Science.gov

Sample records for gariepinus fed high

  1. Performance of Clarias gariepinus Fed Dried Brewer's Yeast (Saccharomyces cerevisiae) Slurry in Replacement for Soybean Meal

    PubMed Central

    Solomon, Shola Gabriel; Itodo, Gabriel Enemona

    2017-01-01

    Following disparity of earlier results, this study tested the performance of African catfish Clarias gariepinus fed dried brewer's yeast slurry meal (DBYM) based diets. Fingerlings of C. gariepinus with pooled mean initial weight of 1.58 ± 0.01 g were stocked in hapas (1 m × 1 m × 1 m) immersed in an earthen pond at a density of 15 fish per cage. Five diets with increasing substitution of soybean meal with 25%, 50%, 75%, and 100% of dried brewer's yeast and a control without dried brewer's yeast (0% substitution) were evaluated for 8 weeks. Palatability of diets reduced with increasing levels of DBYM. Growth and utilization parameters such as weight gain, feed conversion ratio, protein efficiency ratio, and specific growth rate differed significantly (p < 0.05) among treated groups. Specific growth rate decreased with increasing substitution while the best feed conversion ratio was obtained in the diet devoid of DBYM. Protein efficiency and utilization decreased with increasing levels of DBYM. Body composition was also affected by inclusion of DBYM with significant differences (p < 0.05) being observed across the diets. The trend in body composition follows the utilization of the diets. We conclude that the optimal range of inclusion and substitution of soybean meal with DBYM in C. gariepinus feed is between 1% and 14% of dry matter. PMID:28239492

  2. Performance of Clarias gariepinus Fed Dried Brewer's Yeast (Saccharomyces cerevisiae) Slurry in Replacement for Soybean Meal.

    PubMed

    Solomon, Shola Gabriel; Ataguba, Gabriel Arome; Itodo, Gabriel Enemona

    2017-01-01

    Following disparity of earlier results, this study tested the performance of African catfish Clarias gariepinus fed dried brewer's yeast slurry meal (DBYM) based diets. Fingerlings of C. gariepinus with pooled mean initial weight of 1.58 ± 0.01 g were stocked in hapas (1 m × 1 m × 1 m) immersed in an earthen pond at a density of 15 fish per cage. Five diets with increasing substitution of soybean meal with 25%, 50%, 75%, and 100% of dried brewer's yeast and a control without dried brewer's yeast (0% substitution) were evaluated for 8 weeks. Palatability of diets reduced with increasing levels of DBYM. Growth and utilization parameters such as weight gain, feed conversion ratio, protein efficiency ratio, and specific growth rate differed significantly (p < 0.05) among treated groups. Specific growth rate decreased with increasing substitution while the best feed conversion ratio was obtained in the diet devoid of DBYM. Protein efficiency and utilization decreased with increasing levels of DBYM. Body composition was also affected by inclusion of DBYM with significant differences (p < 0.05) being observed across the diets. The trend in body composition follows the utilization of the diets. We conclude that the optimal range of inclusion and substitution of soybean meal with DBYM in C. gariepinus feed is between 1% and 14% of dry matter.

  3. Effects of exercise on L-carnitine and lipid metabolism in African catfish (Clarias gariepinus) fed different dietary L-carnitine and lipid levels.

    PubMed

    Ozorio, Rodrigo O A; Van Ginneken, Vincent J T; Bessa, Rui J B; Verstegen, Martin W A; Verreth, Johan A J; Huisman, Elbertus A

    2010-04-01

    African catfish (Clarias gariepinus) were fed four isonitrogenous diets (34 % crude protein), each containing one of two lipid (100 or 180 g/kg) and two L-carnitine (15 or 1000 mg/kg) levels. After 81 d of feeding, thirty-two fish (body weight 32 g) from each dietary group were randomly selected, sixteen fish were induced to a 3-h swim (speed of 1.5 body length (BL)/s), while the other sixteen fish were kept under resting condition. Fish fed 1000 mg L-carnitine accumulated 3.5 and 5 times more L-carnitine in plasma and muscle, respectively, than fish fed the 15 mg L-carnitine. Muscle L-carnitine content was significantly lower in exercised fish than in rested fish. High dietary lipid level (fish oil) led to an increase in muscle n-3 PUFA content and a decrease in SFA and MUFA content. In liver, the increase in dietary lipid level resulted in an increased levels of both n-6 and n-3 PUFA. L-carnitine supplementation significantly decreased n-3 PUFA content. Exercise decreased n-3 PUFA in both muscle and liver. Plasma lactate and lactate dehydrogenase, normally associated with increased glycolytic processes, were positively correlated with exercise and inversely correlated with dietary L-carnitine level. L-carnitine supplementation reduced significantly the RQ from 0.72 to 0.63, and an interaction between dietary L-carnitine and lipid was observed (P < 0.03). Our results indicate that an increase in fatty acids (FA) intake may promote FA oxidation, and both carnitine and exercise might influence the regulation of FA oxidation selectivity.

  4. Determination of quarantine period in African catfish (Clarias gariepinus) fed with pig (Sus sp.) offal to assure compliance with halal standards.

    PubMed

    Wan Norhana, M N; Dykes, G A; Padilah, B; Ahmad Hazizi, A A; Masazurah, A R

    2012-12-01

    Pig (Sus sp.) and pig by-products are considered as najasa (impurities) in Islam and forbidden in Muslim consumer products. Animals fed on najasa are categorised as al-jallālah (contaminated animals) which are allowed to be consumed as long as they have been quarantined for a certain period of time. During this quarantine period the animals will have undergone a natural purification process or istihālah. African catfish (Clarias gariepinus) are commonly consumed in Malaysia and may be fed on najasa. This study was carried out to estimate the istihālah period for catfish after feeding with pig offal, based on the absence of pig DNA in catfish gut and to suggest the quarantine period in catfish fed with pig offal. The results indicated that the maximum istihālah period could reach 36h in the stomach, 6h in the midgut and less than 2h in the hindgut although in many cases shorter periods were observed. Based on these results it is estimated that the minimum quarantine period for catfish fed with pig offal is 1.5days.

  5. Lipid concentrations of fillets, liver, plasma and lipoproteins of African catfish, Clarias gariepinus (Burchell 1822), fed diets with varying protein concentrations.

    PubMed

    Matter, F; Peganova, S; Eder, K

    2004-08-01

    This study investigated the effect of the dietary protein concentration on lipid concentrations in fillet and liver and concentrations of lipids in plasma and lipoproteins in African catfish. Two experiments were carried out, in which African catfish were fed diets with various protein concentrations. In experiment 1, semisynthetic diets with various concentrations of casein (350, 450 or 550 g protein/kg) were used. In experiment 2, diets were based on a commercial trout diet supplemented with various amounts of casein or carbohydrates, resulting in protein concentrations between 282 and 545 g/kg diet. In both experiments, the dietary protein concentration had a significant effect on growth, feed conversion ratio and carcass composition. Maximum of body weight gains and feed efficiency ratios were reached in both experiments at the highest dietary protein concentrations. Increasing the dietary protein concentration continuously increased masses of fillets and reduced masses of the liver and adipose tissue in the abdominal cavity. Fish fed the diets with the highest protein concentrations had the lowest concentration of total lipids, triglycerides and cholesterol in the fillets, the highest percentage of polyunsaturated fatty acids (PUFA) in total lipids of fillets and the lowest concentrations of saturated fatty acids (SFA). Fish fed the diets with the highest protein concentration also had the lowest concentrations of triglycerides in the liver, the highest percentages of PUFA in liver total lipids and the lowest percentages of SFA. Moreover, fish fed diets with high protein concentrations (501 and 545 g/kg) had significantly lower concentrations of triglycerides, cholesterol and phospholipids in plasma than fish fed diets with lower protein concentrations. In conclusion, this study shows that the dietary protein concentration does not only influence growth, feed efficiency and carcass composition in African catfish, but also influences their lipid metabolism and

  6. African catfish, Clarias gariepinus (Burchell, 1822): an ideal candidate for biowaste management.

    PubMed

    Sambhu, C

    2004-12-01

    Juveniles of African catfish, C. gariepinus were fed with different biowastes procured from various stations viz., slaughter houses, poultry sheds, fish markets, hotel kitchens and ware houses. Maximum growth was obtained in the fishes fed with poultry wastes and minimum in the fishes fed with warehouse waste. Total protein, fat, and dry matter contents were high in poultry and butcher wastes fed fishes. Culture of catfishes in controlled conditions by feeding biowaste is an alternative step to control the prevailing wide spreading culture practices of African catfish, which poses a threat to inland aquatic biodiversity. The present approach is ideal for recycling biowastes to fish protein and to keep our environment clean and hygienic.

  7. Pancreatic functions in high salt fed female rats

    PubMed Central

    Lasheen, Noha N

    2015-01-01

    Salt consumption has been increased worldwide and the association of high salt diets with enhanced inflammation and target organ damage was reported. Little data were available about the effect of high salt diet on exocrine function of pancreas, while the relation between high salt intake and insulin sensitivity was controversial. This study was designed to investigate the effect of high salt diet on exocrine and endocrine pancreatic functions, and to elucidate the possible underlying mechanism(s). Twenty adult female Wistar rats were randomly divided into two groups; control group; fed standard rodent diet containing 0.3% NaCl, and high salt fed group; fed 8% NaCl for 8 weeks. On the day of sacrifice, rats were anesthized by i.p. pentobarbitone (40 μg/kg B.W.). Nasoanal length was measured and fasting blood glucose was determined from rat tail. Blood samples were obtained from abdominal aorta for determination of plasma sodium, potassium, amylase, lipase, aldosterone, insulin, transforming growth factor-β (TGF-β1), and interleukin 6 (IL6). Pancreata of both groups were histologically studied. Compared to control group, 8-week high salt fed group showed: significant elevation in body weight, body mass index, Lee index, plasma sodium, TGF-β1 and IL6, however, plasma aldosterone, amylase, lipase, and insulin levels were significantly decreased. A nonsignificant increase in plasma potassium and nonsignificant changes in fasting blood glucose and HOMA-IR were detected between groups. Pancreatic fibrosis was observed in test group. High salt diet for 8 weeks caused pancreatic fibrosis evidenced by decline of both exocrine and endocrine functions of pancreas in Wistar rats. PMID:26216433

  8. Intermittently-fed high-pressure gasifier process

    DOEpatents

    Bailey, John M.; Zadoks, Abraham L.

    1993-11-30

    An improved gasifier adapted for gasifying a predetermined charge of non-gaseous fuel into fuel gas. Each charge of non-gaseous fuel, which may have optional conditioning materials added to it, is intermittently fed to a gasifier chamber where each charge is partially burned with high-pressure air supplied thereto. High-pressure and temperature fuel gas is produced which is cleansed prior to passing out of the gasifier chamber. After gasification of the charge of fuel is is ended, the gasifier chamber is vented. The residue of the burned charge in the gasifier chamber is removed, along with the contaminated or reacted conditioning materials, and replaced by a fresh charge. The subject invention provides a feasible way of continuously fueling an internal combustion engine with gasified fuel and is compact enough to be practical for even mobile applications.

  9. Intermittently-fed high-pressure gasifier process

    DOEpatents

    Bailey, J.M.; Zadoks, A.L.

    1993-11-30

    An improved gasifier is described which is adapted for gasifying a predetermined charge of non-gaseous fuel into fuel gas. Each charge of non-gaseous fuel, which may have optional conditioning materials added to it, is intermittently fed to a gasifier chamber where each charge is partially burned with high-pressure air supplied thereto. High-pressure and temperature fuel gas is produced which is cleansed prior to passing out of the gasifier chamber. After gasification of the charge of fuel is ended, the gasifier chamber is vented. The residue of the burned charge in the gasifier chamber is removed, along with the contaminated or reacted conditioning materials, and replaced by a fresh charge. The subject invention provides a feasible way of continuously fueling an internal combustion engine with gasified fuel and is compact enough to be practical for even mobile applications. 3 figures.

  10. Are agrochemicals present in high fructose corn syrup fed to honey bees (Apis mellifera L.)?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Honey bee colonies are commonly fed high fructose corn syrup (HFCS) as a nectar substitute. Many agrochemicals are applied to corn during cultivation including systemic neonicotinoids. Whether agrochemicals are present in HFCS fed to bees is unknown. Samples from the major manufacturers and distri...

  11. Exercise Improves Glucose Disposal and Insulin Signaling in Pregnant Mice Fed a High Fat Diet

    PubMed Central

    Carter, Lindsay G; Ngo Tenlep, Sara Y; Woollett, Laura A; Pearson, Kevin J

    2016-01-01

    Objective Physical activity has been suggested as a non-pharmacological intervention that can be used to improve glucose homeostasis in women with gestational diabetes mellitus. The purpose of this study was to determine the effects of voluntary exercise on glucose tolerance and body composition in pregnant high fat diet fed mice. Methods Female mice were put on a standard diet or high fat diet for two weeks. The mice were then split into 4 groups; control standard diet fed, exercise standard diet fed, control high fat diet fed, and exercise high fat diet fed. Exercise mice had voluntary access to a running wheel in their home cage one week prior to mating, during mating, and throughout pregnancy. Glucose tolerance and body composition were measured during pregnancy. Akt levels were quantified in skeletal muscle and adipose tissue isolated from saline or insulin injected pregnant dams as a marker for insulin signaling. Results Consumption of the high fat diet led to significantly increased body weight, fat mass, and impaired glucose tolerance in control mice. However, voluntary running in the high fat diet fed dams significantly reduced weight gain and fat mass and ultimately improved glucose tolerance compared to control high fat diet fed dams. Further, body weight, fat mass, and glucose disposal in exercise high fat diet dams were indistinguishable from control dams fed the standard diet. High fat diet fed exercise dams also had significantly increased insulin stimulated phosphorylated Akt expression in adipose tissue, but not skeletal muscle, compared to control dams on high fat diet. Conclusion The use of voluntary exercise improves glucose homeostasis and body composition in pregnant female mice. Thus, future studies could investigate potential long-term health benefits in offspring born to obese exercising dams. PMID:26966635

  12. Dietary fucoidan enhance the non-specific immune response and disease resistance in African catfish, Clarias gariepinus, immunosuppressed by cadmium chloride.

    PubMed

    El-Boshy, Mohamed; El-Ashram, Ahmed; Risha, Engy; Abdelhamid, Fatma; Zahran, Eman; Gab-Alla, Ali

    2014-12-15

    Fucoidan is sulfated polysaccharide extracted from seaweed brown algae. This study was designed to evaluate the immunomodulatory effects and disease resistance of dietary fucoidan on catfish, Clarias gariepinus, immunosuppressed by cadmium. Three hundred and sixty African catfish, C. gariepinus, was allocated into six equal groups. The first group served as a control. Groups (F1 and F2) were fed on fucoidan supplemented ration at concentrations of 4 and 6g/kg diet respectively for 21 days. Groups (Cd, CdF1 and CdF2) were subjected throughout the experiment to a sub-lethal concentration of 5ppm cadmium chloride solution and groups (CdF1 and CdF2) were fed on a ration supplemented with fucoidan. Macrophages oxidative burst, phagocytic activity percentages and lymphocytes transformation index were a significant increase in the fucoidan-treated groups (F1 and F2), while serum lysozyme, nitric oxide and bactericidal activity were enhanced only in group (F2) when compared with controls. These parameters as well as absolute lymphocyte count and survival rate were significantly increased in group (CdF2) when compared with cadmium chloride immunosuppressed group (Cd). It could be concluded that the fucoidan can be used as immunostimulant for the farmed African catfish, C. gariepinus as it can improve its resistance to immunosuppressive stressful conditions.

  13. Castration influences intestinal microflora and induces abdominal obesity in high-fat diet-fed mice

    PubMed Central

    Harada, Naoki; Hanaoka, Ryo; Horiuchi, Hiroko; Kitakaze, Tomoya; Mitani, Takakazu; Inui, Hiroshi; Yamaji, Ryoichi

    2016-01-01

    Late-onset hypogonadism (i.e. androgen deficiency) raises the risk for abdominal obesity in men. The mechanism for this obesity is unclear. Here, we demonstrated that hypogonadism after castration caused abdominal obesity in high-fat diet (HFD)-fed, but not in standard diet (SD)-fed, C57BL/6J mice. Furthermore, the phenotype was not induced in mice treated with antibiotics that disrupt the intestinal microflora. In HFD-fed mice, castration increased feed efficiency and decreased fecal weight per food intake. Castration also induced in an increase of visceral fat mass only in the absence of antibiotics in HFD-fed mice, whereas subcutaneous fat mass was increased by castration irrespective of antibiotics. Castration reduced the expression in the mesenteric fat of both adipose triglyceride lipase and hormone-sensitive lipase in HFD-fed mice, which was not observed in the presence of antibiotics. Castration decreased thigh muscle (i.e. quadriceps and hamstrings) mass, elevated fasting blood glucose levels, and increased liver triglyceride levels in a HFD-dependent manner, whereas these changes were not observed in castrated mice treated with antibiotics. The Firmicutes/Bacteroidetes ratio and Lactobacillus species increased in the feces of HFD-fed castrated mice. These results show that androgen (e.g. testosterone) deficiency can alter the intestinal microbiome and induce abdominal obesity in a diet-dependent manner. PMID:26961573

  14. Effect of magnesium deficiency on lipid metabolism in rats fed a high carbohydrate diet.

    PubMed

    Rayssiguier, Y; Gueux, E; Weiser, D

    1981-11-01

    The effects of acute magnesium deficiency on lipid metabolism were examined in weaning rats fed a high carbohydrate diet containing starch or sucrose for 8 days. Rats were killed after the feeding period. In plasma, magnesium deficiency increased triglyceride and free cholesterol levels and decreased esterified cholesterol levels. Rats fed a magnesium-deficient diet containing sucrose showed particularly high triglyceride plasma levels. In liver, magnesium-deficient rats fed sucrose showed a significant increase in triglycerides, lactate and alpha-glycerophosphate and a significant decrease in glycogen. Changes in triglycerides and glycogen in the liver of magnesium-deficient rats fed starch were not significant. In sucrose-fed rats, serum lipoproteins were isolated by ultracentrifugation. With magnesium deficiency, triglycerides were significantly increased in the very low density lipoprotein (VLDL) and low density lipoprotein (LDL) fractions and cholesterol levels were increased in the VLDL and LDL and significantly lower in the high density lipoprotein (HDL) fractions. The detrimental effect of severe magnesium deficiency associated particularly with a high carbohydrate diet content and more especially with a sucrose diet is discussed.

  15. Super-chilling (-0.7°C) with high-CO2 packaging inhibits biochemical changes of microbial origin in catfish (Clarias gariepinus) muscle during storage.

    PubMed

    Zhu, Yingchun; Ma, Lizhen; Yang, Hua; Xiao, Yan; Xiong, Youling L

    2016-09-01

    Controlled freezing-point storage (CFPS) is an emerging preservative technique desirable for fish. In the present study, catfish fillets were stored at -0.7°C under different packaging atmospheres: air (AP), vacuum (VP), and 60% CO2/40% N2 (MAP). Chemical, microbiological, and sensory analyses were performed during storage. Results showed the following descending order of chemical changes (degradation of nucleotides, conversion of protein to volatile-based nitrogen and biogenic amines, and production of trimethylamine nitrogen), as well as loss of sensory properties: 4°C AP>-0.7°C AP≈4°C VP>-0.7°C VP≈4°C MAP>-0.7°C MAP. The chemical changes were well-correlated with microbial growth suggesting the microbiological pathways. Hence, CFPS at -0.7°C in combination with high-CO2 MAP can effectively maintain the quality of fresh catfish meat compared to traditional preservation methods.

  16. Dietary trimethylamine N-oxide exacerbates impaired glucose tolerance in mice fed a high fat diet.

    PubMed

    Gao, Xiang; Liu, Xiaofang; Xu, Jie; Xue, Changhu; Xue, Yong; Wang, Yuming

    2014-10-01

    Trimethylamine N-oxide (TMAO) is an oxidation product of trimethylamine (TMA) and is present in many aquatic foods. Here, we investigated the effects of TMAO on glucose tolerance in high fat diet (HFD)-fed mice. Male C57BL/6 mice were randomly assigned to the control, high fat (HF), and TMAO groups. The HF group was fed a diet containing 25% fat, and the TMAO group was fed the HFD plus 0.2% TMAO for 4 weeks. After 3 weeks of feeding, oral glucose tolerance tests were performed. Dietary TMAO increased fasting insulin levels and homeostasis model assessment-estimated insulin resistance (HOMA-IR) and exacerbated the impaired glucose tolerance in HFD-fed mice. These effects were associated with the expression of genes related to the insulin signal pathway, glycogen synthesis, gluconeogenesis and glucose transport in liver. mRNA levels of the pro-inflammatory cytokine MCP-1 increased significantly and of the anti-inflammatory cytokine IL-10 greatly decreased in adipose tissue. Our results suggest that dietary TMAO exacerbates impaired glucose tolerance, obstructs the hepatic insulin signaling pathway, and causes adipose tissue inflammation in mice fed a high fat diet.

  17. Time-restricted feeding reduces adiposity in mice fed a high-fat diet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Disruption of the circadian rhythm contributes to obesity. The present study investigated the effects of time-restricted feeding (TRF) of a high-fat diet on adiposity in male C57BL/6 mice. Three-week-old mice were fed a low-fat or high-fat diet (16% or 45% of energy from corn oil) ad libitum (ad l...

  18. Blueberry intervention improves vascular reactivity and lowers blood pressure in high-fat-, high-cholesterol-fed rats.

    PubMed

    Rodriguez-Mateos, Ana; Ishisaka, Akari; Mawatari, Kazuaki; Vidal-Diez, Alberto; Spencer, Jeremy P E; Terao, Junji

    2013-05-28

    Growing evidence suggests that intake of flavonoid-containing foods may exert cardiovascular benefits in human subjects. We have investigated the effects of a 10-week blueberry (BB) supplementation on blood pressure (BP) and vascular reactivity in rats fed a high-fat/high-cholesterol diet, known to induce endothelial dysfunction. Rats were randomly assigned to follow a control chow diet, a chow diet supplemented with 2 % (w/w) BB, a high-fat diet (10 % lard; 0·5 % cholesterol) or the high fat plus BB for 10 weeks. Rats supplemented with BB showed significant reductions in systolic BP (SBP) of 11 and 14 %, at weeks 8 and 10, respectively, relative to rats fed the control chow diet (week 8 SBP: 107·5 (SEM 4·7) v. 122·2 (SEM 2·1) mmHg, P= 0·018; week 10 SBP: 115·0 (SEM 3·1) v. 132·7 (SEM 1·5) mmHg, P< 0·0001). Furthermore, SBP was reduced by 14 % in rats fed with the high fat plus 2 % BB diet at week 10, compared to those on the high-fat diet only (SBP: 118·2 (SEM 3·6) v. 139·5 (SEM 4·5) mmHg, P< 0·0001). Aortas harvested from BB-fed animals exhibited significantly reduced contractile responses (to L-phenylephrine) compared to those fed the control chow or high-fat diets. Furthermore, in rats fed with high fat supplemented with BB, aorta relaxation was significantly greater in response to acetylcholine compared to animals fed with the fat diet. These data suggest that BB consumption can lower BP and improve endothelial dysfunction induced by a high fat, high cholesterol containing diet.

  19. Decreased reproductive rates in sheep fed a high selenium diet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High Se-containing forages grow on seleniferous soils in many parts of the United States and throughout the world. Selenium is an essential trace element that is required for many physiological processes but can also be either acutely or chronically toxic to livestock. Anecdotal reports of decrease...

  20. Virgin coconut oil maintains redox status and improves glycemic conditions in high fructose fed rats.

    PubMed

    Narayanankutty, Arunaksharan; Mukesh, Reshma K; Ayoob, Shabna K; Ramavarma, Smitha K; Suseela, Indu M; Manalil, Jeksy J; Kuzhivelil, Balu T; Raghavamenon, Achuthan C

    2016-01-01

    Virgin Coconut Oil (VCO), extracted from fresh coconut kernel possess similar fatty acid composition to that of Copra Oil (CO), a product of dried kernel. Although CO forms the predominant dietary constituent in south India, VCO is being promoted for healthy life due to its constituent antioxidant molecules. High fructose containing CO is an established model for insulin resistance and steatohepatitis in rodents. In this study, replacement of CO with VCO in high fructose diet markedly improved the glucose metabolism and dyslipidemia. The animals fed VCO diet had only 17 % increase in blood glucose level compared to CO fed animals (46 %). Increased level of GSH and antioxidant enzyme activities in VCO fed rats indicate improved hepatic redox status. Reduced lipid peroxidation and carbonyl adducts in VCO fed rats well corroborate with the histopathological findings that hepatic damage and steatosis were comparatively reduced than the CO fed animals. These results suggest that VCO could be an efficient nutraceutical in preventing the development of diet induced insulin resistance and associated complications possibly through its antioxidant efficacy.

  1. Effects of adrenalectomy on energy balance in obese (ob/ob) mice fed high carbohydrate or high fat diets.

    PubMed

    Grogan, C K; Kim, H K; Romsos, D R

    1987-06-01

    We reported previously that adrenalectomy reduced the energy density of body weight gain (an indicator of proportional gain in lean and fat tissue) and the efficiency of energy retention in obese (ob/ob) mice to values approximating those in lean mice, but that adrenalectomy had much less influence on these parameters in ob/ob mice fed a purified high fat diet. To determine if fat was the exclusive factor in the purified high fat diet that negated effects of adrenalectomy, ob/ob mice were fed a purified high carbohydrate (glucose) diet identical in composition to the high fat diet, except for the fat/carbohydrate ratio. Responses of adrenalectomized ob/ob mice fed the purified high glucose diet from 4 to 7 wk of age mimicked those of mice fed the purified high fat diet, not those of mice fed the high carbohydrate nonpurified diet. Plasma glucose responses to a glucose load in adrenalectomized ob/ob mice paralleled the diet-dependent changes in energy balance. These results demonstrate that diet composition interacts with adrenal secretions to influence energy and glucose metabolism in ob/ob mice; consumption of either a purified high glucose or high fat diet negates the beneficial effects of adrenalectomy on energy and glucose metabolism observed when adrenalectomized ob/ob mice consume a nonpurified diet.

  2. Thiamine status of feedlot cattle fed a high-concentrate diet.

    PubMed

    Karapinar, Tolga; Dabak, Murat; Kizil, Omer

    2010-11-01

    As thiamine status of ruminants is adversely affected by rumen acidity, this study investigated whether or not thiamine deficiency occurs in feedlot cattle fed a high concentrate diet. Fifty 1- to 2-year-old feedlot cattle fed a high concentrate diet (75% barley) for at least 3 mo (high concentrate diet group) and 15 healthy feedlot cattle of similar ages (control group) that were fed a low concentrate diet (30% barley) were used. Rumen fluid samples were obtained by rumenocentesis and their pH was determined with a portable pH meter. Blood samples taken from all animals from a jugular vein were used to determine erythrocyte transketolase enzyme activity, and hence thiamine pyrophosphate (TPP) effect. Odor and mean pH values of ruminal fluid samples from the high concentrate diet and control group were acidic (pH 5.3) and aromatic (pH 6.1), respectively. The mean TPP effect % in the high concentrate diet group (47.2 ± 3.2) was significantly higher than in the control group (19.53 ± 2.5) (P < 0.001). The study provides evidence of a TPP effect in feedlot cattle fed a high concentrate diet.

  3. Boron enhances strength and alters mineral composition of bone in rabbits fed a high energy diet.

    PubMed

    Hakki, Sema S; Dundar, Niyazi; Kayis, Seyit Ali; Hakki, Erdogan E; Hamurcu, Mehmet; Kerimoglu, Ulku; Baspinar, Nuri; Basoglu, Abdullah; Nielsen, Forrest H

    2013-04-01

    An experiment was performed to determine whether boron had a beneficial effect on bone strength and composition in rabbits with apparent adiposity induced by a high energy diet. Sixty female New Zealand rabbits, aged 8 months, were randomly divided into five groups with the following treatments for seven months: control 1, fed alfalfa hay only (5.91 MJ/kg); control 2, high energy diet (11.76 MJ and 3.88 mg boron/kg); B10, high energy diet+10 mg/kg body weight boron gavage/96 h; B30, high energy diet+30 mg/kg body weight boron gavage/96 h; B50, high energy diet+50mg/kg body weight boron gavage/96 h. Bone boron concentrations were lowest in rabbits fed the high energy diet without boron supplementation, which suggested an inferior boron status. Femur maximum breaking force was highest in the B50 rabbits. Tibia compression strength was highest in B30 and B50 rabbits. All boron treatments significantly increased calcium and magnesium concentrations, and the B30 and B50 treatments increased the phosphorus concentration in tibia of rabbits fed the high energy diet. The B30 treatment significantly increased calcium, phosphorus and magnesium concentrations in femur of rabbits fed the high energy diet. Principal component analysis of the tibia minerals showed that the three boron treatments formed a separate cluster from controls. Discriminant analysis suggested that the concentrations of the minerals in femur could predict boron treatment. The findings indicate boron has beneficial effects on bone strength and mineral composition in rabbits fed a high energy diet.

  4. Inhibition by dietary D-psicose of body fat accumulation in adult rats fed a high-sucrose diet.

    PubMed

    Ochiai, Masaru; Nakanishi, Yosuke; Yamada, Takako; Iida, Tetsuo; Matsuo, Tatsuhiro

    2013-01-01

    We investigated the anti-obesity effects of dietary D-psicose on adult rats fed a high-sucrose diet. Wistar rats (16 weeks old) that had previously been fed a high-sucrose diet (HSD) were fed HSD or a high-starch diet (HTD) with or without 5% D-psicose for 8 weeks. The food efficiency, carcass fat percentage, abdominal fat accumulation, and body weight gain were all significantly suppressed by dietary D-psicose.

  5. Toxicity of the pyrethroid pesticide fenvalerate to freshwater catfish Clarias gariepinus: lethality, biochemical effects and role of dietary ascorbic acid.

    PubMed

    Bhattacharya, Madhuban; Kaviraj, Anilava

    2009-08-01

    Static bioassays were made in the laboratory to determine lethal concentration of the pyrethroid pesticide fenvalerate [(RS)-alpha-cyano-3-phenoxybenzyl (RS)-2-(4-chlorophenyl)-3-methylbutyrate] for the freshwater catfish Clarias gariepinus and effects of sublethal concentrations of the pesticide on some biochemical parameters of the fish. For exposure periods of 24 to 96 h, LC(50) values of fenvalerate ranged from 5.83-4.76 micro g/L and 4.24-2.94 micro g/L, respectively for water and acetone soluble fenvalerate. Two sublethal concentrations of fenvalerate were used in the bioassays for biochemical parameters: 2.1 micro g/L for 24 h and 1.4 micro g/L for 96 h exposure, both concentrations representing 50% of LC(50) value of acetone soluble fenvalerate for the respective exposure period. Hepatosomatic index, liver glycogen, alkaline phosphatase of liver and ascorbic acid of blood, liver, and kidney decreased while haemoglobin (Hb) %, plasma glucose levels and acid phosphatase level of liver increased after 24 h exposure to 2.1 micro g/L fenvalerate. Longer exposure (96 h) to even a lower concentration (1.4 micro g/L) of fenvalerate resulted in reduction of all the parameters (except Hb %) tested as compared with control. Fish previously fed for 60 days with a diet supplemented by a high level of ascorbic acid (100 mg/100 g diet) could reverse most of the effects caused by 24 h exposure to 2.1 micro g/L fenvalerate. A lower level of ascorbic acid (50 mg/ 100 g diet) supplement could not influence these effects of fenvalerate. Even the higher dose of ascorbic acid supplementation (100 mg/100 g diet) could not relieve the stress parameters, except for Hb% and HSI, when the pesticide was applied at 1.4 micro g/L for a longer time period (96 h).

  6. Follow up of Treatment of Cadmium and Copper Toxicity in Clarias Gariepinus Using Laser Techniques

    NASA Astrophysics Data System (ADS)

    Zaghloul, Khalid H.; Ali, Maha F.; El-Bary, Manal G. Abd; Abd El-Harith, Mohamed

    2010-04-01

    Two purified diets were formulated and fed to seven groups of the Nile catfish; Clarias gariepinus for 12 weeks. The formulated diets contained 50 or 500 mg/kg diet of an ascorbic acid equivalent, supplied by L-ascorbyl-2-monophosphate (Mg salt). Laser induced breakdown spectroscopy (LIDS) technique has been used to characterize the bioaccumulation of cadmium, copper and iron in some selected organs (Gills, liver, kidney and muscles) and disturbance in the distribution of sodium, calcium and magnesium in gills and muscles of fish fed the minimum requirement of vitamin C (50 mg/kg diet) and exposed to cadmium (0.165 mg/l) and copper (0.35 mg/l) individually or in combination. Heavy metals bioaccumulation affect histological structure of gills, liver and kidney and consequently, fish exhibited the lowest growth rate and meat quality with a progressive fall in RBCs count, Hb content and haematocrite value. These effects were concomitant with significant increase in the WBCs count, serum glucose, total protein, AST, ALT, creatinine and uric acid. On the contrary, serum total lipids and liver glycogen revealed a significant decrease. However, fish fed 500 mg vitamin C/kg diet and exposed to the same concentrations of cadmium and copper either individually or in mixture showed an improvement in the growth rate and meat quality and a tendency to exhibit close to the control values for most of the other studied physiological, biochemical and histopathological investigations.

  7. Lipid Lowering Effect of Punica granatum L. Peel in High Lipid Diet Fed Male Rats

    PubMed Central

    Sadeghipour, Alireza; Ilchizadeh Kavgani, Ali; Ghahramani, Reza; Shahabzadeh, Saleh; Anissian, Ali

    2014-01-01

    Many herbal medicines have been recommended for the treatment of dyslipidemia. The antilipidemic effect of hydroethanolic extract of pomegranate peel (Punica granatum L.) was investigated in high lipid diet fed male rats. Intraperitoneally administration of pomegranate peel extract (50, 100, 200, and 300 mg/kg body weight) for 23 days on the levels of serum cholesterol, triglycerides, LDL, HDL, alkaline phosphatase (AP), aspartate aminotransferase (AST), and alanine aminotransferase (ALT) in high lipid diet fed male rats was evaluated. Treatment of pomegranate extract decreased body weight in treated rats, significantly. Administration of the plant extract significantly decreased serum total cholesterol, triglycerides, LDL-C, alkaline phosphatise, AST, and ALT levels, whereas it increased serum HDL-C in high lipid diet fed rats in comparison to saline control group. Also, histopathological study showed that treatment of pomegranate peel extract attenuates liver damage in high lipid diet fed rats in comparison to saline group. It is concluded that the plant should be considered as an excellent candidate for future studies on dyslipidemia. PMID:25295067

  8. Time-restricted feeding reduces adiposity in mice fed a high-fat diet.

    PubMed

    Sundaram, Sneha; Yan, Lin

    2016-06-01

    Disruption of the circadian rhythm contributes to obesity. This study tested the hypothesis that time-restricted feeding (TRF) reduces high-fat diet-induced increase in adiposity. Male C57BL/6 mice were fed the AIN93G or the high-fat diet ad libitum (ad lib); TRF of the high-fat diet for 12 or 8hours during the dark cycle was initiated when high-fat diet-fed mice exhibited significant increases in body weight. Energy intake of the TRF 12-hour group was not different from that of the high-fat ad lib group, although that of the TRF 8-hour group was slightly but significantly lower. Restricted feeding of the high-fat diet reduced body fat mass and body weight compared with mice fed the high-fat diet ad lib. There were no differences in respiratory exchange ratio (RER) among TRF and high-fat ad lib groups, but the RER of these groups was lower than that of the AIN93G group. Energy expenditure of the TRF groups was slightly but significantly lower than that of the high-fat ad lib group. Plasma concentrations of ghrelin were increased in TRF groups compared with both AIN93G and high-fat ad lib groups. Elevations of plasma concentrations of insulin, leptin, monocyte chemoattractant protein-1, and tissue inhibitor metalloproteinase-1 by high-fat ad lib feeding were reduced by TRF to the levels of mice fed the AIN93G diet. In conclusion, TRF during the dark cycle reduces high-fat diet-induced increases in adiposity and proinflammatory cytokines. These results indicate that circadian timing of food intake may prevent obesity and abate obesity-related metabolic disturbance.

  9. Growth and antioxidant status of broilers fed supplemental lysine and pyridoxine under high ambient temperature

    PubMed Central

    Khakpour Irani, Farzaneh; Daneshyar, Mohsen; Najafi, Ramin

    2015-01-01

    Three levels of lysine (90, 100 and 110% of Ross requirement) and of pyridoxine (3, 6 and 9 mg kg-1) were used in a 3 × 3 factorial experiment to investigate the growth and blood antioxidant ability of broilers under high ambient temperature. None of the dietary supplements affected the weight gain during the starter and grower periods. Although no significant differences were detected between the treatments during the entire period, high lysine level fed birds had a lower weight gain. At any levels of pyridoxine, high lysine fed birds were lighter than others. Neither the lysine nor pyridoxine changed the feed intake or feed conversion ratio during the starter, grower and entire period. However there was no significant difference between the treatments for blood malondialdehyde (MDA) concentration, medium lysine fed birds had lower blood MDA than other ones. No significant effects on blood triglyceride, total protein and blood superoxide dismutase activity were indicated with addition of any lysine or pyridoxine level. Medium lysine fed birds had decreased blood glutathione peroxidase activity compared to the birds of other treatments. It was concluded that providing the proposed dietary lysine requirement of Ross strain during heat stress ensuring the best body weight gain and body antioxidant ability. Higher lysine level causes the retarded weight gain due to higher excretion of arginine from the body and consequently higher lipid peroxidation. PMID:26261713

  10. High Performance Variable Speed Drive System and Generating System with Doubly Fed Machines

    NASA Astrophysics Data System (ADS)

    Tang, Yifan

    Doubly fed machines are another alternative for variable speed drive systems. The doubly fed machines, including doubly fed induction machine, self-cascaded induction machine and doubly excited brushless reluctance machine, have several attractive advantages for variable speed drive applications, the most important one being the significant cost reduction with a reduced power converter rating. With a better understanding, improved machine design, flexible power converters and innovated controllers, the doubly fed machines could favorably compete for many applications, which may also include variable speed power generations. The goal of this research is to enhance the attractiveness of the doubly fed machines for both variable speed drive and variable speed generator applications. Recognizing that wind power is one of the favorable clean, renewable energy sources that can contribute to the solution to the energy and environment dilemma, a novel variable-speed constant-frequency wind power generating system is proposed. By variable speed operation, energy capturing capability of the wind turbine is improved. The improvement can be further enhanced by effectively utilizing the doubly excited brushless reluctance machine in slip power recovery configuration. For the doubly fed machines, a stator flux two -axis dynamic model is established, based on which a flexible active and reactive power control strategy can be developed. High performance operation of the drive and generating systems is obtained through advanced control methods, including stator field orientation control, fuzzy logic control and adaptive fuzzy control. System studies are pursued through unified modeling, computer simulation, stability analysis and power flow analysis of the complete drive system or generating system with the machine, the converter and the control. Laboratory implementations and tested results with a digital signal processor system are also presented.

  11. Parasite fauna of farmed Nile tilapia (Oreochromis niloticus) and African catfish (Clarias gariepinus) in Uganda.

    PubMed

    Akoll, Peter; Konecny, Robert; Mwanja, Wilson W; Nattabi, Juliet K; Agoe, Catherine; Schiemer, Fritz

    2012-01-01

    An intensive parasite survey was conducted in 2008 to better understand the parasite fauna occurrence, distribution and diversity in the commercial aquaculture fish species in Uganda. A total of 265 fish collected from hatcheries and grow-out systems were examined for parasites using routine parasitological techniques. The survey yielded 17 parasite species: 11 from Oreochromis niloticus and ten from Clarias gariepinus. Four parasites-Amirthalingamia macracantha, Monobothrioides sp., Zoogonoides sp. and a member of the family Amphilinidae-were recorded for the first time in the country. The parasite diversity was similar between hosts; however, O. niloticus was dominated by free-living stage-transmitted parasites in lower numbers, whereas both trophically and free-living stage-transmitted parasites were equally represented in C. gariepinus in relatively high intensities. The patterns in parasite numbers and composition in the two hosts reflect differences in fish habitat use and diet. A shift in parasite composition from monoxenous species-dominated communities in small-sized fish to heteroxenous in large fishes was recorded in both hosts. This was linked to ontogenetic feeding changes and prolonged exposure to parasites. Polyculture systems showed no effect on parasite intensity and composition. The gills were highly parasitized, mainly by protozoans and monogeneans. Generally, the occurrence and diversity of parasites in these fish species highlight the likelihood of disease outbreak in the proposed intensive aquaculture systems. This calls for raising awareness in fish health management among potential farmers, service providers and researchers.

  12. Fed-Batch Enzymatic Saccharification of High Solids Pretreated Lignocellulose for Obtaining High Titers and High Yields of Glucose.

    PubMed

    Jung, Young Hoon; Park, Hyun Min; Kim, Dong Hyun; Yang, Jungwoo; Kim, Kyoung Heon

    2017-01-11

    To reduce the distillation costs of cellulosic ethanol, it is necessary to produce high sugar titers in the enzymatic saccharification step. To obtain high sugar titers, high biomass loadings of lignocellulose are necessary. In this study, to overcome the low saccharification yields and the low operability of high biomass loadings, a fed-batch saccharification process was developed using an enzyme reactor that was designed and built in-house. After optimizing the cellulase and biomass feeding profiles and the agitation speed, 132.6 g/L glucose and 76.0% theoretical maximum glucose were obtained from the 60 h saccharification of maleic acid-pretreated rice straw at a 30% (w/v) solids loading with 15 filter paper units (FPU) of Cellic CTec2/g glucan. This study demonstrated that through the proper optimization of fed-batch saccharification, both high sugar titers and high saccharification yields are possible, even with using the high solids loading (i.e., ≥30%) with the moderate enzyme loading (i.e., <15 FPU/g glucan). These results could be contributed to improving economic feasibility of the high solids saccharification process in cellulosic fuel and chemical production.

  13. Ameliorative effects of boron on serum profile in buffalo (Bubalus bubalis) fed high fluoride ration.

    PubMed

    Bharti, Vijay K; Gupta, Meenakshi; Lall, D

    2008-02-01

    An experiment was undertaken to evaluate the protective role of boron on the serum profile of buffalo calves fed a high fluoride ration. Twelve male Murrah buffalo (Bubalus bubalis) calves of 6-8 months age, divided into three groups of four calves in each, were fed basal diets and supplemented with sodium fluoride (NaF, 60 ppm) alone or in combination with borax (Na2B4O7.10H2O, 140 ppm) for 90 days. Boron (B) was added in the ration as borax to make @140 ppm boron (elemental B) on DM basis in treatment II. Dietary F caused a significant (p<0.05) depressing effect on serum Ca and Zn on day 90 which was improved with B supplementation. However, serum Fe and Cu did not show any significant change on F or F+B supplementation. The serum ALP and phosphorus level were increased significantly (p<0.05) on F feeding but declined significantly (p<0.05) when B was fed. The findings suggested beneficial effect of boron on serum minerals and ALP in buffalo calves fed high fluoride ration.

  14. CCK(1) receptor is essential for normal meal patterning in mice fed high fat diet.

    PubMed

    Donovan, Michael J; Paulino, Gabriel; Raybould, Helen E

    2007-12-05

    Cholecystokinin (CCK), released by lipid in the intestine, initiates satiety by acting at cholecystokinin type 1 receptors (CCK(1)Rs) located on vagal afferent nerve terminals located in the wall of the gastrointestinal tract. In the present study, we determined the role of the CCK(1)R in the short term effects of a high fat diet on daily food intake and meal patterns using mice in which the CCK(1)R gene is deleted. CCK(1)R(-/-) and CCK(1)R(+/+) mice were fed isocaloric high fat (HF) or low fat (LF) diets ad libitum for 18 h each day and meal size, meal frequency, intermeal interval, and meal duration were determined. Daily food intake was unaltered by diet in the CCK(1)R(-/-) compared to CCK(1)R(+/+) mice. However, meal size was larger in the CCK(1)R(-/-) mice compared to CCK(1)R(+/+) mice when fed a HF diet, with a concomitant decrease in meal frequency. Meal duration was increased in mice fed HF diet regardless of phenotype. In addition, CCK(1)R(-/-) mice fed a HF diet had a 75% decrease in the time to 1st meal compared to CCK(1)R(+/+) mice following a 6 h fast. These data suggest that lack of the CCK(1)R results in diminished satiation, causing altered meal patterns including larger, less frequent meals when fed a high fat diet. These results suggest that the CCK(1)R is involved in regulating caloric intake on a meal to meal basis, but that other factors are responsible for regulation of daily food intake.

  15. Influence of Mining Pollution on Metal Bioaccumulation and Biomarker Responses in Cave Dwelling Fish, Clarias gariepinus.

    PubMed

    du Preez, Gerhard; Wepener, Victor

    2016-07-01

    Cave ecosystems remain largely unstudied and risk being severely degraded as a result of anthropogenic activities. The Wonderfontein Cave, situated in the extensive gold mining region of the Witwatersrand Basin, is one such system that hosts a population of Clarias gariepinus, which is exposed to the influx of polluted mine water from the Wonderfontein Spruit River. The aim of this study was to investigate the bioaccumulation of metals, as well as relevant biomarkers, in C. gariepinus specimens sampled from the Wonderfontein Cave during high (April 2013) and low (September 2013) flow surveys. Results were also compared to a surface population associated with the Wonderfontein Spruit River. There were temporal differences in metal bioaccumulation patterns and this was attributed to the lack of dilution during the low flow period. Metals associated with acid mine drainage, i.e. Co, Mn and Zn were significantly higher in the Wonderfontein Cave population and were reflected in an increase in oxidative stress biomarkers (catalase, protein carbonyls and superoxide dismutase) and the induction of metallothionein, a biomarker of metal exposure. The surface population was exposed to metals associated with geological weathering processes, i.e. Fe and Al.

  16. Assessment of Water Quality in Asa River (Nigeria) and Its Indigenous Clarias gariepinus Fish

    PubMed Central

    Kolawole, Olatunji M.; Ajayi, Kolawole T.; Olayemi, Albert B.; Okoh, Anthony I.

    2011-01-01

    Water is a valued natural resource for the existence of all living organisms. Management of the quality of this precious resource is, therefore, of special importance. In this study river water samples were collected and analysed for physicochemical and bacteriological evaluation of pollution in the Unity Road stream segment of Asa River in Ilorin, Nigeria. Juvenile samples of Clarias gariepinus fish were also collected from the experimental Asa River and from the control Asa Dam water and were analysed for comparative histological investigations and bacterial density in the liver and intestine in order to evaluate the impact of pollution on the aquatic biota. The water pH was found to range from 6.32 to 6.43 with a mean temperature range of 24.3 to 25.8 °C. Other physicochemical parameters monitored including total suspended solids, total dissolved solids, biochemical oxygen demand and chemical oxygen demand values exceeded the recommended level for surface water quality. Results of bacteriological analyses including total heterotrophic count, total coliform and thermotolerant coliform counts revealed a high level of faecal pollution of the river. Histological investigations revealed no significant alterations in tissue structure, but a notable comparative distinction of higher bacterial density in the intestine and liver tissues of Clarias gariepinus from Asa River than in those collected from the control. It was inferred that the downstream Asa River is polluted and its aquatic biota is bacteriologically contaminated and unsafe for human and animal consumption. PMID:22163210

  17. Assessment of water quality in Asa River (Nigeria) and its indigenous Clarias gariepinus fish.

    PubMed

    Kolawole, Olatunji M; Ajayi, Kolawole T; Olayemi, Albert B; Okoh, Anthony I

    2011-11-01

    Water is a valued natural resource for the existence of all living organisms. Management of the quality of this precious resource is, therefore, of special importance. In this study river water samples were collected and analysed for physicochemical and bacteriological evaluation of pollution in the Unity Road stream segment of Asa River in Ilorin, Nigeria. Juvenile samples of Clarias gariepinus fish were also collected from the experimental Asa River and from the control Asa Dam water and were analysed for comparative histological investigations and bacterial density in the liver and intestine in order to evaluate the impact of pollution on the aquatic biota. The water pH was found to range from 6.32 to 6.43 with a mean temperature range of 24.3 to 25.8 °C. Other physicochemical parameters monitored including total suspended solids, total dissolved solids, biochemical oxygen demand and chemical oxygen demand values exceeded the recommended level for surface water quality. Results of bacteriological analyses including total heterotrophic count, total coliform and thermotolerant coliform counts revealed a high level of faecal pollution of the river. Histological investigations revealed no significant alterations in tissue structure, but a notable comparative distinction of higher bacterial density in the intestine and liver tissues of Clarias gariepinus from Asa River than in those collected from the control. It was inferred that the downstream Asa River is polluted and its aquatic biota is bacteriologically contaminated and unsafe for human and animal consumption.

  18. Metabolic risk factors in mice divergently selected for BMR fed high fat and high carb diets

    PubMed Central

    Sadowska, Julita; Gębczyński, Andrzej K.; Konarzewski, Marek

    2017-01-01

    Factors affecting contribution of spontaneous physical activity (SPA; activity associated with everyday tasks) to energy balance of humans are not well understood, as it is not clear whether low activity is related to dietary habits, precedes obesity or is a result of thereof. In particular, human studies on SPA and basal metabolic rates (BMR, accounting for >50% of human energy budget) and their associations with diet composition, metabolic thrift and obesity are equivocal. To clarify these ambiguities we used a unique animal model—mice selected for divergent BMR rates (the H-BMR and L-BMR line type) presenting a 50% between-line type difference in the primary selected trait. Males of each line type were divided into three groups and fed either a high fat, high carb or a control diet. They then spent 4 months in individual cages under conditions emulating human “sedentary lifestyle”, with SPA followed every month and measurements of metabolic risk indicators (body fat mass %, blood lipid profile, fasting blood glucose levels and oxidative damage in the livers, kidneys and hearts) taken at the end of study. Mice with genetically determined high BMR assimilated more energy and had higher SPA irrespective of type of diet. H-BMR individuals were characterized by lower dry body fat mass %, better lipid profile and lower fasting blood glucose levels, but higher oxidative damage in the livers and hearts. Genetically determined high BMR may be a protective factor against diet-induced obesity and most of the metabolic syndrome indicators. Elevated spontaneous activity is correlated with high BMR, and constitutes an important factor affecting individual capability to sustain energy balance even under energy dense diets. PMID:28235091

  19. Metabolic risk factors in mice divergently selected for BMR fed high fat and high carb diets.

    PubMed

    Sadowska, Julita; Gębczyński, Andrzej K; Konarzewski, Marek

    2017-01-01

    Factors affecting contribution of spontaneous physical activity (SPA; activity associated with everyday tasks) to energy balance of humans are not well understood, as it is not clear whether low activity is related to dietary habits, precedes obesity or is a result of thereof. In particular, human studies on SPA and basal metabolic rates (BMR, accounting for >50% of human energy budget) and their associations with diet composition, metabolic thrift and obesity are equivocal. To clarify these ambiguities we used a unique animal model-mice selected for divergent BMR rates (the H-BMR and L-BMR line type) presenting a 50% between-line type difference in the primary selected trait. Males of each line type were divided into three groups and fed either a high fat, high carb or a control diet. They then spent 4 months in individual cages under conditions emulating human "sedentary lifestyle", with SPA followed every month and measurements of metabolic risk indicators (body fat mass %, blood lipid profile, fasting blood glucose levels and oxidative damage in the livers, kidneys and hearts) taken at the end of study. Mice with genetically determined high BMR assimilated more energy and had higher SPA irrespective of type of diet. H-BMR individuals were characterized by lower dry body fat mass %, better lipid profile and lower fasting blood glucose levels, but higher oxidative damage in the livers and hearts. Genetically determined high BMR may be a protective factor against diet-induced obesity and most of the metabolic syndrome indicators. Elevated spontaneous activity is correlated with high BMR, and constitutes an important factor affecting individual capability to sustain energy balance even under energy dense diets.

  20. 75 FR 70289 - Certain Coated Paper Suitable For High-Quality Print Graphics Using Sheet-Fed Presses From China...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-17

    ... COMMISSION Certain Coated Paper Suitable For High-Quality Print Graphics Using Sheet-Fed Presses From China... coated paper suitable for high-quality print graphics using sheet-fed presses (``certain coated paper... Tariff Schedule of the United States, that the U.S. Department of Commerce has determined...

  1. Alteration of Loperamide-Induced Prostate Relaxation in High-Fat Diet-Fed Rats

    PubMed Central

    Hsu, Sheng-Lung; Chung, Hsien-Hui; Chen, I-Hung; Tong, Yat-Ching

    2014-01-01

    Objective. To investigate the change of loperamide-induced prostate relaxation in rats fed with high-fat diet (HFD). Materials and Methods. Adult male Wistar rats were divided into 2 groups: (1) control rats fed with normal chow and (2) rats fed with HFD for 6 months. The prostate was removed for histology study. Isolated prostate strips were hung in organ bath and precontracted with 1 μmol/L phenylephrine or 50 mmol/L KCl. The relaxation responses to loperamide 0.1 to 10 μmol/L were recorded. Western blotting analyses were performed for prostate μ-opioid receptors (MOR) and ATP-sensitive potassium (KATP) channel proteins: sulfonylurea receptor (SUR) and inwardly rectifying potassium channel (Kir) 6.2 subunits. Results. Body weight, prostate weight, plasma levels of glucose, insulin, triglyceride, and cholesterol, as well as systolic blood pressure, were significantly increased in the HFD rats. Histology showed prostatic hyperplasia in the HFD rat prostate. Prostatic relaxation induced by loperamide was markedly reduced in HFD when compared to the control. Protein expressions of MOR, SUR, and Kir 6.2 were decreased in HFD-fed rats. Conclusion. Loperamide-induced prostate relaxation is decreased in HFD rats due to reduced MOR and KATP channel expressions. PMID:25506071

  2. Evaluation of red seaweed Gracilaria arcuata as dietary ingredient in African catfish, Clarias gariepinus.

    PubMed

    Al-Asgah, Nasser A; Younis, El-Sayed M; Abdel-Warith, Abdel-Wahab A; Shamlol, Faozi S

    2016-03-01

    The aim of this study was to evaluate the use of dried marine seaweed, Gracilaria arcuata for the first time as dietary ingredient in partial substitution of fishmeal on the growth performance, feed utilization and body composition of African catfish, Clarias gariepinus. Four experimental diets were formulated: D1 as a control group; D2; D3 and D4 which included 10%, 20% and 30% G. arcuata meal respectively. One hundred and eighty African catfish weighing 9.62 ± 0.42 g, (mean ± SE) was divided into four groups corresponding to the different feeding regimes. The final body weight of the fishes showed significant differences (P < 0.05) between the control (D1); D2 and other treated groups D3 and D4, with weights of 66.98, 59.60, 47.34 and 30.73 g recorded for D1, D2, D3 and D4, respectively. Significant differences (P < 0.05) were also evident in weight gain, specific growth rate, and feed utilization between treatment and control groups. However, no significant differences (P > 0.05) were observed between the control group and fishes fed D2 for all previous parameters. Protein productive value, protein efficiency ratio, daily dry feed intake and total feed intake were also significantly lower in fish fed with a diet containing G. arcuata than in the control group and D2 which contains 10% of G. arcuata. Overall, the results of the experiment revealed that African catfish fed a diet with G. arcuata included in 20% and 30% levels showed poorer growth and feed utilization than the control group and D2. However, the study recommended that C. gariepinus can accept this ingredient up to 10% in their diets. More defined experiments therefore seem to be necessary in order to determine the maximum level of this marine seaweed in diets with amino acid supplementation for African catfish.

  3. Evaluation of red seaweed Gracilaria arcuata as dietary ingredient in African catfish, Clarias gariepinus

    PubMed Central

    Al-Asgah, Nasser A.; Younis, El-Sayed M.; Abdel-Warith, Abdel-Wahab A.; Shamlol, Faozi S.

    2015-01-01

    The aim of this study was to evaluate the use of dried marine seaweed, Gracilaria arcuata for the first time as dietary ingredient in partial substitution of fishmeal on the growth performance, feed utilization and body composition of African catfish, Clarias gariepinus. Four experimental diets were formulated: D1 as a control group; D2; D3 and D4 which included 10%, 20% and 30% G. arcuata meal respectively. One hundred and eighty African catfish weighing 9.62 ± 0.42 g, (mean ± SE) was divided into four groups corresponding to the different feeding regimes. The final body weight of the fishes showed significant differences (P < 0.05) between the control (D1); D2 and other treated groups D3 and D4, with weights of 66.98, 59.60, 47.34 and 30.73 g recorded for D1, D2, D3 and D4, respectively. Significant differences (P < 0.05) were also evident in weight gain, specific growth rate, and feed utilization between treatment and control groups. However, no significant differences (P > 0.05) were observed between the control group and fishes fed D2 for all previous parameters. Protein productive value, protein efficiency ratio, daily dry feed intake and total feed intake were also significantly lower in fish fed with a diet containing G. arcuata than in the control group and D2 which contains 10% of G. arcuata. Overall, the results of the experiment revealed that African catfish fed a diet with G. arcuata included in 20% and 30% levels showed poorer growth and feed utilization than the control group and D2. However, the study recommended that C. gariepinus can accept this ingredient up to 10% in their diets. More defined experiments therefore seem to be necessary in order to determine the maximum level of this marine seaweed in diets with amino acid supplementation for African catfish. PMID:26981001

  4. Hypocholesterolemic Effects of Lactic Acid-Fermented Soymilk on Rats Fed a High Cholesterol Diet

    PubMed Central

    Kobayashi, Maki; Hirahata, Rie; Egusa, Shintaro; Fukuda, Mitsuru

    2012-01-01

    The effect of fermented soymilk on rats fed a high cholesterol diet was investigated to clarify the cholesterol-lowering function. Male Sprague-Dawley rats aged 7 weeks were fed a control diet (1% cholesterol, high cholesterol diet), high cholesterol diet containing 11.7% fermented soymilk diet (5% soy protein as final concentration, F-5), or high cholesterol diet containing 23.4% fermented soymilk diet (10% soy protein as final concentration, F-10) for 5 weeks. The liver weight and fat mass were decreased by the ingestion of fermented soymilk. The hepatic triglyceride and cholesterol levels in the F-5 and F-10 groups were significantly lowered compared to those in the control group. The plasma total cholesterol level of the F-10 group was significantly decreased. The expression of SREBP-2, a cholesterol synthesis-related gene, was significantly decreased in liver of the F-5 group, but the expression of CYP7a1, a cholesterol catabolism-related gene, was significantly increased. These results suggest that fermented soymilk can modulate the cholesterol metabolism in rats fed a high cholesterol diet. PMID:23112918

  5. Effect of conjugated linoleic acid (CLA) on lipid profile and liver histology in laboratory rats fed high-fructose diet.

    PubMed

    Kostogrys, Renata B; Pisulewski, Paweł M

    2010-11-01

    The objective of the study was to assess the effect of CLA on serum lipid profile, plasma malondialdehyde and liver histology in Wistar rats fed high-fructose diet. Eighteen rats were randomly assigned to three experimental groups and fed for the next 21 days. The experimental diets were: I, Control; II, Fructose (63.2% of fructose); and III, CLA+Fructose (1% CLA and 63.2% of fructose). The experimental treatments had no effect on body weight of the rats. The LDL+VLDL cholesterol, TG and liver weight were significantly increased in animals fed Fructose. MDA concentrations were significantly increased in rats fed Fructose diet but CLA+Fructose diet had no effect on this marker. In the same line, the histological examination of the livers showed a series of morphological alterations, notably hepatic steatosis in animals fed high-fructose diet. No signs of the steatosis in rats fed CLA+Fructose diet were observed. In conclusion, CLA in high-fructose diet, decreases serum LDL+VLDL and TG and plasma MDA concentrations as well as liver weight and liver cholesterol, thus opposing the effects of high-fructose diet and showing a potential antiatherogenic effect. Similarly, dietary CLA fed at 1% level (w/w) in high-fructose diet, prevented steatosis observed histologically in livers of rats fed high-fructose diets.

  6. Impaired Lipid and Glucose Homeostasis in Hexabromocyclododecane-Exposed Mice Fed a High-Fat Diet

    PubMed Central

    Koike, Eiko; Win-Shwe, Tin-Tin; Yamamoto, Megumi; Takano, Hirohisa

    2014-01-01

    Background: Hexabromocyclododecane (HBCD) is an additive flame retardant used in the textile industry and in polystyrene foam manufacturing. Because of its lipophilicity and persistency, HBCD accumulates in adipose tissue and thus has the potential of causing metabolic disorders through disruption of lipid and glucose homeostasis. However, the association between HBCD and obesity remains unclear. Objectives: We investigated whether exposure to HBCD contributes to initiation and progression of obesity and related metabolic dysfunction in mice fed a normal diet (ND) or a high-fat diet (HFD). Methods: Male C57BL/6J mice were fed a HFD (62.2 kcal% fat) or a ND and treated orally with HBCD (0, 1.75, 35, or 700 μg/kg body weight) weekly from 6 to 20 weeks of age. We examined body weight, liver weight, blood biochemistry, histopathological changes, and gene expression profiles in the liver and adipose tissue. Results: In HFD-fed mice, body and liver weight were markedly increased in mice treated with the high (700 μg/kg) and medium (35 μg/kg) doses of HBCD compared with vehicle. This effect was more prominent in the high-dose group. These increases were paralleled by increases in random blood glucose and insulin levels and enhancement of microvesicular steatosis and macrophage accumulation in adipose tissue. HBCD-treated HFD-fed mice also had increased mRNA levels of Pparg (peroxisome proliferator-activated receptor-γ) in the liver and decreased mRNA levels of Glut4 (glucose transporter 4) in adipose tissue compared with vehicle-treated HFD-fed mice. Conclusions: Our findings suggest that HBCD may contribute to enhancement of diet-induced body weight gain and metabolic dysfunction through disruption of lipid and glucose homeostasis, resulting in accelerated progression of obesity. Citation: Yanagisawa R, Koike E, Win-Shwe TT, Yamamoto M, Takano H. 2014. Impaired lipid and glucose homeostasis in hexabromocyclododecane-exposed mice fed a high-fat diet. Environ Health

  7. Oxidized Cholesteryl Esters and Phospholipids in Zebrafish Larvae Fed a High Cholesterol Diet

    PubMed Central

    Fang, Longhou; Harkewicz, Richard; Hartvigsen, Karsten; Wiesner, Philipp; Choi, Soo-Ho; Almazan, Felicidad; Pattison, Jennifer; Deer, Elena; Sayaphupha, Tiffany; Dennis, Edward A.; Witztum, Joseph L.; Tsimikas, Sotirios; Miller, Yury I.

    2010-01-01

    A novel hypercholesterolemic zebrafish model has been developed to study early events of atherogenesis. This model utilizes optically transparent zebrafish larvae, fed a high cholesterol diet (HCD), to monitor processes of vascular inflammation in live animals. Because lipoprotein oxidation is an important factor in the development of atherosclerosis, in this study, we characterized the oxidized lipid milieu in HCD-fed zebrafish larvae. Using liquid chromatography-mass spectrometry, we show that feeding an HCD for only 2 weeks resulted in up to 70-fold increases in specific oxidized cholesteryl esters, identical to those present in human minimally oxidized LDL and in murine atherosclerotic lesions. The levels of oxidized phospholipids, such as 1-palmitoyl-2-oxovaleroyl-sn-glycero-3-phosphocholine, and of various lysophosphatidylcholines were also significantly elevated. Moreover, lipoproteins isolated from homogenates of HCD-fed larvae induced cell spreading as well as ERK1/2, Akt, and JNK phosphorylation in murine macrophages. Removal of apoB-containing lipoproteins from the zebrafish homogenates with an anti-human LDL antibody, as well as reducing lipid hydroperoxides with ebselen, resulted in inhibition of macrophage activation. The TLR4 deficiency in murine macrophages prevented their activation with zebrafish lipoproteins. Using biotinylated homogenates of HCD-fed larvae, we demonstrated that their components bound to murine macrophages, and this binding was effectively competed by minimally oxidized LDL but not by native LDL. These data provide evidence that molecular lipid determinants of proatherogenic macrophage phenotypes are present in large quantities in hypercholesterolemic zebrafish larvae and support the use of the HCD-fed zebrafish as a valuable model to study early events of atherogenesis. PMID:20710028

  8. Adipose tissue chromium and vanadium disbalance in high-fat fed Wistar rats.

    PubMed

    Tinkov, Alexey A; Popova, Elizaveta V; Polyakova, Valentina S; Kwan, Olga V; Skalny, Anatoly V; Nikonorov, Alexandr A

    2015-01-01

    The primary objective of the current study is to investigate the relationship between adipose tissue chromium and vanadium content and adipose tissue dysfunction in a model of diet-induced obesity. A total of 26 female Wistar rats were fed either standard or high-fat diet (31.6% of fat from total caloric content) for 3 months. High-fat-feeding resulted in 21 and 33% decrease in adipose tissue chromium and vanadium content, respectively. No change was seen in hair chromium or vanadium levels. Statistical analysis revealed a significant inverse correlation of adipose tissue Cr and V with animal morphometric parameters and adipocyte size. Significant inverse dependence was observed between adipose tissue Cr and V and serum leptin and proinflammatory cytokines' levels. At the same time, adipose tissue Cr and V levels were characterized by positive correlation between serum adiponectin and adiponectin/leptin ratio. Adipose tissue Cr and V were inversely correlated (p<0.05) with insulin and homeostatic model assessment insulin resistance index (HOMA-IR) levels. Cr and V concentrations were not correlated with serum glucose in either high-fat fed or control rats; however, both serum glucose and HOMA-IR levels were significantly higher in high-fat fed, compared to control, rats. The results allow to hypothesize that impairment of adipose tissue Cr and V content plays a certain role in the development of adipose tissue endocrine dysfunction in obesity.

  9. Adipokine production in mice fed high-fat diets containing different types of dietary fats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The present study compared high-fat diets containing different types of dietary fats with various levels of linoleic acid (18:2n6, LA) and a-linolenic acid (18:3n3, ALA) on adipokine production in male C57BL/6 mice. Three-week old mice were fed AIN93G diet (15% of energy from corn oil, control) or ...

  10. High fat diet-fed obese rats are highly sensitive to doxorubicin-induced cardiotoxicity

    SciTech Connect

    Mitra, Mayurranjan S.; Donthamsetty, Shashikiran; White, Brent; Mehendale, Harihara M.

    2008-09-15

    Often, chemotherapy by doxorubicin (Adriamycin) is limited due to life threatening cardiotoxicity in patients during and posttherapy. Recently, we have shown that moderate diet restriction remarkably protects against doxorubicin-induced cardiotoxicity. This cardioprotection is accompanied by decreased cardiac oxidative stress and triglycerides and increased cardiac fatty-acid oxidation, ATP synthesis, and upregulated JAK/STAT3 pathway. In the current study, we investigated whether a physiological intervention by feeding 40% high fat diet (HFD), which induces obesity in male Sprague-Dawley rats (250-275 g), sensitizes to doxorubicin-induced cardiotoxicity. A LD{sub 10} dose (8 mg doxorubicin/kg, ip) administered on day 43 of the HFD feeding regimen led to higher cardiotoxicity, cardiac dysfunction, lipid peroxidation, and 80% mortality in the obese (OB) rats in the absence of any significant renal or hepatic toxicity. Doxorubicin toxicokinetics studies revealed no change in accumulation of doxorubicin and doxorubicinol (toxic metabolite) in the normal diet-fed (ND) and OB hearts. Mechanistic studies revealed that OB rats are sensitized due to: (1) higher oxyradical stress leading to upregulation of uncoupling proteins 2 and 3, (2) downregulation of cardiac peroxisome proliferators activated receptor-{alpha}, (3) decreased plasma adiponectin levels, (4) decreased cardiac fatty-acid oxidation (666.9 {+-} 14.0 nmol/min/g heart in ND versus 400.2 {+-} 11.8 nmol/min/g heart in OB), (5) decreased mitochondrial AMP-{alpha}2 protein kinase, and (6) 86% drop in cardiac ATP levels accompanied by decreased ATP/ADP ratio after doxorubicin administration. Decreased cardiac erythropoietin and increased SOCS3 further downregulated the cardioprotective JAK/STAT3 pathway. In conclusion, HFD-induced obese rats are highly sensitized to doxorubicin-induced cardiotoxicity by substantially downregulating cardiac mitochondrial ATP generation, increasing oxidative stress and downregulating

  11. Renoprotective and antioxidant effects of Saururus chinensis Baill in rats fed a high-fructose diet

    PubMed Central

    Choi, Ha-Neul; Park, Yong-Hyun; Kim, Ji-Hye; Kang, Min-Jung; Jeong, Soo-Mi; Kim, Hyeon Hoe

    2011-01-01

    This study investigated the preventive effect of Saururus chinensis Baill against renal damage induced by a high-fructose diet in rats. The rats (n = 30) were fed either a cornstarch-based (65%), high-fructose (65%), or high-fructose (64.5%) diet with 0.5% S. chinensis Baill extract for 10 weeks. Twenty-four hour urine collections were obtained and the animals were sacrificed after an overnight fast. Serum urea and creatinine and urine albumin were measured using colorimetric methods, and creatinine clearance was determined. In addition, thiobarbituric acid reactive substances (TBARS), reduced glutathione (GSH), and the activity of superoxide dismutase (SOD) in the kidney were determined. Kidney samples were also examined histologically. The fructose-fed rats showed renal dysfunction, indicated by decreased creatinine clearance, increased albumin in the urine, and increased urea and creatinine in the serum. These renal function parameters were comparable to control levels in rats that consumed S. chinensis Baill. Fructose consumption increased renal TBARS and reduced GSH and SOD activity, whereas these levels were near-normal in the rats consuming S. chinensis Baill. The kidneys of fructose-fed rats showed glomerular basement membrane thickening, mesangial matrix expansion, and tubule dilation. These pathological changes were not seen in the rats that consumed S. chinensis Baill. Therefore, S. chinensis Baill effectively alleviated fructose-induced renal damage in these rats, at least partially due to antioxidant activity. PMID:21994532

  12. Optimization of high solids fed-batch saccharification of sugarcane bagasse based on system viscosity changes.

    PubMed

    Liu, Yunyun; Xu, Jingliang; Zhang, Yu; Yuan, Zhenhong; Xie, Jun

    2015-10-10

    Viscosity trends in alkali-pretreated sugarcane bagasse (SCB) slurries undergoing high solids fed-batch enzymatic hydrolysis were measured for a range of solids loading from 15% to 36%. Solids liquefaction times were related to system viscosity changes. The viscosity decreased quickly for low solids loading, and increased with increasing solids content. Fed-batch hydrolysis was initiated with 15% solids loading, and an additional 8%, 7% and 6% were successively added after the system viscosity decreased to stable values to achieve a final solids content of 36%. Two enzyme-adding modes with 8.5FPU/g solid were investigated. The batch mode with all enzyme being added at the beginning of the reaction produced the highest yields, with approximately 231.7g/L total sugars and 134.9g/L glucose being obtained after 96h with nearly 60% of the final glucan conversion rate. This finding indicates that under the right conditions, the fed-batch strategy might be a plausible way to produce high sugars under high solids.

  13. Excess Folic Acid Increases Lipid Storage, Weight Gain, and Adipose Tissue Inflammation in High Fat Diet-Fed Rats

    PubMed Central

    Kelly, Karen B.; Kennelly, John P.; Ordonez, Marta; Nelson, Randal; Leonard, Kelly; Stabler, Sally; Gomez-Muñoz, Antonio; Field, Catherine J.; Jacobs, René L.

    2016-01-01

    Folic acid intake has increased to high levels in many countries, raising concerns about possible adverse effects, including disturbances to energy and lipid metabolism. Our aim was to investigate the effects of excess folic acid (EFA) intake compared to adequate folic acid (AFA) intake on metabolic health in a rodent model. We conducted these investigations in the setting of either a 15% energy low fat (LF) diet or 60% energy high fat (HF) diet. There was no difference in weight gain, fat mass, or glucose tolerance in EFA-fed rats compared to AFA-fed rats when they were fed a LF diet. However, rats fed EFA in combination with a HF diet had significantly greater weight gain and fat mass compared to rats fed AFA (p < 0.05). Gene expression analysis showed increased mRNA levels of peroxisome proliferator-activated receptor γ (PPARγ) and some of its target genes in adipose tissue of high fat-excess folic acid (HF-EFA) fed rats. Inflammation was increased in HF-EFA fed rats, associated with impaired glucose tolerance compared to high fat-adequate folic acid (HF-AFA) fed rats (p < 0.05). In addition, folic acid induced PPARγ expression and triglyceride accumulation in 3T3-L1 cells. Our results suggest that excess folic acid may exacerbate weight gain, fat accumulation, and inflammation caused by consumption of a HF diet. PMID:27669293

  14. Fecal excretion pattern of bile acids in rats fed high fat diets and neomycin in induced colon tumorigenesis.

    PubMed

    Panda, S K; Broitman, S A

    1999-09-06

    Neomycin augments colon tumorigenesis in 1,2 - dimethylhydrazine treated rats fed polyunsaturated fat diet and decreases fecal cholic acid excretion, while it inhibits tumorigenesis with increased cholic acid and decreased deoxycholic acid excretions in rats fed high cholesterol diet. Participation of other fecal bile acids seems to be insignificant in relation to colon carcinogenesis.

  15. Excess Folic Acid Increases Lipid Storage, Weight Gain, and Adipose Tissue Inflammation in High Fat Diet-Fed Rats.

    PubMed

    Kelly, Karen B; Kennelly, John P; Ordonez, Marta; Nelson, Randal; Leonard, Kelly; Stabler, Sally; Gomez-Muñoz, Antonio; Field, Catherine J; Jacobs, René L

    2016-09-23

    Folic acid intake has increased to high levels in many countries, raising concerns about possible adverse effects, including disturbances to energy and lipid metabolism. Our aim was to investigate the effects of excess folic acid (EFA) intake compared to adequate folic acid (AFA) intake on metabolic health in a rodent model. We conducted these investigations in the setting of either a 15% energy low fat (LF) diet or 60% energy high fat (HF) diet. There was no difference in weight gain, fat mass, or glucose tolerance in EFA-fed rats compared to AFA-fed rats when they were fed a LF diet. However, rats fed EFA in combination with a HF diet had significantly greater weight gain and fat mass compared to rats fed AFA (p < 0.05). Gene expression analysis showed increased mRNA levels of peroxisome proliferator-activated receptor γ (PPARγ) and some of its target genes in adipose tissue of high fat-excess folic acid (HF-EFA) fed rats. Inflammation was increased in HF-EFA fed rats, associated with impaired glucose tolerance compared to high fat-adequate folic acid (HF-AFA) fed rats (p < 0.05). In addition, folic acid induced PPARγ expression and triglyceride accumulation in 3T3-L1 cells. Our results suggest that excess folic acid may exacerbate weight gain, fat accumulation, and inflammation caused by consumption of a HF diet.

  16. Dietary krill oil supplementation reduces hepatic steatosis, glycemia, and hypercholesterolemia in high-fat-fed mice.

    PubMed

    Tandy, Sally; Chung, Rosanna W S; Wat, Elaine; Kamili, Alvin; Berge, Kjetil; Griinari, Mikko; Cohn, Jeffrey S

    2009-10-14

    Krill oil (KO) is rich in n-3 fatty acids that are present in phospholipids rather than in triglycerides. In the present study, we investigated the effects of dietary KO on cardiometabolic risk factors in male C57BL/6 mice fed a high-fat diet. Mice (n = 6-10 per group) were fed for 8 weeks either: (1) a nonpurified chow diet (N); (2) a high-fat semipurified diet containing 21 wt % buttermilk + 0.15 wt % cholesterol (HF); (3) HF supplemented with 1.25 wt % KO (HFKO1.25); (4) HF with 2.5 wt % KO (HFKO2.5); or (5) HF with 5 wt % KO (HFKO5.0). Dietary KO supplementation caused a significant reduction in liver wt (i.e., hepatomegaly) and total liver fat (i.e., hepatic steatosis), due to a dose-dependent reduction in hepatic triglyceride (mean +/- SEM: 35 +/- 6, 47 +/- 4, and 51 +/- 5% for HFKO1.25, -2.5, and -5.0 vs HF, respectively, P < 0.001) and cholesterol (55 +/- 5, 66 +/- 3, and 71 +/- 3%, P < 0.001). Serum cholesterol levels were reduced by 20 +/- 3, 29 +/- 4, and 29 +/- 5%, and blood glucose was reduced by 36 +/- 5, 34 +/- 6, and 42 +/- 6%, respectively. Serum adiponectin was increased in KO-fed animals (HF vs HFKO5.0: 5.0 +/- 0.2 vs 7.5 +/- 0.6 microg/mL, P < 0.01). These results demonstrate that dietary KO is effective in improving metabolic parameters in mice fed a high-fat diet, suggesting that KO may be of therapeutic value in patients with the metabolic syndrome and/or nonalcoholic fatty liver disease.

  17. A diet rich in leafy vegetable fiber improves cholesterol metabolism in high-cholesterol fed rats.

    PubMed

    Ezz El-Arab, A M

    2009-10-01

    In the present study, the hypocholesterolemic effect of leaf vegetable (Jew's mallow) was studied in high-cholesterol fed rats. The animals were fed diets supplemented with cholesterol (0.25%) for 4 weeks. Leaf vegetable diet produced an important hypocholesterolemic action: it led to a significant lowering (p<0.05) of cholesterol in the plasma and liver, as well as of the atherogenic index and a significant increase (p<0.05) in cecal short chain fatty acids, with respect to the control group. Concurrently, total fecal neutral sterols in the excretion increased (p<0.05) and apparent absorption of dietary cholesterol was significantly depressed (-58%). The consumption of leaf vegetable (Jew's mallow) with a hypercholesterolemic diet improved the lipidemic profile and increased excretion of the total cholesterol end-products.

  18. Increased Aβ pathology in aged Tg2576 mice born to mothers fed a high fat diet.

    PubMed

    Nizari, Shereen; Carare, Roxana O; Hawkes, Cheryl A

    2016-02-25

    Maternal obesity is associated with increased risk of developing diabetes, obesity and premature death in adult offspring. Mid-life diabetes, hypertension and hypercholesterolaemia are risk factors for the development of sporadic Alzheimer's disease (AD). A key pathogenic feature of AD is the accumulation of β-amyloid (Aβ) in the brain. The purpose of this study was to investigate the effect of high fat diet feeding during early life on Aβ pathology in the Tg2576 mouse model of AD. Female mice were fed a standard (C) or high fat (HF) diet before mating and during gestation and lactation. At weaning, male offspring were fed a C diet. Significantly higher levels of guanidine-soluble Aβ and plaque loads were observed in the hippocampi of 11-month old Tg2576 mice born to mothers fed a HF diet. Changes in the extracellular matrix led to increased retention of Aβ within the parenchyma. These data support a role for maternal and gestational health on the health of the aged brain and pathologies associated with AD and may provide a novel target for both the prevention and treatment of AD.

  19. Increased Aβ pathology in aged Tg2576 mice born to mothers fed a high fat diet

    PubMed Central

    Nizari, Shereen; Carare, Roxana O.; Hawkes, Cheryl A.

    2016-01-01

    Maternal obesity is associated with increased risk of developing diabetes, obesity and premature death in adult offspring. Mid-life diabetes, hypertension and hypercholesterolaemia are risk factors for the development of sporadic Alzheimer’s disease (AD). A key pathogenic feature of AD is the accumulation of β-amyloid (Aβ) in the brain. The purpose of this study was to investigate the effect of high fat diet feeding during early life on Aβ pathology in the Tg2576 mouse model of AD. Female mice were fed a standard (C) or high fat (HF) diet before mating and during gestation and lactation. At weaning, male offspring were fed a C diet. Significantly higher levels of guanidine-soluble Aβ and plaque loads were observed in the hippocampi of 11-month old Tg2576 mice born to mothers fed a HF diet. Changes in the extracellular matrix led to increased retention of Aβ within the parenchyma. These data support a role for maternal and gestational health on the health of the aged brain and pathologies associated with AD and may provide a novel target for both the prevention and treatment of AD. PMID:26911528

  20. Inulin oligofructose attenuates metabolic syndrome in high-carbohydrate, high-fat diet-fed rats.

    PubMed

    Kumar, Senthil A; Ward, Leigh C; Brown, Lindsay

    2016-11-01

    Prebiotics alter bacterial content in the colon, and therefore could be useful for obesity management. We investigated the changes following addition of inulin oligofructose (IO) in the food of rats fed either a corn starch (C) diet or a high-carbohydrate, high-fat (H) diet as a model of diet-induced metabolic syndrome. IO did not affect food intake, but reduced body weight gain by 5·3 and 12·3 % in corn starch+inulin oligofructose (CIO) and high-carbohydrate, high-fat with inulin oligofructose (HIO) rats, respectively. IO reduced plasma concentrations of free fatty acids by 26·2 % and TAG by 75·8 % in HIO rats. IO increased faecal output by 93·2 %, faecal lipid excretion by 37·9 % and weight of caecum by 23·4 % and colon by 41·5 % in HIO rats. IO improved ileal morphology by reducing inflammation and improving the density of crypt cells in HIO rats. IO attenuated H diet-induced increases in abdominal fat pads (C 275 (sem 19), CIO 264 (sem 40), H 688 (sem 55), HIO 419 (sem 32) mg/mm tibial length), fasting blood glucose concentrations (C 4·5 (sem 0·1), CIO 4·2 (sem 0·1), H 5·2 (sem 0·1), HIO 4·3 (sem 0·1) mmol/l), systolic blood pressure (C 124 (sem 2), CIO 118 (sem 2), H 152 (sem 2), HIO 123 (sem 3) mmHg), left ventricular diastolic stiffness (C 22·9 (sem 0·6), CIO 22·9 (sem 0·5), H 27·8 (sem 0·5), HIO 22·6 (sem 1·2)) and plasma alanine transaminase (C 29·6 (sem 2·8), CIO 32·1 (sem 3·0), H 43·9 (sem 2·6), HIO 33·6 (sem 2·0) U/l). IO attenuated H-induced increases in inflammatory cell infiltration in the heart and liver, lipid droplets in the liver and plasma lipids as well as impaired glucose and insulin tolerance. These results suggest that increasing soluble fibre intake with IO improves signs of the metabolic syndrome by decreasing gastrointestinal carbohydrate and lipid uptake.

  1. Intestinal Mucosal Triacylglycerol Accumulation Secondary to Decreased Lipid Secretion in Obese and High Fat Fed Mice

    PubMed Central

    Douglass, John D.; Malik, Nashmia; Chon, Su-Hyoun; Wells, Kevin; Zhou, Yin Xiu; Choi, Andrew S.; Joseph, Laurie B.; Storch, Judith

    2012-01-01

    The ectopic deposition of fat in liver and muscle during obesity is well established, however surprisingly little is known about the intestine. We used the ob/ob mouse and C57BL6/J mice fed a high fat (HF) diet to examine the effects of obesity and the effects of HF feeding, respectively, on intestinal mucosal triacylglycerol (TG) accumulation. Male C57BL6/J (wild-type, WT) mice were fed low fat (LF; 10% kcal as fat) or HF (45%) diets, and ob/ob mice were fed the LF diet, for 3 weeks. In this time frame, the WT–HF mice did not become obese, enabling independent examination of effects of the HF diet and effects of obesity. Analysis of intestinal lipid extracts from fed and fasted animals demonstrated that the mucosa, like other tissues, accumulates excess lipid. In the fed state, mucosal triacylglycerol (TG) levels were threefold and fivefold higher in the WT–HF and ob/ob mice, respectively, relative to the WT–LF mice. In the fasted state, mucosa from ob/ob mice had threefold higher TG levels relative to WT–LF mucosa. q-PCR analysis of mucosal mRNA from fed state mice showed alterations in the expression of several genes related to both anabolic and catabolic lipid metabolism pathways in WT–HF and ob/ob mice relative to WT–LF controls. Fewer changes were found in mucosal samples from the fasted state animals. Remarkably, oral fat tolerance tests showed a striking reduction in the plasma appearance of an oral fat load in the ob/ob and WT–HF mice compared to WT–LF. Overall, the results demonstrate that the intestinal mucosa accumulates excess TG during obesity. Changes in the expression of lipid metabolic and transport genes, as well as reduced secretion of dietary lipid from the mucosal cells into the circulation, may contribute to the TG accumulation in intestinal mucosa during obesity. Moreover, even in the absence of frank obesity, HF feeding leads to a large decrease in the rate of intestinal lipid secretion. PMID:22375121

  2. Effect of Bacillus spp. direct-fed microbial on slurry characteristics and gaseous emissions in growing pigs fed with high fibre-based diets.

    PubMed

    Prenafeta-Boldú, F X; Fernández, B; Viñas, M; Lizardo, R; Brufau, J; Owusu-Asiedu, A; Walsh, M C; Awati, A

    2017-02-01

    A 26-day trial with 18 Pietrain×(Landrace×Duroc) pigs was conducted to investigate the effect of two dose levels of a specifically selected Bacillus spp. direct-fed microbial (DFM) product, on the emission of environmentally harmful gasses (methane, ammonia and hydrogen sulphide) from manure. Pigs were assigned to one of three treatments in a randomized complete block design according to their sex and initial BW. Each treatment contained three replications with two pigs per pen. The test treatments included a Bacillus spp. DFM containing 3×108 colony-forming unit/g, added at a low (250 mg/kg) and high (500 mg/kg) dose to an antibiotic free high fibre-based diet, and a non-supplemented control diet. Manure from pigs fed with the supplemented diets emitted lower amounts of atmospheric contaminants. The most significant reduction was observed with low DFM supplementation, in which methane and ammonia volatilization decreased (P40% and 50%, respectively, on fresh weight basis in relation to the control. Microbiome analysis of manure by high through put sequencing techniques on eubacterial and archaeal 16S rRNA genes highlighted the complex interactions between indigenous gut microflora and inoculated Bacillus spp. The tested Bacillus DFM could be considered as a best available technique in reducing the environmental impacts of growing pigs fed with high fibre-based diets.

  3. Antihyperlipidemic effect of Aronia melanocarpa fruit juice in rats fed a high-cholesterol diet.

    PubMed

    Valcheva-Kuzmanova, S; Kuzmanov, K; Mihova, V; Krasnaliev, I; Borisova, P; Belcheva, A

    2007-03-01

    Aronia melanocrpa fruit juice (AMFJ) used in our experiment was very rich in phenolic substances (709.3 mg gallic acid equivalents/100 ml juice). Anthocyanins (106.8 mg cyanidin-3-glucoside equivalents/100 ml juice) were the main flavonoid group. The aim of this study was to assess the influence of AMFJ on plasma lipids and lipoprotein profile, and histopathology of liver and aorta in rats with dietary-induced hyperlipidemia. AMFJ was administered by gavage for 30 days at doses of 5, 10 and 20 ml/kg body weight to rats fed a standard diet (SD) or a 4% cholesterol-containing diet (4% ChD). The 4% ChD caused a significant elevation of plasma total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) and triglycerides (TG). AMFJ did not significantly influence plasma lipids in rats fed the SD and significantly hindered the elevation of plasma TC, LDL-C and TG in rats fed the 4% ChD. High-density lipoprotein cholesterol (HDL-C) levels were not significantly influenced either by the 4% ChD or by AMFJ. Neither the cholesterol feeding, nor AMFJ treatment induced any histopathological changes in rat liver and aorta. In conclusion, AMFJ showed an antihyperlipidemic effect in rats with hyperlipidemia and could be valuable in reducing this factor of cardiovascular risk.

  4. Effects of Puerarin on Lipid Accumulation and Metabolism in High-Fat Diet-Fed Mice

    PubMed Central

    Zheng, Guodong; Lin, Lezhen; Zhong, Shusheng; Zhang, Qingfeng; Li, Dongming

    2015-01-01

    In order to investigate the mechanisms by which puerarin from kudzu root extract regulates lipid metabolism, fifty mice were randomly assigned to five groups: normal diet, high-fat diet (HFD), and HFD containing 0.2%, 0.4% or 0.8% puerarin for 12 weeks. Body weight, intraperitioneal adipose tissue (IPAT) weight, serum biochemical parameters, and hepatic and feces lipids were measured. Activity and mRNA and protein expressions of hepatic lipid metabolism-related enzymes were analyzed. Compared with HFD, 0.4% and 0.8% puerarin significantly decreased body and IPAT weight. There was a significant decrease in the serum and hepatic concentrations of total cholesterol, triglycerides and leptin in mice fed the 0.4% and 0.8% puerarin diets compared with HFD. Fatty acid synthase activity was suppressed in mice fed the 0.4% and 0.8% puerarin diets, while the activities of AMP-activated protein kinase (AMPK), carnitine acyltransferase (CAT) and hormone-sensitive lipase (HSL) were increased. mRNA expression of peroxisome proliferator-activated receptor γ 2 (PPARγ 2) was down-regulated in liver of mice fed the 0.8% diet compared with HFD, while mRNA expression of CAT and HSL was considerably up-regulated by 0.4% and 0.8% puerarin diets. The protein expression of PPARγ2 in liver was decreased and those of p-AMPK, HSL and p-HSL were increased in mice fed 0.4% and 0.8% puerarin diets. These results suggest that > 0.4% puerarin influenced the activity, mRNA and protein levels of hepatic lipid metabolism-related enzymes, decreasing serum and liver lipids, body weight gain and fat accumulation. Puerarin might be beneficial to prevent lifestyle-related diseases. PMID:25822741

  5. Reproductive parameters and oxidative stress status of male rats fed with low and high salt diet

    PubMed Central

    Iranloye, Bolanle O.; Oludare, Gabriel O.; Morakinyo, Ayodele O.; Esume, Naomi A.; Ekeh, Lucy C.

    2013-01-01

    BACKGROUND: Deficiency of minerals and micronutrients has been reported to impair the process of spermatogenesis. Historically, salt has been used by women on their husbands to increase their libido, however, the role of salt diet on sperm parameters are yet to be ascertained. AIM: The present study was designed to determine the effect of low and high salt diet on sperm parameters, oxidative status and reproductive hormone levels of male rats. MATERIALS AND METHODS: A total of 18 rats were divided into three groups: Group I: (control) received 0.3% salt diet, Group II: low salt (received 0.14% salt diet) and Group III: high salt (received 8% salt diet). All animals were treated for 6 weeks; after which epididymal sperm parameters; oxidative stress markers (malondialdehyde, glutathione, catalase and superoxide dismutase) in the testes and epididymal tissues, as well as follicle stimulating hormone (FSH), luteinizing hormone (LH) and testosterone levels were determined. RESULTS: The results showed decreased sperm count in the low salt diet rats while increased sperm count was observed in the high salt diet treated rats. Both low salt and high salt diet fed rats exhibited increased abnormal sperm cells and increased epididymal oxidative stress when compared with their respective control. FSH and testosterone levels were increased in the high salt fed rats while LH level was decreased when compared with the control values. CONCLUSION: This study suggests that both low and high salt diet play a negative role in the fertility of male rats. PMID:24672168

  6. Citrus Pulp as a Dietary Source of Antioxidants for Lactating Holstein Cows Fed Highly Polyunsaturated Fatty Acid Diets

    PubMed Central

    Santos, G. T.; Lima, L. S.; Schogor, A. L. B.; Romero, J. V.; De Marchi, F. E.; Grande, P. A.; Santos, N. W.; Santos, F. S.; Kazama, R.

    2014-01-01

    The effects of feeding pelleted citrus pulp (PCP) as a natural antioxidant source on the performance and milk quality of dairy cows fed highly polyunsaturated fatty acid (FA) diets were evaluated. Four lactating Holstein cows were assigned to a 4×4 Latin-square. Treatments, on a dry matter (DM) basis, were i) control diet; ii) 3% soybean oil; iii) 3% soybean oil and 9% PCP and; iv) 3% soybean oil and 18% PCP. When cows fed on citrus pulp, the DM intake tended to decrease. The total tract apparent digestibility of DM and ether extract decreased when cows fed on the control diet compared to other diets. Cows fed PCP had higher polyphenols and flavonoids content and higher total ferric reducing antioxidant power (FRAP) in milk compared to those fed no pelleted citrus pulp. Cows fed 18% PCP showed higher monounsaturated FA and lower saturated FA in milk fat compared with cows fed the other diets. The lowest n-6 FA proportion was in milk fat from cows fed control. The present study suggests that pelleted citrus pulp added to 9% to 18% DM increases total polyphenols and flavonoids concentration, and the FRAP in milk. PMID:25083104

  7. Lactation performance of dairy cows fed yeast-derived microbial protein in low- and high-forage diets.

    PubMed

    Manthey, A K; Kalscheur, K F; Garcia, A D; Mjoun, K

    2016-04-01

    The objective of this study was to investigate the effect of substituting soybean meal products with yeast-derived microbial protein (YMP) on lactation performance in diets containing 2 forage-to-concentrate ratios. Sixteen Holstein cows (4 primiparous and 12 multiparous) were randomly assigned to multiple 4 × 4 Latin squares with a 2 × 2 factorial arrangement of treatments. Diets contained low (LF; 45% of diet DM) or high forage (HF; 65% of diet DM) and YMP at 0 (NYMP) or 2.25% (WYMP) of the diet. The forage mix consisted of 67% corn silage and 33% alfalfa hay on a DM basis. No interactions of forage and YMP were noted for any of the production parameters measured. Feed efficiency (energy-corrected milk/dry matter intake) was greater for cows fed NYMP compared with WYMP. Regardless of the addition of YMP, cows fed LF had greater dry matter intake and produced more milk than cows fed HF. In addition, cows fed LF produced more energy-corrected milk than those fed HF. Milk fat percentage was lower in cows fed LF compared with HF, whereas fat yield was similar between forage concentrations. Fat yield tended to decrease with feeding YMP. Interactions of forage and YMP were observed for propionate concentration, acetate and propionate proportion, and acetate-to-propionate ratio. A tendency for an interaction of forage and YMP was also noted for ruminal pH. Cows fed HF diets had greater ruminal ammonia and butyrate concentrations, as well as proportion of butyrate. Arterial concentrations of Ile, Leu, Met, Thr, and Val were greater in cows fed LF. Cows fed NYMP had greater arterial concentrations of Ile, Lys, Trp, and Val than cows fed WYMP. Substitution of soybean proteins with YMP did not improve performance or feed efficiency of high-producing dairy cows regardless of the forage-to-concentrate ratio of the diet.

  8. Performance of dairy cows fed high levels of acetic acid or ethanol.

    PubMed

    Daniel, J L P; Amaral, R C; Sá Neto, A; Cabezas-Garcia, E H; Bispo, A W; Zopollatto, M; Cardoso, T L; Spoto, M H F; Santos, F A P; Nussio, L G

    2013-01-01

    Ethanol and acetic acid are common end products from silages. The main objective of this study was to determine whether high concentrations of ethanol or acetic acid in total mixed ration would affect performance in dairy cows. Thirty mid-lactation Holstein cows were grouped in 10 blocks and fed one of the following diets for 7 wk: (1) control (33% Bermuda hay + 67% concentrates), (2) ethanol [control diet + 5% ethanol, dry matter (DM) basis], or (3) acetic acid (control diet + 5% acetic acid, DM basis). Ethanol and acetic acid were diluted in water (1:2) and sprayed onto total mixed rations twice daily before feeding. An equal amount of water was mixed with the control ration. To adapt animals to these treatments, cows were fed only half of the treatment dose during the first week of study. Cows fed ethanol yielded more milk (37.9 kg/d) than those fed the control (35.8 kg/d) or acetic acid (35.3 kg/d) diets, mainly due to the higher DM intake (DMI; 23.7, 22.2, and 21.6 kg/d, respectively). The significant diet × week interaction for DMI, mainly during wk 2 and 3 (when acetic acid reached the full dose), was related to the decrease in DMI observed for the acetic acid treatment. There was a diet × week interaction in excretion of milk energy per DMI during wk 2 and 3, due to cows fed acetic acid sustained milk yield despite lower DMI. Energy efficiency was similar across diets. Blood metabolites (glucose, insulin, nonesterified fatty acids, ethanol, and γ-glutamyl transferase activity) and sensory characteristics of milk were not affected by these treatments. Animal performance suggested similar energy value for the diet containing ethanol compared with other diets. Rumen conversion of ethanol to acetate and a concomitant increase in methane production might be a plausible explanation for the deviation of the predicted energy value based on the heat of combustion. Therefore, the loss of volatile compounds during the drying process in the laboratory should be

  9. Impaired glucose tolerance in rats fed low-carbohydrate, high-fat diets.

    PubMed

    Bielohuby, Maximilian; Sisley, Stephanie; Sandoval, Darleen; Herbach, Nadja; Zengin, Ayse; Fischereder, Michael; Menhofer, Dominik; Stoehr, Barbara J M; Stemmer, Kerstin; Wanke, Rüdiger; Tschöp, Matthias H; Seeley, Randy J; Bidlingmaier, Martin

    2013-11-01

    Moderate low-carbohydrate/high-fat (LC-HF) diets are widely used to induce weight loss in overweight subjects, whereas extreme ketogenic LC-HF diets are used to treat neurological disorders like pediatric epilepsy. Usage of LC-HF diets for improvement of glucose metabolism is highly controversial; some studies suggest that LC-HF diets ameliorate glucose tolerance, whereas other investigations could not identify positive effects of these diets or reported impaired insulin sensitivity. Here, we investigate the effects of LC-HF diets on glucose and insulin metabolism in a well-characterized animal model. Male rats were fed isoenergetic or hypocaloric amounts of standard control diet, a high-protein "Atkins-style" LC-HF diet, or a low-protein, ketogenic, LC-HF diet. Both LC-HF diets induced lower fasting glucose and insulin levels associated with lower pancreatic β-cell volumes. However, dynamic challenge tests (oral and intraperitoneal glucose tolerance tests, insulin-tolerance tests, and hyperinsulinemic euglycemic clamps) revealed that LC-HF pair-fed rats exhibited impaired glucose tolerance and impaired hepatic and peripheral tissue insulin sensitivity, the latter potentially being mediated by elevated intramyocellular lipids. Adjusting visceral fat mass in LC-HF groups to that of controls by reducing the intake of LC-HF diets to 80% of the pair-fed groups did not prevent glucose intolerance. Taken together, these data show that lack of dietary carbohydrates leads to glucose intolerance and insulin resistance in rats despite causing a reduction in fasting glucose and insulin concentrations. Our results argue against a beneficial effect of LC-HF diets on glucose and insulin metabolism, at least under physiological conditions. Therefore, use of LC-HF diets for weight loss or other therapeutic purposes should be balanced against potentially harmful metabolic side effects.

  10. A Krill Oil Supplemented Diet Suppresses Hepatic Steatosis in High-Fat Fed Rats

    PubMed Central

    Ferramosca, Alessandra; Conte, Annalea; Burri, Lena; Berge, Kjetil; De Nuccio, Francesco; Giudetti, Anna Maria; Zara, Vincenzo

    2012-01-01

    Krill oil (KO) is a dietary source of n-3 polyunsaturated fatty acids, mainly represented by eicosapentaenoic acid and docosahexaenoic acid bound to phospholipids. The supplementation of a high-fat diet with 2.5% KO efficiently prevented triglyceride and cholesterol accumulation in liver of treated rats. This effect was accompanied by a parallel reduction of the plasma levels of triglycerides and glucose and by the prevention of a plasma insulin increase. The investigation of the molecular mechanisms of KO action in high-fat fed animals revealed a strong decrease in the activities of the mitochondrial citrate carrier and of the cytosolic acetyl-CoA carboxylase and fatty acid synthetase, which are both involved in hepatic de novo lipogenesis. In these animals a significant increase in the activity of carnitine palmitoyl-transferase I and in the levels of carnitine was also observed, suggesting a concomitant stimulation of hepatic fatty acid oxidation. The KO supplemented animals also retained an efficient mitochondrial oxidative phosphorylation, most probably as a consequence of a KO-induced arrest of the uncoupling effects of a high-fat diet. Lastly, the KO supplementation prevented an increase in body weight, as well as oxidative damage of lipids and proteins, which is often found in high-fat fed animals. PMID:22685607

  11. A krill oil supplemented diet suppresses hepatic steatosis in high-fat fed rats.

    PubMed

    Ferramosca, Alessandra; Conte, Annalea; Burri, Lena; Berge, Kjetil; De Nuccio, Francesco; Giudetti, Anna Maria; Zara, Vincenzo

    2012-01-01

    Krill oil (KO) is a dietary source of n-3 polyunsaturated fatty acids, mainly represented by eicosapentaenoic acid and docosahexaenoic acid bound to phospholipids. The supplementation of a high-fat diet with 2.5% KO efficiently prevented triglyceride and cholesterol accumulation in liver of treated rats. This effect was accompanied by a parallel reduction of the plasma levels of triglycerides and glucose and by the prevention of a plasma insulin increase. The investigation of the molecular mechanisms of KO action in high-fat fed animals revealed a strong decrease in the activities of the mitochondrial citrate carrier and of the cytosolic acetyl-CoA carboxylase and fatty acid synthetase, which are both involved in hepatic de novo lipogenesis. In these animals a significant increase in the activity of carnitine palmitoyl-transferase I and in the levels of carnitine was also observed, suggesting a concomitant stimulation of hepatic fatty acid oxidation. The KO supplemented animals also retained an efficient mitochondrial oxidative phosphorylation, most probably as a consequence of a KO-induced arrest of the uncoupling effects of a high-fat diet. Lastly, the KO supplementation prevented an increase in body weight, as well as oxidative damage of lipids and proteins, which is often found in high-fat fed animals.

  12. Physicochemical characteristics of rapidly dried onion powder and its anti-atherogenic effect on rats fed high-fat diet.

    PubMed

    Hamauzu, Yasunori; Nosaka, Toshiya; Ito, Fuyu; Suzuki, Takanori; Torisu, Shuichi; Hashida, Miyoko; Fukuzawa, Akira; Ohguchi, Masakatsu; Yamanaka, Shigeru

    2011-12-01

    Rapidly dried onion (Allium cepa L. cv. Momiji No. 3) powder (OP) prepared from the outer layers (from second to fourth scale leaves from the surface) of onion bulbs was analysed for its quercetin and polyuronide contents, the effects of enzymatic treatment and the anti-atherogenic effect on rats fed a high-fat diet. Quercetin 4'-glucoside (50%), free quercetin (30%) and quercetin 3,4'-diglucoside (20%) were identified as quercetin derivatives, and boiling-water extraction was effective in extracting these compounds. OP contained 12.9% of polyuronides, the basic skeleton of pectin. Enzymatic degradation (cellulase and pectinase, 50°C for 12h, pH 6.0) of OP was effective in obtaining a slurry of smaller particle sizes. The free quercetin increased and the glucosides decreased with enzyme treatment. In Wistar rats fed an OP-added high-fat diet, the total cholesterol, HDL-cholesterol and triglyceride concentrations were not significantly different from the rats fed a high-fat diet without OP. However, the atherogenic index (AI) of Wistar rats fed an OP-added high-fat diet was lower (AI=3.3) than rats fed the diet without OP (AI=4.1). The incremental elastic modulus (IEM) of the aorta from rats fed the OP-added diet was also significantly lower than that of the rats fed the diet without OP. The AI and IEM values of the rats fed the OP-added diet were quite similar to the values of rats fed the diet without OP but were allowed spontaneous exercise. These results suggest that OP intake is effective for decreasing the risk of arteriosclerosis.

  13. Dietary cocoa reduces metabolic endotoxemia and adipose tissue inflammation in high-fat fed mice.

    PubMed

    Gu, Yeyi; Yu, Shan; Park, Jong Yung; Harvatine, Kevin; Lambert, Joshua D

    2014-04-01

    In diet-induced obesity, adipose tissue (AT) is in a chronic state of inflammation predisposing the development of metabolic syndrome. Cocoa (Theobroma cacao) is a polyphenol-rich food with putative anti-inflammatory activities. Here, we examined the impact and underlying mechanisms of action of cocoa on AT inflammation in high fat-fed mice. In the present study, male C57BL/6 J mice were fed a high fat diet (HF), a HF diet with 8% (w/w) unsweetened cocoa powder (HFC), or a low-fat diet (LF) for 18 weeks. Cocoa supplementation decreased AT mRNA levels of tumor necrosis factor-α, interleukin-6, inducible nitric oxide synthase, and EGF-like module-containing mucin-like hormone receptor-like 1 by 40-60% compared to HF group, and this was accompanied by decreased nuclear protein levels of nuclear factor-κB. Cocoa treatment reduced the levels of arachidonic acid in the AT by 33% compared to HF controls. Moreover, cocoa treatment also reduced protein levels of the eicosanoid-generating enzymes, adipose-specific phospholipase A2 and cyclooxygenase-2 by 53% and 55%, respectively, compared to HF-fed mice. Finally, cocoa treatment ameliorated metabolic endotoxemia (40% reduction in plasma endotoxin) and improved gut barrier function (as measured by increased plasma levels of glucagon-like peptide-2). In conclusion, the present study has shown for the first time that long-term cocoa supplementation can reduce AT inflammation in part by modulating eicosanoid metabolism and metabolic endotoxemia.

  14. GLP-2 as Beneficial Factor in the Glucose Homeostasis in Mice Fed a High Fat Diet.

    PubMed

    Baldassano, Sara; Rappa, Francesca; Amato, Antonella; Cappello, Francesco; Mulè, Flavia

    2015-12-01

    Glucagon like peptide-2 (GLP-2) is a gastrointestinal hormone released in response to dietary nutrients, which acts through a specific receptor, the GLP-2 receptor (GLP-2R). The physiological effects of GLP-2 are multiple, involving also the intestinal adaptation to high fat diet (HFD). In consideration of the well-known relationship between chronic HFD and impaired glucose metabolism, in the present study we examined if the blocking of the GLP-2 signaling by chronic treatment with the GLP-2R antagonist, GLP-2 (3-33), leads to functional consequences in the regulation of glucose metabolism in HFD-fed mice. Compared with animals fed standard diet (STD), mice at the 10th week of HFD showed hyperglycaemia, glucose intolerance, high plasma insulin level after glucose load, increased pancreas weight and β cell expansion, but not insulin resistance. In HFD fed mice, GLP-2 (3-33) treatment for 4 weeks (from the 6th to the 10th week of diet) did not affect fasting glycaemia, but it significantly increased the glucose intolerance, both fasting and glucose-induced insulin levels, and reduced the sensitivity to insulin leading to insulin-resistance. In GLP-2 (3-33)-treated HFD mice pancreas was significantly heavier and displayed a significant increase in β-cell mass in comparison with vehicle-treated HFD mice. In STD mice, the GLP-2 (3-33) treatment did not affect fasted or glucose-stimulated glycemia, insulin, insulin sensitivity, pancreas weight and beta cell mass. The present study suggests that endogenous GLP-2 may act as a protective factor against the dysregulation of the glucose metabolism that occurs in HFD mice, because GLP-2 (3-33) worsens glucose metabolism disorders.

  15. Piglets Born from Sows Fed High Fibre Diets during Pregnancy Are Less Aggressive Prior to Weaning

    PubMed Central

    Morrone, Beatrice; Mazza Rodrigues, Paulo Henrique

    2016-01-01

    Aggressive interactions, and their consequences, are the most important causes of poor welfare in piglets. Aggressive behaviour can be modulated by the prenatal and neonatal environment in several species. Commercially kept pregnant sows are often subjected to food restriction, which can compromise their welfare. Limited information is available on the consequences of sow hunger during pregnancy on welfare outcomes for their piglets. High fibre diets can mitigate the feeling of hunger and, consequently, it may improve welfare and productivity measures. The aim of this study was to assess the consequences of feeding pregnant gilts with high fibre diets (HFD) on agonistic behaviour, as manifested by skin lesions, and indicators of fear in their piglets at weaning. Twenty-two pregnant gilts were fed either HFD, 12.86% of crude fibre, 2.4 kg per day (N = 14), or low fibre diet (LFD), 2.53% of crude fibre, 2.0 kg per day (N = 8). During lactation, both treatments received the same diet, ad libitum. We investigated the impact of HFD on behaviour and performance measures (birth weight, average daily gain, weaning weight, see S3 File) in the offspring. Skin lesions were evaluated before and after weaning in 156 piglets (100 HFD and 56 LFD), and 142 piglets were subjected to an open field test and a novel object test (87 HFD and 55 LFD). We found no treatment effect on the performance measures. Piglets born from gilts that received HFD had fewer skin lesions before weaning (D28) than the offspring of LFD gilts, while no difference was found during days 29 and 30. In the open field and novel object tests, there was no treatment effect on the behaviour of piglets. The improved skin health at weaning in piglets of sows fed HFD suggests less agonistic interactions amongst these littermates than in piglets of sows fed LFD. PMID:27907173

  16. Model-Based Fed-Batch for High-Solids Enzymatic Cellulose Hydrolysis

    SciTech Connect

    Hodge, D. B.; Karim, M. N.; Schell, D. J.; McMillan, J. D.

    2008-01-01

    While many kinetic models have been developed for the enzymatic hydrolysis of cellulose, few have been extensively applied for process design, optimization, or control. High-solids operation of the enzymatic hydrolysis of lignocellulose is motivated by both its operation decreasing capital costs and increasing product concentration and hence separation costs. This work utilizes both insights obtained from experimental work and kinetic modeling to develop an optimization strategy for cellulose saccharification at insoluble solids levels greater than 15% (w/w), where mixing in stirred tank reactors (STRs) becomes problematic. A previously developed model for batch enzymatic hydrolysis of cellulose was modified to consider the effects of feeding in the context of fed-batch operation. By solving the set of model differential equations, a feeding profile was developed to maintain the insoluble solids concentration at a constant or manageable level throughout the course of the reaction. Using this approach, a stream of relatively concentrated solids (and cellulase enzymes) can be used to increase the final sugar concentration within the reactor without requiring the high initial levels of insoluble solids that would be required if the operation were performed in batch mode. Experimental application in bench-scale STRs using a feed stream of dilute acid-pretreated corn stover solids and cellulase enzymes resulted in similar cellulose conversion profiles to those achieved in batch shake-flask reactors where temperature control issues are mitigated. Final cellulose conversions reached approximately 80% of theoretical for fed-batch STRs fed to reach a cumulative solids level of 25% (w/w) initial insoluble solids.

  17. Cardiovascular protection of deep-seawater drinking water in high-fat/cholesterol fed hamsters.

    PubMed

    Hsu, Chin-Lin; Chang, Yuan-Yen; Chiu, Chih-Hsien; Yang, Kuo-Tai; Wang, Yu; Fu, Shih-Guei; Chen, Yi-Chen

    2011-08-01

    Cardiovascular protection of deep-seawater (DSW) drinking water was assessed using high-fat/cholesterol-fed hamsters in this study. All hamsters were fed a high-fat/cholesterol diet (12% fat/0.2% cholesterol), and drinking solutions were normal distiled water (NDW, hardness: 2.48ppm), DSW300 (hardness: 324.5ppm), DSW900 (hardness: 858.5ppm), and DSW1500 (hardness: 1569.0ppm), respectively. After a 6-week feeding period, body weight, heart rates, and blood pressures of hamsters were not influenced by DSW drinking waters. Serum total cholesterol (TC), triacylglycerol (TAG), atherogenic index, and malondialdehyde (MDA) levels were decreased (p<0.05) in the DSW-drinking-water groups, as compared to those in the NDW group. Additionally, increased (p<0.05) serum Trolox equivalent antioxidant capacity (TEAC), and faecal TC, TAG, and bile acid outputs were measured in the DSW-drinking-water groups. Hepatic low-density-lipoprotein receptor (LDL receptor) and cholesterol-7α-hydroxylase (CYP7A1) gene expressions were upregulated (p<0.05) by DSW drinking waters. These results demonstrate that DSW drinking water benefits the attenuation of high-fat/cholesterol-diet-induced cardiovascular disorders in hamsters.

  18. High efficiency vapor-fed AMTEC system for direct conversion. Appendices for final report

    SciTech Connect

    Anderson, W.G.; Bland, J.J.

    1997-05-23

    This report consists of four appendices for the final report. They are: Appendix A: 700 C Vapor-Fed AMTEC Cell Calculations; Appendix B: 700 C Vapor-Fed AMTEC Cell Parts Drawings; Appendix C: 800 C Vapor-Fed AMTEC Cell Calculations; and Appendix D: 800 C Wick-Pumped AMTEC Cell System Design.

  19. Spent turmeric reduces fat mass in rats fed a high-fat diet.

    PubMed

    Han, Kyu-Ho; Lee, Chang-Hyun; Kinoshita, Mikio; Oh, Chan-Ho; Shimada, Ken-ichiro; Fukushima, Michihiro

    2016-04-01

    Indigestible carbohydrates may improve obesity. Spent turmeric contains high levels of dietary fibre and resistant starch (RS), which have fermentation potential in vitro. We hypothesised that indigestible carbohydrates in spent turmeric might prevent obesity development. In the first study, rats were administered 10% turmeric powder (TP) or spent turmeric powder (STP) in a high-fat (HF) diet for 28 d. In the second study, rats were fed 10% STP in a HF diet with or without antibiotics for 15 d. In the third study, rats were treated with a STP-containing suspension. In study 1, the TP and STP diet increased the caecal short-chain fatty acid (SCFA) content compared to that of a control diet. The lower energy intake in the TP and STP group was strongly related to the decrease in visceral fat weight. In study 2, after caecal fermentation suppression with antibiotics, STP treatment decreased the visceral fat mass. In study 3, the plasma glucose levels and incremental area under the curve (AUC) after ingestion of a STP-containing suspension were lower than those after ingestion of suspension alone. These findings suggest the reduction of carbohydrate absorption during the gastrointestinal passage after TP and STP treatment. Our data indicate that the reduced obesity development in rats fed a HF diet may be attributed to the low metabolisable energy density of carbohydrates in the spent turmeric, independent of SCFA-mediated factors.

  20. Lipoprotein lipase activity and chylomicron clearance in rats fed a high fat diet

    SciTech Connect

    Brown, C.M.; Layman, D.K.

    1988-11-01

    The relationships of tissue and plasma lipoprotein lipase (LPL) activities to tissue uptake and plasma clearance of UC-labeled chylomicron-triglyceride ( UC-CM-TG) were studied in female rats fed isoenergetic and isonitrogenous control (12% kJ from fat) or high fat diets (72% kJ from fat) for 8 wk. Animals fed the high-fat diet had higher levels of fasting plasma triglycerides and lower LPL activities in heart, renal adipose tissue and post-heparin plasma. Changes in LPL activities of skeletal muscles varied among muscles with higher values in the soleus and plantaris (32-61%) and no differences in the gastrocnemius. The lower LPL activity in renal adipose tissue was associated with lower uptake of fatty acids from UC-CM-TG by adipose. Fatty-acid uptake from labeled TG was not associated with tissue LPL activity in other tissues. Clearance of UC-CM-TG from plasma and the half-lives of UC-CM-TG were similar in both dietary groups. These data indicate that tissue and plasma LPL activities are not a direct index of uptake of fatty acids by tissues or clearance of chylomicron triglycerides.

  1. Antidiabetic activity of 3-hydroxyflavone analogues in high fructose fed insulin resistant rats

    PubMed Central

    Nayak, Yogendra; Venkatachalam, H.; Daroji, Vijay Kumar; Mathew, Geetha; Jayashree, B.S.; Unnikrishnan, M.K.

    2014-01-01

    Synthetic 3-hydroxyflavone analogues (JY-1, JY-2, JY-3, JY-4), were tested for antidiabetic activity in high-fructose-diet-fed (66 %, for 6 weeks) insulin-resistant Wistar rats (FD-fed rats). The fasting blood glucose, insulin, creatinine and AGEs were decreased to near normal upon treatment with test compounds. Insulin resistance markers such as HOMA-IR, K-ITT, plasma triglycerides, lipids, endogenous antioxidant defense and glycogen were restored in FD-fed rats after treatment with 3-hydroxyflavones. It is known that insulin resistance is partly because of oxidative stress and hence antioxidant activity was determined. They exhibited significant in vitro DPPH and ABTS radical scavenging activity (IC50: 10.66-66.63 µM). Test compounds inhibited ROS and NO production in RAW 264.7 cells (IC50: 10.39–42.63 µM) and they were found as potent as quercetin. Further, the test compounds inhibited lipid peroxidation at low concentrations (IC50: 99.61-217.47 µM). All test compounds at concentrations 100-200 µM protected calf thymus DNA-damage by Fenton reaction. In addition, test compounds inhibited protein glycation in different in vitro antiglycation assays. JY-2 showed maximum potency in all the stages of glycation which was comparable to the standard quercetin and aminoguanidine. Test compounds also enhanced the glucose uptake by L6 myotubes at an EC50 much lower than that of quercetin. Thus the synthetic 3-hydroxyflavones were found to have good antidiabetic activity by pleotropic and multimodal suppression of insulin resistance and enhancement of glucose uptake by skeletal muscles. These compounds are non-toxic at the doses tested. Further, the combined antioxidant and antiglycation activities of these molecules have complementary benefits in management of diabetes. PMID:26417321

  2. Soy protein isolate inhibits hepatic tumor promotion in mice fed a high-fat liquid diet.

    PubMed

    Mercer, Kelly E; Pulliam, Casey F; Pedersen, Kim B; Hennings, Leah; Ronis, Martin Jj

    2017-03-01

    Alcoholic and nonalcoholic fatty liver diseases are risk factors for development of hepatocellular carcinoma, but the underlying mechanisms are poorly understood. On the other hand, ingestion of soy-containing diets may oppose the development of certain cancers. We previously reported that replacing casein with a soy protein isolate reduced tumor promotion in the livers of mice with alcoholic liver disease after feeding a high fat ethanol liquid diet following initiation with diethylnitrosamine. Feeding soy protein isolate inhibited processes that may contribute to tumor promotion including inflammation, sphingolipid signaling, and Wnt/β-catenin signaling. We have extended these studies to characterize liver tumor promotion in a model of nonalcoholic fatty liver disease produced by chronic feeding of high-fat liquid diets in the absence of ethanol. Mice treated with diethylnitrosamine on postnatal day 14 were fed a high-fat liquid diet made with casein or SPI as the sole protein source for 16 weeks in adulthood. Relative to mice fed normal chow, a high fat/casein diet led to increased tumor promotion, hepatocyte proliferation, steatosis, and inflammation. Replacing casein with soy protein isolate counteracted these effects. The high fat diets also resulted in a general increase in transcripts for Wnt/β-catenin pathway components, which may be an important mechanism, whereby hepatic tumorigenesis is promoted. However, soy protein isolate did not block Wnt signaling in this nonalcoholic fatty liver disease model. We conclude that replacing casein with soy protein isolate blocks development of steatosis, inflammation, and tumor promotion in diethylnitrosamine-treated mice fed high fat diets. Impact statement The impact of dietary components on cancer is a topic of great interest for both the general public and the scientific community. Liver cancer is currently the second leading form of cancer deaths worldwide. Our study has addressed the effect of the protein

  3. A novel mice model of metabolic syndrome: the high-fat-high-fructose diet-fed ICR mice

    PubMed Central

    Zhuhua, Zhang; Zhiquan, Wang; Zhen, Yang; Yixin, Niu; Weiwei, Zhang; Xiaoyong, Li; Yueming, Liu; Hongmei, Zhang; Li, Qin; Qing, Su

    2015-01-01

    Currently, the metabolic syndrome (MS) is occurring at growing rates worldwide, raising extensive concerns on the mechanisms and therapeutic interventions for this disorder. Herein, we described a novel method of establishing MS model in rodents. Male Institute of Cancer Research (ICR) mice were fed with high-fat-high-fructose (HFHF) diet or normal chow (NC) respectively for 12 weeks. Metabolic phenotypes were assessed by glucose tolerance test, insulin tolerance test and hyperinsulinemic-euglycemic clamp. Blood pressure was measured by a tail-cuff system. At the end of the experiment, mice were sacrificed, and blood and tissues were harvested for subsequent analysis. Serum insulin levels were measured by ELISA, and lipid profiles were determined biochemically. The HFHF diet-fed ICR mice exhibited obvious characteristics of the components of MS, including obvious obesity, severe insulin resistance, hyperinsulinemia, dislipidemia, significant hypertension and hyperuricemia. Our data suggest that HFHF diet-fed ICR mice may be a robust and efficient animal model that could well mimic the basic pathogenesis of human MS. PMID:26134356

  4. Basis of aggravated hepatic lipid metabolism by chronic stress in high-fat diet-fed rat.

    PubMed

    Han, Ying; Lin, Min; Wang, Xiaobin; Guo, Keke; Wang, Shanshan; Sun, Mengfei; Wang, Jiao; Han, Xiaoyu; Fu, Ting; Hu, Yang; Fu, Jihua

    2015-03-01

    Our previous study has demonstrated that long-term stress, known as chronic stress (CS), can aggravate nonalcoholic fatty liver disease in high-fat diet (HFD)-fed rat. In this study, we tried to figure out which lipid metabolic pathways were impacted by CS in the HFD-fed rat. Male Sprague-Dawley rats (6 weeks of age, n = 8 per group) were fed with either standard diet or HFD with or without CS exposure for 8 weeks. Hepatic lipidosis, biochemical, hormonal, and lipid profile markers in serum and liver, and enzymes involved in de novo lipogenesis (DNL) of fatty acids (FAs) and cholesterol, β-oxidation, FAs uptake, triglycerides synthesis, and very low-density lipoprotein (VLDL) assembly in the liver were detected. CS exposure reduced hepatic lipidosis but further elevated hepatic VLDL content with aggravated dyslipidemia in the HFD-fed rats. There was a synergism between CS and HFD on VLDL production and dyslipidemia. PCR and western blot assays showed that CS exposure significantly promoted hepatic VLDL assembly in rats, especially in the HFD-fed rats, while it had little impact on DNL, β-oxidation, FAs uptake, and triglycerides synthesis in the HFD-fed rats. This phenomenon was in accordance with elevated serum glucocorticoid level. The critical influence of CS exposure on hepatic lipid metabolism in the HFD-fed rats is VLDL assembly which might be regulated by glucocorticoid.

  5. Root-fed salicylic acid in grape involves the response caused by aboveground high temperature.

    PubMed

    Liu, Hong-Tao; Liu, Yue-Ping; Huang, Wei-Dong

    2008-06-01

    In order to investigate the transportation and distribution of salicylic acid (SA) from root to aboveground tissues in response to high temperature, the roots of grape plant were fed with (14)C-SA before high temperature treatment. Radioactivity results showed that progressive increase in SA transportation from root to aboveground as compared with the control varied exactly with the heat treatment time. Radioactivity results of leaves at different stem heights indicated that the increase in SA amount at the top and middle leaves during the early period was most significant in comparison with the bottom leaves. The up-transportation of SA from root to aboveground tissues was dependent on xylem rather than phloem. Auto-radiographs of whole grape plants strongly approved the conclusions drawn above. Root-derived SA was believed to be a fundamental source in response to aboveground high temperature.

  6. Anorexic effects of intra-VTA leptin are similar in low-fat and high-fat-fed rats but attenuated in a subgroup of high-fat-fed obese rats

    PubMed Central

    Bruijnzeel, Adrie W.; Qi, Xiaoli; Corrie, Lu W.

    2012-01-01

    Leptin is an adiposity hormone that plays an important role in regulating food intake and energy homeostasis. This study investigated the effects of a high-fat (HF) and a low-fat, high-carbohydrate/sugar (LF) diet on leptin sensitivity in the ventral tegmental area (VTA) in rats. The animals were exposed to a HF or LF diet for 16 weeks. Then the effects of intra-VTA leptin (150 and 500 ng/side, unilateral dose) on food intake and body weights were investigated while the animals were maintained on the HF or LF diet. Long-term exposure to the HF or LF diet led to similar body weight gain in these groups. The HF-fed animals consumed a smaller amount of food by weight than the LF-fed animals but both groups consumed the same amount of calories. The bilateral administration of leptin into the VTA decreased food intake (72 h) and body weights (48 h) to a similar degree in the HF and LF-fed animals. When the HF-fed animals were ranked by body weight gain it was shown that the diet-induced obese rats (HF-fed DIO, upper quartile for weight gain) were less sensitive to the effects of leptin on food intake and body weights than the diet-resistant rats (HF-fed DR, lower quartile for weight gain). A control experiment with fluorescent Cy3-labeled leptin showed that leptin did not spread beyond the borders of the VTA. This study indicates that leptin sensitivity in the VTA is the same in animals that are exposed to a HF or LF diet. However, HF-fed DIO rats are less sensitive to the effects of leptin in the VTA than HF-fed DR rats. Leptin resistance in the VTA might contribute to overeating and weight gain when exposed to a HF diet. PMID:23107643

  7. The lack of endocrine disrupting effects in catfish (Clarias gariepinus) from a DDT sprayed area.

    PubMed

    Brink, Kerry; van Vuren, Johan Jansen; Bornman, Riana

    2012-05-01

    The exposure and response of the catfish, Clarias gariepinus, was studied in male specimens collected in the vicinity of a DDT spraying programme to control malaria. Two sites were situated in the DDT sprayed areas and one site upstream from exposed areas, used as a reference site. The collected specimens were analysed for DDT bioaccumulation and the extent of associated effects. The concentration of all DDT metabolites including p,p'-and o,p'-forms of DDT, DDE and DDD, were measured in the adipose tissue, whilst the effects were measured using a range of biomarkers. This included assessing the effectiveness of plasma calcium, magnesium, zinc and alkali-labile phosphates (ALPs) as indirect measures of vitellogenin (VTG). Gonad condition was determined by calculating the gonadosomatic index (GSI) for each individual and comparing it with the gonad mass that were adjusted with Analysis of Covariance (ANCOVA). The presence of intersex in gonads was identified and the overall body condition determined using the condition factor (CF). Overall, none of the biomarkers showed significant change in the presence of high levels of DDT nor lindane, dieldrin and endosulfan II. Subtle responses in the plasma concentrations of calcium, ALP and gonad condition were evident in the catfish where DDT concentrations were highest, whilst no effects related to intersex and body condition were evident. Overall this study highlighted the tolerance of C. gariepinus to DDT contamination, the practical implications of using biomarkers in developing countries, and the need for further research into developing biomarkers for much needed biomonitoring programmes in areas where malarial control programmes continue to use DDT.

  8. Are viruses important in the plankton of highly turbid glacier-fed lakes?

    PubMed Central

    Drewes, Fabian; Peter, Hannes; Sommaruga, Ruben

    2016-01-01

    Viruses are ubiquitous in aquatic ecosystems where they significantly contribute to microbial mortality. In glacier-fed turbid lakes, however, viruses not only encounter low host abundances, but also a high number of suspended mineral particles introduced by glacier meltwaters. We hypothesized that these particles potentially lead to unspecific adsorption and removal of free virus from the plankton, and thus significantly reduce their abundance in this type of lake. We followed the distribution of free virus-like particles (VLP) during the ice-free season across a turbidity gradient in four alpine lakes including one adjacent clear system where hydrological connectivity to the receding glacier is already lost. In the glacier-fed turbid lakes, VLP abundance increased with distance to the glacier, but the highest numbers were observed in the clear lake by the end of August, coinciding with the maximum in prokaryotic abundance. Our results suggest that viral loss by attachment to particles is less important than expected. Nevertheless, the relatively lower variability in VLP abundance and the lower virus-to-prokaryote ratio found in the turbid lakes than in the clear one point to a rather low temporal turnover and thus, to a reduced impact on microbial communities. PMID:27094854

  9. Parallel and series FED microstrip array with high efficiency and low cross polarization

    NASA Technical Reports Server (NTRS)

    Huang, John (Inventor)

    1995-01-01

    A microstrip array antenna for vertically polarized fan beam (approximately 2 deg x 50 deg) for C-band SAR applications with a physical area of 1.7 m by 0.17 m comprises two rows of patch elements and employs a parallel feed to left- and right-half sections of the rows. Each section is divided into two segments that are fed in parallel with the elements in each segment fed in series through matched transmission lines for high efficiency. The inboard section has half the number of patch elements of the outboard section, and the outboard sections, which have tapered distribution with identical transmission line sections, terminated with half wavelength long open-circuit stubs so that the remaining energy is reflected and radiated in phase. The elements of the two inboard segments of the two left- and right-half sections are provided with tapered transmission lines from element to element for uniform power distribution over the central third of the entire array antenna. The two rows of array elements are excited at opposite patch feed locations with opposite (180 deg difference) phases for reduced cross-polarization.

  10. Are viruses important in the plankton of highly turbid glacier-fed lakes?

    NASA Astrophysics Data System (ADS)

    Drewes, Fabian; Peter, Hannes; Sommaruga, Ruben

    2016-04-01

    Viruses are ubiquitous in aquatic ecosystems where they significantly contribute to microbial mortality. In glacier-fed turbid lakes, however, viruses not only encounter low host abundances, but also a high number of suspended mineral particles introduced by glacier meltwaters. We hypothesized that these particles potentially lead to unspecific adsorption and removal of free virus from the plankton, and thus significantly reduce their abundance in this type of lake. We followed the distribution of free virus-like particles (VLP) during the ice-free season across a turbidity gradient in four alpine lakes including one adjacent clear system where hydrological connectivity to the receding glacier is already lost. In the glacier-fed turbid lakes, VLP abundance increased with distance to the glacier, but the highest numbers were observed in the clear lake by the end of August, coinciding with the maximum in prokaryotic abundance. Our results suggest that viral loss by attachment to particles is less important than expected. Nevertheless, the relatively lower variability in VLP abundance and the lower virus-to-prokaryote ratio found in the turbid lakes than in the clear one point to a rather low temporal turnover and thus, to a reduced impact on microbial communities.

  11. Shengmai San reduces hepatic lipids and lipid peroxidation in rats fed on a high-cholesterol diet.

    PubMed

    Yao, Hsien-Tsung; Chang, Yi-Wei; Chen, Chiung-Tong; Chiang, Meng-Tsan; Chang, Ling; Yeh, Teng-Kuang

    2008-02-28

    Shengmai San (SMS), which is comprised of the medicinal herbs of Panax ginseng C.A. Meyer, Schisandra chinensis Baill., and Ophiopogon japonicus Ker-Gawl (2:1:2)., is a traditional Chinese medicine being used for treating coronary heart disease. The aim of this study was to investigate the effects of SMS on the plasma and liver lipids, lipid peroxidation and antioxidant systems in liver and heart of cholesterol-fed rats. Rats were fed on a high-cholesterol (0.5%) diet (control group), high-cholesterol diet containing 2% SMS (2% SMS group) and 4% SMS (4% SMS group) for four weeks. The oxidative stress marker (thiobarbituric acid reactive substances, TBARS) and antioxidant defense systems including glutathione (GSH), glutathione peroxidase (GSH-Px), glutathione-S-transferase (GST) and superoxide dismutase (SOD) activities in rat liver and heart were evaluated. Results showed that rats fed with SMS-containing diet had reduced the H(2)O(2)-induced erythrocytes susceptibility to hemolysis, and 4% SMS feeding rats had higher plasma GSH concentration compared to the animals fed with the control diet. However, SMS had no effect on plasma lipids (total cholesterol, triglyceride and high-density lipoprotein cholesterol) and TBARS concentration. On the other hand, rats fed with the 4% SMS diet reduced the hepatic cholesterol and triglyceride contents. Fecal bile acid excretion was significantly increased in rats fed with the SMS-containing diet. Higher hepatic GSH and lower TBARS concentrations were observed in rats fed with the 4% SMS diet compared with the rats fed with the control diet. No significant difference in activities of GSH-Px, GST and SOD was found in liver and heart after the SMS treatment. Results from this study indicate that the SMS may reduce hepatic lipids and lipid peroxidation in rats.

  12. Improved methane production from brown algae under high salinity by fed-batch acclimation.

    PubMed

    Miura, Toyokazu; Kita, Akihisa; Okamura, Yoshiko; Aki, Tsunehiro; Matsumura, Yukihiko; Tajima, Takahisa; Kato, Junichi; Nakashimada, Yutaka

    2015-01-01

    Here, a methanogenic microbial community was developed from marine sediments to have improved methane productivity from brown algae under high salinity. Fed-batch cultivation was conducted by adding dry seaweed at 1wt% total solid (TS) based on the liquid weight of the NaCl-containing sediment per round of cultivation. The methane production rate and level of salinity increased 8-fold and 1.6-fold, respectively, at the 10th round of cultivation. Moreover, the rate of methane production remained high, even at the 10th round of cultivation, with accumulation of salts derived from 10wt% TS of seaweed. The salinity of the 10th-round culture was equivalent to 5% NaCl. The improved methane production was attributed to enhanced acetoclastic methanogenesis because acetate became rapidly converted to methane during cultivation. The family Fusobacteriaceae and the genus Methanosaeta, the acetoclastic methanogen, predominated in bacteria and archaea, respectively, after the cultivation.

  13. Production of nattokinase by high cell density fed-batch culture of Bacillus subtilis.

    PubMed

    Kwon, Eun-Yeong; Kim, Kyung Mi; Kim, Mi Kyoung; Lee, In Young; Kim, Beom Soo

    2011-09-01

    Bacillus subtilis was cultivated to high cell density for nattokinase production by pH-stat fed-batch culture. A concentrated mixture solution of glucose and peptone was automatically added by acid-supplying pump when culture pH rose above high limit. Effect of the ratio of glucose to peptone in feeding solution was investigated on cell growth and nattokinase production by changing the ratio from 0.2 to 5 g glucose/g peptone. The highest cell concentration was 77 g/L when the ratio was 0.2 g glucose/g peptone. Cell concentration decreased with increasing the ratio of glucose to peptone in feeding solution, while the optimum condition existed for nattokinase production. The highest nattokinase activity was 14,500 unit/mL at a ratio of 0.33 g glucose/g peptone, which was 4.3 times higher than that in batch culture.

  14. Ghrelin O-acyltransferase knockout mice show resistance to obesity when fed high-sucrose diet.

    PubMed

    Kouno, Tetsuya; Akiyama, Nobuteru; Ito, Takahito; Okuda, Tomohiko; Nanchi, Isamu; Notoya, Mitsuru; Oka, Shogo; Yukioka, Hideo

    2016-02-01

    Ghrelin is an appetite-stimulating hormone secreted from stomach. Since the discovery that acylation of the serine-3 residue by ghrelin O-acyltransferase (GOAT) is essential for exerting its functions, GOAT has been regarded as an therapeutic target for attenuating appetite, and thus for the treatment of obesity and diabetes. However, contrary to the expectations, GOAT-knockout (KO) mice have not shown meaningful body weight reduction, under high-fat diet. Here, in this study, we sought to determine whether GOAT has a role in body weight regulation and glucose metabolism with a focus on dietary sucrose, because macronutrient composition of diet is important for appetite regulation. We found that peripherally administered acylated-ghrelin, but not unacylated one, stimulated sucrose consumption in a two-bottle-drinking test. The role of acylated-ghrelin in sucrose preference was further supported by the finding that GOAT KO mice consumed less sucrose solution compared with WT littermates. Then, we investigated the effect of dietary composition of sucrose on food intake and body weight in GOAT KO and WT mice. As a result, when fed on high-fat diet, food intake and body weight were similar between GOAT KO and WT mice. However, when fed on high-fat, high-sucrose diet, GOAT KO mice showed significantly reduced food intake and marked resistance to obesity, leading to amelioration of glucose metabolism. These results suggest that blockade of acylated-ghrelin production offers therapeutic potential for obesity and metabolic disorders caused by overeating of palatable food.

  15. Inhibitory effects of cardiotonic pills on platelet function in dogs fed a high-fat diet.

    PubMed

    Zhang, Lei; Zheng, Jun; Li, Hui-Min; Meng, Yong-Xia

    2006-06-01

    Insulin resistance and the consequent metabolic disorders are associated with a state of platelet hyperactivity. Oxidative stress is responsible for the persistent platelet activation. We sought to study the inhibitory effect of cardiotonic pills, an oral herbal component, on platelet function in a dog model with insulin resistance induced by high-fat feeding. We fed 18 dogs with a high-fat diet and six dogs with normal chow as control for 6 months. Then, six dogs were fed with a high-fat diet and received additional aspirin (250 mg/day), and another six dogs received additional cardiotonic pills (1,000 mg/day) for 4 months. Time-course changes in metabolic parameters and platelet function were detected. After high-fat feeding for 6 months, 18 dogs developed a series of metabolic disorders including obesity, dyslipidemia, oxidative stress and insulin resistance. In addition, a platelet hyperactivity state, characterized by increased agonist (arachidonic acid, ADP and collagen) induced platelet aggregation, platelet expression of adhesion molecules (P-selectin and GP IIb/IIIa), and platelet intracellular calcium concentration, was indicated. Cardiotonic pills showed a significant antioxidative activity by presenting an increase in plasma superoxide dismutase and decrease in erythrocyte glutathione, as well as a lipid-lowering effect (decrease in both plasma cholesterol and triglyceride). Either aspirin or cardiotonic pills could significantly reverse the platelet hypersensitivity and hyperfunction. Compared with aspirin, cardiotonic pills showed a more exaggerated inhibitory effect on platelet function (a significantly decreased collagen-stimulated platelet aggregation, and expression of adhesion molecules). In conclusion, cardiotonic pills inhibited platelet hyperfunction in dogs with insulin resistance. This inhibitory effect may mainly be explained by antioxidative activity and metabolic control.

  16. Exercise Increases and Browns Muscle Lipid in High-Fat Diet-Fed Mice

    PubMed Central

    Morton, Tiffany L.; Galior, Kornelia; McGrath, Cody; Wu, Xin; Uzer, Gunes; Uzer, Guniz Bas; Sen, Buer; Xie, Zhihui; Tyson, David; Rubin, Janet; Styner, Maya

    2016-01-01

    Muscle lipid increases with high-fat feeding and diabetes. In trained athletes, increased muscle lipid is not associated with insulin resistance, a phenomenon known as the athlete’s paradox. To understand if exercise altered the phenotype of muscle lipid, female C57BL/6 mice fed CTL or high-fat diet (HFD for 6 or 18 weeks) were further divided into sedentary or exercising groups (CTL-E or HFD-E) with voluntary access to running wheels for the last 6 weeks of experiments, running 6 h/night. Diet did not affect running time or distance. HFD mice weighed more than CTL after 18 weeks (p < 0.01). Quadriceps muscle TG was increased in running animals and in sedentary mice fed HFD for 18 weeks (p < 0.05). In exercised animals, markers of fat, Plin1, aP2, FSP27, and Fasn, were increased significantly in HFD groups. Ucp1 and Pgc1a, markers for brown fat, increased with exercise in the setting of high fat feeding. Fndc5, which encodes irisin, and CytC were sensitive to exercise regardless of diet. Plin5 was increased with HFD and unaffected by exercise; the respiratory exchange ratio was 15% lower in the 18-week HFD group compared with CTL (p < 0.001) and 10% lower in 18 weeks HFD-E compared with CTL-E (p < 0.001). Increased Ucp1 and Pgc1a in exercised muscle of running mice suggests that a beige/brown fat phenotype develops, which differs from the fat phenotype that induces insulin resistance in high fat feeding. This suggests that increased muscle lipid may develop a “brown” phenotype in the setting of endurance exercise training, a shift that is further promoted by HFD. PMID:27445983

  17. Selenium retention in tissues of swine fed carcasses of pigs grown on diets containing sodium selenite or high selenium white sweet clover grown on fly ash

    SciTech Connect

    Mandisodza, K.T.; Pond, W.G.; Lisk, D.J.; Gutenmann, W.H.; Hogue, D.E.

    1980-04-01

    Growing pigs were fed diets containing 5 or 10% white sweet clover, and 0, 3.5 or 7.0 ppM selenium (Se) supplied as sodium selenite (Na/sub 2/SeO/sub 3/) or occurring naturally in white sweet clover harvested from a coal fly ash dump. Ground carcasses of these pigs were included in corn meal diets at 23% and fed back to pigs. Compared to the pigs fed the high Se, fly ash-grown clover diets, the pigs fed Na/sub 2/SeO/sub 3/ diets had higher blood Se levels but lower Se concentrations in kidney, liver and skeletal muscle. Tissues of the pigs which were fed carcasses of the high Se clover-fed pigs had higher Se concentrations than those of the pigs fed carcasses of the Na/sub 2/SeO/sub 3/ - fed pigs.

  18. Ketoprofen and antinociception in hypo-oestrogenic Wistar rats fed on a high sucrose diet.

    PubMed

    Jaramillo-Morales, Osmar Antonio; Espinosa-Juárez, Josué Vidal; García-Martínez, Betzabeth Anali; López-Muñoz, Francisco Javier

    2016-10-05

    Non-steroidal anti-inflammatory drugs such as ketoprofen are the most commonly used analgesics for the treatment of pain. However, no studies have evaluated the analgesic response to ketoprofen in conditions of obesity. The aim of this study was to analyse the time course of nociceptive pain in Wistar rats with and without hypo-oestrogenism on a high sucrose diet and to compare the antinociceptive response using ketoprofen. Hypo-oestrogenic and naïve rats received a hyper caloric diet (30% sucrose) or water ad libitum for 17 weeks, the thermal nociception ("plantar test" method) and body weight were tested during this period. A biphasic response was observed: thermal latency decreased in the 4th week (hyperalgesia), while from 12th to 17th week, thermal latency increased (hypoalgesia) in hypo-oestrogenic rats fed with high sucrose diet compared with the hypo-oestrogenic control group. At 4th and 17th weeks, different doses of ketoprofen (1.8-100mg/kg p.o.), were evaluated in all groups. The administration of ketoprofen at 4th and 17th weeks showed dose-dependent effects in the all groups; however, a greater pharmacological efficacy was observed in the 4th week in the hypo-oestrogenic animals that received sucrose. Nevertheless, in all the groups significantly diminish the antinociceptive effects in the 17th week. Our data showed that nociception was altered in the hypo-oestrogenic animals that were fed sucrose (hyperalgesia and hypoalgesia). Ketoprofen showed a dose-dependent antinociceptive effect at both time points. However, hypo-oestrogenism plus high-sucrose diet modifies the antinociceptive effect of ketoprofen.

  19. Fasting and sampling time affect liver gene expression of high-fat diet-fed mice.

    PubMed

    Lee, C Y

    2010-05-01

    Several physiological and biological variables are known to affect peroxisome proliferator-activated receptor (PPAR)-α-dependent signaling pathway and plasma biochemical profiles. However, less is known about the effect of these variables on high-fat diet-fed mice. In a 5-week study, C57BL/6 mice were divided into control (C) and high-fat diet-fed (H) groups, whereby before dissection, each group was subdivided into non-fasted (nC and nH) and a 15-h fasted mice (fC and fH) killed in the early light cycle, and a 15-h fasted mice (eC and eH) killed in the late phase of the light cycle. Liver and blood from the vena cava were collected. Non-fasted nC and nH mice have a marginal difference in their body weight gain, whereas significant differences were found for fasted mice. In nH mice, PPAR-α, acyl-CoA oxidase and insulin-like growth factor-binding protein expressions were significantly elevated, in contrast to fatty acid synthase (Fasn), stearoyl CoA-desaturase (SCD)-1, and elongase (ELOVL)-6 expressions. Fasn was profoundly induced in fH mice, while decreased sterol regulatory-binding protein-1 and SCD-1 were found only in eH mice. Different from the gene expression profiles, plasma total cholesterol level of the eH mice was higher than controls, whereas nH mice have increased plasma non-esterified fatty acids. Only glucose level of the fH mice was higher than that observed for controls. Results showed that fasting and sampling time have significantly affected liver gene expression and plasma biochemical indices of the high-fat diet-treated mice. An overlook in these aspects can cause serious discrepancies in the experimental data and their interpretations.

  20. High-Density EMI Filter Design for DC-Fed Motor Drives

    SciTech Connect

    Lai, Rixin; Maillet, Yoann; Wang, Shuo; Wang, Fei; Burgos, Rolando; Boroyevich, Dushan

    2010-01-01

    This paper presents strategies to reduce both differential-mode (DM) and common-mode (CM) noise using a passive filter in a dc-fed motor drive. The paper concentrates on the type of grounding and the components to optimize filter size and performance. Grounding schemes, material comparison between ferrite and nanocrystalline cores, and a new integrated filter structure are presented. The integrated structure maximizes the core window area and increases the leakage inductance by integrating both CM and DM inductances onto one core. Small-signal and large-signal experiments validate the structure, showing it to have reduced filter size and good filtering performance when compared with standard filters at both low and high frequencies.

  1. Anti-atherosclerotic effects of perilla oil in rabbits fed a high-cholesterol diet

    PubMed Central

    Cha, Yeseul; Jang, Ja Young; Ban, Young-Hwan; Guo, Haiyu; Shin, Kyungha; Kim, Tae-Su; Lee, Sung-Pyo; Choi, Jieun; An, Eun-Suk; Seo, Da-Woom; Yon, Jung-Min

    2016-01-01

    Anti-atherosclerosis effects of perilla oil were investigated, in comparison with lovastatin, in rabbits fed a high-cholesterol diet (HCD). Hypercholesterolemia was induced in rabbits by feeding the HCD containing 0.5% cholesterol and 1% corn oil, and perilla oil (0.1 or 0.3%) was added to the diet containing 0.5% cholesterol for 10 weeks. HCD greatly increased blood total cholesterol and low-density lipoproteins, and caused thick atheromatous plaques, covering 74% of the aortic wall. Hyper-cholesterolemia also induced lipid accumulation in the liver and kidneys, leading to lipid peroxidation. Perilla oil not only attenuated hypercholesterolemia and atheroma formation, but also reduced fat accumulation and lipid peroxidation in hepatic and renal tissues. The results indicate that perilla oil prevents atherosclerosis and fatty liver by controlling lipid metabolism, and that it could be the first choice oil to improve diet-induced metabolic syndrome. PMID:27729934

  2. Hypocholesterolemic effect of sericin-derived oligopeptides in high-cholesterol fed rats.

    PubMed

    Lapphanichayakool, Phakhamon; Sutheerawattananonda, Manote; Limpeanchob, Nanteetip

    2017-01-01

    The beneficial effect of cholesterol-lowering proteins and/or peptides derived from various dietary sources is continuously reported. A non-dietary protein from silk cocoon, sericin, has also demonstrated cholesterol-lowering activity. A sericin hydrolysate prepared by enzymatic hydrolysis was also expected to posses this effect. The present study was aimed at investigating the cholesterol-lowering effect of sericin peptides, so called "sericin-derived oligopeptides" (SDO) both in vivo and in vitro. The results showed that SDO at all three doses tested (10 mg kg(-1) day(-1), 50 mg kg(-1) day(-1), and 200 mg kg(-1) day(-1)) suppressed serum total and non-HDL cholesterol levels in rats fed a high-cholesterol diet. Triglyceride and HDL-cholesterol levels were not significantly changed among all groups. The fecal contents of bile acids and cholesterol did not differ among high-cholesterol fed rats. SDO dose-dependently reduced cholesterol solubility in lipid micelles, and inhibited cholesterol uptake in monolayer Caco-2 cells. SDO also effectively bound to all three types of bile salts including taurocholate, deoxytaurocholate, and glycodeoxycholate. Direct interaction with bile acids of SDO may disrupt micellar cholesterol solubility, and subsequently reduce the absorption of dietary cholesterol in intestines. Taking all data together, SDO or sericin peptides exhibit a beneficial effect on blood cholesterol levels and could be potentially used as a health-promoting dietary supplement or nutraceutical product.

  3. High density lipoprotein plasma fractions inhibit aortic fatty streaks in cholesterol-fed rabbits.

    PubMed

    Badimon, J J; Badimon, L; Galvez, A; Dische, R; Fuster, V

    1989-03-01

    The effects of in vivo administration of high density lipoprotein-very high density lipoprotein (HDL-VHDL) on the development of aortic fatty streaks were studied in cholesterol-fed rabbits. The rabbits received a 0.5% cholesterol-rich diet for 8 weeks. During this period, the HDL-VHDL group was intravenously administered with 50 mg/week of homologous HDL-VHDL protein; the control group received normal saline (0.9% NaCl). HDL-VHDL fraction was obtained at density range 1.063 to 1.25 gm/ml by ultracentrifugation of normal rabbit plasma. Along the study, plasma lipid levels followed a similar profile in both groups. At the completion of the study, atherosclerotic-like lipid-rich lesions covered 37.9 +/- 6% (X +/- SEM) of the intimal aortic surface in the control group, and 14.9 +/- 2.1% in the treated group (p less than 0.001). The values of total and free cholesterol, esterified cholesterol, and phospholipids deposited within vessel wall were significantly lower in the aortas of the HDL-VHDL treated group than those in the control group. Cholesterol accumulation in the livers was also significantly lower (p less than 0.01) in the treated group than in the control. We concluded that administration of homologous HDL-VHDL lipoprotein fraction to cholesterol-fed rabbits, dramatically inhibited the extent of aortic fatty streaks and lowered lipid deposition in the arterial wall and liver without modification of the plasma lipid levels.

  4. Serotonin Deficiency Rescues Lactation on Day 1 in Mice Fed a High Fat Diet

    PubMed Central

    Prichard, Allan S.; Perez, Paola K.; Streckenbach, Liana J.; Olson, Jake M.; Cook, Mark E.; Hernandez, Laura L.

    2016-01-01

    Obesity is an inflammatory state associated with delayed lactogenesis stage II and altered mammary gland morphology. Serotonin mediates inflammation and mammary gland involution. The objective of this study was to determine if a genetic deficiency of tryptophan hydroxylase 1, the rate-limiting enzyme in peripheral serotonin synthesis, would result in an improved ability to lactate in dams fed a high fat diet. Twenty-six female mice were fed a high (HFD) or low fat (LFD) diet throughout pregnancy and lactation. Fourteen mice were genetically deficient for Tph1 (Tph1-/-), and twelve were wild type. Milk yield, pup mortality, and dam weights were recorded and milk samples were collected. On day 10 of lactation, dams were sacrificed and mammary glands were harvested for RT-PCR and histological evaluation. HFD dams weighed more than LFD dams at the onset of lactation. WT HFD dams were unable to lactate on day 1 of lactation and exhibited increased pup mortality relative to all other treatments, including Tph1-/- HFD dams. mRNA expression of immune markers C-X-C motif chemokine 5 and tumor necrosis factor alpha were elevated in WT HFD mammary glands. Mammary gland histology showed a reduced number of alveoli in WT compared to Tph1-/- dams, regardless of diet, and the alveoli of HFD dams were smaller than those of LFD dams. Finally, fatty acid profile in milk was dynamic in both early and peak lactation, with reduced de novo synthesis of fatty acids on day 10 of lactation in the HFD groups. Administration of a HFD to C57BL/6 dams produced an obese phenotype in the mammary gland, which was alleviated by a genetic deficiency of Tph1. Serotonin may modulate the effects of obesity on the mammary gland, potentially contributing to the delayed onset of lactogenesis seen in obese women. PMID:27603698

  5. Coacervate whey protein improves inflammatory milieu in mice fed with high-fat diet

    PubMed Central

    2014-01-01

    Background Functional foods with bioactive properties may help in treat obesity, as they can lead to a decreased risks of inflammatory diseases. The aim of this study was to investigate the effects of chitosan coacervate whey protein on the proinflammatory processes in mice fed with high-fat diet. Methods Mice were divided into two groups receiving either a normolipidic or high-fat diet; the animals in each of the two diet groups were given a diet supplement of either coacervate (gavage, 36 mg protein/kg of body weight) or tap water for four weeks [groups: normolipidic diet plus water (C); normolipidic diet and coacervate (CC); high-fat diet and water (H); and high-fat diet and coacervate (HC)]. Results The high-fat diet promoted inflammation, possibly by decreased adiponectin/sum of adipose tissues ratio and increased phosphorylation of NF-κB p50. In HC we observed a positive correlation between IL-10 and TNF-α in mesenteric adipose tissue, retroperitoneal adipose tissue and liver tissue. We also observed a positive correlation between lipopolisaccharide with IL-10 in the liver tissue. Conclusions High-fat diet treatment promoted metabolic alterations and inflammation, and chitosan coacervate whey protein modulated inflammatory milieu. PMID:24673809

  6. Increase of dietary vitamin C improves haemocyte respiratory burst response and growth of juvenile grass shrimp, Penaeus monodon, fed with high dietary copper.

    PubMed

    Lee, Min-Hsien; Shiau, Shi-Yen

    2003-04-01

    Effects of dietary vitamin C (l-ascorbyl-2-monophosphate-Mg, C2MP-Mg) on growth, tissue copper (Cu) accumulation, and haemocyte superoxide anion production of juvenile grass shrimp, Penaeus monodon, fed with either adequate or high (8 x adequate) dietary Cu were studied. Three experimental diets were used: basal diet supplemented with adequate levels of both C2MP-Mg (40 mg kg diet(-1)) and Cu (20mg kg diet(-1)) (NC-NCu); basal diet supplemented with adequate C2MP-Mg and high Cu (8 x adequate) (NC-HCu); and basal diet supplemented with high C2MP-Mg (5 x adequate) and high Cu (HC-HCu). These were each fed to triplicate groups of shrimp (mean initial weight: 0.29+/-0.01 g) for 8 weeks. Highest (P< 0.01) weight gain, feed efficiency (FE) and protein efficiency ratio (PER) were observed in shrimp fed NC-NCu diet, intermediate in shrimp fed HC-HCu diet, and lowest in shrimp fed NC-HCu diet. Cu concentrations in hepatopancreas, muscle and haemolymph were highest in shrimp fed NC-HCu diet, followed by shrimp fed HC-HCu diet, and lowest for shrimp fed NC-NCu diet. Survival, total haemocyte count (THC) and intracellular superoxide anion (O-2) production were higher in shrimp fed NC-NCu diet than shrimp fed NC-HCu diet, whereas hepatosomatic index (HSI) was higher in shrimp fed NC-HCu diet than shrimp fed NC-NCu diet. However, all these parameters were similar in shrimp fed NC-NCu diet and shrimp fed HC-HCu diet. These data suggest that increase of dietary vitamin C improved haemocyte respiratory burst response and growth and prevented tissue Cu accumulation in P. monodon fed with high dietary Cu.

  7. Pressor recovery after acute stress is impaired in high fructose-fed Lean Zucker rats.

    PubMed

    Thompson, Jennifer A; D'Angelo, Gerard; Mintz, James D; Fulton, David J; Stepp, David W

    2016-06-01

    Insulin resistance is a powerful predictor of cardiovascular disease; however, the mechanistic link remains unclear. This study aims to determine if early cardiovascular changes associated with short-term fructose feeding in the absence of obesity manifest as abnormal blood pressure control. Metabolic dysfunction was induced in Lean Zucker rats by short-term high-fructose feeding. Rats were implanted with telemetry devices for the measurement of mean arterial blood pressure (MAP) and subjected to air jet stress at 5 and 8 weeks after feeding. Additional animals were catheterized under anesthesia for the determination of MAP and blood flow responses in the hind limb and mesenteric vascular beds to intravenous injection of isoproterenol (0.001-0.5 μm), a β-adrenergic agonist. Metabolic dysfunction in high-fructose rats was not accompanied by changes in 24-h MAP Yet, animals fed a high-fructose diet for 8 weeks exhibited a marked impairment in blood pressure recovery after air-jet stress. Dose-dependent decreases in MAP and peripheral blood flow in response to isoproterenol treatment were significantly attenuated in high-fructose rats. These data suggest that impaired blood pressure recovery to acute mental stress precedes the onset of hypertension in the early stages of insulin resistance. Further, blunted responses to isoproterenol implicate β2-adrenergic sensitivity as a possible mechanism responsible for altered blood pressure control after short-term high-fructose feeding.

  8. Mice that are fed a high-fat diet display increased hepcidin expression in adipose tissue.

    PubMed

    Gotardo, Érica Martins Ferreira; dos Santos, Aline Noronha; Miyashiro, Renan Akira; Gambero, Sheley; Rocha, Thalita; Ribeiro, Marcelo Lima; Gambero, Alessandra

    2013-01-01

    Since the discovery that hepcidin is expressed in the adipose tissue of obese subjects, attention has been increasingly focused on alterations in iron homeostasis that are associated with adiposity. We examined the production of hepcidin, the expression of hepcidin-related genes and the iron content of the adipose tissue in obesity using Swiss mice fed a high-fat diet (HFD). The mice were maintained on a control diet or HFD for 12 or 24 wk, and body weight, adiposity and glucose homeostasis were evaluated. The expression of several genes (hepcidin, TfR1, TfR2, DMT1, FT-heavy, ferroportin, IRP-1, IRP-2 and HIF-1) and the protein expression of hepcidin and IL-6 were quantified. The iron level was assessed using a Prussian blue reaction in paraffin-embedded tissue. After 24 wk on the HFD, we observed increases in the levels of hepcidin in the serum and the visceral adipose tissue. The IL-6 levels also increased in the visceral adipose tissue. Adipocytes isolated from the visceral adipose tissues of lean and obese mice expressed hepcidin at comparable levels; however, isolated macrophages from the stromal vascular fraction expressed higher hepcidin levels. Adipose tissues from obese mice displayed increased tfR2 expression and the presence of iron. Our results indicate that IL-6 and iron may affect the signaling pathways governing hepcidin expression. Thus, the mice fed HFD for 24 wk represent a suitable model for the study of obesity-linked hepcidin alterations. In addition, hepcidin may play local roles in controlling iron availability and interfering with inflammation in adipose tissue.

  9. Preferential fat intake of pups nursed by dams fed low fat diet during pregnancy and lactation is higher than that of pups nursed by dams fed control diet and high fat diet.

    PubMed

    Nakashima, Yoko; Tsukita, Yoko; Yokoyama, Meiko

    2008-06-01

    To investigate the effect of dams' dietary fat type during pregnancy and lactation on fat choice of pups, three groups of dams were fed one of three diets: a low fat diet (LFD), a control diet (CTD) or a high fat diet (HFD). After weaning their pups were offered a self-selection regimen of both a fat protein diet (FPD) and a carbohydrate protein diet (CPD) for 3 wk. Although the ratio of FPD intake [FPD intake (g)/total intake (g)] by pups nursed by dams fed LFD during the self-selection period was higher than that by pups nursed by dams fed CTD and HFD, no significant difference in the ratio was observed between pups nursed by dams fed CTD and HFD. It was considered that pups nursed by dams fed CTD and HFD self-selected FPD and CPD in an adequate fat energy ratio (F ratio) compared to that of AIN-93G and AIN-93M. The ratio of FPD intake by pups of these three groups was 16-21% within the first week after weaning. Although pups nursed by dams fed CTD continued to consume the same ratio of FPD during the self-selection period, the ratio of pups nursed by dams fed LFD increased and that of pups nursed by dams fed HFD decreased. These findings indicate that: [1] pups nursed by dams fed CTD and HFD have the ability to consume FPD and CPD in an adequate F ratio, and [2] preferential fat intake of pups nursed by dams fed LFD is stronger than that of pups nursed by dams fed CTD and HFD.

  10. Altered potassium ATP channel signaling in mesenteric arteries of old high salt-fed rats

    PubMed Central

    Whidden, Melissa A.; Basgut, Bilgen; Kirichenko, Nataliya; Erdos, Benedek; Tümer, Nihal

    2016-01-01

    [Purpose] Both aging and the consumption of a high salt diet are associated with clear changes in the vascular system that can lead to the development of cardiovascular disease; however the mechanisms are not clearly understood. Therefore, we examined whether aging and the consumption of excess salt alters the function of potassium ATP-dependent channel signaling in mesenteric arteries [Methods] Young (7 months) and old (29 months) Fischer 344 x Brown Norway rats were fed a control or a high salt diet (8% NaCl) for 12 days and mesenteric arteries were utilized for vascular reactivity measurements. [Results] Acetylcholine-induced endothelium relaxation was significantly reduced in old arteries (81 ± 4%) when compared with young arteries (92 ± 2%). Pretreatment with the potassium-ATP channel blocker glibenclamide reduced relaxation to acetylcholine in young arteries but did not alter dilation in old arteries. On a high salt diet, endothelium dilation to acetylcholine was significantly reduced in old salt arteries (60 ± 3%) when compared with old control arteries (81 ± 4%). Glibenclamide reduced acetylcholine-induced dilation in young salt arteries but had no effect on old salt arteries. Dilation to cromakalim, a potassium-ATP channel opener, was reduced in old salt arteries when compared with old control arteries. [Conclusion] These findings demonstrate that aging impairs endothelium-dependent relaxation in mesenteric arteries. Furthermore, a high salt diet alters the function of potassium-ATP-dependent channel signaling in old isolated mesenteric arteries and affects the mediation of relaxation stimuli. PMID:27508155

  11. 75 FR 30370 - Certain Coated Paper Suitable For High-Quality Print Graphics Using Sheet-Fed Presses from the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-01

    ... International Trade Administration Certain Coated Paper Suitable For High-Quality Print Graphics Using Sheet-Fed... subsidies are being provided to producers and exporters of certain coated paper suitable for high-quality... being provided to producers and exporters of coated paper from the PRC. See Certain Coated...

  12. Proinsulin-producing, hyperglycemia-induced adipose tissue macrophages underlie insulin resistance in high fat-fed diabetic mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adipose tissue macrophages play an important role in the pathogenesis of obese type 2 diabetes. High-fat diet-induced obesity has been shown to lead to adipose tissue macrophages accumulation in rodents;however, the impact of hyperglycemia on adipose tissue macrophages dynamics in high-fat diet-fed ...

  13. 75 FR 29364 - Certain Coated Paper Suitable for High-Quality Print Graphics Using Sheet-Fed Presses From China...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-25

    ... COMMISSION Certain Coated Paper Suitable for High-Quality Print Graphics Using Sheet-Fed Presses From China... subsidized and less-than-fair-value imports from China and Indonesia of certain coated paper, provided for in... merchandise as ``certain coated paper and paperboard in sheets suitable for high quality print graphics...

  14. Supplementary chromium(III) propionate complex does not protect against insulin resistance in high-fat-fed rats.

    PubMed

    Król, Ewelina; Krejpcio, Zbigniew; Iwanik, Katarzyna

    2014-02-01

    Improper eating habits such as high-fat or high-carbohydrate diets are responsible for metabolic changes resulting in impaired glucose tolerance, hyperinsulinemia, insulin resistance, and ultimately diabetes. Although the essentiality of trivalent chromium for humans has been recently questioned by researchers, pharmacological dosages of this element can improve insulin sensitivity in experimental animals and diabetic subjects. The aim of the study was to assess the preventive potential of the supplementary chromium(III) propionate complex (CrProp) in rats fed a high-fat diet. The experiment was conducted on 32 male Wistar rats divided into four groups and fed the following diets: the control (C, AIN-93G), high-fat diets (HF, 40% energy from fat), and a high-fat diet supplemented with CrProp at dosages of 10 and 50 mg Cr/kg diet (HF + Cr10 and HF + Cr50, respectively). After 8 weeks, high-fat feeding led to an increased body mass, hyperinsulinemia, insulin resistance, a decreased serum urea concentration, accumulation of lipid droplets in hepatocytes, and increased renal Fe and splenic Cu contents. Supplementary CrProp in both dosages did not alleviate these changes but increased renal Cr content and normalized splenic Cu content in high-fat-fed rats. Supplementary CrProp does not prevent the development of insulin resistance in rats fed a high-fat diet.

  15. Partial and total fish meal replacement by agricultural products in the diets improve sperm quality in African catfish (Clarias gariepinus).

    PubMed

    Nyina-Wamwiza, L; Milla, S; Pierrard, M-A; Rurangwa, E; Mandiki, S N M; Van Look, K J W; Kestemont, P

    2012-01-01

    This study investigated the long-term effects of total and partial replacement of dietary fish meal (FM) by a mixture of agricultural products on sperm quality of African catfish Clarias gariepinus. Four isonitrogenous and isoenergetic diets were formulated containing graded levels of either 50% FM and maize meal (diet 1); 25% FM mixed with crude sunflower oil cake (SFOC) and bean meal (BM) (diet 2); 12.5% FM mixed with sunflower oil cake, BM and ground nut oil cake (GOC) (diet 3) and 0% FM mixed with de-hulled sunflower oil cake (SFOCD), BM and ground nut oil cake (diet 4). Gonadosomatic index (GSI), sperm quality, plasma sex steroids (11-keto testosterone [11-KT]; testosterone [T]; estradiol-17beta [E2]) were evaluated on 10 to 24 fish fed on each diet. Sperm quality was assessed using computer-assisted sperm analysis (CASA). Total replacement of fish meal by plant products markedly increased sperm volume, spermatocrit, spermatozoa integrity, and sperm motility. Fish fed diet 3 (12.5% fish meal) provided intermediate results on sperm quality whereas the lowest values were obtained in fish fed diets 1 and 2. In fish fed 0% fish meal (diet 4), androgen levels were higher and estrogen levels were lower than in fish fed fish meal diets. Based on dietary lipid and fatty acid analyses, these results suggest a positive impact of short chain n-6 fatty acids on androgen synthesis and sperm quality. In conclusion, a combination of ground nut oil cake, bean meal and sunflower oil cake (preferably when the sunflower is dehulled) in African catfish diet improves the sperm quality.

  16. Effects of α-lipoic acid on endothelial function in aged diabetic and high-fat fed rats

    PubMed Central

    Sena, C M; Nunes, E; Louro, T; Proença, T; Fernandes, R; Boarder, M R; Seiça, R M

    2007-01-01

    Background and purpose: This study was conducted to investigate the effects of α-lipoic acid (α-LA) on endothelial function in diabetic and high-fat fed animal models and elucidate the potential mechanism underlying the benefits of α-LA. Experimental approach: Plasma metabolites reflecting glucose and lipid metabolism, endothelial function, urinary albumin excretion (UAE), plasma and aortic malondialdehyde (MDA) and urinary 8-hydroxydeoxyguanosine (8-OHdG) were assessed in non-diabetic controls (Wistar rats), untreated Goto-Kakizaki (GK) diabetic and high-fat fed GK rats (fed with atherogenic diet only, treated with α-LA and treated with vehicle, for 3 months). Vascular eNOS, nitrotyrosine, carbonyl groups and superoxide anion were also assessed in the different groups. Key results: α-LA and soybean oil significantly reduced both total and non-HDL serum cholesterol and triglycerides induced by atherogenic diet. MDA, carbonyl groups, vascular superoxide and 8-OHdG levels were higher in GK and high-fat fed GK groups and fully reversed with α-LA treatment. High-fat fed GK diabetic rats showed significantly reduced endothelial function and increased UAE, effects ameliorated with α-LA. This endothelial dysfunction was associated with decreased NO production, decreased expression of eNOS and increased vascular superoxide production and nitrotyrosine expression. Conclusions and implications: α-LA restores endothelial function and significantly improves systemic and local oxidative stress in high-fat fed GK diabetic rats. Improved endothelial function due to α-LA was at least partially attributed to recoupling of eNOS and increased NO bioavailability and represents a pharmacological approach to prevent major complications associated with type 2 diabetes. PMID:17906683

  17. Aeration strategy: a need for very high ethanol performance in Saccharomyces cerevisiae fed-batch process.

    PubMed

    Alfenore, S; Cameleyre, X; Benbadis, L; Bideaux, C; Uribelarrea, J-L; Goma, G; Molina-Jouve, C; Guillouet, S E

    2004-02-01

    In order to identify an optimal aeration strategy for intensifying bio-fuel ethanol production in fermentation processes where growth and production have to be managed simultaneously, we quantified the effect of aeration conditions--oxygen limited vs non limited culture (micro-aerobic vs aerobic culture)--on the dynamic behaviour of Saccharomyces cerevisiae cultivated in very high ethanol performance fed-batch cultures. Fermentation parameters and kinetics were established within a range of ethanol concentrations (up to 147 g l(-1)), which very few studies have addressed. Higher ethanol titres (147 vs 131 g l(-1) in 45 h) and average productivity (3.3 vs 2.6 g l(-1) h(-1)) were obtained in cultures without oxygen limitation. Compared to micro-aerobic culture, full aeration led to a 23% increase in the viable cell mass as a result of the concomitant increase in growth rate and yield, with lower ethanol inhibition. The second beneficial effect of aeration was better management of by-product production, with production of glycerol, the main by-product, being strongly reduced from 12 to 4 g l(-1). We demonstrate that aeration strategy is as much a determining factor as vitamin feeding (Alfenore et al. 2002) in very high ethanol performance (147 g l(-1) in 45 h) in order to achieve a highly competitive dynamic process.

  18. Triticale Bran Alkylresorcinols Enhance Resistance to Oxidative Stress in Mice Fed a High-Fat Diet

    PubMed Central

    Agil, Rania; Patterson, Zachary R.; Mackay, Harry; Abizaid, Alfonso; Hosseinian, Farah

    2016-01-01

    Triticale (× Triticosecale Whitm.) is a cereal grain with high levels of alkyresorcinols (AR) concentrated in the bran. These phenolic lipids have been shown to reduce or inhibit triglyceride accumulation and protect against oxidation; however, their biological effects have yet to be evaluated in vivo. The purpose of this study was to determine the effects of ARs extracted from triticale bran (TB) added to a high–fat diet on the development of obesity and oxidative stress. CF-1 mice were fed a standard low-fat (LF) diet, a 60% high-fat diet (HF) and HF diets containing either 0.5% AR extract (HF-AR), 10% TB (HF-TB), or 0.5% vitamin E (HF-VE). Energy intake, weight gain, glucose tolerance, fasting blood glucose (FBG) levels, and body composition were determined. Oxygen radical absorbance capacity (ORAC), superoxide dismutase (SOD) activity, and glutathione (GSH) assays were performed on mice liver and heart tissues. The findings suggest that ARs may serve as a preventative measure against risks of oxidative damage associated with high-fat diets and obesity through their application as functional foods and neutraceuticals. Future studies aim to identify the in vivo mechanisms of action of ARs and the individual homologs involved in their favorable biological effects. PMID:28231100

  19. Nrf2 deficiency improves glucose tolerance in mice fed a high-fat diet

    SciTech Connect

    Zhang, Yu-Kun Jennifer; Wu, Kai Connie; Liu, Jie; Klaassen, Curtis D.

    2012-11-01

    Nrf2, a master regulator of intracellular redox homeostasis, is indicated to participate in fatty acid metabolism in liver. However, its role in diet-induced obesity remains controversial. In the current study, genetically engineered Nrf2-null, wild-type (WT), and Nrf2-activated, Keap1-knockdown (K1-KD) mice were fed either a control or a high-fat Western diet (HFD) for 12 weeks. The results indicate that the absence or enhancement of Nrf2 activity did not prevent diet-induced obesity, had limited effects on lipid metabolism, but affected blood glucose homeostasis. Whereas the Nrf2-null mice were resistant to HFD-induced glucose intolerance, the Nrf2-activated K1-KD mice exhibited prolonged elevation of circulating glucose during a glucose tolerance test even on the control diet. Feeding a HFD did not activate the Nrf2 signaling pathway in mouse livers. Fibroblast growth factor 21 (Fgf21) is a liver-derived anti-diabetic hormone that exerts glucose- and lipid-lowering effects. Fgf21 mRNA and protein were both elevated in livers of Nrf2-null mice, and Fgf21 protein was lower in K1-KD mice than WT mice. The inverse correlation between Nrf2 activity and hepatic expression of Fgf21 might explain the improved glucose tolerance in Nrf2-null mice. Furthermore, a more oxidative cellular environment in Nrf2-null mice could affect insulin signaling in liver. For example, mRNA of insulin-like growth factor binding protein 1, a gene repressed by insulin in hepatocytes, was markedly elevated in livers of Nrf2-null mice. In conclusion, genetic alteration of Nrf2 does not prevent diet-induced obesity in mice, but deficiency of Nrf2 improves glucose homeostasis, possibly through its effects on Fgf21 and/or insulin signaling. -- Highlights: ► Nrf2 deficiency improves glucose tolerance in mice fed a high-fat diet. ► The anti-diabetic hormone, Fgf21, is highly expressed in livers of Nrf2-null mice. ► The absence of Nrf2 increases the insulin-regulated Igfbp-1 mRNA in liver.

  20. Chronic mild stress induces variations in locomotive behavior and metabolic rates in high fat fed rats.

    PubMed

    García-Díaz, D F; Campion, J; Milagro, F I; Lomba, A; Marzo, F; Martínez, J A

    2007-12-01

    Chronic mild stress (CMS) has been often associated to the pathogenesis of many diseases including obesity. Indeed, visceral obesity has been linked to the development of metabolic syndrome features and constitutes a serious risk factor for cardiovascular diseases and diabetes. In order to study possible mechanistic relationships between stress and the onset of obesity, we developed during 11 weeks a model of high-fat dietary intake (cafeteria diet) together with a CMS regimen in male Wistar rats. During the experimental period, basal metabolism by indirect calorimetry, rectal temperature, food intake, and locomotive markers were specifically analyzed. After 77 days, animals were sacrificed and body, adiposity and plasma biochemical profiles were also examined. As expected, cafeteria diet in unstressed animals induced a significative increase in body weight, adiposity, and insulin resistance markers. Locomotive variables, specifically distance, rearing and meander, were significantly increased by CMS on the first weeks of stress. Moreover, this model of CMS in Wistar rats increased significantly energy expenditure, and apparently interplayed with the dietary treatment on the muscle weight/fat weight ratio. In summary, this chronic stress model did not affected weight gain in control and high fat fed animals, but induced an interaction concerning the metabolic muscle/fat repartitioning.

  1. Anti-obesity effect of alkaline reduced water in high fat-fed obese mice.

    PubMed

    Ignacio, Rosa Mistica Coles; Kang, Tae-Young; Kim, Cheol-Su; Kim, Soo-Ki; Yang, Young-Chul; Sohn, Joon-Hyung; Lee, Kyu-Jae

    2013-01-01

    Whether or not alkaline reduced water (ARW) has a positive effect on obesity is unclear. This study aims to prove the positive effect of ARW in high-fat (HF) diet-induced obesity (DIO) in C57BL/6 mice model. Toward this, obesity was induced by feeding the C57BL/6 male mice with high-fat diet (w/w 45% fat) for 12 weeks. Thereafter, the animals were administered with either ARW or tap water. Next, the degree of adiposity and DIO-associated parameters were assessed: clinico-pathological parameters, biochemical measurements, histopathological analysis of liver, the expression of cholesterol metabolism-related genes in the liver, and serum levels of adipokine and cytokine. We found that ARW-fed mice significantly ameliorated adiposity: controlled body weight gain, reduced the accumulation of epididymal fats and decreased liver fats as compared to control mice. Accordingly, ARW coordinated the level of adiponectin and leptin. Further, mRNA expression of cytochrome P450 (CYP)7A1 was upregulated. In summary, our data shows that ARW intake inhibits the progression of HF-DIO in mice. This is the first note on anti-obesity effect of ARW, clinically implying the safer fluid remedy for obesity control.

  2. High performance control of a three-level IGBT inverter fed AC drive

    SciTech Connect

    Zhang, J.

    1995-12-31

    Three-level PWM inverters have been increasingly employed in industry and traction applications where high power and efficiency energy conversions are required. This paper presents a high performance control of a cage induction motor drive fed by a 100 Hp three-level IGBT inverter operating at a low switching frequency. A practical math model of the drive control system is established to aid in the control design to improve the system stability, dynamic performance and robustness over a wide speed range. The modeling and the simulation in Matlab/Simulink facilitate the self-tuning of the regulators in the multi-loop systems. The field oriented control and three-level space-vector modulation together with the drive protection and diagnostics are implemented in software based on a DSP TMS320C31. Experimental results based on the IGBT inverter prototype are given to verify the design and performance. Test results in motor common-mode voltage reduction and inverter neutral-point potential control re also briefly presented.

  3. Antihyperlipidemic effects of Sesamum indicum L. in rabbits fed a high-fat diet.

    PubMed

    Asgary, Sedigheh; Rafieian-Kopaei, Mahmoud; Najafi, Somayeh; Heidarian, Esfandiar; Sahebkar, Amirhossein

    2013-01-01

    The present study aimed to investigate the anti-hyperlipidemic effects of sesame in a high-fat fed rabbit model. Animals were randomly divided into four groups of eight animals each for 60 days as follows: normal diet, hypercholesterolemic diet (1% cholesterol), hypercholesterolemic diet (1% cholesterol) + sesame seed (10%), and hypercholesterolemic diet (1% cholesterol) + sesame oil (5%). Serum concentrations of total cholesterol, LDL-C, HDL-C, triglycerides, apoA and apoB, SGOT, SGPT, glucose and insulin were measured at the end of supplementation period in all studied groups. Hypercholesterolemic feeding resulted in a significant elevation of TC, TG, LDL-C, HDL-C, SGOT and SGPT as compared to the normocholesterolemic diet group (P < 0.05). Supplementation with sesame seed did not cause any significant alteration in lipid profile parameters, apolipoproteins, hepatic transaminases, glucose and insulin as compared to the hypercholesterolemic diet group (P > 0.05). In contrast, rabbits supplemented with sesame oil were found to have lower circulating concentrations of TC, LDL-C, HDL-C, SGOT and SGPT (P < 0.05), whilst concentrations of TG, apoA, apoB, insulin and glucose remained unaltered compared to the hypercholesterolemic diet group (P > 0.05). Supplementation with sesame oil, but not sesame seed, can ameliorate serum levels of lipids and hepatic enzymes in rabbits under a high-fat diet.

  4. Regional scale hydrological and biogeochemical processes controlling high biodiversity of a groundwater fed alkaline fen

    NASA Astrophysics Data System (ADS)

    van der Zee, Sjoerd E. A. T. M.; (D. G.) Cirkel, Gijsbert; (J. P. M) witte, Flip

    2014-05-01

    The high floral biodiversity of groundwater fed fens and mesotrophic grasslands depends on the different chemical signatures of the shallow rainwater fed topsoil water and the slightly deeper geochemically affected groundwater. The relatively abrupt gradients between these two layers of groundwater enable the close proximity of plants that require quite different site factors and have different rooting depths. However, sulphur inflow into such botanically interesting areas is generally perceived as a major threat to biodiversity. Although in Europe atmospheric deposition of sulphur has decreased considerably over the last decades, groundwater pollution by sulphate may still continue due to pyrite oxidation in soil as a result of excessive fertilisation. Inflowing groundwater rich in sulphate can change biogeochemical cycling in nutrient-poor wetland ecosystems because of 'so called' internal eutrophication as well as the accumulation of dissolved sulphide, which is phytotoxic. Complementary to conventions, we propose that upwelling sulphate rich groundwater may, in fact, promote the conservation of rare and threatened alkaline fens: excessive fertilisation and pyrite oxidation also produces acidity, which invokes calcite dissolution, and increased alkalinity and hardness of the inflowing groundwater. For a very species-rich wetland nature reserve, we show that sulphate is reduced and effectively precipitated as iron sulphides, when this calcareous and sulphate rich groundwater flows upward through the organic soil of the investigated nature reserve. Also, we show that sulphate reduction occurs simultaneously with an increase in alkalinity production, which in our case results in active calcite precipitation in the soil. In spite of the occurring sulphate reduction, we found no evidence for internal eutrophication. Extremely low phosphorous concentration in the pore water could be attributed to a high C:P ratio of soil organic matter and co-precipitation with

  5. Antihyperlipidemic activity of adenosine triphosphate in rabbits fed a high-fat diet and hyperlipidemic patients.

    PubMed

    Zhang, Lianshan; Liang, Libin; Tong, Tong; Qin, Yuguo; Xu, Yanping; Tong, Xinglong

    2016-10-01

    Context Recently, adenosine triphosphate (ATP) was occasionally found to decrease the triglyceride (TG) levels in several hyperlipidemic patients in our clinical practice. Objective The study investigates the anti-hyperlipidemic effects of ATP in a high-fat fed rabbit model and hyperlipidemic patients. Materials and methods Twenty-four rabbits were randomly divided into three groups of eight animals each as follows: normal diet, high-fat diet and high-fat diet + ATP group. ATP supplementation (40 mg/day) was started at the 20th day and lasted for 10 days. Serum concentrations of total cholesterol (TC), TG, LDL-C, HDL-C were measured on the 20th day and 30th day. Heart, liver and aorta were subjected histopathological examination. Twenty outpatients diagnosed primary hyperlipidemia took ATP at a dose of 60 mg twice a day for 1 week. Results Feeding rabbits with a high-fat diet resulted in a significant elevation of lipid parameters including TC, TG, LDL-C, VLDL-C compared to the normal diet group (p < 0.01). ATP treatment significantly decreased serum TG level (p < 0.01), whilst other parameters remained statistically unaltered. Meanwhile, ATP significantly reduced the thickness of fat layer in cardiac epicardium (p < 0.05) and pathological gradation of ballooning degeneration in hepatocytes (p < 0.05). After taking ATP for 1 week, hyperlipidemia patients exhibited a significant decrease of TG (p < 0.01), but other lipid parameters had no significant change. Discussion and conclusion The study indicates that ATP selectively decreases serum TG levels in high-fat diet rabbits and hyperlipidemic patients. Therefore, ATP supplementation may provide an effective approach to control TG level.

  6. Antioxidant effects of fucoxanthin rich powder in rats fed with high fat diet

    PubMed Central

    Ha, Ae Wha; Na, Se Jung

    2013-01-01

    The purpose of this study was to determine the antioxidant effect of fucoxanthin. After rats were fed a normal fat diet (NF), high fat diet (HF), and high fat with 0.2% fucoxanthin diet (HF + Fxn) for 4 weeks, the markers of oxidative stress and antioxidant capacity like lipid peroxidation, plasma total antioxidant capacity (TAC), and activities of antioxidant enzymes (catalase, superoxide dismutase (SOD), and gluthathione peroxidase (GSH-Px)) were determined. mRNA expression of transcription factor, nuclear erythroid factor like 2 (Nrf2), and its target genes such as NAD(P)H quinone oxidoreductase1 (NQO1) and heme oxygenase-1 (HO-1) were also determined. Mean weight gain in the HF + Fxn group was lower, without statistical significance, and the total food intake in the HF + Fxn group was lower than that in the HF group (P < 0.05). The activity of GSH-Px (P < 0.05) in plasma was significantly higher in the HF + Fxn group than those in the HF group (P < 0.05). In the liver, the activities of catalase (P < 0.05) and GSH-Px (P < 0.05) in the HF + Fxn group were significantly higher than those in the HF group. Plasma TAC level was significantly higher in the HF + Fxn group than that in the HF group (P < 0.05). Lipid peroxidation in plasma tended to be lower without statistical significance. Fucoxanthin supplements were shown to have higher mRNA expression of Nrf2 and NQO1 than those in the high fat diet only group (P < 0.05). In conclusion, supplementation of fucoxanthin improved the antioxidant capacity, depleted by high fat diet, by activating the Nrf2 pathway and its downstream target gene NQO1. Therefore, supplementation of fucoxanthin, especially for those who consume high fat in their diet, may benefit from reduced risk of oxidative stress. PMID:24353833

  7. White Mulberry (Morus alba) Foliage Methanolic Extract Can Alleviate Aeromonas hydrophila Infection in African Catfish (Clarias gariepinus)

    PubMed Central

    Sheikhlar, Atefeh; Alimon, Abd Razk; Daud, Hassan; Saad, Chee R.; Webster, Carl D.; Meng, Goh Yong

    2014-01-01

    Two experiments were simultaneously conducted with Morus alba (white mulberry) foliage extract (MFE) as a growth promoter and treatment of Aeromonas hydrophila infection in separate 60 and 30 days trail (Experiments 1 and 2, resp.) in African catfish (Clarias gariepinus). In Experiment 1, four diets, control and control supplemented with 2, 5, or 7 g MFE/kg dry matter (DM) of diet, were used. In Experiment 2, fish were intraperitoneally infected with Aeromonas hydrophila and fed the same diets as experiment 1 plus additional two diets with or without antibiotic. Results of experiment 1 showed that growth was unaffected by dietary levels of MFE. Treatments with the inclusion of MFE at the levels of 5 and 7 g/Kg DM had no mortality. Red blood cells (RBC), albumin, and total protein were all higher for the treatments fed MFE (5 and 7 g/Kg DM). Results of experiment 2 showed RBC, hemoglobin, hematocrit, globulin, albumin, and total protein improved with the increase in MFE in the infected fish. The dietary MFE at the level of 7 g/kg DM reduced mortality rate. In conclusion, MFE at the level of 7 g/kg DM could be a valuable dietary supplement to cure the infected fish. PMID:25574488

  8. White mulberry (Morus alba) foliage methanolic extract can alleviate Aeromonas hydrophila infection in African catfish (Clarias gariepinus).

    PubMed

    Sheikhlar, Atefeh; Alimon, Abd Razk; Daud, Hassan; Saad, Chee R; Webster, Carl D; Meng, Goh Yong; Ebrahimi, Mahdi

    2014-01-01

    Two experiments were simultaneously conducted with Morus alba (white mulberry) foliage extract (MFE) as a growth promoter and treatment of Aeromonas hydrophila infection in separate 60 and 30 days trail (Experiments 1 and 2, resp.) in African catfish (Clarias gariepinus). In Experiment 1, four diets, control and control supplemented with 2, 5, or 7 g MFE/kg dry matter (DM) of diet, were used. In Experiment 2, fish were intraperitoneally infected with Aeromonas hydrophila and fed the same diets as experiment 1 plus additional two diets with or without antibiotic. Results of experiment 1 showed that growth was unaffected by dietary levels of MFE. Treatments with the inclusion of MFE at the levels of 5 and 7 g/Kg DM had no mortality. Red blood cells (RBC), albumin, and total protein were all higher for the treatments fed MFE (5 and 7 g/Kg DM). Results of experiment 2 showed RBC, hemoglobin, hematocrit, globulin, albumin, and total protein improved with the increase in MFE in the infected fish. The dietary MFE at the level of 7 g/kg DM reduced mortality rate. In conclusion, MFE at the level of 7 g/kg DM could be a valuable dietary supplement to cure the infected fish.

  9. 75 FR 61772 - Certain Coated Paper Suitable for High-Quality Print Graphics Using Sheet-Fed Presses From China...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-06

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Certain Coated Paper Suitable for High-Quality Print Graphics Using Sheet-Fed Presses From China and Indonesia AGENCY: United States International Trade Commission. ACTION: Revised schedule for...

  10. Promotion of atherosclerosis in high cholesterol diet-fed rabbits by immunization with the P277 peptide.

    PubMed

    Xiong, Qiyan; Feng, Jiao; Zhang, Yu; Sun, Yunxiao; Lu, Yong; Li, Taiming; Zhang, Xiaohong; Cao, Rongyue; Jin, Liang; Wu, Jie

    2016-02-01

    Previous evidence has proved the ability of immunization with heat shock protein (HSP) 60/65 to induce atherosclerosis. P277, a 24-residue peptide of human HSP60, is a promising peptide vaccine against autoimmune diabetes. But as a fragment of HSP60, its potential ability of promoting atherosclerosis has never been investigated yet. In the present study, the rabbits fed with normal standard diet or high cholesterol diet were immunized with P277 or PBS emulsified in incomplete Freund's adjuvant 4 times at 4-week intervals. Atherosclerotic lesions of the rabbits receiving P277 treatment and fed with high cholesterol diet increased significantly compared with those of the rabbits receiving PBS treatment and the same diet. However, no obvious lesions were found in the two groups of rabbits fed with the normal standard diet. Significant expression of P277 was detected in the high cholesterol diet-induced atherosclerotic lesions and heat-stressed endothelial cells. Surface exposure of P277 was also observed in the stressed cells. In the subsequent assay of endothelial cells in vitro, the purified anti-P277 antibodies mediated a noticeable cytotoxicity to the stressed cells with the participation of complement. In conclusion, subcutaneous immunization with P277 emulsified in IFA can aggravate the atherosclerosis in high cholesterol diet-fed rabbits. Surface expression of P277 was observed on stressed endothelial cells, and were suggested to mediate the autoimmune attack and promote the disease.

  11. 75 FR 54650 - Certain Coated Paper Suitable for High-Quality Print Graphics Using Sheet-Fed Presses From China...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-08

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Certain Coated Paper Suitable for High-Quality Print Graphics Using Sheet-Fed Presses From China and Indonesia AGENCY: United States International Trade Commission. ACTION: Revised schedule for...

  12. Blueberry juice and anthocyanins modulate obesity, leptin and beta cell function in mice fed a high fat diet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Anthocyanins (ACNs) are the components responsible for the red and blue colors found in many fruits and berries. Consumption of purified blueberry (BB) anthocyanins but not whole BB in the diet has been shown to prevent the development of obesity in mice fed high-fat diets (JAFC 56:647, 2008). The o...

  13. 75 FR 7447 - Certain Coated Paper Suitable for High-Quality Print Graphics Using Sheet-Fed Presses From...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-19

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE International Trade Administration Certain Coated Paper Suitable for High-Quality Print Graphics Using Sheet-Fed... of Commerce. DATES: Effective Date: February 19, 2010. FOR FURTHER INFORMATION CONTACT:...

  14. Hepatic Gene Expression Related to Lower Plasma Cholesterol in Hamsters Fed High Fat Diets Supplemented with Blueberry Pomace and Extract

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We analyzed plasma lipid profiles, and genes related to cholesterol and bile acid metabolism, and inflammation in livers as well as adipose tissue from Syrian Golden hamsters fed high-fat diets supplemented with blueberry (BB) pomace byproducts including 8% dried whole blueberry peels (BBPWHL), 2% d...

  15. 75 FR 24885 - Certain Coated Paper Suitable for High-Quality Print Graphics Using Sheet-Fed Presses From...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-06

    ... International Trade Administration Certain Coated Paper Suitable for High-Quality Print Graphics Using Sheet-Fed... Final Determination AGENCY: Import Administration, International Trade Administration, Department of...: Gemal Brangman or Brian Smith, AD/CVD Operations, Office 2, Import Administration, International...

  16. High-resolution, preparative purification of PEGylated protein using a laterally-fed membrane chromatography device.

    PubMed

    Madadkar, Pedram; Nino, Sergio Luna; Ghosh, Raja

    2016-11-01

    We discuss the use of a laterally-fed membrane chromatography (or LFMC) device for single-step purification of mono-PEGylated lysozyme. Recent studies have shown such LFMC devices to be suitable for high-resolution, multi-component separation of proteins in the bind-and-elute mode. The device used in this study contained a stack of rectangular cation-exchange membranes having 9.25mL bed volume. PEGylation of lysozyme was carried out in batch mode using 5kDa methoxy-polyethyleneglycol propionaldehyde (or m-PEG propionaldehyde) in the presence of sodium cyanoborohydride as reducing agent. Membrane chromatographic separation was carried out at 1.62 membrane bed volumes per minute flow rate, in the bind-and-elute mode. When a salt gradient was applied, the higher PEGylated forms of lysozyme (i.e. the byproducts) eluted earlier than mono-PEGylated lysozyme (the target product), while lysozyme eluted last. Under elution conditions optimized for resolution and speed, the separation could be carried out in less than 15 membrane bed volumes. High purity and recovery of mono-PEGylated lysozyme was obtained. The resolution of separation of mono-PEGylated lysozyme obtained under the above condition was comparable to that reported in the literature for equivalent cation-exchange resin columns while the flow rate expressed in bed volumes/min was 21.7 times higher. Also, the number of theoretical plates per meter was significantly higher with the LFMC device. Therefore the LFMC based purification process discussed in this paper combined high-productivity with high-resolution.

  17. Adult offspring of high-fat diet-fed dams can have normal glucose tolerance and body composition.

    PubMed

    Platt, K M; Charnigo, R J; Pearson, K J

    2014-06-01

    Maternal high-fat diet consumption and obesity have been shown to program long-term obesity and lead to impaired glucose tolerance in offspring. Many rodent studies, however, use non-purified, cereal-based diets as the control for purified high-fat diets. In this study, primiparous ICR mice were fed purified control diet (10-11 kcal% from fat of lard or butter origin) and lard (45 or 60 kcal% fat) or butter (32 or 60 kcal% fat)-based high-fat diets for 4 weeks before mating, throughout pregnancy, and for 2 weeks of nursing. Before mating, female mice fed the 32 and 60% butter-based high-fat diets exhibited impaired glucose tolerance but those females fed the lard-based diets showed normal glucose disposal following a glucose challenge. High-fat diet consumption by female mice of all groups decreased lean to fat mass ratios during the 4th week of diet treatment compared with those mice consuming the 10-11% fat diets. All females were bred to male mice and pregnancy and offspring outcomes were monitored. The body weight of pups born to 45% lard-fed dams was significantly increased before weaning, but only female offspring born to 32% butter-fed dams exhibited long-term body weight increases. Offspring glucose tolerance and body composition were measured for at least 1 year. Minimal, if any, differences were observed in the offspring parameters. These results suggest that many variables should be considered when designing future high-fat diet feeding and maternal obesity studies in mice.

  18. Liver fatty acid binding protein gene-ablation exacerbates weight gain in high-fat fed female mice.

    PubMed

    McIntosh, Avery L; Atshaves, Barbara P; Landrock, Danilo; Landrock, Kerstin K; Martin, Gregory G; Storey, Stephen M; Kier, Ann B; Schroeder, Friedhelm

    2013-05-01

    Loss of liver fatty acid binding protein (L-FABP) decreases long chain fatty acid uptake and oxidation in primary hepatocytes and in vivo. On this basis, L-FABP gene ablation would potentiate high-fat diet-induced weight gain and weight gain/energy intake. While this was indeed the case when L-FABP null (-/-) mice on the C57BL/6NCr background were pair-fed a high-fat diet, whether this would also be observed under high-fat diet fed ad libitum was not known. Therefore, this possibility was examined in female L-FABP (-/-) mice on the same background. L-FABP (-/-) mice consumed equal amounts of defined high-fat or isocaloric control diets fed ad libitum. However, on the ad libitum-fed high-fat diet the L-FABP (-/-) mice exhibited: (1) decreased hepatic long chain fatty acid (LCFA) β-oxidation as indicated by lower serum β-hydroxybutyrate level; (2) decreased hepatic protein levels of key enzymes mitochondrial (rate limiting carnitine palmitoyl acyltransferase A1, CPT1A; HMG-CoA synthase) and peroxisomal (acyl CoA oxidase 1, ACOX1) LCFA β-oxidation; (3) increased fat tissue mass (FTM) and FTM/energy intake to the greatest extent; and (4) exacerbated body weight gain, weight gain/energy intake, liver weight, and liver weight/body weight to the greatest extent. Taken together, these findings showed that L-FABP gene-ablation exacerbated diet-induced weight gain and fat tissue mass gain in mice fed high-fat diet ad libitum--consistent with the known biochemistry and cell biology of L-FABP.

  19. Growth performance and muscle oxidation in rats fed increasing amounts of high-tannin sorghum.

    PubMed

    Larraín, R E; Richards, M P; Schaefer, D M; Ji, L L; Reed, J D

    2007-12-01

    Oxidative processes deteriorate the quality of meat products. High tannin sorghums (HTS) contain flavonoid oligomers known as proanthocyanidins or condensed tannins. These compounds act as anti-oxidants in vitro, but their effectiveness in vivo remains unclear. We tested the hypothesis that moderate amounts of dietary HTS could reduce markers of oxidation on muscle of rats without having detrimental effects in growth. We used 2 groups of 38 male Sprague Dawley rats at 5 and 13 wk of age each. Each age group was fed 4 diets in a completely randomized design. The younger group was fed the experimental diets for 10 wk (10W); whereas the older group was fed for 2 wk (2W). The diets were modified from the NIH-07 diet and contained HTS and corn at ratios of 0:50 (S0, control), 20:30 (S20), 35:15 (S35), and 50:0 (S50) as a percentage of the diet. Growth and the efficiency of gain were assessed periodically measuring BW, ADFI, ADG, and G:F. Oxidation in muscle was measured in fresh tissue and after 6 d of aerobic-refrigerated storage. Muscles evaluated were LM and soleus (SM). Fresh liver was also evaluated. Thiobarbituric acid-reactive substances (TBARS) and carbonyl content were used as markers of lipid and protein oxidation, respectively. No differences in BW, ADFI, ADG, and G:F were observed in 2W rats. Greater (P < 0.05) ADFI and ADG were observed in 10W-S35 group between d 1 and 7 and greater BW (P = 0.049) was observed in group 10W-S35 at d 70 compared with 10W-S0. No differences were observed between S0 and any HTS diet in G:F in 10W and 2W rats. No differences in TBARS or carbonyls were observed in liver. No differences in TBARS were observed in fresh and aged LM and SM. When LM samples were aged for 6 d, decreased carbonyl contents (P < 0.01) were observed in 10W-S35 and 10W-S50 diets compared with 10W-S0. Reductions in carbonyls were also observed in aged SM between 2W-S50 and 2W-S0 (P = 0.013). We concluded that inclusion of 35% HTS in the diet increased intake

  20. CFAVC scheme for high frequency series resonant inverter-fed domestic induction heating system

    NASA Astrophysics Data System (ADS)

    Nagarajan, Booma; Reddy Sathi, Rama

    2016-01-01

    This article presents the investigations on the constant frequency asymmetric voltage cancellation control in the AC-AC resonant converter-fed domestic induction heating system. Conventional fixed frequency control techniques used in the high frequency converters lead to non-zero voltage switching operation and reduced output power. The proposed control technique produces higher output power than the conventional fixed-frequency control strategies. In this control technique, zero-voltage-switching operation is maintained during different duty cycle operation for reduction in the switching losses. Complete analysis of the induction heating power supply system with asymmetric voltage cancellation control is discussed in this article. Simulation and experimental study on constant frequency asymmetric voltage cancellation (CFAVC)-controlled full bridge series resonant inverter is performed. Time domain simulation results for the open and closed loop of the system are obtained using MATLAB simulation tool. The simulation results prove the control of voltage and power in a wide range. PID controller-based closed loop control system achieves the voltage regulation of the proposed system for the step change in load. Hardware implementation of the system under CFAVC control is done using the embedded controller. The simulation and experimental results validate the performance of the CFAVC control technique for series resonant-based induction cooking system.

  1. Regressive Effect of Myricetin on Hepatic Steatosis in Mice Fed a High-Fat Diet

    PubMed Central

    Xia, Shu-Fang; Le, Guo-Wei; Wang, Peng; Qiu, Yu-Yu; Jiang, Yu-Yu; Tang, Xue

    2016-01-01

    Myricetin is an effective antioxidant in the treatment of obesity and obesity-related metabolic disorders. The objective of this study was to explore the regressive effect of myricetin on pre-existing hepatic steatosis induced by high-fat diet (HFD). C57BL/6 mice were fed either a standard diet or a HFD for 12 weeks and then half of the mice were treated with myricetin (0.12% in the diet, w/w) while on their respective diets for further 12 weeks. Myricetin treatment significantly alleviated HFD-induced steatosis, decreased hepatic lipid accumulation and thiobarbituric acid reactive substance (TBARS) levels, and increased antioxidative enzyme activities, including catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) activities. Microarray analysis of hepatic gene expression profiles showed that myricetin significantly altered the expression profiles of 177 genes which were involved in 12 biological pathways, including the peroxisome proliferator activated receptor (PPAR) signaling pathway and peroxisome. Further research indicated that myricetin elevated hepatic nuclear Nrf2 translocation, increased the protein expression of heme oxygenase-1 (HO-1) and NAD(P)H quinone dehydrogenase 1 (NQO1), reduced the protein expression of PPARγ, and normalized the expressions of genes that were involved in peroxisome and the PPAR signaling pathway. Our data indicated that myricetin might represent an effective therapeutic agent to treat HFD-induced hepatic steatosis via activating the Nrf2 pathway and the PPAR signaling pathway. PMID:27973423

  2. Compact Double-P Slotted Inset-Fed Microstrip Patch Antenna on High Dielectric Substrate

    PubMed Central

    Ahsan, M. R.; Islam, M. T.; Habib Ullah, M.; Mahadi, W. N. L.; Latef, T. A.

    2014-01-01

    This paper presents a compact sized inset-fed rectangular microstrip patch antenna embedded with double-P slots. The proposed antenna has been designed and fabricated on ceramic-PTFE composite material substrate of high dielectric constant value. The measurement results from the fabricated prototype of the antenna show −10 dB reflection coefficient bandwidths of 200 MHz and 300 MHz with center resonant frequency of 1.5 GHz and 4 GHz, respectively. The fabricated antenna has attained gains of 3.52 dBi with 81% radiation efficiency and 5.72 dBi with 87% radiation efficiency for lower band and upper band, respectively. The measured E- and H-plane radiation patterns are also presented for better understanding. Good agreement between the simulation and measurement results and consistent radiation patterns make the proposed antenna suitable for GPS and C-band applications. PMID:25165750

  3. Regressive Effect of Myricetin on Hepatic Steatosis in Mice Fed a High-Fat Diet.

    PubMed

    Xia, Shu-Fang; Le, Guo-Wei; Wang, Peng; Qiu, Yu-Yu; Jiang, Yu-Yu; Tang, Xue

    2016-12-11

    Myricetin is an effective antioxidant in the treatment of obesity and obesity-related metabolic disorders. The objective of this study was to explore the regressive effect of myricetin on pre-existing hepatic steatosis induced by high-fat diet (HFD). C57BL/6 mice were fed either a standard diet or a HFD for 12 weeks and then half of the mice were treated with myricetin (0.12% in the diet, w/w) while on their respective diets for further 12 weeks. Myricetin treatment significantly alleviated HFD-induced steatosis, decreased hepatic lipid accumulation and thiobarbituric acid reactive substance (TBARS) levels, and increased antioxidative enzyme activities, including catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) activities. Microarray analysis of hepatic gene expression profiles showed that myricetin significantly altered the expression profiles of 177 genes which were involved in 12 biological pathways, including the peroxisome proliferator activated receptor (PPAR) signaling pathway and peroxisome. Further research indicated that myricetin elevated hepatic nuclear Nrf2 translocation, increased the protein expression of heme oxygenase-1 (HO-1) and NAD(P)H quinone dehydrogenase 1 (NQO1), reduced the protein expression of PPARγ, and normalized the expressions of genes that were involved in peroxisome and the PPAR signaling pathway. Our data indicated that myricetin might represent an effective therapeutic agent to treat HFD-induced hepatic steatosis via activating the Nrf2 pathway and the PPAR signaling pathway.

  4. Cinnamon Polyphenol Extract Inhibits Hyperlipidemia and Inflammation by Modulation of Transcription Factors in High-Fat Diet-Fed Rats

    PubMed Central

    Tuzcu, Zeynep; Orhan, Cemal; Sahin, Nurhan; Juturu, Vijaya

    2017-01-01

    We evaluated the effects of cinnamon polyphenol extract on hepatic transcription factors expressions including SREBP-1c and LXR-α in rats fed high fat diet (HFD). Twenty-eight Wistar rats were allocated into four groups: (i) normal control: animals fed with normal chow; (ii) cinnamon: animals supplemented with cinnamon polyphenol; (iii) HFD: animals fed a high-fat diet; and (iv) HFD + cinnamon: animals fed a high-fat diet and treated with cinnamon polyphenol. Obesity was linked to hyperglycemia, hyperlipidemia, and oxidative stress as imitated by elevated serum glucose, lipid profile, and serum and liver malondialdehyde (MDA) concentrations. Cinnamon polyphenol decreased body weight, visceral fat, liver weight and serum glucose and insulin concentrations, liver antioxidant enzymes, and lipid profile (P < 0.05) and reduced serum and liver MDA concentration compared to HFD rats (P < 0.05). Cinnamon polyphenol also suppressed the hepatic SREBP-1c, LXR-α, ACLY, FAS, and NF-κB p65 expressions and enhanced the PPAR-α, IRS-1, Nrf2, and HO-1 expressions in the HFD rat livers (P < 0.05). In conclusion, cinnamon polyphenol reduces the hyperlipidemia, inflammation, and oxidative stress through activating transcription factors and antioxidative defense signaling pathway in HFD rat liver.

  5. Modeling Energy Dynamics in Mice with Skeletal Muscle Hypertrophy Fed High Calorie Diets

    PubMed Central

    Bond, Nichole D.; Guo, Juen; Hall, Kevin D.; McPherron, Alexandra C.

    2016-01-01

    Retrospective and prospective studies show that lean mass or strength is positively associated with metabolic health. Mice deficient in myostatin, a growth factor that negatively regulates skeletal muscle mass, have increased muscle and body weights and are resistant to diet-induced obesity. Their leanness is often attributed to higher energy expenditure in the face of normal food intake. However, even obese animals have an increase in energy expenditure compared to normal weight animals suggesting this is an incomplete explanation. We have previously developed a computational model to estimate energy output, fat oxidation and respiratory quotient from food intake and body composition measurements to more accurately account for changes in body composition in rodents over time. Here we use this approach to understand the dynamic changes in energy output, intake, fat oxidation and respiratory quotient in muscular mice carrying a dominant negative activin receptor IIB expressed specifically in muscle. We found that muscular mice had higher food intake and higher energy output when fed either chow or a high-fat diet for 15 weeks compared to WT mice. Transgenic mice also matched their rate of fat oxidation to the rate of fat consumed better than WT mice. Surprisingly, when given a choice between high-fat diet and Ensure® drink, transgenic mice consumed relatively more calories from Ensure® than from the high-fat diet despite similar caloric intake to WT mice. When switching back and forth between diets, transgenic mice adjusted their intake more rapidly than WT to restore normal caloric intake. Our results show that mice with myostatin inhibition in muscle are better at adjusting energy intake and output on diets of different macronutrient composition than WT mice to maintain energy balance and resist weight gain. PMID:27076790

  6. Modeling Energy Dynamics in Mice with Skeletal Muscle Hypertrophy Fed High Calorie Diets.

    PubMed

    Bond, Nichole D; Guo, Juen; Hall, Kevin D; McPherron, Alexandra C

    2016-01-01

    Retrospective and prospective studies show that lean mass or strength is positively associated with metabolic health. Mice deficient in myostatin, a growth factor that negatively regulates skeletal muscle mass, have increased muscle and body weights and are resistant to diet-induced obesity. Their leanness is often attributed to higher energy expenditure in the face of normal food intake. However, even obese animals have an increase in energy expenditure compared to normal weight animals suggesting this is an incomplete explanation. We have previously developed a computational model to estimate energy output, fat oxidation and respiratory quotient from food intake and body composition measurements to more accurately account for changes in body composition in rodents over time. Here we use this approach to understand the dynamic changes in energy output, intake, fat oxidation and respiratory quotient in muscular mice carrying a dominant negative activin receptor IIB expressed specifically in muscle. We found that muscular mice had higher food intake and higher energy output when fed either chow or a high-fat diet for 15 weeks compared to WT mice. Transgenic mice also matched their rate of fat oxidation to the rate of fat consumed better than WT mice. Surprisingly, when given a choice between high-fat diet and Ensure® drink, transgenic mice consumed relatively more calories from Ensure® than from the high-fat diet despite similar caloric intake to WT mice. When switching back and forth between diets, transgenic mice adjusted their intake more rapidly than WT to restore normal caloric intake. Our results show that mice with myostatin inhibition in muscle are better at adjusting energy intake and output on diets of different macronutrient composition than WT mice to maintain energy balance and resist weight gain.

  7. Olive leaf extract attenuates cardiac, hepatic, and metabolic changes in high carbohydrate-, high fat-fed rats.

    PubMed

    Poudyal, Hemant; Campbell, Fiona; Brown, Lindsay

    2010-05-01

    Olive oil, an important component of the Mediterranean diet, produces cardioprotective effects, probably due to both oleic acid and the polyphenols such as oleuropein and hydroxytyrosol. Our aim in this study was to assess whether a polyphenol-enriched extract from the leaves of Olea europaea L. with oleuropein as the major component attenuated the cardiovascular, hepatic, and metabolic signs of a high-carbohydrate, high-fat (HCHF) diet (carbohydrate, 52%; fat, 24%, 25% fructose in drinking water) in rats. Male Wistar rats were fed either a cornstarch diet (CS) or a HCHF diet for a total of 16 wk. Diets of the treatment groups [CS+olive leaf extract (OLE) and HCHF+OLE] were supplemented with 3% OLE after 8 wk of being fed their respective CS or HCHF diets for a further 8 wk. After 16 wk, HCHF rats developed signs of metabolic syndrome, including elevated abdominal and hepatic fat deposition, collagen deposition in heart and liver, cardiac stiffness, and oxidative stress markers (plasma malondialdehyde and uric acid concentrations), with diminished aortic ring reactivity, abnormal plasma lipid profile, impaired glucose tolerance, and hypertension. Compared with HCHF rats, those in the HCHF+OLE group had improved or normalized cardiovascular, hepatic, and metabolic signs with the exception of elevated blood pressure. These results strongly suggest that an OLE containing polyphenols such as oleuropein and hydroxytyrosol reverses the chronic inflammation and oxidative stress that induces the cardiovascular, hepatic, and metabolic symptoms in this rat model of diet-induced obesity and diabetes without changing blood pressure.

  8. Effects of copper sulfate supplement on growth, tissue concentration, and ruminal solubilities of molybdenum and copper in sheep fed low and high molybdenum diets

    SciTech Connect

    Ivan, M.; Veira, D.M.

    1985-01-01

    Each of four groups of six wethers were fed one of a low molybdenum, high molybdenum, high molybdenum plus copper sulfate, or high molybdenum plus copper sulfate corn silage-based diet for ad libitum intake for 221 days. Average daily gains and ratios of feed/gain were depressed for the high molybdenum diet as compared with the low molybdenum diet suggesting molybdenum toxicity in sheep fed the high molybdenum diet. This was alleviated partly by the copper sulfate supplement. The supplement also decreased solubility of both copper and molybdenum in the rumen but had no effect on copper concentration in blood plasma. Concentration of molybdenum was higher in both liver and kidney in sheep fed high-molybdenum diets as compared with low-molybdenum diets. Copper concentration was higher in kidneys of sheep fed high-molybdenum diets, but no difference was significant in liver copper between sheep fed diets high or low in molybdenum.

  9. A Mitochondrial-Targeted Coenzyme Q Analog Prevents Weight Gain and Ameliorates Hepatic Dysfunction in High-Fat–Fed Mice

    PubMed Central

    Fink, Brian D.; Herlein, Judith A.; Guo, Deng Fu; Kulkarni, Chaitanya; Weidemann, Benjamin J.; Yu, Liping; Grobe, Justin L.; Rahmouni, Kamal; Kerns, Robert J.

    2014-01-01

    We hypothesized that the mitochondrial-targeted antioxidant, mitoquinone (mitoQ), known to have mitochondrial uncoupling properties, might prevent the development of obesity and mitigate liver dysfunction by increasing energy expenditure, as opposed to reducing energy intake. We administered mitoQ or vehicle (ethanol) to obesity-prone C57BL/6 mice fed high-fat (HF) or normal-fat (NF) diets. MitoQ (500 µM) or vehicle (ethanol) was added to the drinking water for 28 weeks. MitoQ significantly reduced total body mass and fat mass in the HF-fed mice but had no effect on these parameters in NF mice. Food intake was reduced by mitoQ in the HF-fed but not in the NF-fed mice. Average daily water intake was reduced by mitoQ in both the NF- and HF-fed mice. Hypothalamic expression of neuropeptide Y, agouti-related peptide, and the long form of the leptin receptor were reduced in the HF but not in the NF mice. Hepatic total fat and triglyceride content did not differ between the mitoQ-treated and control HF-fed mice. However, mitoQ markedly reduced hepatic lipid hydroperoxides and reduced circulating alanine aminotransferase, a marker of liver function. MitoQ did not alter whole-body oxygen consumption or liver mitochondrial oxygen utilization, membrane potential, ATP production, or production of reactive oxygen species. In summary, mitoQ added to drinking water mitigated the development of obesity. Contrary to our hypothesis, the mechanism involved decreased energy intake likely mediated at the hypothalamic level. MitoQ also ameliorated HF-induced liver dysfunction by virtue of its antioxidant properties without altering liver fat or mitochondrial bioenergetics. PMID:25301169

  10. Allomyrina dichotoma (Arthropoda: Insecta) larvae confer resistance to obesity in mice fed a high-fat diet.

    PubMed

    Yoon, Young-Il; Chung, Mi Yeon; Hwang, Jae-Sam; Han, Myung Sae; Goo, Tae-Won; Yun, Eun-Young

    2015-03-17

    To clarify the anti-obesity effect of Allomyrina dichotoma larvae (ADL), we previously reported that ADL block adipocyte differentiation on 3T3-L1 cell lines through downregulation of transcription factors, such as peroxisome proliferator-activated receptor-γ (PPARG) and CCAAT/enhancer binding protein-α (CEBPA). In this study, we tested whether ADL prevent obesity in mice fed a high-fat diet (HFD) and further investigated the mechanism underlying the effects of ADL. All mice were maintained on a normal-fat diet (NFD) for 1 week and then assigned to one of five treatment groups: (1) NFD; (2) HFD; (3) HFD and 100 mg·kg(-1)·day(-1) ADL; (4) HFD and 3000 mg·kg(-1)·day(-1) ADL; or (5) HFD and 3000 mg·kg(-1)·day(-1) yerba mate (Ilex paraguariensis, positive control). ADL and yerba mate were administered orally daily. Mice were fed experimental diets and body weight was monitored weekly for 6 weeks. Our results indicated that ADL reduced body weight gain, organ weight and adipose tissue volume in a dose-dependent manner. Body weight gain was approximately 22.4% lower compared to mice fed only HFD, but the difference did not reach the level of statistical significance. Real-time polymerase chain reaction (PCR) analysis revealed that gene expression levels of PPARG, CEBPA and lipoprotein lipase (LPL) in the epididymal fat tissue of HFD-fed mice receiving 3000 mg·kg(-1)·day(-1) ADL were reduced by 12.4-, 25.7-, and 12.3-fold, respectively, compared to mice fed HFD only. Moreover, mice administered ADL had lower serum levels of triglycerides and leptin than HFD-fed mice that did not receive ADL. Taken together our results suggest that ADL and its constituent bioactive compounds hold potential for the treatment and prevention of obesity.

  11. Effects of direct-fed microbial supplementation on digestibility and fermentation end-products in horses fed low- and high-starch concentrates.

    PubMed

    Swyers, K L; Burk, A O; Hartsock, T G; Ungerfeld, E M; Shelton, J L

    2008-10-01

    A study was conducted to determine whether direct-fed microbials (DFM) could be used to increase digestibility and minimize the risk of acidosis associated with feeding an increase in the amount of starch fed to horses. Fifteen mature Thoroughbred geldings were randomly assigned to 1 of 3 treatments in a 3 x 3 Latin square design balanced for carryover effects. Within each 26-d period, horses were offered grass hay + low-starch concentrate (LS; 1.2 g of starch x kg of BW(-1) x meal(-1)) from d 1 to 13 and then were abruptly changed to hay + high-starch concentrate (HS; 2.4 g of starch.kg of BW(-1)x meal(-1)) on d 14 continuing through d 26. The DFM treatments were offered in concentrate pellets at a target dosage of 10(8) cfu/(50 kg of BW x d) as follows: no DFM (CON; control), Lactobacillus acidophilus (LAC1; single-species DFM), or a mixture of L. acidophilus, Lactobacillus casei, Bifidobacterium bifidum, and Enterococcus faecium (LAC4; multiple-species DFM). Total feces were collected over 72 h from d 11 to 13 (LS; low dietary starch collection), from d 15 to 17 (AC; abrupt change in dietary starch collection), and at the end of each experimental period, from d 24 to 26 (HS; high dietary starch collection). Data collected consisted of total DM intake and fecal output, fecal pH, fecal acetate and propionate concentrations, and viable numbers of DFM in the feed. With the exception of Fe digestibility, there were no starch x DFM interactions. There was an effect of starch level (P 0.10). Horses supplemented with LAC4 had increased ether extract (P < 0.05) and a tendency for decreased Na (P < 0.10) digestibilities compared with CON horses. All DFM-supplemented horses had increased Cu (P < 0.05) and Fe and numerically increased Zn digestibilities compared with CON horses. Fecal pH decreased (P < 0.05), and fecal propionate concentration increased (P < 0.05) as dietary starch

  12. High dietary calcium level decreases colonic phytate degradation in pigs fed a rapeseed diet.

    PubMed

    Sandberg, A S; Larsen, T; Sandström, B

    1993-03-01

    The degradation of phytate (inositol hexaphosphate) in rapeseed meal diet not containing phytase activity was studied in 15 growing ileum-fistulated pigs. Stomach and small intestinal degradation and total gastrointestinal degradation were compared. The effect of addition of calcium carbonate to the rapeseed meal diet at two levels (9.2 and 18.5 g/kg diet) was investigated. A commercial barley-wheat-soybean diet with intrinsic phytase activity was used as reference. Phytate and its hydrolysis products in diets, ileal digesta and feces were determined by HPLC ion-pair chromatography. Hydrolysis of phytate in the stomach and small intestine was 35-45% in pigs fed the rapeseed meal diet independent of calcium addition, and 65% in pigs fed the reference diet. Total gastrointestinal degradation of phytate in pigs fed the rapeseed diet was 97, 77 and 42% (P < 0.001) when calcium intakes were 4.5, 9.9 and 15 g/d, respectively; total gastrointestinal degradation was 72% in pigs fed the reference diet. The intestinal phytate degradation pattern, when rapeseed diet was fed, indicated the activity of an unspecific phosphatase, whereas that of the reference diet indicated intrinsic dietary phytase activity. We conclude that dietary supplementation of calcium carbonate decreases the phytate degradation in the colon of pigs, but not in the stomach and small intestine.

  13. Liver Perilipin 5 Expression Worsens Hepatosteatosis But Not Insulin Resistance in High Fat-Fed Mice

    PubMed Central

    Trevino, Michelle B.; Mazur-Hart, David; Machida, Yui; King, Timothy; Nadler, Joseph; Galkina, Elena V.; Poddar, Arjun; Dutta, Sucharita

    2015-01-01

    Perilipin 5 (PLIN5) is a lipid droplet (LD) protein highly expressed in oxidative tissues, including the fasted liver. However, its expression also increases in nonalcoholic fatty liver. To determine whether PLIN5 regulates metabolic phenotypes of hepatosteatosis under nutritional excess, liver targeted overexpression of PLIN5 was achieved using adenoviral vector (Ad-PLIN5) in male C57BL/6J mice fed high-fat diet. Mice treated with adenovirus expressing green fluorescent protein (GFP) (Ad-GFP) served as control. Ad-PLIN5 livers increased LD in the liver section, and liquid chromatography with tandem mass spectrometry revealed increases in lipid classes associated with LD, including triacylglycerol, cholesterol ester, and phospholipid classes, compared with Ad-GFP liver. Lipids commonly associated with hepatic lipotoxicity, diacylglycerol, and ceramides, were also increased in Ad-PLIN5 liver. The expression of genes in lipid metabolism regulated by peroxisome proliferator-activated receptor-α was reduced suggestive of slower mobilization of stored lipids in Ad-PLIN5 mice. However, the increase of hepatosteatosis by PLIN5 overexpression did not worsen glucose homeostasis. Rather, serum insulin levels were decreased, indicating better insulin sensitivity in Ad-PLIN5 mice. Moreover, genes associated with liver injury were unaltered in Ad-PLIN5 steatotic liver compared with Ad-GFP control. Phosphorylation of protein kinase B was increased in Ad-PLIN5-transduced AML12 hepatocyte despite of the promotion of fatty acid incorporation to triacylglycerol as well. Collectively, our data indicates that the increase in liver PLIN5 during hepatosteatosis drives further lipid accumulation but does not adversely affect hepatic health or insulin sensitivity. PMID:26296152

  14. Effects of ID-alG™ on weight management and body fat mass in high-fat-fed rats.

    PubMed

    Terpend, Kathleen; Bisson, Jean-François; Le Gall, Claire; Linares, Elodie

    2012-05-01

    Seaweed extract of Ascophyllum nodosum, ID-alG™, was evaluated for its chronic effects on weight management in high-fat-fed Sprague-Dawley rats. ID-alG™ was orally administered daily during 9 weeks at doses of 40 and 400 mg/kg/day with fat-enriched diet (FED) in comparison with two control groups consuming standard diet (negative control) or FED (positive control) and orally treated with vehicle. Body weight, percentage of body fat mass and lipid parameters were measured. After 9 weeks, the oral administration of ID-alG™ at both doses decreased significantly the mean body weight gains (MBWG) of rats submitted to the FED in comparison to the positive control (-6.8% and -11.8%). ID-alG™ at both doses improved significantly the MBWG of rats and decreased significantly the percentage of body fat mass of rats (-9.8% and -19.0%), in comparison to the positive control. In the same way, the triglyceride blood level was also significantly improved for the dose of 400 mg/kg/day (-30.6% vs. +49.9% for the positive control); and the dose of 40 mg/kg/day just lead to a trend. Moreover, in both controls and ID-alG™-treated groups, total cholesterol, LDL and HDL blood levels were not modified. The seaweed extract of Ascophyllum nodosum, ID-alG™, demonstrated beneficial effects on weight management of rats submitted to a high-fat diet.

  15. Moderate GLUT4 overexpression improves insulin sensitivity and fasting triglyceridemia in high-fat diet-fed transgenic mice.

    PubMed

    Atkinson, Brittanie J; Griesel, Beth A; King, Caleb D; Josey, Miranda A; Olson, Ann Louise

    2013-07-01

    The GLUT4 facilitative glucose transporter mediates insulin-dependent glucose uptake. We tested the hypothesis that moderate overexpression of human GLUT4 in mice, under the regulation of the human GLUT4 promoter, can prevent the hyperinsulinemia that results from obesity. Transgenic mice engineered to express the human GLUT4 gene and promoter (hGLUT4 TG) and their nontransgenic counterparts (NT) were fed either a control diet (CD) or a high-fat diet (HFD) for up to 10 weeks. Homeostasis model assessment of insulin resistance scores revealed that hGLUT4 TG mice fed an HFD remained highly insulin sensitive. The presence of the GLUT4 transgene did not completely prevent the metabolic adaptations to HFD. For example, HFD resulted in loss of dynamic regulation of the expression of several metabolic genes in the livers of fasted and refed NT and hGLUT4 TG mice. The hGLUT4 TG mice fed a CD showed no feeding-dependent regulation of SREBP-1c and fatty acid synthase (FAS) mRNA expression in the transition from the fasted to the fed state. Similarly, HFD altered the response of SREBP-1c and FAS mRNA expression to feeding in both strains. These changes in hepatic gene expression were accompanied by increased nuclear phospho-CREB in refed mice. Taken together, a moderate increase in expression of GLUT4 is a good target for treatment of insulin resistance.

  16. Artemisia annua Leaf Extract Attenuates Hepatic Steatosis and Inflammation in High-Fat Diet-Fed Mice

    PubMed Central

    Kim, Kyung Eun; Ko, Keon-Hee; Heo, Rok Won; Yi, Chin-ok; Shin, Hyun Joo; Kim, Jun Young; Park, Jae-Ho; Nam, Sanghae; Kim, Hwajin

    2016-01-01

    Abstract Artemisia annua L. (AA) is a well-known source of the antimalarial drug artemisinin. AA also has an antibacterial and antioxidant activity. However, the effect of AA extract on hepatic steatosis induced by obesity is unclear. We investigated whether AA extract prevents obesity-induced insulin resistance and hepatic steatosis in high-fat diet (HFD)-fed mice. Mice were randomly divided into groups that received a normal chow diet or HFD with or without AA for 12 weeks. We found that AA extract reduced insulin resistance and hepatic steatosis in HFD-fed mice. Western blot analysis showed that HFD-induced expression of nuclear sterol regulatory element-binding protein 1 and carbohydrate-responsive element-binding protein in the livers was decreased by AA extract. In particular, dietary administration of AA extract decreased hepatic high-mobility group box 1 and cyclooxygenase-2 expression in HFD-fed mice. AA extract also attenuated HFD-induced collagen deposition and fibrosis-related transforming growth factor-β1 and connective tissue growth factor. These data indicate that dietary AA extract has beneficial effects on hepatic steatosis and inflammation in HFD-fed mice. PMID:26741655

  17. Rice Protein isolate improves lipid and glucose homeostasis in rats fed high fat/high cholesterol diets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hundreds of phytochemicals are bound to rice protein isolate (RPI) and many are bioactive. To determine the metabolic effects of feeding RPI in early development, weanling rats were fed AIN-93G diets made with casein or RPI for 14 d. Reduced growth rate and adiposity prior to puberty in RPI-fed ra...

  18. Hypothalamic Leptin Gene Therapy Reduces Bone Marrow Adiposity in ob/ob Mice Fed Regular and High-Fat Diets

    PubMed Central

    Lindenmaier, Laurence B.; Philbrick, Kenneth A.; Branscum, Adam J.; Kalra, Satya P.; Turner, Russell T.; Iwaniec, Urszula T.

    2016-01-01

    Low bone mass is often associated with elevated bone marrow adiposity. Since osteoblasts and adipocytes are derived from the same mesenchymal stem cell (MSC) progenitor, adipocyte formation may increase at the expense of osteoblast formation. Leptin is an adipocyte-derived hormone known to regulate energy and bone metabolism. Leptin deficiency and high-fat diet-induced obesity are associated with increased marrow adipose tissue (MAT) and reduced bone formation. Short-duration studies suggest that leptin treatment reduces MAT and increases bone formation in leptin-deficient ob/ob mice fed a regular diet. Here, we determined the long-duration impact of increased hypothalamic leptin on marrow adipocytes and osteoblasts in ob/ob mice following recombinant adeno-associated virus (rAAV) gene therapy. Eight- to 10-week-old male ob/ob mice were randomized into four groups: (1) untreated, (2) rAAV-Lep, (3) rAAV-green fluorescent protein (rAAV-GFP), or (4) pair-fed to rAAV-Lep. For vector administration, mice were injected intracerebroventricularly with either rAAV-leptin gene therapy (rAAV-Lep) or rAAV-GFP (9 × 107 particles) and maintained for 30 weeks. In a second study, the impact of increased hypothalamic leptin levels on MAT was determined in mice fed high-fat diets; ob/ob mice were randomized into two groups and treated with either rAAV-Lep or rAAV-GFP. At 7 weeks post-vector administration, half the mice in each group were switched to a high-fat diet for 8 weeks. Wild-type (WT) controls included age-matched mice fed regular or high-fat diet. High-fat diet resulted in a threefold increase in MAT in WT mice, whereas MAT was increased by leptin deficiency up to 50-fold. Hypothalamic leptin gene therapy increased osteoblast perimeter and osteoclast perimeter with minor change in cancellous bone architecture. The gene therapy decreased MAT levels in ob/ob mice fed regular or high-fat diet to values similar to WT mice fed regular diet. These findings suggest

  19. Nrf2 deficiency improves glucose tolerance in mice fed a high-fat diet.

    PubMed

    Zhang, Yu-Kun Jennifer; Wu, Kai Connie; Liu, Jie; Klaassen, Curtis D

    2012-11-01

    Nrf2, a master regulator of intracellular redox homeostasis, is indicated to participate in fatty acid metabolism in liver. However, its role in diet-induced obesity remains controversial. In the current study, genetically engineered Nrf2-null, wild-type (WT), and Nrf2-activated, Keap1-knockdown (K1-KD) mice were fed either a control or a high-fat Western diet (HFD) for 12 weeks. The results indicate that the absence or enhancement of Nrf2 activity did not prevent diet-induced obesity, had limited effects on lipid metabolism, but affected blood glucose homeostasis. Whereas the Nrf2-null mice were resistant to HFD-induced glucose intolerance, the Nrf2-activated K1-KD mice exhibited prolonged elevation of circulating glucose during a glucose tolerance test even on the control diet. Feeding a HFD did not activate the Nrf2 signaling pathway in mouse livers. Fibroblast growth factor 21 (Fgf21) is a liver-derived anti-diabetic hormone that exerts glucose- and lipid-lowering effects. Fgf21 mRNA and protein were both elevated in livers of Nrf2-null mice, and Fgf21 protein was lower in K1-KD mice than WT mice. The inverse correlation between Nrf2 activity and hepatic expression of Fgf21 might explain the improved glucose tolerance in Nrf2-null mice. Furthermore, a more oxidative cellular environment in Nrf2-null mice could affect insulin signaling in liver. For example, mRNA of insulin-like growth factor binding protein 1, a gene repressed by insulin in hepatocytes, was markedly elevated in livers of Nrf2-null mice. In conclusion, genetic alteration of Nrf2 does not prevent diet-induced obesity in mice, but deficiency of Nrf2 improves glucose homeostasis, possibly through its effects on Fgf21 and/or insulin signaling.

  20. Oxyresveratrol Supplementation to C57bl/6 Mice Fed with a High-Fat Diet Ameliorates Obesity-Associated Symptoms

    PubMed Central

    Tan, Hui Yuan; Tse, Iris Mei Ying; Li, Edmund Tsze Shing; Wang, Mingfu

    2017-01-01

    Oxyresveratrol has been proven effective in inhibiting adipogenesis in a 3T3-L1 cell model. We investigated the preventive effect of oxyresveratrol supplementation on obesity development in high-fat diet-fed mice. Male C57bl/6 mice were randomly subjected to control (5% fat by weight, LF), high-fat (30% fat by weight, HF), and high-fat supplemented with 0.25% and 0.5% oxyresveratrol (OXY1 and OXY2, respectively) diet groups for eight weeks. Oxyresveratrol supplementation effectively alleviated obesity-associated symptoms such as insulin resistance, hyperglycemia, and hepatic steatosis in high-fat diet-fed mice. Compared to the high-fat diet group, oxyresveratrol supplementation suppressed expression of glucose-6-phosphatase, sterol regulatory element-binding proteins 1, fatty acid synthase and CCAAT/Enhancer-binding proteins α, and elevated AMP-activated protein kinase (α2-catalytic subunit) level in liver, upregulated insulin-dependent glucose transporter type 4 level in adipose tissue, and increased expression of insulin receptor substrate 1, insulin-dependent glucose transporter type 4, AMP-activated protein kinase α, peroxisome proliferator-activated receptor γ coactivator-1α, and sirtuin 1 in muscle to regulate lipid and glucose homeostasis in these tissues. This study demonstrated that oxyresveratrol supplementation effectively ameliorated obesity-associated symptoms in high-fat diet-fed mice, presumably attributed to mediating critical regulators involved in lipid and glucose homeostasis in liver, visceral fat, and muscle. PMID:28212343

  1. Oxyresveratrol Supplementation to C57bl/6 Mice Fed with a High-Fat Diet Ameliorates Obesity-Associated Symptoms.

    PubMed

    Tan, Hui Yuan; Tse, Iris Mei Ying; Li, Edmund Tsze Shing; Wang, Mingfu

    2017-02-16

    Oxyresveratrol has been proven effective in inhibiting adipogenesis in a 3T3-L1 cell model. We investigated the preventive effect of oxyresveratrol supplementation on obesity development in high-fat diet-fed mice. Male C57bl/6 mice were randomly subjected to control (5% fat by weight, LF), high-fat (30% fat by weight, HF), and high-fat supplemented with 0.25% and 0.5% oxyresveratrol (OXY1 and OXY2, respectively) diet groups for eight weeks. Oxyresveratrol supplementation effectively alleviated obesity-associated symptoms such as insulin resistance, hyperglycemia, and hepatic steatosis in high-fat diet-fed mice. Compared to the high-fat diet group, oxyresveratrol supplementation suppressed expression of glucose-6-phosphatase, sterol regulatory element-binding proteins 1, fatty acid synthase and CCAAT/Enhancer-binding proteins α, and elevated AMP-activated protein kinase (α2-catalytic subunit) level in liver, upregulated insulin-dependent glucose transporter type 4 level in adipose tissue, and increased expression of insulin receptor substrate 1, insulin-dependent glucose transporter type 4, AMP-activated protein kinase α, peroxisome proliferator-activated receptor γ coactivator-1α, and sirtuin 1 in muscle to regulate lipid and glucose homeostasis in these tissues. This study demonstrated that oxyresveratrol supplementation effectively ameliorated obesity-associated symptoms in high-fat diet-fed mice, presumably attributed to mediating critical regulators involved in lipid and glucose homeostasis in liver, visceral fat, and muscle.

  2. Changes in the small intestine of Schistosoma mansoni-infected mice fed a high-fat diet.

    PubMed

    Alencar, Alba Cristina Miranda de Barros; Neves, Renata Heisler; de Oliveira, Albanita Viana; Machado-Silva, José Roberto

    2012-05-01

    The consumption of a high-fat diet modifies both the morphology of the small intestine and experimentally tested effects of schistosomiasis mansoni. However, whether a schistosomiasis infection associated with a high-fat diet causes injury to the small intestine has never been investigated. Mice were fed either a high-fat or a standard-fat diet for 6 months and were then infected with Schistosoma mansoni cercariae. Physical characteristics of the intestinal tissue (mucosal thickness, small intestinal villi length and height, and abundance of goblet cells and enterocytes on the villous surface) and the distribution of granulomas along the intestinal segments and their developmental stage were measured at the time of sacrifice (9 or 17 weeks post-infection). The group fed a high-fat diet exhibited different granuloma stages, whereas the control group possessed only exudative granulomas. The chronically infected mice fed a high-fat diet exhibited higher granuloma and egg numbers than the acutely infected group. Exudative, exudative/exudative-productive and exudative-productive granulomas were present irrespective of diet. Computer-aided morphometric analysis confirmed that villus length, villus width, muscular height and submucosal height of the duodenal and jejunal segments were affected by diet and infection. In conclusion, a high-fat diet and infection had a significant impact on the small intestine morphology and morphometry among the animals tested.

  3. Decrease of Obesity by Allantoin via Imidazoline I1-Receptor Activation in High Fat Diet-Fed Mice

    PubMed Central

    Chung, Hsien-Hui; Lee, Kung Shing

    2013-01-01

    The activation of the imidazoline I1-receptor (I1R) is known to regulate appetite. Allantoin, an active ingredient in the yam, has been reported to improve lipid metabolism in high fat diet- (HFD-)fed mice. However, the effect of allantoin on obesity remains unclear. In the present study, we investigated the effects of allantoin on HFD-induced obesity. The chronic administration of allantoin to HFD-fed mice for 8 weeks significantly decreased their body weight, and this effect was reversed by efaroxan at a dose sufficient to block I1R. The epididymal white adipose tissue (eWAT) cell size and weight in HFD-fed mice were also decreased by allantoin via the activation of I1R. In addition, allantoin significantly decreased the energy intake of HFD-fed mice, and this reduction was associated with a decrease in the NPY levels in the brain. However, no inhibitory effect of allantoin on energy intake was observed in db/db mice. Moreover, allantoin lowered HFD-induced hyperleptinemia, and this activity was abolished by I1R blockade with efaroxan. Taken together, these data suggest that allantoin can ameliorate energy intake and eWAT accumulation by activating I1R to improve HFD-induced obesity. PMID:23606885

  4. Bardoxolone methyl prevents the development and progression of cardiac and renal pathophysiologies in mice fed a high-fat diet.

    PubMed

    Camer, Danielle; Yu, Yinghua; Szabo, Alexander; Wang, Hongqin; Dinh, Chi H L; Huang, Xu-Feng

    2016-01-05

    Obesity caused by the consumption of a high-fat (HF) diet is a major risk factor for the development of associated complications, such as heart and kidney failure. A semi-synthetic triterpenoid, bardoxolone methyl (BM) was administrated to mice fed a HF diet for 21 weeks to determine if it would prevent the development of obesity-associated cardiac and renal pathophysiologies. Twelve week old male C57BL/6J mice were fed a lab chow (LC), HF (40% fat), or a HF diet supplemented with 10 mg/kg/day BM in drinking water. After 21 weeks, the left ventricles of hearts and cortex of kidneys of mice were collected for analysis. Histological analysis revealed that BM prevented HF diet-induced development of structural changes in the heart and kidneys. BM prevented HF diet-induced decreases in myocyte number in cardiac tissue, although this treatment also elevated cardiac endothelin signalling molecules. In the kidneys, BM administration prevented HF diet-induced renal corpuscle hypertrophy and attenuated endothelin signalling. Furthermore, in both the hearts and kidneys of mice fed a HF diet, BM administration prevented HF diet-induced increases in fat accumulation, macrophage infiltration and tumour necrosis factor alpha (TNFα) gene expression. These findings suggest that BM prevents HF diet-induced developments of cardiac and renal pathophysiologies in mice fed a chronic HF diet by preventing inflammation. Moreover, these results suggest that BM has the potential as a therapeutic for preventing obesity-induced cardiac and renal pathophysiologies.

  5. Beneficial effects of apple peel polyphenols on vascular endothelial dysfunction and liver injury in high choline-fed mice.

    PubMed

    Jia, Mengfan; Ren, Daoyuan; Nie, Yan; Yang, Xingbin

    2017-03-22

    This study was designed to investigate the preventive effects of Red Fuji apple peel polyphenolic extract (APP) on vascular endothelial dysfunction and liver injury in mice fed a high choline diet. The mice were fed 3% dietary choline in drinking water for 8 weeks and displayed vascular dysfunction and liver damage (p < 0.01). The administration of APP at 600 and 900 mg per kg bw significantly elevated serum NO, HDL and 6-Keto-PGF1a levels and lowered serum TC, TG, LDL, ET-1 and TXB2 levels in the HC-fed mice. Besides, APP also caused the reduction of AST, ALT activities and MDA, CRP, TNF-α levels, and increased the hepatic GSH-Px and SOD activities of the HC-fed mice. Furthermore, the histopathology of the liver by conventional H&E and oil red O staining confirmed the liver steatosis induced by a choline diet and the hepatoprotective effect of APP. The experiment results indicated that the polyphenolic extract from apple peel might be regarded as a preventive and therapeutic product for the amelioration of HC diet-induced vascular dysfunction and hepatic injury.

  6. Olive Leaf Extract Improves the Atherogenic Lipid Profile in Rats Fed a High Cholesterol Diet.

    PubMed

    Olmez, Ercument; Vural, Kamil; Gok, Sule; Ozturk, Zeynep; Kayalar, Husniye; Ayhan, Semin; Var, Ahmet

    2015-10-01

    Coronary heart disease because of atherosclerosis is still the most common cause of mortality. Elevated levels of low-density lipoprotein and total cholesterol are major risk factors for atherosclerotic cardiovascular disease. The aim of this study was to evaluate the effects of the olive leaf extract on serum lipid profile, early changes of atherosclerosis and endothelium-dependent relaxations in cholesterol-fed rats. For this purpose, rats were fed by 2% cholesterol-enriched or standard chow for 8 weeks. Some rats in each group were also fed orally by olive leaf extract at doses of 50 or 100 mg/kg/day. Atorvastatin at dose of 20 mg/kg of body weight daily was also given as positive control. After 8 weeks, lipid profiles of rat serums were analyzed. Antioxidant enzyme activities (superoxide dismutase and glutathione peroxidase) and degree of lipid peroxidation (malondialdehyde levels) were also measured in the hearts isolated from rats. In addition, expression of adhesion molecules and endothelium-dependent relaxations of isolated thoracic aortas of rats were evaluated. Total cholesterol and LDL-cholesterol levels were found to be increased in cholesterol-fed rats, and both doses of olive leaf extract and atorvastatin significantly decreased those levels. In conclusion, because the olive leaf extract attenuates the increased cholesterol levels, it may have beneficial effects on atherosclerosis.

  7. Efficacy of Garcinia Cambogia on Body Weight, Inflammation and Glucose Tolerance in High Fat Fed Male Wistar Rats

    PubMed Central

    Sripradha, Ramalingam

    2015-01-01

    Introduction: Obesity leads to derangements in lipid and glucose homeostasis resulting in various metabolic complications. Plants containing vital phytochemicals are known to posses anti obesity properties and have proved to exert beneficial effects in obesity. Objectives: The present study was aimed to investigate the effects of Garcinia Cambogia on body weight, glucose tolerance and inflammation in high fat diet fed male Wistar rats. Materials and Methods: Five month old male wistar rats (n=40) were divided into four groups. Two groups were fed with standard rodent diet and the remaining two with 30% high fat diet. One group in each of the two sets received the crude ethanolic extract of Garcinia Cambogia at a dose of 400mg/kg body weight/day for ten weeks. Body weight, intraperitoneal glucose tolerance test, leptin, tumour necrosis factor-α (TNF-α) and renal function (urea, creatinine, uric acid) were studied. Results: High fat diet fed rats showed increased body weight gain, glucose intolerance, elevated levels of plasma leptin and TNF-α. Supplementation of Garcinia Cambogia extract (GE) along with high fat diet significantly decreased body weight gain, glucose intolerance, plasma leptin and TNF-α level. No significant changes were observed in the renal function parameters in any of the groups. Conclusion: Supplementation of the Garcinia Cambogia extract with high fat diet reduced body weight gain, inflammation and glucose intolerance. PMID:25859449

  8. High dietary salt decreases antioxidant defenses in the liver of fructose-fed insulin-resistant rats.

    PubMed

    Dornas, Waleska Claudia; de Lima, Wanderson Geraldo; dos Santos, Rinaldo Cardoso; Guerra, Joyce Ferreira da Costa; de Souza, Melina Oliveira; Silva, Maísa; Souza e Silva, Lorena; Diniz, Mirla Fiuza; Silva, Marcelo Eustáquio

    2013-12-01

    In this study we investigated the hypothesis that a high-salt diet to hyperinsulinemic rats might impair antioxidant defense owing to its involvement in the activation of sodium reabsorption to lead to higher oxidative stress. Rats were fed a standard (CON), a high-salt (HS), or a high-fructose (HF) diet for 10 weeks after which, 50% of the animals belonging to the HF group were switched to a regimen of high-fructose and high-salt diet (HFS) for 10 more weeks, while the other groups were fed with their respective diets. Animals were then euthanized and their blood and liver were examined. Fasting plasma glucose was found to be significantly higher (approximately 50%) in fructose-fed rats than in the control and HS rats, whereas fat liver also differed in these animals, producing steatosis. Feeding fructose-fed rats with the high-salt diet triggered hyperinsulinemia and lowered insulin sensitivity, which led to increased levels of serum sodium compared to the HS group. This resulted in membrane perturbation, which in the presence of steatosis potentially enhanced hepatic lipid peroxidation, thereby decreasing the level of antioxidant defenses, as shown by GSH/GSSG ratio (HFS rats, 7.098±2.1 versus CON rats, 13.2±6.1) and superoxide dismutase (HFS rats, 2.1±0.05 versus CON rats, 2.3±0.1%), and catalase (HFS rats, 526.6±88.6 versus CON rats, 745.8±228.7 U/mg ptn) activities. Our results indicate that consumption of a salt-rich diet by insulin-resistant rats may lead to regulation of sodium reabsorption, worsening hepatic lipid peroxidation associated with impaired antioxidant defenses.

  9. High-viscosity dietary fibers reduce adiposity and decrease hepatic steatosis in rats fed a high-fat diet.

    PubMed

    Brockman, David A; Chen, Xiaoli; Gallaher, Daniel D

    2014-09-01

    Viscous dietary fiber consumption lowers the postprandial glucose curve and may decrease obesity and associated comorbidities such as insulin resistance and fatty liver. We determined the effect of 2 viscous fibers, one fermentable and one not, on the development of adiposity, fatty liver, and metabolic flexibility in a model of diet-induced obesity. Rats were fed a normal-fat (NF) diet (26% energy from fat), a high-fat diet (60% energy from fat), each containing 5% fiber as cellulose (CL; nonviscous and nonfermentable), or 5% of 1 of 2 highly viscous fibers-hydroxypropyl methylcellulose (HPMC; nonfermentable) or guar gum (GG; fermentable). After 10 wk, fat mass percentage in the NF (18.0%; P = 0.03) and GG groups (17.0%; P < 0.01) was lower than the CL group (20.7%). The epididymal fat pad weight of the NF (3.9 g; P = 0.04), HPMC (3.9 g; P = 0.03), and GG groups (3.6 g; P < 0.01) was also lower than the CL group (5.0 g). The HPMC (0.11 g/g liver) and GG (0.092 g/g liver) groups had lower liver lipid concentrations compared with the CL group (0.14 g/g liver). Fat mass percentage, epididymal fat pad weight, and liver lipid concentration were not different among the NF, HPMC, and GG groups. The respiratory quotient was higher during the transition from the diet-deprived to fed state in the GG group (P = 0.002) and tended to be higher in the HPMC group (P = 0.06) compared with the CL group, suggesting a quicker shift from fatty acid (FA) to carbohydrate oxidation. The HPMC group [15.1 nmol/(mg ⋅ h)] had higher ex vivo palmitate oxidation in muscle compared with the GG [11.7 nmol/(mg ⋅ h); P = 0.04] and CL groups [10.8 nmol/(mg ⋅ h); P < 0.01], implying a higher capacity to oxidize FAs. Viscous fibers can reduce the adiposity and hepatic steatosis that accompany a high-fat diet, and increase metabolic flexibility, regardless of fermentability.

  10. Biomarker responses and disease susceptibility in juvenile rainbow trout Oncorhynchus mykiss fed a high molecular weight PAH mixture.

    PubMed

    Bravo, C F; Curtis, L R; Myers, M S; Meador, J P; Johnson, L L; Buzitis, J; Collier, T K; Morrow, J D; Laetz, C A; Loge, F J; Arkoosh, M R

    2011-03-01

    Juvenile rainbow trout were fed a diet containing an environmentally relevant mixture of 10 high molecular weight polycyclic aromatic hydrocarbons (PAHs) at a dose of 0.66 or 7.82 µg PAH · g fish(-1) · d(-1). At 3, 7, 14, and 28 d, biomarkers of aryl hydrocarbon receptor activation (AHR), hepatic microsomal ethoxyresorufin-O-deethylase (EROD) activity, and cytochrome P4501A (CYP1A)-associated staining increased 14- to 26-fold and 6- to 14-fold, respectively, in fish fed 7.82 µg PAH · g fish (-1) · d(-1). Cytochrome P4501A-associated staining increased 2- to 9-fold on days 3, 7, and 28 in fish fed 0.66 µg PAH · g fish(-1) · d(-1). Bile fluorescent aromatic compounds served as a biomarker of exposure and confirmed that PAH exposure was consistent over 50 d. DNA damage in blood cells, protein oxidation, and lipid peroxidation in the kidney were biomarkers of oxidative stress and all increased in fish fed 7.82 µg PAH · g fish(-1) · d(-1). Fish fed 0.66 µg PAH · g fish(-1) · d(-1) had elevated DNA damage in blood cells but increased protein oxidation or lipid peroxidation in the kidney were not observed. Challenge with Aeromonas salmonicida, at lethal concentration (LC) 20, decreased survival in fish previously fed either 0.66 µg PAH · g fish(-1) · d(-1) or 7.82 µg PAH · g fish(-1) · d(-1) relative to fish fed the control diet. In general, biomarkers of both AHR activation and oxidative stress peaked at 3 to 14 d then declined at 28 to 50 d of PAH exposure and an increase in susceptibility to disease was observed at 50 d. These results link PAH exposure to biomarker responses that may be useful as early indicators of population level responses, such as mortality resulting from an increase in disease susceptibility.

  11. Bardoxolone methyl prevents insulin resistance and the development of hepatic steatosis in mice fed a high-fat diet.

    PubMed

    Camer, Danielle; Yu, Yinghua; Szabo, Alexander; Dinh, Chi H L; Wang, Hongqin; Cheng, Licai; Huang, Xu-Feng

    2015-09-05

    High-fat (HF) diet-induced obesity is a major risk factor for the development of insulin resistance and hepatic steatosis. We examined the hypothesis that bardoxolone methyl (BM) would prevent the development of insulin resistance and hepatic steatosis in mice fed a HF diet. C57BL/6J male mice were fed a lab chow (LC), HF (40% fat), or HF diet supplemented with 10 mg/kg/day BM orally for 21 weeks. Glucose metabolism was assessed using a glucose tolerance test (GTT) and insulin sensitivity test (IST). Signalling molecules involved in insulin resistance, inflammation, and lipid metabolism were examined in liver tissue via western blotting and RT-PCR. BM prevented HF diet-induced insulin resistance and alterations in the protein levels of protein tyrosine phosphatase 1B (PTP1B), forkhead box protein O1 (FOXO1) and BDNF, and expression of the insulin receptor (IR), IRS-1 and glucose-6-phosphatase (G6Pase) genes. Furthermore, BM prevented fat accumulation in the liver and decreases in the β-oxidation gene, peroxisomal acyl-coenzyme A oxidase 1 (ACOX) in mice fed a HF diet. In the livers of HF fed mice, BM administration prevented HF diet-induced macrophage infiltration, inflammation as indicated by reduced IL-6 and signal transducer and activator of transcription 3 (STAT3) protein levels and TNFα mRNA expression, and increased nuclear factor-like 2 (Nrf2) mRNA expression and nuclear protein levels. These findings suggest that BM prevents HF diet induced insulin resistance and the development of hepatic steatosis in mice fed a chronic HF diet through modulation of molecules involved in insulin signalling, lipid metabolism and inflammation in the liver.

  12. Effects of solid-state fermented rice on lipid metabolism and antioxidant status in high-cholesterol-fed rats.

    PubMed

    Jang, Yun Jung; Kim, Mi Hyun; Nam, Seok Hyun; Kang, Mi Young

    2007-12-01

    We investigated the effect of solid-state fermented rice cultured with Basidiomycota (sangwhang) and Monascus ruber on lipid metabolism and antioxidant activity. Forty 4-week-old male Sprague-Dawley rats were fed high cholesterol diets in which carbohydrate sources in the treatment groups consisted of non-fermented rice and sangwhang or M. ruber rice at 80% and 20%, respectively, for 5 weeks. Supplementation with sangwhang and M. ruber rice had no effect on growth and food intakes in high-cholesterol-fed rats. The plasma triglyceride concentration was not significantly different among the groups. Supplementation with M. ruber rice resulted in lower plasma and hepatic cholesterol concentrations and atherogenic index compared to the control group, while the plasma high-density lipoprotein-cholesterol concentration was elevated. In addition, fermented rice cultured with M. ruber-supplemented animals had greater bile acid excretion. The M. ruber groups had significantly lower plasma and hepatic levels of thiobarbituric acid-reactive substances than the control group. Moreover, hepatic antioxidant enzyme activities, including catalase and superoxide dismutase, were significantly higher in the M. ruber group. In conclusion, fermented rice, especially M. ruber rice, was very effective for improving the lipid metabolism and reducing oxidative stress by up-regulating the hepatic antioxidant enzymes in high-cholesterol-fed rats.

  13. Thylakoids suppress appetite by increasing cholecystokinin resulting in lower food intake and body weight in high-fat fed mice.

    PubMed

    Köhnke, Rickard; Lindqvist, Andreas; Göransson, Nathanael; Emek, Sinan C; Albertsson, Per-Ake; Rehfeld, Jens F; Hultgårdh-Nilsson, Anna; Erlanson-Albertsson, Charlotte

    2009-12-01

    Thylakoids are membranes isolated from plant chloroplasts which have previously been shown to inhibit pancreatic lipase/colipase catalysed hydrolysis of fat in vitro and induce short-term satiety in vivo. The purpose of the present study was to examine if dietary supplementation of thylakoids could affect food intake and body weight during long-term feeding in mice. Female apolipoprotein E-deficient mice were fed a high-fat diet containing 41% of fat by energy with and without thylakoids for 100 days. Mice fed the thylakoid-enriched diet had suppressed food intake, body weight gain and body fat compared with the high-fat fed control mice. Reduced serum glucose, serum triglyceride and serum free fatty acid levels were found in the thylakoid-treated animals. The satiety hormone cholecystokinin was elevated, suggesting this hormone mediates satiety. Leptin levels were reduced, reflecting a decreased fat mass. There was no sign of desensitization in the animals treated with thylakoids. The results suggest that thylakoids are useful to suppress appetite and body weight gain when supplemented to a high-fat food during long-term feeding.

  14. Apple cider vinegar modulates serum lipid profile, erythrocyte, kidney, and liver membrane oxidative stress in ovariectomized mice fed high cholesterol.

    PubMed

    Nazıroğlu, Mustafa; Güler, Mustafa; Özgül, Cemil; Saydam, Gündüzalp; Küçükayaz, Mustafa; Sözbir, Ercan

    2014-08-01

    The purpose of this study was to investigate the potentially beneficial effects of apple cider vinegar (ACV) supplementation on serum triglycerides, total cholesterol, liver and kidney membrane lipid peroxidation, and antioxidant levels in ovariectomized (OVX) mice fed high cholesterol. Four groups of ten female mice were treated as follows: Group I received no treatment and was used as control. Group II was OVX mice. Group III received ACV intragastrically (0.6% of feed), and group IV was OVX and was treated with ACV as described for group III. The treatment was continued for 28 days, during which the mice were fed a high-cholesterol diet. The lipid peroxidation levels in erythrocyte, liver and kidney, triglycerides, total, and VLDL cholesterol levels in serum were higher in the OVX group than in groups III and IV. The levels of vitamin E in liver, the kidney and erythrocyte glutathione peroxidase (GSH-Px), and erythrocyte-reduced glutathione (GSH) were decreased in group II. The GSH-Px, vitamin C, E, and β-carotene, and the erythrocyte GSH and GSH-Px values were higher in kidney of groups III and IV, but in liver the vitamin E and β-carotene concentrations were decreased. In conclusion, ACV induced a protective effect against erythrocyte, kidney, and liver oxidative injury, and lowered the serum lipid levels in mice fed high cholesterol, suggesting that it possesses oxidative stress scavenging effects, inhibits lipid peroxidation, and increases the levels of antioxidant enzymes and vitamin.

  15. Antioxidant and anti-inflammatory effects of Marrubium alysson extracts in high cholesterol-fed rabbits

    PubMed Central

    Essawy, Soha S.; Abo-elmatty, Dina M.; Ghazy, Nabila M.; Badr, Jihan M.; Sterner, Olov

    2013-01-01

    The antioxidant and anti-inflammatory effects of hexane (HEXA), chloroform (CHLORO), ethyl acetate (EA) and total alcoholic (T. ALCOH) extracts of Marrubium alysson in hypercholesterolemic-fed rabbits were evaluated. Hypercholesterolemia was induced in male rabbits by high cholesterol diet (HCD) (350 mg/kg) for 8 weeks. Hypercholesterolemic rabbits were allocated into groups, treated with simvastatin (SIM 5 mg/kg), different extracts of M. alysson at two doses of 250, 500 mg/kg. A normal control group and an HCD control one were used for comparison. Lipid profile, as well as oxidized low density lipoprotein-cholesterol (ox-LDL-C), myeloperoxidase activity (MPO) and superoxide anion production (O2•−), C-reactive protein (CRP) and monocyte chemoattractant protein-1 (MCP-1) were also evaluated. In addition, histological examination of ascending aorta was performed. We found dyslipidemia associated with significant increases in ox-LDL-C 123.5 ± 9.8 nmol MDA/mg non-HDL, MPO activity 0.08 ± 0.05 U/100 mg tissue and O2•− production 3.5 ± 0.3 nmol cytochrome C reduced/min/g tissue × 10−4 in hypercholerterolemic rabbits. In addition, there was a significant increase in CRP 6.6 ± 0.49 μmol/L and MCP-1 190.9 ± 6.4 pg/ml and its mRNA expression in HCD. Intima appeared thick with thick plaques surrounding the intima and luminal narrowing. SIM, EA and HEXA extracts of M. alysson had lipid lowering effect, decrease in ox-LDL-C, MPO, O2•−, CRP and MCP-1 mRNA expression with improvement of the pathological picture. M. alysson enhanced the stability of plaque, had lipid lowering, anti-inflammatory and antioxidant activities. PMID:25473336

  16. Dissociation between PGC-1alpha and GLUT-4 expression in skeletal muscle of rats fed a high-fat diet.

    PubMed

    Higashida, Kazuhiko; Higuchi, Mitsuru; Terada, Shin

    2009-12-01

    It has recently been reported that a 4-wk high-fat diet gradually increases skeletal muscle peroxisome proliferator activated receptor (PPAR) gamma coactivator-1alpha (PGC-1alpha) protein content, which has been suggested to regulate GLUT-4 gene transcription. However, it has not been reported that a high-fat diet enhances GLUT-4 mRNA expression and protein content in skeletal muscle, suggesting that an increase in PGC-1alpha protein content is not sufficient to induce muscle GLUT-4 biogenesis in a high-fat fed animal. Therefore, we first evaluated the relationship between PGC-1alpha and GLUT-4 expression in skeletal muscle of rats fed a high-fat diet for 4 wk. The PGC-1alpha protein content in rat epitrochlearis muscle significantly increased by twofold after the 4-wk high-fat diet feeding. However, the high-fat diet had no effect on GLUT-4 protein content and induced a 30% decrease in GLUT-4 mRNA expression in rat skeletal muscle (p<0.05). To clarify the mechanism by which a high-fat diet downregulates GLUT-4 mRNA expression, we next examined the effect of PPARdelta activation, which is known to occur in response to a high-fat diet, on GLUT-4 mRNA expression in L6 myotubes. Incubation with 500 nM GW501516 (PPARdelta activator) for 24 h significantly decreased GLUT-4 mRNA in L6 myotubes. Taken together, these findings suggest that a high-fat diet downregulates GLUT-4 mRNA, possibly through the activation of PPARdelta, despite an increase in PGC-1alpha protein content in rat skeletal muscle, and that a posttranscriptional regulatory mechanism maintains GLUT-4 protein content in skeletal muscle of rats fed a high-fat diet.

  17. DNA barcoding of Clarias gariepinus, Coptodon zillii and Sarotherodon melanotheron from Southwestern Nigeria

    PubMed Central

    Falade, Mofolusho O.; Opene, Anthony J.; Benson, Otarigho

    2016-01-01

    DNA barcoding has been adopted as a gold standard rapid, precise and unifying identification system for animal species and provides a database of genetic sequences that can be used as a tool for universal species identification. In this study, we employed mitochondrial genes 16S rRNA (16S) and cytochrome oxidase subunit I (COI) for the identification of some Nigerian freshwater catfish and Tilapia species. Approximately 655 bp were amplified from the 5′ region of the mitochondrial cytochrome C oxidase subunit I (COI) gene whereas 570 bp were amplified for the 16S rRNA gene. Nucleotide divergences among sequences were estimated based on Kimura 2-parameter distances and the genetic relationships were assessed by constructing phylogenetic trees using the neighbour-joining (NJ) and maximum likelihood (ML) methods. Analyses of consensus barcode sequences for each species, and alignment of individual sequences from within a given species revealed highly consistent barcodes (99% similarity on average), which could be compared with deposited sequences in public databases. The nucleotide distance between species belonging to different genera based on COI ranged from 0.17% between Sarotherodon melanotheron and Coptodon zillii to 0.49% between Clarias gariepinus and C. zillii, indicating that S. melanotheron and C. zillii are closely related. Based on the data obtained, the utility of COI gene was confirmed in accurate identification of three fish species from Southwest Nigeria. PMID:27990256

  18. Characterization of dopamine D2 receptors in the pituitary of the African catfish, Clarias gariepinus

    SciTech Connect

    Van Asselt, L.A.; Goos, H.J.; De Leeuw, R.; Peter, R.E.; Hol, E.M.; Wassenberg, F.P.; Van Oordt, P.G. )

    1990-10-01

    Dopamine receptors in the pituitary of the African catfish, Clarias gariepinus, were characterized using ({sup 3}H)spiperone as radioligand. Specific binding of ({sup 3}H)spiperone to pituitary membranes reached equilibrium within 60 min of incubation. The binding of the radioligand was tissue specific since the amount of binding was linear with pituitary membrane content in the incubations. In addition, pituitary membranes were observed to bind considerably more ({sup 3}H)spiperone, compared to membrane preparation of various other tissues. Saturation experiments revealed the presence of a single class of high affinity/low capacity binding sites. The binding characteristics, estimated by Scatchard analysis, were: Kd = 3.2 +/- 0.5 x 10(-9) M and Bmax = 105 +/- 5 fmol/mg protein. Specific binding was displaceable with dopamine and with various specific D2 agonists and antagonists. The nature of displacement curves resembles those observed in studies on mammalian dopamine receptors. Binding experiments with cell fractions, obtained after centrifugation of dispersed pituitary cells over a Percoll density gradient, showed that most ({sup 3}H)spiperone binding was obtained in an enriched gonadotropic cell fraction. This observation indicates that the receptor characteristics, estimated with the ({sup 3}H)spiperone assay, are representative for dopamine receptors on the gonadotropic cells.

  19. Chronic Angiotensin-(1-7) Improves Insulin Sensitivity in High-Fat Fed Mice Independent of Blood Pressure.

    PubMed

    Williams, Ian M; Otero, Yolanda F; Bracy, Deanna P; Wasserman, David H; Biaggioni, Italo; Arnold, Amy C

    2016-05-01

    Angiotensin-(1-7) improves glycemic control in animal models of cardiometabolic syndrome. The tissue-specific sites of action and blood pressure dependence of these metabolic effects, however, remain unclear. We hypothesized that Ang-(1-7) improves insulin sensitivity by enhancing peripheral glucose delivery. Adult male C57BL/6J mice were placed on standard chow or 60% high-fat diet for 11 weeks. Ang-(1-7) (400 ng/kg per minute) or saline was infused subcutaneously during the last 3 weeks of diet, and hyperinsulinemic-euglycemic clamps were performed at the end of treatment. High-fat fed mice exhibited modest hypertension (systolic blood pressure: 137 ± 3 high fat versus 123 ± 5 mm Hg chow;P=0.001), which was not altered by Ang-(1-7) (141 ± 4 mm Hg;P=0.574). Ang-(1-7) did not alter body weight or fasting glucose and insulin in chow or high-fat fed mice. Ang-(1-7) increased the steady-state glucose infusion rate needed to maintain euglycemia in high-fat fed mice (31 ± 5 Ang-(1-7) versus 16 ± 1 mg/kg per minute vehicle;P=0.017) reflecting increased whole-body insulin sensitivity, with no effect in chow-fed mice. The improved insulin sensitivity in high-fat fed mice was because of an enhanced rate of glucose disappearance (34 ± 5 Ang-(1-7) versus 20 ± 2 mg/kg per minute vehicle;P=0.049). Ang-(1-7) enhanced glucose uptake specifically into skeletal muscle by increasing translocation of glucose transporter 4 to the sarcolemma. Our data suggest that Ang-(1-7) has direct insulin-sensitizing effects on skeletal muscle, independent of changes in blood pressure. These findings provide new insight into mechanisms by which Ang-(1-7) improves insulin action, and provide further support for targeting this peptide in cardiometabolic disease.

  20. A colorimetric method for lysyl oxidase activity in copper deficient rats fed a high fructose diet

    SciTech Connect

    Werman, M.J.; Bhathena, S.J. )

    1991-03-11

    Lysyl oxidase is involved in initiating cross link formation in collagen and elastin. The activity of lysyl oxidase is traditionally assessed by the tritium released assay. The authors describe a simplified and modified method for measuring lysyl oxidase activity in rats, based on measuring ammonia release according to the Bertholet colorimetric reaction. Lysyl oxidase activity was measured in copper deficient rats using this method. Sixteen weanling Sprague Dawley male rats were fed for four weeks either copper adequate or copper deficient diets containing 62% fructose. Copper deficiency was confirmed by significant low copper levels in heart, brain, liver and skin, and by nondetectable levels of ceruloplasmin. Lysyl oxidase activity was significantly lower in heart and skin of rats fed a copper deficient diet compared to those fed a copper adequate diet. No significant difference in activity was observed in brain tissue. A correlation was not observed between decreased tissue copper levels and decreased lysyl oxidase activity. Thus, the determination of ammonia liberated during lysyl oxidase activity may serve as an effective tool in assessing lysyl oxidase activity.

  1. Probing the anti-hyperlipidemic efficacy of the allspice (Pimenta officinalis Lindl.) in rats fed with high fat diet.

    PubMed

    Shyamala, M P; Paramundayil, Julie J; Venukumar, M R; Latha, M S

    2005-01-01

    In this study, the anti-hyperlipidemic effect of aqueous extract of Pimenta officinalis (APO) was investigated in experimental rats fed with high fat diet (HFD). Hyperlipidemia in experimental rats was evidenced by a significant enhancement in the level of glycerol, triglycerides and phopholipids in serum, and also in liver and kidney tissues. HFD caused oxidative stress in these animals as shown by marked increment in the levels of thiobarbituric acid reactive substances (TBARS) and diene conjugates (CD), and a distinct diminution in reduced glutathione (GSH) content in liver and kidneys. Antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX) showed reduced activity in hyperlipidemic rats. All these biochemical parameters showed reliable signs of retrieving towards near-normalcy in APO-administered HFD fed rats. This study unveiled the anti-hyperlipidemic as well as antioxidant activity of APO.

  2. Effects of Gliadin consumption on the Intestinal Microbiota and Metabolic Homeostasis in Mice Fed a High-fat Diet

    PubMed Central

    Zhang, Li; Andersen, Daniel; Roager, Henrik Munch; Bahl, Martin Iain; Hansen, Camilla Hartmann Friis; Danneskiold-Samsøe, Niels Banhos; Kristiansen, Karsten; Radulescu, Ilinca Daria; Sina, Christian; Frandsen, Henrik Lauritz; Hansen, Axel Kornerup; Brix, Susanne; Hellgren, Lars I.; Licht, Tine Rask

    2017-01-01

    Dietary gluten causes severe disorders like celiac disease in gluten-intolerant humans. However, currently understanding of its impact in tolerant individuals is limited. Our objective was to test whether gliadin, one of the detrimental parts of gluten, would impact the metabolic effects of an obesogenic diet. Mice were fed either a defined high-fat diet (HFD) containing 4% gliadin (n = 20), or a gliadin-free, isocaloric HFD (n = 20) for 23 weeks. Combined analysis of several parameters including insulin resistance, histology of liver and adipose tissue, intestinal microbiota in three gut compartments, gut barrier function, gene expression, urinary metabolites and immune profiles in intestinal, lymphoid, liver and adipose tissues was performed. Mice fed the gliadin-containing HFD displayed higher glycated hemoglobin and higher insulin resistance as evaluated by the homeostasis model assessment, more hepatic lipid accumulation and smaller adipocytes than mice fed the gliadin-free HFD. This was accompanied by alterations in the composition and activity of the gut microbiota, gut barrier function, urine metabolome, and immune phenotypes within liver and adipose tissue. Our results reveal that gliadin disturbs the intestinal environment and affects metabolic homeostasis in obese mice, suggesting a detrimental effect of gluten intake in gluten-tolerant subjects consuming a high-fat diet. PMID:28300220

  3. Liver glyconeogenesis: a pathway to cope with postprandial amino acid excess in high-protein fed rats?

    PubMed

    Azzout-Marniche, Dalila; Gaudichon, Claire; Blouet, Clémence; Bos, Cécile; Mathé, Véronique; Huneau, Jean-François; Tomé, Daniel

    2007-04-01

    This paper provides molecular evidence for a liver glyconeogenic pathway, that is, a concomitant activation of hepatic gluconeogenesis and glycogenesis, which could participate in the mechanisms that cope with amino acid excess in high-protein (HP) fed rats. This evidence is based on the concomitant upregulation of phosphoenolpyruvate carboxykinase (PEPCK) gene expression, downregulation of glucose 6-phosphatase catalytic subunit (G6PC1) gene expression, an absence of glucose release from isolated hepatocytes and restored hepatic glycogen stores in the fed state in HP fed rats. These effects are mainly due to the ability of high physiological concentrations of portal blood amino acids to counteract glucagon-induced liver G6PC1 but not PEPCK gene expression. These results agree with the idea that the metabolic pathway involved in glycogen synthesis is dependent upon the pattern of nutrient availability. This nonoxidative glyconeogenic disposal pathway of gluconeogenic substrates copes with amino excess and participates in adjusting both amino acid and glucose homeostasis. In addition, the pattern of PEPCK and G6PC1 gene expression provides evidence that neither the kidney nor the small intestine participated in gluconeogenic glucose production under our experimental conditions. Moreover, the main glucose-6-phosphatase (G6Pase) isoform expressed in the small intestine is the ubiquitous isoform of G6Pase (G6PC3) rather than the G6PC1 isoform expressed in gluconeogenic organs.

  4. Methyl donor supplementation alters cognitive performance and motivation in female offspring from high-fat diet-fed dams.

    PubMed

    McKee, Sarah E; Grissom, Nicola M; Herdt, Christopher T; Reyes, Teresa M

    2017-02-16

    During gestation, fetal nutrition is entirely dependent on maternal diet. Maternal consumption of excess fat during pregnancy has been linked to an increased risk of neurologic disorders in offspring, including attention deficit/hyperactivity disorder, autism, and schizophrenia. In a mouse model, high-fat diet (HFD)-fed offspring have cognitive and executive function deficits as well as whole-genome DNA and promoter-specific hypomethylation in multiple brain regions. Dietary methyl donor supplementation during pregnancy or adulthood has been used to alter DNA methylation and behavior. Given that extensive brain development occurs during early postnatal life-particularly within the prefrontal cortex (PFC), a brain region critical for executive function-we examined whether early life methyl donor supplementation (e.g., during adolescence) could ameliorate executive function deficits observed in offspring that were exposed to maternal HFD. By using operant testing, progressive ratio, and the PFC-dependent 5-choice serial reaction timed task (5-CSRTT), we determined that F1 female offspring (B6D2F1/J) from HFD-fed dams have decreased motivation (decreased progressive ratio breakpoint) and require a longer stimulus length to complete the 5-CSRTT task successfully, whereas early life methyl donor supplementation increased motivation and shortened the minimum stimulus length required for a correct response in the 5-CSRTT. Of interest, we found that expression of 2 chemokines, CCL2 and CXCL10, correlated with the median stimulus length in the 5-CSRTT. Furthermore, we found that acute adult supplementation of methyl donors increased motivation in HFD-fed offspring and those who previously received supplementation with methyl donors. These data point to early life as a sensitive time during which dietary methyl donor supplementation can alter PFC-dependent cognitive behaviors.-McKee, S. E., Grissom, N. M., Herdt, C. T., Reyes, T. M. Methyl donor supplementation alters

  5. Hepatocyte X-box binding protein 1 deficiency increases liver injury in mice fed a high-fat/sugar diet.

    PubMed

    Liu, Xiaoying; Henkel, Anne S; LeCuyer, Brian E; Schipma, Matthew J; Anderson, Kristy A; Green, Richard M

    2015-12-15

    Fatty liver is associated with endoplasmic reticulum stress and activation of the hepatic unfolded protein response (UPR). Reduced hepatic expression of the UPR regulator X-box binding protein 1 spliced (XBP1s) is associated with human nonalcoholic steatohepatitis (NASH), and feeding mice a high-fat diet with fructose/sucrose causes progressive, fibrosing steatohepatitis. This study examines the role of XBP1 in nonalcoholic fatty liver injury and fatty acid-induced cell injury. Hepatocyte-specific Xbp1-deficient (Xbp1(-/-)) mice were fed a high-fat/sugar (HFS) diet for up to 16 wk. HFS-fed Xbp1(-/-) mice exhibited higher serum alanine aminotransferase levels compared with Xbp1(fl/fl) controls. RNA sequencing and Gene Ontogeny pathway analysis of hepatic mRNA revealed that apoptotic process, inflammatory response, and extracellular matrix structural constituent pathways had enhanced activation in HFS-fed Xbp1(-/-) mice. Liver histology demonstrated enhanced injury and fibrosis but less steatosis in the HFS-fed Xbp1(-/-) mice. Hepatic Col1a1 and Tgfβ1 gene expression, as well as Chop and phosphorylated JNK (p-JNK), were increased in Xbp1(-/-) compared with Xbp1(fl/fl) mice after HFS feeding. In vitro, stable XBP1-knockdown Huh7 cells (Huh7-KD) and scramble control cells (Huh7-SCR) were generated and treated with palmitic acid (PA) for 24 h. PA-treated Huh7-KD cells had increased cytotoxicity measured by lactate dehydrogenase release, apoptotic nuclei, and caspase3/7 activity assays compared with Huh7-SCR cells. CHOP and p-JNK expression was also increased in Huh7-KD cells following PA treatment. In conclusion, loss of XBP1 enhances injury in both in vivo and in vitro models of fatty liver injury. We speculate that hepatic XBP1 plays an important protective role in pathogenesis of NASH.

  6. Melatonin improves glucose homeostasis and endothelial vascular function in high-fat diet-fed insulin-resistant mice.

    PubMed

    Sartori, Claudio; Dessen, Pierre; Mathieu, Caroline; Monney, Anita; Bloch, Jonathan; Nicod, Pascal; Scherrer, Urs; Duplain, Hervé

    2009-12-01

    Obesity and insulin resistance represent a problem of utmost clinical significance worldwide. Insulin-resistant states are characterized by the inability of insulin to induce proper signal transduction leading to defective glucose uptake in skeletal muscle tissue and impaired insulin-induced vasodilation. In various pathophysiological models, melatonin interacts with crucial molecules of the insulin signaling pathway, but its effects on glucose homeostasis are not known. In a diet-induced mouse model of insulin resistance and normal chow-fed control mice, we sought to assess the effects of an 8-wk oral treatment with melatonin on insulin and glucose tolerance and to understand underlying mechanisms. In high-fat diet-fed mice, but not in normal chow-fed control mice, melatonin significantly improved insulin sensitivity and glucose tolerance, as evidenced by a higher rate of glucose infusion to maintain euglycemia during hyperinsulinemic clamp studies and an attenuated hyperglycemic response to an ip glucose challenge. Regarding underlying mechanisms, we found that melatonin restored insulin-induced vasodilation to skeletal muscle, a major site of glucose utilization. This was due, at least in part, to the improvement of insulin signal transduction in the vasculature, as evidenced by increased insulin-induced phosphorylation of Akt and endoethelial nitric oxide synthase in aortas harvested from melatonin-treated high-fat diet-fed mice. In contrast, melatonin had no effect on the ability of insulin to promote glucose uptake in skeletal muscle tissue in vitro. These data demonstrate for the first time that in a diet-induced rodent model of insulin resistance, melatonin improves glucose homeostasis by restoring the vascular action of insulin.

  7. Isoflavone and Protein Constituents of Lactic Acid-Fermented Soy Milk Combine to Prevent Dyslipidemia in Rats Fed a High Cholesterol Diet

    PubMed Central

    Kobayashi, Maki; Egusa, Shintaro; Fukuda, Mitsuru

    2014-01-01

    A high cholesterol diet induces dyslipidemia. This study investigated whether isoflavone aglycones in lactic acid-fermented soy milk (LFS) improve lipid metabolism in rats fed a high cholesterol diet. Male Sprague-Dawley rats aged seven weeks were fed an AIN-93G diet, a 1% cholesterol diet (a high cholesterol diet), a high-cholesterol diet containing 4% isoflavone extract of LFS (LFS extract diet), a high-cholesterol diet containing 19.4% ethanol-washed LFS (ethanol-washed LFS diet, isoflavone-poor diet), or a high cholesterol diet containing 23.2% intact LFS (intact LFS diet) for five weeks. The plasma total cholesterol (TC) level was increased in the rats fed the LFS extract diet compared with those fed the high cholesterol diet. The TC level was decreased by the intact LFS and ethanol-washed LFS diets. The cholesterol-lowering effect was stronger in the rats fed the intact LFS diet than those fed the ethanol-washed LFS diet. The plasma triglyceride (TG) level was unchanged in the rats fed the LFS extract diet, but it decreased in rats fed the intact LFS and ethanol-washed LFS diets. Although, compared with the high cholesterol diet, the LFS extract and ethanol-washed LFS diets did not reduce hepatic cholesterol and TG, both levels were remarkably lowered by the intact LFS diet. These results suggest that the improvement in lipid metabolism of rats fed a high-cholesterol diet containing LFS isoflavone aglycones is not due to an independent effect but due to a cooperative effect with soy protein. PMID:25514389

  8. A comparison of insulin binding by liver plasma membranes of rats fed a high glucose diet or a high fat diet.

    PubMed

    Sun, J V; Tepperman, H M; Tepperman, J

    1977-07-01

    The interaction of (125)I-labeled insulin with purified liver plasma membrane from rats fed a high fat (L) diet or a high glucose (G) diet was studied with respect to specific binding, insulin degradation, binding site degradation, and rate of hormone association and dissociation. Scatchard analysis suggested the presence of high and low affinity binding sites for membranes of both G and L diet-adapted rats. However, liver plasma membrane from rats fed the high glucose diet bound 50% more insulin than did membrane from rats fed the high fat diet. Diet did not change insulin binding site degradation. The results suggested that an apparently reduced number of insulin binding sites (G = 10.2 +/- 2.45 x 10(-12) mol/mg membrane protein, L = 4.5 +/- 1.73 x 10(-12) mol/mg membrane protein) associated with fat feeding as compared to glucose feeding was responsible for the reduced insulin binding by membrane from rats fed the high fat diet. The effects of concanavalin A (Con A) on insulin binding to liver plasma membranes were also investigated. Con A enhanced the specific binding of insulin to liver plasma membranes from rats fed either diet at concentrations lower than 50 micro g/ml, whereas at concentrations higher than 50 micro g/ml Con A inhibited insulin binding to these membranes. The stimulatory effect of Con A on insulin binding at low concentrations was greater and inhibition of binding at high concentration was less in the case of membrane prepared from L diet-adapted animals. These results suggested that diet can modify the plasma membrane glycoproteins.

  9. Liver Fatty Acid Composition and Inflammation in Mice Fed with High-Carbohydrate Diet or High-Fat Diet

    PubMed Central

    da Silva-Santi, Lorena Gimenez; Antunes, Marina Masetto; Caparroz-Assef, Silvana Martins; Carbonera, Fabiana; Masi, Laureane Nunes; Curi, Rui; Visentainer, Jesuí Vergílio; Bazotte, Roberto Barbosa

    2016-01-01

    Both high-carbohydrate diet (HCD) and high-fat diet (HFD) modulate liver fat accumulation and inflammation, however, there is a lack of data on the potential contribution of carbohydrates and lipids separately. For this reason, the changes in liver fatty acid (FA) composition in male Swiss mice fed with HCD or HFD were compared, at the time points 0 (before starting the diets), and after 7, 14, 28 or 56 days. Activities of stearoyl-CoA desaturase-1 (SCD-1), ∆-6 desaturase (D6D), elongases and de novo lipogenesis (DNL) were estimated. Liver mRNA expression of acetyl-CoA carboxylase 1 (ACC1) was evaluated as an additional indicator of the de novo lipogenesis. Myeloperoxidase activity, nitric oxide (NO) production, and mRNA expressions of F4/80, type I collagen, interleukin (IL)-6, IL-1β, IL-10, and tumor necrosis factor-α (TNF-α) were measured as indication of the liver inflammatory state. The HCD group had more intense lipid deposition, particularly of saturated fatty acids (SFAs) and monounsaturated fatty acids (MUFAs). This group also showed higher DNL, SCD-1, and D6D activities associated with increased NO concentration, as well as myeloperoxidase activity. Livers from the HFD group showed higher elongase activity, stored more polyunsaturated fatty acids (PUFAs) and had a lower omega-6/omega-3 fatty acid (n-6/n-3) ratio. In conclusion, liver lipid accumulation, fatty acids (FA) composition and inflammation were modulated by the dietary composition of lipids and carbohydrates. The HCD group had more potent lipogenic and inflammatory effects in comparison with HFD. PMID:27801862

  10. Liver Fatty Acid Composition and Inflammation in Mice Fed with High-Carbohydrate Diet or High-Fat Diet.

    PubMed

    da Silva-Santi, Lorena Gimenez; Antunes, Marina Masetto; Caparroz-Assef, Silvana Martins; Carbonera, Fabiana; Masi, Laureane Nunes; Curi, Rui; Visentainer, Jesuí Vergílio; Bazotte, Roberto Barbosa

    2016-10-29

    Both high-carbohydrate diet (HCD) and high-fat diet (HFD) modulate liver fat accumulation and inflammation, however, there is a lack of data on the potential contribution of carbohydrates and lipids separately. For this reason, the changes in liver fatty acid (FA) composition in male Swiss mice fed with HCD or HFD were compared, at the time points 0 (before starting the diets), and after 7, 14, 28 or 56 days. Activities of stearoyl-CoA desaturase-1 (SCD-1), ∆-6 desaturase (D6D), elongases and de novo lipogenesis (DNL) were estimated. Liver mRNA expression of acetyl-CoA carboxylase 1 (ACC1) was evaluated as an additional indicator of the de novo lipogenesis. Myeloperoxidase activity, nitric oxide (NO) production, and mRNA expressions of F4/80, type I collagen, interleukin (IL)-6, IL-1β, IL-10, and tumor necrosis factor-α (TNF-α) were measured as indication of the liver inflammatory state. The HCD group had more intense lipid deposition, particularly of saturated fatty acids (SFAs) and monounsaturated fatty acids (MUFAs). This group also showed higher DNL, SCD-1, and D6D activities associated with increased NO concentration, as well as myeloperoxidase activity. Livers from the HFD group showed higher elongase activity, stored more polyunsaturated fatty acids (PUFAs) and had a lower omega-6/omega-3 fatty acid (n-6/n-3) ratio. In conclusion, liver lipid accumulation, fatty acids (FA) composition and inflammation were modulated by the dietary composition of lipids and carbohydrates. The HCD group had more potent lipogenic and inflammatory effects in comparison with HFD.

  11. Oral administration of Lactobacillus reuteri GMNL-263 improves insulin resistance and ameliorates hepatic steatosis in high fructose-fed rats

    PubMed Central

    2013-01-01

    Background Type 2 diabetes mellitus (DM), characterized by peripheral insulin resistance, is the most common form of diabetes. Probiotics are live micro-organisms that, when administered in adequate amounts, confer delaying effect on DM development. In this study, the effects Lactobacillus reuteri GMNL-263 (Lr263), a new probiotic strain developed by our laboratory, on insulin resistance and the development of hepatic steatosis in high-fructose fed rats were explored. Furthermore, the relevant regulatory pathways involved were also investigated. Method Male Sprague–Dawley rats were fed a high-fructose diet with or without Lr263 administration for 14 weeks. The composition of fecal microbiota, oral glucose tolerance, glycated haemoglobin, insulin, leptin, C-peptide, and incretins were measured. The markers of liver injury, serum and hepatic lipids profile, activity of hepatic antioxidant enzyme, and proinflammatory cytokines in adipose tissue were investigated. Additionally, the expression of hepatic lipogenic genes and insulin signaling related genes in adipose tissue were also studied. Liver sections were examined for hepatic steatosis using hematoxylin-eosin staining. Results The levels of serum glucose, insulin, leptin, C-peptide, glycated hemoglobin, GLP-1, liver injury markers, lipid profile in serum and liver were significantly increased in high-fructose-fed rats. However, after Lr263 administration, the elevation of these parameters was significantly suppressed. Feeding of Lr263 reversed the decreased number of bifidobacterium species and lactobacillus species and increased number of clostridium species induced by high fructose treatment. The decreased activities of hepatic antioxidant enzymes in HFD rats were dramatically reversed by Lr263 treatment. Concentrations of IL-6 and TNF-α in adipose tissue which were elevated in high fructose treatment were markedly decreased after Lr263 feeding. Decreased levels of PPAR-γ and GLUT4 mRNA after high fructose

  12. Heterotrophic high cell-density fed-batch cultures of the phycocyanin-producing red alga Galdieria sulphuraria.

    PubMed

    Schmidt, Rikke Ankerstjerne; Wiebe, Marilyn G; Eriksen, Niels Thomas

    2005-04-05

    Growth and phycocyanin production in batch and fed-batch cultures of the microalga Galdieria sulphuraria 074G, which was grown heterotrophically in darkness on glucose, fructose, sucrose, and sugar beet molasses, was investigated. In batch cultures, specific growth rates and yields of biomass dry weight on the pure sugars were 1.08-1.15 day-1 and 0.48-0.50 g g-1, respectively. They were slightly higher when molasses was the carbon source. Cellular phycocyanin contents during the exponential growth phase were 3-4 mg g-1 in dry weight. G. sulphuraria was able to tolerate concentrations of glucose and fructose of up to 166 g L-1 (0.9 M) and an ammonium sulfate concentration of 22 g L-1 (0.17 M) without negative effects on the specific growth rate. When the total concentration of dissolved substances in the growth medium exceeded 1-2 M, growth was completely inhibited. In carbon-limited fed-batch cultures, biomass dry weight concentrations of 80-120 g L-1 were obtained while phycocyanin accumulated to concentrations between 250 and 400 mg L-1. These results demonstrate that G. sulphuraria is well suited for growth in heterotrophic cultures at very high cell densities, and that such cultures produce significant amounts of phycocyanin. Furthermore, the productivity of phycocyanin in the heterotrophic fed-batch cultures of G. sulphuraria was higher than is attained in outdoor cultures of Spirulina platensis, where phycocyanin is presently obtained.

  13. Impact of dietary dairy polar lipids on lipid metabolism of mice fed a high-fat diet.

    PubMed

    Reis, Mariza G; Roy, Nicole C; Bermingham, Emma N; Ryan, Leigh; Bibiloni, Rodrigo; Young, Wayne; Krause, Lutz; Berger, Bernard; North, Mike; Stelwagen, Kerst; Reis, Marlon M

    2013-03-20

    The effect of milk polar lipids on lipid metabolism of liver, adipose tissue, and brain and on composition of intestinal microbiota was investigated. C57BL/6J mice were fed a high-fat diet (HFD) for 5 weeks, followed by 5 weeks with HFD without (control) or supplemented with total polar lipids (TPL), phospholipids (PL), or sphingolipids (SPL). Animals fed SPL showed a tendency for lower triglyceride synthesis (P = 0.058) in the liver, but not in adipose tissue. PL and TPL reduced de novo hepatic fatty acid biosynthesis. The ratio of palmitoleic to palmitic acid in the liver was lower for animals fed SPL or TPL compared to control. There was little effect of the supplementation on the cecal microbiota composition. In the brain, DHA (C22:6) content correlated negatively with tetracosanoic acid (C24:0) after TPL supplementation (-0.71, P = 0.02) but not in control (0.26, P = 0.44). Arachidonic acid (C20:4) was negatively correlated with C24:0 in both groups (TPL, -0.77, P = 0.008; control, -0.81, P = 0.003).

  14. D-psicose increases energy expenditure and decreases body fat accumulation in rats fed a high-sucrose diet.

    PubMed

    Ochiai, Masaru; Onishi, Kana; Yamada, Takako; Iida, Tetsuo; Matsuo, Tatsuhiro

    2014-03-01

    We investigated the anti-obesity effects of D-psicose by increasing energy expenditure in rats pair-fed the high-sucrose diet (HSD). Wistar rats were divided into two dietary groups: HSD containing 5% cellulose (C) and 5% d-psicose (P). The C dietary group was further subdivided into two groups: rats fed the C diet ad libitum (C-AD) and pair-fed the C diet along with those in the P group (C-PF). Resting energy expenditure during darkness and lipoprotein lipase activity in the soleus muscle were significantly higher in the P group than in the C-PF group. Serum levels of glucose, leptin and adiponectin; glucose-6-phosphate dehydrogenase activities in the liver and perirenal adipose tissue; and body fat accumulation were all significantly lower in the P group than in the C-PF group. The anti-obesity effects of D-psicose could be induced not only by suppressing lipogenic enzyme activity but also by increasing EE in rats.

  15. Effect of curcumin on hepatic heme oxygenase 1 expression in high fat diet fed rats: is there a triangular relationship?

    PubMed

    Öner-İyidoğan, Yildiz; Tanrıkulu-Küçük, Sevda; Seyithanoğlu, Muhammed; Koçak, Hikmet; Doğru-Abbasoğlu, Semra; Aydin, A Fatih; Beyhan-Özdaş, Şule; Yapişlar, Hande; Koçak-Toker, Necla

    2014-10-01

    High fat diet (HFD) is associated with oxidative stress induced fatty liver. Curcumin, an extract of Curcuma longa, has been shown to possess potent antioxidant and hypolipidemic properties. In this study, we investigated the effect of curcumin treatment on hepatic heme oxygenase-1 (HO-1) expression along with pro-oxidant-antioxidant status and lipid accumulation in rats fed an HFD. Male Sprague-Dawley rats were distributed among 4 groups: Group 1, which was fed the control diet (10% of total calories from fat); Group 2, which was fed the HFD (60% of total calories from fat); and groups 3 and 4, which received the HFD supplemented with curcumin and the control diet supplemented with curcumin (1 g/kg diet; w/w), respectively, for 16 weeks. HFD caused increases in hepatic lipid levels, production of reactive oxygen species, and lipid peroxidation. Further, HO-1 expression was significantly decreased. Histopathological examination showed hepatic fat accumulation and slight fibrotic changes. Curcumin treatment reduced hepatic lipids and oxidative stress parameters, and HO-1 expression was significantly increased. These findings suggest that increased HO-1 expression, along with suppressed oxidative stress as well as reduced hepatic fat accumulation and fibrotic changes, contribute to the beneficial effects of curcumin in attenuating the pathogenesis of fatty liver induced metabolic diseases.

  16. NADPH oxidase is implicated in the pathogenesis of oxidative phosphorylation dysfunction in mice fed a high-fat diet

    PubMed Central

    García-Ruiz, Inmaculada; Solís-Muñoz, Pablo; Fernández-Moreira, Daniel; Grau, Montserrat; Muñoz-Yagüe, Teresa; Solís-Herruzo, José A.

    2016-01-01

    The aim of this study was to evaluate the role of NADPH oxidase (NADPHox) in the pathogenesis of oxidative phosphorylation (OXPHOS) dysfunction as found in mice fed a high-fat diet (HFD). C57BL/6J mice were distributed in four groups: WT/SCD: six wild-type (WT) mice fed a standard chow diet (SCD); WT/HFD, six WT mice fed a HFD; NOX2−/−/SCD, six NADPHox-deficient mice on a SCD; (4) NOX2−/−/HFD, six NADPHox-deficient mice on a HFD. After 32 weeks, we studied the liver for: histology; OXPHOS complex activity; fully assembled OXPHOS complexes and their subunits; gene expression of OXPHOS subunits; oxidative and nitrosative stress; and oxidative DNA damage. In the liver of WT/HFD mice, we found a significant decreased in the activity of all OXPHOS complexes, in fully assembled complexes, in the amount of OXPHOS subunits, and in gene expression of mitochondrial DNA-encoded subunits. 8-hydroxy-2′-deoxyguanosine was only increased in mitochondrial DNA. The liver of NOX−/−/HFD mice showed mild steatosis but no non-alcoholic steatohepatitis (NASH) lesions were found. OXPHOS activity, OXPHOS subunits, and assembly of subunits into OXPHOS complexes were normal in these mice. We conclude that this study shows that NADPH deficiency protects mice from developing OXPHOS dysfunction and NASH caused by a HFD. PMID:27173483

  17. Regression of atherosclerotic lesions by high density lipoprotein plasma fraction in the cholesterol-fed rabbit.

    PubMed

    Badimon, J J; Badimon, L; Fuster, V

    1990-04-01

    The effects of homologous plasma HDL and VHDL fractions on established atherosclerotic lesions were studied in cholesterol-fed rabbits. Atherosclerosis was induced by feeding the animals a 0.5% cholesterol-rich diet for 60 d (group 1). Another group of animals were maintained on the same diet for 90 d (group 2). A third group was also fed the same diet for 90 d but received 50 mg HDL-VHDL protein per wk (isolated from normolipemic rabbit plasma) during the last 30 d (group 3). Aortic atherosclerotic involvement at the completion of the study was 34 +/- 4% in group 1, 38.8 +/- 5% in group 2, and 17.8 +/- 4% in group 3 (P less than 0.005). Aortic lipid deposition was also significantly reduced in group 3 compared with group 1 (studied at only 60 d) and group 2. This is the first in vivo, prospective evidence of the antiatherogenic effect of HDL-VHDL against preexisting atherosclerosis. Our results showed that HDL plasma fractions were able to induce regression of established aortic fatty streaks and lipid deposits. Our results suggest that it may be possible not only to inhibit progression but even to reduce established atherosclerotic lesions by HDL administration.

  18. A parallel-series-fed microstrip array with high efficiency and low cross-polarization

    NASA Technical Reports Server (NTRS)

    Huang, John

    1992-01-01

    The requirements of a microstrip array with a vertically polarized fan beam are addressed that correspond to its use in C-band interferometric SAR. A combination of parallel- and series-feed techniques are utilized in an array design with a three-stage parallel-fed configuration to enhance bandwidth performance. The linearly polarized traveling-wave microstrip array antenna is fed by microstrip transmission lines in two rows of 36 elements that resonate at 5.30 GHz. The transmission lines are impedance-matched at every junction for all the waves that travel toward the two ends of the array. The two measured principal-plane patterns are shown, and the measured narrow-beam pattern is found to agree with the calculated values. The VSWR bandwidths and narrow and broad beamwidths of the antenna are found to permit efficient performance. The efficiency is attributed to the parallel and series-feed configuration which allows proper impedance matching, and low cross-polarization is a result of the antiphase feed technique employed in the configuration.

  19. Elevated GH/IGF-I promotes mammary tumors in high-fat, but not low-fat, fed mice.

    PubMed

    Gahete, Manuel D; Córdoba-Chacón, José; Lantvit, Daniel D; Ortega-Salas, Rosa; Sanchez-Sanchez, Rafael; Pérez-Jiménez, Francisco; López-Miranda, José; Swanson, Steven M; Castaño, Justo P; Luque, Raúl M; Kineman, Rhonda D

    2014-11-01

    Growth hormone (GH) and/or insulin-like growth factor I (IGF-I) are thought to promote breast cancer based on reports showing circulating IGF-I levels correlate, in epidemiological studies, with breast cancer risk. Also, mouse models with developmental GH/IGF-I deficiency/resistance are less susceptible to genetic- or chemical-induced mammary tumorigenesis. However, given the metabolic properties of GH, medical strategies have been considered to raise GH to improve body composition and metabolic function in elderly and obese patients. Since hyperlipidemia, inflammation, insulin resistance and obesity increase breast cancer risk, elevating GH may serve to exacerbate cancer progression. To better understand the role GH/IGF-I plays in tumor formation, this study used unique mouse models to determine if reducing GH/IGF-I in adults protects against 7,12-dimethylbenz[α]anthracene (DMBA)-induced mammary tumor development, and if moderate elevations in endogenous GH/IGF-I alter DMBA-induced tumorigenesis in mice fed a standard-chow diet or in mice with altered metabolic function due to high-fat feeding. We observed that adult-onset isolated GH-deficient mice, which also have reduced IGF-I levels, were less susceptible to DMBA-treatment. Specifically, fewer adult-onset isolated GH-deficient mice developed mammary tumors compared with GH-replete controls. In contrast, chow-fed mice with elevated endogenous GH/IGF-I (HiGH mice) were not more susceptible to DMBA-treatment. However, high-fat-fed, HiGH mice showed reduced tumor latency and increased tumor incidence compared with diet-matched controls. These results further support a role of GH/IGF-I in regulating mammary tumorigenesis but suggest the ultimate consequences of GH/IGF-I on breast tumor development are dependent on the diet and/or metabolic status.

  20. Corn silk extract improves cholesterol metabolism in C57BL/6J mouse fed high-fat diets

    PubMed Central

    Cha, Jae Hoon; Kim, Sun Rim; Kang, Hyun Joong; Kim, Myung Hwan; Ha, Ae Wha

    2016-01-01

    BACKGROUND/OBJECTIVES Corn silk (CS) extract contains large amounts of maysin, which is a major flavonoid in CS. However, studies regarding the effect of CS extract on cholesterol metabolism is limited. Therefore, the purpose of this study was to determine the effect of CS extract on cholesterol metabolism in C57BL/6J mouse fed high-fat diets. MATERIALS/METHODS Normal-fat group fed 7% fat diet, high-fat (HF) group fed 25% fat diet, and high-fat with corn silk (HFCS) group were orally administered CS extract (100 mg/kg body weight) daily. Serum and hepatic levels of total lipids, triglycerides, and total cholesterol as well as serum free fatty acid, glucose, and insulin levels were determined. The mRNA expression levels of acyl-CoA: cholesterol acyltransferase (ACAT), cholesterol 7-alpha hydroxylase (CYP7A1), farnesoid X receptor (FXR), lecithin cholesterol acyltransferase (LCAT), low-density lipoprotein receptor, 3-hyroxy-3-methylglutaryl-coenzyme A reductase (HMG-CoA reductase), adiponectin, leptin, and tumor necrosis factor α were determined. RESULTS Oral administration of CS extract with HF improved serum glucose and insulin levels as well as attenuated HF-induced fatty liver. CS extracts significantly elevated mRNA expression levels of adipocytokines and reduced mRNA expression levels of HMG-CoA reductase, ACAT, and FXR. The mRNA expression levels of CYP7A1 and LCAT between the HF group and HFCS group were not statistically different. CONCLUSIONS CS extract supplementation with a high-fat diet improves levels of adipocytokine secretion and glucose homeostasis. CS extract is also effective in decreasing the regulatory pool of hepatic cholesterol, in line with decreased blood and hepatic levels of cholesterol though modulation of mRNA expression levels of HMG-CoA reductase, ACAT, and FXR. PMID:27698957

  1. Elevated GH/IGF-I promotes mammary tumors in high-fat, but not low-fat, fed mice

    PubMed Central

    Gahete, Manuel D.; Córdoba-Chacón, José; Lantvit, Daniel D.; Ortega-Salas, Rosa; Sanchez-Sanchez, Rafael; Pérez-Jiménez, Francisco; López-Miranda, José; Swanson, Steven M.; Castaño, Justo P.; Luque, Raúl M.; Kineman, Rhonda D.

    2014-01-01

    Growth hormone (GH) and/or insulin-like growth factor I (IGF-I) are thought to promote breast cancer based on reports showing circulating IGF-I levels correlate, in epidemiological studies, with breast cancer risk. Also, mouse models with developmental GH/IGF-I deficiency/resistance are less susceptible to genetic- or chemical-induced mammary tumorigenesis. However, given the metabolic properties of GH, medical strategies have been considered to raise GH to improve body composition and metabolic function in elderly and obese patients. Since hyperlipidemia, inflammation, insulin resistance and obesity increase breast cancer risk, elevating GH may serve to exacerbate cancer progression. To better understand the role GH/IGF-I plays in tumor formation, this study used unique mouse models to determine if reducing GH/IGF-I in adults protects against 7,12-dimethylbenz[α]anthracene (DMBA)-induced mammary tumor development, and if moderate elevations in endogenous GH/IGF-I alter DMBA-induced tumorigenesis in mice fed a standard-chow diet or in mice with altered metabolic function due to high-fat feeding. We observed that adult-onset isolated GH-deficient mice, which also have reduced IGF-I levels, were less susceptible to DMBA-treatment. Specifically, fewer adult-onset isolated GH-deficient mice developed mammary tumors compared with GH-replete controls. In contrast, chow-fed mice with elevated endogenous GH/IGF-I (HiGH mice) were not more susceptible to DMBA-treatment. However, high-fat-fed, HiGH mice showed reduced tumor latency and increased tumor incidence compared with diet-matched controls. These results further support a role of GH/IGF-I in regulating mammary tumorigenesis but suggest the ultimate consequences of GH/IGF-I on breast tumor development are dependent on the diet and/or metabolic status. PMID:25085903

  2. Ingestion of cinnamaldehyde, a TRPA1 agonist, reduces visceral fats in mice fed a high-fat and high-sucrose diet.

    PubMed

    Tamura, Yasuko; Iwasaki, Yusaku; Narukawa, Masataka; Watanabe, Tatsuo

    2012-01-01

    Cinnamaldehyde (CNA), a pungent compound in cinnamon or dried bark of cassia, is a TRPA1 agonist. The effect of 0.1-1.0% CNA on pair-fed mice with high fat and high sucrose (HFS) diet for 1 mo was investigated. The total food intake was similar in the mice fed control and CNA diets, but the body weight showed a tendency to be lower in CNA-fed mice than in control mice. By adding CNA at 0.1, 0.5, and 1.0% concentrations, the weight of the mesenteric adipose tissue decreased significantly, and there was a tendency foward lower perirenal and epididymal adipose tissue weights compared to the control. No differences were found in any blood component measured. UCP1 protein levels in the interscapular brown adipose tissue were higher in the 0.5 and 1.0% CNA groups than in the HSF group, as shown by Western blotting. Collectively, these data show that the addition of CNA diminishes visceral fat deposition in HFS diet-fed mice, in part by stimulating interscapular brown adipose tissue.

  3. L-Carnitine effects on chemical composition of plasma lipoproteins of rabbits fed with normal and high cholesterol diets.

    PubMed

    Diaz, M; Lopez, F; Hernandez, F; Urbina, J A

    2000-06-01

    L-Carnitine plays an important role in the mitochondrial uptake of long-chain fatty acids in mammals. It has recently been shown that this compound has a marked hypo-cholesterolemic effect when used in conjunction with lipid-rich diets. The aim of this study was to investigate the effects of L-carnitine on the fatty acid composition of plasma lipoproteins in rabbits fed with different diets. Four different groups were investigated: group I (standard diet), group II (standard diet supplemented with L-carnitine at 80 mg/kg), group III (standard diet supplemented with 0.5% cholesterol), and group IV (standard diet supplemented with 0.5% cholesterol plus L-carnitine at 80 mg/kg). The feeding period was 126 d. Total plasma cholesterol was indistinguishable in groups I and II, but increased nearly 40-fold in group III. This increment was reduced by 50% in group IV. Correspondingly, total cholesterol content in lipoprotein fractions [very low density lipoprotein (VLDL), low density lipoprotein (LDL), high density lipoprotein (HDL) separated by agarose gel chromatography was the same for groups I and II, while for animals fed a cholesterol-rich diet (III) total cholesterol in VLDL + LDL increased nearly 100-fold when compared with groups I and II but, again, the increment was reduced by 50% in group IV. In contrast, total cholesterol in HDL increased only fivefold for both groups III and IV when compared with groups I and II, indicating no effects of L-carnitine on this parameter. The reduction of total cholesterol in VLDL + LDL particles in animals fed a cholesterol-rich diet plus L-carnitine was associated with a marked decrease in the ratio of cholesteryl ester to free cholesterol and a dramatic increase in their phospholipid content; opposite effects were observed for HDL. L-Carnitine induced a marked decrease in the saturated to unsaturated C16 + C18 fatty acid ratio in cholesteryl esters associated with VLDL and LDL from animals fed with both normal and cholesterol

  4. Cell suspension culture of Eriobotrya japonica regulates the diabetic and hyperlipidemic signs of high-fat-fed mice.

    PubMed

    Shih, Chun-Ching; Ciou, Jiun-Lin; Lin, Cheng-Hsiu; Wu, Jin-Bin; Ho, Hui-Ya

    2013-03-01

    The present study investigates the anti-hyperlipidemic and antihyperglycemic effects and mechanism in high-fat (HF)-fed mice of cell suspension culture of Eriobotrya japonica (TA), which contains a great number of pentacyclic terpenoids. Firstly, C57BL/6J mice were randomly divided into two groups: the control (CON) group was fed with a low-fat diet (n = 9), whereas the experimental group was fed a 45% HF diet for 8 weeks. Afterwards, the CON group was treated with vehicle, whereas the HF group was subdivided into five groups and was orally given TA or rosiglitazone or not for 4 weeks. Blood and visceral adipose tissue, liver tissue and skeletal muscle were examined. Treatment with TA reduced body weight gain, weights of white adipose tissue (WAT) (including epididymal, perirenal, mesenteric WAT and visceral fat), and hepatic triacylglycerol content significantly without affecting food intake in diet-induced diabetic mice. TA effectively prevented HF diet-induced increases in the levels of blood glucose, insulin, leptin and HOMA-IR index (p < 0.001, p < 0.05, p < 0.05, p < 0.01, respectively) and attenuated insulin resistance. Treatment with TA, adipocytes in the visceral depots showed a reduction in size. TA effectively significantly increased the protein contents of phosphorylation of AMPK-α (Thr172) both in liver and adipose tissue. It is shown that TA exhibits hypolipidemic effect in HF-fed mice by decreasing gene expressions of fatty acid synthesis, including acyl-coenzyme A: diacylglycerol acyltransferase (DGAT) 2, which catalyzes the final step in the synthesis of triglycerides, and antidiabetic properties occurred as a result of decreased hepatic glucose production via phosphenolpyruvate carboxykinase (PEPCK) down- regulation, improved insulin sensitization and TA (at 1.0 g/kg dose) decreased expression of hepatic and adipose 11-β-hydroxysteroid dehydroxygenase (11β-HSD1) gene, which contributed in attenuating diabetic state. Futhermore, TA at doses of 0

  5. A comparison of biomarker responses in juvenile diploid and triploid African catfish, Clarias gariepinus, exposed to the pesticide butachlor

    EPA Science Inventory

    Influence of waterborne butachlor (BUC), a commonly used pesticide, on morphometric, biochemical, and molecular biomarkers was evaluated in juvenile, full sibling, diploid and triploid African catfish (Clarias gariepinus). Fish were exposed for 21 days to one of three concentrati...

  6. Morphoquantitative analysis of the Ileum of C57BL/6 mice (Mus musculus) fed with a high-fat diet

    PubMed Central

    Navarrete, Javiera; Vásquez, Bélgica; del Sol, Mariano

    2015-01-01

    Due to the increase in overweight and obesity in humans, various studies have been conducted in recent years that demonstrate the detrimental effects on tissues and organs. The aim of this study was to assess the morphoquantitative changes produced in the ileum of mice, associated with high-fat diets. Fourteen male C57BL/6 mice, 5 months old, were fed two types of diets for 14 weeks. The control group (C) was fed a standard diet (10% fat, AIN-93M) and the experimental group (E) was fed a high-fat diet (42% fat, AIN-93M-AG). The assessments included: body weight, calorie consumption, food efficiency, biochemical analysis of plasma lipids, diameter, total wall thickness, thickness of the tunica mucosa and tunica muscularis, length and width of the intestinal villi, depth of the intestinal crypts and number of goblet cells per mm-2 (NA). For the statistical analysis the Student’s t-test was used, considering a P value less than 0.05. The mice in the E group presented greater weight gain (P = 0.028), higher levels of total and LDL cholesterol (P = 0.03 and P = 0.01, respectively), and length of the intestinal villi (P = 0.000). The width of the intestinal villi and the NA of PAS-positive goblet cells presented significantly lower values (P = 0.037 and P = 0.039, respectively) than the C group. The observed changes could be related to the higher demand for fat absorption and to possible alterations in the intestinal microflora and inflammation by action of high-fat diets. PMID:26823788

  7. Natural History of Age-Related Retinal Lesions That Precede AMD in Mice Fed High or Low Glycemic Index Diets

    PubMed Central

    Weikel, Karen A.; FitzGerald, Paul; Shang, Fu; Caceres, M. Andrea; Bian, Qingning; Handa, James T.; Stitt, Alan W.

    2012-01-01

    Purpose. Epidemiologic data indicate that people who consume low glycemic index (GI) diets are at reduced risk for the onset and progression of age-related macular degeneration (AMD). The authors sought corroboration of this observation in an animal model. Methods. Five- and 16-month-old C57BL/6 mice were fed high or low GI diets until they were 17 and 23.5 months of age, respectively. Retinal lesions were evaluated by transmission electron microscopy, and advanced glycation end products (AGEs) were evaluated by immunohistochemistry. Results. Retinal lesions including basal laminar deposits, loss of basal infoldings, and vacuoles in the retinal pigment epithelium were more prevalent in the 23.5- than in the 17-month-old mice. Within each age group, consumption of a high GI diet increased the risk for lesions and the risk for photoreceptor abnormalities and accumulation of AGEs. Conclusions. Consuming high GI diets accelerates the appearance of age-related retinal lesions that precede AMD in mice, perhaps by increasing the deposition of toxic AGEs in the retina. The data support the hypothesis that consuming lower GI diets, or simulation of their effects with nutraceuticals or drugs, may protect against AMD. The high GI-fed C57BL/6 mouse is a new model of age-related retinal lesions that precede AMD and mimic the early stages of disease and may be useful for drug discovery. PMID:22205601

  8. Actions of incretin metabolites on locomotor activity, cognitive function and in vivo hippocampal synaptic plasticity in high fat fed mice.

    PubMed

    Porter, David; Faivre, Emilie; Flatt, Peter R; Hölscher, Christian; Gault, Victor A

    2012-05-01

    The incretin hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) improve markers of cognitive function in obesity-diabetes, however, both are rapidly degraded to their major metabolites, GLP-1(9-36)amide and GIP(3-42), respectively. Therefore, the present study investigated effects of GLP-1(9-36)amide and GIP(3-42) on locomotor activity, cognitive function and hippocampal synaptic plasticity in mice with diet-induced obesity and insulin resistance. High-fat fed Swiss TO mice treated with GLP-1(9-36)amide, GIP(3-42) or exendin(9-39)amide (twice-daily for 60 days) did not exhibit any changes in bodyweight, non-fasting plasma glucose and plasma insulin concentrations or glucose tolerance compared with high-fat saline controls. Similarly, locomotor and feeding activity, O(2) consumption, CO(2) production, respiratory exchange ratio and energy expenditure were not altered by chronic treatment with incretin metabolites. Administration of the truncated metabolites did not alter general behavior in an open field test or learning and memory ability as recorded during an object recognition test. High-fat mice exhibited a significant impairment in hippocampal long-term potentiation (LTP) which was not affected by treatment with incretin metabolites. These data indicate that incretin metabolites do not influence locomotor activity, cognitive function and hippocampal synaptic plasticity when administered at pharmacological doses to mice fed a high-fat diet.

  9. Batch and High Cell Density Fed-Batch Culture Productions of an Organophosphorus Hydrolase

    DTIC Science & Technology

    2002-01-01

    0.02 g H3BO3, 0.01 g NaMoO4@ 2H2O , and 0.01 g CuSO4 . Fed-Batch Fermentations were carried out in the same Bio-Flow 3000 unit fitted with 10 L...per L): 3.0 g nitrilotriacetic acid, 6.0 MgSO4@7H2O, 1.0 g NaCl, 1.0 g MnSO4@H2O, 0.5 g FeSO4@7H20, 0.1 CaCl2@ 2H2O , 0.1 CoCl2@6H2O, 0.1 g ZnSO4@7H2O

  10. A mixture of cod and scallop protein reduces adiposity and improves glucose tolerance in high-fat fed male C57BL/6J mice.

    PubMed

    Tastesen, Hanne Sørup; Rønnevik, Alexander Krokedal; Borkowski, Kamil; Madsen, Lise; Kristiansen, Karsten; Liaset, Bjørn

    2014-01-01

    Low-protein and high-protein diets regulate energy metabolism in animals and humans. To evaluate whether different dietary protein sources modulate energy balance when ingested at average levels obesity-prone male C57BL/6J mice were pair-fed high-fat diets (67 energy percent fat, 18 energy percent sucrose and 15 energy percent protein) with either casein, chicken filet or a mixture of cod and scallop (1:1 on amino acid content) as protein sources. At equal energy intake, casein and cod/scallop fed mice had lower feed efficiency than chicken fed mice, which translated into reduced adipose tissue masses after seven weeks of feeding. Chicken fed mice had elevated hepatic triglyceride relative to casein and cod/scallop fed mice and elevated 4 h fasted plasma cholesterol concentrations compared to low-fat and casein fed mice. In casein fed mice the reduced adiposity was likely related to the observed three percent lower apparent fat digestibility compared to low-fat, chicken and cod/scallop fed mice. After six weeks of feeding an oral glucose tolerance test revealed that despite their lean phenotype, casein fed mice had reduced glucose tolerance compared to low-fat, chicken and cod/scallop fed mice. In a separate set of mice, effects on metabolism were evaluated by indirect calorimetry before onset of diet-induced obesity. Spontaneous locomotor activity decreased in casein and chicken fed mice when shifting from low-fat to high-fat diets, but cod/scallop feeding tended (P = 0.06) to attenuate this decrease. Moreover, at this shift, energy expenditure decreased in all groups, but was decreased to a greater extent in casein fed than in cod/scallop fed mice, indicating that protein sources regulated energy expenditure differently. In conclusion, protein from different sources modulates energy balance in C57BL/6J mice when given at normal levels. Ingestion of a cod/scallop-mixture prevented diet-induced obesity compared to intake of chicken filet and preserved glucose

  11. A Mixture of Cod and Scallop Protein Reduces Adiposity and Improves Glucose Tolerance in High-Fat Fed Male C57BL/6J Mice

    PubMed Central

    Tastesen, Hanne Sørup; Rønnevik, Alexander Krokedal; Borkowski, Kamil; Madsen, Lise; Kristiansen, Karsten; Liaset, Bjørn

    2014-01-01

    Low-protein and high-protein diets regulate energy metabolism in animals and humans. To evaluate whether different dietary protein sources modulate energy balance when ingested at average levels obesity-prone male C57BL/6J mice were pair-fed high-fat diets (67 energy percent fat, 18 energy percent sucrose and 15 energy percent protein) with either casein, chicken filet or a mixture of cod and scallop (1∶1 on amino acid content) as protein sources. At equal energy intake, casein and cod/scallop fed mice had lower feed efficiency than chicken fed mice, which translated into reduced adipose tissue masses after seven weeks of feeding. Chicken fed mice had elevated hepatic triglyceride relative to casein and cod/scallop fed mice and elevated 4 h fasted plasma cholesterol concentrations compared to low-fat and casein fed mice. In casein fed mice the reduced adiposity was likely related to the observed three percent lower apparent fat digestibility compared to low-fat, chicken and cod/scallop fed mice. After six weeks of feeding an oral glucose tolerance test revealed that despite their lean phenotype, casein fed mice had reduced glucose tolerance compared to low-fat, chicken and cod/scallop fed mice. In a separate set of mice, effects on metabolism were evaluated by indirect calorimetry before onset of diet-induced obesity. Spontaneous locomotor activity decreased in casein and chicken fed mice when shifting from low-fat to high-fat diets, but cod/scallop feeding tended (P = 0.06) to attenuate this decrease. Moreover, at this shift, energy expenditure decreased in all groups, but was decreased to a greater extent in casein fed than in cod/scallop fed mice, indicating that protein sources regulated energy expenditure differently. In conclusion, protein from different sources modulates energy balance in C57BL/6J mice when given at normal levels. Ingestion of a cod/scallop-mixture prevented diet-induced obesity compared to intake of chicken filet and preserved glucose

  12. Improved Endothelial Dysfunction by Cynanchum wilfordii in Apolipoprotein E−/− Mice Fed a High Fat/Cholesterol Diet

    PubMed Central

    Choi, Deok Ho; Lee, Yun Jung; Oh, Hyun Cheol; Cui, Ying Lan; Kim, Jin Sook

    2012-01-01

    Abstract Cynanchum wilfordii is used in traditional Chinese medicine with almost all parts of this plant considered beneficial for various vascular diseases. This study was performed to evaluate the effect of an ethanol extract of C. wilfordii (ECW) on vascular dysfunction in apolipoprotein E (apoE)−/− mice fed with high fat/cholesterol diets (HFCDs). The apoE−/− mice were fed HFCD consisting of 7.5% cocoa butter and 1.25% cholesterol, with or without 100 or 200 mg/day/kg ECW. Chronic ECW treatment significantly lessened the level of low-density lipoprotein (P<.05) and elevated that of high-density lipoprotein-cholesterol (P<.01). Chronic ECW treatment normalized the HFCD-induced increase in systolic blood pressure, maintained smooth and soft intimal endothelial layers, and decreased intima-media thickness in aortic sections of HFCD-fed apoE−/− mice. ECW significantly restored the diet-induced decrease in vasorelaxation response to acetylcholine; however, the response to sodium nitroprusside did not change. ECW clearly restored the HFCD-induced reduction in endothelial nitric oxide synthase expression levels in aortic tissue, leading to decreased vascular inflammation through an inhibition of cellular adhesion molecules such as E-selectin, vascular cell adhesion molecule-1, and intracellular adhesion molecule-1 as well as endothelin-1 (ET-1) expression. In conclusion, ECW ameliorates endothelial dysfunction via improvement of the nitric oxide/cyclic GMP signaling pathway in a diet/genetic model of hyperlipidemia. ECW also substantially inhibited the development of atherosclerosis, possibly by inhibiting ET-1, cell adhesion molecules, and lesion formation, suggesting a vascular protective role for this herb in the treatment and prevention of atherosclerotic vascular disease. PMID:22082065

  13. Effects of insulin infusion on glucose homeostasis and glucose metabolism in rainbow trout fed a high-carbohydrate diet.

    PubMed

    Polakof, S; Moon, T W; Aguirre, P; Skiba-Cassy, S; Panserat, S

    2010-12-15

    The origin for the poor glucose utilization in carnivorous fish species fed high carbohydrate diets remains under debate. In the present study, we have fed rainbow trout a diet containing 30% carbohydrate for 1 or 5 days. In both cases, fish were implanted with mini-osmotic pumps releasing 0.7 i.u. kg(-1) day(-1) bovine insulin, and mRNA transcripts and the protein phosphorylation status of proteins controlling glycemia and glucose-related metabolism were studied in fish killed 6 h after the last meal. We demonstrate that when the exposure occurs over a short term (30 h), insulin exerts beneficial actions on trout glucose homeostasis, including a lowered glycemia and increased hepatic lipogenic and glycogenic potentials. However, when trout were fed for 5 days, these beneficial actions of insulin infusion were no longer observed. Thus, the increased lipogenic potential observed after one single meal was not present, and this together with the increased glycogenesis and the decreased glucose exported to the blood from the liver explains the lack of hypoglycemic action of insulin. The fact that insulin improved glucose homeostasis when administrated over a short time period implies that endogenous insulin secretion is inadequate in trout to deal with this amount of dietary carbohydrates. Moreover, the fact that a longer exposure to insulin resulted in a reduced response indicates that the rainbow trout is sensitive to insulin, re-enforcing the hypothesis that the hyperglycemia observed following a high carbohydrate meal is an insulin secretion issue rather an insulin action issue.

  14. Implication of fermentable carbohydrates targeting the gut microbiota on conjugated linoleic acid production in high-fat-fed mice.

    PubMed

    Druart, Céline; Neyrinck, Audrey M; Dewulf, Evelyne M; De Backer, Fabienne C; Possemiers, Sam; Van de Wiele, Tom; Moens, Frédéric; De Vuyst, Luc; Cani, Patrice D; Larondelle, Yvan; Delzenne, Nathalie M

    2013-09-28

    In vitro experiments have shown that isolated human gut bacteria are able to metabolise PUFA into conjugated PUFA like conjugated linoleic acids (CLA). The hypothesis of the present paper was that high-fat (HF) diet feeding and supplementation with fermentable carbohydrates that have prebiotic properties modulate the in vivo production of CLA by the mouse gut microbiota. Mice were treated for 4 weeks as follows: control (CT) groups were fed a standard diet; HF groups were fed a HF diet rich in linoleic acid (18 : 2n-6); the third groups were fed with the HF diet supplemented with either inulin-type fructans (HF-ITF) or arabinoxylans (HF-Ax). HF diet feeding increased rumenic acid (cis-9,trans-11-18 : 2 CLA) content both in the caecal and liver tissues compared with the CT groups. ITF supplementation had no major effect compared with the HF diet whereas Ax supplementation increased further rumenic acid (cis-9,trans-11-18 : 2 CLA) in the caecal tissue. These differences between both prebiotics may be linked to the high fat-binding capacity of Ax that provides more substrates for bacterial metabolism and to differential modulation of the gut microbiota (specific increase in Roseburia spp. in HF-Ax v. HF). In conclusion, these experiments supply the proof of concept that the mouse gut microbiota produces CLA in vivo, with consequences on the level of CLA in the caecal and liver tissues. We postulate that the CLA-producing bacteria could be a mediator to consider in the metabolic effects of both HF diet feeding and prebiotic supplementation.

  15. Infliximab reverses steatosis and improves insulin signal transduction in liver of rats fed a high-fat diet.

    PubMed

    Barbuio, Raquel; Milanski, Marciane; Bertolo, Manoel B; Saad, Mário J; Velloso, Lício A

    2007-09-01

    Non-alcoholic fatty liver disease, induced by nutritional factors, is one of the leading causes of hepatic dysfunction in the modern world. The activation of proinflammatory signaling in the liver, which is induced by systemic and locally produced cytokines, and the development of hepatic insulin resistance are two important factors associated with the progression from steatosis to steatohepatitis, a pre-cirrhotic condition. The objective of the present study was to evaluate the effect of inhibition of tumour necrosis factor (TNF)-alpha , using the monoclonal antibody infliximab, on the expression of cytokines, induction of steatosis and fibrosis, and insulin signal transduction in the liver of Wistar rats fed a high-fat diet. Ten days of treatment with infliximab significantly reduced the expression of the proinflammatory markers, TNF-alpha , IL-6, IL-1beta , and SOCS-3, in the liver of rats fed a high-fat diet. This was accompanied by reduced fat deposition and fibrosis and by improved insulin signal transduction through insulin receptor (IR)/IR substrate/Akt/FOXO1 and JAK2/STAT3 pathways. In conclusion, short-term inhibition of TNF-alpha with infliximab reduces inflammation and steatosis/fibrosis, while improving insulin signal transduction in an animal model treated with a high-fat diet.

  16. Betaine alleviates hepatic lipid accumulation via enhancing hepatic lipid export and fatty acid oxidation in rats fed with a high-fat diet.

    PubMed

    Xu, Li; Huang, Danping; Hu, Qiaolin; Wu, Jing; Wang, Yizhen; Feng, Jie

    2015-06-28

    To assess the effects of betaine on hepatic lipid accumulation and investigate the underlying mechanism, thirty-two male Sprague-Dawley rats weighing 100 (sd 2·50) g were divided into four groups, and started on one of four treatments: basal diet, basal diet with betaine administration, high-fat diet and high-fat diet with betaine administration. The results showed that no significant difference of body weight was found among experimental groups. Compared with high-fat diet-fed rats, a betaine supplementation decreased (P< 0·05) hepatic TAG accumulation induced by high-fat diet, which was also supported by hepatic histology results. Additionally, hepatic betaine-homocysteine methyltransferase concentration [corrected] as well as its mRNA abundance and lecithin level were found increased (P< 0·05) by betaine supplementation in both basal diet-fed rats and high-fat diet-fed rats. Betaine administration in high-fat diet-fed rats exhibited a higher (P< 0·05) concentration [corrected] of hepatic carnitine palmitoyltransferase 1 (CPT1) compared with high-fat diet-fed rats. High-fat diet inhibited (P< 0·05) the gene expression of hepatic PPARα and CPT1. However, betaine administration in high-fat diet-fed rats elevated (P< 0·05) the gene expression of PPARα and CPT1. Moreover, concentration, gene and protein expressions of hepatic fibroblast growth factor 21 (FGF21) were increased (P< 0·05) in response to betaine administration in high-fat diet group; meanwhile the gene expression of hepatic AMP-activated protein kinase was increased (P< 0·05) as well. The results suggest that betaine administration enhanced hepatic lipid export and fatty acid oxidation in high-fat diet-fed rats, thus effectively alleviating fat accumulation in the liver.

  17. Hepatocyte X-box binding protein 1 deficiency increases liver injury in mice fed a high-fat/sugar diet

    PubMed Central

    Henkel, Anne S.; LeCuyer, Brian E.; Schipma, Matthew J.; Anderson, Kristy A.; Green, Richard M.

    2015-01-01

    Fatty liver is associated with endoplasmic reticulum stress and activation of the hepatic unfolded protein response (UPR). Reduced hepatic expression of the UPR regulator X-box binding protein 1 spliced (XBP1s) is associated with human nonalcoholic steatohepatitis (NASH), and feeding mice a high-fat diet with fructose/sucrose causes progressive, fibrosing steatohepatitis. This study examines the role of XBP1 in nonalcoholic fatty liver injury and fatty acid-induced cell injury. Hepatocyte-specific Xbp1-deficient (Xbp1−/−) mice were fed a high-fat/sugar (HFS) diet for up to 16 wk. HFS-fed Xbp1−/− mice exhibited higher serum alanine aminotransferase levels compared with Xbp1fl/fl controls. RNA sequencing and Gene Ontogeny pathway analysis of hepatic mRNA revealed that apoptotic process, inflammatory response, and extracellular matrix structural constituent pathways had enhanced activation in HFS-fed Xbp1−/− mice. Liver histology demonstrated enhanced injury and fibrosis but less steatosis in the HFS-fed Xbp1−/− mice. Hepatic Col1a1 and Tgfβ1 gene expression, as well as Chop and phosphorylated JNK (p-JNK), were increased in Xbp1−/− compared with Xbp1fl/fl mice after HFS feeding. In vitro, stable XBP1-knockdown Huh7 cells (Huh7-KD) and scramble control cells (Huh7-SCR) were generated and treated with palmitic acid (PA) for 24 h. PA-treated Huh7-KD cells had increased cytotoxicity measured by lactate dehydrogenase release, apoptotic nuclei, and caspase3/7 activity assays compared with Huh7-SCR cells. CHOP and p-JNK expression was also increased in Huh7-KD cells following PA treatment. In conclusion, loss of XBP1 enhances injury in both in vivo and in vitro models of fatty liver injury. We speculate that hepatic XBP1 plays an important protective role in pathogenesis of NASH. PMID:26472223

  18. Effects of crude glycerin supplementation on performance and meat quality of Holstein bulls fed high-concentrate diets.

    PubMed

    Mach, N; Bach, A; Devant, M

    2009-02-01

    Forty-eight bulls (335 +/- 8.6 kg of initial BW) were randomly assigned to 4 glycerin levels (0, 4, 8, and 12% of concentrate DM) with the objective of evaluating the effects of glycerin supplementation on performance, ruminal fermentation, metabolism, and carcass and meat quality in Holstein bulls fed high-concentrate diets. Concentrates were formulated to be isonitrogenous and isocaloric (assuming a glycerin ME content of 3.47 Mcal/kg of DM). Concentrate and straw were fed for ad libitum intake. Bull BW and feed consumption were recorded monthly. Additionally, rumen and blood samples were collected every month. Bulls were slaughtered after 91 d of study (460 +/- 11 kg of final BW). Hot carcass weight, carcass backfat, and conformation were recorded. The area, Warner-Bratzler shear force, and intramuscular fat content of LM were determined. Glycerin level did not affect daily concentrate intake (6.89 +/- 0.34 kg/d of DM), straw intake (1.38 +/- 0.069 kg/d of DM), total DMI (8.27 +/- 0.32 kg/d of DM), ADG (1.36 +/- 0.087 kg/d), or G:F (0.17 +/- 0.009). Similarly, rumen molar proportions of propionic, acetic, and butyric acids, and rumen liquid osmolality were unaffected by treatment. However, a decreased rumen pH (P < 0.05), and greater rumen total VFA concentration (P = 0.09), serum insulin concentration (P < 0.05), and insulin to glucose ratio (P < 0.05) were observed in bulls fed 8% glycerin in concentrate compared with those receiving 0, 4, or 12%. No changes were observed in carcass and meat quality. The ME content of glycerin (86% glycerol) can be assumed to be 3.47 Mcal/kg of DM in Holstein bulls fed high-concentrate diets. In addition, feeding concentrate containing up to 12.1% of glycerin does not lead to detrimental effects on performance, ruminal fermentation, metabolism, and carcass and meat quality variables.

  19. Potential use of green macroalgae Ulva lactuca as a feed supplement in diets on growth performance, feed utilization and body composition of the African catfish, Clarias gariepinus

    PubMed Central

    Abdel-Warith, Abdel-Wahab A.; Younis, El-Sayed M.I.; Al-Asgah, Nasser A.

    2015-01-01

    This study aimed to evaluate the effects of diet containing the green macroalgae, Ulva lactuca, on the growth performance, feed utilization and body composition of African catfish Clarias gariepinus. Four experimental diets were formulated: D1 as a control group and D2, D3 and D4 which included 10%, 20% and 30% U. lactuca meal, respectively. 180 African catfish, weighing 9.59 ± 0.43 g, and with an average length of 11.26 ± 0.21, (mean ± SE) were divided into four groups corresponding to the different feeding regimes. The final body weight of the fish showed insignificant differences (P > 0.05) between the control and fish fed D2, whereas, there was a significant difference (P < 0.05) between these two diets compared with D3 and D4, with weights of 70.52, 60.92, 40.57 and 35.66 g recorded for D1, D2, D3 and D4, respectively. In the same trend significant differences were also evident in weight gain, specific growth rate and feed utilization. Fish fed with a diet containing 20% or 30% U. lactuca meal had poorer growth performance and feed utilization. Protein productive value, protein efficiency ratio, daily dry feed intake and total feed intake were also significantly lower in fish fed with D3 and D4 than in the control D1 and D2. Overall, the results of the experiment revealed that African catfish fed a diet with U. lactuca included at 20% and 30% levels showed poorer growth and feed utilization than the control group and fish fed diets containing 10% of U. lactuca. PMID:27081367

  20. The effect of exercise on the skeletal muscle phospholipidome of rats fed a high-fat diet.

    PubMed

    Mitchell, Todd W; Turner, Nigel; Else, Paul L; Hulbert, Anthony J; Hawley, John A; Lee, Jong Sam; Bruce, Clinton R; Blanksby, Stephen J

    2010-10-15

    The aim of this study was to examine the effect of endurance training on skeletal muscle phospholipid molecular species from high-fat fed rats. Twelve female Sprague-Dawley rats were fed a high-fat diet (78.1% energy). The rats were randomly divided into two groups, a sedentary control group and a trained group (125 min of treadmill running at 8 m/min, 4 days/wk for 4 weeks). Forty-eight hours after their last training bout phospholipids were extracted from the red and white vastus lateralis and analyzed by electrospray-ionization mass spectrometry. Exercise training was associated with significant alterations in the relative abundance of a number of phospholipid molecular species. These changes were more prominent in red vastus lateralis than white vastus lateralis. The largest observed change was an increase of ~30% in the abundance of 1-palmitoyl-2-linoleoyl phosphatidylcholine ions in oxidative fibers. Reductions in the relative abundance of a number of phospholipids containing long-chain n-3 polyunsaturated fatty acids were also observed. These data suggest a possible reduction in phospholipid remodeling in the trained animals. This results in a decrease in the phospholipid n-3 to n-6 ratio that may in turn influence endurance capacity.

  1. Resveratrol supplementation confers neuroprotection in cortical brain tissue of nonhuman primates fed a high-fat/sucrose diet

    PubMed Central

    Bernier, Michel; Wahl, Devin; Ali, Ahmed; Allard, Joanne; Faulkner, Shakeela; Wnorowski, Artur; Sanghvi, Mitesh; Moaddel, Ruin; Alfaras, Irene; Mattison, Julie A.; Tarantini, Stefano; Tucsek, Zsuzsanna; Ungvari, Zoltan; Csiszar, Anna; Pearson, Kevin J.; de Cabo, Rafael

    2016-01-01

    Previous studies have shown positive effects of long-term resveratrol (RSV) supplementation in preventing pancreatic beta cell dysfunction, arterial stiffening and metabolic decline induced by high-fat/high-sugar (HFS) diet in nonhuman primates. Here, the analysis was extended to examine whether RSV may reduce dietary stress toxicity in the cerebral cortex of the same cohort of treated animals. Middle-aged male rhesus monkeys were fed for 2 years with HFS alone or combined with RSV, after which whole-genome microarray analysis of cerebral cortex tissue was carried out along with ELISA, immunofluorescence, and biochemical analyses to examine markers of vascular health and inflammation in the cerebral cortices. A number of genes and pathways that were differentially modulated in these dietary interventions indicated an exacerbation of neuroinflammation (e.g., oxidative stress markers, apoptosis, NF-κB activation) in HFS-fed animals and protection by RSV treatment. The decreased expression of mitochondrial aldehyde dehydrogenase 2, dysregulation in endothelial nitric oxide synthase, and reduced capillary density induced by HFS stress were rescued by RSV supplementation. Our results suggest that long-term RSV treatment confers neuroprotection against cerebral vascular dysfunction during nutrient stress. PMID:27070252

  2. Anti-aggregatory effect of boswellic acid in high-fat fed rats: involvement of redox and inflammatory cascades

    PubMed Central

    2016-01-01

    Introduction A high-fat diet is one of the main dietary factors promoting platelet aggregation. The present study was conducted to elucidate the involvement of boswellic acid (BA) on the platelet hyperaggregability in HFD-fed rats. As platelet hyperaggregability in HFD rats is closely linked to inflammation and enhanced free radical production, the present study was extended to evaluate the anti-inflammatory and anti-oxidative effect of BA on HFD-promoted platelet aggregation. Material and methods Rats were assigned to normal, HFD-fed, aspirin-treated (30 mg/kg), and BA-treated (250 and 500 mg/kg) groups. Results Boswellic acid administration in a high dose was effective in attenuating the severity of hyperlipidemia and platelet aggregation, indicated by lower collagen/epinephrine-induced platelet aggregation, as evidenced by the significant increase (p < 0.05) in the circulating platelet count and reduction in the number of thrombi in the lungs. Moreover, it attenuated the oxidative stress and the intensity of inflammatory mediators associated with platelet hyperaggregability, as evidenced by the inhibitory effects on interlukin-1β, COX-2 and tumor necrosis factor-α, indicating that the antiplatelet activity of BA is likely a consequence of controlling oxidative stress and inflammation. Conclusions The present data suggest that BA shows a promising anti-aggregatory effect by attenuating the enhanced hyperlipidemia, oxidative stress and inflammation associated with HFD. PMID:27904529

  3. Carcass characteristics and meat quality of lambs fed high concentrations of crude glycerin in low-starch diets.

    PubMed

    Carvalho, V B; Leite, R F; Almeida, M T C; Paschoaloto, J R; Carvalho, E B; Lanna, D P D; Perez, H L; Van Cleef, E H C B; Homem Junior, A C; Ezequiel, J M B

    2015-12-01

    In this study, we evaluated the effects of total corn replacement with crude glycerin on carcass characteristics and meat quality of feedlot lambs fed high-concentrate diets with low starch. Forty non-castrated Santa Ines lambs (23.5 ± 3.56 kg BW) were assigned to a randomized complete block design with five dietary treatments: 0%, 7.5%, 15%, 22.5%, or 30% crude glycerin, replacing corn. Animals were slaughtered at a BW of 38 kg after 72 ± 20 days. The addition of up to 30% crude glycerin reduced carcass weight and yield (P ≤ 0.02). Odd-chain fatty acids, oleic, palmitoleic, total unsaturated, and monounsaturated fatty acids were increased (P ≤ 0.01) while CLA tended to increase in glycerin-fed lambs (P = 0.06). Crude glycerin decreased stearic, palmitic, transvaccenic, total saturated fatty acids, and atherogenicity index (P < 0.01). High concentrations of crude glycerin in low-starch diets reduced carcass weights, nevertheless improved meat quality by increasing unsaturated and odd-chain fatty acid contents.

  4. Dietary docosahexaenoic acid and eicosapentaenoic acid influence liver triacylglycerol and insulin resistance in rats fed a high-fructose diet.

    PubMed

    de Castro, Gabriela Salim; Deminice, Rafael; Simões-Ambrosio, Livia Maria Cordeiro; Calder, Philip C; Jordão, Alceu A; Vannucchi, Helio

    2015-04-01

    This study aimed to examine the benefits of different amounts of omega-3 (n-3) polyunsaturated fatty acids from fish oil (FO) on lipid metabolism, insulin resistance and gene expression in rats fed a high-fructose diet. Male Wistar rats were separated into two groups: Control (C, n = 6) and Fructose (Fr, n = 32), the latter receiving a diet containing 63% by weight fructose for 60 days. After this period, 24 animals from Fr group were allocated to three groups: FrFO2 (n = 8) receiving 63% fructose and 2% FO plus 5% soybean oil; FrFO5 (n = 8) receiving 63% fructose and 5% FO plus 2% soybean oil; and FrFO7 (n = 8) receiving 63% fructose and 7% FO. Animals were fed these diets for 30 days. Fructose led to an increase in liver weight, hepatic and serum triacylglycerol, serum alanine aminotransferase and HOMA1-IR index. These alterations were reversed by 5% and 7% FO. FO had a dose-dependent effect on expression of genes related to hepatic β-oxidation (increased) and hepatic lipogenesis (decreased). The group receiving the highest FO amount had increased markers of oxidative stress. It is concluded that n-3 fatty acids may be able to reverse the adverse metabolic effects induced by a high fructose diet.

  5. Anti-hyperlipidemic and cardioprotective effects of Ocimum sanctum L. fixed oil in rats fed a high fat diet.

    PubMed

    Suanarunsawat, Thamolwan; Boonnak, Theewara; Na Ayutthaya, Watcharaporn Devakul; Thirawarapan, Suwan

    2010-01-01

    Ocimum sanctum (OS) has a lipid-lowering action in both normal and diabetic animals. Because OS leaves are rich in oil, the present study was conducted to explain the anti-hyperlipidemic and organ-protective effect of OS fixed oil in rats fed with a high fat (HF) diet. OS fixed oil was extracted by hexane and the fatty acids composition identified by GC-MS. Four groups of male Wistar rats included a normal control group, a high fat fed-diet (HF) group, a HF group treated with OS fixed oil, and a HF group treated with a reference drug simvastatin. The results show that OS fixed oil contains five kinds of fatty acids, of which alpha-linolenic acid was the major fatty acid. OS fixed oil depressed high serum levels of total cholesterol, triglyceride, LDL-C, and AI, whereas no significant effect on HDL-C was observed. OS fixed oil also suppressed high levels of liver cholesterol and triglyceride with no significant effect on both lipids in feces. In addition, OS fixed oil normalized the high serum levels of LDH and CK-MB but no significant effect on high serum levels of ALT, AST, and ALP was obtained. We conclude that treatment with OS fixed oil during the last three weeks of HF diet feeding decreased the high serum lipid profile and expressed antiartherogenic and cardioprotective actions against hyperlipidemia. The anti-hyperlipidemic action of OS fixed oil was mainly resulted from the suppression of liver lipid synthesis. Linolenic acid and linoleic acid contained in OS fixed oil were possibly responsible for both lipid-lowering and cardiac protective action against hyperlipidemia.

  6. Coumarin attenuates hepatic steatosis by down-regulating lipogenic gene expression in mice fed a high-fat diet.

    PubMed

    Um, Min Young; Moon, Mi Kyeong; Ahn, Jiyun; Youl Ha, Tae

    2013-05-01

    Coumarin is a natural compound abundant in plant-based foods such as citrus fruits, tomatoes, vegetables and green tea. Although coumarin has been reported to exhibit anti-coagulant, anti-inflammation and cholesterol-lowering properties, the effect of coumarin on hepatic lipid metabolism remains unclear. In the present study, we evaluated the ability of coumarin to protect against hepatic steatosis associated with a high-fat diet (HFD) and investigated potential mechanisms underlying this effect. C57BL/6J mice were fed a normal diet, HFD and HFD containing 0·05 % courmarin for 8 weeks. The present results showed that coumarin reduced weight gain and abdominal fat mass in mice fed the HFD for 8 weeks (P< 0·05). Coumarin also significantly reduced the HFD-induced elevation in total cholesterol, apoB, leptin and insulin (P< 0·05). In the liver of HFD-fed mice, coumarin significantly reduced total lipids, TAG and cholesterol (38, 22 and 9 % reductions, respectively; P< 0·05), as well as lipid droplet number and size. Additionally, thiobarbituric acid-reactive substance levels, as an indicator of hepatic steatosis, were attenuated by coumarin (P< 0·05). Finally, coumarin suppressed the HFD-induced up-regulation in fatty acid synthase (FAS) activity, and the expression of sterol regulatory element-binding protein-1, FAS, acetyl-CoA carboxylase 1, PPARγ and CCAAT/enhancer-binding protein-α in the liver. Taken together, these results demonstrate that coumarin could prevent HFD-induced hepatic steatosis by regulating lipogenic gene expression, suggesting potential targets for preventing hepatic steatosis.

  7. Intensive trapping of blood-fed Anopheles darlingi in Amazonian Peru reveals unexpectedly high proportions of avian blood-meals.

    PubMed

    Moreno, Marta; Saavedra, Marlon P; Bickersmith, Sara A; Prussing, Catharine; Michalski, Adrian; Tong Rios, Carlos; Vinetz, Joseph M; Conn, Jan E

    2017-02-01

    Anopheles darlingi, the main malaria vector in the Neotropics, has been considered to be highly anthropophilic. However, many behavioral aspects of this species remain unknown, such as the range of blood-meal sources. Barrier screens were used to collect resting Anopheles darlingi mosquitoes from 2013 to 2015 in three riverine localities (Lupuna, Cahuide and Santa Emilia) in Amazonian Peru. Overall, the Human Blood Index (HBI) ranged from 0.58-0.87, with no significant variation among years or sites. Blood-meal analysis revealed that humans are the most common blood source, followed by avian hosts (Galliformes-chickens and turkeys), and human/Galliforme mixed-meals. The Forage Ratio and Selection Index both show a strong preference for Galliformes over humans in blood-fed mosquitoes. Our data show that 30% of An. darlingi fed on more than one host, including combinations of dogs, pigs, goats and rats. There appears to be a pattern of host choice in An. darlingi, with varying proportions of mosquitoes feeding only on humans, only on Galliformes and some taking mixed-meals of blood (human plus Galliforme), which was detected in the three sites in different years, indicating that there could be a structure to these populations based on blood-feeding preferences. Mosquito age, estimated in two localities, Lupuna and Cahuide, ranged widely between sites and years. This variation may reflect the range of local environmental factors that influence longevity or possibly potential changes in the ability of the mosquito to transmit the parasite. Of 6,204 resting An. darlingi tested for Plasmodium infection, 0.42% were infected with P. vivax. This study provides evidence for the first time of the usefulness of barrier screens for the collection of blood-fed resting mosquitoes to calculate the Human Blood Index (HBI) and other blood-meal sources in a neotropical malaria endemic setting.

  8. Intensive trapping of blood-fed Anopheles darlingi in Amazonian Peru reveals unexpectedly high proportions of avian blood-meals

    PubMed Central

    Saavedra, Marlon P.; Bickersmith, Sara A.; Prussing, Catharine; Michalski, Adrian; Tong Rios, Carlos; Vinetz, Joseph M.; Conn, Jan E.

    2017-01-01

    Anopheles darlingi, the main malaria vector in the Neotropics, has been considered to be highly anthropophilic. However, many behavioral aspects of this species remain unknown, such as the range of blood-meal sources. Barrier screens were used to collect resting Anopheles darlingi mosquitoes from 2013 to 2015 in three riverine localities (Lupuna, Cahuide and Santa Emilia) in Amazonian Peru. Overall, the Human Blood Index (HBI) ranged from 0.58–0.87, with no significant variation among years or sites. Blood-meal analysis revealed that humans are the most common blood source, followed by avian hosts (Galliformes-chickens and turkeys), and human/Galliforme mixed-meals. The Forage Ratio and Selection Index both show a strong preference for Galliformes over humans in blood-fed mosquitoes. Our data show that 30% of An. darlingi fed on more than one host, including combinations of dogs, pigs, goats and rats. There appears to be a pattern of host choice in An. darlingi, with varying proportions of mosquitoes feeding only on humans, only on Galliformes and some taking mixed-meals of blood (human plus Galliforme), which was detected in the three sites in different years, indicating that there could be a structure to these populations based on blood-feeding preferences. Mosquito age, estimated in two localities, Lupuna and Cahuide, ranged widely between sites and years. This variation may reflect the range of local environmental factors that influence longevity or possibly potential changes in the ability of the mosquito to transmit the parasite. Of 6,204 resting An. darlingi tested for Plasmodium infection, 0.42% were infected with P. vivax. This study provides evidence for the first time of the usefulness of barrier screens for the collection of blood-fed resting mosquitoes to calculate the Human Blood Index (HBI) and other blood-meal sources in a neotropical malaria endemic setting. PMID:28231248

  9. Physical exercise remodels visceral adipose tissue and mitochondrial lipid metabolism in rats fed a high-fat diet.

    PubMed

    Rocha-Rodrigues, Sílvia; Rodríguez, Amaia; Becerril, Sara; Ramírez, Beatriz; Gonçalves, Inês O; Beleza, Jorge; Frühbeck, Gema; Ascensão, António; Magalhães, José

    2017-03-01

    We aimed to investigate the effects of two physical exercise models, voluntary physical activity (VPA) and endurance training (ET) as preventive and therapeutic strategies, respectively, on lipid accumulation regulators and mitochondrial content in VAT of rats fed a high-fat diet (HFD). Sprague-Dawley rats (6 weeks old, n=60) were assigned into sedentary and VPA groups fed isoenergetic diets: standard (S, 35 kcal% fat) or HFD (71 kcal% fat). The VPA groups had free access to wheel running during the entire protocol. After 9 weeks, half of the sedentary animals were exercised on a treadmill while maintaining the dietary treatments. The HFD induced no changes in plasma non-esterified fatty acids (NEFA) and glycerol levels and decreased oxidative phosphorylation (OXPHOS) subunit IV and increased truncated/full-length sterol regulatory element-binding transcription factor 1c (SREBP1c) ratio in epididymal white adipose tissue (eWAT). VPA decreased plasma glycerol levels, aquaglyceroporin 7 (AQP7) and increased subunit I of cytochrome c oxidase (COX) protein, in standard diet fed animals. Eight weeks of ET decreased body weight, visceral adiposity and adipocyte size and plasma NEFA and glycerol levels, as well as AQP7 protein expression in eWAT. ET increased fatty acid translocase (FAT/CD36), mitochondrial content of complexes IV and V subunits, mitochondrial biogenesis and dynamic (mitofusins and optic atrophy 1)-related proteins. Moreover, lipogenesis-related markers (SREBP1c and acetyl CoA carboxylase) were reduced after 8 weeks of ET. In conclusion, ET-induced alterations reflect a positive effect on mitochondrial function and the overall VAT metabolism of HFD-induced obese rats.

  10. Effect of methanolic extract of Piper sarmentosum leaves on neointimal foam cell infiltration in rabbits fed with high cholesterol diet

    PubMed Central

    Amran, Adel A.; Zakaria, Zaiton; Othman, Faizah; Das, Srijit; Al-Mekhlafi, Hesham M.; Raj, Santhana; Nordin, Nor-Anita MM

    2012-01-01

    Previous research has shown the beneficial effects of aqueous extract of Piper sarmentosum (P.s) on atherosclerosis. The first stage in atherosclerosis is the formation of foam cell. The aim of this study was to investigate the effect of the methanol extract of P.s on fatty streaks by calculating neointimal foam cell infiltration in rabbits fed with high cholesterol diet. Thirty six male New Zealand white rabbits were divided equally into six groups: (i) C: control group fed normal rabbit chow; (ii) CH: cholesterol diet (1 % cholesterol); (iii) PM1: 1 % cholesterol with methanol extract of P.s (62.5 mg/kg); (iv) PM2: 1 % cholesterol with methanol extract of P.s (125 mg/kg); (v) PM3: 1 % cholesterol with methanol extract of P.s (250 mg/kg); (vi) SMV group fed 1 % cholesterol supplemented with Simvistatin drug (1.2 mg/kg). All animals were treated for 10 weeks. At the end of the treatment, the rabbits were fasted and sacrificed and the aortic tissues were collected for histological studies to measure the area of the neointimal foam cell infiltration using software. The thickening of intima ratio of atherosclerosis and morphological changes by scanning electron microscope were measured. The results showed that the atherosclerotic group had significantly bigger area of fatty streak compared to the control group. The area of fatty streak in the abdominal aorta was significantly reduced in the treatment groups which were similar with the SMV group. Similarly, there was a reduction in the number of foam cell in the treatment groups compared to the atherosclerotic group as seen under scanning microscope. In conclusion, histological study demonstrated that the methanol extract of the P.s could reduce the neointimal foam cell infiltration in the lumen of the aorta and the atherosclerotic lesion. PMID:27366140

  11. Lack of mature lymphocytes results in obese but metabolically healthy mice when fed a high-fat diet

    PubMed Central

    Liu, X; Huh, JY; Gong, H; Chamberland, JP; Brinkoetter, MT; Hamnvik, O-PR; Mantzoros, CS

    2017-01-01

    BACKGROUND/OBJECTIVES Obesity is characterized by chronic inflammation and immune dysregulation, as well as insulin resistance, but the link between obesity and adaptive immunity remains to be fully studied. METHODS To elucidate the role of adaptive immunity on body composition, glucose homeostasis and inflammation, recombination-activating gene 1 knockout (Rag1 − / −) mice, without mature T-lymphocytes or B-lymphocytes, were maintained on a low- or high-fat diet (LFD and HFD, respectively) for 11 weeks. RESULTS Rag1 − / − mice fed HFD gained significantly more weight and had increased body fat compared with wild type. Downregulation of energy expenditure as well as brown fat uncoupling protein UCP-1 and UCP-3 gene expression were noticed in HFD-fed Rag1 − / − mice compared with LFD. HFD mice had significantly decreased energy intake compared with LFD mice, consistent with decreased agouti-related protein and increased pro-opiomelanocortin gene expression levels in the hypothalamus. Moreover, compared with wild type, Rag1 − / − mice had lower interleukin (IL)-4 levels, a cytokine recently found to induce browning in white adipocytes, and higher IL-12 levels in HFD-fed Rag1 − / − mice. Despite that HFD Rag1 − / − mice were more obese, they had similar glucose, insulin and adiponectin levels, while leptin was marginally increased. CONCLUSIONS Mice with deficiency in adaptive immunity are obese, partly owing to decreased energy expenditure, but are metabolically normal, suggesting that mature lymphocytes have necessary roles in the development of obesity-related metabolic dysregulation. PMID:25994806

  12. Inhibition of ileal bile acid uptake protects against nonalcoholic fatty liver disease in high-fat diet-fed mice.

    PubMed

    Rao, Anuradha; Kosters, Astrid; Mells, Jamie E; Zhang, Wujuan; Setchell, Kenneth D R; Amanso, Angelica M; Wynn, Grace M; Xu, Tianlei; Keller, Brad T; Yin, Hong; Banton, Sophia; Jones, Dean P; Wu, Hao; Dawson, Paul A; Karpen, Saul J

    2016-09-21

    Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in the Western world, and safe and effective therapies are needed. Bile acids (BAs) and their receptors [including the nuclear receptor for BAs, farnesoid X receptor (FXR)] play integral roles in regulating whole-body metabolism and hepatic lipid homeostasis. We hypothesized that interruption of the enterohepatic BA circulation using a luminally restricted apical sodium-dependent BA transporter (ASBT) inhibitor (ASBTi; SC-435) would modify signaling in the gut-liver axis and reduce steatohepatitis in high-fat diet (HFD)-fed mice. Administration of this ASBTi increased fecal BA excretion and messenger RNA (mRNA) expression of BA synthesis genes in liver and reduced mRNA expression of ileal BA-responsive genes, including the negative feedback regulator of BA synthesis, fibroblast growth factor 15. ASBT inhibition resulted in a marked shift in hepatic BA composition, with a reduction in hydrophilic, FXR antagonistic species and an increase in FXR agonistic BAs. ASBT inhibition restored glucose tolerance, reduced hepatic triglyceride and total cholesterol concentrations, and improved NAFLD activity score in HFD-fed mice. These changes were associated with reduced hepatic expression of lipid synthesis genes (including liver X receptor target genes) and normalized expression of the central lipogenic transcription factor, Srebp1c Accumulation of hepatic lipids and SREBP1 protein were markedly reduced in HFD-fed Asbt(-/-) mice, providing genetic evidence for a protective role mediated by interruption of the enterohepatic BA circulation. Together, these studies suggest that blocking ASBT function with a luminally restricted inhibitor can improve both hepatic and whole body aspects of NAFLD.

  13. Stress in African catfish (Clarias gariepinus) following overland transportation.

    PubMed

    Manuel, Remy; Boerrigter, Jeroen; Roques, Jonathan; van der Heul, Jan; van den Bos, Ruud; Flik, Gert; van de Vis, Hans

    2014-02-01

    Of the many stressors in aquaculture, transportation of fish has remained poorly studied. The objective of this study was therefore to assess the effects of a (simulated) commercial transportation on stress physiology of market-size African catfish (Clarias gariepinus). Catfish weighing approximately 1.25 kg were returned to the farm after 3 h of truck-transportation, and stress-related parameters were measured for up to 72 h following return. Recovery from transportation was assessed through blood samples measuring plasma cortisol, glucose and non-esterified fatty acids (NEFA) and gill histology. Also, the number of skin lesions was compared before and after transport. Pre-transport handling and sorting elevated plasma cortisol levels compared to unhandled animals (before fasting). Plasma cortisol levels were further increased due to transportation. In control fish, plasma cortisol levels returned to baseline values within 6 h, whereas it took 48 h to reach baseline values in transported catfish. Plasma glucose and NEFA levels remained stable and were similar across all groups. Transported catfish did not, on average, have more skin lesions than the handling group, but the number of skin lesions had increased compared to unhandled animals. The macroscopic condition of the gills was similar in control, transported and unhandled catfish; however, light microscopy and immunohistochemistry revealed atypical morphology and chloride cell migration normally associated with adverse water conditions. From our data, we conclude that transportation may be considered a strong stressor to catfish that may add to other stressors and thus inflict upon the welfare of the fish.

  14. Effects of high molecular weight water-soluble chitosan on in vitro fertilization and ovulation in mice fed a high-fat diet.

    PubMed

    Choi, Hee Gon; Kim, Jin Kyung; Kwak, Dong Hoon; Cho, Jung Ran; Kim, Ji Yeoun; Kim, Byung Jin; Jung, Kyu Yong; Choi, Bong Kyu; Shin, Min Kyo; Choo, Young Kug

    2002-04-01

    A high molecular weight water-soluble chitosan (WSC) with an average molecular weight of 300 kD and a deacethylation level of over 90% was produced using a simple multi-step membrane separation process. It is known that WSC prevents obesity induced by a high-fat diet. Consequently, this study investigated whether or not WSC improved the ovarian dysfunction caused by obesity in mice. The mice were fed a high density protein and lipid diet for 4 weeks, followed by the administration of WSC at 480 mg/kg body weight per day for 4 days. Thereafter, the changes in body weight, ovulation rate, in vivo and in vitro fertilization and embryonic development were measured. WSC markedly reduced the body weight of obese mice fed with a high-fat diet, but not in mice fed with a normal diet. WSC had significant effects on the ovulation rate, both the in vivo and in vitro fertilization rates and embryonic development. These results indicate an improvement in the ovarian and oviduct dysfunction caused by obesity, and suggest an adjustment in the internal secretions and metabolic functions.

  15. Resveratrol Attenuates Obesity-Associated Peripheral and Central Inflammation and Improves Memory Deficit in Mice Fed a High-Fat Diet

    PubMed Central

    Jeon, Byeong Tak; Jeong, Eun Ae; Shin, Hyun Joo; Lee, Younghyurk; Lee, Dong Hoon; Kim, Hyun Joon; Kang, Sang Soo; Cho, Gyeong Jae; Choi, Wan Sung; Roh, Gu Seob

    2012-01-01

    Obesity-induced diabetes is associated with chronic inflammation and is considered a risk factor for neurodegeneration. We tested the hypothesis that an AMP-activated protein kinase activator, resveratrol (RES), which is known to exert potent anti-inflammatory effects, would attenuate peripheral and central inflammation and improve memory deficit in mice fed a high-fat diet (HFD). C57BL/6J mice were fed an HFD or an HFD supplemented with RES for 20 weeks. Metabolic parameters in serum were evaluated, and Western blot analysis and immunohistochemistry in peripheral organs and brain were completed. We used the Morris water maze test to study the role of RES on memory function in HFD-treated mice. RES treatment reduced hepatic steatosis, macrophage infiltration, and insulin resistance in HFD-fed mice. In the hippocampus of HFD-fed mice, the protein levels of tumor necrosis factor-α and Iba-1 expression were reduced by RES treatment. Choline acetyltransferase was increased, and the phosphorylation of tau was decreased in the hippocampus of HFD-fed mice upon RES treatment. In particular, we found that RES significantly improved memory deficit in HFD-fed mice. These findings indicate that RES reverses obesity-related peripheral and central inflammation and metabolic derangements and improves memory deficit in HFD-fed diabetic mice. PMID:22362175

  16. Ethanol production from high dry matter corncob using fed-batch simultaneous saccharification and fermentation after combined pretreatment.

    PubMed

    Zhang, Mingjia; Wang, Fang; Su, Rongxin; Qi, Wei; He, Zhimin

    2010-07-01

    To obtain high concentration of ethanol from cellulose, corncob was pretreated with acid and alkali to remove non-cellulose components, and then subjected to simultaneous saccharification and fermentation (SSF). An ethanol concentration as high as 69.2 g/L was achieved with 19% dry matter (DM) using batch SSF, resulting in an 81.2% overall ethanol yield. A fed-batch process using a high solid concentration was also investigated. Fresh substrate was pretreated with dilute sulfuric acid-sodium hydroxide, and then added at different amounts during the first 24 h, to yield a final dry matter content of 25% (w/v). SSF conditions with cellulose loading of 22.8 FPU/g glucan, dry yeast (Saccharomyces cerevisiae) loading of 5 g/L and substrate supplementation every 4h yielded the highest ethanol concentration of 84.7 g/L after 96 h. This corresponded to a 79% overall ethanol yield.

  17. Actions of exendin-4 therapy on cognitive function and hippocampal synaptic plasticity in mice fed a high-fat diet.

    PubMed

    Gault, V A; Porter, W D; Flatt, P R; Hölscher, C

    2010-08-01

    High-calorie diet has been shown to impair learning ability and hippocampal synaptic plasticity in rodents. This study examined effects of daily treatment with the glucagon-like peptide-1 mimetic, exendin-4, on cognitive function and hippocampal synaptic plasticity in a model of diet-induced obesity, which exhibits compromised cognitive performance. Mice fed a high-fat diet were treated with exendin-4 (25 nmol kg(-1) bodyweight; twice daily) or saline vehicle (0.9% (w/v) NaCl) over 21 days. In addition to improving metabolic control, exendin-4-treated mice exhibited a marked increase in recognition index highlighting improved learning and memory. High-fat diet resulted in the elimination of in vivo electrophysiological long-term potentiation, which was rescued following exendin-4 treatment. This study shows that exendin-4 therapy improves cognitive function and ameliorates impaired hippocampal synaptic plasticity in dietary-induced obesity.

  18. Reduction of intestinal polyp formation in min mice fed a high-fat diet with aloe vera gel extract.

    PubMed

    Chihara, Takeshi; Shimpo, Kan; Beppu, Hidehiko; Tomatsu, Akiko; Kaneko, Takaaki; Tanaka, Miyuki; Yamada, Muneo; Abe, Fumiaki; Sonoda, Shigeru

    2013-01-01

    Aloe vera gel supercritical CO2 extract (AVGE) has been shown to contain five phytosterols, reduce visceral fat accumulation, and influence the metabolism of glucose and lipids in animal model experiments. Recent epidemiologic studies have shown that obesity is an established risk factor for several cancers including colorectal cancer. Therefore, we examined the effects of AVGE on intestinal polyp formation in Apc-deficient Min mice fed a high-fat diet. Male Min mice were divided into normal diet (ND), high fat diet (HFD), low dose AVGE (HFD+LAVGE) and high dose AVGE (HFD+HAVGE) groups. The ND group received AIN-93G diet and the latter 3 groups were given modified high-fat AIN-93G diet (HFD) for 7 weeks. AVGE was suspended in 0.5% carboxymethyl cellulose (CMC) and administered orally to mice in HFD+LAVGE and HFD+HAVGE groups every day (except on Sunday) for 7 weeks at a dose of 3.75 and 12.5 mg/kg body weight, respectively. ND and HFD groups received 0.5% CMC alone. Between weeks 4 and 7, body weights in the HFD and HFD+LAVGE groups were reduced more than those in the ND group. However, body weights were not reduced in the HFD+HAVGE group. Mice were sacrificed at the end of the experiment and their intestines were scored for polyps. No significant differences were observed in either the incidence and multiplicity of intestinal polyps (≥0.5 mm in a diameter) among the three groups fed HFD. However, when intestinal polyps were categorized by their size into 0.5-1.4, 1.5-2.4, or ≥2.5 mm, the incidence and multiplicity of large polyps (≥2.5 mm) in the intestine in the HFD+HAVGE group were significantly lower than those in the HFD group. We measured plasma lipid (triglycerides and total cholesterol) and adipocytokine [interleukin-6 and high molecular weight (HMW) adiponectin] levels as possible indicators of mechanisms of inhibition. The results showed that HMW adiponectin levels in the HFD group were significantly lower than those in the ND group. However, the

  19. Anti-oxidant and anti-hyperlipidemic activity of Hemidesmus indicus in rats fed with high-fat diet

    PubMed Central

    Venkateshan, Suganya; Subramaniyan, Vetriselvan; Chinnasamy, Velmurugan; Chandiran, Sarath

    2016-01-01

    Objective: Dietary changes play major risk roles in oxidative stress and cardiovascular disease and modulate normal metabolic function. The present study was designed to investigate the ameliorative potential of different extracts of Hemidesmus indicus to experimental high-fat diet in wistar rats, and their possible mechanism of action. Materials and Methods: Male wistar rats were divided into 6 groups (n=6/group) and fed with a standard diet (control), high-fat diet (HFD), high-fat diet supplemented with different extracts and positive control for 9 weeks. High-fat diet induced changes in average body weight and oxidative stress and elevated levels of plasma lipid profile in rats. Results: Oral administration of methanolic extract of H. indicus (200 mg/kg) offered a significant dose-dependent protection against HFD-induced oxidative stress, as reflected in the levels of catalase (p<0.001 in the aorta, heart and liver), superoxide dismutase (p<0.001 in the aorta, heart and liver), and glutathione peroxidase (p<0.001 in the aorta, heart and liver). Hyperlipidemia condition assessed in terms of body weight, total cholesterol, free cholesterol, ester cholesterol, phospholipids, triglycerides, and atherogenic index and the results showed significant differences between HFD and non-HFD fed rats (p<0.001). High-fat diet treated rats showed changes in hepatic tissue architecture such as micro and macrovascular steatosis, increased fatty infiltration, and inflammation. Conclusion: The present study revealed that the methanolic extract of H. indicus protects against oxidative stress, hyperlipidemia and liver damage. PMID:27761421

  20. Cell-cycle blockage associated with increased apoptotic cells in the thymus of chickens fed on diets high in fluorine.

    PubMed

    Chen, Tao; Cui, Hengmin; Cui, Yun; Bai, Caimin; Gong, Tao; Peng, Xi

    2011-07-01

    Three hundred 1-day-old Avian broilers were divided into four groups and fed on control diet (fluorine 23 mg/kg) and high-fluorine (F) diets (400 mg/kg, high-F group I; 800 mg/kg, high-F group II; 1200 mg/kg, high-F group III) for 42 days (n = 75/group). The growth index (GI) was obviously decreased in the three high-F groups, which indicated the inhibited development of thymus. Histopathologically, the population of thymocytes was decreased in the thymic lobule in the three high-F groups. As measured by flow cytometry, thymocytes in G(0)/G(1) phase were significantly increased while thymocytes in S phase, G(2) + M phase and proliferating index (PI) value were obviously decreased in the three high-F groups. Also, the percentage of apoptotic thymocytes was greatly increased in the three high-F groups when compared with that of control group. At the same time, the occurrence frequencies of apoptotic thymocyte were markedly increased in the three high-F groups, with the appearance of dilated endoplasmic reticulum in high-F groups II and III ultra-structurally. The results showed that excess dietary F in the range of 400-1200 mg/kg caused histological lesions, G(0)/G(1) arrest and cellular apoptosis in the thymus, which inhibited the development of thymus and finally led to impaired cellular immune function.

  1. Production of savinase and population viability of Bacillus clausii during high-cell-density fed-batch cultivations.

    PubMed

    Christiansen, Torben; Michaelsen, Søren; Wümpelmann, Mogens; Nielsen, Jens

    2003-08-05

    The growth and product formation of a Savinase-producing Bacillus clausii were investigated in high-cell-density fed-batch cultivations with both linear and exponential feed profiles. The highest specific productivity of Savinase was observed shortly after the end of the initial batch phase for all feed profiles applied and, in addition, there was a time-dependent decrease in specific productivity. The specific glucose uptake rate increased with time for constant specific growth rate indicating that the maintenance requirements increased with time, possibly due to a decreasing K(+) concentration. The physiological state of the cells was monitored during the cultivations using a flow cytometry assay based on the permeability of the cell membrane to propidium iodide. In the latter parts of the fed-batch cultures with a linear feed profile, a large portion of the cell population was found to have a permeable membrane, indicating a large percentage of dead cells. By assuming that only cells with a nonpermeable membrane contributed to growth and product formation, the physiological properties of this subpopulation were calculated.

  2. Ethanolic extract of Taheebo attenuates increase in body weight and fatty liver in mice fed a high-fat diet.

    PubMed

    Choi, Won Hee; Um, Min Young; Ahn, Jiyun; Jung, Chang Hwa; Park, Myung Kyu; Ha, Tae Youl

    2014-10-08

    We evaluated whether intake of an ethanolic extract of Taheebo (TBE) from Tabebuia avellanedae protects against body weight increase and fat accumulation in mice with high-fat diet (HFD)-induced obesity. Four-week old male C57BL/6 mice were fed a HFD (25% fat, w/w) for 11 weeks. The diet of control (HFD) mice was supplemented with vehicle (0.5% sodium carboxymethyl cellulose by gavage); the diet of experimental (TBE) mice was supplemented with TBE (150 mg/kg body weight/day by gavage). Mice administered TBE had significantly reduced body weight gain, fat accumulation in the liver, and fat pad weight, compared to HFD mice. Reduced hypertrophy of fat cells was also observed in TBE mice. Mice administered TBE also showed significantly lower serum levels of triglycerides, insulin, and leptin. Lipid profiles and levels of mRNAs and proteins related to lipid metabolism were determined in liver and white adipose tissue of the mice. Expression of mRNA and proteins related to lipogenesis were decreased in TBE-administered mice compared to mice fed HFD alone. These results suggest that TBE inhibits obesity and fat accumulation by regulation of gene expression related to lipid metabolism in HFD-induced obesity in mice.

  3. Dietary cholesterol induces hepatic inflammation and blunts mitochondrial function in the liver of high-fat-fed mice.

    PubMed

    Li, Songpei; Zeng, Xiao-Yi; Zhou, Xiu; Wang, Hao; Jo, Eunjung; Robinson, Stephen R; Xu, Aimin; Ye, Ji-Ming

    2016-01-01

    The present study investigated the role of dietary cholesterol and fat in the development of nonalcoholic fatty liver disease, a common liver disease in metabolic disorders. Mice were fed a diet of regular chow (CH), chow supplemented with 0.2% w/w cholesterol (CHC), high fat (HF, 45kcal%) or HF with cholesterol (HFC) for 17weeks. While both HF and HFC groups displayed hepatic steatosis and metabolic syndrome, only HFC group developed the phenotype of liver injury, as indicated by an increase in plasma level of alanine transaminase (ALT, by 50-80%). There were ~2-fold increases in mRNA expression of tumor necrosis factor α, interleukin 1β and monocyte chemotactic protein 1 in the liver of HFC-fed mice (vs. HF) but no endoplasmic reticulum stress or oxidative stress was observed. Furthermore, cholesterol suppressed HF-induced increase of peroxisome proliferator-activated receptor γ coactivator 1α and mitochondrial transcription factor A expression and blunted fatty acid oxidation. Interestingly, after switching HFC to HF diet for 5weeks, the increases in plasma ALT and liver inflammatory markers were abolished but the blunted of mitochondrial function remained. These findings suggest that cholesterol plays a critical role in the conversion of a simple fatty liver toward nonalcoholic steatohepatitis possibly by activation of inflammatory pathways together with retarded mitochondrial function.

  4. Polyphenol-Rich Fraction of Ecklonia cava Improves Nonalcoholic Fatty Liver Disease in High Fat Diet-Fed Mice.

    PubMed

    Park, Eun-Young; Choi, Hojung; Yoon, Ji-Young; Lee, In-Young; Seo, Youngwan; Moon, Hong-Seop; Hwang, Jong-Hee; Jun, Hee-Sook

    2015-11-12

    Ecklonia cava (E. cava; CA) is an edible brown alga with beneficial effects in diabetes via regulation of various metabolic processes such as lipogenesis, lipolysis, inflammation, and the antioxidant defense system in liver and adipose tissue. We investigated the effect of the polyphenol-rich fraction of E. cava produced from Gijang (G-CA) on nonalcoholic fatty liver disease (NAFLD) in high-fat diet (HFD)-fed mice. C57BL6 mice were fed a HFD for six weeks and then the HFD group was administered 300 mg/kg of G-CA extracts by oral intubation for 10 weeks. Body weight, fat mass, and serum biochemical parameters were reduced by G-CA extract treatment. MRI/MRS analysis showed that liver fat and liver volume in HFD-induced obese mice were reduced by G-CA extract treatment. Further, we analyzed hepatic gene expression related to inflammation and lipid metabolism. The mRNA expression levels of inflammatory cytokines and hepatic lipogenesis-related genes were decreased in G-CA-treated HFD mice. The mRNA expression levels of cholesterol 7 alpha-hydroxylase 1 (CYP7A1), the key enzyme in bile acid synthesis, were dramatically increased by G-CA treatment in HFD mice. We suggest that G-CA treatment ameliorated hepatic steatosis by inhibiting inflammation and improving lipid metabolism.

  5. Polyphenol-Rich Fraction of Ecklonia cava Improves Nonalcoholic Fatty Liver Disease in High Fat Diet-Fed Mice

    PubMed Central

    Park, Eun-Young; Choi, Hojung; Yoon, Ji-Young; Lee, In-Young; Seo, Youngwan; Moon, Hong-Seop; Hwang, Jong-Hee; Jun, Hee-Sook

    2015-01-01

    Ecklonia cava (E. cava; CA) is an edible brown alga with beneficial effects in diabetes via regulation of various metabolic processes such as lipogenesis, lipolysis, inflammation, and the antioxidant defense system in liver and adipose tissue. We investigated the effect of the polyphenol-rich fraction of E. cava produced from Gijang (G-CA) on nonalcoholic fatty liver disease (NAFLD) in high-fat diet (HFD)-fed mice. C57BL6 mice were fed a HFD for six weeks and then the HFD group was administered 300 mg/kg of G-CA extracts by oral intubation for 10 weeks. Body weight, fat mass, and serum biochemical parameters were reduced by G-CA extract treatment. MRI/MRS analysis showed that liver fat and liver volume in HFD-induced obese mice were reduced by G-CA extract treatment. Further, we analyzed hepatic gene expression related to inflammation and lipid metabolism. The mRNA expression levels of inflammatory cytokines and hepatic lipogenesis-related genes were decreased in G-CA-treated HFD mice. The mRNA expression levels of cholesterol 7 alpha-hydroxylase 1 (CYP7A1), the key enzyme in bile acid synthesis, were dramatically increased by G-CA treatment in HFD mice. We suggest that G-CA treatment ameliorated hepatic steatosis by inhibiting inflammation and improving lipid metabolism. PMID:26569269

  6. Inhibitory effects of Leonurus sibiricus on weight gain after menopause in ovariectomized and high-fat diet-fed mice.

    PubMed

    Kim, Jangseon; Kim, Mi Hye; Choi, You Yeon; Hong, Jongki; Yang, Woong Mo

    2016-07-01

    Leonurus sibiricus, also called motherwort, is a well-known functional food and medicinal herb. It has been known to possess beneficial properties for women's health, especially for aged women. Estrogen deficiency in the menopause could induce lipid metabolic abnormalities in body fat, resulting in obesity. In this study, the inhibitory effects of L. sibiricus on obesity after the menopause were investigated. Female C57BL/6 mice were ovariectomized and fed high-fat diet (HFD) for 12 weeks. Following an induction period, aqueous extracts of L. sibiricus (LS) were orally administrated for 6 weeks. The body, uterine, and visceral fat weights were measured immediately after the animals were killed. Histological analysis was performed to monitor fat and liver. Serum levels of glucose, triglyceride, total cholesterol, and LDL-cholesterol were evaluated. In addition, the expression of lipases was analyzed. Total body weight was significantly decreased by LS treatment. Histological changes in adipocyte size were shown along with a decrease of visceral fat weight in the LS-treated group. In addition, the fat infiltration of liver was reduced by LS administration. LS-treated mice experienced decreases of serum triglyceride, total cholesterol, and LDL-cholesterol levels. The expression of HSL and ATGL was significantly increased by LS treatment. These results suggest that LS could regulate the lipid metabolism via an increase of lipases expression in ovariectomized and HFD-fed mice. LS might be a novel candidate for a functional food to inhibit weight gain after the menopause.

  7. Raspberry ketone fails to reduce adiposity beyond decreasing food intake in C57BL/6 mice fed a high-fat diet.

    PubMed

    Cotten, Bradley M; Diamond, Stephanie A; Banh, Taylor; Hsiao, Yung-Hsuan; Cole, Rachel M; Li, Jinhui; Simons, Christopher T; Bruno, Richard S; Belury, Martha A; Vodovotz, Yael

    2017-04-05

    As the incidence of obesity continues to increase, identifying novel nutritional therapies to enhance weight loss are needed. Raspberry ketone (RK; 4-(4-hydroxyphenyl) butan-2-one) is a bioactive phytochemical that is marketed as a weight loss supplement in the United States, yet there is scant scientific evidence demonstrating that RK promotes weight loss. The aim of the current study was to investigate the effect of RK on accumulation of adipose mass, hepatic lipid storage, and levels of plasma adiponectin in mice fed a high-fat (HF) diet. Mice were individually housed and fed a HF control diet (45% kcal from fat) for two weeks to induce weight gain, then assigned to HF control, high-dose (1.74% wt/wt) raspberry ketone (HRK), low-dose (0.25% wt/wt) raspberry ketone (LRK), or a pair-fed group (PF) fed similar food intake to LRK mice. Following five weeks of feeding, mice fed LRK and HRK diets showed reduced food intake and body weight compared to mice maintained on control diet. When normalized to body weight, mice fed HRK diet exhibited decreased inguinal fat mass and increased liver mass compared to the control group. Hepatic steatosis was lowest in mice fed HRK diet, whereas LRK diet did not have an effect when compared to the PF group. Plasma adiponectin concentration was unaffected by RK and pair-feeding. Our findings demonstrate that RK supplementation has limited benefit to adipose loss beyond reducing energy intake in mice fed a high-fat diet. The present study supports the need for appropriate study design when validating weight-loss supplements.

  8. Immunotoxicological, biochemical, and histopathological studies on Roundup and Stomp herbicides in Nile catfish (Clarias gariepinus)

    PubMed Central

    Moustafa, Gihan G.; Shaaban, F. E.; Hadeed, A. H. Abo; Elhady, Walaa M.

    2016-01-01

    Aim: The current study was directed to investigate the immunotoxic and oxidative stress effects of Roundup and Stomp herbicides and their combination on Nile catfish (Clarias gariepinus). Materials and Methods: The experiment was carried out on 120 fish that randomly divided into four equal groups with three replicates: The first group kept as control, the second group exposed to 1/2 96 h lethal concentration 50 (LC50) of Roundup, the third group exposed to 1/2 96 h LC50 of Stomp, and the fourth one exposed to a combination of Roundup and Stomp at previously-mentioned doses. The experiment was terminated after 15 days; blood samples were obtained at 1st, 8th, and 15th days of treatment where the sera were separated for estimation of antioxidant enzymes. Meanwhile, at 15th day of exposure part of blood was collected from all groups with an anticoagulant for evaluation of phagocytic activity, then the fish were sacrificed, and specimens from the liver of all groups were obtained for histopathological examination. Results: Our results indicated that both herbicides either individually or in combination elucidated significant decrease in phagocytic activity that was highly marked in group exposed to both herbicides. Furthermore, our data elicited an obvious elevation in the levels of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). Meanwhile, the data depicted reduction in levels of reduced glutathione (GSH) and glutathione-S-transferase (GST). Histopathological investigation of liver proved the aforementioned results. Conclusion: It could be concluded that either Roundup or Stomp alone cause significant deleterious effects on aquatic vertebrates. However, the use of their combination enhanced their toxic effects. Toxicity can end up in humans through the food chain. PMID:27397989

  9. High bioethanol titre from Manihot glaziovii through fed-batch simultaneous saccharification and fermentation in Automatic Gas Potential Test System.

    PubMed

    Moshi, Anselm P; Crespo, Carla F; Badshah, Malik; Hosea, Kenneth M M; Mshandete, Anthony Manoni; Mattiasson, Bo

    2014-03-01

    A process for the production of high bioethanol titre was established through fed-batch and simultaneous saccharification and fermentation (FB-SSF) of wild, non-edible cassava Manihot glaziovii. FB-SSF allowed fermentation of up to 390g/L of starch-derived glucose achieving high bioethanol concentration of up to 190g/L (24% v/v) with yields of around 94% of the theoretical value. The wild cassava M. glaziovii starch is hydrolysable with a low dosage of amylolytic enzymes (0.1-0.15% v/w, Termamyl® and AMG®). The Automatic Gas Potential Test System (AMPTS) was adapted to yeast ethanol fermentation and demonstrated to be an accurate, reliable and flexible device for studying the kinetics of yeast in SSF and FB-SSF. The bioethanol derived stoichiometrically from the CO2 registered in the AMPTS software correlated positively with samples analysed by HPLC (R(2)=0.99).

  10. Characteristics of self-alkalization in high-rate denitrifying automatic circulation (DAC) reactor fed with methanol and sodium acetate.

    PubMed

    Li, Wei; Zheng, Ping; Guo, Jun; Ji, Junyuan; Zhang, Meng; Zhang, Zonghe; Zhan, Enchao; Abbas, Ghulam

    2014-02-01

    Denitrification is a self-alkalization process. In this experiment, the characteristics of self-alkalization in high-rate heterotrophic denitrifying automatic circulation (DAC) reactor fed with methanol and sodium acetate were investigated, respectively. The results showed that, (1) The self-alkalization of high-rate denitrifying reactors was remarkably strong both with methanol and sodium acetate as carbon sources, while the effluent pH was much lower than the stoichiometric values and the malfunction from self-alkalization of denitrification was far less serious than expected. (2) The self-adaptation of the reactors was attributed to the neutralization of carbon dioxide (oxidization product of organic matter) and the self-adaptation of denitrifying sludge. The formation and discharge of calcium carbonate precipitates gave rise to lower effluent pH and alkalinity than the stoichiometric values.

  11. A process for energy-efficient high-solids fed-batch enzymatic liquefaction of cellulosic biomass.

    PubMed

    Cardona, M J; Tozzi, E J; Karuna, N; Jeoh, T; Powell, R L; McCarthy, M J

    2015-12-01

    The enzymatic hydrolysis of cellulosic biomass is a key step in the biochemical production of fuels and chemicals. Economically feasible large-scale implementation of the process requires operation at high solids loadings, i.e., biomass concentrations >15% (w/w). At increasing solids loadings, however, biomass forms a high viscosity slurry that becomes increasingly challenging to mix and severely mass transfer limited, which limits further addition of solids. To overcome these limitations, we developed a fed-batch process controlled by the yield stress and its changes during liquefaction of the reaction mixture. The process control relies on an in-line, non-invasive magnetic resonance imaging (MRI) rheometer to monitor real-time evolution of yield stress during liquefaction. Additionally, we demonstrate that timing of enzyme addition relative to biomass addition influences process efficiency, and the upper limit of solids loading is ultimately limited by end-product inhibition as soluble glucose and cellobiose accumulate in the liquid phase.

  12. Berberine reverts hepatic mitochondrial dysfunction in high-fat fed rats: a possible role for SirT3 activation.

    PubMed

    Teodoro, João Soeiro; Duarte, Filipe Valente; Gomes, Ana Patrícia; Varela, Ana Teresa; Peixoto, Francisco Manuel; Rolo, Anabela Pinto; Palmeira, Carlos Marques

    2013-11-01

    Berberine is an isoquinoline alkaloid with anti-diabetic properties. Despite the central role of liver and thus hepatic mitochondria in whole-body metabolism, berberine effects on hepatic mitochondrial function in an obesity model are still unknown. Here, we demonstrate that berberine treatment recovers mitochondrial efficiency when altered by a high-fat feeding. Mitochondria isolated from the liver of high-fat fed rats exhibited decreased capacity to accumulate calcium and impaired oxidative phosphorylation (OXPHOS) capacity, as shown by impaired mitochondrial membrane potential, oxygen consumption and cellular ATP levels. Interestingly, the recovery of mitochondrial function by berberine was associated with an increased activity of the mitochondrial sirtuin 3 (SirT3). In conclusion, berberine potent protective effects against metabolic syndrome may rely on increasing mitochondrial SirT3 activity, normalizing mitochondrial function and preventing a state of energetic deficit caused by impaired OXPHOS.

  13. Modeling high speed growth of large rods of cesium iodide crystals by edge-defined film-fed growth (EFG)

    NASA Astrophysics Data System (ADS)

    Yeckel, Andrew

    2016-09-01

    A thermocapillary model of edge-defined film-fed growth (EFG) is developed to analyze an experimental system for high speed growth of cesium iodide as a model system for halide scintillator production. The model simulates heat transfer and fluid dynamics in the die, melt, and crystal under conditions of steady growth. Appropriate mass, force, and energy balances are used to compute self-consistent shapes of the growth interface and melt-vapor meniscus. The model is applied to study the effects of growth rate, die geometry, and furnace heat transfer on the limits of system operability. An inverse problem formulation is used to seek operable states at high growth rates by adjusting the overall temperature level and thermal gradient in the furnace. The model predicts that steady growth is feasible at rates greater than 20 mm/h for crystals up to 18 mm in diameter under reasonable furnace gradients.

  14. Immunohistochemical expression of intrarenal renin angiotensin system components in response to tempol in rats fed a high salt diet

    PubMed Central

    Cao, Gabriel; Della Penna, Silvana Lorena; Kouyoumdzian, Nicolás Martín; Choi, Marcelo Roberto; Gorzalczany, Susana; Fernández, Belisario Enrique; Toblli, Jorge Eduardo; Rosón, María Inés

    2017-01-01

    AIM To determine the effect of tempol in normal rats fed high salt on arterial pressure and the balance between antagonist components of the renal renin-angiotensin system. METHODS Sprague-Dawley rats were fed with 8% NaCl high-salt (HS) or 0.4% NaCl (normal-salt, NS) diet for 3 wk, with or without tempol (T) (1 mmol/L, administered in drinking water). Mean arterial pressure (MAP), glomerular filtration rate (GFR), and urinary sodium excretion (UVNa) were measured. We evaluated angiotensin II (Ang II), angiotensin 1-7 (Ang 1-7), angiotensin converting enzyme 2 (ACE2), mas receptor (MasR), angiotensin type 1 receptor (AT1R) and angiotensin type 2 receptor (AT2R) in renal tissues by immunohistochemistry. RESULTS The intake of high sodium produced a slight but significant increase in MAP and differentially regulated components of the renal renin-angiotensin system (RAS). This included an increase in Ang II and AT1R, and decrease in ACE-2 staining intensity using immunohistochemistry. Antioxidant supplementation with tempol increased natriuresis and GFR, prevented changes in blood pressure and reversed the imbalance of renal RAS components. This includes a decrease in Ang II and AT1R, as increase in AT2, ACE2, Ang (1-7) and MasR staining intensity using immunohistochemistry. In addition, the natriuretic effects of tempol were observed in NS-T group, which showed an increased staining intensity of AT2, ACE2, Ang (1-7) and MasR. CONCLUSION These findings suggest that a high salt diet leads to changes in the homeostasis and balance between opposing components of the renal RAS in hypertension to favour an increase in Ang II. Chronic antioxidant supplementation can modulate the balance between the natriuretic and antinatriuretic components of the renal RAS. PMID:28101449

  15. Supplementing antioxidants to pigs fed diets high in oxidants: I. Effects on growth performance, liver function, and oxidative status.

    PubMed

    Lu, T; Harper, A F; Zhao, J; Estienne, M J; Dalloul, R A

    2014-12-01

    The objective of the study was to determine the effects of a dietary antioxidant blend (ethoxyquin and propyl gallate) and vitamin E on growth performance, liver function, and oxidative status in pigs fed diets high in oxidants. Crossbred barrows (n=100, 10.91±0.65 kg BW, 36±2 d of age, Landrace×Duroc) were allotted to 5 treatments on the basis of BW (5 replicate pens per treatment, 4 pigs per pen). Treatments included 1) HO, high-oxidant diet containing 5% oxidized soybean oil and 10% PUFA source (providing 2.05% docosahexaenoic acid in the diet), 2) VE, the HO diet with 11 IU/kg of added vitamin E, 3) AOX, the HO diet with antioxidant blend (135 mg/kg), 4) VE+AOX, the HO diet with both vitamin E and antioxidant blend, and 5) SC, a standard corn-soy control diet. The trial lasted for 118 d; on d 83, the HO diet pigs were switched to the SC diet because the animals were displaying very poor health. Compared with SC pigs, HO pigs had decreased ADG (0.92 vs. 0.51 kg for d 26 to 55, 1.29 vs. 0.34 kg for d 56 to 82; P<0.05) and ADFI (1.84 vs. 0.96 kg for d 26 to 55, 3.41 vs. 1.14 kg for d 56 to 82; P<0.05). However, switching the HO pigs to the SC diet resulted in HO pigs having a greater ADG than VE-fed pigs from d 83 to 118 (0.90 vs. 0.60 kg; P<0.05). The antioxidant blend restored pig performance to a level similar that of pigs fed the SC diet (P>0.05) with greater G:F for the entire period (0.44 vs. 0.38; P<0.05). A greater liver to BW ratio was found in HO compared with other treatments on d 55 and in VE on d 118. Total bilirubin concentration in plasma of HO pigs on d 55 was greater than that in VE+AOX pigs (P<0.05), whereas on d 118, bilirubin concentration in VE was higher than those in VE+AOX and SC (P<0.05). A similar trend was observed in aspartate transaminase. Plasma concentrations of thiobarbituric acid reactive substances (TBARS) and carbonyl were elevated (P<0.05) in the HO pigs compared with the SC pigs on d 55 but not on d 118. Liver TBARS and

  16. Free availability of high-energy foods led to energy over-ingestion and protein under-ingestion in choice-fed broilers.

    PubMed

    Catanese, Francisco; Rodriguez Ganduglia, Héctor; Villalba, Juan J; Distel, Roberto A

    2015-12-01

    The objective of this study was to compare energy and protein content of the diet selected by choice-fed broilers with that of broilers fed a balanced diet. One hundred and eighty 1-day-old male broilers were randomly assigned in groups of 10 to one of three experimental treatments (n = 6). Control broilers were fed a standard balanced diet, whereas choice-fed broilers were fed three foods which were more concentrated (Choice C+ treatment) or less concentrated (Choice C- treatment) in protein, carbohydrate or fat. We evaluated food intake behavior, nutrient intake, and performance parameters of broilers from 2 to 7 weeks of age. Choice C+ broilers showed enhanced preference for the high-fat food, which led to higher energy intake and lower protein intake than those of control broilers at 2 to 4 weeks of age. Body weight, weight gain and feed conversion efficiency were negatively affected by diet selection of Choice C+ broilers. Choice C- broilers selected a balanced diet, and showed performance parameters similar to those of control broilers. Our results supported the hypothesis that free availability of high-energy foods bias ingestive behavior of choice-fed broilers toward selecting a diet with higher energy and lower protein than needed for normal growth.

  17. Lipogenesis Is Decreased by Grape Seed Proanthocyanidins According to Liver Proteomics of Rats Fed a High Fat Diet*

    PubMed Central

    Baiges, Isabel; Palmfeldt, Johan; Bladé, Cinta; Gregersen, Niels; Arola, Lluís

    2010-01-01

    Bioactive proanthocyanidins have been reported to have several beneficial effects on health in relation to metabolic syndrome, type 2 diabetes, and cardiovascular disease. We studied the effect of grape seed proanthocyanidin extract (GSPE) in rats fed a high fat diet (HFD). This is the first study of the effects of flavonoids on the liver proteome of rats suffering from metabolic syndrome. Three groups of rats were fed over a period of 13 weeks either a chow diet (control), an HFD, or a high fat diet supplemented for the last 10 days with GSPE (HFD + GSPE). The liver proteome was fractionated, using a Triton X-114-based two-phase separation, into soluble and membrane protein fractions so that total proteome coverage was considerably improved. The data from isobaric tag for relative and absolute quantitation (iTRAQ)-based nano-LC-MS/MS analysis revealed 90 proteins with a significant (p < 0.05) minimal expression difference of 20% due to metabolic syndrome (HFD versus control) and 75 proteins due to GSPE treatment (HFD + GSPE versus HFD). The same animals have previously been studied (Quesada, H., del Bas, J. M., Pajuelo, D., Díaz, S., Fernandez-Larrea, J., Pinent, M., Arola, L., Salvadó, M. J., and Bladé, C. (2009) Grape seed proanthocyanidins correct dyslipidemia associated with a high-fat diet in rats and repress genes controlling lipogenesis and VLDL assembling in liver. Int. J. Obes. 33, 1007–1012), and GSPE was shown to correct dyslipidemia observed in HFD-fed rats probably through the repression of hepatic lipogenesis. Our data corroborate those findings with an extensive list of proteins describing the induction of hepatic glycogenesis, glycolysis, and fatty acid and triglyceride synthesis in HFD, whereas the opposite pattern was observed to a large extent in GSPE-treated animals. GSPE was shown to have a wider effect than previously thought, and putative targets of GSPE involved in the reversal of the symptoms of metabolic syndrome were revealed. Some

  18. Effects of high-sulfur water and clinoptilolite on health and growth performance of steers fed forage-based diets.

    PubMed

    Cammack, K M; Wright, C L; Austin, K J; Johnson, P S; Cockrum, R R; Kessler, K L; Olson, K C

    2010-05-01

    Sulfur-induced polioencephalomalacia (sPEM), a neurological disorder affecting ruminants, is associated with consumption of diets with increased S (high-S). High-S water is commonly found in many western states and is a major source of dietary S for grazing cattle. Consumption of high-S water has been associated with sPEM and decreased performance. Identification of a feed supplement that would counteract the negative effects of high-S water would decrease the incidence of sPEM and prevent performance reductions in regions with problematic water sources. The objectives of this study were to 1) determine the effects of administering high-S drinking water to forage-fed feedlot steers on health and performance, and 2) determine the effectiveness of clinoptilolite, a clay mineral with increased cation-exchange capacity, in negating the effects of high-S drinking water. Yearling steers (n = 96; 318.2 +/- 2.1 kg of BW) were randomly assigned to 1 of 4 treatments for a 77-d trial period: control with low-S water (566 mg of SO(4)/L), high-S water (3,651 mg of SO(4)/L), or high-S water plus clinoptilolite supplemented at 2.5 or 5.0% of the diet DM. Feed and water consumption were measured daily, and all steers were weighed on d -2, -1, 29, 53, 76, and 77. Plasma samples were collected on d 0, 58, and 77, and liver samples on d 0 and 77. There was a greater (P high-S steers than control steers, but no differences among high-S treatment groups. In total, 12 cases of sPEM were confirmed by the presence of cortical lesions in steers consuming high-S water. Daily DMI (P = 0.002) and daily water intake (P = 0.001) were less in high-S water steers than control steers. No differences (P >or= 0.546) in ADG or G:F were observed. Plasma Cu decreased (P = 0.029) to a greater magnitude in high-S water steers than the control steers over the 77-d trial period. Mineral analyses of hepatic tissue from randomly selected healthy steers from each treatment

  19. Milk from dams fed an obesogenic diet combined with a high-fat/high-sugar diet induces long-term abnormal mammary gland development in the rabbit.

    PubMed

    Hue-Beauvais, C; Koch, E; Chavatte-Palmer, P; Galio, L; Chat, S; Letheule, M; Rousseau-Ralliard, D; Jaffrezic, F; Laloë, D; Aujean, E; Révillion, F; Lhotellier, V; Gertler, A; Devinoy, E; Charlier, M

    2015-04-01

    Alterations to the metabolic endocrine environment during early life are crucial to mammary gland development. Among these environmental parameters, the initial nutritional event after birth is the consumption of milk, which represents the first maternal support provided to mammalian newborns. Milk is a complex fluid that exerts effects far beyond its immediate nutritional value. The present study, therefore, aimed to determine the effect of the nutritional changes during the neonatal and prepubertal periods on the adult mammary phenotype. Newborn rabbits were suckled by dams fed a high-fat/high-sugar obesogenic (OD) or a control (CON) diet and then subsequently fed either the OD or CON diets from the onset of puberty and throughout early pregnancy. Mammary glands were collected during early pregnancy (Day 8 of pregnancy). Rabbits fed with OD milk and then subjected to an OD diet displayed an abnormal development of the mammary gland: the mammary ducts were markedly enlarged (P < 0.05) and filled with abundant secretory products. Moreover, the alveolar secretory structures were disorganized, with an abnormal aspect characterized by large lumina. Mammary epithelial cells contained numerous large lipid droplets and exhibited fingering of the apical membrane and abnormally enlarged intercellular spaces filled with casein micelles. Leptin has been shown to be involved in modulating several developmental processes. We therefore analyzed its expression in the mammary gland. Mammary leptin mRNA was strongly expressed in rabbits fed with OD milk and subjected to an OD diet by comparison with the CON rabbits. Leptin transcripts and protein were localized in the epithelial cells, indicating that the increase in leptin synthesis occurs in this compartment. Taken together, these findings suggest that early-life nutritional history, in particular through the milking period, can determine subsequent mammary gland development. Moreover, they highlight the potentially important

  20. Electrical vagus nerve stimulation decreases food consumption and weight gain in rats fed a high-fat diet.

    PubMed

    Gil, Krzysztof; Bugajski, A; Thor, P

    2011-12-01

    There is growing evidence that vagus nerve stimulation (VNS) has a suppressive effect on both short- and long-term feeding in animal models. We previously showed that long-term VNS (102 days) with low-frequency electrical impulses (0.05 Hz) decreased food intake and body weight in rats. In the present study, we investigated the effect of high frequency (10 Hz) VNS on feeding behavior and appetite in rats fed a high-fat diet; peptide secretion and other parameters were assessed as well. Adult male Wistar rats were each implanted subcutaneously with a microstimulator (MS) and fed a high-fat diet throughout the entire study period (42 days). The left vagus nerve was stimulated by rectangular electrical pulses (10 ms, 200 mV, 10 Hz, 12 h a day) generated by the MS. Body weight and food intake were measured each morning. At the end of the experimental period, animals were euthanized and blood samples were taken. Serum levels of ghrelin, leptin and nesfatin-1 were assessed using radioimmunoassays. Adipose tissue content was evaluated by weighing epididymal fat pads, which were incised at the time of sacrifice. To determine whether VNS activated the food-related areas of the brain, neuronal c-Fos induction in the nuclei of the solitary tract (NTS) was assessed. Chronic vagus nerve stimulation significantly decreased food intake, body weight gain and epididymal fat pad weight in animals that received VNS compared with control animals. Significant neuronal responses in the NTS were observed following VNS. Finally, serum concentrations of ghrelin were increased, while serum levels of leptin were decreased. Although not significant, serum nesfatin-1 levels were also elevated. These results support the theory that VNS leads to reductions in food intake, body weight gain and adipose tissue by increasing brain satiety signals conducted through the vagal afferents. VNS also evoked a feed-related hormonal response, including elevated blood concentrations of nesfatin-1.

  1. Oral Resveratrol Prevents Osteoarthritis Progression in C57BL/6J Mice Fed a High-Fat Diet.

    PubMed

    Gu, Hailun; Li, Keyu; Li, Xingyao; Yu, Xiaolu; Wang, Wei; Ding, Lifeng; Liu, Li

    2016-04-20

    The effects of resveratrol on osteoarthritis (OA) pathogenesis have been demonstrated in vitro and in animal models employing intra-articular injections. However, the potential for oral resveratrol supplements to mediate protective effects on OA have not been examined. Therefore, the aim of the present study was to investigate the potential anti-OA effects of oral resveratrol on mice fed a high-fat diet (HFD). C57BL/6J male mice were fed either a standard diet or a HFD, and a subset of the latter also received varying doses of resveratrol. Twelve weeks later, all of the animals were sacrificed and knee joints were evaluated with histological, immunohistochemical, and TUNEL analyses. Mice that received a HFD had significantly greater body weights than the control mice and also exhibited features consistent with knee OA. The mice that received a HFD in combination with low, intermediate, or high doses of resveratrol were only slightly heavier than the control mice at the end of 12 weeks. Quantitative histological assessments indicated that resveratrol treatment partly recovered joint structure in the mice that received a HFD, while high doses of resveratrol prevented the degradation of type II collagen into C-telopeptide of type II collagen (CTX-II) and retained type II collagen expression in cartilage. Furthermore, TUNEL analyses revealed a reduction in chondrocyte apoptosis in the resveratrol-treated mice compared with the HFD mice. Thus, oral resveratrol appears to exert anti-OA effects in a mouse model of HFD-induced OA, thereby highlighting the potential preventive and therapeutic value of administering resveratrol for obesity-associated OA.

  2. The effects of chromium complex and level on glucose metabolism and memory acquisition in rats fed high-fat diet.

    PubMed

    Sahin, Kazim; Tuzcu, Mehmet; Orhan, Cemal; Agca, Can A; Sahin, Nurhan; Guvenc, Mehmet; Krejpcio, Zbigniew; Staniek, Halina; Hayirli, Armagan

    2011-11-01

    Conditions in which glucose metabolism is impaired due to insulin resistance are associated with memory impairment. It was hypothesized that supplemental chromium (Cr) may alleviate insulin resistance in type 2 diabetes and consequently improve memory acquisition, depending upon its source and level. In a complete randomized design experiment, male Wistar rats (n=60; weighing 200-220 g) were fed either normal (8%, normal diet (ND)) or high-fat (40%, high-fat diet (HFD)) diet and supplemented with Cr as either chromium-glycinate (CrGly) or chromium-acetate (CrAc) at doses of 0, 40, or 80 μg/kg body weight (BW) via drinking water from 8 to 20 weeks of age. Feeding HFD induced type 2 diabetes, as reflected by greater glucose/insulin ratio (2.98 vs. 2.74) comparing to feeding ND. Moreover, HFD rats had greater BW (314 vs. 279 g) and less serum (53 vs. 68 μg/L) and brain (14 vs. 24 ng/g) Cr concentrations than ND rats. High-fat diet caused a 32% reduction in expressions of glucose transporters 1 and 3 (GLUTs) in brain tissue and a 27% reduction in mean percentage time spent in the target quadrant and a 38% increase in spatial memory acquisition phase (SMAP) compared with ND. Compared with supplemental Cr as CrAc, CrGly was more effective to ameliorate response variables (i.e., restoration of tissue Cr concentration, enhancement of cerebral GLUTs expressions, and reduction of the glucose/insulin ratio and SMAP) in a dose-response manner, especially in rats fed HFD. Supplemental Cr as CrGly may have therapeutic potential to enhance insulin action and alleviate memory acquisition in a dose-dependent manner, through restoring tissue Cr reserve and enhancing cerebral GLUTs expressions.

  3. Propranolol, a β-adrenergic antagonist, attenuates the decrease in trabecular bone mass in high calorie diet fed growing mice.

    PubMed

    Baek, Kyunghwa; Hwang, Hyo Rin; Park, Hyun-Jung; Kwon, Arang; Qadir, Abdul S; Baek, Jeong-Hwa

    2014-09-01

    We investigated the effects of high calorie and low calorie diets on skeletal integrity, and whether β-adrenergic blockade (BB) attenuates bone loss induced by dietary calorie alteration. Male 6-week-old C57BL/6 mice were assigned to either an ad-lib fed control diet (CON), a high calorie diet (HIGH), or a low calorie diet (LOW) group. In each diet group, mice were treated with either vehicle (VEH) or propranolol, a β-adrenergic antagonist. Over 12-weeks, β-blockade mitigated body weight and fat mass increases induced by the high calorie diet. Femoral trabecular bone mineral density and the expression levels of osteogenic marker genes in bone marrow cells were reduced in HIGHVEH and LOWVEH mice, and BB significantly attenuated this decline only in HIGH mice. In summary, the magnitude of bone loss induced by low calorie diet was greater than that caused by high calorie diet in growing mice, and β-blockade mitigated high calorie diet-induced bone loss.

  4. Additional effect of metformin and celecoxib against lipid dysregulation and adipose tissue inflammation in high-fat fed rats with insulin resistance and fatty liver.

    PubMed

    Lu, Chieh-Hua; Hung, Yi-Jen; Hsieh, Po-Shiuan

    2016-10-15

    We investigated the effects of metformin and celecoxib on obesity-induced adipose tissue inflammation, insulin resistance (IR), fatty liver, and high blood pressure in high-fat (HF) fed rats. Male Sprague-Dawley rats were fed with either regular or HF diet for 8 weeks. Rats fed with regular diet were treated with vehicle for further 4 weeks. HF fed rats were divided into 6 groups, namely, vehicle, celecoxib (30mg/kg/day), metformin (300mg/kg/day), metformin (150mg/kg/day), metformin (300mg/kg/day) with celecoxib (30mg/kg/day), and metformin (150mg/kg/day) with celecoxib (15mg/kg/day) for additional 4 weeks. Increased body weight in HF fed rats was significantly reduced by metformin alone and metformin combined with celecoxib. The increases in the HOMA-IR value and the area under the curve of glucose following an oral glucose tolerance test, systolic blood pressure, and adipocyte size were significantly diminished in treated rats, especially rats undergoing combined treatment. Treatments with either celecoxib or in combination with metformin resulted in a reduction in AT macrophage infiltration and decreases in levels of adipose tissue TNF-α, MCP-1, and leptin levels in high-fat (HF) fed rats. Furthermore, the elevated hepatic triglycerides content was significantly decreased in the combined treatment group compared to that of groups of celecoxib or metformin alone. Celecoxib exerts a synergistic beneficial effect with metformin on and obesity-associated metabolic and cardiovascular disorders in high-fat fed rats.

  5. The major green tea polyphenol, (-)-epigallocatechin-3-gallate, inhibits obesity, metabolic syndrome, and fatty liver disease in high-fat-fed mice.

    PubMed

    Bose, Mousumi; Lambert, Joshua D; Ju, Jihyeung; Reuhl, Kenneth R; Shapses, Sue A; Yang, Chung S

    2008-09-01

    In this study, we investigated the effects of the major green tea polyphenol, (-)-epigallocatechin-3-gallate (EGCG), on high-fat-induced obesity, symptoms of the metabolic syndrome, and fatty liver in mice. In mice fed a high-fat diet (60% energy as fat), supplementation with dietary EGCG treatment (3.2 g/kg diet) for 16 wk reduced body weight (BW) gain, percent body fat, and visceral fat weight (P < 0.05) compared with mice without EGCG treatment. The BW decrease was associated with increased fecal lipids in the high-fat-fed groups (r(2) = 0.521; P < 0.05). EGCG treatment attenuated insulin resistance, plasma cholesterol, and monocyte chemoattractant protein concentrations in high-fat-fed mice (P < 0.05). EGCG treatment also decreased liver weight, liver triglycerides, and plasma alanine aminotransferase concentrations in high-fat-fed mice (P < 0.05). Histological analyses of liver samples revealed decreased lipid accumulation in hepatocytes in mice treated with EGCG compared with high-fat diet-fed mice without EGCG treatment. In another experiment, 3-mo-old high-fat-induced obese mice receiving short-term EGCG treatment (3.2 g/kg diet, 4 wk) had decreased mesenteric fat weight and blood glucose compared with high-fat-fed control mice (P < 0.05). Our results indicate that long-term EGCG treatment attenuated the development of obesity, symptoms associated with the metabolic syndrome, and fatty liver. Short-term EGCG treatment appeared to reverse preexisting high-fat-induced metabolic pathologies in obese mice. These effects may be mediated by decreased lipid absorption, decreased inflammation, and other mechanisms.

  6. Effect of High Intensity Interval and Continuous Swimming Training on Body Mass Adiposity Level and Serum Parameters in High-Fat Diet Fed Rats.

    PubMed

    da Rocha, Guilherme L; Crisp, Alex H; de Oliveira, Maria R M; da Silva, Carlos A; Silva, Jadson O; Duarte, Ana C G O; Sene-Fiorese, Marcela; Verlengia, Rozangela

    2016-01-01

    This study aimed to investigate the effects of interval and continuous training on the body mass gain and adiposity levels of rats fed a high-fat diet. Forty-eight male Sprague-Dawley rats were randomly divided into two groups, standard diet and high-fat diet, and received their respective diets for a period of four weeks without exercise stimuli. After this period, the animals were randomly divided into six groups (n = 8): control standard diet (CS), control high-fat diet (CH), continuous training standard diet (CTS), continuous training high-fat diet (CTH), interval training standard diet (ITS), and interval training high-fat diet (ITH). The interval and continuous training consisted of a swimming exercise performed over eight weeks. CH rats had greater body mass gain, sum of adipose tissues mass, and lower serum high density lipoprotein values than CS. The trained groups showed lower values of feed intake, caloric intake, body mass gain, and adiposity levels compared with the CH group. No significant differences were observed between the trained groups (CTS versus ITS and CTH versus ITH) on body mass gains and adiposity levels. In conclusion, both training methodologies were shown to be effective in controlling body mass gain and adiposity levels in high-fat diet fed rats.

  7. Effect of High Intensity Interval and Continuous Swimming Training on Body Mass Adiposity Level and Serum Parameters in High-Fat Diet Fed Rats

    PubMed Central

    da Rocha, Guilherme L.; Crisp, Alex H.; de Oliveira, Maria R. M.; da Silva, Carlos A.; Silva, Jadson O.; Duarte, Ana C. G. O.; Sene-Fiorese, Marcela; Verlengia, Rozangela

    2016-01-01

    This study aimed to investigate the effects of interval and continuous training on the body mass gain and adiposity levels of rats fed a high-fat diet. Forty-eight male Sprague-Dawley rats were randomly divided into two groups, standard diet and high-fat diet, and received their respective diets for a period of four weeks without exercise stimuli. After this period, the animals were randomly divided into six groups (n = 8): control standard diet (CS), control high-fat diet (CH), continuous training standard diet (CTS), continuous training high-fat diet (CTH), interval training standard diet (ITS), and interval training high-fat diet (ITH). The interval and continuous training consisted of a swimming exercise performed over eight weeks. CH rats had greater body mass gain, sum of adipose tissues mass, and lower serum high density lipoprotein values than CS. The trained groups showed lower values of feed intake, caloric intake, body mass gain, and adiposity levels compared with the CH group. No significant differences were observed between the trained groups (CTS versus ITS and CTH versus ITH) on body mass gains and adiposity levels. In conclusion, both training methodologies were shown to be effective in controlling body mass gain and adiposity levels in high-fat diet fed rats. PMID:26904718

  8. Inhibition of Gastric Inhibitory Polypeptide Receptor Signaling in Adipose Tissue Reduces Insulin Resistance and Hepatic Steatosis in High-Fat Diet-Fed Mice.

    PubMed

    Joo, Erina; Harada, Norio; Yamane, Shunsuke; Fukushima, Toru; Taura, Daisuke; Iwasaki, Kanako; Sankoda, Akiko; Shibue, Kimitaka; Harada, Takanari; Suzuki, Kazuyo; Hamasaki, Akihiro; Inagaki, Nobuya

    2017-04-01

    Gastric inhibitory polypeptide receptor (GIPR) directly induces energy accumulation in adipose tissue in vitro. However, the importance of the direct effect of GIPR signaling on adipose tissue in vivo remains unclear. In the current study, we generated adipose tissue-specific GIPR knockout (GIPR(adipo-/-)) mice and investigated the direct actions of GIP in adipose tissue. Under high-fat diet (HFD)-fed conditions, GIPR(adipo-/-) mice had significantly lower body weight and lean body mass compared with those in floxed GIPR (GIPR(fl/fl)) mice, although the fat volume was not significantly different between the two groups. Interestingly, insulin resistance, liver weight, and hepatic steatosis were reduced in HFD-fed GIPR(adipo-/-) mice. Plasma levels of interleukin-6 (IL-6), a proinflammatory cytokine that induces insulin resistance, were reduced in HFD-fed GIPR(adipo-/-) mice compared with those in HFD-fed GIPR(fl/fl) mice. Suppressor of cytokine signaling 3 (SOCS3) signaling is located downstream of the IL-6 receptor and is associated with insulin resistance and hepatic steatosis. Expression levels of SOCS3 mRNA were significantly lower in adipose and liver tissues of HFD-fed GIPR(adipo-/-) mice compared with those of HFD-fed GIPR(fl/fl) mice. Thus, GIPR signaling in adipose tissue plays a critical role in HFD-induced insulin resistance and hepatic steatosis in vivo, which may involve IL-6 signaling.

  9. Effects of dietary chromium (III) picolinate on growth performance, respiratory rate, plasma variables, and carcass traits of pigs fed high-fat diets.

    PubMed

    Kim, Beob G; Lindemann, Merlin D; Cromwell, Gary L

    2010-02-01

    We investigated the effects of supplemental chromium (Cr) as Cr (III) picolinate on pigs fed high-fat diets (HFD) in a 56-day experiment. Thirty-two crossbred pigs (9.6 kg) were allotted to four treatments with four blocks and two pigs/pen. Treatments included: (1) low-fat diet (fat < 3.5%; LFD) with no Cr, (2) HFD (fat > 30%) with no Cr, (3) HFD with 1,000 ppb Cr, and (4) HFD with 2,000 ppb Cr. Pigs fed HFD gained weight faster, consumed less, and had lower feed:gain (p < 0.05). Pigs fed HFD had higher respiration rates than pigs fed LFD on d 41 (p < 0.05). Plasma insulin on d 14 linearly decreased with Cr (p = 0.05). Plasma cholesterol concentrations were higher in the pigs fed HFD than those fed LFD, but were largely unaffected by supplemental Cr. Consumption of HFD resulted in greater carcass weight, perirenal fat, and backfat measures (p < 0.01) compared with the LFD group. Cr resulted in linear reductions of hot carcass weight (p = 0.08) and average backfat (p < 0.05). The effects of Cr on carcass fat measures were more pronounced in castrated males than in females. These results indicate that Cr attenuates some effects of a HFD, mainly body fat accretion of pigs, and especially in castrated pigs.

  10. Global rain-fed, irrigated, and paddy croplands: A new high resolution map derived from remote sensing, crop inventories and climate data

    NASA Astrophysics Data System (ADS)

    Salmon, J. Meghan; Friedl, Mark A.; Frolking, Steve; Wisser, Dominik; Douglas, Ellen M.

    2015-06-01

    Irrigation accounts for 70% of global water use by humans and 33-40% of global food production comes from irrigated croplands. Accurate and timely information related to global irrigation is therefore needed to manage increasingly scarce water resources and to improve food security in the face of yield gaps, climate change and extreme events such as droughts, floods, and heat waves. Unfortunately, this information is not available for many regions of the world. This study aims to improve characterization of global rain-fed, irrigated and paddy croplands by integrating information from national and sub-national surveys, remote sensing, and gridded climate data sets. To achieve this goal, we used supervised classification of remote sensing, climate, and agricultural inventory data to generate a global map of irrigated, rain-fed, and paddy croplands. We estimate that 314 million hectares (Mha) worldwide were irrigated circa 2005. This includes 66 Mha of irrigated paddy cropland and 249 Mha of irrigated non-paddy cropland. Additionally, we estimate that 1047 Mha of cropland are managed under rain-fed conditions, including 63 Mha of rain-fed paddy cropland and 985 Mha of rain-fed non-paddy cropland. More generally, our results show that global mapping of irrigated, rain-fed, and paddy croplands is possible by combining information from multiple data sources. However, regions with rapidly changing irrigation or complex mixtures of irrigated and non-irrigated crops present significant challenges and require more and better data to support high quality mapping of irrigation.

  11. Green tea decoction improves glucose tolerance and reduces weight gain of rats fed normal and high-fat diet.

    PubMed

    Snoussi, Chahira; Ducroc, Robert; Hamdaoui, Mohamed Hédi; Dhaouadi, Karima; Abaidi, Houda; Cluzeaud, Francoise; Nazaret, Corinne; Le Gall, Maude; Bado, André

    2014-05-01

    Green tea containing polyphenols exerts antidiabetic and antiobesity effects, but the mechanisms involved are not fully understood. In this study, we first analyzed and compared polyphenol compounds [epigallocatechin gallate (EGCG), epigallocatechin (EGC)] in decoction of green tea leaves versus usual green tea extracts. Second, the effects of acute (30 min) or chronic (6 weeks) oral administration of green tea decoction (GTD) on intestinal glucose absorption were studied in vitro in Ussing chamber, ex vivo using isolated jejunal loops and in vivo through glucose tolerance tests. Finally, we explore in rat model fed normal or high-fat diet the effects of GTD on body weight, blood parameters and on the relative expression of glucose transporters SGLT-1, GLUT2 and GLUT4. GTD cooked for 15 min contained the highest amounts of phenolic compounds. In fasted rats, acute administration of GTD inhibited SGLT-1 activity, increased GLUT2 activity and improved glucose tolerance. Similarly to GTD, acute administration of synthetic phenolic compounds (2/3 EGCG+1/3 EGC) inhibited SGLT-1 activity. Chronic administration of GTD in rat fed high-fat diet reduced body weight gain, circulating triglycerides and cholesterol and improved glucose tolerance. GTD-treated rats for 6 weeks display significantly reduced SGLT-1 and increased GLUT2 mRNA levels in the jejunum mucosa. Moreover, adipose tissue GLUT4 mRNA levels were increased. These results indicate that GTD, a traditional beverage rich in EGCG and EGC reduces intestinal SGLT-1/GLUT2 ratio, a hallmark of regulation of glucose absorption in enterocyte, and enhances adipose GLUT4 providing new insights in its possible role in the control of glucose homeostasis.

  12. Changes in Gut Microbiota in Rats Fed a High Fat Diet Correlate with Obesity-Associated Metabolic Parameters

    PubMed Central

    Maloney, Christopher A.; Raipuria, Mukesh; Huinao, Karina D.; Mitchell, Hazel M.; Morris, Margaret J.

    2015-01-01

    The gut microbiota is emerging as a new factor in the development of obesity. Many studies have described changes in microbiota composition in response to obesity and high fat diet (HFD) at the phylum level. In this study we used 16s RNA high throughput sequencing on faecal samples from rats chronically fed HFD or control chow (n = 10 per group, 16 weeks) to investigate changes in gut microbiota composition at the species level. 53.17% dissimilarity between groups was observed at the species level. Lactobacillus intestinalis dominated the microbiota in rats under the chow diet. However this species was considerably less abundant in rats fed HFD (P<0.0001), this being compensated by an increase in abundance of propionate/acetate producing species. To further understand the influence of these species on the development of the obese phenotype, we correlated their abundance with metabolic parameters associated with obesity. Of the taxa contributing the most to dissimilarity between groups, 10 presented significant correlations with at least one of the tested parameters, three of them correlated positively with all metabolic parameters: Phascolarctobacterium, Proteus mirabilis and Veillonellaceae, all propionate/acetate producers. Lactobacillus intestinalis was the only species whose abundance was negatively correlated with change in body weight and fat mass. This species decreased drastically in response to HFD, favouring propionate/acetate producing bacterial species whose abundance was strongly correlated with adiposity and deterioration of metabolic factors. Our observations suggest that these species may play a key role in the development of obesity in response to a HFD. PMID:25992554

  13. Effects of pectin lyase-modified red ginseng extracts in high-fat diet-fed obese mice

    PubMed Central

    Lee, Hak-Yong; Park, Kwang-Hyun; Park, Young-Mi; Moon, Dae-In; Oh, Hong-Geun; Kwon, Dae-Young; Yang, Hye-Jeong; Kim, Okjin; Kim, Dong-Woo; Yoo, Ji-Hyun; Hong, Se-Chul; Lee, Kun-Hee; Seol, Su-Yeon; Park, Yong-Sik; Park, Jong-Dae

    2014-01-01

    Red ginseng and its extracts have been used as traditional medicines and functional foods in countries worldwide. The aim of this study was to examine the bioavailability of pectin lyase-modified red ginseng extracts (GS-E3D), and the effects of GS-E3D on adipogenesis of 3T3-L1 adipocytes, as well as on metabolic disorders such as hyperglycemia, dyslipidemia, and fatty liver in high-fat diet fed obese C57BL/6 mice. Mice were divided into 5 groups: normal diet group, high fat diet-vehicle group, high fat diet + 0.1 g/kg GS-E3D (0.1-GS-E3D), high fat diet + 0.3 g/kg (0.3-GS-E3D), high fat diet + 1.0 g/kg (1.0-GS-E3D). Treatment of GS-E3D reduced differentiation of 3T3-L1 adipocytes with low cytotoxicity. In the animal model, compared to the high fat diet control, serum glucose, total cholesterol, LDL-cholesterol, HDL-cholesterol, TG, and leptin level were reduced in treatment animals in a dose-dependent manner. In addition, we found that GS-E3D could decrease total hepatic lipid droplets. These results suggest that GS-E3D, as a dietary supplement, has beneficial effects on obesity and may have useful effects in health-care products. PMID:25628725

  14. Antihyperglycemic and antioxidative effects of Hydroxyethyl Methylcellulose (HEMC) and Hydroxypropyl Methylcellulose (HPMC) in mice fed with a high fat diet.

    PubMed

    Ban, Su Jeong; Rico, Catherine W; Um, In Chul; Kang, Mi Young

    2012-01-01

    The effect of dietary feeding of hydroxyethyl methylcellulose (HEMC) and hydroxypropyl methylcellulose (HPMC) on the glucose metabolism and antioxidative status in mice under high fat diet conditions was investigated. The mice were randomly divided and given experimental diets for six weeks: normal control (NC group), high fat (HF group), and high fat supplemented with either HEMC (HF+HEMC group) or HPMC (HF+HPMC group). At the end of the experimental period, the HF group exhibited markedly higher blood glucose and insulin levels as well as a higher erythrocyte lipid peroxidation rate relative to the control group. However, diet supplementation of HEMC and HPMC was found to counteract the high fat-induced hyperglycemia and oxidative stress via regulation of antioxidant and hepatic glucose-regulating enzyme activities. These findings illustrate that HEMC and HPMC were similarly effective in improving the glucose metabolism and antioxidant defense system in high fat-fed mice and they may be beneficial as functional biomaterials in the development of therapeutic agents against high fat dietinduced hyperglycemia and oxidative stress.

  15. Antihyperglycemic and Antioxidative Effects of Hydroxyethyl Methylcellulose (HEMC) and Hydroxypropyl Methylcellulose (HPMC) in Mice Fed with a High Fat Diet

    PubMed Central

    Ban, Su Jeong; Rico, Catherine W.; Um, In Chul; Kang, Mi Young

    2012-01-01

    The effect of dietary feeding of hydroxyethyl methylcellulose (HEMC) and hydroxypropyl methylcellulose (HPMC) on the glucose metabolism and antioxidative status in mice under high fat diet conditions was investigated. The mice were randomly divided and given experimental diets for six weeks: normal control (NC group), high fat (HF group), and high fat supplemented with either HEMC (HF+HEMC group) or HPMC (HF+HPMC group). At the end of the experimental period, the HF group exhibited markedly higher blood glucose and insulin levels as well as a higher erythrocyte lipid peroxidation rate relative to the control group. However, diet supplementation of HEMC and HPMC was found to counteract the high fat-induced hyperglycemia and oxidative stress via regulation of antioxidant and hepatic glucose-regulating enzyme activities. These findings illustrate that HEMC and HPMC were similarly effective in improving the glucose metabolism and antioxidant defense system in high fat-fed mice and they may be beneficial as functional biomaterials in the development of therapeutic agents against high fat dietinduced hyperglycemia and oxidative stress. PMID:22489179

  16. Blueberry supplementation improves memory in middle-aged mice fed a high-fat diet.

    PubMed

    Carey, Amanda N; Gomes, Stacey M; Shukitt-Hale, Barbara

    2014-05-07

    Consuming a high-fat diet may result in behavioral deficits similar to those observed in aging animals. It has been demonstrated that blueberry supplementation can allay age-related behavioral deficits. To determine if supplementation of a high-fat diet with blueberries offers protection against putative high-fat diet-related declines, 9-month-old C57Bl/6 mice were maintained on low-fat (10% fat calories) or high-fat (60% fat calories) diets with and without 4% freeze-dried blueberry powder. Novel object recognition memory was impaired by the high-fat diet; after 4 months on the high-fat diet, mice spent 50% of their time on the novel object in the testing trial, performing no greater than chance performance. Blueberry supplementation prevented recognition memory deficits after 4 months on the diets, as mice on this diet spent 67% of their time on the novel object. After 5 months on the diets, mice consuming the high-fat diet passed through the platform location less often than mice on low-fat diets during probe trials on days 2 and 3 of Morris water maze testing, whereas mice consuming the high-fat blueberry diet passed through the platform location as often as mice on the low-fat diets. This study is a first step in determining if incorporating more nutrient-dense foods into a high-fat diet can allay cognitive dysfunction.

  17. The soluble fiber complex PolyGlycopleX lowers serum triglycerides and reduces hepatic steatosis in high-sucrose-fed rats.

    PubMed

    Reimer, Raylene A; Grover, Gary J; Koetzner, Lee; Gahler, Roland J; Lyon, Michael R; Wood, Simon

    2011-04-01

    Viscous soluble fibers have been shown to reduce risk factors associated with type 2 diabetes and cardiovascular disease. The novel functional fiber, PolyGlycopleX (PGX) (InovoBiologic Inc, Calgary, Alberta, Canada) displays greater viscosity than other currently identified soluble fibers. The objective of this study was to determine if PGX lowers serum and hepatic triglycerides (TGs) in a high-sucrose-fed rat model. In this rodent model, feeding a high-sucrose diet consistently increases serum TGs. We hypothesized that consumption of PGX would attenuate hypertriglyceridemia and reduce hepatic steatosis compared with cellulose in rats fed a high-sucrose background diet. Male Sprague-Dawley rats were fed diets containing 65% sucrose and supplemented with either 5% cellulose (control) or 5% PGX (wt/wt) for 43 weeks. At study termination, serum insulin and TGs, hepatic steatosis, and hepatocellular injury were assessed. Body weight increased over time in both groups, but weight gain was attenuated in rats fed PGX vs cellulose in weeks 2 through 22 (P < .05). Serum TGs did not differ from baseline for the first half of the study but consistently increased in the cellulose group thereafter. PolyGlycopleX significantly reduced serum TG to near-baseline levels. At study termination, rats fed PGX had significantly lower hepatic steatosis scores (measured by Sudan black staining) compared with rats fed cellulose. Hepatocellular injury scores did not differ between the groups. In conclusion, PGX reduced serum TG and lipid accumulation in the liver of sucrose-fed rats. Further examination of its potential as a fiber supplement aimed at lessening the burden of hepatic steatosis is warranted.

  18. Blueberry supplementation improves memory in middle-aged mice fed a high-fat diet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Consuming a high-fat diet may result in behavioral deficits similar to those observed in aging animals; our lab has demonstrated that blueberry supplementation can allay age-related behavioral deficits. To determine if supplementation of a high-fat diet with blueberries offers protection against put...

  19. Fumaric Acid Production from Alkali-Pretreated Corncob by Fed-Batch Simultaneous Saccharification and Fermentation Combined with Separated Hydrolysis and Fermentation at High Solids Loading.

    PubMed

    Li, Xin; Zhou, Jin; Ouyang, Shuiping; Ouyang, Jia; Yong, Qiang

    2017-02-01

    Production of fumaric acid from alkali-pretreated corncob (APC) at high solids loading was investigated using a combination of separated hydrolysis and fermentation (SHF) and fed-batch simultaneous saccharification and fermentation (SSF) by Rhizopus oryzae. Four different fermentation modes were tested to maximize fumaric acid concentration at high solids loading. The highest concentration of 41.32 g/L fumaric acid was obtained from 20 % (w/v) APC at 38 °C in the combined SHF and fed-batch SSF process, compared with 19.13 g/L fumaric acid in batch SSF alone. The results indicated that a combination of SHF and fed-batch SSF significantly improved production of fumaric acid from lignocellulose by R. oryzae than that achieved with batch SSF at high solids loading.

  20. 75 FR 70203 - Certain Coated Paper Suitable for High-Quality Print Graphics Using Sheet-Fed Presses From the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-17

    ... Presses From the People's Republic of China: Amended Final Determination of Sales at Less Than Fair Value... graphics using sheet-fed presses (``coated paper'') from the People's Republic of China (``PRC''). On...-Fed Presses from China (Investigation No. 731-TA- 1159 (Final), USITC Publication 4192 (November...

  1. 75 FR 75663 - Certain Coated Paper Suitable for High-Quality Print Graphics Using Sheet-Fed Presses From the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-06

    ... Presses From the People's Republic of China: Notice of Correction for Amended Final Affirmative... Print Graphics Using Sheet-Fed Presses From the People's Republic of China: Amended Final Affirmative... print graphics using sheet-fed presses was referred to as ``coated paper'' instead of ``certain...

  2. Diet-induced thermogenesis is lower in rats fed a lard diet than in those fed a high oleic acid safflower oil diet, a safflower oil diet or a linseed oil diet.

    PubMed

    Takeuchi, H; Matsuo, T; Tokuyama, K; Shimomura, Y; Suzuki, M

    1995-04-01

    The objectives of the present study were to examine the effects of dietary fats differing in fatty acid composition on diet-induced thermogenesis, sympathetic activity in brown adipose tissue and body fat accumulation in rats. Rats were meal-fed for 12 wk an isoenergetic diet based on lard, high oleic acid safflower oil, safflower oil or linseed oil, and norepinephrine turnover rates in brown adipose tissue were then estimated. Whole-body oxygen consumption after the meal indicated that diet-induced thermogenesis was significantly lower in rats fed the lard diet than in those fed the other diets. The norepinephrine turnover rate in the interscapular brown adipose tissue was also significantly lower in the lard diet group than in the other diet groups. The carcass fat content was significantly higher in the lard diet group than in the other diet groups, whereas the abdominal adipose tissue weights were the same in all diet groups. These results suggest that the intake of animal fats rich in saturated fatty acids, compared with the intake of vegetable oils rich in monounsaturated or polyunsaturated fatty acids, decreases diet-induced thermogenesis by a decline of sympathetic activity in brown adipose tissue, resulting in the promotion of body fat accumulation.

  3. Partially Adaptive Phased Array Fed Cylindrical Reflector Technique for High Performance Synthetic Aperture Radar System

    NASA Technical Reports Server (NTRS)

    Hussein, Z.; Hilland, J.

    2001-01-01

    Spaceborne microwave radar instruments demand a high-performance antenna with a large aperature to address key science themes such as climate variations and predictions and global water and energy cycles.

  4. Antihyperlipidemic Effect of Syrian Mesquite (Prosopis farcta) Root in High Cholesterol Diet-Fed Rabbits.

    PubMed

    Saidi, Mohammad Reza; Farzaei, Mohammad Hosein; Miraghaee, Shahram; Babaei, Atefeh; Mohammadi, Bahareh; Bahrami, Mohammad Taher; Bahrami, Gholamreza

    2016-10-01

    Prosopis farcta root has been proposed as an efficacious natural drug for cardiovascular disorders in traditional medicine. The present study evaluates the efficacy of aqueous extract of Prosopis farcta root on experimental atherosclerosis development in rabbits with high cholesterol diet-induced hypercholesterolemia. Serum lipid parameters were significantly increased in the high cholesterol diet groups in comparison with the normal control group (P < .050). Histopathological findings revealed that atheromatous plaques were formed in both thoracic and abdominal aorta of hypercholestrolemic rabbits. Treatment with Prosopis farcta root significantly reduced total cholesterol, triglyceride, high-density lipoprotein, low-density lipoprotein, and very low density lipoprotein levels compared to high cholesterol diet rabbits (P < .050). This finding may reflect a reduction of chest pain or the beneficial effects of this plant root extract on cardiovascular health. The present study can serve as a basis for future investigations on the other effects of this plant on cardiovascular health.

  5. Ant workers die young and colonies collapse when fed a high-protein diet

    PubMed Central

    Dussutour, A.; Simpson, S. J.

    2012-01-01

    A key determinant of the relationship between diet and longevity is the balance of protein and carbohydrate in the diet. Eating excess protein relative to carbohydrate shortens lifespan in solitary insects. Here, we investigated the link between high-protein diet and longevity, both at the level of individual ants and colonies in black garden ants, Lasius niger. We explored how lifespan was affected by the dietary protein-to-carbohydrate ratio and the duration of exposure to a high-protein diet. We show that (i) restriction to high-protein, low-carbohydrate diets decreased worker lifespan by up to 10-fold; (ii) reduction in lifespan on such diets was mainly due to elevated intake of protein rather than lack of carbohydrate; and (iii) only one day of exposure to a high-protein diet had dire consequences for workers and the colony, reducing population size by more than 20 per cent. PMID:22357267

  6. Erythropoietin inhibits gluconeogenesis and inflammation in the liver and improves glucose intolerance in high-fat diet-fed mice.

    PubMed

    Meng, Ran; Zhu, Dalong; Bi, Yan; Yang, Donghui; Wang, Yaping

    2013-01-01

    Erythropoietin (EPO) has multiple biological functions, including the modulation of glucose metabolism. However, the mechanisms underlying the action of EPO are still obscure. This study is aimed at investigating the potential mechanisms by which EPO improves glucose tolerance in an animal model of type 2 diabetes. Male C57BL/6 mice were fed with high-fat diet (HFD) for 12 weeks and then treated with EPO (HFD-EPO) or vehicle saline (HFD-Con) for two week. The levels of fasting blood glucose, serum insulin and glucose tolerance were measured and the relative levels of insulin-related phosphatidylinositol 3-kinase (PI3K)/Akt, insulin receptor (IR) and IR substrate 1 (IRS1) phosphorylation were determined. The levels of phosphoenolpyruvate carboxykinase (PEPCK), glucose-6- phosphatase (G6Pase), toll like receptor 4 (TLR4), tumor necrosis factor (TNF)-α and IL-6 expression and nuclear factor-κB (NF-κB) and c-Jun N-terminal kinase (JNK), extracellular-signal-regulated kinase (ERK) and p38 MAPK activation in the liver were examined. EPO treatment significantly reduced the body weights and the levels of fasting blood glucose and serum insulin and improved the HFD-induced glucose intolerance in mice. EPO treatment significantly enhanced the levels of Akt, but not IR and IRS1, phosphorylation, accompanied by inhibiting the PEPCK and G6Pase expression in the liver. Furthermore, EPO treatment mitigated the HFD-induced inflammatory TNF-α and IL-6 production, TLR4 expression, NF-κB and JNK, but not ERK and p38 MAPK, phosphorylation in the liver. Therefore, our data indicated that EPO treatment improved glucose intolerance by inhibiting gluconeogenesis and inflammation in the livers of HFD-fed mice.

  7. Pasture v. standard dairy cream in high-fat diet-fed mice: improved metabolic outcomes and stronger intestinal barrier.

    PubMed

    Benoit, Bérengère; Plaisancié, Pascale; Géloën, Alain; Estienne, Monique; Debard, Cyrille; Meugnier, Emmanuelle; Loizon, Emmanuelle; Daira, Patricia; Bodennec, Jacques; Cousin, Olivier; Vidal, Hubert; Laugerette, Fabienne; Michalski, Marie-Caroline

    2014-08-28

    Dairy products derived from the milk of cows fed in pastures are characterised by higher amounts of conjugated linoleic acid and α-linolenic acid (ALA), and several studies have shown their ability to reduce cardiovascular risk. However, their specific metabolic effects compared with standard dairy in a high-fat diet (HFD) context remain largely unknown; this is what we determined in the present study with a focus on the metabolic and intestinal parameters. The experimental animals were fed for 12 weeks a HFD containing 20 % fat in the form of a pasture dairy cream (PDC) or a standard dairy cream (SDC). Samples of plasma, liver, white adipose tissue, duodenum, jejunum and colon were analysed. The PDC mice, despite a higher food intake, exhibited lower fat mass, plasma and hepatic TAG concentrations, and inflammation in the adipose tissue than the SDC mice. Furthermore, they exhibited a higher expression of hepatic PPARα mRNA and adipose tissue uncoupling protein 2 mRNA, suggesting an enhanced oxidative activity of the tissues. These results might be explained, in part, by the higher amounts of ALA in the PDC diet and in the liver and adipose tissue of the PDC mice. Moreover, the PDC diet was found to increase the proportions of two strategic cell populations involved in the protective function of the intestinal epithelium, namely Paneth and goblet cells in the small intestine and colon, compared with the SDC diet. In conclusion, a PDC HFD leads to improved metabolic outcomes and to a stronger gut barrier compared with a SDC HFD. This may be due, at least in part, to the protective mechanisms induced by specific lipids.

  8. Antihyperlipidemic effect of sesame (Sesamum indicum L.) protein isolate in rats fed a normal and high cholesterol diet.

    PubMed

    Biswas, Arundhati; Dhar, Pubali; Ghosh, Santinath

    2010-01-01

    The dietary influence of sesame protein isolate (protein content 91.5%), produced from dehulled, defatted sesame meal, on blood and tissue lipid profile and lipid peroxidation has been assessed in normal and hypercholesterolemic rats. To evaluate their hypocholesterolemic and antioxidative activity in vivo, we fed 18% sesame protein isolate with or without 2% cholesterol in comparison with casein to rats for 28 d. We determined plasma total protein, total cholesterol, high-density lipoprotein (HDL)-cholesterol, low-density lipoprotein (LDL)-cholesterol, triacylglycerol as well as susceptibility of plasma and erythrocyte membrane lipid to oxidation ex vivo. Liver tissue lipid, cholesterol, phospholipids, and lipid peroxidations were also determined. The total cholesterol, LDL-cholesterol and triacylglycerol levels were significantly reduced in the sesame protein isolate and isolate containing cholesterol group than the corresponding control casein groups. HDL-cholesterol level was also increased in sesame protein isolate (41%) and protein isolate containing cholesterol group (38%) than the corresponding control casein and casein containing cholesterol groups. There was 49% and 64% lowering of plasma lipid peroxidation as well as 36% and 56% lowering of lipoprotein oxidation susceptibility (LOS) in the 2 experimental groups (sesame protein isolate and isolate containing cholesterol group) than the corresponding control (casein and casein containing cholesterol) groups. There was significant lowering of erythrocyte membrane lipid peroxidation (68% and 63% lowering in sesame protein isolate and isolate containing cholesterol groups) and liver lipid peroxidation (61% and 76% lowering in the 2 experimental groups than the corresponding control casein groups). Therefore, our results indicate that sesame protein isolate decreases cholesterol concentration in plasma, increases HDL-cholesterol, and also decreases plasma and erythrocyte membrane lipid peroxidation with or

  9. Eicosapentaenoic acid regulates brown adipose tissue metabolism in high-fat-fed mice and in clonal brown adipocytes.

    PubMed

    Pahlavani, Mandana; Razafimanjato, Fitia; Ramalingam, Latha; Kalupahana, Nishan S; Moussa, Hanna; Scoggin, Shane; Moustaid-Moussa, Naima

    2017-01-01

    Brown adipose tissue (BAT) plays a key role in energy expenditure through its specialized thermogenic function. Therefore, BAT activation may help prevent and/or treat obesity. Interestingly, subcutaneous white adipose tissue (WAT) also has the ability to differentiate into brown-like adipocytes and may potentially contribute to increased thermogenesis. We have previously reported that eicosapentaenoic acid (EPA) reduces high-fat (HF)-diet-induced obesity and insulin resistance in mice. Whether BAT mediates some of these beneficial effects of EPA has not been determined. We hypothesized that EPA activates BAT thermogenic program, contributing to its antiobesity effects. BAT and WAT were harvested from B6 male mice fed HF diets supplemented with or without EPA. HIB 1B clonal brown adipocytes treated with or without EPA were also used. Gene and protein expressions were measured in adipose tissues and H1B 1B cells by quantitative polymerase chain reaction and immunoblotting, respectively. Our results show that BAT from EPA-supplemented mice expressed significantly higher levels of thermogenic genes such as PRDM16 and PGC1α and higher levels of uncoupling protein 1 compared to HF-fed mice. By contrast, both WATs (subcutaneous and visceral) had undetectable levels of these markers with no up regulation by EPA. HIB 1B cells treated with EPA showed significantly higher mRNA expression of PGC1α and SIRT2. EPA treatment significantly increased maximum oxidative and peak glycolytic metabolism in H1B 1B cells. Our results demonstrate a novel and promising role for EPA in preventing obesity via activation of BAT, adding to its known beneficial anti-inflammatory effects.

  10. Regulation of hepatic branched-chain α-ketoacid dehydrogenase complex in rats fed a high-fat diet.

    PubMed

    Kadota, Yoshihiro; Toyoda, Takanari; Kitaura, Yasuyuki; Adams, Sean H; Shimomura, Yoshiharu

    2013-12-01

    Branched-chain α-ketoacid (BCKA) dehydrogenase complex (BCKDC) regulates branched-chain amino acid (BCAA) metabolism at the level of BCKA catabolism. It has been demonstrated that the activity of hepatic BCKDC is markedly decreased in type 2 diabetic animal models. In this study, we examined the regulation of hepatic BCKDC in rats with diet-induced obesity (DIO). Rats were fed a control or a 60% of energy high-fat diet (HFD) for twelve weeks. Concentrations of blood components and the activities and protein amounts of hepatic BCKDC and its specific kinase (BDK) were measured. The concentrations of plasma glucose, insulin, and corticosterone were significantly elevated in DIO rats compared to those fed the control diet, suggestive of insulin resistance. Blood BCAA concentrations were not increased. The activity of hepatic BCKDC that was present in the active form in the liver was higher in DIO rats compared to controls, although the total activity and the enzyme amount were not different between two diet groups. The activity of hepatic BDK and the abundance of BDK bound to the BCKDC were decreased in DIO rats. The total amount of hepatic BDK was also significantly decreased in DIO rats. In rats made obese through HFD feeding, in contrast to prior studies in rat models of type 2 diabetes, hepatic BDK was down-regulated and thereby hepatic BCKDC was activated, suggesting that DIO promotes liver BCKA catabolism. In this model there was no evidence that increased blood BCAAs drive DIO-associated insulin resistance, since concentrations of BCAAs were not altered by DIO.

  11. Pancreatic Fat Accumulation, Fibrosis, and Acinar Cell Injury in the Zucker Diabetic Fatty Rat Fed a Chronic High-Fat Diet

    PubMed Central

    Matsuda, Akiko; Makino, Naohiko; Tozawa, Tomohiro; Shirahata, Nakao; Honda, Teiichiro; Ikeda, Yushi; Sato, Hideyuki; Ito, Miho; Kakizaki, Yasuharu; Akamatsu, Manabu; Ueno, Yoshiyuki; Kawata, Sumio

    2014-01-01

    Objective The histological alteration of the exocrine pancreas in obesity has not been clarified. In the present study, we investigated biochemical and histological changes in the exocrine pancreas of obese model rats. Methods Zucker lean rats were fed a standard diet, and Zucker diabetic fatty (ZDF) rats were divided into 2 groups fed a standard diet and a high-fat diet, respectively. These experimental groups were fed each of the diets from 6 weeks until 12, 18, 24 weeks of age. We performed blood biochemical assays and histological analysis of the pancreas. Results In the ZDF rats fed a high-fat diet, the ratio of accumulated pancreatic fat area relative to exocrine gland area was increased significantly at 18 weeks of age in comparison with the other 2 groups (P < 0.05), and lipid droplets were observed in acinar cells. Subsequently, at 24 weeks of age in this group, pancreatic fibrosis and the serum exocrine pancreatic enzyme levels were increased significantly relative to the other 2 groups (P < 0.01). Conclusions In ZDF rats fed a chronic high-fat diet, fat accumulates in pancreatic acinar cells, and this fatty change seems to be related to subsequent pancreatic fibrosis and acinar cell injury. PMID:24717823

  12. Responses of laboratory exposed catfish (Clarias gariepinus) to environmentally relevant concentrations of p,p'-DDT.

    PubMed

    Brink, Kerry; van Vuren, Johan; Bornman, Riana

    2012-11-01

    Technical grade DDT is annually sprayed for malaria control in many under developed countries world wide. Despite the controversy surrounding the use of DDT, minimal research concerning the effects on indigenous fish species in these areas has been conducted. In this study, the objectives were to identify some of the effects of sprayed p,p'-DDT on the common African sharptooth catfish species (Clarias gariepinus) under laboratory conditions. The effects were assessed by exposing specimens to three environmentally relevant concentrations of p,p'-DDT (0.66, 1.36 and 2.72 μg/l) for 21 days and analysing a suite of biomarkers in the plasma, gonads and body morphometrics. The biomarkers were specifically selected based on their practicality in developing countries, which could potentially be utilised for continued monitoring, and included alkali-labile phosphate (ALP), calcium, magnesium and zinc as the indirect measures of vitellogenin, gonadosomatic index, gonad mass manipulated using analysis of covariance, and condition factor. The results showed no significant (p<0.05) dose-dependent changes in the plasma, gonads and body condition of C. gariepinus, indicating that these species were not responsive to the p,p'-DDT concentrations when exposed sub-chronically. This lack of a response suggested that mature C. gariepinus are tolerant to 21 days exposure of low levels of p,p'-DDT.

  13. Inhibition of angiotensin-1-converting enzyme activity by two varieties of ginger (Zingiber officinale) in rats fed a high cholesterol diet.

    PubMed

    Akinyemi, Ayodele Jacob; Ademiluyi, Adedayo Oluwaseun; Oboh, Ganiyu

    2014-03-01

    Angiotensin-1-converting enzyme (ACE) inhibitors are widely used in the treatment of cardiovascular diseases. This study sought to investigate the inhibitory effect of two varieties of ginger (Zingiber officinale) commonly consumed in Nigeria on ACE activity in rats fed a high cholesterol diet. The inhibition of ACE activity of two varieties of ginger (Z. officinale) was investigated in a high cholesterol (2%) diet fed to rats for 3 days. Feeding high cholesterol diets to rats caused a significant (P<.05) increase in the ACE activity. However, there was a significant (P<.05) inhibition of ACE activity as a result of supplementation with the ginger varieties. Rats that were fed 4% white ginger had the greatest inhibitory effect as compared with a control diet. Furthermore, there was a significant (P<.05) increase in the plasma lipid profile with a concomitant increase in malondialdehyde (MDA) content in rat liver and heart tissues. However, supplementing the diet with red and white ginger (either 2% or 4%) caused a significant (P<.05) decrease in the plasma total cholesterol, triglyceride, very low density lipoprotein-cholesterol, and low-density lipoprotein-cholesterol levels, and in MDA content in the tissues. Conversely, supplementation caused a significant (P<.05) increase in plasma high-density lipoprotein-cholesterol level when compared with the control diet. Nevertheless, rats fed 4% red ginger had the greatest reduction as compared with control diet. In conclusion, both ginger varieties exhibited anti-hypercholesterolemic properties in a high cholesterol diet fed to rats. This activity of the gingers may be attributed to its ACE inhibitory activity. However, white ginger inhibited ACE better in a high cholesterol diet fed to rats than red ginger. Therefore, both gingers could serve as good functional foods/nutraceuticals in the management/treatment of hypertension and other cardiovascular diseases.

  14. Antidiabetic Effect of Fresh Nopal (Opuntia ficus-indica) in Low-Dose Streptozotocin-Induced Diabetic Rats Fed a High-Fat Diet.

    PubMed

    Hwang, Seung Hwan; Kang, Il-Jun; Lim, Soon Sung

    2017-01-01

    The objective of the present study was to evaluate α-glucosidase inhibitory and antidiabetic effects of Nopal water extract (NPWE) and Nopal dry power (NADP) in low-dose streptozotocin- (STZ-) induced diabetic rats fed a high-fat diet (HFD). The type 2 diabetic rat model was induced by HFD and low-dose STZ. The rats were divided into four groups as follows: (1) nondiabetic rats fed a regular diet (RD-Control); (2) low-dose STZ-induced diabetic rats fed HFD (HF-STZ-Control); (3) low-dose STZ-induced diabetic rats fed HFD and supplemented with NPWE (100 mg/kg body weight, HF-STZ-NPWE); and (4) low-dose STZ-induced diabetic rats fed HFD and supplemented with comparison medication (rosiglitazone, 10 mg/kg, body weight, HF-STZ-Rosiglitazone). In results, NPWE and NADP had IC50 values of 67.33 and 86.68 μg/mL, both of which exhibit inhibitory activities but lower than that of acarbose (38.05 μg/mL) while NPWE group significantly decreased blood glucose levels compared to control and NPDP group on glucose tolerance in the high-fat diet fed rats model (P < 0.05). Also, the blood glucose levels of HR-STZ-NPWE group were significantly lower (P < 0.05) than HR-STZ-Control group on low-dose STZ-induced diabetic rats fed HFD. Based on these findings, we suggested that NPWE could be considered for the prevention and/or treatment of blood glucose and a potential use as a dietary supplement.

  15. Antidiabetic Effect of Fresh Nopal (Opuntia ficus-indica) in Low-Dose Streptozotocin-Induced Diabetic Rats Fed a High-Fat Diet

    PubMed Central

    Hwang, Seung Hwan; Kang, Il-Jun

    2017-01-01

    The objective of the present study was to evaluate α-glucosidase inhibitory and antidiabetic effects of Nopal water extract (NPWE) and Nopal dry power (NADP) in low-dose streptozotocin- (STZ-) induced diabetic rats fed a high-fat diet (HFD). The type 2 diabetic rat model was induced by HFD and low-dose STZ. The rats were divided into four groups as follows: (1) nondiabetic rats fed a regular diet (RD-Control); (2) low-dose STZ-induced diabetic rats fed HFD (HF-STZ-Control); (3) low-dose STZ-induced diabetic rats fed HFD and supplemented with NPWE (100 mg/kg body weight, HF-STZ-NPWE); and (4) low-dose STZ-induced diabetic rats fed HFD and supplemented with comparison medication (rosiglitazone, 10 mg/kg, body weight, HF-STZ-Rosiglitazone). In results, NPWE and NADP had IC50 values of 67.33 and 86.68 μg/mL, both of which exhibit inhibitory activities but lower than that of acarbose (38.05 μg/mL) while NPWE group significantly decreased blood glucose levels compared to control and NPDP group on glucose tolerance in the high-fat diet fed rats model (P < 0.05). Also, the blood glucose levels of HR-STZ-NPWE group were significantly lower (P < 0.05) than HR-STZ-Control group on low-dose STZ-induced diabetic rats fed HFD. Based on these findings, we suggested that NPWE could be considered for the prevention and/or treatment of blood glucose and a potential use as a dietary supplement. PMID:28303158

  16. Colonic inflammation and enhanced-beta-catenin signaling accompany an increase of the Lachnospiraceae/Streptococcaceae in the hind gut of high-fat diet-fed mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Consumption of an obesigenic / high-fat (HF) diet is associated with a high colon cancer risk, and may alter the gut microbiota. To test the hypothesis that a HF feeding accelerates inflammatory process and changes gut microbiome composition, C57BL/6 mice were fed a HF (45% energy) or low-fat (LF) (...

  17. Lipopolysaccharide derived from the digestive tract provokes oxidative stress in the liver of dairy cows fed a high-grain diet.

    PubMed

    Abaker, J A; Xu, T L; Jin, D; Chang, G J; Zhang, K; Shen, X Z

    2017-01-01

    The aims of this study were to measure oxidative stress parameters and to investigate the molecular mechanism triggered by grain-induced subacute ruminal acidosis in mid-lactation cows. Twelve Holstein-Friesian cows with an average weight of 455±28kg were divided into 2 groups and subjected to 2 diets over 18wk: either a low-grain (forage-to-concentrate ratio=6:4) or a high-grain (forage-to-concentrate ratio=4:6) diet based on dry matter. Being fed a long-term high-grain diet resulted in a significant decrease in rumen pH and a significant increase in ruminal lipopolysaccharide (LPS) at 4 h postfeeding in the morning. The increase was also observed in LPS concentrations in the portal vein, hepatic vein, and jugular vein blood plasma as well as reduced milk yield in a high-grain diet. Cows fed a high-grain diet had lower levels of catalase and glutathione peroxidase (GPx) activity and total antioxidant capacity than cows fed a low-grain diet; however, super oxide dismutase (SOD) activity and malondialdehyde (MDA) levels were higher in both the liver and the plasma of high-grain than in low-grain cows. Positive correlations were observed between plasma LPS versus hepatic MDA, plasma MDA, and hepatic SOD activity, whereas hepatic GPx and plasma GPx were negatively correlated with plasma LPS. The relative mRNA abundances of GPX1 and CAT were significantly lower in the liver of cows fed a high-grain diet than those fed a low-grain diet, whereas SOD1 was significantly higher in cows fed a high-grain diet than cows fed a low-grain diet. The expression levels of Nrf2, NQO1, MT1E, UGT1A1, MGST3, and MT1A were downregulated, whereas NF-kB was upregulated, in cows fed a high-grain diet. Furthermore, nuclear factor E2-related factor 2 (Nrf2) total protein and mRNA levels were significantly lower than in low-grains. Our results demonstrate the relationship between the translocated LPS and the suppression of cellular antioxidant defense capacity, which lead to increased

  18. Effect of ethyl pyruvate on skeletal muscle metabolism in rats fed on a high fat diet.

    PubMed

    Olek, Robert A; Ziolkowski, Wieslaw; Wierzba, Tomasz H; Kaczor, Jan J

    2013-07-01

    Impaired mitochondrial capacity may be implicated in the pathology of chronic metabolic diseases. To elucidate the effect of ethyl pyruvate supplementation on skeletal muscles metabolism we examined changes in activities of mitochondrial and antioxidant enzymes, as well as sulfhydryl groups oxidation (an indirect marker of oxidative stress) during the development of obesity. After 6 weeks feeding of control or high fat diet, Wistar rats were divided into four groups: control diet, control diet and ethyl pyruvate, high fat diet, and high fat diet and ethyl pyruvate. Ethyl pyruvate was administered as 0.3% solution in drinking water, for the following 6 weeks. High fat diet feeding induced the increase of activities 3-hydroxyacylCoA dehydrogenase, citrate synthase, and fumarase. Moreover, higher catalase and superoxide dismutase activities, as well as sulfhydryl groups oxidation, were noted. Ethyl pyruvate supplementation did not affect the mitochondrial enzymes' activities, but induced superoxide dismutase activity and sulfhydryl groups oxidation. All of the changes were observed in soleus muscle, but not in extensor digitorum longus muscle. Additionally, positive correlations between fasting blood insulin concentration and activities of catalase (p = 0.04), and superoxide dismutase (p = 0.01) in soleus muscle were noticed. Prolonged ethyl pyruvate consumption elevated insulin concentration, which may cause modifications in oxidative type skeletal muscles.

  19. High fat fed heart failure animals have enhanced mitochondrial function and acyl-coa dehydrogenase activities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have previously shown that administration of high fat in heart failure (HF) increased mitochondrial respiration and did not alter left ventricular (LV) function. PPARalpha is a nuclear transcription factor that activates expression of genes involved in fatty acid uptake and utilization. We hypoth...

  20. Eicosapentaenoic acid regulates brown adipose tissue gene expression and metabolism in high fat fed mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Brown adipose tissue (BAT) is a thermogenic tissue, a key regulator of energy balance and a potential therapeutic target for obesity. We previously reported that eicosapentaenoic acid (EPA) reduced high fat (HF) diet-induced obesity and insulin resistance in mice, independent of energy intake. We hy...

  1. Onion extract structural changes during in vitro digestion and its potential antioxidant effect on brain lipids obtained from low- and high-fat-fed mice.

    PubMed

    Hur, S J; Lee, S J; Kim, D H; Chun, S C; Lee, S K

    2013-12-01

    This study investigated the effects of onion (Allium cepa, L.) extract on the antioxidant activity of lipids in low-and high-fat-fed mouse brain lipids and its structural change during in vitro human digestion. The onion extracts were passed through an in vitro human digestion model that simulated the composition of the mouth, stomach, and small intestine juice. The brain lipids were collected from low- and high-fat-fed mouse brain and then incubated with the in vitro-digested onion extracts to determine the lipid oxidation. The results confirmed that the main phenolics of onion extract were kaempferol, myricetin, quercetin, and quercitrin. The quercetin content increased with digestion of the onion extract. Antioxidant activity was strongly influenced by in vitro human digestion of both onion extract and quercetin standard. After digestion by the small intestine, the antioxidant activity values were dramatically increased, whereas the antioxidant activity was less influenced by digestion in the stomach for both onion extract and quercetin standard. The inhibitory effect of lipid oxidation of onion extract in mouse brain lipids increased after digestion in the stomach. The inhibitory effect of lipid oxidation of onion extract was higher in the high-fat-fed mouse brain lipids than that in the low-fat-fed mouse brain lipids. The major study finding is that the antioxidative effect of onion extract may be higher in high-fat-fed mouse brain lipids than that in low-fat-fed mouse brain lipids. Thus, dietary onion may have important applications as a natural antioxidant agent in a high-fat diet.

  2. Supplementing antioxidants to pigs fed diets high in oxidants: II. Effects on carcass characteristics, meat quality, and fatty acid profile.

    PubMed

    Lu, T; Harper, A F; Dibner, J J; Scheffler, J M; Corl, B A; Estienne, M J; Zhao, J; Dalloul, R A

    2014-12-01

    The study was conducted to determine effects of dietary supplementation with a blend of antioxidants (ethoxyquin and propyl gallate) on carcass characteristics, meat quality, and fatty acid profile in finishing pigs fed a diet high in oxidants. A total of 100 crossbred barrows (10.9±1.4 kg BW, 36±2 d of age) were randomly allotted to 5 diet treatments (5 replicate pens per treatment, 4 pigs per pen). Treatments included: 1) HO: high oxidant diet containing 5% oxidized soy oil and 10% PUFA source which contributed 5.56% crude fat and 2.05% docosahexanoic acid (DHA) to the diet; 2) VE: the HO diet with 11 IU/kg of added vitamin E; 3) AOX: the HO diet with antioxidant blend (135 mg/kg); 4) VE+AOX: the HO diet with both vitamin E and antioxidant blend; and 5) SC: a standard corn-soy control diet with nonoxidized oil and no PUFA source. The trial lasted for 118 d; on d 83, the HO diet pigs were switched to the SC diet due to very poor health. From that point, the VE pigs displayed the poorest performance. On d 118, 2 pigs from each pen were harvested for sampling. Compared to pigs fed SC diet, the HO and VE pigs (P<0.05) showed lighter carcass weight, less back fat, less lean body mass, and smaller loin eye area. In addition, the VE pigs had decreased dressing percentage than the AOX and VE+AOX pigs (65.7 vs. 75.3 and 74.2%). Compared to the SC pigs, greater moisture percentage (74.7 vs. 77.4%) and less extractable lipid content (2.43 vs. 0.95%) were found in VE fed pigs (P<0.05). Drip loss of loin muscle in VE pigs was less than SC pigs (0.46 vs. 3.98%, P=0.02), which was associated with a trend for a greater 24-h muscle pH (5.74 vs. 5.54, P=0.07). The antioxidant blend addition in the high oxidant diet attenuated all of these effects to levels similar to SC (P>0.05), except a* value (redness) and belly firmness. Visible yellow coloration of backfat and lipofuscin in HO and VE pigs was observed at harvest at d 118. The high oxidant diet resulted in greater

  3. Effects of high-sulphur water on hepatic gene expression of steers fed fibre-based diets.

    PubMed

    Kessler, K L; Olson, K C; Wright, C L; Austin, K J; McInnerney, K; Johnson, P S; Cockrum, R R; Jons, A M; Cammack, K M

    2013-10-01

    Sulphur-induced polioencephalomalacia (sPEM), a neurological disorder affecting ruminants, is frequently associated with the consumption of high-sulphur (S) water and subsequent poor performance. Currently, there is no economical method for S removal from surface water sources, and alternative water sources are typically neither readily available nor cost-effective. Determination of genes differentially expressed in response to high-S water consumption may provide a better understanding of the physiology corresponding to high dietary S and ultimately lead to the development of treatment and prevention strategies. The objective of this study was to determine changes in gene expression in the liver, an organ important for S metabolism, of fibre-fed steers consuming high-S water. For this study, liver tissues were collected on the final day of a trial from yearling steers randomly assigned to low-S water control (566 mg/kg SO4 ; n = 24), high-S water (3651 mg/kg SO4 ; n = 24) or high-S water plus clinoptilolite supplemented at either 2.5% (n = 24) or 5.0% (n = 24) of diet dry matter (DM). Microarray analyses on randomly selected healthy low-S control (n = 4) and high-S (n = 4; no clinoptilolite) steers using the Affymetrix GeneChip Bovine Genome Array revealed 488 genes upregulated (p < 0.05) and 154 genes downregulated (p < 0.05) in response to the high- vs. low-S water consumption. Real-time RT-PCR confirmed the upregulation (p < 0.10) of seven genes involved in inflammatory response and immune functions. Changes in such genes suggest that ruminant animals administered high-S water may be undergoing an inflammation or immune response, even if signs of sPEM or compromised health are not readily observed. Further study of these, and other affected genes, may deliver new insights into the physiology underlying the response to high dietary S, ultimately leading to the development of treatments for high S-affected ruminant

  4. Age, growth and mortality of Clarias gariepinus (Siluriformes: Clariidae) in the Mid-Cross River-Floodplain ecosystem, Nigeria.

    PubMed

    Okogwu, Okechukwu Idumah

    2011-12-01

    Clarias gariepinus is a threatened highly prized species used for some elite ceremonies by the local communities. Artisanal fishers take advantage of this species annual breeding migration from the lower Cross River to the floodplain lakes in Mid-Cross River during the rainy season, and some migrant stocks are not able to spawn. Since there is a lack of information on this species population dynamics in the Mid-Cross area, this study aimed to evaluate the age, growth and mortality to support the development of effective management plans. For this, monthly overnight gill net catches (from 6 to 72mm mesh sizes) were developed between March 2005 and February 2007. Growth parameters were determined using the FiSAT II length-frequency distribution. A total of 1 421 fish were collected during the survey. The asymptotic growth (L(infinity)) was 80.24cm, growth rate (K) was 0.49/year while the longevity was 6.12 years. The annual instantaneous rate of total mortality (Z) was 2.54/year and the natural mortality (M) was 0.88. Fishing mortality (1.66/year) was higher than the biological reference points (F(opt) = 0.83 and F(limit) = 1.11) and the exploitation rate (0.66) was higher than the predicted value (E(max) = 0.64) indicating that C. gariepinus was over exploited in the Mid-Cross River-Floodplain ecosystem. Some recommended immediate management actions are to strengthen the ban of ichthyocide fishing, closure of the floodplain lakes for most of the year, restricted access to the migratory path of the fish during the flood period and vocational training to the fishers. In order to recover and maintain a sustainable harvest, I suggest that a multi-sector stakeholder group should be formed with governmental agents, community leaders, fishers, fisheries scientists and non-governmental organizations. These short and long term measures, if carefully applied, will facilitate recovery of the fishery.

  5. Intermittent access to liquid sucrose differentially modulates energy intake and related central pathways in control or high-fat fed mice.

    PubMed

    Soto, Marion; Chaumontet, Catherine; Even, Patrick C; Nadkarni, Nachiket; Piedcoq, Julien; Darcel, Nicolas; Tomé, Daniel; Fromentin, Gilles

    2015-03-01

    Intake of sodas has been shown to increase energy intake and to contribute to obesity in humans and in animal models, although the magnitude and importance of these effects are still debated. Moreover, intake of sugar sweetened beverages is often associated with high-fat food consumption in humans. We studied two different accesses to a sucrose-sweetened water (SSW, 12.3%, a concentration similar to that usually found in sugar sweetened beverages) in C57BL/6 mice fed a normal-fat (NF) or a high-fat (HF) diet in a scheduled access (7.5h). NF-fed and HF-fed mice received during 5weeks access to water, to SSW continuously for 7.5h (SSW), or to water plus SSW for 2h (randomly-chosen time slot for only 5 random days/week) (SSW-2h). Mouse preference for SSW was greater in HF-fed mice than NF-fed mice. Continuous SSW access induced weight gain whatever the diet and led to greater caloric intake than mice drinking water in NF-fed mice and in the first three weeks in HF-fed mice. In HF-fed mice, 2h-intermittent access to SSW induced a greater body weight gain than mice drinking water, and led to hyperphagia on the HF diet when SSW was accessible compared to days without SSW 2h-access (leading to greater overall caloric intake), possibly through inactivation of the anorexigenic neuropeptide POMC in the hypothalamus. This was not observed in NF-fed mice, but 2h-intermittent access to SSW stimulated the expression of dopamine, opioid and endocannabinoid receptors in the nucleus accumbens compared to water-access. In conclusion, in mice, a sucrose solution provided 2h-intermittently and a high-fat diet have combined effects on peripheral and central homeostatic systems involved in food intake regulation, a finding which has significant implications for human obesity.

  6. Effect of exercise and caloric restriction on DMBA induced mammary tumorigenesis and plasma lipids in rats fed high fat diets

    SciTech Connect

    Magrane, D. )

    1991-03-15

    Female Sprague-Dawley rats were given a single 10 mg dose of 7, 12-Dimethylbenz(a)anthracene (DMBA) and grouped as follows: (1) low fat-sedentary (LF-SED), (2) low fat-exercised (LF-EX), (3) high fat-sedentary (HF-SED), (4) high fat-exercised (HF-EX), (5) high fat-caloric restricted (HF-RES). Diets were isocaloric and contained 3.9% (LF) and 19.4% (HF) of corn oil. Group 5 was fed a 25% caloric restricted diet but with 24.6% fat content to equalize fat intake to HF-SED. After 12 weeks of diet or treadmill exercise, tumor data and plasma lipid profiles were determined. Results show that rats on HF-EX had more total tumors, % of tumors and tumors per tumor bearing rat than rats on HF-SED. The effect of exercise was also evident in LF-EX rats, when compared to LF-SED. Average tumor size and tumor volumes were not affected. The HF-RES group showed reduced tumor profiles compared to HF-SED. HDL, LDL, triglycerides and total cholesterol were unaffected by HF or LF diets or exercise. These data suggest that tumorigenesis is increased by moderate and constant exercise.

  7. Effect of green tea extract microencapsulation on hypertriglyceridemia and cardiovascular tissues in high fructose-fed rats.

    PubMed

    Jung, Moon Hee; Seong, Pil Nam; Kim, Myung Hwan; Myong, Na-Hye; Chang, Moon-Jeong

    2013-10-01

    The application of polyphenols has attracted great interest in the field of functional foods and nutraceuticals due to their potential health benefits in humans. However, the effectiveness of polyphenols depends on their bioactivity and bioavailability. In the present study, the bioactive component from green tea extract (GTE) was administrated orally (50 mg/kg body weight/day) as free or in a microencapsulated form with maltodextrin in rats fed a high fructose diet. High fructose diet induced features of metabolic syndrome including hypertriglyceridemia, hyperuricemia, increased serum total cholesterol, and retroperitoneal obesity. In addition, myocardial fibrosis was increased. In rats receiving high fructose diet, the lowering of blood triglycerides, total cholesterol, non esterified fatty acid (NEFA) and uric acid, as well as the reduction in final body weight and retroperitoneal fat weight associated with the administration of GTE, led to a reversal of the features of metabolic syndrome (P < 0.05). In particular, the administration of microencapsulated GTE decreased myocardial fibrosis and increased liver catalase activity consistent with a further alleviation of serum NEFA, and hyperuricemia compared to administration of GTE. Taken together, our results suggest that microencapsulation of the bioactive components of GTE might have a protective effect on cardiovasucular system by attenuating the adverse features of myocardial fibrosis, decreasing uric acid levels and increasing hepatic catalase activity effectively by protecting their bioactivities.

  8. Distinct fatty acid composition of some edible by-products from bovines fed high or low silage diets.

    PubMed

    Alfaia, Cristina M; Alves, Susana P; Pestana, José M; Madeira, Marta S; Moreira, Olga; Santos-Silva, José; Bessa, Rui Jb; Toldrá, Fidel; Prates, José Am

    2017-04-01

    In the present study, it was hypothesized that the incorporation of fatty acids is distinct among ruminant tissues and that it could be modulated by diet composition. To test this hypothesis, fatty acid composition, including conjugated linoleic acid isomers, of the most relevant beef by-products (brain, heart, kidney, liver, pancreas and tongue) from young bulls those fed distinct silage levels was assessed. Data indicated a large variation in fatty acid profile and conjugated linoleic acid composition among edible by-products. The most abundant fatty acids were C16:0 (kidney), C18:0 (heart and liver) and C18:1 c9 (brain, pancreas and tongue) followed by C20:4 n-6, except in brain (C22:6 n-3 predominates). Brain, as shown by principal component analysis, presents a distinct fatty acid composition compared to the other beef by-products analysed. In addition, high silage diet relative to low silage diet promoted an increase of n-3 polyunsaturated fatty acid, t11, t13 and t11, c13 conjugated linoleic acid in heart, kidney, liver and pancreas. Overall, the data suggested that beef by-products had, in general, high contents of cholesterol, saturated fatty acid and trans fatty acid, as well as high levels of conjugated linoleic acid. Therefore, from a nutritional point of view they are recommended only in small amounts as part of a balanced diet.

  9. Ferric citrate decreases ruminal hydrogen sulphide concentrations in feedlot cattle fed diets high in sulphate.

    PubMed

    Drewnoski, Mary E; Doane, Perry; Hansen, Stephanie L

    2014-01-28

    Dissimilatory reduction of sulphate by sulphate-reducing bacteria in the rumen produces sulphide, which can lead to a build-up of the toxic gas hydrogen sulphide (H2S) in the rumen when increased concentrations of sulphate are consumed by ruminants. We hypothesised that adding ferric Fe would competitively inhibit ruminal sulphate reduction. The effects of five concentrations and two sources (ferric citrate or ferric ammonium citrate) of ferric Fe were examined in vitro (n 6 per treatment). Rumen fluid was collected from a steer that was adapted to a high-concentrate, high-sulphate diet (0·51 % S). The addition of either source of ferric Fe decreased (P< 0·01) H2S concentrations without affecting gas production (P= 0·38), fluid pH (P= 0·80) or in vitro DM digestibility (P= 0·38) after a 24 h incubation. An in vivo experiment was conducted using eight ruminally fistulated steers (543 (sem 12) kg) in a replicated Latin square with four periods and four treatments. The treatments included a high-concentrate, high-sulphate control diet (0·46 % S) or the control diet plus ferric ammonium citrate at concentrations of 200, 300 or 400 mg Fe/kg diet DM. The inclusion of ferric Fe did not affect DM intake (P= 0·21). There was a linear (P< 0·01) decrease in the concentration of ruminal H2S as the addition of ferric Fe concentrations increased. Ferric citrate appears to be an effective way to decrease ruminal H2S concentrations, which could allow producers to safely increase the inclusion of ethanol co-products.

  10. It ain't necessarily so about high rates: memo to the Fed

    SciTech Connect

    Wright, J.W.

    1981-06-21

    The author sees high interest rates and the rise of energy prices as the cause of the US economic troubles and the resultant decline of standard of living. Eurodollars have come into the US for investment, raised the domestic money supply and, therefore, nullified the tight money policy of the Federal Reserve Board. The author advocates a plan be devised to cut interest rates below 8% and control credit. (PSB)

  11. Hypocholesterolemic effect of daily fisetin supplementation in high fat fed Sprague-Dawley rats.

    PubMed

    Shin, Min-Jeong; Cho, Yoonsu; Moon, Jiyoung; Jeon, Hyun Ju; Lee, Seung-Min; Chung, Ji Hyung

    2013-07-01

    We aimed to test whether fisetin could modulate cholesterol homeostasis in rats with diet-induced hypercholesterolemia, and further investigated the underlying mechanisms by which fisetin exerts its cholesterol lowering effect. Blood lipid profile, hepatic cholesterol content, as well as gene expressions in cholesterol metabolism were examined. Elevated levels of total cholesterol and LDL-cholesterol, along with hepatic cholesterol content in a high fat group were found to be significantly reduced by fisetin. The high fat diet significantly decreased hepatic mRNA levels of LDLR, SREBP2, HMGCR and PCSK9 in comparison to the control diet, however, fisetin did not further elicit any changes in mRNA levels of the same genes. The high fat diet dramatically increased the transcript levels of CYP7A1, which was subsequently reversed by the fisetin. In HepG2 cells, fisetin was found to increase the levels of a nuclear form of SREBP2 and LDLR. In conclusion, fisetin supplementation displayed hypocholesterolemic effects by modulating the expression of genes associated with cholesterol and bile acid metabolism.

  12. Consequences of exchanging carbohydrates for proteins in the cholesterol metabolism of mice fed a high-fat diet.

    PubMed

    Raymond, Frédéric; Wang, Long; Moser, Mireille; Metairon, Sylviane; Mansourian, Robert; Zwahlen, Marie-Camille; Kussmann, Martin; Fuerholz, Andreas; Macé, Katherine; Chou, Chieh Jason

    2012-01-01

    Consumption of low-carbohydrate, high-protein, high-fat diets lead to rapid weight loss but the cardioprotective effects of these diets have been questioned. We examined the impact of high-protein and high-fat diets on cholesterol metabolism by comparing the plasma cholesterol and the expression of cholesterol biosynthesis genes in the liver of mice fed a high-fat (HF) diet that has a high (H) or a low (L) protein-to-carbohydrate (P/C) ratio. H-P/C-HF feeding, compared with L-P/C-HF feeding, decreased plasma total cholesterol and increased HDL cholesterol concentrations at 4-wk. Interestingly, the expression of genes involved in hepatic steroid biosynthesis responded to an increased dietary P/C ratio by first down-regulation (2-d) followed by later up-regulation at 4-wk, and the temporal gene expression patterns were connected to the putative activity of SREBF1 and 2. In contrast, Cyp7a1, the gene responsible for the conversion of cholesterol to bile acids, was consistently up-regulated in the H-P/C-HF liver regardless of feeding duration. Over expression of Cyp7a1 after 2-d and 4-wk H-P/C-HF feeding was connected to two unique sets of transcription regulators. At both time points, up-regulation of the Cyp7a1 gene could be explained by enhanced activations and reduced suppressions of multiple transcription regulators. In conclusion, we demonstrated that the hypocholesterolemic effect of H-P/C-HF feeding coincided with orchestrated changes of gene expressions in lipid metabolic pathways in the liver of mice. Based on these results, we hypothesize that the cholesterol lowering effect of high-protein feeding is associated with enhanced bile acid production but clinical validation is warranted. (246 words).

  13. Sardine protein diet increases plasma glucagon-like peptide-1 levels and prevents tissue oxidative stress in rats fed a high-fructose diet.

    PubMed

    Madani, Zohra; Sener, Abdullah; Malaisse, Willy J; Dalila, Ait Yahia

    2015-11-01

    The current study investigated whether sardine protein mitigates the adverse effects of fructose on plasma glucagon‑like peptide-1 (GLP-1) and oxidative stress in rats. Rats were fed casein (C) or sardine protein (S) with or without high‑fructose (HF) for 2 months. Plasma glucose, insulin, GLP‑1, lipid and protein oxidation and antioxidant enzymes were assayed. HF rats developed obesity, hyperglycemia, hyperinsulinemia, insulin resistance and oxidative stress despite reduced energy and food intakes. High plasma creatinine and uric acid levels, in addition to albuminuria were observed in the HF groups. The S‑HF diet reduced plasma glucose, insulin, creatinine, uric acid and homeostasis model assessment‑insulin resistance index levels, however increased GLP‑1 levels compared with the C‑HF diet. Hydroperoxides were reduced in the liver, kidney, heart and muscle of S‑HF fed rats compared with C‑HF fed rats. A reduction in liver, kidney and heart carbonyls was observed in S‑HF fed rats compared with C‑HF fed rats. Reduced levels of nitric oxide (NO) were detected in the liver, kidney and heart of the S‑HF fed rats compared with C‑HF fed rats. The S diet compared with the C diet reduced levels of liver hydroperoxides, heart carbonyls and kidney NO. The S‑HF diet compared with the C‑HF diet increased the levels of liver and kidney superoxide dismutase, liver and muscle catalase, liver, heart and muscle glutathione peroxidase and liver ascorbic acid. The S diet prevented and reversed insulin resistance and oxidative stress, and may have benefits in patients with metabolic syndrome.

  14. Zero Voltage Soft Switching Duty Cycle Pulse Modulated High Frequency Inverter-Fed

    NASA Astrophysics Data System (ADS)

    Ishitobi, Manabu; Matsushige, Takayuki; Nakaoka, Mutsuo; Bessyo, Daisuke; Omori, Hideki; Terai, Haruo

    The utility grid voltage of commercial AC power source in Japan and USA is 100V, but in other Asian and European countries, it is 220V. In recent years, in Japan 200V outputted single-phase three-wire system begins to be used for high power applications. In 100V utility AC power applications and systems, an active voltage clamped quasi-resonant inverter circuit topology sing IGBTs has been effectively used so far for the consumer microwave oven. In this paper, presented is a half bridge type voltage-clamped asymmetrical soft switching PWM high-frequency inverter type AC-DC converter using IGBTs which is designed for consumer magnetron drive used as the consumer microwave oven in 200V utility AC power system. The zero voltage soft switching inverter treated here can use the same power rated switching semiconductor devices and three-winding high frequency transformer as those of the active voltage clamped quasi-resonant inverter using the IGBTs that has already been used for 100V utility AC power source. The operating performances of the voltage source single ended push pull (SEPP) type soft switching PWM inverter are evaluated and discussed for 100V and 200V common use consumer microwave oven. The harmonic line current components in the utility AC power side of the AC-DC power converter with ZVS-PWM SEPP inverter are reduced and improved on the basis of sine wave like pulse frequency modulation and sine wave like pulse width modulation for the utility AC voltage source.

  15. Effects of xanthohumol-rich extract from the hop on fatty acid metabolism in rats fed a high-fat diet.

    PubMed

    Yui, Kazuki; Kiyofuji, Ayane; Osada, Kyoichi

    2014-01-01

    Xanthohumol is the major prenylated flavonoid of female inflorescences of the hop plant (Humulus lupulus L.) and is a hydrophobic flavonoid. We examined the effects of dietary xanthohumol-rich hop extract in obese rats that was induced by feeding a high-fat diet. Dietary xanthohumol-rich hop extract significantly lowered the body weight gain of these rats compared to rats fed a high-fat diet without the extract. The increase of body weight, liver weight, and triacylglycerol levels in the plasma and liver of the rats fed a high-fat diet was ameliorated by dietary xanthohumol-rich hop extract. Dietary xanthohumol-rich hop extract tended to reduce hepatic fatty acid synthesis through the reduction of hepatic SREBP1c mRNA expression in the rats fed a high-fat diet. The excreted of triacylglycerol into feces also was promoted by dietary xanthohumol-rich hop extract. Plasma adiponectin levels in the rats fed a high-fat diet also tended to be elevated by dietary xanthohumol-rich hop extract. Thus, xanthohumol-rich hop extract may inhibit the increase of body weight, liver weight, and triacylglycerol in the plasma and liver induced by feeding high-fat diet through the regulation of hepatic fatty acid metabolism and inhibition of intestinal fat absorption. Therefore, xanthohumol-rich hop extract may exert preventive function on the increase of body weight and tissue triacylglycerol levels by overnutrition.

  16. An evaluation of the accuracy and precision of methane prediction equations for beef cattle fed high-forage and high-grain diets.

    PubMed

    Escobar-Bahamondes, P; Oba, M; Beauchemin, K A

    2017-01-01

    The study determined the performance of equations to predict enteric methane (CH4) from beef cattle fed forage- and grain-based diets. Many equations are available to predict CH4 from beef cattle and the predictions vary substantially among equations. The aims were to (1) construct a database of CH4 emissions for beef cattle from published literature, and (2) identify the most precise and accurate extant CH4 prediction models for beef cattle fed diets varying in forage content. The database was comprised of treatment means of CH4 production from in vivo beef studies published from 2000 to 2015. Criteria to include data in the database were as follows: animal description, intakes, diet composition and CH4 production. In all, 54 published equations that predict CH4 production from diet composition were evaluated. Precision and accuracy of the equations were evaluated using the concordance correlation coefficient (r c ), root mean square prediction error (RMSPE), model efficiency and analysis of errors. Equations were ranked using a combined index of the various statistical assessments based on principal component analysis. The final database contained 53 studies and 207 treatment means that were divided into two data sets: diets containing ⩾400 g/kg dry matter (DM) forage (n=116) and diets containing ⩽200 g/kg DM forage (n=42). Diets containing between ⩽400 and ⩾200 g/kg DM forage were not included in the analysis because of their limited numbers (n=6). Outliers, treatment means where feed was fed restrictively and diets with CH4 mitigation additives were omitted (n=43). Using the high-forage dataset the best-fit equations were the International Panel on Climate Change Tier 2 method, 3 equations for steers that considered gross energy intake (GEI) and body weight and an equation that considered dry matter intake and starch:neutral detergent fiber with r c ranging from 0.60 to 0.73 and RMSPE from 35.6 to 45.9 g/day. For the high-grain diets, the 5 best

  17. High-power dual-fed traveling wave photodetector circuits in silicon photonics.

    PubMed

    Chang, Chia-Ming; Sinsky, Jeffrey H; Dong, Po; de Valicourt, Guilhem; Chen, Young-Kai

    2015-08-24

    We introduce the concept of dual-illuminated photodetectors for high-power applications. Illuminating the photodetector on both sides doubles the number of optical channels, boosting DC and RF power handling capability. This concept is demonstrated utilizing multiple-stage dual-illuminated traveling wave photodetector circuits in silicon photonics, showing a maximum DC photocurrent of 112 mA and a 3-dB bandwidth of 40 GHz at 0.3 mA. Peak continuous-wave RF power is generated up to 12.3 dBm at 2 GHz and 5.3 dBm at 40 GHz, at a DC photocurrent of 55 mA. High speed broadband data signals are detected with eye amplitudes of 2.2 V and 1.3 V at 10 Gb/s and 40 Gb/s, respectively. A theoretical analysis is presented illustrating design tradeoffs for the multiple-stage photodetector circuits based on the bandwidth and power requirements.

  18. Highly efficient star formation in NGC 5253 possibly from stream-fed accretion.

    PubMed

    Turner, J L; Beck, S C; Benford, D J; Consiglio, S M; Ho, P T P; Kovács, A; Meier, D S; Zhao, J-H

    2015-03-19

    Gas clouds in present-day galaxies are inefficient at forming stars. Low star-formation efficiency is a critical parameter in galaxy evolution: it is why stars are still forming nearly 14 billion years after the Big Bang and why star clusters generally do not survive their births, instead dispersing to form galactic disks or bulges. Yet the existence of ancient massive bound star clusters (globular clusters) in the Milky Way suggests that efficiencies were higher when they formed ten billion years ago. A local dwarf galaxy, NGC 5253, has a young star cluster that provides an example of highly efficient star formation. Here we report the detection of the J = 3→2 rotational transition of CO at the location of the massive cluster. The gas cloud is hot, dense, quiescent and extremely dusty. Its gas-to-dust ratio is lower than the Galactic value, which we attribute to dust enrichment by the embedded star cluster. Its star-formation efficiency exceeds 50 per cent, tenfold that of clouds in the Milky Way. We suggest that high efficiency results from the force-feeding of star formation by a streamer of gas falling into the galaxy.

  19. Antiatherogenic Effect of Camellia japonica Fruit Extract in High Fat Diet-Fed Rats

    PubMed Central

    Lee, Hyun-Ho; Paudel, Keshav Raj; Jeong, Jieun; Wi, An-Jin; Park, Whoa-Shig; Kim, Dong-Wook

    2016-01-01

    Hypercholesterolemia is a well-known etiological factor for cardiovascular disease and a common symptom of most types of metabolic disorders. Camellia japonica is a traditional garden plant, and its flower and seed have been used as a base oil of traditional cosmetics in East Asia. The present study was carried out to evaluate the effect of C. japonica fruit extracts (CJF) in a high fat diet- (HFD-) induced hypercholesterolemic rat model. CJF was administered orally at three different doses: 100, 400, and 800 mg·kg−1·day−1 (CJF 100, 400, and 800, resp.). Our results showed that CJF possessed strong cholesterol-lowering potency as indicated by the decrease in serum total cholesterol (TC), triglyceride (TG), and low-density lipoprotein (LDL), accompanied by an increase in serum high-density lipoprotein (HDL). Furthermore, CJF reduced serum lipid peroxidation by suppressing the formation of thiobarbituric acid reactive substance. In addition, oil red O (ORO) staining of rat arteries showed decreased lipid-positive staining in the CJF-treated groups compared to the control HFD group. Taken together, these results suggest that CJF could be a potent herbal therapeutic option and source of a functional food for the prevention and treatment of atherosclerosis and other diseases associated with hypercholesterolemia. PMID:27340422

  20. Taurine Treatment Modulates Circadian Rhythms in Mice Fed A High Fat Diet

    PubMed Central

    Figueroa, Ana Lucia C.; Figueiredo, Hugo; Rebuffat, Sandra A.; Vieira, Elaine; Gomis, Ramon

    2016-01-01

    Close ties have been made among certain nutrients, obesity, type 2 diabetes and circadian clocks. Among nutrients, taurine has been documented as being effective against obesity and type 2 diabetes. However, the impact of taurine on circadian clocks has not been elucidated. We investigated whether taurine can modulate or correct disturbances in daily rhythms caused by a high-fat diet in mice. Male C57BL/6 mice were divided in four groups: control (C), control + taurine (C+T), high-fat diet (HFD) and HFD + taurine (HFD+T). They were administered 2% taurine in their drinking water for 10 weeks. Mice were euthanized at 6:00, 12:00, 18:00, and 24:00. HFD mice increased body weight, visceral fat and food intake, as well as higher levels of glucose, insulin and leptin, throughout the 24 h. Taurine prevented increments in food intake, body weight and visceral fat, improved glucose tolerance and insulin sensitivity and reduced disturbances in the 24 h patterns of plasma insulin and leptin. HFD downregulated the expression of clock genes Rev-erbα, Bmal1, and Per1 in pancreatic islets. Taurine normalized the gene and protein expression of PER1 in beta-cells, which suggests that it could be beneficial for the correction of daily rhythms and the amelioration of obesity and diabetes. PMID:27857215

  1. Effects of Silicon vs. Hydroxytyrosol-Enriched Restructured Pork on Liver Oxidation Status of Aged Rats Fed High-Saturated/High-Cholesterol Diets

    PubMed Central

    Merino, Pinar; López-Oliva, M. Elvira; Bastida, Sara; Benedí, Juana; Sánchez-Muniz, Francisco J.

    2016-01-01

    Background Pork is an essential component of the diet that has been linked with major degenerative diseases and development of non-alcoholic steatohepatitis (NASH). Previous studies have. Previous studies have demonstrated the in vitro antioxidant activity of silicon (Si). Furthermore, when Si is added to restructured pork (RP) strongly counterbalances the negative effect of high-cholesterol-ingestion, acting as an active hypocholesterolemic and hypolipemic dietary ingredient in aged rats. Objective This study was designed to evaluate the effects of Si vs hydroxytyrosol (HxT) RP on liver antioxidant defense in aged rats fed cholesterol-enriched high saturated/high cholesterol diets as a NASH model. Methods Four diets were prepared: Control RP diet (C) with non-added cholesterol; Cholesterol-enriched high-saturated/high-cholesterol control RP diet (CHOL-C) with added cholesterol and cholic acid; Si- or HxT-RP cholesterol-enriched high-saturated/high-cholesterol diets (CHOL-Si and CHOL-HxT). Groups of six male Wistar rats (1-yr old) were fed these modified diets for eight weeks. Total cholesterol, hepatosomatic index, liver Nrf2 and antioxidant (CAT, SOD, GSH, GSSG, GR, GPx) markers were determined. Results Both CHOL-Si and CHOL-HxT diets enhanced the liver antioxidant status, reduced hepatosomatic index and increased SOD actvity. Hydrogen peroxide removal seemed to be involved, explaining that the value of redox index was even lower than C without changing the CAT activity. CHOL-Si results were quite better than CHOL-HxT in most measured parameters. Conclusions Our study suggests that Si incorporated into RP matrix was able to counterbalance, more efficiently than HxT, the deleterious effect of consuming a high-saturated/high-cholesterol diet, by improving the liver antioxidant defenses in the context of NASH. PMID:26807847

  2. Antioxidant and antiapoptotic effects of pine needle powder ingestion and endurance training in high cholesterol-fed rats

    PubMed Central

    Seo, Hyobin; Lee, Nam-Ho; Ryu, Sungpil

    2014-01-01

    [Purpose] Pine needle is a kind of medicinal plant ingested traditionally for a variety of purposes. Therefore, we examined the antioxidant and antiapoptotic capacities of pine needle ingestion in high cholesterol-fed and endurance exercise-trained rats. [Methods] Animals were divided into six groups as; CON: normal diet control group; EX: normal diet and exercise training group; HC: high cholesterol diet group; HCE: high cholesterol diet and exercise training group; HCP: high cholesterol and pine needle group; HCPE: high-cholesterol and pine needle diet with exercise training group, respectively. Each group consisted of seven Sprague-Dawley male rats. The swim-training groups, EX, HCE, and HCPE swam in the swim pool 60 min/d and 5 d/week for 5 weeks. During the rearing periods, freeze-dried pine needle powder mix with 5% of the high cholesterol diet was supplied to the HCP and HCPE groups. Gastrocnemius muscle was used as the skeletal muscle. Malondialdehyde (MDA), Mn-containing superoxide dismutase (Mn-SOD), Cu, Zn containing superoxide dismutase (Cu,Zn-SOD), and glutathione peroxidase (GPx) were analyzed for their antioxidant capacities. Finally, p53, Bcl-2 (B-cell lymphoma 2), caspase-3 protein expression was analyzed to determine antiapoptotic ability. [Results] MDA showed low content in HCPE compared to the HC. Mn-SOD, Cu,Zn-SOD, and GPx protein expression was significantly increased by pine needle ingestion and/or exercise training. In addition, suppression of p53 protein expression resulted in Bcl-2 increase followed by caspase-3 decrease with/without pine needle ingestion and exercise training. [Conclusion] When exercise training in addition to pine needle powder ingestion may be a helpful nutritional regimen to athletes and exercisers. PMID:25566467

  3. A high gain patch fed horn antenna for millimeter wave imaging receiver

    NASA Astrophysics Data System (ADS)

    Shireen, Rownak; Hwang, Timothy; Shi, Shouyuan; Prather, D. W.

    2005-11-01

    In this paper, antennas that combine transitions from microstrip line / coplanar waveguide (CPW) to horn antenna in a single unit are presented. Conventional single layer microstrip patch antennas inherently suffer narrow operation bandwidth; to widen the frequency bandwidth, stacked patch antennas are used and high gain is achieved from the horn antenna. Here, microstrip line / CPW directly feeds the bottom patch while the top patch couples parasitically to the bottom patch. For -10 dB return loss, 25% bandwidth is achieved for both microstrip line to horn antenna (MSLTHA) at center frequency f0=17.5 GHz and for CPW to horn antenna (CPWTHA) at f0=97 GHz. The designs were optimized using 3D Finite Element Method (FEM) software HFSS by Ansoft Corporation. The optimal design of MSLTHA has been fabricated and characterized. The return loss and far field radiation pattern are measured and has been found in very good agreement with the simulation results.

  4. Fed-batch approach to production of 2,3-butanediol by Klebsiella pneumoniae grown on high substrate concentrations

    SciTech Connect

    Yu, E.K.C.; Saddler, J.N.

    1983-09-01

    The bioconversion of sugars present in wood hemicellulose to 2,3-butanediol by Klebsiella pneumoniae grown on high sugar concentrations was investigated. When K. pneumoniae was grown under finite air conditions in the presence of added acetic acid, 50 g of D-glucose and D-xylose per liter could be converted to 25 and 27 g of butanediol per liter, respectively. The efficiency of bioconversion decreased with increasing sugar substrate concentrations (up to 200 g/liter). Butanediol production at low sugar substrate concentrations was less efficient when the organism was grown under aerobic conditions; however, final butanediol values were higher for cultures grown on an initial sugar concentration of 150 g/liter, particularly when the inoculum was first acclimatized to high sugar levels. When a double fed-batch approach (daily additions of sugars together with yeast extract) was used under aerobic conditions, up to 88 and 113 g of combined butanediol and acetyl methyl carbinol per liter could be obtained from the utilization of 190 g of D-xylose and 226 g of D-glucose per liter, respectively. 22 references.

  5. Hypolipidemic effect of n-butanol Extract from Asparagus officinalis L. in mice fed a high-fat diet.

    PubMed

    Zhu, Xinglei; Zhang, Wen; Pang, Xiufeng; Wang, Jiesi; Zhao, Jingjing; Qu, Weijing

    2011-08-01

    During industrial processing of Asparagus (Asparagus officinalis L.), around half of each spear is discarded. However, these discarded asparagus (by-products) might be used as food supplements for their potential therapeutic effects. This study evaluated the hypolipidemic effect of n-butanol extract (BEA) from asparagus by-products in mice fed a high-fat diet (HFD). Continuous HFD feeding caused hyperlipidemia, oxidative stress and liver damage in mice. Interestingly, while BEA significantly decreased the levels of body weight gain, serum total cholesterol and low density lipoprotein cholesterol, it dramatically increased the high density lipoprotein level when administered at three different doses (40, 80 or 160 mg/kg body weight) for 8 weeks in hyperlipidemic mice. In addition, BEA decreased the levels of alanine transaminase, aspartate transaminase and alkaline phosphatase in serum. Finally, superoxide dismutase activity and the total antioxidation capacity were evidently increased, while the malondialdehyde level and the distribution of lipid droplets were reduced in liver cells of BEA-treated mice. Taken together, the findings of this study suggested that BEA had a strong hypolipidemic function and could be used as a supplement in healthcare foods and drugs or in combination with other hypolipidemic drugs.

  6. Transcriptome analysis of the effects of chitosan on the hyperlipidemia and oxidative stress in high-fat diet fed mice.

    PubMed

    Wang, Bin; Zhang, Sicong; Wang, Xiaoya; Yang, Shuo; Jiang, Qixing; Xu, Yanshun; Xia, Wenshui

    2017-04-03

    Transcriptome analysis was performed to investigate the alterations in gene expression after chitosan (CS) treatment on the liver of mice fed with high-fat diet (HFD). The results showed that the body weight, the liver weight and the epididymal fat mass of HFD mice, which were 62.98%, 46.51% and 239.37%, respectively, higher than those of control mice, could be significantly decreased by chitosan supplementation. Also, high-fat diet increased both plasma lipid and liver lipid as compared with the control mice. Chitosan supplementation decreased the plasma lipid and liver lipid, increased the lipoprotein lipase (LPL) and hepatic lipase (HL) activity, increased T-AOC and decreased MDA in the liver and the epididymis adipose as compared with the HFD mice. Transcriptome analysis indicated that increased Mups, Lcn2, Gstm3 and CYP2E1 expressions clearly indicated HFD induced lipid metabolism disorder and oxidative damage. Especially, chitosan treatment decreased the Mup17 and Lcn2 expressions by 64.32% and 82.43% respectively as compared with those of HFD mice. These results indicated that chitosan possess the ability to improve the impairment of lipid metabolism as strongly associated with increased Mups expressions and gene expressions related to oxidative stress.

  7. Evaluation of the high density lipoprotein cholesterol protective effect against atherogenesis in rabbits fed cholesterol supplemented diets.

    PubMed

    Neuman, M P; Neuman, J; Mosso, H E; Ibarra, R; Rodríguez, S; Scavini, L M; Achille, A; Pecorini, V

    1990-01-01

    Plasma high density lipoprotein cholesterol (HDL-C) was evaluated in 15 rabbits fed cholesterol supplemented diets to assess its protective effect on the atherogenic process. From a baseline level of 29 +/- 11 mg/dl (mean +/- SD) the maximum attained for HDL-C was twofold in only three rabbits, whereas total cholesterol (TC) increased 20 fold. Plasma TC/HDL-C ratio rose 80 fold from the baseline (2.4 +/- 0.9) and it was the best parameter that correlated with aortic cholesterol accumulation and pathological scores. Aortic TC content increased 10 fold and free cholesterol/cholesterol esters ratio decreased 20 fold. Pathological studies showed that aortic lesion scores rose from 0 to 4. It can be concluded that the high correlations obtained when TC/HDL-C ratio was plotted against both aortic cholesterol deposition and lesion scores, support the theory of the reverse cholesterol transport and the effectiveness of this index to predict the degree of the atherogenic process. On the other hand, the poor response of HDL-C in this model encourages future research using drugs to increase this parameter in order to normalize TC/HDL-C ratio and avoid lesions.

  8. Bone density and tissue lead accretion in growing rats fed low high calcium with or without supplemental clinoptilolite

    SciTech Connect

    Pond, W.G.; Ho, H.; Su, D.R.

    1996-12-31

    The toxicity of lead in animals and humans is well documented. The naturally occurring zeolite, clinoptilolite, is known to offer protection against ammonium ion toxicity in rats and sheep and to counteract cadmium-induced iron deficiency anemia in rats and swine. The cation-exchange and adsorption properties of clinoptilolite suggest is possible role in reducing tissue uptake of ingested lead by animals. Evidence supporting this role was reported in growing pigs whose liver and kidney concentrations of lead were significantly reduced by the addition of 1.0% clinoptilolite to diets containing 500 or 1000ppm of lead. The basal diet was a highly fortified milk-replacer containing about 1% calcium supplied by milk constituents. High dietary calcium is known to reduce tissue uptake of lead and protect the pig from the tissue pathology associated with lead ingestion. The objective of this experiment was to test the hypothesis that dietary clinoptilolite and calcium levels affect the growth, tissue uptake and bone morphology of growing rats fed diets containing toxic levels of lead. 20 refs., 3 tabs.

  9. High-cell-density fed-batch culture of Saccharomyces cerevisiae KV-25 using molasses and corn steep liquor.

    PubMed

    Vu, Van Hanh; Kim, Keun

    2009-12-01

    High-cell-density cultivation of yeast was investigated using the agricultural waste products corn steep liquor (CSL) and molasses. The Saccharomyces cerevisiae KV-25 cell mass was significantly dependent on the ratio between C and N sources. The concentrations of molasses and CSL in the culture medium were statistically optimized at 10.25% (v/v) and 16.87% (v/v), respectively, by response surface methodology (RSM). Batch culture in a 5-l stirred tank reactor using the optimized medium resulted in a cell mass production of 36.5 g/l. In the fed-batch culture, the feed phase was preceded by a batch phase using the optimized medium, and a very high dried-cell-mass yield of 187.63 g/l was successfully attained by feeding a mixture of 20% (v/v) molasses and 80% (v/v) CSL at a rate of 22 ml/h. In this system, the production of cell mass depended mainly on the agitation speed, the composition of the feed medium, and the glucose level in the medium, but only slightly on the aeration rate.

  10. Moderately Low Magnesium Intake Impairs Growth of Lean Body Mass in Obese-Prone and Obese-Resistant Rats Fed a High-Energy Diet

    PubMed Central

    Bertinato, Jesse; Lavergne, Christopher; Rahimi, Sophia; Rachid, Hiba; Vu, Nina A.; Plouffe, Louise J.; Swist, Eleonora

    2016-01-01

    The physical and biochemical changes resulting from moderately low magnesium (Mg) intake are not fully understood. Obesity and associated co-morbidities affect Mg metabolism and may exacerbate Mg deficiency and physiological effects. Male rats selectively bred for diet-induced obesity (OP, obese-prone) or resistance (OR, obese-resistant) were fed a high-fat, high-energy diet containing moderately low (LMg, 0.116 ± 0.001 g/kg) or normal (NMg, 0.516 ± 0.007 g/kg) Mg for 13 weeks. The growth, body composition, mineral homeostasis, bone development, and glucose metabolism of the rats were examined. OP and OR rats showed differences (p < 0.05) in many physical and biochemical measures regardless of diet. OP and OR rats fed the LMg diet had decreased body weight, lean body mass, decreased femoral size (width, weight, and volume), and serum Mg and potassium concentrations compared to rats fed the NMg diet. The LMg diet increased serum calcium (Ca) concentration in both rat strains with a concomitant decrease in serum parathyroid hormone concentration only in the OR strain. In the femur, Mg concentration was reduced, whereas concentrations of Ca and sodium were increased in both strains fed the LMg diet. Plasma glucose and insulin concentrations in an oral glucose tolerance test were similar in rats fed the LMg or NMg diets. These results show that a moderately low Mg diet impairs the growth of lean body mass and alters femoral geometry and mineral metabolism in OP and OR rats fed a high-energy diet. PMID:27136580

  11. Anti-obesity Effect of Capsaicin in Mice Fed with High-Fat Diet Is Associated with an Increase in Population of the Gut Bacterium Akkermansia muciniphila

    PubMed Central

    Shen, Wei; Shen, Mengyu; Zhao, Xia; Zhu, Hongbin; Yang, Yuhui; Lu, Shuguang; Tan, Yinling; Li, Gang; Li, Ming; Wang, Jing; Hu, Fuquan; Le, Shuai

    2017-01-01

    Capsaicin (CAP) reduces body weight mainly through activation of transient receptor potential vanilloid 1 (TRPV1) cation channel. However, recent evidence indicates that the gut microbiota influences many physiological processes in host and might provoke obesity. This study determined whether the anti-obesity effect of CAP is related to the changes in gut microbiota. C57BL/6 mice were fed either with high-fat diet (HFD) or HFD with CAP (HFD-CAP) for 9 weeks. We observed a significantly reduced weight gain and improved glucose tolerance in HFD-CAP-fed mice compared with HFD-fed mice. 16S rRNA gene sequencing results showed a decrease of phylum Proteobacteria in HFD-CAP-fed mice. In addition, HFD-CAP-fed mice showed a higher abundance of Akkermansia muciniphila, a mucin-degrading bacterium with beneficial effects on host metabolism. Further studies found that CAP directly up-regulates the expression of Mucin 2 gene Muc2 and antimicrobial protein gene Reg3g in the intestine. These data suggest that the anti-obesity effect of CAP is associated with a modest modulation of the gut microbiota. PMID:28280490

  12. Anti-obesity Effect of Capsaicin in Mice Fed with High-Fat Diet Is Associated with an Increase in Population of the Gut Bacterium Akkermansia muciniphila.

    PubMed

    Shen, Wei; Shen, Mengyu; Zhao, Xia; Zhu, Hongbin; Yang, Yuhui; Lu, Shuguang; Tan, Yinling; Li, Gang; Li, Ming; Wang, Jing; Hu, Fuquan; Le, Shuai

    2017-01-01

    Capsaicin (CAP) reduces body weight mainly through activation of transient receptor potential vanilloid 1 (TRPV1) cation channel. However, recent evidence indicates that the gut microbiota influences many physiological processes in host and might provoke obesity. This study determined whether the anti-obesity effect of CAP is related to the changes in gut microbiota. C57BL/6 mice were fed either with high-fat diet (HFD) or HFD with CAP (HFD-CAP) for 9 weeks. We observed a significantly reduced weight gain and improved glucose tolerance in HFD-CAP-fed mice compared with HFD-fed mice. 16S rRNA gene sequencing results showed a decrease of phylum Proteobacteria in HFD-CAP-fed mice. In addition, HFD-CAP-fed mice showed a higher abundance of Akkermansia muciniphila, a mucin-degrading bacterium with beneficial effects on host metabolism. Further studies found that CAP directly up-regulates the expression of Mucin 2 gene Muc2 and antimicrobial protein gene Reg3g in the intestine. These data suggest that the anti-obesity effect of CAP is associated with a modest modulation of the gut microbiota.

  13. Decreased rate of protein synthesis, caspase-3 activity, and ubiquitin-proteasome proteolysis in soleus muscles from growing rats fed a low-protein, high-carbohydrate diet.

    PubMed

    Batistela, Emanuele; Pereira, Mayara Peron; Siqueira, Juliany Torres; Paula-Gomes, Silvia; Zanon, Neusa Maria; Oliveira, Eduardo Brandt; Navegantes, Luiz Carlos Carvalho; Kettelhut, Isis C; Andrade, Claudia Marlise Balbinotti; Kawashita, Nair Honda; Baviera, Amanda Martins

    2014-06-01

    The aim of this study was to investigate the changes in the rates of both protein synthesis and breakdown, and the activation of intracellular effectors that control these processes in soleus muscles from growing rats fed a low-protein, high-carbohydrate (LPHC) diet for 15 days. The mass and the protein content, as well as the rate of protein synthesis, were decreased in the soleus from LPHC-fed rats. The availability of amino acids was diminished, since the levels of various essential amino acids were decreased in the plasma of LPHC-fed rats. Overall rate of proteolysis was also decreased, explained by reductions in the mRNA levels of atrogin-1 and MuRF-1, ubiquitin conjugates, proteasome activity, and in the activity of caspase-3. Soleus muscles from LPHC-fed rats showed increased insulin sensitivity, with increased levels of insulin receptor and phosphorylation levels of AKT, which probably explains the inhibition of both the caspase-3 activity and the ubiquitin-proteasome system. The fall of muscle proteolysis seems to represent an adaptive response that contributes to spare proteins in a condition of diminished availability of dietary amino acids. Furthermore, the decreased rate of protein synthesis may be the driving factor to the lower muscle mass gain in growing rats fed the LPHC diet.

  14. Effect of Lactobacillus plantarum Strain K21 on High-Fat Diet-Fed Obese Mice.

    PubMed

    Wu, Chien-Chen; Weng, Wei-Lien; Lai, Wen-Lin; Tsai, Hui-Ping; Liu, Wei-Hsien; Lee, Meng-Hwan; Tsai, Ying-Chieh

    2015-01-01

    Recent studies have demonstrated beneficial effects of specific probiotics on alleviating obesity-related disorders. Here we aimed to identify probiotics with potential antiobesity activity among 88 lactic acid bacterial strains via in vitro screening assays, and a Lactobacillus plantarum strain K21 was found to harbor abilities required for hydrolyzing bile salt, reducing cholesterol, and inhibiting the accumulation of lipid in 3T3-L1 preadipocytes. Furthermore, effects of K21 on diet-induced obese (DIO) mice were examined. Male C57Bl/6J mice received a normal diet, high-fat diet (HFD), or HFD with K21 administration (10(9) CFU in 0.2 mL PBS/day) for eight weeks. Supplementation of K21, but not placebo, appeared to alleviate body weight gain and epididymal fat mass accumulation, reduce plasma leptin levels, decrease cholesterol and triglyceride levels, and mitigate liver damage in DIO mice. Moreover, the hepatic expression of peroxisome proliferator-activated receptor-γ (PPAR-γ) related to adipogenesis was significantly downregulated in DIO mice by K21 intervention. We also found that K21 supplementation strengthens intestinal permeability and modulates the amount of Lactobacillus spp., Bifidobacterium spp., and Clostridium perfringens in the cecal contents of DIO mice. In conclusion, our results suggest that dietary intake of K21 protects against the onset of HFD-induced obesity through multiple mechanisms of action.

  15. Antiatherosclerotic Effect of Canarium odontophyllum Miq. Fruit Parts in Rabbits Fed High Cholesterol Diet

    PubMed Central

    Shakirin, Faridah Hanim; Azlan, Azrina; Ismail, Amin; Amom, Zulkhairi; Yuon, Lau Cheng

    2012-01-01

    The effect of C. odontophyllum (CO) fruit parts was investigated in hypercholesterolemic rabbits. Forty-nine rabbits, which were randomly divided into seven groups of seven animals (n = 7), received a diet containing different parts of CO fruit parts for 8 weeks. The groups were as follows: (1) normal diet: NC group and (2) hypercholesterolemic diet: PC, HS (10 mg/kg/day simvastatin), HPO (20 g kg−1 oil extracted from the pulp of CO), HKO (20 g kg−1 oil extracted from the kernel of CO), HF (50 g kg−1 fullfat pulp of CO), and HD (50 g kg−1 defatted pulp of CO). Among these groups, rabbits receiving defatted pulp of CO showed the greatest cholesterol lowering effect as it had reduced plasma LDL-C, TC, and thiobarbiturate reactive substance (TBARS) levels as well as atherosclerotic plaques. The presence of high dietary fiber and antioxidants activity are potential factors contributing to the cholesterol lowering effect. Consequently, these results indicate the potential use of CO defatted pulp as a cholesterol lowering and antioxidant agent. PMID:22811751

  16. Fermented garlic protects diabetic, obese mice when fed a high-fat diet by antioxidant effects.

    PubMed

    Jung, Young-Mi; Lee, Seon-Ha; Lee, Dong-Sub; You, Myung-Jin; Chung, In Kwon; Cheon, Woo Hyun; Kwon, Young-Sam; Lee, Young-Joon; Ku, Sae-Kwang

    2011-05-01

    This study examined the bioactivity of yeast (Saccharomyces cerevisiae)-fermented aged black garlic (FBG) on obese mice supplied a high-fat diet (HFD) and its in vitro antioxidant activity. Aged black garlic (BG) exhibits potent antioxidative effects and has been subjected to extensive research. In addition, the bioactivity of some natural products is increased by fermentation. In a preliminary test, this study found that the antioxidant activity of FBG is stronger than that of BG. Therefore, it was hypothesized that the bioactivity of BG would be increased by yeast fermentation and would be a good candidate as a nutraceutical product for improving the oxidative defense systems in older patients or patients affected by various oxidative stresses, for example, diabetes and diabetic complications. To test this hypothesis, the bioactivities of FBG in diabetic and obese mice as well as the antioxidant activity in vitro were examined. After 91 days of continuous HFD supply, the mice showed marked obesity, hyperglycemia, hyperlipemia, and liver and kidney damages. Black garlic and all 3 different doses of FBG showed favorable hepatoprotective, nephroprotective, hypolipidemic, and antiobesity effects compared with the HFD control, but no hypoglycemic effects. In particular, more favorable bioactivity against all 4 HFD-induced diabetic complications was detected in the FBG-treated groups compared with the group given equivalent doses of BG. These findings suggest that the bioactivities of BG can be improved by yeast fermentation.

  17. Enhancing polyhydroxybutyrate production from high cell density fed-batch fermentation of Bacillus megaterium BA-019.

    PubMed

    Kanjanachumpol, Pawut; Kulpreecha, Songsri; Tolieng, Vasana; Thongchul, Nuttha

    2013-10-01

    This study demonstrated the improved polyhydroxybutyrate (PHB) production via high cell density cultivation of Bacillus megaterium BA-019 with balanced initial total sugar concentration and carbon to nitrogen (C/N) weight ratio. In the 10 L stirred fermentor operated at 30 °C, pH 7.0, 600 rpm, and 1.0 vvm air, with the initial total sugar concentration of 60 g/L and urea at the C/N weight ratio of 10:1, 32.48 g/L cell biomass with the corresponding PHB weight content of 26.94 % and volumetric productivity of 0.73 g/L h were obtained from batch cultivation. Continuing cultivation by intermittent feeding of the sugarcane molasses along with urea at the C/N weight ratio of 12.5:1 gave much improved biomass and PHB production (90.71 g/L biomass with 45.84 % PHB content and 1.73 g/L h PHB productivity). Similar biomass and PHB yields were obtained in the 90 L stirred fermentor when using the impeller tip speed as the scale-up criterion.

  18. A high performance inverter-fed drive system of an interior permanent magnet synchronous machine

    NASA Astrophysics Data System (ADS)

    Bose, B. K.

    A high performance fully operational four-quadrant control scheme of an interior permanent magnet synchronous machine is described. The machine operates smoothly with full performance in constant-torque region, as well as in flux-weakening constant-power region in both directions of motion. The transition between constant-torque region and constant-power region is very smooth at all conditions of operation. The control in constant-torque region is based on vector or field-oriented technique with the direct-axis aligned to the total stator flux, whereas the constant-power region control is implemented by orientation of torque angle of the impressed square-wave voltage through the feedforward vector rotator. The control system is implemented digitally using distributed microcomputer system and all the essential feedback signals, such as torque, flux, etc., are estimated with precision. The control has been described with an outer torque control loop primarily for traction type applications, but speed and position control loops can be easily added to extend its application to other industrial drives. A 70 hp drive system using a Neodymium-Iron-Boron PM machine and transistor PWM inverter has been designed and extensively tested in laboratory on a dynamometer, and performances are found to be excellent.

  19. Beneficial effect of dietary Ephedra sinica on obesity and glucose intolerance in high-fat diet-fed mice

    PubMed Central

    SONG, MOON-KOO; UM, JAE-YOUNG; JANG, HYEUNG-JIN; LEE, BYUNG-CHEOL

    2012-01-01

    Obesity is a major contributor to both glucose intolerance and metabolic syndrome. In this study, we investigated the anti-obesity and anti-hyperglycemic effects of Ephedra sinica on high-fat diet-fed mice. Male ICR mice were divided into four groups; the normal group, the obese and diabetic control group treated with a high-fat diet, the positive control group treated with a high-fat diet containing acarbose, and the experimental group treated with a high-fat diet containing Ephedra sinica. The effects of Ephedra sinica on obesity and glucose intolerance were measured by an oral glucose tolerance test (OGTT), plasma biochemistry, body and epididymal fat weight; the expression of adiponectin, peroxisome-proliferator-activated receptor α (PPAR-α), tumor necrosis factor α (TNF-α) and leptin was also determined. Ephedra sinica reduced weight gain and epididymal fat accumulation, improved glucose intolerance on the OGTT, decreased triglycerides and increased high-density lipoprotein cholesterol compared to the controls. Moreover, it reduced weight gain and fasting glucose levels and improved HDL-cholesterol levels more than acarbose. Gene expression analysis revealed that Ephedra sinica upregulated the expression of adiponectin and PPAR-α, and downregulated the expression of TNF-α. From these results, we suggest that Ephedra sinica may reduce obesity and hyperglycemia by increasing PPAR-α and adiponectin and reducing TNF-α, and that it may have the potential to be used clinically as an ingredient in food or drugs effective in obesity-related glucose intolerance treatments. PMID:22969956

  20. Effects of Dietary Fibers on Weight Gain, Carbohydrate Metabolism and Gastric Ghrelin Gene Expression in High Fat Diet Fed Mice

    PubMed Central

    Wang, Zhong Q.; Zuberi, Aamir; Zhang, Xian H.; Macgowan, Jacalyn; Qin, Jianhua; Ye, Xin; Son, Leslie; Wu, Qinglin; Lian, Kun; Cefalu, William T.

    2009-01-01

    Diets that are high in dietary fiber are reported to have substantial health benefits. We sought to compare the metabolic effects for three types of dietary fibers, i.e. sugar cane fiber (SCF), psyllium (PSY) and cellulose (CEL) on body weight, carbohydrate metabolism and stomach ghrelin gene expression in a high-fat diet fed mouse model. Thirty-six male mice (C57BL/6) were randomly divided into four groups that consumed high fat-diets or high fat diet containing 10% SCF, PSY, and CEL respectively. After baseline measurements were assessed for body weight, plasma insulin, glucose, leptin and glucagon-like peptide-1 (GLP-1), animals were treated for 12 weeks. Parameters were re-evaluated at end of study. Whereas there was no difference at the baseline, body weight gains in the PSY and SCF groups were significantly lower than in CEL group at end of study, No difference in body weight was observed between the PSY and SCF animals. Body composition analysis demonstrated that fat mass in the SCF group was considerably lower than in the CEL and HFD groups. In addition, fasting plasma glucose and insulin and areas under curve of IPGTT were also significantly lower in the SCF and PSY groups than in the CEL and HFD groups. Moreover, fasting plasma concentrations of leptin were significantly lower and GLP-1 level was two-fold higher in the SCF and PSY mice than in the HFD and CEL mice. Ghrelin mRNA levels of stomach in SCF groups were significantly lower than in CEL and HFD groups as well. These results suggest differences in response to dietary fiber intake in this animal model as high fat diets incorporating dietary fibers such as SCF and PSY appeared to attenuate weight gain, enhance insulin sensitivity, and modulate leptin and GLP-1 secretion and gastric ghrelin gene expression. PMID:17998014

  1. Metabolic effects of a mitochondrial-targeted coenzyme Q analog in high fat fed obese mice.

    PubMed

    Fink, Brian D; Guo, Deng Fu; Kulkarni, Chaitanya A; Rahmouni, Kamal; Kerns, Robert J; Sivitz, William I

    2017-04-01

    We recently reported that mitoquinone (mitoQ, 500 μmol/L) added to drinking water of C57BL/6J mice attenuated weight gain, decreased food intake, increased hypothalamic orexigenic gene expression, and mitigated oxidative stress when administered from the onset of high-fat (HF) feeding. Here, we examined the effects of mitoQ on pre-existing obesity in C57BL/6J mice first made obese by 107 days of HF feeding. In contrast to our preventative study, we found that already obese mice did not tolerate mitoQ at 500 μmol/L. Within 4 days of administration, obese mice markedly decreased food and water intake and lost substantial weight necessitating a dose reduction to 250 μmol/L. Food and water intake then improved. Over the next 4 weeks, body mass of the mitoQ-treated mice increased faster than vehicle-treated controls but did not catch up. Over the subsequent 10 weeks, weights of the mitoQ-treated group remained significantly less than vehicle control, but percent fat and food intake did not differ. Although the mitoQ-treated groups continued to drink less, there was no difference in percent body fluid and no laboratory evidence of dehydration at study end. At the time of killing, hypothalamic NPY gene expression was reduced in the mitoQ-treated mice . Liver fat was markedly increased by HF feeding but did not differ between mitoQ and vehicle groups and, in contrast to our previous preventative study, there was no improvement in plasma alanine amino transferase or liver hydroperoxides. In summary, administration of mitoQ to already obese mice attenuated weight gain, but showed limited overall benefit.

  2. Anti-oxidant effects of cinnamon (Cinnamomum verum) bark and greater cardamom (Amomum subulatum) seeds in rats fed high fat diet.

    PubMed

    Dhuley, J N

    1999-03-01

    In order to gain insight into the antioxidant effect of cinnamon (Cinnamomum verum; Lauraceae) and cardamom (Amomum subulatum; Zingiberaceae) hepatic and cardiac antioxidant enzymes, glutathione (GSH) content and lipid conjugated dienes were studied in rats fed high fat diet along with cinnamon or cardamom. The antioxidant enzyme activities were found to be significantly enhanced whereas GSH content was markedly restored in rats fed a fat diet with spices. In addition, these spices partially counteracted increase in lipid conjugated dienes and hydroperoxides, the primary products of lipid peroxidation. Thus, it appears that these spices exert antioxidant protection through their ability to activate the antioxidant enzymes.

  3. Comparative effects of a high-amylose starch and a fructooligosaccharide on fecal bifidobacteria numbers and short-chain fatty acids in pigs fed Bifidobacterium animalis.

    PubMed

    Bird, Anthony R; Vuaran, Michelle; Crittenden, Ross; Hayakawa, Takashi; Playne, Martin J; Brown, Ian L; Topping, David L

    2009-05-01

    Pigs were fed a freeze-dried probiotic (Bifidobacterium animalis CSCC 1941) plus a high-amylose maize starch (HAMS) and a fructooligosaccharide (FOS) separately or together. Fecal output and total and individual major short-chain fatty acid (SCFA) concentrations and excretion were higher and pH was lower with HAMS than with FOS relative to when they were fed a low-amylose maize starch (LAMS; control). Fecal bifidobacteria numbers and total excretion were equally higher during feeding of FOS or HAMS and highest with HAMS + FOS. When probiotic supplementation was stopped, bifidobacteria numbers declined rapidly when they were fed LAMS, more slowly with FOS or HAMS, and were maintained with HAMS + FOS. The data confirm that both HAMS and FOS are prebiotics and suggest that they act through different mechanisms and that they are most effective in combination. However only HAMS raises fecal SCFA.

  4. Bitter gourd (Momordica charantia) improves insulin sensitivity by increasing skeletal muscle insulin-stimulated IRS-1 tyrosine phosphorylation in high-fat-fed rats.

    PubMed

    Sridhar, M G; Vinayagamoorthi, R; Arul Suyambunathan, V; Bobby, Z; Selvaraj, N

    2008-04-01

    The aim of this present study was to investigate the effect of bitter gourd extract on insulin sensitivity and proximal insulin signalling pathways in high-fat-fed rats. High-fat feeding of male Wistar rats for 10 weeks decreased the glucose tolerance and insulin sensitivity compared to chow-fed control rats. Bitter gourd extract supplementation for 2 weeks (9th and 10th) of high-fat feeding improved the glucose tolerance and insulin sensitivity. In addition bitter gourd extract reduced the fasting insulin (43 (se 4.4) v. 23 (se 5.2) microU/ml, P < 0.05), TAG (134 (se 12) v. 96 (se 5.5) mg/dl, P < 0.05), cholesterol (97 (se 6.3) v. 72 (se 5.2) mg/dl, P < 0.05) and epidydimal fat (4.8 (se 0.29) v. 3.6 (se 0.24) g, P < 0.05), which were increased by high-fat diet (HFD). High-fat feeding and bitter gourd supplementation did not have any effect on skeletal muscle insulin receptor, insulin receptor subtrate-1 (IRS-1) and insulin- stimulated insulin receptor tyrosine phosphorylation compared to chow-fed control rats. However high-fat feeding for 10 weeks reduced the insulin-stimulated IRS-1 tyrosine phosphorylation compared to control rats. Bitter gourd supplementation together with HFD for 2 weeks improved the insulin-stimulated IRS-1 tyrosine phosphorylation compared to rats fed with HFD alone. Our results show that bitter gourd extract improves insulin sensitivity, glucose tolerance and insulin signalling in HFD-induced insulin resistance. Identification of potential mechanism(s) by which bitter gourd improves insulin sensitivity and insulin signalling in high-fat-fed rats may open new therapeutic targets for the treatment of obesity/dyslipidemia-induced insulin resistance.

  5. Functional food supplements to ameliorate the secondary complications in high fructose fed diabetic rats.

    PubMed

    Gite, S S; Yadav, S A; Nilegaonkar, S S; Agte, V V

    2017-04-13

    Functional foods are the most natural and safest source of health ingredients, providing health benefits beyond basic nutrition, and hence can be used as supplements for the prevention of secondary complications in diabetes. Persistent diabetes may cause glycation of various tissue proteins such as of those in lens, kidney, blood, and brain, which may further lead to the development of pathological conditions such as cataract and cardiovascular diseases. This study on adult rats was designed to assess if the functional food supplements A and B (proprietary blends of antioxidant rich plant materials) can reduce secondary complications such as cataract, dyslipidemia, and oxidative stress under severe diabetic conditions. After nine weeks of intervention of the supplements, it was found that the % HbA1c levels in the formulation group B significantly (p < 0.05) lowered (10.9%) followed by those in group A (11.1%) as compared to those in the diabetic fructose control (DFC) group (15.1%); moreover, plasma insulin levels were significantly (p < 0.01) improved in the formulation B group (9.8 mU L(-1)) as compared to those in the DFC group (8.5 mU L(-1)). The significantly higher level of plasma TEAC in group B (27.5 mg dL(-1)) (p < 0.02) and group A (26.6 mg dL(-1)) (p < 0.05) indicates an improved plasma antioxidants status as compared to that in DFC group (21.7 mg dL(-1)). Both the formulation groups A and B showed a decrease in AGEs and tryptophan fluorescence, which suggests amelioration of the glycation of lens proteins as compared to that in the DFC group. The present results indicate that the formulations A and B exhibit antiglycating and antioxidant potentials by inhibiting the high fructose-induced glycation in diabetic rats; hence, they may have therapeutic value as functional foods in the effective management of secondary complications associated with severe diabetic conditions.

  6. Kinetics of inclusion body production in batch and high cell density fed-batch culture of Escherichia coli expressing ovine growth hormone.

    PubMed

    Panda, A K; Khan, R H; Rao, K B; Totey, S M

    1999-10-08

    A process for maximizing the volumetric productivity of recombinant ovine growth hormone (r-oGH) expressed in Escherichia coli during high cell density fermentation process has been devised. Kinetics of r-oGH expression as inclusion bodies and its effect on specific growth rates of E. coli cells were monitored during batch fermentation process. It was observed that during r-oGH expression in E. coli, the specific growth rate of the culture became an intrinsic property of the cells which reduced in a programmed manner upon induction. Nutrient feeding during protein expression phase of the fed-batch process was designed according to the reduction in specific growth rate of the culture. By feeding yeast extract along with glucose during fed-batch operation, high cell growth with very little accumulation of acetic acid was observed. Use of yeast extract helped in maintaining high specific cellular protein yield which resulted in high volumetric productivity of r-oGH. In 16 h of fed-batch fermentation, 3.2 g l-1 of r-oGH were produced at a cell OD of 124. This is the highest concentration of r-oGH reported to date using E. coli expression system. The volumetric productivity of r-oGH was 0.2 g l-1 h-1, which is also the highest value reported for any therapeutic protein using IPTG inducible expression system in a single stage fed-batch process.

  7. Gut microbiota are linked to increased susceptibility to hepatic steatosis in low aerobic capacity rats fed an acute high fat diet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Poor aerobic fitness is linked to nonalcoholic fatty liver disease and increased all-cause mortality. We previously found that low capacity running (LCR) rats fed acute high fat diet (HFD; 45% kcal from fat) for 3 days resulted in positive energy balance and increased hepatic steatosis compared with...

  8. Incremental amounts of Ascophyllum nodosum meal do not improve animal performance but increase milk iodine output in early lactation dairy cows fed high-forage diets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to investigate the effects of incremental amounts of Ascophyllum nodosum meal (ANOD) on milk production, milk composition including fatty acids and I, blood metabolites, and nutrient intake and digestibility in early lactation dairy cows fed high-forage diets. Twelve ...

  9. Ameliorating effect and potential mechanism of Rehmannia glutinosa oligosaccharides on the impaired glucose metabolism in chronic stress rats fed with high-fat diet.

    PubMed

    Zhang, Ruxue; Zhou, Jun; Li, Maoxing; Ma, Haigang; Qiu, Jianguo; Luo, Xiaohong; Jia, Zhengping

    2014-04-15

    The aim of this study was to determine whether the Rehmannia glutinosa oligosaccharides (ROS) ameliorate the impaired glucose metabolism and the potential mechanism in chronic stress rats fed with high-fat diet. The rats were fed by a high-fat diet and simultaneously stimulated by chronic stress over 5 weeks. Body weight, fasting plasma glucose, intraperitoneal glucose tolerance test (IPGTT), plasma lipids, gluconeogenesis test (GGT), glycogen content, and corticosterone, insulin and leptin levels were measured. The results showed that ROS administration (100, 200 mg/kg, i.g.) for 5 weeks exerted the effects of increasing the organ weights of thymus and spleen, lowering the fasting plasma glucose level, improving impaired glucose tolerance, increasing the contents of liver and muscle glycogen, decreasing the gluconeogenesis ability, plasma-free fatty acid's level, as well as plasma triglyceride and total cholesterol levels in chronic stress and high-fat fed rats, especially in the group of 200mg/kg; while the plasma corticosterone level was decreased, and plasma leptin level was increased. These results suggest that ROS exert an ameliorating effect of impaired glucose metabolism in chronic stress rats fed with high-fat diet, and the potential mechanism may be mediated through rebuilding the glucose homeostasis in the neuroendocrine immuno-modulation (NIM) network through multilinks and multitargets.

  10. Growth performance and total tract nutrient digestion for Holstein heifers limit-fed diets high in distillers grains with different forage particle size

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study evaluated dairy heifer growth performance and total tract nutrient digestion when fed diets high in dried distillers grains with solubles (DDGS) with different forage particle size. An 8-wk randomized complete block design study was conducted utilizing twenty-two Holstein heifers (123 ±...

  11. Lower weight gain and hepatic lipid content in hamsters fed high fat diets supplemented with white rice protein, brown rice protein, and soy protein and their hydrolysates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The physiological effects of the hydrolysates from white rice, brown rice, and soy isolate were compared to the original protein source. White rice, brown rice, and soy protein were hydrolyzed with the food grade enzyme, alcalase2.4 L®. Male Syrian hamsters were fed high-fat diets containing eithe...

  12. Colonic inflammation and enhanced-beta-catenin signaling accompany an increase of the Lachnospiraceae/Streptococcaceae in the hind gut of high-fat diet-fed mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Consumption of an obesigenic / high-fat (HF) diet is associated with an increase of inflammation-related colon cancer risk and may alter the gut microbiota. To test the hypothesis that a HF feeding accelerates inflammatory processes and changes gut microbiome composition, C57BL/6 mice were fed a HF ...

  13. Incremental amounts of ground flaxseed decreases milk production but increases n-3 fatty acids and conjugated linoleic acids in dairy cows fed high-forage diets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to investigate the effect of incremental amounts of ground flaxseed (GFLAX) on milk yield and fatty acids (FA) profile, ruminal metabolism, and nutrient digestibility in dairy cows fed high-forage diets. Twelve multiparous Jersey cows averaging (mean ± SD) 112 ± 68 da...

  14. Metabolomic and genomic profiling of n-3 polyunsaturated fatty acid effects on muscle metabolism in mice fed a high fat diet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We previously reported that feeding mice high-fat (HF) diets enriched with eicosapentaenoic acid (EPA) decreased inflammation, adiposity and insulin resistance. In the current study, we used skeletal muscle from mice fed HF or HF-EPA for 11 weeks to further dissect mechanisms mediating EPA effects o...

  15. Multiple paths of electron flow to current in microbial electrolysis cells fed with low and high concentrations of propionate.

    PubMed

    Hari, Ananda Rao; Katuri, Krishna P; Gorron, Eduardo; Logan, Bruce E; Saikaly, Pascal E

    2016-07-01

    Microbial electrolysis cells (MECs) provide a viable approach for bioenergy generation from fermentable substrates such as propionate. However, the paths of electron flow during propionate oxidation in the anode of MECs are unknown. Here, the paths of electron flow involved in propionate oxidation in the anode of two-chambered MECs were examined at low (4.5 mM) and high (36 mM) propionate concentrations. Electron mass balances and microbial community analysis revealed that multiple paths of electron flow (via acetate/H2 or acetate/formate) to current could occur simultaneously during propionate oxidation regardless of the concentration tested. Current (57-96 %) was the largest electron sink and methane (0-2.3 %) production was relatively unimportant at both concentrations based on electron balances. At a low propionate concentration, reactors supplemented with 2-bromoethanesulfonate had slightly higher coulombic efficiencies than reactors lacking this methanogenesis inhibitor. However, an opposite trend was observed at high propionate concentration, where reactors supplemented with 2-bromoethanesulfonate had a lower coulombic efficiency and there was a greater percentage of electron loss (23.5 %) to undefined sinks compared to reactors without 2-bromoethanesulfonate (11.2 %). Propionate removal efficiencies were 98 % (low propionate concentration) and 78 % (high propionate concentration). Analysis of 16S rRNA gene pyrosequencing revealed the dominance of sequences most similar to Geobacter sulfurreducens PCA and G. sulfurreducens subsp. ethanolicus. Collectively, these results provide new insights on the paths of electron flow during propionate oxidation in the anode of MECs fed with low and high propionate concentrations.

  16. The Intestinal Peptide Transporter PEPT1 Is Involved in Food Intake Regulation in Mice Fed a High-Protein Diet

    PubMed Central

    Sailer, Manuela; Daniel, Hannelore

    2011-01-01

    High-protein diets are effective in achieving weight loss which is mainly explained by increased satiety and thermogenic effects. Recent studies suggest that the effects of protein-rich diets on satiety could be mediated by amino acids like leucine or arginine. Although high-protein diets require increased intestinal amino acid absorption, amino acid and peptide absorption has not yet been considered to contribute to satiety effects. We here demonstrate a novel finding that links intestinal peptide transport processes to food intake, but only when a protein-rich diet is provided. When mice lacking the intestinal peptide transporter PEPT1 were fed diets containing 8 or 21 energy% of protein, no differences in food intake and weight gain were observed. However, upon feeding a high-protein (45 energy%) diet, Pept1−/− mice reduced food intake much more pronounced than control animals. Although there was a regain in food consumption after a few days, no weight gain was observed which was associated with a reduced intestinal energy assimilation and increased fecal energy losses. Pept1−/− mice on high-protein diet displayed markedly reduced plasma leptin levels during the period of very low food intake, suggesting a failure of leptin signaling to increase energy intake. This together with an almost two-fold elevated plasma arginine level in Pept1−/− but not wildtype mice, suggests that a cross-talk of arginine with leptin signaling in brain, as described previously, could cause these striking effects on food intake. PMID:22031831

  17. Effects of Persian leek (Allium ampeloprasum) on hepatic lipids and the expression of proinflammatory gene in hamsters fed a high-fat/ high-cholesterol diet

    PubMed Central

    Fatoorechi, Vahideh; Rismanchi, Marjan; Nasrollahzadeh, Javad

    2016-01-01

    Objective: Persian leek is one of the most widely used herbal foods among Iranians. In this study, effects of oral administration of Persian leek on plasma and liver lipids were examined in hamster. Materials and Methods: Male Syrian hamsters were randomly divided into three groups: control (standard diet), high fat control (high-fat/high-cholesterol diet), Persian leek (high-fat/high-cholesterol diet + 1% per weight of diet from dried powdered Persian leek) for 14 weeks. Results: High fat diet increased plasma and liver lipids as compared to standard diet. Adding Persian leek to the high-fat/high-cholesterol diet resulted in no significant changes in the concentration of the plasma lipids or liver cholesterol. However, liver triglycerides (TG), plasma Alanine aminotransferase and gene expression of tumor necrosis factor- α were decreased in hamsters fed high-fat diet containing Persian leek as compared to high-fat diet only. Conclusion: Persian leek might be considered as a herbal food that can reduce liver TG accumulation induced by high fat diets. PMID:27516982

  18. Gut Microbiota Modulation Attenuated the Hypolipidemic Effect of Simvastatin in High-Fat/Cholesterol-Diet Fed Mice.

    PubMed

    He, Xuyun; Zheng, Ningning; He, Jiaojiao; Liu, Can; Feng, Jing; Jia, Wei; Li, Houkai

    2017-04-10

    The hypolipidemic effect of simvastatin varies greatly among patients. In the current study, we investigated the gut microbial-involved mechanisms underlying the different responses to simvastatin. Male C57BL/6J mice were divided into control (Con), high-fat/cholesterol diet (HFD), antibiotic (AB), simvastatin (SV) and antibiotic_simvastatin (AB_SV) groups, respectively. At the end of the experiment, serum samples were collected for lipids and metabolomic analysis, and liver tissues for histology, gene and protein expression analysis. The results showed that antibiotic treatment not only altered the composition of gut microbiota, but attenuated the hypolipidemic effect of SV. A total of 16 differential metabolites between SV and HFD groups were identified with metabolomics, while most of them showed no statistical differences between AB_SV and HFD groups, and similar changes were also observed in bile acids profile. The expressions of several genes and proteins involved in regulating bile acids synthesis were significantly reversed by SV, but not AB_SV in HFD fed mice. In summary, our current study indicated that the hypolipidemic effect of SV was correlated with the composition of the gut microbiota, and the attenuated hypolipidemic effect of SV by gut microbiota modulation was associated with a suppression of bile acids synthesis from cholesterol.

  19. Fructus xanthii improves lipid homeostasis in the epididymal adipose tissue of rats fed a high-fat diet

    PubMed Central

    LI, XIUMIN; YANG, MINGXING; LI, ZHIPENG; XUE, MEI; SHANGGUAN, ZHAOSHUI; OU, ZHIMIN; LIU, MING; LIU, SUHUAN; YANG, SHUYU; LI, XUEJUN

    2016-01-01

    High fat diet (HFD)-induced obesity triggers common features of human metabolic syndrome in rats. Our previous study showed that Fructus xanthii (FX) attenuates HFD-induced hepatic steatosis. The present study was designed to investigate the effects of FX on lipid metabolism in epididymal fat (EF), and examine its underlying mechanisms. Aqueous extraction fractions of FX or vehicle were orally administered by gavage for 6 weeks to rats fed either a HFD or a normal chow diet (NCD). The levels of circulating free fatty acid (FFA) were determined in plasma, and the expression levels of lipid metabolism- and inflammation-associated genes in the EF were measured using reverse transcription-quantitative polymerase chain reaction analysis. The general morphology, size and number of adipocytes in the EF, and the levels of macrophage infiltration were evaluated using hematoxylin and eosin staining or immunohistochemical staining. FX decreased circulating levels of FFA, increased the expression levels of sterol-regulatory-element-binding protein-1c, FAS, acetyl coenzyme A carboxylase, diacylglycerol acyltransferase and lipoprotein lipase lipogenic genes in the EF. FX increased the numbers of adipocytes in the EF, and featured a shift towards smaller adipocyte size. Compared with the vehicle-treated rats, positive staining of F4/80 was more dispersed in the FX-treated rats, and the percentage of F4/80 positive cells was significantly decreased. FX attenuated HFD-induced lipid dyshomeostasis in the epididymal adipose tissue. PMID:26648271

  20. Lipid Lowering Effects of Hydroalcoholic Extract of Anethum graveolens L. and Dill Tablet in High Cholesterol Fed Hamsters.

    PubMed

    Abbasi Oshaghi, Ebrahim; Khodadadi, Iraj; Saidijam, Massoud; Yadegarazari, Reza; Shabab, Nooshin; Tavilani, Heidar; Goodarzi, Mohamad Taghi

    2015-01-01

    Objective. This study was aimed to determine the effect of Anethum graveolens extract and Anethum graveolens (dill) tablet on lipid profile, liver enzymes, and gene expression and enzymatic activity of HMG-CoA reductase in high cholesterol fed hamsters. Materials and Methods. Golden Syrian male hamsters (130 ± 10 g) were randomly divided into 6 groups (n = 6) and received daily the following: group 1 received chow + 2% cholesterol + 0.5% cholic acid (HCD), groups 2 and 3 received HCD diet plus 100 and 200 mg/kg hydroalcoholic extract of dill, respectively, and groups 4 and 5 received HCD diet plus 100 and 200 mg/kg dill tablet, respectively. Group 6 received only chow. After 1 month feeding serum biochemical factors were determined. HMG-CoA reductase mRNA level was measured (real-time PCR) and its activity was determined spectrophotometrically. Results. Compared with hypercholesterolemic group 1, lipid profile, blood glucose, and liver enzymes significantly decreased in all dill tablet or dill extract treated groups (p < 0.05). The changes in HMG-CoA reductase gene expression level and enzyme activity significantly reduced in animals that received 200 mg/kg of extract or tablet. Conclusion. Dill extract and dill tablet showed potential hypocholesterolemic properties in hamsters by inhibition of HMG-CoA reductase activity.

  1. Cinnamaldehyde supplementation prevents fasting-induced hyperphagia, lipid accumulation, and inflammation in high-fat diet-fed mice.

    PubMed

    Khare, Pragyanshu; Jagtap, Sneha; Jain, Yachna; Baboota, Ritesh K; Mangal, Priyanka; Boparai, Ravneet K; Bhutani, Kamlesh K; Sharma, Shyam S; Premkumar, Louis S; Kondepudi, Kanthi K; Chopra, Kanwaljit; Bishnoi, Mahendra

    2016-01-01

    Cinnamaldehyde, a bioactive component of cinnamon, is increasingly gaining interest for its preventive and therapeutic effects against metabolic complications like type-2 diabetes. This study is an attempt to understand the effect of cinnamaldehyde in high-fat diet (HFD)-associated increase in fasting-induced hyperphagia and related hormone levels, adipose tissue lipolysis and inflammation, and selected cecal microbial count in mice. Cinnamaldehyde, at 40 µM dose, prevented lipid accumulation and altered gene expression toward lipolytic phenotype in 3T3-L1 preadipocyte cell lines. In vivo, cinnamaldehyde coadministration prevented HFD-induced body weight gain, decreased fasting-induced hyperphagia, as well as circulating leptin and leptin/ghrelin ratio. In addition to that, cinnamaldehyde altered serum biochemical parameters related to lipolysis, that is, glycerol and free fatty acid levels. At transcriptional level, cinnamaldehyde increased anorectic gene expression in hypothalamus and lipolytic gene expression in visceral white adipose tissue. Furthermore, cinnamaldehyde also decreased serum IL-1β and inflammatory gene expression in visceral white adipose tissue. However, cinnamaldehyde did not modulate the population of selected gut microbial (Lactobacillus, Bifidibaceria, and Roseburia) count in cecal content. In conclusion, cinnamaldehyde increased adipose tissue lipolysis, decreased fasting-induced hyperphagia, normalized circulating levels of leptin/ghrelin ratio, and reduced inflammation in HFD-fed mice, which augurs well for its antiobesity role.

  2. Kinetics of eicosapentaenoic acid in brain, heart and liver of conscious rats fed a high n-3 PUFA containing diet.

    PubMed

    Igarashi, Miki; Chang, Lisa; Ma, Kaizong; Rapoport, Stanley I

    2013-01-01

    Eicosapentaenoic acid (EPA, 20:5n-3), a precursor of docosahexaenoic acid (DHA), may benefit cardiovascular and brain health. Quantifying EPA's in vivo kinetics might elucidate these effects. [1-(14)C]EPA was infused i.v. for 5min in unanesthetized male rats fed a standard EPA-DHA diet. Plasma and microwaved tissue were analyzed. Kinetic parameters were calculated using our compartmental model. At 5min, 31-48% of labeled EPA in brain and heart was oxidized, 7% in liver. EPA incorporation rates from brain and liver precursor EPA-CoA pools into lipids, mainly phospholipids, were 36 and 2529nmol/s/g×10(-4), insignificant for heart. Deacylation-reacylation half-lives were 22h and 38-128min. Conversion rates to DHA equaled 0.65 and 25.1nmol/s/g×10(-4), respectively. The low brain concentration and incorporation rate and high oxidation of EPA suggest that, if EPA has a beneficial effect in brain, it might result from its suppression of peripheral inflammation and hepatic conversion to bioactive DHA.

  3. Lipid Lowering Effects of Hydroalcoholic Extract of Anethum graveolens L. and Dill Tablet in High Cholesterol Fed Hamsters

    PubMed Central

    Abbasi Oshaghi, Ebrahim; Khodadadi, Iraj; Saidijam, Massoud; Yadegarazari, Reza; Shabab, Nooshin; Tavilani, Heidar; Goodarzi, Mohamad Taghi

    2015-01-01

    Objective. This study was aimed to determine the effect of Anethum graveolens extract and Anethum graveolens (dill) tablet on lipid profile, liver enzymes, and gene expression and enzymatic activity of HMG-CoA reductase in high cholesterol fed hamsters. Materials and Methods. Golden Syrian male hamsters (130 ± 10 g) were randomly divided into 6 groups (n = 6) and received daily the following: group 1 received chow + 2% cholesterol + 0.5% cholic acid (HCD), groups 2 and 3 received HCD diet plus 100 and 200 mg/kg hydroalcoholic extract of dill, respectively, and groups 4 and 5 received HCD diet plus 100 and 200 mg/kg dill tablet, respectively. Group 6 received only chow. After 1 month feeding serum biochemical factors were determined. HMG-CoA reductase mRNA level was measured (real-time PCR) and its activity was determined spectrophotometrically. Results. Compared with hypercholesterolemic group 1, lipid profile, blood glucose, and liver enzymes significantly decreased in all dill tablet or dill extract treated groups (p < 0.05). The changes in HMG-CoA reductase gene expression level and enzyme activity significantly reduced in animals that received 200 mg/kg of extract or tablet. Conclusion. Dill extract and dill tablet showed potential hypocholesterolemic properties in hamsters by inhibition of HMG-CoA reductase activity. PMID:26823981

  4. Nerium oleander Distillate Improves Fat and Glucose Metabolism in High-Fat Diet-Fed Streptozotocin-Induced Diabetic Rats

    PubMed Central

    Bas, Ahmet Levent; Demirci, Sule; Yazihan, Nuray; Uney, Kamil; Ermis Kaya, Ezgi

    2012-01-01

    Diabetes was induced by intraperitoneal injection of streptozotocin (35 mg/kg bw) in all rats of five groups after being fed for 2 weeks high-fat diet. Type 2 diabetic Nerium-oleander- (NO-) administered groups received the NO distillate at a dose of 3.75, 37.5, and 375 μg/0.5 mL of distilled water (NO-0.1, NO-1, NO-10, resp.); positive control group had 0.6 mg glibenclamide/kg bw/d by gavage daily for 12 weeks. Type 2 diabetic negative control group had no treatment. NO distillate administration reduced fasting blood glucose, HbA1c, insulin resistance, total cholesterol, low density lipoprotein, atherogenic index, triglyceride-HDL ratio, insulin, and leptin levels. Improved beta cell function and HDL concentration were observed by NO usage. HDL percentage in total cholesterol of all NO groups was similar to healthy control. NO-10 distillate enhanced mRNA expressions of peroxisome proliferator-activated-receptor- (PPAR-) α, β, and γ in adipose tissue and PPAR-α–γ in liver. The findings from both in vivo and in vitro studies suggest that the considerable beneficial effect of NO distillate administration at a dose of 375 μg/0.5 mL of distilled water may offer new approaches to treatment strategies that target both fat and glucose metabolism in type 2 diabetes. PMID:23251156

  5. Anti-obesity effects of Rapha diet® preparation in mice fed a high-fat diet.

    PubMed

    Kim, Jihyun; Kyung, Jangbeen; Kim, Dajeong; Choi, Ehn-Kyoung; Bang, Paul; Park, Dongsun; Kim, Yun-Bae

    2012-12-01

    The anti-obesity activities of Rapha diet® preparation containing silkworm pupa peptide, Garcinia cambogia, white bean extract, mango extract, raspberry extract, cocoa extract, and green tea extract were investigated in mice with dietary obesity. Male C57BL/6 mice were fed a high-fat diet (HFD) containing 3% Rapha diet® preparation for 8 weeks, and blood and tissue parameters of obesity were analyzed. The HFD markedly enhanced body weight gain by increasing the weights of epididymal, perirenal, and mesenteric adipose tissues. The increased body weight gain induced by HFD was significantly reduced by feeding Rapha diet® preparation, in which decreases in the weight of abdominal adipose tissue and the size of abdominal adipocytes were confirmed by microscopic examination. Long-term feeding of HFD increased blood triglycerides and cholesterol levels, leading to hepatic lipid accumulation. However, Rapha diet® preparation not only reversed the blood lipid levels, but also attenuated hepatic steatosis. The results indicate that Rapha diet® preparation could improve HFD-induced obesity by reducing both lipid accumulation and the size of adipocytes.

  6. Hop (Humulus lupulus L.) extract inhibits obesity in mice fed a high-fat diet over the long term.

    PubMed

    Sumiyoshi, Maho; Kimura, Yoshiyuki

    2013-01-14

    Hops (Humulus lupulus L.) are traditionally used to add bitterness and flavour to beer. Although the isomerised hop extracts produced by the brewing process have been thought to ameliorate lipid and glucose metabolism, the influence of untreated hop extracts on high-fat (HF) diet-induced obesity is unclear. The present study examined the anti-obesity effects of a hop extract in male C57BL/6J mice fed a HF diet, or HF diet plus 2 or 5 % hop extract for 20 weeks. The oral glucose tolerance test was performed at week 19. Furthermore, water excretion was evaluated in water-loaded Balb/c male mice. The effects of the extract on lipid accumulation and PPARγ expression in 3T3-L1 adipocytes were examined. The hop extract inhibited the increase in body and adipose tissue weight, adipose cell diameter and liver lipids induced by the HF diet. Furthermore, it improved glucose intolerance. The extract enhanced water excretion in water-loaded mice. Various fractions of the hop extract inhibited lipid accumulation and PPARγ expression in 3T3-L1 adipocytes. Hop extracts might be useful for preventing obesity and glucose intolerance caused by a HF diet.

  7. Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet.

    PubMed

    Hatori, Megumi; Vollmers, Christopher; Zarrinpar, Amir; DiTacchio, Luciano; Bushong, Eric A; Gill, Shubhroz; Leblanc, Mathias; Chaix, Amandine; Joens, Matthew; Fitzpatrick, James A J; Ellisman, Mark H; Panda, Satchidananda

    2012-06-06

    While diet-induced obesity has been exclusively attributed to increased caloric intake from fat, animals fed a high-fat diet (HFD) ad libitum (ad lib) eat frequently throughout day and night, disrupting the normal feeding cycle. To test whether obesity and metabolic diseases result from HFD or disruption of metabolic cycles, we subjected mice to either ad lib or time-restricted feeding (tRF) of a HFD for 8 hr per day. Mice under tRF consume equivalent calories from HFD as those with ad lib access yet are protected against obesity, hyperinsulinemia, hepatic steatosis, and inflammation and have improved motor coordination. The tRF regimen improved CREB, mTOR, and AMPK pathway function and oscillations of the circadian clock and their target genes' expression. These changes in catabolic and anabolic pathways altered liver metabolome and improved nutrient utilization and energy expenditure. We demonstrate in mice that tRF regimen is a nonpharmacological strategy against obesity and associated diseases.

  8. Phlorizin Supplementation Attenuates Obesity, Inflammation, and Hyperglycemia in Diet-Induced Obese Mice Fed a High-Fat Diet.

    PubMed

    Shin, Su-Kyung; Cho, Su-Jung; Jung, Un Ju; Ryu, Ri; Choi, Myung-Sook

    2016-02-16

    Obesity, along with its related complications, is a serious health problem worldwide. Many studies reported the anti-diabetic effect of phlorizin, while little is known about its anti-obesity effect. We investigated the beneficial effects of phlorizin on obesity and its complications, including diabetes and inflammation in obese animal. Male C57BL/6J mice were divided into three groups and fed their respective experimental diets for 16 weeks: a normal diet (ND, 5% fat, w/w), high-fat diet (HFD, 20% fat, w/w), or HFD supplemented with phlorizin (PH, 0.02%, w/w). The findings revealed that the PH group had significantly decreased visceral and total white adipose tissue (WAT) weights, and adipocyte size compared to the HFD. Plasma and hepatic lipids profiles also improved in the PH group. The decreased levels of hepatic lipids in PH were associated with decreased activities of enzymes involved in hepatic lipogenesis, cholesterol synthesis and esterification. The PH also suppressed plasma pro-inflammatory adipokines levels such as leptin, adipsin, tumor necrosis factor-α, monocyte chemoattractant protein-1, interferon-γ, and interleukin-6, and prevented HFD-induced collagen accumulation in the liver and WAT. Furthermore, the PH supplementation also decreased plasma glucose, insulin, glucagon, and homeostasis model assessment of insulin resistance levels. In conclusion, phlorizin is beneficial for preventing diet-induced obesity, hepatic steatosis, inflammation, and fibrosis, as well as insulin resistance.

  9. Purified Betacyanins from Hylocereus undatus Peel Ameliorate Obesity and Insulin Resistance in High-Fat-Diet-Fed Mice.

    PubMed

    Song, Haizhao; Chu, Qiang; Xu, Dongdong; Xu, Yang; Zheng, Xiaodong

    2016-01-13

    Natural bioactive compounds in food have been shown to be beneficial in preventing the development of obesity, diabetes, and other metabolic diseases. Increasing evidence indicates that betacyanins possess free-radical-scavenging and antioxidant activities, suggesting their beneficial effects on metabolic disorders. The main objective of this study was to isolate and identify the betaycanins from Hylocereus undatus (white-fleshed pitaya) peel and evaluate their ability to ameliorate obesity, insulin resistance, and hepatic steatosis in high-fat-diet (HFD)-induced obese mice. The purified pitaya peel betacyanins (PPBNs) were identified by liquid chromatography/tandem mass spectrometry (LC/MS/MS), and the male C57BL/6 mice were fed a low-fat diet, HFD, or HFD supplemented with PPBNs for 14 weeks. Our results showed that the white-fleshed pitaya peel contains 14 kinds of betacyanins and dietary PPBNs reduced HFD-induced body weight gain and ameliorated adipose tissue hypertrophy, hepatosteatosis, glucose intolerance, and insulin resistance. Moreover, the hepatic gene expression analysis indicated that PPBN supplementation increased the expression levels of lipid-metabolism-related genes (AdipoR2, Cpt1a, Cpt1b, Acox1, PPARγ, Insig1, and Insig2) and FGF21-related genes (β-Klotho and FGFR1/2) but decreased the expression level of Fads2, Fas, and FGF21, suggesting that the protective effect of PPBNs might be associated with the induced fatty acid oxidation, decreased fatty acid biosynthesis, and alleviated FGF21 resistance.

  10. Effects of three Chinese herbal medicines on plasma and liver lipids in mice fed a high-fat diet.

    PubMed

    Nakayama, Tohru; Suzuki, Satoe; Kudo, Hideki; Sassa, Shuji; Nomura, Makoto; Sakamoto, Shinobu

    2007-01-19

    Chinese herbal medicines, Inchinko-to, Bofu-tsusho-san and Dai-saiko-to, containing 3, 18 and 8 components, respectively, have since long been used as an anti-inflammatory, antipyretic, choleretic and diuretic agent for liver disorders and jaundice, as an anti-obesity agent, a hypocholesterolemic agent for liver disorders and a therapeutic and/or preventive agent for cholesterol gallstone disease with hypertriglycerid-emia in China and Japan, respectively. In the present study, we investigated the effects of these three herbal medicines in young male mice fed a high-fat diet. Plasma levels of lipids and the numbers of the fatty droplets in the liver cytoplasm were markedly lowered by the diets supplemented with three herbal medicines. The liver weights and the body growth were reduced by the diet supplemented with Dai-saiko-to, which slightly affected the concentrations of total protein, albumin, creatinine or calcium, and the activity of lactate dehydrogenase. Thus, Dai-saiko-to, besides Bofu-tsusho-san, seems effective in the activities of anti-obesity, anti-hyperlipidemia and anti-hyperlipids in liver cytoplasm, when used carefully.

  11. Comparison of effect of high intake of magnesium with high intake of phosphorus and potassium on urolithiasis in goats fed with cottonseed meal diet.

    PubMed

    Wang, Jin-Yong; Sun, Wei-Dong; Wang, Xiao-Long

    2009-08-01

    The effect of high intake of Mg on urolithiasis was compared with high intake of P and K in goats being fed with a cottonseed meal and rice straw diet. Eighteen wether goats were randomly allocated into group A, B and C evenly and fed with cottonseed meal and rice straw diet for three months. From day 60 onwards, KH(2)PO(4) and K(2)HPO(4) were provided via drinking water to goats in group B to increase the intake of P, K, and MgO to goats in group C to increase the intake of Mg. Blood and urine samples were collected to analyze the concentration of P, K, Mg and Ca, and the activity product (AP) of potassium magnesium phosphate (MKP) in urine was also calculated. The composition of calculi and urinary sedimentary crystals were examined by chemical qualitative analysis, X-ray diffraction, X-ray energy dispersive spectrometry and Fourier transform infrared spectroscopy. The results showed that the incidence of urolithiasis in group C (6/6) was higher than that in group A (1/6) and B (1/6) (P<0.05). The calculi were mainly composed of magnesium ammonium phosphate (MAP) and partly composed of MKP. MKP presented in crystals of different phases in this experiment. The high intake of Mg contributed to a significant increase of plasma Mg, but additional P, K did not cause a further increase of plasma P, K. Urine P, K, Mg and Ca and AP of MKP in group C decreased significantly after the onset of urolithiasis. In conclusion, high intake of Mg was more important in inducing struvite calculi compared with high intake of K and P in goats under these feeding conditions. Cottonseed meal and rice straw with additional Mg is a good dietary model for inducing struvite calculi in castrated goats.

  12. Vitamin C enhances vitamin E status and reduces oxidative stress indicators in sea bass larvae fed high DHA microdiets.

    PubMed

    Betancor, Mónica B; Caballero, Ma José; Terova, Genciana; Corà, Samuela; Saleh, Reda; Benítez-Santana, Tibiábin; Bell, J Gordon; Hernández-Cruz, Carmen María; Izquierdo, Marisol

    2012-12-01

    Docosahexaenoic acid (DHA) is an essential fatty acid necessary for many biochemical, cellular and physiological functions in fish. However, high dietary levels of DHA increase free radical injury in sea bass (Dicentrarchus labrax) larvae muscle, even when vitamin E (α-tocopherol, α-TOH) is increased. Therefore, the inclusion of other nutrients with complementary antioxidant functions, such as vitamin C (ascorbic acid, vitC), could further contribute to prevent these lesions. The objective of the present study was to determine the effect of vitC inclusion (3,600 mg/kg) in high DHA (5% DW) and α-TOH (3,000 mg/kg) microdiets (diets 5/3,000 and 5/3,000 + vitC) in comparison to a control diet (1% DHA DW and 1,500 mg/kg of α-TOH; diet 1/1,500) on sea bass larvae growth, survival, whole body biochemical composition and thiobarbituric acid reactive substances (TBARS) content, muscle morphology, skeletal deformities and antioxidant enzymes, insulin-like growth factors (IGFs) and myosin expression (MyHC). Larvae fed diet 1/1,500 showed the best performance in terms of total length, incidence of muscular lesions and ossification degree. IGFs gene expression was elevated in 5/3,000 diet larvae, suggesting an increased muscle mitogenesis that was confirmed by the increase in the mRNA copies of MyHC. vitC effectively controlled oxidative damages in muscle, increased α-TOH larval contents and reduced TBARS content and the occurrence of skull deformities. The results of the present study showed the antioxidant synergism between vitamins E and C when high contents of DHA are included in sea bass larvae diets.

  13. Effect of substituting brown rice for corn on lactation and digestion in dairy cows fed diets with a high proportion of grain.

    PubMed

    Miyaji, M; Matsuyama, H; Hosoda, K

    2014-02-01

    The effects of the substitution of brown rice (Oryza sativa L.; BR) for corn (Zea mays L.) in ensiled total mixed ration (TMR) that had a high proportion of grain on feed intake, lactation performance, ruminal fermentation, digestion, and N utilization were evaluated. Nine multiparous Holstein cows (51 ± 9 d in milk) were used in a replicated 3 × 3 Latin square design with 3 dietary treatments: a diet containing 0, 20, or 40% steam-flaked BR and 40, 20, or 0% steam-flaked corn (dry matter basis). Cows were fed ad libitum an ensiled TMR consisting of 40.7% alfalfa silage, 11.8% grass silage, 7.1% soybean meal, and 40.0% steam-flaked grain (dry matter basis). The ensiled TMR was prepared by baling fresh TMR, and then sealed by a bale wrapper and stored outdoors at 5 to 30 °C for over 6 mo. Dry matter intake and milk yield were lower for cows fed 40% BR than for cows fed 40% corn. The ruminal pH and total volatile fatty acid concentrations were not affected by dietary treatment. The ruminal ammonia-N concentration decreased as the percentage of BR in the diets was elevated. The proportion of acetate decreased, and that of propionate and butyrate increased with the increasing levels of BR. Plasma urea-N concentrations was lower and glucose and insulin concentrations were higher for cows fed 40% BR than for cows fed 40% corn. The whole-tract apparent digestibility of dry matter, organic matter, and starch increased, and the digestibility of neutral detergent fiber and acid detergent fiber decreased with the increasing BR level in the diet, with no dietary effect on crude protein digestion. As a proportion of N intake, the urinary N excretion was lower and the retention of N was higher for cows fed 40% BR than for cows fed 40% corn, with no dietary effect observed on N secretion in milk and fecal N excretion. These results show that substituting BR for corn decreases urinary N losses and improves N utilization, but causes adverse effects on milk production when cows

  14. Genetic Relatedness of Salmonella Serovars Isolated from Catfish (Clarias gariepinus) and Tilapia (Tilapia mossambica) Obtained from Wet Markets and Ponds in Penang, Malaysia.

    PubMed

    Budiati, Titik; Rusul, Gulam; Wan-Abdullah, Wan Nadiah; Chuah, Li-Oon; Ahmad, Rosma; Thong, Kwai Lin

    2016-04-01

    A total of 43 Salmonella enterica isolates belonging to different serovars (Salmonella Albany, Salmonella Agona, Salmonella Corvallis, Salmonella Stanley, Salmonella Typhimurium, Salmonella Mikawasima, and Salmonella Bovismorbificans) were isolated from catfish (Clarias gariepinus) and tilapia (Tilapia mossambica) obtained from nine wet markets and eight ponds in Penang, Malaysia. Thirteen, 19, and 11 isolates were isolated from 9 of 32 catfish, 14 of 32 tilapia, and 11 of 44 water samples, respectively. Fish reared in ponds were fed chicken offal, spoiled eggs, and commercial fish feed. The genetic relatedness of these Salmonella isolates was determined by random amplified polymorphic DNA PCR (RAPD-PCR) using primer OPC2, repetitive extragenic palindromic PCR (REP-PCR), and pulsed-field gel electrophoresis (PFGE). Composite analysis of the RAPD-PCR, REP-PCR, and PFGE results showed that the Salmonella serovars could be differentiated into six clusters and 15 singletons. RAPD-PCR differentiated the Salmonella isolates into 11 clusters and 10 singletons, while REP-PCR differentiated them into 4 clusters and 1 singleton. PFGE differentiated the Salmonella isolates into seven clusters and seven singletons. The close genetic relationship of Salmonella isolates from catfish or tilapia obtained from different ponds, irrespective of the type of feed given, may be caused by several factors, such as the quality of the water, density of fish, and size of ponds.

  15. Pu-erh tea, green tea, and black tea suppresses hyperlipidemia, hyperleptinemia and fatty acid synthase through activating AMPK in rats fed a high-fructose diet.

    PubMed

    Huang, Hsiu-Chen; Lin, Jen-Kun

    2012-02-01

    Although green tea extract has been reported to suppress hyperlipidemia, it is unclear how tea extracts prepared from green, oolong, black and pu-erh teas modulate fatty acid synthase expression in rats fed on a high-fructose diet. In this animal study, we evaluated the hypolipidemic and hypoleptinemia effect of these four different tea leaves fed to male Wistar rats for 12 weeks. The results showed that a fructose-rich diet significantly elevated serum triacylglycerols, cholesterol, insulin, and leptin concentrations, as compared with those in the control group. Interestingly, consuming tea leaves for 12 weeks almost normalized the serum triacylglycerols concentrations. Again, rats fed with fructose/green tea and fructose/pu-erh tea showed the greatest reduction in serum TG, cholesterol, insulin and leptin levels. In contrast, serum cholesterol and insulin concentrations of the fructose/oolong tea-fed rats did not normalize. The relative epididymal adipose tissue weight was lower in all rats supplemented with tea leaves than those fed with fructose alone. There was molecular evidence of improved lipid homeostasis according to fatty acid synthase (FAS) protein expression. Furthermore, supplementation of green, black, and pu-erh tea leaves significantly decreased hepatic FAS mRNA and protein levels, and increased AMPK phosphorylation, compared with those of rats fed with fructose only. These findings suggest that the intake of green, black, and pu-erh tea leaves ameliorated the fructose-induced hyperlipidemia and hyperleptinemia state in part through the suppression of FAS protein levels and increased AMPK phosphorylation.

  16. Effects of Ilex latifolia and Camellia sinensis on cholesterol and circulating immune complexes in rats fed with a high-cholesterol diet.

    PubMed

    Luo, Xian-Yang; Li, Na-Na; Liang, Yue-Rong

    2013-01-01

    Hypercholesterolaemia is one of the risk factors for atherosclerosis and subsequent cardiovascular disease. Here, we investigated the effects of dietary supplementation with Ilex latifolia or green tea (Camellia sinensis) on the levels of plasma total cholesterol, high-density lipoprotein cholesterol and circulating immune complexes in Sprague Dawley rats fed with a high-cholesterol diet. We demonstrated that daily administration by gavage of I. latifolia or C. sinensis at doses of 1.0 or 2.0 g/kg body weight for 30 days resulted in a significant decrease in plasma total cholesterol levels and circulating immune complexes and an increase in high-density lipoprotein cholesterol in rats fed with a high-cholesterol diet compared with levels in the high-cholesterol diet control group. C. sinensis was more effective than I. latifolia. I. latifolia and C. sinensis could be used as food supplements to protect against the development of hypercholesterolaemia.

  17. Bioavailability of magnesium from inorganic and organic compounds is similar in rats fed a high phytic acid diet.

    PubMed

    Bertinato, Jesse; Plouffe, Louise J; Lavergne, Christopher; Ly, Catherine

    2014-01-01

    A large section of the North American population is not meeting recommended intakes for magnesium (Mg). Supplementation and consumption of Mg-fortified foods are ways to increase intake. Currently, information on Mg bioavailability from different compounds and their efficacy in improving Mg status is scant. This study compared the relative ability of inorganic and organic Mg compounds to preserve the Mg status of rats when fed at amounts insufficient to retain optimal Mg status. Male Sprague-Dawley rats (n=12/diet group) were fed one of eight test diets supplemented with phytic acid (5 g/kg diet) and low levels of Mg (155 mg elemental Mg/kg diet) from Mg oxide, Mg sulphate, Mg chloride, Mg citrate, Mg gluconate, Mg orotate, Mg malate or ethylenediaminetetraacetic acid disodium Mg salt for five weeks. Rats were also fed three control diets that did not contain added phytic acid but were supplemented with 500 (NMgO, normal), 155 (LMgO, low) or 80 (DMgO, deficient) mg of Mg per kg diet as Mg oxide. Mg concentrations in femur, serum and urine showed a graded decrease in rats fed the control diets with lower Mg. Mg concentrations did not differ (P≥0.05) between rats fed the different test diets. Addition of phytic acid to the diet did not affect the Mg status of the rats. The results indicate that any differences in the Mg bioavailability of the compounds were small and physiologically irrelevant.

  18. Nopal feeding reduces adiposity, intestinal inflammation and shifts the cecal microbiota and metabolism in high-fat fed rats.

    PubMed

    Moran-Ramos, Sofia; He, Xuan; Chin, Elizabeth L; Tovar, Armando R; Torres, Nimbe; Slupsky, Carolyn M; Raybould, Helen E

    2017-01-01

    Nopal is a cactus plant widely consumed in Mexico that has been used in traditional medicine to aid in the treatment of type-2 diabetes. We previously showed that chronic consumption of dehydrated nopal ameliorated hepatic steatosis in obese (fa/fa) rats; however, description of the effects on other tissues is sparse. The aim of the present study was to investigate the effects of nopal cladode consumption on intestinal physiology, microbial community structure, adipose tissue, and serum biochemistry in diet-induced obese rats. Rats were fed either a normal fat (NF) diet or a HF diet containing 4% of dietary fiber from either nopal or cellulose for 6 weeks. Consumption of nopal counteracted HF-induced adiposity and adipocyte hypertrophy, and induced profound changes in intestinal physiology. Nopal consumption reduced biomarkers of intestinal inflammation (mRNA expression of IL-6) and oxidative stress (ROS), modfied gut microbiota composition, increasing microbial diversity and cecal fermentation (SCFA), and altered the serum metabolome. Interestingly, metabolomic analysis of dehydrated nopal revealed a high choline content, which appeared to generate high levels of serum betaine, that correlated negatively with hepatic triglyceride (TAG) levels. A parallel decrease in some of the taxa associated with the production of trimethylamine, suggest an increase in choline absorption and bioavailability with transformation to betaine. The latter may partially explain the previously observed effect of nopal on the development of hepatic steatosis. In conclusion, this study provides new evidence on the effects of nopal consumption on normal and HF-diet induced changes in the intestine, the liver and systemic metabolism.

  19. Resistant starch intake partly restores metabolic and inflammatory alterations in the liver of high-fat-diet-fed rats.

    PubMed

    Polakof, Sergio; Díaz-Rubio, María Elena; Dardevet, Dominique; Martin, Jean-François; Pujos-Guillot, Estelle; Scalbert, Augustin; Sebedio, Jean-Louis; Mazur, Andrzej; Comte, Blandine

    2013-11-01

    Insulin resistance (IR) constitutes the most important feature of the metabolic syndrome, whose prevalence is highly associated to the consumption of Western diets. Resistant starch (RS) consumption has been shown to have beneficial metabolic effects, including improved insulin sensitivity, and glucose and lipid homeostasis. However, the mechanisms (especially at the molecular level) by which this takes place are still not completely known. In the present study, we aimed to evaluate the role of the liver in the ameliorated high-fat (HF)-induced IR status by RS. Thus, three groups of rats were fed either a control diet, or an HF diet containing or not RS. After 9 weeks of feeding, we evaluated the whole-body insulin sensitivity, and the hepatic glucose and lipid metabolism at the biochemical and molecular levels and the metabolome of the cecum content. We demonstrated for the first time that at least part of the beneficial effects of RS consumption in the context of an HF feeding can be driven by changes elicited at the hepatic level. The ability of the RS to correct the HF-induced dyslipidemia and the associated IR resulted from the return to the basal expression levels of transcription factors involved in lipogenesis (SREBP-1c), cholesterol metabolism (SREBP-2, LXRs) and fatty acid oxidation (PPARα). Moreover, the RS feeding was able to correct the HF-induced reduction in hepatic glucose phosphorylation and muscle glucose transport, improving glucose tolerance. Finally, as a whole, the improved hepatic metabolism seemed to be the result of an ameliorated inflammatory status.

  20. Wholegrain barley β-glucan fermentation does not improve glucose tolerance in rats fed a high-fat diet.

    PubMed

    Belobrajdic, Damien P; Jobling, Stephen A; Morell, Matthew K; Taketa, Shin; Bird, Anthony R

    2015-02-01

    Fermentation of oat and barley β-glucans is believed to mediate in part their metabolic health benefits, but the exact mechanisms remain unclear. In this study, we sought to test the hypothesis that barley β-glucan fermentation raises circulating incretin hormone levels and improves glucose control, independent of other grain components. Male Sprague-Dawley rats (n = 30) were fed a high-fat diet for 6 weeks and then randomly allocated to 1 of 3 dietary treatments for 2 weeks. The low- (LBG, 0% β-glucan) and high- (HBG, 3% β-glucan) β-glucan diets contained 25% wholegrain barley and similar levels of insoluble dietary fiber, available carbohydrate, and energy. A low-fiber diet (basal) was included for comparison. Immediately prior to the dietary intervention, gastric emptying rate (using the (13)C-octanoic breath test) and postprandial glycemic response of each diet were determined. At the end of the study, circulating gut hormone levels were determined; and a glucose tolerance test was performed. The rats were then killed, and indices of cecal fermentation were assessed. Diet did not affect live weight; however, the HBG diet, compared to basal and LBG, reduced food intake, tended to slow gastric emptying, increased cecal digesta mass and individual and total short-chain fatty acid pools, and lowered digesta pH. In contrast, circulating levels of glucose, insulin, gastric-inhibitory peptide, and glucagon-like peptide-1, and glucose tolerance were unaffected by diet. In conclusion, wholegrain barley β-glucan suppressed feed intake and increased cecal fermentation but did not improve postprandial glucose control or insulin sensitivity.

  1. Hydrodynamic delivery of FGF21 gene alleviates obesity and fatty liver in mice fed a high-fat diet.

    PubMed

    Gao, Mingming; Ma, Yongjie; Cui, Ran; Liu, Dexi

    2014-07-10

    FGF21 is a secreted protein that plays critical roles in regulating glucose and lipid metabolism. In this study, we evaluated the effects of FGF21 gene transfer on C57BL/6 mice fed a high fat diet (HFD). We demonstrate that transfer of the FGF21 gene using a hydrodynamics-based procedure increased mRNA levels of FGF21 exclusively in the liver, consequently generating a sustained high level of FGF21 protein in blood that peaked at 500 ng/ml 1 day after injection, leading to a variety of beneficial effects including blockade of HFD-induced obesity, alleviation of fatty liver and improvement in glucose homeostasis. These effects were associated with altered expression of Ucp1, Dio2, Pgc1α, Pparγ2, Mgat1, F4/80, Mcp1 and Tnfα, which are involved in thermogenesis, lipogenesis and chronic inflammation in the liver and adipose tissues. Transfer of the FGF21 gene in HFD-induced obese mice greatly increased the expression of thermogenic genes in adipose tissue, resulting in similar improvements in systemic metabolism including reduction of adiposity, alleviation of fatty liver and attenuation of insulin resistance. Mechanistic studies on the effects of FGF21 gene transfer in lean mice revealed that mice transferred with FGF21 gene displayed suppressed lipogenesis in the liver and enhanced thermogenesis in brown adipose tissue which was coincident with a significant improvement in glucose tolerance. Collectively, our results suggest that transfer of the FGF21 gene could be considered a promising approach for treating obesity and its complications.

  2. Effective nitrogen preservation during urine collection from Holstein heifers fed diets with high or low protein content.

    PubMed

    Knowlton, K F; McGilliard, M L; Zhao, Z; Hall, K G; Mims, W; Hanigan, M D

    2010-01-01

    Six Holstein heifers (body weight=535-625 kg) fed a total mixed ration containing either high protein (13.4%) or low protein (9.0%) were used to evaluate the effect of 3 urine collection methods (chilled, acidified before collection, or acidified after 6h of collection) on urinary N preservation. In a 2-period crossover design, 16-d diet adjustment stages preceded five 24-h collections. Urinary catheters were inserted 1 d before the collection periods. Urine collection tubes were configured to split urine to 3 collection containers: 1 acidified with 6 N HCl before collection at a rate calculated to reduce pH to below 2, 1 acidified every 6h during collection to pH below 2, and 1 located in a large cooler of ice. Collection method did not affect urinary concentration of N or urine urea-N (9.2+/-0.9 g/L and 6.58+/-0.9 g/L, respectively) or urinary excretion of N or urea-N (82+/-3.8 g/d and 59.5+/-3.8 g/d, respectively). These 3 collection methods are equally effective in preserving N during urine collection, but the "chilled immediately" approach may be useful for studies focused on ammonia emission. Urinary and fecal N excretion were significantly different across collection days; fecal N was more highly variable than urinary N. Intake and apparent N digestibility decreased during the collection week, and excretion of urinary and fecal N increased, particularly on d 5. (Stable rectal temperatures suggested no urinary infections.) Improvements in total collection methodology will support continued progress in the understanding of livestock N utilization and post-excretion changes in manure N.

  3. Zinc deficiency augments leptin production and exacerbates macrophage infiltration into adipose tissue in mice fed a high-fat diet.

    PubMed

    Liu, Ming-Jie; Bao, Shengying; Bolin, Eric R; Burris, Dara L; Xu, Xiaohua; Sun, Qinghua; Killilea, David W; Shen, Qiwen; Ziouzenkova, Ouliana; Belury, Martha A; Failla, Mark L; Knoell, Daren L

    2013-07-01

    Zinc (Zn) deficiency and obesity are global public health problems. Zn deficiency is associated with obesity and comorbid conditions that include insulin resistance and type 2 diabetes. However, the function of Zn in obesity remains unclear. Using a mouse model of combined high-fat and low-Zn intake (0.5-1.5 mg/kg), we investigated whether Zn deficiency exacerbates the extent of adiposity as well as perturbations in metabolic and immune function. C57BL/6 mice were randomly assigned to receive either a high-fat diet (HFD) or a control (C) diet for 6 wk, followed by further subdivision into 2 additional groups fed Zn-deficient diets (C-Zn, HFD-Zn), along with a C diet and an HFD, for 3 wk (n = 8-9 mice/group). The extent of visceral fat, insulin resistance, or systemic inflammation was unaffected by Zn deficiency. Strikingly, Zn deficiency significantly augmented circulating leptin concentrations (HFD-Zn vs. HFD: 3.15 ± 0.16 vs. 2.59 ± 0.12 μg/L, respectively) and leptin signaling in the liver of obese mice. Furthermore, gene expression of macrophage-specific markers ADAM8 (A disintegrin and metalloproteinase domain-containing protein 8) and CD68 (cluster of differentiation 68) was significantly greater in adipose tissue in the HFD-Zn group than in the HFD group, as confirmed by CD68 protein analysis, indicative of increased macrophage infiltration. Inspection of Zn content and mRNA profiles of all Zn transporters in the adipose tissue revealed alterations of Zn metabolism to obesity and Zn deficiency. Our results demonstrate that Zn deficiency increases leptin production and exacerbates macrophage infiltration into adipose tissue in obese mice, indicating the importance of Zn in metabolic and immune dysregulation in obesity.

  4. Nopal feeding reduces adiposity, intestinal inflammation and shifts the cecal microbiota and metabolism in high-fat fed rats

    PubMed Central

    Moran-Ramos, Sofia; He, Xuan; Chin, Elizabeth L.; Tovar, Armando R.; Torres, Nimbe; Slupsky, Carolyn M.; Raybould, Helen E.

    2017-01-01

    Nopal is a cactus plant widely consumed in Mexico that has been used in traditional medicine to aid in the treatment of type-2 diabetes. We previously showed that chronic consumption of dehydrated nopal ameliorated hepatic steatosis in obese (fa/fa) rats; however, description of the effects on other tissues is sparse. The aim of the present study was to investigate the effects of nopal cladode consumption on intestinal physiology, microbial community structure, adipose tissue, and serum biochemistry in diet-induced obese rats. Rats were fed either a normal fat (NF) diet or a HF diet containing 4% of dietary fiber from either nopal or cellulose for 6 weeks. Consumption of nopal counteracted HF-induced adiposity and adipocyte hypertrophy, and induced profound changes in intestinal physiology. Nopal consumption reduced biomarkers of intestinal inflammation (mRNA expression of IL-6) and oxidative stress (ROS), modfied gut microbiota composition, increasing microbial diversity and cecal fermentation (SCFA), and altered the serum metabolome. Interestingly, metabolomic analysis of dehydrated nopal revealed a high choline content, which appeared to generate high levels of serum betaine, that correlated negatively with hepatic triglyceride (TAG) levels. A parallel decrease in some of the taxa associated with the production of trimethylamine, suggest an increase in choline absorption and bioavailability with transformation to betaine. The latter may partially explain the previously observed effect of nopal on the development of hepatic steatosis. In conclusion, this study provides new evidence on the effects of nopal consumption on normal and HF-diet induced changes in the intestine, the liver and systemic metabolism. PMID:28196086

  5. Carboxylic acids in the hindgut of rats fed highly soluble inulin and Bifidobacterium lactis (Bb-12), Lactobacillus salivarius (UCC500) or Lactobacillus rhamnosus (GG)

    PubMed Central

    Nilsson, Ulf; Nyman, Margareta

    2007-01-01

    Background Propionic and butyric acids are important nutrients for the mucosal cells and may therefore increase the nutritional status and reduce the permeability of the colonic mucosa. These acids have also been suggested to counteract diseases in the colon, e.g. ulcerative colitis and colon cancer. Different substrates lead to different amounts and patterns of carboxylic acids (CAs). Objective To study the effect of probiotics on CA formation in the hindgut of rats given inulin. Design The rats were given inulin, marketed as highly soluble by the producer, together with the probiotic bacteria Bifidobacterium lactis (Bb-12), Lactobacillus salivarius (UCC500) or Lactobacillus rhamnosus (GG), or a mixture of all three. Results Rats fed inulin only had comparatively high proportions of propionic and butyric acids throughout the hindgut. When diets were supplemented with Bb-12 and UCC500, the caecal pool of CAs increased compared with inulin only. In the caecum the proportion of butyric acid generally decreased when the rats were fed probiotics. In the distal colon the proportion of propionic and butyric acid was lower, while that of lactic acid was generally higher. The caecal pH in rats fed GG and Bb-12 was lower than expected from the concentration of CAs. Further, rats fed GG had the lowest weight gain and highest caecal tissue weight. Conclusions It is possible to modify the formation of CAs by combining inulin with probiotics. Different probiotics had different effects.

  6. Green tea, black tea, and oolong tea polyphenols reduce visceral fat and inflammation in mice fed high-fat, high-sucrose obesogenic diets.

    PubMed

    Heber, David; Zhang, Yanjun; Yang, Jieping; Ma, Janice E; Henning, Susanne M; Li, Zhaoping

    2014-09-01

    Green tea (GT) and caffeine in combination were shown to increase energy expenditure and fat oxidation, but less is known about the effects of black tea (BT) and oolong tea (OT). This study investigated whether decaffeinated polyphenol extracts from GT, BT, and OT decrease body fat and inflammation in male C57BL/6J mice fed high-fat/high-sucrose [HF/HS (32% energy from fat, 25% energy from sucrose)] diets. Mice were fed either an HF/HS diet with 0.25% of polyphenol from GT, OT, or BT or a low-fat/high-sucrose [LF/HS (10.6% energy from fat, 25% energy from sucrose)] diet for 20 wk. Monomeric tea polyphenols were found in the liver and adipose tissue of mice fed the HF/HS diet with GT polyphenols (GTPs) and OT polyphenols (OTPs) but not BT polyphenols (BTPs). Treatment with GTPs, OTPs, BTPs, and an LF/HS diet led to significantly lower body weight, total visceral fat volume by MRI, and liver lipid weight compared with mice in the HF/HS control group. Only GTPs reduced food intake significantly by ∼10%. GTP, BTP, and LF/HS-diet treatments significantly reduced serum monocyte chemotactic protein-1 (MCP-1) compared with HF/HS controls. In mesenteric fat, monocyte chemotactic protein-1 (Mcp1) gene expression was significantly decreased by treatment with GTPs, BTPs, OTPs, and an LF/HS diet and in liver tissue by GTP and BTP treatments. Mcp1 gene expression in epididymal fat was significantly decreased by the BTP and LF/HS diet interventions. In epididymal fat, consistent with an anti-inflammatory effect, adiponectin gene expression was significantly increased by GTPs and OTPs. Angiogenesis during adipose tissue expansion is anti-inflammatory by maintaining adipocyte perfusion. We observed significantly increased gene expression of vascular endothelial growth factor A by GTPs and vascular endothelial growth factor receptor 2 by BTPs and the LF/HS diet and a decrease in pigment epithelium-derived factor gene expression by OTPs and BTPs. In summary, all 3 tea polyphenol

  7. Fish Oil and Microalga Omega-3 as Dietary Supplements: A Comparative Study on Cardiovascular Risk Factors in High-Fat Fed Rats.

    PubMed

    Haimeur, Adil; Mimouni, Virginie; Ulmann, Lionel; Martineau, Anne-Sophie; Messaouri, Hafida; Pineau-Vincent, Fabienne; Tremblin, Gérard; Meskini, Nadia

    2016-09-01

    Dietary supplementation with marine omega-3 polyunsaturated fatty acids (n-3 PUFA) can have beneficial effects on a number of risk factors for cardiovascular disease (CVD). We compared the effects of two n-3 PUFA rich food supplements (freeze-dried Odontella aurita and fish oil) on risk factors for CVD. Male rats were randomly divided into four groups of six animals each and fed with the following diets: control group (C) received a standard diet containing 7 % lipids; second group (HF high fat) was fed with a high-fat diet containing 40 % lipids; third group (HFFO high fat+fish oil) was fed with the high-fat diet supplemented with 0.5 % fish oil; and fourth group (HFOA high fat+O. aurita) received the high-fat diet supplemented with 12 % of freeze-dried O. aurita. After 8 weeks rats fed with the high-fat diet supplemented with O. aurita displayed a significantly lower bodyweight than those in the other groups. Both the microalga and the fish oil significantly reduced insulinemia and serum lipid levels. O. aurita was more effective than the fish oil in reducing hepatic triacyglycerol levels and in preventing high-fat diet-induced steatosis. O. aurita and fish oil also reduced platelet aggregation and oxidative status induced by high fat intake. After an OA supplementation, the adipocytes in the HFOA group were smaller than those in the HF group. Freeze-dried O. aurita showed similar or even greater biological effects than the fish oil. This could be explained by a potential effect of the n-3 PUFA but also other bioactive compounds of the microalgae.

  8. Effect of dry tomato peel supplementation on glucose tolerance, insulin resistance, and hepatic markers in mice fed high-saturated-fat/high-cholesterol diets.

    PubMed

    Zidani, Sofiane; Benakmoum, Amar; Ammouche, Ali; Benali, Yasmine; Bouhadef, Anissa; Abbeddou, Souheila

    2017-02-01

    Many studies have investigated the effect of crude tomato peel in vivo, but no studies have determined the dose-effect of dry tomato peel (DTP) on glucose intolerance, insulin resistance, and atherogenic dyslipidemia induced by a high-saturated-fat (HSF) diet in vivo. The aim of this study was to investigate the effects of different doses of DTP on the levels of oxidative stress in mice fed an HSF and cholesterol-rich diet for 12 weeks. The main outcomes are glucose and insulin tolerance, plasma lipids, and hepatic steatosis and inflammation. BALB/c male mice (n=40) (8 weeks old, weighing 22.2±1.0 g) were divided into four treatment groups (10 mice/group): (a) high-fat control diet (HF Ctrl), which contains sunflower oil as a sole source of fat; (b) HSF/high-cholesterol (HC) diet; (c) HSF/HC diet supplemented with 9% DTP and (d) HSF/HC diet supplemented with 17% DTP. The HSF/HC diet significantly increased body weight gain, adipose tissue weight, fasting plasma glucose, fasting plasma insulin and lipid peroxidation and caused the development of liver steatosis and inflammation. Supplementation with DTP increased plasma lycopene concentration and reduced the development of indicators of metabolic syndrome, with no consistent effect of the DTP dose. Hepatic steatosis and inflammation were not reversed with DTP supplementation. Among mice fed the HSF/HC diet, DTP supplementation appears to have a beneficial effect on insulin resistance, which confirms the antiatherogenic effect of DTP.

  9. A High-Dose Shiitake Mushroom Increases Hepatic Accumulation of Triacylglycerol in Rats Fed a High-Fat Diet: Underlying Mechanism

    PubMed Central

    Handayani, Dian; Meyer, Barbara J.; Chen, Jiezhong; Brown, Simon H. J.; Mitchell, Todd W.; Huang, Xu-Feng

    2014-01-01

    Shiitake mushroom have been shown to have health benefits including lowering plasma lipids and preventing body weight gain. However, their underlying mechanisms are largely unknown. The study aim was to assess the potential underlying mechanism of Shiitake mushrooms in lowering plasma triacylglycerol (TAG) in rats fed a high fat diet (HFD). Forty Wistar rats were divided into control group were given HFD and treatment group were fed HFD, enriched with Shiitake mushroom powder at a low dose (LD-M): 0.7%, medium dose (MD-M): 2%, or high dose (HD-M): 6% (wt:wt) for six weeks. Diets were isocaloric containing ~50% energy from fat. After six weeks’ dietary intervention, the rats were sacrificed, and blood and tissue samples were collected. The HD-M group showed a significantly higher ratio of liver weight to 100 g body weight (p < 0.05), a more severe hepatic steatosis marker, such as hepatocyte ballooning (p < 0.0001), and more liver triacylglycerol content than LD-M and MD-M (p < 0.05). HD-M also showed a significantly decreased ratio of phosphatidylcholine (PC) to phosphatidylethanolamine (PE) compared to HFD (p < 0.05), however, there were no differences compared to HD-M and MD-M. Our results also showed a positive association between the dosage, liver TAG, and liver ballooning histology. A negative association was found between the mushroom dosage and the ratio of liver PC to PE. This study showed the mechanism of how high-dose Shiitake mushroom (HD-M) prevents obesity by increasing TAG accumulation in the liver, rather than adipose tissue. PMID:24566434

  10. Chamnamul [Pimpinella brachycarpa (Kom.) Nakai] ameliorates hyperglycemia and improves antioxidant status in mice fed a high-fat, high-sucrose diet.

    PubMed

    Lee, Soo-Jin; Choi, Ha-Neul; Kang, Min-Jung; Choe, Eunok; Auh, Joong Hyuck; Kim, Jung-In

    2013-12-01

    Chronic consumption of a high-fat, high-sucrose (HFHS) diet increases insulin resistance and results in type 2 diabetes mellitus in C57BL/6J mice. Hyperglycemia in diabetics increases oxidative stress, which is associated with a high risk of diabetic complications. The purpose of this study was to examine the hypoglycemic and antioxidant effects of chamnamul [Pimpinella brachycarpa (Kom.) Nakai] in an animal model of type 2 diabetes. The α-glucosidase inhibitory activity of a 70% ethanol extract of chamnamul was measured in vitro. Five-week-old male C57BL/6J mice were fed a basal or HFHS diet with or without a 70% ethanol extract of chamnamul at a 0.5% level of the diet for 12 weeks after 1 week of adaptation. After sacrifice, serum glucose, insulin, adiponectin, and lipid profiles, and lipid peroxidation of the liver were determined. Homeostasis model assessment for insulin resistance (HOMA-IR) was determined. Chamnamul extract inhibited α-glucosidase by 26.7%, which was 78.3% the strength of inhibition by acarbose at a concentration of 0.5 mg/mL. Serum glucose, insulin, and cholesterol levels, as well as HOMA-IR values, were significantly lower in the chamnamul group than in the HFHS group. Chamnamul extract significantly decreased the level of thiobarbituric acid reactive substances and increased the activities of superoxide dismutase, catalase, and glutathione peroxidase in the liver compared with the HFHS group. These findings suggest that chamnamul may be useful in prevention of hyperglycemia and reduction of oxidative stress in mice fed a HFHS diet.

  11. Pups of dams fed low-fat diet during pregnancy and lactation showed strong preference for high-fat diet to achieve optimal growth.

    PubMed

    Nakashima, Yoko; Sato, Akie

    2011-01-01

    To investigate the causes why pups of dams fed a low-fat high-carbohydrate diet (LFD) showed a strong preference for fat, three groups of dams were fed one of three diets during pregnancy and lactation: the LFD, a control diet (CTD) or a high-fat low-carbohydrate diet (HFD). After weaning, pups of each of the three groups were divided into two equal subgroups (Pair 1 and Pair 2), for a total of six pup subgroups. Each subgroup was placed on a two-choice diet program of the LFD and the HFD (Pair 1), or the LFD and a HFDLE (with cellulose added to maintain the same energy concentration as the LFD) (Pair 2), for 3 wk. Although the energy intake of dams fed the LFD during the nursing period was lower than that of the HFD group, no significant difference in body weight was observed among the three groups. At weaning, the body weight of pups nursed by dams fed the LFD was lower than that of the other groups. In Pair 1, the HFD intake ratio of the LFD and the HFD groups during the self-selection period was higher than that of the CTD group. In Pair 2, the HFDLE intake ratio of the LFD and the CTD groups was lower than that of the HFD group. At the end of the self-selection period, no significant difference in body weight was observed among the three groups of Pair 1. However, in Pair 2, the body weight of the LFD group was lower than that of the other groups. Therefore, it was supposed that pups of dams fed the LFD showed strong preference for the HFD containing high energy in order to achieve optimal growth.

  12. Quantitative evaluation of yeast's requirement for glycerol formation in very high ethanol performance fed-batch process

    PubMed Central

    2010-01-01

    Background Glycerol is the major by-product accounting for up to 5% of the carbon in Saccharomyces cerevisiae ethanolic fermentation. Decreasing glycerol formation may redirect part of the carbon toward ethanol production. However, abolishment of glycerol formation strongly affects yeast's robustness towards different types of stress occurring in an industrial process. In order to assess whether glycerol production can be reduced to a certain extent without jeopardising growth and stress tolerance, the yeast's capacity to synthesize glycerol was adjusted by fine-tuning the activity of the rate-controlling enzyme glycerol 3-phosphate dehydrogenase (GPDH). Two engineered strains whose specific GPDH activity was significantly reduced by two different degrees were comprehensively characterized in a previously developed Very High Ethanol Performance (VHEP) fed-batch process. Results The prototrophic strain CEN.PK113-7D was chosen for decreasing glycerol formation capacity. The fine-tuned reduction of specific GPDH activity was achieved by replacing the native GPD1 promoter in the yeast genome by previously generated well-characterized TEF promoter mutant versions in a gpd2Δ background. Two TEF promoter mutant versions were selected for this study, resulting in a residual GPDH activity of 55 and 6%, respectively. The corresponding strains were referred to here as TEFmut7 and TEFmut2. The genetic modifications were accompanied to a strong reduction in glycerol yield on glucose; the level of reduction compared to the wild-type was 61% in TEFmut7 and 88% in TEFmut2. The overall ethanol production yield on glucose was improved from 0.43 g g-1 in the wild type to 0.44 g g-1 measured in TEFmut7 and 0.45 g g-1 in TEFmut2. Although maximal growth rate in the engineered strains was reduced by 20 and 30%, for TEFmut7 and TEFmut2 respectively, strains' ethanol stress robustness was hardly affected; i.e. values for final ethanol concentration (117 ± 4 g L-1), growth

  13. Mango modulates body fat and plasma glucose and lipids in mice fed a high-fat diet.

    PubMed

    Lucas, Edralin A; Li, Wenjia; Peterson, Sandra K; Brown, Angela; Kuvibidila, Solo; Perkins-Veazie, Penny; Clarke, Stephen L; Smith, Brenda J

    2011-11-01

    Consumption of fruits and vegetables has been investigated for their role in the prevention of many chronic conditions. Among the fruits, mango provides numerous bioactive compounds such as carotenoids, vitamin C and phenolic compounds, which have been shown to have antioxidant and anti-inflammatory properties. The present study examined the effects of dietary supplementation of freeze-dried mango pulp, in comparison with the hypolipidaemic drug, fenofibrate, and the hypoglycaemic drug, rosiglitazone, in reducing adiposity and alterations in glucose metabolism and lipid profile in mice fed a high-fat (HF) diet. Male C57BL/6J mice were randomly divided into six treatment groups (eight to nine/group): control (10 % energy from fat); HF (60 % energy from fat); HF+1 or 10 % freeze-dried mango (w/w); HF+fenofibrate (500 mg/kg diet); HF+rosiglitazone (50 mg/kg diet). After 8 weeks of treatment, mice receiving the HF diet had a higher percentage body fat (P = 0·0205) and epididymal fat mass (P = 0·0037) compared with the other treatment groups. Both doses of freeze-dried mango, similar to fenofibrate and rosiglitazone, prevented the increase in epididymal fat mass and the percentage of body fat. Freeze-dried mango supplementation at the 1 % dose improved glucose tolerance as shown by approximately 35 % lower blood glucose area under the curve compared with the HF group. Moreover, freeze-dried mango lowered insulin resistance, as indicated by the homeostasis model assessment of insulin resistance, to a similar extent as rosiglitazone and modulated NEFA. The present findings demonstrate that incorporation of freeze-dried mango in the diet of mice improved glucose tolerance and lipid profile and reduced adiposity associated with a HF diet.

  14. Sesamin exerts renoprotective effects by enhancing NO bioactivity in renovascular hypertensive rats fed with high-fat-sucrose diet.

    PubMed

    Wu, Xiang-Qi; Kong, Xiang; Zhou, Yong; Huang, Kai; Yang, Jie-Ren; Li, Xin-Li

    2012-05-15

    In the present study, we aimed to evaluate the protective effect of sesamin on kidney damage and renal endothelial dysfunction in two-kidney, one-clip renovascular hypertensive rats fed with a high-fat-sucrose diet (2K1C rats on HFS diet). Sesamin was intragastrically administered to 2K1C rats on HFS diet for eight weeks. Then, we measured the levels of serum hydrogen peroxide (H₂O₂), total antioxidant capability (T-AOC), renal malonaldehyde (MDA), total-erythrocuprein (T-SOD) and glutathione peroxidase (GSH-P(X)). The expressions of endothelial nitric oxide synthase (eNOS), nitrotyrosine and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunit p47(phox) in the left and right renal cortexes were detected by Western blotting. Pathological changes in the left and right renal cortexes were observed by periodic acid-schiff staining (PAS) and Masson's staining. Treatment with sesamin (120 and 60mg/kg⁻¹·d⁻¹) in 2K1C rats on HFS diet improved renal function, corrected structural abnormalities, and attenuated renal oxidative stress. Furthermore, sesamin increased eNOS protein expression and reduced nitrotyrosine and p47phox protein expression. These results demonstrated that long-term treatment with sesamin had renoprotective effect and improved renal endothelial dysfunction via upregulation of eNOS expression and reduction of NO oxidative inactivation in both clipped and contralateral kidneys of 2K1C rats on HFS diet, and sesamin may have a favorably therapeutic value in treating chronic kidney disease in patients with hypertension and hyperlipemia.

  15. Anticholesterolemic effect of 3,4-di(OH)-phenylpropionic amides in high-cholesterol fed rats

    SciTech Connect

    Kim, Soon-Ja; Bok, Song-Hae; Lee, Sangku; Kim, Hye-Jin; Lee, Mi-Kyung; Park, Yong Bok; Choi, Myung-Sook . E-mail: mschoi@knu.ac.kr

    2005-10-01

    Two amide synthetic derivatives of 3,4-di(OH)-hydrocinnamate (HC), 3,4-dihydroxyphenylpropionic (L-serine methyl ester) amide (E030) and 3,4-dihydroxyphenylpropionic (L-aspartic acid) amide (E076), were investigated to compare their lipid-lowering efficacy with HC. Male rats were fed a 1 g/100 g high-cholesterol diet for 6 weeks with supplements of either clofibrate (0.02%, w/w), HC (0.025%, w/w), E030 (0.039%, w/w) or E076 (0.041%, w/w). The clofibrate supplement was used as a positive control for the lipid-lowering efficacy. The food intakes and body weight gains were not significantly different among the groups. The plasma and hepatic cholesterol and triglyceride levels were lower in clofibrate, HC, E030, and E076-supplemented groups compared to the control group. The supplementation of HC and its amide derivatives was as effective as clofibrate in increasing the ratio of HDL-cholesterol to total plasma cholesterol and reducing the atherogenic index (AI). The hepatic cholesterol level in the HC and E076 groups was significantly lower than that in the clofibrate group. The hepatic 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA reductase) and acyl-CoA:cholesterol acyltransferase (ACAT) activities were significantly lower in the all test groups than in the control group. The excretion of neutral sterol was significantly higher in the HC, E030, and E076-supplemented groups compared to the control group. The plasma AST and ALT activities, indirect indexes of hepatic toxicity, were significantly lower in the HC, E030, and E076-supplemented groups than in the control group. Accordingly, the current results suggest that E030 and E076, two amide synthetic derivatives of HC, are effective in lowering lipid activity.

  16. Protective effect of agaro-oligosaccharides on gut dysbiosis and colon tumorigenesis in high-fat diet-fed mice.

    PubMed

    Higashimura, Yasuki; Naito, Yuji; Takagi, Tomohisa; Uchiyama, Kazuhiko; Mizushima, Katsura; Ushiroda, Chihiro; Ohnogi, Hiromu; Kudo, Yoko; Yasui, Madoka; Inui, Seina; Hisada, Takayoshi; Honda, Akira; Matsuzaki, Yasushi; Yoshikawa, Toshikazu

    2016-03-15

    High-fat diet (HFD)-induced alteration in the gut microbial composition, known as dysbiosis, is increasingly recognized as a major risk factor for various diseases, including colon cancer. This report describes a comprehensive investigation of the effect of agaro-oligosaccharides (AGO) on HFD-induced gut dysbiosis, including alterations in short-chain fatty acid contents and bile acid metabolism in mice. C57BL/6N mice were fed a control diet or HFD, with or without AGO. Terminal restriction fragment-length polymorphism (T-RFLP) analysis produced their fecal microbiota profiles. Profiles of cecal organic acids and serum bile acids were determined, respectively, using HPLC and liquid chromatography-tandem mass spectrometry systems. T-RFLP analyses showed that an HFD changed the gut microbiota significantly. Changes in the microbiota composition induced by an HFD were characterized by a decrease in the order Lactobacillales and by an increase in the Clostridium subcluster XIVa. These changes of the microbiota community generated by HFD treatment were suppressed by AGO supplementation. As supported by the data of the proportion of Lactobacillales order, the concentration of lactic acid increased in the HFD + AGO group. Data from the serum bile acid profile showed that the level of deoxycholic acid, a carcinogenic secondary bile acid produced by gut bacteria, was increased in HFD-receiving mice. The upregulation tended to be suppressed by AGO supplementation. Finally, results show that AGO supplementation suppressed the azoxymethane-induced generation of aberrant crypt foci in the colon derived from HFD-treated mice. Our results suggest that oral intake of AGO prevents HFD-induced gut dysbiosis, thereby inhibiting colon carcinogenesis.

  17. Effect of supplementation of lecithin and carnitine on growth performance and nutrient digestibility in pigs fed high-fat diet

    PubMed Central

    Saseendran, Arathy; Ally, K.; Gangadevi, P.; Banakar, P. S.

    2017-01-01

    Aim: To study the effect of dietary supplementation of lecithin and carnitine on growth performance and nutrient digestibility in pigs fed high-fat diet. Materials and Methods: A total of 30 weaned female large white Yorkshire piglets of 2 months of age were selected and randomly divided into three groups allotted to three dietary treatments, T1 - Control ration as per the National Research Council nutrient requirement, T2 - Control ration plus 5% fat, and T3 - T2 plus 0.5% lecithin plus 150 mg/kg carnitine. The total dry matter (DM) intake, fortnightly body weight of each individual animal was recorded. Digestibility trial was conducted toward the end of the experiment to determine the digestibility coefficient of various nutrients. Results: There was a significant improvement (p<0.01) observed for pigs under supplementary groups T2 and T3 than that of control group (T1) with regards to growth parameters studied such as total DM intake, average final body weight and total weight gain whereas among supplementary groups, pigs reared on T3 group had better intake (p<0.01) when compared to T2 group. Statistical analysis of data revealed that no differences were observed (p>0.05) among the three treatments on average daily gain, feed conversion efficiency, and nutrient digestibility during the overall period. Conclusion: It was concluded that the dietary inclusion of animal fat at 5% level or animal fat along with lecithin (0.5%) and carnitine (150 mg/kg) improved the growth performance in pigs than non-supplemented group and from the economic point of view, dietary incorporation of animal fat at 5% would be beneficial for improving growth in pigs without dietary modifiers. PMID:28344396

  18. Energy metabolism and methane production in llamas, sheep and goats fed high- and low-quality grass-based diets.

    PubMed

    Nielsen, Mette O; Kiani, Ali; Tejada, Einstein; Chwalibog, Andre; Alstrup, Lene

    2014-01-01

    This study aimed to test whether the digestive and metabolic characteristics of pseudo ruminants provide superior ability to utilise low-quality diets compared to true ruminants. A total of 18 mature, non-pregnant, non-lactating female animals, including six llamas (Lama glama), six Danish Landrace goats and six Shropshire sheep, were used in a crossover design study. The experiment lasted for two periods of three weeks. Half of the animals were fed either high-quality grass hay (HP) or low-quality grass seed straw (LP) during each period. Animals were placed in metabolic cages during the last 5 d, and gaseous exchange was measured by open-circuit indirect calorimetry for 22 h. Metabolisable energy for maintenance (MEm) and fasting energy expenditure (FEExp) were estimated by regression approach. Dry matter (DM) intake per kg(0.75) was substantially reduced in llamas and sheep, but not in goats, on the LP compared to HP diet. Llamas had lower daily energy expenditure (324 kJ · kg(-0.75)) than sheep (416 kJ · kg(-0.75)) and goats (404 kJ · kg(-0.75)) on the LP diet. Llamas in comparison with sheep and goats had lower methane emission (0.83 vs 1.34 and 1.24 l · d(-1) · kg(-0.75), p < 0.05), lower MEm (328 vs 438 and 394 kJ · d(-1) · kg(-0.75), p < 0.05) and lower FEExp (246 vs 333 and 414 kJ · d(-1) · kg(-0.75), p < 0.05), respectively. In conclusion, llamas had lower basal metabolic rate and hence maintenance requirements for energy.

  19. Antiobesity, hypolipidemic, antioxidant and hepatoprotective effects of Achyranthes aspera seed saponins in high cholesterol fed albino rats

    PubMed Central

    Khan, Naveed; Akhtar, Muhammad Shoaib; Braga, Valdir de Andrade; Reich, Adam

    2015-01-01

    Introduction Numerous herbal medicines have been recommended for the treatment of different diseases. Achyranthes aspera, Linn. (Family: Amaranthaceae), popularly known as Charchitta or Pitpapra, is commonly used by traditional healers for the treatment of fever, malaria, dysentery, asthma, arterial hypertension, pneumonia, and diabetes. The root extract is well reputed for its insect molting hormonal activity. This investigation was conducted to evaluate the effects of saponins from Achyranthes aspera seeds on the serum lipid profile of albino rats fed a high cholesterol diet. Material and methods Hypolipidemic, antioxidant and hepatoprotective activities of these saponins were tested as described previously. To determine the mechanism underlying the observed effects, serum antioxidant status was assessed according to ABTS (2,2’-azino-bis-3-ethylbenzo-thiazoline-6-sulfonic acid), superoxide dismutase and ferric ion reducing antioxidant power (FRAP) assays in saponin-treated hyperlipidemic animals. Liver enzyme levels were determined to reveal any possible hepatotoxicity. Results Four-week oral administration of A. aspera seed saponins produced a significant (p < 0.05) decrease of total cholesterol, total triglycerides and LDL-C and a significant increase of HDL-C level in hyperlipidemic rats. Treatment with A. aspera seed saponins also showed a significant (p < 0.01) improvement of serum antioxidant status in tested animals. No significant hepatotoxicity was produced by such treatment as the serum liver enzyme activity remained unaltered. Conclusions Saponins from A. aspera seeds possess antihyperlipidemic and antioxidant properties which might lead to improvement of serum lipid profile and blood antioxidant status. Our findings support the folkloric use of this indigenous plant in the treatment of hyperlipidemia. However, its exact mechanism of action remains to be elucidated. PMID:26788089

  20. Ethanol Extract of Persimmon Tree Leaves Improves Blood Circulation and Lipid Metabolism in Rats Fed a High-Fat Diet.

    PubMed

    Ryu, Ri; Kim, Hye-Jin; Moon, Byeongseok; Jung, Un Ju; Lee, Mi-Kyung; Lee, Dong Gun; Ryoo, ZaeYoung; Park, Yong Bok; Choi, Myung-Sook

    2015-07-01

    The leaves of the persimmon tree (PL) are known to have beneficial effects on hyperglycemia, dyslipidemia, and nonalcoholic fatty liver disease. We recently demonstrated that PL had antithrombotic properties in vitro. However, little is known about the antiplatelet and anticoagulant properties of PL in vivo. Omega-3 fatty acid (n-3 FA)-containing fish oil has been widely prescribed to improve blood circulation. This study compared the effects of dietary supplementation with an ethanol extract of PL or n-3 FA on blood coagulation, platelet activation, and lipid levels in vivo. Sprague-Dawley rats were fed a high-fat diet with either PL ethanol extract (0.5% w/w) or n-3 FA (2.5% w/w) for 9 weeks. Coagulation was examined by monitoring the activated partial thromboplastin time (aPTT) and prothrombin time. We examined plasma thromboxane B2 (TXB2), serotonin, and soluble P-selectin (sP-selectin) levels. The aPTT was significantly prolonged in the PL and n-3 FA supplement groups. PL also attenuated the TXB2 level and lowered arterial serotonin transporter mRNA expression, although it did not alter plasma serotonin or sP-selectin levels. C-reactive protein and leptin levels were significantly reduced by PL and n-3 FA supplementation. In addition, PL decreased plasma total- and low-density lipoprotein-cholesterol levels, as did n-3 FA treatment. These results indicated that the PL ethanol extract may have the potential to improve circulation by inhibiting blood coagulation and platelet activation and by reducing plasma cholesterol levels.

  1. Lingonberries alter the gut microbiota and prevent low-grade inflammation in high-fat diet fed mice

    PubMed Central

    Heyman-Lindén, Lovisa; Kotowska, Dorota; Sand, Elin; Bjursell, Mikael; Plaza, Merichel; Turner, Charlotta; Holm, Cecilia; Fåk, Frida; Berger, Karin

    2016-01-01

    Background The gut microbiota plays an important role in the development of obesity and obesity-associated impairments such as low-grade inflammation. Lingonberries have been shown to prevent diet-induced obesity and low-grade inflammation. However, it is not known whether the effect of lingonberry supplementation is related to modifications of the gut microbiota. The aim of the present study was to describe whether consumption of different batches of lingonberries alters the composition of the gut microbiota, which could be relevant for the protective effect against high fat (HF)-induced metabolic alterations. Methods Three groups of C57BL/6J mice were fed HF diet with or without a supplement of 20% lingonberries from two different batches (Lingon1 and Lingon2) during 11 weeks. The composition and functionality of the cecal microbiota were assessed by 16S rRNA sequencing and PICRUSt. In addition, parameters related to obesity, insulin sensitivity, hepatic steatosis, inflammation and gut barrier function were examined. Results HF-induced obesity was only prevented by the Lingon1 diet, whereas both batches of lingonberries reduced plasma levels of markers of inflammation and endotoxemia (SAA and LBP) as well as modified the composition and functionality of the gut microbiota, compared to the HF control group. The relative abundance of Akkermansia and Faecalibacterium, genera associated with healthy gut mucosa and anti-inflammation, was found to increase in response to lingonberry intake. Conclusions Our results show that supplementation with lingonberries to an HF diet prevents low-grade inflammation and is associated with significant changes of the microbiota composition. Notably, the anti-inflammatory properties of lingonberries seem to be independent of effects on body weight gain. PMID:27125264

  2. Ethanol Extract of Persimmon Tree Leaves Improves Blood Circulation and Lipid Metabolism in Rats Fed a High-Fat Diet

    PubMed Central

    Ryu, Ri; Kim, Hye-Jin; Moon, Byeongseok; Jung, Un Ju; Lee, Mi-Kyung; Lee, Dong Gun; Ryoo, ZaeYoung; Park, Yong Bok

    2015-01-01

    Abstract The leaves of the persimmon tree (PL) are known to have beneficial effects on hyperglycemia, dyslipidemia, and nonalcoholic fatty liver disease. We recently demonstrated that PL had antithrombotic properties in vitro. However, little is known about the antiplatelet and anticoagulant properties of PL in vivo. Omega-3 fatty acid (n-3 FA)-containing fish oil has been widely prescribed to improve blood circulation. This study compared the effects of dietary supplementation with an ethanol extract of PL or n-3 FA on blood coagulation, platelet activation, and lipid levels in vivo. Sprague–Dawley rats were fed a high-fat diet with either PL ethanol extract (0.5% w/w) or n-3 FA (2.5% w/w) for 9 weeks. Coagulation was examined by monitoring the activated partial thromboplastin time (aPTT) and prothrombin time. We examined plasma thromboxane B2 (TXB2), serotonin, and soluble P-selectin (sP-selectin) levels. The aPTT was significantly prolonged in the PL and n-3 FA supplement groups. PL also attenuated the TXB2 level and lowered arterial serotonin transporter mRNA expression, although it did not alter plasma serotonin or sP-selectin levels. C-reactive protein and leptin levels were significantly reduced by PL and n-3 FA supplementation. In addition, PL decreased plasma total- and low-density lipoprotein-cholesterol levels, as did n-3 FA treatment. These results indicated that the PL ethanol extract may have the potential to improve circulation by inhibiting blood coagulation and platelet activation and by reducing plasma cholesterol levels. PMID:26061228

  3. High molecular weight poly-gamma-glutamic acid regulates lipid metabolism in rats fed a high-fat diet and humans.

    PubMed

    Park, Ji Ho; Choi, Jae-Chul; Sung, Moon-Hee; Kang, Jae-Heon; Chang, Moon-Jeong

    2011-07-01

    We investigated the effect of high molecular weight polygamma- glutamic acid (hm gamma-PGA) on adiposity and lipid metabolism of rats in the presence of an obesity-inducing diet. Thirty-two Sprague-Dawley rats were fed either a normal-fat (11.4% kcal fat, NFC) or high-fat (51% kcal fat, HFC) diet. After 5 weeks, half of each diet-fed group was treated with hm gamma-PGA (NFP or HFP) for 4 weeks. The HFC group had significantly higher body weight, visceral fat mass, fasting serum levels of total cholesterol, LDL cholesterol, and leptin, and lower serum HDL cholesterol level compared with those of the NFC group (p < 0.05). Treatment with hm gamma-PGA decreased body weight gain and perirenal fat mass (p<0.05), fasting serum total cholesterol, and mRNA expression of glucose-6- phosphate dehydrogenase (G6PD), regardless of dietary fat contents (p < 0.01). However, hm gamma-PGA increased serum HDL cholesterol in the HFC group (p < 0.05). In vitro, 3-hydroxy-3-methylglutaryl coenzyme-A (HMGCoA) reductase activity was suppressed by the addition of hm gamma-PGA. In agreement with observations in animal study, the supplementation of hm gamma-PGA (150 mg/day) to 20 female subjects in an 8-week double-blind, placebocontrolled study resulted in a tendency to decrease total cholesterol and LDL cholesterol concentrations. We thus conclude that dietary supplementation of hm gamma-PGA may act as a hypocholestrolemic agent, secondary to its inhibitor effect on HMG-CoA reductase, and decrease abdominal adiposity by decreasing hepatic lipogenesis. The present study is an important first step in establishing the effect of hm gamma-PGA on cholesterol levels in rats and humans.

  4. Evolution of metabolic disorder in rats fed high sucrose or high fat diet: Focus on redox state and mitochondrial function.

    PubMed

    Long, Zi; Zhang, Xuesi; Sun, Quangui; Liu, Ying; Liao, Nai; Wu, Hao; Wang, Xin; Hai, Chunxu

    2017-02-01

    Glucotoxicity and lipotoxicity are major hallmarks of metabolic disorder. High consumption of fat or carbohydrate rich food is a major risk of metabolic disorder. However, the evolution of high fat or high carbohydrate diet-induced metabolic disorder is not clear. In the study, we tried to find distinguished and common ways involved in the pathogenesis of insulin resistance induced by high fat (HF) and high sucrose (HS) diet. We found that HS diet induced mild glucose intolerance (2month), followed by a "temporary non-symptom phase" (3month), and then induced significant metabolic abnormality (4month). HF diet induced an early "responsive enhancement phase" (2month), and then gradually caused severe metabolic dysfunction (3-4month). After a mild induction of mitochondrial ROS generation (2month), HS diet resulted in a "temporary non-symptom phase" (3month), and then induced a more significant mitochondrial ROS production (4month). The impairment of mitochondrial function induced by HS diet was progressive (2-4month). HF diet induced gradual mitochondrial ROS generation and hyperpolarization. HF diet induced an early "responsive enhancement" of mitochondrial function (2month), and then gradually resulted in severe decrease of mitochondrial function (3-4month). Despite the patterns of HS and HF diet-induced insulin resistance were differential, final mitochondrial ROS generation combined with mitochondrial dysfunction may be the common pathway. These findings demonstrate a novel understanding of the mechanism of insulin resistance and highlight the pivotal role of mitochondrial ROS generation and mitochondrial dysfunction in the pathogenesis of metabolic disorder.

  5. Dietary phytic acid modulates characteristics of the colonic luminal environment and reduces serum levels of proinflammatory cytokines in rats fed a high-fat diet.

    PubMed

    Okazaki, Yukako; Katayama, Tetsuyuki

    2014-12-01

    Dietary phytic acid (PA; myo-inositol [MI] hexaphosphate) is known to inhibit colon carcinogenesis in rodents. Dietary fiber, which is a negative risk factor of colon cancer, improves characteristics of the colonic environment, such as the content of organic acids and microflora. We hypothesized that dietary PA would improve the colonic luminal environment in rats fed a high-fat diet. To test this hypothesis, rats were fed diets containing 30% beef tallow with 2.04% sodium PA, 0.4% MI, or 1.02% sodium PA + 0.2% MI for 3 weeks. Compared with the control diet, the sodium PA diet up-regulated cecal organic acids, including acetate, propionate, and n-butyrate; this effect was especially prominent for cecal butyrate. The sodium PA + MI diet also significantly increased cecal butyrate, although this effect was less pronounced when compared with the sodium PA diet. The cecal ratio of Lactobacillales, cecal and fecal mucins (an index of intestinal barrier function), and fecal β-glucosidase activity were higher in rats fed the sodium PA diet than in those fed the control diet. The sodium PA, MI, and sodium PA + MI diets decreased levels of serum tumor necrosis factor α, which is a proinflammatory cytokine. Another proinflammatory cytokine, serum interleukin-6, was also down-regulated by the sodium PA and sodium PA + MI diets. These data showed that PA may improve the composition of cecal organic acids, microflora, and mucins, and it may decrease the levels of serum proinflammatory cytokines in rats fed a high-fat, mineral-sufficient diet.

  6. Olive Leaf Extract Attenuates Obesity in High-Fat Diet-Fed Mice by Modulating the Expression of Molecules Involved in Adipogenesis and Thermogenesis

    PubMed Central

    Song, Su Jin

    2014-01-01

    The present study aimed to investigate whether olive leaf extract (OLE) prevents high-fat diet (HFD)-induced obesity in mice and to explore the underlying mechanisms. Mice were randomly divided into groups that received a chow diet (CD), HFD, or 0.15% OLE-supplemented diet (OLD) for 8 weeks. OLD-fed mice showed significantly reduced body weight gain, visceral fat-pad weights, and plasma lipid levels as compared with HFD-fed mice. OLE significantly reversed the HFD-induced upregulation of WNT10b- and galanin-mediated signaling molecules and key adipogenic genes (PPARγ, C/EBPα, CD36, FAS, and leptin) in the epididymal adipose tissue of HFD-fed mice. Furthermore, the HFD-induced downregulation of thermogenic genes involved in uncoupled respiration (SIRT1, PGC1α, and UCP1) and mitochondrial biogenesis (TFAM, NRF-1, and COX2) was also significantly reversed by OLE. These results suggest that OLE exerts beneficial effects against obesity by regulating the expression of genes involved in adipogenesis and thermogenesis in the visceral adipose tissue of HFD-fed mice. PMID:24624222

  7. Urine and serum metabolite profiling of rats fed a high-fat diet and the anti-obesity effects of caffeine consumption.

    PubMed

    Kim, Hyang Yeon; Lee, Mee Youn; Park, Hye Min; Park, Yoo Kyoung; Shon, Jong Cheol; Liu, Kwang-Hyeon; Lee, Choong Hwan

    2015-02-13

    In this study, we investigated the clinical changes induced by a high fat diet (HFD) and caffeine consumption in a rat model. The mean body weight of the HFD with caffeine (HFDC)-fed rat was decreased compared to that of the HFD-fed rat without caffeine. The levels of cholesterol, triglycerides (TGs), and free fatty acid, as well as the size of adipose tissue altered by HFD, were improved by caffeine consumption. To investigate the metabolites that affected the change of the clinical factors, the urine and serum of rats fed a normal diet (ND), HFD, and HFDC were analyzed using ultra performance liquid chromatography quadruple time-of-flight mass spectrometry (UPLC-Q-TOF-MS), gas chromatography (GC-TOF-MS), and linear trap quadruple mass spectrometry (LTQ-XL-MS) combined with multivariate analysis. A total of 68 and 52 metabolites were found to be different in urine and serum, respectively. After being fed caffeine, some glucuronide-conjugated compounds, lysoPCs, CEs, DGs, TGs, taurine, and hippuric acid were altered compared to the HFD group. In this study, caffeine might potentially inhibit HFD-induced obesity and we suggest possible biomarker candidates using MS-based metabolite profiling.

  8. miRNA profiling of high, low and non-producing CHO cells during biphasic fed-batch cultivation reveals process relevant targets for host cell engineering.

    PubMed

    Stiefel, Fabian; Fischer, Simon; Sczyrba, Alexander; Otte, Kerstin; Hesse, Friedemann

    2016-05-10

    Fed-batch cultivation of recombinant Chinese hamster ovary (CHO) cell lines is one of the most widely used production modes for commercial manufacturing of recombinant protein therapeutics. Furthermore, fed-batch cultivations are often conducted as biphasic processes where the culture temperature is decreased to maximize volumetric product yields. However, it remains to be elucidated which intracellular regulatory elements actually control the observed pro-productive phenotypes. Recently, several studies have revealed microRNAs (miRNAs) to be important molecular switches of cell phenotypes. In this study, we analyzed miRNA profiles of two different recombinant CHO cell lines (high and low producer), and compared them to a non-producing CHO DG44 host cell line during fed-batch cultivation at 37°C versus a temperature shift to 30°C. Taking advantage of next-generation sequencing combined with cluster, correlation and differential expression analyses, we could identify 89 different miRNAs, which were differentially expressed in the different cell lines and cultivation phases. Functional validation experiments using 19 validated target miRNAs confirmed that these miRNAs indeed induced changes in process relevant phenotypes. Furthermore, computational miRNA target prediction combined with functional clustering identified putative target genes and cellular pathways, which might be regulated by these miRNAs. This study systematically identified novel target miRNAs during different phases and conditions of a biphasic fed-batch production process and functionally evaluated their potential for host cell engineering.

  9. Depletion of selenium in blood, liver and muscle from beef heifers previously fed forages containing high levels of selenium.

    PubMed

    Benes, Sharon E; Robinson, Peter H; Cun, Grace S

    2015-12-01

    Beef heifers which had grazed 'Jose' tall wheatgrass (TWG; Thinopyrum ponticum var. 'Jose'; 10 heifers) and creeping wildrye (CWR; Leymus triticoides var. 'Rio'; 10 heifers) with high levels of Se (>2 mg/kg DM) due to growth in saline soils, accumulated high Se levels in blood, liver and muscle (Juchem et al., 2012). We determined the decrease in Se levels in blood, liver and muscle from these heifers, particularly the decrease of Se in muscle, in order to determine the maximum feeding length of a low Se diet (LSeD) required sustaining Se-enriched beef. Immediately after grazing, all heifers were fed a LSeD containing <0.30 mg/kg DM for 209 d. Blood, liver and muscle samples, as well as body weight (BW), were collected at the beginning and end of the LSeD feeding period and at intermediate times. After grazing, CWR and TWG heifers had similar BW, but TWG heifers had higher levels of Se in whole blood (1.19 versus 0.81 mg/L), liver (2.67 versus 2.12 mg/kg wet weight (WW)), and muscle tissue (0.87 versus 0.63 mg/kg WW) than CWR heifers. The Se levels decreased with exposure time to the LSeD and, at 82 d of feeding the LSeD, Se levels were 77 (liver), 49 (blood) and 31% (muscle) lower. The BW gains for both groups were ~0.5 kg/d during the first 82 d of feeding, but increased thereafter. Levels of Cu in serum (0.28 versus 0.50 mg/L) and liver (1.14 versus 22.9 mg/kg WW) were lower at the end of grazing in TWG heifers, and suggested a potential Cu deficiency. Grazing forages with high Se levels can result in Se-enriched beef, but a LSeD feeding period of <82 d is required to maintain enrichment.

  10. Efficacy of Oral Curcuminoid Fraction from Curcuma xanthorrhiza and Curcuminoid Cider in High-cholesterol Fed Rats

    PubMed Central

    Mauren, Flavia Maria; Yanti; Lay, Bibiana Widiati

    2016-01-01

    Background: Hypercholesterolemia is one of the most important risk factors for atherosclerosis and subsequent cardiovascular diseases. Objective: The present work was aimed to study the efficacy of curcuminoid fraction from Curcuma xanthorrhiza and its curcuminoid cider in reducing blood cholesterol level and four genes related to oxidative stress, including cluster of differentiation 44 (CD44), intercellular adhesion molecule 1 (ICAM-1), inducible nitric oxide synthase (iNOS), and lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) in high-cholesterol fed rats in vivo. Materials and Methods: Twenty-four male Sprague-Dawley rats were divided into six groups, namely normal group diet, high-cholesterol diet (HCD) 2%, HCD + 100 mg/kg b.w. curcuminoid fraction, HCD + 300 mg/kg b.w. curcuminoid fraction, HCD + cider 1% v/v, and HCD + curcuminoid cider 2% v/v for 4 weeks. Total cholesterol levels were measured at day 1, 14, and 28. Vascular tissues and organs from lung and liver were collected for RNA extraction, followed by quantitative analysis using real-time polymerase chain reaction (PCR). Results: Our results demonstrated that among all the treatment groups, curcuminoid cider at 2% v/v significantly lowered total cholesterol level compared to those of positive control. Real-time PCR data showed both curcuminoid fractions (100 and 300 mg/kg) and curcuminoid cider (1 and 2% v/v) inhibited the gene expression of CD44, ICAM-1, iNOS, and LOX-1, indicating their hypocholesterolemic effects via attenuating genes related to oxidative stress in rats in vivo. Conclusion: Oral administration of curcuminoid fraction and its cider product may exert potential inhibitory effects on oxidative stress related-genes for preventing hypercholesterolemia-induced atherosclerosis in vivo. SUMMARY Curcuminoid and its cider significantly inhibited the gene expression of CD44, ICAM-1, iNOS, and LOX-1 in rats in vivoCurcuminoid and its cider suppressed oxidative stress

  11. Enhancing highly unsaturated omega-3 fatty acids in phase-fed rainbow trout (Oncorhynchus mykiss) using Alaskan fish oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this research was to investigate differences in the kinetics of fatty acids (FA) deposition in fillets of market-sized (approximately 450g) rainbow trout (Oncorhynchus mykiss) fed diets containing commercial Alaskan fish oils versus menhaden oil. Comparisons were made with FA leve...

  12. 75 FR 70201 - Certain Coated Paper Suitable for High-Quality Print Graphics Using Sheet-Fed Presses From the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-17

    ... Presses From the People's Republic of China: Amended Final Affirmative Countervailing Duty Determination... presses (``coated paper'') from the People's Republic of China (``PRC''). Also, as explained in this... Graphics Using Sheet-Fed Presses From the People's Republic of China: Final Affirmative Countervailing...

  13. Effects of dietary carbohydrate replaced with wild rice (Zizania latifolia (Griseb) Turcz) on insulin resistance in rats fed with a high-fat/cholesterol diet.

    PubMed

    Han, Shufen; Zhang, Hong; Qin, Liqiang; Zhai, Chengkai

    2013-02-15

    Wild rice (WR) is a very nutritious grain that has been used to treat diabetes in Chinese medicinal practice. City diet (CD) is based on the diet consumed by Asian area residents in modern society, which is rich in saturated fats, cholesterol and carbohydrates. The present study was aimed at evaluating the effects of replacing white rice and processed wheat starch of CD with WR as the chief source of dietary carbohydrates on insulin resistance in rats fed with a high-fat/cholesterol diet. Except the rats of the low-fat (LF) diet group, the rats of the other three groups, including to high-fat/cholesterol (HFC) diet, CD and WR diet, were fed with high-fat/cholesterol diets for eight weeks. The rats fed with CD exhibited higher weight gain and lower insulin sensitivity compared to the rats consuming a HFC diet. However, WR suppressed high-fat/cholesterol diet-induced insulin resistance. WR decreased liver homogenate triglyceride and free fatty acids levels, raised serum adiponectin concentration and reduced serum lipocalin-2 and visfatin concentrations. In addition, the WR diet potently augmented the relative expressions of adiponectin receptor 2, peroxisome proliferator-activated receptors, alpha and gamma, and abated relative expressions of leptin and lipocalin-2 in the tissues of interest. These findings indicate that WR is effective in ameliorating abnormal glucose metabolism and insulin resistance in rats, even when the diet consumed is high in fat and cholesterol.

  14. Tis7 deletion reduces survival and induces intestinal anastomotic inflammation and obstruction in high-fat diet-fed mice with short bowel syndrome.

    PubMed

    Garcia, Amy M; Wakeman, Derek; Lu, Jianyun; Rowley, Christopher; Geisman, Taylor; Butler, Catherine; Bala, Shashi; Swietlicki, Elzbieta A; Warner, Brad W; Levin, Marc S; Rubin, Deborah C

    2014-09-15

    Effective therapies are limited for patients with parenteral nutrition-dependent short bowel syndrome. We previously showed that intestinal expression of the transcriptional coregulator tetradecanoyl phorbol acetate-induced sequence 7 (tis7) is markedly increased during the adaptive response following massive small bowel resection and tis7 plays a role in normal gut lipid metabolism. Here, we further explore the functional implications of tis7 deletion in intestinal lipid metabolism and the adaptive response following small bowel resection. Intestinal tis7 transgenic (tis7(tg)), tis7(-/-), and wild-type (WT) littermates were subjected to 50% small bowel resection. Mice were fed a control or a high-saturated-fat (42% energy) diet for 21 days. Survival, body weight recovery, lipid absorption, mucosal lipid analysis, and the morphometric adaptive response were analyzed. Quantitative real-time PCR was performed to identify tis7 downstream gene targets. Postresection survival was markedly reduced in high-fat, but not control, diet-fed tis7(-/-) mice. Decreased survival was associated with anastomotic inflammation and intestinal obstruction postresection. High-fat, but not control, diet-fed tis7(-/-) mice had increased intestinal IL-6 expression. Intestinal lipid trafficking was altered in tis7(-/-) compared with WT mice postresection. In contrast, high-fat diet-fed tis7(tg) mice had improved survival postresection compared with WT littermates. High-fat diet feeding in the setting of tis7 deletion resulted in postresection anastomotic inflammation and small bowel obstruction. Tolerance of a calorie-rich, high-fat diet postresection may require tis7 and its target genes. The presence of luminal fat in the setting of tis7 deletion promotes an intestinal inflammatory response postresection.

  15. Choline supplementation protects against liver damage by normalizing cholesterol metabolism in Pemt/Ldlr knockout mice fed a high-fat diet.

    PubMed

    Al Rajabi, Ala; Castro, Gabriela S F; da Silva, Robin P; Nelson, Randy C; Thiesen, Aducio; Vannucchi, Helio; Vine, Donna F; Proctor, Spencer D; Field, Catherine J; Curtis, Jonathan M; Jacobs, René L

    2014-03-01

    Dietary choline is required for proper structure and dynamics of cell membranes, lipoprotein synthesis, and methyl-group metabolism. In mammals, choline is synthesized via phosphatidylethanolamine N-methyltransferase (Pemt), which converts phosphatidylethanolamine to phosphatidylcholine. Pemt(-/-) mice have impaired VLDL secretion and developed fatty liver when fed a high-fat (HF) diet. Because of the reduction in plasma lipids, Pemt(-/-)/low-density lipoprotein receptor knockout (Ldlr(-/-)) mice are protected from atherosclerosis. The goal of this study was to investigate the importance of dietary choline in the metabolic phenotype of Pemt(-/-)/Ldlr(-/-) male mice. At 10-12 wk of age, Pemt(+/+)/Ldlr(-/-) (HF(+/+)) and half of the Pemt(-/-)/Ldlr(-/-) (HF(-/-)) mice were fed an HF diet with normal (1.3 g/kg) choline. The remaining Pemt(-/-)/Ldlr(-/-) mice were fed an HF diet supplemented (5 g/kg) with choline (HFCS(-/-) mice). The HF diet contained 60% of calories from fat and 1% cholesterol, and the mice were fed for 16 d. HF(-/-) mice lost weight and developed hepatomegaly, steatohepatitis, and liver damage. Hepatic concentrations of free cholesterol, cholesterol-esters, and triglyceride (TG) were elevated by 30%, 1.1-fold and 3.1-fold, respectively, in HF(-/-) compared with HF(+/+) mice. Choline supplementation normalized hepatic cholesterol, but not TG, and dramatically improved liver function. The expression of genes involved in cholesterol transport and esterification increased by 50% to 5.6-fold in HF(-/-) mice when compared with HF(+/+) mice. Markers of macrophages, oxidative stress, and fibrosis were elevated in the HF(-/-) mice. Choline supplementation normalized the expression of these genes. In conclusion, HF(-/-) mice develop liver failure associated with altered cholesterol metabolism when fed an HF/normal choline diet. Choline supplementation normalized cholesterol metabolism, which was sufficient to prevent nonalcoholic steatohepatitis development

  16. Kaempferol regulates the lipid-profile in high-fat diet-fed rats through an increase in hepatic PPARα levels.

    PubMed

    Chang, Chia Ju; Tzeng, Thing-Fong; Liou, Shorong-Shii; Chang, Yuan-Shiun; Liu, I-Min

    2011-11-01

    The aim of this study was to investigate the antiobesity and antihyperlipidemic effects of the flavonoid kaempferol (3,5,7,4'-tetrahydroxyflavone). After being fed a high-fat diet (HFD) for two weeks, rats were dosed orally with kaempferol (75, 150, or 300 mg/kg) or fenofibrate (100 mg/kg) once daily for eight weeks. Fenofibrate is an antilipemic agent that exerts its therapeutic effects through activation of peroxisome proliferator-activated receptor α (PPAR α). Kaempferol (300 mg/kg/day) produced effects similar to fenofibrate in reducing body weight gain, visceral fat-pad weights, plasma lipid levels, as well as the coronary artery risk and atherogenic indices of HFD-fed rats. Kaempferol also caused dose-related reductions in hepatic triglyceride and cholesterol content and lowered hepatic lipid droplet accumulation and the size of epididymal adipocytes in HFD-fed rats. Kaempferol and fenofibrate reversed the HFD-induced downregulation of hepatic PPAR α. HFD-induced reductions in the hepatic levels of acyl-CoA oxidase (ACO), and cytochrome P450 isoform 4A1 (CYP4A1) proteins were reversed by kaempferol and fenofibrate. The elevated expression of hepatic sterol regulatory element binding proteins (SREBPs) in HFD-fed rats were lowered by kaempferol and fenofibrate. These results suggest that kaempferol reduced the accumulation of visceral fat and improved hyperlipidemia in HFD-fed obese rats by increasing lipid metabolism through the downregulation of SREBPs and promoting the hepatic expression of ACO and CYP4A1, secondary to a direct upregulation hepatic PPAR α expression.

  17. Growth, feed intake, carcass characteristics, and eating behavior of feedlot lambs fed high-concentrate diets containing soybean hulls.

    PubMed

    Ferreira, E M; Pires, A V; Susin, I; Mendes, C Q; Gentil, R S; Araujo, R C; Amaral, R C; Loerch, S C

    2011-12-01

    The objectives of this experiment were to determine the effects of replacing ground corn with soybean hulls (SH) in high-concentrate diets on the growth (56-d period), carcass characteristics, and eating behavior of feedlot lambs. Sixty-four Santa Inês ram lambs (18.3 ± 2.8 kg of BW and 69 ± 5 d of age) were assigned to a randomized complete block design experiment with 8 blocks and 4 diets. The control diet contained 10% coastcross (Cynodon sp.) hay, 70% corn, and no SH (SH0) in the dietary DM. In the remaining diets, SH replaced corn at the rate of 15 (SH15), 30 (SH30), or 45% (SH45) of the original corn concentration, resulting in 0, 10.5, 21.0, or 31.4% SH in the dietary DM. Dry matter intake increased linearly (P < 0.01) when SH replaced ground corn (1.0, 1.0, 1.1, and 1.1 kg/d for SH0, SH15, SH30, and SH45, respectively). There was no effect on ADG of lambs, with values of 276, 278, 282, and 287 g for SH0, SH15, SH30, and SH45, respectively. Feed efficiency decreased linearly (P < 0.01) with SH inclusion. Carcass measures were not affected by SH as a replacement for ground corn. Eating time, expressed as minutes per day and minutes per gram of NDF, showed a quadratic effect (P < 0.05), whereas no effect was observed when expressed as minutes per gram of DM. Rumination, in minutes per day, was not influenced by dietary SH inclusion, but a linear decrease (P < 0.01) was observed when this variable was expressed as minutes per gram of NDF. Soybean hulls can replace up to 45% of the ground corn (31.4% of SH in the dietary DM) in high-concentrate diets fed to feedlot lambs without negative effects on ADG and carcass measures. The linear decrease in feed efficiency (11.6% reduction from SH0 to SH45) suggests that optimal dietary SH inclusion rates should be dictated by the relative costs of SH and corn.

  18. Hazards Associated with High Altitude Rain-Fed Lakes (HARL) in the Overdeepened Deglaciated Region of Hindu Kush and Himalaya

    NASA Astrophysics Data System (ADS)

    Haritashya, U. K.; Hess, T. G.

    2014-12-01

    Mountain regions are changing rapidly as a result of climate change. It has been well established that these mountain regions are experiencing rapid glacier retreat. With accelerated retreat, glacial melt runoff can accumulate in an overdeepened glacier bed left behind by the receding glacier and can be bound by the walls of unstable frontal and lateral moraines to form a hazardous lake. However, when smaller glaciers retreat and downwaste they no longer contain enough ice to sustain the flow of water and maintain level of the lake. Furthermore, some smaller glaciers in the Hindu Kush and Himalayan region are observing extreme downwasting, which are either turning them into a rock glacier or heavily debris covered glacier leading to the reduced ice melt. Consequently, it is important to study these overdeepened beds, which are contained by the unstable mass. This is especially significant considering the great degree of complexity in the mountain weather system and recent examples of high intensity and short duration rainfall in the Hindu Kush region of Afghanistan, Karakoram region of Pakistan, and Central Himalayan region of India and Nepal. A precise understanding of mountain climate system is necessary, but so does these potentially deglaciated overdeepened beds where rain-fed lakes can form and increase systems hydrostatic pressure that can breach moraine containment and flood entire downstream region. Once lake has formed it possesses hydrological characteristics that are similar to the glacial lakes, which are known to put lives and infrastructure in danger. Therefore, in this study we evaluated overdeepened beds that are located in the complex topography and contained by abandoned or unstable lateral moraine using field and remote sensing satellite images. Our results provide degree of failure associated with these lakes based on the complex spatial and topological analysis as well as orographic distribution of the region. Such studies are not common in the

  19. Preventive Effects of Drinking Hydrogen-Rich Water on Gingival Oxidative Stress and Alveolar Bone Resorption in Rats Fed a High-Fat Diet

    PubMed Central

    Yoneda, Toshiki; Tomofuji, Takaaki; Kunitomo, Muneyoshi; Ekuni, Daisuke; Irie, Koichiro; Azuma, Tetsuji; Machida, Tatsuya; Miyai, Hisataka; Fujimori, Kouhei; Morita, Manabu

    2017-01-01

    Obesity induces gingival oxidative stress, which is involved in the progression of alveolar bone resorption. The antioxidant effect of hydrogen-rich water may attenuate gingival oxidative stress and prevent alveolar bone resorption in cases of obesity. We examined whether hydrogen-rich water could suppress gingival oxidative stress and alveolar bone resorption in obese rats fed a high-fat diet. Male Fischer 344 rats (n = 18) were divided into three groups of six rats each: a control group (fed a regular diet and drinking distilled water) and two experimental groups (fed a high-fat diet and drinking distilled water or hydrogen-rich water). The level of 8-hydroxydeoxyguanosine was determined to evaluate oxidative stress. The bone mineral density of the alveolar bone was analyzed by micro-computerized tomography. Obese rats, induced by a high-fat diet, showed a higher gingival level of 8-hydroxydeoxyguanosine and a lower level of alveolar bone density compared to the control group. Drinking hydrogen-rich water suppressed body weight gain, lowered gingival level of 8-hydroxydeoxyguanosine, and reduced alveolar bone resorption in rats on a high-fat diet. The results indicate that hydrogen-rich water could suppress gingival oxidative stress and alveolar bone resorption by limiting obesity. PMID:28098768

  20. Preventive Effects of Drinking Hydrogen-Rich Water on Gingival Oxidative Stress and Alveolar Bone Resorption in Rats Fed a High-Fat Diet.

    PubMed

    Yoneda, Toshiki; Tomofuji, Takaaki; Kunitomo, Muneyoshi; Ekuni, Daisuke; Irie, Koichiro; Azuma, Tetsuji; Machida, Tatsuya; Miyai, Hisataka; Fujimori, Kouhei; Morita, Manabu

    2017-01-13

    Obesity induces gingival oxidative stress, which is involved in the progression of alveolar bone resorption. The antioxidant effect of hydrogen-rich water may attenuate gingival oxidative stress and prevent alveolar bone resorption in cases of obesity. We examined whether hydrogen-rich water could suppress gingival oxidative stress and alveolar bone resorption in obese rats fed a high-fat diet. Male Fischer 344 rats (n = 18) were divided into three groups of six rats each: a control group (fed a regular diet and drinking distilled water) and two experimental groups (fed a high-fat diet and drinking distilled water or hydrogen-rich water). The level of 8-hydroxydeoxyguanosine was determined to evaluate oxidative stress. The bone mineral density of the alveolar bone was analyzed by micro-computerized tomography. Obese rats, induced by a high-fat diet, showed a higher gingival level of 8-hydroxydeoxyguanosine and a lower level of alveolar bone density compared to the control group. Drinking hydrogen-rich water suppressed body weight gain, lowered gingival level of 8-hydroxydeoxyguanosine, and reduced alveolar bone resorption in rats on a high-fat diet. The results indicate that hydrogen-rich water could suppress gingival oxidative stress and alveolar bone resorption by limiting obesity.

  1. Beneficial effect of a low dose of ethanol on liver function and serum urate in rats fed a high-fat diet.

    PubMed

    Osaki, Aimi; Okazaki, Yukako; Kimoto, Akiko; Izu, Hanae; Kato, Norihisa

    2014-01-01

    This study investigated the effects of the consumption of 1% or 2% (v/v) ethanol in drinking water for 12 wk on rats fed a high-fat diet. Body weight gain, food intake, and fluid intake were unaffected by ethanol intake. Adipose tissue weight, and serum glucose and lipids were unaffected. Compared to the control (no ethanol), 1% ethanol intake significantly reduced serum levels of alanine aminotransferase (ALT), lactate dehydrogenase (LDH), and ammonia (p<0.05), whereas 2% ethanol intake did so to a lesser extent. Serum urate was significantly lower in both the 1% and 2% ethanol groups than that in the control group (p<0.05). The results suggest a low dose of ethanol has beneficial effects on liver function and serum urate in rats fed a high-fat diet.

  2. Protonated nanostructured aluminosilicate (NSAS) reduces plasma cholesterol concentrations and atherosclerotic lesions in Apolipoprotein E deficient mice fed a high cholesterol and high fat diet

    PubMed Central

    Sivak, Olena; Darlington, Jerry; Gershkovich, Pavel; Constantinides, Panayiotis P; Wasan, Kishor M

    2009-01-01

    The aim of this work was to assess the effect of chronic administration of protonated nanostructured aluminosilicate (NSAS) on the plasma cholesterol levels and development of atherosclerotic lesions in Apolipoprotein (ApoE) deficient mice fed a high cholesterol and high fat diet. Apolipoprotein E (ApoE) deficient mice were divided into the following treatment groups: protonated NSAS 1.4% (w/w), untreated control and 2% (w/w) stigmastanol mixed with high-cholesterol/high-fat diet. Animals were treated for 12 weeks, blood samples were withdrawn every 4 weeks for determination of plasma cholesterol and triglyceride levels. At the end of the study the aortic roots were harvested for assessment of atherosclerotic lesions. NSAS at 1.4% (w/w) and stigmastanol at 2% (w/w) treatment groups showed significant decreases in plasma cholesterol concentrations at all time points relative to the control animals. The lesion sum area in 1.4% (w/w) NSAS and 2% (w/w) stigmastanol groups were significantly less from the control animals. In conclusion, in this study, the effectiveness of chronic administration of protonated NSAS material in the reduction of plasma cholesterol levels and decrease in development of atherosclerotic lesions was demonstrated in Apo-E deficient mice model. PMID:19638223

  3. Red beet (Beta vulgaris L.) leaf supplementation improves antioxidant status in C57BL/6J mice fed high fat high cholesterol diet

    PubMed Central

    Lee, Jeung Hee; Son, Chan Wook; Kim, Mi Yeon; Kim, Min Hee; Kim, Hye Ran; Kwak, Eun Shil; Kim, Sena

    2009-01-01

    The effect of diet supplemented with red beet (Beta vulgaris L.) leaf on antioxidant status of plasma and tissue was investigated in C57BL/6J mice. The mice were randomly divided into two groups after one-week acclimation, and fed a high fat (20%) and high cholesterol (1%) diet without (control group) or with 8% freeze-dried red beet leaf (RBL group) for 4 weeks. In RBL mice, lipid peroxidation determined as 2-thiobarbituric acid-reactive substances (TBARS value) was significantly reduced in the plasma and selected organs (liver, heart, and kidney). Levels of antioxidants (glutathione and β-carotene) and the activities of antioxidant enzyme (glutathione peroxidase) in plasma and liver were considerably increased, suggesting that antioxidant defenses were improved by RBL diet. Comet parameters such as tail DNA (%), tail extent moment, olive tail moment and tail length were significantly reduced by 25.1%, 49.4%, 35.4%, and 23.7%, respectively, in plasma lymphocyte DNA of RBL mice compared with control mice, and indicated the increased resistance of lymphocyte DNA to oxidative damage. In addition, the RBL diet controlled body weight together with a significant reduction of fat pad (retroperitoneal, epididymal, inguinal fat, and total fat). Therefore, the present study suggested that the supplementation of 8% red beet leaf in high fat high cholesterol diet could prevent lipid peroxidation and improve antioxidant defense system in the plasma and tissue of C57BL/6J mice. PMID:20016711

  4. Quinoa extract enriched in 20-hydroxyecdysone affects energy homeostasis and intestinal fat absorption in mice fed a high-fat diet.

    PubMed

    Foucault, Anne-Sophie; Even, Patrick; Lafont, René; Dioh, Waly; Veillet, Stanislas; Tomé, Daniel; Huneau, Jean-François; Hermier, Dominique; Quignard-Boulangé, Annie

    2014-04-10

    In a previous study, we have demonstrated that a supplementation of a high-fat diet with a quinoa extract enriched in 20-hydroxyecdysone (QE) or pure 20-hydroxyecdysone (20E) could prevent the development of obesity. In line with the anti-obesity effect of QE, we used indirect calorimetry to examine the effect of dietary QE and 20E in high-fat fed mice on different components of energy metabolism. Mice were fed a high-fat (HF) diet with or without supplementation by QE or pure 20E for 3 weeks. As compared to mice maintained on a low-fat diet, HF feeding resulted in a marked physiological shift in energy homeostasis, associating a decrease in global energy expenditure (EE) and an increase in lipid utilization as assessed by the lower respiratory quotient (RQ). Supplementation with 20E increased energy expenditure while food intake and activity were not affected. Furthermore QE and 20E promoted a higher rate of glucose oxidation leading to an increased RQ value. In QE and 20E-treated HFD fed mice, there was an increase in fecal lipid excretion without any change in stool amount. Our study indicates that anti-obesity effect of QE can be explained by a global increase in energy expenditure, a shift in glucose metabolism towards oxidation to the detriment of lipogenesis and a decrease in dietary lipid absorption leading to reduced dietary lipid storage in adipose tissue.

  5. Antibiotic-induced imbalances in gut microbiota aggravates cholesterol accumulation and liver injuries in rats fed a high-cholesterol diet.

    PubMed

    Hu, Xu; Wang, Tao; Liang, Shan; Li, Wei; Wu, Xiaoli; Jin, Feng

    2015-11-01

    Increasing evidence suggests that maintenance of homeostasis between gut microbiota and host plays an important role in human health. Many diseases, such as those affecting the liver, have been linked to imbalances in gut microbial communities. However, it is not clear whether an imbalance in gut microbiota promotes the onset of liver injury or if the imbalance results from the pathological state. In the current study, antibiotics were used to disturb the gut microbiota of both rats fed a high-cholesterol diet and rats fed a normal diet (controls). The prevalence of Bacteroidetes and Firmicutes were reduced, and Proteobacteria was greatly increased in the guts of rats after antibiotic treatment. The antibiotic-induced perturbation of gut microbiota aggravated cholesterol accumulation and liver injury in rats fed a high-cholesterol diet. This may have been due to an increase in intestinal permeability and plasma lipopolysaccharide (LPS), which lead to an increase in LPS absorption and activation of TLR4 signaling, resulting in the synthesis of pro-inflammatory cytokines and chemokines in liver tissues. This study suggests that imbalances in gut microbiota may be a predisposing factor for the onset of metabolic diseases and liver injuries related to cholesterol and high-cholesterol diets. Modulation of gut microbiota could be a novel target for preventing cholesterol-related metabolic disorders.

  6. Abresham ameliorates dyslipidemia, hepatic steatosis and hypertension in high-fat diet fed rats by repressing oxidative stress, TNF-α and normalizing NO production.

    PubMed

    Nepal, Saroj; Malik, Salma; Sharma, Ashok Kumar; Bharti, Saurabh; Kumar, Narender; Siddiqui, Khalid Mehmood; Bhatia, Jagriti; Kumari, Santosh; Arya, Dharamvir Singh

    2012-11-01

    This study was aimed to investigate whether standardized hydroalcoholic extract of abresham (AB) ameliorates dyslipidemia, hepatic steatosis and associated hypertension in rats fed with high-cholesterol/high-fat diet (HFD). HFD (55% calorie from fat and 2% cholesterol) were fed for 45 days to induce dyslipidemia, hepatic steatosis and associated hypertension. After confirmation of hypercholesterolemia (total cholesterol >150 mg/dl) on 30th day, different doses of AB (200-800 mg/kg/day) were administered for next 15 days. HFD administration for 45 days led to cardiometabolic syndrome characterized by significant increase in body weight, total cholesterol, triglyceride, low density lipoprotein cholesterol, TNF-α levels along with decrease in high density lipoprotein cholesterol and serum NO level. Furthermore, HFD resulted in significant increase in systolic arterial pressure, diastolic arterial pressure and mean arterial pressure. In addition, morphological studies revealed hepatic steatosis along with swelling of mitochondria and loss of cristae in hepatocyte and periarteritis in aorta. Treatment with AB for 15 days positively modulated the altered parameters in dose-dependent fashion, though maximum effect was seen at 800 mg/kg. These findings suggest that AB guard against cardiometabolic syndrome in HFD fed rats. It attenuates dyslipidemia, hepatic steatosis and associated hypertension by decreasing oxidative stress, TNF-α and normalizing NO production.

  7. Effects of bacterial lipopolysaccharide injection on white blood cell counts, hematological variables, and serum glucose, insulin, and cortisol concentrations in ewes fed low- or high-protein diets.

    PubMed

    Yates, D T; Löest, C A; Ross, T T; Hallford, D M; Carter, B H; Limesand, S W

    2011-12-01

    Bacterial lipopolysaccharide endotoxins (LPS) elicit inflammatory responses reflective of acute bacterial infection. We determined if feeding ewes high-CP (15.5%) or low-CP (8.5%) diets for 10 d altered inflammatory responses to an intravenous bolus of 0 (control), 0.75 (L75), or 1.50 (L150) μg of LPS/kg of BW in a 2 × 3 factorial arrangement of treatments (n = 5/treatment). Rectal temperatures, heart and respiratory rates, blood leukocyte concentrations, and serum cortisol, insulin, and glucose concentrations were measured for 24 h after an LPS bolus (bolus = 0 h). In general, rectal temperatures were greater (P ≤ 0.05) in control ewes fed high CP, but LPS increased (P ≤ 0.05) rectal temperatures in a dose-dependent manner at most times between 2 and 24 h after the bolus. Peak rectal temperatures in L75 and L150 occurred 4 h after the bolus. A monophasic, dose-independent increase (P ≤ 0.023) in serum cortisol occurred from 0.5 to 24 h after the bolus, with peak cortisol at 4 h. Serum insulin was increased (P ≤ 0.016) by LPS in a dose-dependent manner from 4 to 24 h after the bolus. Insulin did not differ between control ewes fed high- and low-CP diets but was greater (P < 0.001) in L75 ewes fed low CP compared with high CP and in L150 ewes fed high CP compared with low CP. Increased insulin was not preceded by increased serum glucose. Total white blood cell concentrations were not affected (P ≥ 0.135) by LPS, but the neutrophil and monocyte fractions of white blood cells were increased (P ≤ 0.047) by LPS at 12 and 24 h and at 24 h after the bolus, respectively, and the lymphocyte fraction was increased (P = 0.037) at 2 h and decreased (P ≤ 0.006) at 12 and 24 h after the bolus. Red blood cell and hemoglobin concentrations and hematocrit (%) were increased (P ≤ 0.022) by LPS at 2 and 4 h after the bolus. Rectal temperatures and serum glucose were greater (P ≤ 0.033) in ewes fed a high-CP diet before LPS injection, but these effects were lost at

  8. Evaluation of three industrial Escherichia coli strains in fed-batch cultivations during high-level SOD protein production

    PubMed Central

    2013-01-01

    Background In the biopharmaceutical industry, Escherichia coli (E. coli) strains are among the most frequently used bacterial hosts for producing recombinant proteins because they allow a simple process set-up and they are Food and Drug Administration (FDA)-approved for human applications. Widespread use of E. coli in biotechnology has led to the development of many different strains, and selecting an ideal host to produce a specific protein of interest is an important step in developing a production process. E. coli B and K–12 strains are frequently employed in large-scale production processes, and therefore are of particular interest. We previously evaluated the individual cultivation characteristics of E. coli BL21 and the K–12 hosts RV308 and HMS174. To our knowledge, there has not yet been a detailed comparison of the individual performances of these production strains in terms of recombinant protein production and system stability. The present study directly compared the T7-based expression hosts E. coli BL21(DE3), RV308(DE3), and HMS174(DE3), focusing on evaluating the specific attributes of these strains in relation to high-level protein production of the model protein recombinant human superoxide dismutase (SOD). The experimental setup was an exponential carbon-limited fed-batch cultivation with minimal media and single-pulse induction. Results The host strain BL21(DE3) produced the highest amounts of specific protein, followed by HMS174(DE3) and RV308(DE3). The expression system HMS174(DE3) exhibited system stability by retaining the expression vector over the entire process time; however, it entirely stopped growing shortly after induction. In contrast, BL21(DE3) and RV308(DE3) encountered plasmid loss but maintained growth. RV308(DE3) exhibited the lowest ppGpp concentration, which is correlated with the metabolic stress level and lowest degradation of soluble protein fraction compared to both other strains. Conclusions Overall, this study provides

  9. Expression of genes controlling fat deposition in two genetically diverse beef cattle breeds fed high or low silage diets

    PubMed Central

    2013-01-01

    Background Both genetic background and finishing system can alter fat deposition, thus indicating their influence on adipogenic and lipogenic factors. However, the molecular mechanisms underlying fat deposition and fatty acid composition in beef cattle are not fully understood. This study aimed to assess the effect of breed and dietary silage level on the expression patterns of key genes controlling lipid metabolism in subcutaneous adipose tissue (SAT) and longissimus lumborum (LL) muscle of cattle. To that purpose, forty bulls from two genetically diverse Portuguese bovine breeds with distinct maturity rates, Alentejana and Barrosã, were selected and fed either low (30% maize silage/70% concentrate) or high silage (70% maize silage/30% concentrate) diets. Results The results suggested that enhanced deposition of fatty acids in the SAT from Barrosã bulls, when compared to Alentejana, could be due to higher expression levels of lipogenesis (SCD and LPL) and β-oxidation (CRAT) related genes. Our results also indicated that SREBF1 expression in the SAT is increased by feeding the low silage diet. Together, these results point out to a higher lipid turnover in the SAT of Barrosã bulls when compared to Alentejana. In turn, lipid deposition in the LL muscle is related to the expression of adipogenic (PPARG and FABP4) and lipogenic (ACACA and SCD) genes. The positive correlation between ACACA expression levels and total lipids, as well trans fatty acids, points to ACACA as a major player in intramuscular deposition in ruminants. Moreover, results reinforce the role of FABP4 in intramuscular fat development and the SAT as the major site for lipid metabolism in ruminants. Conclusions Overall, the results showed that SAT and LL muscle fatty acid composition are mostly dependent on the genetic background. In addition, dietary silage level impacted on muscle lipid metabolism to a greater extent than on that of SAT, as evaluated by gene expression levels of adipogenic and

  10. Increased diuresis, renal vascular reactivity, and blood pressure levels in young rats fed high sodium, moderately high fructose, or their association: a comparative evaluation.

    PubMed

    Da Silva, Rita de Cássia Vilhena A F; de Souza, Priscila; da Silva-Santos, José Eduardo

    2016-12-01

    Excessive intakes of sodium or fructose have been described as risk factors for hypertension. We hypothesized that even a moderately high fructose diet (6% fructose), either alone or in combination with high sodium (4% NaCl), may impair diuresis and renal and systemic vascular reactivity, contributing to the onset of high blood pressure in rats. Male Wistar rats were fed chow containing 4% NaCl (HS), 6% fructose (MHF), or both 4% NaCl and 6% fructose (HSMHF) for 6 weeks and had their diuresis, plasma creatinine, vascular reactivity of perfused kidneys and systemic arterial pressure evaluated. We found no differences in augmented diuresis among animals given HS, MHF, or HSMHF diets. After 6 weeks both the HS and HSMHF groups had increased weight in their left kidneys, but only the HSMHF group showed augmented plasma creatinine. The effects of phenylephrine on renal vascular perfusion pressure were similarly enhanced in kidneys from the HS, MHF, and HSMHF groups, but not on the systemic arterial pressure. Although when evaluated in anesthetized rats, only the HSMHF group presented augmented blood pressure, evaluation in conscious animals revealed that both the MHF and HSMHF diets, but not the HS alone, were able to induce tachycardia and hypertension. In conclusion, a MHF diet containing 6% fructose was enough to render the renal vascular bed hyperreactive to phenylephrine and to induce both hypertension and tachycardia. The combination of 6% fructose with 4% NaCl led to plasma accumulation of creatinine and accelerated the development of tachycardia.

  11. Chitosan oligosaccharide decreases very-low-density lipoprotein triglyceride and increases high-density lipoprotein cholesterol in high-fat-diet-fed rats.

    PubMed

    Wang, Daxin; Han, Jiju; Yu, Yang; Li, Xueping; Wang, Yun; Tian, Hua; Guo, Shoudong; Jin, Shiguang; Luo, Tian; Qin, Shucun

    2011-09-01

    It is well known that chitosan has beneficial lipid-regulating effects, but it remains unknown whether chitosan oligosaccharide (COS), the chitosan degradation product, has the same lipid benefits. High-fat-diet-fed Wistar rats were administrated with COS by gastric gavage for three weeks. The effects of COS on lipids, lipoprotein components and lipid metabolism related protein activities were investigated. Plasma lipids level assays by an enzyme method showed that COS decreased triglyceride (TG) by 29-31%, and increased high-density lipoprotein (HDL) cholesterol by 8-11%, but did not affect low-density lipoprotein (LDL) cholesterol. Lipid distribution analysis through fast protein liquid chromatography indicated that COS significantly decreased TG content distributed in very-low-density lipoprotein (VLDL)/LDL fractions but increased cholesterol content in HDL fractions. Apolipoprotein analysis through plasma ultracentrifugation and sodium dodecyl sulfate polyacrylamide gel electrophoresis displayed that COS decreased apolipoprotein B-100 of LDL and increased apolipoprotein E of LDL and apolipoprotein B-100 of VLDL, but did not change apoA-I content of HDL particles. Lipoprotein formation associated protein determination showed that COS also increased plasma activity of lecithin cholesterol acyl transferase but not phospholipid transfer protein. The present study suggests that COS may play a beneficial role in plasma lipid regulation of rats with dyslipidemia induced by high-fat diet. The COS-decreased VLDL/LDL TG and -enhanced HDL cholesterol may be related to the upregulated activity of lecithin cholesterol acyl transferase.

  12. Effects of illegal cyanide fishing on vitellogenin in the freshwater African catfish, Clarias gariepinus (Burchell, 1822).

    PubMed

    Authman, Mohammad M N; Abbas, Wafaa T; Abumourad, Iman M K; Kenawy, Amany M

    2013-05-01

    The effects of cyanide, used in illegal fishing, on one of the most economically important Nile fishes, the African catfish (Clarias gariepinus), were studied. Cyanide impacts were evaluated in terms of biochemical, molecular and histopathological characteristics. After exposure to sublethal concentration (0.05mg/l) of potassium cyanide (KCN) for two and four weeks, GOT (glutamate oxaloacetate transaminase) was significantly increased in both male and female, while GPT (glutamate pyruvate transaminase), total plasma protein, phosphoprotein phosphorus (Vgt) in serum, vitellogenin gene expression (Vtg mRNA) and estrogen receptors (ER mRNA) were significantly decreased in female. On the other hand, male C. gariepinus showed a significant increase in Vtg and Vtg mRNA. Liver, testis and ovaries showed distinct histopathological changes. It was concluded that, cyanide caused damaging effects to fish and can cause serious disturbance in the natural reproduction and a drastic decline in fish population. Therefore, it is recommended that, the use of cyanide compounds must be prohibited to conserve the fisheries resources.

  13. A review of Clarias gariepinus invasions in Brazil and South Africa.

    PubMed

    Weyl, O L F; Daga, V S; Ellender, B R; Vitule, J R S

    2016-07-01

    African sharptooth catfish Clarias gariepinus is native to most of Africa and small parts of Asia, but has been introduced to 37 countries mainly for aquaculture. This review of introductions, establishment, spread and impact of C. gariepinus in Brazil and outside of its native range in South Africa provides evidence that the species has been able to overcome all barriers to invasion in both countries. Following initial introductions across geographical barriers, containment seems to have been impossible and escape from aquaculture facilities and spread by illegal introductions is an invasion pathway in both countries. There is evidence of individuals dispersing rapidly following escape, and surviving and reproducing at multiple sites in a wide spectrum of habitats in both countries. There is a severe paucity of research on impacts, many of which are inferred from field and laboratory observations, but have not been demonstrated at population or community level. Such impact studies are urgently required to better understand the consequences of these invasions and to develop appropriate strategies to mitigate impacts and spread.

  14. Milk Yield, Composition, and Fatty Acid Profile in Dairy Cows Fed a High-concentrate Diet Blended with Oil Mixtures Rich in Polyunsaturated Fatty Acids

    PubMed Central

    Thanh, Lam Phuoc; Suksombat, Wisitiporn

    2015-01-01

    To evaluate the effects of feeding linseed oil or/and sunflower oil mixed with fish oil on milk yield, milk composition and fatty acid (FA) profiles of dairy cows fed a high-concentrate diet, 24 crossbred primiparous lactating dairy cows in early lactation were assigned to a completely randomized design experiment. All cows were fed a high-concentrate basal diet and 0.38 kg dry matter (DM) molasses per day. Treatments were composed of a basal diet without oil supplement (Control), or diets of (DM basis) 3% linseed and fish oils (1:1, w/w, LSO-FO), or 3% sunflower and fish oils (1:1, w/w, SFO-FO), or 3% mixture (1:1:1, w/w) of linseed, sunflower, and fish oils (MIX-O). The animals fed SFO-FO had a 13.12% decrease in total dry matter intake compared with the control diet (p<0.05). No significant change was detected for milk yield; however, the animals fed the diet supplemented with SFO-FO showed a depressed milk fat yield and concentration by 35.42% and 27.20%, respectively, compared to those fed the control diet (p<0.05). Milk c9, t11-conjugated linoleic acid (CLA) proportion increased by 198.11% in the LSO-FO group relative to the control group (p<0.01). Milk C18:3n-3 (ALA) proportion was enhanced by 227.27% supplementing with LSO-FO relative to the control group (p<0.01). The proportions of milk docosahexaenoic acid (DHA) were significantly increased (p<0.01) in the cows fed LSO-FO (0.38%) and MIX-O (0.23%) compared to the control group (0.01%). Dietary inclusion of LSO-FO mainly increased milk c9, t11-CLA, ALA, DHA, and n-3 polyunsaturated fatty acids (PUFA), whereas feeding MIX-O improved preformed FA and unsaturated fatty acids (UFA). While the lowest n-6/n-3 ratio was found in the LSO-FO, the decreased atherogenecity index (AI) and thrombogenicity index (TI) seemed to be more extent in the MIX-O. Therefore, to maximize milk c9, t11-CLA, ALA, DHA, and n-3 PUFA and to minimize milk n-6/n-3 ratio, AI and TI, an ideal supplement would appear to be either LSO-FO or

  15. Substitution of soy protein for casein prevents oxidative modification and inflammatory response induced in rats fed high fructose diet.

    PubMed

    Sreeja, S; Geetha, Rajagopalan; Priyadarshini, Emayavaramban; Bhavani, Krishnamoorthy; Anuradha, Carani Venkatraman

    2014-01-01

    Fructose-rich diet is known to cause metabolic dysregulation, oxidative stress, and inflammation. We aimed to compare the effects of two dietary proteins of animal and plant origins on fructose-induced oxidative stress and inflammatory changes in liver. Wistar rats were fed either starch or fructose (60%) diet with casein or soy protein (20%) as the protein source for 8 weeks. Glucose and insulin, glycated hemoglobin and fructosamine, AOPP, and FRAP were determined in circulation. Intracellular ROS, oxidatively modified proteins (4-HNE and 3-NT adducts), adiponectin, TNF- α , IL-6 and PAI-1 mRNA expression, phosphorylation and activation of JNK and IKK β , and NF- κ B binding activity were assayed in liver. In comparison with starch fed group, fructose + casein group registered significant decline in antioxidant potential and increase in plasma glucose, insulin, and glycated proteins. Increased ROS production, 4-HNE and 3-NT modified proteins, JNK and IKK β activation, and NF- κ B binding activity were observed in them along with increased gene expression of PAI-1, IL-6, and TNF- α and decreased adiponectin expression. Substitution of soy protein for casein reduced oxidative modification and inflammatory changes in fructose-fed rats. These data suggest that soy protein but not casein can avert the adverse effects elicited by chronic consumption of fructose.

  16. Burdock fermented by Aspergillus awamori elevates cecal Bifidobacterium, and reduces fecal deoxycholic acid and adipose tissue weight in rats fed a high-fat diet.

    PubMed

    Okazaki, Yukako; Sitanggang, Novita Vivi; Sato, Satoko; Ohnishi, Nanae; Inoue, Junji; Iguchi, Takafumi; Watanabe, Toshiro; Tomotake, Hiroyuki; Harada, Kazuki; Kato, Norihisa

    2013-01-01

    This study investigated the effects of dietary supplementation with burdock powder and Aspergillus awamori-fermented burdock powder at 5% on the intestinal luminal environment and body fat in rats fed a high-fat (HF) diet. Food intake and growth were unaffected by dietary manipulation. Consumption of the burdock and fermented burdock diets significantly elevated fecal IgA and mucins (indices of intestinal immune and barrier functions) and reduced fecal lithocholic acid (a risk factor for colon cancer) (p<0.05). The fermented burdock diet markedly elevated cecal Bifidobacterium and organic acids, including lactate, acetate, propionate, and butyrate, and reduced fecal deoxycholic acid (a risk factor for colon cancer) and perirenal adipose tissue weight (p<0.05), but the burdock diet did not. These results suggest that consumption of fermented burdock improves the intestinal luminal environment and suppresses obesity in rats fed a HF diet.

  17. Krill Oil Supplementation Improves Dyslipidemia and Lowers Body Weight in Mice Fed a High-Fat Diet Through Activation of AMP-Activated Protein Kinase.

    PubMed

    Yang, Goowon; Lee, Jihyun; Lee, Sangsu; Kwak, Dongyun; Choe, Wonchae; Kang, Insug; Kim, Sung Soo; Ha, Joohun

    2016-12-01

    Krill oil is a novel, commercially available marine oil rich in long-chain polyunsaturated omega-3 fatty acids, particularly eicosapentaenoic acid and docosahexaenoic acid. Compared with fish oil, the effects of krill oil supplementation on human health and its underlying action mechanisms are currently poorly understood. In the present study, we examined the effect of krill oil supplementation on metabolic parameters of mice fed a high-fat diet (HFD). Krill oil supplementation in mice fed a HFD for 10 weeks resulted in an ∼15% lower body weight gain and a dramatic suppression of hepatic steatosis. These effects were associated with significantly lower serum triglyceride and low-density lipoprotein-cholesterol levels. We further uncovered a novel underlying mechanism, showing that AMP-activated protein kinase, a master regulator of glucose and lipid metabolism, mediates the beneficial effects of krill oil.

  18. Gut microbiota Modulated by Probiotics and Garcinia cambogia Extract Correlate with Weight Gain and Adipocyte Sizes in High Fat-Fed Mice

    PubMed Central

    Heo, Jaeyoung; Seo, Minseok; Park, Hwanhee; Lee, Woon Kyu; Guan, Le Luo; Yoon, Joon; Caetano-Anolles, Kelsey; Ahn, Hyeonju; Kim, Se-Young; Kang, Yoon-Mo; Cho, Seoae; Kim, Heebal

    2016-01-01

    Results of recent studies on gut microbiota have suggested that obesogenic bacteria exacerbate obesity and metabolic dysfunction in the host when fed a high fat diet (HFD). In order to explore obesity-associated bacterial candidates and their response to diet, the composition of faecal bacterial communities was investigated by analyzing 16S rRNA gene sequences in mice. Dietary intervention with probiotics and Garcinia cambogia extract attenuated weight gain and adipocyte size in HFD-fed mice. To identify obesity-causative microbiota, two statistical analyses were performed. Forty-eight bacterial species were found to overlap between the two analyses, indicating the commonly identified species as diet-driven and obesity-associated, which would make them strong candidates for host-microbiome interaction on obesity. Finally, correlation based network analysis between diet, microbe, and host revealed that Clostridium aminophilum, a hyper-ammonia-producing bacterium, was highly correlated with obesity phenotypes and other associated bacteria, and shown to be suppressed by the combination of probiotics and Garcinia cambogia extract. Results of the present study suggest that probiotics and Garcinia cambogia extract alleviate weight gain and adiposity, in part via differentially modulating the composition of gut microbiota in HFD fed mice. PMID:27658722

  19. Gut microbiota Modulated by Probiotics and Garcinia cambogia Extract Correlate with Weight Gain and Adipocyte Sizes in High Fat-Fed Mice.

    PubMed

    Heo, Jaeyoung; Seo, Minseok; Park, Hwanhee; Lee, Woon Kyu; Guan, Le Luo; Yoon, Joon; Caetano-Anolles, Kelsey; Ahn, Hyeonju; Kim, Se-Young; Kang, Yoon-Mo; Cho, Seoae; Kim, Heebal

    2016-09-23

    Results of recent studies on gut microbiota have suggested that obesogenic bacteria exacerbate obesity and metabolic dysfunction in the host when fed a high fat diet (HFD). In order to explore obesity-associated bacterial candidates and their response to diet, the composition of faecal bacterial communities was investigated by analyzing 16S rRNA gene sequences in mice. Dietary intervention with probiotics and Garcinia cambogia extract attenuated weight gain and adipocyte size in HFD-fed mice. To identify obesity-causative microbiota, two statistical analyses were performed. Forty-eight bacterial species were found to overlap between the two analyses, indicating the commonly identified species as diet-driven and obesity-associated, which would make them strong candidates for host-microbiome interaction on obesity. Finally, correlation based network analysis between diet, microbe, and host revealed that Clostridium aminophilum, a hyper-ammonia-producing bacterium, was highly correlated with obesity phenotypes and other associated bacteria, and shown to be suppressed by the combination of probiotics and Garcinia cambogia extract. Results of the present study suggest that probiotics and Garcinia cambogia extract alleviate weight gain and adiposity, in part via differentially modulating the composition of gut microbiota in HFD fed mice.

  20. Consumption of sericin reduces serum lipids, ameliorates glucose t