuits of DC-to-DC voltage converters would be modified, according to a proposal, by filling the gaps in the cores with permanent magnets that would apply bias fluxes (see figure). The magnitudes and polarities of the bias fluxes would be tailored to counteract the DC fluxes generated by the DC components of the currents in the inductor windings, such that it would be possible to either reduce the sizes of the cores or increase the AC components of the currents in the cores without incurring adverse effects. Reducing the sizes of the cores could save significant amounts of space on integrated circuits because relative to other integrated-circuit components, microinductors occupy large areas - of the order of a square millimeter each. An important consideration in the design of such an inductor is preventing magnetic saturation of the core at current levels up to the maximum anticipated operating current. The requirement to prevent saturation, as well as other requirements and constraints upon the design of the core are expressed by several equations based on the traditional magnetic-circuit approximation. The equations involve the core and gap dimensions and the magnetic-property parameters of the core and magnet materials. The equations show that, other things remaining equal, as the maximum current is increased, one must increase the size of the core to prevent the flux density from rising to the saturation level. By using a permanent bias flux to oppose the flux generated by the DC component of the current, one would reduce the net DC component of flux in the core, making it possible to reduce the core size needed to prevent the total flux density (sum of DC and AC components) from rising to the saturation level. Alternatively, one could take advantage of the reduction of the net DC component of flux by increasing the allowable AC component of flux and the corresponding AC component of current. In either case, permanent-magnet material and the slant (if any) and thickness of the gap must be chosen according to the equations to obtain the required bias flux. In modifying the design of the inductor, one must ensure that the inductance is not altered. The simplest way to preserve the original value of inductance would be to leave the gap dimensions unchanged and fill the gap with a permanent- magnet material that, fortuitously, would produce just the required bias flux. A more generally applicable alternative would be to partly fill either the original gap or a slightly enlarged gap with a suitable permanent-magnet material (thereby leaving a small residual gap) so that the reluctance of the resulting magnetic circuit would yield the desired inductance.

  8. Group Size Effect on Cooperation in One-Shot Social Dilemmas II: Curvilinear Effect.

    PubMed

    Capraro, Valerio; Barcelo, Hélène

    2015-01-01

    In a world in which many pressing global issues require large scale cooperation, understanding the group size effect on cooperative behavior is a topic of central importance. Yet, the nature of this effect remains largely unknown, with lab experiments insisting that it is either positive or negative or null, and field experiments suggesting that it is instead curvilinear. Here we shed light on this apparent contradiction by considering a novel class of public goods games inspired to the realistic scenario in which the natural output limits of the public good imply that the benefit of cooperation increases fast for early contributions and then decelerates. We report on a large lab experiment providing evidence that, in this case, group size has a curvilinear effect on cooperation, according to which intermediate-size groups cooperate more than smaller groups and more than larger groups. In doing so, our findings help fill the gap between lab experiments and field experiments and suggest concrete ways to promote large scale cooperation among people.

  9. Determination of shift in energy of band edges and band gap of ZnSe spherical quantum dot

    NASA Astrophysics Data System (ADS)

    Siboh, Dutem; Kalita, Pradip Kumar; Sarma, Jayanta Kumar; Nath, Nayan Mani

    2018-04-01

    We have determined the quantum confinement induced shifts in energy of band edges and band gap with respect to size of ZnSe spherical quantum dot employing an effective confinement potential model developed in our earlier communication "arXiv:1705.10343". We have also performed phenomenological analysis of our theoretical results in comparison with available experimental data and observe a very good agreement in this regard. Phenomenological success achieved in this regard confirms validity of the confining potential model as well as signifies the capability and applicability of the ansatz for the effective confining potential to have reasonable information in the study of real nano-structured spherical systems.

  10. Erosion potential from Missoula floods in the Pasco Basin, Washington

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craig, R.G.; Hanson, J.P.

    Localities within the Pasco Basin preserve evidence of Missoula floods. Deposits are 46% sand-sized, 36% gravel-sized, and 18% finer than sand-sized. Mean thickness is 39 meters. High water marks at Wallula Gap require a discharge of approximately 12.5 Mcms. At Sentinel Gap, the slope-area method shows that the high water marks require a discharge of 34.6 Mcms. Since this discharge greatly exceeds any estimated for Missoula floods, there must have been backwater ponding from Wallula Gap. Projecting the slope of the water surface at the upper end of Wallula Gap to the downstream cross section at Gable Mountain leads tomore » a discharge of 9.5 Mcms at Sentinel Gap. The HEC-6 steady state code and four sediment transport equations were applied. Assuming sand-sized particles, DuBoys function estimated 4 to 9 meters of scour. Yang's equation estimated 3 to 4 meters of scour. These are a minimum. A hydrograph synthesized for the boundaries of the Pasco Basin shows the maxima of the flood would occur after 90 h at Sentinel Gap, and at 114 h at Wallula Gap. The 200 areas will remain inundated for four days and six hours. With a quasi-dynamic sediment transport computation, HEC-6 scour estimates range from 0.61 meters to 0.915 meters. This is a minimum amount and erosion is highly variable suggesting reworking of sediment. The Meyer-Peter Meuller equations show less than 1 meter of net scour in the 200 areas. More extensive erosion was achieved during particular time steps of this analysis suggesting that sediment re-working would occur.« less

  11. The effects of the chemical composition and strain on the electronic properties of GaSb/InAs core-shell nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ning, Feng; Wang, Dan; Tang, Li-Ming, E-mail: lmtang@hnu.edu.cn

    2014-09-07

    The effects of the chemical composition and strain on the electronic properties of [111] zinc-blende (ZB) and [0001] wurtzite (WZ) GaSb/InAs core-shell nanowires (NWs) with different core diameters and shell thicknesses are studied using first-principles methods. The band structures of the [111] ZB GaSb/InAs core-shell NWs underwent a noticeable type-I/II band alignment transition, associated with a direct-to-indirect band gap transition under a compressive uniaxial strain. The band structures of the [0001] WZ GaSb/InAs core-shell NWs preserved the direct band gap under either compressive or tensile uniaxial strains. In addition, the band gaps and the effective masses of the carriers couldmore » be tuned by their composition. For the core-shell NWs with a fixed GaSb-core size, the band gaps decreased linearly with an increasing InAs-shell thickness, caused by the significant downshift of the conduction bands. For the [111] ZB GaSb/InAs core-shell NWs, the calculated effective masses indicated that the transport properties could be changed from hole-dominated conduction to electron-dominated conduction by changing the InAs-shell thickness.« less

  12. Modeling and Simulation of Ceramic Arrays to Improve Ballaistic Performance

    DTIC Science & Technology

    2013-11-01

    2219 , 2000 Tile gap is found to increase the DoP as compared to One Tile tiles The next step will be run simulations on narrower and wider gap sizes...experiments described in reference - ARL-TR- 2219 , 2000 □ Tile gap is found to increase the DoP as compared to One Tile tiles □ The next step will be run...L| Al m ^ s\\cr V^ 1 v^ □ Smoothed-particle hydrodynamics (SPH) used for all parts □ SPH size = 0.40-mm, totaling 278k

  13. 3D contour fluorescence spectroscopy with Brus model: Determination of size and band gap of double stranded DNA templated silver nanoclusters

    NASA Astrophysics Data System (ADS)

    Kamalraj, Devaraj; Yuvaraj, Selvaraj; Yoganand, Coimbatore Paramasivam; Jaffer, Syed S.

    2018-01-01

    Here, we propose a new synthetic methodology for silver nanocluster preparation by using a double stranded-DNA (ds-DNA) template which no one has reported yet. A new calculative method was formulated to determine the size of the nanocluster and their band gaps by using steady state 3D contour fluorescence technique with Brus model. Generally, the structure and size of the nanoclusters determine by using High Resolution Transmission Electron Microscopy (HR-TEM). Before imaging the samples by using HR-TEM, they are introduced to drying process which causes aggregation and forms bigger polycrystalline particles. It takes long time duration and expensive methodology. In this current methodology, we found out the size and band gap of the nanocluster in the liquid form without any polycrystalline aggregation for which 3D contour fluorescence technique was used as an alternative approach to the HR-TEM method.

  14. Aligned fibers direct collective cell migration to engineer closing and nonclosing wound gaps

    PubMed Central

    Sharma, Puja; Ng, Colin; Jana, Aniket; Padhi, Abinash; Szymanski, Paige; Lee, Jerry S. H.; Behkam, Bahareh; Nain, Amrinder S.

    2017-01-01

    Cell emergence onto damaged or organized fibrous extracellular matrix (ECM) is a crucial precursor to collective cell migration in wound closure and cancer metastasis, respectively. However, there is a fundamental gap in our quantitative understanding of the role of local ECM size and arrangement in cell emergence–based migration and local gap closure. Here, using ECM-mimicking nanofibers bridging cell monolayers, we describe a method to recapitulate and quantitatively describe these in vivo behaviors over multispatial (single cell to cell sheets) and temporal (minutes to weeks) scales. On fiber arrays with large interfiber spacing, cells emerge (invade) either singularly by breaking cell–cell junctions analogous to release of a stretched rubber band (recoil), or in groups of few cells (chains), whereas on closely spaced fibers, multiple chains emerge collectively. Advancing cells on fibers form cell streams, which support suspended cell sheets (SCS) of various sizes and curvatures. SCS converge to form local gaps that close based on both the gap size and shape. We document that cell stream spacing of 375 µm and larger hinders SCS advancement, thus providing abilities to engineer closing and nonclosing gaps. Altogether we highlight the importance of studying cell-fiber interactions and matrix structural remodeling in fundamental and translational cell biology. PMID:28747440

  15. Unraveling Evidence-Based Practices in Special Education

    ERIC Educational Resources Information Center

    Cook, Bryan G.; Cook, Sara Cothren

    2013-01-01

    Evidence-based practices (EBPs) are instructional techniques that meet prescribed criteria related to the research design, quality, quantity, and effect size of supporting research, which have the potential to help bridge the research-to-practice gap and improve student outcomes. In this article, the authors (a) discuss the importance of clear…

  16. Preparation of CdS Nanoparticles by First-Year Undergraduates

    ERIC Educational Resources Information Center

    Winkelmann, Kurt; Noviello, Thomas; Brooks, Stephen

    2007-01-01

    The first year undergraduates use a simple method to synthesize 5-nm CdS nanoparticles in a water-in-oil microemulsion. The quantum size effect, the relationship between colors, optical absorbance, band-gap energy and the CdS particles affected by the formation of micelles are observed.

  17. Facial recognition using simulated prosthetic pixelized vision.

    PubMed

    Thompson, Robert W; Barnett, G David; Humayun, Mark S; Dagnelie, Gislin

    2003-11-01

    To evaluate a model of simulated pixelized prosthetic vision using noncontiguous circular phosphenes, to test the effects of phosphene and grid parameters on facial recognition. A video headset was used to view a reference set of four faces, followed by a partially averted image of one of those faces viewed through a square pixelizing grid that contained 10x10 to 32x32 dots separated by gaps. The grid size, dot size, gap width, dot dropout rate, and gray-scale resolution were varied separately about a standard test condition, for a total of 16 conditions. All tests were first performed at 99% contrast and then repeated at 12.5% contrast. Discrimination speed and performance were influenced by all stimulus parameters. The subjects achieved highly significant facial recognition accuracy for all high-contrast tests except for grids with 70% random dot dropout and two gray levels. In low-contrast tests, significant facial recognition accuracy was achieved for all but the most adverse grid parameters: total grid area less than 17% of the target image, 70% dropout, four or fewer gray levels, and a gap of 40.5 arcmin. For difficult test conditions, a pronounced learning effect was noticed during high-contrast trials, and a more subtle practice effect on timing was evident during subsequent low-contrast trials. These findings suggest that reliable face recognition with crude pixelized grids can be learned and may be possible, even with a crude visual prosthesis.

  18. High electron mobility and quantum oscillations in non-encapsulated ultrathin semiconducting Bi 2O 2Se

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Jinxiong; Yuan, Hongtao; Meng, Mengmeng

    Identifying new two-dimensional (2D) materials with both high carrier mobility and a large electronic band gap is critical for novel electronics and optoelectronics applications. Here, we demonstrated a new air-stable ultrahigh-mobility layered Bi 2O 2Se semiconductor with a large band gap of ~ 0.8 eV and a low effective mass of ~ 0.14 m 0. High-quality 2D Bi2O2Se crystals with a thickness down to a monolayer and a domain size greater than 200 μm were readily grown by chemical vapor deposition (CVD). Size-tunable band gap of Bi 2O 2Se was found to increase as thinning down to the monolayer duemore » to the quantum confinement effect. An ultrahigh Hall mobility of > 20,000 cm 2 V -1 s -1 was achieved in as-grown Bi 2O 2Se flakes at 1.9 K, which allows for the observation of Shubnikov–de Haas quantum oscillations. Top-gated field-effect transistors based on CVD-grown 2D Bi 2O 2Se crystals (down to bilayer) exhibited high Hall mobility (up to 450 cm 2 V -1 s -1), large current on/off ratios (>106) and near-ideal subthreshold swings (~65 mV/dec) at room temperature. Our results make the high-mobility 2D Bi 2O 2Se semiconductor a promising candidate for future high-speed and low-power electronic applications.« less

  19. High electron mobility and quantum oscillations in non-encapsulated ultrathin semiconducting Bi 2O 2Se

    DOE PAGES

    Wu, Jinxiong; Yuan, Hongtao; Meng, Mengmeng; ...

    2017-04-03

    Identifying new two-dimensional (2D) materials with both high carrier mobility and a large electronic band gap is critical for novel electronics and optoelectronics applications. Here, we demonstrated a new air-stable ultrahigh-mobility layered Bi 2O 2Se semiconductor with a large band gap of ~ 0.8 eV and a low effective mass of ~ 0.14 m 0. High-quality 2D Bi2O2Se crystals with a thickness down to a monolayer and a domain size greater than 200 μm were readily grown by chemical vapor deposition (CVD). Size-tunable band gap of Bi 2O 2Se was found to increase as thinning down to the monolayer duemore » to the quantum confinement effect. An ultrahigh Hall mobility of > 20,000 cm 2 V -1 s -1 was achieved in as-grown Bi 2O 2Se flakes at 1.9 K, which allows for the observation of Shubnikov–de Haas quantum oscillations. Top-gated field-effect transistors based on CVD-grown 2D Bi 2O 2Se crystals (down to bilayer) exhibited high Hall mobility (up to 450 cm 2 V -1 s -1), large current on/off ratios (>106) and near-ideal subthreshold swings (~65 mV/dec) at room temperature. Our results make the high-mobility 2D Bi 2O 2Se semiconductor a promising candidate for future high-speed and low-power electronic applications.« less

  20. Functional outcomes of conservatively managed acute ruptures of the Achilles tendon.

    PubMed

    Lawrence, J E; Nasr, P; Fountain, D M; Berman, L; Robinson, A H N

    2017-01-01

    This prospective cohort study aims to determine if the size of the tendon gap following acute rupture of the Achilles tendon shows an association with the functional outcome following non-operative treatment. All patients presenting within two weeks of an acute unilateral rupture of the Achilles tendon between July 2012 and July 2015 were considered for the study. In total, 38 patients (nine female, 29 male, mean age 52 years; 29 to 78) completed the study. Dynamic ultrasound examination was performed to confirm the diagnosis and measure the gap between ruptured tendon ends. Outcome was assessed using dynamometric testing of plantarflexion and the Achilles tendon Total Rupture score (ATRS) six months after the completion of a rehabilitation programme. Patients with a gap ≥ 10 mm with the ankle in the neutral position had significantly greater peak torque deficit than those with gaps < 10 mm (mean 23.3%; 7% to 52% vs 14.3%; 0% to 47%, p = 0.023). However, there was no difference in ATRS between the two groups (mean score 87.2; 74 to 100 vs 87.4; 68 to 97, p = 0.467). There was no significant correlation between gap size and torque deficit (τ = 0.103), suggesting a non-linear relationship. There was also no significant correlation between ATRS and peak torque deficit (τ = -0.305). This is the first study to identify an association between tendon gap and functional outcome in acute rupture of the Achilles tendon. We have identified 10 mm as a gap size at which deficits in plantarflexion strength become significantly greater, however, the precise relationship between gap size and plantarflexion strength remains unclear. Large, multicentre studies will be needed to clarify this relationship and identify population subgroups in whom deficits in peak torque are reflected in patient-reported outcome measures. Cite this article: Bone Joint J 2017;99-B:87-93. ©2017 The British Editorial Society of Bone & Joint Surgery.

  1. Study of tip clearance flow in a turbomachinery cascade using large eddy simulation

    NASA Astrophysics Data System (ADS)

    You, Donghyun

    In liquid handling systems like pumps and ducted propulsors, low pressure events in the vicinity and downstream of the rotor tip gap can induce tip-leakage cavitation which leads to noise, vibration, performance loss, and erosions of blade and casing wall. In order to analyze the dynamics of the tip-clearance flow and determine the underlying mechanism for the low pressure events, a newly developed large-eddy simulation (LES) solver which combines an immersed-boundary method with a generalized curvilinear structured grid has been employed. An analysis of the LES results has been performed to understand the mean flow field, turbulence characteristics, vortex dynamics, and pressure fluctuations in the turbomachinery cascade with tip gap. In the cascade passage, the tip-leakage jet, which is generated by the pressure difference between the pressure and suction sides of the blade tip, is found to produce highly enhanced vorticity magnitude and significant levels of turbulent kinetic energy. Based on the understanding of the flow field, a guideline for reducing viscous loss in the cascade is provided. Analyses of the energy spectra and space-time correlations of the velocity fluctuations suggest that the tip-leakage vortex is subject to pitchwise wandering motion. The largest pressure drop and most intense pressure fluctuations due to the formation of the tip-leakage vortex are found at the location where the strongest portion of the tip-leakage vortex is found. Present study suggests that the tip-leakage vortex needs to be controlled in its origin to reduce cavitation in the present configuration. The effects of tip-gap size on the end-wall vortical structures and on the velocity and pressure fields have been investigated. The present analysis indicates that the mechanism for the generation of the vorticity and turbulent kinetic energy is mostly unchanged by the tip-gap size variation. However, larger tip-gap sizes are found to be more inductive to tip-leakage cavitation judged by the levels of negative mean pressure and pressure fluctuations.

  2. SU-E-T-247: Multi-Leaf Collimator Model Adjustments Improve Small Field Dosimetry in VMAT Plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, L; Yang, F

    2014-06-01

    Purpose: The Elekta beam modulator linac employs a 4-mm micro multileaf collimator (MLC) backed by a fixed jaw. Out-of-field dose discrepancies between treatment planning system (TPS) calculations and output water phantom measurements are caused by the 1-mm leaf gap required for all moving MLCs in a VMAT arc. In this study, MLC parameters are optimized to improve TPS out-of-field dose approximations. Methods: Static 2.4 cm square fields were created with a 1-mm leaf gap for MLCs that would normally park behind the jaw. Doses in the open field and leaf gap were measured with an A16 micro ion chamber andmore » EDR2 film for comparison with corresponding point doses in the Pinnacle TPS. The MLC offset table and tip radius were adjusted until TPS point doses agreed with photon measurements. Improvements to the beam models were tested using static arcs consisting of square fields ranging from 1.6 to 14.0 cm, with 45° collimator rotation, and 1-mm leaf gap to replicate VMAT conditions. Gamma values for the 3-mm distance, 3% dose difference criteria were evaluated using standard QA procedures with a cylindrical detector array. Results: The best agreement in point doses within the leaf gap and open field was achieved by offsetting the default rounded leaf end table by 0.1 cm and adjusting the leaf tip radius to 13 cm. Improvements in TPS models for 6 and 10 MV photon beams were more significant for smaller field sizes 3.6 cm or less where the initial gamma factors progressively increased as field size decreased, i.e. for a 1.6cm field size, the Gamma increased from 56.1% to 98.8%. Conclusion: The MLC optimization techniques developed will achieve greater dosimetric accuracy in small field VMAT treatment plans for fixed jaw linear accelerators. Accurate predictions of dose to organs at risk may reduce adverse effects of radiotherapy.« less

  3. Comparison of marginal adaptation of mineral trioxide aggregate, glass ionomer cement and intermediate restorative material as root-end filling materials, using scanning electron microscope: An in vitro study

    PubMed Central

    Gundam, Sirisha; Patil, Jayaprakash; Venigalla, Bhuvan Shome; Yadanaparti, Sravanthi; Maddu, Radhika; Gurram, Sindhura Reddy

    2014-01-01

    Aim: The present study compares the marginal adaption of Mineral Trioxide Aggregate (MTA), Glass Ionomer Cement (GIC) and Intermediate Restorative Material (IRM) as root-end filling materials in extracted human teeth using Scanning Electron Microscope (SEM). Materials and Methods: Thirty single rooted human teeth were obturated with Gutta-percha after cleaning and shaping. Apical 3 mm of roots were resected and retrofilled with MTA, GIC and IRM. One millimeter transverse section of the retrofilled area was used to study the marginal adaptation of the restorative material with the dentin. Mounted specimens were examined using SEM at approximately 15 Kv and 10-6 Torr under high vacuum condition. At 2000 X magnification, the gap size at the material-tooth interface was recorded at 2 points in microns. Statistical Analysis: One way ANOVA Analysis of the data from the experimental group was carried out with gap size as the dependent variable, and material as independent variable. Results: The lowest mean value of gap size was recorded in MTA group (0.722 ± 0.438 μm) and the largest mean gap in GIC group (1.778 ± 0.697 μm). Conclusion: MTA showed least gap size when compared to IRM and GIC suggesting a better marginal adaptation. PMID:25506146

  4. Lens ion homeostasis relies on the assembly and/or stability of large connexin 46 gap junction plaques on the broad sides of differentiating fiber cells

    PubMed Central

    Cheng, Catherine; Nowak, Roberta B.; Gao, Junyuan; Sun, Xiurong; Biswas, Sondip K.; Lo, Woo-Kuen; Mathias, Richard T.

    2015-01-01

    The eye lens consists of layers of tightly packed fiber cells, forming a transparent and avascular organ that is important for focusing light onto the retina. A microcirculation system, facilitated by a network of gap junction channels composed of connexins 46 and 50 (Cx46 and Cx50), is hypothesized to maintain and nourish lens fiber cells. We measured lens impedance in mice lacking tropomodulin 1 (Tmod1, an actin pointed-end capping protein), CP49 (a lens-specific intermediate filament protein), or both Tmod1 and CP49. We were surprised to find that simultaneous loss of Tmod1 and CP49, which disrupts cytoskeletal networks in lens fiber cells, results in increased gap junction coupling resistance, hydrostatic pressure, and sodium concentration. Protein levels of Cx46 and Cx50 in Tmod1−/−;CP49−/− double-knockout (DKO) lenses were unchanged, and electron microscopy revealed normal gap junctions. However, immunostaining and quantitative analysis of three-dimensional confocal images showed that Cx46 gap junction plaques are smaller and more dispersed in DKO differentiating fiber cells. The localization and sizes of Cx50 gap junction plaques in DKO fibers were unaffected, suggesting that Cx46 and Cx50 form homomeric channels. We also demonstrate that gap junction plaques rest in lacunae of the membrane-associated actin-spectrin network, suggesting that disruption of the actin-spectrin network in DKO fibers may interfere with gap junction plaque accretion into micrometer-sized domains or alter the stability of large plaques. This is the first work to reveal that normal gap junction plaque localization and size are associated with normal lens coupling conductance. PMID:25740157

  5. Lens ion homeostasis relies on the assembly and/or stability of large connexin 46 gap junction plaques on the broad sides of differentiating fiber cells.

    PubMed

    Cheng, Catherine; Nowak, Roberta B; Gao, Junyuan; Sun, Xiurong; Biswas, Sondip K; Lo, Woo-Kuen; Mathias, Richard T; Fowler, Velia M

    2015-05-15

    The eye lens consists of layers of tightly packed fiber cells, forming a transparent and avascular organ that is important for focusing light onto the retina. A microcirculation system, facilitated by a network of gap junction channels composed of connexins 46 and 50 (Cx46 and Cx50), is hypothesized to maintain and nourish lens fiber cells. We measured lens impedance in mice lacking tropomodulin 1 (Tmod1, an actin pointed-end capping protein), CP49 (a lens-specific intermediate filament protein), or both Tmod1 and CP49. We were surprised to find that simultaneous loss of Tmod1 and CP49, which disrupts cytoskeletal networks in lens fiber cells, results in increased gap junction coupling resistance, hydrostatic pressure, and sodium concentration. Protein levels of Cx46 and Cx50 in Tmod1(-/-);CP49(-/-) double-knockout (DKO) lenses were unchanged, and electron microscopy revealed normal gap junctions. However, immunostaining and quantitative analysis of three-dimensional confocal images showed that Cx46 gap junction plaques are smaller and more dispersed in DKO differentiating fiber cells. The localization and sizes of Cx50 gap junction plaques in DKO fibers were unaffected, suggesting that Cx46 and Cx50 form homomeric channels. We also demonstrate that gap junction plaques rest in lacunae of the membrane-associated actin-spectrin network, suggesting that disruption of the actin-spectrin network in DKO fibers may interfere with gap junction plaque accretion into micrometer-sized domains or alter the stability of large plaques. This is the first work to reveal that normal gap junction plaque localization and size are associated with normal lens coupling conductance. Copyright © 2015 the American Physiological Society.

  6. Electronic structure and aromaticity of large-scale hexagonal graphene nanoflakes.

    PubMed

    Hu, Wei; Lin, Lin; Yang, Chao; Yang, Jinlong

    2014-12-07

    With the help of the recently developed SIESTA-pole (Spanish Initiative for Electronic Simulations with Thousands of Atoms) - PEXSI (pole expansion and selected inversion) method [L. Lin, A. García, G. Huhs, and C. Yang, J. Phys.: Condens. Matter 26, 305503 (2014)], we perform Kohn-Sham density functional theory calculations to study the stability and electronic structure of hydrogen passivated hexagonal graphene nanoflakes (GNFs) with up to 11,700 atoms. We find the electronic properties of GNFs, including their cohesive energy, edge formation energy, highest occupied molecular orbital-lowest unoccupied molecular orbital energy gap, edge states, and aromaticity, depend sensitively on the type of edges (armchair graphene nanoflakes (ACGNFs) and zigzag graphene nanoflakes (ZZGNFs)), size and the number of electrons. We observe that, due to the edge-induced strain effect in ACGNFs, large-scale ACGNFs' edge formation energy decreases as their size increases. This trend does not hold for ZZGNFs due to the presence of many edge states in ZZGNFs. We find that the energy gaps E(g) of GNFs all decay with respect to 1/L, where L is the size of the GNF, in a linear fashion. But as their size increases, ZZGNFs exhibit more localized edge states. We believe the presence of these states makes their gap decrease more rapidly. In particular, when L is larger than 6.40 nm, we find that ZZGNFs exhibit metallic characteristics. Furthermore, we find that the aromatic structures of GNFs appear to depend only on whether the system has 4N or 4N + 2 electrons, where N is an integer.

  7. On the accurate estimation of gap fraction during daytime with digital cover photography

    NASA Astrophysics Data System (ADS)

    Hwang, Y. R.; Ryu, Y.; Kimm, H.; Macfarlane, C.; Lang, M.; Sonnentag, O.

    2015-12-01

    Digital cover photography (DCP) has emerged as an indirect method to obtain gap fraction accurately. Thus far, however, the intervention of subjectivity, such as determining the camera relative exposure value (REV) and threshold in the histogram, hindered computing accurate gap fraction. Here we propose a novel method that enables us to measure gap fraction accurately during daytime under various sky conditions by DCP. The novel method computes gap fraction using a single DCP unsaturated raw image which is corrected for scattering effects by canopies and a reconstructed sky image from the raw format image. To test the sensitivity of the novel method derived gap fraction to diverse REVs, solar zenith angles and canopy structures, we took photos in one hour interval between sunrise to midday under dense and sparse canopies with REV 0 to -5. The novel method showed little variation of gap fraction across different REVs in both dense and spares canopies across diverse range of solar zenith angles. The perforated panel experiment, which was used to test the accuracy of the estimated gap fraction, confirmed that the novel method resulted in the accurate and consistent gap fractions across different hole sizes, gap fractions and solar zenith angles. These findings highlight that the novel method opens new opportunities to estimate gap fraction accurately during daytime from sparse to dense canopies, which will be useful in monitoring LAI precisely and validating satellite remote sensing LAI products efficiently.

  8. Propagational characteristics in a warm hybrid plasmonic waveguide

    NASA Astrophysics Data System (ADS)

    Mahmodi Moghadam, M.; Shahmansouri, M.; Farokhi, B.

    2017-12-01

    We theoretically analyze the properties of guided modes in a warm planar conductor-gap-dielectric (CGD) system. The latter consists of a high index dielectric, separated from a warm metallic plasma with a low index nano-sized dielectric layer (gap) by using the hydrodynamic model coupled to Maxwell's equations. The effects of thermal pressure on the confinement and the propagation losses of Hybrid Plasmon Polariton (HPP) modes are studied. We found that the thermal effect leads to a reduction in the effective refractive index as well as in the propagation losses of the HPP mode. Furthermore, the cutoff thickness in the warm CGD waveguide is found to be smaller than that in a cold CGD waveguide. The results may be useful in understanding the essential physics of active/passive Plasmonic devices and chip-scale systems.

  9. Prospective guidance in a free-swimming cell.

    PubMed

    Delafield-Butt, Jonathan T; Pepping, Gert-Jan; McCaig, Colin D; Lee, David N

    2012-07-01

    A systems theory of movement control in animals is presented in this article and applied to explaining the controlled behaviour of the single-celled Paramecium caudatum in an electric field. The theory-General Tau Theory-is founded on three basic principles: (i) all purposive movement entails prospectively controlling the closure of action-gaps (e.g. a distance gap when reaching, or an angle gap when steering); (ii) the sole informational variable required for controlling gaps is the relative rate of change of the gap (the time derivative of the gap size divided by the size), which can be directly sensed; and (iii) a coordinated movement is achieved by keeping the relative rates of change of gaps in a constant ratio. The theory is supported by studies of controlled movement in mammals, birds and insects. We now show for the first time that it is also supported by single-celled paramecia steering to the cathode in a bi-polar electric field. General Tau Theory is deployed to explain this guided steering by the cell. This article presents the first computational model of prospective perceptual control in a non-neural, single-celled system.

  10. Smoothing spline ANOVA frailty model for recurrent event data.

    PubMed

    Du, Pang; Jiang, Yihua; Wang, Yuedong

    2011-12-01

    Gap time hazard estimation is of particular interest in recurrent event data. This article proposes a fully nonparametric approach for estimating the gap time hazard. Smoothing spline analysis of variance (ANOVA) decompositions are used to model the log gap time hazard as a joint function of gap time and covariates, and general frailty is introduced to account for between-subject heterogeneity and within-subject correlation. We estimate the nonparametric gap time hazard function and parameters in the frailty distribution using a combination of the Newton-Raphson procedure, the stochastic approximation algorithm (SAA), and the Markov chain Monte Carlo (MCMC) method. The convergence of the algorithm is guaranteed by decreasing the step size of parameter update and/or increasing the MCMC sample size along iterations. Model selection procedure is also developed to identify negligible components in a functional ANOVA decomposition of the log gap time hazard. We evaluate the proposed methods with simulation studies and illustrate its use through the analysis of bladder tumor data. © 2011, The International Biometric Society.

  11. Solvent-Polarity-Induced Active Layer Morphology Control in Crystalline Diketopyrrolopyrrole-Based Low Band Gap Polymer Photovoltaics

    NASA Astrophysics Data System (ADS)

    Ferdous, Sunzida; Liu, Feng; Wang, Dong; Russell, Thomas

    2014-03-01

    The effects of various processing solvents on the morphology of diketopyrrolopyrrole (DPP)-based low band gap polymer (PDPPBT) and phenyl-C71-butyric acid methyl ester (PC71BM) blends are studied. The quality of the processing solvents was varied systematically using a mixture of a non-aromatic polar primary solvent with high boiling point secondary solvents of increasing polarities. An unfavorable solvent-PC71BM interaction affects the growth process of polymer crystallites inside the blend. When non-aromatic polar solvent was used, large PC71BM aggregates were formed that increase in size with the addition of non-polar secondary solvents. When polar solvents were instead used as the secondary solvents, the size scales of the aggregates decrease markedly, creating a percolated fibrillar network. Power conversion efficiencies of 0.03% to 5% are obtained, depending on the solvent system used.

  12. Deposition and characterization of ZnSe nanocrystalline thin films

    NASA Astrophysics Data System (ADS)

    Temel, Sinan; Gökmen, F. Özge; Yaman, Elif; Nebi, Murat

    2018-02-01

    ZnSe nanocrystalline thin films were deposited at different deposition times by using the Chemical Bath Deposition (CBD) technique. Effects of deposition time on structural, morphological and optical properties of the obtained thin films were characterized. X-ray diffraction (XRD) analysis was used to study the structural properties of ZnSe nanocrystalline thin films. It was found that ZnSe thin films have a cubic structure with a preferentially orientation of (111). The calculated average grain size value was about 28-30 nm. The surface morphology of these films was studied by the Field Emission Scanning Electron Microscope (FESEM). The surfaces of the thin films were occurred from small stacks and nano-sized particles. The band gap values of the ZnSe nanocrystalline thin films were determined by UV-Visible absorption spectrum and the band gap values were found to be between 2.65-2.86 eV.

  13. Acceleration of 500 keV Negative Ion Beams By Tuning Vacuum Insulation Distance On JT-60 Negative Ion Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kojima, A.; Hanada, M.; Tanaka, Y.

    2011-09-26

    Acceleration of a 500 keV beam up to 2.8 A has been achieved on a JT-60U negative ion source with a three-stage accelerator by overcoming low voltage holding which is one of the critical issues for realization of the JT-60SA ion source. In order to improve the voltage holding, preliminary voltage holding tests with small-size grids with uniform and locally intense electric fields were carried out, and suggested that the voltage holding was degraded by both the size and local electric field effects. Therefore, the local electric field was reduced by tuning gap lengths between the large size grids andmore » grid support structures of the accelerator. Moreover, a beam radiation shield which limited extension of the minimum gap length was also optimized so as to reduce the local electric field while maintaining the shielding effect. These modifications were based on the experiment results, and significantly increased the voltage holding from <150 kV/stage for the original configuration to 200 kV/stage. These techniques for improvement of voltage holding should also be applicable to other large ion sources accelerators such as those for ITER.« less

  14. Canopy gap size influences niche partitioning of the ground-layer plant community in a northern temperate forest

    Treesearch

    Christel C. Kern; Rebecca A. Montgomery; Peter B. Reich; Terry F. Strong

    2013-01-01

    The Gap Partitioning Hypothesis (GPH) posits that gaps create heterogeneity in resources crucial for tree regeneration in closed-canopy forests, allowing trees with contrasting strategies to coexist along resource gradients. Few studies have examined gap partitioning of temperate, ground-layer vascular plants. We used a ground-layer plant community of a temperate...

  15. Improved gap size estimation for scaffolding algorithms.

    PubMed

    Sahlin, Kristoffer; Street, Nathaniel; Lundeberg, Joakim; Arvestad, Lars

    2012-09-01

    One of the important steps of genome assembly is scaffolding, in which contigs are linked using information from read-pairs. Scaffolding provides estimates about the order, relative orientation and distance between contigs. We have found that contig distance estimates are generally strongly biased and based on false assumptions. Since erroneous distance estimates can mislead in subsequent analysis, it is important to provide unbiased estimation of contig distance. In this article, we show that state-of-the-art programs for scaffolding are using an incorrect model of gap size estimation. We discuss why current maximum likelihood estimators are biased and describe what different cases of bias we are facing. Furthermore, we provide a model for the distribution of reads that span a gap and derive the maximum likelihood equation for the gap length. We motivate why this estimate is sound and show empirically that it outperforms gap estimators in popular scaffolding programs. Our results have consequences both for scaffolding software, structural variation detection and for library insert-size estimation as is commonly performed by read aligners. A reference implementation is provided at https://github.com/SciLifeLab/gapest. Supplementary data are availible at Bioinformatics online.

  16. Measuring spatiotemporal variation in snow optical grain size under a subalpine forest canopy using contact spectroscopy

    NASA Astrophysics Data System (ADS)

    Molotch, Noah P.; Barnard, David M.; Burns, Sean P.; Painter, Thomas H.

    2016-09-01

    The distribution of forest cover exerts strong controls on the spatiotemporal distribution of snow accumulation and snowmelt. The physical processes that govern these controls are poorly understood given a lack of detailed measurements of snow states. In this study, we address one of many measurement gaps by using contact spectroscopy to measure snow optical grain size at high spatial resolution in trenches dug between tree boles in a subalpine forest. Trenches were collocated with continuous measurements of snow depth and vertical profiles of snow temperature and supplemented with manual measurements of snow temperature, geometric grain size, grain type, and density from trench walls. There was a distinct difference in snow optical grain size between winter and spring periods. In winter and early spring, when facetted snow crystal types were dominant, snow optical grain size was 6% larger in canopy gaps versus under canopy positions; a difference that was smaller than the measurement uncertainty. By midspring, the magnitude of snow optical grain size differences increased dramatically and patterns of snow optical grain size became highly directional with 34% larger snow grains in areas south versus north of trees. In winter, snow temperature gradients were up to 5-15°C m-1 greater under the canopy due to shallower snow accumulation. However, in canopy gaps, snow depths were greater in fall and early winter and therefore more significant kinetic growth metamorphism occurred relative to under canopy positions, resulting in larger snow grains in canopy gaps. Our findings illustrate the novelty of our method of measuring snow optical grain size, allowing for future studies to advance the understanding of how forest and meteorological conditions interact to impact snowpack evolution.

  17. Interactive effects of body-size structure and adaptive foraging on food-web stability.

    PubMed

    Heckmann, Lotta; Drossel, Barbara; Brose, Ulrich; Guill, Christian

    2012-03-01

    Body-size structure of food webs and adaptive foraging of consumers are two of the dominant concepts of our understanding how natural ecosystems maintain their stability and diversity. The interplay of these two processes, however, is a critically important yet unresolved issue. To fill this gap in our knowledge of ecosystem stability, we investigate dynamic random and niche model food webs to evaluate the proportion of persistent species. We show that stronger body-size structures and faster adaptation stabilise these food webs. Body-size structures yield stabilising configurations of interaction strength distributions across food webs, and adaptive foraging emphasises links to resources closer to the base. Moreover, both mechanisms combined have a cumulative effect. Most importantly, unstructured random webs evolve via adaptive foraging into stable size-structured food webs. This offers a mechanistic explanation of how size structure adaptively emerges in complex food webs, thus building a novel bridge between these two important stabilising mechanisms. © 2012 Blackwell Publishing Ltd/CNRS.

  18. Self-amplified photo-induced gap quenching in a correlated electron material

    PubMed Central

    Mathias, S.; Eich, S.; Urbancic, J.; Michael, S.; Carr, A. V.; Emmerich, S.; Stange, A.; Popmintchev, T.; Rohwer, T.; Wiesenmayer, M.; Ruffing, A.; Jakobs, S.; Hellmann, S.; Matyba, P.; Chen, C.; Kipp, L.; Bauer, M.; Kapteyn, H. C.; Schneider, H. C.; Rossnagel, K.; Murnane, M. M.; Aeschlimann, M.

    2016-01-01

    Capturing the dynamic electronic band structure of a correlated material presents a powerful capability for uncovering the complex couplings between the electronic and structural degrees of freedom. When combined with ultrafast laser excitation, new phases of matter can result, since far-from-equilibrium excited states are instantaneously populated. Here, we elucidate a general relation between ultrafast non-equilibrium electron dynamics and the size of the characteristic energy gap in a correlated electron material. We show that carrier multiplication via impact ionization can be one of the most important processes in a gapped material, and that the speed of carrier multiplication critically depends on the size of the energy gap. In the case of the charge-density wave material 1T-TiSe2, our data indicate that carrier multiplication and gap dynamics mutually amplify each other, which explains—on a microscopic level—the extremely fast response of this material to ultrafast optical excitation. PMID:27698341

  19. Role of Cu in engineering the optical properties of SnO2 nanostructures: Structural, morphological and spectroscopic studies

    NASA Astrophysics Data System (ADS)

    Kumar, Virender; Singh, Kulwinder; Jain, Megha; Manju; Kumar, Akshay; Sharma, Jeewan; Vij, Ankush; Thakur, Anup

    2018-06-01

    We have carried out a systematic study to investigate the effect of Cu doping on the optical properties of SnO2 nanostructures synthesized by chemical route. Synthesized nanostructures were characterized using X-ray diffraction (XRD), Field emission scanning electron microscopy (FE-SEM), High resolution transmission electron microscopy (HR-TEM), Energy dispersive X-ray spectroscopy, Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy, UV-visible and Photoluminescence (PL) spectroscopy. The Rietveld refinement analysis of XRD patterns of Cu-doped SnO2 samples confirmed the formation of single phase tetragonal rutile structure, however some localized distortion was observed for 5 mol% Cu-doped SnO2. Crystallite size was found to decrease with increase in dopant concentration. FE-SEM images indicated change in morphology of samples with doping. HR-TEM images revealed that synthesized nanostructures were nearly spherical and average crystallite size was in the range 12-21 nm. Structural defects, crystallinity and size effects on doping were investigated by Raman spectroscopy and results were complemented by FTIR spectroscopy. Optical band gap of samples was estimated from reflectance spectra. We have shown that band gap of SnO2 can be engineered from 3.62 to 3.82 eV by Cu doping. PL emission intensity increased as the doping concentration increased, which can be attributed to the development of defect states in the forbidden transition region of band gap of SnO2 with doping. We have also proposed a band model owing to defect states in SnO2 to explain the observed PL in Cu doped SnO2 nanostructures.

  20. Excitations in the Yang–Gaudin Bose gas

    DOE PAGES

    Robinson, Neil J.; Konik, Robert M.

    2017-06-01

    Here, we study the excitation spectrum of two-component delta-function interacting bosons confined to a single spatial dimension, the Yang–Gaudin Bose gas. We show that there are pronounced finite-size effects in the dispersion relations of excitations, perhaps best illustrated by the spinon single particle dispersion which exhibits a gap at 2k F and a finite-momentum roton-like minimum. Such features occur at energies far above the finite volume excitation gap, vanish slowly as 1/L for fixed spinon number, and can persist to the thermodynamic limit at fixed spinon density. Features such as the 2k F gap also persist to multi-particle excitation continua. Our results show that excitations in the finite system can behave in a qualitatively different manner to analogous excitations in the thermodynamic limit. The Yang–Gaudin Bose gas is also host to multi-spinon bound states, known asmore » $$\\Lambda$$ -strings. We study these excitations both in the thermodynamic limit under the string hypothesis and in finite size systems where string deviations are taken into account. In the zero-temperature limit we present a simple relation between the length n $$\\Lambda$$-string dressed energies $$\\epsilon_n(\\lambda)$$ and the dressed energy $$\\epsilon(k)$$. We solve the Yang–Yang–Takahashi equations numerically and compare to the analytical solution obtained under the strong couple expansion, revealing that the length n $$\\Lambda$$ -string dressed energy is Lorentzian over a wide range of real string centers λ in the vicinity of $$\\lambda = 0$$ . We then examine the finite size effects present in the dispersion of the two-spinon bound states by numerically solving the Bethe ansatz equations with string deviations.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Neil J.; Konik, Robert M.

    Here, we study the excitation spectrum of two-component delta-function interacting bosons confined to a single spatial dimension, the Yang–Gaudin Bose gas. We show that there are pronounced finite-size effects in the dispersion relations of excitations, perhaps best illustrated by the spinon single particle dispersion which exhibits a gap at 2k F and a finite-momentum roton-like minimum. Such features occur at energies far above the finite volume excitation gap, vanish slowly as 1/L for fixed spinon number, and can persist to the thermodynamic limit at fixed spinon density. Features such as the 2k F gap also persist to multi-particle excitation continua. Our results show that excitations in the finite system can behave in a qualitatively different manner to analogous excitations in the thermodynamic limit. The Yang–Gaudin Bose gas is also host to multi-spinon bound states, known asmore » $$\\Lambda$$ -strings. We study these excitations both in the thermodynamic limit under the string hypothesis and in finite size systems where string deviations are taken into account. In the zero-temperature limit we present a simple relation between the length n $$\\Lambda$$-string dressed energies $$\\epsilon_n(\\lambda)$$ and the dressed energy $$\\epsilon(k)$$. We solve the Yang–Yang–Takahashi equations numerically and compare to the analytical solution obtained under the strong couple expansion, revealing that the length n $$\\Lambda$$ -string dressed energy is Lorentzian over a wide range of real string centers λ in the vicinity of $$\\lambda = 0$$ . We then examine the finite size effects present in the dispersion of the two-spinon bound states by numerically solving the Bethe ansatz equations with string deviations.« less

  2. Design Modification and Calibration of the Picatinny Activator for Setback Safety Testing of SADARM

    DTIC Science & Technology

    1992-05-01

    Modified activator 25 13 Hammer velocity versus gap closing velocity 27 14 Peak air pressures 28 15 Peak air temperatures, 29 16 Pulse durations at half...Variations in P, and P 2 with gap size for 20 KG’s and 30 KG’s acceleration, and for the 20 KG’s case with the heat transfer arbitrarily reduced to 10... closing velocity at first jump-up and its value is plotted in figure 7. It only depends on gap size and acceleration and appears to be the most

  3. Indium selenide monolayer: strain-enhanced optoelectronic response and dielectric environment-tunable 2D exciton features

    NASA Astrophysics Data System (ADS)

    Ben Amara, Imen; Hichri, Aida; Jaziri, Sihem

    2017-12-01

    Electronic and optical performances of the β-InSe monolayer (ML) are considerably boosted by tuning the corresponding band energies through lattice in-plane compressive strain engineering. First principles calculations show an indirect-direct gap transition with a large bandgap size. The crossover is due to different responses of the near-gap state energies with respect to strain. This is explained by the variation of In-Se bond length, the bond nature of near-band-edge electronic orbital and of the momentum angular contribution versus in-plane compressive strain. The effective masses of charge carriers are also found to be highly modulated and significantly light at the indirect-direct-gap transition. The tuned optical response of the resulting direct-gap ML β-InSe is evaluated versus applied energy to infer the allowed optical transitions, dielectric constants, semiconductor-metal behavior and refractive index. The environmental dielectric engineering of exciton behavior of the resulting direct-gap ML β-InSe is handled within the effective mass Wannier-Mott model and is expected to be important. Our results highlight the increase of binding energy and red-shifted exciton energy with decreasing screening substrates, resulting in a stable exciton at room temperature. The intensity and energy of the ground-state exciton emission are expected to be strongly influenced under substrate screening effect. According to our findings, the direct-gap ML β-InSe assures tremendous 2D optoelectronic and nanoelectronic merits that could overcome several limitations of unstrained ML β-InSe.

  4. Seed Regeneration Potential of Canopy Gaps at Early Formation Stage in Temperate Secondary Forests, Northeast China

    PubMed Central

    Yan, Qiao-Ling; Zhu, Jiao-Jun; Yu, Li-Zhong

    2012-01-01

    Promoting the seed regeneration potential of secondary forests undergoing gap disturbances is an important approach for achieving forest restoration and sustainable management. Seedling recruitment from seed banks strongly determines the seed regeneration potential, but the process is poorly understood in the gaps of secondary forests. The objectives of the present study were to evaluate the effects of gap size, seed availability, and environmental conditions on the seed regeneration potential in temperate secondary forests. It was found that gap formation could favor the invasion of more varieties of species in seed banks, but it also could speed up the turnover rate of seed banks leading to lower seed densities. Seeds of the dominant species, Fraxinus rhynchophylla, were transient in soil and there was a minor and discontinuous contribution of the seed bank to its seedling emergence. For Quercus mongolica, emerging seedling number was positively correlated with seed density in gaps (R = 0.32, P<0.01), especially in medium and small gaps (<500 m2). Furthermore, under canopies, there was a positive correlation between seedling number and seed density of Acer mono (R = 0.43, P<0.01). Gap formation could promote seedling emergence of two gap-dependent species (i.e., Q. mongolica and A. mono), but the contribution of seed banks to seedlings was below 10% after gap creation. Soil moisture and temperature were the restrictive factors controlling the seedling emergence from seeds in gaps and under canopies, respectively. Thus, the regeneration potential from seed banks is limited after gap formation. PMID:22745771

  5. Temperature induced CuInSe2 nanocrystal formation in the Cu2Se-In3Se2 multilayer thin films

    NASA Astrophysics Data System (ADS)

    Mohan, A.; Rajesh, S.

    2017-04-01

    The paper deals with the impact of annealing on Cu2Se-In3Se2 multilayer structure and discusses the quantum confinements. Thermal evaporation technique was used to prepare multilayer films over the glass substrates. The films were annealed at different temperatures (150 °C-350 °C) under vacuum atmosphere. The XRD pattern reveals that the films exhibit (112) peaks with CuInSe2 Chalcopyrite structure and upon annealing crystallinity improved. The grain size comes around 13-19 nm. The optical band gap value was found to be 2.21 to 2.09 eV and band gap splitting was observed for higher annealing temperatures. The increase in the band gap is related to quantum confinement effect. SEM image shows nano crystals spread over the entire surface for higher annealing temperatures. Optical absorption and PL spectra shows the blue shift during annealing. The HR-TEM shows the particle size in the nano range and which confirms the CuInSe2 nanocrystal formation. AFM image shows the rough surface with homogenous grains for the as deposited films and smooth surface for annealed films.

  6. Effects of electrode settings on chlorine generation efficiency of electrolyzing seawater.

    PubMed

    Hsu, Guoo-Shyng Wang; Hsia, Chih-Wei; Hsu, Shun-Yao

    2015-12-01

    Electrolyzed water has significant disinfection effects, can comply with food safety regulations, and is environmental friendly. We investigated the effects of immersion depth of electrodes, stirring, electrode size, and electrode gap on the properties and chlorine generation efficiency of electrolyzing seawater and its storage stability. Results indicated that temperature and oxidation-reduction potential (ORP) of the seawater increased gradually, whereas electrical conductivity decreased steadily in electrolysis. During the electrolysis process, pH values and electric currents also decreased slightly within small ranges. Additional stirring or immersing the electrodes deep under the seawater significantly increased current density without affecting its electric efficiency and current efficiency. Decreasing electrode size or increasing electrode gap decreased chlorine production and electric current of the process without affecting its electric efficiency and current efficiency. Less than 35% of chlorine in the electrolyzed seawater was lost in a 3-week storage period. The decrement trend leveled off after the 1 st week of storage. The electrolyzing system is a convenient and economical method for producing high-chlorine seawater, which will have high potential applications in agriculture, aquaculture, or food processing. Copyright © 2015. Published by Elsevier B.V.

  7. Experimental investigation and CFD analysis on cross flow in the core of PMR200

    DOE PAGES

    Lee, Jeong -Hun; Yoon, Su -Jong; Cho, Hyoung -Kyu; ...

    2015-04-16

    The Prismatic Modular Reactor (PMR) is one of the major Very High Temperature Reactor (VHTR) concepts, which consists of hexagonal prismatic fuel blocks and reflector blocks made of nuclear gradegraphite. However, the shape of the graphite blocks could be easily changed by neutron damage duringthe reactor operation and the shape change can create gaps between the blocks inducing the bypass flow.In the VHTR core, two types of gaps, a vertical gap and a horizontal gap which are called bypass gap and cross gap, respectively, can be formed. The cross gap complicates the flow field in the reactor core by connectingmore » the coolant channel to the bypass gap and it could lead to a loss of effective coolant flow in the fuel blocks. Thus, a cross flow experimental facility was constructed to investigate the cross flow phenomena in the core of the VHTR and a series of experiments were carried out under varying flow rates and gap sizes. The results of the experiments were compared with CFD (Computational Fluid Dynamics) analysis results in order to verify its prediction capability for the cross flow phenomena. Fairly good agreement was seen between experimental results and CFD predictions and the local characteristics of the cross flow was discussed in detail. Based on the calculation results, pressure loss coefficient across the cross gap was evaluated, which is necessary for the thermo-fluid analysis of the VHTR core using a lumped parameter code.« less

  8. Bridging the Gap between Receptive and Productive Vocabulary Size through Extensive Reading

    ERIC Educational Resources Information Center

    Yamamoto, Yuka

    2011-01-01

    It is well established that extensive reading promotes the incidental learning of L1 and L2 receptive vocabulary; however, little is known about its effectiveness on productive gains in vocabulary knowledge. This paper investigates the extent to which extensive reading combined with writing tasks promotes productive vocabulary growth of Japanese…

  9. Time and space resolved current density mapping in three dimensions using magnetic field probe array in a high voltage coaxial gap

    NASA Astrophysics Data System (ADS)

    Cordaro, S. W.; Bott-Suzuki, S. C.

    2017-12-01

    We present an experimental analysis of the symmetry of current density in a coaxial geometry, diagnosed using a magnetic field probe array and calculations of the Fowler-Nordheim enhancement factor. Data were collected on the coaxial gap breakdown device (240 A, 25 kV, 150 ns, ˜0.1 Hz), and data from experiments using 2 different gap sizes and different penetration depths are compared over runs comprising 50 shots for each case. The magnetic field probe array quantifies the distribution of current density at three axial locations, on either sides of a vacuum breakdown, and tracks the evolution with time and space. The results show asymmetries in current density, which can be influenced by changes in the gap size and the penetration depth (of the center electrode into the outer electrode). For smaller gap sizes (400 μm), symmetric current profiles were not observed, and the change in the penetration depth changes both the symmetric behavior of the current density and the enhancement factor. For larger gaps (900 μm), current densities were typically more uniform and less influenced by the penetration depth, which is reflected in the enhancement factor values. It is possible that the change in inductance caused by the localization of current densities plays a role in the observed behavior.

  10. Gender gap on concept inventories in physics: What is consistent, what is inconsistent, and what factors influence the gap?

    NASA Astrophysics Data System (ADS)

    Madsen, Adrian; McKagan, Sarah B.; Sayre, Eleanor C.

    2013-12-01

    We review the literature on the gender gap on concept inventories in physics. Across studies of the most commonly used mechanics concept inventories, the Force Concept Inventory and Force and Motion Conceptual Evaluation, men’s average pretest scores are always higher than women’s, and in most cases men’s posttest scores are higher as well. The weighted average gender difference on these tests is 13% for pretest scores, 12% for posttest scores, and 6% for normalized gain. This difference is much smaller than the average difference in normalized gain between traditional lecture and interactive engagement (25%), but it is large enough that it could impact the results of studies comparing the effectiveness of different teaching methods. There is sometimes a gender gap on commonly used electricity and magnetism concept inventories, the Brief Electricity and Magnetism Assessment and Conceptual Survey of Electricity and Magnetism, but it is usually much smaller and sometimes is zero or favors women. The weighted average gender difference on these tests is 3.7% for pretest scores, 8.5% for posttest scores, and 6% for normalized gain. There are far fewer studies of the gender gap on electricity and magnetism concept inventories and much more variation in the existing studies. Based on our analysis of 26 published articles comparing the impact of 30 factors that could potentially influence the gender gap, no single factor is sufficient to explain the gap. Several high-profile studies that have claimed to account for or reduce the gender gap have failed to be replicated in subsequent studies, suggesting that isolated claims of explanations of the gender gap should be interpreted with caution. For example, claims that the gender gap could be eliminated through interactive engagement teaching methods or through a “values affirmation writing exercise” were not supported by subsequent studies. Suggestions that the gender gap might be reduced by changing the wording of “male-oriented” questions or refraining from asking demographic questions before administering the test are not supported by the evidence. Other factors, such as gender differences in background preparation, scores on different kinds of assessment, and splits between how students respond to test questions when answering for themselves or for a “scientist” do contribute to a difference between male and female responses, but the size of these differences is smaller than the size of the overall gender gap, suggesting that the gender gap is most likely due to the combination of many small factors rather than any one factor that can easily be modified.

  11. Nanofork for single cells adhesion measurement via ESEM-nanomanipulator system.

    PubMed

    Ahmad, Mohd Ridzuan; Nakajima, Masahiro; Kojima, Masaru; Kojima, Seiji; Homma, Michio; Fukuda, Toshio

    2012-03-01

    In this paper, single cells adhesion force was measured using a nanofork. The nanofork was used to pick up a single cell on a line array substrate inside an environmental scanning electron microscope (ESEM). The line array substrate was used to provide small gaps between the single cells and the substrate. Therefore, the nanofork could be inserted through these gaps in order to successfully pick up a single cell. Adhesion force was measured during the cell pick-up process from the deflection of the cantilever beam. The nanofork was fabricated using focused ion beam (FIB) etching process while the line array substrate was fabricated using nanoimprinting technology. As to investigate the effect of contact area on the strength of the adhesion force, two sizes of gap distance of line array substrate were used, i.e., 1 μm and 2 μm. Results showed that cells attached on the 1 μm gap line array substrate required more force to be released as compared to the cells attached on the 1 μm gap line array substrate.

  12. Model based optimization of driver-pickup separation for eddy current measurement of gap

    NASA Astrophysics Data System (ADS)

    Klein, G.; Morelli, J.; Krause, T. W.

    2018-04-01

    The fuel channels in CANDU® (CANada Deuterium Uranium) nuclear reactors consist of a pressure tube (PT) contained within a larger diameter calandria tube (CT). The separation between the tubes, known as the PT-CT gap, ensures PT hydride blisters, which could lead to potential cracking of the PT, do not develop. Therefore, accurate measurements are required to confirm that contact between PT and CT is not imminent. Gap measurement uses an eddy current probe. However this probe is sensitive to lift-off variations, which can adversely affect estimated gap. A validated analytical flat plate model of eddy current response to gap was used to examine the effect of driver-pickup spacing on lift-off and response to gap at a frequency of 4 kHz, which is used for in-reactor measurements. This model was compared against, and shown to have good agreement with, a COMSOL® finite element method (FEM) model. The optimum coil separation, which included the constraint of coil size, was found to be 11 mm, resulting in a phase response between lift-off and response to change in gap of 66°. This work demonstrates the advantages of using analytical models for optimizing coil designs for measurement of parameters that may negatively influence the outcome of an inspection measurement.

  13. Verification of dosimetric accuracy on the TrueBeam STx: rounded leaf effect of the high definition MLC.

    PubMed

    Kielar, Kayla N; Mok, Ed; Hsu, Annie; Wang, Lei; Luxton, Gary

    2012-10-01

    The dosimetric leaf gap (DLG) in the Varian Eclipse treatment planning system is determined during commissioning and is used to model the effect of the rounded leaf-end of the multileaf collimator (MLC). This parameter attempts to model the physical difference between the radiation and light field and account for inherent leakage between leaf tips. With the increased use of single fraction high dose treatments requiring larger monitor units comes an enhanced concern in the accuracy of leakage calculations, as it accounts for much of the patient dose. This study serves to verify the dosimetric accuracy of the algorithm used to model the rounded leaf effect for the TrueBeam STx, and describes a methodology for determining best-practice parameter values, given the novel capabilities of the linear accelerator such as flattening filter free (FFF) treatments and a high definition MLC (HDMLC). During commissioning, the nominal MLC position was verified and the DLG parameter was determined using MLC-defined field sizes and moving gap tests, as is common in clinical testing. Treatment plans were created, and the DLG was optimized to achieve less than 1% difference between measured and calculated dose. The DLG value found was tested on treatment plans for all energies (6 MV, 10 MV, 15 MV, 6 MV FFF, 10 MV FFF) and modalities (3D conventional, IMRT, conformal arc, VMAT) available on the TrueBeam STx. The DLG parameter found during the initial MLC testing did not match the leaf gap modeling parameter that provided the most accurate dose delivery in clinical treatment plans. Using the physical leaf gap size as the DLG for the HDMLC can lead to 5% differences in measured and calculated doses. Separate optimization of the DLG parameter using end-to-end tests must be performed to ensure dosimetric accuracy in the modeling of the rounded leaf ends for the Eclipse treatment planning system. The difference in leaf gap modeling versus physical leaf gap dimensions is more pronounced in the more recent versions of Eclipse for both the HDMLC and the Millennium MLC. Once properly commissioned and tested using a methodology based on treatment plan verification, Eclipse is able to accurately model radiation dose delivered for SBRT treatments using the TrueBeam STx.

  14. Climatic and geographic predictors of life history variation in Eastern Massasauga (Sistrurus catenatus): A range-wide synthesis.

    PubMed

    Hileman, Eric T; King, Richard B; Adamski, John M; Anton, Thomas G; Bailey, Robyn L; Baker, Sarah J; Bieser, Nickolas D; Bell, Thomas A; Bissell, Kristin M; Bradke, Danielle R; Campa, Henry; Casper, Gary S; Cedar, Karen; Cross, Matthew D; DeGregorio, Brett A; Dreslik, Michael J; Faust, Lisa J; Harvey, Daniel S; Hay, Robert W; Jellen, Benjamin C; Johnson, Brent D; Johnson, Glenn; Kiel, Brooke D; Kingsbury, Bruce A; Kowalski, Matthew J; Lee, Yu Man; Lentini, Andrew M; Marshall, John C; Mauger, David; Moore, Jennifer A; Paloski, Rori A; Phillips, Christopher A; Pratt, Paul D; Preney, Thomas; Prior, Kent A; Promaine, Andrew; Redmer, Michael; Reinert, Howard K; Rouse, Jeremy D; Shoemaker, Kevin T; Sutton, Scott; VanDeWalle, Terry J; Weatherhead, Patrick J; Wynn, Doug; Yagi, Anne

    2017-01-01

    Elucidating how life history traits vary geographically is important to understanding variation in population dynamics. Because many aspects of ectotherm life history are climate-dependent, geographic variation in climate is expected to have a large impact on population dynamics through effects on annual survival, body size, growth rate, age at first reproduction, size-fecundity relationship, and reproductive frequency. The Eastern Massasauga (Sistrurus catenatus) is a small, imperiled North American rattlesnake with a distribution centered on the Great Lakes region, where lake effects strongly influence local conditions. To address Eastern Massasauga life history data gaps, we compiled data from 47 study sites representing 38 counties across the range. We used multimodel inference and general linear models with geographic coordinates and annual climate normals as explanatory variables to clarify patterns of variation in life history traits. We found strong evidence for geographic variation in six of nine life history variables. Adult female snout-vent length and neonate mass increased with increasing mean annual precipitation. Litter size decreased with increasing mean temperature, and the size-fecundity relationship and growth prior to first hibernation both increased with increasing latitude. The proportion of gravid females also increased with increasing latitude, but this relationship may be the result of geographically varying detection bias. Our results provide insights into ectotherm life history variation and fill critical data gaps, which will inform Eastern Massasauga conservation efforts by improving biological realism for models of population viability and climate change.

  15. Opportunities and challenges to conserve water on the landscape in snow-dominated forests: The quest for the radiative minima and more...

    NASA Astrophysics Data System (ADS)

    Link, T. E.; Kumar, M.; Pomeroy, J. W.; Seyednasrollah, B.; Ellis, C. R.; Lawler, R.; Essery, R.

    2012-12-01

    In mountainous, forested environments, vegetation exerts a strong control on snowcover dynamics that affect ecohydrological processes, streamflow regimes, and riparian health. Snowcover deposition and ablation patterns in forests are controlled by a complex combination of canopy interception processes coupled with radiative and turbulent heat flux patterns related to topographic and canopy cover variations. In seasonal snow environments, snowcover ablation dynamics in forests are dominated by net radiation. Recent research indicates that in small canopy gaps a net radiation minima relative to both open and forested environments can occur, but depends strongly on solar angle, gap size, slope, canopy height and stem density. The optimal gap size to minimize radiation to snow was estimated to have a diameter between 1 and 2 times the surrounding vegetation height. Physically-based snowmelt simulations indicate that gaps may increase SWE and desynchronize snowmelt by approximately 3 weeks between north and south facing slopes, relative to undisturbed forests. On east and west facing slopes, small gaps cause melt to be slightly delayed relative to intact forests, and have a minimal effect on melt synchronicity between slopes. Recent research focused on canopy thinning also indicates that a net radiation minima occurs in canopies of intermediate densities. Physically-based radiative transfer simulations using a discrete tree-based model indicate that in mid-latitude level forests, the annually-integrated radiative minima occurs at a tree spacing of 2.65 relative to the canopy height. The radiative minima was found to occur in denser forests on south-facing slopes and sparser forests on north-facing slopes. The radiative minimums in thinned forests are controlled by solar angle, crown geometry and density, tree spacing, slope, and aspect. These results indicate that both gap and homogeneous forest thinning may be used to reduce snowmelt rates or alter melt synchronicity, but the exact configuration will be highly spatially variable. Development of management strategies to conserve water on the landscape to enhance forest and riparian health in a changing climate must also rigorously evaluate the effects of canopy thinning and specific hydrometeorological conditions on net radiation, turbulent fluxes, and snow interception processes.

  16. Balanced Flexion and Extension Gaps Are Not Always of Equal Size.

    PubMed

    Kinsey, Tracy L; Mahoney, Ormonde M

    2018-04-01

    It has been widely accepted in total knee arthroplasty (TKA) that flexion and extension gaps in the disarticulated knee during surgery should be equalized. We hypothesized that tensioning during assessment of the flexion gap can induce temporary widening of the gap due to posterior tibial translation. We aimed to describe posterior tibial translation at flexion gap (90°) assessments and assess the correlation of tibial translation with laxity (flexion space increase) using constrained and non-constrained inserts. Imageless navigation was used to measure flexion angle, tibial position relative to the femoral axis, and lateral/medial laxity in 30 patients undergoing primary TKA. Trialing was conducted using posteriorly stabilized and cruciate retaining trials of the same size to elucidate the association of posterior tibial translation with changes in joint capsule laxity at 90° knee flexion. All patients demonstrated posterior tibial translation during flexion gap assessment relative to their subsequent final implantation [mean ± standard deviation (range), 11.3 ± 4.4 (4-21) mm]. Positive linear correlation [r = 0.69, 95% confidence interval (CI) 0.44-0.84, P ≤ .001] was demonstrated between translations [8.7 ± 2.4 (3-13) mm] and laxity changes [2.9° ± 2.0° (-0.7° to 7.4°)] at 90° of flexion. Posterior tibial translation can cause artifactual widening of the flexion gap during gap balancing in posteriorly stabilized TKA, which can be of sufficient magnitude to alter femoral component size selection for some patients. Recognition and management of these intra-operative dynamics for optimal kinematics could be feasible with the advent of robotic applications. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Shrinking of silicon nanocrystals embedded in an amorphous silicon oxide matrix during rapid thermal annealing in a forming gas atmosphere

    NASA Astrophysics Data System (ADS)

    van Sebille, M.; Fusi, A.; Xie, L.; Ali, H.; van Swaaij, R. A. C. M. M.; Leifer, K.; Zeman, M.

    2016-09-01

    We report the effect of hydrogen on the crystallization process of silicon nanocrystals embedded in a silicon oxide matrix. We show that hydrogen gas during annealing leads to a lower sub-band gap absorption, indicating passivation of defects created during annealing. Samples annealed in pure nitrogen show expected trends according to crystallization theory. Samples annealed in forming gas, however, deviate from this trend. Their crystallinity decreases for increased annealing time. Furthermore, we observe a decrease in the mean nanocrystal size and the size distribution broadens, indicating that hydrogen causes a size reduction of the silicon nanocrystals.

  18. A Synthesis of the Evidence for Managing Stress at Work: A Review of the Reviews Reporting on Anxiety, Depression, and Absenteeism

    PubMed Central

    Bhui, Kamaldeep S.; Dinos, Sokratis; Stansfeld, Stephen A.; White, Peter D.

    2012-01-01

    Background. Psychosocial stressors in the workplace are a cause of anxiety and depressive illnesses, suicide and family disruption. Methods. The present review synthesizes the evidence from existing systematic reviews published between 1990 and July 2011. We assessed the effectiveness of individual, organisational and mixed interventions on two outcomes: mental health and absenteeism. Results. In total, 23 systematic reviews included 499 primary studies; there were 11 meta-analyses and 12 narrative reviews. Meta-analytic studies found a greater effect size of individual interventions on individual outcomes. Organisational interventions showed mixed evidence of benefit. Organisational programmes for physical activity showed a reduction in absenteeism. The findings from the meta-analytic reviews were consistent with the findings from the narrative reviews. Specifically, cognitive-behavioural programmes produced larger effects at the individual level compared with other interventions. Some interventions appeared to lead to deterioration in mental health and absenteeism outcomes.Gaps in the literature include studies of organisational outcomes like absenteeism, the influence of specific occupations and size of organisations, and studies of the comparative effectiveness of primary, secondary and tertiary prevention. Conclusions. Individual interventions (like CBT) improve individuals' mental health. Physical activity as an organisational intervention reduces absenteeism. Research needs to target gaps in the evidence. PMID:22496705

  19. A synthesis of the evidence for managing stress at work: a review of the reviews reporting on anxiety, depression, and absenteeism.

    PubMed

    Bhui, Kamaldeep S; Dinos, Sokratis; Stansfeld, Stephen A; White, Peter D

    2012-01-01

    Psychosocial stressors in the workplace are a cause of anxiety and depressive illnesses, suicide and family disruption. The present review synthesizes the evidence from existing systematic reviews published between 1990 and July 2011. We assessed the effectiveness of individual, organisational and mixed interventions on two outcomes: mental health and absenteeism. In total, 23 systematic reviews included 499 primary studies; there were 11 meta-analyses and 12 narrative reviews. Meta-analytic studies found a greater effect size of individual interventions on individual outcomes. Organisational interventions showed mixed evidence of benefit. Organisational programmes for physical activity showed a reduction in absenteeism. The findings from the meta-analytic reviews were consistent with the findings from the narrative reviews. Specifically, cognitive-behavioural programmes produced larger effects at the individual level compared with other interventions. Some interventions appeared to lead to deterioration in mental health and absenteeism outcomes.Gaps in the literature include studies of organisational outcomes like absenteeism, the influence of specific occupations and size of organisations, and studies of the comparative effectiveness of primary, secondary and tertiary prevention. Individual interventions (like CBT) improve individuals' mental health. Physical activity as an organisational intervention reduces absenteeism. Research needs to target gaps in the evidence.

  20. Direct graphene growth on MgO: origin of the band gap.

    PubMed

    Gaddam, Sneha; Bjelkevig, Cameron; Ge, Siping; Fukutani, Keisuke; Dowben, Peter A; Kelber, Jeffry A

    2011-02-23

    A 2.5 monolayer (ML) thick graphene film grown by chemical vapor deposition of thermally dissociated C(2)H(4) on MgO(111), displays a significant band gap. The apparent six-fold low energy electron diffraction (LEED) pattern actually consists of two three-fold patterns with different 'A' and 'B' site diffraction intensities. Similar effects are observed for the LEED patterns of a 1 ML carbon film derived from annealing adventitious carbon on MgO(111), and for a 1.5 ML thick graphene film grown by sputter deposition on the 1 ML film. The LEED data indicate different electron densities at the A and B sites of the graphene lattice, suggesting that the observed band gap results from lifting the graphene HOMO/LUMO degeneracy at the Dirac point. The data also indicate that disparities in A site/B site LEED intensities decrease with increasing carbon overlayer thickness, suggesting that the graphene band gap size decreases with increasing number of graphene layers on MgO(111). © 2011 IOP Publishing Ltd

  1. Bandgap and pseudohelicity effects over conductance in gapped graphene junctures

    NASA Astrophysics Data System (ADS)

    Navarro-Giraldo, J. A.; Quimbay, C. J.

    2018-07-01

    We study the conductance in gapped single-layer graphene junctures as a function of bangap, pseudohelicity and charge carriers density. To do it, we first calculate the transmission coefficients of massive charge carries for p–n and n–p–n junctures of gapped single-layer graphene. Next, we calculate the conductance for these two systems using the Landauer formula. Only for the p–n juncture case and non-zero bandgap values, we find the existence of a contribution to the conductance from pseudohelicity inversion states, which is small compared to the contribution from pseudohelicity conservation states. Also, we find for both type of junctures that there exists a window of charge carriers densities values where the conductance is zero (conductance gap), in such a way that the size of this window depends on the squared of the bandgap. We observe that the existence of a bandgap in the system leads to valley mixing and this fact could be useful for the future design of devices based on single-layer graphene.

  2. Effects of tip-substrate gap, deposition temperature, holding time, and pull-off velocity on dip-pen lithography investigated using molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Wu, Cheng-Da; Fang, Te-Hua; Lin, Jen-Fin

    2012-05-01

    The process parameters in the dip-pen nanolithography process, including tip-substrate gap, deposition temperature, holding time, and pull-off velocity are evaluated in terms of the mechanism of molecular transference, alkanethiol meniscus characteristic, surface adsorbed energy, and pattern formation using molecular dynamics simulations. The simulation results clearly show that the optimum deposition occurs at a smaller tip-substrate gap, a slower pull-off velocity, a higher temperature, and a longer holding time. The pattern area increases with decreasing tip-substrate gap and increasing deposition temperature and holding time. With an increase in deposition temperature, the molecular transfer ability significantly increases. Pattern height is a function of meniscus length. When the pull-off velocity is decreased, the pattern height increases. The height of the neck in meniscus decreases and the neck width increases with holding time. Meniscus size increases with increasing deposition temperature and holding time.

  3. Structural Transformation of Wireframe DNA Origami via DNA Polymerase Assisted Gap-Filling.

    PubMed

    Agarwal, Nayan P; Matthies, Michael; Joffroy, Bastian; Schmidt, Thorsten L

    2018-03-27

    The programmability of DNA enables constructing nanostructures with almost any arbitrary shape, which can be decorated with many functional materials. Moreover, dynamic structures can be realized such as molecular motors and walkers. In this work, we have explored the possibility to synthesize the complementary sequences to single-stranded gap regions in the DNA origami scaffold cost effectively by a DNA polymerase rather than by a DNA synthesizer. For this purpose, four different wireframe DNA origami structures were designed to have single-stranded gap regions. This reduced the number of staple strands needed to determine the shape and size of the final structure after gap filling. For this, several DNA polymerases and single-stranded binding (SSB) proteins were tested, with T4 DNA polymerase being the best fit. The structures could be folded in as little as 6 min, and the subsequent optimized gap-filling reaction was completed in less than 3 min. The introduction of flexible gap regions results in fully collapsed or partially bent structures due to entropic spring effects. Finally, we demonstrated structural transformations of such deformed wireframe DNA origami structures with DNA polymerases including the expansion of collapsed structures and the straightening of curved tubes. We anticipate that this approach will become a powerful tool to build DNA wireframe structures more material-efficiently, and to quickly prototype and test new wireframe designs that can be expanded, rigidified, or mechanically switched. Mechanical force generation and structural transitions will enable applications in structural DNA nanotechnology, plasmonics, or single-molecule biophysics.

  4. Excitonic effects and related properties in semiconductor nanostructures: roles of size and dimensionality

    NASA Astrophysics Data System (ADS)

    Wu, Shudong; Cheng, Liwen; Wang, Qiang

    2017-08-01

    The size- and dimensionality-dependence of excitonic effects and related properties in semiconductor nanostructures are theoretically studied in detail within the effective-mass approximation. When nanostructure sizes become smaller than the bulk exciton Bohr radius, excitonic effects are significantly enhanced with reducing size or dimensionality. This is as a result of quantum confinement in more directions leading to larger exciton binding energies and normalized exciton oscillator strengths. These excitonic effects originate from electron-hole Coulombic interactions, which strongly enhance the oscillator strength between the electron and hole. It is also established that the universal scaling of exciton binding energy versus the inverse of the exciton Bohr radius follows a linear scaling law. Herein, we propose a stretched exponential law for the size scaling of optical gap, which is in good agreement with the calculated data. Due to differences in the confinement dimensionality, the radiative lifetime of low-dimensional excitons becomes shorter than that of bulk excitons. The size dependence of the exciton radiative lifetimes is in good agreement with available experimental data. This strongly enhanced electron-hole exchange interaction is expected in low-dimensional structures due to enriched excitonic effects. The main difference in nanostructures compared to the bulk can be interpreted in terms of the enhanced excitonic effects induced by exciton localization. The enhanced excitonic effects are expected to be of importance in developing stable and high-efficiency nanoscale excitonic optoelectronic devices.

  5. RPA and XPA interaction with DNA structures mimicking intermediates of the late stages in nucleotide excision repair

    PubMed Central

    Maltseva, Ekaterina A.

    2018-01-01

    Replication protein A (RPA) and the xeroderma pigmentosum group A (XPA) protein are indispensable for both pathways of nucleotide excision repair (NER). Here we analyze the interaction of RPA and XPA with DNA containing a flap and different size gaps that imitate intermediates of the late NER stages. Using gel mobility shift assays, we found that RPA affinity for DNA decreased when DNA contained both extended gap and similar sized flap in comparison with gapped-DNA structure. Moreover, crosslinking experiments with the flap-gap DNA revealed that RPA interacts mainly with the ssDNA platform within the long gap and contacts flap in DNA with a short gap. XPA exhibits higher affinity for bubble-DNA structures than to flap-gap-containing DNA. Protein titration analysis showed that formation of the RPA-XPA-DNA ternary complex depends on the protein concentration ratio and these proteins can function as independent players or in tandem. Using fluorescently-labelled RPA, direct interaction of this protein with XPA was detected and characterized quantitatively. The data obtained allow us to suggest that XPA can be involved in the post-incision NER stages via its interaction with RPA. PMID:29320546

  6. Detection and Distribution of Natural Gaps in Tropical Rainforest

    NASA Astrophysics Data System (ADS)

    Goulamoussène, Y.; Linguet, L.; Hérault, B.

    2014-12-01

    Forest management is important to assess biodiversity and ecological processes. Requirements for disturbance information have also been motivated by the scientific community. Therefore, understanding and monitoring the distribution frequencies of treefall gaps is relevant to better understanding and predicting the carbon budget in response to global change and land use change. In this work we characterize and quantify the frequency distribution of natural canopy gaps. We observe then interaction between environment variables and gap formation across tropical rainforest of the French Guiana region by using high resolution airborne Light Detection and Ranging (LiDAR). We mapped gaps with canopy model distribution on 40000 ha of forest. We used a Bayesian modelling framework to estimate and select useful covariate model parameters. Topographic variables are included in a model to predict gap size distribution. We discuss results from the interaction between environment and gap size distribution, mainly topographic indexes. The use of both airborne and space-based techniques has improved our ability to supply needed disturbance information. This work is an approach at plot scale. The use of satellite data will allow us to work at forest scale. The inclusion of climate variables in our model will let us assess the impact of global change on tropical rainforest.

  7. RPA and XPA interaction with DNA structures mimicking intermediates of the late stages in nucleotide excision repair.

    PubMed

    Krasikova, Yuliya S; Rechkunova, Nadejda I; Maltseva, Ekaterina A; Lavrik, Olga I

    2018-01-01

    Replication protein A (RPA) and the xeroderma pigmentosum group A (XPA) protein are indispensable for both pathways of nucleotide excision repair (NER). Here we analyze the interaction of RPA and XPA with DNA containing a flap and different size gaps that imitate intermediates of the late NER stages. Using gel mobility shift assays, we found that RPA affinity for DNA decreased when DNA contained both extended gap and similar sized flap in comparison with gapped-DNA structure. Moreover, crosslinking experiments with the flap-gap DNA revealed that RPA interacts mainly with the ssDNA platform within the long gap and contacts flap in DNA with a short gap. XPA exhibits higher affinity for bubble-DNA structures than to flap-gap-containing DNA. Protein titration analysis showed that formation of the RPA-XPA-DNA ternary complex depends on the protein concentration ratio and these proteins can function as independent players or in tandem. Using fluorescently-labelled RPA, direct interaction of this protein with XPA was detected and characterized quantitatively. The data obtained allow us to suggest that XPA can be involved in the post-incision NER stages via its interaction with RPA.

  8. First Principles Study of Electronic Band Structure and Structural Stability of Al2C Monolayer and Nanotubes

    NASA Astrophysics Data System (ADS)

    Pramchu, S.; Jaroenjittichai, A. P.; Laosiritaworn, Y.

    2017-09-01

    We used density functional theory (DFT) based on generalized gradient approximation (GGA) and hybrid functional (HSE06) to investigate band gap and structural stability of Al2C monolayer and nanotubes. From the results, both GGA and HSE06 band gaps of Al2C monolayer agree well with previously reported data. For the Al2C nanotubes, we found that their band gaps are more sensitive to the size and the chirality than that of the widely studied SiC2 nanotubes, indicating the Al2C nanotubes may have higher band gap tuning capabilities (with varying diameter size and chirality) compared with those of SiC2 nanotubes. We have also discovered a desirable direct band gap in the case of (n,0) nanotubes, although Al2C monolayer band gap is indirect. The calculated strain energy reveals that (n,0) nanotubes constructed by wrapping up Al2C monolayer consume less energy than (0,n) nanotubes. Thus, (n,0) nanotubes is easier to synthesize than (0,n) nanotubes. This discovery of direct band gap in (n,0) Al2C nanotubes and their adjustable band gap suggests them as promising sensitizer for enhancing power conversion efficiency of excitonic solar cells.

  9. Functionality of bismuth sulfide quantum dots/wires-glass nanocomposite as an optical current sensor with enhanced Verdet constant

    NASA Astrophysics Data System (ADS)

    Panmand, Rajendra P.; Kumar, Ganapathy; Mahajan, Satish M.; Kulkarni, Milind V.; Amalnerkar, D. P.; Kale, Bharat B.; Gosavi, Suresh. W.

    2011-02-01

    We report optical studies with magneto-optic properties of Bi2S3 quantum dot/wires-glass nanocomposite. The size of the Q-dot was observed to be in the range 3-15 nm along with 11 nm Q-wires. Optical study clearly demonstrated the size quantization effect with drastic band gap variation with size. Faraday rotation tests on the glass nanocomposites show variation in Verdet constant with Q-dot size. Bi2S3 Q-dot/wires glass nanocomposite demonstrated 190 times enhanced Verdet constant compared to the host glass. Prima facie observations exemplify the significant enhancement in Verdet constant of Q-dot glass nanocomposites and will have potential application in magneto-optical devices.

  10. Visible light photoreduction of CO.sub.2 using heterostructured catalysts

    DOEpatents

    Matranga, Christopher; Thompson, Robert L; Wang, Congjun

    2015-03-24

    The method provides for use of sensitized photocatalyst for the photocatalytic reduction of CO.sub.2 under visible light illumination. The photosensitized catalyst is comprised of a wide band gap semiconductor material, a transition metal co-catalyst, and a semiconductor sensitizer. The semiconductor sensitizer is photoexcited by visible light and forms a Type II band alignment with the wide band gap semiconductor material. The wide band gap semiconductor material and the semiconductor sensitizer may be a plurality of particles, and the particle diameters may be selected to accomplish desired band widths and optimize charge injection under visible light illumination by utilizing quantum size effects. In a particular embodiment, CO.sub.2 is reduced under visible light illumination using a CdSe/Pt/TiO2 sensitized photocatalyst with H.sub.2O as a hydrogen source.

  11. Finite-size Scaling of the Density of States in Photonic Band Gap Crystals

    NASA Astrophysics Data System (ADS)

    Hasan, Shakeeb Bin; Mosk, Allard P.; Vos, Willem L.; Lagendijk, Ad

    2018-06-01

    The famous vanishing of the density of states (DOS) in a band gap, be it photonic or electronic, pertains to the infinite-crystal limit. In contrast, all experiments and device applications refer to finite crystals, which raises the question: Upon increasing the linear size L of a crystal, how fast does the DOS approach the infinite-crystal limit? We present a theory for finite crystals that includes Bloch-mode broadening due to the presence of crystal boundaries. Our results demonstrate that the DOS for frequencies inside a band gap has a 1 /L scale dependence for crystals in one, two and three dimensions.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu Zhaohuan; Dong Ruobing; Nelson, Richard P.

    By carrying out two-dimensional two-fluid global simulations, we have studied the response of dust to gap formation by a single planet in the gaseous component of a protoplanetary disk-the so-called dust filtration mechanism. We have found that a gap opened by a giant planet at 20 AU in an {alpha} = 0.01, M-dot =10{sup -8} M{sub Sun} yr{sup -1} disk can effectively stop dust particles larger than 0.1 mm drifting inward, leaving a submillimeter (submm) dust cavity/hole. However, smaller particles are difficult to filter by a gap induced by a several M{sub J} planet due to (1) dust diffusion andmore » (2) a high gas accretion velocity at the gap edge. Based on these simulations, an analytic model is derived to understand what size particles can be filtered by the planet-induced gap edge. We show that a dimensionless parameter T{sub s} /{alpha}, which is the ratio between the dimensionless dust stopping time and the disk viscosity parameter, is important for the dust filtration process. Finally, with our updated understanding of dust filtration, we have computed Monte Carlo radiative transfer models with variable dust size distributions to generate the spectral energy distributions of disks with gaps. By comparing with transitional disk observations (e.g., GM Aur), we have found that dust filtration alone has difficulties depleting small particles sufficiently to explain the near-IR deficit of moderate M-dot transitional disks, except under some extreme circumstances. The scenario of gap opening by multiple planets studied previously suffers the same difficulty. One possible solution is to invoke both dust filtration and dust growth in the inner disk. In this scenario, a planet-induced gap filters large dust particles in the disk, and the remaining small dust particles passing to the inner disk can grow efficiently without replenishment from fragmentation of large grains. Predictions for ALMA have also been made based on all these scenarios. We conclude that dust filtration with planet(s) in the disk is a promising mechanism to explain submm observations of transitional disks but it may need to be combined with other processes (e.g., dust growth) to explain the near-IR deficit of some systems.« less

  13. Large-area high-performance SERS substrates with deep controllable sub-10-nm gap structure fabricated by depositing Au film on the cicada wing

    NASA Astrophysics Data System (ADS)

    Jiwei, Qi; Yudong, Li; Ming, Yang; Qiang, Wu; Zongqiang, Chen; Wudeng, Wang; Wenqiang, Lu; Xuanyi, Yu; Jingjun, Xu; Qian, Sun

    2013-10-01

    Noble metal nanogap structure supports strong surface-enhanced Raman scattering (SERS) which can be used to detect single molecules. However, the lack of reproducible fabrication techniques with nanometer-level control over the gap size has limited practical applications. In this letter, by depositing the Au film onto the cicada wing, we engineer the ordered array of nanopillar structures on the wing to form large-area high-performance SERS substrates. Through the control of the thickness of the Au film deposited onto the cicada wing, the gap sizes between neighboring nanopillars are fine defined. SERS substrates with sub-10-nm gap sizes are obtained, which have the highest average Raman enhancement factor (EF) larger than 2 × 108, about 40 times as large as that of commercial Klarite® substrates. The cicada wings used as templates are natural and environment-friendly. The depositing method is low cost and high throughput so that our large-area high-performance SERS substrates have great advantage for chemical/biological sensing applications.

  14. The Relationship between the Minority Student Achievement Gap and Collective Teacher Efficacy

    ERIC Educational Resources Information Center

    O'Hara, Jane A.

    2011-01-01

    The purpose of this study was to determine the relationship between Collective Teacher Efficacy and minority student achievement gap over and above that explained by socioeconomics, school size, and prior achievement gaps for Black and Hispanic students with White students. Forty-seven Virginia middle schools were selected to participate in the…

  15. Propellers in Saturn's rings

    NASA Astrophysics Data System (ADS)

    Sremcevic, M.; Stewart, G. R.; Albers, N.; Esposito, L. W.

    2013-12-01

    Theoretical studies and simulations have demonstrated the effects caused by objects embedded in planetary rings. Even if the objects are too small to be directly observed, each creates a much larger gravitational imprint on the surrounding ring material. These strongly depend on the mass of the object and range from "S" like propeller-shaped structures for about 100m-sized icy bodies to the opening of circumferential gaps as in the case of the embedded moons Pan and Daphnis and their corresponding Encke and Keeler Gaps. Since the beginning of the Cassini mission many of these smaller objects (~<500m in size) have been indirectly identified in Saturn's A ring through their propeller signature in the images. Furthermore, recent Cassini observations indicate the possible existence of objects embedded even in Saturn's B and C ring. In this paper we present evidence for the existence of propellers in Saturn's B ring by combining data from Cassini Ultraviolet Imaging Spectrograph (UVIS) and Imaging Science Subsystem (ISS) experiments. We show evidence that B ring seems to harbor two distinct populations of propellers: "big" propellers covering tens of degrees in azimuth situated in the densest part of B ring, and "small" propellers in less dense inner B ring that are similar in size and shape to known A ring propellers. The population of "big" propellers is exemplified with a single object which is observed for 5 years of Cassini data. The object is seen as a very elongated bright stripe (40 degrees wide) in unlit Cassini images, and dark stripe in lit geometries. In total we report observing the feature in images at 18 different epochs between 2005 and 2010. In UVIS occultations we observe this feature as an optical depth depletion in 14 out of 93 occultation cuts at corrotating longitudes compatible with imaging data. Combining the available Cassini data we infer that the object is a partial gap located at r=112,921km embedded in the high optical depth region of the B ring. The gap moves at Kepler speed appropriate for its radial location. Radial offsets of the gap locations in UVIS occultations are consistent with an asymmetric propeller shape. The asymmetry of the observed shape is most likely a consequence of the strong surface mass density gradient, as the feature is located at an edge between high and relatively low optical depth. From the radial separation of the propeller wings we estimate that the embedded body is about 1.5km in size. In addition to the population of "big" propellers we found evidence for a population of much smaller propellers which are more similar to known A ring propellers (size <500m). We have found one significant feature in beta Centauri Rev96 UVIS occultation at r=94,958km. The feature represents a gap with a width of 300m. This gap is statistically significant and consists of 6 consequent high counts. All other UVIS occultations show a flat and boring profile at this location. The r=94,958km feature is very similar in shape and size to a known detection of A ring propeller Bleriot from zeta Persei Rev42 occultation. This feature is also found as a dark spot moving at Kepler speed across several ISS images. Additionally we found 5 more small propeller candidates in ISS images of the inner B ring.

  16. Friction on a granular-continuum interface: Effects of granular media

    NASA Astrophysics Data System (ADS)

    Ecke, Robert; Geller, Drew

    We consider the frictional interactions of two soft plates with interposed granular material subject to normal and shear forces. The plates are soft photo-elastic material, have length 50 cm, and are separated by a gap of variable width from 0 to 20 granular particle diameters. The granular materials are two-dimensional rods that are bi-dispersed in size to prevent crystallization. Different rod materials with frictional coefficients between 0 . 04 < μ < 0 . 5 are used to explore the effects of inter-granular friction on the effective friction of a granular medium. The gap is varied to test the dependence of the friction coefficient on the thickness of the granular layer. Because the soft plates absorb most of the displacement associated with the compressional normal force, the granular packing fractions are close to a jamming threshold, probably a shear jamming criterion. The overall shear and normal forces are measured using force sensors and the local strain tensor over a central portion of the gap is obtained using relative displacements of fiducial markers on the soft elastic material. These measurements provide a good characterization of the global and local forces giving rise to an effective friction coefficient. Funded by US DOE LDRD Program.

  17. Optical Band Gap Alteration of Graphene Oxide via Ozone Treatment.

    PubMed

    Hasan, Md Tanvir; Senger, Brian J; Ryan, Conor; Culp, Marais; Gonzalez-Rodriguez, Roberto; Coffer, Jeffery L; Naumov, Anton V

    2017-07-25

    Graphene oxide (GO) is a graphene derivative that emits fluorescence, which makes GO an attractive material for optoelectronics and biotechnology. In this work, we utilize ozone treatment to controllably tune the band gap of GO, which can significantly enhance its applications. Ozone treatment in aqueous GO suspensions yields the addition/rearrangement of oxygen-containing functional groups suggested by the increase in vibrational transitions of C-O and C=O moieties. Concomitantly it leads to an initial increase in GO fluorescence intensity and significant (100 nm) blue shifts in emission maxima. Based on the model of GO fluorescence originating from sp 2 graphitic islands confined by oxygenated addends, we propose that ozone-induced functionalization decreases the size of graphitic islands affecting the GO band gap and emission energies. TEM analyses of GO flakes confirm the size decrease of ordered sp 2 domains with ozone treatment, whereas semi-empirical PM3 calculations on model addend-confined graphitic clusters predict the inverse dependence of the band gap energies on sp 2 cluster size. This model explains ozone-induced increase in emission energies yielding fluorescence blue shifts and helps develop an understanding of the origins of GO fluorescence emission. Furthermore, ozone treatment provides a versatile approach to controllably alter GO band gap for optoelectronics and bio-sensing applications.

  18. Effects of window size and shape on accuracy of subpixel centroid estimation of target images

    NASA Technical Reports Server (NTRS)

    Welch, Sharon S.

    1993-01-01

    A new algorithm is presented for increasing the accuracy of subpixel centroid estimation of (nearly) point target images in cases where the signal-to-noise ratio is low and the signal amplitude and shape vary from frame to frame. In the algorithm, the centroid is calculated over a data window that is matched in width to the image distribution. Fourier analysis is used to explain the dependency of the centroid estimate on the size of the data window, and simulation and experimental results are presented which demonstrate the effects of window size for two different noise models. The effects of window shape were also investigated for uniform and Gaussian-shaped windows. The new algorithm was developed to improve the dynamic range of a close-range photogrammetric tracking system that provides feedback for control of a large gap magnetic suspension system (LGMSS).

  19. A bridge between cultures

    NASA Astrophysics Data System (ADS)

    Friebele, Elaine

    Journalists who report on scientific discoveries and the scientists who make them are, in many cases, separated by a Grand Canyon-sized gap. A recent U.S. survey revealed that journalists believe that scientists' jargon prevents effective communication. Scientists polled in the same survey, conducted by Today Show host Jim Hartz and NASA scientist Rick Chappell, said that journalists need to do a better job of verifying facts and interpreting scientific results.Panelists representing the scientific and media communities will discuss ways to bridge that gap during the “Science and the Media” episode of Freedom Speaks, to be aired by Public Broadcasting Stations in May and June (check your local listings).

  20. Synthesis of nanodimensional orthorhombic SnO2 thin films

    NASA Astrophysics Data System (ADS)

    Kondkar, V.; Rukade, D.; Kanjilal, D.; Bhattacharyya, V.

    2018-04-01

    Amorphous thin films of SnO2 are irradiated by swift heavy ions at two different fluences. Unirradiated as well as irradiated films are characterized by glancing angle X-ray diffraction (GAXRD), UV-Vis spectroscopy and atomic force microscopy (AFM). GAXRD study reveals formation of orthorhombic nanophases of SnO2. Nanophase formation is also confirmed by the quantum size effect manifested by blue shift in terms of increase in band gap energy. The size and shape of the irradiation induced surface structures depend on ion fluence.

  1. Universal thermal corrections to single interval entanglement entropy for two dimensional conformal field theories.

    PubMed

    Cardy, John; Herzog, Christopher P

    2014-05-02

    We consider single interval Rényi and entanglement entropies for a two dimensional conformal field theory on a circle at nonzero temperature. Assuming that the finite size of the system introduces a unique ground state with a nonzero mass gap, we calculate the leading corrections to the Rényi and entanglement entropy in a low temperature expansion. These corrections have a universal form for any two dimensional conformal field theory that depends only on the size of the mass gap and its degeneracy. We analyze the limits where the size of the interval becomes small and where it becomes close to the size of the spatial circle.

  2. Factors Affecting Survival of Longleaf Pine Seedlings

    Treesearch

    John S. Kush; Ralph S. Meldahl; William D. Boyer

    2004-01-01

    Longleaf pine may be managed most efficiently in large even-aged stands. Past research has shown that the effect of trees surrounding the openings (gaps) or the use of fire is a complicating factor, especially with small openings. Longleaf seedlings are considered more susceptible to fire under and nearer to standing trees, and seedling size, kind of fire, soil type,...

  3. Minding the Gaps: Literacy Enhances Lexical Segmentation in Children Learning to Read

    ERIC Educational Resources Information Center

    Havron, Naomi; Arnon, Inbal

    2017-01-01

    Can emergent literacy impact the size of the linguistic units children attend to? We examined children's ability to segment multiword sequences before and after they learned to read, in order to disentangle the effect of literacy and age on segmentation. We found that early readers were better at segmenting multiword units (after controlling for…

  4. Soil moisture in sessile oak forest gaps

    NASA Astrophysics Data System (ADS)

    Zagyvainé Kiss, Katalin Anita; Vastag, Viktor; Gribovszki, Zoltán; Kalicz, Péter

    2015-04-01

    By social demands are being promoted the aspects of the natural forest management. In forestry the concept of continuous forest has been an accepted principle also in Hungary since the last decades. The first step from even-aged stand to continuous forest can be the forest regeneration based on gap cutting, so small openings are formed in a forest due to forestry interventions. This new stand structure modifies the hydrological conditions for the regrowth. Without canopy and due to the decreasing amounts of forest litter the interception is less significant so higher amount of precipitation reaching the soil. This research focuses on soil moisture patterns caused by gaps. The spatio-temporal variability of soil water content is measured in gaps and in surrounding sessile oak (Quercus petraea) forest stand. Soil moisture was determined with manual soil moisture meter which use Time-Domain Reflectometry (TDR) technology. The three different sizes gaps (G1: 10m, G2: 20m, G3: 30m) was opened next to Sopron on the Dalos Hill in Hungary. First, it was determined that there is difference in soil moisture between forest stand and gaps. Second, it was defined that how the gap size influences the soil moisture content. To explore the short term variability of soil moisture, two 24-hour (in growing season) and a 48-hour (in dormant season) field campaign were also performed in case of the medium-sized G2 gap along two/four transects. Subdaily changes of soil moisture were performed. The measured soil moisture pattern was compared with the radiation pattern. It was found that the non-illuminated areas were wetter and in the dormant season the subdaily changes cease. According to our measurements, in the gap there is more available water than under the forest stand due to the less evaporation and interception loss. Acknowledgements: The research was supported by TÁMOP-4.2.2.A-11/1/KONV-2012-0004 and AGRARKLIMA.2 VKSZ_12-1-2013-0034.

  5. Generation of nanobubbles by ceramic membrane filters: The dependence of bubble size and zeta potential on surface coating, pore size and injected gas pressure.

    PubMed

    Ahmed, Ahmed Khaled Abdella; Sun, Cuizhen; Hua, Likun; Zhang, Zhibin; Zhang, Yanhao; Zhang, Wen; Marhaba, Taha

    2018-07-01

    Generation of gaseous nanobubbles (NBs) by simple, efficient, and scalable methods is critical for industrialization and applications of nanobubbles. Traditional generation methods mainly rely on hydrodynamic, acoustic, particle, and optical cavitation. These generation processes render issues such as high energy consumption, non-flexibility, and complexity. This research investigated the use of tubular ceramic nanofiltration membranes to generate NBs in water with air, nitrogen and oxygen gases. This system injects pressurized gases through a tubular ceramic membrane with nanopores to create NBs. The effects of membrane pores size, surface energy, and the injected gas pressures on the bubble size and zeta potential were examined. The results show that the gas injection pressure had considerable effects on the bubble size, zeta potential, pH, and dissolved oxygen of the produced NBs. For example, increasing the injection air pressure from 69 kPa to 414 kPa, the air bubble size was reduced from 600 to 340 nm respectively. Membrane pores size and surface energy also had significant effects on sizes and zeta potentials of NBs. The results presented here aim to fill out the gaps of fundamental knowledge about NBs and development of efficient generation methods. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Design of air-gapped magnetic-core inductors for superimposed direct and alternating currents

    NASA Technical Reports Server (NTRS)

    Ohri, A. K.; Wilson, T. G.; Owen, H. A., Jr.

    1976-01-01

    Using data on standard magnetic-material properties and standard core sizes for air-gap-type cores, an algorithm designed for a computer solution is developed which optimally determines the air-gap length and locates the quiescent point on the normal magnetization curve so as to yield an inductor design with the minimum number of turns for a given ac voltage and frequency and with a given dc bias current superimposed in the same winding. Magnetic-material data used in the design are the normal magnetization curve and a family of incremental permeability curves. A second procedure, which requires a simpler set of calculations, starts from an assigned quiescent point on the normal magnetization curve and first screens candidate core sizes for suitability, then determines the required turns and air-gap length.

  7. Literacy Gaps by Educational Attainment: A Cross-National Analysis.

    PubMed

    Park, Hyunjoon; Kyei, Pearl

    2011-03-01

    Existing cross-national research on educational attainment does not fully address whether the same level of educational attainment generates the same level of literacy skills in different countries. We analyze literacy skills data for young adults from 19 countries in the 1994-1998 International Adult Literacy Survey and find that in all countries, individuals with a higher level of educational attainment tend to have greater literacy skills. However, there is substantial variation across countries in the size of literacy gaps by levels of educational attainment. In particular, young adults in the United States show the largest literacy gaps. Using two-level hierarchical linear models, we find that cross-national differences in the literacy gap between more- and less-educated individuals are systematically linked to the degree of between-school inequality in school resources (instructional materials, class size, teachers' experience and certification).

  8. Spontaneous nano-gap formation in Ag film using NaCl sacrificial layer for Raman enhancement

    NASA Astrophysics Data System (ADS)

    Min, Kyungchan; Jeon, Wook Jin; Kim, Youngho; Choi, Jae-Young; Yu, Hak Ki

    2018-03-01

    We report the method of fabrication of nano-gaps (known as hot spots) in Ag thin film using a sodium chloride (NaCl) sacrificial layer for Raman enhancement. The Ag thin film (20-50 nm) on the NaCl sacrificial layer undergoes an interfacial reaction due to the AgCl formed at the interface during water molecule intercalation. The intercalated water molecules can dissolve the NaCl molecules at interfaces and form the ionic state of Na+ and Cl-, promoting the AgCl formation. The Ag atoms can migrate by the driving force of this interfacial reaction, resulting in the formation of nano-size gaps in the film. The surface-enhanced Raman scattering activity of Ag films with nano-size gaps has been investigated using Raman reporter molecules, Rhodamine 6G (R6G).

  9. Compact nanomechanical plasmonic phase modulators [Ultracompact nano-mechanical plasmonic phase modulators

    DOE PAGES

    Dennis, B. S.; Haftel, M. I.; Czaplewski, D. A.; ...

    2015-03-30

    Highly confined optical energy in plasmonic devices is advancing miniaturization in photonics. However, for mode sizes approaching ≈10 nm, the energy increasingly shifts into the metal, raising losses and hindering active phase modulation. Here, we propose a nanoelectromechanical phase-modulation principle exploiting the extraordinarily strong dependence of the phase velocity of metal–insulator–metal gap plasmons on dynamically variable gap size. We experimentally demonstrate a 23-μm-long non-resonant modulator having a 1.5π rad range, with 1.7 dB excess loss at 780 nm. Analysis shows that by simultaneously decreasing the gap, length and width, an ultracompact-footprint π rad phase modulator can be realized. This ismore » achieved without incurring the extra loss expected for plasmons confined in a decreasing gap, because the increasing phase-modulation strength from a narrowing gap offsets rising propagation losses. Here, such small, high-density electrically controllable components may find applications in optical switch fabrics and reconfigurable plasmonic optics.« less

  10. Self-amplified photo-induced gap quenching in a correlated electron material

    DOE PAGES

    Mathias, S.; Eich, S.; Urbancic, J.; ...

    2016-10-04

    Capturing the dynamic electronic band structure of a correlated material presents a powerful capability for uncovering the complex couplings between the electronic and structural degrees of freedom. When combined with ultrafast laser excitation, new phases of matter can result, since far-from-equilibrium excited states are instantaneously populated. Here, we elucidate a general relation between ultrafast non-equilibrium electron dynamics and the size of the characteristic energy gap in a correlated electron material. Here, we show that carrier multiplication via impact ionization can be one of the most important processes in a gapped material, and that the speed of carrier multiplication critically dependsmore » on the size of the energy gap. In the case of the charge-density wave material 1T-TiSe 2, our data indicate that carrier multiplication and gap dynamics mutually amplify each other, which explains—on a microscopic level—the extremely fast response of this material to ultrafast optical excitation.« less

  11. [Effects of forest gap size and light intensity on herbaceous plants in Pinus koraiensis-dominated broadleaved mixed forest].

    PubMed

    Duan, Wen-Biao; Wang, Li-Xia; Chen, Li-Xin; Du, Shan; Wei, Quan-Shuai; Zhao, Jian-Hui

    2013-03-01

    1 m x 1 m fixed quadrats were parallelly arranged with a space of 2 m in each of six forest gaps in Pinus koraiensis-dominated broadleaved mixed forest, taking the gap center as the starting point and along east-west and south-north directions. In each quadrat, the coverage and abundance of herbaceous plants at different height levels were investigated by estimation method in June and September 2011, and the matrix characteristics within the quadrats were recorded. Canopy analyzer was used to take fish-eye photos in the selected overcast days in each month from June to September, 2011, and the relative light intensity was calculated by using Gap Light Analyzer 2.0 software. The differences in the relative light intensity and herbaceous plants coverage and richness between different gaps as well as the correlations between the coverage of each species and the direct light, diffuse light, and matrix were analyzed. The results showed that in opening areas and under canopy, the relative light intensity in large gaps was higher than that in small gaps, and the variation ranges of diffuse light and direct light from gap center to gap edge were bigger in large gaps than in small gaps. The direct light reaching at the ground both in large gaps and in small gaps was higher in the north than in the south direction. In the Z1, Z2, Z3, and Z4 zones, both the coverage and the richness of herbaceous plants were larger in large gaps than in small gaps, and the differences of species richness between large and small gaps reached significant level. The coverage of the majority of the herbaceous plants had significant correlations with diffuse light and matrix, and only the coverage of a few herbaceous plants was correlated with direct light.

  12. Effect of nitrogen ion implantation on the structural and optical properties of indium oxide thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sethi, Riti; Aziz, Anver; Siddiqui, Azher M., E-mail: amsiddiqui@jmi.ac.in

    2016-06-10

    : We report here synthesis and subsequent nitrogen ion implantation of indium oxide (In{sub 2}O{sub 3}) thin films. The films were implanted with 25 keV N{sup +} beam for different ion doses between 3E15 to 1E16 ions/cm{sup 2}. The resulting changes in structural and optical properties were investigated using XRD, SEM-EDAX and UV-Vis Spectrometry. XRD studies reveal decrease in crystallite size from 20.06 to 12.42 nm with increase in ion dose. SEM micrographs show an increase in the grain size from 0.8 to 1.35 µm with increase in ion dose because of the agglomeration of the grains. Also, from EDAXmore » data on pristine and N-implanted thin films the presence of indium and oxygen without any traces of impurity elements could be seen. However, at lower ion doses such as 3E15 and 5E15 ions/cm{sup 2}, no evidence of the presence of nitrogen ion was seen. However, for the ion dose of 1E16 ions/cm{sup 2}, evidence of presence of nitrogen can be seen in the EDAX data. Band gap calculations reveal a decrease in band gap from 3.54 to 3.38 eV with increasing ion dose. However, the band gap was found to again show an increase to 3.58 eV at the highest ion dose owing to quantum confinement effect.« less

  13. Inherent size effects on XANES of nanometer metal clusters: Size-selected platinum clusters on silica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Yang; Gorey, Timothy J.; Anderson, Scott L.

    2016-12-12

    X-ray absorption near-edge structure (XANES) is commonly used to probe the oxidation state of metal-containing nanomaterials, however, as the particle size in the material drops below a few nanometers, it becomes important to consider inherent size effects on the electronic structure of the materials. In this paper, we analyze a series of size-selected Pt n/SiO 2 samples, using X-ray photoelectron spectroscopy (XPS), low energy ion scattering, grazing-incidence small angle X-ray scattering, and XANES. The oxidation state and morphology are characterized both as-deposited in UHV, and after air/O 2 exposure and annealing in H 2. Here, the clusters are found tomore » be stable during deposition and upon air exposure, but sinter if heated above ~150 °C. XANES shows shifts in the Pt L 3 edge, relative to bulk Pt, that increase with decreasing cluster size, and the cluster samples show high white line intensity. Reference to bulk standards would suggest that the clusters are oxidized, however, XPS shows that they are not. Instead, the XANES effects are attributable to development of a band gap and localization of empty state wavefunctions in small clusters.« less

  14. First-principles real-space study of electronic and optical excitations in rutile TiO 2 nanocrystals

    DOE PAGES

    Hung, Linda; Baishya, Kopinjol; Öğüt, Serdar

    2014-10-17

    We model rutile titanium dioxide nanocrystals (NCs) up to ~1.5 nm in size to study the effects of quantum confinement on their electronic and optical properties. Ionization potentials (IPs) and electron affinities (EAs) are obtained via the perturbative GW approximation (G 0W 0) and ΔSCF method for NCs up to 24 and 64 TiO 2 formula units, respectively. These demanding GW computations are made feasible by using a real-space framework that exploits quantum confinement to reduce the number of empty states needed in GW summations. Time-dependent density functional theory (TDDFT) is used to predict the optical properties of NCs upmore » to 64 TiO 2 units. For a NC containing only 2 TiO 2 units, the offsets of the IP and the EA from the corresponding bulk limits are of similar magnitude. However, as NC size increases, the EA is found to converge more slowly to the bulk limit than the IP. The EA values computed at the G 0W 0 and ΔSCF levels of theory are found to agree fairly well with each other, while the IPs computed with ΔSCF are consistently smaller than those computed with G 0W 0 by a roughly constant amount. TDDFT optical gaps exhibit weaker size dependence than GW quasiparticle gaps, and result in exciton binding energies on the order of eV. Finally, altering the dimensions of a fixed-size NC can change electronic and optical excitations up to several tenths of an eV. The largest NCs modeled are still quantum confined and do not yet have quasiparticle levels or optical gaps at bulk values. Nevertheless, we find that classical Mie-Gans theory can quite accurately reproduce the line shape of TDDFT absorption spectra, even for (anisotropic) TiO 2 NCs of subnanometer size.« less

  15. First-principles real-space study of electronic and optical excitations in rutile TiO2 nanocrystals

    NASA Astrophysics Data System (ADS)

    Hung, Linda; Baishya, Kopinjol; Ã-ǧüt, Serdar

    2014-10-01

    We model rutile titanium dioxide nanocrystals (NCs) up to ˜1.5 nm in size to study the effects of quantum confinement on their electronic and optical properties. Ionization potentials (IPs) and electron affinities (EAs) are obtained via the perturbative GW approximation (G0W0) and ΔSCF method for NCs up to 24 and 64 TiO2 formula units, respectively. These demanding GW computations are made feasible by using a real-space framework that exploits quantum confinement to reduce the number of empty states needed in GW summations. Time-dependent density functional theory (TDDFT) is used to predict the optical properties of NCs up to 64 TiO2 units. For a NC containing only 2 TiO2 units, the offsets of the IP and the EA from the corresponding bulk limits are of similar magnitude. However, as NC size increases, the EA is found to converge more slowly to the bulk limit than the IP. The EA values computed at the G0W0 and ΔSCF levels of theory are found to agree fairly well with each other, while the IPs computed with ΔSCF are consistently smaller than those computed with G0W0 by a roughly constant amount. TDDFT optical gaps exhibit weaker size dependence than GW quasiparticle gaps, and result in exciton binding energies on the order of eV. Altering the dimensions of a fixed-size NC can change electronic and optical excitations up to several tenths of an eV. The largest NCs modeled are still quantum confined and do not yet have quasiparticle levels or optical gaps at bulk values. Nevertheless, we find that classical Mie-Gans theory can quite accurately reproduce the line shape of TDDFT absorption spectra, even for (anisotropic) TiO2 NCs of subnanometer size.

  16. Spatial and temporal patterns of beetles associated with coarse woody debris in managed bottomland hardwood forests

    Treesearch

    Michael D. Ulyshen; James L. Hanula; Scott Horn; John C. Kilgo; Christopher E. Moorman

    2004-01-01

    Malaise traps were used to sample beetles in artificial canopy gaps of different size (0.13 ha, 0.26 ha, and 0.50 ha) and age in a South Carolina bottomland hardwood forest. Traps were placed at the center, edge, and in the surrounding forest of each gap. Young gaps (~1 year) had large amounts of coarse woody debris compared to the surrounding forest, while older gaps...

  17. Mind the gap: a survey of how cancer drug carriers are susceptible to the gap between research and practice

    PubMed Central

    Stirland, Darren Lars; Nichols, Joseph W.; Miura, Seiji; Bae, You Han

    2013-01-01

    With countless research papers using preclinical models and showing the superiority of nanoparticle design over current drug therapies used to treat cancers, it is surprising how deficient the translation of these nano-sized drug carriers into the clinical setting is. This review article seeks to compare the preclinical and clinical results for Doxil®, PK1, Abraxane®, Genexol-PM®, Xyotax™, NC-6004, Mylotarg®, PK2, and CALAA-01. While not comprehensive, it covers nano-sized drug carriers designed to improve the efficacy of common drugs used in chemotherapy. While not always available or comparable, effort was made to compare the pharmacokinetics, toxicity, and efficacy between the animal and human studies. Discussion is provided to suggest what might be causing the gap. Finally, suggestions and encouragement are dispensed for the potential that nano-sized drug carriers hold. PMID:24096014

  18. Rabi like angular splitting in Surface Plasmon Polariton - Exciton interaction in ATR configuration

    NASA Astrophysics Data System (ADS)

    Hassan, Heba; Abdallah, T.; Negm, S.; Talaat, H.

    2018-05-01

    We have studied the coupling of propagating Surface Plasmon Polaritons (SPP) on silver films and excitons in CdS quantum dots (QDs). We employed the Kretschmann-Raether configuration of the attenuated total reflection (ATR) to propagate the SPP on silver film of thickness 47.5 nm at three different wavelengths. The CdS QD have been chemically synthesized with particular size such that its exciton of energy would resonate with SPP. High resolution transmission electron microscopy (HRTEM) and scan tunneling microscopy (STM) were used to measure the corresponding QDs size and confirm its shape. Further confirmation of the size has been performed by the effective mass approximation (EMA) model utilizing the band gap of the prepared QDs. The band gaps have been measured through UV-vis absorption spectra as well as scan tunneling spectroscopy (STS). The coupling has been observed as two branching dips in the ATR spectra indicating Rabi like splitting. To the best of our knowledge, this is the first time that Rabi interaction is directly observed in an ATR angular spectra. This observation is attributed to the use a high resolution angular scan (±0.005°), in addition to the Doppler width of the laser line as well as the energy distribution of the excitons. The effect of three different linker molecules (TOPO, HDA), (Pyridine) and (Tri-butylamine) as surface ligands, on SPP-Exciton interaction has been examined.

  19. Canopy gap dynamics of second-growth red spruce-northern hardwood stands in West Virginia

    USGS Publications Warehouse

    Rentch, J.S.; Schuler, T.M.; Nowacki, G.J.; Beane, N.R.; Ford, W.M.

    2010-01-01

    Forest restoration requires an understanding of the natural disturbance regime of the target community and estimates of the historic range of variability of ecosystem components (composition, structure, and disturbance processes). Management prescriptions that support specific restoration activities should be consistent with these parameters. In this study, we describe gap-phase dynamics of even-aged, second-growth red spruce-northern hardwood stands in West Virginia that have been significantly degraded following early Twentieth Century harvesting and wildfire. In the current stage of stand development, gaps tended to be small, with mean canopy gap and extended canopy gap sizes of 53.4m2 and 199.3m2, respectively, and a canopy turnover rate of 1.4%year-1. The majority of gaps resulted from the death of one or two trees. American beech snags were the most frequent gap maker, partially due to the elevated presence of beech-bark disease in the study area. Gaps ranged in age from 1 to 28 years, had a mean of 13 years, and were unimodal in distribution. We projected red spruce to be the eventual gap filler in approximately 40% of the gaps. However, we estimated that most average-sized gaps will close within 15-20 years before red spruce canopy ascension is projected (30-60 years). Accordingly, many understory red spruce will require more than one overhead release - an observation verified by the tree-ring record and consistent with red spruce life history characteristics. Based on our observations, silvicultural prescriptions that include overhead release treatments such as thinning from above or small gap creation through selection harvesting could be an appropriate activity to foster red spruce restoration in the central Appalachians. ?? 2010 Elsevier B.V.

  20. Investigation of Unsteady Flow Field in a Low-Speed One and a Half Stage Axial Compressor. Part 2; Effects of Tip Gap Size On the Tip Clearance Flow Structure at Near Stall Operation

    NASA Technical Reports Server (NTRS)

    Hah, Chunill; Hathaway, Michael; Katz, Joseph

    2014-01-01

    The primary focus of this paper is to investigate the effect of rotor tip gap size on how the rotor unsteady tip clearance flow structure changes in a low speed one and half stage axial compressor at near stall operation (for example, where maximum pressure rise is obtained). A Large Eddy Simulation (LES) is applied to calculate the unsteady flow field at this flow condition with both a small and a large tip gaps. The numerically obtained flow fields at the small clearance matches fairly well with the available initial measurements obtained at the Johns Hopkins University with 3-D unsteady PIV in an index-matched test facility which renders the compressor blades and casing optically transparent. With this setup, the unsteady velocity field in the entire flow domain, including the flow inside the tip gap, can be measured. The numerical results are also compared with previously published measurements in a low speed single stage compressor (Maerz et al. [2002]). The current study shows that, with the smaller rotor tip gap, the tip clearance vortex moves to the leading edge plane at near stall operating condition, creating a nearly circumferentially aligned vortex that persists around the entire rotor. On the other hand, with a large tip gap, the clearance vortex stays inside the blade passage at near stall operation. With the large tip gap, flow instability and related large pressure fluctuation at the leading edge are observed in this one and a half stage compressor. Detailed examination of the unsteady flow structure in this compressor stage reveals that the flow instability is due to shed vortices near the leading edge, and not due to a three-dimensional separation vortex originating from the suction side of the blade, which is commonly referred to during a spike-type stall inception. The entire tip clearance flow is highly unsteady. Many vortex structures in the tip clearance flow, including the sheet vortex system near the casing, interact with each other. The core tip clearance vortex, which is formed with the rotor tip gap flows near the leading edge, is also highly unsteady or intermittent due to pressure oscillations near the leading edge and varies from passage to passage. For the current compressor stage, the evidence does not seem to support that a classical vortex breakup occurs in any organized way, even with the large tip gap. Although wakes from the IGV influence the tip clearance flow in the rotor, the major characteristics of rotor tip clearance flows in isolated or single stage rotors are observed in this one and a half stage axial compressor.

  1. First-principles studies of electric field effects on the electronic structure of trilayer graphene

    NASA Astrophysics Data System (ADS)

    Wang, Yun-Peng; Li, Xiang-Guo; Fry, James N.; Cheng, Hai-Ping

    2016-10-01

    A gate electric field is a powerful way to manipulate the physical properties of nanojunctions made of two-dimensional crystals. To simulate field effects on the electronic structure of trilayer graphene, we used density functional theory in combination with the effective screening medium method, which enables us to understand the field-dependent layer-layer interactions and the fundamental physics underlying band gap variations and the resulting band modifications. Two different graphene stacking orders, Bernal (or ABC) and rhombohedral (or ABA), were considered. In addition to confirming the experimentally observed band gap opening in ABC-stacked and the band overlap in ABA-stacked trilayer systems, our results reveal rich physics in these fascinating systems, where layer-layer couplings are present but some characteristics features of single-layer graphene are partially preserved. For ABC stacking, the electric-field-induced band gap size can be tuned by charge doping, while for ABA band the tunable quantity is the band overlap. Our calculations show that the electronic structures of the two stacking orders respond very differently to charge doping. We find that in the ABA stacking hole doping can reopen a band gap in the band-overlapping region, a phenomenon distinctly different from electron doping. The physical origins of the observed behaviors were fully analyzed, and we conclude that the dual-gate configuration greatly enhances the tunability of the trilayer systems.

  2. Establishment gaps as an innovative tool to restore landscape-scale grassland biodiversity

    NASA Astrophysics Data System (ADS)

    Tóthmérész, Béla; Deák, Balázs; Török, Péter; Tischew, Sabine; Kirmer, Anita; Kelemen, András; Miglécz, Tamás; Tóth, Katalin; Radócz, Szilvia; Sonkoly, Judit; Valkó, Orsolya

    2017-04-01

    The large-scale abandonment of croplands resulted in landscape-scale changes in biodiversity, ecosystem services and agricultural production in Central Europe. Grasslands are vital landscape elements, and sustaining their biodiversity is crucial for biodiversity conservation. Thus, grassland restoration on former croplands offers a vital opportunity to restore grassland biodiversity. We studied vegetation changes in former croplands sown by grass seed mixtures in Hungary. We evaluated the usefulness of sowing grass seed mixtures, a frequently used restoration technique. We also developed a novel method (so-called establishment gaps) to increase the diversity of species-poor sown grasslands. We compiled a multi-species seed mixture containing 35 species. We established altogether 32 establishment gaps (size: 1×1-m, 2×2-m and 4×4-m) in 8-year-old restored grasslands. We evaluated the success and cost-effectiveness of spontaneous grassland recovery and active grassland restoration by seed sowing. We focused on the restoration of ecosystem services, like weed control, biomass production, and recovery of biodiversity. Using establishment gaps we could successfully introduce target species to the species-poor recovered grasslands. All sown species established in the establishment gaps and many of them maintained or even increased their first-year cover to the second year. Larger establishment gaps were characterised by higher cover of sown species and more homogeneous species composition compared to the smaller ones. Thus, we recommend using large establishment gaps in restoration practice. Our findings suggest that grassland restoration on croplands offer a viable solution for restoring biodiversity and ecosystem services. We found that both spontaneous grassland recovery and seed sowing can be cost-effective methods, and can be successful even during a relatively short period of a nature conservation project.

  3. Synthesis and characterization of colloidal CdTe nanocrystals

    NASA Astrophysics Data System (ADS)

    Semendy, Fred; Jaganathan, Gomatam; Dhar, Nibir; Trivedi, Sudhir; Bhat, Ishwara; Chen, Yuanping

    2008-08-01

    We synthesized CdTe nano crystals (NCs) in uniform sizes and in good quality as characterized by photoluminescence (PL), AFM, and X-ray diffraction. In this growth procedure, CdTe nano-crystal band gap is strongly dependent on the growth time and not on the injection temperature or organic ligand concentration. This is very attractive because of nano-crystal size can be easily controlled by the growth time only and is very attractive for large scale synthesis. The color of the solution changes from greenish yellow to light orange then to deep orange and finally grayish black to black over a period of one hour. This is a clear indication of the gradual growth of different size (and different band gap) of CdTe nano-crystals as a function of the growth time. In other words, the size of the nano-crystal and its band gap can be controlled by adjusting the growth time after injection of the tellurium. The prepared CdTe NCs were characterized by absorption spectra, photoluminescence (PL), AFM and X-ray diffraction. Measured absorption maxima are at 521, 560, 600 and 603 nm corresponding to band gaps of 2.38, 2.21,2,07 and 2.04 eV respectively for growth times of 15, 30, 45 and 60 minutes. From the absorption data nano-crystal growth size saturates out after 45 minutes. AFM scanning of these materials indicate that the size of these particles is between 4 - 10 nm in diameter for growth time of 45 minutes. XD-ray diffraction indicates that these nano crystals are of cubic zinc blende phase. This paper will present growth and characterization data on CdTe nano crystals for various growth times.

  4. Childhood to adolescence: dust and gas clearing in protoplanetary disks

    NASA Astrophysics Data System (ADS)

    Brown, Joanna Margaret

    Disks are ubiquitous around young stars. Over time, disks dissipate, revealing planets that formed hidden by their natal dust. Since direct detection of young planets at small orbital radii is currently impossible, other tracers of planet formation must be found. One sign of disk evolution, potentially linked to planet formation, is the opening of a gap or inner hole in the disk. In this thesis, I have identified and characterized several cold disks with large inner gaps but retaining massive primordial outer disks. While cold disks are not common, with ~5% of disks showing signs of inner gaps, they provide proof that at least some disks evolve from the inside-out. These large gaps are equivalent to dust clearing from inside the Earth's orbit to Neptune's orbit or even the inner Kuiper belt. Unlike more evolved systems like our own, the central star is often still accreting and a large outer disk remains. I identified four cold disks in Spitzer 5-40 μm spectra and modeled these disks using a 2-D radiative transfer code to determine the gap properties. Outer gap radii of 20-45 AU were derived. However, spectrophotometric identification is indirect and model-dependent. To validate this interpretation, I observed three disks with a submillimeter interferometer and obtained the first direct images of the central holes. The images agree well with the gap sizes derived from the spectrophotometry. One system, LkH&alpha 330, has a very steep outer gap edge which seems more consistent with gravitational perturbation rather than gradual processes, such as grain growth and settling. Roughly 70% of cold disks show CO v=1&rarr 0 gas emission from the inner 1 AU and therefore are unlikely to have evolved due to photoevaporation. The derived rotation temperatures are significantly lower for the cold disks than disks without gaps. Unresolved (sub)millimeter photometry shows that cold disks have steeper colors, indicating that they are optically thin at these wavelengths, unlike their classical T Tauri star counterparts. The gaps are cleared of most ~100 μm sized grains as well as the ~10 μm sized grains visible in the mid-infrared as silicate emission features.

  5. Porting Inition and Failure to Linked Cheetah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vitello, P; Souers, P C

    2007-07-18

    Linked CHEETAH is a thermo-chemical code coupled to a 2-D hydrocode. Initially, a quadratic-pressure dependent kinetic rate was used, which worked well in modeling prompt detonation of explosives of large size, but does not work on other aspects of explosive behavior. The variable-pressure Tarantula reactive flow rate model was developed with JWL++ in order to also describe failure and initiation, and we have moved this model into Linked CHEETAH. The model works by turning on only above a pressure threshold, where a slow turn-on creates initiation. At a higher pressure, the rate suddenly leaps to a large value over amore » small pressure range. A slowly failing cylinder will see a rapidly declining rate, which pushes it quickly into failure. At a high pressure, the detonation rate is constant. A sequential validation procedure is used, which includes metal-confined cylinders, rate-sticks, corner-turning, initiation and threshold, gap tests and air gaps. The size (diameter) effect is central to the calibration.« less

  6. Broadband electromagnetic dipole scattering by coupled multiple nanospheres

    NASA Astrophysics Data System (ADS)

    Jing, Xufeng; Ye, Qiufeng; Hong, Zhi; Zhu, Dongshuo; Shi, Guohua

    2017-11-01

    With the development of nanotechnology, the ability to manipulate light at the nanoscale is critical to future optical functional devices. The use of high refractive index dielectric single silicon nanoparticle can achieve electromagnetic dipole resonant properties. Compared with single nanosphere, the use of dimer and trimer introduces an additional dimension (gap size) for improving the performance of dielectric optical devices through the coupling between closely connected silicon nanospheres. When changing the gap size between the nanospheres, the interaction between the particles can be from weak to strong. Compared with single nanospheres, dimerized or trimeric nanospheres exhibit more pronounced broadband scattering properties. In addition, by introducing more complex interaction, the trimericed silicon nanospheres exhibit a more significant increase in bandwidth than expected. In addition, the presence of the substrate will also contribute to the increase in the bandwidth of the nanospheres. The broadband response in dielectric nanostructures can be effectively applied to broadband applications such as dielectric nanoantennas or solar cells.

  7. Resolution acuity versus recognition acuity with Landolt-style optotypes.

    PubMed

    Heinrich, Sven P; Bach, Michael

    2013-09-01

    International standards define acuity as the reciprocal of the threshold gap size of a Landolt C optotype. However, the literature is inconsistent as to what type of acuity is measured with Landolt Cs. The present study addresses this question more directly than previous studies by quantifying the effect of an inherent luminance artifact in Landolt-style optotypes. Two groups of modified optotypes were used. In the first group, each optotype had a single gap structure with the same average luminance. Between optotypes, the gap structures differed in their degree of fineness. In the second group of optotypes, a standard gap was always present, defining the orientation of the optotype. Additional gap structures of the same average luminance, but different fineness, were inserted at the remaining potential gap locations, thereby balancing luminance across potential gap locations. Visual acuity measures were obtained for each optotype variant, using a computer-based test employing a staircase procedure. Similar acuity values were obtained for all optotypes of the first group, and for standard Landolt Cs, irrespective of the fineness of the gap structure. With luminance-balanced optotypes of the second group, measured acuity was halved, compared to standard optotypes. The results support the view that it is recognition acuity, rather than resolution acuity, which is measured with standard Landolt-style optotypes, with the imbalanced luminance distribution serving as a cue. Luminance-balanced optotypes may help to obtain a more veridical estimate of resolution acuity, although recognition acuity may be more relevant in daily living.

  8. Gap-freezing approach for shortening the lyophilization cycle time of pharmaceutical formulations-demonstration of the concept.

    PubMed

    Kuu, Wei Y; Doty, Mark J; Rebbeck, Christine L; Hurst, William S; Cho, Yong K

    2013-08-01

    During gap freezing, vials are placed on a metal tray, which is separated from the shelf surface with a small air gap that eliminates significant conductive heat transfer from the shelf to the bottom of the vial. The purpose of this freezing approach is to reduce the lyophilization cycle time of various amorphous formulations by nearly isothermal freezing. Such isothermal freezing promotes the formation of large ice crystals, and thus large pores throughout the cake, which subsequently accelerates the primary drying rate. The nucleation temperature using gap freezing, for the experimental conditions tested, was in the range of -1°C to -6°C, much higher than the range of -10°C to -14°C found using conventional shelf freezing. Isothermal freezing becomes effective when the gap is greater than 3 mm. The pore sizes and cake resistance during primary drying for various formulations were determined using the pore diffusion model developed by Kuu et al. (Pharm Dev Technol, 2011, 16(4): 343-357). Reductions in primary drying time were 42% (for 10% sucrose), 45% (for 10% trehalose), and 33% (for 5% sucrose). Copyright © 2013 Wiley Periodicals, Inc.

  9. Upward counterfactual thinking and depression: A meta-analysis.

    PubMed

    Broomhall, Anne Gene; Phillips, Wendy J; Hine, Donald W; Loi, Natasha M

    2017-07-01

    This meta-analysis examined the strength of association between upward counterfactual thinking and depressive symptoms. Forty-two effect sizes from a pooled sample of 13,168 respondents produced a weighted average effect size of r=.26, p<.001. Moderator analyses using an expanded set of 96 effect sizes indicated that upward counterfactuals and regret produced significant positive effects that were similar in strength. Effects also did not vary as a function of the theme of the counterfactual-inducing situation or study design (cross-sectional versus longitudinal). Significant effect size heterogeneity was observed across sample types, methods of assessing upward counterfactual thinking, and types of depression scale. Significant positive effects were found in studies that employed samples of bereaved individuals, older adults, terminally ill patients, or university students, but not adolescent mothers or mixed samples. Both number-based and Likert-based upward counterfactual thinking assessments produced significant positive effects, with the latter generating a larger effect. All depression scales produced significant positive effects, except for the Psychiatric Epidemiology Research Interview. Research and theoretical implications are discussed in relation to cognitive theories of depression and the functional theory of upward counterfactual thinking, and important gaps in the extant research literature are identified. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Influence of the Runner Gap on the Flow Field in the Draft Tube of a Low Head Turbine

    NASA Astrophysics Data System (ADS)

    Junginger, Bernd; Riedelbauch, Stefan

    2016-11-01

    The gap flow of axial turbines is usually neglected in the design process of hydraulic machines, although it can lead to a stabilization of the draft tube flow. Though, this negligence of the gap can falsify the flow field in the draft tube. Presented in this paper are simulations of an axial propeller turbine operated at Δγ = Δγ BEP with Q > Qbep . Simulations of four gap sizes, using a mesh with about 15 million elements for the entire machine, are performed. Additionally, two turbulence models are applied, the k-ω-SST and the SAS-SST model. At the evaluated operating point a full load vortex develops. Depending on the turbulence model the developing vortex rope can either arise from the hub in a straight shape or in a shape resembling a corkscrew. Integral quantities such as head and torque are compared with experimental model test results performed in the laboratory of the Institute. Flow field simulation results are evaluated for different gap widths. Furthermore, the impact of the gap flow respectively the gap size can be observed in velocity profiles evaluated at different positions downstream the runner until to the end of the draft tube cone. Moreover, the pressure signals recorded at the beginning of the draft tube cone are also affected by the gap flow.

  11. Hydrothermal temperature effect on crystal structures, optical properties and electrical conductivity of ZnO nanostructures

    NASA Astrophysics Data System (ADS)

    Dhafina, Wan Almaz; Salleh, Hasiah; Daud, Mohd Zalani; Ghazali, Mohd Sabri Mohd; Ghazali, Salmah Mohd

    2017-09-01

    ZnO is an wide direct band gap semiconductor and possess rich family of nanostructures which turned to be a key role in the nanotechnology field of applications. Hydrothermal method was proven to be simple, robust and low cost among the reported methods to synthesize ZnO nanostructures. In this work, the properties of ZnO nanostructures were altered by varying temperatures of hydrothermal process. The changes in term of morphological, crystal structures, optical properties and electrical conductivity were investigated. A drastic change of ZnO nanostructures morphology and decreases of 002 diffraction peak were observed as the hydrothermal temperature increased. The band gap of samples decreased as the size of ZnO nanostructure increased, whereas the electrical conductivity had no influence on the band gap value but more on the morphology of ZnO nanostructures instead.

  12. Prevalence and treatment gap in childhood epilepsy in a north Indian city: a community-based study.

    PubMed

    Pandey, Swati; Singhi, Pratibha; Bharti, Bhavneet

    2014-04-01

    Epilepsy is one of the most common neurological disorders prevalent in childhood period. There is scarcity of epidemiological data, required to plan services in resource constrained developing nations. To study the prevalence and treatment gap in childhood epilepsy in north Indian city, in the age group of 1-18 years. A two stage stratified cluster sampling; probability proportionate to size (PPS) was employed. A ten question screening questionnaire was employed to identify the presence of epilepsy. Definitions provided by International League against Epilepsy (ILAE) were used to classify screen positive subjects as epilepsy and to calculate the treatment gap. The prevalence rate for epilepsy was 6.24/1000 population. Febrile seizures and neurocysticercosis were most common causes of symptomatic seizures in childhood. This study of epidemiology of epilepsy provides valuable aid in optimizing effective community approach, thereby improving outcomes of childhood epilepsy.

  13. Space charge limited current emission for a sharp tip

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Y. B., E-mail: zhuyingbin@gmail.com; Ang, L. K., E-mail: ricky-ang@sutd.edu.sg

    In this paper, we formulate a self-consistent model to study the space charge limited current emission from a sharp tip in a dc gap. The tip is assumed to have a radius in the order of 10s nanometer. The electrons are emitted from the tip due to field emission process. It is found that the localized current density J at the apex of the tip can be much higher than the classical Child Langmuir law (flat surface). A scaling of J ∝ V{sub g}{sup 3/2}/D{sup m}, where V{sub g} is the gap bias, D is the gap size, and m = 1.1–1.2more » (depending on the emission area or radius) is proposed. The effects of non-uniform emission and the spatial dependence of work function are presented.« less

  14. Method for shaping sheet thermoplastic and the like

    NASA Technical Reports Server (NTRS)

    Akilian, Mireille K. (Inventor); Schattenburg, Mark L. (Inventor)

    2011-01-01

    Processes and apparati for shaping sheet glass or thermoplastic materials use force from a layer of a flowing fluid, such as air, between the sheet and a mandrel at close to the softening temperature of the thermoplastic. The shape is preserved by cooling. The shape of the air bearing mandrel and the pressure distribution of the fluid contribute to the final shape. A process can be conducted on one or two surfaces such that the force from the air layer is on one or two surfaces of the sheet. The gap size between the sheet and mandrel determines the pressure profile in the gap, which also determines the final sheet shape. In general, smaller gaps lead to larger viscous forces. The pressure profile depends on the shape of the mandrel, the size of the fluid gap and the sheet and the fluid supply pressure.

  15. Literacy Gaps by Educational Attainment: A Cross-National Analysis

    PubMed Central

    Park, Hyunjoon; Kyei, Pearl

    2011-01-01

    Existing cross-national research on educational attainment does not fully address whether the same level of educational attainment generates the same level of literacy skills in different countries. We analyze literacy skills data for young adults from 19 countries in the 1994–1998 International Adult Literacy Survey and find that in all countries, individuals with a higher level of educational attainment tend to have greater literacy skills. However, there is substantial variation across countries in the size of literacy gaps by levels of educational attainment. In particular, young adults in the United States show the largest literacy gaps. Using two-level hierarchical linear models, we find that cross-national differences in the literacy gap between more- and less-educated individuals are systematically linked to the degree of between-school inequality in school resources (instructional materials, class size, teachers’ experience and certification). PMID:21818163

  16. Monitoring the effects of partial cutting and gap size on microclimate and vegetation responses in northern hardwood forests in Wisconsin

    Treesearch

    Terry F. Strong; Ron M. Teclaw; John C. Zasada

    1997-01-01

    Silviculture modifies the environment. Past monitoring of silvicultural practices has been usually limited to vegetation responses, but parallel monitoring of the environment is needed to better predict these responses. In an example of monitoring temperatures in two studies of northern hardwood forests in Wisconsin, we found that different silvicultural practices...

  17. Gap effects on leaf traits of tropical rainforest trees differing in juvenile light requirement.

    PubMed

    Houter, Nico C; Pons, Thijs L

    2014-05-01

    The relationships of 16 leaf traits and their plasticity with the dependence of tree species on gaps for regeneration (gap association index; GAI) were examined in a Neotropical rainforest. Young saplings of 24 species with varying GAI were grown under a closed canopy, in a medium-sized and in a large gap, thus capturing the full range of plasticity with respect to canopy openness. Structural, biomechanical, chemical and photosynthetic traits were measured. At the chloroplast level, the chlorophyll a/b ratio and plasticity in this variable were not related to the GAI. However, plasticity in total carotenoids per unit chlorophyll was larger in shade-tolerant species. At the leaf level, leaf mass per unit area (LMA) decreased with the GAI under the closed canopy and in the medium gap, but did not significantly decrease with the GAI in the large gap. This was a reflection of the larger plasticity in LMA and leaf thickness of gap-dependent species. The well-known opposite trends in LMA for adaptation and acclimation to high irradiance in evergreen tropical trees were thus not invariably found. Although leaf strength was dependent on LMA and thickness, plasticity in this trait was not related to the GAI. Photosynthetic capacity expressed on each basis increased with the GAI, but the large plasticity in these traits was not clearly related to the GAI. Although gap-dependent species tended to have a greater plasticity overall, as evident from a principle component analysis, leaf traits of gap-dependent species are thus not invariably more phenotypically plastic.

  18. Synchronizing Self and Object Movement: How Child and Adult Cyclists Intercept Moving Gaps in a Virtual Environment

    ERIC Educational Resources Information Center

    Chihak, Benjamin J.; Plumert, Jodie M.; Ziemer, Christine J.; Babu, Sabarish; Grechkin, Timofey; Cremer, James F.; Kearney, Joseph K.

    2010-01-01

    Two experiments examined how 10- and 12-year-old children and adults intercept moving gaps while bicycling in an immersive virtual environment. Participants rode an actual bicycle along a virtual roadway. At 12 test intersections, participants attempted to pass through a gap between 2 moving, car-sized blocks without stopping. The blocks were…

  19. Soricid response to canopy gaps created by wind disturbance in the Southern Appalachians

    Treesearch

    Cathryn H. Greenberg; Stanlee Miller

    2004-01-01

    We used drift fences with pitfall traps to compare soricid abundance, richness, and demographic parameters among intact multiple-tree windthrow gaps, salvaged gaps, and mature forest in a xeric southern Appalachian forest type during 1997-1999. We also tested whether capture rates were correlated with rainfall, and whether similar-sized species did not co-occur as...

  20. Regeneration of mahogany (Swietenia macrophylla) in the Yucatan

    Treesearch

    M.B. Dickinson; D.F. Whigham; D.F. Whigham

    1999-01-01

    Low rates of natural regeneration of big-leaf mahogany were found in gaps due to felling and natural treefalls in the Yucatan. This finding is consistent with low post-logging abundances of reproductive-sized trees as well as relatively low growth rates of planted mahogany seedlings in small felling gaps. High growth rates of seedlings in large felling gaps and...

  1. Response of white-footed mice (Peromyscus leucopus) to coarse woody debris and microsite use in southern Appalachian treefall gaps

    Treesearch

    Cathryn H. Greenberg

    2002-01-01

    The influence of treefall gaps and coarse woody debris (CWD) on white-footed mouse (Peromyxus leucopus) abundance was tested experimentally during 1996-1999 in a southern Appalachian hardwood forest. I compared the relative abundance and body size of P. leucopus among unsalvaged gaps that were created by wind disturbance and...

  2. Seedfall and seed viability within artificial canopy gaps in a western Washington douglas-fir forest

    Treesearch

    Warren D. Devine; Timothy B. Harrington

    2015-01-01

    Seedfall of coast Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco var. menziesii) has been studied at the forest edge-clearcut interface and in small canopy gaps, but it has not been evaluated in gap sizes that would be typical of a group-selection method of regeneration. In a mature Douglas-fir forest in the Puget Sound...

  3. Altered glutamyl-aminopeptidase activity and expression in renal neoplasms

    PubMed Central

    2014-01-01

    Background Advances in the knowledge of renal neoplasms have demonstrated the implication of several proteases in their genesis, growth and dissemination. Glutamyl-aminopeptidase (GAP) (EC. 3.4.11.7) is a zinc metallopeptidase with angiotensinase activity highly expressed in kidney tissues and its expression and activity have been associated wtih tumour development. Methods In this prospective study, GAP spectrofluorometric activity and immunohistochemical expression were analysed in clear-cell (CCRCC), papillary (PRCC) and chromophobe (ChRCC) renal cell carcinomas, and in renal oncocytoma (RO). Data obtained in tumour tissue were compared with those from the surrounding uninvolved kidney tissue. In CCRCC, classic pathological parameters such as grade, stage and tumour size were stratified following GAP data and analyzed for 5-year survival. Results GAP activity in both the membrane-bound and soluble fractions was sharply decreased and its immunohistochemical expression showed mild staining in the four histological types of renal tumours. Soluble and membrane-bound GAP activities correlated with tumour grade and size in CCRCCs. Conclusions This study suggests a role for GAP in the neoplastic development of renal tumours and provides additional data for considering the activity and expression of this enzyme of interest in the diagnosis and prognosis of renal neoplasms. PMID:24885240

  4. Landscape-scale forest disturbance regimes in southern Peruvian Amazonia.

    PubMed

    Boyd, Doreen S; Hill, Ross A; Hopkinson, Chris; Baker, Timothy R

    2013-10-01

    Landscape-scale gap-size frequency distributions in tropical forests are a poorly studied but key ecological variable. Currently, a scale gap currently exists between local-scale field-based studies and those employing regional-scale medium-resolution satellite data. Data at landscape scales but of fine resolution would, however, facilitate investigation into a range of ecological questions relating to gap dynamics. These include whether canopy disturbances captured in permanent sample plots (PSPs) are representative of those in their surrounding landscape, and whether disturbance regimes vary with forest type. Here, therefore, we employ airborne LiDAR data captured over 142.5 km2 of mature, swamp, and regenerating forests in southeast Peru to assess the landscape-scale disturbance at a sampling resolution of up to 2 m. We find that this landscape is characterized by large numbers of small gaps; large disturbance events are insignificant and infrequent. Of the total number of gaps that are 2 m2 or larger in area, just 0.45% were larger than 100 m2, with a power-law exponent (alpha) value of the gap-size frequency distribution of 2.22. However, differences in disturbance regimes are seen among different forest types, with a significant difference in the alpha value of the gap-size frequency distribution observed for the swamp/regenerating forests compared with the mature forests at higher elevations. Although a relatively small area of the total forest of this region was investigated here, this study presents an unprecedented assessment of this landscape with respect to its gap dynamics. This is particularly pertinent given the range of forest types present in the landscape and the differences observed. The coupling of detailed insights into forest properties and growth provided by PSPs with the broader statistics of disturbance events using remote sensing is recommended as a strong basis for scaling-up estimates of landscape and regional-scale carbon balance.

  5. Electronic structure and magnetic properties of zigzag blue phosphorene nanoribbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Tao; Hong, Jisang, E-mail: hongj@pknu.ac.kr

    2015-08-07

    We investigated the electronic structure and magnetism of zigzag blue phosphorene nanoribbons (ZBPNRs) using first principles density functional theory calculations by changing the widths of ZBPNRs from 1.5 to 5 nm. In addition, the effect of H and O passivation was explored as well. The ZBPNRs displayed intra-edge antiferromagnetic ground state with a semiconducting band gap of ∼0.35 eV; and this was insensitive to the edge structure relaxation effect. However, the edge magnetism of ZBPNRs disappeared with H-passivation. Moreover, the band gap of H-passivated ZBPNRs was greatly enhanced because the calculated band gap was ∼1.77 eV, and this was almost the same asmore » that of two-dimensional blue phosphorene layer. For O-passivated ZBPNRs, we also found an intra-edge antiferromagnetic state. Besides, both unpassivated and O-passivated ZBPNRs preserved almost the same band gap. We predict that the electronic band structure and magnetic properties can be controlled by means of passivation. Moreover, the edge magnetism can be also modulated by the strain. Nonetheless, the intrinsic physical properties are size independent. This feature can be an advantage for device applications because it may not be necessary to precisely control the width of the nanoribbon.« less

  6. Mediating pathways in the socio-economic gradient of child development

    PubMed Central

    Attanasio, Orazio; Grantham-McGregor, Sally

    2016-01-01

    Research has previously shown a gap of near 0.5 of a standard deviation (SD) in cognition and language development between the top and bottom household wealth quartile in children aged 6–42 months in a large representative sample of low- and middle-income families in Bogota, using the Bayley Scales of Infant and Toddler Development. The gaps in fine motor and socio-emotional development were about half that size. Developmental deficits increased with age. The current study explored the associations amongst child development, household socio-economic status (SES), and a set of potential mediating variables—parental characteristics, child biomedical factors, and the quality of the home environment—in this sample. We ran mediation tests to quantify the contribution of these variables to the SES gap, and explored the role of age as a moderator. Parental education, particularly maternal education, and the quality of the home environment mediated the SES gap in all outcomes examined. Height-for-age mediated a small amount of the deficit in language scales only. More educated mothers provided better home stimulation than less educated mothers and the home environment partly mediated the effect of maternal education. These results suggested that in interventions aimed at promoting child development, those focusing on the quality of the home environment should be effective. PMID:27885311

  7. Electronic and transport properties of zigzag carbon nanotubes with the presence of periodical antidot and boron/nitride doping defects

    NASA Astrophysics Data System (ADS)

    Zoghi, Milad; Yazdanpanah Goharrizi, Arash; Mirjalili, Seyed Mohammad; Kabir, M. Z.

    2018-06-01

    Electronic and transport properties of Carbon nanotubes (CNTs) are affected by the presence of physical or chemical defects in their structures. In this paper, we present novel platforms of defected zigzag CNTs (Z-CNTs) in which two topologies of antidot and Boron/Nitride (BN) doping defects are periodically imposed throughout the length of perfect tubes. Using the tight binding model and the non-equilibrium Green’s function method, it is realized that the quantum confinement of Z-CNTs is modified by the presence of such defects. This new quantum confinement results in the appearance of mini bands and mini gaps in the transmission spectra, as well as a modified band structure and band gap size. The modified band gap could be either larger or smaller than the intrinsic band gap of a perfect tube, which is determined by the category of Z-CNT. The in-depth analysis shows that the size of the modified band gap is the function of several factors consisting of: the radii of tube (D r), the distance between adjacent defects (d d), the utilized defect topology, and the kind of defect (antidot or BN doping). Furthermore, taking advantage of the tunable band gap size of Z-CNT with the presence of periodical defects, new platforms of defect-based Z-CNT resonant tunneling diode (RTD) are proposed for the first time. Our calculations demonstrate the apparition of resonances in transmission spectra and the negative differential resistance in the I-V characteristics for such RTD platforms.

  8. Assessing fire effects on forest spatial structure using a fusion of Landsat and airborne LiDAR data in Yosemite National Park

    USGS Publications Warehouse

    Kane, Van R.; North, Malcolm P.; Lutz, James A.; Churchill, Derek J.; Roberts, Susan L.; Smith, Douglas F.; McGaughey, Robert J.; Kane, Jonathan T.; Brooks, Matthew L.

    2014-01-01

    Mosaics of tree clumps and openings are characteristic of forests dominated by frequent, low- and moderate-severity fires. When restoring these fire-suppressed forests, managers often try to reproduce these structures to increase ecosystem resilience. We examined unburned and burned forest structures for 1937 0.81 ha sample areas in Yosemite National Park, USA. We estimated severity for fires from 1984 to 2010 using the Landsat-derived Relativized differenced Normalized Burn Ratio (RdNBR) and measured openings and canopy clumps in five height strata using airborne LiDAR data. Because our study area lacked concurrent field data, we identified methods to allow structural analysis using LiDAR data alone. We found three spatial structures, canopy-gap, clump-open, and open, that differed in spatial arrangement and proportion of canopy and openings. As fire severity increased, the total area in canopy decreased while the number of clumps increased, creating a patchwork of openings and multistory tree clumps. The presence of openings > 0.3 ha, an approximate minimum gap size needed to favor shade-intolerant pine regeneration, increased rapidly with loss of canopy area. The range and variation of structures for a given fire severity were specific to each forest type. Low- to moderate-severity fires best replicated the historic clump-opening patterns that were common in forests with frequent fire regimes. Our results suggest that managers consider the following goals for their forest restoration: 1) reduce total canopy cover by breaking up large contiguous areas into variable-sized tree clumps and scattered large individual trees; 2) create a range of opening sizes and shapes, including ~ 50% of the open area in gaps > 0.3 ha; 3) create multistory clumps in addition to single story clumps; 4) retain historic densities of large trees; and 5) vary treatments to include canopy-gap, clump-open, and open mosaics across project areas to mimic the range of patterns found for each forest type in our study.

  9. Fluorescence enhancement and strong-coupling in faceted plasmonic nanocavities

    NASA Astrophysics Data System (ADS)

    Kongsuwan, Nuttawut; Demetriadou, Angela; Chikkaraddy, Rohit; Baumberg, Jeremy J.; Hess, Ortwin

    2018-06-01

    Emission properties of a quantum emitter can be significantly modified inside nanometre-sized gaps between two plasmonic nanostructures. This forms a nanoscopic optical cavity which allows single-molecule detection and single-molecule strong-coupling at room temperature. However, plasmonic resonances of a plasmonic nanocavity are highly sensitive to the exact gap morphology. In this article, we shed light on the effect of gap morphology on the plasmonic resonances of a faceted nanoparticle-on-mirror (NPoM) nanocavity and their interaction with quantum emitters. We find that with increasing facet width the NPoM nanocavity provides weaker field enhancement and thus less coupling strength to a single quantum emitter since the effective mode volume increases with the facet width. However, if multiple emitters are present, a faceted NPoM nanocavity is capable of accommodating a larger number of emitters, and hence the overall coupling strength is larger due to the collective and coherent energy exchange from all the emitters. Our findings pave the way to more efficient designs of nanocavities for room-temperature light-matter strong-coupling, thus providing a big step forward to a non-cryogenic platform for quantum technologies.

  10. Polarization State of Light Scattered from Quantum Plasmonic Dimer Antennas.

    PubMed

    Yang, Longkun; Wang, Hancong; Fang, Yan; Li, Zhipeng

    2016-01-26

    Plasmonic antennas are able to concentrate and re-emit light in a controllable manner through strong coupling between metallic nanostructures. Only recently has it found that quantum mechanical effects can drastically change the coupling strength as the feature size approaches atomic scales. Here, we present a comprehensive experimental and theoretical study of the evolution of the resonance peak and its polarization state as the dimer-antenna gap narrows to subnanometer scale. We clearly can identify the classical plasmonic regime, a crossover regime where nonlocal screening plays an important role, and the quantum regime where a charge transfer plasmon appears due to interparticle electron tunneling. Moreover, as the gap decreases from tens of to a few nanometers, the bonding dipole mode tends to emit photons with increasing polarizability. When the gap narrows to quantum regime, a significant depolarization of the mode emission is observed due to the reduction of the charge density of coupled quantum plasmons. These results would be beneficial for the understanding of quantum effects on emitting-polarization of nanoantennas and the development of quantum-based photonic nanodevices.

  11. [Microclimate dynamics of pit and mound complex within different sizes of forest gaps in Pinus koraiensis-dominated broadleaved mixed forest].

    PubMed

    Wei, Quan-Shuai; Wang, Jing-Hua; Duan, Wen-Biao; Chen, Li-Xin; Wang, Ting; Han, Dong-Hui; Gu, Wei

    2014-03-01

    An investigation was conducted in a 2.25 hm2 plot of Pinus koraiensis-dominated broad-leaved mixed forest to study basic characteristics of 7 small gaps, 5 middle gaps, 3 large gaps and 7 closed stands within 38 pit and mound complexes caused by treefall in May 2012. From June to September 2012, the soil temperature, soil water content and relative humidity at five microsites (pit bottom, pit wall, mound top, mound face and undisturbed closed stands) were measured in six sunny days each month. The results showed that among the five microsites in every month, the mound top had the highest soil temperature and the lowest water content and relative humidity, and vice versa for the pit bottom. Mostly, the differences in the above indicators among the five microsites were significant. From June to September, the mean soil temperatures for all microsites at pit and mound complex in the various gaps and closed stands were in the order of large gap>middle gap >small gap>closed stand; but the soil water content ranked differently every month. In June, August and September, the mean relative humidities for all microsites in the various gaps and closed stands were in the order of closed stand>small gap>middle gap>large gap. Mostly, the differences in the above indicators between all microsites in the various gaps and closed stand were significant. The mean monthly soil temperature and relative humidity were highest in July, but lowest in September. The maximal mean monthly soil water content occurred in July and the minimal one in September for each microsite except the undisturbed closed stands, where the maximal mean monthly soil water content occurred in July. The variation of the microclimate at the pit and mound complex was mainly influenced by gap size, microsite, and time.

  12. Monte Carlo Optimization of Crystal Configuration for Pixelated Molecular SPECT Scanners

    NASA Astrophysics Data System (ADS)

    Mahani, Hojjat; Raisali, Gholamreza; Kamali-Asl, Alireza; Ay, Mohammad Reza

    2017-02-01

    Resolution-sensitivity-PDA tradeoff is the most challenging problem in design and optimization of pixelated preclinical SPECT scanners. In this work, we addressed such a challenge from a crystal point-of-view by looking for an optimal pixelated scintillator using GATE Monte Carlo simulation. Various crystal configurations have been investigated and the influence of different pixel sizes, pixel gaps, and three scintillators on tomographic resolution, sensitivity, and PDA of the camera were evaluated. The crystal configuration was then optimized using two objective functions: the weighted-sum and the figure-of-merit methods. The CsI(Na) reveals the highest sensitivity of the order of 43.47 cps/MBq in comparison to the NaI(Tl) and the YAP(Ce), for a 1.5×1.5 mm2 pixel size and 0.1 mm gap. The results show that the spatial resolution, in terms of FWHM, improves from 3.38 to 2.21 mm while the sensitivity simultaneously deteriorates from 42.39 cps/MBq to 27.81 cps/MBq when pixel size varies from 2×2 mm2 to 0.5×0.5 mm2 for a 0.2 mm gap, respectively. The PDA worsens from 0.91 to 0.42 when pixel size decreases from 0.5×0.5 mm2 to 1×1 mm2 for a 0.2 mm gap at 15° incident-angle. The two objective functions agree that the 1.5×1.5 mm2 pixel size and 0.1 mm Epoxy gap CsI(Na) configuration provides the best compromise for small-animal imaging, using the HiReSPECT scanner. Our study highlights that crystal configuration can significantly affect the performance of the camera, and thereby Monte Carlo optimization of pixelated detectors is mandatory in order to achieve an optimal quality tomogram.

  13. Large magnetoresistance in non-magnetic silver chalcogenides and new class of magnetoresistive compounds

    DOEpatents

    Saboungi, Marie-Louis; Price, David C. L.; Rosenbaum, Thomas F.; Xu, Rong; Husmann, Anke

    2001-01-01

    The heavily-doped silver chalcogenides, Ag.sub.2+.delta. Se and Ag.sub.2+.delta. Te, show magnetoresistance effects on a scale comparable to the "colossal" magnetoresistance (CMR) compounds. Hall coefficient, magnetoconductivity, and hydrostatic pressure experiments establish that elements of narrow-gap semiconductor physics apply, but both the size of the effects at room temperature and the linear field dependence down to fields of a few Oersteds are surprising new features.

  14. Analysis of Pull-In Instability of Geometrically Nonlinear Microbeam Using Radial Basis Artificial Neural Network Based on Couple Stress Theory

    PubMed Central

    Heidari, Mohammad; Heidari, Ali; Homaei, Hadi

    2014-01-01

    The static pull-in instability of beam-type microelectromechanical systems (MEMS) is theoretically investigated. Two engineering cases including cantilever and double cantilever microbeam are considered. Considering the midplane stretching as the source of the nonlinearity in the beam behavior, a nonlinear size-dependent Euler-Bernoulli beam model is used based on a modified couple stress theory, capable of capturing the size effect. By selecting a range of geometric parameters such as beam lengths, width, thickness, gaps, and size effect, we identify the static pull-in instability voltage. A MAPLE package is employed to solve the nonlinear differential governing equations to obtain the static pull-in instability voltage of microbeams. Radial basis function artificial neural network with two functions has been used for modeling the static pull-in instability of microcantilever beam. The network has four inputs of length, width, gap, and the ratio of height to scale parameter of beam as the independent process variables, and the output is static pull-in voltage of microbeam. Numerical data, employed for training the network, and capabilities of the model have been verified in predicting the pull-in instability behavior. The output obtained from neural network model is compared with numerical results, and the amount of relative error has been calculated. Based on this verification error, it is shown that the radial basis function of neural network has the average error of 4.55% in predicting pull-in voltage of cantilever microbeam. Further analysis of pull-in instability of beam under different input conditions has been investigated and comparison results of modeling with numerical considerations shows a good agreement, which also proves the feasibility and effectiveness of the adopted approach. The results reveal significant influences of size effect and geometric parameters on the static pull-in instability voltage of MEMS. PMID:24860602

  15. Ultrashort-Pulse Child-Langmuir Law in the Quantum and Relativistic Regimes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ang, L. K.; Zhang, P.

    This Letter presents a consistent quantum and relativistic model of short-pulse Child-Langmuir (CL) law, of which the pulse length {tau} is less than the electron transit time in a gap of spacing D and voltage V. The classical value of the short-pulse CL law is enhanced by a large factor due to quantum effects when the pulse length and the size of the beam are, respectively, in femtosecond duration and nanometer scale. At high voltage larger than the electron rest mass, relativistic effects will suppress the enhancement of short-pulse CL law, which is confirmed by particle-in-cell simulation. When the pulsemore » length is much shorter than the gap transit time, the current density is proportional to V, and to the inverse power of D and {tau}.« less

  16. Topological phase in a two-dimensional metallic heavy-fermion system

    NASA Astrophysics Data System (ADS)

    Yoshida, Tsuneya; Peters, Robert; Fujimoto, Satoshi; Kawakami, Norio

    2013-04-01

    We report on a topological insulating state in a heavy-fermion system away from half filling, which is hidden within a ferromagnetic metallic phase. In this phase, the cooperation of the RKKY interaction and the Kondo effect, together with the spin-orbit coupling, induces a spin-selective gap, bringing about topologically nontrivial properties. This topological phase is robust against a change in the chemical potential in a much wider range than the gap size. We analyze these remarkable properties by using dynamical mean field theory and the numerical renormalization group. Its topological properties support a gapless chiral edge mode, which exhibits a non-Tomonaga-Luttinger liquid behavior due to the coupling with bulk ferromagnetic spin fluctuations. We also propose that the effects of the spin fluctuations on the edge mode can be detected via the NMR relaxation time measurement.

  17. Azimuthal Current Density Distribution Resulting from a Power Feed Vacuum Gap in Metallic Liner Experiments at 1 MA

    NASA Astrophysics Data System (ADS)

    Bott-Suzuki, Simon; Cordaro, S. W.; Caballero Bendixsen, L. S.; Atoyan, L.; Byvank, T.; Potter, W.; Kusse, B. R.; Greenly, J. B.; Hammer, D. A.; Chittenden, J. P.; Jennings, C. A.

    2015-11-01

    We present a study investigating the initiation of plasma in solid, metallic liners where the liner thickness is large compared to the collisionless skin depth. A vacuum gap is introduced in the power feed and we investigate the effect of this on the azimuthal initiation of plasma in the liner. We present optical emission data from aluminum liners on the 1 MA, 100ns COBRA generator. We use radial and axial gated imaging and streak photography, which show a dependence of onset of emission with the size of a small power-feed vacuum gap. The evolution of ``hot-spots'' generated from breakdown vacuum gap evolves relatively slowly and azimuthal uniformity is not observed on the experimental time-scale. We also show measurements of the B-field both outside and inside the liner, using miniature Bdot probes, which show a dependence on the liner diameter and thickness, and a correlation to the details of the breakdown. These data will be compared to magneto-hydrodynamic simulations to infer how such non-uniformities may affect full liner implosion experiments.

  18. Development of a glottal area index that integrates glottal gap size and open quotient

    PubMed Central

    Chen, Gang; Kreiman, Jody; Gerratt, Bruce R.; Neubauer, Juergen; Shue, Yen-Liang; Alwan, Abeer

    2013-01-01

    Because voice signals result from vocal fold vibration, perceptually meaningful vibratory measures should quantify those aspects of vibration that correspond to differences in voice quality. In this study, glottal area waveforms were extracted from high-speed videoendoscopy of the vocal folds. Principal component analysis was applied to these waveforms to investigate the factors that vary with voice quality. Results showed that the first principal component derived from tokens without glottal gaps was significantly (p < 0.01) associated with the open quotient (OQ). The alternating-current (AC) measure had a significant effect (p < 0.01) on the first principal component among tokens exhibiting glottal gaps. A measure AC/OQ, defined as the ratio of AC to OQ, was proposed to combine both amplitude and temporal characteristics of the glottal area waveform for both complete and incomplete glottal closures. Analyses of “glide” phonations in which quality varied continuously from breathy to pressed showed that the AC/OQ measure was able to characterize the corresponding continuum of glottal area waveform variation, regardless of the presence or absence of glottal gaps. PMID:23464035

  19. Boric acid flux synthesis, structure and magnetic property of MB₁₂O₁₄(OH)₁₀ (M=Mn, Fe, Zn)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Dingfeng; Cong, Rihong; Gao, Wenliang, E-mail: gaowl@cqu.edu.cn

    2013-05-01

    Three new borates MB₁₂O₁₄(OH)₁₀ (M=Mn, Fe, Zn) have been synthesized by boric acid flux methods, which are isotypic to NiB₁₂O₁₄(OH)₁₀. Single-crystal XRD was performed to determine the crystal structures in detail. They all crystallize in the monoclinic space group P2₁/c. The size of MO{sub 6} (M=Mg, Mn, Fe, Co, Ni, Zn) octahedron shows a good agreement with the Shannon effective ionic radii of M²⁺. Magnetic measurements indicate MnB₁₂O₁₄(OH)₁₀ is antiferromagnetic without a long-range ordering down to 2 K. The values of its magnetic superexchange constants were evaluated by DFT calculations, which explain the observed magnetic behavior. The UV–vis diffuse reflectancemore » spectrum of ZnB₁₂O₁₄(OH)₁₀ suggests a band gap ~4.6 eV. DFT calculations indicate it has a direct band gap 4.9 eV. The optical band gap is contributed by charge transfers from the occupied O 2p to the unoccupied Zn 4s states. - Graphical abstract: Experimental and theoretical studies indicate MnB₁₂O₁₄(OH)₁₀ is antiferromagnetic without a long-range ordering. DFT calculations show ZnB₁₂O₁₄(OH)₁₀ has a direct band gap of 4.9 eV. Highlights: • MB₁₂O₁₄(OH)₁₀ (M=Mn, Fe, Zn) are synthesized by two-step boric acid flux method. • Single-crystal XRD was performed to determine the crystal structures in detail. • Size of MO₆ (M=Mg, Mn, Fe, Co, Ni, Zn) agrees with the effective ionic radii. • MnB₁₂O₁₄(OH)₁₀ is antiferromagnetic without a long-range ordering down to 2 K. • DFT calculations indicate ZnB₁₂O₁₄(OH)₁₀ has a direct band gap 4.9 eV.« less

  20. Modification and Utilization of Nanoporous Gold for Loading and Release of Drugs

    NASA Astrophysics Data System (ADS)

    Al-badri, Ibtisam

    Nanoporous gold (np-Au) is a sponge-like structure of gold, which can be created by removing the less noble element from the precursor alloy, most typically silver or copper, using different chemical or electrochemical methods. It consists of interconnected ligaments and gaps between the ligaments, whose width can range from a few nanometers to a few hundreds of nanometers, creating a high surface area-to-volume ratio. Due to its many important properties (e.g., conductivity, high surface area-to-volume ratio, plasmonic response, biocompatibility, chemically inertness, and physically robustness), np-Au is suitable for different types of applications, including as a transducer for biosensors, in catalysis, for biomolecule separation, as a substrate for enzyme immobilization, and in drug delivery. The widths of the ligaments and gaps of np-Au can be easily tuned by varying conditions during the pre- or post-production process, for example, time kept in an acid bath and post-annealing (e.g. thermal, chemical, and electrochemical), depending on the requirement of the study. Thermal annealing is a commonly used process for tuning the ligaments and pore size of np-Au. However, the effects of thermal annealing on modification of ligaments and gaps sizes are not completely understood and more research needs to be done. Herein, we have explored the effect of annealing time and thickness of the np-Au sample on modification of ligaments and gaps. Furthermore, we used the electroless plating method to cover the pores or gaps partially on the surface without modifying the interior of np-Au. As-prepared np-Au was then studied as a platform for molecular loading and releasing kinetics for the possible use in drug delivery. We have found that simply applying the electroless deposition for 1 to 5 min can drastically decrease the rate of release of the molecules, and flow cell-based loading is the preferred way to load the molecules inside np-Au compared to the static method. The structure of the np-Au monoliths before and after the modification was characterized using Energy-Dispersive X-ray Spectroscopy (EDS) and scanning electron microscopy (SEM), whereas the molecular loading and releasing studies were performed using UV-Vis spectrophotometer.

  1. Electromagnetic Saturation of Angstrom-Sized Quantum Barriers at Terahertz Frequencies

    NASA Astrophysics Data System (ADS)

    Bahk, Young-Mi; Kang, Bong Joo; Kim, Yong Seung; Kim, Joon-Yeon; Kim, Won Tae; Kim, Tae Yun; Kang, Taehee; Rhie, Jiyeah; Han, Sanghoon; Park, Cheol-Hwan; Rotermund, Fabian; Kim, Dai-Sik

    2015-09-01

    Metal-graphene-metal hybrid structures allow angstrom-scale van der Waals gaps, across which electron tunneling occurs. We squeeze terahertz electromagnetic waves through these λ /10 000 000 gaps, accompanied by giant field enhancements. Unprecedented transmission reduction of 97% is achieved with the transient voltage across the gap saturating at 5 V. Electron tunneling facilitated by the transient electric field strongly modifies the gap index, starting a self-limiting process related to the barrier height. Our work enables greater interplay between classical optics and quantum tunneling, and provides optical indices to the van der Waals gaps.

  2. Electromagnetic Saturation of Angstrom-Sized Quantum Barriers at Terahertz Frequencies.

    PubMed

    Bahk, Young-Mi; Kang, Bong Joo; Kim, Yong Seung; Kim, Joon-Yeon; Kim, Won Tae; Kim, Tae Yun; Kang, Taehee; Rhie, Jiyeah; Han, Sanghoon; Park, Cheol-Hwan; Rotermund, Fabian; Kim, Dai-Sik

    2015-09-18

    Metal-graphene-metal hybrid structures allow angstrom-scale van der Waals gaps, across which electron tunneling occurs. We squeeze terahertz electromagnetic waves through these λ/10 000 000 gaps, accompanied by giant field enhancements. Unprecedented transmission reduction of 97% is achieved with the transient voltage across the gap saturating at 5 V. Electron tunneling facilitated by the transient electric field strongly modifies the gap index, starting a self-limiting process related to the barrier height. Our work enables greater interplay between classical optics and quantum tunneling, and provides optical indices to the van der Waals gaps.

  3. Estimation of the REV Size and Equivalent Permeability Coefficient of Fractured Rock Masses with an Emphasis on Comparing the Radial and Unidirectional Flow Configurations

    NASA Astrophysics Data System (ADS)

    Wang, Zhechao; Li, Wei; Bi, Liping; Qiao, Liping; Liu, Richeng; Liu, Jie

    2018-05-01

    A method to estimate the representative elementary volume (REV) size for the permeability and equivalent permeability coefficient of rock mass with a radial flow configuration was developed. The estimations of the REV size and equivalent permeability for the rock mass around an underground oil storage facility using a radial flow configuration were compared with those using a unidirectional flow configuration. The REV sizes estimated using the unidirectional flow configuration are much higher than those estimated using the radial flow configuration. The equivalent permeability coefficient estimated using the radial flow configuration is unique, while those estimated using the unidirectional flow configuration depend on the boundary conditions and flow directions. The influences of the fracture trace length, spacing and gap on the REV size and equivalent permeability coefficient were investigated. The REV size for the permeability of fractured rock mass increases with increasing the mean trace length and fracture spacing. The influence of the fracture gap length on the REV size is insignificant. The equivalent permeability coefficient decreases with the fracture spacing, while the influences of the fracture trace length and gap length are not determinate. The applicability of the proposed method to the prediction of groundwater inflow into rock caverns was verified using the measured groundwater inflow into the facility. The permeability coefficient estimated using the radial flow configuration is more similar to the representative equivalent permeability coefficient than those estimated with different boundary conditions using the unidirectional flow configuration.

  4. Physical states and finite-size effects in Kitaev's honeycomb model: Bond disorder, spin excitations, and NMR line shape

    NASA Astrophysics Data System (ADS)

    Zschocke, Fabian; Vojta, Matthias

    2015-07-01

    Kitaev's compass model on the honeycomb lattice realizes a spin liquid whose emergent excitations are dispersive Majorana fermions and static Z2 gauge fluxes. We discuss the proper selection of physical states for finite-size simulations in the Majorana representation, based on a recent paper by F. L. Pedrocchi, S. Chesi, and D. Loss [Phys. Rev. B 84, 165414 (2011), 10.1103/PhysRevB.84.165414]. Certain physical observables acquire large finite-size effects, in particular if the ground state is not fermion-free, which we prove to generally apply to the system in the gapless phase and with periodic boundary conditions. To illustrate our findings, we compute the static and dynamic spin susceptibilities for finite-size systems. Specifically, we consider random-bond disorder (which preserves the solubility of the model), calculate the distribution of local flux gaps, and extract the NMR line shape. We also predict a transition to a random-flux state with increasing disorder.

  5. Gap Test Calibrations and Their Scaling

    NASA Astrophysics Data System (ADS)

    Sandusky, Harold

    2011-06-01

    Common tests for measuring the threshold for shock initiation are the NOL large scale gap test (LSGT) with a 50.8-mm diameter donor/gap and the expanded large scale gap test (ELSGT) with a 95.3-mm diameter donor/gap. Despite the same specifications for the explosive donor and polymethyl methacrylate (PMMA) gap in both tests, calibration of shock pressure in the gap versus distance from the donor scales by a factor of 1.75, not the 1.875 difference in their sizes. Recently reported model calculations suggest that the scaling discrepancy results from the viscoelastic properties of PMMA in combination with different methods for obtaining shock pressure. This is supported by the consistent scaling of these donors when calibrated in water-filled aquariums. Calibrations with water gaps will be provided and compared with PMMA gaps. Scaling for other donor systems will also be provided. Shock initiation data with water gaps will be reviewed.

  6. Maintenance of working capacity of movement mechanism of load trolley with linear traction electric drive of bridge type crane.

    NASA Astrophysics Data System (ADS)

    Goncharov, K. A.; Denisov, I. A.

    2017-10-01

    The article considers the influence of the air gap size between the linear motor elements on the stability of the traction drive of the movement mechanism of the trolley of the bridge type crane. The main factors affecting the air gap size and the causes of their occurrence are described. The technique of calculating the magnitude of air gap variation is described in relation to the general deformation of the crane metal structure. Recommendations on the need for installation of additional equipment for load trolleys of various designs are given. The optimal values of the length of the trolley base are proposed. Observance of these values ensures normal operation of the traction drive.

  7. The Role of Family Socioeconomic Resources in the Black-White Test Score Gap among Young Children

    ERIC Educational Resources Information Center

    Magnuson, Katherine A.; Duncan, Greg J.

    2006-01-01

    This paper reviews evidence on the family origins of racial differences in young children's test scores and considers how much of the gap is due to differences in the economic and demographic conditions in which black and white children grow up. Our review of the literature finds that the estimated size of the gaps varies considerably across…

  8. Performance Gaps between Online and Face-to-Face Courses: Differences across Types of Students and Academic Subject Areas

    ERIC Educational Resources Information Center

    Xu, Di; Jaggars, Shanna S.

    2014-01-01

    Using a dataset containing nearly 500,000 courses taken by over 40,000 community and technical college students in Washington State, this study examines the performance gap between online and face-to-face courses and how the size of that gap differs across student subgroups and academic subject areas. While all types of students in the study…

  9. Universal entanglement spectra of gapped one-dimensional field theories

    NASA Astrophysics Data System (ADS)

    Cho, Gil Young; Ludwig, Andreas W. W.; Ryu, Shinsei

    2017-03-01

    We discuss the entanglement spectrum of the ground state of a (1+1)-dimensional system in a gapped phase near a quantum phase transition. In particular, in proximity to a quantum phase transition described by a conformal field theory (CFT), the system is represented by a gapped Lorentz invariant field theory in the "scaling limit" (correlation length ξ much larger than microscopic "lattice" scale "a "), and can be thought of as a CFT perturbed by a relevant perturbation. We show that for such (1+1) gapped Lorentz invariant field theories in infinite space, the low-lying entanglement spectrum obtained by tracing out, say, left half-infinite space, is precisely equal to the physical spectrum of the unperturbed gapless, i.e., conformal field theory defined on a finite interval of length Lξ=ln(ξ /a ) with certain boundary conditions. In particular, the low-lying entanglement spectrum of the gapped theory is the finite-size spectrum of a boundary conformal field theory, and is always discrete and universal. Each relevant perturbation, and thus each gapped phase in proximity to the quantum phase transition, maps into a particular boundary condition. A similar property has been known to hold for Baxter's corner transfer matrices in a very special class of fine-tuned, namely, integrable off-critical lattice models, for the entire entanglement spectrum and independent of the scaling limit. In contrast, our result applies to completely general gapped Lorentz invariant theories in the scaling limit, without the requirement of integrability, for the low-lying entanglement spectrum. While the entanglement spectrum of the ground state of a gapped theory on a finite interval of length 2 R with suitable boundary conditions, bipartitioned into two equal pieces, turns out to exhibit a crossover between the finite-size spectra of the same CFT with in general different boundary conditions as the system size R crosses the correlation length from the "critical regime'' R ≪ξ to the "gapped regime'' R ≫ξ , the physical spectrum on a finite interval of length R with the same boundary conditions, on the other hand, is known to undergo a dramatic reorganization during the same crossover from being discrete to being continuous.

  10. Modeling tunneling for the unconventional superconducting proximity effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zareapour, Parisa; Xu, Jianwei; Zhao, Shu Yang F.

    Recently there has been reinvigorated interest in the superconducting proximity effect, driven by predictions of the emergence of Majorana fermions. To help guide this search, we have developed a phenomenological model for the tunneling spectra in anisotropic superconductor-normal metal proximity devices. We combine successful approaches used in s-wave proximity and standard d-wave tunneling to reproduce tunneling spectra in d-wave proximity devices, and clarify the origin of various features. Different variations of the pair potential are considered, resulting from the proximity-induced superconductivity. Furthermore, the effective pair potential felt by the quasiparticles is momentum-dependent in contrast to s-wave superconductors. The probabilities ofmore » reflection and transmission are calculated by solving the Bogoliubov equations. Our results are consistent with experimental observations of the unconventional proximity effect and provide important experimental parameters such as the size and length scale of the proximity induced gap, as well as the conditions needed to observe the reduced and full superconducting gaps.« less

  11. Modeling tunneling for the unconventional superconducting proximity effect

    DOE PAGES

    Zareapour, Parisa; Xu, Jianwei; Zhao, Shu Yang F.; ...

    2016-10-12

    Recently there has been reinvigorated interest in the superconducting proximity effect, driven by predictions of the emergence of Majorana fermions. To help guide this search, we have developed a phenomenological model for the tunneling spectra in anisotropic superconductor-normal metal proximity devices. We combine successful approaches used in s-wave proximity and standard d-wave tunneling to reproduce tunneling spectra in d-wave proximity devices, and clarify the origin of various features. Different variations of the pair potential are considered, resulting from the proximity-induced superconductivity. Furthermore, the effective pair potential felt by the quasiparticles is momentum-dependent in contrast to s-wave superconductors. The probabilities ofmore » reflection and transmission are calculated by solving the Bogoliubov equations. Our results are consistent with experimental observations of the unconventional proximity effect and provide important experimental parameters such as the size and length scale of the proximity induced gap, as well as the conditions needed to observe the reduced and full superconducting gaps.« less

  12. Engineering two-wire optical antennas for near field enhancement

    NASA Astrophysics Data System (ADS)

    Yang, Zhong-Jian; Zhao, Qian; Xiao, Si; He, Jun

    2017-07-01

    We study the optimization of near field enhancement in the two-wire optical antenna system. By varying the nanowire sizes we obtain the optimized side-length (width and height) for the maximum field enhancement with a given gap size. The optimized side-length applies to a broadband range (λ = 650-1000 nm). The ratio of extinction cross section to field concentration size is found to be closely related to the field enhancement behavior. We also investigate two experimentally feasible cases which are antennas on glass substrate and mirror, and find that the optimized side-length also applies to these systems. It is also found that the optimized side-length shows a tendency of increasing with the gap size. Our results could find applications in field-enhanced spectroscopies.

  13. Normal stresses in shear thickening granular suspensions.

    PubMed

    Pan, Zhongcheng; de Cagny, Henri; Habibi, Mehdi; Bonn, Daniel

    2017-05-24

    When subjected to shear, granular suspensions exhibit normal stresses perpendicular to the shear plane but the magnitude and sign of the different components of the normal stresses are still under debate. By performing both oscillatory and rotational rheology measurements on shear thickening granular suspensions and systematically varying the particle diameters and the gap sizes between two parallel-plates, we show that a transition from a positive to a negative normal stress can be observed. We find that frictional interactions which determine the shear thickening behavior of suspensions contribute to the positive normal stresses. Increasing the particle diameters or decreasing the gap sizes leads to a growing importance of hydrodynamic interactions, which results in negative normal stresses. We determine a relaxation time for the system, set by both the pore and the gap sizes, that governs the fluid flow through the inter-particle space. Finally, using a two-fluid model we determine the relative contributions from the particle phase and the liquid phase.

  14. Magnetospheric Gamma-Ray Emission in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Katsoulakos, Grigorios; Rieger, Frank M.

    2018-01-01

    The rapidly variable, very high-energy (VHE) gamma-ray emission from active galactic nuclei (AGNs) has been frequently associated with non-thermal processes occurring in the magnetospheres of their supermassive black holes. The present work aims to explore the adequacy of different gap-type (unscreened electric field) models to account for the observed characteristics. Based on a phenomenological description of the gap potential, we estimate the maximum extractable gap power L gap for different magnetospheric setups, and study its dependence on the accretion state of the source. L gap is found in general to be proportional to the Blandford–Znajek jet power L BZ and a sensitive function of gap size h, i.e., {L}{gap}∼ {L}{BZ}{(h/{r}g)}β , where the power index β ≥slant 1 is dependent on the respective gap setup. The transparency of the vicinity of the black hole to VHE photons generally requires a radiatively inefficient accretion environment and thereby imposes constraints on possible accretion rates, and correspondingly on L BZ. Similarly, rapid variability, if observed, may allow one to constrain the gap size h∼ c{{Δ }}t. Combining these constraints, we provide a general classification to assess the likelihood that the VHE gamma-ray emission observed from an AGN can be attributed to a magnetospheric origin. When applied to prominent candidate sources these considerations suggest that the variable (day-scale) VHE activity seen in the radio galaxy M87 could be compatible with a magnetospheric origin, while such an origin appears less likely for the (minute-scale) VHE activity in IC 310.

  15. Soil heating during burning of forest slash piles and wood piles

    Treesearch

    Matt D. Busse; Carol J. Shestak; Ken R. Hubbert

    2013-01-01

    Pile burning of conifer slash is a common fuel reduction practice in forests of the western United States that has a direct, yet poorly quantified effect on soil heating. To address this knowledge gap, we measured the heat pulse beneath hand-built piles ranging widely in fuel composition and pile size in sandy-textured soils of the Lake Tahoe Basin. The soil heat pulse...

  16. The effect of operative fit and hydroxyapatite coating on the mechanical and biological response to porous implants.

    PubMed

    Dalton, J E; Cook, S D; Thomas, K A; Kay, J F

    1995-01-01

    Femoral intramedullary implants were constructed by threading 4.0-millimeter-thick disks with a titanium-alloy (Ti-6Al-4V) porous bead coating onto a two-millimeter-diameter threaded rod. Each porous-coated disk, which was 6.0, 8.0, 9.0, or 10.0 millimeters in diameter, was separated by a two-millimeter-thick acrylic disk with a diameter of ten millimeters. Implants with and without a hydroxyapatite coating of twenty-five micrometers were inserted into fifteen skeletally mature adult mongrel dogs. The femoral canal was sequentially reamed bilaterally to a ten-millimeter diameter, resulting in uniform initial implant-bone interface gaps of 0.0, 0.5, 1.0, and 2.0 millimeters. Each animal received paired hydroxyapatite-coated and uncoated implants. Three animals each were killed at four, eight, twelve, twenty-four, and fifty-two weeks after the implantation. The harvested femora were sectioned through the acrylic spacers, transverse to the long axis, to produce individual push-out test specimens for mechanical testing. Characteristics of interface attachment were determined with test fixtures that supported the surrounding bone to within 150 micrometers of the interface. Histological sections were prepared, and the amount of bone within the porous structure and the amount of the original gap that was filled with new bone were quantified with a computerized video image-analysis system. Mechanical attachment strength and bone ingrowth were found to increase with the time after implantation and with a decrease in the size of the gap. Placement of the implant in proximal (cancellous) compared with distal (cortical) locations had no significant effect on the strength of attachment, bone ingrowth, or gap-filling. However, implants with a large initial gap (1.0 or 2.0 millimeters) demonstrated greater attachment strength in cancellous bone than in cortical bone. With a few exceptions, hydroxyapatite-coated implants with an initial gap of 1.0 millimeter or less demonstrated significantly increased mechanical attachment strength and bone ingrowth at all time-periods. Interface attachment strengths were positively correlated with bone ingrowth, the time after implantation, the use of a hydroxyapatite coating, and decreasing initial gap size. Initial implant-bone apposition is thought to be a prerequisite for good biological fixation. This apposition is often not achieved because of the design of the implant or instruments and the operative technique. Poor initial fit during the operation may decrease the longevity of the implant. The results of the present study indicate that attachment strength and bone ingrowth are significantly affected by gaps in the interface, particularly those of more than 1.0 millimeter.(ABSTRACT TRUNCATED AT 400 WORDS)

  17. A review of the findings and theories on surface size effects on visual attention

    PubMed Central

    Peschel, Anne O.; Orquin, Jacob L.

    2013-01-01

    That surface size has an impact on attention has been well-known in advertising research for almost a century; however, theoretical accounts of this effect have been sparse. To address this issue, we review studies on surface size effects on eye movements in this paper. While most studies find that large objects are more likely to be fixated, receive more fixations, and are fixated faster than small objects, a comprehensive explanation of this effect is still lacking. To bridge the theoretical gap, we relate the findings from this review to three theories of surface size effects suggested in the literature: a linear model based on the assumption of random fixations (Lohse, 1997), a theory of surface size as visual saliency (Pieters etal., 2007), and a theory based on competition for attention (CA; Janiszewski, 1998). We furthermore suggest a fourth model – demand for attention – which we derive from the theory of CA by revising the underlying model assumptions. In order to test the models against each other, we reanalyze data from an eye tracking study investigating surface size and saliency effects on attention. The reanalysis revealed little support for the first three theories while the demand for attention model showed a much better alignment with the data. We conclude that surface size effects may best be explained as an increase in object signal strength which depends on object size, number of objects in the visual scene, and object distance to the center of the scene. Our findings suggest that advertisers should take into account how objects in the visual scene interact in order to optimize attention to, for instance, brands and logos. PMID:24367343

  18. A review of the findings and theories on surface size effects on visual attention.

    PubMed

    Peschel, Anne O; Orquin, Jacob L

    2013-12-09

    That surface size has an impact on attention has been well-known in advertising research for almost a century; however, theoretical accounts of this effect have been sparse. To address this issue, we review studies on surface size effects on eye movements in this paper. While most studies find that large objects are more likely to be fixated, receive more fixations, and are fixated faster than small objects, a comprehensive explanation of this effect is still lacking. To bridge the theoretical gap, we relate the findings from this review to three theories of surface size effects suggested in the literature: a linear model based on the assumption of random fixations (Lohse, 1997), a theory of surface size as visual saliency (Pieters etal., 2007), and a theory based on competition for attention (CA; Janiszewski, 1998). We furthermore suggest a fourth model - demand for attention - which we derive from the theory of CA by revising the underlying model assumptions. In order to test the models against each other, we reanalyze data from an eye tracking study investigating surface size and saliency effects on attention. The reanalysis revealed little support for the first three theories while the demand for attention model showed a much better alignment with the data. We conclude that surface size effects may best be explained as an increase in object signal strength which depends on object size, number of objects in the visual scene, and object distance to the center of the scene. Our findings suggest that advertisers should take into account how objects in the visual scene interact in order to optimize attention to, for instance, brands and logos.

  19. Interventions targeting substance abuse among women survivors of intimate partner abuse: a meta-analysis.

    PubMed

    Fowler, Dawnovise N; Faulkner, Monica

    2011-12-01

    In this article, meta-analytic techniques are used to examine existing intervention studies (n = 11) to determine their effects on substance abuse among female samples of intimate partner abuse (IPA) survivors. This research serves as a starting point for greater attention in research and practice to the implementation of evidence-based, integrated services to address co-occurring substance abuse and IPA victimization among women as major intersecting public health problems. The results show greater effects in three main areas. First, greater effect sizes exist in studies where larger numbers of women experienced current IPA. Second, studies with a lower mean age also showed greater effect sizes than studies with a higher mean age. Lastly, studies with smaller sample sizes have greater effects. This research helps to facilitate cohesion in the knowledge base on this topic, and the findings of this meta-analysis, in particular, contribute needed information to gaps in the literature on the level of promise of existing interventions to impact substance abuse in this underserved population. Published by Elsevier Inc.

  20. The influence of conjugated alkynyl(aryl) surface groups on the optical properties of silicon nanocrystals: photoluminescence through in-gap states.

    PubMed

    Angı, Arzu; Sinelnikov, Regina; Heenen, Hendrik H; Meldrum, Al; Veinot, Jonathan G C; Scheurer, Christoph; Reuter, Karsten; Ashkenazy, Or; Azulay, Doron; Balberg, Isaac; Millo, Oded; Rieger, Bernhard

    2018-08-31

    Developing new methods, other than size and shape, for controlling the optoelectronic properties of semiconductor nanocrystals is a highly desired target. Here we demonstrate that the photoluminescence (PL) of silicon nanocrystals (SiNCs) can be tuned in the range 685-800 nm solely via surface functionalization with alkynyl(aryl) (phenylacetylene, 2-ethynylnaphthalene, 2-ethynyl-5-hexylthiophene) surface groups. Scanning tunneling microscopy/spectroscopy on single nanocrystals revealed the formation of new in-gap states adjacent to the conduction band edge of the functionalized SiNCs. PL red-shifts were attributed to emission through these in-gap states, which reduce the effective band gap for the electron-hole recombination process. The observed in-gap states can be associated with new interface states formed via (-Si-C≡C-) bonds in combination with conjugated molecules as indicated by ab initio calculations. In contrast to alkynyl(aryl)s, the formation of in-gap states and shifts in PL maximum of the SiNCs were not observed with aryl (phenyl, naphthalene, 2-hexylthiophene) and alkynyl (1-dodecyne) surface groups. These outcomes show that surface functionalization with alkynyl(aryl) molecules is a valuable tool to control the electronic structure and optical properties of SiNCs via tuneable interface states, which may enhance the performance of SiNCs in semiconductor devices.

  1. Size and shape dependence of electronic and optical excitations in TiO2 nanocrystals

    NASA Astrophysics Data System (ADS)

    Baishya, Kopinjol; Ogut, Serdar

    2013-03-01

    We present results for the electronic structures, quasi-particle gaps, and the absorption spectra of TiO2 nanocrystals of both rutile and anatase phases with various shapes, sizes, and surfaces exposed. We study the size and shape dependences of these electronic and optical properties, computed both within time-dependent density functional theory and many-body perturbation methods such as the GW-BSE, using appropriately passivated nanocrystals to mimic bulk termination. Surface effects are examined by using nanocrystals of various sizes with particular surfaces, such as (110) in rutile and (101) in anatase phases, exposed. We interpret the resulting optical absorption spectra of these nanocrystals in terms of the bulk spectra and compare them with predictions from classical Mie-Gans theory. This work was supported by the DOE Grant No. DE-FG02-09ER16072.

  2. A possible mechanism to detect super-earth formation in protoplanetary disks

    NASA Astrophysics Data System (ADS)

    Dong, Ruobing; Chiang, Eugene; Li, Hui; Li, Shengtai

    2017-06-01

    Using combined gas+dust global hydrodynamics and radiative transfer simulations, we calculate the distribution of gas and sub-mm-sized dust in protoplanetary disks with a super-Earth at tens of AU, and examine observational signatures of such systems in resolved observations. We confirm previous results that in a typical disk with a low viscosity ($\\alpha\\lesssim10^{-4}$), a super-Earth is able to open two gaps at $\\sim$scale-height away around its orbit in $\\sim$mm-sized dust (St$\\sim$0.01), due to differential dust drift in a perturbed gas background. Additional rings and gaps may also be produced under certain conditions. These features, particularly a signature ``double-gap'' feature, can be detected in a Taurus target by ALMA in dust continuum under an angular resolution of $\\sim0\\arcsec.025$ with two hours of integration. The features are robust --- it can survive in a variety of background disk profiles, withstand modest planetary radial migration ($|r/\\dot{r}|\\sim$ a few Myr), and last for thousands of orbits. Multiple ring/gap systems observed by ALMA were typically modeled using multiple (Saturn-to-Jupiter sized) planets. Here, we argue that a single super-Earth in a low viscosity disk could produce multiple rings and gaps as well. By examining the prevalence of such features in nearby disks, upcoming high angular resolution ALMA surveys may infer how common super-Earth formation events are at tens of au.

  3. Crystallite Size-Lattice Strain Estimation and Optical Properties of Mn0.5Zn0.5Fe2O4 Nanoparticles

    NASA Astrophysics Data System (ADS)

    Indrayana, I. P. T.; Suharyadi, E.

    2018-04-01

    In the present work, we performed William-Hall plot using uniform deformation model (UDM) to estimate the crystallite size and lattice strain of Mn0.5Zn0.5Fe2O4 with various calcination temperature. The calculated crystallite sizes are 25.86 nm, 29.55 nm and 24.97 nm for nanoparticles which were calcined at a temperature of 600°C, 800°C and 1000°C, consecutively. The strain of nanoparticles has value in the order of 10-3. Controlling the calcination temperature will facilitate a change in crystallinity of nanoparticles and influence their crystallite size and strain of the crystal lattice. The optical band gap energy of samples nanoparticles is in a range of 1.09 eV – 3.30 eV. Increasing calcination temperature increased the direct and indirect band gap energy. The Urbach energy was found to increase with increased of gap energy. These results demonstrated that higher structural and optical properties of Mn0.5Zn0.5Fe2O4 can be obtained from a higher calcination temperature.

  4. Gap Test Calibrations And Their Scalin

    NASA Astrophysics Data System (ADS)

    Sandusky, Harold

    2012-03-01

    Common tests for measuring the threshold for shock initiation are the NOL large scale gap test (LSGT) with a 50.8-mm diameter donor/gap and the expanded large scale gap test (ELSGT) with a 95.3-mm diameter donor/gap. Despite the same specifications for the explosive donor and polymethyl methacrylate (PMMA) gap in both tests, calibration of shock pressure in the gap versus distance from the donor scales by a factor of 1.75, not the 1.875 difference in their sizes. Recently reported model calculations suggest that the scaling discrepancy results from the viscoelastic properties of PMMA in combination with different methods for obtaining shock pressure. This is supported by the consistent scaling of these donors when calibrated in water-filled aquariums. Calibrations and their scaling are compared for other donors with PMMA gaps and for various donors in water.

  5. DNA barcoding gap: reliable species identification over morphological and geographical scales.

    PubMed

    Čandek, Klemen; Kuntner, Matjaž

    2015-03-01

    The philosophical basis and utility of DNA barcoding have been a subject of numerous debates. While most literature embraces it, some studies continue to question its use in dipterans, butterflies and marine gastropods. Here, we explore the utility of DNA barcoding in identifying spider species that vary in taxonomic affiliation, morphological diagnosibility and geographic distribution. Our first test searched for a 'barcoding gap' by comparing intra- and interspecific means, medians and overlap in more than 75,000 computed Kimura 2-parameter (K2P) genetic distances in three families. Our second test compared K2P distances of congeneric species with high vs. low morphological distinctness in 20 genera of 11 families. Our third test explored the effect of enlarging geographical sampling area at a continental scale on genetic variability in DNA barcodes within 20 species of nine families. Our results generally point towards a high utility of DNA barcodes in identifying spider species. However, the size of the barcoding gap strongly depends on taxonomic groups and practices. It is becoming critical to define the barcoding gap statistically more consistently and to document its variation over taxonomic scales. Our results support models of independent patterns of morphological and molecular evolution by showing that DNA barcodes are effective in species identification regardless of their morphological diagnosibility. We also show that DNA barcodes represent an effective tool for identifying spider species over geographic scales, yet their variation contains useful biogeographic information. © 2014 John Wiley & Sons Ltd.

  6. Superconducting proximity effect in topological materials

    NASA Astrophysics Data System (ADS)

    Reeg, Christopher R.

    In recent years, there has been a renewed interest in the proximity effect due to its role in the realization of topological superconductivity. In this dissertation, we discuss several results that have been obtained in the field of proximity-induced superconductivity and relate the results to the search for Majorana fermions. First, we show that repulsive electron-electron interactions can induce a non-Majorana zero-energy bound state at the interface between a conventional superconductor and a normal metal. We show that this state is very sensitive to disorder, owing to its lack of topological protection. Second, we show that Rashba spin-orbit coupling, which is one of the key ingredients in engineering a topological superconductor, induces triplet pairing in the proximity effect. When the spin-orbit coupling is strong (i.e., when the characteristic energy scale for spin-orbit coupling is comparable to the Fermi energy), the induced singlet and triplet pairing amplitudes can be comparable in magnitude. Finally, we discuss how the size of the proximity-induced gap, which appears in a low-dimensional material coupled to a superconductor, evolves as the thickness of the (quasi-)low-dimensional material is increased. We show that the induced gap can be comparable to the bulk energy gap of the underlying superconductor in materials that are much thicker than the Fermi wavelength, even in the presence of an interfacial barrier and strong Fermi surface mismatch. This result has important experimental consequences for topological superconductivity, as a sizable gap is required to isolate and detect the Majorana modes.

  7. Quantifying vegetation distribution and structure using high resolution drone-based structure-from-motion photogrammetry

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Okin, G.

    2017-12-01

    Vegetation is one of the most important driving factors of different ecosystem processes in drylands. The structure of vegetation controls the spatial distribution of moisture and heat in the canopy and the surrounding area. Also, the structure of vegetation influences both airflow and boundary layer resistance above the land surface. Multispectral satellite remote sensing has been widely used to monitor vegetation coverage and its change; however, it can only capture 2D images, which do not contain the vertical information of vegetation. In situ observation uses different methods to measure the structure of vegetation, and their results are accurate; however, these methods are laborious and time-consuming, and susceptible to undersampling in spatial heterogeneity. Drylands are sparsely covered by short plants, which allows the drone fly at a relatively low height to obtain ultra-high resolution images. Structure-from-motion (SfM) is a photogrammetric method that was proved to produce 3D model based on 2D images. Drone-based remote sensing can obtain the multiangle images for one object, which can be used to constructed 3D models of vegetation in drylands. Using these images detected by the drone, the orthomosaics and digital surface model (DSM) can be built. In this study, the drone-based remote sensing was conducted in Jornada Basin, New Mexico, in the spring of 2016 and 2017, and three derived vegetation parameters (i.e., canopy size, bare soil gap size, and plant height) were compared with those obtained with field measurement. The correlation coefficient of canopy size, bare soil gap size, and plant height between drone images and field data are 0.91, 0.96, and 0.84, respectively. The two-year averaged root-mean-square error (RMSE) of canopy size, bare soil gap size, and plant height between drone images and field data are 0.61 m, 1.21 m, and 0.25 cm, respectively. The two-year averaged measure error (ME) of canopy size, bare soil gap size, and plant height between drone images and field data are 0.02 m, -0.03, and -0.1 m, respectively. These results indicate a good agreement between drone-based remote sensing and field measurement.

  8. Fracture Gap Reduction With Variable-Pitch Headless Screws.

    PubMed

    Roebke, Austin J; Roebke, Logan J; Goyal, Kanu S

    2018-04-01

    Fully threaded, variable-pitch, headless screws are used in many settings in surgery and have been extensively studied in this context, especially in regard to scaphoid fractures. However, it is not well understood how screw parameters such as diameter, length, and pitch variation, as well as technique parameters such as depth of drilling, affect gap closure. Acutrak 2 fully threaded variable-pitch headless screws of various diameters (Standard, Mini, and Micro) and lengths (16-28 mm) were inserted into polyurethane blocks of "normal" and "osteoporotic" bone model densities using a custom jig. Three drilling techniques (drill only through first block, 4 mm into second block, or completely through both blocks) were used. During screw insertion, fluoroscopic images were taken and later analyzed to measure gap reduction. The effect of backing the screw out after compression was evaluated. Drilling at least 4 mm past the fracture site reduces distal fragment push-off compared with drilling only through the proximal fragment. There were no significant differences in gap closure in the normal versus the osteoporotic model. The Micro screw had a smaller gap closure than both the Standard and the Mini screws. After block contact and compression with 2 subsequent full forward turns, backing the screw out by only 1 full turn resulted in gapping between the blocks. Intuitively, fully threaded headless variable-pitch screws can obtain compression between bone fragments only if the initial gap is less than the gap closed. Gap closure may be affected by drilling technique, screw size, and screw length. Fragment compression may be immediately lost if the screw is reversed. We describe characteristics of variable-pitch headless screws that may assist the surgeon in screw choice and method of use. Copyright © 2018 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  9. Follow-on to a report on the Applicability of the “Gallet equation” to the vegetation clearances of NERC Reliability Standard FAC-003-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirkham, Harold

    2012-08-31

    In earlier work, a study done at the Pacific Northwest National Laboratory examined a NERC proposed standard specifying clearances between vegetation and power lines. The method proposed for calculating the clearances was based on the results of testing for high-voltage line designs. An equation developed to relate the results of testing with rod-plane gaps to proposed tower window sizes was incorporated into the calculations. The equation in question, sometimes called the “Gallet equation,” describes the insulation performance of the atmosphere for air gaps of a few meters. The equation was described in the PNNL study as a good and simple-to-usemore » way to solve a problem made difficult by the nonlinear interactions of the variables. For calculations based on this equation, a certain set of assumptions must be made. In particular, a value for a quantity called the “gap factor” is needed. This is the amount by which the gap to be modeled by the equation is stronger than the reference gap that was used in developing the Gallet equation. That reference gap is the gap between a rod and a plane. This follow-on report examines the effect on flashover probabilities of assuming an incorrect value for the gap factor. In particular, the flashover probability is found that would result from using a value of 1.3 when a gap factor of 1.0 should be applied. It is shown that with these assumptions the probability of a flashover changes from being extremely unlikely (about 1 in 1000 chance) to a virtual certainty (about 97% chance).« less

  10. Changes in understory species occurrence of a secondary broadleaved forest after mass mortality of oak trees under deer foraging pressure

    PubMed Central

    2016-01-01

    The epidemic of mass mortality of oak trees by Japanese oak wilt has affected secondary deciduous broadleaved forests that have been used as coppices in Japan. The dieback of oak trees formed gaps in the crown that would be expected to enhance the regeneration of shade-intolerant pioneer species. However, foraging by sika deer Cervus nippon has also affected forest vegetation, and the compound effects of both on forest regeneration should be considered when they simultaneously occur. A field study was conducted in Kyôto City, Japan to investigate how these compound effects affected the vegetation of the understory layer of these forests. The presence/absence of seedlings and saplings was observed for 200 quadrats sized 5 m ×5 m for each species in 1992, before the mass mortality and deer encroachment, and in 2014 after these effects. A hierarchical Bayesian model was constructed to explain the occurrence, survival, and colonization of each species with their responses to the gaps that were created, expanded, or affected by the mass mortality of Quercus serrata trees. The species that occurred most frequently in 1992, Eurya japonica, Quercus glauca, and Cleyera japonica, also had the highest survival probabilities. Deer-unpalatable species such as Symplocos prunifolia and Triadica sebifera had higher colonization rates in the gaps, while the deer-palatable species Aucuba japonica had the smallest survival probability. The gaps thus promoted the colonization of deer-unpalatable plant species such as Symplocos prunifolia and Triadica sebifera. In the future, such deer-unpalatable species may dominate gaps that were created, expanded, or affected by the mass mortality of oak trees. PMID:28028480

  11. Changes in understory species occurrence of a secondary broadleaved forest after mass mortality of oak trees under deer foraging pressure.

    PubMed

    Itô, Hiroki

    2016-01-01

    The epidemic of mass mortality of oak trees by Japanese oak wilt has affected secondary deciduous broadleaved forests that have been used as coppices in Japan. The dieback of oak trees formed gaps in the crown that would be expected to enhance the regeneration of shade-intolerant pioneer species. However, foraging by sika deer Cervus nippon has also affected forest vegetation, and the compound effects of both on forest regeneration should be considered when they simultaneously occur. A field study was conducted in Kyôto City, Japan to investigate how these compound effects affected the vegetation of the understory layer of these forests. The presence/absence of seedlings and saplings was observed for 200 quadrats sized 5 m ×5 m for each species in 1992, before the mass mortality and deer encroachment, and in 2014 after these effects. A hierarchical Bayesian model was constructed to explain the occurrence, survival, and colonization of each species with their responses to the gaps that were created, expanded, or affected by the mass mortality of Quercus serrata trees. The species that occurred most frequently in 1992, Eurya japonica , Quercus glauca , and Cleyera japonica , also had the highest survival probabilities. Deer-unpalatable species such as Symplocos prunifolia and Triadica sebifera had higher colonization rates in the gaps, while the deer-palatable species Aucuba japonica had the smallest survival probability. The gaps thus promoted the colonization of deer-unpalatable plant species such as Symplocos prunifolia and Triadica sebifera . In the future, such deer-unpalatable species may dominate gaps that were created, expanded, or affected by the mass mortality of oak trees.

  12. Directionally solidified Al2O3/GAP eutectic ceramics by micro-pulling-down method

    NASA Astrophysics Data System (ADS)

    Cao, Xue; Su, Haijun; Guo, Fengwei; Tan, Xi; Cao, Lamei

    2016-11-01

    We reported a novel route to prepare directionally solidified (DS) Al2O3/GAP eutectic ceramics by micro-pulling-down (μ-PD) method. The eutectic crystallizations, microstructure characters and evolutions, and their mechanical properties were investigated in detail. The results showed that the Al2O3/GAP eutectic composites can be successfully fabricated through μ-PD method, possessed smooth surface, full density and large crystal size (the maximal size: φ90 mm × 20 mm). At the process of Diameter, the as-solidified Al2O3/GAP eutectic presented a combination of "Chinese script" and elongated colony microstructure with complex regular structure. Inside the colonies, the rod-type or lamellar-type eutectic microstructures with ultra-fine GAP surrounded by the Al2O3 matrix were observed. At an appropriate solidificational rate, the binary eutectic exhibited a typical DS irregular eutectic structure of "chinese script" consisting of interpenetrating network of α-Al2O3 and GAP phases without any other phases. Therefore, the interphase spacing was refined to 1-2 µm and the irregular microstructure led to an outstanding vickers hardness of 17.04 GPa and fracture toughness of 6.3 MPa × m1/2 at room temperature.

  13. Tracking the Creation of Tropical Forest Canopy Gaps with UAV Computer Vision Remote Sensing

    NASA Astrophysics Data System (ADS)

    Dandois, J. P.

    2015-12-01

    The formation of canopy gaps is fundamental for shaping forest structure and is an important component of ecosystem function. Recent time-series of airborne LIDAR have shown great promise for improving understanding of the spatial distribution and size of forest gaps. However, such work typically looks at gap formation across multiple years and important intra-annual variation in gap dynamics remains unknown. Here we present findings on the intra-annual dynamics of canopy gap formation within the 50 ha forest dynamics plot of Barro Colorado Island (BCI), Panama based on unmanned aerial vehicle (UAV) remote sensing. High-resolution imagery (7 cm GSD) over the 50 ha plot was obtained regularly (≈ every 10 days) beginning October 2014 using a UAV equipped with a point and shoot camera. Imagery was processed into three-dimensional (3D) digital surface models (DSMs) using automated computer vision structure from motion / photogrammetric methods. New gaps that formed between each UAV flight were identified by subtracting DSMs between each interval and identifying areas of large deviation. A total of 48 new gaps were detected from 2014-10-02 to 2015-07-23, with sizes ranging from less than 20 m2 to greater than 350 m2. The creation of new gaps was also evaluated across wet and dry seasons with 4.5 new gaps detected per month in the dry season (Jan. - May) and 5.2 per month outside the dry season (Oct. - Jan. & May - July). The incidence of gap formation was positively correlated with ground-surveyed liana stem density (R2 = 0.77, p < 0.001) at the 1 hectare scale. Further research will consider the role of climate in predicting gap formation frequency as well as site history and other edaphic factors. Future satellite missions capable of observing vegetation structure at greater extents and frequencies than airborne observations will be greatly enhanced by the high spatial and temporal resolution bridging scale made possible by UAV remote sensing.

  14. Fabricating Atom-Sized Gaps by Field-Aided Atom Migration in Nanoscale Junctions

    NASA Astrophysics Data System (ADS)

    Liu, Ran; Bi, Jun-Jie; Xie, Zhen; Yin, Kaikai; Wang, Dunyou; Zhang, Guang-Ping; Xiang, Dong; Wang, Chuan-Kui; Li, Zong-Liang

    2018-05-01

    The gap sizes between electrodes generated by typical methods are generally much larger than the dimension of a common molecule when fabricating a single-molecule junction, which dramatically suppresses the yield of single-molecule junctions. Based on the ab initio calculations, we develop a strategy named the field-aided method to accurately fabricate an atomic-sized gap between gold nanoelectrodes. To understand the mechanism of this strategy, configuration evolutions of gold nanojunction in stretching and compressing processes are calculated. The numerical results show that, in the stretching process, the gold atoms bridged between two electrodes are likely to form atomic chains. More significantly, lattice vacant positions can be easily generated in stretching and compressing processes, which make field-aided gap generation possible. In field-aided atom migration (FAAM), the external field can exert driving force, enhance the initial energy of the system, and decrease the barrier in the migration path, which makes the atom migration feasible. Conductance and stretching and compressing forces, as measurable variables in stretching and compressing processes, present very useful signals for determining the time to perform FAAM. Following this desirable strategy, we successfully fabricate gold nanogaps with a dimension of 0.38 ±0.05 nm in the experiment, as our calculation simulates.

  15. Impact of tip-gap size and periodicity on turbulent transition

    NASA Astrophysics Data System (ADS)

    Pogorelov, Alexej; Meinke, Matthias; Schroeder, Wolfgang

    2015-11-01

    Large-Eddy Simulations of the flow field in an axial fan are performed at a Reynolds number of 936.000 based on the diameter and the rotational speed of the casing wall. A finite-volume flow solver based on a conservative Cartesian cut-cell method is used to solve the unsteady compressible Navier-Stokes equations. Computations are performed at a flow rate coefficient of 0.165 and a tip-gap size of s/D =0.01, for a 72 degrees fan section resolving only one out of five blades and a full fan resolving all five blades to investigate the impact of the periodic boundary condition. Furthermore, a grid convergence study is performed using four computational grids. Results of the flow field are analyzed for the computational grid with 1 billion cells. An interaction of the turbulent wake, generated by the tip-gap vortex, with the downstream blade, is observed, which leads to a cyclic transition with high pressure fluctuations on the suction side of the blade. Two dominant frequencies are identified which perfectly match with the characteristic frequencies in the experimental sound power level such that their physical origin is explained. A variation of the tip-gap size alters the transition on the suction side, i.e., no cyclic transition is observed.

  16. Childhood accidents: the relationship of family size to incidence, supervision, and rapidity of seeking medical care.

    PubMed

    Schwartz, Shepard; Eidelman, Arthur I; Zeidan, Amin; Applebaum, David; Raveh, David

    2005-09-01

    Large family size may be a risk factor for childhood accidents. A possible association with quality of child supervision and rapidity of seeking medical care has not been fully evaluated. To determine whether children with multiple siblings are at increased risk for accidents, to assess whether quality of child supervision varies with family size, and to evaluate the relationship of family size with the rapidity of seeking medical care after an accident. We prospectively studied 333 childhood accidents treated at TEREM (emergency care station) or the Shaare Zedek Medical Center. Details on family composition and the accident were obtained through parental interview. Family size of the study population was compared with that of the Jerusalem population. Families with one to three children (Group 1) and four or more children (Group 2) were compared with regard to type of supervision and different "Gap times" - the time interval from when the accident occurred until medical assistance was sought ("Gap 1"), the time from that medical contact until arrival at Shaare Zedek ("Gap 2"), and the time from the accident until arrival at Shaare Zedek for those children for whom interim medical assistance either was ("Gap 3A") or was not ("Gap 3B") sought. Children from families with 1, 2, 3, 4 and > or =5 children comprised 7.2%, 18.3%, 14.4%, 18.6% and 41.4% of our sample compared to 20.4%, 21.8%, 18.4%, 14.7% and 24.7% in the general population respectively. Children from Group 2 were less often attended to by an adult (44.5% vs. 62.0%) and more often were in the presence only of other children at the time of the accident (27.0% vs. 10.5%). Gaps 1, 2 and 3A in Group 2 (6.3 hours, 16.5 hours, 27.8 hours respectively) were longer than for Group 1 (2.7, 10.7, 13.3 hours respectively). The risk for accidents is increased among children from families with four or more children. The adequacy of child supervision in large families is impaired. There is a relative delay from the time of the accident until these children are brought for treatment.

  17. Understanding the Financial Knowledge Gap: A New Dimension of Inequality in Later Life.

    PubMed

    Khan, Mohammad Nuruzzaman; Rothwell, David W; Cherney, Katrina; Sussman, Tamara

    2017-01-01

    To understand individuals' financial behaviors, it is important to understand the financial knowledge gap - the distance between one's objective and subjective financial knowledge. Overestimating one's financial knowledge can lead to risky financial behaviors. To date, limited empirical work has examined how financial knowledge gap varies across age groups. We analyze the size and nature of the financial knowledge gap and its variation across age groups. Using nationally representative data, we find robust evidence that older adults overestimate their financial knowledge. Social workers can assess the financial knowledge gap and educate their clients to protect from financial fraud, exploitation, and abuse.

  18. Microencapsulation of vitamin e from palm fatty acid distillate with galactomannan and gum acacia using spray drying method

    NASA Astrophysics Data System (ADS)

    Tarigan, J. Br.; Kaban, J.; Zulmi, R.

    2018-02-01

    Vitamin E from palm fatty acid distillate (PFAD) has been encapsulated using spray drying method with gum acacia (GA) and mixed of galactomannan from Arenga pinnata (GAP) with GA as encapsulating agent. Composite films with thickness vary from 0.542 - 0.779 mm were prepared by incorporating vitamin E onto matrix of GA (7 g) with various concentration of GAP (0.1; 0.2; 0.3 and 0.4 g). The film obtained from 0.2 g GAP and 1.3 g vitamin E showed better compatibility and have viscosity similar with standard (ISO 9001:2008 and ISO 22000:2005). That composition was used for spray drying method rendering micro-particle size 11 µm and the particle had spherical shape. Although the increment of GAP decreasing moisture content and the particle size from 16 µm to 11 µm, the yield of microcapsule, encapsulation efficiency, the amount of vitamin E absorbed and oxidation stability of vitamin E were increased.

  19. Numerical distance effect size is a poor metric of approximate number system acuity.

    PubMed

    Chesney, Dana

    2018-04-12

    Individual differences in the ability to compare and evaluate nonsymbolic numerical magnitudes-approximate number system (ANS) acuity-are emerging as an important predictor in many research areas. Unfortunately, recent empirical studies have called into question whether a historically common ANS-acuity metric-the size of the numerical distance effect (NDE size)-is an effective measure of ANS acuity. NDE size has been shown to frequently yield divergent results from other ANS-acuity metrics. Given these concerns and the measure's past popularity, it behooves us to question whether the use of NDE size as an ANS-acuity metric is theoretically supported. This study seeks to address this gap in the literature by using modeling to test the basic assumption underpinning use of NDE size as an ANS-acuity metric: that larger NDE size indicates poorer ANS acuity. This assumption did not hold up under test. Results demonstrate that the theoretically ideal relationship between NDE size and ANS acuity is not linear, but rather resembles an inverted J-shaped distribution, with the inflection points varying based on precise NDE task methodology. Thus, depending on specific methodology and the distribution of ANS acuity in the tested population, positive, negative, or null correlations between NDE size and ANS acuity could be predicted. Moreover, peak NDE sizes would be found for near-average ANS acuities on common NDE tasks. This indicates that NDE size has limited and inconsistent utility as an ANS-acuity metric. Past results should be interpreted on a case-by-case basis, considering both specifics of the NDE task and expected ANS acuity of the sampled population.

  20. Effect of vacuum annealing and substrate temperature on structural and optical properties of ZnIn2Se4 thin films

    NASA Astrophysics Data System (ADS)

    El-Nahass, M. M.; Attia, A. A.; Salem, G. F.; Ali, H. A. M.; Ismail, M. I.

    2013-09-01

    Zinc indium selenide (ZnIn2Se4) thin films were prepared by the thermal evaporation technique with high deposition rate. The effect of thermal annealing in vacuum on the crystallinity of the as-deposited films was studied at different temperatures (523, 573 and 623 K). The effect of substrate temperature (623 K) for different thickness values (173, 250, 335 and 346 nm) on the optical parameters of ZnIn2Se4 was also studied. The structural studies showed nanocrystalline nature of the room temperature (300 K) deposited films with crystallite size of about a few nanometers. The crystallite size increased up to 31 nm with increasing the annealing temperature in vacuum. From the reflection and transmission data, the refractive index n and the extinction coefficient k were estimated for ZnIn2Se4 thin films and they were found to be independent of film thickness. Analysis of the absorption coefficient data of the as-deposited films revealed the existence of allowed direct and indirect transitions with optical energy gaps of 2.21 eV and 1.71 eV, respectively. These values decreased with increasing annealing temperature. At substrate temperature of 623 K, the direct band gap increased to 2.41 eV whereas the value of indirect band gap remained nearly unchanged. The dispersion analysis showed that the values of the oscillator energy Eo, dispersion energy Ed, dielectric constant at infinite frequency ε∞, and lattice dielectric constant εL were changed appreciably under the effect of annealing and substrate temperature. The covalent nature of structure was studied as a function of the annealing and substrate temperature using an empirical relation for the dispersion energy Ed. Generalized Miller's rule and linear refractive index were used to estimate the nonlinear susceptibility and nonlinear refractive index of the thin films.

  1. Redox levels in aqueous solution: Effect of van der Waals interactions and hybrid functionals.

    PubMed

    Ambrosio, Francesco; Miceli, Giacomo; Pasquarello, Alfredo

    2015-12-28

    We investigate redox levels in aqueous solution using a combination of ab initio molecular dynamics (MD) simulations and thermodynamic integration methods. The molecular dynamics are performed with both the semilocal Perdew-Burke-Ernzerhof functional and a nonlocal functional (rVV10) accounting for van der Waals (vdW) interactions. The band edges are determined through three different schemes, namely, from the energy of the highest occupied and of the lowest unoccupied Kohn-Sham states, from total-energy differences, and from a linear extrapolation of the density of states. It is shown that the latter does not depend on the system size while the former two are subject to significant finite-size effects. For the redox levels, we provide a formulation in analogy to the definition of charge transition levels for defects in crystalline materials. We consider the H(+)/H2 level defining the standard hydrogen electrode, the OH(-)/OH(∗) level corresponding to the oxidation of the hydroxyl ion, and the H2O/OH(∗) level for the dehydrogenation of water. In spite of the large structural modifications induced in liquid water, vdW interactions do not lead to any significant structural effect on the calculated band gap and band edges. The effect on the redox levels is also small since the solvation properties of ionic species are little affected by vdW interactions. Since the electronic properties are not significantly affected by the underlying structural properties, it is justified to perform hybrid functional calculations on the configurations of our MD simulations. The redox levels calculated as a function of the fraction α of Fock exchange are found to remain constant, reproducing a general behavior previously observed for charge transition levels of defects. Comparison with experimental values shows very good agreement. At variance, the band edges and the band gap evolve linearly with α. For α ≃ 0.40, we achieve a band gap, band-edge positions, and redox levels in overall good agreement with experiment.

  2. Redox levels in aqueous solution: Effect of van der Waals interactions and hybrid functionals

    NASA Astrophysics Data System (ADS)

    Ambrosio, Francesco; Miceli, Giacomo; Pasquarello, Alfredo

    2015-12-01

    We investigate redox levels in aqueous solution using a combination of ab initio molecular dynamics (MD) simulations and thermodynamic integration methods. The molecular dynamics are performed with both the semilocal Perdew-Burke-Ernzerhof functional and a nonlocal functional (rVV10) accounting for van der Waals (vdW) interactions. The band edges are determined through three different schemes, namely, from the energy of the highest occupied and of the lowest unoccupied Kohn-Sham states, from total-energy differences, and from a linear extrapolation of the density of states. It is shown that the latter does not depend on the system size while the former two are subject to significant finite-size effects. For the redox levels, we provide a formulation in analogy to the definition of charge transition levels for defects in crystalline materials. We consider the H+/H2 level defining the standard hydrogen electrode, the OH-/OH∗ level corresponding to the oxidation of the hydroxyl ion, and the H2O/OH∗ level for the dehydrogenation of water. In spite of the large structural modifications induced in liquid water, vdW interactions do not lead to any significant structural effect on the calculated band gap and band edges. The effect on the redox levels is also small since the solvation properties of ionic species are little affected by vdW interactions. Since the electronic properties are not significantly affected by the underlying structural properties, it is justified to perform hybrid functional calculations on the configurations of our MD simulations. The redox levels calculated as a function of the fraction α of Fock exchange are found to remain constant, reproducing a general behavior previously observed for charge transition levels of defects. Comparison with experimental values shows very good agreement. At variance, the band edges and the band gap evolve linearly with α. For α ≃ 0.40, we achieve a band gap, band-edge positions, and redox levels in overall good agreement with experiment.

  3. Structural and optical properties of Mg doped ZnS quantum dots and biological applications

    NASA Astrophysics Data System (ADS)

    Ashokkumar, M.; Boopathyraja, A.

    2018-01-01

    Zn1-xMgxS (x = 0, 0.2 and 0.4) quantum dots (QDs) were prepared by co-precipitation method. The Mg dopant did not modify the cubic blende structure of ZnS QDs. The Mg related secondary phase was not detected even for 40% of Mg doping. The size mismatch between host Zn ion and dopant Mg ion created distortion around the dopant. The creation of distortion centres produced small changes in the lattice parameters and diffraction peak position. All the QDs showed small sulfur deficiency and the deficiency level were increased by Mg doping. Band gap of the QD was decreased due to the dominated quantum confinement effect over compositional effect at initial doping of Mg. But at higher doping the band gap was increased due to compositional effect, since there was no change in average crystallite size. The prepared QDs had three emission bands in the UV and Visible regions corresponding to near band edge emission and defect related emissions. The electron transport reaction chain which forms free radicals was broken by sulfur vacancy trap sites. Therefore, the ZnS QDs had better antioxidant activity and the antioxidant behaviour was enhanced by Mg doping. The enhanced UV absorption and emission of 20% of Mg doped ZnS QDs let to maximize the zone of inhibition against E. Coli bacterial strain.

  4. Structural and electronic properties of CdSe/ZnS and ZnS/CdSe core/shell nanowires via first principles study

    NASA Astrophysics Data System (ADS)

    Rehman, Shafiq Ur; Li, H. M.; Ding, Z. J.

    2018-05-01

    First principles calculations have been performed to predict the structural stability and electronic structures of hydrogen passivated wurtzite CdSe/ZnS and ZnS/CdSe core/shell nanowires (CSNWs) in the [0001] direction. The calculated binding energy shows that ZnS/CdSe CSNWs are more stable than CdSe/ZnS CSNWs and the stability of ZnS/CdSe CSNWs increases with increasing the thickness of ZnS shell. The modulated electronic band gap demonstrates an increase when the size of both CSNWs is reduced, as a result of the quantum confinement effect. The core-to-shell chemical composition of atoms shows that a strong composition effect also exists in these CSNWs, which in turn affects their electronic properties. Our simulated results show that the photoemission spectra of the CSNWs can be significantly improved by tuning the energy gap of CSNWs.

  5. Optimization of effective absorption enhancement of paired-strips gold nanoantennas arrays in organic thin-films

    NASA Astrophysics Data System (ADS)

    Yang, Zih-Ying; Su, Chen-Wei; Chen, Kuo-Ping

    2018-01-01

    This study sought to optimize the dimensional characteristics of paired-strips gold nanoantennas embedded in a P3HT: PCBM thin-film by taking into account the tradeoff between the size of the nanostructures and absorber layer as well as the gaps between nanoparticles, to maximize the effective absorption enhancement. The average enhancement behavior within the working region was discussed using integral analysis, which is important for overall enhancement. The discussion would focus on comparing the bands' features of paired-strips nanoantennas embedded in a dielectric thin-film, and in air. By the average absorption 3D slices plots, in which the dimension width, height, and gap are changed with a fixed wavelength; the optimized dimension of paired-strips nanoantennas could be realized. Fixing the period (400 nm) of paired-strips nanoantennas embedded in P3HT:PCBM thin-films (120 nm in thickness) enhanced absorption by 9.8 times.

  6. Application of nonlinear magnetic vibro-impact vibration suppressor and energy harvester

    NASA Astrophysics Data System (ADS)

    Afsharfard, Aref

    2018-01-01

    In the present study, application of a single unit vibro-impact system is improved. For this reason, in the so-called "magnetic impact damper" the impact mass is replaced by a permanent magnet, which moves in coil of gap enclosure. In the magnetic impact damper, wasting energy during inelastic contacts of masses and converting energy into electrical energy during the mass movement inside the coil, leads to suppress undesired vibrations. In this study it is shown that the magnetic impact dampers are not only good vibration suppressors but also they can harvest electrical energy. Effect of changing the main parameters of this system including gap size, load resistance and electromagnetic coupling coefficient is studied on the vibratory and energy behavior of the magnetic impact dampers. Finally using several user oriented charts, it is shown that energy-based and vibration-based design considerations can effectively improve application of the discussed vibro-impact system.

  7. Resonant tunneling diode based on band gap engineered graphene antidot structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palla, Penchalaiah, E-mail: penchalaiah.palla@vit.ac.in; Ethiraj, Anita S.; Raina, J. P.

    The present work demonstrates the operation and performance of double barrier Graphene Antidot Resonant Tunnel Diode (DBGA-RTD). Non-Equilibrium Green’s Function (NEGF) frame work with tight-binding Hamiltonian and 2-D Poisson equations were solved self-consistently for device study. The interesting feature in this device is that it is an all graphene RTD with band gap engineered graphene antidot tunnel barriers. Another interesting new finding is that it shows negative differential resistance (NDR), which involves the resonant tunneling in the graphene quantum well through both the electron and hole bound states. The Graphene Antidot Lattice (GAL) barriers in this device efficiently improved themore » Peak to Valley Ratio to approximately 20 even at room temperature. A new fitting model is developed for the number of antidots and their corresponding effective barrier width, which will help in determining effective barrier width of any size of actual antidot geometry.« less

  8. High temperature stability of anatase in titania-alumina semiconductors with enhanced photodegradation of 2, 4-dichlorophenoxyacetic acid.

    PubMed

    López-Granada, G; Barceinas-Sánchez, J D O; López, R; Gómez, R

    2013-12-15

    The incorporation of aluminum acetylacetonate as alumina source during the gelation of titanium alkoxide reduces the nucleation sites for the formation of large rutile crystals on temperatures ranging from 400 to 800°C. As a result, the aggregation of anatase crystals is prevented at high temperature. A relationship among the specific surface area, pore size, energy band gap, crystalline structure and crystallite size as the most relevant parameters are evaluated and discussed. According to the results for the photocatalytic degradation of 2,4-dichlorophenoxyacetic acid, the specific surface area, pore size, Eg band gap are not determinant in the photocatalytic properties. It was found that the anatase crystallite size is the mores important parameter affecting the degradation efficiency. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Cation-induced band-gap tuning in organohalide perovskites: interplay of spin-orbit coupling and octahedra tilting.

    PubMed

    Amat, Anna; Mosconi, Edoardo; Ronca, Enrico; Quarti, Claudio; Umari, Paolo; Nazeeruddin, Md K; Grätzel, Michael; De Angelis, Filippo

    2014-06-11

    Organohalide lead perovskites have revolutionized the scenario of emerging photovoltaic technologies. The prototype MAPbI3 perovskite (MA = CH3NH3(+)) has dominated the field, despite only harvesting photons above 750 nm (∼1.6 eV). Intensive research efforts are being devoted to find new perovskites with red-shifted absorption onset, along with good charge transport properties. Recently, a new perovskite based on the formamidinium cation ((NH2)2CH(+) = FA) has shown potentially superior properties in terms of band gap and charge transport compared to MAPbI3. The results have been interpreted in terms of the cation size, with the larger FA cation expectedly delivering reduced band-gaps in Pb-based perovskites. To provide a full understanding of the interplay among size, structure, and organic/inorganic interactions in determining the properties of APbI3 perovskites, in view of designing new materials and fully exploiting them for solar cells applications, we report a fully first-principles investigation on APbI3 perovskites with A = Cs(+), MA, and FA. Our results evidence that the tetragonal-to-quasi cubic structural evolution observed when moving from MA to FA is due to the interplay of size effects and enhanced hydrogen bonding between the FA cations and the inorganic matrix altering the covalent/ionic character of Pb-I bonds. Most notably, the observed cation-induced structural variability promotes markedly different electronic and optical properties in the MAPbI3 and FAPbI3 perovskites, mediated by the different spin-orbit coupling, leading to improved charge transport and red-shifted absorption in FAPbI3 and in general in pseudocubic structures. Our theoretical model constitutes the basis for the rationale design of new and more efficient organohalide perovskites for solar cells applications.

  10. Three potential mechanisms for failure of high intensity focused ultrasound ablation in cardiac tissue.

    PubMed

    Laughner, Jacob I; Sulkin, Matthew S; Wu, Ziqi; Deng, Cheri X; Efimov, Igor R

    2012-04-01

    High intensity focused ultrasound (HIFU) has been introduced for treatment of cardiac arrhythmias because it offers the ability to create rapid tissue modification in confined volumes without directly contacting the myocardium. In spite of the benefits of HIFU, a number of limitations have been reported, which hindered its clinical adoption. In this study, we used a multimodal approach to evaluate thermal and nonthermal effects of HIFU in cardiac ablation. We designed a computer controlled system capable of simultaneous fluorescence mapping and HIFU ablation. Using this system, linear lesions were created in isolated rabbit atria (n=6), and point lesions were created in the ventricles of whole-heart (n=6) preparations by applying HIFU at clinical doses (4-16 W). Additionally, we evaluate the gap size in ablation lines necessary for conduction in atrial preparations (n=4). The voltage sensitive dye di-4-ANEPPS was used to assess functional damage produced by HIFU. Optical coherence tomography and general histology were used to evaluate lesion extent. Conduction block was achieved in 1 (17%) of 6 atrial preparations with a single ablation line. Following 10 minutes of rest, 0 (0%) of 6 atrial preparations demonstrated sustained conduction block from a single ablation line. Tissue displacement of 1 to 3 mm was observed during HIFU application due to acoustic radiation force along the lesion line. Additionally, excessive acoustic pressure and high temperature from HIFU generated cavitation, causing macroscopic tissue damage. A minimum gap size of 1.5 mm was found to conduct electric activity. This study identified 3 potential mechanisms responsible for the failure of HIFU ablation in cardiac tissues. Both acoustic radiation force and acoustic cavitation, in conjunction with inconsistent thermal deposition, can increase the risk of lesion discontinuity and result in gap sizes that promote ablation failure.

  11. Numerical investigation of tip clearance effects on the performance of ducted propeller

    NASA Astrophysics Data System (ADS)

    Ding, Yongle; Song, Baowei; Wang, Peng

    2015-09-01

    Tip clearance loss is a limitation of the improvement of turbomachine performance. Previous studies show the Tip clearance loss is generated by the leakage flow through the tip clearance, and is roughly linearly proportional to the gap size. This study investigates the tip clearance effects on the performance of ducted propeller. The investigation was carried out by solving the Navier-Stokes equations with the commercial Computational Fluid Dynamic (CFD) code CFX14.5. These simulations were carried out to determine the underlying mechanisms of the tip clearance effects. The calculations were performed at three different chosen advance ratios. Simulation results showed that the tip loss slope was not linearly at high advance due to the reversed pressure at the leading edge. Three type of vortical structures were observed in the tip clearance at different clearance size.

  12. Toward customer-centric organizational science: A common language effect size indicator for multiple linear regressions and regressions with higher-order terms.

    PubMed

    Krasikova, Dina V; Le, Huy; Bachura, Eric

    2018-06-01

    To address a long-standing concern regarding a gap between organizational science and practice, scholars called for more intuitive and meaningful ways of communicating research results to users of academic research. In this article, we develop a common language effect size index (CLβ) that can help translate research results to practice. We demonstrate how CLβ can be computed and used to interpret the effects of continuous and categorical predictors in multiple linear regression models. We also elaborate on how the proposed CLβ index is computed and used to interpret interactions and nonlinear effects in regression models. In addition, we test the robustness of the proposed index to violations of normality and provide means for computing standard errors and constructing confidence intervals around its estimates. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  13. Do air-gaps behind soft body armour affect protection?

    PubMed

    Tilsley, Lee; Carr, D J; Lankester, C; Malbon, C

    2018-02-01

    Body armour typically comprises a fabric garment covering the torso combined with hard armour (ceramic/composite). Some users wear only soft armour which provides protection from sharp weapons and pistol ammunition. It is usually recommended that body armour is worn against the body with no air-gaps being present between the wearer and the armour. However, air-gaps can occur in certain situations such as females around the breasts, in badly fitting armour and where manufacturers have incorporated an air-gap claiming improvements in thermophysiological burden. The effect of an air-gap on the ballistic protection and the back face signature (BFS) as a result of a non-perforating ballistic impact was determined. Armour panels representative of typical police armour (400x400 mm) were mounted on calibrated Roma Plastilina No 1 and impacted with 9 mm Luger FMJ (9×19 mm; full metal jacket; Dynamit Nobel DM11A1B2) ammunition at 365±10 m/s with a range of air-gaps (0-15 mm). Whether or not the ammunition perforated the armour was noted, the BFS was measured and the incidence of pencilling (a severe, deep and narrow BFS) was identified. For 0° impacts, a critical air-gap size of 10 mm is detrimental to armour performance for the armour/ammunition combination assessed in this work. Specifically, the incidences of pencilling were more common with a 10 mm air-gap and resulted in BFS depth:volume ratios ≥1.0. For impacts at 30° the armour was susceptible to perforation irrespective of air-gap. This work suggested that an air-gap behind police body armour might result in an increased likelihood of injury. It is recommended that body armour is worn with no air-gap underneath. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  14. Disturbance size and severity covary in small and mid-size wind disturbances in Pennsylvania northern hardwoods forests

    Treesearch

    Chris J. Peterson; Lisa M. Krueger; Alejandro A. Royo; Scott Stark; Walter P. Carson

    2013-01-01

    Do large disturbances differ from small ones in characteristics other than size? The importance of disturbances in forest dynamics is unquestioned, and the size of the disturbed area (size of gap) is the most common way of differentiating disturbances. But few studies have examined other disturbance characteristics to see if small and large disturbances are different....

  15. Structural studies of n-type nc-Si-QD thin films for nc-Si solar cells

    NASA Astrophysics Data System (ADS)

    Das, Debajyoti; Kar, Debjit

    2017-12-01

    A wide optical gap nanocrystalline silicon (nc-Si) dielectric material is a basic requirement at the n-type window layer of nc-Si solar cells in thin film n-i-p structure on glass substrates. Taking advantage of the high atomic-H density inherent to the planar inductively coupled low-pressure (SiH4 + CH4)-plasma, development of an analogous material in P-doped nc-Si-QD/a-SiC:H network has been tried. Incorporation of C in the Si-network extracted from the CH4 widens the optical band gap; however, at enhanced PH3-dilution of the plasma spontaneous miniaturization of the nc-Si-QDs below the dimension of Bohr radius (∼4.5 nm) further enhances the band gap by virtue of the quantum size effect. At increased flow rate of PH3, dopant induced continuous amorphization of the intrinsic crystalline network is counterbalanced by the further crystallization promoted by the supplementary atomic-H extracted from PH3 (1% in H2) in the plasma, eventually holding a moderately high degree of crystallinity. The n-type wide band gap (∼1.93 eV) window layer with nc-Si-QDs in adequate volume fraction (∼52%) could furthermore be instrumental as an effective seed layer for advancing sequential crystallization in the i-layer of nc-Si solar cells with n-i-p structure in superstrate configuration.

  16. The structure of disks around intermediate-mass young stars from mid-infrared interferometry. Evidence for a population of group II disks with gaps

    NASA Astrophysics Data System (ADS)

    Menu, J.; van Boekel, R.; Henning, Th.; Leinert, Ch.; Waelkens, C.; Waters, L. B. F. M.

    2015-09-01

    Context. The disks around Herbig Ae/Be stars are commonly divided into group I and group II based on their far-infrared spectral energy distribution, and the common interpretation for that is flared and flat disks. Our understanding of the evolution of these disks is rapidly changing. Recent observations suggest that many flaring disks have gaps, whereas flat disks are thought to be gapless. Aims: The different groups of objects can be expected to have different structural signatures in high-angular-resolution data, related to gaps, dust settling, and flaring. We aim to use such data to gain new insight into disk structure and evolution. Methods: Over the past 10 years, the MIDI instrument on the Very Large Telescope Interferometer has collected observations of several tens of protoplanetary disks. We modeled the large set of observations with simple geometric models and compared the characteristic sizes among the different objects. A population of radiative-transfer models was synthesized for interpreting the mid-infrared signatures. Results: Objects with similar luminosities show very different disk sizes in the mid-infrared. This may point to an intrinsic diversity or could also hint at different evolutionary stages of the disks. Restricting this to the young objects of intermediate mass, we confirm that most group I disks are in agreement with being transitional (i.e., they have gaps). We find that several group II objects have mid-infrared sizes and colors that overlap with sources classified as group I, transition disks. This suggests that these sources have gaps, which has been demonstrated for a subset of them. This may point to an intermediate population between gapless and transition disks. Conclusions: Flat disks with gaps are most likely descendants of flat disks without gaps. Potentially related to the formation of massive bodies, gaps may therefore even develop in disks in a far stage of grain growth and settling. The evolutionary implications of this new population could be twofold. Either gapped flat disks form a separate population of evolved disks or some of them may evolve further into flaring disks with large gaps. The latter transformation may be governed by the interaction with a massive planet, carving a large gap and dynamically exciting the grain population in the disk. Appendices A and B are available in electronic form at http://www.aanda.org

  17. Self-objectification and disordered eating: A meta-analysis.

    PubMed

    Schaefer, Lauren M; Thompson, J Kevin

    2018-06-01

    Objectification theory posits that self-objectification increases risk for disordered eating. The current study sought to examine the relationship between self-objectification and disordered eating using meta-analytic techniques. Data from 53 cross-sectional studies (73 effect sizes) revealed a significant moderate positive overall effect (r = .39), which was moderated by gender, ethnicity, sexual orientation, and measurement of self-objectification. Specifically, larger effect sizes were associated with female samples and the Objectified Body Consciousness Scale. Effect sizes were smaller among heterosexual men and African American samples. Age, body mass index, country of origin, measurement of disordered eating, sample type and publication type were not significant moderators. Overall, results from the first meta-analysis to examine the relationship between self-objectification and disordered eating provide support for one of the major tenets of objectification theory and suggest that self-objectification may be a meaningful target in eating disorder interventions, though further work is needed to establish temporal and causal relationships. Findings highlight current gaps in the literature (e.g., limited representation of males, and ethnic and sexual minorities) with implications for guiding future research. © 2018 Wiley Periodicals, Inc.

  18. Large-scale wind disturbances promote tree diversity in a Central Amazon forest.

    PubMed

    Marra, Daniel Magnabosco; Chambers, Jeffrey Q; Higuchi, Niro; Trumbore, Susan E; Ribeiro, Gabriel H P M; Dos Santos, Joaquim; Negrón-Juárez, Robinson I; Reu, Björn; Wirth, Christian

    2014-01-01

    Canopy gaps created by wind-throw events, or blowdowns, create a complex mosaic of forest patches varying in disturbance intensity and recovery in the Central Amazon. Using field and remote sensing data, we investigated the short-term (four-year) effects of large (>2000 m(2)) blowdown gaps created during a single storm event in January 2005 near Manaus, Brazil, to study (i) how forest structure and composition vary with disturbance gradients and (ii) whether tree diversity is promoted by niche differentiation related to wind-throw events at the landscape scale. In the forest area affected by the blowdown, tree mortality ranged from 0 to 70%, and was highest on plateaus and slopes. Less impacted areas in the region affected by the blowdown had overlapping characteristics with a nearby unaffected forest in tree density (583 ± 46 trees ha(-1)) (mean ± 99% Confidence Interval) and basal area (26.7 ± 2.4 m(2) ha(-1)). Highly impacted areas had tree density and basal area as low as 120 trees ha(-1) and 14.9 m(2) ha(-1), respectively. In general, these structural measures correlated negatively with an index of tree mortality intensity derived from satellite imagery. Four years after the blowdown event, differences in size-distribution, fraction of resprouters, floristic composition and species diversity still correlated with disturbance measures such as tree mortality and gap size. Our results suggest that the gradients of wind disturbance intensity encompassed in large blowdown gaps (>2000 m(2)) promote tree diversity. Specialists for particular disturbance intensities existed along the entire gradient. The existence of species or genera taking an intermediate position between undisturbed and gap specialists led to a peak of rarefied richness and diversity at intermediate disturbance levels. A diverse set of species differing widely in requirements and recruitment strategies forms the initial post-disturbance cohort, thus lending a high resilience towards wind disturbances at the community level.

  19. Effect of imaging powder and CAD/CAM stone types on the marginal gap of zirconia crowns.

    PubMed

    Alghazzawi, Tariq F; Al-Samadani, Khalid H; Lemons, Jack; Liu, Perng-Ru; Essig, Milton E; Bartolucci, Alfred A; Janowski, Gregg M

    2015-02-01

    To compare the marginal gap using different types of die stones and titanium dies with and without powders for imaging. A melamine tooth was prepared and scanned using a laboratory 3-shape scanner to mill a polyurethane die, which was duplicated into different stones (Jade, Lean, CEREC) and titanium. Each die was sprayed with imaging powders (NP, IPS, Optispray, Vita) to form 15 groups. Ten of each combination of stone/titanium and imaging powders were used to mill crowns. A light-bodied impression material was injected into the intaglio surface of each crown and placed on the corresponding die. Each crown was removed, and the monophase material was injected to form a monophase die, which was cut into 8 sections. Digital images were captured using a stereomicroscope to measure marginal gap. Scanning electron microscopy was used to determine the particle size and shape of imaging powders and stones. Marginal gaps ranged from mean (standard deviation) 49.32 to 1.20 micrometers (3.97-42.41 μm). There was no statistical difference (P > .05) in the marginal gap by any combination of stone/titanium and imaging powders. All of the imaging powders had a similar size and rounded shape, whereas the surface of the stones showed different structures. When a laboratory 3-shape scanner is used, all imaging powders performed the same for scanning titanium abutments. However, there was no added value related to the use of imaging powder on die stone. It is recommended that the selection of stone for a master cast be based on the hysical properties. When a laboratory 3-shape scanner is used, the imaging powder is not required for scanning die stone. Whenever scanning titanium implant abutments, select the least expensive imaging powder. Copyright © 2015 American Dental Association. Published by Elsevier Inc. All rights reserved.

  20. Large-Scale Wind Disturbances Promote Tree Diversity in a Central Amazon Forest

    PubMed Central

    Marra, Daniel Magnabosco; Chambers, Jeffrey Q.; Higuchi, Niro; Trumbore, Susan E.; Ribeiro, Gabriel H. P. M.; dos Santos, Joaquim; Negrón-Juárez, Robinson I.; Reu, Björn; Wirth, Christian

    2014-01-01

    Canopy gaps created by wind-throw events, or blowdowns, create a complex mosaic of forest patches varying in disturbance intensity and recovery in the Central Amazon. Using field and remote sensing data, we investigated the short-term (four-year) effects of large (>2000 m2) blowdown gaps created during a single storm event in January 2005 near Manaus, Brazil, to study (i) how forest structure and composition vary with disturbance gradients and (ii) whether tree diversity is promoted by niche differentiation related to wind-throw events at the landscape scale. In the forest area affected by the blowdown, tree mortality ranged from 0 to 70%, and was highest on plateaus and slopes. Less impacted areas in the region affected by the blowdown had overlapping characteristics with a nearby unaffected forest in tree density (583±46 trees ha−1) (mean±99% Confidence Interval) and basal area (26.7±2.4 m2 ha−1). Highly impacted areas had tree density and basal area as low as 120 trees ha−1 and 14.9 m2 ha−1, respectively. In general, these structural measures correlated negatively with an index of tree mortality intensity derived from satellite imagery. Four years after the blowdown event, differences in size-distribution, fraction of resprouters, floristic composition and species diversity still correlated with disturbance measures such as tree mortality and gap size. Our results suggest that the gradients of wind disturbance intensity encompassed in large blowdown gaps (>2000 m2) promote tree diversity. Specialists for particular disturbance intensities existed along the entire gradient. The existence of species or genera taking an intermediate position between undisturbed and gap specialists led to a peak of rarefied richness and diversity at intermediate disturbance levels. A diverse set of species differing widely in requirements and recruitment strategies forms the initial post-disturbance cohort, thus lending a high resilience towards wind disturbances at the community level. PMID:25099118

  1. Large-Scale Wind Disturbances Promote Tree Diversity in a Central Amazon Forest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marra, Daniel Magnabosco; Chambers, Jeffrey Q.; Higuchi, Niro

    Canopy gaps created by wind-throw events, or blowdowns, create a complex mosaic of forest patches varying in disturbance intensity and recovery in the Central Amazon. Using field and remote sensing data, we investigated the short-term (four-year) effects of large (>2000 m 2) blowdown gaps created during a single storm event in January 2005 near Manaus, Brazil, to study (i) how forest structure and composition vary with disturbance gradients and (ii) whether tree diversity is promoted by niche differentiation related to wind-throw events at the landscape scale. In the forest area affected by the blowdown, tree mortality ranged from 0 tomore » 70%, and was highest on plateaus and slopes. Less impacted areas in the region affected by the blowdown had overlapping characteristics with a nearby unaffected forest in tree density (583±46 trees ha -1) (mean±99% Confidence Interval) and basal area (26.7±2.4 m 2 ha -1). Highly impacted areas had tree density and basal area as low as 120 trees ha -1 and 14.9 m 2 ha -1, respectively. In general, these structural measures correlated negatively with an index of tree mortality intensity derived from satellite imagery. Four years after the blowdown event, differences in size-distribution, fraction of resprouters, floristic composition and species diversity still correlated with disturbance measures such as tree mortality and gap size. Our results suggest that the gradients of wind disturbance intensity encompassed in large blowdown gaps (>2000 m 2) promote tree diversity. Specialists for particular disturbance intensities existed along the entire gradient. The existence of species or genera taking an intermediate position between undisturbed and gap specialists led to a peak of rarefied richness and diversity at intermediate disturbance levels. A diverse set of species differing widely in requirements and recruitment strategies forms the initial post-disturbance cohort, thus lending a high resilience towards wind disturbances at the community level.« less

  2. Large-Scale Wind Disturbances Promote Tree Diversity in a Central Amazon Forest

    DOE PAGES

    Marra, Daniel Magnabosco; Chambers, Jeffrey Q.; Higuchi, Niro; ...

    2014-08-06

    Canopy gaps created by wind-throw events, or blowdowns, create a complex mosaic of forest patches varying in disturbance intensity and recovery in the Central Amazon. Using field and remote sensing data, we investigated the short-term (four-year) effects of large (>2000 m 2) blowdown gaps created during a single storm event in January 2005 near Manaus, Brazil, to study (i) how forest structure and composition vary with disturbance gradients and (ii) whether tree diversity is promoted by niche differentiation related to wind-throw events at the landscape scale. In the forest area affected by the blowdown, tree mortality ranged from 0 tomore » 70%, and was highest on plateaus and slopes. Less impacted areas in the region affected by the blowdown had overlapping characteristics with a nearby unaffected forest in tree density (583±46 trees ha -1) (mean±99% Confidence Interval) and basal area (26.7±2.4 m 2 ha -1). Highly impacted areas had tree density and basal area as low as 120 trees ha -1 and 14.9 m 2 ha -1, respectively. In general, these structural measures correlated negatively with an index of tree mortality intensity derived from satellite imagery. Four years after the blowdown event, differences in size-distribution, fraction of resprouters, floristic composition and species diversity still correlated with disturbance measures such as tree mortality and gap size. Our results suggest that the gradients of wind disturbance intensity encompassed in large blowdown gaps (>2000 m 2) promote tree diversity. Specialists for particular disturbance intensities existed along the entire gradient. The existence of species or genera taking an intermediate position between undisturbed and gap specialists led to a peak of rarefied richness and diversity at intermediate disturbance levels. A diverse set of species differing widely in requirements and recruitment strategies forms the initial post-disturbance cohort, thus lending a high resilience towards wind disturbances at the community level.« less

  3. GAP/CL-20-Based Compound Explosive: A New Booster Formulation Used in a Small-Sized Initiation Network

    NASA Astrophysics Data System (ADS)

    Yanju, Wei; Jingyu, Wang; Chongwei, An; Hequn, Li; Xiaomu, Wen; Binshuo, Yu

    2017-01-01

    With ε-2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) and glycidyl azide polymer (GAP) as the solid filler and binder, respectively, GAP/CL-20-based compound explosives were designed and prepared. Using micro injection charge technology, the compound explosives were packed into small grooves to explore their application in a small-sized initiation network. The detonation reliability, detonation velocity, mechanical sensitivity, shock sensitivity, and brisance of the explosive were measured and analyzed. The results show that when the solid content of CL-20 is 82 wt%, the explosive charged in the groove has a smooth surface from a macroscopic view. From a microscopic view, a coarse surface is bonded with many CL-20 particles by GAP binder. The GAP/CL-20-based explosive charge successfully generates detonation waves in a groove larger than 0.6 mm × 0.6 mm. When the charge density in the groove is 1.68 g.cm-3 (90% theoretical maximum density), the detonation velocity reaches 7,290 m.s-1. Moreover, this kind of explosive is characterized by low impact and shock sensitivity.

  4. The Impact of Environment on the Stellar Mass–Halo Mass Relation

    NASA Astrophysics Data System (ADS)

    Golden-Marx, Jesse B.; Miller, Christopher J.

    2018-06-01

    A large variance exists in the amplitude of the stellar mass–halo mass (SMHM) relation for group- and cluster-size halos. Using a sample of 254 clusters, we show that the magnitude gap between the brightest central galaxy (BCG) and its second or fourth brightest neighbor accounts for a significant portion of this variance. We find that at fixed halo mass, galaxy clusters with a larger magnitude gap have a higher BCG stellar mass. This relationship is also observed in semi-analytic representations of low-redshift galaxy clusters in simulations. This SMHM–magnitude gap stratification likely results from BCG growth via hierarchical mergers and may link the assembly of the halo with the growth of the BCG. Using a Bayesian model, we quantify the importance of the magnitude gap in the SMHM relation using a multiplicative stretch factor, which we find to be significantly non-zero. The inclusion of the magnitude gap in the SMHM relation results in a large reduction in the inferred intrinsic scatter in the BCG stellar mass at fixed halo mass. We discuss the ramifications of this result in the context of galaxy formation models of centrals in group- and cluster-size halos.

  5. Remote control for anode-cathode adjustment

    DOEpatents

    Roose, Lars D.

    1991-01-01

    An apparatus for remotely adjusting the anode-cathode gap in a pulse power machine has an electric motor located within a hollow cathode inside the vacuum chamber of the pulse power machine. Input information for controlling the motor for adjusting the anode-cathode gap is fed into the apparatus using optical waveguides. The motor, controlled by the input information, drives a worm gear that moves a cathode tip. When the motor drives in one rotational direction, the cathode is moved toward the anode and the size of the anode-cathode gap is diminished. When the motor drives in the other direction, the cathode is moved away from the anode and the size of the anode-cathode gap is increased. The motor is powered by batteries housed in the hollow cathode. The batteries may be rechargeable, and they may be recharged by a photovoltaic cell in combination with an optical waveguide that receives recharging energy from outside the hollow cathode. Alternatively, the anode-cathode gap can be remotely adjusted by a manually-turned handle connected to mechanical linkage which is connected to a jack assembly. The jack assembly converts rotational motion of the handle and mechanical linkage to linear motion of the cathode moving toward or away from the anode.

  6. Quantum memories with zero-energy Majorana modes and experimental constraints

    NASA Astrophysics Data System (ADS)

    Ippoliti, Matteo; Rizzi, Matteo; Giovannetti, Vittorio; Mazza, Leonardo

    2016-06-01

    In this work we address the problem of realizing a reliable quantum memory based on zero-energy Majorana modes in the presence of experimental constraints on the operations aimed at recovering the information. In particular, we characterize the best recovery operation acting only on the zero-energy Majorana modes and the memory fidelity that can be therewith achieved. In order to understand the effect of such restriction, we discuss two examples of noise models acting on the topological system and compare the amount of information that can be recovered by accessing either the whole system, or the zero modes only, with particular attention to the scaling with the size of the system and the energy gap. We explicitly discuss the case of a thermal bosonic environment inducing a parity-preserving Markovian dynamics in which the memory fidelity achievable via a read-out of the zero modes decays exponentially in time, independent from system size. We argue, however, that even in the presence of said experimental limitations, the Hamiltonian gap is still beneficial to the storage of information.

  7. Effect of geometric nanostructures on the absorption edges of 1-D and 2-D TiO₂ fabricated by atomic layer deposition.

    PubMed

    Chang, Yung-Huang; Liu, Chien-Min; Cheng, Hsyi-En; Chen, Chih

    2013-05-01

    2-Dimensional (2-D) TiO2 thin films and 1-dimensional (1-D) TiO2 nanotube arrays were fabricated on Si and quartz substrates using atomic layer deposition (ALD) with an anodic aluminum oxide (AAO) template at 400 °C. The film thickness and the tube wall thickness can be precisely controlled using the ALD approach. The intensities of the absorption spectra were enhanced by an increase in the thickness of the TiO2 thin film and tube walls. A blue-shift was observed for a decrease in the 1-D and 2-D TiO2 nanostructure thicknesses, indicating a change in the energy band gap with the change in the size of the TiO2 nanostructures. Indirect and direct interband transitions were used to investigate the change in the energy band gap. The results indicate that both quantum confinement and interband transitions should be considered when the sizes of 1-D and 2-D TiO2 nanostructures are less than 10 nm.

  8. Effects of optical band gap energy, band tail energy and particle shape on photocatalytic activities of different ZnO nanostructures prepared by a hydrothermal method

    NASA Astrophysics Data System (ADS)

    Klubnuan, Sarunya; Suwanboon, Sumetha; Amornpitoksuk, Pongsaton

    2016-03-01

    The dependence of the crystallite size and the band tail energy on the optical properties, particle shape and oxygen vacancy of different ZnO nanostructures to catalyse photocatalytic degradation was investigated. The ZnO nanoplatelets and mesh-like ZnO lamellae were synthesized from the PEO19-b-PPO3 modified zinc acetate dihydrate using aqueous KOH and CO(NH2)2 solutions, respectively via a hydrothermal method. The band tail energy of the ZnO nanostructures had more influence on the band gap energy than the crystallite size. The photocatalytic degradation of methylene blue increased as a function of the irradiation time, the amount of oxygen vacancy and the intensity of the (0 0 0 2) plane. The ZnO nanoplatelets exhibited a better photocatalytic degradation of methylene blue than the mesh-like ZnO lamellae due to the migration of the photoelectrons and holes to the (0 0 0 1) and (0 0 0 -1) planes, respectively under the internal electric field, that resulted in the enhancement of the photocatalytic activities.

  9. Efficient acetone sensor based on Ni-doped ZnO nanostructures prepared by spray pyrolysis technique

    NASA Astrophysics Data System (ADS)

    Darunkar, Swapnil S.; Acharya, Smita A.

    2018-05-01

    Ni-doped ZnO thin film was prepared by home-built spray pyrolysis unit for the detection of acetone at 300°C. Scanning electron microscopic (SEM) images of as-developed thin film of undoped ZnO exhibits large quantity of spherical, non-agglomerated particles with uniform size while in Ni-doped ZnO, particles are quite non-uniform in nature. The particle size estimated by using image J are obtained to be around 20-200 nm. Ni-doping effect on band gaps are determined by UV-vis optical spectroscopy and band gap of Ni-doped ZnO is found to be 3.046 eV. Nickel doping exceptionally enhances the sensing response of ZnO as compared to undoped ZnO system. The major role of the Ni-doping is to create more active sites for chemisorbed oxygen on the surface of sensor and correspondingly, to improve the sensing response. The 6 at.% of Ni-doped ZnO exhibits the highest response (92%) for 100 ppm acetone at 300 °C.

  10. Effect of titanium on the structural and optical property of NiO nano powders

    NASA Astrophysics Data System (ADS)

    Amin, Ruhul; Mishra, Prashant; Khatun, Nasima; Ayaz, Saniya; Srivastava, Tulika; Sen, Somaditya

    2018-05-01

    Nickel Oxide (NiO) and Ti doped NiO nanoparticles were prepared by sol-gel auto combustion method. Powder x-ray diffraction (PXRD) structural studies revealed face centered cubic (FCC) structure of the NiO nanopowders. The crystallite size decreased with Ti incorporation. UV-Vis spectroscopy carried out in diffused reflectance mode revealed decrease in band gap with increment in Urbach energy with doping.

  11. Effects of gap size, duration of daylight, and presence of leaf litter on forest regeneration

    Treesearch

    G. Andrew Bartholomay; Todd W. Bowersox

    2003-01-01

    Selection systems are used to manage multi-cohort forest stands by removing individual and/or groups of trees to create 0.01- to 1.0-ha openings in the canopy. Inherent in the selection system are the dual roles of tending the residual trees and regenerating a new cohort of tree seedlings. Research of silvicultural selection systems has historically focused on the...

  12. Speech Perception and Short Term Memory Deficits in Persistent Developmental Speech Disorder

    PubMed Central

    Kenney, Mary Kay; Barac-Cikoja, Dragana; Finnegan, Kimberly; Jeffries, Neal; Ludlow, Christy L.

    2008-01-01

    Children with developmental speech disorders may have additional deficits in speech perception and/or short-term memory. To determine whether these are only transient developmental delays that can accompany the disorder in childhood or persist as part of the speech disorder, adults with a persistent familial speech disorder were tested on speech perception and short-term memory. Nine adults with a persistent familial developmental speech disorder without language impairment were compared with 20 controls on tasks requiring the discrimination of fine acoustic cues for word identification and on measures of verbal and nonverbal short-term memory. Significant group differences were found in the slopes of the discrimination curves for first formant transitions for word identification with stop gaps of 40 and 20 ms with effect sizes of 1.60 and 1.56. Significant group differences also occurred on tests of nonverbal rhythm and tonal memory, and verbal short-term memory with effect sizes of 2.38, 1.56 and 1.73. No group differences occurred in the use of stop gap durations for word identification. Because frequency-based speech perception and short-term verbal and nonverbal memory deficits both persisted into adulthood in the speech-impaired adults, these deficits may be involved in the persistence of speech disorders without language impairment. PMID:15896836

  13. Effect of the heterogeneity of metamaterials on the Casimir-Lifshitz interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azari, Arash; Golestanian, Ramin; Miri, MirFaez

    2010-09-15

    The Casimir-Lifshitz interaction between metamaterials is studied using a model that takes into account the structural heterogeneity of the dielectric and magnetic properties of the bodies. A recently developed perturbation theory for the Casimir-Lifshitz interaction between arbitrary material bodies is generalized to include nonuniform magnetic permeability profiles and used to study the interaction between the magneto-dielectric heterostructures within the leading order. The metamaterials are modeled as two-dimensional arrays of domains with varying permittivity and permeability. In the case of two semi-infinite bodies with flat boundaries, the patterned structure of the material properties is found to cause the normal Casimir-Lifshitz forcemore » to develop an oscillatory behavior when the distance between the two bodies is comparable to the wavelength of the patterned features in the metamaterials. The nonuniformity also leads to the emergence of lateral Casimir-Lifshitz forces, which tend to strengthen as the gap size becomes smaller. Our results suggest that the recent studies on Casimir-Lifshitz forces between metamaterials, which have been performed with the aim of examining the possibility of observing the repulsive force, should be revisited to include the effect of the patterned structure at the wavelength of several hundred nanometers that coincides with the relevant gap size in the experiments.« less

  14. Band structure of graphene modulated by Ti or N dopants and applications in gas sensoring.

    PubMed

    Zhang, Hong-Ping; Luo, Xue-Gang; Lin, Xiao-Yan; Zhang, Ya-Ping; Tang, Ping-Ping; Lu, Xiong; Tang, Youhong

    2015-09-01

    The exploration of novel sensors for NO2 detection is particularly important in material and environmental sciences. In this work, the HOMO-LUMO gap of graphene, Ti- or N-doped graphene is investigated by DFT methods. The adsorption of NO2, NO, and O2 on Ti- or N-doped graphene of different sizes is also explored. Results reveal that the interactions between gases (NO2, NO, and O2) and Ti- or N-doped graphenes is not affected by the size of graphene. The doped Ti greatly improves the interactions between gases and graphene whereas the doped N has no effect on those interactions. The HOMO- LUMO gap of Ti-doped graphene can be modulated by adsorption of the gases. The cross effect of the NO and O2 is also investigated, and it is demonstrated that Ti-doped graphene has specific interactions with NO2. Thus, Ti-doped graphene can be a candidate for NO2 sensor materials. Furthermore, doping the graphene with Ti or N improves the sensitivity of the sheets toward NO2, which can be trapped and detected by the intrinsic graphene. Efficient sensors are rationally designed to diversify their applications in environmental science and engineering. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Critical review of the safety assessment of titanium dioxide additives in food.

    PubMed

    Winkler, Hans Christian; Notter, Tina; Meyer, Urs; Naegeli, Hanspeter

    2018-06-01

    Nanomaterial engineering provides an important technological advance that offers substantial benefits for applications not only in the production and processing, but also in the packaging and storage of food. An expanding commercialization of nanomaterials as part of the modern diet will substantially increase their oral intake worldwide. While the risk of particle inhalation received much attention, gaps of knowledge exist regarding possible adverse health effects due to gastrointestinal exposure. This problem is highlighted by pigment-grade titanium dioxide (TiO 2 ), which confers a white color and increased opacity with an optimal particle diameter of 200-300 nm. However, size distribution analyses showed that batches of food-grade TiO 2 always comprise a nano-sized fraction as inevitable byproduct of the manufacturing processes. Submicron-sized TiO 2 particles, in Europe listed as E 171, are widely used as a food additive although the relevant risk assessment has never been satisfactorily completed. For example, it is not possible to derive a safe daily intake of TiO 2 from the available long-term feeding studies in rodents. Also, the use of TiO 2 particles in the food sector leads to highest exposures in children, but only few studies address the vulnerability of this particular age group. Extrapolation of animal studies to humans is also problematic due to knowledge gaps as to local gastrointestinal effects of TiO 2 particles, primarily on the mucosa and the gut-associated lymphoid system. Tissue distributions after oral administration of TiO 2 differ from other exposure routes, thus limiting the relevance of data obtained from inhalation or parenteral injections. Such difficulties and uncertainties emerging in the retrospective assessment of TiO 2 particles exemplify the need for a fit-to-purpose data requirement for the future evaluation of novel nano-sized or submicron-sized particles added deliberately to food.

  16. Meditation programs for veterans with posttraumatic stress disorder: Aggregate findings from a multi-site evaluation.

    PubMed

    Heffner, Kathi L; Crean, Hugh F; Kemp, Jan E

    2016-05-01

    Interest in meditation to manage posttraumatic stress disorder (PTSD) symptoms is increasing. Few studies have examined the effectiveness of meditation programs offered to Veterans within Department of Veterans Affairs (VA) mental health services. The current study addresses this gap using data from a multisite VA demonstration project. Evaluation data collected at 6 VA sites (N = 391 Veterans) before and after a meditation program, and a treatment-as-usual (TAU) program, were examined here using random effects meta-analyses. Site-specific and aggregate between group effect sizes comparing meditation programs to TAU were determined for PTSD severity measured by clinical interview and self-report. Additional outcomes included experiential avoidance and mindfulness. In aggregate, analyses showed medium effect sizes for meditation programs compared to TAU for PTSD severity (clinical interview: effect size (ES) = -0.32; self-report: ES = -0.39). Similarly sized effects of meditation programs were found for overall mindfulness (ES = 0.41) and 1 specific aspect of mindfulness, nonreactivity to inner experience (ES = .37). Additional findings suggested meditation type and program completion differences each moderated program effects. VA-sponsored meditation programs show promise for reducing PTSD severity in Veterans receiving mental health services. Where meditation training fits within mental health services, and for whom programs will be of interest and effective, require further clarification. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  17. Effect of solvent on the synthesis of SnO{sub 2} nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Virender; Singh, Karamjit; Singh, Kulwinder

    Tin oxide (SnO{sub 2}) nanoparticles have been synthesized by co-precipitation method. The synthesized nanoparticles have been characterized by X-ray diffraction (XRD) and Ultraviolet-Visible spectroscopy (UV-VIS). XRD analysis confirmed the formation of single phase of SnO{sub 2} nanoparticles. It has been found that solvents played important role in controlling the crystallite size of SnO{sub 2} nanoparticles. The XRD analysis showed well crystallized tetragonal SnO{sub 2} nanoparticles. The crystallite size of SnO{sub 2} nanoparticles varies with the solvent. Tauc plot showed that optical band gap was also tailored by controlling the solvent during synthesis.

  18. The effect of temperature and dot size on the spectral properties of colloidal InP/ZnS core-shell quantum dots.

    PubMed

    Narayanaswamy, Arun; Feiner, L F; Meijerink, A; van der Zaag, P J

    2009-09-22

    Visual color changes between 300 and 510 K were observed in the photoluminescence (PL) of colloidal InP/ZnS core-shell nanocrystals. A subsequent study of PL spectra in the range 2-510 K and fitting the temperature dependent line shift and line width to theoretical models show that the dominant (dephasing) interaction is due to scattering by acoustic phonons of about 23 meV. Low temperature photoluminescence excitation measurements show that the excitonic band gap depends approximately inversely linearly on the quantum dot size d, which is distinctly weaker than the dependence predicted by current theories.

  19. Variability in snowpack accumulation and ablation associated with mountain pine beetle infestation in western forests

    NASA Astrophysics Data System (ADS)

    Biederman, J. A.; Harpold, A. A.; Gochis, D. J.; Reed, D.; Brooks, P. D.

    2010-12-01

    Seasonal snowcover is a primary source of water to urban and agricultural regions in the western United States, where Mountain Pine Beetle (MPB) has caused rapid and extensive changes to vegetation in montane forests. Levels of MPB infestation in these seasonally snow-covered systems are unprecedented, and it is unknown how this will affect water yield, especially in changing climate conditions. To address this unknown we ask: How does snow accumulation and ablation vary across forest with differing levels of impact? Our study areas in the Rocky Mountains of CO and WY are similar in latitude, elevation and forest structure before infestation, but they vary in the intensity and timing of beetle infestation and tree mortality. We present a record for winter 2010 that includes continuous snow depth as well as stand-scale snow surveys at maximum accumulation. Additional measurements include snowfall, net radiation, temperature and wind speed as well as characterization of forest structure by leaf area index. In a stand uninfested by MPB, maximum snow depth was fairly uniform under canopy (mean = 86 cm, coefficient of variation = 0.021), while canopy gaps showed greater and more variable depth (mean = 117 cm, CV = 0.111). This is consistent with several studies demonstrating that snowfall into canopy gaps depends upon gap size, orientation, wind speed and storm size. In a stand impacted in 2007, snow depth under canopy was less uniform, and there were smaller differences in both mean depth and variability between canopy (mean = 93 cm, CV = 0.072) and gaps (mean = 97 cm, CV = 0.070), consistent with decreased canopy density. In a more recently infested (2009) stand with an intermediate level of MPB impact, mean snow depths were similar between canopy (96 cm, CV = 0.016) and gaps (95 cm, CV = 0.185) but gaps showed much greater variability, suggesting controls similar to those in effect in the uninfested stand. We further use these data to model snow accumulation and ablation as a function of vegetation, topography and fine-scale climate variability, with preliminary results presented at the meeting.

  20. Monte Carlo-based diode design for correction-less small field dosimetry.

    PubMed

    Charles, P H; Crowe, S B; Kairn, T; Knight, R T; Hill, B; Kenny, J; Langton, C M; Trapp, J V

    2013-07-07

    Due to their small collecting volume, diodes are commonly used in small field dosimetry. However, the relative sensitivity of a diode increases with decreasing small field size. Conversely, small air gaps have been shown to cause a significant decrease in the sensitivity of a detector as the field size is decreased. Therefore, this study uses Monte Carlo simulations to look at introducing air upstream to diodes such that they measure with a constant sensitivity across all field sizes in small field dosimetry. Varying thicknesses of air were introduced onto the upstream end of two commercial diodes (PTW 60016 photon diode and PTW 60017 electron diode), as well as a theoretical unenclosed silicon chip using field sizes as small as 5 mm × 5 mm. The metric D(w,Q)/D(Det,Q) used in this study represents the ratio of the dose to a point of water to the dose to the diode active volume, for a particular field size and location. The optimal thickness of air required to provide a constant sensitivity across all small field sizes was found by plotting D(w,Q)/D(Det,Q) as a function of introduced air gap size for various field sizes, and finding the intersection point of these plots. That is, the point at which D(w,Q)/D(Det,Q) was constant for all field sizes was found. The optimal thickness of air was calculated to be 3.3, 1.15 and 0.10 mm for the photon diode, electron diode and unenclosed silicon chip, respectively. The variation in these results was due to the different design of each detector. When calculated with the new diode design incorporating the upstream air gap, k(f(clin),f(msr))(Q(clin),Q(msr)) was equal to unity to within statistical uncertainty (0.5%) for all three diodes. Cross-axis profile measurements were also improved with the new detector design. The upstream air gap could be implanted on the commercial diodes via a cap consisting of the air cavity surrounded by water equivalent material. The results for the unclosed silicon chip show that an ideal small field dosimetry diode could be created by using a silicon chip with a small amount of air above it.

  1. Correlation of film thickness to optical band gap of Sol-gel derived Ba0.9Gd0.1TiO3 thin films for optoelectronic applications

    NASA Astrophysics Data System (ADS)

    Teh, Yen Chin; Saif, Ala'eddin A.; Azhar Zahid Jamal, Zul; Poopalan, Prabakaran

    2017-11-01

    Ba0.9Gd0.1TiO3 thin films have been fabricated on SiO2/Si and fused silica by sol-gel method. The films are prepared through a spin coating process and annealed at 900 °C to obtain crystallized films. The effect of film thickness on the microstructure and optical band gap has been investigated using X-ray diffractometer, atomic force microscope and ultraviolet-visible spectroscopy, respectively. XRD patterns confirm that the films crystallized with tetragonal phase perovskite structure. The films surface morphology is analysed through amplitude parameter analysis to find out that the grain size and surface roughness are increased with the increase of films thickness. The transmittance and absorbance spectra reveal that all films exhibit high absorption in UV region. The evaluated optical band gap is obtained in the range of 3.67 - 3.78 eV and is found to be decreased as the thickness increase.

  2. Effect of Surface Morphology and Magnetic Impurities on the Electronic Structure in Cobalt-Doped BaFe 2 As 2 Superconductors

    DOE PAGES

    Zou, Qiang; Wu, Zhiming; Fu, Mingming; ...

    2017-02-03

    Combined scanning tunneling microscopy, spectroscopy, and local barrier height (LBH) studies show that low-temperature-cleaved optimally doped Ba(Fe 1–xCo x) 2As 2 crystals with x = 0.06, with T c = 22 K, have complicated morphologies. Although the cleavage surface and hence the morphologies are variable, the superconducting gap maps show the same gap widths and nanometer size inhomogeneities irrelevant to the morphology. Based on the spectroscopy and LBH maps, the bright patches and dark stripes in the morphologies are identified as Ba- and As-dominated surface terminations, respectively. Magnetic impurities, possibly due to Co or Fe atoms, are believed to createmore » local in-gap state and, in addition, suppress the superconducting coherence peaks. Lastly, this study will clarify the confusion on the cleavage surface terminations of the Fe-based superconductors and its relation with the electronic structures.« less

  3. Band Gap Engineering with Ultralarge Biaxial Strains in Suspended Monolayer MoS2.

    PubMed

    Lloyd, David; Liu, Xinghui; Christopher, Jason W; Cantley, Lauren; Wadehra, Anubhav; Kim, Brian L; Goldberg, Bennett B; Swan, Anna K; Bunch, J Scott

    2016-09-14

    We demonstrate the continuous and reversible tuning of the optical band gap of suspended monolayer MoS2 membranes by as much as 500 meV by applying very large biaxial strains. By using chemical vapor deposition (CVD) to grow crystals that are highly impermeable to gas, we are able to apply a pressure difference across suspended membranes to induce biaxial strains. We observe the effect of strain on the energy and intensity of the peaks in the photoluminescence (PL) spectrum and find a linear tuning rate of the optical band gap of 99 meV/%. This method is then used to study the PL spectra of bilayer and trilayer devices under strain and to find the shift rates and Grüneisen parameters of two Raman modes in monolayer MoS2. Finally, we use this result to show that we can apply biaxial strains as large as 5.6% across micron-sized areas and report evidence for the strain tuning of higher level optical transitions.

  4. Seed and vegetative production of shrubs and growth of understory conifer regeneration

    USGS Publications Warehouse

    Wender, B.; Harrington, C.; Tappeiner, J. C.

    2004-01-01

    We observed flower and fruit production for nine understory shrub species in western Washington and Oregon and examined the relationships between shrub reproductive output and plant size, plant age, site factors, and overstory density to determine the factors that control flowering or fruiting in understory shrubs. In Washington, 50 or more shrubs or microplots (for rhizomatous species) were sampled for each of eight species. The variables examined were more useful for explaining abundance of flowers or fruit on shrubs than they were for explaining the probability that a shrub would produce flowers or fruit. Plant size was consistently the most useful predictor of flower/fruit abundance in all species; plant age was also a good predictor of abundance and was strongly correlated with plant size. Site variables (e.g., slope) and overstory competition variables (e.g., presence/absence of a canopy gap) also helped explain flower/fruit abundance for some species. At two Oregon sites, the responses of five species to four levels of thinning were observed for 2-4 yr (15 shrubs or microplots per treatment per year). Thinning increased the probability and abundance of flowering/fruiting for two species, had no effect on one species, and responses for two other species were positive but inconsistent between sites or from year to year. We believe reducing overstory density or creating canopy gaps may be useful tools for enhancing shrub size and vigor, thus, increasing the probability and abundance of fruiting in some understory shrub species.

  5. Flower and fruit production of understory shrubs in western Washington and Oregon

    USGS Publications Warehouse

    Wender, B.; Harrington, C.; Tappeiner, J. C.

    2004-01-01

    We observed flower and fruit production for nine understory shrub species in western Washington and Oregon and examined the relationships between shrub reproductive output and plant size, plant age, site factors, and overstory density to determine the factors that control flowering or fruiting in understory shrubs. In Washington, 50 or more shrubs or microplots (for rhizomatous species) were sampled for each of eight species. The variables examined were more useful for explaining abundance of flowers or fruit on shrubs than they were for explaining the probability that a shrub would produce flowers or fruit. Plant size was consistently the most useful predictor of flower/fruit abundance in all species; plant age was also a good predictor of abundance and was strongly correlated with plant size. Site variables (e.g., slope) and overstory competition variables (e.g., presence/absence of a canopy gap) also helped explain flower/fruit abundance for some species. At two Oregon sites, the responses of five species to four levels of thinning were observed for 2-4 yr (15 shrubs or microplots per treatment per year). Thinning increased the probability and abundance of flowering/fruiting for two species, had no effect on one species, and responses for two other species were positive but inconsistent between sites or from year to year. We believe reducing overstory density or creating canopy gaps may be useful tools for enhancing shrub size and vigor, thus, increasing the probability and abundance of fruiting in some understory shrub species.

  6. Evaporation rate of water in hydrophobic confinement.

    PubMed

    Sharma, Sumit; Debenedetti, Pablo G

    2012-03-20

    The drying of hydrophobic cavities is believed to play an important role in biophysical phenomena such as the folding of globular proteins, the opening and closing of ligand-gated ion channels, and ligand binding to hydrophobic pockets. We use forward flux sampling, a molecular simulation technique, to compute the rate of capillary evaporation of water confined between two hydrophobic surfaces separated by nanoscopic gaps, as a function of gap, surface size, and temperature. Over the range of conditions investigated (gaps between 9 and 14 Å and surface areas between 1 and 9 nm(2)), the free energy barrier to evaporation scales linearly with the gap between hydrophobic surfaces, suggesting that line tension makes the predominant contribution to the free energy barrier. The exponential dependence of the evaporation rate on the gap between confining surfaces causes a 10 order-of-magnitude decrease in the rate when the gap increases from 9 to 14 Å. The computed free energy barriers are of the order of 50 kT and are predominantly enthalpic. Evaporation rates per unit area are found to be two orders of magnitude faster in confinement by the larger (9 nm(2)) than by the smaller (1 nm(2)) surfaces considered here, at otherwise identical conditions. We show that this rate enhancement is a consequence of the dependence of hydrophobic hydration on the size of solvated objects. For sufficiently large surfaces, the critical nucleus for the evaporation process is a gap-spanning vapor tube.

  7. Thirty-two years of change in an old-growth Ohio beech-maple forest.

    PubMed

    Runkle, James R

    2013-05-01

    Old-growth forests dominated by understory-tolerant tree species are among forest types most likely to be in equilibrium. However, documentation of the degree to which they are in equilibrium over decades-long time periods is lacking. Changes in climate, pathogens, and land use all are likely to impact stand characteristics and species composition, even in these forests. Here, 32 years of vegetation changes in an old-growth beech (Fagus grandifolia)-sugar maple (Acer saccharum) forest in Hueston Woods, southwest Ohio, USA, are summarized. These changes involve canopy composition and structure, turnover in snags, and development of vegetation in treefall gaps. Stand basal area and canopy density have changed little in 32 years. However, beech has decreased in canopy importance (49% to 32%) while sugar maple has increased (32% to 47%). Annual mortality was about 1.3% throughout the study period. Mortality rates increased with stem size, but the fraction of larger stems increased due to ingrowth from smaller size classes. Beech was represented by more very large stems than small canopy stems: over time, death of those larger stems with inadequate replacement has caused the decrease in beech importance. Sugar maple was represented by more small canopy stems whose growth has increased its importance. The changes in beech and sugar maple relative importance are hypothesized to be due to forest fragmentation mostly from the early 1800s with some possible additional effects associated with the formation of the state park. Snag densities (12-16 snags/ha) and formation rates (1-3 snags.ha(-1).yr(-1)) remained consistent. The treefall gaps previously studied are closing, with a few, large stems remaining. Death of gap border trees occurs consistently enough to favor species able to combine growth in gaps and survival in the understory.

  8. Plasmon Ruler with Ångstrom Length Resolution

    PubMed Central

    Hill, Ryan T.; Mock, Jack J.; Hucknall, Angus; Wolter, Scott D.; Jokerst, Nan M.; Smith, David R.; Chilkoti, Ashutosh

    2012-01-01

    We demonstrate a plasmon nanoruler using a coupled film-nanoparticle (film-NP) format that is well suited for investigating the sensitivity extremes of plasmonic coupling. Because it is relatively straightforward to functionalize bulk, surface plasmon supporting films such as gold, we are able to precisely control plasmonic gap dimensions by creating ultra-thin molecular spacer layers on the gold films, on top of which we immobilize plasmon resonant nanoparticles (NPs). Each immobilized NP becomes coupled to the underlying film and functions as a plasmon nanoruler, exhibiting a distance-dependent resonance red-shift in its peak plasmon wavelength as it approaches the film. Due to the uniformity of response from the film-NPs to separation distance, we are able to use extinction and scattering measurements from ensembles of film-NPs to characterize the coupling effect over a series of very short separation distances – ranging from 5 – 20 Å – and combine these measurements with similar data from larger separation distances extending out to 27 nm. We find that the film-NP plasmon nanoruler is extremely sensitive at very short film-NP separation distances, yielding spectral shifts as large as 5 nm for every 1 Å change in separation distance. The film-NP coupling at extremely small spacings is so uniform and reliable that we are able to usefully probe gap dimensions where the classical Drude model of the conducting electrons in the metals is no longer descriptive; for gap sizes smaller than a few nanometers, either quantum or semi-classical models of the carrier response must be employed to predict the observed wavelength shifts. We find that, despite the limitations, large field enhancements and extreme sensitivity persist down to even the smallest gap sizes. PMID:22966857

  9. Plasmon ruler with angstrom length resolution.

    PubMed

    Hill, Ryan T; Mock, Jack J; Hucknall, Angus; Wolter, Scott D; Jokerst, Nan M; Smith, David R; Chilkoti, Ashutosh

    2012-10-23

    We demonstrate a plasmon nanoruler using a coupled film nanoparticle (film-NP) format that is well-suited for investigating the sensitivity extremes of plasmonic coupling. Because it is relatively straightforward to functionalize bulk surface plasmon supporting films, such as gold, we are able to precisely control plasmonic gap dimensions by creating ultrathin molecular spacer layers on the gold films, on top of which we immobilize plasmon resonant nanoparticles (NPs). Each immobilized NP becomes coupled to the underlying film and functions as a plasmon nanoruler, exhibiting a distance-dependent resonance red shift in its peak plasmon wavelength as it approaches the film. Due to the uniformity of response from the film-NPs to separation distance, we are able to use extinction and scattering measurements from ensembles of film-NPs to characterize the coupling effect over a series of very short separation distances-ranging from 5 to 20 Å-and combine these measurements with similar data from larger separation distances extending out to 27 nm. We find that the film-NP plasmon nanoruler is extremely sensitive at very short film-NP separation distances, yielding spectral shifts as large as 5 nm for every 1 Å change in separation distance. The film-NP coupling at extremely small spacings is so uniform and reliable that we are able to usefully probe gap dimensions where the classical Drude model of the conducting electrons in the metals is no longer descriptive; for gap sizes smaller than a few nanometers, either quantum or semiclassical models of the carrier response must be employed to predict the observed wavelength shifts. We find that, despite the limitations, large field enhancements and extreme sensitivity persist down to even the smallest gap sizes.

  10. Simple vertex correction improves G W band energies of bulk and two-dimensional crystals

    NASA Astrophysics Data System (ADS)

    Schmidt, Per S.; Patrick, Christopher E.; Thygesen, Kristian S.

    2017-11-01

    The G W self-energy method has long been recognized as the gold standard for quasiparticle (QP) calculations of solids in spite of the fact that the neglect of vertex corrections and the use of a density-functional theory starting point lack rigorous justification. In this work we remedy this situation by including a simple vertex correction that is consistent with a local-density approximation starting point. We analyze the effect of the self-energy by splitting it into short-range and long-range terms which are shown to govern, respectively, the center and size of the band gap. The vertex mainly improves the short-range correlations and therefore has a small effect on the band gap, while it shifts the band gap center up in energy by around 0.5 eV, in good agreement with experiments. Our analysis also explains how the relative importance of short- and long-range interactions in structures of different dimensionality is reflected in their QP energies. Inclusion of the vertex comes at practically no extra computational cost and even improves the basis set convergence compared to G W . Taken together, the method provides an efficient and rigorous improvement over the G W approximation.

  11. Building Energy Management Open Source Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahman, Saifur

    Funded by the U.S. Department of Energy in November 2013, a Building Energy Management Open Source Software (BEMOSS) platform was engineered to improve sensing and control of equipment in small- and medium-sized commercial buildings. According to the Energy Information Administration (EIA), small- (5,000 square feet or smaller) and medium-sized (between 5,001 to 50,000 square feet) commercial buildings constitute about 95% of all commercial buildings in the U.S. These buildings typically do not have Building Automation Systems (BAS) to monitor and control building operation. While commercial BAS solutions exist, including those from Siemens, Honeywell, Johnsons Controls and many more, they aremore » not cost effective in the context of small- and medium-sized commercial buildings, and typically work with specific controller products from the same company. BEMOSS targets small and medium-sized commercial buildings to address this gap.« less

  12. Effect of Codend Circumference on the Size Selection of Square-Mesh Codends in Trawl Fisheries

    PubMed Central

    De Carlo, Francesco; Lucchetti, Alessandro

    2016-01-01

    It is well established that increasing mesh number in the circumference of a diamond-mesh trawl codend can reduce size selection for round fish, whereas selection for flat fish species is unaffected. This effect has also been documented in Mediterranean trawl fisheries. In contrast, no information is available with regard to the effect of increasing mesh number in the circumference of square-mesh codends on the size selection of round fish and flat fish species. A field study was devised to bridge this gap and formulate proposals aimed at improving trawl fishery management. Size selection data were collected for a round fish species, red mullet (Mullus barbatus), and two flat fish species, Mediterranean scaldfish (Arnoglossus laterna) and solenette (Buglossidium luteum). Fishing trials were conducted in the Adriatic Sea (Central Mediterranean) using three square-mesh codends that differed only in mesh number around the circumference. Results demonstrated that increasing the number of meshes from 107 to 213 reduced the 50% retention length (L50) for red mullet by 2.5 cm but did not affect size selection for the two flat fish species. In some fisheries, regulatory provisions regarding the number of meshes in the circumference should therefore be carefully considered both for diamond- and square-mesh codends. PMID:27472058

  13. Effects of vitamin D receptor knockout on cornea epithelium gap junctions.

    PubMed

    Lu, Xiaowen; Watsky, Mitchell A

    2014-05-06

    Gap junctions are present in all corneal cell types and have been shown to have a critical role in cell phenotype determination. Vitamin D has been shown to influence cell differentiation, and recent work demonstrates the presence of vitamin D in the ocular anterior segment. This study measured and compared gap junction diffusion coefficients among different cornea epithelium phenotypes and in keratocytes using a noninvasive technique, fluorescence recovery after photobleaching (FRAP), and examined the influence of vitamin D receptor (VDR) knockout on epithelial gap junction communication in intact corneas. Previous gap junction studies in cornea epithelium and keratocytes were performed using cultured cells or ex vivo invasive techniques. These invasive techniques were unable to measure diffusion coefficients and likely were disruptive to normal cell physiology. Corneas from VDR knockout and control mice were stained with 5(6)-carboxyfluorescein diacetate (CFDA). Gap junction diffusion coefficients of the corneal epithelium phenotypes and of keratocytes, residing in intact corneas, were detected using FRAP. Diffusion coefficients equaled 18.7, 9.8, 5.6, and 4.2 μm(2)/s for superficial squamous cells, middle wing cells, basal cells, and keratocytes, respectively. Corneal thickness, superficial cell size, and the superficial squamous cell diffusion coefficient of 10-week-old VDR knockout mice were significantly lower than those of control mice (P < 0.01). The superficial cell diffusion coefficient of heterozygous mice was significantly lower than control mice (P < 0.05). Our results demonstrate differences in gap junction dye spread among the epithelial cell phenotypes, mirroring the epithelial developmental axis. The VDR knockout influences previously unreported cell-to-cell communication in superficial epithelium.

  14. Investigations into the feasibility of optical-CT 3D dosimetry with minimal use of refractively matched fluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chisholm, Kelsey; Miles, Devin; Rankine, Leith

    Purpose: In optical-CT, the use of a refractively matched polyurethane solid-tank in place of a fluid bath has the potential to greatly increase practical convenience, reduce cost, and possibly improve the efficacy of flood corrections. This work investigates the feasibility of solid-tank optical-CT imaging for 3D dosimetry through computer simulation. Methods: A MATLAB ray-tracing simulation platform, ScanSim, was used to model a parallel-source telecentric optical-CT imaging system through a polyurethane solid-tank containing a central cylindrical hollow into which PRESAGE radiochromic dosimeters can be placed. A small amount of fluid fills the 1–5 mm gap between the dosimeter and the wallsmore » of the tank. The use of the solid-tank reduces the required amount of fluid by approximately 97%. To characterize the efficacy of solid-tank, optical-CT scanning simulations investigated sensitivity to refractive index (RI) mismatches between dosimeter, solid-tank, and fluid, for a variety of dosimeter (RI = 1.5–1.47) and fluid (RI = 1.55–1.0) combinations. Efficacy was evaluated through the usable radius (r{sub u}) metric, defined as the fraction of the radius of the dosimeter where measured dose is predicted to be within 2% of the ground truth entered into the simulation. Additional simulations examined the effect of increasing gap size (1–5 mm) between the dosimeter and solid-tank well. The effects of changing the lens tolerance (0.5°–5.0°) were also investigated. Results: As the RI mismatch between the dosimeter and solid-tank increased from 0 to 0.02, the usable radius decreased from 97.6% to 50.2%. The optimal fluid RI decreased nonlinearly from 1.5 to 1.34 as the mismatch increased and was up to 9% lower than the tank. Media mismatches between the dosimeter and solid-tank also exacerbate the effects of changing the gap size, with no easily quantifiable relationship with usable radius. Generally, the optimal fluid RI value increases as gap size increases and is closely matched to the dosimeter at large gap sizes (>3 mm). Increasing the telecentric lens tolerance increases the usable radius for all refractive media combinations and improves the maximum usable radius of mismatched media to that of perfectly matched media for tolerances >5.0°. The maximum usable radius can be improved up to a factor of 2 when lens tolerances are small (<1.0°). Conclusions: Dry solid-tank optical-CT imaging in a telecentric system is feasible if the dosimeter RI is a close match with the solid-tank (<0.01 difference), providing accurate dose measurements within ±2% of true dose to over 80% of the dosimeter volume. In order to achieve accurate measurements over 96% of the dosimeter volume (representing out to 2 mm from the dosimeter edge), the dosimeter-tank RI mismatch must be less than 0.005. Optimal results occur when the RI of the dosimeter and tank is the same, in which case the fluid will have the same RI. If mismatches between the tank and dosimeter RI occur, the RI of the matching fluid needs to be fine tuned to achieve the highest usable radius.« less

  15. Investigations into the feasibility of optical-CT 3D dosimetry with minimal use of refractively matched fluids.

    PubMed

    Chisholm, Kelsey; Miles, Devin; Rankine, Leith; Oldham, Mark

    2015-05-01

    In optical-CT, the use of a refractively matched polyurethane solid-tank in place of a fluid bath has the potential to greatly increase practical convenience, reduce cost, and possibly improve the efficacy of flood corrections. This work investigates the feasibility of solid-tank optical-CT imaging for 3D dosimetry through computer simulation. A matlab ray-tracing simulation platform, ScanSim, was used to model a parallel-source telecentric optical-CT imaging system through a polyurethane solid-tank containing a central cylindrical hollow into which PRESAGE radiochromic dosimeters can be placed. A small amount of fluid fills the 1-5 mm gap between the dosimeter and the walls of the tank. The use of the solid-tank reduces the required amount of fluid by approximately 97%. To characterize the efficacy of solid-tank, optical-CT scanning simulations investigated sensitivity to refractive index (RI) mismatches between dosimeter, solid-tank, and fluid, for a variety of dosimeter (RI = 1.5-1.47) and fluid (RI = 1.55-1.0) combinations. Efficacy was evaluated through the usable radius (ru) metric, defined as the fraction of the radius of the dosimeter where measured dose is predicted to be within 2% of the ground truth entered into the simulation. Additional simulations examined the effect of increasing gap size (1-5 mm) between the dosimeter and solid-tank well. The effects of changing the lens tolerance (0.5°-5.0°) were also investigated. As the RI mismatch between the dosimeter and solid-tank increased from 0 to 0.02, the usable radius decreased from 97.6% to 50.2%. The optimal fluid RI decreased nonlinearly from 1.5 to 1.34 as the mismatch increased and was up to 9% lower than the tank. Media mismatches between the dosimeter and solid-tank also exacerbate the effects of changing the gap size, with no easily quantifiable relationship with usable radius. Generally, the optimal fluid RI value increases as gap size increases and is closely matched to the dosimeter at large gap sizes (> 3 mm). Increasing the telecentric lens tolerance increases the usable radius for all refractive media combinations and improves the maximum usable radius of mismatched media to that of perfectly matched media for tolerances > 5.0°. The maximum usable radius can be improved up to a factor of 2 when lens tolerances are small (< 1.0°). Dry solid-tank optical-CT imaging in a telecentric system is feasible if the dosimeter RI is a close match with the solid-tank (< 0.01 difference), providing accurate dose measurements within ± 2% of true dose to over 80% of the dosimeter volume. In order to achieve accurate measurements over 96% of the dosimeter volume (representing out to 2 mm from the dosimeter edge), the dosimeter-tank RI mismatch must be less than 0.005. Optimal results occur when the RI of the dosimeter and tank is the same, in which case the fluid will have the same RI. If mismatches between the tank and dosimeter RI occur, the RI of the matching fluid needs to be fine tuned to achieve the highest usable radius.

  16. Many-body localization in disorder-free systems: The importance of finite-size constraints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papić, Z., E-mail: zpapic@perimeterinstitute.ca; Perimeter Institute for Theoretical Physics, Waterloo, ON N2L 2Y5; Stoudenmire, E. Miles

    2015-11-15

    Recently it has been suggested that many-body localization (MBL) can occur in translation-invariant systems, and candidate 1D models have been proposed. We find that such models, in contrast to MBL systems with quenched disorder, typically exhibit much more severe finite-size effects due to the presence of two or more vastly different energy scales. In a finite system, this can artificially split the density of states (DOS) into bands separated by large gaps. We argue for such models to faithfully represent the thermodynamic limit behavior, the ratio of relevant coupling must exceed a certain system-size depedent cutoff, chosen such that variousmore » bands in the DOS overlap one another. Setting the parameters this way to minimize finite-size effects, we study several translation-invariant MBL candidate models using exact diagonalization. Based on diagnostics including entanglement and local observables, we observe thermal (ergodic), rather than MBL-like behavior. Our results suggest that MBL in translation-invariant systems with two or more very different energy scales is less robust than perturbative arguments suggest, possibly pointing to the importance of non-perturbative effects which induce delocalization in the thermodynamic limit.« less

  17. Tunneling STM/STS and break-junction spectroscopy of the layered nitro-chloride superconductors MNCl (M = Ti, Hf, Zr)

    NASA Astrophysics Data System (ADS)

    Ekino, Toshikazu; Sugimoto, Akira; Gabovich, Alexander M.; Zheng, Zhanfeng; Zhang, Shuai; Yamanaka, Shoji

    2014-05-01

    The layered superconductors β-MNCl with the critical temperatures Tc = 14 K (M = Zr) - 25 K (M = Hf) were investigated by means of scanning-tunneling microscopy/spectroscopy and break-junction tunneling spectroscopy. The STM/STS was used to investigate the surface electronic structures in nanometer length scale, while the BJTS was employed to precisely determine the gap characteristics. Both techniques consistently clarified the unusually large size of the superconducting gap. Wide gap distributions with large-scale maximum gap values were also revealed in α-KyTiNCl with a different crystal structure.

  18. Boiling Visualization and Critical Heat Flux Phenomena In Narrow Rectangular Gap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. J. Kim; Y. H. Kim; S. J. Kim

    2004-12-01

    An experimental study was performed to investifate the pool boling critical hear flux (CHF) on one-dimensional inclined rectangular channels with narrow gaps by changing the orientation of a copper test heater assembly. In a pool of saturated water at atmospheric pressure, the test parameters include the gap sizes of 1,2,5, and 10 mm, andthe surface orientation angles from the downward facing position (180 degrees) to the vertical position (90 degress) respectively.

  19. Ballistic phonon and thermal radiation transport across a minute vacuum gap in between aluminum and silicon thin films: Effect of laser repetitive pulses on transport characteristics

    NASA Astrophysics Data System (ADS)

    Yilbas, B. S.; Ali, H.

    2016-08-01

    Short-pulse laser heating of aluminum and silicon thin films pair with presence of a minute vacuum gap in between them is considered and energy transfer across the thin films pair is predicted. The frequency dependent Boltzmann equation is used to predict the phonon intensity distribution along the films pair for three cycles of the repetitive short-pulse laser irradiation on the aluminum film surface. Since the gap size considered is within the Casimir limit, thermal radiation and ballistic phonon contributions to energy transfer across the vacuum gap is incorporated. The laser irradiated field is formulated in line with the Lambert's Beer law and it is considered as the volumetric source in the governing equations of energy transport. In order to assess the phonon intensity distribution in the films pair, equivalent equilibrium temperature is introduced. It is demonstrated that thermal separation of electron and lattice sub-systems in the aluminum film, due to the short-pulse laser irradiation, takes place and electron temperature remains high in the aluminum film while equivalent equilibrium temperature for phonons decays sharply in the close region of the aluminum film interface. This behavior is attributed to the phonon boundary scattering at the interface and the ballistic phonon transfer to the silicon film across the vacuum gap. Energy transfer due to the ballistic phonon contribution is significantly higher than that of the thermal radiation across the vacuum gap.

  20. Effects of shape, size, and pyrene doping on electronic properties of graphene nanoflakes.

    PubMed

    Kuamit, Thanawit; Ratanasak, Manussada; Rungnim, Chompoonut; Parasuk, Vudhichai

    2017-11-25

    Effects of size, shape, and pyrene doping on electronic properties of graphene nanoflakes (GNFs) were theoretically investigated using density functional theory method with PBE, B3PW91, and M06-2X functionals and cc-pVDZ basis set. Two shapes of zigzag GNFs, hexagonal (HGN) and rhomboidal (RGN), were considered. The energy band gap of GNF depends on shape and decreases with size. The HGN has larger band gap energy (1.23-3.96 eV) than the RGN (0.13-2.12 eV). The doping of pyrene and pyrene derivatives on both HGN and RGN was also studied. The adsorption energy of pyrene and pyrene derivatives on GNF does not depend on the shape of GNFs with energies between 21 and 27 kcal mol -1 . The substituent on pyrene enhances the binding to GNF but the strength does not depend on electron withdrawing or donating capability. The doping by pyrene and pyrene derivatives also shifts the HOMO and LUMO energies of GNFs. Both positive (destabilizing) and negative (stabilizing) shifts on HOMO and LUMO of GNFs were seen. The direction and magnitude of the shift do not follow the electron withdrawing and donating capability of pyrene substituents. However, only a slight shift was observed for doped RGN. A shift of 0.19 eV was noticed for HOMO of HGN doped with 1-aminopyrene (pyNH 2 ) and of 0.04 eV for LUMO of HGN doped with 1-pyrenecarboxylic acid (pyCOOH). Graphical Abstract HOMO and LUMO Energies of pyrene/pyrene derivatives doped Graphene Nanoflakes.

  1. 77 FR 58747 - Small Business Size Standards: Real Estate and Rental and Leasing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-24

    ... anchor size standards is appropriate in the current economy; whether there are gaps in SBA's methodology... independent agent), employee based costs (such as wages and payroll taxes), and material costs. For SBA's size... Estate and Rental and Leasing AGENCY: U.S. Small Business Administration. ACTION: Final rule. SUMMARY...

  2. A novel pre-surgical maxillary orthodontic device using β-titanium wire for wide unilateral cleft lip and palate patients: preliminary study of its efficacy and impact for the maxillary formation.

    PubMed

    Taniguchi, Maki; Oyama, Tomoki; Kiya, Koichiro; Sone, Yumiko; Ishii, Nobuyuki; Hosokawa, Ko

    2014-02-01

    For patients with a wide, complete, unilateral cleft lip and palate, pre-surgical maxillary orthodontic treatments have been used to reduce the alveolar gap before cheiloplasty. However, most of these treatments are complicated and laborious for patients and for medical professionals. Thus, we developed an original pre-surgical orthodontic device made with two separate acrylic resin plates connected with a spring-shaped β-titanium wire (β-TW). When the device was applied on the palate, each segment of the maxilla was automatically aligned for our target formation with the elastic force of β-titanium alloy. This study aimed to evaluate the efficacy of the new device and the size of the maxilla in comparison with the conventional Hotz procedures. A total of 47 patients with a wide unilateral cleft lip and palate were retrospectively evaluated; 33 patients were treated with our new device (β-TW plate group) and 14 were treated with a Hotz plate (HP group). We evaluated the alveolar gap reduction and the size of the maxilla between the two groups, obtaining intraoral maxillary impressions at birth, at 3 months and 1 year. The width of the alveolar gap in the β-TW plate group was significantly reduced compared with that in the HP group 1 month after the treatment (p < 0.001). The alveolar gap reduction continued until the age of 1 year (p = 0.02). By contrast, no significant difference in the maxillary size was observed between the two groups at any examination period. Our treatment protocol using the β-TW plate was not only easy and simple to apply but it was also cost-effective, with highly predictable outcomes. Moreover, it provided the ideal alveolar cleft reduction without detrimental collapse of the alveolar segments. Therefore, we consider our β-TW plate device to be useful for application in pre-surgical orthodontic treatments. Copyright © 2013 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  3. [Dynamics of microbial biomass carbon and nitrogen during foliar litter decomposition under artificial forest gap in Pinus massoniana plantation.

    PubMed

    Zhang, Ming Jin; Chen, Liang Hua; Zhang, Jian; Yang, Wan Qin; Liu, Hua; Li, Xun; Zhang, Yan

    2016-03-01

    Nowadays large areas of plantations have caused serious ecological problems such as soil degradation and biodiversity decline. Artificial tending thinning and construction of mixed forest are frequently used ways when we manage plantations. To understand the effect of this operation mode on nutrient cycle of plantation ecosystem, we detected the dynamics of microbial bio-mass carbon and nitrogen during foliar litter decomposition of Pinus massoniana and Toona ciliate in seven types of gap in different sizes (G 1 : 100 m 2 , G 2 : 225 m 2 , G 3 : 400 m 2 , G 4 : 625 m 2 , G 5 : 900 m 2 , G 6 : 1225 m 2 , G 7 : 1600 m 2 ) of 42-year-old P. massoniana plantations in a hilly area of the upper Yang-tze River. The results showed that small and medium-sized forest gaps(G 1 -G 5 ) were more advantageous for the increment of microbial biomass carbon and nitrogen in the process of foliar litter decomposition. Along with the foliar litter decomposition during the experiment (360 d), microbial biomass carbon (MBC), microbial biomass nitrogen (MBN) in P. massoniana foliar litter and MBN in T. ciliata foliar litter first increased and then decreased, and respectively reached the maxima 9.87, 0.22 and 0.80 g·kg -1 on the 180 th d. But the peak (44.40 g·kg -1 ) of MBC in T. ciliata foliar litter appeared on the 90 th d. Microbial biomass carbon and nitrogen in T. ciliate was significantly higher than that of P. massoniana during foliar litter decomposition. Microbial biomass carbon and nitrogen in foliar litter was not only significantly associated with average daily temperature and the water content of foliar litter, but also closely related to the change of the quality of litter. Therefore, in the thinning, forest gap size could be controlled in the range of from 100 to 900 m 2 to facilitate the increase of microbial biomass carbon and nitrogen in the process of foliar litter decomposition, accelerate the decomposition of foliar litter and improve soil fertility of plantations.

  4. 3D Photonic Crystals Build Up By Self-Organization Of Nanospheres

    DTIC Science & Technology

    2006-05-23

    variance for simple tetragonal Vst , of which general form is defined in Equation (5), could be an important parameter affecting band structure, and it is...plotted along with gap size both as a function of lattice parameter ratio c/a in Figure 2. Apparently, the inverse of variance, i.e. 1/ Vst , shows a...possible. 0.8 1.0 1.2 1.4 1.6 1.8 -2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 gap size (%) 1/ Vst c/a of simple tetragonal g ap s iz e (% ) 0.85 0.86

  5. Impact of cartilage graft size on success of tympanoplasty.

    PubMed

    Abdelhameed, Waleed; Rezk, Ibrahim; Awad, Alhussein

    In the last decade, there has been an increasing use of cartilage grafts in the primary repair of tympanic membrane perforations. The major advantages of cartilage are its stiffness and its very low metabolic requirements, which make it particularly suitable for difficult conditions, such as subtotal perforations, adhesive otitis and reoperation. To analyze the impact of different perforation sizes requiring different sizes of cartilage on the anatomical and functional outcome after tympanoplasty. Through this prospective non-controlled, non-randomized study, 50 patients underwent cartilage type 1 tympanoplasty (20 females and 30 males), with a mean age of 19.3±9.8 years. According to size of perforation, patients were subdivided into three groups, Group I had perforation >50% of tympanic membrane area, in Group II patients the perforations were 25-50% of tympanic membrane area, and in Group III the perforations were ≤25% of tympanic membrane. All patients had pre and postoperative Pure Tone Average and Air Bone Gap frequencies (0.5, 1, 2, 4kHz). All patients were followed up at least 12 months after operation. The anatomical success rate among all patients was 92%, all groups showed statistical significant improvement between pre and postoperative air bone gap, no significant correlation between size of cartilage graft and degree of air bone gap improvement was noticed among the three groups. Size of a cartilage graft has no impact on degree of hearing improvement or anatomical success rate after tympanoplasty. Copyright © 2016 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  6. Internet interventions for depression: new developments.

    PubMed

    Schröder, Johanna; Berger, Thomas; Westermann, Stefan; Klein, Jan Philipp; Moritz, Steffen

    2016-06-01

    A wide range of Internet interventions, mostly grounded in methods of cognitive behavioral therapy, have been developed and tested for several mental disorders. The evidence to date shows that these interventions are effective in reducing symptoms of depression. Metaanalyses report small-to-medium effect sizes when Internet interventions are delivered as stand-alone self-help interventions (d=0.25-0.36), and medium-to-large effect sizes when delivered as therapist-guided interventions (d=0.58-0.78), both compared with usual care. Only a minority of people suffering from depression receive adequate treatment, and Internet interventions might help bridge the large treatment gap. This review summarizes the current body of evidence and highlights pros and cons of Internet interventions. It also outlines how they could be implemented in mental health care systems and points out unresolved questions, as well as future directions, in this research field.

  7. Internet interventions for depression: new developments

    PubMed Central

    Schröder, Johanna; Berger, Thomas; Westermann, Stefan; Klein, Jan Philipp; Moritz, Steffen

    2016-01-01

    A wide range of Internet interventions, mostly grounded in methods of cognitive behavioral therapy, have been developed and tested for several mental disorders. The evidence to date shows that these interventions are effective in reducing symptoms of depression. Metaanalyses report small-to-medium effect sizes when Internet interventions are delivered as stand-alone self-help interventions (d=0.25-0.36), and medium-to-large effect sizes when delivered as therapist-guided interventions (d=0.58-0.78), both compared with usual care. Only a minority of people suffering from depression receive adequate treatment, and Internet interventions might help bridge the large treatment gap. This review summarizes the current body of evidence and highlights pros and cons of Internet interventions. It also outlines how they could be implemented in mental health care systems and points out unresolved questions, as well as future directions, in this research field. PMID:27489460

  8. The Earnings Gap between Women and Men.

    ERIC Educational Resources Information Center

    Women's Bureau (DOL), Washington, DC.

    The size of the earnings gap between men and women has not changed substantially in recent years. The sustained earnings differential contrasts significantly with recent gains women have made in the job market. Several factors contribute to the wage differences: (1) The majority of women are in lower-paying occupations and lower-status jobs even…

  9. Dramatic dwindling of the power spectrum of high order harmonics by shrinking of the gap size in bowtie nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hosseinzadeh, F.; Batebi, S., E-mail: s-batebi@guilan.ac.ir; Soofi, M. Q.

    2017-03-15

    Our work is based on high harmonic generation in a gaseous medium (helium ion), by exploiting gold bowtie nanostructures as laser field amplifiers. As the result of emission of a laser pulse, the wave function of the atom varies with time; so, it is necessary to solve 1D time-dependent Schrödinger equation by means of split operator method. By illumination of a short duration, long wavelength three color laser pulse inside the gap, the enhanced field not only changes with time, but also varies in space. In this work we considered this space inhomogeneity in linear and nonlinear schemes. We showmore » that in nonlinear case, the plateau region is more extended. We also show that in larger gaps, cutoff occurs on higher frequencies. But limitation of electron motion in bowtie nanostructures leads to the choice of an optimum 16 nm gap size in our case. We predict that, by the superposition of supercontinuum harmonics, a 26 attosecond pulse can be generated.« less

  10. Composite 3D-printed metastructures for low-frequency and broadband vibration absorption

    NASA Astrophysics Data System (ADS)

    Matlack, Kathryn H.; Bauhofer, Anton; Krödel, Sebastian; Palermo, Antonio; Daraio, Chiara

    2016-07-01

    Architected materials that control elastic wave propagation are essential in vibration mitigation and sound attenuation. Phononic crystals and acoustic metamaterials use band-gap engineering to forbid certain frequencies from propagating through a material. However, existing solutions are limited in the low-frequency regimes and in their bandwidth of operation because they require impractical sizes and masses. Here, we present a class of materials (labeled elastic metastructures) that supports the formation of wide and low-frequency band gaps, while simultaneously reducing their global mass. To achieve these properties, the metastructures combine local resonances with structural modes of a periodic architected lattice. Whereas the band gaps in these metastructures are induced by Bragg scattering mechanisms, their key feature is that the band-gap size and frequency range can be controlled and broadened through local resonances, which are linked to changes in the lattice geometry. We demonstrate these principles experimentally, using advanced additive manufacturing methods, and inform our designs using finite-element simulations. This design strategy has a broad range of applications, including control of structural vibrations, noise, and shock mitigation.

  11. Decoupling the effects of confinement and passivation on semiconductor quantum dots.

    PubMed

    Rudd, Roya; Hall, Colin; Murphy, Peter J; Reece, Peter J; Charrault, Eric; Evans, Drew

    2016-07-20

    Semiconductor (SC) quantum dots (QDs) have recently been fabricated by both chemical and plasma techniques for specific absorption and emission of light. Their optical properties are governed by the size of the QD and the chemistry of any passivation at their surface. Here, we decouple the effects of confinement and passivation by utilising DC magnetron sputtering to fabricate SC QDs in a perfluorinated polyether oil. Very high band gaps are observed for fluorinated QDs with increasing levels of quantum confinement (from 4.2 to 4.6 eV for Si, and 2.5 to 3 eV for Ge), with a shift down to 3.4 eV for Si when oxygen is introduced to the passivation layer. In contrast, the fluorinated Si QDs display a constant UV photoluminescence (3.8 eV) irrespective of size. This ability to tune the size and passivation independently opens a new opportunity to extending the use of simple semiconductor QDs.

  12. Mechanics of Fluid-Filled Interstitial Gaps. I. Modeling Gaps in a Compact Tissue.

    PubMed

    Parent, Serge E; Barua, Debanjan; Winklbauer, Rudolf

    2017-08-22

    Fluid-filled interstitial gaps are a common feature of compact tissues held together by cell-cell adhesion. Although such gaps can in principle be the result of weak, incomplete cell attachment, adhesion is usually too strong for this to occur. Using a mechanical model of tissue cohesion, we show that, instead, a combination of local prevention of cell adhesion at three-cell junctions by fluidlike extracellular material and a reduction of cortical tension at the gap surface are sufficient to generate stable gaps. The size and shape of these interstitial gaps depends on the mechanical tensions between cells and at gap surfaces, and on the difference between intracellular and interstitial pressures that is related to the volume of the interstitial fluid. As a consequence of the dependence on tension/tension ratios, the presence of gaps does not depend on the absolute strength of cell adhesion, and similar gaps are predicted to occur in tissues of widely differing cohesion. Tissue mechanical parameters can also vary within and between cells of a given tissue, generating asymmetrical gaps. Within limits, these can be approximated by symmetrical gaps. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  13. Implications of the Differential Toxicological Effects of III-V Ionic and Particulate Materials for Hazard Assessment of Semiconductor Slurries.

    PubMed

    Jiang, Wen; Lin, Sijie; Chang, Chong Hyun; Ji, Zhaoxia; Sun, Bingbing; Wang, Xiang; Li, Ruibin; Pon, Nanetta; Xia, Tian; Nel, André E

    2015-12-22

    Because of tunable band gaps, high carrier mobility, and low-energy consumption rates, III-V materials are attractive for use in semiconductor wafers. However, these wafers require chemical mechanical planarization (CMP) for polishing, which leads to the generation of large quantities of hazardous waste including particulate and ionic III-V debris. Although the toxic effects of micron-sized III-V materials have been studied in vivo, no comprehensive assessment has been undertaken to elucidate the hazardous effects of submicron particulates and released III-V ionic components. Since III-V materials may contribute disproportionately to the hazard of CMP slurries, we obtained GaP, InP, GaAs, and InAs as micron- (0.2-3 μm) and nanoscale (<100 nm) particles for comparative studies of their cytotoxic potential in macrophage (THP-1) and lung epithelial (BEAS-2B) cell lines. We found that nanosized III-V arsenides, including GaAs and InAs, could induce significantly more cytotoxicity over a 24-72 h observation period. In contrast, GaP and InP particulates of all sizes as well as ionic GaCl3 and InCl3 were substantially less hazardous. The principal mechanism of III-V arsenide nanoparticle toxicity is dissolution and shedding of toxic As(III) and, to a lesser extent, As(V) ions. GaAs dissolves in the cell culture medium as well as in acidifying intracellular compartments, while InAs dissolves (more slowly) inside cells. Chelation of released As by 2,3-dimercapto-1-propanesulfonic acid interfered in GaAs toxicity. Collectively, these results demonstrate that III-V arsenides, GaAs and InAs nanoparticles, contribute in a major way to the toxicity of III-V materials that could appear in slurries. This finding is of importance for considering how to deal with the hazard potential of CMP slurries.

  14. Wind tunnel tests of modified cross, hemisflo, and disk-gap-band parachutes with emphasis in the transonic range

    NASA Technical Reports Server (NTRS)

    Foughner, J. T., Jr.; Alexander, W. C.

    1974-01-01

    Transonic wind-tunnel studies were conducted with modified cross, hemisflo, and disk-gap-band parachute models in the wake of a cone-cylinder shape forebody. The basic cross design was modified with the addition of a circumferential constraining band at the lower edge of the canopy panels. The tests covered a Mach number range of 0.3 to 1.2 and a dynamic pressure range from 479 Newtons per square meter to 5746 Newtons per square meter. The parachute models were flexible textile-type structures and were tethered to a rigid forebody with a single flexible riser. Different size models of the modified cross and disk-gap-band canopies were tested to evaluate scale effects. Model reference diameters were 0.30, 0.61, and 1.07 meters (1.0, 2.0, and 3.5 ft) for the modified cross; and nominal diameters of 0.25 and 0.52 meter (0.83 and 1.7 ft) for the disk-gap-band; and 0.55 meter (1.8 ft) for the hemisflo. Reefing information is presented for the 0.61-meter-diameter cross and the 0.52-meter-diameter disk-gap-band. Results are presented in the form of the variation of steady-state average drag coefficient with Mach number. General stability characteristics of each parachute are discussed. Included are comments on canopy coning, spinning, and fluttering motions.

  15. From 1D to 3D: Tunable Sub-10 nm Gaps in Large Area Devices.

    PubMed

    Zhou, Ziwei; Zhao, Zhiyuan; Yu, Ye; Ai, Bin; Möhwald, Helmuth; Chiechi, Ryan C; Yang, Joel K W; Zhang, Gang

    2016-04-20

    Tunable sub-10 nm 1D nanogaps are fabricated based on nanoskiving. The electric field in different sized nanogaps is investigated theoretically and experimentally, yielding nonmonotonic dependence and an optimized gap-width (5 nm). 2D nanogap arrays are fabricated to pack denser gaps combining surface patterning techniques. Innovatively, 3D multistory nanogaps are built via a stacking procedure, processing higher integration, and much improved electric field. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Structural and optical properties of hydrazine hydrate capped cadmium sulphide nanoparticles

    NASA Astrophysics Data System (ADS)

    Solanki, Rekha Garg; Rajaram, P.

    2018-05-01

    Semiconductor nanoparticles have received considerable interest due to their size-dependent optical properties. CdS is an important semiconductor material widely used in low cost photovoltaic devices, light-emitting diodes and biological imaging. The nanoparticles of CdS were prepared by a simple chemical precipitation method in aqueous medium. The reaction was carried out at room temperature. The cadmium sulphide nanoparticles were characterized using X-ray powder diffraction (XRD) and UV-visible spectroscopy. The lattice strain, crystallite size and dislocation density were calculated using the Williamson-Hall (W-H) method. The band gap was obtained from the UV-Visible spectra of CdS nanoparticles. The band gap of CdS nanoparticles is around 2.68 eV and the crystallite size is around 5.8 nm.

  17. Relationships of maternal body size and morphology with egg and clutch size in the diamondback terrapin, Malaclemys terrapin (Testudines: Emydidae)

    USGS Publications Warehouse

    Kern, Maximilian M.; Guzy, Jacquelyn C.; Lovich, Jeffrey E.; Gibbons, J. Whitfield; Dorcas, Michael E.

    2016-01-01

    Because resources are finite, female animals face trade-offs between the size and number of offspring they are able to produce during a single reproductive event. Optimal egg size (OES) theory predicts that any increase in resources allocated to reproduction should increase clutch size with minimal effects on egg size. Variations of OES predict that egg size should be optimized, although not necessarily constant across a population, because optimality is contingent on maternal phenotypes, such as body size and morphology, and recent environmental conditions. We examined the relationships among body size variables (pelvic aperture width, caudal gap height, and plastron length), clutch size, and egg width of diamondback terrapins from separate but proximate populations at Kiawah Island and Edisto Island, South Carolina. We found that terrapins do not meet some of the predictions of OES theory. Both populations exhibited greater variation in egg size among clutches than within, suggesting an absence of optimization except as it may relate to phenotype/habitat matching. We found that egg size appeared to be constrained by more than just pelvic aperture width in Kiawah terrapins but not in the Edisto population. Terrapins at Edisto appeared to exhibit osteokinesis in the caudal region of their shells, which may aid in the oviposition of large eggs.

  18. Limited genomic consequences of mixed mating in the recently derived sister species pair, Collinsia concolor and Collinsia parryi.

    PubMed

    Salcedo, A; Kalisz, S; Wright, S I

    2014-07-01

    Highly selfing species often show reduced effective population sizes and reduced selection efficacy. Whether mixed mating species, which produce both self and outcross progeny, show similar patterns of diversity and selection remains less clear. Examination of patterns of molecular evolution and levels of diversity in species with mixed mating systems can be particularly useful for investigating the relative importance of linked selection and demographic effects on diversity and the efficacy of selection, as the effects of linked selection should be minimal in mixed mating populations, although severe bottlenecks tied to founder events could still be frequent. To begin to address this gap, we assembled and analysed the transcriptomes of individuals from a recently diverged mixed mating sister species pair in the self-compatible genus, Collinsia. The de novo assembly of 52 and 37 Mbp C. concolor and C. parryi transcriptomes resulted in ~40 000 and ~55 000 contigs, respectively, both with an average contig size ~945. We observed a high ratio of shared polymorphisms to fixed differences in the species pair and minimal differences between species in the ratio of synonymous to replacement substitutions or codon usage bias implying comparable effective population sizes throughout species divergence. Our results suggest that differences in effective population size and selection efficacy in mixed mating taxa shortly after their divergence may be minimal and are likely influenced by fluctuating mating systems and population sizes. © 2014 The Authors. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  19. Phonon transport properties of two-dimensional group-IV materials from ab initio calculations

    NASA Astrophysics Data System (ADS)

    Peng, Bo; Zhang, Hao; Shao, Hezhu; Xu, Yuanfeng; Ni, Gang; Zhang, Rongjun; Zhu, Heyuan

    2016-12-01

    It has been argued that stanene has lowest lattice thermal conductivity among two-dimensional (2D) group-IV materials because of its largest atomic mass, weakest interatomic bonding, and enhanced ZA phonon scattering due to the breaking of an out-of-plane symmetry selection rule. However, we show that, although the lattice thermal conductivity κ for graphene, silicene, and germanene decreases monotonically with decreasing Debye temperature, unexpected higher κ is observed in stanene. By enforcing all the invariance conditions in 2D materials and including Ge 3 d and Sn 4 d electrons as valence electrons for germanene and stanene, respectively, the lattice dynamics in these materials are accurately described. A large acoustic-optical gap and the bunching of the acoustic-phonon branches significantly reduce phonon scattering in stanene, leading to higher thermal conductivity than germanene. The vibrational origin of the acoustic-optical gap can be attributed to the buckled structure. Interestingly, a buckled system has two competing influences on phonon transport: the breaking of the symmetry selection rule leads to reduced thermal conductivity, and the enlarging of the acoustic-optical gap results in enhanced thermal conductivity. The size dependence of thermal conductivity is investigated as well. In nanoribbons, the κ of silicene, germanene, and stanene is much less sensitive to size effect due to their short intrinsic phonon mean-free paths. This work sheds light on the nature of phonon transport in buckled 2D materials.

  20. Enhanced charge ordering transition in doped CaFeO3 through steric templating

    NASA Astrophysics Data System (ADS)

    Jiang, Lai; Saldana-Greco, Diomedes; Schick, Joseph T.; Rappe, Andrew M.

    2014-06-01

    We report a density functional theory investigation of B-site doped CaFeO3, a prototypical charge ordered perovskite. At 290 K, CaFeO3 undergoes a metal-insulator transition and a charge disproportionation reaction 2Fe4+→Fe5++Fe3+. We observe that when Zr dopants occupy a (001) layer, the band gap of the resulting solid solution increases to 0.93 eV due to a two-dimensional Jahn-Teller-type distortion, where FeO6 cages on the xy plane elongate along x and y alternatively between neighboring Fe sites. Furthermore, we show that the rock-salt ordering of the Fe5+ and Fe3+ cations can be enhanced when the B-site dopants are arranged in a (111) plane due to a collective steric effect that facilitates the size discrepancy between the Fe5+O6 and Fe3+O6 octahedra and therefore gives rise to a larger band gap. The enhanced charge disproportionation in these solid solutions is verified by rigorously calculating the oxidation states of the Fe cations with different octahedral cage sizes. We therefore predict that the corresponding transition temperature will increase due to the enhanced charge ordering and larger band gap. The compositional, structural, and electrical relationships exploited in this paper can be extended to a variety of perovskites and nonperovskite oxides, providing guidance in the structural manipulation of electrical properties of functional materials.

  1. Technical Note: An investigation of polarity effects for wide-angle free-air chambers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, H., E-mail: Hong.Shen@nrc-cnrc.gc.ca; Ross,

    2016-07-15

    Purpose: Wide-angle free-air chambers (WAFACs) are used as primary standard measurement devices for establishing the air-kerma strength of low-energy, low-dose rate brachytherapy seeds. The National Research Council of Canada (NRC) is commissioning a primary standard wide-angle free-air chamber (NRC WAFAC) to serve the calibration needs of Canadian clients. The University of Wisconsin has developed a similar variable-aperture free-air chamber (UW VAFAC) to be used as a research tool. As part of the NRC commissioning, measurements were carried out for both polarities of the applied bias voltage and the resulting effects were observed to be very large. Similar effects were identifiedmore » with the UW VAFAC. The authors describe the measurements carried out to determine the underlying causes of the polarity effect and the approach used to eliminate it. Methods: The NRC WAFAC is based on the WAFAC design developed at the National Institute of Standards and Technology in the USA. Charge measurements for {sup 125}I and {sup 241}Am sources were carried out for both negative and positive polarities on the NRC WAFAC and UW VAFAC. Two aperture sizes were also investigated with the UW VAFAC. In addition, measurements on the NRC WAFAC were carried out with a small bias between the collecting electrode and the shield foil at the downstream end of the chamber. To mitigate all of the polarity effects, the downstream surface of the collecting electrode was covered with a thin layer of graphite on both the NRC and UW chambers. Results: Both chamber designs showed a difference of more than 30 % between the charge collected with positive and negative bias voltages for the smallest electrode separation. It was shown for the NRC WAFAC that charge could be collected in the small gap downstream of the collecting volume by applying a voltage between the shield foil and the collecting electrode, even though an insulating foil (Mylar or polyimide film) separated the conducting surface from the small gap region. The unwanted additional current was shown to be proportional to the size of the aperture for the UW VAFAC. The extra ionization produced in the small gap region was eliminated for both chambers by covering the insulating side of the collecting electrode with a grounded conducting layer. Conclusions: The small gap region downstream of the collecting electrode in the NRC WAFAC and UW VAFAC can serve as an unwanted source of ion current. It is concluded that a residual electric field in the small gap region may lead to ion transport and to charge being trapped on the surface of the foil. The foil then acts as a capacitor with an equal charge, but of opposite sign, being attracted to the conducting surface. Covering the back of the collecting electrode surface with a grounded conducting layer eliminated the polarity effect.« less

  2. Interference Heating to Cavities Between Simulated RSI Tiles

    NASA Technical Reports Server (NTRS)

    Johnson, C. B.

    1973-01-01

    Test results for full scale simulated surface insulation tiles on both the tunnel wall and in the free stream, for in-line and staggered tile orientations, are summarized as follows: (1) The staggered tile orientation has heating on the forward face which is a factor of 4.5 times higher than the heating to the forward face of the in-line tile orientation; (2) the longitudinal gap heating was the highest for the 0.3175 cm gap and the lowest for the 0.1587 cm gap; and (3) there was an order of magnitude decrease in the heating on the forward face of a spanwise gap when the gap size was decreased from 0.3175 cm to 0.1587 cm.

  3. A likely planet-induced gap in the disc around T Cha

    NASA Astrophysics Data System (ADS)

    Hendler, Nathanial P.; Pinilla, Paola; Pascucci, Ilaria; Pohl, Adriana; Mulders, Gijs; Henning, Thomas; Dong, Ruobing; Clarke, Cathie; Owen, James; Hollenbach, David

    2018-03-01

    We present high-resolution (0.11 × 0.06 arcsec2) 3 mm ALMA observations of the highly inclined transition disc around the star T Cha. Our continuum image reveals multiple dust structures: an inner disc, a spatially resolved dust gap, and an outer ring. When fitting sky-brightness models to the real component of the 3 mm visibilities, we infer that the inner emission is compact (≤1 au in radius), the gap width is between 18 and 28 au, and the emission from the outer ring peaks at ˜36 au. We compare our ALMA image with previously published 1.6 μm VLT/SPHERE imagery. This comparison reveals that the location of the outer ring is wavelength dependent. More specifically, the peak emission of the 3 mm ring is at a larger radial distance than that of the 1.6 μm ring, suggesting that millimeter-sized grains in the outer disc are located farther away from the central star than micron-sized grains. We discuss different scenarios to explain our findings, including dead zones, star-driven photoevaporation, and planet-disc interactions. We find that the most likely origin of the dust gap is from an embedded planet, and estimate - for a single planet scenario - that T Cha's gap is carved by a 1.2MJup planet.

  4. Benchmarking the Fundamental Electronic Properties of small TiO 2 Nanoclusters by GW and Coupled Cluster Theory Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berardo, Enrico; Kaplan, Ferdinand; Bhaskaran-Nair, Kiran

    We study the vertical ionisation potential, electron affinity, fundamental gap and exciton binding energy values of small bare and hydroxylated TiO 2 nanoclusters to understand how the excited state properties change as a function of size and hydroxylation. In addition, we have employed a range of many-body methods; including G 0 W 0, qs GW, EA/IP-EOM-CCSD and DFT (B3LYP, PBE), to compare the performance and predictions of the different classes of methods. We demonstrate that for bare (i.e. non-hydroxylated) clusters all many-body methods predict the same trend with cluster size. The highest occupied and lowest unoccupied DFT orbitals follow themore » same trends as the electron affinity and ionisation potentials predicted by the many-body methods but are generally far too shallow and deep respectively in absolute terms. In contrast, the ΔDFT method is found to yield values in the correct energy window. However, its predictions depend on the functional used and do not necessarily follow trends based on the many-body methods. The effect of hydroxylation of the clusters is to open up both the optical and fundamental gap. In conclusion, a simple microscopic explanation for the observed trends with cluster size and upon hydroxylation is proposed in terms of the Madelung onsite potential.« less

  5. Benchmarking the Fundamental Electronic Properties of small TiO 2 Nanoclusters by GW and Coupled Cluster Theory Calculations

    DOE PAGES

    Berardo, Enrico; Kaplan, Ferdinand; Bhaskaran-Nair, Kiran; ...

    2017-06-19

    We study the vertical ionisation potential, electron affinity, fundamental gap and exciton binding energy values of small bare and hydroxylated TiO 2 nanoclusters to understand how the excited state properties change as a function of size and hydroxylation. In addition, we have employed a range of many-body methods; including G 0 W 0, qs GW, EA/IP-EOM-CCSD and DFT (B3LYP, PBE), to compare the performance and predictions of the different classes of methods. We demonstrate that for bare (i.e. non-hydroxylated) clusters all many-body methods predict the same trend with cluster size. The highest occupied and lowest unoccupied DFT orbitals follow themore » same trends as the electron affinity and ionisation potentials predicted by the many-body methods but are generally far too shallow and deep respectively in absolute terms. In contrast, the ΔDFT method is found to yield values in the correct energy window. However, its predictions depend on the functional used and do not necessarily follow trends based on the many-body methods. The effect of hydroxylation of the clusters is to open up both the optical and fundamental gap. In conclusion, a simple microscopic explanation for the observed trends with cluster size and upon hydroxylation is proposed in terms of the Madelung onsite potential.« less

  6. Specific Cx43 phosphorylation events regulate gap junction turnover in vivo

    PubMed Central

    Solan, Joell L.; Lampe, Paul D.

    2014-01-01

    Gap junctions, composed of proteins from the connexin gene family, are highly dynamic structures that are regulated by kinase-mediated signaling pathways and interactions with other proteins. Phosphorylation of Connexin43 (Cx43) at different sites controls gap junction assembly, gap junction size and gap junction turnover. Here we present a model describing how Akt, mitogen activated protein kinase (MAPK) and src kinase coordinate to regulate rapid turnover of gap junctions. Specifically, Akt phosphorylates Cx43 at S373 eliminating interaction with zona occludens-1 (ZO-1) allowing gap junctions to enlarge. Then MAPK and src phosphorylate Cx43 to initiate turnover. We integrate published data with new data to test and refine this model. Finally, we propose that differential coordination of kinase activation and Cx43 phosphorylation controls the specific routes of disassembly, e.g., annular junction formation or gap junctions can potentially “unzip” and be internalized/endocytosed into the cell that produced each connexin. PMID:24508467

  7. Dynamics of binary-disk interaction. 1: Resonances and disk gap sizes

    NASA Technical Reports Server (NTRS)

    Artymowicz, Pawel; Lubow, Stephen H.

    1994-01-01

    We investigate the gravitational interaction of a generally eccentric binary star system with circumbinary and circumstellar gaseous disks. The disks are assumed to be coplanar with the binary, geometrically thin, and primarily governed by gas pressure and (turbulent) viscosity but not self-gravity. Both ordinary and eccentric Lindblad resonances are primarily responsible for truncating the disks in binaries with arbitrary eccentricity and nonextreme mass ratio. Starting from a smooth disk configuration, after the gravitational field of the binary truncates the disk on the dynamical timescale, a quasi-equilibrium is achieved, in which the resonant and viscous torques balance each other and any changes in the structure of the disk (e.g., due to global viscous evolution) occur slowly, preserving the average size of the gap. We analytically compute the approximate sizes of disks (or disk gaps) as a function of binary mass ratio and eccentricity in this quasi-equilibrium. Comparing the gap sizes with results of direct simulations using the smoothed particle hydrodynamics (SPH), we obtain a good agreement. As a by-product of the computations, we verify that standard SPH codes can adequately represent the dynamics of disks with moderate viscosity, Reynolds number R approximately 10(exp 3). For typical viscous disk parameters, and with a denoting the binary semimajor axis, the inner edge location of a circumbinary disk varies from 1.8a to 2.6a with binary eccentricity increasing from 0 to 0.25. For eccentricities 0 less than e less than 0.75, the minimum separation between a component star and the circumbinary disk inner edge is greater than a. Our calculations are relevant, among others, to protobinary stars and the recently discovered T Tau pre-main-sequence binaries. We briefly examine the case of a pre-main-sequence spectroscopic binary GW Ori and conclude that circumbinary disk truncation to the size required by one proposed spectroscopic model cannot be due to Linblad resonances, even if the disk is nonviscous.

  8. Systematic study of error sources in supersonic skin-friction balance measurements

    NASA Technical Reports Server (NTRS)

    Allen, J. M.

    1976-01-01

    An experimental study was performed to investigate potential error sources in data obtained with a self-nulling, moment-measuring, skin-friction balance. The balance was installed in the sidewall of a supersonic wind tunnel, and independent measurements of the three forces contributing to the balance output (skin friction, lip force, and off-center normal force) were made for a range of gap size and element protrusion. The relatively good agreement between the balance data and the sum of these three independently measured forces validated the three-term model used. No advantage to a small gap size was found; in fact, the larger gaps were preferable. Perfect element alignment with the surrounding test surface resulted in very small balance errors. However, if small protrusion errors are unavoidable, no advantage was found in having the element slightly below the surrounding test surface rather than above it.

  9. Class Size Reduction in Practice: Investigating the Influence of the Elementary School Principal

    ERIC Educational Resources Information Center

    Burch, Patricia; Theoharis, George; Rauscher, Erica

    2010-01-01

    Class size reduction (CSR) has emerged as a very popular, if not highly controversial, policy approach for reducing the achievement gap. This article reports on findings from an implementation study of class size reduction policy in Wisconsin entitled the Student Achievement Guarantee in Education (SAGE). Drawing on case studies of nine schools,…

  10. Conductor-gap-silicon plasmonic waveguides and passive components at subwavelength scale.

    PubMed

    Wu, Marcelo; Han, Zhanghua; Van, Vien

    2010-05-24

    Subwavelength conductor-gap-silicon plasmonic waveguides along with compact S-bends and Y-splitters were theoretically investigated and experimentally demonstrated on a silicon-on-insulator platform. A thin SiO2 gap between the conductor layer and silicon core provides subwavelength confinement of light while a long propagation length of 40 microm was achieved. Coupling of light between the plasmonic and conventional silicon photonic waveguides was also demonstrated with a high efficiency of 80%. The compact sizes, low loss operation, efficient input/output coupling, combined with a CMOS-compatible fabrication process, make these conductor-gap-silicon plasmonic devices a promising platform for realizing densely-integrated plasmonic circuits.

  11. Central depression in nuclear density and its consequences for the shell structure of superheavy nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Afanasjev, A.V.; Laboratory of Radiation Physics, Institute of Solid State Physics, University of Latvia, LV 2169 Salaspils, Miera str. 31; Frauendorf, S.

    The influence of the central depression in the density distribution of spherical superheavy nuclei on the shell structure is studied within the relativistic mean-field theory. A large depression leads to the shell gaps at the proton Z=120 and neutron N=172 numbers, whereas a flatter density distribution favors N=184 and leads to the appearance of a Z=126 shell gap and to the decrease of the size of the Z=120 shell gap. The correlations between the magic shell gaps and the magnitude of the central depression are discussed for relativistic and nonrelativistic mean field theories.

  12. Optical Properties of Synthesized Nanoparticles ZnS Using Methacrylic Acid as the Capping Agent

    NASA Astrophysics Data System (ADS)

    Nazerdeylami, Somayeh; Saievar Iranizad, Esmaiel; Molaei, Mehdi

    Optical analysis (UV-vis spectroscopy) of solution of ZnS nanoparticles prepared at room temperature by a chemical capping method using methacrylic acid (MAA) capping agent at concentration of 0.05, 0.2, 0.5 and 1.17 molar is investigated. The spectroscopy results indicate increasing of band gap of ZnS through increasing concentration of the methacrylic acid as capping agent in the solution. According to the relation of Effective Mass Approximation, it is concluded that the size of nanoparticles decreased with the increasing concentration of the capping agent in the tested solutions. The size of the particles is found to be in 1.77-2.05 nm range.

  13. Synthesis of embedded titanium dioxide nanoparticles by oxygen ion implantation in titanium films

    NASA Astrophysics Data System (ADS)

    Rukade, Deepti. A.; Desai, C. A.; Kulkarni, Nilesh; Tribedi, L. C.; Bhattacharyya, Varsha

    2013-02-01

    Thin films of titanium of 100nm thickness are deposited on fused silica substrates. These films are implanted by oxygen ions with implantation energy of 60keV obtained from ECR based highly charged ion accelerator. The implanted films are later annealed in a tube furnace to establish nanophase formation. The post implanted annealed films are characterized by UV-Visible Spectroscopy and Glancing Angle X-ray Diffraction technique (GAXRD). The phase formed and particle size is determined by GAXRD. Nanoparticle formation is confirmed by the UV-VIS spectroscopic analysis that shows quantum size effects in the form of a blue shift in the band-gap energy of titanium-oxide.

  14. Influence of intentional femoral component flexion in navigated TKA on gap balance and sagittal anatomy.

    PubMed

    Roßkopf, J; Singh, P K; Wolf, P; Strauch, M; Graichen, H

    2014-03-01

    Navigation has proven its ability to accurately restore coronal leg axis; however, for a good clinical outcome, other factors such as sagittal anatomy and balanced gaps are at least as important. In a gap-balanced technique, the size of the flexion gap is equalled to that of the extension gap. Flexion of the femoral component has been described as a theoretical possibility to balance flexion and extension gap. Aim of this study was to assess whether intentional femoral component flexion is helpful in balancing TKA gaps and in restoring sagittal anatomy. One hundred and thirty-one patients with TKA were included in this study. Implantation was performed in a navigated, gap-balanced, tibia-first technique. The femoral component flexion needed to equal flexion to extension gap was calculated based upon the navigation data. The sagittal diameter, the anterior and posterior offset were measured pre- and postoperatively based on the lateral radiographs. Medial and lateral gaps in extension and flexion as well as flexion/extension gap differences pre- and postoperatively were analysed. Additionally range of motion (ROM) and patient satisfaction (SF 12) were obtained. To achieve equal flexion and extension gap, the femoral component was flexed in 120 out of 131 patients showing mean flexion of 2.9° (SD 2.2°; navigation data) and 3.1° (SD 2.0°; radiological analysis), respectively. Based on this technique, it was possible to balance the extension gap (<2 mm difference) in 130 out of 131 patients (99%) and the flexion gap in 119 out of 131 (91%). The difference between extension and flexion gap was reduced from 39 to 24 out of 131 patients (81%) on the medial side and from 69 to 28 on the lateral side (79%). The sagittal diameter was restored in 114 out of 131 cases (87%); however, anterior offset was significantly reduced by 1.3 mm (SD 3.9°), and posterior offset was significantly increased by 1.6 mm (SD 3.3°). No correlation between any navigation and radiological parameter was found with ROM and SF 12. The navigation-based, gap-balanced technique allows intentional flexion of the femoral component in order to balance gaps in more than 90% of primary TKA cases. Simultaneously, the sagittal diameter is restored in 87% of patients. However, to achieve equal gaps, the posterior offset is significantly increased by 1.6 mm and the femoral component is flexed by 3°. To evaluate the effect of this technique on the clinical outcome, future studies are needed. II.

  15. On the absence of a correlation between population size and 'toolkit size' in ethnographic hunter-gatherers.

    PubMed

    Aoki, Kenichi

    2018-04-05

    In apparent contradiction to the theoretically predicted effect of population size on the quality/quantity of material culture, statistical analyses on ethnographic hunter-gatherers have shown an absence of correlation between population size and toolkit size. This has sparked a heated, if sometimes tangential, debate as to the usefulness of the theoretical models and as to what modes of cultural transmission humans are capable of and hunter-gatherers rely on. I review the directly relevant theoretical literature and argue that much of the confusion is caused by a mismatch between the theoretical variable and the empirical observable. I then confirm that a model incorporating the appropriate variable does predict a positive association between population size and toolkit size for random oblique, vertical, best-of- K , conformist, anticonformist, success bias and one-to-many cultural transmission, with the caveat that for all populations sampled, the population size has remained constant and toolkit size has reached the equilibrium for this population size. Finally, I suggest three theoretical scenarios, two of them involving variable population size, that would attenuate or eliminate this association and hence help to explain the empirical absence of correlation.This article is part of the theme issue 'Bridging cultural gaps: interdisciplinary studies in human cultural evolution'. © 2018 The Author(s).

  16. Effect of Crystallization Firing on Marginal Gap of CAD/CAM Fabricated Lithium Disilicate Crowns.

    PubMed

    Gold, Steven A; Ferracane, Jack L; da Costa, Juliana

    2018-01-01

    To evaluate the marginal gaps of CAD/CAM (CEREC 3) produced crowns made from leucite-reinforced glass-ceramic (IPS Empress CAD) blocks (LG), and lithium-disilicate (IPS e.max CAD) blocks before (LD-B), and after (LD-A) crystallization firing. A human molar tooth (#19) was mounted with adjacent teeth on a typodont and prepared for a full-coverage ceramic crown. The typodont was assembled in the mannequin head to simulate clinical conditions. After tooth preparation 15 individual optical impressions were taken by the same operator using titanium dioxide powder and a CEREC 3 camera per manufacturer's instructions. One operator designed and machined the crowns in leucite-reinforced glass-ceramic blocks (n = 5) and lithium-disilicate blocks (n = 10) using the CEREC 3 system. The crowns were rigidly seated on the prepared tooth, and marginal gaps (μm) were measured with an optical microscope (500×) at 12 points, 3 on each of the M, B, D, and L surfaces of the leucite-reinforced glass-ceramic crowns and the lithium-disilicate crowns before and after crystallization firing. Results were analyzed by two-way ANOVA followed by a Tukey's post hoc multiple comparison test (α = 0.05). The overall mean marginal gaps (μm) for the crowns evaluated were: LG = 49.2 ± 5.5, LD-B = 42.9 ± 12.2, and LD-A = 57.2 ± 16.0. The marginal gaps for LG and LD-B were not significantly different, but both were significantly less than for LD-A. The type of ceramic material did not affect the marginal gap of CAD/CAM crowns. The crystallization firing process required for lithium-disilicate crowns resulted in a significant increase in marginal gap size, likely due to shrinkage of the ceramic during the crystallization process. The marginal gap of CAD/CAM-fabricated lithium disilicate crowns increases following crystallization firing. The marginal gap still remains within clinically acceptable parameters. © 2017 by the American College of Prosthodontists.

  17. Effect of ZnSe and CdSe nanoparticles on the fluorescence and optical band gap of Sm3+ doped lead borate glasses

    NASA Astrophysics Data System (ADS)

    Fatokun, Stephen O.

    For the first part of this work, we prepared a series of Sm-doped lead borate (PbO-B2O3) glasses containing zinc selenide (ZnSe) and cadmium selenide (CdSe) nanoparticles (NPs) and studied the Sm 3+ fluorescence by varying the glass composition and size of the NPs. We have chosen these heavy metal oxide glasses to incorporate Sm3+ ions because they have large glass forming region, high refractive index, and good physical and thermal stability. Lead borate glasses with the following compositions xPbO:(96.5-x)B2O 3:0.5Sm2O3:3ZnSe/CdSe, x=36.5 and 56.5 mol%) are prepared using the melt-quenching method. Transmission electron microscopy characterization was done to confirm both nucleation and growth of the NPs for different annealing times. Fluorescence spectra of these samples are obtained with the excitation wavelengths at 403 and 477nm. Three fluorescence transitions are observed at 563 nm, 598 nm and 646 nm. The transition at 646 nm is a electric dipole (ED) transition that strongly depends on the covalency of the Sm-O bond and the asymmetry of the crystal field at the Sm3+ site. The 646 nm/598 nm fluorescence intensity ratio has been studied for different annealing times and PbO concentration for both ZnSe and CdSe samples. Longer annealing times tend to make the crystal field at the Sm3+ site more symmetric in nature for these glasses. The presence of CdSe NPs is seen to produce the greatest influence on the fluorescence intensity ratio. This is believed to be due to the larger size of the CdSe nanoparticles and its stronger influence on Sm3+ ions. The second part of this work was dedicated to the understanding of the optical band gap of samarium doped lead borate glasses with and without ZnSe/CdSe NPs. Optical absorption spectra for all these glass samples show their absorption edge in the ultraviolet region. Detailed analysis of the absorption edge was carried out using the Mott-Davis model and the optical band gap and the width of the tail in the band gap (Urbach edge) were obtained. Our glass samples show both direct and indirect transitions. For samples without the NPs, the optical band gap decreases with increasing PbO concentration. The presence of ZnSe NPs shows a similar trend. The introduction of CdSe NPs, however, shows an increase in the optical band gap with increase in PbO contents. Our results indicate that CdSe NPs show markedly different effect on the optical properties of lead borate glasses compared to ZnSe NPs. TEM characterization shows that CdSe NPs are considerably larger than ZnSe NPs. These size differences could produce significant differences in the electronic properties of these NPs and their interaction with the glass matrices.

  18. Electronic, Optical, and Thermal Properties of Reduced-Dimensional Semiconductors

    NASA Astrophysics Data System (ADS)

    Huang, Shouting

    Reduced-dimensional materials have attracted tremendous attention because of their new physics and exotic properties, which are of great interests for fundamental science. More importantly, the manipulation and engineering of matter on an atomic scale yield promising applications for many fields including nanoelectronics, nanobiotechnology, environments, and renewable energy. Because of the unusual quantum confinement and enhanced surface effect of reduced-dimensional materials, traditional empirical models suffer from necessary but unreliable parameters extracted from previously-studied bulk materials. In this sense, quantitative, parameter-free approaches are highly useful for understanding properties of reduced-dimensional materials and, furthermore, predicting their novel applications. The first-principles density functional theory (DFT) is proven to be a reliable and convenient tool. In particular, recent progress in many-body perturbation theory (MBPT) makes it possible to calculate excited-state properties, e.g., quasiparticle (QP) band gap and optical excitations, by the first-principles approach based on DFT. Therefore, during my PhD study, I employed first-principles calculations based on DFT and MBPT to systematically study fundamental properties of typical reduced-dimensional semiconductors, i.e., the electronic structure, phonons, and optical excitations of core-shell nanowires (NWs) and graphene-like two-dimensional (2D) structures of current interests. First, I present first-principles studies on how to engineer band alignments of nano-sized radial heterojunctions, Si/Ge core-shell NWs. Our calculation reveals that band offsets in these one-dimensional (1D) nanostructures can be tailored by applying axial strain or varying core-shell sizes. In particular, the valence band offset can be efficiently tuned across a wide range and even be diminished via applied strain. Two mechanisms contribute to this tuning of band offsets. Furthermore, varying the size of Si/Ge core-shell NWs and corresponding quantum confinement is shown to be efficient for modifying both valence and conduction band offsets simultaneously. Our proposed approaches to control band offsets in nano-sized heterojunctions may be of practical interest for nanoelectronic and photovoltaic applications. Additionally, I also studied the lattice vibrational modes of Si/Ge core-shell N-Ws. Our calculations show that the internal strain induced by the lattice mismatch between core and shell plays an important role in significantly shifting the frequency of characteristic optical modes of core-shell NWs. In particular, our simulation demonstrates that these frequency shifts can be detected by Raman-scattering experiments, giving rise to a convenient and nondestructive way to obtain structural information of core-shell materials. Meanwhile, another type of collective modes, the radial breathing modes (RBM), is identified in Si-core/Ge-shell NWs and their frequency dependence is explained by an elastic media model. Our studied vibrational modes and their frequency evolution are useful for thermoelectric applications based on core-shell nanostructures. Then I studied optical properties and exciton spectra of 2D semiconducting carbon structures. The energy spectra and wavefunctions of excitons in the 2D graphene derivatives, i.e., graphyne and graphane, are found to be strongly modified by quantum confinement, making them qualitatively different from the usual Rydberg series. However, their parity and optical selection rules are preserved. Thus a one-parameter hydrogenic model is applied to quantitatively explain the ab initio exciton spectra, and allows one to extrapolate the electron-hole binding energy from optical spectroscopies of 2D semiconductors without costly simulations. Meanwhile, our calculated optical absorption spectrum and enhanced spin singlet-triplet splitting project graphyne, an allotrope of graphene, as a good candidate for intriguing energy and biomedical applications. Lastly, we report first-principles results on electronic structures of 2D graphene-like system, i.e., silicene. For planar and simply buckled silicene structures, we confirm their zero-gap nature and show a significant renormalization of their Fermi velocity by including many-electron effects. However, the other two recently proposed silicene structures exhibit a finite band gap, indicating that they are gapped semiconductors instead of expected Dirac-fermion semimetals. This finite band gap of the latter two structures is preserved even with the Ag substrate included. The gap opening is explained by the symmetry breaking of the buckled structures. Moreover, our GW calculation reveals enhanced many-electron effects in these 2D structures. Finally the band gap of the latter two structures can be tuned in a wide range by applying strain.

  19. The Electronic Properties of O-Doped Pure and Sulfur Vacancy-Defect Monolayer WS₂: A First-Principles Study.

    PubMed

    Wang, Weidong; Bai, Liwen; Yang, Chenguang; Fan, Kangqi; Xie, Yong; Li, Minglin

    2018-01-31

    Based on the density functional theory (DFT), the electronic properties of O-doped pure and sulfur vacancy-defect monolayer WS₂ are investigated by using the first-principles method. For the O-doped pure monolayer WS₂, four sizes (2 × 2 × 1, 3 × 3 × 1, 4 × 4 × 1 and 5 × 5 × 1) of supercell are discussed to probe the effects of O doping concentration on the electronic structure. For the 2 × 2 × 1 supercell with 12.5% O doping concentration, the band gap of O-doped pure WS₂ is reduced by 8.9% displaying an indirect band gap. The band gaps in 3 × 3 × 1 and 4 × 4 × 1 supercells are both opened to some extent, respectively, for 5.55% and 3.13% O doping concentrations, while the band gap in 5 × 5 × 1 supercell with 2.0% O doping concentration is quite close to that of the pure monolayer WS₂. Then, two typical point defects, including sulfur single-vacancy (V S ) and sulfur divacancy (V 2S ), are introduced to probe the influences of O doping on the electronic properties of WS₂ monolayers. The observations from DFT calculations show that O doping can broaden the band gap of monolayer WS₂ with V S defect to a certain degree, but weaken the band gap of monolayer WS₂ with V 2S defect. Doping O element into either pure or sulfur vacancy-defect monolayer WS₂ cannot change their band gaps significantly, however, it still can be regarded as a potential method to slightly tune the electronic properties of monolayer WS₂.

  20. Bridging the gap between research-supported interventions and everyday social work practice: a new approach.

    PubMed

    Rubin, Allen

    2014-07-01

    This article describes a rationale for a focus on case studies that would provide a database of single-group pre-post mean effect sizes that could be analyzed to identify which service provision characteristics are associated with more desirable outcomes when interventions supported by randomized clinical trials are adapted in everyday practice settings. In addition, meta-analyses are proposed that would provide benchmarks that agency practitioners could compare with their mean effect size to inform their decisions about whether to continue, modify, or replace existing efforts to adopt or adapt a specific research-supported treatment. Social workers should be at the forefront of the recommended studies in light of the profession's emphasis on applied research in real-world settings and the prominence of social work practitioners in such settings.

Top