Toda, Kei; Hato, Yuki; Ohira, Shin-ichi; Namihira, Takao
2007-11-05
In this paper, novel microsystems for gas analysis and gas generation are described. The same microchannel devices covered with a gas permeable membrane were used for both the gas collection and the gas generation. For the first time, a dual liquid flow system was utilized in a micro-gas analysis system. Even though micropumps are utilized in the dual line microsystem, a good baseline was obtained in the NO2 measurement with Griess-Saltzman chemistry. The system was developed for on-site measurements in medical treatment; the treatment is of respiratory disease syndrome by NO inhalation and the monitoring is of the product NO and the harmful byproduct NO2. The system was also applied to mobile atmospheric monitoring. Chemical NO generation using the microchannel device was investigated for safe NO inhalation as an alternative to a NO generator based on pulsed arc discharge.
Indoor air quality inspection and analysis system based on gas sensor array
NASA Astrophysics Data System (ADS)
Gao, Xiang; Wang, Mingjiang; Fan, Binwen
2017-08-01
A detection and analysis system capable of measuring the concentration of four major gases in indoor air is designed. It uses four gas sensors constitute a gas sensor array, to achieve four indoor gas concentration detection, while the detection of data for further processing to reduce the cross-sensitivity between the gas sensor to improve the accuracy of detection.
Thornberg, Steven M [Peralta, NM
2012-07-31
A system is provided for testing the hermeticity of a package, such as a microelectromechanical systems package containing a sealed gas volume, with a sampling device that has the capability to isolate the package and breach the gas seal connected to a pulse valve that can controllably transmit small volumes down to 2 nanoliters to a gas chamber for analysis using gas chromatography/mass spectroscopy diagnostics.
Itoh, Toshio; Miwa, Toshio; Tsuruta, Akihiro; Akamatsu, Takafumi; Izu, Noriya; Shin, Woosuck; Park, Jangchul; Hida, Toyoaki; Eda, Takeshi; Setoguchi, Yasuhiro
2016-01-01
Various volatile organic compounds (VOCs) in breath exhaled by patients with lung cancer, healthy controls, and patients with lung cancer who underwent surgery for resection of cancer were analyzed by gas condenser-equipped gas chromatography-mass spectrometry (GC/MS) for development of an exhaled breath monitoring prototype system involving metal oxide gas sensors, a gas condenser, and gas chromatography columns. The gas condenser-GC/MS analysis identified concentrations of 56 VOCs in the breath exhaled by the test population of 136 volunteers (107 patients with lung cancer and 29 controls), and selected four target VOCs, nonanal, acetoin, acetic acid, and propanoic acid, for use with the condenser, GC, and sensor-type prototype system. The prototype system analyzed exhaled breath samples from 101 volunteers (74 patients with lung cancer and 27 controls). The prototype system exhibited a level of performance similar to that of the gas condenser-GC/MS system for breath analysis. PMID:27834896
40 CFR 86.1509 - Exhaust gas sampling system.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 19 2011-07-01 2011-07-01 false Exhaust gas sampling system. 86.1509... Procedures § 86.1509 Exhaust gas sampling system. (a) The exhaust gas sampling system shall transport the... sample (i.e., water removed) to the analysis system. (c) A CVS sampling system with bag or continuous...
NASA Astrophysics Data System (ADS)
Dong, Keqiang; Zhang, Hong; Gao, You
2017-01-01
Identifying the mutual interaction in aero-engine gas path system is a crucial problem that facilitates the understanding of emerging structures in complex system. By employing the multiscale multifractal detrended cross-correlation analysis method to aero-engine gas path system, the cross-correlation characteristics between gas path system parameters are established. Further, we apply multiscale multifractal detrended cross-correlation distance matrix and minimum spanning tree to investigate the mutual interactions of gas path variables. The results can infer that the low-spool rotor speed (N1) and engine pressure ratio (EPR) are main gas path parameters. The application of proposed method contributes to promote our understanding of the internal mechanisms and structures of aero-engine dynamics.
Gas analysis system for the Eight Foot High Temperature Tunnel
NASA Technical Reports Server (NTRS)
Leighty, Bradley D.; Davis, Patricia P.; Upchurch, Billy T.; Puster, Richard L.
1992-01-01
This paper describes the development of a gas collection and analysis system that is to be installed in the Eight-Foot High Temperature Tunnel (8' HTT) at NASA's Langley Research Center. This system will be used to analyze the test gas medium that results after burning a methane-air mixture to achieve the proper tunnel test parameters. The system consists of a sampling rake, a gas sample storage array, and a gas chromatographic system. Gas samples will be analyzed after each run to assure that proper combustion takes place in the tunnel resulting in a correctly balanced composition of the test gas medium. The proper ratio of gas species is critically necessary in order for the proper operation and testing of scramjet engines in the tunnel. After a variety of methane-air burn conditions have been analyzed, additional oxygen will be introduced into the combusted gas and the enriched test gas medium analyzed. The pre/post enrichment sets of data will be compared to verify that the gas species of the test gas medium is correctly balanced for testing of air-breathing engines.
Ultraviolet spectroscopic breath analysis using hollow-optical fiber as gas cell
NASA Astrophysics Data System (ADS)
Iwata, T.; Katagiri, T.; Matsuura, Y.
2017-02-01
For breath analysis on ultraviolet absorption spectroscopy, an analysis system using a hollow optical fiber as gas cell is developed. The hollow optical fiber functions as a long path and extremely small volume gas cell. Firstly, the measurement sensitivity of the system is evaluated by using NO gas as a gas sample. The result shows that NO gas with 50 ppb concentration is measured by using a system with a laser-driven, high intensity light source and a 3-meter long, aluminum-coated hollow optical fiber. Then an absorption spectrum of breath sample is measured in the wavelength region of around 200-300 nm and from the spectrum, it is found that the main absorbing components in breath were H2O, isoprene, and O3 converted from O2 by radiation of ultraviolet light. Then the concentration of isoprene in breath is estimated by using multiple linear regression analysis.
Greenhouse Gas Analysis by GC/MS
NASA Astrophysics Data System (ADS)
Bock, E. M.; Easton, Z. M.; Macek, P.
2015-12-01
Current methods to analyze greenhouse gases rely on designated complex, multiple-column, multiple-detector gas chromatographs. A novel method was developed in partnership with Shimadzu for simultaneous quantification of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) in environmental gas samples. Gas bulbs were used to make custom standard mixtures by injecting small volumes of pure analyte into the nitrogen-filled bulb. Resulting calibration curves were validated using a certified gas standard. The use of GC/MS systems to perform this analysis has the potential to move the analysis of greenhouse gasses from expensive, custom GC systems to standard single-quadrupole GC/MS systems that are available in most laboratories, which wide variety of applications beyond greenhouse gas analysis. Additionally, use of mass spectrometry can provide confirmation of identity of target analytes, and will assist in the identification of unknown peaks should they be present in the chromatogram.
NASA Astrophysics Data System (ADS)
Kondrat'eva, O. E.; Roslyakov, P. V.; Burdyukov, D. A.; Khudolei, O. D.; Loktionov, O. A.
2017-10-01
According to Federal Law no. 219-FZ, dated July 21, 2014, all enterprises that have a significant negative impact on the environment shall continuously monitor and account emissions of harmful substances into the atmospheric air. The choice of measuring equipment that is included in continuous emission monitoring and accounting systems (CEM&ASs) is a complex technical problem; in particular, its solution requires a comparative analysis of gas analysis systems; each of these systems has its advantages and disadvantages. In addition, the choice of gas analysis systems for CEM&ASs should be maximally objective and not depend on preferences of separate experts and specialists. The technique of choosing gas analysis equipment that was developed in previous years at Moscow Power Engineering Institute (MPEI) has been analyzed and the applicability of the mathematical tool of a multiple criteria analysis to choose measuring equipment for the continuous emission monitoring and accounting system have been estimated. New approaches to the optimal choice of gas analysis equipment for systems of the continuous monitoring and accounting of harmful emissions from thermal power plants have been proposed, new criteria of evaluation of gas analysis systems have been introduced, and weight coefficients have been determined for these criteria. The results of this study served as a basis for the Preliminary National Standard of the Russian Federation "Best Available Technologies. Automated Systems of Continuous Monitoring and Accounting of Emissions of Harmful (Polluting) Substances from Thermal Power Plants into the Atmospheric Air. Basic Requirements," which was developed by the Moscow Power Engineering Institute, National Research University, in cooperation with the Council of Power Producers and Strategic Electric Power Investors Association and the All-Russia Research Institute for Materials and Technology Standardization.
Buffer gas cooling and mixture analysis
Patterson, David S.; Doyle, John M.
2018-03-06
An apparatus for spectroscopy of a gas mixture is described. Such an apparatus includes a gas mixing system configured to mix a hot analyte gas that includes at least one analyte species in a gas phase into a cold buffer gas, thereby forming a supersaturated mixture to be provided for spectroscopic analysis.
Grindstaff, Quirinus G.
1992-01-01
Described is a new gas chromatograph-mass spectrometer (GC/MS) system and method for quantitative analysis of reactive chemical compounds. All components of such a GC/MS system external to the oven of the gas chromatograph are programmably temperature controlled to operate at a volatilization temperature specific to the compound(s) sought to be separated and measured.
Our analysis examines emission trade-offs between electricity and natural gas use in the buildings sector at the system level, including upstream emissions from the electric sector and natural gas mining emissions.
Solar-gas systems impact analysis study
NASA Astrophysics Data System (ADS)
Neill, C. P.; Hahn, E. F.; Loose, J. C.; Poe, T. E.; Hirshberg, A. S.; Haas, S.; Preble, B.; Halpin, J.
1984-07-01
The impacts of solar/gas technologies on gas consumers and on gas utilities were measured separately and compared against the impacts of competing gas and electric systems in four climatic regions of the U.S. A methodology was developed for measuring the benefits or penalties of solar/gas systems on a combined basis for consumers sand distribution companies. It is shown that the combined benefits associated with solar/gas systems are generally greatest when the systems are purchased by customers who would have otherwise chosen high-efficiency electric systems (were solar/gas systems not available in the market place). The role of gas utilities in encouraging consumer acceptance of solar/gas systems was also examined ion a qualitative fashion. A decision framework for analyzing the type and level of utility involvement in solar/gas technologies was developed.
NASA Astrophysics Data System (ADS)
Leidinger, Martin; Schultealbert, Caroline; Neu, Julian; Schütze, Andreas; Sauerwald, Tilman
2018-01-01
This article presents a test gas generation system designed to generate ppb level gas concentrations from gas cylinders. The focus is on permanent gases and volatile organic compounds (VOCs) for applications like indoor and outdoor air quality monitoring or breath analysis. In the design and the setup of the system, several issues regarding handling of trace gas concentrations have been considered, addressed and tested. This concerns not only the active fluidic components (flow controllers, valves), which have been chosen specifically for the task, but also the design of the fluidic tubing regarding dead volumes and delay times, which have been simulated for the chosen setup. Different tubing materials have been tested for their adsorption/desorption characteristics regarding naphthalene, a highly relevant gas for indoor air quality monitoring, which has generated high gas exchange times in a previous gas mixing system due to long time adsorption/desorption effects. Residual gas contaminations of the system and the selected carrier air supply have been detected and quantified using both an analytical method (GC-MS analysis according to ISO 16000-6) and a metal oxide semiconductor gas sensor, which detected a maximum contamination equivalent to 28 ppb of carbon monoxide. A measurement strategy for suppressing even this contamination has been devised, which allows the system to be used for gas sensor and gas sensor system characterization and calibration in the low ppb concentration range.
Integrated exhaust gas analysis system for aircraft turbine engine component testing
NASA Technical Reports Server (NTRS)
Summers, R. L.; Anderson, R. C.
1985-01-01
An integrated exhaust gas analysis system was designed and installed in the hot-section facility at the Lewis Research Center. The system is designed to operate either manually or automatically and also to be operated from a remote station. The system measures oxygen, water vapor, total hydrocarbons, carbon monoxide, carbon dioxide, and oxides of nitrogen. Two microprocessors control the system and the analyzers, collect data and process them into engineering units, and present the data to the facility computers and the system operator. Within the design of this system there are innovative concepts and procedures that are of general interest and application to other gas analysis tasks.
Consistency Analysis and Data Consultation of Gas System of Gas-Electricity Network of Latvia
NASA Astrophysics Data System (ADS)
Zemite, L.; Kutjuns, A.; Bode, I.; Kunickis, M.; Zeltins, N.
2018-02-01
In the present research, the main critical points of gas transmission and storage system of Latvia have been determined to ensure secure and reliable gas supply among the Baltic States to fulfil the core objectives of the EU energy policies. Technical data of critical points of the gas transmission and storage system of Latvia have been collected and analysed with the SWOT method and solutions have been provided to increase the reliability of the regional natural gas system.
Towards Breath Gas Analysis Based on Millimeter-Wave Molecular Spectroscopy
NASA Astrophysics Data System (ADS)
Rothbart, Nick; Hübers, Heinz-Wilhelm; Schmalz, Klaus; Borngräber, Johannes; Kissinger, Dietmar
2018-03-01
Breath gas analysis is a promising non-invasive tool for medical diagnosis as there are thousands of Volatile Organic Compounds (VOCs) in human breath that can be used as health monitoring markers. Millimeter-wave/terahertz molecular spectroscopy is highly suitable for breath gas analysis due to unique fingerprint spectra of many VOCs in that frequency range. We present our recent work on sensor systems for gas spectroscopy based on integrated transmitters (TX) and receivers (RX) fabricated in IHP's 0.13 μm SiGe BiCMOS technology. For a single-band system, spectroscopic measurements and beam profiles are presented. The frequency is tuned by direct voltage-frequency tuning and by a fractional-n PLL, respectively. The spectroscopic system includes a folded gas absorption cell with gas pre-concentration abilities demonstrating the detection of a 50 ppm mixture of ethanol in ambient air corresponding to a minimum detectable concentration of 260 ppb. Finally, the design of a 3-band system covering frequencies from 225 to 273 GHz is introduced.
Thermal Analysis of the Divertor Primary Heat Transfer System Piping During the Gas Baking Process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoder Jr, Graydon L; Harvey, Karen; Ferrada, Juan J
A preliminary analysis has been performed examining the temperature distribution in the Divertor Primary Heat Transfer System (PHTS) piping and the divertor itself during the gas baking process. During gas baking, it is required that the divertor reach a temperature of 350 C. Thermal losses in the piping and from the divertor itself require that the gas supply temperature be maintained above that temperature in order to ensure that all of the divertor components reach the required temperature. The analysis described in this report was conducted in order to estimate the required supply temperature from the gas heater.
Neural net controlled tag gas sampling system for nuclear reactors
Gross, Kenneth C.; Laug, Matthew T.; Lambert, John D. B.; Herzog, James P.
1997-01-01
A method and system for providing a tag gas identifier to a nuclear fuel rod and analyze escaped tag gas to identify a particular failed nuclear fuel rod. The method and system include disposing a unique tag gas composition into a plenum of a nuclear fuel rod, monitoring gamma ray activity, analyzing gamma ray signals to assess whether a nuclear fuel rod has failed and is emitting tag gas, activating a tag gas sampling and analysis system upon sensing tag gas emission from a failed nuclear rod and evaluating the escaped tag gas to identify the particular failed nuclear fuel rod.
Parallel Hybrid Gas-Electric Geared Turbofan Engine Conceptual Design and Benefits Analysis
NASA Technical Reports Server (NTRS)
Lents, Charles; Hardin, Larry; Rheaume, Jonathan; Kohlman, Lee
2016-01-01
The conceptual design of a parallel gas-electric hybrid propulsion system for a conventional single aisle twin engine tube and wing vehicle has been developed. The study baseline vehicle and engine technology are discussed, followed by results of the hybrid propulsion system sizing and performance analysis. The weights analysis for the electric energy storage & conversion system and thermal management system is described. Finally, the potential system benefits are assessed.
Sensitivity Analysis of Algan/GAN High Electron Mobility Transistors to Process Variation
2008-02-01
delivery system gas panel including both hydride and alkyl delivery modules and the vent/valve configurations [14...Reactor Gas Delivery Systems A basic schematic diagram of an MOCVD reactor delivery gas panel is shown in Figure 13. The reactor gas delivery...system, or gas panel , consists of a network of stainless steel tubing, automatic valves and electronic mass flow controllers (MFC). There are separate
Iwata, Takuro; Katagiri, Takashi; Matsuura, Yuji
2016-01-01
A breath analysis system based on ultraviolet-absorption spectroscopy was developed by using a hollow optical fiber as a gas cell for real-time monitoring of isoprene in breath. The hollow optical fiber functions as an ultra-small-volume gas cell with a long path. The measurement sensitivity of the system was evaluated by using nitric-oxide gas as a gas sample. The evaluation result showed that the developed system, using a laser-driven, high-intensity light source and a 3-m-long, aluminum-coated hollow optical fiber, could successfully measure nitric-oxide gas with a 50 ppb concentration. An absorption spectrum of a breath sample in the wavelength region of around 200–300 nm was measured, and the measured spectrum revealed the main absorbing components in breath as water vapor, isoprene, and ozone converted from oxygen by radiation of ultraviolet light. The concentration of isoprene in breath was estimated by multiple linear regression. The regression analysis results showed that the proposed analysis system enables real-time monitoring of isoprene during the exhaling of breath. Accordingly, it is suitable for measuring the circadian variation of isoprene. PMID:27929387
Iwata, Takuro; Katagiri, Takashi; Matsuura, Yuji
2016-12-05
A breath analysis system based on ultraviolet-absorption spectroscopy was developed by using a hollow optical fiber as a gas cell for real-time monitoring of isoprene in breath. The hollow optical fiber functions as an ultra-small-volume gas cell with a long path. The measurement sensitivity of the system was evaluated by using nitric-oxide gas as a gas sample. The evaluation result showed that the developed system, using a laser-driven, high-intensity light source and a 3-m-long, aluminum-coated hollow optical fiber, could successfully measure nitric-oxide gas with a 50 ppb concentration. An absorption spectrum of a breath sample in the wavelength region of around 200-300 nm was measured, and the measured spectrum revealed the main absorbing components in breath as water vapor, isoprene, and ozone converted from oxygen by radiation of ultraviolet light. The concentration of isoprene in breath was estimated by multiple linear regression. The regression analysis results showed that the proposed analysis system enables real-time monitoring of isoprene during the exhaling of breath. Accordingly, it is suitable for measuring the circadian variation of isoprene.
Neural net controlled tag gas sampling system for nuclear reactors
Gross, K.C.; Laug, M.T.; Lambert, J.B.; Herzog, J.P.
1997-02-11
A method and system are disclosed for providing a tag gas identifier to a nuclear fuel rod and analyze escaped tag gas to identify a particular failed nuclear fuel rod. The method and system include disposing a unique tag gas composition into a plenum of a nuclear fuel rod, monitoring gamma ray activity, analyzing gamma ray signals to assess whether a nuclear fuel rod has failed and is emitting tag gas, activating a tag gas sampling and analysis system upon sensing tag gas emission from a failed nuclear rod and evaluating the escaped tag gas to identify the particular failed nuclear fuel rod. 12 figs.
Hiki, Shinichiro; Mawatari, Kazuma; Aota, Arata; Saito, Maki; Kitamori, Takehiko
2011-06-15
A portable, highly sensitive, and continuous ammonia gas monitoring system was developed with a microfluidic chip. The system consists of a main unit, a gas pumping unit, and a computer which serves as an operation console. The size of the system is 45 cm width × 30 cm depth × 30 cm height, and the portable system was realized. A highly efficient and stable extraction method was developed by utilizing an annular gas/liquid laminar flow. In addition, a stable gas/liquid separation method with a PTFE membrane was developed by arranging a fluidic network in three dimensions to achieve almost zero dead volume at the gas/liquid extraction part. The extraction rate was almost 100% with a liquid flow rate of 3.5 μL/min and a gas flow rate of 100 mL/min (contact time of ~15 ms), and the concentration factor was 200 times by calculating the NH(3) concentration (w/w unit) in the gas and liquid phases. Stable phase separation and detection was sustained for more than 3 weeks in an automated operation, which was sufficient for the monitoring application. The lower limit of detection calculated based on a signal-to-noise ratio of 3 was 84 ppt, which showed good detectability for NH(3) analysis. We believe that our system is a very powerful tool for gas analysis due to the advantages of portable size, high sensitivity, and continuous monitoring, and it is particularly useful in the semiconductor field.
A Java-Enabled Interactive Graphical Gas Turbine Propulsion System Simulator
NASA Technical Reports Server (NTRS)
Reed, John A.; Afjeh, Abdollah A.
1997-01-01
This paper describes a gas turbine simulation system which utilizes the newly developed Java language environment software system. The system provides an interactive graphical environment which allows the quick and efficient construction and analysis of arbitrary gas turbine propulsion systems. The simulation system couples a graphical user interface, developed using the Java Abstract Window Toolkit, and a transient, space- averaged, aero-thermodynamic gas turbine analysis method, both entirely coded in the Java language. The combined package provides analytical, graphical and data management tools which allow the user to construct and control engine simulations by manipulating graphical objects on the computer display screen. Distributed simulations, including parallel processing and distributed database access across the Internet and World-Wide Web (WWW), are made possible through services provided by the Java environment.
Evaluation and Analysis of Gas Turbine Internal Flow Restrictors.
1986-08-01
Ail? 836 EVALUATION AND ANALYSIS OF GAS TURBINE INTERNAL FLd 1/2 RESTRICTORS(U) UNIVERSAL ENERGY SYSTEMS INC DAYTON ON G F HOLLE AUG 86 AFMAL-TR-86...NUMB6EftSI 5. MONITORING ORGANIZATION REPORT NUMBERISt AFWAL-TR-86- 2050 OF pEYFsM~ 1 * ORAIAIN7 NM FMNTRIG.GNZ70 Universal Energy Systems, Inc Air Force... Energy Systems, Inc. and Allison Gas Turgine Division of General Motors Corporation was sponsored by the Aeropropulsion Laboratory, United States Air
METHANOL MEASUREMENT IN AUTO EXHAUST USING A GAS-FILTER CORRELATION SPECTROMETER
Spectroscopic methods offer an alternative to wet chemical methods for analysis of methanol emissions from automobiles. The gas filter correlation infrared optical analysis approach appears very promising. The report describes the gas correlation optical system constructed to ana...
NASA Astrophysics Data System (ADS)
Ignac-Nowicka, Jolanta
2018-03-01
The paper analyzes the conditions of safe use of industrial gas systems and factors influencing gas hazards. Typical gas installation and its basic features have been characterized. The results of gas threat analysis in an industrial enterprise using FTA error tree method and ETA event tree method are presented. Compares selected methods of identifying hazards gas industry with respect to the scope of their use. The paper presents an analysis of two exemplary hazards: an industrial gas catastrophe (FTA) and an explosive gas explosion (ETA). In both cases, technical risks and human errors (human factor) were taken into account. The cause-effect relationships of hazards and their causes are presented in the form of diagrams in the drawings.
Systems analysis of electricity production from coal using fuel cells
NASA Technical Reports Server (NTRS)
Fleming, D. K.
1983-01-01
Gasifiers, heat transfer, gas stability, quench, water-gas shift reaction, reforming-methanation, other catalytic reactions, compressors and expanders, acid-gas removal, the fuel cell, and catalytic combustors are described. System pressure drops, efficiency of rotating power equipment, heat exchangers, chemical reactions, steam systems, and the fuel cell subsystems are discussed.
Simple gas chromatographic system for analysis of microbial respiratory gases
NASA Technical Reports Server (NTRS)
Carle, G. C.
1972-01-01
Dual column ambient temperature system, consisting of pair of capillary columns, microbead thermistor detector and micro gas-sampling valve, is used in remote life-detection equipment for space experiments. Performance outweighs advantage gained by utilizing single-column systems to reduce weight, conserve carrier gas and operate at lower power levels.
Contained radiological analytical chemistry module
Barney, David M.
1989-01-01
A system which provides analytical determination of a plurality of water chemistry parameters with respect to water samples subject to radiological contamination. The system includes a water sample analyzer disposed within a containment and comprising a sampling section for providing predetermined volumes of samples for analysis; a flow control section for controlling the flow through the system; and a gas analysis section for analyzing samples provided by the sampling system. The sampling section includes a controllable multiple port valve for, in one position, metering out sample of a predetermined volume and for, in a second position, delivering the material sample for analysis. The flow control section includes a regulator valve for reducing the pressure in a portion of the system to provide a low pressure region, and measurement devices located in the low pressure region for measuring sample parameters such as pH and conductivity, at low pressure. The gas analysis section which is of independent utility provides for isolating a small water sample and extracting the dissolved gases therefrom into a small expansion volume wherein the gas pressure and thermoconductivity of the extracted gas are measured.
Contained radiological analytical chemistry module
Barney, David M.
1990-01-01
A system which provides analytical determination of a plurality of water chemistry parameters with respect to water samples subject to radiological contamination. The system includes a water sample analyzer disposed within a containment and comprising a sampling section for providing predetermined volumes of samples for analysis; a flow control section for controlling the flow through the system; and a gas analysis section for analyzing samples provided by the sampling system. The sampling section includes a controllable multiple port valve for, in one position, metering out sample of a predetermined volume and for, in a second position, delivering the material sample for analysis. The flow control section includes a regulator valve for reducing the pressure in a portion of the system to provide a low pressure region, and measurement devices located in the low pressure region for measuring sample parameters such as pH and conductivity, at low pressure. The gas analysis section which is of independent utility provides for isolating a small water sample and extracting the dissolved gases therefrom into a small expansion volume wherein the gas pressure and thermoconductivity of the extracted gas are measured.
Study on system for extracted type infrared gas analysis
NASA Astrophysics Data System (ADS)
Gu, Ruirui; Yao, Jun; Li, Wei; Li, Wenzhong; Zhang, Shaohua; Liu, Zhe; Wen, Qiang
2015-12-01
Based on the Beer-Lambert law and the characteristic IR absorption spectrum of CO, a system for extracted type infrared gas analysis has been designed and manufactured, which utilizes different absorptive degrees infrared light gain under different concentration degrees of the gas to be measured to the value of detect CO concentration, including optical path, electric circuit and gas path. A forward and backward gas detection chamber equipped with a micro flow sensor has been used in the optical path as well as a multistage high precision amplifier and filter circuit has been used in the electric circuit. The experimental results accord with the testing standard.
Economic analysis of using above ground gas storage devices for compressed air energy storage system
NASA Astrophysics Data System (ADS)
Liu, Jinchao; Zhang, Xinjing; Xu, Yujie; Chen, Zongyan; Chen, Haisheng; Tan, Chunqing
2014-12-01
Above ground gas storage devices for compressed air energy storage (CAES) have three types: air storage tanks, gas cylinders, and gas storage pipelines. A cost model of these gas storage devices is established on the basis of whole life cycle cost (LCC) analysis. The optimum parameters of the three types are determined by calculating the theoretical metallic raw material consumption of these three devices and considering the difficulties in manufacture and the influence of gas storage device number. The LCCs of the three types are comprehensively analyzed and compared. The result reveal that the cost of the gas storage pipeline type is lower than that of the other two types. This study may serve as a reference for designing large-scale CAES systems.
A Portable and Autonomous Mass Spectrometric System for On-Site Environmental Gas Analysis.
Brennwald, Matthias S; Schmidt, Mark; Oser, Julian; Kipfer, Rolf
2016-12-20
We developed a portable mass spectrometric system ("miniRuedi") for quantificaton of the partial pressures of He, Ne (in dry gas), Ar, Kr, N 2 , O 2 , CO 2 , and CH 4 in gaseous and aqueous matrices in environmental systems with an analytical uncertainty of 1-3%. The miniRuedi does not require any purification or other preparation of the sampled gases and therefore allows maintenance-free and autonomous operation. The apparatus is most suitable for on-site gas analysis during field work and at remote locations due to its small size (60 cm × 40 cm × 14 cm), low weight (13 kg), and low power consumption (50 W). The gases are continuously sampled and transferred through a capillary pressure reduction system into a vacuum chamber, where they are analyzed using a quadrupole mass spectrometer with a time resolution of ≲1 min. The low gas consumption rate (<0.1 mL/min) minimizes interference with the natural mass balance of gases in environmental systems, and allows the unbiased quantification of dissolved-gas concentrations in water by gas/water equilibration using membrane contractors (gas-equilibrium membrane-inlet mass spectrometry, GE-MIMS). The performance of the miniRuedi is demonstrated in laboratory and field tests, and its utility is illustrated in field applications related to soil-gas formation, lake/atmosphere gas exchange, and seafloor gas emanations.
Practical Techniques for Modeling Gas Turbine Engine Performance
NASA Technical Reports Server (NTRS)
Chapman, Jeffryes W.; Lavelle, Thomas M.; Litt, Jonathan S.
2016-01-01
The cost and risk associated with the design and operation of gas turbine engine systems has led to an increasing dependence on mathematical models. In this paper, the fundamentals of engine simulation will be reviewed, an example performance analysis will be performed, and relationships useful for engine control system development will be highlighted. The focus will be on thermodynamic modeling utilizing techniques common in industry, such as: the Brayton cycle, component performance maps, map scaling, and design point criteria generation. In general, these topics will be viewed from the standpoint of an example turbojet engine model; however, demonstrated concepts may be adapted to other gas turbine systems, such as gas generators, marine engines, or high bypass aircraft engines. The purpose of this paper is to provide an example of gas turbine model generation and system performance analysis for educational uses, such as curriculum creation or student reference.
NASA Technical Reports Server (NTRS)
Choo, Y. K.; Burns, R. K.
1982-01-01
The performance of steam-injected gas turbines having combustors lined with thermionic energy converters (STIG/TEC systems) was analyzed and compared with that of two baseline systems; a steam-injected gas turbine (without a TEC-lined combustor) and a conventional combined gas turbine/steam turbine cycle. Common gas turbine parameters were assumed for all of the systems. Two configurations of the STIG/TEC system were investigated. In both cases, steam produced in an exhaust-heat-recovery boiler cools the TEC collectors. It is then injected into the gas combustion stream and expanded through the gas turbine. The STIG/TEC system combines the advantage of gas turbine steam injection with the conversion of high-temperature combustion heat by TEC's. The addition of TEC's to the baseline steam-injected gas turbine improves both its efficiency and specific power. Depending on system configuration and design parameters, the STIG/TEC system can also achieve higher efficiency and specific power than the baseline combined cycle.
Analysis of carbon dioxide emission of gas fuelled cogeneration plant
NASA Astrophysics Data System (ADS)
Nordin, Adzuieen; Amin, M.; Majid, A.
2013-12-01
Gas turbines are widely used for power generation. In cogeneration system, the gas turbine generates electricity and the exhaust heat from the gas turbine is used to generate steam or chilled water. Besides enhancing the efficiency of the system, the process assists in reducing the emission of CO2 to the environment. This study analyzes the amount of CO2 emission by Universiti Teknologi Petronas gas fuelled cogeneration system using energy balance equations. The results indicate that the cogeneration system reduces the CO2 emission to the environment by 60%. This finding could encourage the power plant owners to install heat recovery systems to their respective plants.
AFB/open cycle gas turbine conceptual design study
NASA Technical Reports Server (NTRS)
Dickinson, T. W.; Tashjian, R.
1983-01-01
Applications of coal fired atmospheric fluidized bed gas turbine systems in industrial cogeneration are identified. Based on site-specific conceptual designs, the potential benefits of the AFB/gas turbine system were compared with an atmospheric fluidized design steam boiler/steam turbine system. The application of these cogeneration systems at four industrial plant sites is reviewed. A performance and benefit analysis was made along with a study of the representativeness of the sites both in regard to their own industry and compared to industry as a whole. A site was selected for the conceptual design, which included detailed site definition, AFB/gas turbine and AFB/steam turbine cogeneration system designs, detailed cost estimates, and comparative performance and benefit analysis. Market and benefit analyses identified the potential market penetration for the cogeneration technologies and quantified the potential benefits.
AFB/open cycle gas turbine conceptual design study
NASA Astrophysics Data System (ADS)
Dickinson, T. W.; Tashjian, R.
1983-09-01
Applications of coal fired atmospheric fluidized bed gas turbine systems in industrial cogeneration are identified. Based on site-specific conceptual designs, the potential benefits of the AFB/gas turbine system were compared with an atmospheric fluidized design steam boiler/steam turbine system. The application of these cogeneration systems at four industrial plant sites is reviewed. A performance and benefit analysis was made along with a study of the representativeness of the sites both in regard to their own industry and compared to industry as a whole. A site was selected for the conceptual design, which included detailed site definition, AFB/gas turbine and AFB/steam turbine cogeneration system designs, detailed cost estimates, and comparative performance and benefit analysis. Market and benefit analyses identified the potential market penetration for the cogeneration technologies and quantified the potential benefits.
Computer Graphics-aided systems analysis: application to well completion design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Detamore, J.E.; Sarma, M.P.
1985-03-01
The development of an engineering tool (in the form of a computer model) for solving design and analysis problems related with oil and gas well production operations is discussed. The development of the method is based on integrating the concepts of ''Systems Analysis'' with the techniques of ''Computer Graphics''. The concepts behind the method are very general in nature. This paper, however, illustrates the application of the method in solving gas well completion design problems. The use of the method will save time and improve the efficiency of such design and analysis problems. The method can be extended to othermore » design and analysis aspects of oil and gas wells.« less
Probabilistic Analysis of Solid Oxide Fuel Cell Based Hybrid Gas Turbine System
NASA Technical Reports Server (NTRS)
Gorla, Rama S. R.; Pai, Shantaram S.; Rusick, Jeffrey J.
2003-01-01
The emergence of fuel cell systems and hybrid fuel cell systems requires the evolution of analysis strategies for evaluating thermodynamic performance. A gas turbine thermodynamic cycle integrated with a fuel cell was computationally simulated and probabilistically evaluated in view of the several uncertainties in the thermodynamic performance parameters. Cumulative distribution functions and sensitivity factors were computed for the overall thermal efficiency and net specific power output due to the uncertainties in the thermodynamic random variables. These results can be used to quickly identify the most critical design variables in order to optimize the design and make it cost effective. The analysis leads to the selection of criteria for gas turbine performance.
Multi-fluid CFD analysis in Process Engineering
NASA Astrophysics Data System (ADS)
Hjertager, B. H.
2017-12-01
An overview of modelling and simulation of flow processes in gas/particle and gas/liquid systems are presented. Particular emphasis is given to computational fluid dynamics (CFD) models that use the multi-dimensional multi-fluid techniques. Turbulence modelling strategies for gas/particle flows based on the kinetic theory for granular flows are given. Sub models for the interfacial transfer processes and chemical kinetics modelling are presented. Examples are shown for some gas/particle systems including flow and chemical reaction in risers as well as gas/liquid systems including bubble columns and stirred tanks.
Hayes, M A
1988-04-01
Gas chromatography (GC) is the most widely used analytical technique in the food and beverage industry. This paper addresses the problems of sample preparation and system maintenance to ensure the most sensitive, durable, and efficient results for trace analysis by GC in this industry.
Simulate different environments TDLAS On the analysis of the test signal strength
NASA Astrophysics Data System (ADS)
Li, Xin; Zhou, Tao; Jia, Xiaodong
2014-12-01
TDLAS system is the use of the wavelength tuning characteristics of the laser diode, for detecting the absorption spectrum of the gas absorption line. Detecting the gas space, temperature, pressure and flow rate and concentration. The use of laboratory techniques TDLAS gas detection, experimental simulation engine combustion water vapor and smoke. using an optical lens system receives the signal acquisition and signal interference test analysis. Analog water vapor and smoke in two different environments in the sample pool interference. In both experiments environmental interference gas absorption in the optical signal acquisition, signal amplitude variation analysis, and records related to the signal data. In order to study site conditions in the engine combustion process for signal acquisition provides an ideal experimental data .
Comparative study of gas-analyzing systems designed for continuous monitoring of TPP emissions
NASA Astrophysics Data System (ADS)
Kondrat'eva, O. E.; Roslyakov, P. V.
2017-06-01
Determining the composition of combustion products is important in terms of both control of emissions into the atmosphere from thermal power plants and optimization of fuel combustion processes in electric power plants. For this purpose, the concentration of oxygen, carbon monoxide, nitrogen, and sulfur oxides in flue gases is monitored; in case of solid fuel combustion, fly ash concentration is monitored as well. According to the new nature conservation law in Russia, all large TPPs shall be equipped with continuous emission monitoring and measurement systems (CEMMS) into the atmosphere. In order to ensure the continuous monitoring of pollutant emissions, direct round-the-clock measurements are conducted with the use of either domestically produced or imported gas analyzers and analysis systems, the operation of which is based on various physicochemical methods and which can be generally used when introducing CEMMS. Depending on the type and purposes of measurement, various kinds of instruments having different features may be used. This article represents a comparative study of gas-analysis systems for measuring the content of polluting substances in exhaust gases based on various physical and physicochemical analysis methods. It lists basic characteristics of the methods commonly applied in the area of gas analysis. It is proven that, considering the necessity of the long-term, continuous operation of gas analyzers for monitoring and measurement of pollutant emissions into the atmosphere, as well as the requirements for reliability and independence from aggressive components and temperature of the gas flow, it is preferable to use optical gas analyzers for the aforementioned purposes. In order to reduce the costs of equipment comprising a CEMMS at a TPP and optimize the combustion processes, electrochemical and thermomagnetic gas analyzers may also be used.
Visser, Ate; Singleton, Michael J; Hillegonds, Darren J; Velsko, Carol A; Moran, Jean E; Esser, Bradley K
2013-11-15
Noble gases dissolved in groundwater can reveal paleotemperatures, recharge conditions, and precise travel times. The collection and analysis of noble gas samples are cumbersome, involving noble gas purification, cryogenic separation and static mass spectrometry. A quicker and more efficient sample analysis method is required for introduced tracer studies and laboratory experiments. A Noble Gas Membrane Inlet Mass Spectrometry (NG-MIMS) system was developed to measure noble gases at natural abundances in gas and water samples. The NG-MIMS system consists of a membrane inlet, a dry-ice water trap, a carbon-dioxide trap, two getters, a gate valve, a turbomolecular pump and a quadrupole mass spectrometer equipped with an electron multiplier. Noble gases isotopes (4)He, (22)Ne, (38)Ar, (84)Kr and (132)Xe are measured every 10 s. The NG-MIMS system can reproduce measurements made on a traditional noble gas mass spectrometer system with precisions of 2%, 8%, 1%, 1% and 3% for He, Ne, Ar, Kr and Xe, respectively. Noble gas concentrations measured in an artificial recharge pond were used to monitor an introduced xenon tracer and to reconstruct temperature variations to within 2 °C. Additional experiments demonstrated the capability to measure noble gases in gas and in water samples, in real time. The NG-MIMS system is capable of providing analyses sufficiently accurate and precise for introduced noble gas tracers at managed aquifer recharge facilities, groundwater fingerprinting based on excess air and noble gas recharge temperature, and field and laboratory studies investigating ebullition and diffusive exchange. Copyright © 2013 John Wiley & Sons, Ltd.
Corrigan, Owen I; Crean, Abina M
2002-10-01
Hydrocortisone-PVP composites were successfully prepared using the supercritical fluid gas anti-solvent method (GAS). Analysis by differential scanning calorimetry DSC and powder X-ray diffraction (XRD) indicated that these systems were more crystalline than corresponding systems prepared by spray drying. These systems, prepared by the GAS method were more similar in physicochemical properties to coprecipitates prepared by conventional solvent evaporation. Compressed composites of hydrocortisone-PVP systems, prepared by the GAS method, had dissolution rates lower than those of corresponding systems prepared by the other processing methods but equivalent to those of corresponding physical mixtures.
Yang, Lei; Zhou, Weihua; Xue, Kaihua; Wei, Rupeng; Ling, Zheng
2018-05-01
The enormous potential as an alternative energy resource has made natural gas hydrates a material of intense research interest. Their exploration and sample characterization require a quick and effective analysis of the hydrate-bearing cores recovered under in situ pressures. Here a novel Pressure Core Ultrasonic Test System (PCUTS) for on-board analysis of sediment cores containing gas hydrates at in situ pressures is presented. The PCUTS is designed to be compatible with an on-board pressure core transfer device and a long gravity-piston pressure-retained corer. It provides several advantages over laboratory core analysis including quick and non-destructive detection, in situ and successive acoustic property acquisition, and remission of sample storage and transportation. The design of the unique assembly units to ensure the in situ detection is demonstrated, involving the U-type protecting jackets, transducer precession device, and pressure stabilization system. The in situ P-wave velocity measurements make the detection of gas hydrate existence in the sediments possible on-board. Performance tests have verified the feasibility and sensitivity of the ultrasonic test unit, showing the dependence of P-wave velocity on gas hydrate saturation. The PCUTS has been successfully applied for analysis of natural samples containing gas hydrates recovered from the South China Sea. It is indicated that on-board P-wave measurements could provide a quick and effective understanding of the hydrate occurrence in natural samples, which can assist further resource exploration, assessment, and subsequent detailed core analysis.
NASA Astrophysics Data System (ADS)
Yang, Lei; Zhou, Weihua; Xue, Kaihua; Wei, Rupeng; Ling, Zheng
2018-05-01
The enormous potential as an alternative energy resource has made natural gas hydrates a material of intense research interest. Their exploration and sample characterization require a quick and effective analysis of the hydrate-bearing cores recovered under in situ pressures. Here a novel Pressure Core Ultrasonic Test System (PCUTS) for on-board analysis of sediment cores containing gas hydrates at in situ pressures is presented. The PCUTS is designed to be compatible with an on-board pressure core transfer device and a long gravity-piston pressure-retained corer. It provides several advantages over laboratory core analysis including quick and non-destructive detection, in situ and successive acoustic property acquisition, and remission of sample storage and transportation. The design of the unique assembly units to ensure the in situ detection is demonstrated, involving the U-type protecting jackets, transducer precession device, and pressure stabilization system. The in situ P-wave velocity measurements make the detection of gas hydrate existence in the sediments possible on-board. Performance tests have verified the feasibility and sensitivity of the ultrasonic test unit, showing the dependence of P-wave velocity on gas hydrate saturation. The PCUTS has been successfully applied for analysis of natural samples containing gas hydrates recovered from the South China Sea. It is indicated that on-board P-wave measurements could provide a quick and effective understanding of the hydrate occurrence in natural samples, which can assist further resource exploration, assessment, and subsequent detailed core analysis.
Fatigue life analysis of cracked gas receiver of emergency cut-off system in gas gathering station
NASA Astrophysics Data System (ADS)
Hu, Junzhi; Zhou, Jiyong; Li, Siyuan
2017-06-01
Small-scale air compressor and gas receiver are used as the driving gas of the emergency cut-off system in gas gathering station. Operation of block valve is ensured by starting and stopping compressor automatically. The frequent start-stop of compressor and the pressure fluctuation pose a threat to the service life of gas receiver, and then affect normal operation of the emergency cut-off system and security of gas gathering station. In this paper, the fatigue life of a pressure vessel with axial semi-elliptical surface crack in the inner wall is analyzed under the varying pressure by means of the theory of fracture mechanics. The influences of the amplitude of pressure fluctuation and the initial crack size on the residual life of gas receiver are discussed. It provides a basis for setting the working parameters of gas receiver of emergency cut-off system and determining the maintenance cycle.
Dynamic safety assessment of natural gas stations using Bayesian network.
Zarei, Esmaeil; Azadeh, Ali; Khakzad, Nima; Aliabadi, Mostafa Mirzaei; Mohammadfam, Iraj
2017-01-05
Pipelines are one of the most popular and effective ways of transporting hazardous materials, especially natural gas. However, the rapid development of gas pipelines and stations in urban areas has introduced a serious threat to public safety and assets. Although different methods have been developed for risk analysis of gas transportation systems, a comprehensive methodology for risk analysis is still lacking, especially in natural gas stations. The present work is aimed at developing a dynamic and comprehensive quantitative risk analysis (DCQRA) approach for accident scenario and risk modeling of natural gas stations. In this approach, a FMEA is used for hazard analysis while a Bow-tie diagram and Bayesian network are employed to model the worst-case accident scenario and to assess the risks. The results have indicated that the failure of the regulator system was the worst-case accident scenario with the human error as the most contributing factor. Thus, in risk management plan of natural gas stations, priority should be given to the most probable root events and main contribution factors, which have identified in the present study, in order to reduce the occurrence probability of the accident scenarios and thus alleviate the risks. Copyright © 2016 Elsevier B.V. All rights reserved.
Zhu, Yunhua; Frey, H Christopher
2006-12-01
Integrated gasification combined cycle (IGCC) technology is a promising alternative for clean generation of power and coproduction of chemicals from coal and other feedstocks. Advanced concepts for IGCC systems that incorporate state-of-the-art gas turbine systems, however, are not commercially demonstrated. Therefore, there is uncertainty regarding the future commercial-scale performance, emissions, and cost of such technologies. The Frame 7F gas turbine represents current state-of-practice, whereas the Frame 7H is the most recently introduced advanced commercial gas turbine. The objective of this study was to evaluate the risks and potential payoffs of IGCC technology based on different gas turbine combined cycle designs. Models of entrained-flow gasifier-based IGCC systems with Frame 7F (IGCC-7F) and 7H gas turbine combined cycles (IGCC-7H) were developed in ASPEN Plus. An uncertainty analysis was conducted. Gasifier carbon conversion and project cost uncertainty are identified as the most important uncertain inputs with respect to system performance and cost. The uncertainties in the difference of the efficiencies and costs for the two systems are characterized. Despite uncertainty, the IGCC-7H system is robustly preferred to the IGCC-7F system. Advances in gas turbine design will improve the performance, emissions, and cost of IGCC systems. The implications of this study for decision-making regarding technology selection, research planning, and plant operation are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishkov, A.; Akopova, Gretta; Evans, Meredydd
This article will compare the natural gas transmission systems in the U.S. and Russia and review experience with methane mitigation technologies in the two countries. Russia and the United States (U.S.) are the world's largest consumers and producers of natural gas, and consequently, have some of the largest natural gas infrastructure. This paper compares the natural gas transmission systems in Russia and the U.S., their methane emissions and experiences in implementing methane mitigation technologies. Given the scale of the two systems, many international oil and natural gas companies have expressed interest in better understanding the methane emission volumes and trendsmore » as well as the methane mitigation options. This paper compares the two transmission systems and documents experiences in Russia and the U.S. in implementing technologies and programs for methane mitigation. The systems are inherently different. For instance, while the U.S. natural gas transmission system is represented by many companies, which operate pipelines with various characteristics, in Russia predominately one company, Gazprom, operates the gas transmission system. However, companies in both countries found that reducing methane emissions can be feasible and profitable. Examples of technologies in use include replacing wet seals with dry seals, implementing Directed Inspection and Maintenance (DI&M) programs, performing pipeline pump-down, applying composite wrap for non-leaking pipeline defects and installing low-bleed pneumatics. The research methodology for this paper involved a review of information on methane emissions trends and mitigation measures, analytical and statistical data collection; accumulation and analysis of operational data on compressor seals and other emission sources; and analysis of technologies used in both countries to mitigate methane emissions in the transmission sector. Operators of natural gas transmission systems have many options to reduce natural gas losses. Depending on the value of gas, simple, low-cost measures, such as adjusting leaking equipment components, or larger-scale measures, such as installing dry seals on compressors, can be applied.« less
Closed Cycle Engine Program Used in Solar Dynamic Power Testing Effort
NASA Technical Reports Server (NTRS)
Ensworth, Clint B., III; McKissock, David B.
1998-01-01
NASA Lewis Research Center is testing the world's first integrated solar dynamic power system in a simulated space environment. This system converts solar thermal energy into electrical energy by using a closed-cycle gas turbine and alternator. A NASA-developed analysis code called the Closed Cycle Engine Program (CCEP) has been used for both pretest predictions and post-test analysis of system performance. The solar dynamic power system has a reflective concentrator that focuses solar thermal energy into a cavity receiver. The receiver is a heat exchanger that transfers the thermal power to a working fluid, an inert gas mixture of helium and xenon. The receiver also uses a phase-change material to store the thermal energy so that the system can continue producing power when there is no solar input power, such as when an Earth-orbiting satellite is in eclipse. The system uses a recuperated closed Brayton cycle to convert thermal power to mechanical power. Heated gas from the receiver expands through a turbine that turns an alternator and a compressor. The system also includes a gas cooler and a radiator, which reject waste cycle heat, and a recuperator, a gas-to-gas heat exchanger that improves cycle efficiency by recovering thermal energy.
NASA Astrophysics Data System (ADS)
Welaya, Yousri M. A.; Mosleh, M.; Ammar, Nader R.
2013-12-01
Strong restrictions on emissions from marine power plants (particularly SOx, NOx) will probably be adopted in the near future. In this paper, a combined solid oxide fuel cell (SOFC) and gas turbine fuelled by natural gas is proposed as an attractive option to limit the environmental impact of the marine sector. It includes a study of a heatrecovery system for 18 MW SOFC fuelled by natural gas, to provide the electric power demand onboard commercial vessels. Feasible heat-recovery systems are investigated, taking into account different operating conditions of the combined system. Two types of SOFC are considered, tubular and planar SOFCs, operated with either natural gas or hydrogen fuels. This paper includes a detailed thermodynamic analysis for the combined system. Mass and energy balances are performed, not only for the whole plant but also for each individual component, in order to evaluate the thermal efficiency of the combined cycle. In addition, the effect of using natural gas as a fuel on the fuel cell voltage and performance is investigated. It is found that a high overall efficiency approaching 70% may be achieved with an optimum configuration using SOFC system under pressure. The hybrid system would also reduce emissions, fuel consumption, and improve the total system efficiency.
40 CFR 86.1511 - Exhaust gas analysis system.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test...
Seal Related Development Activities at EG/G
NASA Technical Reports Server (NTRS)
Greiner, Harold F.
1991-01-01
Seal related development activities including modeling, analysis, and performance testing are described for several current seal related projects. Among the current seal related projects are the following: high pressure gas sealing systems for turbomachinery; brush seals for gas path sealing in gas turbines; and tribological material evaluation for wear surfaces in sealing systems.
76 FR 16728 - Announcement of the American Petroleum Institute's Standards Activities
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-25
... voluntary standards for equipment, materials, operations, and processes for the petroleum and natural gas... Techniques for Designing and/or Optimizing Gas-lift Wells and Systems, 1st Ed. RP 13K, Chemical Analysis of... Q2, Quality Management Systems for Service Supply Organizations for the Petroleum and Natural Gas...
Thermal Analysis of Thermal Protection System of Test Launch Vehicle
NASA Astrophysics Data System (ADS)
Kim, Jongmin
2017-10-01
In this paper, a thermal analysis of the thermal protection system (TPS) of test launch vehicle (TLV) is explained. TLV is heated during the flight due to engine exhaust plume gas by thermal radiation and a TPS is needed to protect the vehicle from the heating. The thermal analysis of the TPS is conducted to predict the heat flux from plume gas and temperature of the TPS during the flight. To simplify the thermal analysis, plume gas radiation and radiative properties are assumed to be surface radiation and constants, respectively. Thermal conductivity, emissivity and absorptivity of the TPS material are measured. Proper plume conditions are determined from the preliminary analysis and then the heat flux and temperature of the TPS are calculated.
NASA Astrophysics Data System (ADS)
Yoo, Yeon-Jong
The purpose of this study is to investigate the performance and stability of the gas-injection enhanced natural circulation in heavy-liquid-metal-cooled systems. The target system is STAR-LM, which is a 400-MWt-class advanced lead-cooled fast reactor under development by Argonne National Laboratory and Oregon State University. The primary loop of STAR-LM relies on natural circulation to eliminate main circulation pumps for enhancement of passive safety. To significantly increase the natural circulation flow rate for the incorporation of potential future power uprates, the injection of noncondensable gas into the coolant above the core is envisioned ("gas lift pump"). Reliance upon gas-injection enhanced natural circulation raises the concern of flow instability due to the relatively high temperature change in the reactor core and the two-phase flow condition in the riser. For this study, the one-dimensional flow field equations were applied to each flow section and the mixture models of two-phase flow, i.e., both the homogeneous and drift-flux equilibrium models were used in the two-phase region of the riser. For the stability analysis, the linear perturbation technique based on the frequency-domain approach was used by employing the Nyquist stability criterion and a numerical root search method. It has been shown that the thermal power of the STAR-LM natural circulation system could be increased from 400 up to 1152 MW with gas injection under the limiting void fraction of 0.30 and limiting coolant velocity of 2.0 m/s from the steady-state performance analysis. As the result of the linear stability analysis, it has turned out that the STAR-LM natural circulation system would be stable even with gas injection. In addition, through the parametric study, it has been found that the thermal inertia effects of solid structures such as fuel rod and heat exchanger tube should be considered in the stability analysis model. The results of this study will be a part of the optimized stable design of the gas-injection enhanced natural circulation of STAR-LM with substantially improved power level and economical competitiveness. Furthermore, combined with the parametric study, this research could contribute a guideline for the design of other similar heavy-liquid-metal-cooled natural circulation systems with gas injection.
Analysis of thermodynamics of two-fuel power unit integrated with a carbon dioxide separation plant
NASA Astrophysics Data System (ADS)
Kotowicz, Janusz; Bartela, Łukasz; Mikosz, Dorota
2014-12-01
The article presents the results of thermodynamic analysis of the supercritical coal-fired power plant with gross electrical output of 900 MW and a pulverized coal boiler. This unit is integrated with the absorption-based CO2 separation installation. The heat required for carrying out the desorption process, is supplied by the system with the gas turbine. Analyses were performed for two variants of the system. In the first case, in addition to the gas turbine there is an evaporator powered by exhaust gases from the gas turbine expander. The second expanded variant assumes the application of gas turbine combined cycle with heat recovery steam generator and backpressure steam turbine. The way of determining the efficiency of electricity generation and other defined indicators to assess the energy performance of the test block was showed. The size of the gas turbine system was chosen because of the need for heat for the desorption unit, taking the value of the heat demand 4 MJ/kg CO2. The analysis results obtained for the both variants of the installation with integrated CO2 separation plant were compared with the results of the analysis of the block where the separation is not conducted.
BASIN-CENTERED GAS SYSTEMS OF THE U.S.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marin A. Popov; Vito F. Nuccio; Thaddeus S. Dyman
2000-11-01
The USGS is re-evaluating the resource potential of basin-centered gas accumulations in the U.S. because of changing perceptions of the geology of these accumulations, and the availability of new data since the USGS 1995 National Assessment of United States oil and gas resources (Gautier et al., 1996). To attain these objectives, this project used knowledge of basin-centered gas systems and procedures such as stratigraphic analysis, organic geochemistry, modeling of basin thermal dynamics, reservoir characterization, and pressure analysis. This project proceeded in two phases which had the following objectives: Phase I (4/1998 through 5/1999): Identify and describe the geologic and geographicmore » distribution of potential basin-centered gas systems, and Phase II (6/1999 through 11/2000): For selected systems, estimate the location of those basin-centered gas resources that are likely to be produced over the next 30 years. In Phase I, we characterize thirty-three (33) potential basin-centered gas systems (or accumulations) based on information published in the literature or acquired from internal computerized well and reservoir data files. These newly defined potential accumulations vary from low to high risk and may or may not survive the rigorous geologic scrutiny leading towards full assessment by the USGS. For logistical reasons, not all basins received the level of detail desired or required.« less
Zang, Guiyan; Tejasvi, Sharma; Ratner, Albert; Lora, Electo Silva
2018-05-01
The Biomass Integrated Gasification Combined Cycle (BIGCC) power system is believed to potentially be a highly efficient way to utilize biomass to generate power. However, there is no comparative study of BIGCC systems that examines all the latest improvements for gasification agents, gas turbine combustion methods, and CO 2 Capture and Storage options. This study examines the impact of recent advancements on BIGCC performance through exergy analysis using Aspen Plus. Results show that the exergy efficiency of these systems is ranged from 22.3% to 37.1%. Furthermore, exergy analysis indicates that the gas turbine with external combustion has relatively high exergy efficiency, and Selexol CO 2 removal method has low exergy destruction. Moreover, the sensitivity analysis shows that the system exergy efficiency is more sensitive to the initial temperature and pressure ratio of the gas turbine, whereas has a relatively weak dependence on the initial temperature and initial pressure of the steam turbine. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeRosier, R.
1984-07-01
This volume of the report gives emission results from field tests of a crude-oil process heater burning a combination of oil and refinery gas. The heater had been modified by adding a system for injecting secondary air to reduce NOx emissions. One test was conducted with the staged air system (low NOx), and the other, without (baseline). Tests included continuous monitoring of flue gas emissions and source assessment sampling system (SASS) sampling of the flue gas with subsequent laboratory analysis of the samples utilizing gas chromatography (GC), infrared spectrometry (IR), gas chromatography/mass spectroscopy (GC/MS), and low resolution mass spectrometry (SSMS)more » for trace metals. LRMS analysis suggested the presence of eight compound categories in the organic emissions during the baseline test and four in the low-NOx test.« less
Forecasting of natural gas consumption with neural network and neuro fuzzy system
NASA Astrophysics Data System (ADS)
Kaynar, Oguz; Yilmaz, Isik; Demirkoparan, Ferhan
2010-05-01
The prediction of natural gas consumption is crucial for Turkey which follows foreign-dependent policy in point of providing natural gas and whose stock capacity is only 5% of internal total consumption. Prediction accuracy of demand is one of the elements which has an influence on sectored investments and agreements about obtaining natural gas, so on development of sector. In recent years, new techniques, such as artificial neural networks and fuzzy inference systems, have been widely used in natural gas consumption prediction in addition to classical time series analysis. In this study, weekly natural gas consumption of Turkey has been predicted by means of three different approaches. The first one is Autoregressive Integrated Moving Average (ARIMA), which is classical time series analysis method. The second approach is the Artificial Neural Network. Two different ANN models, which are Multi Layer Perceptron (MLP) and Radial Basis Function Network (RBFN), are employed to predict natural gas consumption. The last is Adaptive Neuro Fuzzy Inference System (ANFIS), which combines ANN and Fuzzy Inference System. Different prediction models have been constructed and one model, which has the best forecasting performance, is determined for each method. Then predictions are made by using these models and results are compared. Keywords: ANN, ANFIS, ARIMA, Natural Gas, Forecasting
NASA Astrophysics Data System (ADS)
Czaja, Daniel; Chmielnak, Tadeusz; Lepszy, Sebastian
2014-12-01
A thermodynamic and economic analysis of a GT10 gas turbine integrated with the air bottoming cycle is presented. The results are compared to commercially available combined cycle power plants based on the same gas turbine. The systems under analysis have a better chance of competing with steam bottoming cycle configurations in a small range of the power output capacity. The aim of the calculations is to determine the final cost of electricity generated by the gas turbine air bottoming cycle based on a 25 MW GT10 gas turbine with the exhaust gas mass flow rate of about 80 kg/s. The article shows the results of thermodynamic optimization of the selection of the technological structure of gas turbine air bottoming cycle and of a comparative economic analysis. Quantities are determined that have a decisive impact on the considered units profitability and competitiveness compared to the popular technology based on the steam bottoming cycle. The ultimate quantity that can be compared in the calculations is the cost of 1 MWh of electricity. It should be noted that the systems analyzed herein are power plants where electricity is the only generated product. The performed calculations do not take account of any other (potential) revenues from the sale of energy origin certificates. Keywords: Gas turbine air bottoming cycle, Air bottoming cycle, Gas turbine, GT10
A programmable palm-size gas analyzer for use in micro-autonomous systems
NASA Astrophysics Data System (ADS)
Gordenker, Robert J. M.; Wise, Kensall D.
2012-06-01
Gas analysis systems having small size, low power, and high selectivity are badly needed for defense (detection of explosives and chemical warfare agents), homeland security, health care, and environmental applications. This paper presents a palm-size gas chromatography system having analysis times of 5-50sec, detection limits less than 1ppb, and an average power dissipation less than one watt. It uses no consumables. The three-chip fluidic system consists of a preconcentrator, a 25cm-3m separation column, and a chemi-resistive detector and is supported by a microcomputer and circuitry for programmable temperature control. The entire system, including the mini-pump and battery, occupies less than 200cc and is configured for use on autonomous robotic vehicles.
NASA Technical Reports Server (NTRS)
Lane, R. L.
1981-01-01
Six growth runs used the Kayex-Hameo Automatic Games Logic (AGILE) computer based system for growth from larger melts in the Mod CG2000. The implementation of the melt pyrometer sensor allowed for dip temperature monitoring and usage by the operator/AGILE system. Use of AGILE during recharge operations was successfully evaluated. The tendency of crystals to lose cylindrical shape (spiraling) continued to be a problem. The hygrometer was added to the Furnace Gas Analysis System and used on several growth runs. The gas chromatograph, including the integrator, was also used for more accurate carbon monoxide concentration measurements. Efforts continued for completing the automation of the total Gas Analysis System. An economic analysis, based on revised achievable straight growth rate, is presented.
Thermal analysis elements of liquefied gas storage tanks
NASA Astrophysics Data System (ADS)
Yanvarev, I. A.; Krupnikov, A. V.
2017-08-01
Tasks of solving energy and resource efficient usage problems, both for oil producing companies and for companies extracting and transporting natural gas, are associated with liquefied petroleum gas technology development. Improving the operation efficiency of liquefied products storages provides for conducting structural, functional, and appropriate thermal analysis of tank parks in the general case as complex dynamic thermal systems.
Reduced viscosity interpreted for fluid/gas mixtures
NASA Technical Reports Server (NTRS)
Lewis, D. H.
1981-01-01
Analysis predicts decrease in fluid viscosity by comparing pressure profile of fluid/gas mixture with that of power-law fluid. Fluid is taken to be viscous, non-Newtonian, and incompressible; the gas to be ideal; the flow to be inertia-free, isothermal, and one dimensional. Analysis assists in design of flow systems for petroleum, coal, polymers, and other materials.
Ammonia Analysis by Gas Chromatograph/Infrared Detector (GC/IRD)
NASA Technical Reports Server (NTRS)
Scott, Joseph P.; Whitfield, Steve W.
2003-01-01
Methods are being developed at Marshall Space Flight Center's Toxicity Lab on a CG/IRD System that will be used to detect ammonia in low part per million (ppm) levels. These methods will allow analysis of gas samples by syringe injections. The GC is equipped with a unique cryogenic-cooled inlet system that will enable our lab to make large injections of a gas sample. Although the initial focus of the work will be analysis of ammonia, this instrument could identify other compounds on a molecular level. If proper methods can be developed, the IRD could work as a powerful addition to our offgassing capabilities.
ENVIRONMENTAL APPLICATION OF GAS CHROMATOGRAPHY/ATOMIC EMISSION DETECTION
A gas chromatography/atomic emission detector (GC/AED) system has been evaluated for its applicability to environmental analysis. Detection limits, elemental response factors, and regression analysis data were determined for 58 semivolatile environmental contaminants. Detection l...
Sung, Jaeyoung
2007-07-01
We present an exact theoretical test of Jarzynski's equality (JE) for reversible volume-switching processes of an ideal gas system. The exact analysis shows that the prediction of JE for the free energy difference is the same as the work done on the gas system during the reversible process that is dependent on the shape of path of the reversible volume-switching process.
A Hybrid Stochastic-Neuro-Fuzzy Model-Based System for In-Flight Gas Turbine Engine Diagnostics
2001-04-05
Margin (ADM) and (ii) Fault Detection Margin (FDM). Key Words: ANFIS, Engine Health Monitoring , Gas Path Analysis, and Stochastic Analysis Adaptive Network...The paper illustrates the application of a hybrid Stochastic- Fuzzy -Inference Model-Based System (StoFIS) to fault diagnostics and prognostics for both...operational history monitored on-line by the engine health management (EHM) system. To capture the complex functional relationships between different
Hanson, M.L.; Tabor, C.D. Jr.
1961-12-01
A mass spectrometer for analyzing the components of a gas is designed which is capable of continuous automatic operation such as analysis of samples of process gas from a continuous production system where the gas content may be changing. (AEC)
Interface for the rapid analysis of liquid samples by accelerator mass spectrometry
Turteltaub, Kenneth; Ognibene, Ted; Thomas, Avi; Daley, Paul F; Salazar Quintero, Gary A; Bench, Graham
2014-02-04
An interface for the analysis of liquid sample having carbon content by an accelerator mass spectrometer including a wire, defects on the wire, a system for moving the wire, a droplet maker for producing droplets of the liquid sample and placing the droplets of the liquid sample on the wire in the defects, a system that converts the carbon content of the droplets of the liquid sample to carbon dioxide gas in a helium stream, and a gas-accepting ion source connected to the accelerator mass spectrometer that receives the carbon dioxide gas of the sample in a helium stream and introduces the carbon dioxide gas of the sample into the accelerator mass spectrometer.
NASA Astrophysics Data System (ADS)
Lian, Enyang; Ren, Yingyu; Han, Yunfeng; Liu, Weixin; Jin, Ningde; Zhao, Junying
2016-11-01
The multi-scale analysis is an important method for detecting nonlinear systems. In this study, we carry out experiments and measure the fluctuation signals from a rotating electric field conductance sensor with eight electrodes. We first use a recurrence plot to recognise flow patterns in vertical upward gas-liquid two-phase pipe flow from measured signals. Then we apply a multi-scale morphological analysis based on the first-order difference scatter plot to investigate the signals captured from the vertical upward gas-liquid two-phase flow loop test. We find that the invariant scaling exponent extracted from the multi-scale first-order difference scatter plot with the bisector of the second-fourth quadrant as the reference line is sensitive to the inhomogeneous distribution characteristics of the flow structure, and the variation trend of the exponent is helpful to understand the process of breakup and coalescence of the gas phase. In addition, we explore the dynamic mechanism influencing the inhomogeneous distribution of the gas phase in terms of adaptive optimal kernel time-frequency representation. The research indicates that the system energy is a factor influencing the distribution of the gas phase and the multi-scale morphological analysis based on the first-order difference scatter plot is an effective method for indicating the inhomogeneous distribution of the gas phase in gas-liquid two-phase flow.
[Cost-benefit analysis to substituting natural gas for coal project in large Chinese cities].
Mao, Xianqiang; Peng, Yingdeng; Guo, Xiurui
2002-09-01
Since China's large cities were faced with serious coal-smoke pollution with PM10 and SO2 as the main pollutants, natural gas is becoming one of the most attractive clean replacers of coal. To clarify the wide disputation and doubt on the rationality of burning natural gas instead of coal, cost-benefit analysis (CBA) of urban natural gas substitution projects in Beijing and Chongqing was done respectively, in which, the health benefit was carefully estimated with epidemical dose-response function as the main external benefit. The final result shows that in large cities with intensively concentrated population and economic activities, natural gas consumption as municipal civil energy has obvious priority in terms of large environmental benefit from reducing non-point and low-altitude air pollutant concentration. This paper finally recommends that market oriented system reform in natural gas production and retailing system should be considered.
NASA Astrophysics Data System (ADS)
Bao, Cheng; Cai, Ningsheng; Croiset, Eric
2011-10-01
Following our integrated hierarchical modeling framework of natural gas internal reforming solid oxide fuel cell (IRSOFC), this paper firstly introduces the model libraries of main balancing units, including some state-of-the-art achievements and our specific work. Based on gPROMS programming code, flexible configuration and modular design are fully realized by specifying graphically all unit models in each level. Via comparison with the steady-state experimental data of Siemens-Westinghouse demonstration system, the in-house multi-level SOFC-gas turbine (GT) simulation platform is validated to be more accurate than the advanced power system analysis tool (APSAT). Moreover, some units of the demonstration system are designed reversely for analysis of a typically part-load transient process. The framework of distributed and dynamic modeling in most of units is significant for the development of control strategies in the future.
Flow-based ammonia gas analyzer with an open channel scrubber for indoor environments.
Ohira, Shin-Ichi; Heima, Minako; Yamasaki, Takayuki; Tanaka, Toshinori; Koga, Tomoko; Toda, Kei
2013-11-15
A robust and fully automated indoor ammonia gas monitoring system with an open channel scrubber (OCS) was developed. The sample gas channel dimensions, hydrophilic surface treatment to produce a thin absorbing solution layer, and solution flow rate of the OCS were optimized to connect the OCS as in-line gas collector and avoid sample humidity effects. The OCS effluent containing absorbed ammonia in sample gas was injected into a derivatization solution flow. Derivatization was achieved with o-phthalaldehyde and sulfite in pH 11 buffer solution. The product, 1-sulfonateisoindole, is detected with a home-made fluorescence detector. The limit of detection of the analyzer based on three times the standard deviation of baseline noise was 0.9 ppbv. Sample gas could be analyzed 40 times per hour. Furthermore, relative humidity of up to 90% did not interfere considerably with the analyzer. Interference from amines was not observed. The developed gas analysis system was calibrated using a solution-based method. The system was used to analyze ammonia in an indoor environment along with an off-site method, traditional impinger gas collection followed by ion chromatographic analysis, for comparison. The results obtained using both methods agreed well. Therefore, the developed system can perform on-site monitoring of ammonia in indoor environments with improved time resolution compared with that of other methods. Crown Copyright © 2013 Published by Elsevier B.V. All rights reserved.
Coordinated Scheduling for Interdependent Electric Power and Natural Gas Infrastructures
Zlotnik, Anatoly; Roald, Line; Backhaus, Scott; ...
2016-03-24
The extensive installation of gas-fired power plants in many parts of the world has led electric systems to depend heavily on reliable gas supplies. The use of gas-fired generators for peak load and reserve provision causes high intraday variability in withdrawals from high-pressure gas transmission systems. Such variability can lead to gas price fluctuations and supply disruptions that affect electric generator dispatch, electricity prices, and threaten the security of power systems and gas pipelines. These infrastructures function on vastly different spatio-temporal scales, which prevents current practices for separate operations and market clearing from being coordinated. Here in this article, wemore » apply new techniques for control of dynamic gas flows on pipeline networks to examine day-ahead scheduling of electric generator dispatch and gas compressor operation for different levels of integration, spanning from separate forecasting, and simulation to combined optimal control. We formulate multiple coordination scenarios and develop tractable physically accurate computational implementations. These scenarios are compared using an integrated model of test networks for power and gas systems with 24 nodes and 24 pipes, respectively, which are coupled through gas-fired generators. The analysis quantifies the economic efficiency and security benefits of gas-electric coordination and dynamic gas system operation.« less
NASA Astrophysics Data System (ADS)
Dong, Keqiang; Fan, Jie; Gao, You
2015-12-01
Identifying the mutual interaction is a crucial problem that facilitates the understanding of emerging structures in complex system. We here focus on aero-engine dynamic as an example of complex system. By applying the detrended cross-correlation analysis (DCCA) coefficient method to aero-engine gas path system, we find that the low-spool rotor speed (N1) and high-spool rotor speed (N2) fluctuation series exhibit cross-correlation characteristic. Further, we employ detrended cross-correlation coefficient matrix and rooted tree to investigate the mutual interactions of other gas path variables. The results can infer that the exhaust gas temperature (EGT), N1, N2, fuel flow (WF) and engine pressure ratio (EPR) are main gas path parameters.
A CFD Analysis of Hydrogen Leakage During On-Pad Purge in the ORION/ARES I Shared Volume
NASA Technical Reports Server (NTRS)
Ajmani, Kumud; Edwards, Daryl A.
2011-01-01
A common open volume is created by the stacking of the Orion vehicle onto the Ares I Upper Stage. Called the Shared Volume, both vehicles contribute to its gas, fluid, and thermal environment. One of these environments is related to hazardous hydrogen gas. While both vehicles use inert purge gas to mitigate any hazardous gas buildup, there are concerns that hydrogen gas may still accumulate and that the Ares I Hazardous Gas Detection System will not be sufficient for monitoring the integrated volume. This Computational Fluid Dynamics (CFD) analysis has been performed to examine these topics. Results of the analysis conclude that the Ares I Hazardous Gas Detection System will be able to sample the vent effluent containing the highest hydrogen concentrations. A second conclusion is that hydrogen does not accumulate under the Orion Service Module (SM) avionics ring as diffusion and purge flow mixing sufficiently dilute the hydrogen to safe concentrations. Finally the hydrogen concentrations within the Orion SM engine nozzle may slightly exceed the 1 percent volume fraction when the entire worse case maximum full leak is directed vertically into the engine nozzle.
Harthcock, Colin; Jahanbekam, Abdolreza; Eskelsen, Jeremy R; Lee, David Y
2016-11-01
We describe an example of a piecewise gas chamber that can be customized to incorporate a low flux of gas-phase radicals with an existing surface analysis chamber for in situ and stepwise gas-surface interaction experiments without any constraint in orientation. The piecewise nature of this gas chamber provides complete angular freedom and easy alignment and does not require any modification of the existing surface analysis chamber. In addition, the entire gas-surface system is readily differentially pumped with the surface chamber kept under ultra-high-vacuum during the gas-surface measurements. This new design also allows not only straightforward reconstruction to accommodate the orientation of different surface chambers but also for the addition of other desired features, such as an additional pump to the current configuration. Stepwise interaction between atomic oxygen and a highly ordered pyrolytic graphite surface was chosen to test the effectiveness of this design, and the site-dependent O-atom chemisorption and clustering on the graphite surface were resolved by a scanning tunneling microscope in the nm-scale. X-ray photoelectron spectroscopy was used to further confirm the identity of the chemisorbed species on the graphite surface as oxygen.
Flow-rate independent gas-mixing system for drift chambers, using solenoid valves
NASA Astrophysics Data System (ADS)
Sugano, K.
1991-03-01
We describe an inexpensive system for mixing argon and ethane gas for drift chambers which was used for an experiment at Fermilab. This system is based on the idea of intermittent mixing of gases with fixed mixing flow rates. A dual-action pressure switch senses the pressure in a mixed gas reservoir tank and operates solenoid valves to control mixing action and regulate reservoir pressure. This system has the advantages that simple controls accurately regulate the mixing ratio and that the mixing ratio is nearly flow-rate independent without readjustments. We also report the results of the gas analysis of various samplings, and the reliability of the system in long-term running.
Operation and planning of coordinated natural gas and electricity infrastructures
NASA Astrophysics Data System (ADS)
Zhang, Xiaping
Natural gas is becoming rapidly the optimal choice for fueling new generating units in electric power system driven by abundant natural gas supplies and environmental regulations that are expected to cause coal-fired generation retirements. The growing reliance on natural gas as a dominant fuel for electricity generation throughout North America has brought the interaction between the natural gas and power grids into sharp focus. The primary concern and motivation of this research is to address the emerging interdependency issues faced by the electric power and natural gas industry. This thesis provides a comprehensive analysis of the interactions between the two systems regarding the short-term operation and long-term infrastructure planning. Natural gas and renewable energy appear complementary in many respects regarding fuel price and availability, environmental impact, resource distribution and dispatchability. In addition, demand response has also held the promise of making a significant contribution to enhance system operations by providing incentives to customers for a more flat load profile. We investigated the coordination between natural gas-fired generation and prevailing nontraditional resources including renewable energy, demand response so as to provide economical options for optimizing the short-term scheduling with the intense natural gas delivery constraints. As the amount and dispatch of gas-fired generation increases, the long-term interdependency issue is whether there is adequate pipeline capacity to provide sufficient gas to natural gas-fired generation during the entire planning horizon while it is widely used outside the power sector. This thesis developed a co-optimization planning model by incorporating the natural gas transportation system into the multi-year resource and transmission system planning problem. This consideration would provide a more comprehensive decision for the investment and accurate assessment for system adequacy and reliability. With the growing reliance on natural gas and widespread utilization of highly efficient combined heat and power (CHP), it is also questionable that whether the independent design of infrastructures can meet potential challenges of future energy supply. To address this issue, this thesis proposed an optimization framework for a sustainable multiple energy system expansion planning based on an energy hub model while considering the energy efficiency, emission and reliability performance. In addition, we introduced the probabilistic reliability evaluation and flow network analysis into the multiple energy system design in order to obtain an optimal and reliable network topology.
COMPARATIVE EVALUATION OF GC/MS (GAS CHROMATOGRAPHY/MASS SPECTROMETRY) DATA ANALYSIS PROCESSING
Mass spectra obtained by fused silica capillary gas chromatography/mass spectrometry/data system (GC/MS/DS) analysis of mixtures of organic chemicals adsorbed on Tenax GC cartridges was subjected to manual and automated interpretative techniques. Synthetic mixtures (85 chemicals ...
Advanced Multi-Effect Distillation System for Desalination Using Waste Heat fromGas Brayton Cycles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haihua Zhao; Per F. Peterson
2012-10-01
Generation IV high temperature reactor systems use closed gas Brayton Cycles to realize high thermal efficiency in the range of 40% to 60%. The waste heat is removed through coolers by water at substantially greater average temperature than in conventional Rankine steam cycles. This paper introduces an innovative Advanced Multi-Effect Distillation (AMED) design that can enable the production of substantial quantities of low-cost desalinated water using waste heat from closed gas Brayton cycles. A reference AMED design configuration, optimization models, and simplified economics analysis are presented. By using an AMED distillation system the waste heat from closed gas Brayton cyclesmore » can be fully utilized to desalinate brackish water and seawater without affecting the cycle thermal efficiency. Analysis shows that cogeneration of electricity and desalinated water can increase net revenues for several Brayton cycles while generating large quantities of potable water. The AMED combining with closed gas Brayton cycles could significantly improve the sustainability and economics of Generation IV high temperature reactors.« less
Design and Testing of Trace Contaminant Injection and Monitoring Systems
NASA Technical Reports Server (NTRS)
Broerman, Craig D.; Sweterlitsch, Jeff
2009-01-01
In support of the Carbon dioxide And Moisture Removal Amine Swing-bed (CAMRAS) testing, a contaminant injection system as well as a contaminant monitoring system has been developed by the Johnson Space Center Air Revitalization Systems (JSC-ARS) team. The contaminant injection system has been designed to provide trace level concentrations of contaminants generated by humans in a closed environment during space flight missions. The contaminant injection system continuously injects contaminants from three gas cylinders, two liquid reservoirs and three permeation ovens. The contaminant monitoring system has been designed to provide real time gas analysis with accurate flow, humidity and gas concentration measurements for collection during test. The contaminant monitoring system consists of an analytical real time gas analyzer, a carbon monoxide sensor, and an analyzer for ammonia and water vapor.
NASA Astrophysics Data System (ADS)
Plaza-Faverola, Andreia; Pecher, Ingo; Crutchley, Gareth; Barnes, Philip M.; Bünz, Stefan; Golding, Thomas; Klaeschen, Dirk; Papenberg, Cord; Bialas, Joerg
2014-02-01
Gas seepage from marine sediments has implications for understanding feedbacks between the global carbon reservoir, seabed ecology, and climate change. Although the relationship between hydrates, gas chimneys, and seafloor seepage is well established, the nature of fluid sources and plumbing mechanisms controlling fluid escape into the hydrate zone and up to the seafloor remain one of the least understood components of fluid migration systems. In this study, we present the analysis of new three-dimensional high-resolution seismic data acquired to investigate fluid migration systems sustaining active seafloor seepage at Omakere Ridge, on the Hikurangi subduction margin, New Zealand. The analysis reveals at high resolution, complex overprinting fault structures (i.e., protothrusts, normal faults from flexural extension, and shallow (<1 km) arrays of oblique shear structures) implicated in fluid migration within the gas hydrate stability zone in an area of 2 × 7 km. In addition to fluid migration systems sustaining seafloor seepage on both sides of a central thrust fault, the data show seismic evidence for subseafloor gas-rich fluid accumulation associated with proto-thrusts and extensional faults. In these latter systems fluid pressure dissipation through time has been favored, hindering the development of gas chimneys. We discuss the elements of the distinct fluid migration systems and the influence that a complex partitioning of stress may have on the evolution of fluid flow systems in active subduction margins.
Results of the GCMS Effluent Gas Analysis for the Brine Processing Test
NASA Technical Reports Server (NTRS)
Delzeit, Lance; Lee, Jeffrey; Flynn, Michael; Fisher, John; Shaw, Hali; Kawashima, Brian; Beeler, David; Harris, Linden
2015-01-01
The effluent gas for the Paragon Ionomer Water Processor (IWP), UMPQUA Ultrasonic Brine Dewatering System (UBDS), and the NASA Brine Evaporation Bag (BEB) were analyzed using Headspace GCMS Analysis in the recent AES FY14 Brine Processing Test. The results from the analysis describe the number and general chemical species of the chemicals produced. Comparisons were also made between the different chromatograms for each system, and an explanation of the differences in the results is reported.
An integrated knowledge system for the Space Shuttle hazardous gas detection system
NASA Technical Reports Server (NTRS)
Lo, Ching F.; Shi, George Z.; Bangasser, Carl; Fensky, Connie; Cegielski, Eric; Overbey, Glenn
1993-01-01
A computer-based integrated Knowledge-Based System, the Intelligent Hypertext Manual (IHM), was developed for the Space Shuttle Hazardous Gas Detection System (HGDS) at NASA Marshall Space Flight Center (MSFC). The IHM stores HGDS related knowledge and presents it in an interactive and intuitive manner. This manual is a combination of hypertext and an expert system which store experts' knowledge and experience in hazardous gas detection and analysis. The IHM's purpose is to provide HGDS personnel with the capabilities of: locating applicable documentation related to procedures, constraints, and previous fault histories; assisting in the training of personnel; enhancing the interpretation of real time data; and recognizing and identifying possible faults in the Space Shuttle sub-systems related to hazardous gas detection.
Aida, Mari; Iwai, Takahiro; Okamoto, Yuki; Kohno, Satoshi; Kakegawa, Ken; Miyahara, Hidekazu; Seto, Yasuo; Okino, Akitoshi
2017-01-01
We developed a dual plasma desorption/ionization system using two plasmas for the semi-invasive analysis of compounds on heat-sensitive substrates such as skin. The first plasma was used for the desorption of the surface compounds, whereas the second was used for the ionization of the desorbed compounds. Using the two plasmas, each process can be optimized individually. A successful analysis of phenyl salicylate and 2-isopropylpyridine was achieved using the developed system. Furthermore, we showed that it was possible to detect the mass signals derived from a sample even at a distance 50 times greater than the distance from the position at which the samples were detached. In addition, to increase the intensity of the mass signal, 0%–0.02% (v/v) of hydrogen gas was added to the base gas generated in the ionizing plasma. We found that by optimizing the gas flow rate through the addition of a small amount of hydrogen gas, it was possible to obtain the intensity of the mass signal that was 45–824 times greater than that obtained without the addition of hydrogen gas. PMID:29234573
NASA Technical Reports Server (NTRS)
Lavoie, R. C.
1974-01-01
Fundamantal concepts are developed which are required to optimize a gas chromatograph-mass spectrometer chemical analysis system suitable for use on an unmanned roving vehicle for Mars exploration. Prior efforts have developed simulation models for the chromatograph which were compared with data obtained from a test facility. Representation of binary systems by superposition was shown to be a first-order approximation and in certain cases large discrepencies were noted. This subtask has as its objective generation of additional binary data and analysis of the observed nonlinear effects.
An analytical approach of thermodynamic behavior in a gas target system on a medical cyclotron.
Jahangiri, Pouyan; Zacchia, Nicholas A; Buckley, Ken; Bénard, François; Schaffer, Paul; Martinez, D Mark; Hoehr, Cornelia
2016-01-01
An analytical model has been developed to study the thermo-mechanical behavior of gas targets used to produce medical isotopes, assuming that the system reaches steady-state. It is based on an integral analysis of the mass and energy balance of the gas-target system, the ideal gas law, and the deformation of the foil. The heat transfer coefficients for different target bodies and gases have been calculated. Excellent agreement is observed between experiments performed at TRIUMF's 13 MeV cyclotron and the model. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Shi, Wangying; Han, Minfang
2017-09-01
A hybrid power generation system integrating catalytic gasification, solid oxide fuel cell (SOFC), oxygen transfer membrane (OTM) and gas turbine (GT) is established and system energy analysis is performed. In this work, the catalytic gasifier uses steam, recycled anode off-gas and pure oxygen from OTM system to gasify coal, and heated by hot cathode off-gas at the same time. A zero-dimension SOFC model is applied and verified by fitting experimental data. Thermodynamic analysis is performed to investigate the integrated system performance, and system sensitivities on anode off-gas back flow ratio, SOFC fuel utilization, temperature and pressure are discussed. Main conclusions are as follows: (1) System overall electricity efficiency reaches 60.7%(HHV) while the gasifier operates at 700 °C and SOFC at 850 °C with system pressure at 3.04 bar; (2) oxygen enriched combustion simplify the carbon-dioxide capture process, which derives CO2 of 99.2% purity, but results in a penalty of 6.7% on system electricity efficiency; (3) with SOFC fuel utilization or temperature increasing, the power output of SOFC increases while GT power output decreases, and increasing system pressure can improve both the performance of SOFC and GT.
NASA Astrophysics Data System (ADS)
Koal, Philipp; Schilling, Rolf; Gerl, Georg; Pritsch, Karin; Munch, Jean Charles
2014-05-01
In order to achieve a reduction of greenhouse gas emissions, management practises need to be adapted by implementing sustainable land use. At first, reliable field data are required to assess the effect of different farming practises on greenhouse gas budgets. The conducted field experiment covers and compares two main aspects of agricultural management, namely an organic farming system and an integrated farming system, implementing additionally the effects of diverse tillage systems and fertilisation practises. Furthermore, the analysis of the alterable biological, physical and chemical soil properties enables a link between the impact of different management systems on greenhouse gas emissions and the monitored cycle of matter, especially the nitrogen cycle. Measurements were carried out on long-term field trials at the Research Farm Scheyern located in a Tertiary hilly landscape approximately 40 km north of Munich (South Germany). The long-term field trials of the organic and integrated farming system were started in 1992. Since then, parcels in a field (each around 0,2-0,4 ha) with a particular interior plot set-up have been conducted. So the 20 years impacts of different tillage and fertilisation practises on soil properties including trace gases were examined. Fluxes of CH4, N2O and CO2 are monitored since 2007 for the integrated farming system trial and since 2012 for the organic farming system trial using an automated system which consists of chambers (per point: 4 chambers, each covering 0,4 m2 area) with a motor-driven lid, an automated gas sampling unit, an on-line gas chromatographic analysis system, and a control and data logging unit (Flessa et al. 2002). Each chamber is sampled 3-4 times in 24 hours. The main outcomes are the analysis of temporal and spatial dynamics of greenhouse gas fluxes as influenced by management practice events (fertilisation and tillage) and weather effects (drying-rewetting, freezing-thawing, intense rainfall and dry periods) in both established systems and the creation of an impact study comparing the minimum tillage system with the conventional tillage system. Physical, chemical and biological soil properties (i.a. texture, mineral nitrogen and soil organic carbon) were monitored to aggregate the parameters and processes influencing the greenhouse gas fluxes. Moreover, to understand processes leading the greenhouse gas emissions, additional experiments under laboratory conditions (e.g. soil potential for trace gas formation) are included. Furthermore, with the comparison of the similar long-term field experiments (organic vs. integrated) more relevant data are ascertained to assess and calculate the global warming potential of different management and tillage systems.
Modular Analytical Multicomponent Analysis in Gas Sensor Aarrays
Chaiyboun, Ali; Traute, Rüdiger; Kiesewetter, Olaf; Ahlers, Simon; Müller, Gerhard; Doll, Theodor
2006-01-01
A multi-sensor system is a chemical sensor system which quantitatively and qualitatively records gases with a combination of cross-sensitive gas sensor arrays and pattern recognition software. This paper addresses the issue of data analysis for identification of gases in a gas sensor array. We introduce a software tool for gas sensor array configuration and simulation. It concerns thereby about a modular software package for the acquisition of data of different sensors. A signal evaluation algorithm referred to as matrix method was used specifically for the software tool. This matrix method computes the gas concentrations from the signals of a sensor array. The software tool was used for the simulation of an array of five sensors to determine gas concentration of CH4, NH3, H2, CO and C2H5OH. The results of the present simulated sensor array indicate that the software tool is capable of the following: (a) identify a gas independently of its concentration; (b) estimate the concentration of the gas, even if the system was not previously exposed to this concentration; (c) tell when a gas concentration exceeds a certain value. A gas sensor data base was build for the configuration of the software. With the data base one can create, generate and manage scenarios and source files for the simulation. With the gas sensor data base and the simulation software an on-line Web-based version was developed, with which the user can configure and simulate sensor arrays on-line.
A procedure is presented that uses a vacuum distillation/gas chromatography/mass spectrometry system for analysis of problematic matrices of volatile organic compounds. The procedure compensates for matrix effects and provides both analytical results and confidence intervals from...
Analysis of Energy Storage System with Distributed Hydrogen Production and Gas Turbine
NASA Astrophysics Data System (ADS)
Kotowicz, Janusz; Bartela, Łukasz; Dubiel-Jurgaś, Klaudia
2017-12-01
Paper presents the concept of energy storage system based on power-to-gas-to-power (P2G2P) technology. The system consists of a gas turbine co-firing hydrogen, which is supplied from a distributed electrolysis installations, powered by the wind farms located a short distance from the potential construction site of the gas turbine. In the paper the location of this type of investment was selected. As part of the analyses, the area of wind farms covered by the storage system and the share of the electricity production which is subjected storage has been changed. The dependence of the changed quantities on the potential of the hydrogen production and the operating time of the gas turbine was analyzed. Additionally, preliminary economic analyses of the proposed energy storage system were carried out.
Continuous analysis of nitrogen dioxide in gas streams of plants
NASA Technical Reports Server (NTRS)
Durkin, W. T.; Kispert, R. C.
1969-01-01
Analyzer and sampling system continuously monitors nitrogen dioxide concentrations in the feed and tail gas streams of a facility recovering nitric acid. The system, using a direct calorimetric approach, makes use of readily available equipment and is flexible and reliable in operation.
Unbalance response of a two spool gas turbine engine with squeeze film bearings
NASA Technical Reports Server (NTRS)
Gunter, E. J.; Barrett, L. E.; Li, D. F.
1981-01-01
This paper presents a dynamic analysis of a two-spool gas turbine helicopter engine incorporating intershaft rolling element bearings between the gas generator and power turbine rotors. The analysis includes the nonlinear effects of a squeeze film bearing incorporated on the gas generator rotor. The analysis includes critical speeds and forced response of the system and indicates that substantial dynamic loads may be imposed on the intershaft bearings and main bearing supports with an improperly designed squeeze film bearing. A comparison of theoretical and experimental gas generator rotor response is presented illustrating the nonlinear characteristics of the squeeze film bearing. It was found that large intershaft bearing forces may occur even though the engine is not operating at a resonant condition.
FASP, an analytic resource appraisal program for petroleum play analysis
Crovelli, R.A.; Balay, R.H.
1986-01-01
An analytic probabilistic methodology for resource appraisal of undiscovered oil and gas resources in play analysis is presented in a FORTRAN program termed FASP. This play-analysis methodology is a geostochastic system for petroleum resource appraisal in explored as well as frontier areas. An established geologic model considers both the uncertainty of the presence of the assessed hydrocarbon and its amount if present. The program FASP produces resource estimates of crude oil, nonassociated gas, dissolved gas, and gas for a geologic play in terms of probability distributions. The analytic method is based upon conditional probability theory and many laws of expectation and variance. ?? 1986.
Elsner, Dorothea; Fomin, Anette
2002-01-01
A biological testing system for the monitoring of stack gas condensates of municipal waste incinerators has been developed using Euglena gracilis as a test organism. The motility, velocity and cellular form of the organisms were the endpoints, calculated by an image analysis system. All endpoints showed statistically significant changes in a short time when organisms were exposed to samples collected during combustion situations with increased pollutant concentrations. The velocity of the organisms proved to be the most appropriate endpoint. A semi-continuous system with E. gracilis for monitoring stack gas condensate is proposed, which could result in an online system for testing stack gas condensates in the future.
Comparison of two gas chromatograph models and analysis of binary data
NASA Technical Reports Server (NTRS)
Keba, P. S.; Woodrow, P. T.
1972-01-01
The overall objective of the gas chromatograph system studies is to generate fundamental design criteria and techniques to be used in the optimum design of the system. The particular tasks currently being undertaken are the comparison of two mathematical models of the chromatograph and the analysis of binary system data. The predictions of two mathematical models, an equilibrium absorption model and a non-equilibrium absorption model exhibit the same weaknesses in their inability to predict chromatogram spreading for certain systems. The analysis of binary data using the equilibrium absorption model confirms that, for the systems considered, superposition of predicted single component behaviors is a first order representation of actual binary data. Composition effects produce non-idealities which limit the rigorous validity of superposition.
New mud gas monitoring system aboard D/V Chikyu
NASA Astrophysics Data System (ADS)
Kubo, Yusuke; Inagaki, Fumio; Eguchi, Nobuhisa; Igarashi, Chiaki
2013-04-01
Mud gas logging has been commonly used in oil industry and continental scientific drilling to detect mainly hydrocarbon gases from the reservoir formation. Quick analysis of the gas provides almost real-time information which is critical to evaluate the formation and, in particular, safety of drilling operation. Furthermore, mud gas monitoring complements the lack of core or fluid samples particularly in a deep hole, and strengthen interpretations of geophysical logs. In scientific ocean drilling, on the other hand, mud gas monitoring was unavailable in riserless drilling through the history of DSDP and ODP, until riser drilling was first carried out in 2009 by D/V Chikyu. In IODP Exp 319, GFZ installed the same system with that used in continental drilling aboard Chikyu. High methane concentrations are clearly correlated with increased wood content in the cuttings. The system installation was, however, temporary and gas separator was moved during the expedition for a technical reason. In 2011, new mud gas monitoring system was installed aboard Chikyu and was used for the first time in Exp 337. The gas separator was placed on a newly branched bypass mud flow line, and the gas sample was sent to analysis unit equipped with methane carbon isotope analyzer in addition to mass spectrometer and gas chromatograph. The data from the analytical instruments is converted to depth profiles by calculating the lag effects due to mud circulation. Exp 337 was carried out from July 26 to Sep 30, 2011, at offshore Shimokita peninsula, northeast Japan, targeting deep sub-seafloor biosphere in and around coal bed. Data from the hole C0020A, which was drilled to 2466 mbsf with riser drilling, provided insights into bio-geochemical process through the depth of the hole. In this presentation, we show the design of Chikyu's new mud gas monitoring system, with preliminary data from Exp 337.
Majors' Shift to Natural Gas, The
2001-01-01
The Majors' Shift to Natural Gas investigates the factors that have guided the United States' major energy producers' growth in U.S. natural gas production relative to oil production. The analysis draws heavily on financial and operating data from the Energy Information Administration's Financial Reporting System (FRS)
A Foreign Object Damage Event Detector Data Fusion System for Turbofan Engines
NASA Technical Reports Server (NTRS)
Turso, James A.; Litt, Jonathan S.
2004-01-01
A Data Fusion System designed to provide a reliable assessment of the occurrence of Foreign Object Damage (FOD) in a turbofan engine is presented. The FOD-event feature level fusion scheme combines knowledge of shifts in engine gas path performance obtained using a Kalman filter, with bearing accelerometer signal features extracted via wavelet analysis, to positively identify a FOD event. A fuzzy inference system provides basic probability assignments (bpa) based on features extracted from the gas path analysis and bearing accelerometers to a fusion algorithm based on the Dempster-Shafer-Yager Theory of Evidence. Details are provided on the wavelet transforms used to extract the foreign object strike features from the noisy data and on the Kalman filter-based gas path analysis. The system is demonstrated using a turbofan engine combined-effects model (CEM), providing both gas path and rotor dynamic structural response, and is suitable for rapid-prototyping of control and diagnostic systems. The fusion of the disparate data can provide significantly more reliable detection of a FOD event than the use of either method alone. The use of fuzzy inference techniques combined with Dempster-Shafer-Yager Theory of Evidence provides a theoretical justification for drawing conclusions based on imprecise or incomplete data.
Reliability Analysis of RSG-GAS Primary Cooling System to Support Aging Management Program
NASA Astrophysics Data System (ADS)
Deswandri; Subekti, M.; Sunaryo, Geni Rina
2018-02-01
Multipurpose Research Reactor G.A. Siwabessy (RSG-GAS) which has been operating since 1987 is one of the main facilities on supporting research, development and application of nuclear energy programs in BATAN. Until now, the RSG-GAS research reactor has been successfully operated safely and securely. However, because it has been operating for nearly 30 years, the structures, systems and components (SSCs) from the reactor would have started experiencing an aging phase. The process of aging certainly causes a decrease in reliability and safe performances of the reactor, therefore the aging management program is needed to resolve the issues. One of the programs in the aging management is to evaluate the safety and reliability of the system and also screening the critical components to be managed.One method that can be used for such purposes is the Fault Tree Analysis (FTA). In this papers FTA method is used to screening the critical components in the RSG-GAS Primary Cooling System. The evaluation results showed that the primary isolation valves are the basic events which are dominant against the system failure.
Supersonic Gas-Liquid Cleaning System
NASA Technical Reports Server (NTRS)
Kinney, Frank
1996-01-01
The Supersonic Gas-Liquid Cleaning System Research Project consisted mainly of a feasibility study, including theoretical and engineering analysis, of a proof-of-concept prototype of this particular cleaning system developed by NASA-KSC. The cleaning system utilizes gas-liquid supersonic nozzles to generate high impingement velocities at the surface of the device to be cleaned. The cleaning fluid being accelerated to these high velocities may consist of any solvent or liquid, including water. Compressed air or any inert gas is used to provide the conveying medium for the liquid, as well as substantially reduce the total amount of liquid needed to perform adequate surface cleaning and cleanliness verification. This type of aqueous cleaning system is considered to be an excellent way of conducting cleaning and cleanliness verification operations as replacements for the use of CFC 113 which must be discontinued by 1995. To utilize this particular cleaning system in various cleaning applications for both the Space Program and the commercial market, it is essential that the cleaning system, especially the supersonic nozzle, be characterized for such applications. This characterization consisted of performing theoretical and engineering analysis, identifying desirable modifications/extensions to the basic concept, evaluating effects of variations in operating parameters, and optimizing hardware design for specific applications.
Eckels, David E.; Hass, William J.
1989-05-30
A sample transport, sample introduction, and flame excitation system for spectrometric analysis of high temperature gas streams which eliminates degradation of the sample stream by condensation losses.
Advanced technology cogeneration system conceptual design study: Closed cycle gas turbines
NASA Technical Reports Server (NTRS)
Mock, E. A. T.; Daudet, H. C.
1983-01-01
The results of a three task study performed for the Department of Energy under the direction of the NASA Lewis Research Center are documented. The thermal and electrical energy requirements of three specific industrial plants were surveyed and cost records for the energies consumed were compiled. Preliminary coal fired atmospheric fluidized bed heated closed cycle gas turbine and steam turbine cogeneration system designs were developed for each industrial plant. Preliminary cost and return-on-equity values were calculated and the results compared. The best of the three sites was selected for more detailed design and evaluation of both closed cycle gas turbine and steam turbine cogeneration systems during Task II. Task III involved characterizing the industrial sector electrical and thermal loads for the 48 contiguous states, applying a family of closed cycle gas turbine and steam turbine cogeneration systems to these loads, and conducting a market penetration analysis of the closed cycle gas turbine cogeneration system.
Field Branches Quality System and Technical Procedures: This document describes general and specific procedures, methods and considerations to be used and observed when collecting soil gas samples for field screening or laboratory analysis.
NASA Astrophysics Data System (ADS)
Cheng, Xi; He, Li; Lu, Hongwei; Chen, Yizhong; Ren, Lixia
2016-09-01
A major concern associated with current shale-gas extraction is high consumption of water resources. However, decision-making problems regarding water consumption and shale-gas extraction have not yet been solved through systematic approaches. This study develops a new bilevel optimization problem based on goals at two different levels: minimization of water demands at the lower level and maximization of system benefit at the upper level. The model is used to solve a real-world case across Pennsylvania and West Virginia. Results show that surface water would be the largest contributor to gas production (with over 80.00% from 2015 to 2030) and groundwater occupies for the least proportion (with less than 2.00% from 2015 to 2030) in both districts over the planning span. Comparative analysis between the proposed model and conventional single-level models indicates that the bilevel model could provide coordinated schemes to comprehensively attain the goals from both water resources authorities and energy sectors. Sensitivity analysis shows that the change of water use of per unit gas production (WU) has significant effects upon system benefit, gas production and pollutants (i.e., barium, chloride and bromide) discharge, but not significantly changes water demands.
A dryer for rapid response on-line expired gas measurements.
Deno, N S; Kamon, E
1979-06-01
A dryer is described for use in on-line breath-by-breath gas analysis systems. The dryer continuously removes water vapor by condensation and controls the sample gas at 2 degrees C dew-point temperature or 5 Torr water vapor partial pressure. It is designed to operate at gas sampling flow rates from 0.5 to 1 1.min-1. The step-response time for the described system including a Beckman LB-2 CO2 analyzer, sampling tubing, and dryer is 120 ms at 1 l.min-1. The time required for gas samples to transport through the dryer is 105 ms at a gas sampling-flow rate of 1 l.min=1.
A large ultra-clean gas system with closed loop for the high-rate Outer Tracker at HERA-B
NASA Astrophysics Data System (ADS)
Hohlmann, Marcus
2003-12-01
The gas system for the Outer Tracker of the HERA-B experiment at DESY produces the desired counting gas mixture Ar/CF 4/CO 2 65:30:5 and circulates it through the detector at a flow rate of 20 m3/ h, i.e. ˜1 vol/ h. It controls flows and regulates pressures in all 26 OTR half-superlayers, purifies the gas upon return from the detector, and automatically performs a quantitative analysis of main and trace (O 2, N 2, H 2O) gas components for the common input and the outputs of all half-superlayers. The first running experience and the strategies employed during system construction to avoid any detector aging possibly induced by the gas system are discussed. The large system with major gas purification stations was constructed using only non-outgassing, "clean" materials and devices, such as stainless steel, PEEK, baked Viton, and metal bellows pumps. An epoxy glue was used extensively as a non-outgassing sealing material in applications with up to 100 bar pressure.
NASA Astrophysics Data System (ADS)
Guo, Zhiyang; Feng, Kai; Liu, Tianyu; Lyu, Peng; Zhang, Tao
2018-07-01
Highly nonlinear subsynchronous vibrations are the main causing factors of failure in gas foil bearing (GFB)-rotor systems. Thus, investigating the vibration generation mechanisms and the relationship between subsynchronous vibrations and GFBs is necessary to ensure the healthy operation of rotor systems. In this study, an integrated nonlinear dynamic model with the consideration of shaft motion, unsteady gas film, and deformations of foil structure is established to investigate the effect of gas film and foil structure on system subsynchronous response. One test rig of GFB-rotor system is developed for model comparison. High agreement is shown between the prediction and test data, especially in the frequency domain. The nonlinear dynamic response is analyzed using waterfall plots, operation deflection shapes, journal orbits, Poincaré maps, and fast Fourier transforms. The parameter studies reveal that subsynchronous vibrations are highly related to gas film and foil structure. Subsynchronous vibrations can be adjusted by parameters such as bump stiffness, nominal clearance, and static loads. Therefore, gas foil bearing parameters should be carefully adjusted by system manufacturers to achieve the best rotordynamic performance.
Fixture For Sampling Volatile Materials In Containers
NASA Technical Reports Server (NTRS)
Melton, Donald; Pratz, Earl Howard
1995-01-01
Fixture based on T-connector enables mass-spectrometric analysis of volatile contents of cylindrical containers without exposing contents to ambient conditions. Used to sample volatile contents of pressurized containers, contents of such enclosed processing systems as gas-phase reactors, gases in automotive emission systems, and gas in hostile environments.
Design of mini-multi-gas monitoring system based on IR absorption
NASA Astrophysics Data System (ADS)
Tan, Qiu-lin; Zhang, Wen-dong; Xue, Chen-yang; Xiong, Ji-jun; Ma, You-chun; Wen, Fen
2008-07-01
In this paper, a novel non-dispersive infrared ray (IR) gas detection system is described. Conventional devices typically include several primary components: a broadband source (usually an incandescent filament), a rotating chopper shutter, a narrow-band filter, a sample tube and a detector. But we mainly use the mini-multi-channel detector, electrical modulation means and mini-gas-cell structure. To solve the problems of gas accidents in coal mines, and for family safety that results from using gas, this new IR detection system with integration, miniaturization and non-moving parts has been developed. It is based on the principle that certain gases absorb infrared radiation at specific (and often unique) wavelengths. The infrared detection optics principle used in developing this system is mainly analyzed. The idea of multi-gas detection is introduced and guided through the analysis of the single-gas detection. Through researching the design of cell structure, a cell with integration and miniaturization has been devised. By taking a single-chip microcomputer (SCM) as intelligence handling, the functional block diagram of a gas detection system is designed with the analyzing and devising of its hardware and software system. The way of data transmission on a controller area network (CAN) bus and wireless data transmission mode is explained. This system has reached the technology requirement of lower power consumption, mini-volume, wide measure range, and is able to realize multi-gas detection.
Liu, S J; Tubino, M
1998-11-01
A flow-injection configuration based on a dual-phase gas-permeation system from a liquid donor to a gas acceptor stream with a thermistor flow-through detector is proposed for the direct analysis of the gas in the acceptor. This system was applied for the determination of carbon dioxide (in the form of carbonate) using the following chemical reaction: CO(2)(g)+2NH(3)(g)+H(2)O(g)=(NH(4))(2)CO(3)(s), with a linear response from 1x10(-3) to 50x10(-3) mol l(-1) of CO(3)(2-). Carbon dioxide was produced in the liquid donor and permeated into the gaseous acceptor stream of air/water vapor. The detection limit is 1x10(-3) mol l(-1) of carbonate, and a sampling frequency of 60 h(-1) is achieved with a relative standard deviation of 4.1% for replicate injections. The dual-phase gas-permeation flow-injection manifold, along with the membrane and phase separations, as well as the chemical reaction, provides enhanced selectivity when compared with the system employing a liquid acceptor stream, as serious interferents in this system, for instance, acetate and formate, among others, do not interfere in the proposed system.
Installation Restoration Program. Phase I. Records Search, Reese, AFB, Texas.
1984-06-01
engineering in flue - gas desulfurization plants, and corrosion asaessinnto of hazardous waste handling systems. Mr. Ellis is or has been an active participant...provean to evaluate lime- stones as wet scrubbers in flue gas desulfurisatios (VS) system. She vas task leader for the chemical ad physical analysis...11109163A-15 Debra L. lichmann PUBLIC&TIOUSIlEPOITS: lichmann, D.L., K.V. Luke, end J.C. Terry, " Flue Gas Desulfurization Chemistry Studies
NASA Technical Reports Server (NTRS)
Jones, Scott M.
2007-01-01
This document is intended as an introduction to the analysis of gas turbine engine cycles using the Numerical Propulsion System Simulation (NPSS) code. It is assumed that the analyst has a firm understanding of fluid flow, gas dynamics, thermodynamics, and turbomachinery theory. The purpose of this paper is to provide for the novice the information necessary to begin cycle analysis using NPSS. This paper and the annotated example serve as a starting point and by no means cover the entire range of information and experience necessary for engine performance simulation. NPSS syntax is presented but for a more detailed explanation of the code the user is referred to the NPSS User Guide and Reference document (ref. 1).
An Analysis for Capital Expenditure Decisions at a Naval Regional Medical Center.
1981-12-01
Service Equipment Review Committee 1. Portable defibrilator Computed tomographic scanner and cardioscope 2. ECG cart Automated blood cell counter 3. Gas...system sterilizer Gas system sterilizer 4. Automated blood cell Portable defibrilator and counter cardioscope 5. Computed tomographic ECG cart scanner...dictating and automated typing) systems. e. Filing equipment f. Automatic data processing equipment including data communications equipment. g
Portable gas chromatograph-mass spectrometer
Andresen, Brian D.; Eckels, Joel D.; Kimmons, James F.; Myers, David W.
1996-01-01
A gas chromatograph-mass spectrometer (GC-MS) for use as a field portable organic chemical analysis instrument. The GC-MS is designed to be contained in a standard size suitcase, weighs less than 70 pounds, and requires less than 600 watts of electrical power at peak power (all systems on). The GC-MS includes: a conduction heated, forced air cooled small bore capillary gas chromatograph, a small injector assembly, a self-contained ion/sorption pump vacuum system, a hydrogen supply, a dual computer system used to control the hardware and acquire spectrum data, and operational software used to control the pumping system and the gas chromatograph. This instrument incorporates a modified commercial quadrupole mass spectrometer to achieve the instrument sensitivity and mass resolution characteristic of laboratory bench top units.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-02-17
The Natural Gas Transmission and Distribution Model (NGTDM) is the component of the National Energy Modeling System (NEMS) that is used to represent the domestic natural gas transmission and distribution system. NEMS was developed in the Office of integrated Analysis and Forecasting of the Energy information Administration (EIA). NEMS is the third in a series of computer-based, midterm energy modeling systems used since 1974 by the EIA and its predecessor, the Federal Energy Administration, to analyze domestic energy-economy markets and develop projections. The NGTDM is the model within the NEMS that represents the transmission, distribution, and pricing of natural gas.more » The model also includes representations of the end-use demand for natural gas, the production of domestic natural gas, and the availability of natural gas traded on the international market based on information received from other NEMS models. The NGTDM determines the flow of natural gas in an aggregate, domestic pipeline network, connecting domestic and foreign supply regions with 12 demand regions. The methodology employed allows the analysis of impacts of regional capacity constraints in the interstate natural gas pipeline network and the identification of pipeline capacity expansion requirements. There is an explicit representation of core and noncore markets for natural gas transmission and distribution services, and the key components of pipeline tariffs are represented in a pricing algorithm. Natural gas pricing and flow patterns are derived by obtaining a market equilibrium across the three main elements of the natural gas market: the supply element, the demand element, and the transmission and distribution network that links them. The NGTDM consists of four modules: the Annual Flow Module, the Capacity F-expansion Module, the Pipeline Tariff Module, and the Distributor Tariff Module. A model abstract is provided in Appendix A.« less
The ELI Eco Logic International Inc. (Eco Logic) process thermally separates organics, then chemically reduces them in a hydrogen atmosphere, converting them to a reformed gas that consists of light hydrocarbons and water. A scrubber treats the reformed gas to remove hydrogen chl...
ECONOMIC GROWTH ANALYSIS SYSTEM: USER'S GUIDE
The two-volume report describes the development of, and provides information needed to operate, a prototype Economic Growth Analysis System (E-GAS) modeling system. The model will be used to project emissions inventories of volatile organic compounds (VOCs), oxides of nitrogen (...
ECONOMIC GROWTH ANALYSIS SYSTEM: REFERENCE MANUAL
The two-volume report describes the development of, and provides information needed to operate, a prototype Economic Growth Analysis System (E-GAS) modeling system. The model will be used to project emissions inventories of volatile organic compounds (VOCs), oxides of nitrogen (...
NASA Technical Reports Server (NTRS)
Anderson, R. C.; Summers, R. L.
1981-01-01
An integrated gas analysis system designed to operate in automatic, semiautomatic, and manual modes from a remote control panel is described. The system measures the carbon monoxide, oxygen, water vapor, total hydrocarbons, carbon dioxide, and oxides of nitrogen. A pull through design provides increased reliability and eliminates the need for manual flow rate adjustment and pressure correction. The system contains two microprocessors to range the analyzers, calibrate the system, process the raw data to units of concentration, and provides information to the facility research computer and to the operator through terminal and the control panels. After initial setup, the system operates for several hours without significant operator attention.
NASA Astrophysics Data System (ADS)
Golik, V. V.; Zemenkova, M. Yu; Seroshtanov, I. V.; Begalko, Z. V.
2018-05-01
The paper presents the results of the analysis of statistical indicators of energy and resource consumption in oil and gas transportation by the example of one of the regions of Russia. The article analyzes engineering characteristics of compressor station drives. Official statistical bulletins on the fuel and energy resources of the region in the pipeline oil and gas transportation system were used as the initial data.
Thermodynamic and heat transfer analysis of LNG energy recovery for power production
NASA Astrophysics Data System (ADS)
Franco, A.; Casarosa, C.
2014-11-01
An important option to transport the gas is to convert it into liquid natural gas (LNG) and convey it using insulated LNG tankers. At receiving terminals, the LNG is offloaded into storage tanks and then pumped at the required pressure and vaporized for final transmission to the pipeline. The LNG production process consumes a considerable amount of energy, while the cold availability, as also known as cold energy, has been stored in LNG. At a receiving terminal, LNG needs to be evaporated into gas at environmental temperature before fed into the gas distribution system. Seawater is commonly used for the regasification process of the LNG. In the present paper, after a general analysis of the perspectives of the various thermodynamic schemes proposed for power production from the regasification, a detailed analysis of enhanced direct expansion system is carried out in order to identify the upper level of the energy that can be recovered. The analysis outlines that power production typical of optimized ORC plant configurations (120 kJ/kg) can be obtained with direct expansion solutions.
Analysis of a system modelling the motion of a piston in a viscous gas
NASA Astrophysics Data System (ADS)
Maity, Debayan; Takahashi, Takéo; Tucsnak, Marius
2017-09-01
We study a free boundary problem modelling the motion of a piston in a viscous gas. The gas-piston system fills a cylinder with fixed extremities, which possibly allow gas from the exterior to penetrate inside the cylinder. The gas is modeled by the 1D compressible Navier-Stokes system and the piston motion is described by the second Newton's law. We prove the existence and uniqueness of global in time strong solutions. The main novelty brought in by our results is that they include the case of nonhomogeneous boundary conditions which, as far as we know, have not been studied in this context. Moreover, even for homogeneous boundary conditions, our results require less regularity of the initial data than those obtained in previous works.
NASA Technical Reports Server (NTRS)
Williams, R. J.; Mullins, O.
1981-01-01
Details are given for the construction and operation of a 101.3 KN/sq meter (1 atmosphere) redox control system. A solid ceramic oxygen electrolyte cell is used to monitor the oxygen fugacity in the furnace. The system consists of a vertical quench gas mixing furnace with heads designed for mounting the electrolyte cell and with facilities for inserting and removing the samples, a simplified version of a gas mixing apparatus, and devices for experiments under controlled rates of change of temperature. A thermogravimetric analysis system employing these techniques of redox control and measurement is also described. The calibration and maintenance of the system are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiskoot, R.J.J.
Accurate and reliable sampling systems are imperative when confirming natural gas' commercial value. Buyers and sellers need accurate hydrocarbon-composition information to conduct fair sale transactions. Because of poor sample extraction, preparation or analysis can invalidate the sale, more attention should be directed toward improving representative sampling. Consider all sampling components, i.e., gas types, line pressure and temperature, equipment maintenance and service needs, etc. The paper discusses gas sampling, design considerations (location, probe type, extraction devices, controller, and receivers), operating requirements, and system integration.
Tracer gas studies were conducted around four model houses in a wind tunnel, and around one house in the field, to quantify re-entrainment and dispersion of exhaust gases released from residential indoor radon reduction systems. Re-entrainment tests in the field suggest that acti...
Preparation of water and ice samples for 39Ar dating by atom trap trace analysis (ATTA)
NASA Astrophysics Data System (ADS)
Schwefel, R.; Reichel, T.; Aeschbach-Hertig, W.; Wagenbach, D.
2012-04-01
Atom trap trace analysis (ATTA) is a new and promising method to measure very rare noble gas radioisotopes in the environment. The applicability of this method for the dating of very old groundwater with 81Kr has already been demonstrated [1]. Recent developments now show its feasibility also for the analysis of 39Ar [2,3], which is an ideal dating tracer for the age range between 50 and 1000 years. This range is of interest in the fields of hydro(geo)logy, oceanography, and glaciology. We present preparation (gas extraction and Ar separation) methods for groundwater and ice samples for later analysis by the ATTA technique. For groundwater, the sample size is less of a limitation than for applications in oceanography or glaciology. Large samples are furthermore needed to enable a comparison with the classical method of 39Ar detection by low-level counting. Therefore, a system was built that enables gas extraction from several thousand liters of water using membrane contactors. This system provides degassing efficiencies greater than 80 % and has successfully been tested in the field. Gas samples are further processed to separate a pure Ar fraction by a gas-chromatographic method based on Li-LSX zeolite as selective adsorber material at very low temperatures. The gas separation achieved by this system is controlled by a quadrupole mass spectrometer. It has successfully been tested and used on real samples. The separation efficiency was found to be strongly temperature dependent in the range of -118 to -130 °C. Since ATTA should enable the analysis of 39Ar on samples of less than 1 ccSTP of Ar (corresponding to about 100 ml of air, 2.5 l of water or 1 kg of ice), a method to separate Ar from small amounts of gas was developed. Titanium sponge was found to absorb 60 ccSTP of reactive gases per g of the getter material with reasonably high absorption rates at high operating temperatures (~ 800 ° C). Good separation (higher than 92 % Ar content in residual gas) was achieved by this gettering process. The other main remaining component is H2, which can be further reduced by operating the Ti getter at lower temperature. Furthermore, a system was designed to degas ice samples, followed by Ar separation by gettering. Ice from an alpine glacier was successfully processed on this system.
Martins, Marcelo Ramos; Schleder, Adriana Miralles; Droguett, Enrique López
2014-12-01
This article presents an iterative six-step risk analysis methodology based on hybrid Bayesian networks (BNs). In typical risk analysis, systems are usually modeled as discrete and Boolean variables with constant failure rates via fault trees. Nevertheless, in many cases, it is not possible to perform an efficient analysis using only discrete and Boolean variables. The approach put forward by the proposed methodology makes use of BNs and incorporates recent developments that facilitate the use of continuous variables whose values may have any probability distributions. Thus, this approach makes the methodology particularly useful in cases where the available data for quantification of hazardous events probabilities are scarce or nonexistent, there is dependence among events, or when nonbinary events are involved. The methodology is applied to the risk analysis of a regasification system of liquefied natural gas (LNG) on board an FSRU (floating, storage, and regasification unit). LNG is becoming an important energy source option and the world's capacity to produce LNG is surging. Large reserves of natural gas exist worldwide, particularly in areas where the resources exceed the demand. Thus, this natural gas is liquefied for shipping and the storage and regasification process usually occurs at onshore plants. However, a new option for LNG storage and regasification has been proposed: the FSRU. As very few FSRUs have been put into operation, relevant failure data on FSRU systems are scarce. The results show the usefulness of the proposed methodology for cases where the risk analysis must be performed under considerable uncertainty. © 2014 Society for Risk Analysis.
NASA Astrophysics Data System (ADS)
Koal, Philipp; Schilling, Rolf; Gerl, Georg; Pritsch, Karin; Munch, Jean Charles
2015-04-01
In order to achieve a reduction of greenhouse gas emissions, modern agronomic management practices need to be established. Therefore, to assess the effect of different farming practices on greenhouse gas emissions, reliable data are required. The experiment covers and compares two main aspects of agricultural management for a better implementation of sustainable land use. The focus lies on the determination and interpretation of greenhouse gas emissions, however, regarding in each case a different agricultural management system, namely an organic farming system and an integrated farming system where the effect of diverse tillage systems and fertilisation practices are observed. In addition, with analysis of the alterable biological, physical and chemical soil properties a link between the impact of different management systems on greenhouse gas emissions and the observed cycle of matter in the soil, especially the nitrogen and carbon cycle, will be enabled. Measurements have been carried out on long-term field trials at the Research Farm Scheyern located in a Tertiary hilly landscape approximately 40 km north of Munich (South Germany). The long-term field trials of the organic and integrated farming system were started in 1992. Since then parcels of land (each around 0.2-0.4 ha) with a particular interior plot set-up have been conducted with the same crop rotation, tillage and fertilisation practice referring to organic and integrated farming management. Thus, the management impacts on the soil of more than 20 years are being examined. Fluxes of CH4, N2O and CO2 have been monitored since 2007 for the integrated farming system trial and since 2012 for the organic farming system trial using an automated system which consists of chambers (0.4 m2 area) with a motor-driven lid, an automated gas sampling unit, an on-line gas chromatographic analysis system, and a control and data logging unit. Precipitation and temperature data have been observed for each experimental field to include weather effects. The main outcomes are the analysis of temporal and spatial dynamics of greenhouse gas emissions influenced by management practice events (i.a. fertilisation, crop incorporation and tillage) and weather effects (drying-rewetting, freezing-thawing, intense rainfall and dry periods) and the creation of impact studies comparing the farming systems (organic vs integrated) and the management practices (minimum tillage vs conventional tillage; high vs low fertilisation). Physical, chemical and biological soil properties (i.a. texture, mineral nitrogen, soil organic carbon and microbial biomass) have been examined in short time intervals to aggregate the parameters and processes influencing the greenhouse gas emissions and to build a linkage between soil organic matter and greenhouse gas emissions. Moreover, with the comparison of the investigated similar long-term field experiments and the collected agronomic data (harvest, tillage and fertilisation practices) the study could contribute to a contemporary set of "best management practices" and could provide a help to create decision tools for stakeholders such as farmers.
Nier, A.O.C.
1959-08-25
A voltage switching apparatus is described for use with a mass spectrometer in the concentratron analysis of several components of a gas mixture. The system automatically varies the voltage on the accelerating electrode of the mass spectrometer through a program of voltages which corresponds to the particular gas components under analysis. Automatic operation may be discontinued at any time to permit the operator to manually select any desired predetermined accelerating voltage. Further, the system may be manually adjusted to vary the accelerating voltage over a wide range.
Group analysis of dynamics equations of self-gravitating polytropic gas
NASA Astrophysics Data System (ADS)
Klebanov, I.; Panov, A.; Ivanov, S.; Maslova, O.
2018-06-01
The Lie algebras admitted by the dynamics equations of self-gravitating gas for an arbitrary equation of state and a polytropic gas are calculated. A spherically symmetric submodel is constructed for the case of a polytropic gas. The Lie algebras and the optimal system of subalgebras for a spherically symmetric submodel are computed. An invariant solution describing the steady motion is obtained.
Rapid Method for the Radioisotopic Analysis of Gaseous End Products of Anaerobic Metabolism
Nelson, David R.; Zeikus, J. G.
1974-01-01
A gas chromatographic procedure for the simultaneous analysis of 14C-labeled and unlabeled metabolic gases from microbial methanogenic systems is described. H2, CH4, and CO2 were separated within 2.5 min on a Carbosieve B column and were detected by thermal conductivity. Detector effluents were channeled into a gas proportional counter for measurement of radioactivity. This method was more rapid, sensitive, and convenient than gas chromatography-liquid scintillation techniques. The gas chromatography-gas proportional counting procedure was used to characterize the microbial decomposition of organic matter in anaerobic lake sediments and to monitor 14CH4 formation from H2 and 14CO2 by Methanosarcina barkeri. PMID:4854029
NASA Astrophysics Data System (ADS)
Pechenegov, Yu. Ya.; Mrakin, A. N.
2017-09-01
Recommendations are presented on calculating interphase heat transfer in gas-disperse systems of plants for thermochemical conversion of ground solid fuel. An analysis is made of the influence of the gas release of fuel particles on the heat transfer during their heating. It is shown that in the processes of thermal treatment of oil shales, the presence of gas release reduces substantially the intensity of interphase heat transfer compared to the heat transfer in the absence of thermochemical decomposition of the solid phase.
Genetic features of petroleum systems in rift basins of eastern China
Qiang, J.; McCabe, P.J.
1998-01-01
Most oil-bearing basins in eastern China are Mesozoic-Cenozoic continental rifts which have played a habitat for oil and gas in China. Investigation of the petroleum systems may give a better understanding of the oil and gas habitats in these basins. Of the essential elements of the petroleum system, the source rock is the most important in rift basins. However, rift tectonic evolution controls all the essential elements and processes nevessary for a petroleum system. A four stage evolution model is suggested for the controls in the rift basin. A rift basin may consist of sub-basins, depressions, sub-depressions, and major, moderate, and minor uplifts. A depression or sub-depression has its own depocentre (mainly occupied by source rock) and all kinds of lacustrine sediments, and thus has all the essential elements of a petroleum system. However, only those depressions or sub-depressions which are rich in organic matter and deeply buried to generate oil and gas form petroleum systems. Immature oil, another characteristic, complicates the petroleum system in the rift basins. Three types of oil and gas habitats are described as a result of this analysis of the petroleum systems of the 26 largest oil and gas fields discovered in eastern China rift basins: uplifts between oil source centres are the most prospective areas for oil and gas accumulations, slopes connecting oil source centres and uplifts are the second, and the third type is subtle traps in the soil source centre.Most oil-bearing basins in eastern China are Mesozoic-Cenozoic continental rifts which have played a habitat for oil and gas in China. Investigation of the petroleum systems may give a better understanding of the oil and gas habitats in these basins. Of the essential elements of the petroleum system, the source rock is the most important in rift basins. However, rift tectonic evolution controls all the essential elements and processes necessary for a petroleum system. A four stage evolution model is suggested for the controls in the rift basin. A rift basin may consist of sub-basins, depressions, sub-depressions, and major, moderate, and minor uplifts. A depression or sub-depression has its own depocentre (mainly occupied by source rock) and all kinds of lacustrine sediments, and thus has all the essential elements of a petroleum system. However, only those depressions or sub-depressions which are rich in organic matter and deeply buried to generate oil and gas form petroleum systems. Immature oil, another characteristic, complicates the petroleum system in the rift basins. Three types of oil and gas habitats are described as a result of this analysis of the petroleum systems of the 26 largest oil and gas fields discovered in eastern China rift basins: uplifts between oil source centres are the most prospective areas for oil and gas accumulations, slopes connecting oil source centres and uplifts are the second, and the third type is subtle traps in the oil source centre.
Probabilistic Analysis of Gas Turbine Field Performance
NASA Technical Reports Server (NTRS)
Gorla, Rama S. R.; Pai, Shantaram S.; Rusick, Jeffrey J.
2002-01-01
A gas turbine thermodynamic cycle was computationally simulated and probabilistically evaluated in view of the several uncertainties in the performance parameters, which are indices of gas turbine health. Cumulative distribution functions and sensitivity factors were computed for the overall thermal efficiency and net specific power output due to the thermodynamic random variables. These results can be used to quickly identify the most critical design variables in order to optimize the design, enhance performance, increase system availability and make it cost effective. The analysis leads to the selection of the appropriate measurements to be used in the gas turbine health determination and to the identification of both the most critical measurements and parameters. Probabilistic analysis aims at unifying and improving the control and health monitoring of gas turbine aero-engines by increasing the quality and quantity of information available about the engine's health and performance.
2014-12-18
carbon backbone). This may be analytically relevant where soil gas is sampled under anaerobic conditions. However, at the soil:air interface, methane is...of the ambient CO2 on-site coming from the fossil end-member (i.e. the contaminant). Sampling , processing and analysis of soil gas 14CO2 and 14CH4...gasoline service station having fuel-contaminated soil and groundwater. The SVE system ran for ~3 months prior to sampling . Soil gas and groundwater
40 CFR 98.324 - Monitoring and QA/QC requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Procedures and Inspection Tracking System Handbook Number: PH-08-V-1, January 1, 2008 (incorporated by... ASTM D1945-03, Standard Test Method for Analysis of Natural Gas by Gas Chromatography; ASTM D1946-90... (Reapproved 2006), Standard Test Method for Heating Value of Gases in Natural Gas Range by Stoichiometric...
ERIC Educational Resources Information Center
Erskine, Steven R.; And Others
1986-01-01
Describes a laboratory experiment that is designed to aid in the understanding of the fundamental process involved in gas chromatographic separations. Introduces the Kovats retention index system for use by chemistry students to establish criteria for the optimal selection of gas chromatographic stationary phases. (TW)
Design Analysis of the Ares 1 Pogo Accumulator
NASA Technical Reports Server (NTRS)
Swanson, Luke A.; Giel, Thomas V.
2009-01-01
Several accumulator designs and gas charge systems are considered in order to suppress POGO within the Ares I vehicle Upper Stage Liquid Ox ygen System. The thermodynamic and flow analysis completed to evaluat e candidate designs are presented and the results are used to evaluat e the ability of each concept to meet the levied suppression requirements. One annular accumulator design meets all suppression requirement s while also providing manufacturability and operability advantages. Of the two proposed charge systems to provide and maintain gas within the accumulator, a passive level control design meets the charge req uirements and maximizes reliability.
Center for Efficiency in Sustainable Energy Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abraham, Martin
The main goal of the Center for Efficiency in Sustainable Energy Systems is to produce a methodology that evaluates a variety of energy systems. Task I. Improved Energy Efficiency for Industrial Processes: This task, completed in partnership with area manufacturers, analyzes the operation of complex manufacturing facilities to provide flexibilities that allow them to improve active-mode power efficiency, lower standby-mode power consumption, and use low cost energy resources to control energy costs in meeting their economic incentives; (2) Identify devices for the efficient transformation of instantaneous or continuous power to different devices and sections of industrial plants; and (3) usemore » these manufacturing sites to demonstrate and validate general principles of power management. Task II. Analysis of a solid oxide fuel cell operating on landfill gas: This task consists of: (1) analysis of a typical landfill gas; (2) establishment of a comprehensive design of the fuel cell system (including the SOFC stack and BOP), including durability analysis; (3) development of suitable reforming methods and catalysts that are tailored to the specific SOFC system concept; and (4) SOFC stack fabrication with testing to demonstrate the salient operational characteristics of the stack, including an analysis of the overall energy conversion efficiency of the system. Task III. Demonstration of an urban wind turbine system: This task consists of (1) design and construction of two side-by-side wind turbine systems on the YSU campus, integrated through power control systems with grid power; (2) preliminary testing of aerodynamic control effectors (provided by a small business partner) to demonstrate improved power control, and evaluation of the system performance, including economic estimates of viability in an urban environment; and (3) computational analysis of the wind turbine system as an enabling activity for development of smart rotor blades that contain integrated sensor/actuator/controller modules to enhance energy capture and reduce aerodynamic loading and noise by way of virtual aerodynamic shaping. Accomplishments: Task I. Improved Energy Efficiency for Industrial Processes: We organized an energy management training session held on February 22, 2011, which was advertised through a regional manufacturing association to provide wide-ranging notification. Over two dozen companies were represented a the seminar, ranging from heavy manufacturing businesses with $5,000,000 per year energy expenses, to small, light manufacturing facilities. Task 2. Landfill Fuel Cell Power Generation Solid Oxide Fuel Cells (SOFCs) were constructed and evaluated as a means of obtaining electrical energy from landfill gas. Analysis of landfill gas. Attempts at collecting gas samples at the landfill and evaluating them on campus were still unsuccessful. Even a Teflon® sample bag would lose its H2S content. Evaluation of Gas Clean-up We consider this a confirmation of the CO2 effect on the solubility of H2S in water making much less sulfide available for the photocatalyst. It also means that another method should be employed to clean up landfill gas. Nonetheless, composition of impurities in landfill gas was reduced sufficiently to allow successful operation of the test fuel cell. Comparison to a PEM fuel cell system. If a PEMFC were to be operated with landfill gas as the fuel, the gas would have to be treated for sulfur removal, and then processed in a reformer large enough to drive the equilibrium far toward the products, so that negligible CO would flow into the fuel cell. Analysis of a fuel cell running on landfill gas. Using a Gow-Mac gas chromatograph with a thermal conductivity detector, unambiguous determination of CO can be made, at least as a primary constituent Task 3: Task 3 Plasma Controlled Turbine Blades Wind Turbine Selection. After carefully reviewing the various model available in the market the team selected the ARE 110 (2.5kW). The ARE 110 provides a very long life with little maintenance due to their relatively low rotational speeds (low RPM). The turbines large swept area (10.2ms2/110sq.ft), high-efficiency blades, purpose built alternator, and optimized power electronics ensure maximum energy capture from a wide range of wind speeds. Two wind turbines were installed side-by-side at the Melnick Hall site to compare their performance. Evaluate and Optimize Aerodynamically Enhanced Turbine Blades Due to delays in the installation of the wind turbines, no actual data was obtained within the contract period. At this time, the turbines are installed and operational at YSU with standard blades. We are in contact with Orbital Research and in discussion as to how best the required data can be obtained.« less
Gas solubility in dilute solutions: A novel molecular thermodynamic perspective
NASA Astrophysics Data System (ADS)
Chialvo, Ariel A.
2018-05-01
We present an explicit molecular-based interpretation of the thermodynamic phase equilibrium underlying gas solubility in liquids, through rigorous links between the microstructure of the dilute systems and the relevant macroscopic quantities that characterize their solution thermodynamics. We apply the formal analysis to unravel and highlight the molecular-level nature of the approximations behind the widely used Krichevsky-Kasarnovsky [J. Am. Chem. Soc. 57, 2168 (1935)] and Krichevsky-Ilinskaya [Acta Physicochim. 20, 327 (1945)] equations for the modeling of gas solubility. Then, we implement a general molecular-based approach to gas solubility and illustrate it by studying Lennard-Jones binary systems whose microstructure and thermodynamic properties were consistently generated via integral equation calculations. Furthermore, guided by the molecular-based analysis, we propose a novel macroscopic modeling approach to gas solubility, emphasize some usually overlook modeling subtleties, and identify novel interdependences among relevant solubility quantities that can be used as either handy modeling constraints or tools for consistency tests.
Gas solubility in dilute solutions: A novel molecular thermodynamic perspective.
Chialvo, Ariel A
2018-05-07
We present an explicit molecular-based interpretation of the thermodynamic phase equilibrium underlying gas solubility in liquids, through rigorous links between the microstructure of the dilute systems and the relevant macroscopic quantities that characterize their solution thermodynamics. We apply the formal analysis to unravel and highlight the molecular-level nature of the approximations behind the widely used Krichevsky-Kasarnovsky [J. Am. Chem. Soc. 57, 2168 (1935)] and Krichevsky-Ilinskaya [Acta Physicochim. 20, 327 (1945)] equations for the modeling of gas solubility. Then, we implement a general molecular-based approach to gas solubility and illustrate it by studying Lennard-Jones binary systems whose microstructure and thermodynamic properties were consistently generated via integral equation calculations. Furthermore, guided by the molecular-based analysis, we propose a novel macroscopic modeling approach to gas solubility, emphasize some usually overlook modeling subtleties, and identify novel interdependences among relevant solubility quantities that can be used as either handy modeling constraints or tools for consistency tests.
Portable gas chromatograph-mass spectrometer
Andresen, B.D.; Eckels, J.D.; Kimmons, J.F.; Myers, D.W.
1996-06-11
A gas chromatograph-mass spectrometer (GC-MS) is described for use as a field portable organic chemical analysis instrument. The GC-MS is designed to be contained in a standard size suitcase, weighs less than 70 pounds, and requires less than 600 watts of electrical power at peak power (all systems on). The GC-MS includes: a conduction heated, forced air cooled small bore capillary gas chromatograph, a small injector assembly, a self-contained ion/sorption pump vacuum system, a hydrogen supply, a dual computer system used to control the hardware and acquire spectrum data, and operational software used to control the pumping system and the gas chromatograph. This instrument incorporates a modified commercial quadrupole mass spectrometer to achieve the instrument sensitivity and mass resolution characteristic of laboratory bench top units. 4 figs.
Ferracci, Valerio; Brown, Andrew S; Harris, Peter M; Brown, Richard J C
2015-02-27
The response of a flame ionisation detector (FID) on a gas chromatograph to methane, ethane, propane, i-butane and n-butane in a series of multi-component refinery gas standards was investigated to assess the matrix sensitivity of the instrument. High-accuracy synthetic gas standards, traceable to the International System of Units, were used to minimise uncertainties. The instrument response exhibited a small dependence on the component amount fraction: this behaviour, consistent with that of another FID, was thoroughly characterised over a wide range of component amount fractions and was shown to introduce a negligible bias in the analysis of refinery gas samples, provided a suitable reference standard is employed. No significant effects of the molar volume, density and viscosity of the gas mixtures on the instrument response were observed, indicating that the FID is suitable for the analysis of refinery gas mixtures over a wide range of component amount fractions provided that appropriate drift-correction procedures are employed. Copyright © 2015 Elsevier B.V. All rights reserved.
Collett, Timothy S.; Lee, Wyung W.; Zyrianova, Margarita V.; Mrozewski, Stefan A.; Guerin, Gilles; Cook, Ann E.; Goldberg, Dave S.
2012-01-01
One of the objectives of the Gulf of Mexico Gas Hydrate Joint Industry Project Leg II (GOM JIP Leg II) was the collection of a comprehensive suite of logging-while-drilling (LWD) data within gas-hydrate-bearing sand reservoirs in order to make accurate estimates of the concentration of gas hydrates under various geologic conditions and to understand the geologic controls on the occurrence of gas hydrate at each of the sites drilled during this expedition. The LWD sensors just above the drill bit provided important information on the nature of the sediments and the occurrence of gas hydrate. There has been significant advancements in the use of downhole well-logging tools to acquire detailed information on the occurrence of gas hydrate in nature: From using electrical resistivity and acoustic logs to identify gas hydrate occurrences in wells to where wireline and advanced logging-while-drilling tools are routinely used to examine the petrophysical nature of gas hydrate reservoirs and the distribution and concentration of gas hydrates within various complex reservoir systems. Recent integrated sediment coring and well-log studies have confirmed that electrical resistivity and acoustic velocity data can yield accurate gas hydrate saturations in sediment grain supported (isotropic) systems such as sand reservoirs, but more advanced log analysis models are required to characterize gas hydrate in fractured (anisotropic) reservoir systems. In support of the GOM JIP Leg II effort, well-log data montages have been compiled and presented in this report which includes downhole logs obtained from all seven wells drilled during this expedition with a focus on identifying and characterizing the potential gas-hydrate-bearing sedimentary section in each of the wells. Also presented and reviewed in this report are the gas-hydrate saturation and sediment porosity logs for each of the wells as calculated from available downhole well logs.
High-Resolution Gas Metering and Nonintrusive Appliance Load Monitoring System
NASA Astrophysics Data System (ADS)
Tewolde, Mahder
This thesis deals with design and implementation of a high-resolution metering system for residential natural gas meters. Detailed experimental measurements are performed on the meter to characterize and understand its measurement properties. Results from these experiments are used to develop a simple, fast and accurate technique to non-intrusively monitor the gas consumption of individual appliances in homes by resolving small amounts of gas usage. The technique is applied on an existing meter retrofitted with a module that includes a high-resolution encoder to collect gas flow data and a microprocessor to analyze and identify appliance load profiles. This approach provides a number of appealing features including low cost, easy installation and integration with automated meter reading (AMR) systems. The application of this method to residential gas meters currently deployed is also given. This is done by performing a load simulation on realistic gas loads with the aim of identifying the necessary parameters that minimize the cost and complexity of the mechanical encoder module. The primary benefits of the system are efficiency analysis, appliance health monitoring and real-time customer feedback of gas usage. Additional benefits of include the ability to detect very small leaks and theft. This system has the potential for wide scale market adoption.
Heating Plant Options Economic Analysis System (HPECON): User’s Manual and Technical Reference
1991-03-01
Bulb Temperature: The temperature of dry air. Dry Scrubber: A flue gas desulfurization system in which sulfur dioxide is collected by a solid medium...method of solution of a problem. Flue Gas : The gaseous products of combustion. Fly Ash: The fine particles of ash which are carried by the products...AFM 88-29 (U.S. Air Force, July 1978); TM 5-785 (U.S. Army, July 1978); NAVFAC P-89 (Naval Facilities Engineering Command, July 1978). " Flue Gas
Analysis on using biomass lean syngas in micro gas turbines
NASA Astrophysics Data System (ADS)
Mărculescu, C.; Cenuşă, V. E.; Alexe, F. N.
2016-08-01
The paper presents an analysis on small systems for converting biomass/wastes into power using Micro Gas Turbines (MGT) fed with gaseous bio-fuels produced by air- gasification. The MGT is designed for burning various fossil liquid and gas fuels, having catalogue data related to natural gas use. Fuel switch changes their performances. The present work is focused on adapting the MGT for burning alternative low quality gas fuel produced by biomass air gasification. The heating values of these gas fuels are 3 to 5 times lower than the methane ones, leading to different air demand for the stoichiometric burning. Validated numerical computation procedures were used to model the MGT thermodynamic process. Our purpose was to analyze the influence of fuel change on thermodynamic cycle performances.
NASA Astrophysics Data System (ADS)
Smirnov, A. V.; Chobenko, V. M.; Shcherbakov, O. M.; Ushakov, S. M.; Parafiynyk, V. P.; Sereda, R. M.
2017-08-01
The article summarizes the results of analysis of data concerning the operation of turbocompressor packages at compressor stations for the natural gas transmission system of Ukraine. The basic requirements for gas turbine compressor packages used for modernization and reconstruction of compressor stations are considered. Using a 16 MW gas turbine package GPA-C-16S/76-1,44M1 as an example, the results of pre-design studies and some technical solutions that improve the energy efficiency of gas turbine compressor packages and their reliability, as well as its environmental performance are given. In particular, the article deals with the matching of performance characteristics of a centrifugal compressor (hereinafter compressor) and gas turbine drive to reduce fuel gas consumption; as well as application of energy efficient technologies, in particular, exhaust gas heat recovery units and gas-oil heat exchangers in turbocompressor packages oil system; as well as reducing emissions of carbon monoxide into the atmosphere using a catalytic exhaust system. Described technical solutions can be used for development of other types of gas turbine compressor packages.
NASA Astrophysics Data System (ADS)
Ghaebi, Hadi; Abbaspour, Ghader
2018-05-01
In this research, thermoeconomic analysis of a multi-effect desalination thermal vapor compression (MED-TVC) system integrated with a trigeneration system with a gas turbine prime mover is carried out. The integrated system comprises of a compressor, a combustion chamber, a gas turbine, a triple-pressure (low, medium and high pressures) heat recovery steam generator (HRSG) system, an absorption chiller cycle (ACC), and a multi-effect desalination (MED) system. Low pressure steam produced in the HRSG is used to drive absorption chiller cycle, medium pressure is used in desalination system and high pressure superheated steam is used for heating purposes. For thermodynamic and thermoeconomic analysis of the proposed integrated system, Engineering Equation Solver (EES) is used by employing mass, energy, exergy, and cost balance equations for each component of system. The results of the modeling showed that with the new design, the exergy efficiency in the base design will increase to 57.5%. In addition, thermoeconomic analysis revealed that the net power, heating, fresh water and cooling have the highest production cost, respectively.
Systems and methods for sample analysis
Cooks, Robert Graham; Li, Guangtao; Li, Xin; Ouyang, Zheng
2015-01-13
The invention generally relates to systems and methods for sample analysis. In certain embodiments, the invention provides a system for analyzing a sample that includes a probe including a material connected to a high voltage source, a device for generating a heated gas, and a mass analyzer.
Preliminary study of a gas burner-driven and ground-coupled heat pump system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsu, P.F.
1995-12-31
To address the concerns for higher energy efficiency and the immediate phase out of the chlorofluorocarbons (CFCs), a new gas burner-driven, ground-coupled heat pump (GBGCHP) system is proposed for study. The new system is energy efficient and pose no environmental problem. There are three unique features in the proposed system: (1) a patented gas burner-driven compressor with a floating diaphragm piston-cylinder for energy efficiency and accommodating variable load, (2) the ground coupled water-to-air heat exchangers for high coefficient of performance (COPs), and (3) the new refrigerants based on fluoroiodocarbons (FICS) with very little ozone depletion and global warming potential. Amore » preliminary analysis of a prototype heat pump with 3 ton (10.55 kW) heating capacity is presented. The thermodynamics analysis of the system shows that the steady state COP rating higher than 7 is possible with the system operating in heating mode. Additional research work for the GBGCHP system, especially the FICs` thermodynamic properties in the superheated region, is also described.« less
Analysis of potential benefits of integrated-gasifier combined cycles for a utility system
NASA Technical Reports Server (NTRS)
Choo, Y. K.
1983-01-01
Potential benefits of integrated gasifier combined cycle (IGCC) units were evaluated for a reference utility system by comparing long range expansion plans using IGCC units and gas turbine peakers with a plan using only state of the art steam turbine units and gas turbine peakers. Also evaluated was the importance of the benefits of individual IGCC unit characteristics, particularly unit efficiency, unit equivalent forced outage rate, and unit size. A range of IGCC units was analyzed, including cases achievable with state of the art gas turbines and cases assuming advanced gas turbine technology. All utility system expansion plans that used IGCC units showed substantial savings compared with the base expansion plan using the steam turbine units.
NASA Astrophysics Data System (ADS)
Ström, Petter; Petersson, Per; Rubel, Marek; Possnert, Göran
2016-10-01
A dedicated detector system for heavy ion elastic recoil detection analysis at the Tandem Laboratory of Uppsala University is presented. Benefits of combining a time-of-flight measurement with a segmented anode gas ionization chamber are demonstrated. The capability of ion species identification is improved with the present system, compared to that obtained when using a single solid state silicon detector for the full ion energy signal. The system enables separation of light elements, up to Neon, based on atomic number while signals from heavy elements such as molybdenum and tungsten are separated based on mass, to a sample depth on the order of 1 μm. The performance of the system is discussed and a selection of material analysis applications is given. Plasma-facing materials from fusion experiments, in particular metal mirrors, are used as a main example for the discussion. Marker experiments using nitrogen-15 or oxygen-18 are specific cases for which the described improved species separation and sensitivity are required. Resilience to radiation damage and significantly improved energy resolution for heavy elements at low energies are additional benefits of the gas ionization chamber over a solid state detector based system.
Entropy Generation/Availability Energy Loss Analysis Inside MIT Gas Spring and "Two Space" Test Rigs
NASA Technical Reports Server (NTRS)
Ebiana, Asuquo B.; Savadekar, Rupesh T.; Patel, Kaushal V.
2006-01-01
The results of the entropy generation and availability energy loss analysis under conditions of oscillating pressure and oscillating helium gas flow in two Massachusetts Institute of Technology (MIT) test rigs piston-cylinder and piston-cylinder-heat exchanger are presented. Two solution domains, the gas spring (single-space) in the piston-cylinder test rig and the gas spring + heat exchanger (two-space) in the piston-cylinder-heat exchanger test rig are of interest. Sage and CFD-ACE+ commercial numerical codes are used to obtain 1-D and 2-D computer models, respectively, of each of the two solution domains and to simulate the oscillating gas flow and heat transfer effects in these domains. Second law analysis is used to characterize the entropy generation and availability energy losses inside the two solution domains. Internal and external entropy generation and availability energy loss results predicted by Sage and CFD-ACE+ are compared. Thermodynamic loss analysis of simple systems such as the MIT test rigs are often useful to understand some important features of complex pattern forming processes in more complex systems like the Stirling engine. This study is aimed at improving numerical codes for the prediction of thermodynamic losses via the development of a loss post-processor. The incorporation of loss post-processors in Stirling engine numerical codes will facilitate Stirling engine performance optimization. Loss analysis using entropy-generation rates due to heat and fluid flow is a relatively new technique for assessing component performance. It offers a deep insight into the flow phenomena, allows a more exact calculation of losses than is possible with traditional means involving the application of loss correlations and provides an effective tool for improving component and overall system performance.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-05
... integrated U.S. natural gas pipeline system. GLLC notes that due to the Gulf LNG Terminal's direct access to multiple major interstate pipelines and indirect access to the national gas pipeline grid, the Project's... possible impacts that the Export Project might have on natural gas supply and pricing. Navigant's analysis...
Boe, Kanokwan; Batstone, Damien John; Angelidaki, Irini
2007-03-01
A new method for online measurement of volatile fatty acids (VFA) in anerobic digesters has been developed based on headspace gas chromatography (HSGC). The method applies ex situ VFA stripping with variable headspace volume and gas analysis by gas chromatography-flame ionization detection (GC-FID). In each extraction, digester sample was acidified with H(3)PO(4) and NaHSO(4), then heated to strip the VFA into the gas phase. The gas was sampled in a low friction glass syringe before injected into the GC for measurement. The system has been tested for online monitoring of a lab-scale CSTR reactor treating manure for more than 6 months and has shown good agreement with off-line analysis. The system is capable of measuring individual VFA components. This is of advantage since specific VFA components such as propionic and butyric acid can give extra information about the process status. Another important advantage of this sensor is that there is no filtration, which makes possible application in high solids environments. The system can thus be easily applied in a full-scale biogas reactor by connecting the system to the liquid circulation loop to obtain fresh sample from the reactor. Local calibration is needed but automatic calibration is also possible using standard addition method. Sampling duration is 25-40 min, depending on the washing duration, and sensor response is 10 min. This is appropriate for full-scale reactors, since dynamics within most biogas reactors are of the order of several hours.
FTIR gas chromatographic analysis of perfumes
NASA Astrophysics Data System (ADS)
Diederich, H.; Stout, Phillip J.; Hill, Stephen L.; Krishnan, K.
1992-03-01
Perfumes, natural or synthetic, are complex mixtures consisting of numerous components. Gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) techniques have been extensively utilized for the analysis of perfumes and essential oils. A limited number of perfume samples have also been analyzed by FT-IR gas chromatographic (GC-FTIR) techniques. Most of the latter studies have been performed using the conventional light pipe (LP) based GC-FTIR systems. In recent years, cold-trapping (in a matrix or neat) GC-FTIR systems have become available. The cold-trapping systems are capable of sub-nanogram sensitivities. In this paper, comparison data between the LP and the neat cold-trapping GC- FTIR systems is presented. The neat cold-trapping interface is known as Tracer. The results of GC-FTIR analysis of some commercial perfumes is also presented. For comparison of LP and Tracer GC-FTIR systems, a reference (synthetic) mixture containing 16 major and numerous minor constituents was used. The components of the mixture are the compounds commonly encountered in commercial perfumes. The GC-FTIR spectra of the reference mixture was obtained under identical chromatographic conditions from an LP and a Tracer system. A comparison of the two sets of data thus generated do indeed show the enhanced sensitivity level of the Tracer system. The comparison also shows that some of the major components detected by the Tracer system were absent from the LP data. Closer examination reveals that these compounds undergo thermal decomposition on contact with the hot gold surface that is part of the LP system. GC-FTIR data were obtained for three commercial perfume samples. The major components of these samples could easily be identified by spectra search against a digitized spectral library created using the Tracer data from the reference mixture.
NASA Astrophysics Data System (ADS)
Siddiqui, Osamah; Dincer, Ibrahim
2017-12-01
In the present study, a new solar-based multigeneration system integrated with an ammonia fuel cell and solid oxide fuel cell-gas turbine combined cycle to produce electricity, hydrogen, cooling and hot water is developed for analysis and performance assessment. In this regard, thermodynamic analyses and modeling through both energy and exergy approaches are employed to assess and evaluate the overall system performance. Various parametric studies are conducted to study the effects of varying system parameters and operating conditions on the energy and exergy efficiencies. The results of this study show that the overall multigeneration system energy efficiency is obtained as 39.1% while the overall system exergy efficiency is calculated as 38.7%, respectively. The performance of this multigeneration system results in an increase of 19.3% in energy efficiency as compared to single generation system. Furthermore, the exergy efficiency of the multigeneration system is 17.8% higher than the single generation system. Moreover, both energy and exergy efficiencies of the solid oxide fuel cell-gas turbine combined cycle are determined as 68.5% and 55.9% respectively.
NASA Astrophysics Data System (ADS)
Ballentine, C. J.; Zhou, Z.; Harris, N. B.
2015-12-01
The mass of hydrocarbons that have migrated through tight-gas-sandstone systems before the permeability reduces to trap the hydrocarbon gases provides critical information in the hydrocarbon potential analysis of a basin. The noble gas content (Ne, Ar, Kr, Xe) of the groundwater has a unique isotopic and elemental composition. As gas migrates through the water column, the groundwater-derived noble gases partition into the hydrocarbon phase. Determination of the noble gases in the produced hydrocarbon phase then provides a record of the type of interaction (simple phase equilibrium or open system Rayleigh fractionation). The tight-gas-sand reservoirs of the Rocky Mountains represent one of the most significant gas resources in the United States. The producing reservoirs are generally developed in low permeability (averaging <0.1mD) Upper Cretaceous fluvial to marginal marine sandstones and commonly form isolated overpressured reservoir bodies encased in even lower permeability muddy sediments. We present noble gas data from producing fields in the Greater Green River Basin, Wyoming; the the Piceance Basin, Colorado; and in the Uinta Basin, Utah. The data is consistent from all three basins. We show how in each basin the noble gases record open system gas migration through a water column at maximum basin burial. The data within an open system model indicates that the gas now in-place represents the last ~10% of hydrocarbon gas to have passed through the water column, most likely prior to permeability closedown.
Implementation of Ultrasonic Sensing for High Resolution Measurement of Binary Gas Mixture Fractions
Bates, Richard; Battistin, Michele; Berry, Stephane; Bitadze, Alexander; Bonneau, Pierre; Bousson, Nicolas; Boyd, George; Bozza, Gennaro; Crespo-Lopez, Olivier; Riva, Enrico Da; Degeorge, Cyril; Deterre, Cecile; DiGirolamo, Beniamino; Doubek, Martin; Favre, Gilles; Godlewski, Jan; Hallewell, Gregory; Hasib, Ahmed; Katunin, Sergey; Langevin, Nicolas; Lombard, Didier; Mathieu, Michel; McMahon, Stephen; Nagai, Koichi; Pearson, Benjamin; Robinson, David; Rossi, Cecilia; Rozanov, Alexandre; Strauss, Michael; Vitek, Michal; Vacek, Vaclav; Zwalinski, Lukasz
2014-01-01
We describe an ultrasonic instrument for continuous real-time analysis of the fractional mixture of a binary gas system. The instrument is particularly well suited to measurement of leaks of a high molecular weight gas into a system that is nominally composed of a single gas. Sensitivity < 5 × 10−5 is demonstrated to leaks of octaflouropropane (C3F8) coolant into nitrogen during a long duration (18 month) continuous study. The sensitivity of the described measurement system is shown to depend on the difference in molecular masses of the two gases in the mixture. The impact of temperature and pressure variances on the accuracy of the measurement is analysed. Practical considerations for the implementation and deployment of long term, in situ ultrasonic leak detection systems are also described. Although development of the described systems was motivated by the requirements of an evaporative fluorocarbon cooling system, the instrument is applicable to the detection of leaks of many other gases and to processes requiring continuous knowledge of particular binary gas mixture fractions. PMID:24961217
Dantas, Hebertty V; Barbosa, Mayara F; Nascimento, Elaine C L; Moreira, Pablo N T; Galvão, Roberto K H; Araújo, Mário C U
2013-03-15
This paper proposes a NIR spectrometric method for screening analysis of liquefied petroleum gas (LPG) samples. The proposed method is aimed at discriminating samples with low and high propane content, which can be useful for the adjustment of burn settings in industrial applications. A gas flow system was developed to introduce the LPG sample into a NIR flow cell at constant pressure. In addition, a gas chromatographer was employed to determine the propane content of the sample for reference purposes. The results of a principal component analysis, as well as a classification study using SIMCA (soft independent modeling of class analogies), revealed that the samples can be successfully discriminated with respect to propane content by using the NIR spectrum in the range 8100-8800 cm(-1). In addition, by using SPA-LDA (linear discriminant analysis with variables selected by the successive projections algorithm), it was found that perfect discrimination can also be achieved by using only two wavenumbers (8215 and 8324 cm(-1)). This finding may be of value for the design of a dedicated, low-cost instrument for routine analyses. Copyright © 2012 Elsevier B.V. All rights reserved.
Fuel flexibility via real-time Raman fuel-gas analysis for turbine system control
NASA Astrophysics Data System (ADS)
Buric, M.; Woodruff, S.; Chorpening, B.; Tucker, D.
2015-06-01
The modern energy production base in the U.S. is increasingly incorporating opportunity fuels such as biogas, coalbed methane, coal syngas, solar-derived hydrogen, and others. In many cases, suppliers operate turbine-based generation systems to efficiently utilize these diverse fuels. Unfortunately, turbine engines are difficult to control given the varying energy content of these fuels, combined with the need for a backup natural gas supply to provide continuous operation. Here, we study the use of a specially designed Raman Gas Analyzer based on capillary waveguide technology with sub-second response time for turbine control applications. The NETL Raman Gas Analyzer utilizes a low-power visible pump laser, and a capillary waveguide gas-cell to integrate large spontaneous Raman signals, and fast gas-transfer piping to facilitate quick measurements of fuel-gas components. A U.S. Department of Energy turbine facility known as HYPER (hybrid performance system) serves as a platform for apriori fuel composition measurements for turbine speed or power control. A fuel-dilution system is used to simulate a compositional upset while simultaneously measuring the resultant fuel composition and turbine response functions in real-time. The feasibility and efficacy of system control using the spontaneous Raman-based measurement system is then explored with the goal of illustrating the ability to control a turbine system using available fuel composition as an input process variable.
Gas and galaxies in filaments between clusters of galaxies. The study of A399-A401
NASA Astrophysics Data System (ADS)
Bonjean, V.; Aghanim, N.; Salomé, P.; Douspis, M.; Beelen, A.
2018-01-01
We have performed a multi-wavelength analysis of two galaxy cluster systems selected with the thermal Sunyaev-Zel'dovich (tSZ) effect and composed of cluster pairs and an inter-cluster filament. We have focused on one pair of particular interest: A399-A401 at redshift z 0.073 seperated by 3 Mpc. We have also performed the first analysis of one lower-significance newly associated pair: A21-PSZ2 G114.09-34.34 at z 0.094, separated by 4.2 Mpc. We have characterised the intra-cluster gas using the tSZ signal from Planck and, when possible, the galaxy optical and infrared (IR) properties based on two photometric redshift catalogues: 2MPZ and WISExSCOS. From the tSZ data, we measured the gas pressure in the clusters and in the inter-cluster filaments. In the case of A399-A401, the results are in perfect agreement with previous studies and, using the temperature measured from the X-rays, we further estimate the gas density in the filament and find n0 = (4.3 ± 0.7) × 10-4 cm-3. The optical and IR colour-colour and colour-magnitude analyses of the galaxies selected in the cluster system, together with their star formation rate, show no segregation between galaxy populations, both in the clusters and in the filament of A399-A401. Galaxies are all passive, early type, and red and dead. The gas and galaxy properties of this system suggest that the whole system formed at the same time and corresponds to a pre-merger, with a cosmic filament gas heated by the collapse. For the other cluster system, the tSZ analysis was performed and the pressure in the clusters and in the inter-cluster filament was constrained. However, the limited or nonexistent optical and IR data prevent us from concluding on the presence of an actual cosmic filament or from proposing a scenario.
Hammerschmidt, Sebastian B; Wiersberg, Thomas; Heuer, Verena B; Wendt, Jenny; Erzinger, Jörg; Kopf, Achim
2014-01-01
Integrated Ocean Drilling Program Expedition 338 was the second scientific expedition with D/V Chikyu during which riser drilling was conducted as part of the Nankai Trough Seismogenic Zone Experiment. Riser drilling enabled sampling and real-time monitoring of drilling mud gas with an onboard scientific drilling mud gas monitoring system ("SciGas"). A second, independent system was provided by Geoservices, a commercial mud logging service. Both systems allowed the determination of (non-) hydrocarbon gas, while the SciGas system also monitored the methane carbon isotope ratio (δ(13)CCH4). The hydrocarbon gas composition was predominated by methane (> 1%), while ethane and propane were up to two orders of magnitude lower. δ(13)CCH4 values suggested an onset of thermogenic gas not earlier than 1600 meter below seafloor. This study aims on evaluating the onboard data and subsequent geological interpretations by conducting shorebased analyses of drilling mud gas samples. During shipboard monitoring of drilling mud gas the SciGas and Geoservices systems recorded up to 8.64% and 16.4% methane, respectively. Ethane and propane concentrations reached up to 0.03 and 0.013%, respectively, in the SciGas system, but 0.09% and 0.23% in the Geoservices data. Shorebased analyses of discrete samples by gas chromatography showed a gas composition with ~0.01 to 1.04% methane, 2 - 18 ppmv ethane, and 2 - 4 ppmv propane. Quadruple mass spectrometry yielded similar results for methane (0.04 to 4.98%). With δD values between -171‰ and -164‰, the stable hydrogen isotopic composition of methane showed little downhole variability. Although the two independent mud gas monitoring systems and shorebased analysis of discrete gas sample yielded different absolute concentrations they all agree well with respect to downhole variations of hydrocarbon gases. The data point to predominantly biogenic methane sources but suggest some contribution from thermogenic sources at depth, probably due to mixing. In situ thermogenic gas production at depths shallower 2000 mbsf is unlikely based on in situ temperature estimations between 81°C and 85°C and a cumulative time-temperature index of 0.23. In conclusion, the onboard SciGas data acquisition helps to provide a preliminary, qualitative evaluation of the gas composition, the in situ temperature and the possibility of gas migration.
NASA Technical Reports Server (NTRS)
Gallardo, V. C.; Gaffney, E. F.; Bach, L. J.; Stallone, M. J.
1981-01-01
An analytical technique was developed to predict the behavior of a rotor system subjected to sudden unbalance. The technique is implemented in the Turbine Engine Transient Rotor Analysis (TETRA) computer program using the component element method. The analysis was particularly aimed toward blade-loss phenomena in gas turbine engines. A dual-rotor, casing, and pylon structure can be modeled by the computer program. Blade tip rubs, Coriolis forces, and mechanical clearances are included. The analytical system was verified by modeling and simulating actual test conditions for a rig test as well as a full-engine, blade-release demonstration.
Shock load analysis of rotor for rolling element bearings and gas foil bearings: A comparative study
NASA Astrophysics Data System (ADS)
Bhore, Skylab Paulas
2018-04-01
In this paper, a comparative study on the shock load analysis of rotor supported by rolling element bearings and gas foil journal bearings is presented. The rotor bearing system is modeled using finite element method. Timoshenko beam element with 4 degree of freedom at each node is used. The shock load is represented by half sine pulse and applied to the base of the rotor bearing system. The stiffness and damping coefficient of the bearings are incorporated in the model. The generalized equation of motion of rotor bearing system is solved by Newmark beta method and responses of rotor at bearing position are predicted. It is observed that the responses are sensitive to the direction of applied excitation and its magnitude and pulse duration. The amplitude of responses of rotor supported on gas foil bearings are significantly less than that of rolling element bearings.
Steady-state canopy gas exchange: system design and operation
NASA Technical Reports Server (NTRS)
Bugbee, B.
1992-01-01
This paper describes the use of a commercial growth chamber for canopy photosynthesis, respiration, and transpiration measurements. The system was designed to measure transpiration via water vapor fluxes, and the importance of this measurement is discussed. Procedures for continuous measurement of root-zone respiration are described, and new data is presented to dispel myths about sources of water vapor interference in photosynthesis and in the measurement of CO2 by infrared gas analysis. Mitchell (1992) has described the fundamentals of various approaches to measuring photosynthesis. Because our system evolved from experience with other types of single-leaf and canopy gas-exchange systems, it is useful to review advantages and disadvantages of different systems as they apply to various research objectives.
Isolating Gas Sensor From Pressure And Temperature Effects
NASA Technical Reports Server (NTRS)
Sprinkle, Danny R.; Chen, Tony T. D.; Chaturvedi, Sushi K.
1994-01-01
Two-stage flow system enables oxygen sensor in system to measure oxygen content of low-pressure, possibly-high-temperature atmosphere in test environment while protecting sensor against possibly high temperature and fluctuations in pressure of atmosphere. Sensor for which flow system designed is zirconium oxide oxygen sensor sampling atmospheres in high-temperature wind tunnels. Also adapted to other gas-analysis instruments that must be isolated from pressure and temperature effects of test environments.
Policke, Timothy A; Nygaard, Eric T
2014-05-06
The present invention relates generally to both a system and method for determining the composition of an off-gas from a solution nuclear reactor (e.g., an Aqueous Homogeneous Reactor (AHR)) and the composition of the fissioning solution from those measurements. In one embodiment, the present invention utilizes at least one quadrupole mass spectrometer (QMS) in a system and/or method designed to determine at least one or more of: (i) the rate of production of at least one gas and/or gas species from a nuclear reactor; (ii) the effect on pH by one or more nitrogen species; (iii) the rate of production of one or more fission gases; and/or (iv) the effect on pH of at least one gas and/or gas species other than one or more nitrogen species from a nuclear reactor.
NASA Astrophysics Data System (ADS)
Ganzha, V.; Ivshin, K.; Kammel, P.; Kravchenko, P.; Kravtsov, P.; Petitjean, C.; Trofimov, V.; Vasilyev, A.; Vorobyov, A.; Vznuzdaev, M.; Wauters, F.
2018-02-01
A series of muon experiments at the Paul Scherrer Institute in Switzerland deploy ultra-pure hydrogen active targets. A new gas impurity analysis technique was developed, based on conventional gas chromatography, with the capability to measure part-per-billion (ppb) traces of nitrogen and oxygen in hydrogen and deuterium. Key ingredients are a cryogenic admixture accumulation, a directly connected sampling system and a dedicated calibration setup. The dependence of the measured concentration on the sample volume was investigated, confirming that all impurities from the sample gas are collected in the accumulation column and measured with the gas chromatograph. The system was calibrated utilizing dynamic dilution of admixtures into the gas flow down to sub-ppb level concentrations. The total amount of impurities accumulated in the purification system during a three month long experimental run was measured and agreed well with the calculated amount based on the measured concentrations in the flow.
NASA Astrophysics Data System (ADS)
Akinsanpe, Olumuyiwa T.; Adepelumi, Adekunle A.; Benjamin, Uzochukwu K.; Falebita, Dele E.
2017-12-01
Comprehensive qualitative and semi-quantitative seismic analysis was carried out on 3-dimensional seismic data acquired in the deepwater compressional and shale diapiric zone of the Niger Delta Basin using an advanced seismic imaging tool. The main aim of this work is to obtain an understanding of the forming mechanism of the gas hydrate system, and the fluid migration paths associated with this part of the basin. The results showed the presence of pockmarks on the seafloor and bottom simulating reflectors (BSRs) in the field, indicating the active fluid flux and existence of gas hydrate system in the area. In the area of approximately 195 km2 occupying nearly 24% of the entire study field, three major zones with continuous or discontinuous BSRs of 3 to 7 km in length which are in the northeastern, southern and eastern part of the field respectively were delineated. The BSR is interpreted to be the transition between the free gas zone and the gas hydrate zone. The geologic structures including faults (strike-slip and normal faults), chimneys and diapirs were deduced to be the main conduits for gas migration. It is concluded that the biogenic gases generated in the basin were possibly transported via faults and chimneys by advection processes and subsequently accumulated under low temperature and high pressure conditions in the free gas zone below the BSR forming gas hydrate. A plausible explanation for the presence of the ubiquitous pockmarks of different diameters and sizes in the area is the transportation of the excessive gas to the seafloor through these mapped geologic structures.
NASA Astrophysics Data System (ADS)
Kochunni, Sarun Kumar; Chowdhury, Kanchan
2017-02-01
LNG boil-off gas (BOG) reliquefaction systems in LNG carrier ships uses refrigeration devices which are based on reverse Brayton, Claude, Kapitza (modified Claude) or Cascade cycles. Some of these refrigeration devices use nitrogen as the refrigerants and hence nitrogen storage vessels or nitrogen generators needs to be installed in LNG carrier ships which consume space and add weight to the carrier. In the present work, a new configuration based on Kapitza liquefaction cycle which uses BOG itself as working fluid is proposed and has been compared with Reverse Brayton Cycle (RBC) on sizes of heat exchangers and compressor operating parameters. Exergy analysis is done after simulating at steady state with Aspen Hysys 8.6® and the comparison between RBC and Kapitza may help designers to choose reliquefaction system with appropriate process parameters and sizes of equipment. With comparable exergetic efficiency as that of an RBC, a Kaptiza system needs only BOG compressor without any need of nitrogen gas.
NASA Astrophysics Data System (ADS)
Niasar, Malek Shariati; Amidpour, Majid
2018-01-01
In this paper, utilizing absorption refrigeration system as an alternative to compression refrigeration system of MFC refrigeration cycle in an integrated superstructure with the main aim of reduction in required energy is investigated. High-energy consumption in such units is reduced because of the removal of a stage of the compression system, while the possibility of using waste energy through employing of absorption refrigeration system can be provided. A superstructure including cogeneration of heating, cooling and power for LNG production and liquid fuels using Fischer-Tropsch synthesis are investigated. Exergy analysis shows that the greatest amount of exergy destruction of equipment is related to the compressors by 28.99% and the lowest exergy destruction is related to the gas turbine by 0.17%. Integrated structure has overall thermal efficiency of 90% and specific power of 0.1988 kW h/(kg LNG)-1.
Evaluation of measurement data from a sensor system for breath control
NASA Astrophysics Data System (ADS)
Seifert, Rolf; Keller, Hubert B.; Conrad, Thorsten; Peter, Jens
2017-03-01
Binary ethanol-H2 gas samples were measured by an innovative mobile sensor system for the alcohol control in the respiratory air. The measurements were performed by a gas sensor operated by cyclic variation of the working temperature at the sensor head. The evaluation of the data, using an updated version of the evaluation procedure ProSens, results in a very good substance identification and concentration determination of the components of the gas mixture. The relative analysis errors were in all cases less than 9%.
Integrated Microfluidic Gas Sensors for Water Monitoring
NASA Technical Reports Server (NTRS)
Zhu, L.; Sniadecki, N.; DeVoe, D. L.; Beamesderfer, M.; Semancik, S.; DeVoe, D. L.
2003-01-01
A silicon-based microhotplate tin oxide (SnO2) gas sensor integrated into a polymer-based microfluidic system for monitoring of contaminants in water systems is presented. This device is designed to sample a water source, control the sample vapor pressure within a microchannel using integrated resistive heaters, and direct the vapor past the integrated gas sensor for analysis. The sensor platform takes advantage of novel technology allowing direct integration of discrete silicon chips into a larger polymer microfluidic substrate, including seamless fluidic and electrical interconnects between the substrate and silicon chip.
Apparatus for preparing a solution of a hyperpolarized noble gas for NMR and MRI analysis
Pines, Alexander [Berkeley, CA; Budinger, Thomas [Berkeley, CA; Navon, Gil [Ramat Gan, IL; Song, Yi-Qiao [Berkeley, CA; Appelt, Stephan [Waiblingen, DE; Bifone, Angelo [Rome, IT; Taylor, Rebecca [Berkeley, CA; Goodson, Boyd [Berkeley, CA; Seydoux, Roberto [Berkeley, CA; Room, Toomas [Albany, CA; Pietrass, Tanja [Socorro, NM
2008-06-10
The present invention relates generally to nuclear magnetic resonance (NMR) techniques for both spectroscopy and imaging. More particularly, the present invention relates to methods in which hyperpolarized noble gases (e.g., Xe and He) are used to enhance and improve NMR and MRI. Additionally, the hyperpolarized gas solutions of the invention are useful both in vitro and in vivo to study the dynamics or structure of a system. When used with biological systems, either in vivo or in vitro, it is within the scope of the invention to target the hyperpolarized gas and deliver it to specific regions within the system.
Gas monitoring onboard ISS using FTIR spectroscopy
NASA Astrophysics Data System (ADS)
Gisi, Michael; Stettner, Armin; Seurig, Roland; Honne, Atle; Witt, Johannes; Rebeyre, Pierre
2017-06-01
In the confined, enclosed environment of a spacecraft, the air quality must be monitored continuously in order to safeguard the crew's health. For this reason, OHB builds the ANITA2 (Analysing Interferometer for Ambient Air) technology demonstrator for trace gas monitoring onboard the International Space Station (ISS). The measurement principle of ANITA2 is based on the Fourier Transform Infrared (FTIR) technology with dedicated gas analysis software from the Norwegian partner SINTEF. This combination proved to provide high sensitivity, accuracy and precision for parallel measurements of 33 trace gases simultaneously onboard ISS by the precursor instrument ANITA1. The paper gives a technical overview about the opto-mechanical components of ANITA2, such as the interferometer, the reference Laser, the infrared source and the gas cell design and a quick overview about the gas analysis. ANITA2 is very well suited for measuring gas concentrations specifically but not limited to usage onboard spacecraft, as no consumables are required and measurements are performed autonomously. ANITA2 is a programme under the contract of the European Space Agency, and the air quality monitoring system is a stepping stone into the future, as a precursor system for manned exploration missions.
Zhang, Yi; Wei, Hanyu; Xin, Qing; Wang, Mingang; Wang, Qi; Wang, Qiang; Cong, Yanqing
2016-12-01
A gas-liquid hybrid discharge system was applied to microcystin-LR (MC-LR) degradation. MC-LR degradation was completed after 1 min under a pulsed high voltage of 16 kV, gas-liquid interface gap of 10 mm and oxygen flow rate of 160 L/h. The Box-Behnken Design was proposed in Response Surface Methodology to evaluate the influence of pulsed high voltage, electrode distance and oxygen flow rate on MC-LR removal efficiency. Multiple regression analysis, focused on multivariable factors, was employed and a reduced cubic model was developed. The ANOVA analysis shows that the model is significant and the model prediction on MC-LR removal was also validated with experimental data. The optimum conditions for the process are obtained at pulsed voltage of 16 kV, gas-liquid interface gap of 10 mm and oxygen flow rate of 120 L/h with ta removal efficiency of MC-LR of 96.6%. The addition of catalysts (TiO 2 or Fe 2+ ) in the gas-liquid hybrid discharge system was found to enhance the removal of MC-LR. The intermediates of MC-LR degradation were analyzed by liquid chromatography/mass spectrometry. The degradation pathway proposed envisaged the oxidation of hydroxyl radicals and ozone, and attack of high-energy electrons on the unsaturated double bonds of Adda and Mdha, with MC-LR finally decomposing into small molecular products. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Koal, Philipp; Schilling, Rolf; Gerl, Georg; Pritsch, Karin; Munch, Jean Charles
2016-04-01
In order to achieve a reduction of greenhouse gas emissions, modern agronomic management practices need to be established. Therefore, to assess the effect of different farming practices on greenhouse gas emissions, reliable data are required. The experiment covers and compares main aspects of agricultural management for a better implementation of sustainable land use. The focus lies on the determination and interpretation of greenhouse gas emissions, where the effects of diverse tillage systems and fertilisation practices of an integrated farming system as well as the impacts of extreme weather conditions are observed. In addition, with analysis of the alterable biological, physical and chemical soil properties a link between the impact of different management systems on greenhouse gas emissions and the observed cycle of matter in the soil, especially the nitrogen and carbon cycle, is enabled. Measurements have been carried out on long-term field trials at the Research Farm Scheyern located in a Tertiary hilly landscape approximately 40 km north of Munich (South Germany). The long-term integrated farming system trial was started in 1992. Since then parcels of land (each around 0.2-0.4 ha) with a particular interior plot set-up have been conducted with the same crop rotation, tillage and fertilisation practice referring to integrated farming management. Thus, the management impacts on the soil of more than 20 years have been examined. Fluxes of CH4, N2O and CO2 have been monitored since 2007 for the integrated farming system trial using an automated system which consists of chambers (0.4 m2 area) with a motor-driven lid, an automated gas sampling unit, an on-line gas chromatographic analysis system, and a control and data logging unit. Precipitation and temperature data have been observed for the experimental field to include weather effects. The main outcomes are the analysis of temporal and spatial dynamics of greenhouse gas emissions influenced by management practice events (i.a. fertilisation, crop incorporation and tillage) and weather effects (drying-rewetting, freezing-thawing, intense rainfall and dry periods) and the creation of impact studies comparing the management practices (minimum tillage vs conventional tillage; high vs low fertilisation). Physical, chemical and biological soil properties (i.a. texture, mineral nitrogen, soil organic carbon and microbial biomass) have been examined in short time intervals to aggregate the parameters and processes influencing the greenhouse gas emissions and to build a linkage between soil organic matter and greenhouse gas emissions. Moreover, with the collected soil and agronomic data (harvest, tillage and fertilisation practices) the study contributes to a process quantification supporting modelling approaches.
NASA Astrophysics Data System (ADS)
Deshpande, Aniruddha S.; Khomane, Ramdas B.; Vaidya, Bhalchandra K.; Joshi, Renuka M.; Harle, Arti S.; Kulkarni, Bhaskar D.
2008-06-01
Sulfur nanoparticles were synthesized from hazardous H2S gas using novel biodegradable iron chelates in w/o microemulsion system. Fe3+ malic acid chelate (0.05 M aqueous solution) was studied in w/o microemulsion containing cyclohexane, Triton X-100 and n-hexanol as oil phase, surfactant, co-surfactant, respectively, for catalytic oxidation of H2S gas at ambient conditions of temperature, pressure, and neutral pH. The structural features of sulfur nanoparticles have been characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), energy dispersive spectroscopy (EDS), diffused reflectance infra-red Fourier transform technique, and BET surface area measurements. XRD analysis indicates the presence of α-sulfur. TEM analysis shows that the morphology of sulfur nanoparticles synthesized in w/o microemulsion system is nearly uniform in size (average particle size 10 nm) and narrow particle size distribution (in range of 5 15 nm) as compared to that in aqueous surfactant systems. The EDS analysis indicated high purity of sulfur (>99%). Moreover, sulfur nanoparticles synthesized in w/o microemulsion system exhibit higher antimicrobial activity (against bacteria, yeast, and fungi) than that of colloidal sulfur.
2008-01-01
Sulfur nanoparticles were synthesized from hazardous H2S gas using novel biodegradable iron chelates in w/o microemulsion system. Fe3+–malic acid chelate (0.05 M aqueous solution) was studied in w/o microemulsion containing cyclohexane, Triton X-100 andn-hexanol as oil phase, surfactant, co-surfactant, respectively, for catalytic oxidation of H2S gas at ambient conditions of temperature, pressure, and neutral pH. The structural features of sulfur nanoparticles have been characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), energy dispersive spectroscopy (EDS), diffused reflectance infra-red Fourier transform technique, and BET surface area measurements. XRD analysis indicates the presence of α-sulfur. TEM analysis shows that the morphology of sulfur nanoparticles synthesized in w/o microemulsion system is nearly uniform in size (average particle size 10 nm) and narrow particle size distribution (in range of 5–15 nm) as compared to that in aqueous surfactant systems. The EDS analysis indicated high purity of sulfur (>99%). Moreover, sulfur nanoparticles synthesized in w/o microemulsion system exhibit higher antimicrobial activity (against bacteria, yeast, and fungi) than that of colloidal sulfur.
Gas-rich dwarfs and accretion phenomena in early-type galaxies
NASA Technical Reports Server (NTRS)
Silk, J.; Norman, C.
1979-01-01
An analysis is presented of the combined effects of cloud accretion and galactic winds and coronae. An accretion model is developed wherein gas-rich dwarf galaxies are accreted into galactic halos, which provides an adequate source of H I to account for observations of neutral gas in early-type galaxies. Accretion is found to fuel the wind, thereby regulating the accretion flow and yielding a time-dependent model for star formation, enrichment, and nuclear activity. The permissible parameter range for intergalactic gas clouds and galaxy groups is discussed, along with the frequency of gas-rich dwarfs and their large ratios of gas mass to luminosity. Also considered is the occurrence of gas stripping and the consequent formation of dwarf spheroidal systems that remain in the halo, and gas clouds that dissipate and suffer further infall. A cosmological implication of the model is that, because the characteristic time scale of a gas-rich dwarf galaxy to be accreted and lose its gas is comparable to a Hubble time, there may have been a far more extensive primordial distribution of such systems at earlier epochs.
NASA Astrophysics Data System (ADS)
Wyche, K. P.; Monks, P. S.; Smallbone, K. L.; Hamilton, J. F.; Alfarra, M. R.; Rickard, A. R.; McFiggans, G. B.; Jenkin, M. E.; Bloss, W. J.; Ryan, A. C.; Hewitt, C. N.; MacKenzie, A. R.
2015-07-01
Highly non-linear dynamical systems, such as those found in atmospheric chemistry, necessitate hierarchical approaches to both experiment and modelling in order to ultimately identify and achieve fundamental process-understanding in the full open system. Atmospheric simulation chambers comprise an intermediate in complexity, between a classical laboratory experiment and the full, ambient system. As such, they can generate large volumes of difficult-to-interpret data. Here we describe and implement a chemometric dimension reduction methodology for the deconvolution and interpretation of complex gas- and particle-phase composition spectra. The methodology comprises principal component analysis (PCA), hierarchical cluster analysis (HCA) and positive least-squares discriminant analysis (PLS-DA). These methods are, for the first time, applied to simultaneous gas- and particle-phase composition data obtained from a comprehensive series of environmental simulation chamber experiments focused on biogenic volatile organic compound (BVOC) photooxidation and associated secondary organic aerosol (SOA) formation. We primarily investigated the biogenic SOA precursors isoprene, α-pinene, limonene, myrcene, linalool and β-caryophyllene. The chemometric analysis is used to classify the oxidation systems and resultant SOA according to the controlling chemistry and the products formed. Results show that "model" biogenic oxidative systems can be successfully separated and classified according to their oxidation products. Furthermore, a holistic view of results obtained across both the gas- and particle-phases shows the different SOA formation chemistry, initiating in the gas-phase, proceeding to govern the differences between the various BVOC SOA compositions. The results obtained are used to describe the particle composition in the context of the oxidised gas-phase matrix. An extension of the technique, which incorporates into the statistical models data from anthropogenic (i.e. toluene) oxidation and "more realistic" plant mesocosm systems, demonstrates that such an ensemble of chemometric mapping has the potential to be used for the classification of more complex spectra of unknown origin. More specifically, the addition of mesocosm data from fig and birch tree experiments shows that isoprene and monoterpene emitting sources, respectively, can be mapped onto the statistical model structure and their positional vectors can provide insight into their biological sources and controlling oxidative chemistry. The potential to extend the methodology to the analysis of ambient air is discussed using results obtained from a zero-dimensional box model incorporating mechanistic data obtained from the Master Chemical Mechanism (MCMv3.2). Such an extension to analysing ambient air would prove a powerful asset in assisting with the identification of SOA sources and the elucidation of the underlying chemical mechanisms involved.
HOT CELL SYSTEM FOR DETERMINING FISSION GAS RETENTION IN METALLIC FUELS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sell, D. A.; Baily, C. E.; Malewitz, T. J.
2016-09-01
A system has been developed to perform measurements on irradiated, sodium bonded-metallic fuel elements to determine the amount of fission gas retained in the fuel material after release of the gas to the element plenum. During irradiation of metallic fuel elements, most of the fission gas developed is released from the fuel and captured in the gas plenums of the fuel elements. A significant amount of fission gas, however, remains captured in closed porosities which develop in the fuel during irradiation. Additionally, some gas is trapped in open porosity but sealed off from the plenum by frozen bond sodium aftermore » the element has cooled in the hot cell. The Retained fission Gas (RFG) system has been designed, tested and implemented to capture and measure the quantity of retained fission gas in characterized cut pieces of sodium bonded metallic fuel. Fuel pieces are loaded into the apparatus along with a prescribed amount of iron powder, which is used to create a relatively low melting, eutectic composition as the iron diffuses into the fuel. The apparatus is sealed, evacuated, and then heated to temperatures in excess of the eutectic melting point. Retained fission gas release is monitored by pressure transducers during the heating phase, thus monitoring for release of fission gas as first the bond sodium melts and then the fuel. A separate hot cell system is used to sample the gas in the apparatus and also characterize the volume of the apparatus thus permitting the calculation of the total fission gas release from the fuel element samples along with analysis of the gas composition.« less
Code of Federal Regulations, 2013 CFR
2013-07-01
... detector (HFID) (375 °±20 °F (191 °±11 °C)) sample for total hydrocarbon (THC) analysis. The HFID sample... integrated measurement of diluted THC is required. Unless compensation for varying mass flow is made, a constant mass flow system must be used to ensure a proportional THC measurement. (2) For natural gas-fueled...
Code of Federal Regulations, 2012 CFR
2012-07-01
... detector (HFID) (375 °±20 °F (191 °±11 °C)) sample for total hydrocarbon (THC) analysis. The HFID sample... integrated measurement of diluted THC is required. Unless compensation for varying mass flow is made, a constant mass flow system must be used to ensure a proportional THC measurement. (2) For natural gas-fueled...
Tar analysis from biomass gasification by means of online fluorescence spectroscopy
NASA Astrophysics Data System (ADS)
Baumhakl, Christoph; Karellas, Sotirios
2011-07-01
Optical methods in gas analysis are very valuable mainly due to their non-intrusive character. That gives the possibility to use them for in-situ or online measurements with only optical intervention in the measurement volume. In processes like the gasification of biomass, it is of high importance to monitor the gas quality in order to use the product gas in proper machines for energy production following the restrictions in the gas composition but also improving its quality, which leads to high efficient systems. One of the main problems in the biomass gasification process is the formation of tars. These higher hydrocarbons can lead to problems in the operation of the energy system. Up to date, the state of the art method used widely for the determination of tars is a standardized offline measurement system, the so-called "Tar Protocol". The aim of this work is to describe an innovative, online, optical method for determining the tar content of the product gas by means of fluorescence spectroscopy. This method uses optical sources and detectors that can be found in the market at low cost and therefore it is very attractive, especially for industrial applications where cost efficiency followed by medium to high precision are of high importance.
Performance analysis and optimization of power plants with gas turbines
NASA Astrophysics Data System (ADS)
Besharati-Givi, Maryam
The gas turbine is one of the most important applications for power generation. The purpose of this research is performance analysis and optimization of power plants by using different design systems at different operation conditions. In this research, accurate efficiency calculation and finding optimum values of efficiency for design of chiller inlet cooling and blade cooled gas turbine are investigated. This research shows how it is possible to find the optimum design for different operation conditions, like ambient temperature, relative humidity, turbine inlet temperature, and compressor pressure ratio. The simulated designs include the chiller, with varied COP and fogging cooling for a compressor. In addition, the overall thermal efficiency is improved by adding some design systems like reheat and regenerative heating. The other goal of this research focuses on the blade-cooled gas turbine for higher turbine inlet temperature, and consequently, higher efficiency. New film cooling equations, along with changing film cooling effectiveness for optimum cooling air requirement at the first-stage blades, and an internal and trailing edge cooling for the second stage, are innovated for optimal efficiency calculation. This research sets the groundwork for using the optimum value of efficiency calculation, while using inlet cooling and blade cooling designs. In the final step, the designed systems in the gas cycles are combined with a steam cycle for performance improvement.
NASA Astrophysics Data System (ADS)
Fuc, Pawel; Lijewski, Piotr; Ziolkowski, Andrzej; Dobrzyński, Michal
2017-05-01
Analysis of the energy balance for an exhaust system of a diesel engine fit with an automotive thermoelectric generator (ATEG) of our own design has been carried out. A special measurement system and dedicated software were developed to measure the power generated by the modules. The research object was a 1.3-l small diesel engine with power output of 66 kW. The tests were carried out on a dynamic engine test bed that allows reproduction of an actual driving cycle expressed as a function V = f( t), simulating drivetrain (clutch, transmission) operating characteristics, vehicle geometrical parameters, and driver behavior. Measurements of exhaust gas thermodynamic parameters (temperature, pressure, and mass flow) as well as the voltage and current generated by the thermoelectric modules were performed during tests of our own design. Based on the results obtained, the flow of exhaust gas energy in the entire exhaust system was determined along with the ATEG power output. The ideal area of the exhaust system for location of the ATEG was defined to ensure the highest thermal energy recovery efficiency.
Gas analysis reveals novel aerobic deammonification in thermophilic aerobic digestion.
Yi, Y S; Kim, S; An, S; Choi, S I; Choi, E; Yun, Z
2003-01-01
A laboratory-scale thermophilic aerobic digester was operated with piggery wastewater. The operating temperature varied from 50-70 degrees C. It has been found that excessive nitrogen removal occurred in the laboratory-scale thermophilic system at various HRTs. Nitrite and nitrate were not observed in the effluent. Gas measurement reveals the presence of significant amount of N2O along with NH3 gas. The rational production of N2O gas in accordance with temperature and HRT suggests that biologically mediated deammonification processes significantly contribute to the N removal. Although further microbiological investigation is required to clarify the exact nitrogen removal mechanism, the large production of N2O gas seems to be a result of the existence of a rapid growing heterotrophic deammonification process in the thermophilic system.
Advanced Gas Turbine (AGT) powertrain system development for automotive applications report
NASA Technical Reports Server (NTRS)
1984-01-01
This report describes progress and work performed during January through June 1984 to develop technology for an Advanced Gas Turbine (AGT) engine for automotive applications. Work performed during the first eight periods initiated design and analysis, ceramic development, component testing, and test bed evaluation. Project effort conducted under this contract is part of the DOE Gas Turbine Highway Vehicle System Program. This program is oriented at providing the United States automotive industry the high-risk long-range techology necessary to produce gas turbine engines for automobiles with reduced fuel consumption and reduced environmental impact. Technology resulting from this program is intended to reach the marketplace by the early 1990s.
Suppression of Spontaneous Gas Oscillations by Acoustic Self-Feedback
NASA Astrophysics Data System (ADS)
Biwa, Tetsushi; Sawada, Yoshiki; Hyodo, Hiroaki; Kato, Soichiro
2016-10-01
This paper demonstrates a method of acoustical self-feedback to suppress spontaneous gas oscillations such as those observed in combustors of gas-turbine engines. Whereas a conventional feedback system consists of electromechanical devices, the present method achieves acoustical self-feedback with a hollow tube that connects two positions of the oscillation system. A model oscillator of combustion-driven gas oscillations is designed and built to demonstrate the applicability of the self-feedback concept. Stability analysis through measurements of Q values (quality factor) of oscillations shows that the desired delay time and gain are obtained when the tube length is equal to the odd integer times half the wavelength of the anticipated acoustic oscillations.
NASA Astrophysics Data System (ADS)
Mekhonoshina, E. V.; Modorskii, V. Ya.
2016-10-01
This paper describes simulation of oscillation modes in the elastic rotor supports with the gas-dynamic flow influence on the rotor in the magnetic suspension in the course of computational experiments. The system of engineering analysis ANSYS 15.0 was used as a numerical tool. The finite volume method for gas dynamics and finite element method for evaluating components of the stress-strain state (SSS) were applied for computation. The research varied magnetic suspension rigidity and estimated the SSS components in the system "gas-dynamic flow - compressor rotor - magnetic suspensions." The influence of aeroelastic effects on the impeller and the rotor on the deformability of vibration magnetic suspension was detected.
Numerical modeling of underground storage system for natural gas
NASA Astrophysics Data System (ADS)
Ding, J.; Wang, S.
2017-12-01
Natural gas is an important type of base-load energy, and its supply needs to be adjusted according to different demands in different seasons. For example, since natural gas is increasingly used to replace coal for winter heating, the demand for natural gas in winter is much higher than that in other seasons. As storage systems are the essential tools for balancing seasonal supply and demand, the design and simulation of natural gas storage systems form an important research direction. In this study, a large-scale underground storage system for natural gas is simulated based on theoretical analysis and finite element modeling.It is proven that the problem of axi-symmetric Darcy porous flow of ideal gas is governed by the Boussinesq equation. In terms of the exact solution to the Boussinesq equation, the basic operating characteristics of the underground storage system is analyzed, and it is demonstrated that the propagation distance of the pore pressure is proportional to the 1/4 power of the mass flow rate and to the 1/2 power of the propagation time. This quantitative relationship can be used to guide the overall design of natural gas underground storage systems.In order to fully capture the two-way coupling between pore pressure and elastic matrix deformation, a poro-elastic finite element model for natural gas storage is developed. Based on the numerical model, the dynamic processes of gas injection, storage and extraction are simulated, and the corresponding time-dependent surface deformations are obtained. The modeling results not only provide a theoretical basis for real-time monitoring for the operating status of the underground storage system through surface deformation measurements, but also demonstrate that a year-round balance can be achieved through periodic gas injection and extraction.This work is supported by the CAS "100 talents" Program and the National Natural Science Foundation of China (41371090).
S. K. Akagi; R. J. Yokelson; I. R. Burling; S. Meinardi; I. Simpson; D. R. Blake; G. R. McMeeking; A. Sullivan; T. Lee; S. Kreidenweis; S. Urbanski; J. Reardon; D. W. T. Griffith; T. J. Johnson; D. R. Weise
2013-01-01
In October-November 2011 we measured trace gas emission factors from seven prescribed fires in South Carolina (SC), US, using two Fourier transform infrared spectrometer (FTIR) systems and whole air sampling (WAS) into canisters followed by gas- 5 chromatographic analysis. A total of 97 trace gas species were quantified from both airborne and ground-based sampling...
NASA Astrophysics Data System (ADS)
Danilishin, A. M.; Kozhukhov, Y. V.; Neverov, V. V.; Malev, K. G.; Mironov, Y. R.
2017-08-01
The aim of this work is the validation study for the numerical modeling of characteristics of a multistage centrifugal compressor for natural gas. In the research process was the analysis used grid interfaces and software systems. The result revealed discrepancies between the simulated and experimental characteristics and outlined the future work plan.
Mathematical modeling of non-stationary gas flow in gas pipeline
NASA Astrophysics Data System (ADS)
Fetisov, V. G.; Nikolaev, A. K.; Lykov, Y. V.; Duchnevich, L. N.
2018-03-01
An analysis of the operation of the gas transportation system shows that for a considerable part of time pipelines operate in an unsettled regime of gas movement. Its pressure and flow rate vary along the length of pipeline and over time as a result of uneven consumption and selection, switching on and off compressor units, shutting off stop valves, emergence of emergency leaks. The operational management of such regimes is associated with difficulty of reconciling the operating modes of individual sections of gas pipeline with each other, as well as with compressor stations. Determining the grounds that cause change in the operating mode of the pipeline system and revealing patterns of these changes determine the choice of its parameters. Therefore, knowledge of the laws of changing the main technological parameters of gas pumping through pipelines in conditions of non-stationary motion is of great importance for practice.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nicolaie, Ph.; Stenz, C.; Tikhonchuk, V.
2008-08-15
The interaction of laser driven jets with gas puffs at various pressures is investigated experimentally and is analyzed by means of numerical tools. In the experiment, a combination of two complementary diagnostics allowed to characterize the main structures in the interaction zone. By changing the gas composition and its density, the plasma cooling time can be controlled and one can pass from a quasiadiabatic outflow to a strongly radiation cooling jet. This tuning yields hydrodynamic structures very similar to those seen in astrophysical objects; the bow shock propagating through the gas, the shocked materials, the contact discontinuity, and the Machmore » disk. From a dimensional analysis, a scaling is made between both systems and shows the study relevance for the jet velocity, the Mach number, the jet-gas density ratio, and the dissipative processes. The use of a two-dimensional radiation hydrodynamic code, confirms the previous analysis and provides detailed structure of the interaction zone and energy repartition between jet and surrounding gases.« less
Annotated Bibliography for Gas Mask and Chemical Defense Gear Related Papers
1988-01-15
protective clothing and equipment on combat efficiency (Technical Report No. AMSAA--TR-313). Aberdeen Proving Ground, MD: Army Material Systems Analysis ...atmosphere containing a known concentration of a harmless test aerosol or gas and subsequent analysis of the concentration inside the mask. Qualitative...exercise. Ergonomics , 21, 531-538. Eleven healthy males performed steady--s:ate bicycle exercise while breathing at each of 6 added inspiratory resist
High-resolution (noble) gas time series for aquatic research
NASA Astrophysics Data System (ADS)
Popp, A. L.; Brennwald, M. S.; Weber, U.; Kipfer, R.
2017-12-01
We developed a portable mass spectrometer (miniRUEDI) for on-site quantification of gas concentrations (He, Ar, Kr, N2, O2, CO2, CH4, etc.) in terrestrial gases [1,2]. Using the gas-equilibrium membrane-inlet technique (GE-MIMS), the miniRUEDI for the first time also allows accurate on-site and long-term dissolved-gas analysis in water bodies. The miniRUEDI is designed for operation in the field and at remote locations, using battery power and ambient air as a calibration gas. In contrast to conventional sampling and subsequent lab analysis, the miniRUEDI provides real-time and continuous time series of gas concentrations with a time resolution of a few seconds.Such high-resolution time series and immediate data availability open up new opportunities for research in highly dynamic and heterogeneous environmental systems. In addition the combined analysis of inert and reactive gas species provides direct information on the linkages of physical and biogoechemical processes, such as the air/water gas exchange, excess air formation, O2 turnover, or N2 production by denitrification [1,3,4].We present the miniRUEDI instrument and discuss its use for environmental research based on recent applications of tracking gas dynamics related to rapid and short-term processes in aquatic systems. [1] Brennwald, M.S., Schmidt, M., Oser, J., and Kipfer, R. (2016). Environmental Science and Technology, 50(24):13455-13463, doi: 10.1021/acs.est.6b03669[2] Gasometrix GmbH, gasometrix.com[3] Mächler, L., Peter, S., Brennwald, M.S., and Kipfer, R. (2013). Excess air formation as a mechanism for delivering oxygen to groundwater. Water Resources Research, doi:10.1002/wrcr.20547[4] Mächler, L., Brennwald, M.S., and Kipfer, R. (2013). Argon Concentration Time-Series As a Tool to Study Gas Dynamics in the Hyporheic Zone. Environmental Science and Technology, doi: 10.1021/es305309b
ECONOMIC GROWTH ANALYSIS SYSTEM: USER'S GUIDE VERSION 2.0
The two-volume report describes the development of and provides information needed to operate, the Economic Growth Analysis System (E-GAS) Version 2.0 model. The model will be used to project emissions inventories of volatile organic compounds (VOCs), oxides of nitrogen (NOx), a...
ECONOMIC GROWTH ANALYSIS SYSTEM: REFERENCE MANUAL VERSION 2.0
The two-volume report describes the development of and provides information needed to operate, the Economic Growth Analysis System (E-GAS) Version 2.0 model. The model will be used to project emissions inventories of volatile organic compounds (VOCs), oxides of nitrogen (NOx), a...
ECONOMIC GROWTH ANALYSIS SYSTEM: USER'S GUIDE - VERSION 3.0
The two-volume report describes the development of, and provides information needed to operate, the Economic Growth Analysis System (E-GAS) Version 3.0 model. The model will be used to project emissions inventories of volatile organic compounds, oxides of nitrogen, and carbon mon...
ECONOMIC GROWTH ANALYSIS SYSTEM: REFERENCE MANUAL VERSION 3.0
The two-volume report describes the development of, and provides information needed to operate, the Economic Growth Analysis System (E-GAS) Version 3.0 model. The model will be used to project emissions inventories of volatile organic compounds, oxides of nitrogen, and carbon mon...
NASA Technical Reports Server (NTRS)
Penny, M. M.; Smith, S. D.; Anderson, P. G.; Sulyma, P. R.; Pearson, M. L.
1976-01-01
A computer program written in conjunction with the numerical solution of the flow of chemically reacting gas-particle mixtures was documented. The solution to the set of governing equations was obtained by utilizing the method of characteristics. The equations cast in characteristic form were shown to be formally the same for ideal, frozen, chemical equilibrium and chemical non-equilibrium reacting gas mixtures. The characteristic directions for the gas-particle system are found to be the conventional gas Mach lines, the gas streamlines and the particle streamlines. The basic mesh construction for the flow solution is along streamlines and normals to the streamlines for axisymmetric or two-dimensional flow. The analysis gives detailed information of the supersonic flow and provides for a continuous solution of the nozzle and exhaust plume flow fields. Boundary conditions for the flow solution are either the nozzle wall or the exhaust plume boundary.
Slow crack growth test method for polyethylene gas pipes. Volume 1. Topical report, December 1992
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leis, B.; Ahmad, J.; Forte, T.
1992-12-01
In spite of the excellent performance record of polyethylene (PE) pipes used for gas distribution, a small number of leaks occur in distribution systems each year because of slow growth of cracks through pipe walls. The Slow Crack Growth Test (SCG) has been developed as a key element in a methodology for the assessment of the performance of polyethylene gas distribution systems to resist such leaks. This tropical report describes work conducted in the first part of the research directed at the initial development of the SCG test, including a critical evaluation of the applicability of the SCG test asmore » an element in PE gas pipe system performance methodology. Results of extensive experiments and analysis are reported. The results show that the SCG test should be very useful in performance assessment.« less
NASA Astrophysics Data System (ADS)
Harayama, I.; Nagashima, K.; Hirose, Y.; Matsuzaki, H.; Sekiba, D.
2016-10-01
We have developed a compact ΔE-E telescope elastic recoil detection analysis (ERDA) system, for the first time at Micro Analysis Laboratory, Tandem Accelerator (MALT) in the University of Tokyo, which consists of a gas ionization chamber and solid state detector (SSD) for the quantitative analysis of light elements. The gas ionization chamber is designed to identify the recoils of O and N from metal oxynitrides thin films irradiated with 40 MeV 35Cl7+. The length of the electrodes along the beam direction is 50 mm optimized to sufficiently separate energy loss of O and N recoils in P10 gas at 6.0 × 103 Pa. The performance of the gas ionization chamber was examined by comparing the ERDA results on the SrTaO2N thin films with semi-empirical simulation and the chemical compositions previously determined by nuclear reaction analysis (NRA) and Rutherford backscattering spectrometry (RBS). We also confirmed availability of the gas ionization chamber for identifying not only the recoils of O and N but also those of lithium, carbon and fluorine.
In-ground operation of Geothermic Fuel Cells for unconventional oil and gas recovery
NASA Astrophysics Data System (ADS)
Sullivan, Neal; Anyenya, Gladys; Haun, Buddy; Daubenspeck, Mark; Bonadies, Joseph; Kerr, Rick; Fischer, Bernhard; Wright, Adam; Jones, Gerald; Li, Robert; Wall, Mark; Forbes, Alan; Savage, Marshall
2016-01-01
This paper presents operating and performance characteristics of a nine-stack solid-oxide fuel cell combined-heat-and-power system. Integrated with a natural-gas fuel processor, air compressor, reactant-gas preheater, and diagnostics and control equipment, the system is designed for use in unconventional oil-and-gas processing. Termed a ;Geothermic Fuel Cell; (GFC), the heat liberated by the fuel cell during electricity generation is harnessed to process oil shale into high-quality crude oil and natural gas. The 1.5-kWe SOFC stacks are packaged within three-stack GFC modules. Three GFC modules are mechanically and electrically coupled to a reactant-gas preheater and installed within the earth. During operation, significant heat is conducted from the Geothermic Fuel Cell to the surrounding geology. The complete system was continuously operated on hydrogen and natural-gas fuels for ∼600 h. A quasi-steady operating point was established to favor heat generation (29.1 kWth) over electricity production (4.4 kWe). Thermodynamic analysis reveals a combined-heat-and-power efficiency of 55% at this condition. Heat flux to the geology averaged 3.2 kW m-1 across the 9-m length of the Geothermic Fuel Cell-preheater assembly. System performance is reviewed; some suggestions for improvement are proposed.
Preliminary Analysis for an Optimized Oil-Free Rotorcraft Engine Concept
NASA Technical Reports Server (NTRS)
Howard, Samuel A.; Bruckner, Robert J.; DellaCorte, Christopher; Radil, Kevin C.
2008-01-01
Recent developments in gas foil bearing technology have led to numerous advanced high-speed rotating system concepts, many of which have become either commercial products or experimental test articles. Examples include Oil-Free microturbines, motors, generators and turbochargers. The driving forces for integrating gas foil bearings into these high-speed systems are the benefits promised by removing the oil lubrication system. Elimination of the oil system leads to reduced emissions, increased reliability, and decreased maintenance costs. Another benefit is reduced power plant weight. For rotorcraft applications, this would be a major advantage, as every pound removed from the propulsion system results in a payload benefit. Implementing foil gas bearings throughout a rotorcraft gas turbine engine is an important long-term goal that requires overcoming numerous technological hurdles. Adequate thrust bearing load capacity and potentially large gearbox applied radial loads are among them. However, by replacing the turbine end, or hot section, rolling element bearing with a gas foil bearing many of the above benefits can be realized. To this end, engine manufacturers are beginning to explore the possibilities of hot section gas foil bearings in propulsion engines. This paper presents a logical follow-on activity by analyzing a conceptual rotorcraft engine to determine the feasibility of a foil bearing supported core. Using a combination of rotordynamic analyses and a load capacity model, it is shown to be reasonable to consider a gas foil bearing core section.
Topological signatures of interstellar magnetic fields - I. Betti numbers and persistence diagrams
NASA Astrophysics Data System (ADS)
Makarenko, Irina; Shukurov, Anvar; Henderson, Robin; Rodrigues, Luiz F. S.; Bushby, Paul; Fletcher, Andrew
2018-04-01
The interstellar medium (ISM) is a magnetized system in which transonic or supersonic turbulence is driven by supernova explosions. This leads to the production of intermittent, filamentary structures in the ISM gas density, whilst the associated dynamo action also produces intermittent magnetic fields. The traditional theory of random functions, restricted to second-order statistical moments (or power spectra), does not adequately describe such systems. We apply topological data analysis (TDA), sensitive to all statistical moments and independent of the assumption of Gaussian statistics, to the gas density fluctuations in a magnetohydrodynamic simulation of the multiphase ISM. This simulation admits dynamo action, so produces physically realistic magnetic fields. The topology of the gas distribution, with and without magnetic fields, is quantified in terms of Betti numbers and persistence diagrams. Like the more standard correlation analysis, TDA shows that the ISM gas density is sensitive to the presence of magnetic fields. However, TDA gives us important additional information that cannot be obtained from correlation functions. In particular, the Betti numbers per correlation cell are shown to be physically informative. Magnetic fields make the ISM more homogeneous, reducing the abundance of both isolated gas clouds and cavities, with a stronger effect on the cavities. Remarkably, the modification of the gas distribution by magnetic fields is captured by the Betti numbers even in regions more than 300 pc from the mid-plane, where the magnetic field is weaker and correlation analysis fails to detect any signatures of magnetic effects.
Unitized Regenerative Fuel Cell System Gas Dryer/Humidifier Analytical Model Development
NASA Technical Reports Server (NTRS)
Burke, Kenneth A.; Jakupca, Ian
2004-01-01
A lightweight Unitized Regenerative Fuel Cell (URFC) Energy Storage System concept is being developed at the NASA Glenn Research Center (GRC). This Unitized Regenerative Fuel Cell System (URFCS) is unique in that it uses Regenerative Gas Dryers/Humidifiers (RGD/H) that are mounted on the surface of the gas storage tanks that act as the radiators for thermal control of the Unitized Regenerative Fuel Cell System (URFCS). As the gas storage tanks cool down during URFCS charging the RGD/H dry the hydrogen and oxygen gases produced by electrolysis. As the gas storage tanks heat up during URFCS discharging, the RGD/H humidify the hydrogen and oxygen gases used by the fuel cell. An analytical model was developed to simulate the URFCS RGD/H. The model is in the form of a Microsoft (registered trademark of Microsoft Corporation) Excel worksheet that allows the investigation of the RGD/H performance. Finite Element Analysis (FEA) modeling of the RGD/H and the gas storage tank wall was also done to analyze spatial temperature distribution within the RGD/H and the localized tank wall. Test results obtained from the testing of the RGD/H in a thermal vacuum environment were used to corroborate the analyses.
Life-cycle assessment of diesel, natural gas and hydrogen fuel cell bus transportation systems
NASA Astrophysics Data System (ADS)
Ally, Jamie; Pryor, Trevor
The Sustainable Transport Energy Programme (STEP) is an initiative of the Government of Western Australia, to explore hydrogen fuel cell technology as an alternative to the existing diesel and natural gas public transit infrastructure in Perth. This project includes three buses manufactured by DaimlerChrysler with Ballard fuel cell power sources operating in regular service alongside the existing natural gas and diesel bus fleets. The life-cycle assessment (LCA) of the fuel cell bus trial in Perth determines the overall environmental footprint and energy demand by studying all phases of the complete transportation system, including the hydrogen infrastructure, bus manufacturing, operation, and end-of-life disposal. The LCAs of the existing diesel and natural gas transportation systems are developed in parallel. The findings show that the trial is competitive with the diesel and natural gas bus systems in terms of global warming potential and eutrophication. Emissions that contribute to acidification and photochemical ozone are greater for the fuel cell buses. Scenario analysis quantifies the improvements that can be expected in future generations of fuel cell vehicles and shows that a reduction of greater than 50% is achievable in the greenhouse gas, photochemical ozone creation and primary energy demand impact categories.
SO2 flux and the thermal power of volcanic eruptions
NASA Astrophysics Data System (ADS)
Henley, Richard W.; Hughes, Graham O.
2016-09-01
A description of the dynamics, chemistry and energetics governing a volcanic system can be greatly simplified if the expansion of magmatic gas can be assumed to be adiabatic as it rises towards the surface. The conditions under which this assumption is valid are clarified by analysis of the transfer of thermal energy into the low conductivity wallrocks traversed by fractures and vents from a gas phase expanding over a range of mass flux rates. Adiabatic behavior is predicted to be approached typically within a month after perturbations in the release of source gas have stabilized, this timescale being dependent upon only the characteristic length scale on which the host rock is fractured and the thermal diffusivity of the rock. This analysis then enables the thermal energy transport due to gas release from volcanoes to be evaluated using observations of SO2 flux with reference values for the H2O:SO2 ratio of volcanic gas mixtures discharging through high temperature fumaroles in arc and mantle-related volcanic systems. Thermal power estimates for gas discharge are 101.8 to 104.1 MWH during quiescent, continuous degassing of arc volcanoes and 103.7 to 107.3 MWH for their eruptive stages, the higher value being the Plinean Pinatubo eruption in 1991. Fewer data are available for quiescent stage mantle-related volcanoes (Kilauea 102.1 MWH) but for eruptive events power estimates range from 102.8 MWH to 105.5 MWH. These estimates of thermal power and mass of gas discharges are commensurate with power estimates based on the total mass of gas ejected during eruptions. The sustained discharge of volcanic gas during quiescent and short-lived eruptive stages can be related to the hydrodynamic structure of volcanic systems with large scale gaseous mass transfer from deep in the crust coupled with episodes of high level intrusive activity and gas release.
Isotopic abundance in atom trap trace analysis
Lu, Zheng-Tian; Hu, Shiu-Ming; Jiang, Wei; Mueller, Peter
2014-03-18
A method and system for detecting ratios and amounts of isotopes of noble gases. The method and system is constructed to be able to measure noble gas isotopes in water and ice, which helps reveal the geological age of the samples and understand their movements. The method and system uses a combination of a cooled discharge source, a beam collimator, a beam slower and magneto-optic trap with a laser to apply resonance frequency energy to the noble gas to be quenched and detected.
T-MATS Toolbox for the Modeling and Analysis of Thermodynamic Systems
NASA Technical Reports Server (NTRS)
Chapman, Jeffryes W.
2014-01-01
The Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS) is a MATLABSimulink (The MathWorks Inc.) plug-in for creating and simulating thermodynamic systems and controls. The package contains generic parameterized components that can be combined with a variable input iterative solver and optimization algorithm to create complex system models, such as gas turbines.
Implementation of a dynamic data entry system for the PHENIX gas system
NASA Astrophysics Data System (ADS)
Hagiwara, Masako
2003-10-01
The PHENIX detector at the BNL RHIC facility uses multiple detector technologies that require a precise gas delivery system, including flammable gases that require additional monitoring. During operation of the detector, it is crucial to maintain stable and safe operating conditions by carefully monitoring flows, pressures, and various other gas properties. These systems are monitored during running periods on a continuous basis. For the most part, these records were kept by hand, filling out a paper logsheet every four hours. A dynamic data entry system was needed to replace the paper logsheets. The solution created was to use a PDA or laptop computer with a wireless connection to enter the data directly into a MySQL database. The system uses PHP to dynamically create and update the data entry pages. The data entered can be viewed in graphs as well as tables. As a result, the data recorded will be easily accessible during PHENIX's next running period. It also allows for long term archiving, making the data available during the analysis phase, providing knowledge of the operating conditions of the gas system.
Economic and energetic analysis of capturing CO2 from ambient air
House, Kurt Zenz; Baclig, Antonio C.; Ranjan, Manya; van Nierop, Ernst A.; Wilcox, Jennifer; Herzog, Howard J.
2011-01-01
Capturing carbon dioxide from the atmosphere (“air capture”) in an industrial process has been proposed as an option for stabilizing global CO2 concentrations. Published analyses suggest these air capture systems may cost a few hundred dollars per tonne of CO2, making it cost competitive with mainstream CO2 mitigation options like renewable energy, nuclear power, and carbon dioxide capture and storage from large CO2 emitting point sources. We investigate the thermodynamic efficiencies of commercial separation systems as well as trace gas removal systems to better understand and constrain the energy requirements and costs of these air capture systems. Our empirical analyses of operating commercial processes suggest that the energetic and financial costs of capturing CO2 from the air are likely to have been underestimated. Specifically, our analysis of existing gas separation systems suggests that, unless air capture significantly outperforms these systems, it is likely to require more than 400 kJ of work per mole of CO2, requiring it to be powered by CO2-neutral power sources in order to be CO2 negative. We estimate that total system costs of an air capture system will be on the order of $1,000 per tonne of CO2, based on experience with as-built large-scale trace gas removal systems. PMID:22143760
State of art of seismic design and seismic hazard analysis for oil and gas pipeline system
NASA Astrophysics Data System (ADS)
Liu, Aiwen; Chen, Kun; Wu, Jian
2010-06-01
The purpose of this paper is to adopt the uniform confidence method in both water pipeline design and oil-gas pipeline design. Based on the importance of pipeline and consequence of its failure, oil and gas pipeline can be classified into three pipe classes, with exceeding probabilities over 50 years of 2%, 5% and 10%, respectively. Performance-based design requires more information about ground motion, which should be obtained by evaluating seismic safety for pipeline engineering site. Different from a city’s water pipeline network, the long-distance oil and gas pipeline system is a spatially linearly distributed system. For the uniform confidence of seismic safety, a long-distance oil and pipeline formed with pump stations and different-class pipe segments should be considered as a whole system when analyzing seismic risk. Considering the uncertainty of earthquake magnitude, the design-basis fault displacements corresponding to the different pipeline classes are proposed to improve deterministic seismic hazard analysis (DSHA). A new empirical relationship between the maximum fault displacement and the surface-wave magnitude is obtained with the supplemented earthquake data in East Asia. The estimation of fault displacement for a refined oil pipeline in Wenchuan M S8.0 earthquake is introduced as an example in this paper.
Dual exposure interferometry. [gas dynamics and flow visualization
NASA Technical Reports Server (NTRS)
Smeets, G.; George, A.
1982-01-01
The application of dual exposure differential interferometry to gas dynamics and flow visualization is discussed. A differential interferometer with Wallaston prisms can produce two complementary interference fringe systems, depending on the polarization of the incident light. If these two systems are superimposed on a film, with one exposure during a phenomenon, the other before or after, the phenomenon will appear on a uniform background. By regulating the interferometer to infinite fringe distance, a resolution limit of approximately lambda/500 can be obtained in the quantitative analysis of weak phase objects. This method was successfully applied to gas dynamic investigations.
A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing
NASA Technical Reports Server (NTRS)
Grady, Joseph E.
2015-01-01
The Non-Metallic Gas Turbine Engine project, funded by NASA Aeronautics Research Institute, represents the first comprehensive evaluation of emerging materials and manufacturing technologies that will enable fully nonmetallic gas turbine engines. This will be achieved by assessing the feasibility of using additive manufacturing technologies to fabricate polymer matrix composite and ceramic matrix composite turbine engine components. The benefits include: 50 weight reduction compared to metallic parts, reduced manufacturing costs, reduced part count and rapid design iterations. Two high payoff metallic components have been identified for replacement with PMCs and will be fabricated using fused deposition modeling (FDM) with high temperature polymer filaments. The CMC effort uses a binder jet process to fabricate silicon carbide test coupons and demonstration articles. Microstructural analysis and mechanical testing will be conducted on the PMC and CMC materials. System studies will assess the benefits of fully nonmetallic gas turbine engine in terms of fuel burn, emissions, reduction of part count, and cost. The research project includes a multidisciplinary, multiorganization NASA - industry team that includes experts in ceramic materials and CMCs, polymers and PMCs, structural engineering, additive manufacturing, engine design and analysis, and system analysis.
Analysis of selected volatile organic compounds at background level in South Africa.
NASA Astrophysics Data System (ADS)
Ntsasa, Napo; Tshilongo, James; Lekoto, Goitsemang
2017-04-01
Volatile organic compounds (VOC) are measured globally at urban air pollution monitoring and background level at specific locations such as the Cape Point station. The urban pollution monitoring is legislated at government level; however, the background levels are scientific outputs of the World Meteorological Organisation Global Atmospheric Watch program (WMO/GAW). The Cape Point is a key station in the Southern Hemisphere which monitors greenhouse gases and halocarbons, with reported for over the past decade. The Cape Point station does not have the measurement capability VOC's currently. A joint research between the Cape Point station and the National Metrology Institute of South Africa (NMISA) objective is to perform qualitative and quantitative analysis of volatile organic compounds listed in the GAW program. NMISA is responsible for development, maintain and disseminate primary reference gas mixtures which are directly traceable to the International System of Units (SI) The results of some volatile organic compounds which where sampled in high pressure gas cylinders will be presented. The analysis of samples was performed on the gas chromatography with flame ionisation detector and mass selective detector (GC-FID/MSD) with a dedicate cryogenic pre-concentrator system. Keywords: volatile organic compounds, gas chromatography, pre-concentrator
Zhang, Xiaolan; Song, Yingli; Li, Yuanmeng; Cai, Minghui; Meng, Yuan; Zhu, Hui
2017-01-01
Streptococcal heme binding protein (Shp) is a surface protein of the heme acquisition system that is an essential iron nutrient in Group A Streptococcus (GAS). Here, we tested whether Shp immunization protects mice from subcutaneous infection. Mice were immunized subcutaneously with recombinant Shp and then challenged with GAS. The protective effects against GAS challenge were evaluated two weeks after the last immunization. Immunization with Shp elicited a robust IgG response, resulting in high anti-Shp IgG titers in the serum. Immunized mice had a higher survival rate and smaller skin lesions than adjuvant control mice. Furthermore, immunized mice had lower GAS numbers at the skin lesions and in the liver, spleen and lung. Histological analysis with Gram staining showed that GAS invaded the surrounding area of the inoculation sites in the skin in control mice, but not in immunized mice. Thus, Shp immunization enhances GAS clearance and reduces GAS skin invasion and systemic dissemination. These findings indicate that Shp is a protective antigen.
Assessment of solar-assisted gas-fired heat pump systems
NASA Technical Reports Server (NTRS)
Lansing, F. L.
1981-01-01
As a possible application for the Goldstone Energy Project, the performance of a 10 ton heat pump unit using a hybrid solar gas energy source was evaluated in an effort to optimize the solar collector size. The heat pump system is designed to provide all the cooling and/or heating requirements of a selected office building. The system performance is to be augmented in the heating mode by utilizing the waste heat from the power cycle. A simplified system analysis is described to assess and compute interrrelationships of the engine, heat pump, and solar and building performance parameters, and to optimize the solar concentrator/building area ratio for a minimum total system cost. In addition, four alternative heating cooling systems, commonly used for building comfort, are described; their costs are compared, and are found to be less competitive with the gas solar heat pump system at the projected solar equipment costs.
NASA Technical Reports Server (NTRS)
Taylor, C. M.; Bill, R. C.
1978-01-01
A ceramic/metallic aircraft gas turbine outer gas path seal designed for improved engine performance was studied. Transient temperature and stress profiles in a test seal geometry were determined by numerical analysis. During a simulated engine deceleration cycle from sea-level takeoff to idle conditions, the maximum seal temperature occurred below the seal surface, therefore the top layer of the seal was probably subjected to tensile stresses exceeding the modulus of rupture. In the stress analysis both two- and three-dimensional finite element computer programs were used. Predicted trends of the simpler and more easily usable two-dimensional element programs were borne out by the three-dimensional finite element program results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eichman, Joshua
This presentation summarizes opportunities for hydrogen energy storage and power-to-gas and presents the results of a market analysis performed by the National Renewable Energy Laboratory to quantify the value of energy storage. Hydrogen energy storage and power-to-gas systems have the ability to integrate multiple energy sectors including electricity, transportation, and industrial. On account of the flexibility of hydrogen systems, there are a variety of potential system configurations. Each configuration will provide different value to the owner, customers and grid system operator. This presentation provides an economic comparison of hydrogen storage, power-to-gas and conventional storage systems. The total cost is comparedmore » to the revenue with participation in a variety of markets to assess the economic competitiveness. It is found that the sale of hydrogen for transportation or industrial use greatly increases competitiveness. Electrolyzers operating as demand response devices (i.e., selling hydrogen and grid services) are economically competitive, while hydrogen storage that inputs electricity and outputs only electricity have an unfavorable business case. Additionally, tighter integration with the grid provides greater revenue (e.g., energy, ancillary service and capacity markets are explored). Lastly, additional hours of storage capacity is not necessarily more competitive in current energy and ancillary service markets and electricity markets will require new mechanisms to appropriately compensate long duration storage devices.« less
Gas chromatography of volatile organic compounds
NASA Technical Reports Server (NTRS)
Zlatkis, A.
1973-01-01
System has been used for problems such as analysis of volatile metabolities in human blood and urine, analysis of air pollutants, and in tobacco smoke chemistry. Since adsorbent is reusable after porper reconditioning, method is both convenient and economical. System could be used for large scale on-site sampling programs in which sample is shipped to central location for analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeRosier, R.
1984-09-01
This volume is a compendium of detailed emission and test data from field tests of a firetube industrial boiler burning a coal/oil/water (COW) mixture. The boiler was tested while burning COW fuel, and COW with soda ash added (COW+SA) to serve as an SO/sub 2/ sorbent. The test data include: preliminary equipment calibration data, boiler operating data for both tests, fuel analysis results, and complete flue gas emission measurement and laboratory analysis results. Flue gas emission measurements included: continuous monitoring for criteria gas pollutants; gas chromatography (GC) of gas grab samples for volatile organics (C1-C6); EPA Method 5 for particulate;more » controlled condensation system for SO2 emissions; and source assessment sampling system (SASS) for total organics in two boiling point ranges (100 to 300 C and > 300 C), organic compound category information using infrared spectrometry (IR) and low resolution mass spectrometry (LRMS), specific quantitation of the semivolatile organic priority pollutants using gas chromatography/mass spectrometry (GC/MS), liquid chromatography (LC) separation of organic extracts into seven polarity fractions with total organic and IR analyses of eluted fractions, flue gas concentrations of trace elements by spark source mass spectrometry (SSMS) and atomic absorption spectroscopy (AAS), and biological assays of organic extracts.« less
Molecular Gas in Starburts: Understanding Mergers using High Density Gas Tracers
NASA Astrophysics Data System (ADS)
Manohar, Swarnima; Scoville, N.; Walter, F.; Sheth, K.
2014-01-01
NGC 6240 and Arp 220 can be considered the founding members of a very active class of objects called Ultraluminous Infrared Galaxies or ULIRGs. They are in different stages of mergers and hence are excellent case studies to enhance our knowledge about the merging process. We have imaged the dense star-forming regions of these galaxies at sub-arcsec resolution with ALMA and CARMA. Multi-band imaging allows multilevel excitation analysis of HCN, HCO+ and CS transitions which will constrain the properties of the gas as a function of position and velocity (across line profiles). We are doing an extensive multilevel excitation analysis of the merger as a function of radius which enables in depth understanding of the gas dynamics and gas properties such as temperature and density. This in turn probes the homogeneity of the gas in the merging system and hence the regions that facilitate high star formation rates. This tandem use of CARMA with ALMA to map these systems at different merger stages will assemble a more integrated picture of the merger process. We are probing the distribution and dynamics of star forming gas and star formation activity in the dense disk structures to enable new theoretical understanding of the physics, dynamics, star formation activity and associated feedback in the most active and rapidly evolving galactic nuclei. Here we present preliminary observations of Arp 220 and NGC 6240 from ALMA and CARMA.
ERIC Educational Resources Information Center
Rogers, Violet C.; Ethridge, Jack R.
2016-01-01
In 2009, four of the top ten Fortune 500 companies were classified within the oil and gas industry. Organizations of this size typically have an advanced Enterprise Risk Management system in place to mitigate risk and to achieve their corporations' objectives. The companies and the article utilize the Enterprise Risk Management Integrated…
NASA Technical Reports Server (NTRS)
Johnsen, R. L.
1979-01-01
The performance sensitivity of a two-shaft automotive gas turbine engine to changes in component performance and cycle operating parameters was examined. Sensitivities were determined for changes in turbomachinery efficiency, compressor inlet temperature, power turbine discharge temperature, regenerator effectiveness, regenerator pressure drop, and several gas flow and heat leaks. Compressor efficiency was found to have the greatest effect on system performance.
S. K. Akagi; R. J. Yokelson; I. R. Burling; S. Meinardi; I. Simpson; D. R. Blake; G. R. McMeeking; A. Sullivan; T. Lee; S. Kreidenweis; S. Urbanski; J. Reardon; D. W. T. Griffith; T. J. Johnson; D. R. Weise
2012-01-01
In OctoberâNovember 2011 we measured trace gas emission factors from seven prescribed fires in South Carolina (SC), US, using two Fourier transform infrared spectrometer (FTIR) systems and whole air sampling (WAS) into canisters followed by gas-chromatographic analysis. A total of 97 trace gas species were quantified from both airborne and ground-based sampling...
Liu, Jing; Gupta, Naveen K; Wise, Kensall D; Gianchandani, Yogesh B; Fan, Xudong
2011-10-21
This paper reports the investigation of a micro-gas chromatography (μGC) system that utilizes an array of miniaturized motionless Knudsen pumps (KPs) as well as microfabricated separation columns and optical detectors. A prototype system was built to achieve a flow rate of 1 mL min(-1) and 0.26 mL min(-1) for helium and dry air, respectively, when they were used as carrier gas. This system was then employed to evaluate GC performance compromises and demonstrate the ability to separate and detect gas mixtures containing analytes of different volatilities and polarities. Furthermore, the use of pressure programming of the KP array was demonstrated to significantly shorten the analysis time while maintaining a high detection resolution. Using this method, we obtained a high resolution detection of 5 alkanes of different volatilities within 5 min. Finally, we successfully detected gas mixtures of various polarities using a tandem-column μGC configuration by installing two on-column optical detectors to obtain complementary chromatograms.
Evaluation of a rapid breath hydrogen analyzer for clinical studies of carbohydrate absorption.
Solomons, N W; Hamilton, L H; Christman, N T; Rothman, D
1983-05-01
A second-generation gas chromatograph for the analysis of H2 in expired air has been developed. It incorporates a solid-state detector with high sensitivity for H2 and has a small, internal pump which supplies air as the carrier gas, thus eliminating the need for a large tank of compressed gas for the carrier. A reference gas of known H2 concentration is, of course, still required. The entire system weighs 6.0 kg and is completely portable, requiring only 120 V electric current for use. The instrument has a mean intersample interval of less than 2 min, with H2 concentration registered on a digital display. The output has a track-hold feature which permits the output, in parts per million H2, to be retained by the meter so the reading can be verified. The chromatogram can also be recorded on a conventional analog strip-chart recorder. The sensitivity and precision are superior to those of a thermal conductivity H2 gas chromatograph. Moreover, the rapid response time encourages frequent calibration checks with the reference gas. This analyzer offers significant advantages over previous H2-measuring systems for breath-analysis tests used both for diagnostic clinical practice and for field studies of nutritional assessment.
Validation of a new mixing chamber system for breath-by-breath indirect calorimetry.
Kim, Do-Yeon; Robergs, Robert Andrew
2012-02-01
Limited validation research exists for applications of breath-by-breath systems of expired gas analysis indirect calorimetry (EGAIC) during exercise. We developed improved hardware and software for breath-by-breath indirect calorimetry (NEW) and validated this system as well as a commercial system (COM) against 2 methods: (i) mechanical ventilation with known calibration gas, and (ii) human subjects testing for 5 min each at rest and cycle ergometer exercise at 100 and 175 W. Mechanical calibration consisted of medical grade and certified calibration gas ((4.95% CO(2), 12.01% O(2), balance N(2)), room air (20.95% O(2), 0.03% CO(2), balance N(2)), and 100% nitrogen), and an air flow turbine calibrated with a 3-L calibration syringe. Ventilation was mimicked manually using complete 3-L calibration syringe manouvers at a rate of 10·min(-1) from a Douglas bag reservoir of calibration gas. The testing of human subjects was completed in a counterbalanced sequence based on 5 repeated tests of all conditions for a single subject. Rest periods of 5 and 10 min followed the 100 and 175 W conditions, respectively. COM and NEW had similar accuracy when tested with known ventilation and gas fractions. However, during human subjects testing COM significantly under-measured carbon dioxide gas fractions, over-measured oxygen gas fractions and minute ventilation, and resulted in errors to each of oxygen uptake, carbon dioxide output, and respiratory exchange ratio. These discrepant findings reveal that controlled ventilation and gas fractions are insufficient to validate breath-by-breath, and perhaps even time-averaged, systems of EGAIC. The errors of the COM system reveal the need for concern over the validity of commercial systems of EGAIC.
Research on miniature gas analysis systems
NASA Technical Reports Server (NTRS)
Angell, J. B.
1974-01-01
Technology for fabricating very small valves, whose function will be to introduce a small sample of the gas to be analyzed into the main carrier gas stream flowing through the chromatograph column is described. In addition, some analyses were made of the factors governing the resolution of gas chromatographs, particularly those with miniature columns. These analyses show how important the column lining thickness is in governing the ability of a miniature column to separate components of an unknown gas. A brief description of column lining factors is included. Preliminary work on a super small thermistor detector is included.
Probability theory versus simulation of petroleum potential in play analysis
Crovelli, R.A.
1987-01-01
An analytic probabilistic methodology for resource appraisal of undiscovered oil and gas resources in play analysis is presented. This play-analysis methodology is a geostochastic system for petroleum resource appraisal in explored as well as frontier areas. An objective was to replace an existing Monte Carlo simulation method in order to increase the efficiency of the appraisal process. Underlying the two methods is a single geologic model which considers both the uncertainty of the presence of the assessed hydrocarbon and its amount if present. The results of the model are resource estimates of crude oil, nonassociated gas, dissolved gas, and gas for a geologic play in terms of probability distributions. The analytic method is based upon conditional probability theory and a closed form solution of all means and standard deviations, along with the probabilities of occurrence. ?? 1987 J.C. Baltzer A.G., Scientific Publishing Company.
Scheutz, Charlotte; Pedersen, Rasmus Broe; Petersen, Per Haugsted; Jørgensen, Jørgen Henrik Bjerre; Ucendo, Inmaculada Maria Buendia; Mønster, Jacob G; Samuelsson, Jerker; Kjeldsen, Peter
2014-07-01
Methane generated at landfills contributes to global warming and can be mitigated by biocover systems relying on microbial methane oxidation. As part of a closure plan for an old unlined landfill without any gas management measures, an innovative biocover system was established. The system was designed based on a conceptual model of the gas emission patterns established through an initial baseline study. The study included construction of gas collection trenches along the slopes of the landfill where the majority of the methane emissions occurred. Local compost materials were tested as to their usefulness as bioactive methane oxidizing material and a suitable compost mixture was selected. Whole site methane emission quantifications based on combined tracer release and downwind measurements in combination with several local experimental activities (gas composition within biocover layers, flux chamber based emission measurements and logging of compost temperatures) proved that the biocover system had an average mitigation efficiency of approximately 80%. The study showed that the system also had a high efficiency during winter periods with temperatures below freezing. An economic analysis indicated that the mitigation costs of the biocover system were competitive to other existing greenhouse gas mitigation options. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Azharuddin; Santarelli, Massimo
2016-09-01
Thermodynamic analysis of a closed cycle, solar powered Brayton gas turbine power plant with Concentrating Receiver system has been studied. A Brayton cycle is simpler than a Rankine cycle and has an advantage where the water is scarce. With the normal Brayton cycle a Concentrating Receiver System has been analysed which has a dependence on field density and optical system. This study presents a method of optimization of design parameter, such as the receiver working temperature and the heliostats density. This method aims at maximizing the overall efficiency of the three major subsystem that constitute the entire plant, namely, the heliostat field and the tower, the receiver and the power block. The results of the optimization process are shown and analysed.
NASA Astrophysics Data System (ADS)
Chepigin, A.; Leonte, M.; Colombo, F.; Kessler, J. D.
2014-12-01
Dissolved methane, ethane, propane, and butane concentrations in natural waters are traditionally measured using a headspace equilibration technique and gas chromatograph with flame ionization detector (GC-FID). While a relatively simple technique, headspace equilibration suffers from slow equilibration times and loss of sensitivity due to concentration dilution with the pure gas headspace. Here we present a newly developed pre-concentration system and auto-analyzer for use with a GC-FID. This system decreases the time required for each analysis by eliminating the headspace equilibration time, increases the sensitivity and precision with a rapid pre-concentration step, and minimized operator time with an autoanalyzer. In this method, samples are collected from Niskin bottles in newly developed 1 L plastic sample bags rather than glass vials. Immediately following sample collection, the sample bags are placed in an incubator and individually connected to a multiport sampling valve. Water is pumped automatically from the desired sample bag through a small (6.5 mL) Liqui-Cel® membrane contactor where the dissolved gas is vacuum extracted and directly flushed into the GC sample loop. The gases of interest are preferentially extracted with the Liqui-Cel and thus a natural pre-concentration effect is obtained. Daily method calibration is achieved in the field with a five-point calibration curve that is created by analyzing gas standard-spiked water stored in 5 L gas-impermeable bags. Our system has been shown to substantially pre-concentrate the dissolved gases of interest and produce a highly linear response of peak areas to dissolved gas concentration. The system retains the high accuracy, precision, and wide range of measurable concentrations of the headspace equilibration method while simultaneously increasing the sensitivity due to the pre-concentration step. The time and labor involved in the headspace equilibration method is eliminated and replaced with the immediate and automatic analysis of a maximum of 13 sequential samples. The elapsed time between sample collection and analysis is reduced from approximately 12 hrs to < 10 min, enabling dynamic and highly resolved sampling plans.
Decay Heat Removal in GEN IV Gas-Cooled Fast Reactors
Cheng, Lap-Yan; Wei, Thomas Y. C.
2009-01-01
The safety goal of the current designs of advanced high-temperature thermal gas-cooled reactors (HTRs) is that no core meltdown would occur in a depressurization event with a combination of concurrent safety system failures. This study focused on the analysis of passive decay heat removal (DHR) in a GEN IV direct-cycle gas-cooled fast reactor (GFR) which is based on the technology developments of the HTRs. Given the different criteria and design characteristics of the GFR, an approach different from that taken for the HTRs for passive DHR would have to be explored. Different design options based on maintaining core flow weremore » evaluated by performing transient analysis of a depressurization accident using the system code RELAP5-3D. The study also reviewed the conceptual design of autonomous systems for shutdown decay heat removal and recommends that future work in this area should be focused on the potential for Brayton cycle DHRs.« less
Dynamic gas temperature measurement system
NASA Technical Reports Server (NTRS)
Elmore, D. L.; Robinson, W. W.; Watkins, W. B.
1983-01-01
A gas temperature measurement system with compensated frequency response of 1 KHz and capability to operate in the exhaust of a gas turbine combustor was developed. Environmental guidelines for this measurement are presented, followed by a preliminary design of the selected measurement method. Transient thermal conduction effects were identified as important; a preliminary finite-element conduction model quantified the errors expected by neglecting conduction. A compensation method was developed to account for effects of conduction and convection. This method was verified in analog electrical simulations, and used to compensate dynamic temperature data from a laboratory combustor and a gas turbine engine. Detailed data compensations are presented. Analysis of error sources in the method were done to derive confidence levels for the compensated data.
Gas Turbine Characteristics for a Large Civil Tilt-Rotor (LCTR)
NASA Technical Reports Server (NTRS)
Snyder, Christopher A.; Thurman, Douglas R.
2010-01-01
In support of the Fundamental Aeronautics Program, Subsonic Rotary Wing Project; an engine system study has been undertaken to help define and understand some of the major gas turbine engine parameters required to meet performance and weight requirements as defined by earlier vehicle system studies. These previous vehicle studies will be reviewed to help define gas turbine performance goals. Assumptions and analysis methods used will be described. Performance and weight estimates for a few conceptual gas turbine engines meeting these requirements will be given and discussed. Estimated performance for these conceptual engines over a wide speed variation (down to 50 percent power turbine rpm at high torque) will be presented. Finally, areas needing further effort will be suggested and discussed.
Data is presented showing the progress made towards the development of a new automated system combining solid phase extraction (SPE) with gas chromatography/mass spectrometry for the single run analysis of water samples containing a broad range of acid, base and neutral compounds...
Gas Measurement Using Static Fourier Transform Infrared Spectrometers.
Köhler, Michael H; Schardt, Michael; Rauscher, Markus S; Koch, Alexander W
2017-11-13
Online monitoring of gases in industrial processes is an ambitious task due to adverse conditions such as mechanical vibrations and temperature fluctuations. Whereas conventional Fourier transform infrared (FTIR) spectrometers use rather complex optical and mechanical designs to ensure stable operation, static FTIR spectrometers do not require moving parts and thus offer inherent stability at comparatively low costs. Therefore, we present a novel, compact gas measurement system using a static single-mirror Fourier transform spectrometer (sSMFTS). The system works in the mid-infrared range from 650 cm - 1 to 1250 cm - 1 and can be operated with a customized White cell, yielding optical path lengths of up to 120 cm for highly sensitive quantification of gas concentrations. To validate the system, we measure different concentrations of 1,1,1,2-Tetrafluoroethane (R134a) and perform a PLS regression analysis of the acquired infrared spectra. Thereby, the measured absorption spectra show good agreement with reference data. Since the system additionally permits measurement rates of up to 200 Hz and high signal-to-noise ratios, an application in process analysis appears promising.
NASA Astrophysics Data System (ADS)
Moridis, G. J.; Reagan, M. T.; Queiruga, A. F.
2017-12-01
We analyze the gas production potential of recently discovered offshore hydrate deposits at the NGHP-02-09-A sSite in the Krishna-Godawari Basin of India, and the corresponding geomechanical system response during short- and long-term production. Using the most current data on the flow and geomechanical properties of the hydrate-bearing media and of the overburden, as well as information on the system boundaries, we investigate (a) the production rates of gas (CH4) and of water, their relative magnitudes and the reservoir thermal behavior in an effort to assess the viability of these deposits as energy sources, as well as (b) the potential subsidence and the effect of changing pressure and stress regimes on the porosity and permeability (and, consequently, on production). Additionally, we conduct a thorough sensitivity analysis in order to determine (a) the properties and conditions that control and dominate the system behavior, and (b) the range of the possible system response to production.
Gas Measurement Using Static Fourier Transform Infrared Spectrometers
Schardt, Michael; Rauscher, Markus S.; Koch, Alexander W.
2017-01-01
Online monitoring of gases in industrial processes is an ambitious task due to adverse conditions such as mechanical vibrations and temperature fluctuations. Whereas conventional Fourier transform infrared (FTIR) spectrometers use rather complex optical and mechanical designs to ensure stable operation, static FTIR spectrometers do not require moving parts and thus offer inherent stability at comparatively low costs. Therefore, we present a novel, compact gas measurement system using a static single-mirror Fourier transform spectrometer (sSMFTS). The system works in the mid-infrared range from 650 cm−1 to 1250 cm−1 and can be operated with a customized White cell, yielding optical path lengths of up to 120 cm for highly sensitive quantification of gas concentrations. To validate the system, we measure different concentrations of 1,1,1,2-Tetrafluoroethane (R134a) and perform a PLS regression analysis of the acquired infrared spectra. Thereby, the measured absorption spectra show good agreement with reference data. Since the system additionally permits measurement rates of up to 200 Hz and high signal-to-noise ratios, an application in process analysis appears promising. PMID:29137193
Song, Kai; Wang, Qi; Liu, Qi; Zhang, Hongquan; Cheng, Yingguo
2011-01-01
This paper describes the design and implementation of a wireless electronic nose (WEN) system which can online detect the combustible gases methane and hydrogen (CH4/H2) and estimate their concentrations, either singly or in mixtures. The system is composed of two wireless sensor nodes—a slave node and a master node. The former comprises a Fe2O3 gas sensing array for the combustible gas detection, a digital signal processor (DSP) system for real-time sampling and processing the sensor array data and a wireless transceiver unit (WTU) by which the detection results can be transmitted to the master node connected with a computer. A type of Fe2O3 gas sensor insensitive to humidity is developed for resistance to environmental influences. A threshold-based least square support vector regression (LS-SVR)estimator is implemented on a DSP for classification and concentration measurements. Experimental results confirm that LS-SVR produces higher accuracy compared with artificial neural networks (ANNs) and a faster convergence rate than the standard support vector regression (SVR). The designed WEN system effectively achieves gas mixture analysis in a real-time process. PMID:22346587
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cooke, M.; DeRoos, F.; Rising, B.
1984-10-01
The report gives results of an evaluation of the sampling and analysis of ultratrace levels of dibenzodioxins using EPA's recommended source sampling procedures (Modified Method 5 (MM5) train and the Source Assessment Sampling System--SASS). A gas-fired combustion system was used to simulate incineration flue gas, and a precision liquid injection system was designed for the program. The precision liquid injector was used to administer dilute solutions of 1,2,3,4-tetrachlorodibenzo-p-dioxin (1,2,3,4-TCDD) directly into a hot--260C (500F)--flue gas stream. Injections occurred continuously during the sampling episode so that very low gas-phase concentrations of 1,2,3,4-TCDD were continuously mixed with the flue gases. Recoveries weremore » measured for eight burn experiments. For all but one, the recoveries could be considered quantitative, demonstrating efficient collection by the EPA sampling systems. In one study, the components and connecting lines from a sampling device were analyzed separately to show where the 1,2,3,4-TCDD deposited in the train.« less
Implementation of Goal Attainment Scaling in Community Intellectual Disability Services
ERIC Educational Resources Information Center
Chapman, Melanie; Burton, Mark; Hunt, Victoria; Reeves, David
2006-01-01
The authors describe the evaluation of the implementation of an outcome measurement system (Goal Attainment Scaling-GAS) within the context of an interdisciplinary and interagency intellectual disability services setting. The GAS database allowed analysis of follow-up goals and indicated the extent of implementation, while a rater study evaluated…
National Gas Cool Times, September/October 2000.
ERIC Educational Resources Information Center
Natural Gas Cool Times, 2000
2000-01-01
Several articles are presented covering the development and use of gas/electric cooling solutions for public schools and colleges. Articles address financing issues; indoor air quality (IAQ) problems and solutions; and the analysis of heating, ventilation, and air conditioning systems. Three examples of how schools solved their cooling problems…
Apollo Soyuz mission, toxic gas entered cabin during earth landing sequence
NASA Technical Reports Server (NTRS)
1975-01-01
A postflight analysis is presented of the sequence which caused toxic gas to enter the cabin during repressurization for 30 seconds from manual deployment of the drogue parachutes at 18,550 feet to disabling of the reaction control system at 9600 feet. Results and conclusions are discussed.
Zhang, Meihua; Bi, Jinhu; Yang, Cui; Li, Donghao; Piao, Xiangfan
2012-01-01
In order to achieve rapid, automatic, and efficient extraction for trace chemicals from samples, a system of gas-purged headspace liquid phase microextraction (GP-HS-LPME) has been researched and developed based on the original HS-LPME technique. In this system, semiconductor condenser and heater, whose refrigerating and heating temperatures were controlled by microcontroller, were designed to cool the extraction solvent and to heat the sample, respectively. Besides, inert gas, whose gas flow rate was adjusted by mass flow controller, was continuously introduced into and discharged from the system. Under optimized parameters, extraction experiments were performed, respectively, using GP-HS-LPME system and original HS-LPME technique for enriching volatile and semivolatile target compounds from the same kind of sample of 15 PAHs standard mixture. GC-MS analysis results for the two experiments indicated that a higher enrichment factor was obtained from GP-HS-LPME. The enrichment results demonstrate that GP-HS-LPME system is potential in determination of volatile and semivolatile analytes from various kinds of samples. PMID:22448341
OPTIMIZATION OF HIGH-SPEED GC/TOFMS FOR METHOD TO-14 ANALYSIS
A fast GC/MS system (FGCMS) consisting of a high-speed gas chromatograph equipped with a narrow bandwidth injection accessory and a time-of-flight mass spectrometer detector is being optimized for analysis of Method TO-14 target compounds. The system consists entirely of comm...
[Remote system of natural gas leakage based on multi-wavelength characteristics spectrum analysis].
Li, Jing; Lu, Xu-Tao; Yang, Ze-Hui
2014-05-01
In order to be able to quickly, to a wide range of natural gas pipeline leakage monitoring, the remote detection system for concentration of methane gas was designed based on static Fourier transform interferometer. The system used infrared light, which the center wavelength was calibrated to absorption peaks of methane molecules, to irradiated tested area, and then got the interference fringes by converging collimation system and interference module. Finally, the system calculated the concentration-path-length product in tested area by multi-wavelength characteristics spectrum analysis algorithm, furthermore the inversion of the corresponding concentration of methane. By HITRAN spectrum database, Selected wavelength position of 1. 65 microm as the main characteristic absorption peaks, thereby using 1. 65 pm DFB laser as the light source. In order to improve the detection accuracy and stability without increasing the hardware configuration of the system, solved absorbance ratio by the auxiliary wave-length, and then get concentration-path-length product of measured gas by the method of the calculation proportion of multi-wavelength characteristics. The measurement error from external disturbance is caused by this innovative approach, and it is more similar to a differential measurement. It will eliminate errors in the process of solving the ratio of multi-wavelength characteristics, and can improve accuracy and stability of the system. The infrared absorption spectrum of methane is constant, the ratio of absorbance of any two wavelengths by methane is also constant. The error coefficients produced by the system is the same when it received the same external interference, so the measured noise of the system can be effectively reduced by the ratio method. Experimental tested standards methane gas tank with leaking rate constant. Using the tested data of PN1000 type portable methane detector as the standard data, and were compared to the tested data of the system, while tested distance of the system were 100, 200 and 500 m. Experimental results show that the methane concentration detected value was stable after a certain time leakage, the concentration-path-length product value of the system was stable. For detection distance of 100 m, the detection error of the concentration-path-length product was less than 1. 0%. With increasing distance from tested area, the detection error is increased correspondingly. When the distance was 500 m, the detection error was less than 4. 5%. In short, the detected error of the system is less than 5. 0% after the gas leakage stable, to meet the requirements of the field of natural gas leakage remote sensing.
Engineering computer graphics in gas turbine engine design, analysis and manufacture
NASA Technical Reports Server (NTRS)
Lopatka, R. S.
1975-01-01
A time-sharing and computer graphics facility designed to provide effective interactive tools to a large number of engineering users with varied requirements was described. The application of computer graphics displays at several levels of hardware complexity and capability is discussed, with examples of graphics systems tracing gas turbine product development, beginning with preliminary design through manufacture. Highlights of an operating system stylized for interactive engineering graphics is described.
A Real-Time De-Noising Algorithm for E-Noses in a Wireless Sensor Network
Qu, Jianfeng; Chai, Yi; Yang, Simon X.
2009-01-01
A wireless e-nose network system is developed for the special purpose of monitoring odorant gases and accurately estimating odor strength in and around livestock farms. This system is to simultaneously acquire accurate odor strength values remotely at various locations, where each node is an e-nose that includes four metal-oxide semiconductor (MOS) gas sensors. A modified Kalman filtering technique is proposed for collecting raw data and de-noising based on the output noise characteristics of those gas sensors. The measurement noise variance is obtained in real time by data analysis using the proposed slip windows average method. The optimal system noise variance of the filter is obtained by using the experiments data. The Kalman filter theory on how to acquire MOS gas sensors data is discussed. Simulation results demonstrate that the proposed method can adjust the Kalman filter parameters and significantly reduce the noise from the gas sensors. PMID:22399946
NASA Technical Reports Server (NTRS)
Parker, Ray; Coan, Mary; Cryderman, Kate; Captain, Janine
2013-01-01
The RESOLVE project is a lunar prospecting mission whose primary goal is to characterize water and other volatiles in lunar regolith. The Lunar Advanced Volatiles Analysis (LAVA) subsystem is comprised of a fluid subsystem that transports flow to the gas chromatograph - mass spectrometer (GC-MS) instruments that characterize volatiles and the Water Droplet Demonstration (WDD) that will capture and display water condensation in the gas stream. The LAVA Engineering Test Unit (ETU) is undergoing risk reduction testing this summer and fall within a vacuum chamber to understand and characterize component and integrated system performance. Testing of line heaters, printed circuit heaters, pressure transducers, temperature sensors, regulators, and valves in atmospheric and vacuum environments was done. Test procedures were developed to guide experimental tests and test reports to analyze and draw conclusions from the data. In addition, knowledge and experience was gained with preparing a vacuum chamber with fluid and electrical connections. Further testing will include integrated testing of the fluid subsystem with the gas supply system, near-infrared spectrometer, WDD, Sample Delivery System, and GC-MS in the vacuum chamber. This testing will provide hands-on exposure to a flight forward spaceflight subsystem, the processes associated with testing equipment in a vacuum chamber, and experience working in a laboratory setting. Examples of specific analysis conducted include: pneumatic analysis to calculate the WDD's efficiency at extracting water vapor from the gas stream to form condensation; thermal analysis of the conduction and radiation along a line connecting two thermal masses; and proportional-integral-derivative (PID) heater control analysis. Since LAVA is a scientific subsystem, the near-infrared spectrometer and GC-MS instruments will be tested during the ETU testing phase.
Conceptual design of thermal energy storage systems for near-term electric utility applications
NASA Technical Reports Server (NTRS)
Hall, E. W.
1980-01-01
Promising thermal energy storage systems for midterm applications in conventional electric utilities for peaking power generation are evaluated. Conceptual designs of selected thermal energy storage systems integrated with conventional utilities are considered including characteristics of alternate systems for peaking power generation, viz gas turbines and coal fired cycling plants. Competitive benefit analysis of thermal energy storage systems with alternate systems for peaking power generation and recommendations for development and field test of thermal energy storage with a conventional utility are included. Results indicate that thermal energy storage is only marginally competitive with coal fired cycling power plants and gas turbines for peaking power generation.
Haines, Seth S.; Hart, Patrick E.; Collett, Timothy S.; Shedd, William; Frye, Matthew; Weimer, Paul; Boswell, Ray
2017-01-01
The Pliocene and Pleistocene sediments at lease block Green Canyon 955 (GC955) in the Gulf of Mexico include sand-rich strata with high saturations of gas hydrate; these gas hydrate accumulations and the associated geology have been characterized over the past decade using conventional industry three-dimensional (3D) seismic data and dedicated logging-while-drilling (LWD) borehole data. To improve structural and stratigraphic characterization and to address questions of gas flow and reservoir properties, in 2013 the U.S. Geological Survey acquired high-resolution two-dimensional (2D) seismic data at GC955. Combined analysis of all available data improves our understanding of the geological evolution of the study area, which includes basin-scale migration of the Mississippi River sediment influx as well as local-scale shifting of sedimentary channels at GC955 in response to salt-driven uplift, structural deformation associated with the salt uplift, and upward gas migration from deeper sediments that charges the main gas hydrate reservoir and shallower strata. The 2D data confirm that the sand-rich reservoir is composed principally of sediments deposited in a proximal levee setting and that episodes of channel scour, interspersed with levee deposition, have resulted in an assemblage of many individual proximal levee deposit “pods” each with horizontal extent up to several hundred meters. Joint analysis of the 2D and 3D data reveals new detail of a complex fault network that controls the fluid-flow system; large east-west trending normal faults allow fluid flow through the reservoir-sealing fine-grained unit, and smaller north-south oriented faults provide focused fluid-flow pathways (chimneys) through the shallower sediments. This system has enabled the flow of gas from the main reservoir to the seafloor throughout the recent history at GC955, and its intricacies help explain the distributed occurrences of gas hydrate in the intervening strata.
Sabzian, M; Nasrabadi, M N; Haji-Hosseini, M
2018-10-01
The dynamic adsorption of xenon on molecular sieve packed columns was investigated. The modified Wheeler-Jonas equation was used to describe adsorption parameters such as adsorption capacity and adsorption rate coefficient. Different experimental conditions were accomplished to study their effects and to touch appropriate adsorbing circumstances. Respectable consistency was reached between experimental and modeled values. A purification and analysis setup was developed for radioactive xenon gas determination. Standard sample analysis results approved acceptable quantification accuracy. Copyright © 2018. Published by Elsevier Ltd.
Environmental impacts of high penetration renewable energy scenarios for Europe
NASA Astrophysics Data System (ADS)
Berrill, Peter; Arvesen, Anders; Scholz, Yvonne; Gils, Hans Christian; Hertwich, Edgar G.
2016-01-01
The prospect of irreversible environmental alterations and an increasingly volatile climate pressurises societies to reduce greenhouse gas emissions, thereby mitigating climate change impacts. As global electricity demand continues to grow, particularly if considering a future with increased electrification of heat and transport sectors, the imperative to decarbonise our electricity supply becomes more urgent. This letter implements outputs of a detailed power system optimisation model into a prospective life cycle analysis framework in order to present a life cycle analysis of 44 electricity scenarios for Europe in 2050, including analyses of systems based largely on low-carbon fossil energy options (natural gas, and coal with carbon capture and storage (CCS)) as well as systems with high shares of variable renewable energy (VRE) (wind and solar). VRE curtailments and impacts caused by extra energy storage and transmission capabilities necessary in systems based on VRE are taken into account. The results show that systems based largely on VRE perform much better regarding climate change and other impact categories than the investigated systems based on fossil fuels. The climate change impacts from Europe for the year 2050 in a scenario using primarily natural gas are 1400 Tg CO2-eq while in a scenario using mostly coal with CCS the impacts are 480 Tg CO2-eq. Systems based on renewables with an even mix of wind and solar capacity generate impacts of 120-140 Tg CO2-eq. Impacts arising as a result of wind and solar variability do not significantly compromise the climate benefits of utilising these energy resources. VRE systems require more infrastructure leading to much larger mineral resource depletion impacts than fossil fuel systems, and greater land occupation impacts than systems based on natural gas. Emissions and resource requirements from wind power are smaller than from solar power.
NASA Astrophysics Data System (ADS)
Saad, N.; Kuramoto, D. S.; Haase, C.; Crosson, E.; Tan, S.; Zare, R. N.
2009-12-01
Light stable isotope analysis, and in particular, compound specific isotopic analysis (CSIA), is a valuable tool to elucidate pathways and provide a better insight into biological, ecological, and geological systems. We present here the results of compound-specific isotopic carbon analysis of short chain hydrocarbons using the world’s first combination of gas chromatography, combustion interface, and cavity ring-down spectroscopy (GC-C-CRDS). Cavity ring-down spectroscopy (CRDS) is a highly sensitive optical spectroscopy, one application of which is to measure the stable isotopic ratios in small molecules. Because it uses a highly reflective optical cavity with many kilometers effective path length, CRDS provides some of the most sensitive and precise optical absorption measurements. Most optical spectroscopy isotopic analysis measures the quantities of each isotopologue independently using their distinct ro-vibrational spectra. The most common isotopes measured with optical spectroscopy are 13C and 12C in carbon dioxide. However, the isotopes of hydrogen, oxygen, and sulfur have also been measured. Unlike isotope ratio mass spectrometry (IRMS), optical spectroscopy can distinguish among isobars, which have essentially identical m/z ratios. The combination of chemical separation, chemical conversion, and CRDS makes a nearly universal tool for isotopic analysis of mixtures. In addition, CRDS can tolerate a variety of compounds mixed with the target. For example, CRDS can measure carbon dioxide and its isotopic 13C/12C ratio in the presence of oxygen. Using the novel GC-C-CRDS system, we injected a 75-microliter mixture of approximately equal quantities of methane, ethane, and propane into a gas chromatograph using helium as carrier gas. The methane, ethane, and propane were separated in time by 100 to 200 seconds after the chromatograph. Oxygen gas was added, and the hydrocarbons were combusted in a catalytic combustor with platinum and nickel, held at 1150oC. The combusted products were combined with dry nitrogen gas to provide sufficient gas flow for the CRDS analyzer, which measured the 13C/12C isotopic ratio of the separated methane, ethane, and propane, obtaining a precision of 0.95 permil or better. The calibration accuracy was within 3 permil of the values determined using IRMS. The current CRDS-based system is less expensive, does not require highly trained personnel to operate, and is portable, compared with IRMS. We anticipate that advances in spectroscopic analysis will improve the precision and accuracy of the CRDS isotopic measurement, making it comparable with IRMS.
Fiber optic sensing technology for detecting gas hydrate formation and decomposition.
Rawn, C J; Leeman, J R; Ulrich, S M; Alford, J E; Phelps, T J; Madden, M E
2011-02-01
A fiber optic-based distributed sensing system (DSS) has been integrated with a large volume (72 l) pressure vessel providing high spatial resolution, time-resolved, 3D measurement of hybrid temperature-strain (TS) values within experimental sediment-gas hydrate systems. Areas of gas hydrate formation (exothermic) and decomposition (endothermic) can be characterized through this proxy by time series analysis of discrete data points collected along the length of optical fibers placed within a sediment system. Data are visualized as an animation of TS values along the length of each fiber over time. Experiments conducted in the Seafloor Process Simulator at Oak Ridge National Laboratory clearly indicate hydrate formation and dissociation events at expected pressure-temperature conditions given the thermodynamics of the CH(4)-H(2)O system. The high spatial resolution achieved with fiber optic technology makes the DSS a useful tool for visualizing time-resolved formation and dissociation of gas hydrates in large-scale sediment experiments.
Fiber optic sensing technology for detecting gas hydrate formation and decomposition
NASA Astrophysics Data System (ADS)
Rawn, C. J.; Leeman, J. R.; Ulrich, S. M.; Alford, J. E.; Phelps, T. J.; Madden, M. E.
2011-02-01
A fiber optic-based distributed sensing system (DSS) has been integrated with a large volume (72 l) pressure vessel providing high spatial resolution, time-resolved, 3D measurement of hybrid temperature-strain (TS) values within experimental sediment-gas hydrate systems. Areas of gas hydrate formation (exothermic) and decomposition (endothermic) can be characterized through this proxy by time series analysis of discrete data points collected along the length of optical fibers placed within a sediment system. Data are visualized as an animation of TS values along the length of each fiber over time. Experiments conducted in the Seafloor Process Simulator at Oak Ridge National Laboratory clearly indicate hydrate formation and dissociation events at expected pressure-temperature conditions given the thermodynamics of the CH4-H2O system. The high spatial resolution achieved with fiber optic technology makes the DSS a useful tool for visualizing time-resolved formation and dissociation of gas hydrates in large-scale sediment experiments.
Sealed operation, and circulation and purification of gas in the HARPO TPC
NASA Astrophysics Data System (ADS)
Frotin, M.; Gros, P.; Attié, D.; Bernard, D.; Dauvois, V.; Delbart, A.; Durand, D.; Geerebaert, Y.; Legand, S.; Magnier, P.; Poilleux, P.; Semeniouk, I.
2018-02-01
HARPO is a time projection chamber (TPC) demonstrator of a gamma-ray telescope and polarimeter in the MeV-GeV range, for a future space mission. We present the evolution of the TPC performance over a five month sealed-mode operation, by the analysis of cosmic-ray data, followed by the fast and complete recovery of the initial gas properties using a lightweight gas circulation and purification system.
Role of natural gas in meeting an electric sector emissions ...
With advances in natural gas extraction technologies, there is an increase in availability of domestic natural gas, and natural gas is gaining a larger share of use as a fuel in electricity production. At the power plant, natural gas is a cleaner burning fuel than coal, but uncertainties exist in the amount of methane leakage occurring upstream in the extraction and production of natural gas. At high leakage levels, these methane emissions could outweigh the benefits of switching from coal to natural gas. This analysis uses the MARKAL linear optimization model to compare the carbon emissions profiles and system-wide global warming potential of the U.S. energy system over a series of model runs in which the power sector is asked to meet a specific CO2 reduction target and the availability of natural gas changes. Scenarios are run with a range of upstream methane emission leakage rates from natural gas production. While the total CO2 emissions are reduced in most scenarios, total greenhouse gas emissions show an increase or no change when both natural gas availability and methane emissions from natural gas production are high. Article presents summary of results from an analyses of natural gas resource availability and power sector emissions reduction strategies under different estimates of methane leakage rates during natural gas extraction and production. This was study was undertaken as part of the Energy Modeling Forum Study #31:
NASA Astrophysics Data System (ADS)
McLeod, Jeffrey
The recent increase in U.S. natural gas production made possible through advancements in extraction techniques including hydraulic fracturing has transformed the U.S. energy supply landscape while raising questions regarding the balance of environmental impacts associated with natural gas production and use. Impact areas at issue include emissions of methane and criteria pollutants from natural gas production, alongside changes in emissions from increased use of natural gas in place of coal for electricity generation. In the Rocky Mountain region, these impact areas have been subject to additional scrutiny due to the high level of regional oil and gas production activity and concerns over its links to air quality. Here, the MARKAL (MArket ALlocation) least-cost energy system optimization model in conjunction with the EPA-MARKAL nine-region database has been used to characterize future regional and national emissions of CO 2, CH4, VOC, and NOx attributed to natural gas production and use in several sectors of the economy. The analysis is informed by comparing and contrasting a base case, business-as-usual scenario with scenarios featuring variations in future natural gas supply characteristics, constraints affecting the electricity generation mix, carbon emission reduction strategies and increased demand for natural gas in the transportation sector. Emission trends and their associated sensitivities are identified and contrasted between the Rocky Mountain region and the U.S. as a whole. The modeling results of this study illustrate the resilience of the short term greenhouse gas emission benefits associated with fuel switching from coal to gas in the electric sector, but also call attention to the long term implications of increasing natural gas production and use for emissions of methane and VOCs, especially in the Rocky Mountain region. This analysis can help to inform the broader discussion of the potential environmental impacts of future natural gas production and use by illustrating links between relevant economic and environmental variables.
Online gas analysis and diagnosis for RPC detectors in the ATLAS experiment
NASA Astrophysics Data System (ADS)
de Asmundis, Riccardo
2007-03-01
Resistive Plate Counters (RPC) detectors need a very strict control of gas parameters: motivations for this statement come from both the request of stability in the detector working point, and chemical consideration concerning potentially aggressive materials generated during the ionization processes into the sensitive gap; the latter point can be relevant because of a possible damage to the internal surface of the detector that has to be avoided in order to ensure an high detection efficiency of the RPC during their ten years or more of operation in ATLAS. In order to understand these aspects, detailed studies on gas behavior have been carried on at the GIF-X5 at CERN (2002-2005), based on Gas Chromatographic and spectroscopy techniques. Main results of these analysis are presented here, together with the design of the online analyzer to be installed on ATLAS conceived to keep control of gas quality and to trigger maintenance interventions on the gas system, in particular on the purification subsystem.
Simulation of Transcritical CO2 Refrigeration System with Booster Hot Gas Bypass in Tropical Climate
NASA Astrophysics Data System (ADS)
Santosa, I. D. M. C.; Sudirman; Waisnawa, IGNS; Sunu, PW; Temaja, IW
2018-01-01
A Simulation computer becomes significant important for performance analysis since there is high cost and time allocation to build an experimental rig, especially for CO2 refrigeration system. Besides, to modify the rig also need additional cos and time. One of computer program simulation that is very eligible to refrigeration system is Engineering Equation System (EES). In term of CO2 refrigeration system, environmental issues becomes priority on the refrigeration system development since the Carbon dioxide (CO2) is natural and clean refrigerant. This study aims is to analysis the EES simulation effectiveness to perform CO2 transcritical refrigeration system with booster hot gas bypass in high outdoor temperature. The research was carried out by theoretical study and numerical analysis of the refrigeration system using the EES program. Data input and simulation validation were obtained from experimental and secondary data. The result showed that the coefficient of performance (COP) decreased gradually with the outdoor temperature variation increasing. The results show the program can calculate the performance of the refrigeration system with quick running time and accurate. So, it will be significant important for the preliminary reference to improve the CO2 refrigeration system design for the hot climate temperature.
Apparatus for focusing flowing gas streams
Nogar, N.S.; Keller, R.A.
1985-05-20
Apparatus for focusing gas streams. The principle of hydrodynamic focusing is applied to flowing gas streams in order to provide sample concentration for improved photon and sample utilization in resonance ionization mass spectrometric analysis. In a concentric nozzle system, gas samples introduced from the inner nozzle into the converging section of the outer nozzle are focused to streams 50-250-..mu..m in diameter. In some cases diameters of approximately 100-..mu..m are maintained over distances of several centimeters downstream from the exit orifice of the outer nozzle. The sheath gas employed has been observed to further provide a protective covering around the flowing gas sample, thereby isolating the flowing gas sample from possible unwanted reactions with nearby surfaces. A single nozzle variation of the apparatus for achieving hydrodynamic focusing of gas samples is also described.
Fluid clathrate system for continuous removal of heavy noble gases from mixtures of lighter gases
Gross, K.C.; Markun, F.; Zawadzki, M.T.
1998-04-28
An apparatus and method are disclosed for separation of heavy noble gas in a gas volume. An apparatus and method have been devised which includes a reservoir containing an oil exhibiting a clathrate effect for heavy noble gases with a reservoir input port and the reservoir is designed to enable the input gas volume to bubble through the oil with the heavy noble gas being absorbed by the oil exhibiting a clathrate effect. The gas having reduced amounts of heavy noble gas is output from the oil reservoir, and the oil having absorbed heavy noble gas can be treated by mechanical agitation and/or heating to desorb the heavy noble gas for analysis and/or containment and allow recycling of the oil to the reservoir. 6 figs.
Fluid clathrate system for continuous removal of heavy noble gases from mixtures of lighter gases
Gross, Kenneth C.; Markun, Francis; Zawadzki, Mary T.
1998-01-01
An apparatus and method for separation of heavy noble gas in a gas volume. An apparatus and method have been devised which includes a reservoir containing an oil exhibiting a clathrate effect for heavy noble gases with a reservoir input port and the reservoir is designed to enable the input gas volume to bubble through the oil with the heavy noble gas being absorbed by the oil exhibiting a clathrate effect. The gas having reduced amounts of heavy noble gas is output from the oil reservoir, and the oil having absorbed heavy noble gas can be treated by mechanical agitation and/or heating to desorb the heavy noble gas for analysis and/or containment and allow recycling of the oil to the reservoir.
Analysis of STS-3 Get Away Special (GAS) flight data and vibration specification for gas payloads
NASA Technical Reports Server (NTRS)
Talapatra, D. C.
1983-01-01
During the Space Transportation System (STS)-3 mission, a Get Away Special (GAS) canister was flown. In order to determine the flight environment for GAS payloads, triaxial accelerometers and a microphone were installed inside the GAS canister. Data from these accelerometers and the microphone were analyzed. The microphone data is presented as overall sound pressure level (SPL) and one-third octave band time history plots. And the accelerometer data is provided in the forms of instantaneous time history, RMS time history and power spectral density plots. Also based on this flight data, vibration test specification for GAS payloads was developed and the recommended specification is presented here.
Xiujuan Wang,; ,; Collett, Timothy S.; Lee, Myung W.; Yang, Shengxiong; Guo, Yiqun; Wu, Shiguo
2014-01-01
Multi-channel seismic reflection data, well logs, and recovered sediment cores have been used in this study to characterize the geologic controls on the occurrence of gas hydrate in the Shenhu area of the South China Sea. The concept of the "gas hydrate petroleum system" has allowed for the systematic analysis of the impact of gas source, geologic controls on gas migration, and the role of the host sediment in the formation and stability of gas hydrates as encountered during the 2007 Guangzhou Marine Geological Survey Gas Hydrate Expedition (GMGS-1) in the Shenhu area. Analysis of seismic and bathymetric data identified seventeen sub-linear, near-parallel submarine canyons in this area. These canyons, formed in the Miocene, migrated in a northeasterly direction, and resulted in the burial and abandonment of canyons partially filled by coarse-grained sediments. Downhole wireline log (DWL) data were acquired from eight drill sites and sediment coring was conducted at five of these sites, which revealed the presence of suitable reservoirs for the occurrence of concentrated gas hydrate accumulations. Gas hydrate-bearing sediment layers were identified from well log and core data at three sites mainly within silt and silt clay sediments. Gas hydrate was also discovered in a sand reservoir at one site as inferred from the analysis of the DWL data. Seismic anomalies attributed to the presence of gas below the base of gas hydrate stability zone, provided direct evidence for the migration of gas into the overlying gas hydrate-bearing sedimentary sections. Geochemical analyses of gas samples collected from cores confirmed that the occurrence of gas hydrate in the Shenhu area is controlled by the presence thermogenic methane gas that has migrated into the gas hydrate stability zone from a more deeply buried source.
Fuzzy Bayesian Network-Bow-Tie Analysis of Gas Leakage during Biomass Gasification
Yan, Fang; Xu, Kaili; Yao, Xiwen; Li, Yang
2016-01-01
Biomass gasification technology has been rapidly developed recently. But fire and poisoning accidents caused by gas leakage restrict the development and promotion of biomass gasification. Therefore, probabilistic safety assessment (PSA) is necessary for biomass gasification system. Subsequently, Bayesian network-bow-tie (BN-bow-tie) analysis was proposed by mapping bow-tie analysis into Bayesian network (BN). Causes of gas leakage and the accidents triggered by gas leakage can be obtained by bow-tie analysis, and BN was used to confirm the critical nodes of accidents by introducing corresponding three importance measures. Meanwhile, certain occurrence probability of failure was needed in PSA. In view of the insufficient failure data of biomass gasification, the occurrence probability of failure which cannot be obtained from standard reliability data sources was confirmed by fuzzy methods based on expert judgment. An improved approach considered expert weighting to aggregate fuzzy numbers included triangular and trapezoidal numbers was proposed, and the occurrence probability of failure was obtained. Finally, safety measures were indicated based on the obtained critical nodes. The theoretical occurrence probabilities in one year of gas leakage and the accidents caused by it were reduced to 1/10.3 of the original values by these safety measures. PMID:27463975
Use of a turbine in a breath-by-breath computer-based respiratory measurement system.
Venkateswaran, R S; Gallagher, R R
1997-01-01
The Computer-Based Respiratory Measurement System (CBRMS) is capable of analyzing individual breaths to monitor the kinetics of oxygen uptake, carbon dioxide production, tidal volumes, pulmonary ventilation, and other respiratory parameters during rest, exercise, and recovery. Respiratory gas volumes are measured by a calibrated turbine transducer while the respiratory gas concentrations are measured by a calibrated, fast-responding medical gas analyzer. To improve accuracy of the results, the inspiratory volumes and gas concentrations are measured and not assumed to be equal to expiratory volumes or ambient concentrations respectively. The respiratory gas volumes and concentration signals are digitized and stored in arrays. The gas volumes are converted to flow signals by software differentiation. These digitized data arrays are stored as files in a personal computer. Time alignment of the flow and gas concentration signals is performed at each breath for maximum accuracy in analysis. For system verification, data were obtained under resting conditions and under constant load exercises at 50 W, 100 W, and 150 W. These workloads were performed by a healthy, male subject on a bicycle ergometer. A strong correlation existed between the CBRMS steady-state results and the standard end-expirate bag collection technique. Thus, there is reason to believe that the CBRMS is capable of calculating respiratory transient responses accurately, a significant contribution to an understanding of total respiratory system function.
a Real-Time GIS Platform for High Sour Gas Leakage Simulation, Evaluation and Visualization
NASA Astrophysics Data System (ADS)
Li, M.; Liu, H.; Yang, C.
2015-07-01
The development of high-sulfur gas fields, also known as sour gas field, is faced with a series of safety control and emergency management problems. The GIS-based emergency response system is placed high expectations under the consideration of high pressure, high content, complex terrain and highly density population in Sichuan Basin, southwest China. The most researches on high hydrogen sulphide gas dispersion simulation and evaluation are used for environmental impact assessment (EIA) or emergency preparedness planning. This paper introduces a real-time GIS platform for high-sulfur gas emergency response. Combining with real-time data from the leak detection systems and the meteorological monitoring stations, GIS platform provides the functions of simulating, evaluating and displaying of the different spatial-temporal toxic gas distribution patterns and evaluation results. This paper firstly proposes the architecture of Emergency Response/Management System, secondly explains EPA's Gaussian dispersion model CALPUFF simulation workflow under high complex terrain and real-time data, thirdly explains the emergency workflow and spatial analysis functions of computing the accident influencing areas, population and the optimal evacuation routes. Finally, a well blow scenarios is used for verify the system. The study shows that GIS platform which integrates the real-time data and CALPUFF models will be one of the essential operational platforms for high-sulfur gas fields emergency management.
Madsen, René B; Christensen, Per S; Houlberg, Kasper; Lappa, Elpiniki; Mørup, Anders J; Klemmer, Maika; Olsen, Eva M; Jensen, Mads M; Becker, Jacob; Iversen, Bo B; Glasius, Marianne
2015-09-01
This work provides a comprehensive characterization of the gas phase from hydrothermal liquefaction of Dried Distillers Grains with Solubles (DDGS) collected during a 24-h continuous experiment. The gas consisted mainly of CO2, CO, H2, CH4 and C2H6 accounting for 96 v/v% while further analysis by gas chromatography coupled to mass spectrometry (GC-MS) showed additionally 62 compounds of which 54 were tentatively identified. These products included methanethiol, dimethyl sulfide, various olefins and several aromatic compounds. The composition provided clear indication of the steady state of the system. Apart from CO2, olefins were the most abundant compound class and could provide a source of revenue. Copyright © 2015 Elsevier Ltd. All rights reserved.
Microfluidic and nanofluidic phase behaviour characterization for industrial CO2, oil and gas.
Bao, Bo; Riordon, Jason; Mostowfi, Farshid; Sinton, David
2017-08-08
Microfluidic systems that leverage unique micro-scale phenomena have been developed to provide rapid, accurate and robust analysis, predominantly for biomedical applications. These attributes, in addition to the ability to access high temperatures and pressures, have motivated recent expanded applications in phase measurements relevant to industrial CO 2 , oil and gas applications. We here present a comprehensive review of this exciting new field, separating microfluidic and nanofluidic approaches. Microfluidics is practical, and provides similar phase properties analysis to established bulk methods with advantages in speed, control and sample size. Nanofluidic phase behaviour can deviate from bulk measurements, which is of particular relevance to emerging unconventional oil and gas production from nanoporous shale. In short, microfluidics offers a practical, compelling replacement of current bulk phase measurement systems, whereas nanofluidics is not practical, but uniquely provides insight into phase change phenomena at nanoscales. Challenges, trends and opportunities for phase measurements at both scales are highlighted.
Life cycle carbon footprint of shale gas: review of evidence and implications.
Weber, Christopher L; Clavin, Christopher
2012-06-05
The recent increase in the production of natural gas from shale deposits has significantly changed energy outlooks in both the US and world. Shale gas may have important climate benefits if it displaces more carbon-intensive oil or coal, but recent attention has discussed the potential for upstream methane emissions to counteract this reduced combustion greenhouse gas emissions. We examine six recent studies to produce a Monte Carlo uncertainty analysis of the carbon footprint of both shale and conventional natural gas production. The results show that the most likely upstream carbon footprints of these types of natural gas production are largely similar, with overlapping 95% uncertainty ranges of 11.0-21.0 g CO(2)e/MJ(LHV) for shale gas and 12.4-19.5 g CO(2)e/MJ(LHV) for conventional gas. However, because this upstream footprint represents less than 25% of the total carbon footprint of gas, the efficiency of producing heat, electricity, transportation services, or other function is of equal or greater importance when identifying emission reduction opportunities. Better data are needed to reduce the uncertainty in natural gas's carbon footprint, but understanding system-level climate impacts of shale gas, through shifts in national and global energy markets, may be more important and requires more detailed energy and economic systems assessments.
NASA Technical Reports Server (NTRS)
Martin, J. P.; Kok, B.; Radmer, R.
1976-01-01
A system has been under development which is designed to seek remotely for clues to life in planetary soil samples. The basic approach is a set of experiments, all having a common sensor, a gas analysis mass spectrometer which monitors gas composition in the head spaces above sealed, temperature controlled soil samples. Versatility is obtained with up to three preloaded, sealed fluid injector capsules for each of eleven soil test cells. Tests results with an engineering model has demonstrated performance capability of subsystem components such as soil distribution, gas sampling valves, injector mechanisms, temperature control, and test cell seal.
Green's function solution to heat transfer of a transparent gas through a tube
NASA Technical Reports Server (NTRS)
Frankel, J. I.
1989-01-01
A heat transfer analysis of a transparent gas flowing through a circular tube of finite thickness is presented. This study includes the effects of wall conduction, internal radiative exchange, and convective heat transfer. The natural mathematical formulation produces a nonlinear, integrodifferential equation governing the wall temperature and an ordinary differential equation describing the gas temperature. This investigation proposes to convert the original system of equations into an equivalent system of integral equations. The Green's function method permits the conversion of an integrodifferential equation into a pure integral equation. The proposed integral formulation and subsequent computational procedure are shown to be stable and accurate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zawislanski, P.T.; Mountford, H.S.Monitoring and Data Analysis; for the Vadose Zone Monitoring System
1998-06-18
This report contains information on field and laboratory work performed between February 20th, 1998 and May 20th, 1998, at site S-7 in IC 34, at McClellan AFB. At this location, a Vadose Zone Monitoring System (VZMS) (LBNL, 1996) is currently being used to collect subsurface data including hydraulic potential, soil gas pressure, moisture content, water chemistry, gas chemistry, and temperature. This report describes: moisture content changes, based on neutron logging; gas-phase VOC concentrations; aqueous-phase VOC concentrations; temperature profiles; and installation of new instrument cluster.
Doping and defect-induced germanene: A superior media for sensing H2S, SO2, and CO2 gas molecules
NASA Astrophysics Data System (ADS)
Monshi, M. M.; Aghaei, S. M.; Calizo, I.
2017-11-01
First-principles calculations based on density functional theory (DFT) have been employed to investigate the structural, electronic, and gas-sensing properties of pure, defected, and doped germanene nanosheets. Our calculations have revealed that while a pristine germanene nanosheet adsorbs CO2 weakly, H2S moderately, and SO2 strongly, the introduction of vacancy defects increases the sensitivity significantly which is promising for future gas-sensing applications. Mulliken population analysis imparts that an appreciable amount of charge transfer occurs between gas molecules and a germanene nanosheet which supports our results for adsorption energies of the systems. The enhancement of the interactions between gas molecules and the germanene nanosheet has been further investigated by density of states. Projected density of states provides detailed insight of the gas molecule's contribution in the gas-sensing system. Additionally, the influences of substituted dopant atoms such as B, N, and Al in the germanene nanosheet have also been considered to study the impact on its gas sensing ability. There was no significant improvement found in the doped gas sensing capability of germanene over the vacancy defects, except for CO2 upon adsorption on N-doped germanene.
Conceptual Design and Feasibility of Foil Bearings for Rotorcraft Engines: Hot Core Bearings
NASA Technical Reports Server (NTRS)
Howard, Samuel A.
2007-01-01
Recent developments in gas foil bearing technology have led to numerous advanced high-speed rotating system concepts, many of which have become either commercial products or experimental test articles. Examples include oil-free microturbines, motors, generators and turbochargers. The driving forces for integrating gas foil bearings into these high-speed systems are the benefits promised by removing the oil lubrication system. Elimination of the oil system leads to reduced emissions, increased reliability, and decreased maintenance costs. Another benefit is reduced power plant weight. For rotorcraft applications, this would be a major advantage, as every pound removed from the propulsion system results in a payload benefit.. Implementing foil gas bearings throughout a rotorcraft gas turbine engine is an important long-term goal that requires overcoming numerous technological hurdles. Adequate thrust bearing load capacity and potentially large gearbox applied radial loads are among them. However, by replacing the turbine end, or hot section, rolling element bearing with a gas foil bearing many of the above benefits can be realized. To this end, engine manufacturers are beginning to explore the possibilities of hot section gas foil bearings in propulsion engines. This overview presents a logical follow-on activity by analyzing a conceptual rotorcraft engine to determine the feasibility of a foil bearing supported core. Using a combination of rotordynamic analyses and a load capacity model, it is shown to be reasonable to consider a gas foil bearing core section. In addition, system level foil bearing testing capabilities at NASA Glenn Research Center are presented along with analysis work being conducted under NRA Cooperative Agreements.
A coal mine multi-point fiber ethylene gas concentration sensor
NASA Astrophysics Data System (ADS)
Wei, Yubin; Chang, Jun; Lian, Jie; Liu, Tongyu
2015-03-01
Spontaneous combustion of the coal mine goaf is one of the main disasters in the coal mine. The detection technology based on symbolic gas is the main means to realize the spontaneous combustion prediction of the coal mine goaf, and ethylene gas is an important symbol gas of spontaneous combustion in the coal accelerated oxidation stage. In order to overcome the problem of current coal ethylene detection, the paper presents a mine optical fiber multi-point ethylene concentration sensor based on the tunable diode laser absorption spectroscopy. Based on the experiments and analysis of the near-infrared spectrum of ethylene, the system employed the 1.62 μm (DFB) wavelength fiber coupled distributed feedback laser as the light source. By using the wavelength scanning technique and developing a stable fiber coupled Herriot type long path gas absorption cell, a ppm-level high sensitivity detecting system for the concentration of ethylene gas was realized, which could meet the needs of coal mine fire prevention goaf prediction.
Conceptual design study of Fusion Experimental Reactor (FY86 FER): Safety
NASA Astrophysics Data System (ADS)
Seki, Yasushi; Iida, Hiromasa; Honda, Tsutomu
1987-08-01
This report describes the study on safety for FER (Fusion Experimental Reactor) which has been designed as a next step machine to the JT-60. Though the final purpose of this study is to have an image of design base accident, maximum credible accident and to assess their risk or probability, etc., as FER plant system, the emphasis of this years study is placed on fuel-gas circulation system where the tritium inventory is maximum. The report consists of two chapters. The first chapter summarizes the FER system and describes FMEA (Failure Mode and Effect Analysis) and related accident progression sequence for FER plant system as a whole. The second chapter of this report is focused on fuel-gas circulation system including purification, isotope separation and storage. Probability of risk is assessed by the probabilistic risk analysis (PRA) procedure based on FMEA, ETA and FTA.
NASA Technical Reports Server (NTRS)
Chapman, Jeffryes W.; Lavelle, Thomas M.; May, Ryan D.; Litt, Jonathan S.; Guo, Ten-Huei
2014-01-01
A simulation toolbox has been developed for the creation of both steady-state and dynamic thermodynamic software models. This paper describes the Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS), which combines generic thermodynamic and controls modeling libraries with a numerical iterative solver to create a framework for the development of thermodynamic system simulations, such as gas turbine engines. The objective of this paper is to present an overview of T-MATS, the theory used in the creation of the module sets, and a possible propulsion simulation architecture. A model comparison was conducted by matching steady-state performance results from a T-MATS developed gas turbine simulation to a well-documented steady-state simulation. Transient modeling capabilities are then demonstrated when the steady-state T-MATS model is updated to run dynamically.
NASA Technical Reports Server (NTRS)
Chapman, Jeffryes W.; Lavelle, Thomas M.; May, Ryan D.; Litt, Jonathan S.; Guo, Ten-Huei
2014-01-01
A simulation toolbox has been developed for the creation of both steady-state and dynamic thermodynamic software models. This paper describes the Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS), which combines generic thermodynamic and controls modeling libraries with a numerical iterative solver to create a framework for the development of thermodynamic system simulations, such as gas turbine engines. The objective of this paper is to present an overview of T-MATS, the theory used in the creation of the module sets, and a possible propulsion simulation architecture. A model comparison was conducted by matching steady-state performance results from a T-MATS developed gas turbine simulation to a well-documented steady-state simulation. Transient modeling capabilities are then demonstrated when the steady-state T-MATS model is updated to run dynamically.
Optimal integration strategies for a syngas fuelled SOFC and gas turbine hybrid
NASA Astrophysics Data System (ADS)
Zhao, Yingru; Sadhukhan, Jhuma; Lanzini, Andrea; Brandon, Nigel; Shah, Nilay
This article aims to develop a thermodynamic modelling and optimization framework for a thorough understanding of the optimal integration of fuel cell, gas turbine and other components in an ambient pressure SOFC-GT hybrid power plant. This method is based on the coupling of a syngas-fed SOFC model and an associated irreversible GT model, with an optimization algorithm developed using MATLAB to efficiently explore the range of possible operating conditions. Energy and entropy balance analysis has been carried out for the entire system to observe the irreversibility distribution within the plant and the contribution of different components. Based on the methodology developed, a comprehensive parametric analysis has been performed to explore the optimum system behavior, and predict the sensitivity of system performance to the variations in major design and operating parameters. The current density, operating temperature, fuel utilization and temperature gradient of the fuel cell, as well as the isentropic efficiencies and temperature ratio of the gas turbine cycle, together with three parameters related to the heat transfer between subsystems are all set to be controllable variables. Other factors affecting the hybrid efficiency have been further simulated and analysed. The model developed is able to predict the performance characteristics of a wide range of hybrid systems potentially sizing from 2000 to 2500 W m -2 with efficiencies varying between 50% and 60%. The analysis enables us to identify the system design tradeoffs, and therefore to determine better integration strategies for advanced SOFC-GT systems.
40 CFR 98.324 - Monitoring and QA/QC requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Procedures and Inspection Tracking System Handbook Number: PH-08-V-1, January 1, 2008 (incorporated by... paragraphs (d)(1) through (d)(2) of this section. (1) ASTM D1945-03, Standard Test Method for Analysis of... Reformed Gas by Gas Chromatography; ASTM D4891-89 (Reapproved 2006), Standard Test Method for Heating Value...
40 CFR 98.324 - Monitoring and QA/QC requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Procedures and Inspection Tracking System Handbook Number: PH-08-V-1, January 1, 2008 (incorporated by... paragraphs (d)(1) through (d)(2) of this section. (1) ASTM D1945-03, Standard Test Method for Analysis of... Reformed Gas by Gas Chromatography; ASTM D4891-89 (Reapproved 2006), Standard Test Method for Heating Value...
ANALYSIS OF FACTORS AFFECTING METHANE GAS RECOVERY FROM SIX LANDFILLS
The report gives results of a pilot study of six U.S. landfills that have methane (CH4) gas recovery systems. NOTE: The study was a first step in developing a field testing program to gather data to identify key variables that affect CH4 generation and to develop an empirical mod...
Developing Interactive Educational Engineering Software for the World Wide Web with Java.
ERIC Educational Resources Information Center
Reed, John A.; Afjeh, Abdollah A.
1998-01-01
Illustrates the design and implementation of a Java applet for use in educational propulsion engineering curricula. The Java Gas Turbine Simulator applet provides an interactive graphical environment which allows the rapid, efficient construction and analysis of arbitrary gas turbine systems. The simulator can be easily accessed from the World…
The gas-phase partitioning tracer method was used to estimate non-aqueous phase liquid (NAPL), water, and air saturations in the vadose zone at a chlorinated-solvent contaminated field site in Tucson, AZ. The tracer test was conducted in a fractured-clay system that is the confin...
The report gives results of an analysis of the effect of the availability of a flue gas desulfurization system on the ability of an individual power plant to generate electricity at its rated capacity. (The availability of anything is the fraction of time it is capable of service...
The report gives results of an analysis of the effect of the availability of a flue gas desulfurization system on the ability of an individual power plant to generate electricity at its rated capacity. (The availability of anything is the fraction of time it is capable of service...
Optimization of wastewater treatment plant operation for greenhouse gas mitigation.
Kim, Dongwook; Bowen, James D; Ozelkan, Ertunga C
2015-11-01
This study deals with the determination of optimal operation of a wastewater treatment system for minimizing greenhouse gas emissions, operating costs, and pollution loads in the effluent. To do this, an integrated performance index that includes three objectives was established to assess system performance. The ASMN_G model was used to perform system optimization aimed at determining a set of operational parameters that can satisfy three different objectives. The complex nonlinear optimization problem was simulated using the Nelder-Mead Simplex optimization algorithm. A sensitivity analysis was performed to identify influential operational parameters on system performance. The results obtained from the optimization simulations for six scenarios demonstrated that there are apparent trade-offs among the three conflicting objectives. The best optimized system simultaneously reduced greenhouse gas emissions by 31%, reduced operating cost by 11%, and improved effluent quality by 2% compared to the base case operation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Minimum separation distances for natural gas pipeline and boilers in the 300 area, Hanford Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daling, P.M.; Graham, T.M.
1997-08-01
The U.S. Department of Energy (DOE) is proposing actions to reduce energy expenditures and improve energy system reliability at the 300 Area of the Hanford Site. These actions include replacing the centralized heating system with heating units for individual buildings or groups of buildings, constructing a new natural gas distribution system to provide a fuel source for many of these units, and constructing a central control building to operate and maintain the system. The individual heating units will include steam boilers that are to be housed in individual annex buildings located at some distance away from nearby 300 Area nuclearmore » facilities. This analysis develops the basis for siting the package boilers and natural gas distribution systems to be used to supply steam to 300 Area nuclear facilities. The effects of four potential fire and explosion scenarios involving the boiler and natural gas pipeline were quantified to determine minimum separation distances that would reduce the risks to nearby nuclear facilities. The resulting minimum separation distances are shown in Table ES.1.« less
Phase diagram and universality of the Lennard-Jones gas-liquid system.
Watanabe, Hiroshi; Ito, Nobuyasu; Hu, Chin-Kun
2012-05-28
The gas-liquid phase transition of the three-dimensional Lennard-Jones particles system is studied by molecular dynamics simulations. The gas and liquid densities in the coexisting state are determined with high accuracy. The critical point is determined by the block density analysis of the Binder parameter with the aid of the law of rectilinear diameter. From the critical behavior of the gas-liquid coexisting density, the critical exponent of the order parameter is estimated to be β = 0.3285(7). Surface tension is estimated from interface broadening behavior due to capillary waves. From the critical behavior of the surface tension, the critical exponent of the correlation length is estimated to be ν = 0.63(4). The obtained values of β and ν are consistent with those of the Ising universality class.
Combined heat and power systems: economic and policy barriers to growth.
Kalam, Adil; King, Abigail; Moret, Ellen; Weerasinghe, Upekha
2012-04-23
Combined Heat and Power (CHP) systems can provide a range of benefits to users with regards to efficiency, reliability, costs and environmental impact. Furthermore, increasing the amount of electricity generated by CHP systems in the United States has been identified as having significant potential for impressive economic and environmental outcomes on a national scale. Given the benefits from increasing the adoption of CHP technologies, there is value in improving our understanding of how desired increases in CHP adoption can be best achieved. These obstacles are currently understood to stem from regulatory as well as economic and technological barriers. In our research, we answer the following questions: Given the current policy and economic environment facing the CHP industry, what changes need to take place in this space in order for CHP systems to be competitive in the energy market? We focus our analysis primarily on Combined Heat and Power Systems that use natural gas turbines. Our analysis takes a two-pronged approach. We first conduct a statistical analysis of the impact of state policies on increases in electricity generated from CHP system. Second, we conduct a Cost-Benefit analysis to determine in which circumstances funding incentives are necessary to make CHP technologies cost-competitive. Our policy analysis shows that regulatory improvements do not explain the growth in adoption of CHP technologies but hold the potential to encourage increases in electricity generated from CHP system in small-scale applications. Our Cost-Benefit analysis shows that CHP systems are only cost competitive in large-scale applications and that funding incentives would be necessary to make CHP technology cost-competitive in small-scale applications. From the synthesis of these analyses we conclude that because large-scale applications of natural gas turbines are already cost-competitive, policy initiatives aimed at a CHP market dominated primarily by large-scale (and therefore already cost-competitive) systems have not been effectively directed. Our recommendation is that for CHP technologies using natural gas turbines, policy focuses should be on increasing CHP growth in small-scale systems. This result can be best achieved through redirection of state and federal incentives, research and development, adoption of smart grid technology, and outreach and education.
Wave Rotor Research and Technology Development
NASA Technical Reports Server (NTRS)
Welch, Gerard E.
1998-01-01
Wave rotor technology offers the potential to increase the performance of gas turbine engines significantly, within the constraints imposed by current material temperature limits. The wave rotor research at the NASA Lewis Research Center is a three-element effort: 1) Development of design and analysis tools to accurately predict the performance of wave rotor components; 2) Experiments to characterize component performance; 3) System integration studies to evaluate the effect of wave rotor topping on the gas turbine engine system.
NASA Astrophysics Data System (ADS)
Browne, Joshua B.
Anthropogenic greenhouse gas emissions (GHG) contribute to global warming, and must be mitigated. With GHG mitigation as an overarching goal, this research aims to study the potential for newfound and abundant sources of natural gas to play a role as part of a GHG mitigation strategy. However, recent work suggests that methane leakage in the current natural gas system may inhibit end-use natural gas as a robust mitigation strategy, but that natural gas as a feedstock for other forms of energy, such as electricity generation or liquid fuels, may support natural-gas based mitigation efforts. Flaring of uneconomic natural gas, or outright loss of natural gas to the atmosphere results in greenhouse gas emissions that could be avoided and which today are very large in aggregate. A central part of this study is to look at a new technology for converting natural gas into methanol at a unit scale that is matched to the size of individual natural gas wells. The goal is to convert stranded or otherwise flared natural gas into a commercially valuable product and thereby avoid any unnecessary emission to the atmosphere. A major part of this study is to contribute to the development of a novel approach for converting natural gas into methanol and to assess the environmental impact (for better or for worse) of this new technology. This Ph. D. research contributes to the development of such a system and provides a comprehensive techno-economic and environmental assessment of this technology. Recognizing the distributed nature of methane leakage associated with the natural gas system, this work is also intended to advance previous research at the Lenfest Center for Sustainable Energy that aims to show that small, modular energy systems can be made economic. This thesis contributes to and analyzes the development of a small-scale gas-to-liquids (GTL) system aimed at addressing flared natural gas from gas and oil wells. This thesis includes system engineering around a design that converts natural gas to synthesis gas (syngas) in a reciprocating internal combustion engine and then converts the syngas into methanol in a small-scale reactor. With methanol as the product, this research aims to show that such a system can not only address current and future natural gas flaring regulation, but eventually can compete economically with historically large-scale, centralized methanol production infrastructure. If successful, such systems could contribute to a shift away from large, multi-billion dollar capital cost chemical plants towards smaller systems with shorter lifetimes that may decrease the time to transition to more sustainable forms of energy and chemical conversion technologies. This research also quantifies the potential for such a system to contribute to mitigating GHG emissions, not only by addressing flared gas in the near-term, but also supporting future natural gas infrastructure ideas that may help to redefine the way the current natural gas pipeline system is used. The introduction of new, small-scale, distributed energy and chemical conversion systems located closer to the point of extraction may contribute to reducing methane leakage throughout the natural gas distribution system by reducing the reliance and risks associated with the aging natural gas pipeline infrastructure. The outcome of this thesis will result in several areas for future work. From an economic perspective, factors that contribute to overall system cost, such as operation and maintenance (O&M) and capital cost multiplier (referred to as the Lang Factor for large-scale petro-chemical plants), are not yet known for novel systems such as the technology presented here. From a technical perspective, commercialization of small-scale, distributed chemical conversion systems may create a demand for economical compression and air-separation technologies at this scale that do not currently exist. Further, new business cases may arise aimed at utilizing small, remote sources of methane, such as biogas from agricultural and municipal waste. Finally, while methanol was selected as the end-product for this thesis, future applications of this technology may consider methane conversion to hydrogen, ammonia, and ethylene for example, challenging the orthodoxy in the chemical industry that "bigger is better."
Simulation and Analysis of Isotope Separation System for Fusion Fuel Recovery System
NASA Astrophysics Data System (ADS)
Senevirathna, Bathiya; Gentile, Charles
2011-10-01
This paper presents results of a simulation of the Fuel Recovery System (FRS) for the Laser Inertial Fusion Engine (LIFE) reactor. The LIFE reaction will produce exhaust gases that will need to be recycled in the FRS along with xenon, the chamber's intervention gas. Solids and liquids will first be removed and then vapor traps are used to remove large gas molecules such as lead. The gas will be reacted with lithium at high temperatures to extract the hydrogen isotopes, protium, deuterium, and tritium in hydride form. The hydrogen isotopes will be recovered using a lithium blanket processing system already in place and this product will be sent to the Isotope Separation System (ISS). The ISS will be modeled in software to analyze its effectiveness. Aspen HYSYS was chosen for this purpose for its widespread use industrial gas processing systems. Reactants and corresponding chemical reactions had to be initialized in the software. The ISS primarily consists of four cryogenic distillation columns and these were modeled in HYSYS based on design requirements. Fractional compositions of the distillate and liquid products were analyzed and used to optimize the overall system.
Mobile mapping of methane emissions and isoscapes
NASA Astrophysics Data System (ADS)
Takriti, Mounir; Ward, Sue; Wynn, Peter; Elias, Dafydd; McNamara, Niall
2017-04-01
Methane (CH4) is a potent greenhouse gas emitted from a variety of natural and anthropogenic sources. It is crucial to accurately and efficiently detect CH4 emissions and identify their sources to improve our understanding of changing emission patterns as well as to identify ways to curtail their release into the atmosphere. However, using established methods this can be challenging as well as time and resource intensive due to the temporal and spatial heterogeneity of many sources. To address this problem, we have developed a vehicle mounted mobile system that combines high precision CH4 measurements with isotopic mapping and dual isotope source characterisation. We here present details of the development and testing of a unique system for the detection and isotopic analysis of CH4 plumes built around a Picarro isotopic (13C/12C) gas analyser and a high precision Los Gatos greenhouse gas analyser. Combined with micrometeorological measurements and a mechanism for collecting discrete samples for high precision dual isotope (13C/12C, 2H/1H) analysis the system enables mapping of concentrations as well as directional and isotope based source verification. We then present findings from our mobile methane surveys around the North West of England. This area includes a variety of natural and anthropogenic methane sources within a relatively small geographical area, including livestock farming, urban and industrial gas infrastructure, landfills and waste water treatment facilities, and wetlands. We show that the system was successfully able to locate leaks from natural gas infrastructure and emissions from agricultural activities and to distinguish isotope signatures from these sources.
40 CFR 86.111-94 - Exhaust gas analytical system.
Code of Federal Regulations, 2012 CFR
2012-07-01
... systems for analysis of total hydrocarbon (THC) (hydrocarbon plus methanol in the case of methanol-fueled...), carbon dioxide (CO2), and oxides of nitrogen (NOX). The schematic diagram of the continuous THC analysis train (and for THC plus methanol for methanol-fueled diesel-cycle vehicles) is shown as part of Figure...
40 CFR 86.111-94 - Exhaust gas analytical system.
Code of Federal Regulations, 2013 CFR
2013-07-01
... systems for analysis of total hydrocarbon (THC) (hydrocarbon plus methanol in the case of methanol-fueled...), carbon dioxide (CO2), and oxides of nitrogen (NOX). The schematic diagram of the continuous THC analysis train (and for THC plus methanol for methanol-fueled diesel-cycle vehicles) is shown as part of Figure...
40 CFR 86.111-94 - Exhaust gas analytical system.
Code of Federal Regulations, 2014 CFR
2014-07-01
... systems for analysis of total hydrocarbon (THC) (hydrocarbon plus methanol in the case of methanol-fueled...), carbon dioxide (CO2), and oxides of nitrogen (NOX). The schematic diagram of the continuous THC analysis train (and for THC plus methanol for methanol-fueled diesel-cycle vehicles) is shown as part of Figure...
Development of high velocity gas gun with a new trigger system-numerical analysis
NASA Astrophysics Data System (ADS)
Husin, Z.; Homma, H.
2018-02-01
In development of high performance armor vests, we need to carry out well controlled experiments using bullet speed of more than 900 m/sec. After reviewing trigger systems used for high velocity gas guns, this research intends to develop a new trigger system, which can realize precise and reproducible impact tests at impact velocity of more than 900 m/sec. A new trigger system developed here is called a projectile trap. A projectile trap is placed between a reservoir and a barrel. A projectile trap has two functions of a sealing disk and triggering. Polyamidimide is selected for the trap material and dimensions of the projectile trap are determined by numerical analysis for several levels of launching pressure to change the projectile velocity. Numerical analysis results show that projectile trap designed here can operate reasonably and stresses caused during launching operation are less than material strength. It means a projectile trap can be reused for the next shooting.
Molecular Gas in Local Mergers: Understanding Mergers using High Density Gas Tracers
NASA Astrophysics Data System (ADS)
Manohar, Swarnima; Scoville, N.; Sheth, K.
2013-01-01
NGC 6240 and Arp 220 can be considered the founding members of a very active class of objects called Ultraluminous Infrared Galaxies or ULIRGs. They are in different stages of mergers and hence are excellent case studies to enhance our knowledge about the merging process. We have imaged the dense star-forming regions of these galaxies at sub-arcsec resolution with ALMA and CARMA. Multi-band imaging will allow multilevel excitation analysis of HCN, HCO+ and CS transitions which will be used to constrain the properties of the gas as a function of position and velocity (across line profiles). We aim to do an extensive multilevel excitation analysis of the merger as a function of radius which will enable in depth understanding of the gas dynamics and gas properties such as temperature and density. This will in turn probe the homogeneity of the gas in the merging system and hence the regions that facilitate high star formation rates. This tandem use of CARMA with ALMA to map these systems at different merger stages will help assemble a more integrated picture of the merger process. We will probe the distribution and dynamics of star forming gas and star formation activity in the dense disk structures to enable new theoretical understanding of the physics, dynamics, star formation activity and associated feedback in the most active and rapidly evolving galactic nuclei. Here we present preliminary observations of Arp 220 and NGC 6240 from ALMA and CARMA.
Molecular Gas in Starburts ARP 220 & NGC 6240: Understanding Mergers using High Density Gas Tracers
NASA Astrophysics Data System (ADS)
Manohar, Swarnima; Scoville, Nicholas; Sheth, Kartik
2015-01-01
NGC 6240 and Arp 220 can be considered the founding members of a very active class of objects called Ultraluminous Infrared Galaxies or ULIRGs. They are in different stages of mergers and hence are excellent case studies to enhance our knowledge about the merging process. We have imaged the dense star-forming regions of these galaxies at sub-arcsec resolution with ALMA and CARMA. Multi-band imaging allows multilevel excitation analysis of HCN, HCO+ and CS transitions which will constrain the properties of the gas as a function of position and velocity (across line profiles). We are doing an extensive multilevel excitation analysis of the merger as a function of radius which enables in depth understanding of the gas dynamics and gas properties such as temperature and density. This in turn probes the homogeneity of the gas in the merging system and hence the regions that facilitate high star formation rates. This tandem use of CARMA with ALMA to map these systems at different merger stages will assemble a more integrated picture of the merger process. We are probing the distribution and dynamics of star forming gas and star formation activity in the dense disk structures to enable new theoretical understanding of the physics, dynamics, star formation activity and associated feedback in the most active and rapidly evolving galactic nuclei. Here we present our observations of Arp 220 and NGC 6240 from ALMA and CARMA.
Simulation Experiment and Acoustic Emission Study on Coal and Gas Outburst
NASA Astrophysics Data System (ADS)
Li, Hui; Feng, Zengchao; Zhao, Dong; Duan, Dong
2017-08-01
A coal and gas outburst is an extreme hazard in underground mining. The present paper conducts a laboratory simulation of a coal and gas outburst combined with acoustic emission analysis. The experiment uses a three-dimensional stress loading system and a PCI-2 acoustic emission monitoring system. Furthermore, the development of a coal and gas outburst is numerically studied. The results demonstrate that the deformation and failure of a coal sample containing methane under three-dimensional stress involves four stages: initial compression, elastic deformation, plastic deformation and failure. The development of internal microscale fractures within a coal sample containing methane is reflected by the distribution of acoustic emission events. We observed that the deformation and failure zone for a coal sample under three-dimensional stress has an ellipsoid shape. Primary acoustic emission events are generated at the weak structural surface that compresses with ease due to the external ellipsoid-shaped stress. The number of events gradually increases until an outburst occurs. A mathematical model of the internal gas pressure and bulk stress is established through an analysis of the internal gas pressure and bulk stress of a coal sample, and it is useful for reproducing experimental results. The occurrence of a coal and gas outburst depends not only on the in situ stress, gas pressure and physical and mechanical characteristics of the coal mass but also on the free weak surface of the outburst outlet of the coal mass. It is more difficult for an outburst to occur from a stronger free surface.
Optical design of multi-multiple expander structure of laser gas analysis and measurement device
NASA Astrophysics Data System (ADS)
Fu, Xiang; Wei, Biao
2018-03-01
The installation and debugging of optical circuit structure in the application of carbon monoxide distributed laser gas analysis and measurement, there are difficult key technical problems. Based on the three-component expansion theory, multi-multiple expander structure with expansion ratio of 4, 5, 6 and 7 is adopted in the absorption chamber to enhance the adaptability of the installation environment of the gas analysis and measurement device. According to the basic theory of aberration, the optimal design of multi-multiple beam expander structure is carried out. By using image quality evaluation method, the difference of image quality under different magnifications is analyzed. The results show that the optical quality of the optical system with the expanded beam structure is the best when the expansion ratio is 5-7.
Bao, Wei-Yi; Zhu, Yong; Chen, Jun; Chen, Jun-Qing; Liang, Bo
2011-04-01
In the present paper, the signal of a tunable diode laser absorption spectroscopy (TDLAS) trace gas sensing system, which has a wavelength modulation with a wide range of modulation amplitudes, is studied based on Fourier analysis method. Theory explanation of spectrum distortion induced by laser intensity amplitude modulation is given. In order to rectify the spectrum distortion, a method of synchronous amplitude modulation suppression by a variable optical attenuator is proposed. To validate the method, an experimental setup is designed. Absorption spectrum measurement experiments on CO2 gas were carried out. The results show that the residual laser intensity modulation amplitude of the experimental system is reduced to -0.1% of its original value and the spectrum distortion improvement is 92% with the synchronous amplitude modulation suppression. The modulation amplitude of laser intensity can be effectively reduced and the spectrum distortion can be well corrected by using the given correction method and system. By using a variable optical attenuator in the TDLAS (tunable diode laser absorption spectroscopy) system, the dynamic range requirements of photoelectric detector, digital to analog converter, filters and other aspects of the TDLAS system are reduced. This spectrum distortion correction method can be used for online trace gas analyzing in process industry.
Evaluation of an optoacoustic based gas analysing device
NASA Astrophysics Data System (ADS)
Markmann, Janine; Lange, Birgit; Theisen-Kunde, Dirk; Danicke, Veit; Mayorov, Fedor; Eckert, Sebastian; Kettmann, Pascal; Brinkmann, Ralf
2017-07-01
The relative occurrence of volatile organic compounds in the human respiratory gas is disease-specific (ppb range). A prototype of a gas analysing device using two tuneable laser systems, an OPO-laser (2.5 to 10 μm) and a CO2-laser (9 to 11 μm), and an optoacoustic measurement cell was developed to detect concentrations in the ppb range. The sensitivity and resolution of the system was determined by test gas measurements, measuring ethylene and sulfur hexafluoride with the CO2-laser and butane with the OPO-laser. System sensitivity found to be 13 ppb for sulfur hexafluoride, 17 ppb for ethylene and <10 ppb for butane, with a resolution of 50 ppb at minimum for sulfur hexafluoride. Respiratory gas samples of 8 healthy volunteers were investigated by irradiation with 17 laser lines of the CO2-laser. Several of those lines overlap with strong absorption bands of ammonia. As it is known that ammonia concentration increases by age a separation of people <35 und >35 was striven for. To evaluate the data the first seven gas samples were used to train a discriminant analysis algorithm. The eighth subject was then assigned correctly to the group >35 years with the age of 49 years.
Treble, Ronald G; Johnson, Keith E; Xiao, Li; Thompson, Thomas S
2002-07-01
An existing gas chromatograph/mass spectrometer (GC/MS) can be used to analyze gas and liquid fractions from the same system within a few minutes. The technique was applied to (a) separate and identify the gaseous components of the products of cracking an alkane, (b) measure trace levels of acetone in ethyl acetate, (c) determine the relative partial pressures over a binary mixture, and (d) identify nine unknown compounds for the purpose of disposal.
2016-09-30
4 of 42 Figure 9. Left: Schematic representation of the gas -gun experiment and a typical speckle pattern the specimen surface, the 12...12 correlation window used in subsequent analysis is also indicated (red rectangle). Right: a photograph of the gas -gun system...20 Figure 11. Left: Averaged acceleration and strain rate and history of μ and α prediction from gas -gun experiment on an EPDM specimen
2009-09-21
35(5):38-41. 27. Smith, P. A., Sng , M.T., et al. (2005). "Towards Smaller and Faster Gas Chromatography Mass Spectrometry Systems for Field...Analytical Methods. Chapter 10. West Sussex, Wiley & Sons Ltd. 9. Smith, P. A., Sng , M.T., et al. (2005). "Towards Smaller and Faster Gas
Chang, Ye; Hui, Zhipeng; Wang, Xiayu; Qu, Hemi; Pang, Wei
2018-01-01
In this paper, we develop a novel dual-mode gas sensor system which comprises a silicon nanoribbon field effect transistor (Si-NR FET) and a film bulk acoustic resonator (FBAR). We investigate their sensing characteristics using polar and nonpolar organic compounds, and demonstrate that polarity has a significant effect on the response of the Si-NR FET sensor, and only a minor effect on the FBAR sensor. In this dual-mode system, qualitative discrimination can be achieved by analyzing polarity with the Si-NR FET and quantitative concentration information can be obtained using a polymer-coated FBAR with a detection limit at the ppm level. The complementary performance of the sensing elements provides higher analytical efficiency. Additionally, a dual mixture of two types of freons (CFC-113 and HCFC-141b) is further analyzed with the dual-mode gas sensor. Owing to the small size and complementary metal-oxide semiconductor (CMOS)-compatibility of the system, the dual-mode gas sensor shows potential as a portable integrated sensing system for the analysis of gas mixtures in the future. PMID:29370109
Chang, Ye; Hui, Zhipeng; Wang, Xiayu; Qu, Hemi; Pang, Wei; Duan, Xuexin
2018-01-25
In this paper, we develop a novel dual-mode gas sensor system which comprises a silicon nanoribbon field effect transistor (Si-NR FET) and a film bulk acoustic resonator (FBAR). We investigate their sensing characteristics using polar and nonpolar organic compounds, and demonstrate that polarity has a significant effect on the response of the Si-NR FET sensor, and only a minor effect on the FBAR sensor. In this dual-mode system, qualitative discrimination can be achieved by analyzing polarity with the Si-NR FET and quantitative concentration information can be obtained using a polymer-coated FBAR with a detection limit at the ppm level. The complementary performance of the sensing elements provides higher analytical efficiency. Additionally, a dual mixture of two types of freons (CFC-113 and HCFC-141b) is further analyzed with the dual-mode gas sensor. Owing to the small size and complementary metal-oxide semiconductor (CMOS)-compatibility of the system, the dual-mode gas sensor shows potential as a portable integrated sensing system for the analysis of gas mixtures in the future.
Freifeild, Barry M.; Trautz, Robert C.; Kharaka, Yousif K.; Phelps, Tommy J.; Myer, Larry R.; Hovorka, Susan D.; Collins, Daniel J.
2005-01-01
A novel system has been deployed to obtain geochemical samples of water and gas, at in situ pressure, during a geologic CO2 sequestration experiment conducted in the Frio brine aquifer in Liberty County, Texas. Project goals required high-frequency recovery of representative and uncontaminated aliquots of a rapidly changing two-phase fluid (supercritical CO2 and brine) fluid from 1.5 km depth. The data sets collected, using both the liquid and gas portions of the downhole samples, provide insights into the coupled hydrogeochemical issues affecting CO2sequestration in brine-filled formations. While the basic premise underlying the U-tube sampler is not new, the system is unique because careful consideration was given to the processing of the recovered two-phase fluids. In particular, strain gauges mounted beneath the high-pressure surface sample cylinders measured the ratio of recovered brine to supercritical CO2. A quadrupole mass spectrometer provided real-time gas analysis for perfluorocarbon and noble gas tracers that were injected along with the CO2. The U-tube successfully acquired frequent samples, facilitating accurate delineation of the arrival of the CO2 plume, and on-site analysis revealed rapid changes in geochemical conditions.
Freifeild, Barry M.; Trautz, Robert C.; Kharaka, Yousif K.; Phelps, Tommy J.; Myer, Larry R.; Hovorka, Susan D.; Collins, Daniel J.
2005-01-01
A novel system has been deployed to obtain geochemical samples of water and gas, at in situ pressure, during a geologic CO2 sequestration experiment conducted in the Frio brine aquifer in Liberty County, Texas. Project goals required high-frequency recovery of representative and uncontaminated aliquots of a rapidly changing two-phase fluid (supercritical CO2 and brine) fluid from 1.5 km depth. The data sets collected, using both the liquid and gas portions of the downhole samples, provide insights into the coupled hydrogeochemical issues affecting CO2 sequestration in brine-filled formations. While the basic premise underlying the U-tube sampler is not new, the system is unique because careful consideration was given to the processing of the recovered two-phase fluids. In particular, strain gauges mounted beneath the high-pressure surface sample cylinders measured the ratio of recovered brine to supercritical CO2. A quadrupole mass spectrometer provided real-time gas analysis for perfluorocarbon and noble gas tracers that were injected along with the CO2. The U-tube successfully acquired frequent samples, facilitating accurate delineation of the arrival of the CO2 plume, and on-site analysis revealed rapid changes in geochemical conditions.
NASA Astrophysics Data System (ADS)
Freifeld, Barry M.; Trautz, Robert C.; Kharaka, Yousif K.; Phelps, Tommy J.; Myer, Larry R.; Hovorka, Susan D.; Collins, Daniel J.
2005-10-01
A novel system has been deployed to obtain geochemical samples of water and gas, at in situ pressure, during a geologic CO2 sequestration experiment conducted in the Frio brine aquifer in Liberty County, Texas. Project goals required high-frequency recovery of representative and uncontaminated aliquots of a rapidly changing two-phase fluid (supercritical CO2 and brine) fluid from 1.5 km depth. The data sets collected, using both the liquid and gas portions of the downhole samples, provide insights into the coupled hydrogeochemical issues affecting CO2 sequestration in brine-filled formations. While the basic premise underlying the U-tube sampler is not new, the system is unique because careful consideration was given to the processing of the recovered two-phase fluids. In particular, strain gauges mounted beneath the high-pressure surface sample cylinders measured the ratio of recovered brine to supercritical CO2. A quadrupole mass spectrometer provided real-time gas analysis for perfluorocarbon and noble gas tracers that were injected along with the CO2. The U-tube successfully acquired frequent samples, facilitating accurate delineation of the arrival of the CO2 plume, and on-site analysis revealed rapid changes in geochemical conditions.
NASA Astrophysics Data System (ADS)
Setsuhara, Yuichi; Uchida, Giichiro; Nakajima, Atsushi; Takenaka, Kosuke; Koga, Kazunori; Shiratani, Masaharu
2015-09-01
Atmospheric nonequilibrium plasma jets have been widely employed in biomedical applications. For biomedical applications, it is an important issue to understand the complicated mechanism of interaction of the plasma jet with liquid. In this study, we present analysis of the discharge characteristics of a plasma jet impinging onto the liquid surface under various gas flow patterns such as laminar and turbulence flows. For this purpose, we analyzed gas flow patters by using a Schlieren gas-flow imaging system in detail The plasma jet impinging into the liquid surface expands along the liquid surface. The diameter of the expanded plasma increases with gas flow rate, which is well explained by an increase in the diameter of the laminar gas-flow channel. When the gas flow rate is further increased, the gas flow mode transits from laminar to turbulence in the gas flow channel, which leads to the shortening of the plasm-jet length. Our experiment demonstrated that the gas flow patterns strongly affect the discharge characteristics in the plasma-jet system. This study was partly supported by a Grant-in-Aid for Scientific Research on Innovative Areas ``Plasma Medical Innovation'' (24108003) from the Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT).
NASA Astrophysics Data System (ADS)
Sheu, R.; Marcotte, A.; Khare, P.; Ditto, J.; Charan, S.; Gentner, D. R.
2017-12-01
Intermediate-volatility and semi-volatile organic compounds (I/SVOCs) are major precursors to secondary organic aerosol, and contribute to tropospheric ozone formation. Their wide volatility range, chemical complexity, behavior in analytical systems, and trace concentrations present numerous hurdles to characterization. We present an integrated sampling-to-analysis system for the collection and offline analysis of trace gas-phase organic compounds with the goal of preserving and recovering analytes throughout sample collection, transport, storage, and thermal desorption for accurate analysis. Custom multi-bed adsorbent tubes are used to collect samples for offline analysis by advanced analytical detectors. The analytical instrumentation comprises an automated thermal desorption system that introduces analytes from the adsorbent tubes into a gas chromatograph, which is coupled with an electron ionization mass spectrometer (GC-EIMS) and other detectors. In order to optimize the collection and recovery for a wide range of analyte volatility and functionalization, we evaluated a variety of commercially-available materials, including Res-Sil beads, quartz wool, glass beads, Tenax TA, and silica gel. Key properties for optimization include inertness, versatile chemical capture, minimal affinity for water, and minimal artifacts or degradation byproducts; these properties were assessed with a diverse mix of traditionally-measured and functionalized analytes. Along with a focus on material selection, we provide recommendations spanning the entire sampling-and-analysis process to improve the accuracy of future comprehensive I/SVOC measurements, including oxygenated and other functionalized I/SVOCs. We demonstrate the performance of our system by providing results on speciated VOCs-SVOCs from indoor, outdoor, and chamber studies that establish the utility of our protocols and pave the way for precise laboratory characterization via a mix of detection methods.
NASA Technical Reports Server (NTRS)
Binsley, R. L.; Maddox, J. P.; Marcy, R. D.; Siegler, R. S.; Spies, R.
1971-01-01
The auxiliary power unit (APU) for the space shuttle is required to provide hydraulic and electrical power on board the booster and orbiter vehicles. Five systems and their associated components, which utilize hot gas turbines to supply horsepower at gearbox output pads, were studied. Hydrogen-oxygen and storable propellants were considered for the hot gas supply. All APU's were required to be self-contained with respect to dissipating internally generated heat. These five systems were evaluated relative to a consistent criteria. The system supplied with high pressure gaseous hydrogen and oxygen was recommended as the best approach. It included a two-stage pressure-compounded partial-admission turbine, a propellant conditioning system with recuperation, a control system, and a gearbox. The gearbox output used was 240 hp. At the close of the study a 400 hp level was considered more appropriate for meeting the prime shuttle vehicle needs, and an in-depth analysis of the system at the 400 hp output level was recommended.
NASA Astrophysics Data System (ADS)
Ahn, Junkeon; Noh, Yeelyong; Park, Sung Ho; Choi, Byung Il; Chang, Daejun
2017-10-01
This study proposes a fuzzy-based FMEA (failure mode and effect analysis) for a hybrid molten carbonate fuel cell and gas turbine system for liquefied hydrogen tankers. An FMEA-based regulatory framework is adopted to analyze the non-conventional propulsion system and to understand the risk picture of the system. Since the participants of the FMEA rely on their subjective and qualitative experiences, the conventional FMEA used for identifying failures that affect system performance inevitably involves inherent uncertainties. A fuzzy-based FMEA is introduced to express such uncertainties appropriately and to provide flexible access to a risk picture for a new system using fuzzy modeling. The hybrid system has 35 components and has 70 potential failure modes, respectively. Significant failure modes occur in the fuel cell stack and rotary machine. The fuzzy risk priority number is used to validate the crisp risk priority number in the FMEA.
Analysis of optimal design of low temperature economizer
NASA Astrophysics Data System (ADS)
Song, J. H.; Wang, S.
2017-11-01
This paper has studied the Off-design characteristic of low temperature economizer system based on thermodynamics analysis. Based on the data from one 1000 MW coal-fired unit, two modes of operation are contrasted and analyzed. One is to fix exhaust gas temperature and the other one is to take into account both of the average temperature difference and the exhaust gas temperature. Meanwhile, the cause of energy saving effect change is explored. Result shows that: in mode 1, the amount of decrease in coal consumption reduces from 1.11 g/kWh (under full load) to 0.54 g/kWh (under half load), and in mode 2, when the load decreases from 90% to 50%, the decrease in coal consumption reduces from 1.29 g/kWh to 0.84 g/kWh. From the result, under high load, the energy saving effect is superior, and under lower work load, energy saving effect declines rapidly when load is reduced. When load changes, the temperature difference of heat transfer, gas flow, the flue gas heat rejection and the waste heat recovery change. The energy saving effect corresponding changes result in that the energy saving effect under high load is superior and more stable. However, rational adjustment to the temperature of outlet gas can alleviate the decline of the energy saving effect under low load. The result provides theoretical analysis data for the optimal design and operation of low temperature economizer system of power plant.
The Electrocatalytic Reduction of Carbon Dioxide Using Macrocycles of Nickel and Cobalt.
1980-10-24
34 water only. Carbon monoxide was found to coprise at least 50% of the total reduced products in all cases; H was also produced in most cases. While a...experiments performed in a gas tight elec- trolysis cell followed by g.c. analysis. The solvents used were either CH3CN-H20 or water only. Carbon...these experiments, and the solvent systems used were either acetonitrile/ water or water only. Gas chromato- graphic analysis was used to determine
Situ soil sampling probe system with heated transfer line
Robbat, Jr., Albert
2002-01-01
The present invention is directed both to an improved in situ penetrometer probe and to a heated, flexible transfer line. The line and probe may be implemented together in a penetrometer system in which the transfer line is used to connect the probe to a collector/analyzer at the surface. The probe comprises a heater that controls a temperature of a geologic medium surrounding the probe. At least one carrier gas port and vapor collection port are located on an external side wall of the probe. The carrier gas port provides a carrier gas into the geologic medium, and the collection port captures vapors from the geologic medium for analysis. In the transfer line, a flexible collection line that conveys a collected fluid, i.e., vapor, sample to a collector/analyzer. A flexible carrier gas line conveys a carrier gas to facilitate the collection of the sample. A system heating the collection line is also provided. Preferably the collection line is electrically conductive so that an electrical power source can generate a current through it so that the internal resistance generates heat.
Well log characterization of natural gas-hydrates
Collett, Timothy S.; Lee, Myung W.
2012-01-01
In the last 25 years there have been significant advancements in the use of well-logging tools to acquire detailed information on the occurrence of gas hydrates in nature: whereas wireline electrical resistivity and acoustic logs were formerly used to identify gas-hydrate occurrences in wells drilled in Arctic permafrost environments, more advanced wireline and logging-while-drilling (LWD) tools are now routinely used to examine the petrophysical nature of gas-hydrate reservoirs and the distribution and concentration of gas hydrates within various complex reservoir systems. Resistivity- and acoustic-logging tools are the most widely used for estimating the gas-hydrate content (i.e., reservoir saturations) in various sediment types and geologic settings. Recent integrated sediment coring and well-log studies have confirmed that electrical-resistivity and acoustic-velocity data can yield accurate gas-hydrate saturations in sediment grain-supported (isotropic) systems such as sand reservoirs, but more advanced log-analysis models are required to characterize gas hydrate in fractured (anisotropic) reservoir systems. New well-logging tools designed to make directionally oriented acoustic and propagation-resistivity log measurements provide the data needed to analyze the acoustic and electrical anisotropic properties of both highly interbedded and fracture-dominated gas-hydrate reservoirs. Advancements in nuclear magnetic resonance (NMR) logging and wireline formation testing (WFT) also allow for the characterization of gas hydrate at the pore scale. Integrated NMR and formation testing studies from northern Canada and Alaska have yielded valuable insight into how gas hydrates are physically distributed in sediments and the occurrence and nature of pore fluids(i.e., free water along with clay- and capillary-bound water) in gas-hydrate-bearing reservoirs. Information on the distribution of gas hydrate at the pore scale has provided invaluable insight on the mechanisms controlling the formation and occurrence of gas hydrate in nature along with data on gas-hydrate reservoir properties (i.e., porosities and permeabilities) needed to accurately predict gas production rates for various gas-hydrate production schemes.
Background gas density and beam losses in NIO1 beam source
NASA Astrophysics Data System (ADS)
Sartori, E.; Veltri, P.; Cavenago, M.; Serianni, G.
2016-02-01
NIO1 (Negative Ion Optimization 1) is a versatile ion source designed to study the physics of production and acceleration of H- beams up to 60 keV. In ion sources, the gas is steadily injected in the plasma source to sustain the discharge, while high vacuum is maintained by a dedicated pumping system located in the vessel. In this paper, the three dimensional gas flow in NIO1 is studied in the molecular flow regime by the Avocado code. The analysis of the gas density profile along the accelerator considers the influence of effective gas temperature in the source, of the gas temperature accommodation by collisions at walls, and of the gas particle mass. The calculated source and vessel pressures are compared with experimental measurements in NIO1 during steady gas injection.
NASA Astrophysics Data System (ADS)
Santra, M.; Flemings, P. B.; Scott, E.; Meazell, K.; Petrou, E. G.
2017-12-01
We present a depositional model for a gas hydrate bearing deepwater channel-overbank system in Green Canyon area (around Block 955) in northern Gulf of Mexico. The gas-hydrate bearing reservoir was tested by three wells drilled in 2009 as part of the Gulf of Mexico Gas Hydrate Joint Industry Project (JIP). The same reservoir was sampled during the recent UT-GOM2-1 pressure-coring expedition. Analysis of a newly available wide-azimuth 3D seismic data shows two distinct stages of development of the channel system that significantly impacted the reservoir characteristics. The study area is located near the present-day Green Canyon reentrant, where a succession of Miocene to recent clastic sediments overlies an extensive salt diapir connected to the autochthonous level. The entire supra-salt sedimentary section is intersected by a system of large-scale normal faults formed as a result of salt movement. The channel system containing the gas hydrate reservoir has a well-defined basal surface, and is capped by a channel abandonment surface. Seismic analysis shows at least two distinct phases of channel development. In the first phase, levees undergo progressive gravitational collapse along series of normal faults that dip towards the channel axis. The normal faults on either side of channel axis are linked to a zone of compression located at the channel axis by a decollement surface at the base of the channel. The compression is recorded by bulging and/or thrusting at the channel center. This compressional bulge was eroded at the channel axis. During this phase, no axial channel deposits have been preserved. However, the position of the channel axis is indicated by a prominent linear ridge of fine-grained material that represents the remnant of the compressional bulge. Mapping of gravitational failure surfaces shows significant rotation and displacement of levee deposits along them. The second phase of development of the channel system is marked by the termination of gravitational failure and the preservation of both channel deposits and flanking levees. Both gravitational failure of channel-levee system and large-scale normal faulting impacted hydrate reservoir configuration. The large-scale fault system may have been the major pathway for hydrocarbon migration.
Modeling and Analysis of the Reverse Water Gas Shift Process for In-Situ Propellant Production
NASA Technical Reports Server (NTRS)
Whitlow, Jonathan E.
2000-01-01
This report focuses on the development of mathematical models and simulation tools developed for the Reverse Water Gas Shift (RWGS) process. This process is a candidate technology for oxygen production on Mars under the In-Situ Propellant Production (ISPP) project. An analysis of the RWGS process was performed using a material balance for the system. The material balance is very complex due to the downstream separations and subsequent recycle inherent with the process. A numerical simulation was developed for the RWGS process to provide a tool for analysis and optimization of experimental hardware, which will be constructed later this year at Kennedy Space Center (KSC). Attempts to solve the material balance for the system, which can be defined by 27 nonlinear equations, initially failed. A convergence scheme was developed which led to successful solution of the material balance, however the simplified equations used for the gas separation membrane were found insufficient. Additional more rigorous models were successfully developed and solved for the membrane separation. Sample results from these models are included in this report, with recommendations for experimental work needed for model validation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carter, Kimberly E; Gerdes, Kirk
2013-07-01
A new and complete GC–ICP-MS method is described for direct analysis of trace metals in a gas phase process stream. The proposed method is derived from standard analytical procedures developed for ICP-MS, which are regularly exercised in standard ICP-MS laboratories. In order to implement the method, a series of empirical factors were generated to calibrate detector response with respect to a known concentration of an internal standard analyte. Calibrated responses are ultimately used to determine the concentration of metal analytes in a gas stream using a semi-quantitative algorithm. The method was verified using a traditional gas injection from a GCmore » sampling valve and a standard gas mixture containing either a 1 ppm Xe + Kr mix with helium balance or 100 ppm Xe with helium balance. Data collected for Xe and Kr gas analytes revealed that agreement of 6–20% with the actual concentration can be expected for various experimental conditions. To demonstrate the method using a relevant “unknown” gas mixture, experiments were performed for continuous 4 and 7 hour periods using a Hg-containing sample gas that was co-introduced into the GC sample loop with the xenon gas standard. System performance and detector response to the dilute concentration of the internal standard were pre-determined, which allowed semi-quantitative evaluation of the analyte. The calculated analyte concentrations varied during the course of the 4 hour experiment, particularly during the first hour of the analysis where the actual Hg concentration was under predicted by up to 72%. Calculated concentration improved to within 30–60% for data collected after the first hour of the experiment. Similar results were seen during the 7 hour test with the deviation from the actual concentration being 11–81% during the first hour and then decreasing for the remaining period. The method detection limit (MDL) was determined for the mercury by injecting the sample gas into the system following a period of equilibration. The MDL for Hg was calculated as 6.8 μg · m -3. This work describes the first complete GC–ICP-MS method to directly analyze gas phase samples, and detailed sample calculations and comparisons to conventional ICP-MS methods are provided.« less
A nonlinear model for gas chromatograph systems
NASA Technical Reports Server (NTRS)
Feinberg, M. P.
1975-01-01
Fundamental engineering design techniques and concepts were studied for the optimization of a gas chromatograph-mass spectrometer chemical analysis system suitable for use on an unmanned, Martian roving vehicle. Previously developed mathematical models of the gas chromatograph are found to be inadequate for predicting peak heights and spreading for some experimental conditions and chemical systems. A modification to the existing equilibrium adsorption model is required; the Langmuir isotherm replaces the linear isotherm. The numerical technique of Crank-Nicolson was studied for use with the linear isotherm to determine the utility of the method. Modifications are made to the method eliminate unnecessary calculations which result in an overall reduction of the computation time of about 42 percent. The Langmuir isotherm is considered which takes into account the composition-dependent effects on the thermodynamic parameter, mRo.
NASA Astrophysics Data System (ADS)
Huang, Wei; Zhang, Yuanxun; Zhang, Yang; Zeng, Limin; Dong, Huabin; Huo, Peng; Fang, Dongqing; Schauer, James J.
2016-06-01
A novel online system, GAC-ROS, for simultaneous measurement of reactive oxygen species (ROS) in both gas and particle phases was developed based on 2‧,7‧-dichlorofluorescin (DCFH) assay to provide fast sampling and analysis of atmospheric ROS. The GAC-ROS, composed of a Gas and Aerosol Collector (GAC), a series of reaction and transportation systems, and a fluorescence detector, was tested for instrumental performance in laboratory. Results showed good performance with a favorable R2 value for the calibration curve (above 0.998), high penetration efficiencies of ROS (above 99.5%), and low detection limits (gas-phase ROS: 0.16 nmol H2O2 m-3; particle-phase ROS: 0.12 nmol H2O2 m-3). Laboratorial comparison between online and offline methods for particle-bound ROS showed significant loss of ROS due to the relatively long time off-line treatment. Field observations in Beijing found that concentrations of ROS in winter time were significantly higher than those observed in spring. Only a few weak positive correlations were found between ROS and some air pollutants, which reflects the complexities of ROS generation and transformation in atmosphere. This study was the first to simultaneously obtain concentrations of gas and particle-phase ROS using an online method. Consequently, it provides a powerful tool to characterize the oxidizing capacity of the atmosphere and the sources of the oxidizing capacity.
Propulsion Investigation for Zero and Near-Zero Emissions Aircraft
NASA Technical Reports Server (NTRS)
Snyder, Christopher A.; Berton, Jeffrey J.; Brown, Gerald v.; Dolce, James L.; Dravid, Marayan V.; Eichenberg, Dennis J.; Freeh, Joshua E.; Gallo, Christopher A.; Jones, Scott M.; Kundu, Krishna P.;
2009-01-01
As world emissions are further scrutinized to identify areas for improvement, aviation s contribution to the problem can no longer be ignored. Previous studies for zero or near-zero emissions aircraft suggest aircraft and propulsion system sizes that would perform propulsion system and subsystems layout and propellant tankage analyses to verify the weight-scaling relationships. These efforts could be used to identify and guide subsequent work on systems and subsystems to achieve viable aircraft system emissions goals. Previous work quickly focused these efforts on propulsion systems for 70- and 100-passenger aircraft. Propulsion systems modeled included hydrogen-fueled gas turbines and fuel cells; some preliminary estimates combined these two systems. Hydrogen gas-turbine engines, with advanced combustor technology, could realize significant reductions in nitrogen emissions. Hydrogen fuel cell propulsion systems were further laid out, and more detailed analysis identified systems needed and weight goals for a viable overall system weight. Results show significant, necessary reductions in overall weight, predominantly on the fuel cell stack, and power management and distribution subsystems to achieve reasonable overall aircraft sizes and weights. Preliminary conceptual analyses for a combination of gas-turbine and fuel cell systems were also performed, and further studies were recommended. Using gas-turbine engines combined with fuel cell systems can reduce the fuel cell propulsion system weight, but at higher fuel usage than using the fuel cell only.
Rodier, C; Vandenabeele-Trambouze, O; Sternberg, R; Coscia, D; Coll, P; Szopa, C; Raulin, F; Vidal-Madjar, C; Cabane, M; Israel, G; Grenier-Loustalot, M F; Dobrijevic, M; Despois, D
2001-01-01
If there is, or ever was, life in our solar system beyond the Earth, Mars is the most likely place to search for. Future space missions will have then to take into account the detection of prebiotic molecules or molecules of biological significance such as amino acids. Techniques of analysis used for returned samples have to be very sensitive and avoid any chemical or biological contamination whereas in situ techniques have to be automated, fast and low energy consuming. Several possible methods could be used for in situ amino acid analyses on Mars, but gas chromatography would likely be the most suitable. Returned samples could be analyzed by any method in routine laboratory use such as gas chromatography, already successfully performed for analyses of organic matter including amino acids from martian meteorites. The derivatization step, which volatilizes amino acids to perform both in situ and laboratory analysis by gas chromatography, is discussed here. c2001 COSPAR. Published by Elsevier Science Ltd. All rights reserved.
Petroleum system of Northwest Java basin based on gravity data analysis
NASA Astrophysics Data System (ADS)
Widianto, E.
2018-01-01
Energy management in the upstream oil and gas sector becomes very important for the country’s energy security. The renewal of energy resources and reserves becomes necessary and is a must. In the oil and gas industry, gravity data is usually used only for regional surveys, but with the development of instrumentation technology and gravity software development, this method can be used for assessing oil and gas survey stages from exploration to production. This study was conducted to evaluate aspects of petroleum system and exploration play concept in the part of Northwest Java Basin, covering source rock deposition regions (source kitchen area, migration direction), development of reservoirs, structural and stratigraphic trap, based on gravity data. This study uses data from Bouguer gravity anomaly map by filtering process to produce a residual map depicting sedimentation basin configuration. The mapping generated 20 sedimentary basins in Java Island with the total hydrocarbon resources of 113 BBOE (Billion Barrel of Oil Equivalent). The petroleum system analysis was conducted in the Northwest Basin section. The final map produced illustrates the condition of petroleum system and play concept that can be used as exploration direction, expectedly reducing the risk of drilling failure.
NASA Astrophysics Data System (ADS)
Welaya, Yousri M. A.; Mosleh, M.; Ammar, Nader R.
2013-12-01
Strong restrictions on emissions from marine power plants (particularly SO x , NO x ) will probably be adopted in the near future. In this paper, a combined solid oxide fuel cell (SOFC) and steam turbine fuelled by natural gas is proposed as an attractive option to limit the environmental impact of the marine sector. The analyzed variant of the combined cycle includes a SOFC operated with natural gas fuel and a steam turbine with a single-pressure waste heat boiler. The calculations were performed for two types of tubular and planar SOFCs, each with an output power of 18 MW. This paper includes a detailed energy analysis of the combined system. Mass and energy balances are performed not only for the whole plant but also for each component in order to evaluate the thermal efficiency of the combined cycle. In addition, the effects of using natural gas as a fuel on the fuel cell voltage and performance are investigated. It has been found that a high overall efficiency approaching 60% may be achieved with an optimum configuration using the SOFC system. The hybrid system would also reduce emissions, fuel consumption, and improve the total system efficiency.
Monte Carlo Uncertainty Quantification for an Unattended Enrichment Monitor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jarman, Kenneth D.; Smith, Leon E.; Wittman, Richard S.
As a case study for uncertainty analysis, we consider a model flow monitor for measuring enrichment in gas centrifuge enrichment plants (GCEPs) that could provide continuous monitoring of all declared gas flow and provide high-accuracy gas enrichment estimates as a function of time. The monitor system could include NaI(Tl) gamma-ray spectrometers, a pressure signal-sharing device to be installed on an operator\\rq{}s pressure gauge or a dedicated inspector pressure sensor, and temperature sensors attached to the outside of the header pipe, to provide pressure, temperature, and gamma-ray spectra measurements of UFmore » $$_6$$ gas flow through unit header pipes. Our study builds on previous modeling and analysis methods development for enrichment monitor concepts and a software tool that was developed at Oak Ridge National Laboratory to generate and analyze synthetic data.« less
Spötl, Christoph
2005-09-01
The stable carbon isotopic composition of dissolved inorganic carbon (delta13C(DIC)) is traditionally determined using either direct precipitation or gas evolution methods in conjunction with offline gas preparation and measurement in a dual-inlet isotope ratio mass spectrometer. A gas evolution method based on continuous-flow technology is described here, which is easy to use and robust. Water samples (100-1500 microl depending on the carbonate alkalinity) are injected into He-filled autosampler vials in the field and analysed on an automated continuous-flow gas preparation system interfaced to an isotope ratio mass spectrometer. Sample analysis time including online preparation is 10 min and overall precision is 0.1 per thousand. This method is thus fast and can easily be automated for handling large sample batches.
Instrumental Analysis in Environmental Chemistry - Gas Phase Detection Systems
ERIC Educational Resources Information Center
Stedman, Donald H.; Meyers, Philip A.
1974-01-01
Discusses advances made in chemical analysis instrumentation used in environmental monitoring. This first of two articles is concerned with analytical instrumentation in which detection and dispersion depend ultimately on the properties of gaseous molecules. (JR)
Nuclear Aircraft Feasibility Study. Volume 1
1975-03-01
Cycle 6-36 6.2.2 Helium Mass Flow 6-42 6.2.3 Fan Pressure Ratio 6-42 6.2.4 Regenerative Cycle Application 6-43 6.2.5 Brayton Cycle...6-8 Engine Systems Summary 6-9 T-S Diagram of Ideal Brayton Cycle 6-13 T-S Diagram of Brayton Cycle for Turbofan Engine 6-15 Comparison of... Brayton Closed Cycle Thermodynamic Analysis 6-50 6.2.8-1 Indirect Cycle Gas Circulation System 6-53 6.2.8-2 Gas Turbine Generator — Pump Cycle
The use of gas chromatographic-mass spectrometric-computer systems in pharmacokinetic studies.
Horning, M G; Nowlin, J; Stafford, M; Lertratanangkoon, K; Sommer, K R; Hill, R M; Stillwell, R N
1975-10-29
Pharmacokinetic studies involving plasma, urine, breast milk, saliva and liver homogenates have been carried out by selective ion detection with a gas chromatographic-mass spectrometric-computer system operated in the chemical ionization mode. Stable isotope labeled drugs were used as internal standards for quantification. The half-lives, the concentration at zero time, the slope (regression coefficient), the maximum velocity of the reaction and the apparent Michaelis constant of the reaction were determined by regression analysis, and also by graphic means.
Thermodynamic analysis of a new conception of supplementary firing in a combined cycle
NASA Astrophysics Data System (ADS)
Kotowicz, Janusz; Bartela, Łukasz; Balicki, Adrian
2010-10-01
The paper analyzes a new concept of integration of combined cycle with the installation of supplementary firing. The whole system was enclosed by thermodynamic analysis, which consists of a gas-steam unit with triple-pressure heat recovery steam generator. The system uses a determined model of the gas turbine and the assumptions relating to the construction features of steam-water part were made. The proposed conception involves building of supplementary firing installation only on part of the exhaust stream leaving the gas turbine. In the proposed solution superheater was divided into two sections, one of which was located on the exhaust gases leaving the installation of supplementary firing. The paper presents the results of the analyses of which the main aim was to demonstrate the superiority of the new thermodynamic concept of the supplementary firing over the classical one. For this purpose a model of a system was built, in which it was possible to carry out simulations of the gradual transition from a classically understood supplementary firing to the supplementary firing completely modified. For building of a model the GateCycle™ software was used.
Key technologies for tritium storage bed development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, S.H.; Chang, M.H.; Kang, H.G.
2015-03-15
ITER Storage and Delivery System (SDS) is a complex system involving tens of storage beds. The most important SDS getter bed will be used for the absorption and desorption of hydrogen isotopes in accordance with the fusion fuel cycle scenario. In this paper the current status concerning research/development activities for the optimal approach to the final SDS design is introduced. A thermal analysis is performed and discussed on the aspect of heat losses considering whether the reflector and/or the feed-through is present or not. A thermal hydraulic simulation shows that the presence of 3 or 4 reflectors minimize the heatmore » loss. Another important point is to introduce the real-time gas analysis in the He{sup 3} collection system. In this study 2 independent strength methods based on gas chromatography and quadruple mass spectrometer for one and on a modified self-assaying quadruple mass spectrometer for the second are applied to separate the hydrogen isotopes in helium gas. Another issue is the possibility of using depleted uranium getter material for the storage of hydrogen isotopes, especially of tritium.« less
Infrared laser spectroscopic trace gas sensing
NASA Astrophysics Data System (ADS)
Sigrist, Markus
2016-04-01
Chemical sensing and analyses of gas samples by laser spectroscopic methods are attractive owing to several advantages such as high sensitivity and specificity, large dynamic range, multi-component capability, and lack of pretreatment or preconcentration procedures. The preferred wavelength range comprises the fundamental molecular absorption range in the mid-infared between 3 and 15 μm, whereas the near-infrared range covers the (10-100 times weaker) higher harmonics and combination bands. The availability of near-infrared and, particularly, of broadly tunable mid-infrared sources like external cavity quantum cascade lasers (EC-QCLs), interband cascade lasers (ICLs), difference frequency generation (DFG), optical parametric oscillators (OPOs), recent developments of diode-pumped lead salt semiconductor lasers, of supercontinuum sources or of frequency combs have eased the implementation of laser-based sensing devices. Sensitive techniques for molecular absorption measurements include multipass absorption, various configurations of cavity-enhanced techniques such as cavity ringdown (CRD), or of photoacoustic spectroscopy (PAS) including quartz-enhanced (QEPAS) or cantilever-enhanced (CEPAS) techniques. The application requirements finally determine the optimum selection of laser source and detection scheme. In this tutorial talk I shall discuss the basic principles, present various experimental setups and illustrate the performance of selected systems for chemical sensing of selected key atmospheric species. Applications include an early example of continuous vehicle emission measurements with a mobile CO2-laser PAS system [1]. The fast analysis of C1-C4 alkanes at sub-ppm concentrations in gas mixtures is of great interest for the petrochemical industry and was recently achieved with a new type of mid-infrared diode-pumped piezoelectrically tuned lead salt vertical external cavity surface emitting laser (VECSEL) [2]. Another example concerns measurements on short-lived species like nitrous acid (HONO) with a QCL-based QEPAS system where the small gas sampling volume and hence short gas residence time are of particular importance [3]. A true analysis of gas mixtures has been performed with a widely tunable DFG system in a medical application that could also be adapted to atmospheric species [4]. It is demonstrated that a laser-based narrowband system with broad tunability combined with an appropriate detection scheme is feasible for the chemical analysis of multi-component gas mixtures even with an a priori unknown composition. Most recent examples will further confirm the great potential of infrared laser-based devices for trace species sensing. References 1. D. Marinov and M.W. Sigrist: "Monitoring of road-traffic emission with mobile photoacoustic system", Photochem. and Photobiol. Sciences 2, 774-778 (2003) 2. J.M. Rey, M. Fill, F. Felder and M.W. Sigrist: "Broadly tunable mid-infrared VECSEL for multiple components hydrocarbons gas sensing", Appl. Phys. B 117, 935-939 (2014) 3. H. Yi, R. Maamary, X. Gao, M.W. Sigrist, E. Fertein, and W. Chen: "Short-lived species detection of nitrous acid by external-cavity quantum cascade laser based quartz-enhanced photoacoustic absorption spectroscopy", Appl. Phys. Lett. 106, 101109 (2015) 4. M. Gianella and M.W. Sigrist: "Chemical Analysis of Surgical Smoke by Infrared Laser Spectroscopy", Appl. Phys. B 109, 485-496 (2012)
Under EPA’s Environmental Technology Verification program, which provides objective and scientific third party analysis of new technology that can benefit the environment, a combined heat and power system based on the UTC Fuel Cell's PC25C Fuel Cell Power Plant was evaluated. The...
40 CFR 98.324 - Monitoring and QA/QC requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Tracking System Handbook Number: PH-08-V-1, January 1, 2008 (incorporated by reference, see § 98.7). You... paragraphs (d)(1) through (d)(2) of this section. (1) ASTM D1945-03, Standard Test Method for Analysis of... Reformed Gas by Gas Chromatography; ASTM D4891-89 (Reapproved 2006), Standard Test Method for Heating Value...
This study calculated the energy and greenhouse gas life cycle and cost profiles of transitional aerobic membrane bioreactors (AeMBR) and anaerobic membrane bioreactors (AnMBR). Membrane bioreactors (MBR) represent a promising technology for decentralized wastewater treatment and...
40 CFR Appendix G to Part 75 - Determination of CO2 Emissions
Code of Federal Regulations, 2010 CFR
2010-07-01
..., CO2 emissions from sorbent used in a wet flue gas desulfurization control system, fluidized bed boiler... procedure in section 2.3 of this appendix may also be used for an affected gas-fired unit. For an affected...) Wc = Carbon burned, lb/day, determined using fuel sampling and analysis and fuel feed rates. 2.1...
Farmery, A D; Hahn, C E
2001-04-01
The use of sidestream infrared and paramagnetic clinical gas analyzers is widespread in anesthesiology and respiratory medicine. For most clinical applications, these instruments are entirely satisfactory. However, their ability to measure breath-by-breath volumetric gas fluxes, as required for measurement of airway dead space, oxygen uptake, and so on, is usually inferior to that of the mass spectrometer, and this is thought to be due, in part, to their slower response times. We describe how volumetric gas analysis with the Datex Ultima analyzer, although reasonably accurate for spontaneous ventilation, gives very inaccurate results in conditions of positive-pressure ventilation. We show that this problem is a property of the gas sampling system rather than the technique of gas analysis itself. We examine the source of this error and describe how cyclic changes in airway pressure result in variations in the flow rate of the gas within the sampling catheter. This results in the phenomenon of "time distortion," and the resultant gas concentration signal becomes a nonlinear time series. This corrupted signal cannot be aligned or integrated with the measured flow signal. We describe a method to correct for this effect. With the use of this method, measurements required for breath-by-breath gas-exchange models can be made easily and reliably in the clinical setting.
NASA Astrophysics Data System (ADS)
Azizi, Mohammad Ali; Brouwer, Jacob
2017-10-01
A better understanding of turbulent unsteady flows in gas turbine systems is necessary to design and control compressors for hybrid fuel cell-gas turbine systems. Compressor stall/surge analysis for a 4 MW hybrid solid oxide fuel cell-gas turbine system for locomotive applications is performed based upon a 1.7 MW multi-stage air compressor. Control strategies are applied to prevent operation of the hybrid SOFC-GT beyond the stall/surge lines of the compressor. Computational fluid dynamics tools are used to simulate the flow distribution and instabilities near the stall/surge line. The results show that a 1.7 MW system compressor like that of a Kawasaki gas turbine is an appropriate choice among the industrial compressors to be used in a 4 MW locomotive SOFC-GT with topping cycle design. The multi-stage radial design of the compressor enhances the ability of the compressor to maintain air flow rate during transient step-load changes. These transient step-load changes are exhibited in many potential applications for SOFC/GT systems. The compressor provides sustained air flow rate during the mild stall/surge event that occurs due to the transient step-load change that is applied, indicating that this type of compressor is well-suited for this hybrid application.
1977-08-01
237 265 X A E DC-T R-77-80 CHAPTER I INTRODUCTION Stable aerodynamic operation of the compression system of an aircraft gas turbine engine is...of an aircraft gas turbine engine consists of one or more compressors arranged in configurations such as those illustrated in Fig. 1 (Appendix A). 1...difficulties in the operation of several aircraft gas turbine engines which have been experienced because of compressor stability problems. Montgomery’s
NASA Astrophysics Data System (ADS)
Shiraishi, Hiroyuki
2015-09-01
Microwave-supported Detonation (MSD), one type of Microwave-supported Plasma (MSP), is considered as one of the most important phenomena because it can generate high pressure and high temperature for beam-powered space propulsion systems. In this study, I numerically simulate MSD waves propagating through a diatomic gas. In order to evaluate the threshold of beam intensity, I use the physical-fluid dynamics scheme, which has been developed for simulating unsteady and non-equilibrium LSD waves propagating through a hydrogen gas.
2003-07-20
known, that at atmospheric pressure in oxygen- I" - contained gases a various modes of discharge can be realized in the needle -to-plane electrode geometry... needle -to-plane electrode system was located in the discharge chamber (volume I dmi3) with controlled gas feeding. The gas pressure was an atmospheric...The 3. Experimental results positive DC voltage was applied to the needle electrode . The discharge voltage was varied from 3 to 15kV. The analysis of
NASA Astrophysics Data System (ADS)
Gruzin, A. V.; Gruzin, V. V.; Shalay, V. V.
2018-04-01
Analysis of existing technologies for preparing foundation beds of oil and gas buildings and structures has revealed the lack of reasoned recommendations on the selection of rational technical and technological parameters of compaction. To study the nature of the dynamics of fast processes during compaction of foundation beds of oil and gas facilities, a specialized software and hardware system was developed. The method of calculating the basic technical parameters of the equipment for recording fast processes is presented, as well as the algorithm for processing the experimental data. The performed preliminary studies confirmed the accuracy of the decisions made and the calculations performed.
Gas diffusion as a new fluidic unit operation for centrifugal microfluidic platforms.
Ymbern, Oriol; Sández, Natàlia; Calvo-López, Antonio; Puyol, Mar; Alonso-Chamarro, Julian
2014-03-07
A centrifugal microfluidic platform prototype with an integrated membrane for gas diffusion is presented for the first time. The centrifugal platform allows multiple and parallel analysis on a single disk and integrates at least ten independent microfluidic subunits, which allow both calibration and sample determination. It is constructed with a polymeric substrate material and it is designed to perform colorimetric determinations by the use of a simple miniaturized optical detection system. The determination of three different analytes, sulfur dioxide, nitrite and carbon dioxide, is carried out as a proof of concept of a versatile microfluidic system for the determination of analytes which involve a gas diffusion separation step during the analytical procedure.
Biosensor method and system based on feature vector extraction
Greenbaum, Elias; Rodriguez, Jr., Miguel; Qi, Hairong; Wang, Xiaoling
2013-07-02
A system for biosensor-based detection of toxins includes providing at least one time-dependent control signal generated by a biosensor in a gas or liquid medium, and obtaining a time-dependent biosensor signal from the biosensor in the gas or liquid medium to be monitored or analyzed for the presence of one or more toxins selected from chemical, biological or radiological agents. The time-dependent biosensor signal is processed to obtain a plurality of feature vectors using at least one of amplitude statistics and a time-frequency analysis. At least one parameter relating to toxicity of the gas or liquid medium is then determined from the feature vectors based on reference to the control signal.
Sustainable Materials Management in Site Cleanup
In 2006, the management of materials accounted for 42 of the United States’ greenhouse gas (GHG) emissions, based on a systems analysis (U.S. EPA; 2009). The systems view of materials management represents U.S. emissions related to the...
Researchers used the TOUGH+ geomechanics computational software and simulation system to examine the likelihood of hydraulic fracture propagation (the spread of fractures) traveling long distances to connect with drinking water aquifers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanham, R.; Vogt, W.G.; Mickle, M.H.
1986-01-01
This book presents the papers given at a conference on computerized simulation. Topics considered at the conference included expert systems, modeling in electric power systems, power systems operating strategies, energy analysis, a linear programming approach to optimum load shedding in transmission systems, econometrics, simulation in natural gas engineering, solar energy studies, artificial intelligence, vision systems, hydrology, multiprocessors, and flow models.
Shelburne, Samuel A; Sumby, Paul; Sitkiewicz, Izabela; Granville, Chanel; DeLeo, Frank R; Musser, James M
2005-11-01
The molecular genetic mechanisms used by bacteria to persist in humans are poorly understood. Group A Streptococcus (GAS) causes the majority of bacterial pharyngitis cases in humans and is prone to persistently inhabit the upper respiratory tract. To gain information about how GAS survives in and infects the oropharynx, we analyzed the transcriptome of a serotype M1 strain grown in saliva. The dynamic pattern of changes in transcripts of genes [spy0874/0875, herein named sptR and sptS (sptR/S), for saliva persistence] encoding a two-component gene regulatory system of unknown function suggested that SptR/S contributed to persistence of GAS in saliva. Consistent with this idea, an isogenic nonpolar mutant strain (DeltasptR) was dramatically less able to survive in saliva compared with the parental strain. Iterative expression microarray analysis of bacteria grown in saliva revealed that transcripts of several known and putative GAS virulence factor genes were decreased significantly in the DeltasptR mutant strain. Compared with the parental strain, the isogenic mutant strain also had altered transcripts of multiple genes encoding proteins involved in complex carbohydrate acquisition and utilization pathways. Western immunoblot analysis and real-time PCR analysis of GAS in throat swabs taken from humans with pharyngitis confirmed the findings. We conclude that SptR/S optimizes persistence of GAS in human saliva, apparently by strategically influencing metabolic pathways and virulence factor production. The discovery of a genetic program that significantly increased persistence of a major human pathogen in saliva enhances understanding of how bacteria survive in the host and suggests new therapeutic strategies.
Greenhouse gas emission mitigation relevant to changes in municipal solid waste management system.
Pikoń, Krzysztof; Gaska, Krzysztof
2010-07-01
Standard methods for assessing the environmental impact of waste management systems are needed to underpin the development and implementation of sustainable waste management practice. Life cycle assessment (LCA) is a tool for comprehensively ensuring such assessment and covers all impacts associated with waste management. LCA is often called "from cradle to grave" analysis. This paper integrates information on the greenhouse gas (GHG) implications of various management options for some of the most common materials in municipal solid waste (MSW). Different waste treatment options for MSW were studied in a system analysis. Different combinations of recycling (cardboard, plastics, glass, metals), biological treatment (composting), and incineration as well as land-filling were studied. The index of environmental burden in the global warming impact category was calculated. The calculations are based on LCA methodology. All emissions taking place in the whole life cycle system were taken into account. The analysis included "own emissions," or emissions from the system at all stages of the life cycle, and "linked emissions," or emissions from other sources linked with the system in an indirect way. Avoided emissions caused by recycling and energy recovery were included in the analysis. Displaced emissions of GHGs originate from the substitution of energy or materials derived from waste for alternative sources. The complex analysis of the environmental impact of municipal waste management systems before and after application of changes in MSW systems according to European Union regulations is presented in this paper. The evaluation is made for MSW systems in Poland.
NASA Astrophysics Data System (ADS)
Ivanov, Rossen I.; Prodanov, Emil M.
2018-01-01
The cosmological dynamics of a quintessence model based on real gas with general equation of state is presented within the framework of a three-dimensional dynamical system describing the time evolution of the number density, the Hubble parameter and the temperature. Two global first integrals are found and examples for gas with virial expansion and van der Waals gas are presented. The van der Waals system is completely integrable. In addition to the unbounded trajectories, stemming from the presence of the conserved quantities, stable periodic solutions (closed orbits) also exist under certain conditions and these represent models of a cyclic Universe. The cyclic solutions exhibit regions characterized by inflation and deflation, while the open trajectories are characterized by inflation in a “fly-by” near an unstable critical point.
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeRosier, R.; Waterland, L.R.
1987-03-01
The report gives emission results from field tests of a wood-waste-fired industrial firetube boiler. Emission measurements included: continuous monitoring of flue gas emissions: source assessment sampling system (SASS) sampling of the flue-gas with subsequent laboratory analysis of samples to give total flue gas organics in two boiling point ranges, compound category information within these ranges, specific quantitation of the semivolatile organic priority pollutants, and flue gas concentrations of 65 trace elements; Method 5 sampling for particulates; controlled condensation system (CSS) sampling for SO/sub 2/ and SO/sub 3/; and grab sampling of boiler bottom ash for trace element content determinations. Totalmore » organic emissions from the boiler were 5.7 mg/dscm, about 90% of which consisted of volatile compounds.« less
NASA Astrophysics Data System (ADS)
Dolotovskii, I. V.; Dolotovskaya, N. V.; Larin, E. A.
2018-05-01
The article presents the architecture and content of a specialized analytical system for monitoring operational conditions, planning of consumption and generation of energy resources, long-term planning of production activities and development of a strategy for the development of the energy complex of gas processing enterprises. A compositional model of structured data on the equipment of the main systems of the power complex is proposed. The correctness of the use of software modules and the database of the analytical system is confirmed by comparing the results of measurements on the equipment of the electric power system and simulation at the operating gas processing plant. A high accuracy in the planning of consumption of fuel and energy resources has been achieved (the error does not exceed 1%). Information and program modules of the analytical system allow us to develop a strategy for improving the energy complex in the face of changing technological topology and partial uncertainty of economic factors.
Drops of energy: conserving urban water to reduce greenhouse gas emissions.
Zhou, Yuanchun; Zhang, Bing; Wang, Haikun; Bi, Jun
2013-10-01
Water and energy are two essential resources of modern civilization and are inherently linked. Indeed, the optimization of the water supply system would reduce energy demands and greenhouse gas emissions in the municipal water sector. This research measured the climatic cobenefit of water conservation based on a water flow analysis. The results showed that the estimated energy consumption of the total water system in Changzhou, China, reached approximately 10% of the city's total energy consumption, whereas the industrial sector was found to be more energy intensive than other sectors within the entire water system, accounting for nearly 70% of the total energy use of the water system. In addition, four sustainable water management scenarios would bring the cobenefit of reducing the total energy use of the water system by 13.9%, and 77% of the energy savings through water conservation was indirect. To promote sustainable water management and reduce greenhouse gas emissions, China would require its water price system, both for freshwater and recycled water, to be reformed.
Stirling heat pump external heat systems: An appliance perspective
NASA Astrophysics Data System (ADS)
Vasilakis, A. D.; Thomas, J. F.
1992-08-01
A major issue facing the Stirling Engine Heat Pump is system cost, and, in particular, the cost of the External Heat System (EHS). The need for high temperature at the heater head (600 C to 700 C) results in low combustion system efficiencies unless efficient heat recovery is employed. The balance between energy efficiency and use of costly high temperature materials is critical to design and cost optimization. Blower power consumption and NO(x) emissions are also important. A new approach to the design and cost optimization of the EHS system was taken by viewing the system from a natural gas-fired appliance perspective. To develop a design acceptable to gas industry requirements, American National Standards Institute (ANSI) code considerations were incorporated into the design process and material selections. A parametric engineering design and cost model was developed to perform the analysis, including the impact of design on NO(x) emissions. Analysis results and recommended EHS design and material choices are given.
Smart spectroscopy sensors: II. Narrow-band laser systems
NASA Astrophysics Data System (ADS)
Matharoo, Inderdeep; Peshko, Igor
2013-03-01
This paper describes the principles of operation of a miniature multifunctional optical sensory system based on laser technology and spectroscopic principles of analysis. The operation of the system as a remote oxygen sensor has been demonstrated. The multi-component alarm sensor has been designed to recognise gases and to measure gas concentration (O2, CO2, CO, CH4, N2O, C2H2, HI, OH radicals and H2O vapour, including semi-heavy water), temperature, pressure, humidity, and background radiation from the environment. Besides gas sensing, the same diode lasers are used for range-finding and to provide sensor self-calibration. The complete system operates as an inhomogeneous sensory network: the laser sensors are capable of using information received from environmental sensors for improving accuracy and reliability of gas concentration measurement. The sources of measurement errors associated with hardware and algorithms of operation and data processing have been analysed in detail.
NASA Astrophysics Data System (ADS)
Funke, H. H.-W.; Keinz, J.; Börner, S.; Hendrick, P.; Elsing, R.
2016-07-01
The paper highlights the modification of the engine control software of the hydrogen (H2) converted gas turbine Auxiliary Power Unit (APU) GTCP 36-300 allowing safe and accurate methane (CH4) operation achieved without mechanical changes of the metering unit. The acceleration and deceleration characteristics of the engine controller from idle to maximum load are analyzed comparing H2 and CH4. Also, the paper presents the influence on the thermodynamic cycle of gas turbine resulting from the different fuels supported by a gas turbine cycle simulation of H2 and CH4 using the software GasTurb.
Muñoz-Guerra, J A; Prado, P; García-Tenorio, S Vargas
2011-10-14
Due to the impact in the media and the requirements of sensitivity and robustness, the detection of the misuse of forbidden substances in sports is a really challenging area for analytical chemistry, where any study focused on enhancing the performance of the analytical methods will be of great interest. The aim of the present study was to evaluate the usefulness of using hydrogen instead of helium as a carrier gas for the analysis of anabolic steroids by gas chromatography-mass spectrometry with electron ionization. There are several drawbacks related with the use of helium as a carrier gas: it is expensive, is a non-renewable resource, and has limited availability in many parts of the world. In contrast, hydrogen is readily available using a hydrogen generator or high-pressure bottled gas, and allows a faster analysis without loss of efficiency; nevertheless it should not be forgotten that due to its explosiveness hydrogen must be handled with caution. Throughout the study the impact of the change of the carrier gas will be evaluated in terms of: performance of the chromatographic system, saving of time and money, impact on the high vacuum in the analyzer, changes in the fragmentation behaviour of the analytes, and finally consequences for the limits of detection achieved with the method. Copyright © 2011 Elsevier B.V. All rights reserved.
CFD analysis of laboratory scale phase equilibrium cell operation
NASA Astrophysics Data System (ADS)
Jama, Mohamed Ali; Nikiforow, Kaj; Qureshi, Muhammad Saad; Alopaeus, Ville
2017-10-01
For the modeling of multiphase chemical reactors or separation processes, it is essential to predict accurately chemical equilibrium data, such as vapor-liquid or liquid-liquid equilibria [M. Šoóš et al., Chem. Eng. Process.: Process Intensif. 42(4), 273-284 (2003)]. The instruments used in these experiments are typically designed based on previous experiences, and their operation verified based on known equilibria of standard components. However, mass transfer limitations with different chemical systems may be very different, potentially falsifying the measured equilibrium compositions. In this work, computational fluid dynamics is utilized to design and analyze laboratory scale experimental gas-liquid equilibrium cell for the first time to augment the traditional analysis based on plug flow assumption. Two-phase dilutor cell, used for measuring limiting activity coefficients at infinite dilution, is used as a test case for the analysis. The Lagrangian discrete model is used to track each bubble and to study the residence time distribution of the carrier gas bubbles in the dilutor cell. This analysis is necessary to assess whether the gas leaving the cell is in equilibrium with the liquid, as required in traditional analysis of such apparatus. Mass transfer for six different bio-oil compounds is calculated to determine the approach equilibrium concentration. Also, residence times assuming plug flow and ideal mixing are used as reference cases to evaluate the influence of mixing on the approach to equilibrium in the dilutor. Results show that the model can be used to predict the dilutor operating conditions for which each of the studied gas-liquid systems reaches equilibrium.
CFD analysis of laboratory scale phase equilibrium cell operation.
Jama, Mohamed Ali; Nikiforow, Kaj; Qureshi, Muhammad Saad; Alopaeus, Ville
2017-10-01
For the modeling of multiphase chemical reactors or separation processes, it is essential to predict accurately chemical equilibrium data, such as vapor-liquid or liquid-liquid equilibria [M. Šoóš et al., Chem. Eng. Process Intensif. 42(4), 273-284 (2003)]. The instruments used in these experiments are typically designed based on previous experiences, and their operation verified based on known equilibria of standard components. However, mass transfer limitations with different chemical systems may be very different, potentially falsifying the measured equilibrium compositions. In this work, computational fluid dynamics is utilized to design and analyze laboratory scale experimental gas-liquid equilibrium cell for the first time to augment the traditional analysis based on plug flow assumption. Two-phase dilutor cell, used for measuring limiting activity coefficients at infinite dilution, is used as a test case for the analysis. The Lagrangian discrete model is used to track each bubble and to study the residence time distribution of the carrier gas bubbles in the dilutor cell. This analysis is necessary to assess whether the gas leaving the cell is in equilibrium with the liquid, as required in traditional analysis of such apparatus. Mass transfer for six different bio-oil compounds is calculated to determine the approach equilibrium concentration. Also, residence times assuming plug flow and ideal mixing are used as reference cases to evaluate the influence of mixing on the approach to equilibrium in the dilutor. Results show that the model can be used to predict the dilutor operating conditions for which each of the studied gas-liquid systems reaches equilibrium.
CO and CO2 dual-gas detection based on mid-infrared wideband absorption spectroscopy
NASA Astrophysics Data System (ADS)
Dong, Ming; Zhong, Guo-qiang; Miao, Shu-zhuo; Zheng, Chuan-tao; Wang, Yi-ding
2018-03-01
A dual-gas sensor system is developed for CO and CO2 detection using a single broadband light source, pyroelectric detectors and time-division multiplexing (TDM) technique. A stepper motor based rotating system and a single-reflection spherical optical mirror are designed and adopted for realizing and enhancing dual-gas detection. Detailed measurements under static detection mode (without rotation) and dynamic mode (with rotation) are performed to study the performance of the sensor system for the two gas samples. The detection period is 7.9 s in one round of detection by scanning the two detectors. Based on an Allan deviation analysis, the 1σ detection limits under static operation are 3.0 parts per million (ppm) in volume and 2.6 ppm for CO and CO2, respectively, and those under dynamic operation are 9.4 ppm and 10.8 ppm for CO and CO2, respectively. The reported sensor has potential applications in various fields requiring CO and CO2 detection such as in the coal mine.
High density flux of Co nanoparticles produced by a simple gas aggregation apparatus.
Landi, G T; Romero, S A; Santos, A D
2010-03-01
Gas aggregation is a well known method used to produce clusters of different materials with good size control, reduced dispersion, and precise stoichiometry. The cost of these systems is relatively high and they are generally dedicated apparatuses. Furthermore, the usual sample production speed of these systems is not as fast as physical vapor deposition devices posing a problem when thick samples are needed. In this paper we describe the development of a multipurpose gas aggregation system constructed as an adaptation to a magnetron sputtering system. The cost of this adaptation is negligible and its installation and operation are both remarkably simple. The gas flow for flux in the range of 60-130 SCCM (SCCM denotes cubic centimeter per minute at STP) is able to completely collimate all the sputtered material, producing spherical nanoparticles. Co nanoparticles were produced and characterized using electron microscopy techniques and Rutherford back-scattering analysis. The size of the particles is around 10 nm with around 75 nm/min of deposition rate at the center of a Gaussian profile nanoparticle beam.
Shen, Fenghua; Liu, Jing; Zhang, Zhen; Yang, Yingju
2016-06-05
The temporal release of selenium from coal during combustion and gasification in a fluidized bed was measured in situ by an on-line analysis system of trace elements in flue gas. The on-line analysis system is based on an inductively coupled plasma optical emission spectroscopy (ICP-OES), and can measure concentrations of trace elements in flue gas quantitatively and continuously. The results of on-line analysis suggest that the concentration of selenium in flue gas during coal gasification is higher than that during coal combustion. Based on the results of on-line analysis, a second-order kinetic law r(x)=0.94e(-26.58/RT)(-0.56 x(2) -0.51 x+1.05) was determined for selenium release during coal combustion, and r(x)=11.96e(-45.03/RT)(-0.53 x(2) -0.56 x+1.09) for selenium release during coal gasification. These two kinetic laws can predict respectively the temporal release of selenium during coal combustion and gasification with an acceptable accuracy. Thermodynamic calculations were conducted to predict selenium species during coal combustion and gasification. The speciation of selenium in flue gas during coal combustion differs from that during coal gasification, indicating that selenium volatilization is different. The gaseous selenium species can react with CaO during coal combustion, but it is not likely to interact with mineral during coal gasification. Copyright © 2016 Elsevier B.V. All rights reserved.
Effect of Adding a Regenerator to Kornhauser's MIT "Two-Space" (Gas-Spring+Heat Exchanger) Test Rig
NASA Technical Reports Server (NTRS)
Ebiana, Asuquo B.; Gidugu, Praveen
2008-01-01
This study employed entropy-based second law post-processing analysis to characterize the various thermodynamic losses inside a 3-space solution domain (gas spring+heat exchanger+regenerator) operating under conditions of oscillating pressure and oscillating flow. The 3- space solution domain is adapted from the 2-space solution domain (gas spring+heat exchanger) in Kornhauser's MIT test rig by modifying the heat exchanger space to include a porous regenerator system. A thermal nonequilibrium model which assumes that the regenerator porous matrix and gas average temperatures can differ by several degrees at a given axial location and time during the cycle is employed. An important and primary objective of this study is the development and application of a thermodynamic loss post-processor to characterize the major thermodynamic losses inside the 3-space model. It is anticipated that the experience gained from thermodynamic loss analysis of the simple 3-space model can be extrapolated to more complex systems like the Stirling engine. It is hoped that successful development of loss post-processors will facilitate the improvement of the optimization capability of Stirling engine analysis codes through better understanding of the heat transfer and power losses. It is also anticipated that the incorporation of a successful thermal nonequilibrium model of the regenerator in Stirling engine CFD analysis codes, will improve our ability to accurately model Stirling regenerators relative to current multidimensional thermal-equilibrium porous media models.
A facility for gas- and condensed-phase measurements behind shock waves
NASA Astrophysics Data System (ADS)
Petersen, Eric L.; Rickard, Matthew J. A.; Crofton, Mark W.; Abbey, Erin D.; Traum, Matthew J.; Kalitan, Danielle M.
2005-09-01
A shock-tube facility consisting of two, single-pulse shock tubes for the study of fundamental processes related to gas-phase chemical kinetics and the formation and reaction of solid and liquid aerosols at elevated temperatures is described. Recent upgrades and additions include a new high-vacuum system, a new gas-handling system, a new control system and electronics, an optimized velocity-detection scheme, a computer-based data acquisition system, several optical diagnostics, and new techniques and procedures for handling experiments involving gas/powder mixtures. Test times on the order of 3 ms are possible with reflected-shock pressures up to 100 atm and temperatures greater than 4000 K. Applications for the shock-tube facility include the study of ignition delay times of fuel/oxidizer mixtures, the measurement of chemical kinetic reaction rates, the study of fundamental particle formation from the gas phase, and solid-particle vaporization, among others. The diagnostic techniques include standard differential laser absorption, FM laser absorption spectroscopy, laser extinction for particle volume fraction and size, temporally and spectrally resolved emission from gas-phase species, and a scanning mobility particle sizer for particle size distributions. Details on the set-up and operation of the shock tube and diagnostics are given, the results of a detailed uncertainty analysis on the accuracy of the test temperature inferred from the incident-shock velocity are provided, and some recent results are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scheutz, Charlotte; Pedersen, Rasmus Broe; Petersen, Per Haugsted
Highlights: • An innovative biocover system was constructed on a landfill cell to mitigate the methane emission. • The biocover system had a mitigation efficiently of typically 80%. • The system also worked efficiently at ambient temperatures below freezing. • A whole landfill emission measurement tool was required to document the biocover system efficiency. - Abstract: Methane generated at landfills contributes to global warming and can be mitigated by biocover systems relying on microbial methane oxidation. As part of a closure plan for an old unlined landfill without any gas management measures, an innovative biocover system was established. The systemmore » was designed based on a conceptual model of the gas emission patterns established through an initial baseline study. The study included construction of gas collection trenches along the slopes of the landfill where the majority of the methane emissions occurred. Local compost materials were tested as to their usefulness as bioactive methane oxidizing material and a suitable compost mixture was selected. Whole site methane emission quantifications based on combined tracer release and downwind measurements in combination with several local experimental activities (gas composition within biocover layers, flux chamber based emission measurements and logging of compost temperatures) proved that the biocover system had an average mitigation efficiency of approximately 80%. The study showed that the system also had a high efficiency during winter periods with temperatures below freezing. An economic analysis indicated that the mitigation costs of the biocover system were competitive to other existing greenhouse gas mitigation options.« less
Performance Analysis of Joule-Thomson Cooler Supplied with Gas Mixtures
NASA Astrophysics Data System (ADS)
Piotrowska, A.; Chorowski, M.; Dorosz, P.
2017-02-01
Joule-Thomson (J-T) cryo-coolers working in closed cycles and supplied with gas mixtures are the subject of intensive research in different laboratories. The replacement of pure nitrogen by nitrogen-hydrocarbon mixtures allows to improve both thermodynamic parameters and economy of the refrigerators. It is possible to avoid high pressures in the heat exchanger and to use standard refrigeration compressor instead of gas bottles or high-pressure oil free compressor. Closed cycle and mixture filled Joule-Thomson cryogenic refrigerator providing 10-20 W of cooling power at temperature range 90-100 K has been designed and manufactured. Thermodynamic analysis including the optimization of the cryo-cooler mixture has been performed with ASPEN HYSYS software. The paper describes the design of the cryo-cooler and provides thermodynamic analysis of the system. The test results are presented and discussed.
Automated potentiometric electrolyte analysis system. [for use in weightlessness
NASA Technical Reports Server (NTRS)
1973-01-01
The feasibility is demonstrated of utilizing chemical sensing electrode technology as the basis for an automatically-controlled system for blood gas and electrolyte analyses under weightlessness conditions. The specific measurements required were pH, pCO2, sodium, chloride, potassium ions, and ionized calcium. The general electrode theory, and ion activity measurements are described along with the fluid transport package, electronics unit, and controller for the automated potentiometric analysis system.
Crespo, Elena; Devasena, Samudrala; Sikkens, Cor; Centeno, Raymund; Cristescu, Simona M; Harren, Frans J M
2012-04-30
When performing trace gas analysis, it is not always possible to bring the source of volatiles and the gas analyzer together. In these cases, volatile storage containers, such as thermal desorption (TD) tubes, can be used for off-line measurement. TD is routinely combined with gas chromatography/mass spectrometry (GC/MS), but so far not with proton-transfer reaction mass spectrometry (PTRMS), which has a faster response. A PTR-quadrupole-MS instrument and a PTR-ion-trap-MS instrument were separately coupled to a TD unit for off-line analysis of trace volatiles in air. Carbograph 1TD/Carbopack X sorbent tubes were filled with different concentrations of a trace gas mixture containing low molecular weight volatiles (32 g/mol up to 136 g/mol) and measured with the above-mentioned combinations. The carrier gas in the TD unit was changed from helium to nitrogen to be able to combine this instrument with the mass spectrometer. Good linearity and reproducibility with the amount of gas stored were obtained. The storage capacity over time (up to 14 days) showed larger variability (<11% for all compounds, except for acetone 27%). Several tubes were filled with breath of different persons, and the breath of a smoker showed increased levels of acetonitrile and benzene. The combination of the PTR ion-trap instrument with the TD unit was also investigated. Due to its higher sampling rate, the ion-trap system showed higher throughput capabilities than the quadrupole system. The combination of TD with PTRMS using both a quadrupole and an ion trap for off-line volatile analysis has been validated. TD tubes can be a robust and compact volatile storage method when the mass spectrometry and the sampling cannot be performed in the same place, for example in large screening studies. In addition, a higher measurement throughput than with GC/MS could be obtained. Copyright © 2012 John Wiley & Sons, Ltd.
Tube bundle system studies at Signal Peak Energy Bull Mountains #1 Mine
Zipf, R.K.; Ochsner, R.; Krog, R.; Marchewka, W.; Valente, M.; Jensen, R.
2015-01-01
A tube bundle system (TBS) is a mechanical system for continuously drawing gas samples through tubes from multiple monitoring points located in an underground coal mine for analysis and display on the surface. The U.S. National Institute for Occupational Safety and Health (NIOSH), in collaboration with Signal Peak Energy (SPE), LLC, Bull Mountains No. 1 Mine, operated a TBS during mining of two bleederless, longwall panels. This paper describes the gas analysis data and its interpretation. As verified by the TBS, coal at the SPE mine tends to oxidize slowly. It was known that a reservoir of low-oxygen concentration atmosphere developed about 610 m (2,000 ft) behind the longwall face. A bleederless ventilation system facilitates formation of an inert atmosphere in this longwall gob and decreases the likelihood of spontaneous combustion. Connections of the mine atmosphere to the surface through subsidence cracks could allow airflow into the longwall gob, revive coal oxidation and increase spontaneous combustion risk. The atmospheric composition of the sealed areas was homogeneous, except in the immediate vicinity of suspected ingassing points. The TBS verified that gases within the partially sealed, bleederless longwall gob expanded into the longwall tailgate area when barometric pressure decreased. The concentration of carbon dioxide in the back return airflow at the longwall tailgate was observed to increase by a factor of three and possibly up to 10 times the typical background concentration of 0.5 to 1.0%, depending on the size of the longwall gob and the magnitude of barometric pressure decrease. TBS have the inherent disadvantage of slow response time due to travel time of the gas samples and sequential gas analyses. A TBS or similar continuous monitoring system could be beneficial in detecting and providing warning of potentially hazardous gas concentrations, if the slow response time of the system is always understood. PMID:26306075
Tube bundle system studies at Signal Peak Energy Bull Mountains #1 Mine.
Zipf, R K; Ochsner, R; Krog, R; Marchewka, W; Valente, M; Jensen, R
2014-03-01
A tube bundle system (TBS) is a mechanical system for continuously drawing gas samples through tubes from multiple monitoring points located in an underground coal mine for analysis and display on the surface. The U.S. National Institute for Occupational Safety and Health (NIOSH), in collaboration with Signal Peak Energy (SPE), LLC, Bull Mountains No. 1 Mine, operated a TBS during mining of two bleederless, longwall panels. This paper describes the gas analysis data and its interpretation. As verified by the TBS, coal at the SPE mine tends to oxidize slowly. It was known that a reservoir of low-oxygen concentration atmosphere developed about 610 m (2,000 ft) behind the longwall face. A bleederless ventilation system facilitates formation of an inert atmosphere in this longwall gob and decreases the likelihood of spontaneous combustion. Connections of the mine atmosphere to the surface through subsidence cracks could allow airflow into the longwall gob, revive coal oxidation and increase spontaneous combustion risk. The atmospheric composition of the sealed areas was homogeneous, except in the immediate vicinity of suspected ingassing points. The TBS verified that gases within the partially sealed, bleederless longwall gob expanded into the longwall tailgate area when barometric pressure decreased. The concentration of carbon dioxide in the back return airflow at the longwall tailgate was observed to increase by a factor of three and possibly up to 10 times the typical background concentration of 0.5 to 1.0%, depending on the size of the longwall gob and the magnitude of barometric pressure decrease. TBS have the inherent disadvantage of slow response time due to travel time of the gas samples and sequential gas analyses. A TBS or similar continuous monitoring system could be beneficial in detecting and providing warning of potentially hazardous gas concentrations, if the slow response time of the system is always understood.
Challenges, uncertainties, and issues facing gas production from gas-hydrate deposits
Moridis, G.J.; Collett, T.S.; Pooladi-Darvish, M.; Hancock, S.; Santamarina, C.; Boswel, R.; Kneafsey, T.; Rutqvist, J.; Kowalsky, M.B.; Reagan, M.T.; Sloan, E.D.; Sum, A.K.; Koh, C.A.
2011-01-01
The current paper complements the Moridis et al. (2009) review of the status of the effort toward commercial gas production from hydrates. We aim to describe the concept of the gas-hydrate (GH) petroleum system; to discuss advances, requirements, and suggested practices in GH prospecting and GH deposit characterization; and to review the associated technical, economic, and environmental challenges and uncertainties, which include the following: accurate assessment of producible fractions of the GH resource; development of methods for identifying suitable production targets; sampling of hydrate-bearing sediments (HBS) and sample analysis; analysis and interpretation of geophysical surveys of GH reservoirs; well-testing methods; interpretation of well-testing results; geomechanical and reservoir/well stability concerns; well design, operation, and installation; field operations and extending production beyond sand-dominated GH reservoirs; monitoring production and geomechanical stability; laboratory investigations; fundamental knowledge of hydrate behavior; the economics of commercial gas production from hydrates; and associated environmental concerns. ?? 2011 Society of Petroleum Engineers.
NASA Astrophysics Data System (ADS)
Leen, J. B.; Spillane, S.; Gardner, A.; Hansen, P. C.; Gupta, M.; Baer, D. S.
2015-12-01
Natural gas leaks pose a risk to public safety both because of potential explosions as well as from the greenhouse gas potential of fugitive methane. The rapid and cost effective detection of leaks in natural gas distribution is critical to providing a system that is safe for the public and the environment. Detection of methane from a mobile platform (vehicles, aircraft, etc.) is an accepted method of identifying leaks. A robust approach to differentiating pipeline gas (thermogenic) from other biogenic sources is the detection of ethane along with methane. Ethane is present in nearly all thermogenic gas but not in biogenic sources and its presence can be used to positively identify a gas sample. We present a mobile system for the simultaneous measurement of methane and ethane that is capable of detecting pipeline leaks and differentiating pipeline gas from other biogenic sources such as landfills, swamps, sewers, and enteric fermentation. The mobile system consists of a high precision GPS, sonic anemometer, and methane/ethane analyzer based on off-axis integrated cavity output spectroscopy (OA-ICOS). In order to minimize the system cost and facilitate the wide use of mobile leak detection, the analyzer operates in the near-infrared portion of the spectrum where lasers and optics are significantly less costly than in the mid-infrared. The analyzer is capable of detecting methane with a precision of <2 ppb (1σ in 1 sec) and detecting ethane with a precision of <30 ppb (1σ in 1 sec). Additionally, measurement rates of 5 Hz allow for detection of leaks at speeds up to 50 mph. The sonic anemometer, GPS and analyzer inlet are mounted to a generic roof rack for attachment to available fleet vehicles. The system can detect leaks having a downwind concentration of as little as 10 ppb of methane above ambient, while leaks 500 ppb above ambient can be identified as thermogenic with greater than 99% certainty (for gas with 6% ethane). Finally, analysis of wind data provides an estimate of leak direction and distance. The system presented provides a robust, cost effective solution to natural gas leak detection and attribution to maximize safety and minimize greenhouse gas impacts of distribution systems.
NASA Astrophysics Data System (ADS)
Deusner, C.; Gupta, S.; Kossel, E.; Bigalke, N.; Haeckel, M.
2015-12-01
Results from recent field trials suggest that natural gas could be produced from marine gas hydrate reservoirs at compatible yields and rates. It appears, from a current perspective, that gas production would essentially be based on depressurization and, when facing suitable conditions, be assisted by local thermal stimulation or gas hydrate conversion after injection of CO2-rich fluids. Both field trials, onshore in the Alaska permafrost and in the Nankai Trough offshore Japan, were accompanied by different technical issues, the most striking problems resulting from un-predicted geomechanical behaviour, sediment destabilization and catastrophic sand production. So far, there is a lack of experimental data which could help to understand relevant mechanisms and triggers for potential soil failure in gas hydrate production, to guide model development for simulation of soil behaviour in large-scale production, and to identify processes which drive or, further, mitigate sand production. We use high-pressure flow-through systems in combination with different online and in situ monitoring tools (e.g. Raman microscopy, MRI) to simulate relevant gas hydrate production scenarios. Key components for soil mechanical studies are triaxial systems with ERT (Electric resistivity tomography) and high-resolution local strain analysis. Sand production control and management is studied in a novel hollow-cylinder-type triaxial setup with a miniaturized borehole which allows fluid and particle transport at different fluid injection and flow conditions. Further, the development of a large-scale high-pressure flow-through triaxial test system equipped with μ-CT is ongoing. We will present results from high-pressure flow-through experiments on gas production through depressurization and injection of CO2-rich fluids. Experimental data are used to develop and parametrize numerical models which can simulate coupled process dynamics during gas-hydrate formation and gas production.
Versatile in situ gas analysis apparatus for nanomaterials reactors.
Meysami, Seyyed Shayan; Snoek, Lavina C; Grobert, Nicole
2014-09-02
We report a newly developed technique for the in situ real-time gas analysis of reactors commonly used for the production of nanomaterials, by showing case-study results obtained using a dedicated apparatus for measuring the gas composition in reactors operating at high temperature (<1000 °C). The in situ gas-cooled sampling probe mapped the chemistry inside the high-temperature reactor, while suppressing the thermal decomposition of the analytes. It thus allows a more accurate study of the mechanism of progressive thermocatalytic cracking of precursors compared to previously reported conventional residual gas analyses of the reactor exhaust gas and hence paves the way for the controlled production of novel nanomaterials with tailored properties. Our studies demonstrate that the composition of the precursors dynamically changes as they travel inside of the reactor, causing a nonuniform growth of nanomaterials. Moreover, mapping of the nanomaterials reactor using quantitative gas analysis revealed the actual contribution of thermocatalytic cracking and a quantification of individual precursor fragments. This information is particularly important for quality control of the produced nanomaterials and for the recycling of exhaust residues, ultimately leading toward a more cost-effective continuous production of nanomaterials in large quantities. Our case study of multiwall carbon nanotube synthesis was conducted using the probe in conjunction with chemical vapor deposition (CVD) techniques. Given the similarities of this particular CVD setup to other CVD reactors and high-temperature setups generally used for nanomaterials synthesis, the concept and methodology of in situ gas analysis presented here does also apply to other systems, making it a versatile and widely applicable method across a wide range of materials/manufacturing methods, catalysis, as well as reactor design and engineering.
Carbonell, Felix; Bellec, Pierre; Shmuel, Amir
2011-01-01
The influence of the global average signal (GAS) on functional-magnetic resonance imaging (fMRI)-based resting-state functional connectivity is a matter of ongoing debate. The global average fluctuations increase the correlation between functional systems beyond the correlation that reflects their specific functional connectivity. Hence, removal of the GAS is a common practice for facilitating the observation of network-specific functional connectivity. This strategy relies on the implicit assumption of a linear-additive model according to which global fluctuations, irrespective of their origin, and network-specific fluctuations are super-positioned. However, removal of the GAS introduces spurious negative correlations between functional systems, bringing into question the validity of previous findings of negative correlations between fluctuations in the default-mode and the task-positive networks. Here we present an alternative method for estimating global fluctuations, immune to the complications associated with the GAS. Principal components analysis was applied to resting-state fMRI time-series. A global-signal effect estimator was defined as the principal component (PC) that correlated best with the GAS. The mean correlation coefficient between our proposed PC-based global effect estimator and the GAS was 0.97±0.05, demonstrating that our estimator successfully approximated the GAS. In 66 out of 68 runs, the PC that showed the highest correlation with the GAS was the first PC. Since PCs are orthogonal, our method provides an estimator of the global fluctuations, which is uncorrelated to the remaining, network-specific fluctuations. Moreover, unlike the regression of the GAS, the regression of the PC-based global effect estimator does not introduce spurious anti-correlations beyond the decrease in seed-based correlation values allowed by the assumed additive model. After regressing this PC-based estimator out of the original time-series, we observed robust anti-correlations between resting-state fluctuations in the default-mode and the task-positive networks. We conclude that resting-state global fluctuations and network-specific fluctuations are uncorrelated, supporting a Resting-State Linear-Additive Model. In addition, we conclude that the network-specific resting-state fluctuations of the default-mode and task-positive networks show artifact-free anti-correlations.
NASA develops teleoperator retrieval system
NASA Technical Reports Server (NTRS)
1978-01-01
The teleoperator retrieval system vehicle was designed to reboost and/or deorbit the Skylab; however, usefulness in survey, stabilization, retrieval and delivery was examined. Thrusters, designed for cold gas propulsion, were adapted to hydrazine propulsion. Design specifications and cost analysis are given.
Surgical suite environmental control system. [using halothane absorbing filter
NASA Technical Reports Server (NTRS)
Higginbotham, E. J.; Jacobs, M. L.
1974-01-01
Theoretical and experimental work for a systems analysis approach to the problem of surgical suit exhaust systems centered on evaluation of halothane absorbing filters. An activated charcoal-alumina-charcoal combination proved to be the best filter for eliminating halothane through multilayer absorption of gas molecules.
Prospecting for Natural Gas Gydrate in the Orca & Choctaw Basins in the Northern Gulf of Mexico
NASA Astrophysics Data System (ADS)
Cook, A.; Hillman, J. I. T.; Sawyer, D.; Frye, M.; Palmes, S.; Shedd, W. W.
2016-12-01
The Orca and Choctaw salt bounded mini-basins, which occur in 1.5 to 2.5 km water depth on the northern Gulf of Mexico slope, are currently under consideration as an IODP scientific drilling location for coarse-grained natural gas hydrate systems. We use a 3D seismic dataset for gas hydrate prospecting that covers parts of eleven lease blocks ( 200 km2) in the Walker Ridge protraction area. The study area includes the southern section of the Orca Basin and a smaller section of the northern Choctaw Basin. We have mapped a discontinuous bottom-simulating reflection (BSR) over nearly 30% of our seismic dataset, which varies significantly in both amplitude and depth throughout the area. The southeastern section of our dataset contains three positive impedance amplitude horizons with possible phase reversals at the BSR. Detailed mapping in the area also reveals at the base of gas hydrate stability, a complicated intercalation of an east-west trending fault system and an amalgamated deepwater depositional system comprising channel levee deposits and turbidite sheet sands. Three industry wells drilled in the southwestern section of our study area indicate that the sedimentary sequence infilling the basins consists of predominantly mud rich units with interbedded turbidite sands, forming a 2 km thick supra-salt sequence of late Miocene to Pleistocene sediments. Two of the industry wells have strong evidence for natural gas hydrate in clay-rich sediment, with moderate resistivity (between 2-10 Ωm) increases above background resistivity in zones that exceed 60 m thick. Additionally, the electromagnetic resistivity curves in these wells separate suggesting that the gas hydrate occurs in high-angle fractures. We will present our seismic dataset, our continuing analysis and selected drill sites in the Orca and Choctaw basins. Furthermore, our analysis in the southeastern section of the study area underscores the importance of interpreting faults when considering phase reversals in hydrate systems.
Lumped Multi-Bubble Analysis of Injection Cooling System for Storage of Cryogenic Liquids
NASA Astrophysics Data System (ADS)
Saha, Pritam; Sandilya, Pavitra
2017-12-01
Storage of cryogenic liquids is a critical issue in many cryogenic applications. Subcooling of the liquid by bubbling a gas has been suggested to extend the storage period by reducing the boil-off loss. Liquid evaporation into the gas may cause liquid subcooling by extracting the latent heat of vaporization from the liquid. The present study aims at studying the factors affecting the liquid subcooling during gas injection. A lumped parameter model is presented to capture the effects of bubble dynamics (coalescence, breakup, deformation etc.) on the heat and mass transport between the gas and the liquid. The liquid subcooling has been estimated as a function of the key operating variables such as gas flow rate and gas injection temperature. Numerical results have been found to predict the change in the liquid temperature drop reasonably well when compared with the previously reported experimental results. This modelling approach can therefore be used in gauging the significance of various process variables on the liquid subcooling by injection cooling, as well as in designing and rating an injection cooling system.
Pressure intelligent control strategy of Waste heat recovery system of converter vapors
NASA Astrophysics Data System (ADS)
Feng, Xugang; Wu, Zhiwei; Zhang, Jiayan; Qian, Hong
2013-01-01
The converter gas evaporative cooling system is mainly used for absorbing heat in the high temperature exhaust gas which produced by the oxygen blowing reaction. Vaporization cooling steam pressure control system of converter is a nonlinear, time-varying, lagging behind, close coupling of multivariable control object. This article based on the analysis of converter operation characteristics of evaporation cooling system, of vaporization in a production run of pipe pressure variation and disturbance factors.For the dynamic characteristics of the controlled objects,we have improved the conventional PID control scheme.In Oxygen blowing process, we make intelligent control by using fuzzy-PID cascade control method and adjusting the Lance,that it can realize the optimization of the boiler steam pressure control.By design simulation, results show that the design has a good control not only ensures drum steam pressure in the context of security, enabling efficient conversion of waste heat.And the converter of 1800 flue gas through pipes and cool and dust removal also can be cooled to about 800. Therefore the converter haze evaporative cooling system has achieved to the converter haze temperature decrease effect and enhanced to the coal gas returns-ratio.
Thermal Analysis of of Near-Isothermal Compressed Gas Energy Storage System
Odukomaiya, Adewale; Abu-Heiba, Ahmad; Gluesenkamp, Kyle R.; ...
2016-01-01
In this paper, alternative system configurations for a novel Ground-Level Integrated Diverse Energy Storage (GLIDES) system, which can store energy via input of electricity and heat and deliver dispatchable electricity, is presented. The proposed system is low-cost and hybridizes compressed air and pumped hydro storage approaches that will allow for the off-peak storage of intermittent renewable energy for use during peak times. This study reveals that implementing direct-contact low grade heat exchange via sprayed falling droplets to cool the gas during charging (compression) and warm the gas during discharging (expansion) can be achieved through a secondary recirculating loop of liquid.more » This study shows that if the recirculating liquid loop is pre-conditioned with waste-heat prior to spraying during gas expansion and considering all the round trip conversion losses from standard 120 V 60 HZ electricity input and output with utilization of low grade heat at 90 C the alternative system design leads to a 16% boost in round trip efficiency of the electricity storage to elec = 82% with an energy density of ED = 3.59 MJ/m3.« less
Studying the Effect of Deposition Conditions on the Performance and Reliability of MEMS Gas Sensors
Sadek, Khaled; Moussa, Walied
2007-01-01
In this paper, the reliability of a micro-electro-mechanical system (MEMS)-based gas sensor has been investigated using Three Dimensional (3D) coupled multiphysics Finite Element (FE) analysis. The coupled field analysis involved a two-way sequential electrothermal fields coupling and a one-way sequential thermal-structural fields coupling. An automated substructuring code was developed to reduce the computational cost involved in simulating this complicated coupled multiphysics FE analysis by up to 76 percent. The substructured multiphysics model was then used to conduct a parametric study of the MEMS-based gas sensor performance in response to the variations expected in the thermal and mechanical characteristics of thin films layers composing the sensing MEMS device generated at various stages of the microfabrication process. Whenever possible, the appropriate deposition variables were correlated in the current work to the design parameters, with good accuracy, for optimum operation conditions of the gas sensor. This is used to establish a set of design rules, using linear and nonlinear empirical relations, which can be utilized in real-time at the design and development decision-making stages of similar gas sensors to enable the microfabrication of these sensors with reliable operation.
A methodology for thermodynamic simulation of high temperature, internal reforming fuel cell systems
NASA Astrophysics Data System (ADS)
Matelli, José Alexandre; Bazzo, Edson
This work presents a methodology for simulation of fuel cells to be used in power production in small on-site power/cogeneration plants that use natural gas as fuel. The methodology contemplates thermodynamics and electrochemical aspects related to molten carbonate and solid oxide fuel cells (MCFC and SOFC, respectively). Internal steam reforming of the natural gas hydrocarbons is considered for hydrogen production. From inputs as cell potential, cell power, number of cell in the stack, ancillary systems power consumption, reformed natural gas composition and hydrogen utilization factor, the simulation gives the natural gas consumption, anode and cathode stream gases temperature and composition, and thermodynamic, electrochemical and practical efficiencies. Both energetic and exergetic methods are considered for performance analysis. The results obtained from natural gas reforming thermodynamics simulation show that the hydrogen production is maximum around 700 °C, for a steam/carbon ratio equal to 3. As shown in the literature, the found results indicate that the SOFC is more efficient than MCFC.
Relaxation mode analysis of a peptide system: comparison with principal component analysis.
Mitsutake, Ayori; Iijima, Hiromitsu; Takano, Hiroshi
2011-10-28
This article reports the first attempt to apply the relaxation mode analysis method to a simulation of a biomolecular system. In biomolecular systems, the principal component analysis is a well-known method for analyzing the static properties of fluctuations of structures obtained by a simulation and classifying the structures into some groups. On the other hand, the relaxation mode analysis has been used to analyze the dynamic properties of homopolymer systems. In this article, a long Monte Carlo simulation of Met-enkephalin in gas phase has been performed. The results are analyzed by the principal component analysis and relaxation mode analysis methods. We compare the results of both methods and show the effectiveness of the relaxation mode analysis.
NASA Astrophysics Data System (ADS)
Muto, Ryotaro; Agari, Keizo; Aoki, Kazuya; Bessho, Kotaro; Hagiwara, Masayuki; Hirose, Erina; Ieiri, Masaharu; Iwasaki, Ruri; Katoh, Yohji; Kitagawa, Jun-ichi; Minakawa, Michifumi; Morino, Yuhei; Saito, Kiwamu; Sato, Yoshinori; Sawada, Shin'ya; Shirakabe, Yoshihisa; Suzuki, Yoshihiro; Takahashi, Hitoshi; Tanaka, Kazuhiro; Toyoda, Akihisa; Watanabe, Hiroaki; Yamanoi, Yutaka
2017-09-01
At the Hadron Experimental Facility in J-PARC, we inject a 30-GeV proton beam into a gold target to produce secondary particle beams required for various particle and nuclear physics experiments. The gold target is placed in a hermetic chamber, and helium gas is circulated in the chamber to monitor the soundness of the target. The radioactivity in helium gas is continuously monitored by gamma-ray detectors such as a germanium detector and a NaI(Tl) detector. Beam operations with those target-monitoring systems were successfully performed from April to June and October to December 2015, and from May to June 2016. In this paper, the details of the helium gas circulation system and gamma-ray detectors and the analysis results of the obtained gamma-ray spectra are reported.
Using steady-state equations for transient flow calculation in natural gas pipelines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maddox, R.N.; Zhou, P.
1984-04-02
Maddox and Zhou have extended their technique for calculating the unsteady-state behavior of straight gas pipelines to complex pipeline systems and networks. After developing the steady-state flow rate and pressure profile for each pipe in the network, analysts can perform the transient-state analysis in the real-time step-wise manner described for this technique.
Equivalence of Fluctuation Splitting and Finite Volume for One-Dimensional Gas Dynamics
NASA Technical Reports Server (NTRS)
Wood, William A.
1997-01-01
The equivalence of the discretized equations resulting from both fluctuation splitting and finite volume schemes is demonstrated in one dimension. Scalar equations are considered for advection, diffusion, and combined advection/diffusion. Analysis of systems is performed for the Euler and Navier-Stokes equations of gas dynamics. Non-uniform mesh-point distributions are included in the analyses.
Evaluation of an active humidification system for inspired gas.
Roux, Nicolás G; Plotnikow, Gustavo A; Villalba, Darío S; Gogniat, Emiliano; Feld, Vivivana; Ribero Vairo, Noelia; Sartore, Marisa; Bosso, Mauro; Scapellato, José L; Intile, Dante; Planells, Fernando; Noval, Diego; Buñirigo, Pablo; Jofré, Ricardo; Díaz Nielsen, Ernesto
2015-03-01
The effectiveness of the active humidification systems (AHS) in patients already weaned from mechanical ventilation and with an artificial airway has not been very well described. The objective of this study was to evaluate the performance of an AHS in chronically tracheostomized and spontaneously breathing patients. Measurements were quantified at three levels of temperature (T°) of the AHS: level I, low; level II, middle; and level III, high and at different flow levels (20 to 60 L/minute). Statistical analysis of repeated measurements was performed using analysis of variance and significance was set at a P<0.05. While the lowest temperature setting (level I) did not condition gas to the minimum recommended values for any of the flows that were used, the medium temperature setting (level II) only conditioned gas with flows of 20 and 30 L/minute. Finally, at the highest temperature setting (level III), every flow reached the minimum absolute humidity (AH) recommended of 30 mg/L. According to our results, to obtain appropiate relative humidity, AH and T° of gas one should have a device that maintains water T° at least at 53℃ for flows between 20 and 30 L/m, or at T° of 61℃ at any flow rate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guillen, Donna Post
2013-09-01
The direct evaporator is a simplified heat exchange system for an Organic Rankine Cycle (ORC) that generates electricity from a gas turbine exhaust stream. Typically, the heat of the exhaust stream is transferred indirectly to the ORC by means of an intermediate thermal oil loop. In this project, the goal is to design a direct evaporator where the working fluid is evaporated in the exhaust gas heat exchanger. By eliminating one of the heat exchangers and the intermediate oil loop, the overall ORC system cost can be reduced by approximately 15%. However, placing a heat exchanger operating with a flammablemore » hydrocarbon working fluid directly in the hot exhaust gas stream presents potential safety risks. The purpose of the analyses presented in this report is to assess the flammability of the selected working fluid in the hot exhaust gas stream stemming from a potential leak in the evaporator. Ignition delay time for cyclopentane at temperatures and pressure corresponding to direct evaporator operation was obtained for several equivalence ratios. Results of a computational fluid dynamic analysis of a pinhole leak scenario are given.« less
Fujiyoshi, Tomoharu; Ikami, Takahito; Sato, Takashi; Kikukawa, Koji; Kobayashi, Masato; Ito, Hiroshi; Yamamoto, Atsushi
2016-02-19
The consequences of matrix effects in GC are a major issue of concern in pesticide residue analysis. The aim of this study was to evaluate the applicability of an analyte protectant generator in pesticide residue analysis using a GC-MS system. The technique is based on continuous introduction of ethylene glycol into the carrier gas. Ethylene glycol as an analyte protectant effectively compensated the matrix effects in agricultural product extracts. All peak intensities were increased by this technique without affecting the GC-MS performance. Calibration curves for ethylene glycol in the GC-MS system with various degrees of pollution were compared and similar response enhancements were observed. This result suggests a convenient multi-residue GC-MS method using an analyte protectant generator instead of the conventional compensation method for matrix-induced response enhancement adding the mixture of analyte protectants into both neat and sample solutions. Copyright © 2016 Elsevier B.V. All rights reserved.
GIS least-cost analysis approach for siting gas pipeline ROWs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sydelko, P.J.; Wilkey, P.L.
1994-09-01
Geographic-information-system applications for the siting and monitoring of gas pipeline rights-of-way (ROWS) were developed for areas near Rio Vista, California. The data layers developed for this project represent geographic features, such as landcover, elevation, aspect, slope, soils, hydrography, transportation corridors, endangered species habitats, wetlands, and public line surveys. A geographic information system was used to develop and store spatial data from several sources; to manipulate spatial data to evaluate environmental and engineering issues associated with the siting, permitting, construction, maintenance, and monitoring of gas-pipeline ROWS; and to graphically display analysis results. Examples of these applications include (1) determination of environmentallymore » sensitive areas, such as endangered species habitat, wetlands, and areas of highly erosive soils; (2) evaluation of engineering constraints, including shallow depth to bedrock, major hydrographic features, and shallow water table; (3) classification of satellite imagery for landuse/landcover that will affect ROWS; and (4) identification of alternative ROW corridors that avoid environmentally sensitive areas or areas with severe engineering constraints.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spangler, Lorenz R.; Most, Wm. A.
The Waste Isolation Pilot Plant (WIPP) Hazardous Waste Facility Permit (HWFP) limits the allowable emissions of volatile organic compounds (VOCs) from contact handled (CH) transuranic (TRU) waste. The environmental Performance standard within the HWFP, Module IV, Table IV.D.1, prescribes the allowed VOC emissions from the waste to ensure protection of human health and the environment. Compliance with the performance standard to ensure control of VOC emissions is based on VOC concentrations and monitoring in the underground. One of the mechanisms used to ensure compliance with the emissions standards is measuring the VOC concentration in the headspace gas of waste containersmore » prior to disposal. Headspace gas sampling and analysis is the waste characterization activity used to determine the concentration of VOCs in the headspace of waste containers. In addition to being used to demonstrate compliance with the emissions standards of Module IV, Table IV.D.1, the results of the headspace gas sampling and analysis are used to confirm the hazardous wastes identified in the acceptable knowledge (AK) process. Headspace gas sampling and analysis has been an ongoing part of the CH TRU waste characterization program and therefore data are now available concerning its use and applicability. The information from approved Waste Stream Profile Forms (WSPFs) and the headspace gas sampling and analysis results for over 16,000 containers of CH TRU waste were considered as part of this study. The headspace gas sampling and analysis results are based on data from the WIPP Waste Information System (WWIS). These results were evaluated to determine the usefulness of headspace gas sampling and analysis for confirming AK information. The evaluation shows that the reliability of using the results of headspace gas sampling and analysis to confirm AK information can be grouped by mixed and non-mixed waste streams. In general, for mixed waste streams due to VOCs (i.e., carrying VOC-related hazardous waste numbers), there is no reliable comparison that can be made for the detection of a particular target analyte and its associated hazardous waste number(s) based on the AK information on a compound by compound basis. However, for non-mixed waste streams, the results of headspace gas sampling and analysis show a better correlation to the AK information.« less
A Fully Non-metallic Gas Turbine Engine Enabled by Additive Manufacturing
NASA Technical Reports Server (NTRS)
Grady, Joseph E.
2014-01-01
The Non-Metallic Gas Turbine Engine project, funded by NASA Aeronautics Research Institute (NARI), represents the first comprehensive evaluation of emerging materials and manufacturing technologies that will enable fully nonmetallic gas turbine engines. This will be achieved by assessing the feasibility of using additive manufacturing technologies for fabricating polymer matrix composite (PMC) and ceramic matrix composite (CMC) gas turbine engine components. The benefits of the proposed effort include: 50 weight reduction compared to metallic parts, reduced manufacturing costs due to less machining and no tooling requirements, reduced part count due to net shape single component fabrication, and rapid design change and production iterations. Two high payoff metallic components have been identified for replacement with PMCs and will be fabricated using fused deposition modeling (FDM) with high temperature capable polymer filaments. The first component is an acoustic panel treatment with a honeycomb structure with an integrated back sheet and perforated front sheet. The second component is a compressor inlet guide vane. The CMC effort, which is starting at a lower technology readiness level, will use a binder jet process to fabricate silicon carbide test coupons and demonstration articles. The polymer and ceramic additive manufacturing efforts will advance from monolithic materials toward silicon carbide and carbon fiber reinforced composites for improved properties. Microstructural analysis and mechanical testing will be conducted on the PMC and CMC materials. System studies will assess the benefits of fully nonmetallic gas turbine engine in terms of fuel burn, emissions, reduction of part count, and cost. The proposed effort will be focused on a small 7000 lbf gas turbine engine. However, the concepts are equally applicable to large gas turbine engines. The proposed effort includes a multidisciplinary, multiorganization NASA - industry team that includes experts in ceramic materials and CMCs, polymers and PMCs, structural engineering, additive manufacturing, engine design and analysis, and system analysis.
Potential Cost-Effective Opportunities for Methane Emission Abatement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warner, Ethan; Steinberg, Daniel; Hodson, Elke
2015-08-01
The energy sector was responsible for approximately 84% of carbon dioxide equivalent (CO 2e) greenhouse gas (GHG) emissions in the U.S. in 2012 (EPA 2014a). Methane is the second most important GHG, contributing 9% of total U.S. CO 2e emissions. A large portion of those methane emissions result from energy production and use; the natural gas, coal, and oil industries produce approximately 39% of anthropogenic methane emissions in the U.S. As a result, fossil-fuel systems have been consistently identified as high priority sectors to contribute to U.S. GHG reduction goals (White House 2015). Only two studies have recently attempted tomore » quantify the abatement potential and cost associated with the breadth of opportunities to reduce GHG emissions within natural gas, oil, and coal supply chains in the United States, namely the U.S. Environmental Protection Agency (EPA) (2013a) and ICF (2014). EPA, in its 2013 analysis, estimated the marginal cost of abatement for non-CO 2 GHG emissions from the natural gas, oil, and coal supply chains for multiple regions globally, including the United States. Building on this work, ICF International (ICF) (2014) provided an update and re-analysis of the potential opportunities in U.S. natural gas and oil systems. In this report we synthesize these previously published estimates as well as incorporate additional data provided by ICF to provide a comprehensive national analysis of methane abatement opportunities and their associated costs across the natural gas, oil, and coal supply chains. Results are presented as a suite of marginal abatement cost curves (MACCs), which depict the total potential and cost of reducing emissions through different abatement measures. We report results by sector (natural gas, oil, and coal) and by supply chain segment - production, gathering and boosting, processing, transmission and storage, or distribution - to facilitate identification of which sectors and supply chain segments provide the greatest opportunities for low cost abatement.« less
Vision for an Open, Global Greenhouse Gas Information System (GHGIS)
NASA Astrophysics Data System (ADS)
Duren, R. M.; Butler, J. H.; Rotman, D.; Ciais, P.; Greenhouse Gas Information System Team
2010-12-01
Over the next few years, an increasing number of entities ranging from international, national, and regional governments, to businesses and private land-owners, are likely to become more involved in efforts to limit atmospheric concentrations of greenhouse gases. In such a world, geospatially resolved information about the location, amount, and rate of greenhouse gas (GHG) emissions will be needed, as well as the stocks and flows of all forms of carbon through the earth system. The ability to implement policies that limit GHG concentrations would be enhanced by a global, open, and transparent greenhouse gas information system (GHGIS). An operational and scientifically robust GHGIS would combine ground-based and space-based observations, carbon-cycle modeling, GHG inventories, synthesis analysis, and an extensive data integration and distribution system, to provide information about anthropogenic and natural sources, sinks, and fluxes of greenhouse gases at temporal and spatial scales relevant to decision making. The GHGIS effort was initiated in 2008 as a grassroots inter-agency collaboration intended to identify the needs for such a system, assess the capabilities of current assets, and suggest priorities for future research and development. We will present a vision for an open, global GHGIS including latest analysis of system requirements, critical gaps, and relationship to related efforts at various agencies, the Group on Earth Observations, and the Intergovernmental Panel on Climate Change.
NASA Astrophysics Data System (ADS)
Hao, Lifen; Qiu, Lixia; Li, Jinping; Li, Dongxiong
2018-01-01
A new heat supplying system is proposed that utilizes the exhausted gas of the boiler to substitute the extraction steam from the turbine as the driving force for the adsorption heat pump regarding the recovery of the condensation heat of power plant. However, our system is not subject to the low efficiency of wasted heat utilization due to the low temperature of flue gas, which hence possesses higher performance in COP factors in the utilization of heat than that of the conventional techniques of using flues gas, so the amount of extracted gas from turbine can be reduced and the power generate rate be enhanced. Subsequently, detailed evaluation of the performance of this system in the point of views of thermodynamics and economics are presented in this work. For the instance of a 330 MW heat supply unit, 5 sample cities are chosen to demonstrate and confirm our economic analysis. It is revealed that when the heating coefficient of the heat pump is 1.8, the investment payback periods for these 5 cities are within the range of 2.4 to 4.8 years, which are far below the service year of the heat pump, demonstrating remarkable economic benefits for our system.
Dong, Ming; Zheng, Chuantao; Miao, Shuzhuo; Zhang, Yu; Du, Qiaoling; Wang, Yiding; Tittel, Frank K
2017-09-27
A multi-gas sensor system was developed that uses a single broadband light source and multiple carbon monoxide (CO), carbon dioxide (CO₂) and methane (CH₄) pyroelectric detectors by use of the time division multiplexing (TDM) technique. A stepper motor-based rotating system and a single-reflection spherical optical mirror were designed and adopted to realize and enhance multi-gas detection. Detailed measurements under static detection mode (without rotation) and dynamic mode (with rotation) were performed to study the performance of the sensor system for the three gas species. Effects of the motor rotating period on sensor performances were also investigated and a rotation speed of 0.4π rad/s was required to obtain a stable sensing performance, corresponding to a detection period of ~10 s to realize one round of detection. Based on an Allan deviation analysis, the 1 σ detection limits under static operation are 2.96, 4.54 and 2.84 parts per million in volume (ppmv) for CO, CO₂ and CH₄, respectively and the 1 σ detection limits under dynamic operations are 8.83, 8.69 and 10.29 ppmv for the three gas species, respectively. The reported sensor has potential applications in various fields requiring CO, CO₂ and CH₄ detection such as in coal mines.
Matrix isolation apparatus with extended sample collection capability
Reedy, Gerald T.
1987-01-01
A gas-sample collection device provides for the matrix isolation of increased amounts of a sample material for spectrographic analysis from a gas chromatographic separation. The device includes an evacuated sample collection chamber containing a disc-like specular carousel having a generally circular lateral surface upon which the sample is deposited in an inert gas matrix for infrared (IR) spectral analysis. The evacuated sample chamber is mounted in a fixed manner and is coupled to and supports a rotating cryostatic coupler which, in turn, supports the specular carousel within the collection chamber. A rotational drive system connected to the cryostatic coupler provides for its rotational displacement as well as that of the sample collecting carousel. In addition, rotation of the cryostatic coupler effects vertical displacement of the carousel to permit the collection of an extended sample band in a helical configuration on the entire lateral surface of the carousel. The various components of the carousel's angular/linear displacement drive system are located exterior to the cryostatic coupler for easy access and improved operation. The cryostatic coupler includes a 360.degree. rotary union assembly for permitting the delivery of a high pressure working fluid to the cryostatic coupler in a continuous flow manner for maintaining the specular carousel at a low temperature, e.g., 10.degree.-20.degree. K., for improved uninterrupted gas sample collection and analysis.
Mancini, E.A.; Li, P.; Goddard, D.A.; Ramirez, V.O.; Talukdar, S.C.
2008-01-01
The Mesozoic (Upper Jurassic-Lower Cretaceous) deeply buried gas reservoir play in the central and eastern Gulf coastal plain of the United States has high potential for significant gas resources. Sequence-stratigraphic study, petroleum system analysis, and resource assessment were used to characterize this developing play and to identify areas in the North Louisiana and Mississippi Interior salt basins with potential for deeply buried gas reservoirs. These reservoir facies accumulated in Upper Jurassic to Lower Cretaceous Norphlet, Haynesville, Cotton Valley, and Hosston continental, coastal, and marine siliciclastic environments and Smackover and Sligo nearshore marine shelf, ramp, and reef carbonate environments. These Mesozoic strata are associated with transgressive and regressive systems tracts. In the North Louisiana salt basin, the estimate of secondary, nonassociated thermogenic gas generated from thermal cracking of oil to gas in the Upper Jurassic Smackover source rocks from depths below 3658 m (12,000 ft) is 4800 tcf of gas as determined using software applications. Assuming a gas expulsion, migration, and trapping efficiency of 2-3%, 96-144 tcf of gas is potentially available in this basin. With some 29 tcf of gas being produced from the North Louisiana salt basin, 67-115 tcf of in-place gas remains. Assuming a gas recovery factor of 65%, 44-75 tcf of gas is potentially recoverable. The expelled thermogenic gas migrated laterally and vertically from the southern part of this basin to the updip northern part into shallower reservoirs to depths of up to 610 m (2000 ft). Copyright ?? 2008. The American Association of Petroleum Geologists. All rights reserved.
[Laser Raman Spectroscopy and Its Application in Gas Hydrate Studies].
Fu, Juan; Wu, Neng-you; Lu, Hai-long; Wu, Dai-dai; Su, Qiu-cheng
2015-11-01
Gas hydrates are important potential energy resources. Microstructural characterization of gas hydrate can provide information to study the mechanism of gas hydrate formation and to support the exploitation and application of gas hydrate technology. This article systemly introduces the basic principle of laser Raman spectroscopy and summarizes its application in gas hydrate studies. Based on Raman results, not only can the information about gas composition and structural type be deduced, but also the occupancies of large and small cages and even hydration number can be calculated from the relative intensities of Raman peaks. By using the in-situ analytical technology, laser Raman specstropy can be applied to characterize the formation and decomposition processes of gas hydrate at microscale, for example the enclathration and leaving of gas molecules into/from its cages, to monitor the changes in gas concentration and gas solubility during hydrate formation and decomposition, and to identify phase changes in the study system. Laser Raman in-situ analytical technology has also been used in determination of hydrate structure and understanding its changing process under the conditions of ultra high pressure. Deep-sea in-situ Raman spectrometer can be employed for the in-situ analysis of the structures of natural gas hydrate and their formation environment. Raman imaging technology can be applied to specify the characteristics of crystallization and gas distribution over hydrate surface. With the development of laser Raman technology and its combination with other instruments, it will become more powerful and play a more significant role in the microscopic study of gas hydrate.
Cascade Storage and Delivery System for a Multi Mission Space Exploration Vehicle (MMSEV)
NASA Technical Reports Server (NTRS)
Yagoda, Evan; Swickrath, Michael; Stambaugh, Imelda
2012-01-01
NASA is developing a Multi Mission Space Exploration Vehicle (MMSEV) for missions beyond Low Earth Orbit (LEO). The MMSEV is a pressurized vehicle used to extend the human exploration envelope for Lunar, Near Earth Object (NEO), and Deep Space missions. The Johnson Space Center is developing the Environmental Control and Life Support System (ECLSS) for the MMSEV. The MMSEV s intended use is to support longer sortie lengths with multiple Extra Vehicular Activities (EVAs) on a higher magnitude than any previous vehicle. This paper presents an analysis of a high pressure oxygen cascade storage and delivery system that will accommodate the crew during long duration Intra Vehicular Activity (IVA) and capable of multiple high pressure oxygen fills to the Portable Life Support System (PLSS) worn by the crew during EVAs. A cascade is a high pressure gas cylinder system used for the refilling of smaller compressed gas cylinders. Each of the large cylinders are filled by a compressor, but the cascade system allows small cylinders to be filled without the need of a compressor. In addition, the cascade system is useful as a "reservoir" to accommodate low pressure needs. A regression model was developed to provide the mechanism to size the cascade systems subject to constraints such as number of crew, extravehicular activity duration and frequency, and ullage gas requirements under contingency scenarios. The sizing routine employed a numerical integration scheme to determine gas compressibility changes during depressurization and compressibility effects were captured using the Soave-Redlich-Kwong (SRK) equation of state. A multi-dimensional nonlinear optimization routine was used to find the minimum cascade tank system mass that meets the mission requirements. The sizing algorithms developed in this analysis provide a powerful framework to assess cascade filling, compressor, and hybrid systems to design long duration vehicle ECLSS architecture. 1
Automotive Gas Turbine Power System-Performance Analysis Code
NASA Technical Reports Server (NTRS)
Juhasz, Albert J.
1997-01-01
An open cycle gas turbine numerical modelling code suitable for thermodynamic performance analysis (i.e. thermal efficiency, specific fuel consumption, cycle state points, working fluid flowrates etc.) of automotive and aircraft powerplant applications has been generated at the NASA Lewis Research Center's Power Technology Division. The use this code can be made available to automotive gas turbine preliminary design efforts, either in its present version, or, assuming that resources can be obtained to incorporate empirical models for component weight and packaging volume, in later version that includes the weight-volume estimator feature. The paper contains a brief discussion of the capabilities of the presently operational version of the code, including a listing of input and output parameters and actual sample output listings.
NASA Technical Reports Server (NTRS)
Casas, Joseph C.; Saylor, Mary S.; Kindle, Earl C.
1987-01-01
The major emphasis is on the advancement of remote sensing technology. In particular, the gas filter correlation radiometer (GFCR) technique was applied to the measurement of trace gas species, such as carbon monoxide (CO), from airborne and Earth orbiting platforms. Through a series of low altitude aircraft flights, high altitude aircraft flights, and orbiting space platform flights, data were collected and analyzed, culminating in the first global map of carbon monoxide concentration in the middle troposphere and stratosphere. The four major areas of this remote sensing program, known as the Measurement of Air Pollution from Satellites (MAPS) experiment, are: (1) data acquisition, (2) data processing, analysis, and interpretation algorithms, (3) data display techniques, and (4) information processing.
A novel inlet system for online chemical analysis of semi-volatile submicron particulate matter
NASA Astrophysics Data System (ADS)
Eichler, P.; Müller, M.; D'Anna, B.; Wisthaler, A.
2015-03-01
We herein present a novel modular inlet system designed to be coupled to low-pressure gas analyzers for online chemical characterization of semi-volatile submicron particles. The "chemical analysis of aerosol online" (CHARON) inlet consists of a gas-phase denuder for stripping off gas-phase analytes, an aerodynamic lens for particle collimation combined with an inertial sampler for the particle-enriched flow and a thermodesorption unit for particle volatilization prior to chemical analysis. The denuder was measured to remove gas-phase organics with an efficiency > 99.999% and to transmit particles in the 100-750 nm size range with a 75-90% efficiency. The measured average particle enrichment factor in the subsampling flow from the aerodynamic lens was 25.6, which is a factor of 3 lower than the calculated theoretical optimum. We coupled the CHARON inlet to a proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS) which quantitatively detects most organic analytes and ammonia. The combined CHARON-PTR-ToF-MS setup is thus capable of measuring both the organic and the ammonium fraction in submicron particles in real time. Individual organic compounds can be detected down to levels of 10-20 ng m-3. Two proof-of-principle studies were carried out for demonstrating the analytical power of this new instrumental setup: (i) oxygenated organics and their partitioning between the gas and the particulate phase were observed from the reaction of limonene with ozone and (ii) nicotine was measured in cigarette smoke particles demonstrating that selected organic target compounds can be detected in submicron particles in real time.
Hybrid fuel cell/diesel generation total energy system, part 2
NASA Astrophysics Data System (ADS)
Blazek, C. F.
1982-11-01
Meeting the Goldstone Deep Space Communications Complex (DGSCC) electrical and thermal requirements with the existing system was compared with using fuel cells. Fuel cell technology selection was based on a 1985 time frame for installation. The most cost-effective fuel feedstock for fuel cell application was identified. Fuels considered included diesel oil, natural gas, methanol and coal. These fuel feedstocks were considered not only on the cost and efficiency of the fuel conversion process, but also on complexity and integration of the fuel processor on system operation and thermal energy availability. After a review of fuel processor technology, catalytic steam reformer technology was selected based on the ease of integration and the economics of hydrogen production. The phosphoric acid fuel cell was selected for application at the GDSCC due to its commercial readiness for near term application. Fuel cell systems were analyzed for both natural gas and methanol feedstock. The subsequent economic analysis indicated that a natural gas fueled system was the most cost effective of the cases analyzed.
Hybrid fuel cell/diesel generation total energy system, part 2
NASA Technical Reports Server (NTRS)
Blazek, C. F.
1982-01-01
Meeting the Goldstone Deep Space Communications Complex (DGSCC) electrical and thermal requirements with the existing system was compared with using fuel cells. Fuel cell technology selection was based on a 1985 time frame for installation. The most cost-effective fuel feedstock for fuel cell application was identified. Fuels considered included diesel oil, natural gas, methanol and coal. These fuel feedstocks were considered not only on the cost and efficiency of the fuel conversion process, but also on complexity and integration of the fuel processor on system operation and thermal energy availability. After a review of fuel processor technology, catalytic steam reformer technology was selected based on the ease of integration and the economics of hydrogen production. The phosphoric acid fuel cell was selected for application at the GDSCC due to its commercial readiness for near term application. Fuel cell systems were analyzed for both natural gas and methanol feedstock. The subsequent economic analysis indicated that a natural gas fueled system was the most cost effective of the cases analyzed.
Stirling heat pump external heat systems - An appliance perspective
NASA Astrophysics Data System (ADS)
Vasilakis, Andrew D.; Thomas, John F.
A major issue facing the Stirling Engine Heat Pump is system cost, and, in particular, the cost of the External Heat System (EHS). The need for high temperature at the heater head (600 C to 700 C) results in low combustion system efficiencies unless efficient heat recovery is employed. The balance between energy efficiency and use of costly high temperature materials is critical to design and cost optimization. Blower power consumption and NO(x) emissions are also important. A new approach to the design and cost optimization of the EHS was taken by viewing the system from a natural gas-fired appliance perspective. To develop a design acceptable to gas industry requirements, American National Standards Institute (ANSI) code considerations were incorporated into the design process and material selections. A parametric engineering design and cost model was developed to perform the analysis, including the impact of design on NO(x) emissions. Analysis results and recommended EHS design and material choices are given.
Novel Application of Carbonate Fuel Cell for Capturing Carbon Dioxide from Flue Gas Streams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jolly, Stephen; Ghezel-Ayagh, Hossein; Willman, Carl
To address concerns about climate change resulting from emission of CO2 by coal-fueled power plants, FuelCell Energy, Inc. has developed the Combined Electric Power and Carbon-dioxide Separation (CEPACS) system concept. The CEPACS system utilizes Electrochemical Membrane (ECM) technology derived from the Company’s Direct FuelCell® products. The system separates the CO2 from the flue gas of other plants and produces electric power using a supplementary fuel. FCE is currently evaluating the use of ECM to cost effectively separate CO2 from the flue gas of Pulverized Coal (PC) power plants under a U.S. Department of Energy contract. The overarching objective of themore » project is to verify that the ECM can achieve at least 90% CO2 capture from the flue gas with no more than 35% increase in the cost of electricity. The project activities include: 1) laboratory scale operational and performance tests of a membrane assembly, 2) performance tests of the membrane to evaluate the effects of impurities present in the coal plant flue gas, in collaboration with Pacific Northwest National Laboratory, 3) techno-economic analysis for an ECM-based CO2 capture system applied to a 550 MW existing PC plant, in partnership with URS Corporation, and 4) bench scale (11.7 m2 area) testing of an ECM-based CO2 separation and purification system.« less
Gas-phase kinetics during diamond growth: CH4 as-growth species
NASA Astrophysics Data System (ADS)
Harris, Stephen J.
1989-04-01
We have used a one-dimensional kinetic analysis to model the gas-phase chemistry that occurred during the diamond growth experiments of Chauhan, Angus, and Gardner [J. Appl. Phys. 47, 4746 (1976)]. In those experiments the weight of diamond seed crystals heated by lamps in a CH4/H2 environment was monitored by a microbalance. No filament or electric discharge was present. Our analysis shows that diamond growth occurred in this system by direct reaction of CH4 on the diamond surface. C2H2 and CH3, which have been proposed as diamond growth species, played no significant role there, although our results do not address their possible contributions in other systems such as filament- or plasma-assisted diamond growth.
California Student Get Away Special Payload GAS-450
NASA Technical Reports Server (NTRS)
Ray, Glen; Burke, Edmund; Waldman, Marty
1993-01-01
The California Student Get Away Special Payload GAS-450, recently went into orbit on the STS-57 Mission, Space Shuttle, Endeavour, 21 June 1993, 6:14 AM and landed on the 29 June 1993 at Kennedy Space Center (KSC). Fifty students from 13 California Central Coast Schools and one in San Francisco designed and built 13 active experiments (6 modules) for this mission. Preliminary analysis of our completely reusable payload bus system indicated that the structure, power system, microprocessor, and sensor systems in each experiment module worked flawlessly. The experiments themselves performed exceptionally well with a 60 percent success ratio. The students are thoroughly documenting their own experiments and results via a standard research paper guideline generated by the GAS-450 technical staff. Lessons learned (program management and technical) are documented at the end of the paper. If any other organization needs payload/experiment development or NASA documentation assistance, then please contact us. We can help make your idea a space tested reality. Three years of intense effort culminated on 3 February 1993, the GSFC field operations team at Kennedy Space Center performed the final pressure decay and electrical tests upon the fully integrated GAS-450 flight canister. Subsequently, the payload was integrated with its parent GAS Bridge Assembly in mid-February and the bridge was transferred to the KSC orbiter team in late February 1993. The STS-57 mission originally scheduled to launch on the 29 April 1993 slipped until 21 June 1993. Our Payload shared the cargo bay with ten other GAS Canisters, the EUREKA experiment, the SHOOT experiment, and the SPACEHAB-1 module. The SIL technical staff retrieved the GAS-450 payload after flight from the NASA Spin Test Facility at KSC and shipped it back to California on the 22 July 1993 for student analysis at Allan Hancock College this summer.
NASA Technical Reports Server (NTRS)
Clayton, J. Louie; Phelps, Lisa (Technical Monitor)
2001-01-01
Carbon Fiber Rope (CFR) thermal barrier systems are being considered for use in several RSRM (Reusable Solid Rocket Motor) nozzle joints as a replacement for the current assembly gap close-out process/design. This study provides for development and test verification of analysis methods used for flow-thermal modeling of a CFR thermal barrier subject to fault conditions such as rope combustion gas blow-by and CFR splice failure. Global model development is based on a 1-D (one dimensional) transient volume filling approach where the flow conditions are calculated as a function of internal 'pipe' and porous media 'Darcy' flow correlations. Combustion gas flow rates are calculated for the CFR on a per-linear inch basis and solved simultaneously with a detailed thermal-gas dynamic model of a local region of gas blow by (or splice fault). Effects of gas compressibility, friction and heat transfer are accounted for the model. Computational Fluid Dynamic (CFD) solutions of the fault regions are used to characterize the local flow field, quantify the amount of free jet spreading and assist in the determination of impingement film coefficients on the nozzle housings. Gas to wall heat transfer is simulated by a large thermal finite element grid of the local structure. The employed numerical technique loosely couples the FE (Finite Element) solution with the gas dynamics solution of the faulted region. All free constants that appear in the governing equations are calibrated by hot fire sub-scale test. The calibrated model is used to make flight predictions using motor aft end environments and timelines. Model results indicate that CFR barrier systems provide a near 'vented joint' style of pressurization. Hypothetical fault conditions considered in this study (blow by, splice defect) are relatively benign in terms of overall heating to nozzle metal housing structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brinkman, Norman; Wang, Michael; Weber, Trudy
An accurate assessment of future fuel/propulsion system options requires a complete vehicle fuel-cycle analysis, commonly called a well-to-wheels (WTW) analysis. This WTW study analyzes energy use and emissions associated with fuel production (or well-to-tank [WTT]) activities and energy use and emissions associated with vehicle operation (or tank-to-wheels [TTW]) activities.
NASA Technical Reports Server (NTRS)
Thompson, James M.; Daniel, Janice D.
1989-01-01
The development of a mass spectrometer/thermal analyzer/computer (MS/TA/Computer) system capable of providing simultaneous thermogravimetry (TG), differential thermal analysis (DTA), derivative thermogravimetry (DTG) and evolved gas detection and analysis (EGD and EGA) under both atmospheric and high pressure conditions is described. The combined system was used to study the thermal decomposition of the nozzle material that constitutes the throat of the solid rocket boosters (SRB).
Multiple sulfur isotope determination on SO2 gas
NASA Astrophysics Data System (ADS)
Halas, Stanislaw; Pienkos, Tomasz
2017-04-01
The principal motivation of this study is to apply SO2 gas in the multiple isotope analysis (i.e. simultaneous analysis of sulfur isotope ratios: 33S/32S , 34S/32S and 36S/32S) rather than SF6 gas. SO2 gas can be easily prepared from sulfides (Robinson and Kusakabe 1975) and from sulfates (Halas and Wolacewicz 1981), whilst the preparation of SF6 gas requires the use of a fluorination line (Ono et al. 2006) and a mass spectrometer with enhanced resolving power to resolve isotope peaks 33SF5- from 32SF5- (masses 128 and 127). In the patent application (Halas et al. 2016) we have described a new ion source which can be applied for analysis of gases. The new ion source significantly enhances generation, both positive and negative, ions in comparison to commonly used Nier type. The analyzed gas is admitted from a dual inlet system to the ion source through separate capillaries connected to the pneumatically operated changeover valve as described by Halas (1979). It is important to have SO2 samples well purified from volatiles which eliminates O2 interference at mass 32 peak. A great advantage of the isotope analysis on S+ instead on SO+ or SO2+spectra is that there is no need to keep constant oxygen isotopic composition in the SO2 gas. Usually sulfide and sulfate samples have different oxygen, but it doesn't matter in the case of analysis on S+. The achieved precision (1σ) on positive ion beams was better than 0.1‰ and 0.01‰ for δ36S and δ34S, respectively. Unfortunately δ33S cannot be measured in this way, because of formation of 32SH+ ions which interfere with 33S+. The details of the design of the ion source, vacuum system and electronic controllers are presented in the poster. We thank to Dr. Keith Hackley for donation of an old mass spectrometer to UMCS, on the basis of which we were able to develop the new instrument. This study was supported by NCN project 2013/11/B/ST10/00250. References Hałas S., Pieńkos T., Pelc A., Wójtowicz A. (2016) Patent descriprtions P.416375 and P.417560. Halas S. and Wolacewicz W. (1981) Direct extraction of sulfur dioxide from sulfates for isotopic analysis, Anal. Chem. 53: 686-689. Ono S., Wing B., Johnston D., Farquhar J.,Rumble D. (2006) Mass dependent fractionation of quadruple stable sulfur isotope system as anew tracer of sulfur biogeochemical cycles, Geochim. et Cosmochim. Acta 70: 2238-2252. Robinson B. and Kusakabe M. (1975) Quantitative preparation of sulfur dioxide, for 34S/32S analysis, from sulfides by combustion with cuprous oxide. Anal. Chem. 47:1179-1181.
Online elemental analysis of process gases with ICP-OES: a case study on waste wood combustion.
Wellinger, Marco; Wochele, Joerg; Biollaz, Serge M A; Ludwig, Christian
2012-10-01
A mobile sampling and measurement system for the analysis of gaseous and liquid samples in the field was developed. An inductively coupled plasma optical emission spectrometer (ICP-OES), which is built into a van, was used as detector. The analytical system was calibrated with liquid and/or gaseous standards. It was shown that identical mass flows of either gaseous or liquid standards resulted in identical ICP-OES signal intensities. In a field measurement campaign trace and minor elements in the raw flue gas of a waste wood combustor were monitored. Sampling was performed with a highly transport efficient liquid quench system, which allowed to observe temporal variations in the elemental process gas composition. After a change in feedstock an immediate change of the element concentrations in the flue gas was detected. A comparison of the average element concentrations during the combustion of the two feedstocks showed a high reproducibility for matrix elements that are expected to be present in similar concentrations. On the other hand elements that showed strong differences in their concentration in the feedstock were also represented by a higher concentration in the flue gas. Following the temporal variations of different elements revealed strong correlations between a number of elements, such as chlorine with sodium, potassium and zinc, as well as arsenic with lead, and calcium with strontium. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Weinberg, Michael C.
1986-01-01
In this work consideration is given to the problem of the extraction of physical data information from gas bubble dissolution and growth measurements. The discussion is limited to the analysis of the simplest experimental systems consisting of a single, one component gas bubble in a glassmelt. It is observed that if the glassmelt is highly under- (super-) saturated, then surface tension effects may be ignored, simplifying the task of extracting gas diffusivity values from the measurements. If, in addition, the bubble rise velocity is very small (or very large) the ease of obtaining physical property data is enhanced. Illustrations are given for typical cases.
The Physics Analysis of a Gas Attenuator with Argon as a Working Gas (Rev. 1)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryutov, D D; Bionta, R M; McKernan, M A
2006-01-03
A gas attenuator is an important element of the LCLS facility. The attenuator has to operate in a broad range of x-ray energies, provide attenuation coefficient between 1 and 10{sup 4} with the accuracy of 1% and, at the same time, be reliable and allow for many months of un-interrupted operation. A detailed design study of the attenuator based on the use of nitrogen as a working gas has been recently carried out by S. Shen [1]. In this note we assess the features of the attenuator based on the use of argon. We concentrate on the physics issues; themore » design features will probably be not that different from the aforementioned nitrogen attenuator. Although specific results obtained in our note pertain to argon, the general framework (and many equations obtained) are applicable also to the nitrogen attenuator. In the past, an analysis of the attenuator based on the use of a noble gas has already been carried out [2]. This analysis was performed for an extremely stringent set of specifications. In particular, a very large diameter for the unobstructed x-ray beam was set (1 cm) to accommodate the spontaneous radiation; the attenuator was supposed to cover the whole range of energies of the coherent radiation, from 800 eV to 8000 eV; the maximum attenuation was set at the level of 10{sup 4}; the use of solid attenuators was not allowed, as well as the use of rotating shutters. The need to reach a sufficient absorption at the high-energy end of the spectrum predetermined the choice of Xe as the working gas (in order to have a reasonable absorption at a not-too-high pressure). A sophisticated differential pumping system that included a Penning-type ion pump was suggested in order to minimize the gas leak into the undulator/accelerator part of the facility. A high cost of xenon meant also that an efficient (and expensive) gas-recovery system would have to be installed. The main parameter that determined the high cost and the complexity of the system was a large radius of the orifice. The present viewpoint allows for much smaller size of the orifice, a = 1.5 mm. The use of solid attenuators is also allowed for a higher-energy end of the spectrum. It is, therefore, worthwhile to reconsider various parameters of the gas attenuator for these much less stringent conditions. As a working gas we consider now the argon, which, on the one hand, provides reasonable absorption lengths and, on the other hand, is inexpensive enough to be exhausted into the atmosphere (no need for recovery). We concentrate on the processes in the main attenuation cell and just outside it, not touching upon a performance of the differential pumping system. The graphs presented in this report can serve for a general orientation only, not for getting exact numerical values of various parameters.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, X.; Xiao, Y.; Xu, S.
A co-production system based on Fischer-Tropsch (FT) synthesis reactor and gas turbine was simulated and analyzed. Syngas from entrained bed coal gasification was used as feedstock of the low-temperature slurry phase Fischer-Tropsch reactor. Raw synthetic liquid produced was fractioned and upgraded to diesel, gasoline, and liquid petrol gas (LPG). Tail gas composed of unconverted syngas and FT light components was fed to the gas turbine. Supplemental fuel (NG, or refinery mine gas) might be necessary, which was dependent on gas turbine capacity expander through flow capacity, etc. FT yield information was important to the simulation of this co-production system. Amore » correlation model based on Mobil's two step pilot plant was applied. User models that can predict product yields and cooperate with other units were embedded into Aspen plus simulation. Performance prediction of syngas fired gas turbine was the other key of this system. The increase in mass flow through the turbine affects the match between compressor and turbine operating conditions. The calculation was carried out by GS software developed by Politecnico Di Milano and Princeton University. Various cases were investigated to match the FT synthesis island, power island, and gasification island in co-production systems. Effects of CO{sub 2} removal/LPG recovery, co-firing, and CH{sub 4} content variation were studied. Simulation results indicated that more than 50% of input energy was converted to electricity and FT products. Total yield of gasoline, diesel, and LPG was 136-155 g/N m{sup 3} (CO+H{sub 2}). At coal feed of 21.9 kg/s, net electricity exported to the grid was higher than 100 MW. Total production of diesel and gasoline (and LPG) was 118,000 t (134,000 t)/year. Under the economic analysis conditions assumed in this paper the co-production system was economically feasible.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsu, F.E.; Hedenhag, J.G.; Marchant, S.K.
1997-12-31
AirPol Inc., with the cooperation of the Tennessee Valley Authority (TVA) under a Cooperative Agreement with the United States Department of Energy, installed and tested a 10 MWe Gas Suspension Absorption (GSA) Demonstration system at TVA`s Shawnee Fossil Plant near Paducah, Kentucky. This low-cost retrofit project demonstrated that the GSA system can remove more than 90% of the sulfur dioxide from high-sulfur coal-fired flue gas, while achieving a relatively high utilization of reagent lime. This paper presents a detailed technical description of the Clean Coal Technology demonstration project. Test results and data analysis from the preliminary testing, factorial tests, airmore » toxics texts, 28-day continuous demonstration run of GSA/electrostatic precipitator (ESP), and 14-day continuous demonstration run of GSA/pulse jet baghouse (PJBH) are also discussed within this paper.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeRosier, R.; Waterland, L.R.
1987-03-01
The report gives emission results from field tests of a wood-waste-fired industrial firetube boiler. Emission measurements included: continuous monitoring of flue-gas emissions; source assessment sampling system (SASS) sampling of the flue gas with subsequent laboratory analysis of samples to give total flue-gas organics in two boiling-point ranges, compound category information within these ranges, specific quantitation of the semivolatile organic priority pollutants, and flue-gas concentrations of 65 trace elements; Method 5 sampling for particulates; controlled condensation system (CSS) sampling for SO/sub 2/ and SO/sub 3/; and grab sampling of boiler bottom ash for trace-element-content determinations. Emission levels of five polycyclic organicmore » matter species and phenol were quantitated: except for naphthalene, all were emitted at less than 0.4 microgram/dscm.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bright, G.F.
1974-01-01
A discussion of the increasing activity of natural gas pipeline companies in the analysis of the overpressure protection methods for complying with the provisions of Part 192, Title 49, Code of Federal Regulations ''Transportation of Natural and Other Gas by Pipelines; Minimum Federal Safety Standards'' and with the USAS B31.8 Code covers the basic requirements for protection against accidental overpressure as being essentially the same in both documents, i.e., at the maximum allowable operating overpressure in a gas system can be exceeded either at a compressor station or downstream of a pressure control valve; mandatory use of overpressure protection devicesmore » in these situations, except for those cases which exempt some service regulators because the distribution system pressure is less than 60 psig and six other requirements of design, performance, and size are met; and basic design requirements of a pressure relief or limiting station and the components used.« less
Combined heat and power systems: economic and policy barriers to growth
2012-01-01
Background Combined Heat and Power (CHP) systems can provide a range of benefits to users with regards to efficiency, reliability, costs and environmental impact. Furthermore, increasing the amount of electricity generated by CHP systems in the United States has been identified as having significant potential for impressive economic and environmental outcomes on a national scale. Given the benefits from increasing the adoption of CHP technologies, there is value in improving our understanding of how desired increases in CHP adoption can be best achieved. These obstacles are currently understood to stem from regulatory as well as economic and technological barriers. In our research, we answer the following questions: Given the current policy and economic environment facing the CHP industry, what changes need to take place in this space in order for CHP systems to be competitive in the energy market? Methods We focus our analysis primarily on Combined Heat and Power Systems that use natural gas turbines. Our analysis takes a two-pronged approach. We first conduct a statistical analysis of the impact of state policies on increases in electricity generated from CHP system. Second, we conduct a Cost-Benefit analysis to determine in which circumstances funding incentives are necessary to make CHP technologies cost-competitive. Results Our policy analysis shows that regulatory improvements do not explain the growth in adoption of CHP technologies but hold the potential to encourage increases in electricity generated from CHP system in small-scale applications. Our Cost-Benefit analysis shows that CHP systems are only cost competitive in large-scale applications and that funding incentives would be necessary to make CHP technology cost-competitive in small-scale applications. Conclusion From the synthesis of these analyses we conclude that because large-scale applications of natural gas turbines are already cost-competitive, policy initiatives aimed at a CHP market dominated primarily by large-scale (and therefore already cost-competitive) systems have not been effectively directed. Our recommendation is that for CHP technologies using natural gas turbines, policy focuses should be on increasing CHP growth in small-scale systems. This result can be best achieved through redirection of state and federal incentives, research and development, adoption of smart grid technology, and outreach and education. PMID:22540988
Tracing Acetylene Dissolved in Transformer Oil by Tunable Diode Laser Absorption Spectrum.
Ma, Guo-Ming; Zhao, Shu-Jing; Jiang, Jun; Song, Hong-Tu; Li, Cheng-Rong; Luo, Ying-Ting; Wu, Hao
2017-11-02
Dissolved gas analysis (DGA) is widely used in monitoring and diagnosing of power transformer, since the insulation material in the power transformer decomposes gases under abnormal operation condition. Among the gases, acetylene, as a symbol of low energy spark discharge and high energy electrical faults (arc discharge) of power transformer, is an important monitoring parameter. The current gas detection method used by the online DGA equipment suffers from problems such as cross sensitivity, electromagnetic compatibility and reliability. In this paper, an optical gas detection system based on TDLAS technology is proposed to detect acetylene dissolved in transformer oil. We selected a 1530.370 nm laser in the near infrared wavelength range to correspond to the absorption peak of acetylene, while using the wavelength modulation strategy and Herriott cell to improve the detection precision. Results show that the limit of detection reaches 0.49 ppm. The detection system responds quickly to changes of gas concentration and is easily to maintenance while has no electromagnetic interference, cross-sensitivity, or carrier gas. In addition, a complete detection process of the system takes only 8 minutes, implying a practical prospect of online monitoring technology.
A Practical Cryogen-Free CO2 Purification and Freezing Technique for Stable Isotope Analysis.
Sakai, Saburo; Matsuda, Shinichi
2017-04-18
Since isotopic analysis by mass spectrometry began in the early 1900s, sample gas for light-element isotopic measurements has been purified by the use of cryogens and vacuum-line systems. However, this conventional purification technique can achieve only certain temperatures that depend on the cryogens and can be sustained only as long as there is a continuous cryogen supply. Here, we demonstrate a practical cryogen-free CO 2 purification technique using an electrical operated cryocooler for stable isotope analysis. This approach is based on portable free-piston Stirling cooling technology and controls the temperature to an accuracy of 0.1 °C in a range from room temperature to -196 °C (liquid-nitrogen temperature). The lowest temperature can be achieved in as little as 10 min. We successfully purified CO 2 gas generated by carbonates and phosphoric acid reaction and found its sublimation point to be -155.6 °C at 0.1 Torr in the vacuum line. This means that the temperature required for CO 2 trapping is much higher than the liquid-nitrogen temperature. Our portable cooling system offers the ability to be free from the inconvenience of cryogen use for stable isotope analysis. It also offers a new cooling method applicable to a number of fields that use gas measurements.
Gas-fired duplex free-piston Stirling refrigerator
NASA Astrophysics Data System (ADS)
Urieli, L.
1984-03-01
The duplex free-piston Stirling refrigerator is a potentially high efficiency, high reliability device which is ideally suited to the home appliance field, in particular as a gas-fired refrigerator. It has significant advantages over other equivalent devices including freedom from halogenated hydrocarbons, extremely low temperatures available at a high efficiency, integrated water heating, and simple burner system control. The design and development of a portable working demonstration gas-fired duplex Stirling refrigeration unit is described. A unique combination of computer aided development and experimental development was used, enabling a continued interaction between the theoretical analysis and practical testing and evaluation. A universal test rig was developed in order to separately test and evaluate major subunits, enabling a smooth system integration phase.
Chhantyal-Pun, Rabi; Valavanis, Alexander; Keeley, James T; Rubino, Pierluigi; Kundu, Iman; Han, Yingjun; Dean, Paul; Li, Lianhe; Davies, A Giles; Linfield, Edmund H
2018-05-15
We demonstrate a gas spectroscopy technique, using self-mixing in a 3.4 terahertz quantum-cascade laser (QCL). All previous QCL spectroscopy techniques have required additional terahertz instrumentation (detectors, mixers, or spectrometers) for system pre-calibration or spectral analysis. By contrast, our system self-calibrates the laser frequency (i.e., with no external instrumentation) to a precision of 630 MHz (0.02%) by analyzing QCL voltage perturbations in response to optical feedback within a 0-800 mm round-trip delay line. We demonstrate methanol spectroscopy by introducing a gas cell into the feedback path and show that a limiting absorption coefficient of ∼1×10 -4 cm -1 is resolvable.
High-reliability gas-turbine combined-cycle development program: Phase II. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hecht, K.G.; Sanderson, R.A.; Smith, M.J.
This three-volume report presents the results of Phase II of the multiphase EPRI-sponsored High-Reliability Gas Turbine Combined-Cycle Development Program whose goal is to achieve a highly reliable gas turbine combined-cycle power plant, available by the mid-1980s, which would be an economically attractive baseload generation alternative for the electric utility industry. The Phase II program objective was to prepare the preliminary design of this power plant. This volume presents information of the reliability, availability, and maintainability (RAM) analysis of a representative plant and the preliminary design of the gas turbine, the gas turbine ancillaries, and the balance of plant including themore » steam turbine generator. To achieve the program goals, a gas turbine was incorporated which combined proven reliability characteristics with improved performance features. This gas turbine, designated the V84.3, is the result of a cooperative effort between Kraftwerk Union AG and United Technologies Corporation. Gas turbines of similar design operating in Europe under baseload conditions have demonstrated mean time between failures in excess of 40,000 hours. The reliability characteristics of the gas turbine ancillaries and balance-of-plant equipment were improved through system simplification and component redundancy and by selection of component with inherent high reliability. A digital control system was included with logic, communications, sensor redundancy, and mandual backup. An independent condition monitoring and diagnostic system was also included. Program results provide the preliminary design of a gas turbine combined-cycle baseload power plant. This power plant has a predicted mean time between failure of nearly twice the 3000-hour EPRI goal. The cost of added reliability features is offset by improved performance, which results in a comparable specific cost and an 8% lower cost of electricity compared to present market offerings.« less
Effects of Gas Pressure on the Failure Characteristics of Coal
NASA Astrophysics Data System (ADS)
Xie, Guangxiang; Yin, Zhiqiang; Wang, Lei; Hu, Zuxiang; Zhu, Chuanqi
2017-07-01
Several experiments were conducted using self-developed equipment for visual gas-solid coupling mechanics. The raw coal specimens were stored in a container filled with gas (99% CH4) under different initial gas pressure conditions (0.0, 0.5, 1.0, and 1.5 MPa) for 24 h prior to testing. Then, the specimens were tested in a rock-testing machine, and the mechanical properties, surface deformation and failure modes were recorded using strain gauges, an acoustic emission (AE) system and a camera. An analysis of the fractals of fragments and dissipated energy was performed to understand the changes observed in the stress-strain and crack propagation behaviour of the gas-containing coal specimens. The results demonstrate that increased gas pressure leads to a reduction in the uniaxial compression strength (UCS) of gas-containing coal and the critical dilatancy stress. The AE, surface deformation and fractal analysis results show that the failure mode changes during the gas state. Interestingly, a higher initial gas pressure will cause the damaged cracks and failure of the gas-containing coal samples to become severe. The dissipated energy characteristic in the failure process of a gas-containing coal sample is analysed using a combination of fractal theory and energy principles. Using the theory of fracture mechanics, based on theoretical analyses and calculations, the stress intensity factor of crack tips increases as the gas pressure increases, which is the main cause of the reduction in the UCS and critical dilatancy stress and explains the influence of gas in coal failure. More serious failure is created in gas-containing coal under a high gas pressure and low exterior load.
Arakawa, Takahiro; Ando, Eri; Wang, Xin; Kumiko, Miyajima; Kudo, Hiroyuki; Saito, Hirokazu; Mitani, Tomoyo; Takahashi, Mitsuo; Mitsubayashi, Kohji
2012-01-01
A two-dimensional gaseous ethanol visualization system has been developed and demonstrated using a horseradish peroxidase-luminol-hydrogen peroxide system with high-purity luminol solution and a chemiluminescence (CL) enhancer. This system measures ethanol concentrations as intensities of CL via the luminol reaction. CL was emitted when the gaseous ethanol was injected onto an enzyme-immobilized membrane, which was employed as a screen for two-dimensional gas visualization. The average intensity of CL on the substrate was linearly related to the concentration of standard ethanol gas. These results were compared with the CL intensity of the CCD camera recording image in the visualization system. This system is available for gas components not only for spatial but also for temporal analysis in real time. A high-purity sodium salt HG solution (L-HG) instead of standard luminol solution and an enhancer, eosin Y (EY) solution, were adapted for improvement of CL intensity of the system. The visualization of gaseous ethanol was achieved at a detection limit of 3 ppm at optimized concentrations of L-HG solution and EY. Copyright © 2011 John Wiley & Sons, Ltd.
Microfluidic study of fast gas-liquid reactions.
Li, Wei; Liu, Kun; Simms, Ryan; Greener, Jesse; Jagadeesan, Dinesh; Pinto, Sascha; Günther, Axel; Kumacheva, Eugenia
2012-02-15
We present a new concept for studies of the kinetics of fast gas-liquid reactions. The strategy relies on the microfluidic generation of highly monodisperse gas bubbles in the liquid reaction medium and subsequent analysis of time-dependent changes in bubble dimensions. Using reactions of CO(2) with secondary amines as an exemplary system, we demonstrate that the method enables rapid determination of reaction rate constant and conversion, and comparison of various binding agents. The proposed approach addresses two challenges in studies of gas-liquid reactions: a mass-transfer limitation and a poorly defined gas-liquid interface. The proposed strategy offers new possibilities in studies of the fundamental aspects of rapid multiphase reactions, and can be combined with throughput optimization of reaction conditions.
Infrared hyperspectral imaging sensor for gas detection
NASA Astrophysics Data System (ADS)
Hinnrichs, Michele
2000-11-01
A small light weight man portable imaging spectrometer has many applications; gas leak detection, flare analysis, threat warning, chemical agent detection, just to name a few. With support from the US Air Force and Navy, Pacific Advanced Technology has developed a small man portable hyperspectral imaging sensor with an embedded DSP processor for real time processing that is capable of remotely imaging various targets such as gas plums, flames and camouflaged targets. Based upon their spectral signature the species and concentration of gases can be determined. This system has been field tested at numerous places including White Mountain, CA, Edwards AFB, and Vandenberg AFB. Recently evaluation of the system for gas detection has been performed. This paper presents these results. The system uses a conventional infrared camera fitted with a diffractive optic that images as well as disperses the incident radiation to form spectral images that are collected in band sequential mode. Because the diffractive optic performs both imaging and spectral filtering, the lens system consists of only a single element that is small, light weight and robust, thus allowing man portability. The number of spectral bands are programmable such that only those bands of interest need to be collected. The system is entirely passive, therefore, easily used in a covert operation. Currently Pacific Advanced Technology is working on the next generation of this camera system that will have both an embedded processor as well as an embedded digital signal processor in a small hand held camera configuration. This will allow the implementation of signal and image processing algorithms for gas detection and identification in real time. This paper presents field test data on gas detection and identification as well as discuss the signal and image processing used to enhance the gas visibility. Flow rates as low as 0.01 cubic feet per minute have been imaged with this system.
Miniature Tunable Laser Spectrometer for Detection of a Trace Gas
NASA Technical Reports Server (NTRS)
Christensen, Lance E. (Inventor)
2017-01-01
An open-path laser spectrometer (OPLS) for measuring a concentration of a trace gas, the OPLS including an open-path multi-pass analysis region including a first mirror, a second mirror at a distance and orientation from the first mirror, and a support structure for locating the mirrors, a laser coupled to the analysis region and configured to emit light of a wavelength range and to enable a plurality of reflections of the emitted light between the mirrors, a detector coupled to the analysis region and configured to detect a portion of the emitted light impinging on the detector and to generate a corresponding signal, and an electronic system coupled to the laser and the detector, and configured to adjust the wavelength range of the emitted light from the laser based on the generated signal, and to measure the concentration of the trace gas based on the generated signal.
HIGH SPEED GC/MS FOR AIR ANALYSIS
A high speed GC/MS system consisting of a gas chromatograph equipped with a narrow bandwidth injection accessory and using a time-of-flight mass spectrometer detector has been adapted for analysis of ambient whole air samples which have been collected in passivated canisters. ...
Controllable Solid Propulsion Combustion and Acoustic Knowledge Base Improvements
NASA Technical Reports Server (NTRS)
McCauley, Rachel; Fischbach, Sean; Fredrick, Robert
2012-01-01
Controllable solid propulsion systems have distinctive combustion and acoustic environments that require enhanced testing and analysis techniques to progress this new technology from development to production. In a hot gas valve actuating system, the movement of the pintle through the hot gas exhibits complex acoustic disturbances and flow characteristics that can amplify induced pressure loads that can damage or detonate the rocket motor. The geometry of a controllable solid propulsion gas chamber can set up unique unsteady flow which can feed acoustic oscillations patterns that require characterization. Research in this area aids in the understanding of how best to design, test, and analyze future controllable solid rocket motors using the lessons learned from past government programs as well as university research and testing. This survey paper will give the reader a better understanding of the potentially amplifying affects propagated by a controllable solid rocket motor system and the knowledge of the tools current available to address these acoustic disturbances in a preliminary design. Finally the paper will supply lessons learned from past experiences which will allow the reader to come away with understanding of what steps need to be taken when developing a controllable solid rocket propulsion system. The focus of this survey will be on testing and analysis work published by solid rocket programs and from combustion and acoustic books, conference papers, journal articles, and additionally from subject matter experts dealing currently with controllable solid rocket acoustic analysis.
NASA Technical Reports Server (NTRS)
Casas, J. C.; Campbell, S. A.
1981-01-01
The applicability of the gas filter correlation radiometer (GFCR) to the measurement of tropospheric carbon monoxide gas was investigated. An assessment of the GFRC measurement system to a regional measurement program was conducted through extensive aircraft flight-testing of several versions of the GFRC. Investigative work in the following areas is described: flight test planning and coordination, acquisition of verifying CO measurements, determination and acquisition of supporting meteorological data requirements, and development of supporting computational software.
Sound produced by an oscillating arc in a high-pressure gas
NASA Astrophysics Data System (ADS)
Popov, Fedor K.; Shneider, Mikhail N.
2017-08-01
We suggest a simple theory to describe the sound generated by small periodic perturbations of a cylindrical arc in a dense gas. Theoretical analysis was done within the framework of the non-self-consistent channel arc model and supplemented with time-dependent gas dynamic equations. It is shown that an arc with power amplitude oscillations on the order of several percent is a source of sound whose intensity is comparable with external ultrasound sources used in experiments to increase the yield of nanoparticles in the high pressure arc systems for nanoparticle synthesis.
An assessment of gas emanation hazard using a geographic information system and geostatistics.
Astorri, F; Beaubien, S E; Ciotoli, G; Lombardi, S
2002-03-01
This paper describes the use of geostatistical analysis and GIS techniques to assess gas emanation hazards. The Mt. Vulsini volcanic district was selected for this study because of the wide range of natural phenomena locally present that affect gas migration in the near surface. In addition, soil gas samples that were collected in this area should allow for a calibration between the generated risk/hazard models and the measured distribution of toxic gas species at surface. The approach used during this study consisted of three general stages. First data were digitally organized into thematic layers, then software functions in the GIS program "ArcView" were used to compare and correlate these various layers, and then finally the produced "potential-risk" map was compared with radon soil gas data in order to validate the model and/or to select zones for further, more-detailed soil gas investigations.
NASA Astrophysics Data System (ADS)
Yoneda, J.; Masui, A.; Konno, Y.; Jin, Y.; Kida, M.; Suzuki, K.; Nakatsuka, Y.; Tenma, N.; Nagao, J.
2014-12-01
Natural gas hydrate-bearing pressure core sediments have been sheared in compression using a newly developed Transparent Acrylic Cell Triaxial Testing (TACTT) system to investigate the geophysical and geomechanical behavior of sediments recovered from the deep seabed in the Eastern Nankai Trough, the first Japanese offshore production test region. The sediments were recovered by hybrid pressure core system (hybrid PCS) and pressure cores were cut by pressure core analysis tools (PCATs) on board. These pressure cores were transferred to the AIST Hokkaido centre and trimmed by pressure core non-destructive analysis tools (PNATs) for TACTT system which maintained the pressure and temperature conditions within the hydrate stability boundary, through the entire process of core handling from drilling to the end of laboratory testing. An image processing technique was used to capture the motion of sediment in a transparent acrylic cell, and digital photographs were obtained at every 0.1% of vertical strain during the test. Analysis of the optical images showed that sediments with 63% hydrate saturation exhibited brittle failure, although nonhydrate-bearing sediments exhibited ductile failure. In addition, the increase in shear strength with hydrate saturation increase of natural gas hydrate is in agreement with previous data from synthetic gas hydrate. This research was financially supported by the Research Consortium for Methane Hydrate Resources in Japan (MH21 Research Consortium) that carries out Japan's Methane Hydrate R&D Program by the Ministry of Economy, Trade and Industry (METI).
NASA Astrophysics Data System (ADS)
Kochunni, Sarun Kumar; Ghosh, Parthasarathi; Chowdhury, Kanchan
2015-12-01
Boil-off gas (BOG) generation and its handling are important issues in Liquefied natural gas (LNG) value chain because of economic, environment and safety reasons. Several variants of reliquefaction systems of BOG have been proposed by researchers. Thermodynamic analyses help to configure them and size their components for improving performance. In this paper, exergy analysis of reliquefaction system based on nitrogen-driven reverse Brayton cycle is carried out through simulation using Aspen Hysys 8.6®, a process simulator and the effects of heat exchanger size with and without related pressure drop and BOG compressor exit pressure are evaluated. Nondimensionalization of parameters with respect to the BOG load allows one to scale up or down the design. The process heat exchanger (PHX) requires much higher surface area than that of BOG condenser and it helps to reduce the quantity of methane vented out to atmosphere. As pressure drop destroys exergy, optimum UA of PHX decreases for highest system performance if pressure drop is taken into account. Again, for fixed sizes of heat exchangers, as there is a range of discharge pressures of BOG compressor at which the loss of methane in vent minimizes, the designer should consider choosing the pressure at lower value.
Zhao, Wei; Huppes, Gjalt; van der Voet, Ester
2011-06-01
The issue of municipal solid waste (MSW) management has been highlighted in China due to the continually increasing MSW volumes being generated and the limited capacity of waste treatment facilities. This article presents a quantitative eco-efficiency (E/E) analysis on MSW management in terms of greenhouse gas (GHG) mitigation. A methodology for E/E analysis has been proposed, with an emphasis on the consistent integration of life cycle assessment (LCA) and life cycle costing (LCC). The environmental and economic impacts derived from LCA and LCC have been normalized and defined as a quantitative E/E indicator. The proposed method was applied in a case study of Tianjin, China. The study assessed the current MSW management system, as well as a set of alternative scenarios, to investigate trade-offs between economy and GHG emissions mitigation. Additionally, contribution analysis was conducted on both LCA and LCC to identify key issues driving environmental and economic impacts. The results show that the current Tianjin's MSW management system emits the highest GHG and costs the least, whereas the situation reverses in the integrated scenario. The key issues identified by the contribution analysis show no linear relationship between the global warming impact and the cost impact in MSW management system. The landfill gas utilization scenario is indicated as a potential optimum scenario by the proposed E/E analysis, given the characteristics of MSW, technology levels, and chosen methodologies. The E/E analysis provides an attractive direction towards sustainable waste management, though some questions with respect to uncertainty need to be discussed further. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kim, Yong-Hyun; Kim, Ki-Hyun
2015-07-01
The analysis of polycyclic aromatic hydrocarbons (PAH) in ambient air requires the tedious experimental steps of both sampling and pretreatment (e.g., extraction or clean-up). To replace pre-existing conventional methods, a simple, rapid, and novel technique was developed to measure gas-particle fractionation of PAH in ambient air based on ‘sorbent tube-thermal desorption-gas chromatograph-mass spectrometer (ST-TD-GC-MS)’. The separate collection and analysis of ambient PAHs were achieved independently by two serially connected STs. The basic quality assurance confirmed good linearity, precision, and high sensitivity to eliminate the need for complicated pretreatment procedures with the detection limit (16 PAHs: 13.1 ± 7.04 pg). The analysis of real ambient PAH samples showed a clear fractionation between gas (two-three ringed PAHs) and particulate phases (five-six ringed PAHs). In contrast, for intermediate (four ringed) PAHs (fluoranthene, pyrene, benz[a]anthracene, and chrysene), a highly systematic/gradual fractionation was established. It thus suggests a promising role of ST-TD-GC-MS as measurement system in acquiring a reliable database of airborne PAH.
NASA Astrophysics Data System (ADS)
Pusfitasari, Eka Dian; Hendarsyah, Hendris; Salahuddin, Ariani, Novita
2017-01-01
Di(ethylhexyl) phthalate (DEHP) is a plasticizer commonly used in plastics. Physically DEHP has a low vapor pressure. DEHP can seep into the liquid in direct contact with the plastic wrapping materials, and typically can occur rapidly if extractable into food or non-polar solvents, such as oil, once the food is packaged in PVC packaging materials. DEHP has been analyzed by using gas chromatography which has a high sensitivity level. If the equipment used for the analysis is made from plastic containing DEHP, then it may be possible that DEHP can be extracted and appear on the outcome of the injection. It can interfere with the process of analysis, especially for the analysis of food samples. This study has identified the present of DEHP in the blank injection performed by Gas Chromatography tandem Mass Spectrometry with Selected Ion Monitoring mode (SIM). Researchers are required to verify whether the gas chromatographic system used is ready for the analysis process. In addition, the comparison and calculation of the intensity of the ion fragmentation spectra generated by mass spectrometry detector can be used for the qualitative determination to ensure the presence of the target compound. In this study is also discussed the differences between the high-intensity fragmentation of DEHP and dioctyl phthalate (DOP).
Larson, S.J.; Capel, P.D.; VanderLoop, A.G.
1996-01-01
Laboratory and quality assurance procedures for the analysis of ground-water samples for herbicides at the Management Systems Evaluation Area near Princeton, Minnesota are described. The target herbicides include atrazine, de-ethylatrazine, de-isopropylatrazine, metribuzin, alachlor, 2,6-diethylaniline, and metolachlor. The analytical techniques used are solid-phase extraction, and analysis by gas chromatography with mass-selective detection. Descriptions of cleaning procedures, preparation of standard solutions, isolation of analytes from water, sample transfer methods, instrumental analysis, and data analysis are included.
Analysis and design of ion thrusters for large space systems
NASA Technical Reports Server (NTRS)
James, E. L.
1980-01-01
This study undertakes the analysis and conceptual design of a 0.5 Newton electrostatic ion thruster suitable for use on large space system missions in the next decade. Either argon or xenon gas shall be used as propellant. A 50 cm diameter discharge chamber was selected to meet stipulated performance goals. The discharge plasma is contained at the boundary by a periodic structure of alternating permanent magnets generating a series of line cusps. Anode strips between the magnets collect Maxwellian electrons generated by a central cathode. Ion extraction utilizes either two or three grid optics at the user's choice. An extensive analysis was undertaken to investigate optics behavior in the high power environment of this large thruster. A plasma bridge neutralizer operating on inert gas provides charge neutralizing electrons to complete the design. The resulting conceptual thruster and the necessary power management and control requirements are described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
R.I. Rudyka; Y.E. Zingerman; K.G. Lavrov
Up-to-date mathematical methods, such as correlation analysis and expert systems, are employed in creating a model of the coking process. Automatic coking-control systems developed by Giprokoks rule out human error. At an existing coke battery, after introducing automatic control, the heating-gas consumption is reduced by {>=}5%.
Method and apparatus for noble gas atom detection with isotopic selectivity
Hurst, G. Samuel; Payne, Marvin G.; Chen, Chung-Hsuan; Parks, James E.
1984-01-01
Apparatus and methods of operation are described for determining, with isotopic selectivity, the number of noble gas atoms in a sample. The analysis is conducted within an evacuated chamber which can be isolated by a valve from a vacuum pumping system capable of producing a pressure of 10.sup.-8 Torr. Provision is made to pass pulses of laser beams through the chamber, these pulses having wavelengths appropriate for the resonance ionization of atoms of the noble gas under analysis. A mass filter within the chamber selects ions of a specific isotope of the noble gas, and means are provided to accelerate these selected ions sufficiently for implantation into a target. Specific types of targets are discussed. An electron measuring device produces a signal relatable to the number of ions implanted into the target and thus to the number of atoms of the selected isotope of the noble gas removed from the gas sample. The measurement can be continued until a substantial fraction, or all, of the atoms in the sample have been counted. Furthermore, additional embodiments of the apparatus are described for bunching the atoms of a noble gas for more rapid analysis, and for changing the target for repetitive cycling of the gas in the chamber. The number of repetitions of the cyclic steps depend upon the concentration of the isotope of interest, the separative efficiency of the mass filter, etc. The cycles are continued until a desired selectivity is achieved. Also described are components and a method of operation for a pre-enrichment operation for use when an introduction of a total sample would elevate the pressure within the chamber to levels in excess of those for operation of the mass filter, specifically a quadrupole mass filter. Specific examples of three noble gas isotope analyses are described.
INTEGRATE: Driving Transformational Change - JISEA 2018 Annual Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
This report demonstrates 2017 highlights of the Joint Institute for Strategic Energy Analysis' (JISEA's) work. The Annual Report overviews JISEA's research and analysis accomplishments in natural gas and methane emissions; nuclear-renewable hybrid energy systems; the Clean Energy Manufacturing Analysis Center's work in global supply chains; the 21st Century Power Partnership; and more.
A thermodynamic analysis of the environmental indicators of natural gas combustion processes
NASA Astrophysics Data System (ADS)
Elsukov, V. K.
2010-07-01
Environmental indicators of the natural gas combustion process are studied using the model of extreme intermediate states developed at the Melent’ev Institute of Power Engineering Systems. Technological factors responsible for generation of polycyclic aromatic hydrocarbons and hydrogen cyanide are revealed. Measures for reducing the amounts of polycyclic aromatic hydrocarbons, hydrogen cyanide, nitrogen oxide, and other pollutants emitted from boilers are developed.
Future Issues and Approaches to Health Monitoring and Failure Prevention for Oil-Free Gas Turbines
NASA Technical Reports Server (NTRS)
DellaCorte, Christopher
2004-01-01
Recent technology advances in foil air bearings, high temperature solid lubricants and computer based modeling has enabled the development of small Oil-Free gas turbines. These turbomachines are currently commercialized as small (<100 kW) microturbine generators and larger machines are being developed. Based upon these successes and the high potential payoffs offered by Oil-Free systems, NASA, industry, and other government entities are anticipating Oil-Free gas turbine propulsion systems to proliferate future markets. Since an Oil-Free engine has no oil system, traditional approaches to health monitoring and diagnostics, such as chip detection, oil analysis, and possibly vibration signature analyses (e.g., ball pass frequency) will be unavailable. As such, new approaches will need to be considered. These could include shaft orbit analyses, foil bearing temperature measurements, embedded wear sensors and start-up/coast down speed analysis. In addition, novel, as yet undeveloped techniques may emerge based upon concurrent developments in MEMS technology. This paper introduces Oil-Free technology, reviews the current state of the art and potential for future turbomachinery applications and discusses possible approaches to health monitoring, diagnostics and failure prevention.
Online elemental analysis of process gases with ICP-OES: A case study on waste wood combustion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wellinger, Marco, E-mail: marco.wellinger@gmail.com; Ecole Polytechnique Federale de Lausanne; Wochele, Joerg
2012-10-15
Highlights: Black-Right-Pointing-Pointer Simultaneous measurements of 23 elements in process gases of a waste wood combustor. Black-Right-Pointing-Pointer Mobile ICP spectrometer allows measurements of high quality at industrial plants. Black-Right-Pointing-Pointer Continuous online measurements with high temporal resolution. Black-Right-Pointing-Pointer Linear correlations among element concentrations in the raw flue gas were detected. Black-Right-Pointing-Pointer Novel sampling and calibration methods for ICP-OES analysis of process gases. - Abstract: A mobile sampling and measurement system for the analysis of gaseous and liquid samples in the field was developed. An inductively coupled plasma optical emission spectrometer (ICP-OES), which is built into a van, was used as detector. Themore » analytical system was calibrated with liquid and/or gaseous standards. It was shown that identical mass flows of either gaseous or liquid standards resulted in identical ICP-OES signal intensities. In a field measurement campaign trace and minor elements in the raw flue gas of a waste wood combustor were monitored. Sampling was performed with a highly transport efficient liquid quench system, which allowed to observe temporal variations in the elemental process gas composition. After a change in feedstock an immediate change of the element concentrations in the flue gas was detected. A comparison of the average element concentrations during the combustion of the two feedstocks showed a high reproducibility for matrix elements that are expected to be present in similar concentrations. On the other hand elements that showed strong differences in their concentration in the feedstock were also represented by a higher concentration in the flue gas. Following the temporal variations of different elements revealed strong correlations between a number of elements, such as chlorine with sodium, potassium and zinc, as well as arsenic with lead, and calcium with strontium.« less
Analysis of Adsorbed Natural Gas Tank Technology
NASA Astrophysics Data System (ADS)
Knight, Ernest; Schultz, Conrad; Rash, Tyler; Dohnke, Elmar; Stalla, David; Gillespie, Andrew; Sweany, Mark; Seydel, Florian; Pfeifer, Peter
With gasoline being an ever decreasing finite resource and with the desire to reduce humanity's carbon footprint, there has been an increasing focus on innovation of alternative fuel sources. Natural gas burns cleaner, is more abundant, and conforms to modern engines. However, storing compressed natural gas (CNG) requires large, heavy gas cylinders, which limits space and fuel efficiency. Adsorbed natural gas (ANG) technology allows for much greater fuel storage capacity and the ability to store the gas at a much lower pressure. Thus, ANG tanks are much more flexible in terms of their size, shape, and weight. Our ANG tank employs monolithic nanoporous activated carbon as its adsorbent material. Several different configurations of this Flat Panel Tank Assembly (FPTA) along with a Fuel Extraction System (FES) were examined to compare with the mass flow rate demands of an engine.
NASA Technical Reports Server (NTRS)
Kuharski, Robert A.; Jongeward, Gary A.; Wilcox, Katherine G.; Rankin, Tom R.; Roche, James C.
1991-01-01
The authors review the Environment Power System Analysis Tool (EPSAT) design and demonstrate its capabilities by using it to address some questions that arose in designing the SPEAR III experiment. It is shown that that the rocket body cannot be driven to large positive voltages under the constraints of this experiment. Hence, attempts to measure the effects of a highly positive rocket body in the plasma environment should not be made in this experiment. It is determined that a hollow cathode will need to draw only about 50 mA to ground the rocket body. It is shown that a relatively small amount of gas needs to be released to induce a bulk breakdown near the rocket body, and this gas release should not discharge the sphere. Therefore, the experiment provides an excellent opportunity to study the neutralization of a differential charge.
Towards a Global Greenhouse Gas Information System (GHGIS)
NASA Astrophysics Data System (ADS)
Duren, Riley; Butler, James; Rotman, Doug; Miller, Charles; Decola, Phil; Sheffner, Edwin; Tucker, Compton; Mitchiner, John; Jonietz, Karl; Dimotakis, Paul
2010-05-01
Over the next few years, an increasing number of entities ranging from international, national, and regional governments, to businesses and private land-owners, are likely to become more involved in efforts to limit atmospheric concentrations of greenhouse gases. In such a world, geospatially resolved information about the location, amount, and rate of greenhouse gas (GHG) emissions will be needed, as well as the stocks and flows of all forms of carbon through terrestrial ecosystems and in the oceans. The ability to implement policies that limit GHG concentrations would be enhanced by a global, open, and transparent greenhouse gas information system (GHGIS). An operational and scientifically robust GHGIS would combine ground-based and space-based observations, carbon-cycle modeling, GHG inventories, meta-analysis, and an extensive data integration and distribution system, to provide information about sources, sinks, and fluxes of greenhouse gases at policy-relevant temporal and spatial scales. The GHGIS effort was initiated in 2008 as a grassroots inter-agency collaboration intended to rigorously identify the needs for such a system, assess the capabilities of current assets, and suggest priorities for future research and development. We will present a status of the GHGIS effort including our latest analysis and ideas for potential near-term pilot projects with potential relevance to European initiatives including the Global Monitoring for Environment and Security (GMES) and the Integrated Carbon Observing System (ICOS).
Radioisotope Stirling Engine Powered Airship for Low Altitude Operation on Venus
NASA Technical Reports Server (NTRS)
Colozza, Anthony J.
2012-01-01
The feasibility of a Stirling engine powered airship for the near surface exploration of Venus was evaluated. The heat source for the Stirling engine was limited to 10 general purpose heat source (GPHS) blocks. The baseline airship utilized hydrogen as the lifting gas and the electronics and payload were enclosed in a cooled insulated pressure vessel to maintain the internal temperature at 320 K and 1 Bar pressure. The propulsion system consisted of an electric motor driving a propeller. An analysis was set up to size the airship that could operate near the Venus surface based on the available thermal power. The atmospheric conditions on Venus were modeled and used in the analysis. The analysis was an iterative process between sizing the airship to carry a specified payload and the power required to operate the electronics, payload and cooling system as well as provide power to the propulsion system to overcome the drag on the airship. A baseline configuration was determined that could meet the power requirements and operate near the Venus surface. From this baseline design additional trades were made to see how other factors affected the design such as the internal temperature of the payload chamber and the flight altitude. In addition other lifting methods were evaluated such as an evacuated chamber, heated atmospheric gas and augmented heated lifting gas. However none of these methods proved viable.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voorhees, D.R.; Rossmassler, R.L.; Zimmer, G.
The tritium analytical system at TFTR is used to determine the purity of tritium bearing gas streams in order to provide inventory and accountability measurements. The system includes a quadrupole mass spectrometer (QMS) and beta scintillator originally configured at Monsanto Mound Research Laboratory. The system was commissioned and tested in 1992 and is used daily for analysis of calibration standards, incoming tritium shipments, gases evolved from uranium storage beds and effluent gases from the tokamak. The instruments are controlled by a personal computer with customized software written with a graphical programming system designed for data acquisition and control. A discussionmore » of the instrumentation, control systems, system parameters, procedural methods, algorithms, and operational issues will be presented. Measurements of gas holding tanks and tritiated water waste streams using ion chamber instrumentation are discussed elsewhere. 7 refs., 3 figs.« less
Bedside arterial blood gas monitoring system using fluorescent optical sensors
NASA Astrophysics Data System (ADS)
Bartnik, Daniel J.; Rymut, Russell A.
1995-05-01
We describe a bedside arterial blood gas (ABG) monitoring system which uses fluorescent optical sensors in the measurement of blood pH, PCO2 and PO2. The Point-of-Care Arterial Blood Gas Monitoring System consists of the SensiCathTM optical sensor unit manufactured by Optical Sensors Incorporated and the TramTM Critical Care Monitoring System with ABG Module manufactured by Marquette Electronics Incorporated. Current blood gas measurement techniques require a blood sample to be removed from the patient and transported to an electrochemical analyzer for analysis. The ABG system does not require removal of blood from the patient or transport of the sample. The sensor is added to the patient's existing arterial line. ABG measurements are made by drawing a small blood sample from the arterial line in sufficient quantity to ensure an undiluted sample at the sensor. Measurements of pH, PCO2 and PO2 are made within 60 seconds. The blood is then returned to the patient, the line flushed and results appear on the bedside monitor. The ABG system offers several advantages over traditional electrochemical analyzers. Since the arterial line remains closed during the blood sampling procedure the patient's risk of infection is reduced and the caregiver's exposure to blood is eliminated. The single-use, disposable sensor can be measure 100 blood samples over 72 hours after a single two-point calibration. Quality Assurance checks are also available and provide the caregiver the ability to assess system performance even after the sensor is patient attached. The ABG module integrates with an existing bedside monitoring system. This allows ABG results to appear on the same display as ECG, respiration, blood pressure, cardiac output, SpO2, and other clinical information. The small module takes up little space in the crowded intensive care unit. Performance studies compare the ABG system with an electrochemical blood gas analyzer. Study results demonstrated accurate and precise blood gas measurement of 100 samples and 72 hour performance without need for re-calibration.
NASA Technical Reports Server (NTRS)
Frederick, D. K.; Lashmet, P. K.; Sandor, G. N.; Shen, C. N.; Smith, E. V.; Yerazunis, S. W.
1973-01-01
Problems related to the design and control of a mobile planetary vehicle to implement a systematic plan for the exploration of Mars are reported. Problem areas include: vehicle configuration, control, dynamics, systems and propulsion; systems analysis, terrain modeling and path selection; and chemical analysis of specimens. These tasks are summarized: vehicle model design, mathematical model of vehicle dynamics, experimental vehicle dynamics, obstacle negotiation, electrochemical controls, remote control, collapsibility and deployment, construction of a wheel tester, wheel analysis, payload design, system design optimization, effect of design assumptions, accessory optimal design, on-board computer subsystem, laser range measurement, discrete obstacle detection, obstacle detection systems, terrain modeling, path selection system simulation and evaluation, gas chromatograph/mass spectrometer system concepts, and chromatograph model evaluation and improvement.
Miniaturized system of a gas chromatograph coupled with a Paul ion trap mass spectrometer
NASA Technical Reports Server (NTRS)
Shortt, B. J.; Darrach, M. R.; Holland, Paul M.; Chutjian, A.
2005-01-01
Miniature gas chromatography (GC) and miniature mass spectrometry (MS) instrumentation has been developed to identify and quantify the chemical compounds present in complex mixtures of gases. The design approach utilizes micro-GC components coupled with a Paul quadrupole ion trap (QIT) mass spectrometer. Inherent to the system are high sensitivity, good dynamic range, good QIT resolution, low GC flow-rates to minimize vacuum requirements and the need for consumables; and the use of a modular approach to adapt to volatile organic compounds dissolved in water or present in sediment. Measurements are reported on system response to gaseous species at concentrations varying over four orders of magnitude. The ability of the system to deal with complicated mixtures is demonstrated, and future improvements are discussed. The GC/QIT system described herein has a mass, volume and power that are, conservatively, one-twentieth of those of commercial off-the-shelf systems. Potential applications are to spacecraft cabin-air monitoring, robotic planetary exploration and trace-species detection for residual gas analysis and environmental monitoring.
Determining phase diagrams of gas-liquid systems using a microfluidic PVT.
Mostowfi, Farshid; Molla, Shahnawaz; Tabeling, Patrick
2012-11-07
A novel microfluidic device designed for analyzing phase diagrams of gas-liquid systems (PVT or pressure-volume-temperature measurements) is described. The method mimics the phase transition of a reservoir fluid as it travels through the wellbore from the formation to the surface. The device consists of a long serpentine microchannel etched in a silicon substrate. The local pressure inside the channel is measured using membrane-based optical pressure sensors positioned along the channel. Geometrical restrictions are placed along the microchannel in order to nucleate bubbles when nucleation conditions are met, thus preventing the development of a supersaturation state in the channel. We point out that a local equilibrium state between gas and liquid phases is achieved, which implies that equilibrium properties can be directly measured on the chip. We analyze different mixtures of hydrocarbon systems and, consistently with the preceding analysis, obtain excellent agreement between our technique and conventional measurements. From a practical viewpoint (important for the relevance of the technology), we observe that the measurement time of thermodynamic properties of gas-liquid systems is reduced from hours to minutes with the present device without compromising the measurement accuracy.
Wilkes, A R
2011-01-01
Heat and moisture exchangers and breathing system filters are intended to replace the normal warming, humidifying and filtering functions of the upper airways. The first part of this review considered the history, principles of operation and efficiency of these devices. The aim of this part of the review is to summarise recent guidelines on the use of these devices and outline the problems that can occur. In particular, the effect of these devices on gas analysis, dead space, resistance to gas flow and blockage of the breathing system is considered. In children, it is important to consider the addition of dead space and resistance to gas flow. A body weight of 2.5 kg is probably the lower weight limit for use with heat and moisture exchangers, and 3 kg for filters. The resistance to gas flow of a heat- and moisture-exchanging filter added to a Mapleson F breathing system can cause a delay in the induction of anaesthesia. © 2010 The Author. Anaesthesia © 2010 The Association of Anaesthetists of Great Britain and Ireland.
Design of experimental system for supercritical CO2 fracturing under confining pressure conditions
NASA Astrophysics Data System (ADS)
Wang, H.; Lu, Q.; Li, X.; Yang, B.; Zheng, Y.; Shi, L.; Shi, X.
2018-03-01
Supercritical CO2 has the characteristics of low viscosity, high diffusion and zero surface tension, and it is considered as a new fluid for non-polluting and non-aqueous fracturing which can be used for shale gas development. Fracturing refers to a method of utilizing the high-pressure fluid to generate fractures in the rock formation so as to improve the oil and gas flow conditions and increase the oil and gas production. In this article, a new type of experimental system for supercritical CO2 fracturing under confining pressure conditions is designed, which is based on characteristics of supercritical CO2, shale reservoir and down-hole environment. The experimental system consists of three sub-systems, including supercritical CO2 generation system, supercritical CO2 fracturing system and data analysis system. It can be used to simulate supercritical CO2 fracturing under geo-stress conditions, thus to study the rock initiation pressure, the formation of the rock fractures, fractured surface morphology and so on. The experimental system has successfully carried out a series of supercritical CO2 fracturing experiments. The experimental results confirm the feasibility of the experimental system and the high efficiency of supercritical CO2 in fracturing tight rocks.
Using high resolution measurements of gas tracers to determine metabolic rates in streams
NASA Astrophysics Data System (ADS)
Knapp, J. L.; Osenbrück, K.; Brennwald, M. S.; Cirpka, O. A.
2017-12-01
Hyporheic exchange and other hyporheic processes are strongly linked to stream respiration, as the majority of a streams' microorganisms are located within the streambed. Directly estimating these respiration rates on the reach scale is usually not possible, but they can indirectly be inferred from measurements of dissolved oxygen. This, however, requires determining stream reaeration rates with high precision. Conducting gas-tracer tests has been found to be the most reliable method to estimate stream reaeration, but the majority of field-based sampling techniques for tracer gases are either costly in time and materials, or imprecise. By contrast, on-site gas analysis using gas-equilibrium membrane-inlet mass spectrometers (miniRUEDI, Gasometrix GmbH [1]) avoid the errors caused by sampling, storage, and analysis in the standard sampling techniques. Furthermore, the high analytical frequency of the on-site mass-spectrometer provides concentration data exhibiting a low uncertainty. We present results from gas-tracer tests with a continuous injection of propane and noble gases as tracers in a number of small streams. The concentrations of the tracer gases are recorded continuously over time at the first measurement station to account for fluctuations of the input signal, whereas shorter sample sets are collected at all further measurement stations. Reaeration rate constants are calculated from gas measurements for individual stream sections. These rates are then used to estimate metabolic rates of respiration and primary production based on time series of oxygen measurements. To demonstrate the advancement of the method provided by the on-site analysis, results from measurements performed by on-site mass spectroscopy are compared to those from traditional headspace sampling with gas chromatography analysis. Additionally, differences in magnitude and uncertainty of the obtained reaeration rates of oxygen and calculated metabolic rates from both methods highlight the usefulness of the high-frequency on-site analysis. [1] Brennwald, M. S., Schmidt, M., Oser, J., and Kipfer, R. (2016). A portable and autonomous mass spectrometric system for on-site environmental gas analysis. Environ. Sci. Technol., 50(24):13455-13463. Doi: 10.1021/acs.est.6b03669
Innovations in education and approaches to assessment of regional educational systems
NASA Astrophysics Data System (ADS)
Bauer, V. I.; Iljinyh, V. D.; Bazanov, A. V.; Kozin, E. S.
2018-05-01
The analysis of the latest innovations in the Russian education and trends in the development of educational regional systems is provided. Approaches to assessing the effectiveness of the operation of the company-university system are discussed by an example of motor engineering training for the oil and gas industry.
Improvement of cement plant dust emission by bag filter system
NASA Astrophysics Data System (ADS)
Wahyu Purnomo, Chandra; Budhijanto, Wiratni; Alfisyah, Muziibu; Triyono
2018-03-01
The limestone quarry in PT Indocement Tunggal Prakarsa (ITP) in Cirebon is considered as a complex quarry in terms of chemical composition and material hardness. From the beginning of the plant operation up to the end of 2015, the dust removal was rely on electrostatic precipitator (EP) system. Whenever limestone from specific quarry zones were incorporated into Raw Mill (RM) feed or there was an upset condition, the dust emission increased significantly. Beside higher demand of electricity, an EP system requires lower gas inlet temperature in order to remove the dust effectively which requires larger cooling water in the previous gas conditioning tower to cool down gas from 400 °C to about 100 °C. By considering the drawbacks, the EP system was replaced by a bag filter (BF) system. The BF allows higher temperature of gas inlet and it has higher dust removal efficiency. In this study, the efficiency of the two different dust removal systems is compared. The effect of process variables i.e. RM feed, kiln feed, inlet temperature and pressure, and small size particle fraction to the dust emission are studied by multivariate linier regression analysis. It is observed that the BF system can reduce significantly the dust emission from 30 to 6 mg/m3 and in the same time reducing CO2 emission by 0.24 ton/year from the electricity consumption saving.
Process feasibility study in support of silicon material task 1
NASA Technical Reports Server (NTRS)
Li, K. Y.; Hansen, K. C.; Yaws, C. L.
1978-01-01
Process system properties are analyzed for materials involved in the alternate processes under consideration for solar cell grade silicon. The following property data are reported for trichlorosilane: critical constants, vapor pressure, heat of vaporization, gas heat capacity, liquid heat capacity, density, surface tension, viscosity, thermal conductivity, heat of formation, and Gibb's free energy of formation. Work continued on the measurement of gas viscosity values of silicon source materials. Gas phase viscosity values for silicon tetrafluoride between 40 C and 200 C were experimentally determined. Major efforts were expended on completion of the preliminary economic analysis of the silane process. Cost, sensitivity and profitability analysis results are presented based on a preliminary process design of a plant to produce 1,000 metric tons/year of silicon by the revised process.
Niksa, Stephen; Fujiwara, Naoki
2005-07-01
This article introduces a predictive capability for Hg retention in any Ca-based wet flue gas desulfurization (FGD) scrubber, given mercury (Hg) speciation at the FGD inlet, the flue gas composition, and the sulphur dioxide (SO2) capture efficiency. A preliminary statistical analysis of data from 17 full-scale wet FGDs connects flue gas compositions, the extents of Hg oxidation at FGD inlets, and Hg retention efficiencies. These connections clearly signal that solution chemistry within the FGD determines Hg retention. A more thorough analysis based on thermochemical equilibrium yields highly accurate predictions for total Hg retention with no parameter adjustments. For the most reliable data, the predictions were within measurement uncertainties for both limestone and Mg/lime systems operating in both forced and natural oxidation mode. With the U.S. Environmental Protection Agency's (EPA) Information Collection Request (ICR) database, the quantitative performance was almost as good for the most modern FGDs, which probably conform to the very high SO2 absorption efficiencies assumed in the calculations. The large discrepancies for older FGDs are tentatively attributed to the unspecified SO2 capture efficiencies and operating temperatures and to the possible elimination of HCl in prescrubbers. The equilibrium calculations suggest that Hg retention is most sensitive to inlet HCl and O2 levels and the FGD temperature; weakly dependent on SO2 capture efficiency; and insensitive to HgCl2, NO, CA:S ratio, slurry dilution level in limestone FGDs, and MgSO3 levels in Mg/lime systems. Consequently, systems with prescrubbers to eliminate HCl probably retain less Hg than fully integrated FGDs. The analysis also predicts re-emission of Hg(O) but only for inlet O2 levels that are much lower than those in full-scale FGDs.
Preliminary analysis of the bio-mechanical characteristics for High-kitchen Municipal Solid Waste
NASA Astrophysics Data System (ADS)
Li, He; Zhang, Jian Guo; Lan, Ji Wu; He, Haijie
2017-11-01
Degradation of Municipal Solid Wastes (MSW) results in a change in solid skeleton, particle size and pore structure, inducing an alteration of compressibility and liquid/gas conductivity of the wastes. To investigate the complicated biological, hydraulic and mechanical coupled processes of the MSWs, a pilot-scale experimental device which is consist of waste column container, environment regulation system, vertical loading system and measuring system for liquid/gas conductivity is built. With the experimental systems, long-term tests were set up to investigate the biological, hydraulic and mechanical behaviour of the High-kitchen Municipal solid waste with high organic content and high water content. Different values of vertical stress and different degradation conditions (micro-aerobic and anaerobic) were simulated. Throughout the experiments, the changes in total volume, degree of saturation, leachate quantity and chemistry, LFG generation and composition, liquid and gas conductivity were measured. The experimental results will provide solid data for a development of the Bio-Hydro-Mechanical coupled characteristics for High-kitchen Municipal solid waste.
Sajjadi, Baharak; Asgharzadehahmadi, Seyedali; Asaithambi, Perumal; Raman, Abdul Aziz Abdul; Parthasarathy, Rajarathinam
2017-01-01
This paper aims at investigating the influence of acoustic streaming induced by low-frequency (24kHz) ultrasound irradiation on mass transfer in a two-phase system. The main objective is to discuss the possible mass transfer improvements under ultrasound irradiation. Three analyses were conducted: i) experimental analysis of mass transfer under ultrasound irradiation; ii) comparative analysis between the results of the ultrasound assisted mass transfer with that obtained from mechanically stirring; and iii) computational analysis of the systems using 3D CFD simulation. In the experimental part, the interactive effects of liquid rheological properties, ultrasound power and superficial gas velocity on mass transfer were investigated in two different sonicators. The results were then compared with that of mechanical stirring. In the computational part, the results were illustrated as a function of acoustic streaming behaviour, fluid flow pattern, gas/liquid volume fraction and turbulence in the two-phase system and finally the mass transfer coefficient was specified. It was found that additional turbulence created by ultrasound played the most important role on intensifying the mass transfer phenomena compared to that in stirred vessel. Furthermore, long residence time which depends on geometrical parameters is another key for mass transfer. The results obtained in the present study would help researchers understand the role of ultrasound as an energy source and acoustic streaming as one of the most important of ultrasound waves on intensifying gas-liquid mass transfer in a two-phase system and can be a breakthrough in the design procedure as no similar studies were found in the existing literature. Copyright © 2016. Published by Elsevier B.V.
Balloon-Borne Full-Column Greenhouse Gas Profiling Field Campaign Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fischer, Marc L
The vertical distributions of CO2, CH4, and other gases provide important constraints for the determination of terrestrial and ocean sources and sinks of carbon and other biogeochemical processes in the Earth system. The DOE Biological and Environmental Research Program (DOE-BER) and the NOAA Earth System Research Laboratory (NOAA-ESRL) collaborate to quantify the vertically resolved distribution of atmospheric carbon-cycle gases (CO2, and CH4) within approximately 99% of the atmospheric column at the DOE ARM Southern Great Plains Facility in Oklahoma. In 2015, flights were delayed while research at NOAA focused on evaluating sources of systematic errors in the gas collection andmore » analysis system and modifying the sampling system to provide duplicate air samples in a single flight package. In 2017, we look forward to proposing additional sampling and analysis at ARM-SGP (and other sites) that characterize the vertical distribution of CO2 and CH4 over time and space.« less
Thermodynamic analysis of Direct Urea Solid Oxide Fuel Cell in combined heat and power applications
NASA Astrophysics Data System (ADS)
Abraham, F.; Dincer, I.
2015-12-01
This paper presents a comprehensive steady state modelling and thermodynamic analysis of Direct Urea Solid Oxide Fuel Cell integrated with Gas Turbine power cycle (DU-SOFC/GT). The use of urea as direct fuel mitigates public health and safety risks associated with the use of hydrogen and ammonia. The integration scheme in this study covers both oxygen ion-conducting solid oxide fuel cells (SOFC-O) and hydrogen proton-conducting solid oxide fuel cells (SOFC-H). Parametric case studies are carried out to investigate the effects of design and operating parameters on the overall performance of the system. The results reveal that the fuel cell exhibited the highest level of exergy destruction among other system components. Furthermore, the SOFC-O based system offers better overall performance than that with the SOFC-H option mainly due to the detrimental reverse water-gas shift reaction at the SOFC anode as well as the unique configuration of the system.